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Abstract

Cyber-physical systems (CPSs) integrate the cyber world and physical en-

tities via seamless combinations of sensing, communication, and control. One

typical feature of CPSs is that massive data packets are transmitted through

unreliable wireless networks, which can be intercepted or manipulated by ma-

licious agents. These cyber-attacks may lead to confidential information leak-

age, system performance degradation, and even serious industrial incidents.

As a prerequisite, the investigation of worst-case attacks from adversary’s per-

spective is essential to reveal vulnerabilities of CPSs and establish a basis for

subsequent development of countermeasures. Therefore, this thesis focuses on

the design of worst-case attacks in industrial CPSs with energy and stealthi-

ness constraints.

Two research topics are considered. First, we study the scenario where

an adversary launches denial-of-service (DoS) attacks against control chan-

nels of a linear quadratic regulator (LQR). Owing to energy constraints, the

attacker can only launch consecutive attacks with a fixed horizon to maximize

the LQR control cost. Necessary and sufficient conditions are derived under

which the optimality of attacking from the initial instant can be preserved

despite the randomness of initial states. Second, we consider the scenario that

malicious agents can intercept and modify sensor measurements of a remote

state estimator, with the purpose to degrade the estimation quality while re-

maining undetected by anomaly detectors. This scenario is composed of three
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topics: i) An innovation-based linear attack fusing all available information

is proposed, which clarifies a counter-intuitive issue in existing work. Explicit

expressions of optimal stealthy attack coefficients are obtained without solving

optimization problems numerically. ii) The optimal information-based attack

that achieves the maximum greedy performance and deceives χ2 detectors is

derived. For both attacks with strict and relaxed stealthiness, the optimal

compromised innovation is shown to be a linear function of the conditional

minimum mean-square error (MMSE) estimate of prediction errors. A unified

framework and a separation principle are proposed to handle more general sce-

narios that the attacker has access to different levels of online information. iii)

The optimal information-based stealthy attack leading to the maximum holis-

tic performance is obtained. The compromised innovation is constructed as a

linear combination of the MMSE estimates of all historical prediction errors;

then the combination coefficients are obtained by solving a convex optimiza-

tion problem. Moreover, the proposed attack can be generalized to deceive

interval χ2 detectors with different lengths. It is shown that the worst-case

attack effect is determined by both the amount of online information and the

duration of the detection interval.

The effectiveness of the proposed methods is demonstrated by theoretical

analysis, numerical examples, as well as comparative studies with existing

work. These findings lead us to a better understanding of vulnerabilities of

industrial CPSs and facilitate development of protective measures.
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Chapter 1

Introduction

In this chapter, the research background for cyber-physical system security

is introduced and a literature survey is provided to summarize the recent

development of worst-case attacks and defensive countermeasures. Thereafter,

the contributions of the thesis are listed, followed by a thesis outline.

1.1 Research Background

The last decade witnessed a rapid progress in the development of cyber-

physical systems (CPSs), which are tight integrations of computational, net-

working and physical components. CPSs provide a general modeling frame-

work that covers various industrial processes and critical infrastructures, e.g.,

power grids [41, 43, 45], water distribution networks [2, 75, 79], intelligent

transportation [21, 55], smart medical devices [13, 33], and industrial control

systems [1, 32, 80, 82, 91]. The normal operation of CPSs depends on re-

liable transmission of data packets, which could be craftily manipulated by

malicious agents particularly if wireless networks are deployed. Stuxnet is one

such well-known cyber-worm that caused great damage to nuclear facilities in

Iran by injecting falsified commands [32]. In 2015, a synchronized and coordi-

nated cyber-attack compromised three Ukrainian regional power distribution

companies, resulting in electric outages affecting approximately 225,000 cus-

tomers for several hours [41]. A recent cyber-attack that crippled the largest

fuel pipeline in the U.S. and led to energy shortages across the east coast was

1



another prominent example [80]. These incidents have stimulated extensive

research interests on CPS security in the past decade.

Plant SensorActuator

State EstimatorController

𝑦𝑘

෤𝑦𝑘𝑢𝑘

෤𝑢𝑘

Attack Attack

Figure 1.1: Cyber-attacks on industrial control systems.

Security of CPSs can be regarded as a composition of three main at-

tributes: confidentiality, availability, and integrity. The corresponding cyber-

threats impairing these properties are respectively termed as eavesdropping

attacks, denial-of-service (DoS) attacks, and false-data injection (FDI) at-

tacks [14, 27, 76]. The later two contribute the greatest portion in real-world

incidents and have been the focus of academic research on CPS security since

a decade ago. Fig 1.1 illustrates typical cyber-attacks targeting an industrial

control system, where the dashed lines represent vulnerable data transmis-

sion channels. In DoS attacks, the adversary broadcasts noisy data to block

communication channels between different components; as a result, the useful

information is not available at the receiver’s side [6, 81, 89, 90]. FDI attacks,

also known as deception attacks, require more resources in practical implemen-

tation, since attackers need to intrude into communication links and modify

original packets or inject falsified data. In both cases, the nominal performance

of CPSs will be significantly damaged; the impact can be increased control

costs [82, 91], degraded state estimation quality [4, 24, 89], and even instabil-

ity of closed-loop systems [43, 51]. Eavesdropping attacks seem moderate for

that the attacker’s behavior has no direct impact on the system performance,

but the leak of critical information can also lead to devastating consequences

[17, 25, 88]. Other less common cyber-threats in power distribution grids in-

clude topology poisoning, load redistribution, and data framing attacks [47].

Despite inevitability of these malicious attacks, it is impossible for adversaries
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to launch uncontrolled attacks owing to countermeasures deployed by system

defenders, such as the virus firewalls, anomaly detectors, and data encryp-

tion mechanisms [49, 60, 65]. The attacker’s resource budget and restricted

information also confine the feasible set of attack policies.

To enhance the security level of CPSs, it is necessary to study cyber-

security from attacker’s perspective, investigating inherent weaknesses of CPSs

by exploring worst-case attack strategies. In existing studies, synthesizing

optimal attacks that cause the maximum performance loss and developing

defensive countermeasures to mitigate their negative impacts are two major

research topics.

1.1.1 Worst-Case Cyber-Attacks

The ancient proverb “If you know both the enemy and yourself, you will

fight a hundred battles without danger of defeat” points out the necessity

and significance to study optimal cyber-attacks that maximize the adversary’s

benefit. Using “optimal”, we emphasize attack impacts from attackers’ per-

spective. It is also called “worst-case” attack when we highlight system perfor-

mance degradation from defenders’ point of view. In an adversarial network

environment, investigating the system performance evolution under influence

of malicious attacks is a prerequisite for subsequent development of defensive

countermeasures [27].

Launching cyber-attacks is a resource-consuming task. In DoS attacks that

block wireless channels, the adversary may have to configure powerful emitters

to mask original signals [48]. The attacker should design a sophisticated DoS

schedule to achieve the maximum attack impact with limited energy supply.

For example, in the case that an attacker intends to compromise a remote

state estimator but can block only limited steps of measurement transmission

in a fixed horizon, there exists an optimal schedule that causes the greatest

estimation performance loss [89]. Unlike DoS attacks that can be readily

noticed by defenders, FDI attacks are carefully synthesized to cause severe

3



consequences without triggering anomaly detectors. The capacity to avoid

being detected is called stealthiness, which is the main property that makes

FDI attacks differ from randomly occurred component faults. The pioneering

work on stealthy FDI attacks dates back to [45] in smart grids and [51] in

dynamic linear systems. For DoS attacks, the optimal trade-off between attack

effects and energy consumption is the main concern; while in FDI attacks more

efforts have been paid to reach a satisfactory balance between performance loss

and stealthiness level.

Additionally, attack performance depends also on the amount of informa-

tion the adversary can gain [24, 97, 98]. When synthesizing optimal attacks,

we usually assume the worst happens, i.e., a malicious agent has access to all

necessary resources and information to facilitate his/her purpose. The infor-

mation includes system parameters, controller and estimator configurations,

and online data. This assumption is in accordance with the Kerckhoffs’s prin-

ciple, which states that the security of a system should not rely on its obscurity

[73]. Though difficult, it is often assumed that adversaries can infer system

parameters using techniques like system identification and controller invasion

[16, 46]. The online information refers to the eavesdropped data in unreli-

able transmission links, namely, real-time sensor measurements and control

commands. In some cases, an attacker can not only intercept original sensor

outputs but also obtain more information of system states by placing extra

sensors [24, 40, 97]. How to fully utilize all available information to achieve the

maximum attack impact is a challenge task that has not been fully addressed

in existing studies.

As a summary, the design of worst-case attacks is to synthesize optimal

attack sequences that cause the maximum performance loss in CPSs, with the

following practical concerns:

1. The available information for attackers should be fully utilized.

2. The consumed attack energy must not exceed the budget limit.

3. The attack is capable of deceiving anomaly detectors.
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1.1.2 Defensive Countermeasures

The ultimate goal of current studies is to develop efficient countermeasures

that eliminate or mitigate the impacts of cyber-threats. These protective

mechanisms can be classified as preventative and compensatory measures [58].

In many aspects, cyber-attacks bear some similarities with physical faults

and transmission errors. DoS attacks can be regarded as coordinated packet

dropouts in the sense that both of them impair information availability [64, 83];

the manipulation of sensor measurements can be modeled in a similar way as

additive and multiplicative faults [15, 19, 20]. However, existing methods

on fault detection and fault-tolerant control can not be applied directly to

tackle cyber-attacks. Faults are usually considered as physical events that

occur randomly and affect the system performance in an uncoordinated way;

whereas cyber-attacks are intentionally designed by attackers, making their

detection and mitigation a more challenging task.

Preventative methods are proactive countermeasures that increase the dif-

ficulty of launching cyber-attacks or reveal their occurrence at an early stage.

Data encryption [67, 72, 95, 96], moving-target defense (MTD) [11, 30, 77],

water-marking [53, 61, 63, 78], and novel attack detectors [28, 34, 44, 86] are

typical representatives. To resist FDI attacks, the core idea is constructing

strict stealthiness conditions such that it is much more expensive or even im-

possible to launch cyber-attacks without triggering alarms. Data encryption

has been widely adopted in computer networks, which relies on the confiden-

tiality of security keys and robustness of encryption algorithms [67]. In data

exchange units without enough computing resources, deploying data encryp-

tion module could be prohibitive. MTD is a protection technique borrowed

from computer security, where a stochastic switching structure is utilized to

dynamically and continuously alter the parameters of the system and hinder

the attacker’s ability to conduct successful reconnaissance. This type of pro-

tection requires frequent switching of operation modes and thus is often at

the sacrifice of optimal control performance [30]. Water-marking is a physi-
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cal authentication algorithm that adds a random biased signal to the optimal

control input; the manipulation of nominal data can be revealed by checking

whether the water-marking signal is correctly reflected in the sensor output

[53]. However, one needs to put efforts to balance the attack resilience abil-

ity and control performance by designing an optimal authentication signal,

since the control input is artificially compromised and the process runs in a

non-optimal mode. Designing novel attack detectors without hindering nom-

inal system behavior is a more challenging task. Though there is some work

extending fault detection algorithms to reveal cyber-attacks, these methods

are effective only for some special types of control systems and data injection

[86]. Finally, it is noted that the aforementioned proactive countermeasures

are usually not suitable to resist DoS attacks, which are easily notified by

system defenders and thus active mitigating methods can be adopted.

As a comparison, compensatory methods refer to those active countermea-

sures that take effect only after an attack is detected. For industrial control

systems, the core mission is to achieve attack-resilient control and estimation,

namely, the capacity to maintain system performance at a minimum level

even when cyber-attacks are unavoidable. The basic idea is similar to fault

tolerant control, where there exist several preset operation modes and robust

controllers will be activated after a critical anomaly is announced [94]. It is

seen that the attack resilient performance depends on the efficiency of attack

detection algorithms. There is also some work assuming that dynamic actions

of attackers and defenders are known to each other. As a result, each side will

react optimally based on the opponent’s optimal action. The decision-making

process for both sides is studied in a game-theory framework [17, 35, 37].

1.2 Literature Survey

The thesis focuses on the derivations of worst-case DoS attacks on LQR

control channels with energy constraints and FDI attacks on remote state

estimation with stealthiness constraints. This section presents a detailed lit-
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erature survey on the recent development of these attacks and corresponding

countermeasures.

1.2.1 Optimal DoS Attacks

In situations where a plant is controlled by a remote controller, both con-

trol commands and sensor measurements can be compromised by attackers.

Currently, a majority of existing work on DoS attacks concentrates on sensor

networks in open-loop systems, where the goal of attackers is to degrade the

estimation quality. Zhang et al. proved that an optimal DoS strategy against

sensor channels of linear quadratic Gaussian (LQG) systems was consecutive

attack at active periods when attackers only had limited resource [89]. Li at al.

formulated a DoS attack and defense strategy in a game-theoretic framework

and showed the optimal strategies for sensors and attackers constitute a Nash

equilibrium [37]. The authors extended their results to signal-to-interference-

plus-noise ratio-based DoS attacks, where a more complex scenario that both

the sensor and the attacker can choose their actions with multiple energy lev-

els was investigated [35]. Zhang at al. studied the optimal schedule for DoS

attacks to degrade the performance of a remote state estimator, where sen-

sor measurements were transmitted through a band-limited wireless channel

under the round-robin protocol [90]. For an energy-constraint jammer on re-

mote state estimation, Gan at al. investigated the problem of how to select

the number of channels at each attack time to maximally deteriorate the CPS

performance. Qin at al. considered the scenario that an energy-constrained

adversary launched DoS attacks on packet-dropping networks and proposed

some defensive countermeasures [62]. Compared with attacks on open-loop

sensor channels, there are only few papers studying DoS attacks on closed-

loop controller links. In general, analysis on the influence of attacks on control

performance is more difficult than that on estimation performance because the

system dynamics will not be altered in the later case.

Zero-input and hold-input are two compensation strategies under DoS at-
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tacks in existing literature [29, 66, 93]. In both strategies, the system dynamics

switch between two subsystems and the attack sequence design can be refor-

mulated as an optimal switching problem. Wu et al. investigated the FDI

optimal attack in LQR systems when attackers had only limited access to

actuator channels [82]. The best attacked channels and falsified data were

obtained simultaneously by solving a switched LQ problem.

1.2.2 Optimal FDI Attacks

A stealthy FDI attack compromising state estimators was brought for-

ward by Liu et al. in smart grids, where it was found that the estimation

error of least square estimators could be manipulated arbitrarily large by in-

jecting falsified measurements [45]. Moreover, if the injected data lied in the

column space of measurement matrix, the attack could completely deceive a

residual-based bad data detector. This interesting conclusion has stimulated

substantial investigation on this topic, mainly with the extension from static

systems in smart grids to dynamic ones in networked control systems. The

capacity of FDI attacks to remain stealthy is the most concerned issue in aca-

demic research [22, 51]. In fault detection, the residual (or innovation) is the

difference of actual and predicted outputs and often utilized to reveal anoma-

lies [15]. The stealthiness property in existing studies is thus defined in two

different ways:

1. From a deterministic point of view, an attack is stealthy if the difference

of residuals (or outputs) with and without the attack has a bounded

norm [26, 51, 52, 56, 74, 92]. Zero-dynamic deception attacks that can

compromise non-minimum phase systems is a typical representative [59].

2. From a statistical point of view, an attack is stealthy if the Kullback–

Leibler (KL) divergence of the step-wise innovations with and without

the attack is bounded by a given threshold [22, 24, 24, 36, 38–40, 68,

69]. There is also some work utilizing the KL divergence of nominal
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and compromised innovation sequences to define a similar stealthiness

measure [4, 5, 91].

In both cases, an attack is said to be strictly stealthy if the threshold is set as

zero; otherwise the attack is relaxedly stealthy, where more attack performance

can be achieved by sacrificing the stealthiness property.

Mo and Sinopoli gave the first residual-based stealthiness definition and

proposed the stealthy deception attack for the perfect attackable systems,

which could be destabilized, but the residual change was bounded [51]. With

the same stealthiness metric, Hu et al. found an insecurity condition for the

existence of stealthy attacks that could cause unbounded estimation perfor-

mance degradation [26]. Chen et al. investigated the stealthy deception attack

with the objective of driving system states to a desired region [10]. A similar

problem was studied in [92], where a self-generated stealthy attack leading to

unbounded estimation errors was proposed.

The second stealthiness measure is widely applied in optimal deception

attacks on remote state estimation, which is motivated by the fact that an

interval χ2 detector is usually deployed to reveal anomalies. Although a lot

of research has been carried out on this topic, existing work has been mostly

restricted to the case of innovation-based linear attacks. In the pioneering

work [22], Guo et al. proposed an attack policy that an affine transformation

of the nominal innovation was transmitted to the remote end. The optimal co-

efficients were obtained recursively by solving semi-definite programs (SDPs)

that maximize the estimation error subject to stealthiness constraints. If the

attacker can intercept only the original measurements, the optimal attack

completely deceiving a χ2 detector was shown to be just flipping the sign

of nominal innovations [22]. Guo et al. extended their results to the cases

where attackers could use extra sensors to measure system states [24] and

attacks with relaxed stealthiness [23]. A counter-intuitive conclusion showed

that the additional information would not benefit the attacker’s purpose for

unstable scalar systems. Zhou et al. studied a different strategy to utilize side
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information [97]. All these attacks were linear functions of only the current-

step nominal innovation, and thus the compromised innovation was zero-mean

independent and identically distributed (i.i.d.). These attacks could success-

fully deceive an interval χ2 detector, but they satisfied an overly restrictive

stealthiness constraint. To improve attack performance, Li and Yang designed

a linear attack based on the current innovation and an additional historical

one that was beyond the sliding window of χ2 detectors [39]. However, the

information available to the attacker was not fully utilized, thus the attack

did not achieve the maximum estimation quality degradation. To tackle this

dilemma, Shang and Chen studied a general scenario that an interval of histor-

ical nominal innovations could be utilized to design linear attacks. This policy

caused more severe estimation performance loss compared with the previous

work, but the compromised innovations were correlated in every two consecu-

tive steps, making the attack only be able to bypass a single-step χ2 detector

[68]. Other relevant papers that studied either the innovation-based linear

attacks, or defensive countermeasures against linear attacks can be found in

[9, 36, 38, 67, 70, 71, 84]. In summary, it is challenging for innovation-based

linear attacks to deceive interval χ2 detectors without sacrificing attack per-

formance. How to properly handle the stealthiness constraint associated with

interval anomaly detectors is still an open problem.

Additionally, very few studies consider the scenario that the attacker can

gain some side information of system states by placing extra sensors, though

in practical cases this information can be obtained easily. For instance, an

adversary may implement another radar to measure the speed of a UAV

[18], or deploy an extra thermometer to measure an object’s temperature.

In [24, 40, 97], different innovation-based linear attacks making use of side

information were compared. As will be shown in this thesis, all these policies

had an innovation-based linear form and fell short in leveraging the available

information efficiently. A systematic understanding of how the additional in-

formation affects attack performance is still lacking.
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Finally, the above studies focused on the so-call “greedy” attack perfor-

mance in remote state estimation, i.e., at each step the compromised online

measurement is designed only to maximize the current-step estimation error.

How to maximize the estimation quality degradation in a fixed interval is a

more difficult task. The main challenge is that the compromised innovation

has an impact not only on the current-step estimation quality but also on all

subsequent estimation errors. Currently, only a few studies considered holistic

performance, but all of them were restricted to the case that the attack has

an innovation-based linear form [38, 69]. The derivation of optimal attacks

maximizing holistic performance without presupposing specific models is still

an open problem.

1.2.3 Attack Detection and Resilient Control

It is a challenging task to detect cyber-attacks and take measures to

mitigate their impacts, especially for stealthy FDI attacks that can deceive

anomaly detectors. In most cases, system security is enhanced with an extra

cost, like the tolerable degradation of the optimal control performance. When

the widely-used χ2 detector failed to distinguish the residual under nominal

and attacked conditions, Mo et al. proposed an active detection method in [53]

by intentionally injecting a noise signal into the control input. The so-called

watermark signal improved the attack detectability at the cost of increased

LQG control effort. Similarly, Romagnoli et al. designed a deterministic wa-

termark in [63] using the technique of pseudo-inversion, which could avoid

undesirable behavior caused by physical watermarking. Attack resilient es-

timators could be found in [54, 57], where fundamental problems of reliable

state estimation under sensor attacks and bounded noises were investigated.

Miao et al. proposed a new attack-resilient framework which consisted of

multi-combinations of controllers, estimators and detectors for balancing the

system’s security overhead and control cost [50].

More research work has been done in attack resilient control under DoS
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attacks. Since system dynamics will be altered in a simple way under DoS,

it is natural to formulate the resilient control problem in the framework of

switching control. In [31], Lai et al. proposed to transmit auxiliary control

signals as a single package in every sampling instant. The actuator could use

the information contained in the latest received package if it did not receive

the command in the next step. By virtue of switched system theory, the pro-

posed method could ensure the closed-loop stability under DoS attacks with

maximal length constraints. Kanellopoulos et al. established a moving-target

defense framework in [30]. The defender designed several optimal controllers

with each corresponding to a subset of actuators. The real implemented con-

troller switched among these optimal ones in a random manner. Owing to

the moving-target property, it was hard for attackers to identify the effec-

tive controller to launch malicious attacks. Recently, Zhu et al. studied the

observer-based control to stabilize a closed-loop system, assuming the sys-

tem was subject to periodic DoS attacks in both measurement and control

channels [99]. Yong et al. modeled the systems under attacks as hidden-

model stochastic switching linear systems with unknown inputs, and proposed

a multiple-model inference algorithm to tackle security issues [87].

Compared with the synthesis of optimal attacks, the effort in attack detec-

tion and resilient control is still lacking. There are few pieces of work study-

ing attack resilient control in the presence of FDI attacks. The “stealthiness”

property brings forward the main difficulty in designing effective countermea-

sures.

1.3 Thesis Contributions

To reveal the vulnerabilities of industrial CPSs, this thesis focuses on the

design of optimal cyber-attacks with energy and stealthiness constraints. The

major contributions are summarized as follows:

1. We have studied an optimal DoS attack problem against control channels

with energy constraints in LQR systems. Two common compensation
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strategies under DoS attacks are considered. Necessary and sufficient

conditions are derived to ensure attack optimality from initial instants.

A general scenario that feasible attacks are not required to be consecutive

is also discussed.

2. We have proposed a novel innovation-based attack policy fusing available

information and proved that it always outperforms the strategies using

only partial information, which clarifies a counter-intuitive conclusion in

existing work. More general scenarios are considered, including the cor-

related measurement noises between two sensors and time-varying means

of the injected bias. For attacks that can completely bypass χ2 detec-

tors, we give explicit solutions for optimal attack policies, which avoid

solving optimization problems numerically at each sampling instant.

3. We have revealed that the optimal FDI attack that can compromise

Kalman filters and deceive single-step χ2 detectors is based on the MMSE

estimate of prediction errors. A unified design framework and a sepa-

ration principle are proposed to handle more general attack scenarios,

where the attacker may obtain more (or less) measurement data than the

remote estimator. The results are extended to the case that multi-step

χ2 detectors are deployed to reveal anomalies.

4. In addition to greedy attack performance, we have also investigated op-

timal FDI attacks that maximize estimation errors of Kalman filters in

a fixed interval. Such information-based attack policies are shown to

be a linear function of MMSE estimates of historical prediction errors.

The framework covers various scenarios that attackers have access to

different levels of online measurements. The optimal stealthy attack

compromising a Kalman filter is determined by both the amount of on-

line information and widths of χ2 detectors.

13



1.4 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, the problem of optimal consecutive DoS attacks against LQR

control channels with energy constraints is investigated. In Chapter 3, an

innovation-based linear FDI attack that compromises remote state estimators

is studied when adversaries can gain side information of system states with

extra sensors. In Chapter 4, the information-based optimal attack that causes

the maximum greedy performance in remote state estimation and deceives a

single-step χ2 detector is proposed. The results are extended to the case that

multiple-step χ2 detectors are deployed to reveal anomalies in Chapter 5. In

Chapter 6, the optimal information-based FDI attack leading to the maximum

holistic estimation performance loss in Kalman filters is derived. In Chapter 7,

concluding remarks of the thesis and some potential directions of future work

are provided.
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Chapter 2

Optimal DoS Attacks against
LQR Control Channels*

This chapter investigates the problem of DoS attacks against LQR control

channels. Owing to energy constraints, the attacker can only launch consec-

utive DoS attacks with a certain length m to block communication channels

between the controller and actuator. We consider two compensation strate-

gies commonly found in the literature, namely, zero-input and hold-input when

control packets are blocked. It is shown that jamming from the initial instant

is not always optimal for attackers. Necessary and sufficient conditions are

given to ensure the optimality of blocking from the initial instant despite the

randomness of initial states. In the case where attackers know the initial state,

a finite-interval search method is given to obtain the optimal starting instant

of DoS attacks. A general scenario that feasible attacks are not required to

be consecutive is also briefly discussed.

This chapter is organized as follows. Section 2.1 formulates the nomi-

nal system model and DoS attacks that block control channels. Section 2.2

studies optimal DoS schedules when zero-input and hold-input compensation

strategies are adopted by system defenders. Numerical examples are given in

Section 2.3 to illustrate the theoretical results. Conclusions are provided in

Section 2.4.

*A version of this chapter has been published as: Jing Zhou, Jun Shang, Yuzhe Li, and
Tongwen Chen, Optimal DoS Attack Against LQR Control Channels. IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1348-1352, April 2021.
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2.1 Problem Formulation

In this section, we consider the scenario that an adversary can block the

transmission channels of LQR controllers. The nominal and compromised

system models are formulated.

2.1.1 Nominal System Model

Consider a discrete-time LTI system given by

xk+1 = Axk +Buk. (2.1)

where xk ∈ Rn is the state, uk ∈ Rm is the control input. Let Q ⪰ 0, R ≻ 0,

(A,B) controllable, (A,Q
1
2 ) observable. An LQR controller uk = Kxk =

−(R +BTPB)−1BTPAxk is adopted to minimize the quadratic cost:

J =
∞∑
k=0

(xT
kQxk + uT

kRuk) (2.2)

with P the solution of the Riccati equation:

P = ATPA− ATPB(R +BTPB)−1BTPA+Q. (2.3)

The closed-loop system is xk+1 = Acxk with Ac = A+BK. The cost under

nominal condition is J∗ = xT
0 Px0.

2.1.2 DoS Attack against Control Channels

We assume attackers can obtain system parameters using some techniques,

e.g., system identification by intercepting sufficient input/output data, or con-

troller invasion by exploiting system loopholes. Considering Fig. 2.1, attackers

can block all communication channels between the controller and actuator in

consecutive m steps. The attack performance is measured by (2.2) where uk is

the actual control implemented by actuators. If the attack is not consecutive,

the problem is equivalent to designing an optimal switching strategy between

two subsystems to maximize the quadratic cost, which has been proven to be
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NP-hard and no analytical solutions exist yet [85]. The difficulty comes from

the facts that the decision variable is binary and attacker’s decision at each

step has non-erasable impacts on the attack performance.

𝑘 = 0 1 𝜏 − 1 𝜏 𝜏 + 1 𝜏 + m − 1 𝜏 + m 𝜏 + m + 1

… …

∞

Figure 2.1: Consecutive DoS attack with length m.

The attacker has to decide when to launch the DoS attack to cause the

greatest performance loss. Intuitively, an earlier consecutive attack is better

than a later one, since the LQR controller will eventually stabilize the system.

A too-late attack has little impact on control performance. If an attacker

does not know the randomly-configured initial state, he or she should launch

DoS attacks from the very beginning. We show this intuitive strategy is not

always optimal in the sense of maximizing the performance in (2.2). The

optimal delay τ ∗, which is determined by system parameters and initial states,

is derived based on the available information for attackers.

We explore two simplest compensation strategies commonly found in the

literature: the zero-input strategy, where the input to plants is set to zero if

a packet is dropped, and the hold-input strategy, where the previous control

input is used if a packet is lost [66]. When the control channel is blocked at

kth instant, set uk = 0 in Case I and uk = uk−1 in Case II.

2.2 Main Results

As indicated in Fig. 2.1, the time horizon is divided into three subintervals.

To calculate the attack performance in (2.2) under DoS attacks, define the

mapping hX : Sn × N → Sn as

hX(Φ, k) = Φ− (Xk)TΦXk (2.4)

The next two subsections solve the optimal attack problem with zero and
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hold-input strategies, where the attack performances are denoted by super-

script z and h respectively.

2.2.1 Optimal Attack against Zero-Input Strategy

The costs in the first and third intervals are given as

Jz
α(x0) = xT

0 [P − (Aτ
c )

TPAτ
c ]x0 (2.5)

Jz
γ (x0) = xT

0 (A
τ
c )

T(Am)TPAmAτ
cx0. (2.6)

Notice that uk = 0, the cost in the second interval is

Jz
β(x0) = xT

0 (A
τ
c )

T[P̄ − (Am)TP̄Am]Aτ
cx0 (2.7)

where P̄ satisfies the Lyapunov equation

P̄ = ATP̄A+Q (2.8)

To ensure equation (2.8) has a unique solution, we assume λ̄iλ̄j ̸= 1,

∀λ̄i, λ̄j ∈ ρA, where ρA is the spectrum of A. When the open loop system

is stable, (2.8) has a positive-definite solution. The cost in the finite interval

can be expressed as (2.7). When the open loop system is unstable, (2.7) and

(2.8) are still valid. To show this, consider

Jz
β(x0) = xT

0 (A
τ
c )

T[
m−1∑
i=0

(Ai)TQAi]Aτ
cx0 (2.9)

Keep multiplying left and right sides of (2.8) with (Ai)T and Ai; we have

ATP̄A = (A2)TP̄A2 + ATQA

(A2)TP̄A2 = (A3)TP̄A3 + (A2)TQA2

...

(Am−1)TP̄Am−1 = (Am)TP̄Am + (Am−1)TQAm−1.

Summing the left and right sides and canceling identical terms, we have

m−1∑
i=0

(Ai)TQAi = P̄ − (Am)TP̄Am (2.10)
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which indicates that equations (2.7) and (2.9) are identical.

Define Jz
τ (x0) = Jz

α(x0) + Jz
β(x0) + Jz

γ (x0) as the attack performance when

attacks are launched from time τ and the initial state is x0. In the rest of the

brief we denote Jz
τ (x0) as J

z
τ for brevity. When attacks start from τ = 0, we

have

Jz
0 = xT

0 [P̄ − (Am)TP̄Am + (Am)TPAm]x0. (2.11)

Let P̃ = P̄ − P , the performance difference between Jz
0 and Jz

τ can be

obtained by ∆J = Jz
0 − Jz

τ = xT
0Wτx0, where Wτ is given in the form

Wτ = hAc [hA(P̃ ,m), τ ] (2.12)

Givenm ∈ N+, x0 ∈ Rn, the attacker needs to find the optimal attack delay

τ to maximize Jz
τ , which is equivalent to solving the following optimization

problem to minimize ∆J since Jz
0 is a constant:

τ ∗ = argmin
τ∈N

xT
0Wτx0. (2.13)

In reality, the initial state of control systems is randomly configured by

system operators and can hardly be obtained by attackers. It is reasonable

for attackers to launch an m-step consecutive DoS attack from the initial

instant because of the limited information. It is necessary for attackers to find

conditions determined by Wτ under which the optimality of blocking from the

initial instant can always be preserved despite the randomness of initial states.

Proposition 2.1. For any m ∈ N+, hA(P̃ ,m) ⪰ 0.

Proof. Define Q̃ = PB(R +BTPB)−1BTP . From (2.3) and (2.8), we have

P̃ = ATP̃A+ ATQ̃A. (2.14)

Substitute (2.14) into hA(P̃ ,m) and consider the iterative equation

hA(P̃ ,m) = P̃ − (Am)TP̃Am = AT[hA(P̃ ,m− 1) + Q̃]A. (2.15)

Define Q̂ = ATPA+Q−P = ATQ̃A ⪰ 0. Since hA(P̃ , 1) = Q̂, we conclude

that for any m ∈ N+, hA(P̃ ,m) ⪰ 0. ■
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When A is stable, (2.14) indicates P̃ ≻ 0. When A is unstable, P̃ is not

positive definite; but Proposition 2.1 shows that hA(P̃ ,m) ⪰ 0 always holds,

which ensures Σ−1/2 in Theorem 2.1 is well-defined.

Theorem 2.1. For a given m-step consecutive attack, the attack from initial

instant is the best strategy for an arbitrary initial state if and only if Q̂ ≻ 0,

hA(P̃ ,m) = ΨΣΨT, H = Σ
1
2ΨTAcΨΣ− 1

2 , σ1(H) ≤ 1.

Proof. (Sufficiency) Since Q̂ = hA(P̃ , 1) ≻ 0, by (2.15) we have hA(P̃ ,m) ≻ 0

for all m ∈ N+. Notice that ΨΣ− 1
2Σ

1
2ΨT = In, we have Hτ = Σ

1
2ΨTAτ

cΨΣ− 1
2 .

If σ1(H) ≤ 1, the following norm inequality holds for any τ ∈ N+ \ {1}:

σ1(H
τ ) ≤ σ1(H)σ1(H

τ−1) ≤ σ1(H
τ−1) (2.16)

which indicates that σ1(H
τ ) is a descending sequence. σ1(H

τ ) ≤ 1 for any

τ ∈ N+. It is equivalent to the condition

(Hτ )THτ ⪯ In. (2.17)

Considering Wτ in (2.13), we have

Wτ = hAc(ΨΣΨT, τ) = ΨΣΨT − (Aτ
c )

TΨΣΨTAτ
c

= ΨΣΨT −ΨΣ
1
2 (Hτ )TΣ− 1

2ΨTΨΣΨTΨΣ− 1
2HτΣ

1
2ΨT

= ΨΣ
1
2 [In − (Hτ )THτ ]Σ

1
2ΨT ⪰ 0 (2.18)

then for arbitrary x0 ∈ Rn, ∆J = xT
0Wτx0 ≥ 0. In this case the optimal

attack strategy is to block the control channel from the initial instant.

(Necessity) If the attack from the initial instant is the best choice regardless

of x0, it is necessary to ensure that the attack from τ = 0 is no worse than

τ = 1 for any x0 ∈ Rn, i.e.,

xT
0W1x0 = xT

0 hAc [hA(P̃ ,m), 1]x0 ≥ 0 (2.19)

then we have

hAc [hA(P̃ ,m), 1] = ΨΣΨT − AT
c ΨΣΨTAc

= ΨΣ
1
2 (In −HTH)Σ

1
2ΨT ⪰ 0.

(2.20)

Thus σ1(H) ≤ 1. ■
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Remark 2.1. Q̂ ≻ 0 is necessary to ensure the optimality of attacking from

the initial instant. If Q̂ ⪰ 0, let x0 ∈ Null(Q̂), we have xT
0 Q̂x0 = x0A

TPB(R+

BTPB)−1BTPAx0 = 0, then Kx0 = 0, indicating the optimal input u0 = 0.

It is not the best choice to attack from the initial instant since the attacker will

waste ‘one-step’ attack energy. In other words, if Q̂ ⪰ 0 the attacker cannot

guarantee the strategy to attack from τ = 0 is always optimal.

Notice that hAc [hA(P̃ ,m), 0] = 0, if the condition of Theorem 2.1 is sat-

isfied, the optimal solution of (2.13) is τ ∗ = 0 for any x0 ∈ Rn. The best

strategy is blocking control channels from the initial instant in consecutive m

steps. The result can be extended to the scenario where the M -step attack

is not required to be consecutive, but the best strategy for attackers is still

launching an M -step DoS attack consecutively from the beginning. It can

be regarded as a special case of the NP-hard problem [85], as concluded in

Theorem 2.2.

Theorem 2.2. For a given total attack step M , the M-step consecutive attack

from the initial instant is the best strategy among all possible attack sequences

for an arbitrary initial state if and only if Q̂ ≻ 0, hA(P̃ ,m) = ΨmΣmΨ
T
m,

Hm = Σ
1
2
mΨT

mAcΨmΣ
− 1

2
m , max{σ1(Hm),m ∈ J1,MK} ≤ 1.

Proof. (Sufficiency) Suppose an arbitrary attack strategy is randomly choos-

ing M steps in an infinite horizon and setting the control signals to zero. We

group the blocked M steps into N subintervals, in each of which the DoS

attack is consecutive. Suppose the length of last interval is LN , 1 ≤ LN ≤ M ,

the last instant of the penultimate interval is kN−1
s . Since max{σ1(Hm),m ∈

J1,MK} ≤ 1, we have σ1(HLN
) ≤ 1. By Theorem 2.1 we know this strategy

can be improved by setting the starting point of the last LN -step consecutive

attack as kN−1
s + 1, i.e., combining the last two consecutive DoS intervals as

a single one yields a better attack strategy. Repeating the reasoning we con-

clude that the M -step consecutive attack from the initial instant is always the

optimal strategy for an arbitrary initial state.
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(Necessity) Suppose there exists m ∈ J1,MK such that σ1(Hm) > 1. It

indicates there must be some initial states such that m-step consecutive at-

tack from the initial instant is not optimal. In other words, we can always

improve the strategy of consecutive blocking M steps from the initial instant

by separating it into two consecutive intervals (with length M − m and m).

We conclude that blocking M steps from the initial instant consecutively is

not the best attack strategy. ■

Proposition 2.2. For scalar systems, the M-step consecutive attack from the

initial instant is globally optimal for any M ∈ N+ and initial states.

Proof. For a scalar system, for any m ∈ J1,MK, hA(P̃ ,m) is a positive real

number. Let hA(P̃ ,m) = ΨmΣmΨ
T
m with Ψm = 1,Σm = hA(P̃ ,m), thenHm =

Ac, ∀m ∈ J1,MK. Since σ1(Ac) < 1, we have σ1(Hm) < 1. By Theorem 2.2 we

know the optimal attack strategy should be launched from the initial instant

for any x0 and M . ■

Remark 2.2. Proposition 2.2 indicates that for scalar LQR systems, the at-

tacker should always launch DoS attacks consecutively from the initial instant.

From the attacker’s perspective, if the condition of Theorem 2.1 does not

hold, i.e., σ1(H) > 1, since Wτ is not positive semidefinite for some τ , there

always exists some x0 such that jamming with τ -step delay yields larger per-

formance loss. The attacker must intercept x0 to obtain the optimal attack

delay. From (2.5)–(2.7), the performance function is rewritten as

Jτ (x0) = xT
0 Px0 + xT

0 (A
τ
c )

ThA(P̃ ,m)Aτ
cx0 (2.21)

Let hA(P̃ ,m) = V TV , Jτ (x0) = xT
0 Px0 + ∥V Aτ

cx0∥22. It is not trivial to

find τ ∈ N that maximizes ∥V Aτ
cx0∥2 for a general x0. The most direct way is

brute-force search; but we need to calculate infinite many values since τ can

be any positive integer. In the following, we show that only a finite number of

calculation is needed to find the optimal τ using the property that the spectral

radius of Ac is less than 1. Assume Ac has n independent eigenvectors, denoted
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as q1, ..., qn. The corresponding eigenvalues are λ1, ..., λn. For a given x0 ∈ Rn

we have x0 =
∑n

i=1 µiqi, µi ∈ R. Let βi = ∥µiV qi∥22, notice that |λi| < 1,

define τ̄ = min{τ ∈ N :
∑n

i=1 βi|λi|2τ <
∑n

i=1 βi}. Since Aτ
cqi = λτ

i qi, when

τ > τ̄ , we have

Jτ (x0) = xT
0 Px0 + ∥

n∑
i=1

λτ
i µiV qi∥22 ≤ xT

0 Px0 +
n∑

i=1

βi|λi|2τ

≤ xT
0 Px0 +

n∑
i=1

βi = J0(x0)

which indicates that an m-step consecutive attack starting from τ ≥ τ̄ causes

less performance loss than the attack starting from τ = 0. Thus the optimal

attack delay can be obtained by

τ ∗ = arg max
0≤τ≤τ̄

∥V Aτ
cx0∥2. (2.22)

2.2.2 Optimal Attack against Hold-Input Strategy

In this subsection we consider Case II where the control input will hold

constant as the previous step under DoS attacks. The system dynamic in the

interval [τ, τ +m− 1] is given as

xk+1 = Axk +Bū

ū = Kxτ−1 = KAτ−1
c x0

(2.23)

The dynamic can be written as

xτ+i = Aixτ +
i−1∑
j=0

Ai−j−1BKAτ−1
c x0 (2.24)

Substituting xτ = Aτ
cx0, Ac = A+BK into (24), we have

xτ+i = [Ai+1 +
i∑

j=0

(AjBK)]Aτ−1
c x0, i ∈ J0,m− 1K (2.25)

Let Āi = Ai+1+
∑i

j=0(A
jBK), Φm =

∑m−1
i=0 (Ā

T

i QĀi)+mKTRK. Notice that

xτ+m = ĀmA
τ−1
c x0, the control performances in the second and third intervals

are given by

Jh
β (x0) = xT

0 (A
τ−1
c )TΦmA

τ−1
c x0 (2.26)
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Jh
γ (x0) = xT

0 (A
τ−1
c )TĀT

mPĀmA
τ−1
c x0 (2.27)

Therefore, the attack performance in Case II is given by

Jh
τ = xT

0 [P − (Aτ
c )

T

PAτ
c + (Aτ−1

c )
T

ΦmA
τ−1
c

+ (Aτ−1
c )

T

Ā
T

mPĀmA
τ−1
c ]x0

(2.28)

Attacking from τ = 0 is the same as Case I since u−1 = 0. Here we consider

the special attack launched consecutively from τ = 1; the attack performance

becomes

Jh
1 = xT

0 (P − A
T

c PAc + Φm + Ā
T

mPĀm)x0 (2.29)

Define

Ωm = Ā
T

mPĀm + Φm − A
T

c PAc (2.30)

The performance difference between Jh
1 and Jh

τ is given by

∆J = Jh
1 − Jh

τ = xT
0 hAc(Ωm, τ − 1)x0. (2.31)

The next proposition shows that Ωm is also positive semidefinite. Necessary

and sufficient conditions to ensure the optimality of attacking from k = 1 is

given in Theorem 2.3.

Proposition 2.3. For any m ∈ N+,Ωm ⪰ 0.

Proof. It is sufficient to show Ωm ⪰ Ωm−1 and Ω1 ⪰ 0.

Ωm − Ωm−1 = ĀT
mPĀm − ĀT

m−1PĀm−1 + Φm − Φm−1

= ĀT
m−1(A

TPA+Q− P )Ām−1 +KTBTPBK

+ Ā
T

m−1A
TPBK +KTBTPAĀm−1 +KTRK

Substituting K = −(R+BTPB)−1BTPA, since Q̂ = ATPA+Q−P ⪰ 0, we

have

Ωm − Ωm−1 = Ā
T

m−1Q̂Ām−1 + Q̂− Ā
T

m−1Q̂− Q̂Ām−1

= (Ām−1 − I)TQ̂(Ām−1 − I) ⪰ 0. (2.32)
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Next we consider Ω1:

Ω1 = Ā
T

1PĀ1 + Φ1 − A
T

c PAc

= Ā
T

1PĀ1 + Ā
T

0QĀ0 +KTRK − AT
c PAc

= (Ac − I)TQ̂(Ac − I) ⪰ 0. (2.33)

From (2.32) and (2.33), we have Ωm ⪰ 0 for m ∈ N+. ■

Theorem 2.3. For a given consecutive attack step m, let Ωm = ΨΣΨT,

H = Σ
1
2ΨTAcΨΣ− 1

2 , attack from τ = 1 is the best strategy for arbitrary

x0 if and only if Q̂ ≻ 0, σ1(H) ≤ 1. For a given total attack step M , let

Ωm = ΨmΣmΨ
T
m, Hm = Σ

1
2
mΨT

mAcΨmΣ
− 1

2
m , m ∈ J1,MK, the M-step consecu-

tive attack from τ = 1 is the best strategy for an arbitrary initial state if and

only if Q̂ ≻ 0, max{σ1(Hm),m ∈ J1,MK} ≤ 1.

Proof. Similar to the proofs of Theorems 2.1 and 2.2, and thus omitted. ■

To summarize, the attacker can launch an M -step DoS attack based on

the budget. For Case I, if the conditions in Theorem 2.2 hold, the M -step

consecutive attack from the initial instant is globally optimal among all feasible

attacks for any x0 ∈ Rn. If Theorem 2.2 does not hold but the conditions

in Theorem 2.1 hold, the M -step consecutive attack from the initial instant

is optimal among all consecutive attacks for any x0 ∈ Rn. Furthermore, if

Theorem 2.1 does not hold, the optimal delay τ ∗ ofM -step consecutive attacks

can be obtained by (2.22). Same conclusions can be drawn for Case II, where

the optimal strategy is obtained by comparison between τ = 0 and τ = 1 if

the conditions in Theorem 2.3 hold.

2.3 Examples

Given R = I3 and system parameters A,B as

A =

[
1.0305 −0.0263

0 0.996

]
, B =

[
0.04 0.02 0.04
0 0.02 0.06

]
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Let Q = diag(4, q), 0.1 ≤ q ≤ 0.6. Consider the zero-hold strategy, the

consecutive attack satisfies 1 ≤ m ≤ 50. The minimal eigenvalues of Wτ and

σ1(Hm) are plotted in Fig. 2.2. As we can see, only when σ1(H) ≤ 1, the

minimal eigenvalue of Wτ is 0, indicating Wτ ∈ Sn
+ for any τ ∈ N. When

m = 30, σ1(Hm) < 1 for q ∈ {0.4, 0.5, 0.6}, then a 30-step consecutive attack

from τ = 0 is the best attack strategy. σ1(Hm) > 1 for q ∈ {0.1, 0.2, 0.3}, let

x0 = [0.353, 0.936]T, the optimal attack delay is obtained by (2.22). The attack

performance with different τ is illustrated in Fig. 2.3, where τ ∗ is marked with

a black cross. Jz
τ (x0) will converge to J∗ as τ increases to infinity, indicating

a too-late DoS attack causes negligible impacts on the control performance.

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

0 5 10 15 20 25 30 35 40 45 50
0.95

1

1.05

q=0.1 q=0.2 q=0.3
q=0.4 q=0.5 q=0.6
Threshold

Figure 2.2: Minimal eigenvalue of Wτ and σ1(Hm).

When q = 0.6,m = 30, σ1(Hi) ≤ 1 ∀i ∈ J1,mK. For this system a 30-step

consecutive attack from τ = 0 is globally optimal for all feasible attacks, which

are not required to be consecutive.
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Figure 2.3: 30-step consecutive attack performance.

2.4 Conclusion

This chapter studies the problem of DoS attacks against LQR control chan-

nels. Specifically, we demonstrate the counter-intuitive fact that an earlier

consecutive DoS attack is not always better than a later one except in scalar

LQR systems. The optimal delay of consecutive attacks is given under two

compensation strategies. Necessary and sufficient conditions are derived un-

der which the attacker can ensure that consecutive blocking from the initial

instant can achieve the greatest performance loss. Future work can be the

extension to LQG systems where both controller and sensor channels are vul-

nerable to DoS attacks.
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Chapter 3

Optimal Innovation-Based
Linear Deception Attacks with
Side Information*

This chapter studies the problem of FDI attacks against remote state es-

timation. The scenario that malicious attackers can intercept original data

packets and also eavesdrop on some side information of system states with

extra sensors is considered. To clarify the counter-intuitive issue in existing

work, a different innovation-based linear attack policy fusing all available in-

formation is proposed. First, the evolution of the a posteriori estimation error

covariance under FDI attacks is derived. Then, explicit solutions of optimal

stealthy attack coefficients are obtained without solving optimization prob-

lems numerically. The condition under which there exist multiple optimal

attacks is analyzed. Additionally, an easy-to-check criterion for comparing

two information fusion methods in scalar systems is given. Simulation results

show that, compared with existing work, the proposed attack strategy can

completely deceive the anomaly detector and cause more severe performance

degradation in remote state estimation.

*A preliminary version of this chapter has been published as: Jing Zhou, Jun Shang, and
Tongwen Chen, “Optimal linear FDI attacks with side information: A comparative study,”
in 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Van-
couver, May 2021. A full version entitled “On information fusion in optimal linear FDI
attacks against remote state estimation” has been submitted to IEEE Transactions on
Control of Networked Systems for publication.
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Figure 3.1: Innovation-based FDI attacks with side information.

This chapter is organized as follows. Section 3.1 describes the process

model and formulates the optimal attack problem. Section 3.2 studies the

estimation performance evolution with FDI attacks. Section 3.3 gives the

explicit solutions of optimal attack coefficients. Section 3.4 uses numerical

examples and a simplified flight control system to verify the theoretical results.

Section 3.5 concludes the chapter.

3.1 Problem Formulation

A discrete-time LTI process is given by

xk+1 = Axk + wk (3.1)

yk = Cxk + vk (3.2)

where xk ∈ Rn denotes the state vector; yk ∈ Rm is the sensor measurement;

wk ∈ Rn and vk ∈ Rm are zero-mean i.i.d. Gaussian noises with covariance

Q ∈ Sn
+ and R ∈ Sm

++, respectively. The initial state x0 is zero-mean Gaussian

with covariance Π0 ∈ Sn
+, independent of wk and vk, ∀k ∈ N. Assume m ≤ n

and the pair (A,C) is detectable.

The configuration of remote state estimation is shown in Fig. 3.1. Smart

sensor 1 is deployed by system defenders�. At each instant k, it runs a local

Kalman filter and sends the innovation zk ∈ Rm to the remote estimator

through an unreliable wireless channel [22, 36]. The steady-state Kalman

�Sensor 1 represents the set of all sensors deployed by system defenders but not limited to a
single sensor. Same notation applies for Sensor 2.
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filter is given as follows:

xk|k−1 = Axk−1|k−1 (3.3)

xk|k = xk|k−1 +Kzk (3.4)

zk = yk − Cxk|k−1 (3.5)

where xk|k−1 and xk|k denote the a priori and a posteriori state estimates,

respectively. The optimal state estimate at the remote end is obtained by

running a duplicate Kalman filter:

x̃k|k−1 = Ax̃k−1|k−1 (3.6)

x̃k|k = x̃k|k−1 +Kzk (3.7)

with Kalman gain K = P̄CT(CP̄CT + R)−1 and P̄ the solution of Riccati

equation h[g[C,R](X)] = X. In the nominal condition, the steady state inno-

vation is zero-mean Gaussian with covariance Σ = CP̄CT +R [22].

3.1.1 Attack Model

We consider a malicious attacker who can obtain all system parameters,

intercept the original innovation {zk} and also place an extra sensor (denoted

as Sensor 2 in Fig. 3.1) to measure system states:

ŷk = Ĉxk + v̂k (3.8)

with Ĉ ∈ Rm̄×n, and v̂k is a white Gaussian noise with covariance R̂ ∈ Sm̄
++.

Owing to common environmental disturbances, the measurement noises in

these two smart sensors may be correlated, i.e., E[viv̂Tj ] = δijS with S ∈

Rm×m̄. Assume the pair (A, Ĉ) is detectable and the attack starts from k̄.

The information available to attackers at instant k is denoted by the set

Ik = Ik−1 ∪ {zk, ŷk}, Ik̄−1 = ∅, where {zk} and {ŷk} refer to intercepted data

and side information, respectively. Based on the combined information, the

attacker sends fake innovation {z̃k} to the remote estimator. The attacker’s
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goal is to deteriorate the estimation performance, measured by the a posteriori

estimation error covariance:

P̃k|k = E[(xk − x̃k|k)(xk − x̃k|k)
T]. (3.9)

To obtain the optimal attack sequence, attackers intend to find the map-

ping z̃k = f(Ik) to maximize P̃k. In this work, we consider a special attack

strategy that z̃k is a linear combination of the intercepted innovation and the

one based on ŷk, i.e.,

z̃k = Tkzk + T̂kẑk + bk (3.10)

where Tk ∈ Rm×m, T̂k ∈ Rm×m̄; bk ∈ Rm is Gaussian distributed with mean

µk ∈ Rm and covariance Φk ∈ Sm
+ , ẑk ∈ Rm̄ is generated by the local Kalman

filter of sensor 2:

x̂k|k−1 = Ax̂k−1|k−1 (3.11)

x̂k|k = x̂k|k−1 + K̂ẑk (3.12)

ẑk = ŷk − Ĉx̂k|k−1 (3.13)

with the fixed Kalman gain K̂ = P̂ ĈT(ĈP̂ ĈT + R̂)−1 and P̂ the solution of

h[g[Ĉ,R̂](X)] = X. In steady state, ẑk is i.i.d. zero-mean Gaussian with co-

variance Σ̂ = ĈP̂ ĈT + R̂. Let Hk =
[
Tk, T̂k

]
∈ Rm×(m+m̄) and z̄k =

[
zTk , ẑ

T
k

]T
;

(10) can be rewritten as

z̃k = Hkz̄k + bk, bk ∼ N (µk,Φk). (3.14)

3.1.2 Problem of Interest

The attacker cannot launch uncontrolled FDI attacks owing to existence of

χ2 anomaly detectors. To ensure that z̃k can successfully bypass the anomaly

detector, z̃k and zk must follow a same probability distribution, which imposes

the following constraint [22, 24]:

z̃k ∼ N (0,Σ). (3.15)
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The aim of this work is to derive the optimal stealthy attack strategy, which

is given as the solution of the optimization problem:

P3.1 : max
Hk,Φk,µk

Tr(P̃k|k) s.t. (3.15).

Specifically, the following issues should be addressed.

1. How will the estimation performance be degraded under the innovation-

based linear attack in (3.14)?

2. What is the optimal policy that can cause the maximum performance

loss and also bypass the anomaly detector?

3. Will the additional information for attackers always improve the attack

performance?

3.2 Evolution of the Estimation Error Covari-

ance

Attackers can adopt different strategies at each instant to deteriorate the

system performance. In this section, we study how the estimation quality will

be affected by FDI attacks at the remote end. Assume all Kalman filters have

reached steady states before the attack starts. The main result is given in the

following theorem.

Theorem 3.1. The a posteriori estimation error covariance of the remote

estimator under innovation-based linear attacks in (3.14) evolves according to

P̃k|k = AP̃k−1|k−1A
T +W +KΣ̃kK

T +Kµkµ
T
kK

T

−K(HkYk − Ωk)− (HkYk − Ωk)
TKT (3.16)

where

Σ̃k = HkΠH
T
k + Φk, Ωk = µk

k−1∑
i=k̄

[µT
i K

T(Ak−i)T]

Π =

[
Σ CΘTĈT + S

ĈΘCT + ST Σ̂

]
, Yk =

[
CP α

k

ĈP β
k

]
.
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The constant matrix Θ ∈ Rn×n is the unique solution of

Θ = (A− AK̂Ĉ)Θ(A− AKC)T + AK̂STKTAT +Q (3.17)

and Pα
k , P

β
k are given recursively by

Pα
k = (A− AKC)(P α

k−1 −ΘTĈTT̂T
k−1K

T)AT

+AKST̂T
k−1K

TAT +Q (3.18)

P β
k = (A− AK̂Ĉ)(P β

k−1 −ΘCTTT
k−1K

T)AT

+AK̂STTT
k−1K

TAT +Q (3.19)

with initial conditions Pα
k̄−1

= P̄ , P β

k̄−1
= Θ, Tk̄−1 = Im, T̂k̄−1 = 0m×m̄,

µk̄−1 = 0m×1, Φk̄−1 = 0m and P̃k̄−1|k̄−1 = (In −KC)P̄ .

Proof. Let ek|k−1, êk|k−1 and ẽk|k−1 denote the a priori estimation errors of

Kalman filters in smart sensor 1, sensor 2 and the remote estimator, respec-

tively. It follows that

ek+1|k = (A− AKC)ek|k−1 − AKvk + wk (3.20)

êk+1|k = (A− AK̂Ĉ)êk|k−1 − AK̂v̂k + wk. (3.21)

The remote estimator utilizes the compromised innovation z̃k to update state

estimation. From (3.10), it can be obtained that

z̃k = Tk(Cek|k−1 + vk) + T̂k(Ĉêk|k−1 + v̂k) + bk

= TkCek|k−1 + T̂kĈêk|k−1 + Tkvk + T̂kv̂k + bk. (3.22)

From (3.6)–(3.7), we have

ẽk|k−1 = xk − x̃k|k−1 = Axk−1 + wk−1 − Ax̃k−1|k−1

= Aẽk−1|k−2 + wk−1 − AKz̃k−1. (3.23)

Substituting (3.22) into (3.23) yields

ẽk|k−1 = Aẽk−1|k−2 + wk−1 − AK[Tk−1(Cek−1|k−2 + vk−1)

+T̂k−1(Ĉêk−1|k−2 + v̂k−1) + bk−1]

= −AKTk−1Cek−1|k−2 − AKT̂k−1Ĉêk−1|k−2 + Aẽk−1|k−2

−AKTk−1vk−1 − AKT̂k−1v̂k−1 − AKbk−1 + wk−1. (3.24)

33



Define the state vector ηk ∈ R3n and matrices

ηk =

ek|k−1

êk|k−1

ẽk|k−1

 , Gk =

A− AKC 0n 0n
0n A− AK̂Ĉ 0n

−AKTkC −AKT̂kĈ A



Fk =

 −AK 0n×m̄

0m×n −AK̂

−AKTk −AKT̂k

 ,M =

InIn
In

 , E =

0n×m

0n×m

−AK

 , R̄ =

[
R S

ST R̂

]

N =
[
0n 0n In

]
, v̄k =

[
vTk v̂Tk

]T
, Lk =

[
TkC T̂kĈ 0m×n

]
.

Then (3.20)–(3.24) can be written in a compact form

ηk+1 = Gkηk + Fkv̄k +Mwk + Ebk (3.25)

z̃k = Lkηk +Hkv̄k + bk. (3.26)

We now consider the a posteriori error covariance of the compromised

remote estimator:

P̃k|k = E[(ẽk|k−1 −Kz̃k)(ẽk|k−1 −Kz̃k)
T]

= E[ẽk|k−1ẽ
T
k|k−1] +KE[z̃kz̃Tk ]KT

−KE[z̃kẽTk|k−1]− E[ẽk|k−1z̃
T
k ]K

T. (3.27)

Define P η
k = E[ηkηTk ]. Note that ẽk|k−1 = Nηk; the penultimate term of (3.27)

satisfies

E[z̃kẽTk|k−1] = E[(Lkηk +Hkv̄k)(Nηk)
T + bkẽ

T
k|k−1]

= E[Lkηkη
T
k N

T +Hkv̄kη
T
k N

T] + E[bkẽTk|k−1]

= LkP
η
kN

T + µkE[ẽTk|k−1]. (3.28)

The last equality is from the facts that v̄k is zero-mean and independent of

ηk, and bk is independent of ẽk|k−1. Note that P η
k is a 3n × 3n block matrix,

the recursion of which can be derived from (3.25):

P η
k+1 = GkP

η
kG

T
k + FkR̄FT

k +MWMT + Eµkµ
T
kE

T

+EΦkE
T +GkE[ηk]µT

kE
T + EµkE[ηTk ]GT

k . (3.29)
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From (3.23), we obtain

E[ẽk|k−1] = AE[ẽk−1|k−2]− AKµk−1. (3.30)

Because the FDI attack starts from instant k̄ and the a priori state estimate

is not compromised when k = k̄, we have E[ẽk̄|k̄−1] = 0n×1. It follows that

E[ẽk|k−1] = Ak−k̄E[ẽk̄|k̄−1]−
k−1∑
i=k̄

Ak−iKµi = −
k−1∑
i=k̄

Ak−iKµi. (3.31)

The state estimates of two smart sensors are unbiased, leading to E[ηk] =[
01×n, 01×n, E[ẽTk|k−1]

]T
. The last two terms of (3.29) are obtained from (3.31).

Substituting all matrices into (3.29), after some mathematical manipulations,

we have

P 21
k = (A− AK̂Ĉ)P 21

k−1(A− AKC)T

+AK̂STKTAT +Q (3.32)

P 13
k = (A− AKC)P 13

k−1A
T +Q− (A− AKC)P 11

k−1(AKTk−1C)T

−(A− AKC)P 12
k−1(AKT̂k−1Ĉ)T

+AKR(AKTk−1)
T + AKS(AKT̂k−1)

T (3.33)

where P 21
k and P 13

k are the (2, 1) and (1, 3) block matrices of P η
k , respectively

�.

Since both Kalman filters in two smart sensors are in steady state, P 21
k also

converges to a constant matrix, given by the unique solution of (3.17). Note

that P 11
k is the covariance of ek|k−1; we have P 11

k = P̄ , then the two terms in

P 13
k vanish because of the equality:

AKR(AKTk−1)
T − (A− AKC)P 11

k−1(AKTk−1C)T

= A[K(CP̄CT +R)− P̄CT](AKTk−1)
T = 0n.

Let Pα
k = P 13

k and substitute P 11
k = P̄ , P 12

k = ΘT; we obtain the recursion of

Pα
k in (3.18). Let P β

k = P 23
k ; the recursion of P β

k can be derived in a similar

way. Now with Lk, N and P η
k , we have

LkP
η
kN

T = TkCP α
k + T̂kĈP β

k = HkYk. (3.34)

�Note that P η
k ∈ R3n×3n, which can be partitioned as a 3× 3 block matrix. The (2, 1) block

matrix of P η
k denotes P η

k [n+ 1 : 2n, 1 : n]. Same notations apply for P ij
k , i, j ∈ J1, 3K.
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The last two terms of P̃k|k in (3.27) are obtained by substituting (3.31) and

(3.34) into (3.28). From (3.26), the second term of P̃k|k becomes

E[z̃kz̃Tk ] =LkP
η
kL

T
k +HkR̄HT

k + E[bkbTk ]

=TkΣT
T
k + T̂kΣ̂T̂

T
k + Tk(CΘTĈT +R)T̂T

k

+ T̂k(ĈΘCT +RT)TT
k + Φk + µkµ

T
k

=HkΠH
T
k + Φk + µkµ

T
k = Σ̃k + µkµ

T
k . (3.35)

The cross-terms vanish because v̄k is independent of all other variables, and bk

is independent of ek|k−1 and êk|k−1. The first term of P̃k|k is from the equality

P̃k|k−1 = AP̃k−1|k−1A
T +Q because attacks have no impacts on the prediction

step of Kalman filtering. Summarizing the above analysis, the recursion of

P̃k|k is derived and given by (3.16).

When the process is under the nominal condition (without FDI attacks),

ek|k−1 and ẽk|k−1 are identical. Thus the initial value of P 31
k is equal to the

steady-state value of P 11
k ; the initial value of P 23

k is equal to the steady-state

value of P 21
k . We obtain Pα

k̄−1
= P̄ , P β

k̄−1
= Θ and P̃k̄−1|k̄−1 = (In − KC)P̄ .

Since the attack is launched from k̄, we have Tk̄−1 = Im, T̂k̄−1 = 0m×m̄,

µk̄−1 = 0m×1 and Φk̄−1 = 0m. ■

Theorem 3.1 shows that the evolution of P̃k|k involves two-layer recursions.

The attack strategy at instant k has explicit impacts on the estimation perfor-

mance at both current and subsequent steps (by recursions of Pα
k and P β

k ). It

brings additional difficulties if attackers intend to optimize the overall perfor-

mance degradation in a fixed interval [38]. In this work, we consider only the

“greedy” attack strategy that maximizes P̃k|k given P̃k−1|k−1. Before moving

to the design of optimal attacks, we briefly discuss some special cases.

1. If there is no FDI attack, we have Tk = Im, T̂k = 0m×m̄, bk = 0m×1, ∀k ∈

N, then Σ̃k = Σ, Ωk = 0m×n. From (3.19) and (3.34) we have Pα
k = P̄ ,

HkYk = CP̄ . In this case, P̃k|k = (In−KC)P̄ , ∀k ≥ k̄, which corresponds

to a nominal Kalman filter.
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2. If µk = 0m×1 and attackers can only intercept the original innovation, we

have T̂k = 0m×m̄, P
α
k = P̄ , ∀k ∈ N. It follows that HkYk = TkCP̄ , Ωk =

0m×n, which reduces to Case I in [24].

3. If µk = 0m×1 and attackers can only obtain side information with extra

sensors, we have Tk = 0m×m̄,Ωk = 0m×n, ∀k ∈ N. It follows that

P β
k = (A− AK̂Ĉ)P β

k−1A
T +Q.

Then HkYk = T̂kĈP β
k , which reduces to Case II in [24].

From (3.31), it is observed that the state estimate is biased if E[bk] ̸=

0; then P̃k|k denotes the second moment of ẽk|k, which can still be used to

indicate estimation quality with FDI attacks. From (3.26), the compromised

innovation is Gaussian under linear deception attacks, i.e.,

z̃k ∼ N (µk, HkΠH
T
k + Φk). (3.36)

In the above analysis, the compromised innovation is generated by an

LTV system in (3.25)–(3.26). The coefficient matrices can be determined

offline. However, since the system is driven by white Gaussian noises, this

model cannot be used to generate z̃k in practical applications. Compared

with existing studies, the model facilitates the theoretical analysis of attack

performance evolution.

3.3 Optimal Stealthy FDI Attacks

In this section, we consider optimal stealthy FDI attacks. To satisfy the

strict stealthiness constraint, attackers must ensure E[z̃k] = 0m×1, which di-

rectly leads to µk = 0m×1 and Ωk = 0m×n, ∀k ∈ N. According to Theorem 3.1,

the recursion of P̃k|k has the following form:

P̃k|k = AP̃k−1|k−1A
T +Q+KΣKT −KHkYk − Y T

k HT
k K

T. (3.37)
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At the kth sampling instant, the first three terms of P̃k|k are constant; since the

last two terms have the same trace, P3.1 reduces to the optimization problem

P3.2 : min
Hk,Φk

Tr(HkYkK) (3.38)

s.t. HkΠH
T
k + Φk = Σ (3.39)

Φk ⪰ 0. (3.40)

Remark 3.1. In (3.14), we do not presuppose that the injected bias has zero

mean. Though it is straightforward to verify that µk = 0m×1, ∀k ∈ N with the

stealthiness constraint in (3.15), this assumption facilitates the performance

analysis and optimal design of relaxed-stealthy FDI attacks measured by KL

divergence [23]. The optimal attack can be obtained by formulating optimiza-

tion problems. In such cases the assumption that bk is Gaussian with non-zero

mean is not conservative, because one can prove that the optimal compromised

innovation is indeed Gaussian owing to the fact that Gaussian distribution has

the maximal entropy among all probability distributions with the same covari-

ance [23]. In this work we focus on only strictly stealthy attacks.

3.3.1 Optimal Attack Strategy: Information Fusion I

Although the above semidefinite programs can be solved numerically, at-

tackers need to conduct optimization at each sampling instant, which can be

time-consuming. In the following theorem we give the explicit solution of

P3.2. It reduces the computation burden and also facilitates analysis on the

uniqueness of optimal attack policies.

Theorem 3.2. The optimal stealthy FDI attack in (3.14) is given by

H∗
k = −Σ

1
2 (VkU

T
k − ṼkWkŨ

T
k )Π

− 1
2

Φ∗
k = Σ

1
2 Ṽk(Im−rk −WkWT

k )Ṽ
T
k Σ

1
2 , µ∗

k = 0m×1

where rk = rank(Π− 1
2YkKΣ

1
2 ); Uk, Vk satisfy the compact singular value de-

composition (SVD):

Π− 1
2YkKΣ

1
2 = UkSkV

T
k
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Ũk and Ṽk are orthogonal complements of Uk and Vk, respectively; Wk is a free

parameter satisfying WkWT
k ⪯ Im−rk .

Proof. We start by considering the equality constraint in P3.2. Denote H̄k =

Σ− 1
2HkΠ

1
2 . Left- and right-multiplying (3.39) by Σ− 1

2 , we have

H̄kH̄
T
k + Σ− 1

2ΦkΣ
− 1

2 = Im. (3.41)

Denote Ȳk = Π− 1
2YkKΣ

1
2 ; the objective function becomes

Tr(HkYkK) = Tr(H̄kΠ
− 1

2YkKΣ
1
2 ) = Tr(H̄kȲk).

Let Φ̄k = Σ− 1
2ΦkΣ

− 1
2 . According to (3.41), P3.2 becomes

min
Φ̄k∈Sm+ ,H̄k

Tr(H̄kȲk) s.t. H̄kH̄
T
k + Φ̄k = Im. (3.42)

Note that Uk ∈ R(m+m̄)×rk , Sk ∈ Srk
++, Vk ∈ Rm×rk . The objective function

satisfies

Tr(H̄kȲk) = Tr(H̄kUkSkV
T
k ) = Tr(V T

k H̄kUkSk) =

rk∑
i=1

H̃
[i,i]
k S

[i,i]
k (3.43)

where H̃k = V T
k H̄kUk ∈ Rrk×rk and X [i,j] denotes the (i, j) entry of X. It is

easy to verify that H̃kH̃
T
k ⪯ Irk , leading to H̃

[i,i]
k ∈ [−1, 1], ∀i ∈ J1, rkK. From

(3.43), we have

Tr(H̄kȲk) ≥ −
rk∑
i=1

S
[i,i]
k = −Tr(Sk). (3.44)

The equality is attained only when H̃k = V T
k H̄kUk = −Irk . Solving this

equation, we obtain the optimal solution to (3.42):

H̄∗
k = −VkU

T
k + XkŨ

T
k + ṼkYk (3.45)

where Xk ∈ Rm×(m+m̄−rk) and Yk ∈ R(m−rk)×(m+m̄) are free parameters. To

fulfill the stealthiness constraint in (3.42), it follows that

(XkŨ
T
k + ṼkYk − VkU

T
k )(XkŨ

T
k + ṼkYk − VkU

T
k )

T + Φ̄k = Im. (3.46)
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Left- and right-multiplying (3.46) by V T
k and Vk, respectively, we have

V T
k XkXT

k Vk + V T
k Φ̄kVk = 0rk .

It leads to V T
k Xk = 0rk×(m+m̄−rk), V

T
k Φ̄k = 0rk×m. Left- and right-multiplying

(3.46) by V T
k and Ṽk, respectively, we obtain

(V T
k XkŨ

T
k − UT

k )(ŨkXT
k Ṽk + YT

k ) + V T
k Φ̄kṼk = 0rk×(m−rk).

This implies that YkUk = 0(m−rk)×rk . Let X̄k, Ȳk be free parameters; Xk and

Yk can be parameterized as Xk = ṼkX̄k, Yk = ȲkŨ
T
k . Now (3.45) becomes

H̄∗
k = −VkU

T
k + ṼkWkŨ

T
k (3.47)

where Wk = X̄k + Ȳk ∈ R(m−rk)×(m+m̄−rk) is an arbitrary matrix. Notice that

H̄∗
k(H̄

∗
k)

T ⪯ Im, we have

VkV
T
k + ṼkWkWT

k Ṽ
T
k ⪯ Im. (3.48)

It follows that WkWT
k ⪯ Im−rk . Φ̄∗

k = Im − H̄∗
k(H̄

∗
k)

T. The optimal solution

to P3.2 is

H∗
k = Σ

1
2 H̄∗

kΠ
− 1

2 , Φ∗
k = Σ

1
2 Φ̄∗

kΣ
1
2 .

The optimal coefficients are obtained with (3.47). ■

Note that [Vk, Ṽk] and [Uk, Ũk] are orthogonal matrices. The simplest way

to design Ṽk and Ũk is performing full-size SVD: Ȳk = ŪkS̄kV̄
T
k ; then let

[Uk, Ũk] = Ūk, [Vk, Ṽk] = V̄k. The policy for designing z̃∗k is given in Algo-

rithm 3.1. T ∗
k , T̂

∗
k and Φ∗

k are independent of real-time sensor outputs; thus

they can be calculated beforehand to reduce the online computation burden.

At each instant, the fake innovation z̃∗k is sent to the remote estimator. With

this strategy, the attacker can cause the maximum increase in the trace of

error covariances, meanwhile remain undetected by the anomaly detector.

Remark 3.2. If YkK has full column rank, i.e., rk = m, then Wk and Ṽk

vanish. We have H∗
k = −ΣVkU

T
k Π

− 1
2 , Φ∗

k = 0m. It follows that bk = 0m×1.
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The optimal compromised innovation is unique. If rank(C) < m, we have

rk < m. The freedom to select Wk leads to multiple optimal solutions, all

of which have the same attack performance. For simplicity, one can choose

Wk = 0(m−rk)×(m+m̄−rk), leading to

H∗
k = −Σ

1
2VkU

T
k Π

− 1
2 , Φ∗

k = Σ
1
2 ṼkṼ

T
k Σ

1
2

or alternatively design Wk such that WkWT
k = Im−rk . This solution yields

Φ∗
k = 0m, which eliminates the compensation noisy term in z̃k.

Remark 3.3. If attackers can only intercept the original measurement, we

have m̄ = 0,Π = Σ, Ȳk = Σ− 1
2 C̄KΣ

1
2 = Σ− 1

2CP̄ 2CTΣ− 1
2 . It follows that

Ȳk = VkSkV
T
k , Ũk = Ṽk; we can choose Wk = −Im−rk . Then

H∗
k = −Σ

1
2 (VkV

T
k + ṼkṼ

T
k )Σ− 1

2 = −Im, Φ∗
k = 0m.

The optimal attack is z̃∗k = H∗
kzk = −zk. We see that if rank(C) = m,

flipping the sign of nominal innovation [22] is the unique optimal attack. If

rank(C) < m, z̃∗k = −zk is only one of the optimal attack policies. The freedom

to adopt different optimal policies makes it a more challenging task to design

effective countermeasures.

The following corollary shows that the attack based on combined infor-

mation always outperforms the ones based on only partial information§, thus

clarifying the counter-intuitive conclusion in [24].

Corollary 3.1. The attack performance of (3.14) based on full information

is greater than that of the linear attacks based on only partial information.

Proof. Easy to verify by noticing that z̃k = Tkzk + bk and z̃k = T̂kẑk + bk are

special cases of (3.14). ■

§Partial information refers to the measurement data from only Sensor 1 or Sensor 2. In [24],
the authors proved that in some cases, the attacker should only use partial information to
design the optimal attack policy.
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Algorithm 3.1 Optimal Attacks With Information Fusion I

Input: Intercepted data {zk} and side information {ȳk}
Output: Optimal compromised innovation {z̃∗k}
1: Calculate Θ with (3.17).
2: Initialize Pα

k̄−1
= P̄ , P β

k̄−1
= Θ, P̃k̄−1|k̄−1 = (In −KC)P̄ .

3: Set Tk̄−1 = Im, T̂k̄−1 = 0m×m̄.
4: for k = k̄ : 1 : ∞ do
5: Run the Kalman filter (3.11)–(3.13) to obtain z̄k.
6: Update Pα

k , P
β
k with (3.18)–(3.19).

7: Do full-size SVD: Ȳk = ŪkS̄kV̄
T
k .

8: Set [Uk, Ũk] = Ūk, [Vk, Ṽk] = V̄k. Choose Wk.
9: Design H∗

k ,Φ
∗
k according to Theorem 3.2.

10: Generate compensation noise bk ∼ N (0m×1,Φ
∗
k).

11: Design z̃∗k with (3.14).
12: Evaluate attack performance with (3.37).
13: end for

3.3.2 Optimal Attack Strategy: Information Fusion II

In the combined information case in [24], the optimal compromised inno-

vation is based on the globally optimal state estimation, i.e.,

z̃k = Hkžk + bk, bk ∼ N (0m×1,Φk) (3.49)

where žk = y̌k−Čx̌k|k−1; Č =
[
CT, ĈT

]T
, y̌k =

[
yTk , ŷ

T
k

]T
; x̌k|k−1 is the optimal

a priori state estimation using combined information and P̌ is the solution of

Riccati equation: h[g[Č,R̄](X)] = X. The attack performance is evaluated by

P̃k|k = AP̃k−1|k−1A
T +Q+KΣKT − P̌ ČTHT

k K
T −KHkČP̌ . (3.50)

Lemma 3.1. [24, Th. 1] Let Π̌ = ČP̌ ČT + R̄; the optimal attack policy in

(3.49) is given by the solution of the following optimization problem:

min
Hk

Tr(HkČP̌K) s.t. HkΠ̌H
T
k ⪯ Σ (3.51)

with Φ∗
k = Σ−H∗

kΠ̌(H
∗
k)

T.
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Contrary to P3.2, all parameters in (3.51) are constant at each sampling

instant, leading to time-invariant coefficients in (3.49). The following theorem

gives the explicit optimal solution.

Theorem 3.3. The optimal stealthy FDI attack in (3.49) is given by

H∗
k = −Σ

1
2 (V1U

T
1 + Ṽ1W)Π̌− 1

2

Φ∗
k = Σ

1
2 Ṽ1(Im−r −WWT)Ṽ T

1 Σ
1
2

where U1, V1 satisfy the compact SVD:

M = Π̌− 1
2 ČP̌KΣ

1
2 = U1S1V

T
1 , S1 ∈ Sr

++

and Ṽ1 is the orthogonal complement of V1; W is a free parameter satisfying

WWT ⪯ Im−r,WU1 = 0(m−r)×r.

Proof. Define the Lagrange function associated with (3.51):

L(Hk, νk) = Tr(HkČP̌K) + Tr[νk(HkΠ̌H
T
k − Σ)]

where the Lagrange multiplier νk is symmetric owing to the symmetry of

HkΠ̌H
T
k − Σ. The stationary point satisfies

(ČP̌K)T + 2νkHkΠ̌ = 0m×(m+m̄) (3.52)

νk(HkΠ̌H
T
k − Σ) = 0m. (3.53)

Since Π̌ is non-singular, from (3.52), we have 2Σ
1
2νkHkΠ̌

1
2 = −Σ

1
2 (ČP̌K)TΠ̌− 1

2 =

−MT. It follows that

4Σ
1
2νkHkΠ̌H

T
k νkΣ

1
2 = MTM. (3.54)

From (3.53), we have Σ
1
2νkHkΠ̌H

T
k νkΣ

1
2 = Σ

1
2νkΣνkΣ

1
2 , then (3.54) becomes

4Σ
1
2νkΣνkΣ

1
2 = MTM.

It leads to 2Σ
1
2νkΣ

1
2 = (MTM)

1
2 . Note that the other equality is dropped

because νk ∈ Sm
+ . Denote H̄k = Σ− 1

2HkΠ̌
1
2 ; according to (3.52), we have

2Σ
1
2νkΣ

1
2 H̄k = −MT (3.55)
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which yields (MTM)
1
2 H̄k = −MT. Note that

[(MTM)
1
2 ]+ = V1S

−1
1 V T

1 .

The matrix equation yields

H̄∗
k = −V1S

−1
1 V T

1 MT + Ṽ1W = −V1U
T
1 + Ṽ1W

where W ∈ R(m−r)×(m+m̄) is an arbitrary matrix. To satisfy the constraint in

(3.51), it follows that H̄∗
k(H̄

∗
k)

T ⪯ Im, i.e.,[
V1 Ṽ1

] [ Ir −UT
1 WT

−WU1 WWT

] [
V T
1

Ṽ T
1

]
⪯ Im.

Thus WU1 = 0(m−r)×r, WWT ⪯ Im−r. Then H̄∗
k = −V1U

T
1 , leading to H∗

k =

Σ
1
2 H̄∗

kΠ̌
− 1

2 . Substituting H̄∗
k yields the optimal attack coefficients. ■

The optimal attack policy is unique when rank(M) = m, i.e., rank(C) =

m. Multiple optimal solutions exist if rank(C) < m; then the attacker can

simply choose W = 0(m−r)×(m+m̄), leading to

H∗
k = −Σ

1
2V1U

T
1 Π̌

− 1
2 , Φ∗

k = Σ
1
2 (Im−r − V1V

T
1 )Σ

1
2

or design W such that WWT = Im−r to eliminate bk.

The strategy for designing optimal stealthy attacks in (3.49) is summarized

in Algorithm 3.2. The resulting time-invariant policy is easier to implement

compared with Algorithm 3.1. But there are also some practical concerns:

1. If Sensor 1 is a smart sensor [22], the nominal innovation is transmitted

to the remote end; it is easy to intercept zk but more challenging to

obtain yk; thus stacking all available measurements to perform optimal

state estimation is difficult; Algorithm 3.2 is not applicable in this case

(žk is not available).

2. With numerical examples, we find that in most cases the policy in Algo-

rithm 3.1 is preferable because it can cause more severe performance loss.

Specially, if attackers can obtain only side information with Sensor 2,
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Algorithm 3.2 Optimal Attacks With Information Fusion II

Input: Intercepted data {yk} and side information {ȳk}
Output: Optimal compromised innovation {z̃∗k}
1: Initialize P̃k̄−1|k̄−1 = (In −KC)P̄ .
2: Do full-size SVD: M = Ū1S̄1V̄

T
1 .

3: Set [U1, Ũ1] = Ū1, [V1, Ṽ1] = V̄1.
4: Choose W . Design H∗

k ,Φ
∗
k according to Theorem 3.3.

5: for k = k̄ : 1 : ∞ do
6: Run the Kalman filter to obtain žk.
7: Generate compensation noise bk ∼ N (0m×1,Φ

∗
k).

8: Design z̃∗k with (3.49).
9: Evaluate attack performance with (3.50).
10: end for

Algorithm 3.1 still yields an optimal policy but Algorithm 3.2 only gives

a suboptimal one (the optimal policy is time-varying but Theorem 3.3

yields a time-invariant solution).

In general, comparing attack performance of two different information fu-

sion methods for higher-order systems is difficult, especially when considering

“greedy” attack policies. Recall that when we formulate P3.2, the first three

terms of P̃k|k are constant. But if different attack policies are adopted, P̃k−1|k−1

is not consistent; then it is hard to verify whether one policy is always better

than another one at each sampling instant. Only in some special cases a lower

bound of P̃k|k can be obtained, which enables us to compare performance of

stealthy attacks in (3.14) and (3.49) more efficiently.

3.3.3 Performance Analysis for Scalar Systems

For scalar systems with uncorrelated measurement noises in two smart

sensors, the following lemma provides an easy-to-check criterion for selecting

the preferable information fusion method.

Lemma 3.2. Assume n = m = m̄ = 1 and S = 0; let Y̌ = ČP̌ , Y =[
CP, ĈΘ

]T
. The optimal attack in (3.14) outperforms the one in (3.49) if
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and only if Y TΠ−1Y > Y̌ TΠ̌−1Y̌ .

Proof. See Appendix A.1. ■

For unstable scalar systems, the above condition always holds. To demon-

strate this, define the following matrix

∆ =

{[
1

CP̄
0

0 1

ĈΘ

]
Π

[
1

CP̄
0

0 1

ĈΘ

]}−1

=

[ Σ
P̄ 2C2

1
P̄

1
P̄

Σ̄

Θ2Ĉ2

]−1

.

If |A| > 1, with the matrix inversion lemma and the fact that Π ⪰ 0, P̄ > P̌ ,

it can be shown that

Y TΠ−1Y =
2∑

i=1,j=1

∆[i,j] ≥ P̄ 2C2

Σ
=

(A2 − 1)P̄ +W

A2

>
(A2 − 1)P̌ +W

A2
= Y̌ TΠ̌−1Y̌ .

From Lemma 3.2, the optimal deception attack in (3.14) achieves greater

estimation performance loss in unstable scalar systems compared with the

one in (3.49).

Remark 3.4. Define αk =
[
ẽk|k−1, ẑ

T
k

]T
, βk =

[
ẽk|k−1, ž

T
k

]T
. Recall that

ẽk̄|k̄−1 = ek̄|k̄−1. From the proof of Theorem 3.1, we have

E[αk̄α
T
k̄ ] =

[
P̄ Y T

Y Π

]
, E[βk̄β

T
k̄ ] =

[
P̄ Y̌ T

Y̌ Π̌

]
.

It follows that

E[ẽk̄|k̄−1|ẑk̄] = Y TΠ−1ẑk̄, E[ẽk̄|k̄−1|žk̄] = Y̌ TΠ̌−1ẑǩ.

The variances of the above estimation errors are given by

Cα = P − Y TΠ−1Y, Cβ = P − Y̌ TΠ̌−1Y̌ .

This provides an intuitive explanation for Lemma 3.2: the performance of

innovation-based linear attacks depends on the estimation quality for ẽk̄|k̄−1.

It also partially explains why using žk to design z̃k does not guarantee to yield

an optimal attack [24], because the goals of optimal estimation for xk and

ẽk|k−1 are not alway consistent.
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3.4 Examples

In this section we use numerical examples to illustrate the theoretical re-

sults. Consider a stable system with following parameters:

A =

0.7 0.4 0
0 0.5 0.3
0 0 0.7

 , Q = diag


0.81.2
0.5

 , C =

[
0 1 0
1 0 1

]
,

R = diag

{[
2
1.2

]}
, Ĉ =

[
1 0 1
0 1 0

]
, R̂ = diag

{[
0.8
0.5

]}
.

Assume k̄ = 6. The performance of optimal attacks in (3.14) and (3.49) is

illustrated in Fig. 3.2. The stealthy attack from Theorem 3.2, i.e., z̃k based

on suboptimal state estimations from two smart sensors, can cause greater

performance loss compared with that based on globally optimal state esti-

mation. Both policies using combined information outperform the ones using

only partial information. Fig. 3.3 shows the performance of FDI attacks on an

unstable system (see parameters in [24]). The estimation errors will diverge

under all optimal attacks, but the one from Theorem 3.2 has the fastest di-

vergent rate. It can also be observed that the attack from Theorem 3.3 based

on combined information causes less performance degradation compared with

the ones using only partial information. This comparative result verifies the

effectiveness of the information fusion method in Theorem 3.2.

We then consider a simplified linear model of a longitudinal flight control

system. The state variables are the pitch angle, pitch rate and velocity (see

parameters in [39]). Assume the attacker can use an extra sensor to mea-

sure the pitch angle, with Ĉ = [1, 0, 0], V̂ = 1.5. The attack starts from

k̄ = 31. The performance of different policies is plotted in Fig. 3.4. The theo-

retical evolutions of attack performance are given with (3.37) and (3.50); the

empirical ones are obtained by simulating process (3.1)–(3.2) with randomly

generated noises for 20,000 times and averaging corresponding square errors

at each sampling instant. One can observe that the attack from Theorem 3.2

causes more severe performance loss compared with the one from Theorem 3.3.
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Figure 3.2: Performance of different attack strategies for a stable system.

Fig. 3.5 illustrates the stealthiness property. Set the threshold of the single-

step χ2 detector as 5; the false alarm rate in the nominal condition is 17.18%.

The empirical alarm rate with FDI attacks fluctuates in a narrow interval

around the theoretical one, indicating that the stealthy attack can completely

deceive the anomaly detector.

3.5 Conclusion

In this chapter, we consider the case that a malicious attacker can gain

additional information of system states with extra sensors. Using different

data fusion methods, the explicit solutions of attack coefficients are derived.

The performance of these attack policies are compared using both theoretical

justification and simulation examples. Future work will be exploring secure

state estimation algorithms to mitigate the impacts of stealthy FDI attacks.
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Chapter 4

Optimal Information-Based
Deception Attacks with
Single-Step Anomaly Detectors
*

This chapter studies the problem of deception attacks against remote state

estimation from an information perspective. The Kullback–Leibler diver-

gence between the compromised innovation and nominal one is utilized as

the stealthiness measure. Without presupposing a linear attack model, the

optimal attack policy that can cause maximum performance loss and deceive

the false data detector is derived. For both attacks with strict and relaxed

stealthiness, the optimal compromised innovation, which is shown to be gener-

ated by a linear time-varying system, can be determined with two steps. First,

the minimum mean-square error (MMSE) estimate of the prediction error is

obtained using attackers’ available information. Then, the faked innovation is

designed as a linear transformation of the MMSE estimate. Within a unified

framework, this separation principle enables handling more general attack sce-

narios, where the attacker may obtain more (or less) measurement data than

the remote estimator. The optimality of the information-based strategy is

verified by theoretical analysis, numerical examples, as well as comparative

*A version of this chapter has been submitted for publication as: Jing Zhou, Jun Shang, and
Tongwen Chen, Optimal deception attacks against remote state estimation: An information-
based approach, IEEE Transactions on Automatic Control. (Accepted as a full paper)
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Figure 4.1: Deception attacks against remote state estimation with a single-
step χ2 detector.

studies with existing methods.

This chapter is organized as follows. Section 4.1 describes the system

model and formulates the deception attack problem. Section 4.2 focuses on

the optimal deception attacks with strict stealthiness. Section 4.3 studies the

optimal attacks with relaxed stealthiness. Section 4.4 discusses the scenarios

that the attacker has different levels of online information. Section 4.5 provides

some numerical examples to verify the theoretical results. Finally, section 4.6

concludes the paper.

4.1 Problem Formulation

The system architecture for remote state estimation is illustrated in Fig. 4.1.

The discrete linear time-invariant process is given by (3.1)–(3.2).

4.1.1 Remote Estimator

The measurement yk is sent sequentially through a wireless channel to the

remote end. A standard Kalman filter without time delays and packet loss is
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deployed to estimate system states [3]:

xk|k−1 = Axk−1|k−1 (4.1)

Pk|k−1 = APk−1|k−1A
T +Q (4.2)

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

(4.3)

zk = yk − Cxk|k−1 (4.4)

xk|k = xk|k−1 +Kkzk (4.5)

Pk|k = (I −KkC)Pk|k−1 (4.6)

where xk|k−1 and xk|k denote the a priori and a posteriori state estimates, re-

spectively; Pk|k−1 and Pk|k are the corresponding estimation error covariances.

In steady state, Pk|k−1 converges to the unique solution of the Riccati equation

P̄ = h[g[C,R](P̄ )]

and the nominal innovation zk ∈ Rm is i.i.d. zero-mean Gaussian with covari-

ance Σ = CP̄CT +R.

4.1.2 Anomaly Detector

The innovation is sent to the false-data detector at each sampling instant,

in order to reveal potential faults or attacks. In this work, we assume that a

widely-used χ2 detector is deployed on the remote side [22–24, 68, 97]. The

detector evaluates the following index function:

g(zk) = zTk Σ
−1zk

which is χ2 distributed with m degrees of freedom. An alarm is raised if g(zk)

exceeds a pre-designed threshold.

4.1.3 Deception Attack

The wireless channel in Fig. 4.1 is unreliable and can be attacked by ma-

licious agents. The attacker can intercept and manipulate yk. As a result,

the compromised measurement ỹk is sent to the remote end. Let x̃k|k−1 and
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x̃k|k denote the a priori and a posteriori remote state estimates with presence

of deception attacks, respectively. The corresponding error covariances are

defined by

P̃k|k−1 = E[(xk − x̃k|k−1)(xk − x̃k|k−1)
T]

P̃k|k = E[(xk − x̃k|k)(xk − x̃k|k)
T].

The attacker’s goal is to cause the maximum deterioration of estimation

performance, measured by Tr(P̃k|k). Assume the attack is launched at the k̄th

sampling instant; the estimator has entered steady state before k̄. To study

the worst-case attacks, we make the following assumptions.

Assumption 1. The attacker knows all the system parameters and the state

of remote estimator (x̂k̄|k̄−1) when attack starts.

Assumption 2. The attacker can eavesdrop on the measurement of Sensor I;

they may also obtain some side information of system states by placing extra

sensors (denoted by Sensor II in Fig. 4.1). The extra measurement is given by

ŷk = Ĉxk + v̂k

where ŷk ∈ Rm̄, Ĉ ∈ Rm̄×n; v̂k ∈ Rm̄ is a zero-mean i.i.d. Gaussian noise

with covariance R̂ ∈ Sm̄
++. The measurement noises of the two sensors may be

correlated with covariance S = E[vkv̂Tk ] ∈ Rm×m̄. In practical systems, the side

information could be obtained more easily compared with directly intercepting

the original measurements. This scenario has not received deserved attention

in existing studies. A majority of published papers considered only the case

that the attacker can merely modify the measurement of Sensor I; whereas

our work studies a more powerful attacker by adding Sensor II.

Remark 4.1. Assumption 1 is common in the literature on cyber-security

[23, 24, 38, 39, 42, 68, 97]. It is in accordance with the Kerckhoffs’s prin-

ciple [73], which stated that the security of a system should not rely on its

obscurity. Though it might be difficult in practice to obtain system parame-

ters, we often assume the worst happens that attackers can obtain them using
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techniques like system identification and controller invasion. Stuxnet cyber-

worm is such a real industrial example [32]. By assuming that attackers have

the maximal knowledge of target plants, we can investigate the impact of the

worst-case attacks. Additionally, it is not necessary to know the initial state

of the estimator in case that smart sensors are used [22]; but if the transmitted

data is the raw measurement, the knowledge of x̂k̄|k̄−1 is required because the

attacker needs an extra Kalman filter to obtain the nominal innovation [23].

Note that x̃k̄|k̄−1 = x̂k̄|k̄−1 since the filter is not altered before k̄.

At the kth sampling instant, the information available to the attacker is

denoted by the following set:

Ik = Ik−1 ∪ {yk, ŷk}, ∀k ≥ k̄; Ik̄−1 = ∅. (4.7)

Remark 4.2. With Assumption 2, we can define a general information set.

If the attacker cannot eavesdrop on any measurement data, Ik = ∅. If the

attacker can only intercept the original measurement, Ik = Ik−1 ∪ {yk}. If the

attacker can eavesdrop on the original measurement and also obtain some side

information by extra sensors, Ik = Ik−1 ∪ {yk, ŷk}. All these scenarios will

be discussed in Section 4.4 as special cases of (4.7). Note that a majority of

existing work focused only on the second special case.

4.1.4 Problem of Interest

Owing to the existence of false-data detector, the attacker should design

the compromised measurement ỹk carefully to remain stealthy. After receiving

ỹk, the innovation becomes

z̃k = ỹk − Cx̃k|k−1. (4.8)

Similar to [23], we use the KL divergence between the nominal innovation

and compromised one as the stealthiness measure. Let δ ∈ R+ be the stealth-

iness level defined by attackers; z̃k should satisfy the following constraint to

deceive the false-data detector:

DKL(z̃k∥zk) ≤ δ (4.9)
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where the KL divergence is defined by

DKL (z̃k∥zk) =
∫
Rm

pz̃k(t) ln
pz̃k(t)

pzk(t)
dt

If the attacker sets δ = 0, then pz̃k(t) = pzk(t), i.e., z̃k is also zero-mean Gaus-

sian with covariance Σ. In this case, the attack is strictly stealthy, because

the attack detection rate and false alarm rate (FAR) in the nominal condition

are the same. If δ > 0, the attack is relaxed-stealthy, in which case more

severe performance degradation can be achieved by sacrificing the stealthiness

property. It is worth mentioning that evaluating directly the influence of at-

tacks on the alarm rate or g(zk) is generally a tough task, which may require

extensive analysis and computational resources. The cost can be prohibitive

for attackers with limited resources. Using the KL divergence as the metric

of stealthiness is a common practice [4, 23, 91].

The problem studied in this paper is to derive a stealthy attack sequence

to maximize the current-step estimation performance loss, i.e., at each instant,

design ỹk to maximize Tr(P̃k|k). This performance criterion is called “greedy”

attack performance [22–24, 68]. We formulate it as

P4.1 : max
ỹk=πk(Ik)

Tr(P̃k|k) s.t. (4.9)

where πk(Ik) denotes the general attack strategy at the kth sampling instant

based on all available information. It is known from (4.8) that designing the

compromised measurement ỹk is equivalent to designing z̃k [22, 23]. In the rest

of this paper, we use z̃k = πk(Ik) and ỹk = πk(Ik) interchangeably to denote

the general attack policy.

Remark 4.3. In almost all existing work on the same problem, attacks are

presupposed to be a linear function of the nominal innovations. By defining

πk(Ik), we do not require that attacks have a specific form. The aim is to find

the stealthy attack policy that makes full utilization of available information

and achieves the maximum performance degradation.
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4.2 Attacks with Strict Stealthiness

In this section, we study optimal attacks with strict stealthiness. Let δ = 0;

the compromised innovation satisfies

z̃k ∼ N (0,Σ). (4.10)

4.2.1 MMSE Estimate of the Prediction Error

Denote the a priori estimation error (prediction error) with deception at-

tacks as ẽk|k−1 = xk − x̃k|k−1. The Kalman filter estimates system states

recursively by

x̃k|k−1 = Ax̃k−1|k−1 (4.11)

x̃k|k = x̃k|k−1 +Kz̃k (4.12)

where K = P̄CTΣ−1 is the steady-state filter gain; z̃k is given in (4.8). Sub-

stituting (4.11) into (4.12) yields

x̃k|k−1 = Ax̃k−1|k−1 + AKz̃k−1. (4.13)

Then, we obtain the dynamics of ẽk|k−1 from (3.1) and (4.13):

ẽk|k−1 = Aẽk−1|k−1 − AKz̃k−1 + wk−1. (4.14)

Define the following matrices:

ȳk =

[
yk
ŷk

]
, v̄k =

[
vk
v̂k

]
, C̄ =

[
C

Ĉ

]
, R̄ =

[
R S
ST R̄

]
.

The measurement data at the kth sampling instant is

ȳk = C̄xk + v̄k. (4.15)

Define the “virtual sensor” output as

rk = ȳk − C̄x̃k|k−1. (4.16)
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Though there does not exist a real sensor that outputs rk, the definition helps

clarify the subsequent analysis. From (4.13), we have

x̃k|k−1 = Ak−k̄xk̄|k̄−1 +
k−1∑
i=k̄

Ak−iKz̃i.

This shows that x̃k|k−1 is determined by all historical compromised innovations

and xk̄|k̄−1. This information is available to the attacker at the kth instant.

Since ȳk is the online measurement, rk is available to the attacker. Substituting

(4.15) into (4.16) yields

rk = C̄ẽk|k−1 + v̄k. (4.17)

Remark 4.4. The above equation can be regarded as the “virtual measure-

ment” of ẽk|k−1 that is corrupted by a white Gaussian noise with covariance

R̄ ∈ Sm+m̄
+ . The dynamics and measurement of ẽk|k−1 play an important role

in deriving the optimal attack policy.

At the kth sampling instant, z̃k−1 is a known variable. By virtue of (4.14)

and (4.17), we use the following Kalman filter to obtain the MMSE estimate

of ẽk|k−1:

ξ̄k = Aξk−1 − AKz̃k−1 (4.18)

ξk = ξ̄k +Kξ
k(rk − C̄ξ̄k) (4.19)

Kξ
k = P̄ e

k C̄
T(C̄P̄ e

k C̄
T + R̄)−1 (4.20)

P̄ e
k = AP e

k−1A
T +Q (4.21)

P e
k = (I −Kξ

kC̄)P̄ e
k (4.22)

where ξ̄k and ξk denote the a priori and a posteriori estimates for ẽk|k−1,

respectively. P̄ e
k and P e

k are the corresponding estimation error covariances,

defined by

P̄ e
k = E[(ẽk|k−1 − ξ̄k)(ẽk|k−1 − ξ̄k)

T] (4.23)

P e
k = E[(ẽk|k−1 − ξk)(ẽk|k−1 − ξk)

T]. (4.24)
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The recursion starts from the k̄th sampling instant. Since no measurement

information is available before k̄, the optimal a priori estimate is 0 and the

error covariance is P̄ . Therefore, the initial state of the Kalman filter in

(4.18)–(4.22) is ξ̄k̄ = 0, P̄ e
k̄
= P̄ . Because the error of MMSE estimation is

orthogonal to the estimate, we have

E[ẽk|k−1ξ
T
k ] = E[ξkξTk ] + E[(ẽk|k−1 − ξk)ξ

T
k ] = E[ξkξTk ].

Define P ξ
k = E[ξkξTk ]; expanding (4.24) yields

P ξ
k = P̃k|k−1 − P e

k . (4.25)

4.2.2 Optimal Attack Policy

The estimation error covariances evolve according to

P̃k|k−1 = AP̃k−1|k−1A
T +Q (4.26)

P̃k|k = P̃k|k−1 +KE[z̃kz̃Tk ]KT −KE[z̃kẽTk|k−1]− E[ẽk|k−1z̃
T
k ]K

T. (4.27)

To evaluate the performance of strictly stealthy attacks, substituting E[z̃kz̃Tk ] =

Σ and (4.26) into (4.27), we obtain

P̃k|k = AP̃k−1|k−1A
T +Q+KΣKT −KE[z̃kẽTk|k−1]− E[ẽk|k−1z̃

T
k ]K

T.

At the kth sampling instant, the first three terms of P̃k|k are constant; hence,

maximizing Tr(P̃k|k) is equivalent to minimizing the trace of the last two terms.

We have the reformulated problem as follows:

P4.2 : min
z̃k=πk(Ik)

Tr{KE[z̃kẽTk|k−1]} s.t. (4.10).

It is worth noting that P4.2 is not a standard convex optimization problem;

our purpose is to design the random variable that has a given probability

distribution and also minimizes the objective. If it is assumed that z̃k is a

linear function of zk, P4.2 can be solved by SDPs [22]. Before we discuss the

optimal attack policy, three lemmas are provided.
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Lemma 4.1 (see [8, p. 20]). For A ∈ Rn×n, Q ∈ Sn
++, if

ATQ+QA ⪯ 0

then ℜλk
(A) ≤ 0, ∀k ∈ J1, nK.

Lemma 4.2 (see [7, p. 9]). For A ∈ Sn
+, B ∈ Sn

+, if

A− B ⪰ 0

then A 1
2 − B 1

2 ⪰ 0.

Lemma 4.3. If Ik = Ik−1 ∪ {yk, ŷk}, or Ik = Ik−1 ∪ {yk}, then rank(P ξ
k ) ≥ r,

rank(KTP ξ
kK) = r.

Proof. If Ik = Ik−1 ∪ {yk}, we have C̄ = C, R̄ = R. The recursions of P̄ e
k , P

e
k

and filter gain in (4.18)–(4.22) are the same as the ones in (4.1)–(4.6); then P̄ e
k

also converges to P̄ . Note that P̄ e
k̄
= P̄ ; (4.18)–(4.22) reduces to a steady-state

Kalman filter, leading to

Kξ
k = K, P e

k = (In −KC)P̄ , ∀k ≥ k̄.

If Ik = Ik−1 ∪ {yk, ŷk}, additional information is used for state estimation.

Then P e
k ⪯ (In −KC)P̄ , ∀k ≥ k̄. In the above two cases, we have

P ξ
k = P̃k|k−1 − P e

k ⪰ P̃k|k−1 − P̄ +KΣKT

KTP ξ
kK ⪰ KT(P̃k|k−1 − P̄ )K +KTKΣKTK.

BecauseR is positive definite, Σ is nonsingular; this implies that rank(KΣKT) =

rank(K) = r. Since deception attacks will not improve the estimation per-

formance, we have P̃k|k−1 − P̄ ∈ Sn
+, ∀k ≥ k̄. It follows that rank(P ξ

k ) ≥ r,

rank(KTP ξ
kK) = r. ■

With ξk and P ξ
k obtained from (4.19) and (4.25), the main result in this

chapter is given in Theorem 4.1. The case that Ik = ∅ will be discussed in

Section 4.4.
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Theorem 4.1. If Ik = Ik−1 ∪ {yk, ŷk}, or Ik = Ik−1 ∪ {yk}, the optimal attack

policy with strict stealthiness is given by

π∗
k(Ik) : ỹ∗k = Cx̃k|k−1 + T ∗

k ξk + bk, bk ∼ N (0,Θ) (4.28)

with the coefficients

T ∗
k = −(V + V̄ G)(V TΣV )

1
2VkU

T
k (U

TP ξ
kU)−

1
2UT

Θ = V̄ (V̄ TΣV̄ −GV TΣV GT)V̄ T

where [V V̄ ] is a unitary matrix; G = V̄ TΣV (V TΣV )−1; U, V and Uk, Vk

satisfy the economy-size singular value decompositions (SVD):

K = UŜV T, (UTP ξ
kU)

1
2 Ŝ(V TΣV )

1
2 = UkSkV

T
k .

Proof. The proof is divided into two parts: we first show how to derive the

attack policy in (4.28) and then prove its optimality.

Part 1 : Note that (4.28) is equivalent to designing the optimal compro-

mised innovation as:

z̃∗k = T ∗
k ξk + bk, bk ∼ N (0,Θ). (4.29)

Define the following variables and matrix:

ẑk = V Tz̃k, êk = UTẽk|k−1, Σ̂ = V TΣV ∈ Sr
++

then P4.2 can be reformulated as

min
ẑk=πk(Ik)

Tr{ŜE[ẑkêTk ]} s.t. ẑk ∼ N (0, Σ̂). (4.30)

Let ξ̂k = UTξk denote the MMSE estimate of êk. P̂k = UTP ξ
kU is the co-

variance of ξ̂k. It can be obtained from Lemma 4.3 that P̂k ∈ Sr
++. We now

consider the following attack for (4.30) based on MMSE estimate:

ẑk = T̂kξ̂k + b̂k, b̂k ∼ N (0, Θ̂k) (4.31)
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where b̂k is independent of all other variables. T̂k and Θ̂k are adjustable

coefficients to ensure stealthiness and optimize the attack performance. Sub-

stituting ẑk into (4.30) yields

P4.3 : min
T̂k,Θ̂k

Tr(T̂kP̂kŜ)

s.t. T̂kP̂kT̂
T
k + Θ̂k = Σ̂

Θ̂k ⪰ 0.

Denote T̄k = Σ̂− 1
2 T̂kP̂

1
2
k , S̄k = P̂

1
2
k ŜΣ̂

1
2 . Multiply on both sides of the equality

constraint by Σ̂− 1
2 and eliminate the slack variable Θ̂k; then P4.3 becomes

min
T̄k

Tr(T̄kS̄k) s.t. T̄kT̄
T
k − In ⪯ 0.

Notice that S̄k = UkSkV
T
k . The objective function satisfies

Tr(T̄kS̄k) = Tr(V T
k T̄kUkSk) ≥ −Tr(Sk).

Because Vk and Uk are orthogonal matrices and T̄kT̄
T
k ⪯ In, the minimal value

is attained only when V T
k T̄kUk = −In, i.e., T̄

∗
k = −VkU

T
k . For P4.3, we have

the unique optimal solution

T̂ ∗
k = −Σ̂

1
2VkU

T
k P̂

− 1
2

k , Θ̂∗
k = 0r. (4.32)

It leads to b̂k = 0r, ∀k ≥ k̄; the optimal linear attack based on MMSE estimate

in (6.7) is ẑ∗k = T̂ ∗
k ξ̂k. Since ẑk = V Tz̃k is not a bijective transformation, one

optimal solution to (6.7) corresponds to multiple optimal solutions to P4.2.

Solving the matrix equation ẑ∗k = V Tz̃∗k, the general form of optimal attacks

in P4.2 satisfies

z̃∗k = V ẑ∗k + V̄ ϵk (4.33)

where ϵk ∈ Rm−r is an arbitrary random vector. The second term of z̃∗k

lies in Ker(K); it has no impact on the attack performance, but will affect

the covariance of z̃∗k. To ensure that (4.33) satisfies the strict stealthiness

62



constraint in P4.2, ϵk must be zero-mean Gaussian and the following equality

holds:

E[z̃∗k(z̃∗k)T] = V Σ̂V T + V̄ E[ϵkϵTk ]V̄ T + V E[ẑ∗kϵTk ]V̄ T

+V̄ E[ϵk(ẑ∗k)T]V T = Σ. (4.34)

Now we decompose ϵk into two parts, i.e., ϵk = Gẑ∗k + ϵ̄k. The first part

is correlated with ẑ∗k and ϵ̄k ∼ N (0,Θϵ) is independent of all other variables.

Substituting ϵk into (4.34) yields

(V + V̄ G)Σ̂(V + V̄ G)T + V̄ΘϵV̄
T = Σ. (4.35)

Note that V̄ TV = 0(m−r)×r, V
TV = Ir and V̄ TV̄ = Im−r. Left- and right-

multiplying on both sides of (4.35) with V̄ T and V , respectively, we have

V̄ TΣV = GΣ̂.

Multiplying on both sides of (4.35) with V̄ T and V̄ , we obtain

V̄ TΣV̄ = GΣ̂GT +Θϵ.

Since Σ̂ is nonsingular, G and Θϵ are derived directly from the above two

equations. Substituting ϵk into (4.33), the compromised innovation becomes

z̃∗k = (V + V̄ G)ẑ∗k + V̄ ϵ̄k. (4.36)

Let bk = V̄ ϵ̄k; we have bk ∼ N (0, V̄ΘϵV̄
T). Substitute ẑ∗k and G into (4.36),

then the optimal attack policy π∗
k(Ik) in (4.29) based on MMSE estimate is

obtained.

Part 2 : Now we prove that ẑ∗k in (4.29) based on the MMSE estimate

is optimal among all feasible attacks, which can have an arbitrary form (not

necessarily a linear function of zk). Note that π
∗
k(Ik) is a recursive attack policy.

At the k̄th sampling instant, (4.19) indicates ξk̄ = Kξ

k̄
rk̄; from (4.16) we know

rk̄ is Gaussian. This implies that ξk̄, and consequently z̃∗
k̄
in (4.36), are also

Gaussian. By linearity, (4.18)–(4.19) shows that ξk is Gaussian distributed if
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z̃∗i , ∀i ∈ Jk̄, k − 1K is Gaussian. Therefore, the recursive attack policy satisfies

the strict stealthiness constraint.

In (4.33), one can find that z̃∗k consists of two parts. V̄ ϵk is a compensa-

tion term to guarantee stealthiness. Since only V ẑ∗k is effective for performance

degradation, it is sufficient to study the attack performance of ẑ∗k for (4.30).

Assume that ẑk = πk(Ik) satisfying ẑk ∼ N (0, Σ̂) is an arbitrary attack strat-

egy. Define the error covariance matrices

P̂ ∗
k = E[(ẑ∗k − T̂ ∗

k êk)(ẑ
∗
k − T̂ ∗

k êk)
T]

P̂ e
k = E[(ẑk − T̂ ∗

k êk)(ẑk − T̂ ∗
k êk)

T].

Note that T̂ ∗
k is a constant. ẑ∗k is the MMSE estimate for T̂ ∗

k êk. Thus, the

following matrix inequality holds�:

P̂ ∗
k ⪯ P̂ e

k . (4.37)

Multiplying on both sides of (4.37) with Ŝ, expanding the inequality and

canceling identical terms, we have

ŜT̂ ∗
kE[êk(ẑ∗k)T]Ŝ + ŜE[ẑ∗êTk ](T̂ ∗

k )
TŜ

⪰ŜT̂ ∗
kE[êkẑTk ]Ŝ + ŜE[ẑkêTk ](T̂ ∗

k )
TŜ. (4.38)

Define Wk = −ŜT̂ ∗
k and the following matrices associated with the objective

function of (4.30):

Xk = E[êk(ẑ∗k)T]Ŝ, Yk = E[êkẑTk ]Ŝ.

From P̂
1
2
k ŜΣ̂

1
2 = UkSkV

T
k , we have Ŝ = P̂

− 1
2

k UkSkV
T
k Σ̂− 1

2 . Together with

(4.32), it can be obtained that

Wk = P̂
− 1

2
k UkSkU

T
k P̂

− 1
2

k ≻ 0. (4.39)

From (4.38), we have

Wk(Xk − Yk) + (Xk − Yk)
TWk ⪯ 0. (4.40)

�This inequality can be shown by the proof that MMSE estimation is the conditional expec-
tation [3, Th. 3.1].
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By Lemma 4.1, (4.39)–(4.40) implies that all eigenvalues of Xk − Yk have

non-positive real parts. Then

Tr(Xk − Yk) =
r∑

i=1

ℜλi
(Xk − Yk) ≤ 0.

Compared with ẑk, ẑ
∗
k leads to no larger objective value for (4.30). Since ẑk is

arbitrary by assumption, the above analysis proves the optimality of ẑ∗k. ■

If rank(C) = m, K has full column rank; then V̄ vanishes. It follows that

Θ = 0, z̃∗k = T ∗
k ξk, T ∗

k = −V Σ̂
1
2VkU

T
k P̂

− 1
2

k UT. The optimal attack policy is

unique. If rank(C) < m, there exist multiple optimal policies leading to the

same attack performance. Theorem 4.1 gives the simplest one. The first reason

is that in (4.33) we can design ϵk with a general form, i.e., ϵk = hk(Ik) + ϵ̄k.

hk(Ik) is the mapping (possibly nonlinear) that reflects the correlation of ϵk

with ẑ∗k and ϵ̄k is an independent term. Any hk(Ik) that ensures ϵk is Gaussian

and satisfies (4.34) corresponds to an optimal solution to P4.2. Since ϵk does

not affect the attack performance, we can simply design hk(·) as a linear

function of ẑ∗k, which gives the result in (4.28). The freedom to design V̄

also leads to the non-uniqueness of z̃∗k. Note that the columns of V̄ form an

orthogonal basis for Ker(K). One can do full-size SVD: K = Ũ S̃Ṽ T, then

construct V and V̄ as the first r and last m− r columns of Ṽ , respectively.

Remark 4.5. It is known that MMSE estimation is the conditional expectation

given all available information [3]. Therefore, (4.29) can be written as

π∗
k(Ik) : z̃∗k = T ∗

kE[ẽk|k−1|Ik] + bk, bk ∼ N (0m,Θ).

This is the reason that π∗
k(Ik) is called an information-based strategy. It is

interesting to notice that the attacker needs to run another Kalman filter in

order to compromise the existing one; the design of optimal attack policy is

recast as an optimal state estimation problem. The optimality of the proposed

attack is guaranteed by the optimality of MMSE estimation.

Remark 4.6. Comparing (4.29) with the linear attack model in the pioneering

work [22, 23], it can be found that in order to maximize Tr(P̃k|k), the attacker
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should use a linear function of ξk, namely, the “best guess” of the current

prediction error, to design the compromised innovation.

Note that P ξ
k in (4.25) depends explicitly on P̃k|k−1, which by (4.26) is

determined by P̃k−1|k−1. To make the calculation a closed loop, P̃k|k should be

evaluated at each instant. Substituting z̃∗k into (4.27), we have

P̃k|k = AP̃k−1|k−1A
T +Q+KΣKT −KT ∗

kP
ξ
k − P ξ

k (T
∗
k )

TKT. (4.41)

The penultimate term of (4.41) satisfies

KT ∗
kP

ξ
k = −UŜΣ̂

1
2VkU

T
k P̂

− 1
2

k UTP ξ
k

(a)
= −UP̂

− 1
2

k UkSkV
T
k VkU

T
k P̂

− 1
2

k UTP ξ
k

(b)
= −UP̂

− 1
2

k (P̂
1
2
k ŜΣ̂ŜP̂

1
2
k )

1
2 P̂

− 1
2

k UTP ξ
k (4.42)

where in (a) and (b) we use respectively the following equalities:

ŜΣ̂
1
2 = P̂

− 1
2

k UkSkV
T
k , (P̂

1
2
k ŜΣ̂ŜP̂

1
2
k )

1
2 = UkSkU

T
k .

With (4.41)–(4.42), the attack performance can be evaluated without solving

T ∗
k explicitly. If A is stable, P̃k|k will converge to a constant. For a scalar

system (m = n = 1), the performance evolution becomes

P̃i|i = a2P̃i−1|i−1 + q + k2σ + 2
√
k2σ(a2P̃i−1|i−1 + q − P e

i ). (4.43)

To avoid ambiguity, we use i to denote the time index and symbols with

lower cases to represent the corresponding constant parameters. The recursive

attack policy is summarized in Algorithm 4.1. In real attack scenarios, the

computational complexity to obtain the optimal attack sequence should also

be one of the attacker’s main concerns. Yet in this work, the computational

burden to design ỹk is not a serious issue. Because all involved matrices in

Algorithm 4.1 are independent of measurement data and can be calculated

offline. Theorem 4.1 involves only SVD and matrix multiplications; both of

them are computationally efficient.

66



4.2.3 Separation Principle

The attack policy in Theorem 4.1 can be determined with two steps, lead-

ing to the so-called “separation principle”. First, the MMSE estimate for

ẽk|k−1 is obtained based on available information; then, the following attack

strategy is adopted:

z̃k = Tkξk + bk, bk ∼ N (0,Θk). (4.44)

Substituting this general attack model to P4.2, the explicit optimal solutions

for Tk and Θk can be derived.

Remark 4.7. It is interesting to notice that the investigated problem in this

work bears some similarities to LQG control [91]. According to (4.14), (4.17)

and P4.2, we can treat z̃k as the input of the linear time-invariant system.

The control objective is to minimize the performance index, which measures

the weighted correlation between system states and inputs. The differences

from LQG control are that there is an additional constraint restricting the co-

variance of the input, and the one-step performance function without quadratic

control and state costs is considered. Despite the differences, the well-known

separation principle in stochastic control still holds. The optimal input is a

combination of MMSE estimation and linear transformation. The controller

gain in LQG is obtained from difference Riccati equations, whereas in this

work the gain is derived by solving SDPs. Moreover, since T ∗
k is determined

by P ξ
k , which depends on the estimation error covariance for ẽk|k−1, it is clear

that T ∗
k depends implicitly on Kξ

i , i ∈ Jk̄, k − 1K. It reveals another difference

with LQG control, where the recursions determining controller and estimator

gains are completely decoupled.

4.2.4 Dynamic Linear Attack Model

In existing studies [22–24, 36, 38, 39, 42, 68, 84, 97], the attack is assumed

to have a static linear model. For comparison, Theorem 4.1 shows that the
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Algorithm 4.1 Optimal Attacks with Strict Stealthiness

Require: xk̄|k̄−1 and online measurement yk, ŷk.
Ensure: Optimal compromised measurement ỹ∗k.
1: Initialization: Set ξ̄k̄ = 0m, P̄

e
k̄
= P̄ , P̃k̄|k̄−1 = P̄ .

2: Do SVD: K = UŜV T. Calculate G and Θ.
3: Calculate rk̄ = ȳk̄ − C̄xk̄|k̄−1.

4: for k = k̄ : 1 : ∞ do
5: Calculate Kξ

k , ξk and P e
k with (4.20), (4.19) and (4.22).

6: Calculate P ξ
k from (4.25).

7: Design T ∗
k and bk according to Theorem 4.1.

8: Calculate z̃∗k and ỹ∗k with (4.29) and (4.28).
9: Evaluate P̃k|k with (4.41).

10: Update ξ̄k+1, P̄
e
k+1, P̃k+1|k with (4.18), (4.21) and (4.26).

11: Calculate x̃k+1|k and rk+1 from (4.13) and (4.16).
12: end for

𝑦𝑘

ത𝑦𝑘

෤𝑦𝑘

𝑥𝑘 Wireless Channel

ǁ𝑧𝑘
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𝜃𝑘 = 𝐺𝑘−1𝜃𝑘−1 + 𝐹𝑘𝑦𝑘 + ത𝐹𝑘 ത𝑦𝑘 + 𝐸𝑏𝑘−1
෤𝑦𝑘 = ෨𝑇𝑘𝜃𝑘 + 𝑏𝑘 (Attacker)Sensor II

Sensor IProcess Remote Estimator

False Data Detector

Figure 4.2: Deception attacks generated by a LTV system.

optimal attack has a dynamic linear form, owing to the fact that Kalman filter

is a dynamic linear system. To show this, from (4.13) and (4.29), we obtain

x̃k|k−1 = Ax̃k−1|k−2 + AKT ∗
k−1ξk−1 + AKbk−1. (4.45)

According to (4.18)–(4.19), we have

ξk = (I −Kξ
kC̄)(Aξk−1 − AKz̃∗k−1) +Kξ

krk. (4.46)

Substitute (4.45) into (4.16), then it can be derived from (4.29) and (4.46)

that

ξk = (A−Kξ
kC̄A− AKT ∗

k−1)ξk−1

−Kξ
kC̄Ax̃k−1|k−2 +Kξ

krk − AKbk−1. (4.47)
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Consider the partitioned matrix Kξ
k =

[
K1

k , K
2
k

]
, where K1

k ∈ Rn×m, K2
k ∈

Rn×m̄, and define the state vector θk ∈ R2n and matrices

θk =

[
ξk

x̃k|k−1

]
, Gk−1 =

[
A−Kξ

kC̄A− AKT ∗
k−1 −Kξ

kC̄A
AKT ∗

k−1 A

]

Fk =

[
K1

k

0

]
, F̂k =

[
K2

k

0

]
, E =

[
−AK
AK

]
, T̃k =

[
T ∗
k C

]
.

From (4.28), (4.45) and (4.47), one can verify that ỹk is generated by the LTV

system

θk = Gk−1θk−1 + Fkyk + F̂kŷk + Ebk−1 (4.48)

ỹ∗k = T̃kθk + bk (4.49)

with initial condition θk̄ =
[
(Kξ

k̄
rk̄)

T, xT
k̄|k̄−1

]T
. bk is an i.i.d. Gaussian noise.

Note that [
I I
0 I

]
Gk−1

[
I I
0 I

]−1

=

[
A−Kξ

kC̄A 0
AKT ∗

k−1 A− AKT ∗
k−1

]
.

The eigenvalues of Gk−1 consist of eigenvalues of A−Kξ
kC̄A and A−AKT ∗

k−1.

This shows that the filter gain Kξ
k and controller gain T ∗

k can be designed

separately, which coincides with Remark 4.7. The diagram of stealthy de-

ception attacks against remote state estimation is illustrated in Fig. 4.2. In

practical cases, to reduce the online computational burden, the attacker can

calculate the coefficient matrices of the LTV system offline with Algorithm 4.1,

then generate the optimal compromised measurement with (4.48)–(4.49). The

online computational cost is negligible.

A similar problem to P4.2 was studied in [68], where it was assumed that

besides the current (nominal) innovation, a fixed interval of historical innova-

tions could be used. The attack has the following static linear form:

z̃k =

τk∑
i=0

T
[i]
k zk−i + bk, bk ∼ N (0,Φk) (4.50)

where the interval length τk = min{k − k̄, τ} is fixed for large k. With this

assumption, P4.2 reduces to a convex optimization problem�. From (4.50), we

�The optimal solutions for T
[i]
k , i ∈ J0, τkK and Φk are given in [68, Th. 1].
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see that increasing the length of the historical interval always leads to better

attack performance, because we have more degrees of freedom to design z̃k.

Ideally, letting τk = k − k̄, namely, using all historical innovations, achieves

the maximum attack performance. However, in this case there will be a grow-

ing number of decision variables (T
[i]
k ) as k increases, making the calculation

intractable. Note that in [68] the attacker can only intercept the original mea-

surement. In the remainder of this section we show that the attack in (4.29)

with Ik = Ik−1 ∪{yk} and the optimal one in [68, Th. 1] utilizing all historical

innovations have the same attack performance. If rank(C) = m, these two

policies lead to the same z̃k, and consequently, the same ỹk.

Proposition 4.1. The attack in (4.29) with Ik = Ik−1 ∪ {yk} is equivalent to

the optimal attack in (4.50) with τk = k − k̄.

Proof. See Appendix A.2. ■

Remark 4.8. Proposition 4.1 shows the connection between the proposed strat-

egy and that in [68]. Two different methods lead to the same optimal policy

when Ik = Ik−1 ∪ {yk} and τk = k − k̄, but the one using static linear com-

binations becomes intractable as k tends to infinity. The proposed method in

this paper is a recursive policy that has a simple form and is computationally

efficient.

4.3 Attacks with Relaxed Stealthiness

In this section, we study attacks with relaxed stealthiness. Let δ > 0; the

compromised innovation satisfies (4.9). Recall that K = UŜV T; we define the

following variables:

K̂ = ŜV T, êk = UTẽk|k−1, ξ̂k = UTξk, P̂k = UTP ξ
kU.

According to (4.27), P4.1 can be reformulated as

P4.4 : min
z̃k=πk(Ik)

Tr{−K̂E[z̃kz̃Tk ]K̂T + 2E[êkz̃Tk ]K̂T} s.t. (4.9).
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To solve P4.4, we first study the following MMSE estimate based linear attack

and then prove its optimality.

z̃k = Tkξ̂k + bk, bk ∼ N (βk,Θk). (4.51)

4.3.1 Linear Attack Based on MMSE Estimate

For brevity, denote µ̂k = E[ξ̂k], µk = E[z̃k],Σk = Cov[z̃k] and Σ̂k = E[z̃kz̃Tk ].

Substitute (4.51) into P4.4, then the objective function becomes

fk(Σ̂k, Tk, βk) = Tr[−K̂Σ̂kK̂
T + 2(P̂kT

T
k + µ̂kβ

T
k )K̂

T].

By linearity, z̃k is Gaussian distributed. The KL divergence between z̃k and

zk is given as

DKL(z̃k∥zk) =
1

2

[
Tr(Σ−1Σk) + µT

kΣ
−1µk −m+ ln

|Σ|
|Σk|

]
.

To obtain the optimal linear attack, the attacker needs to solve the follow-

ing optimization problem at each instant to obtain T ∗
k , β

∗
k and Θ∗

k:

P4.5 : min
µk,Σk,Σ̂k,Tk,βk,Θk

fk(Σ̂k, Tk, βk)

s.t. Tk[P̂k − µ̂kµ̂
T
k ]T

T
k +Θk = Σk (4.52)

Σk + µkµ
T
k = Σ̂k (4.53)

Tkµ̂k + βk = µk (4.54)

g(Σk, Σ̂k) ≤ 0 (4.55)

Θk ⪰ 0 (4.56)

where (4.55) is the stealthiness constraint with g(·) defined by

g(Σk, Σ̂k) = Tr(Σ−1Σ̂k) + ln
|Σ|
|Σk|

−m− 2σ.

The independent variables in P4.5 are Σ̂k, Tk and βk. At the kth sampling

instant, µ̂k = UTE[ξk]. Since the MMSE estimation is unbiased, i.e., E[ξk] =

E[ẽk|k−1], according to (4.14), we have

E[ξk] = AE[ξk−1]− AKµk−1 (4.57)
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with initial condition E[ξk̄] = 0. This equality is used recursively to determine

µ̂k. P̂k denotes the second moment of ξ̂k and is obtain from (4.25). Hence, µ̂k

and P̂k are constant parameters at the kth instant.

In (4.51), bk serves as a compensation term to ensure stealthy. Contrary

to the case of strict stealthiness, it is assumed that bk may have non-zero

and time-varying mean. With this model, z̃k can have an arbitrary Gaussian

distribution. In the following proposition, we show that the optimal compro-

mised innovation should have a compensation term with zero mean, which

can reduce the complexity of P4.5 and also provide additional insights on the

attacker’s optimal behavior.

Proposition 4.2. The optimal attack based on MMSE estimate in (4.51) with

relaxed stealthiness satisfies

βk = 0, ∀k ≥ k̄. (4.58)

If rank(C) = m, then bk = 0.

Proof. See Appendix A.3. ■

Now P4.5 reduces to

P4.6 : min
Tk,Σk

Tr(−K̂ΣkK̂
T + 2K̂TkP̂k)

s.t. Tr(Σ−1Σk) + ln
|Σ|
|Σk|

−m− 2δ ≤ 0

TkP̂kT
T
k − Σk ⪯ 0.

The first constraint is convex in Σk and the second one can be reformed as

a linear matrix inequality by applying Schur complement. P4.6 is convex and

can be solved efficiently.

In this section, we have derived the optimal linear attack based on MMSE

estimate with relaxed stealthiness. The linear model preserves Gaussianity; as

a result, the compromised innovation is Gaussian distributed. Both the objec-

tive function and stealthiness constraints of P4.4 have analytical expressions,

which enables derivation of attack coefficients by solving convex optimization
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problems. However, the constraint in (4.9) does not require that z̃k be Gaus-

sian. In the following section, we will show that the MMSE estimate based

linear attack is optimal among all feasible z̃k, which can have an arbitrary

probability distribution.

4.3.2 Optimal Attack Policy

With ξk and P ξ
k obtained from (4.19) and (4.25), we have the following

result.

Theorem 4.2. If Ik = Ik−1 ∪ {yk, ŷk}, or Ik = Ik−1 ∪ {yk}, the optimal attack

policy with relaxed stealthiness is given by

π∗
k(Ik) : ỹ∗k = Cx̃k|k−1 + T ∗

kU
Tξk + bk, bk ∼ N (0,Θk) (4.59)

where T ∗
k is obtained by solving P4.6, Θk = Σ∗

k − T ∗
k P̂k(T

∗
k )

T.

Proof. According to (4.59), the optimal compromised innovation is

z̃∗k = T ∗
k ξ̂k + bk, bk ∼ N (0,Θk).

At the k̄th sampling instant, assume that z̃a
k̄
= πk̄(Ik̄) is an arbitrary attack

policy (not necessarily Gaussian). Denote

E[z̃ak̄ ] = µ̃k̄, E[(z̃ak̄ − µ̃k̄)(z̃
a
k̄ − µ̃k̄)

T] = Σ̃k̄.

Consider the following optimization problem:

min
z̃k̄=πk̄(Ik̄)

Tr{K̂E[z̃k̄êTk̄ ]} s.t. z̃k̄ ∼ N (µ̃k̄, Σ̃k̄). (4.60)

The optimal policy obtained from (4.60) is denoted as z̃b
k̄
. Note that (4.60) is

a similar problem to (4.30). Following the proof of Theorem 4.1, we see that

z̃b
k̄
has the form

z̃bk̄ = T̃ ∗
k̄ ξ̂k̄ + b̃k̄, b̃k̄ ∼ N (µ̃k̄, Θ̃k̄)

where T̃ ∗
k̄
P̂k̄(T̃

∗
k̄
)T + Θ̃k̄ = Σ̃k̄. Since z̃

a
k̄
and z̃b

k̄
have the same second moment,

according to the proof of Theorem 4.1, it can be verified that the objective
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value of z̃b
k̄
for P4.4 is no greater than that of z̃a

k̄
. Let pz̃a

k̄
(t) and pz̃b

k̄
(t) denote

the probability density functions of z̃a
k̄
and z̃b

k̄
, respectively. Note that∫

Rm

pz̃a
k̄
(t)tTΣ−1tdt = Tr(Σ−1E[z̃ak̄(z̃

a
k̄)

T])

∫
Rm

pz̃b
k̄
(t)tTΣ−1tdt = Tr(Σ−1E[z̃bk̄(z̃

b
k̄)

T]).

It follows that

DKL(z̃
b
k̄∥zk̄)−DKL(z̃

a
k̄∥zk̄)

=

∫
Rm

pz̃b
k̄
(t) ln

pz̃b
k̄
(t)

pzk̄(t)
dt−

∫
Rm

pz̃a
k̄
(t) ln

pz̃a
k̄
(t)

pzk̄(t)
dt

={−Ez̃b
k̄
+

1

2
ln[(2π)m|Σ|] + 1

2

∫
Rm

pz̃b
k̄
(t)tTΣ−1tdt}−

{−Ez̃a
k̄
+

1

2
ln[(2π)m|Σ|] + 1

2

∫
Rm

pz̃a
k̄
(t)tTΣ−1tdt}

=Ez̃a
k̄
− Ez̃b

k̄
≤ 0.

The last inequality is due to the fact that Gaussian distribution has the max-

imum entropy among all probability distributions with the same variance

[12, 23]. It shows that for any feasible policy z̃a
k̄
, we can always find another

MMSE estimate based policy z̃b
k̄
, such that z̃b

k̄
can cause no less performance

loss and also satisfy the stealthiness constraint. Since πk(Ik) is a recursive

strategy, following the same arguments it can be verified that the conclusion

holds ∀k ≥ k̄. The above analysis proves the optimality of z̃∗k. ■

The algorithm for designing deception attacks with relaxed stealthiness is

similar to Algorithm 4.1, where T ∗
k and Θk are obtained by solving P4.6, and

the attack performance is evaluated by

P̃k|k = AP̃k−1|k−1A
T +Q+KΣ∗

kK
T −KT ∗

kP
ξ
k − P ξ

k (T
∗
k )

TKT. (4.61)

Remark 4.9. Theorem 4.2 shows that the separation principle still holds for

designing attacks with relaxed stealthiness, i.e., the attacker first utilizes all

available information to obtain an MMSE estimate for ẽk|k−1, then the opti-

mal transformation matrix in (4.59) is derived by solving convex optimization
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problems. Consequently, the optimal attack policy can also be generated by the

LTV system in (4.48)–(4.49).

Remark 4.10. With the optimal attack based on MMSE estimate, Proposi-

tion 4.2 leads to E[ẽk|k−1] = 0 and E[z̃k] = 0, ∀k ≥ k̄. This implies that the

remote estimator still provides unbiased state estimation with compromised

measurements. The performance degradation is due to the increase of estima-

tion error covariance. The conclusion is different from [38], where the interval

attack performance is considered and bk ̸= 0 for large δ, leading to biased state

estimation.

4.4 Performance Analysis and Comparison

In this section, we study further the optimal attacks with different infor-

mation sets. The general scenario in (4.7) can be tackled by the separation

principle. Some interesting results are obtained when we investigate the spe-

cial cases. We consider only the attacks with strict stealthiness. The extension

to the case of relaxed stealthiness is straightforward.

4.4.1 Null Information: Ik = ∅

In practical cases, owing to some defensive countermeasures deployed by

system operators, attackers may not be able to eavesdrop any measurement

data. Then Ik = ∅, ∀k ≥ k̄; attackers can still launch stealthy deception

attacks if they can modify the transmitted packets. Note that it is equivalent

to assuming λm+m̄(R̃) → ∞. From (4.18)–(4.22) we have Kξ
k = 0, ξk = ξ̄k and

P e
k = P̄ e

k ; then

ξk = Aξk−1 − AKz̃k−1 (4.62)

P̄ e
k = AP̄ e

k−1A
T +Q. (4.63)

In this case, Theorem 4.1 cannot be applied directly because P̂k can be sin-

gular. For example, when attack starts, we have P̂k̄ = UT(P̃k̄|k̄−1 −P e
k̄
)U = 0.

The optimal attack policy is summarized in the following theorem.
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Theorem 4.3. If Ik = ∅, the optimal attack policy with strict stealthiness is

given by

π∗
k(Ik) : ỹ∗k = Cx̃k|k−1 + T ∗

k ξk + bk, bk ∼ N (0,Θ∗
k) (4.64)

with the coefficients

T ∗
k = −Σ

1
2ΦkΠ

− 1
2

k ΦT
kΣ

1
2KTΨkΨ

T
k + Σ

1
2 Φ̄kXkΛ

− 1
2

k ΨT
k + YkΨ̄

T
k

Θ∗
k = Σ

1
2 Φ̄k(I −XkXT

k )Φ̄
T
kΣ

1
2

where Φk, Φ̄k,Πk and Ψk, Ψ̄k,Λk satisfy the spectral decompositions:

Σ
1
2KTP ξ

kKΣ
1
2 =

[
Φk Φ̄k

] [Πk 0
0 0

] [
ΦT

k

Φ̄T
k

]
, Πk ∈ Sr̄

++

P ξ
k =

[
Ψk Ψ̄k

] [Λk 0
0 0

] [
ΨT

k

Ψ̄T
k

]
, Λk ∈ Ss

++

and Xk ∈ R(m−r̄)×s,Yk ∈ Rm×(n−s) are free parameters satisfying

XkXT
k ⪯ I, XkΛ

1
2
kΨ

T
kKΣ

1
2Φk = 0. (4.65)

Proof. See Appendix A.4. ■

When Ik = ∅, optimal attack policies are not unique even if rank(C) =

m. All policies with different feasible Xk and Yk are stealthy and have the

same performance, but the effects of these free parameters are different. Yk

exists because P ξ
k can be singular. The last term of T ∗

k does not influence

the constraint in (A.31) and satisfies YkΨ̄
T
kP

ξ
kK = 0, indicating that different

values of Yk contribute the same change to P̃k|k, not only the same increase

to Tr(P̃k|k). On the contrary, Xk has an impact on the stealthiness constraint;

hence, Θ∗
k serves as a compensation term to ensure stealthiness. Different

selections of Xk result in different changes in P̃k|k, which, by the recursion in

(4.26)–(4.27), will influence the attack performance in the subsequent steps.

In this paper we consider only the greedy attack policy, which maximizes

Tr(P̃k|k) given P̃k−1|k−1; hence, Xk and Yk can be chosen freely. Let Xk = 0

and Yk = −Σ
1
2ΦkΠ

− 1
2

k ΦT
kΣ

1
2KTΨ̄k; an optimal strategy with a simple form is

T ∗
k = −Σ

1
2ΦkΠ

− 1
2

k ΦT
kΣ

1
2KT, Θ∗

k = Σ
1
2 Φ̄kΦ̄

T
kΣ

1
2 .
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At the k̄th sampling instant, ξk̄ = 0, P ξ

k̄
= 0. It can be verified that T ∗

k̄

is an arbitrary matrix and Θ∗
k̄
= Σ. The compromised innovation satisfies

z̃∗
k̄
∼ N (0,Σ). The algorithm for designing z̃k is the same as Algorithm 4.1,

where T ∗
k and Θ∗

k are obtained from Theorem 4.3. The attack performance

can be evaluated by (4.41).

Remark 4.11. If Ik = ∅, one feasible attack policy is designing z̃k as a white

Gaussian noise, i.e., z̃k ∼ N (0,Σ),E[z̃iz̃Tj ] = 0, ∀i ̸= j. In this case the a

posteriori estimation error covariance evolves according to

P̃k|k = AP̃k−1|k−1A
T +Q+KΣKT. (4.66)

Compared with this intuitive strategy, one can verify that (4.64) causes more

severe performance loss. This is because the attacker makes full utilization of

the information contained in {z̃k̄, ..., z̃k−1} to design z̃k. Note that at the k̄th

sampling instant, these two attacks are identical (in the sense of leading to the

same attack performance).

4.4.2 Symmetric Information: Ik = Ik−1 ∪ {yk}

A majority of existing studies concentrates on the scenario that the at-

tacker can only eavesdrop on the original measurement. In this case, Ik =

Ik−1∪{yk} is the symmetric information that is available to both the attacker

and remote estimator.

Since C̄ = C, R̄ = R, P̄ e
k̄

= P̄ , (4.18)–(4.22) is a steady-state Kalman

filter, leading to Kξ
k = K, P e

k = (I − KC)P̄ , ∀k ≥ k̄. With fixed P e
k , P

ξ
k is

determined only by P̃k|k−1; thus Algorithm 4.1 can be simplified. The following

proposition reveals the connection between policy (4.29) and the conclusion

in [22].

Proposition 4.3. If Ik = Ik−1 ∪ {yk}, the attack in (4.29) satisfies

K(z̃∗k̄ + zk̄) = 0. (4.67)

If rank(C) = m, then z̃∗
k̄
= −zk̄.
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Proof. See Appendix A.5. ■

From (4.67), one can verify that z̃∗
k̄
from Theorem 4.1 and z̃k̄ = −zk̄ have

the same attack performance, indicating the equivalence between these two

attacks. If C has full row rank, the unique attack policy is z̃∗
k̄
= −zk̄, which

is consistent with the conclusion in [22]. When k ≥ k̄ + 1, more information

can be used to obtain a more accurate estimate for ẽk|k−1. This is the reason

that the attack in (4.29) outperforms the one in [22] if only (4.10) serves as

the stealthiness constraint§.

An interesting observation is that, in case of symmetric information and

rank(C) = m, if we just flip the sign of T ∗
k in Algorithm 4.1, P̃k|k will eventually

converge to (I − KC)P̄ ; that is, the estimator becomes a nominal Kalman

filter. Consider a similar optimization problem to P4.2 but with an opposite

objective:

min
z̃k=πk(Ik)

−Tr{KE[z̃kẽTk|k−1]} s.t. (4.10).

It is clear that the optimal solution to the above problem is z̃k = −T ∗
k ξk and

will result in a standard Kalman filer.

4.4.3 Full Information: Ik = Ik−1 ∪ {yk, ŷk}

The solution to the full information case is given in Theorem 4.1. The

Kalman filter in (4.18)–(4.22) is time-varying and will eventually converge to

a fixed-gain filter. The filter gain is

Kξ = lim
k→∞

Kξ
k = P̄ eC̄T (C̄P̄ eC̄T + R̄)−1

where P̄ e is the unique solution of the Riccati equation

P̄ e = h[g[C̄,R̄](P̄
e)].

In the extreme case that the attacker has a very accurate measurement,

i.e., R̂ = 0, (4.22) implies P e
k = 0 and P ξ

k = P̃k|k−1, ∀k ≥ k̄; this leads to some

simplification of Algorithm 4.1.

§In this paper, the χ2 detector utilizes only the current z̃k to calculate the index function.
It is not necessary to require that E[z̃iz̃Tj ] = 0, ∀i ̸= j. In this case, the MMSE estimate
based attack outperforms other feasible attacks that satisfy the stealthiness constraint.
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4.4.4 Performance Comparison

In Theorem 4.1, we see that the attack performance depends on the es-

timation quality for ẽk|k−1. Additional information will always benefit the

attacker’s purpose. In this section, we use the scalar system to better explain

this idea. Consider the following special cases for (4.43):

P̃i|i = a2P̃i−1|i−1 + q − k2σ (4.68)

P̃i|i = a2P̃i−1|i−1 + q (4.69)

P̃i|i = a2P̃i−1|i−1 + q + k2σ (4.70)

P̃i|i = a2P̃i−1|i−1 + q + k2σ + 2
√

k2σ(a2P̃i−1|i−1 + q − P̄ e
i ) (4.71)

P̃i|i = a2P̃i−1|i−1 + q + k2σ + 2
√

k2σ(a2P̃i−1|i−1 + q − P e) (4.72)

P̃i|i = a2P̃i−1|i−1 + q + k2σ + 2
√

k2σ(a2P̃i−1|i−1 + q − P e
i ) (4.73)

P̃i|i = a2P̃i−1|i−1 + q + k2σ + 2
√

k2σ(a2P̃i−1|i−1 + q) (4.74)

where (4.68) is the performance evolution when there is no deception attacks.

It corresponds to a standard Kalman filter. We have P̃i|i = (1− kc)P̄ , ∀i ≥ ī.

(4.69) is the case when the measurement data is unavailable for estimation up-

date; this can be regarded as DoS attacks (the attack cannot remain stealthy).

(4.70) corresponds to (4.66), where z̃i is a white Gaussian noise. (4.71) is the

case when Ii = ∅, where P̄ e
i is given recursively by (4.63). One can verify that

P̄ e
i ≥ (1−kc)P̄ , ∀i ≥ ī. (4.72) is the case when Ii = Ii−1∪{yi}. P e = (1−kc)P̄

is a constant. (4.73) denotes the general case when Ii = Ii−1 ∪ {yi, ŷi}. In the

proof of Lemma 4.3, we have shown that P e
i ≤ (1− kc)P̄ , ∀i ≥ ī. (4.74) is the

extreme case when R̂ = 0.

In (4.71)–(4.73), the attacker’s information set becomes larger in sequence.

We see that the first three terms of P̃i|i are constants, and the last term

increases in turn. This implies that the additional information causes more

severe estimation quality deterioration. Specifically, (4.74) corresponds to

the maximum performance loss the attacker can expect. If |a| < 1, P̃i|i will
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converge to the fixed point of the nonlinear equation

P̃ = (

√
a2P̃ + q +

√
k2σ)2.

4.5 Examples

In this section, we use numerical examples to verify the optimality of the

proposed attack policy. Consider a stable LTI system with the following pa-

rameters:

A =

 0.482 −0.134 0.037
−0.061 0.572 −0.061
−0.109 −0.029 0.446

 , Q = diag


0.6120.435
0.754


C =

[
1.326 0.756 2.352
−1.319 0.921 0.395

]
, R = diag

{[
1.054
2.026

]}
, R̂ = 2

Ĉ =
[
0.505 1.214 1.984

]
, ST =

[
0.132 −0.814

]
.

Assume Ik = Ik−1 ∪ {yk}; the attack is launched from k̄ = 301; the attack

performance with strict and relaxed stealthiness is illustrated in Fig. 4.3. The

theoretical evolution of Tr(P̃k|k) is derived from (4.41) and (4.61); the empirical

one is obtained by simulating (3.1)–(3.2) for 20,000 times with randomly gen-

erated noises and averaging the corresponding square-errors at each sampling

instant. It can be observed that the proposed attack can degrade the estima-

tion quality significantly. For the considered stable system, Tr(P̃k|k) converges

to a constant. It is also interesting to notice that the innovation-based lin-

ear attack with relaxed stealthiness (δ = 0.1) in [23] causes less estimation

performance loss compared with the strictly stealthy attack in Theorem 4.1.

Note that m = 2; by setting the threshold of χ2 detector as 4, the theoretical

FAR in the nominal condition is 13.5%. Fig. 4.4 shows the empirical FAR.

It is clear that the strictly stealthy attack can completely bypass the false-

data detector (the empirical alarm rates with and without attacks fluctuate

in a narrow interval, and coincide with the theoretical one). The attack with

relaxed stealthiness causes more severe performance loss, with the price of a

higher alarm rate.
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Figure 4.3: Attack performance with strict/relaxed stealthiness.

Assume Ik = Ik−1 ∪ {yk}, k̄ = 16. Fig. 4.5 compares the attack perfor-

mance with symmetric information. It can be observed that the proposed

information-based policy leads to more performance degradation compared

with innovation-based ones. Specifically, the marked blue line illustrates the

performance of the linear attack in (4.50) with interval length τ = 3. When

16 ≤ k ≤ 19, both policies of Theorem 4.1 and (4.50) are optimal, since all

historical innovations are utilized. When k ≥ 20, the innovations in J16, k−4K

are out of the preset historical interval; hence (4.50) is no longer optimal and

yields less estimation error. This is the reason that the two performance

curves diverge apart when k ≥ 20. Note that all optimal attacks with strict

stealthiness have the same performance when k = 16. The simulation verifies

Proposition 4.1.

Assume Ik = Ik−1 ∪ {yk, ŷk}. Fig. 4.6 illustrates the attack performance

when the attacker has additional measurements. Compared with existing

work, it shows that the information-based policy leads to greater performance

loss. Let S = 0 and R̂ vary from 0.001 to 1000. Fig. 4.7 shows the impact of
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Figure 4.4: Empirical alarm rates with/without deception attacks.

side information on the steady-state attack performance. It is observed that a

more accurate measurement of system states improves the attack performance.

Assume Ik = ∅. Fig. 4.8 illustrates the attack performance when the

attacker cannot eavesdrop any measurement data. Compared with the white

noise attack in (4.66) and DoS attacks, the proposed strategy can cause more

severe performance degradation. Note that the attacks from Theorem 4.3 and

(4.66) have the same performance when they start (k = 16).

4.6 Conclusion

In this chapter, optimal deception attacks with both strict and relaxed

stealthiness against remote state estimation are studied from an information

perspective. General scenarios in which the attacker has different information

sets from the remote estimator are investigated in a unified framework. Con-

trary to existing studies, we have designed an information-based stealthy at-

tack policy that can cause the maximum performance loss. It is found that the

attack performance depends highly on the estimation quality for the prediction

error. The optimal compromised measurement is generated by an LTV system

whose coefficient matrices can be determined without knowing the online mea-

surements. The future work will be exploring the optimal information-based
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Figure 4.5: Attack performance with symmetric information.

stealthy attack considering the interval performance criterion, and studying

the defensive countermeasures against deception attacks.
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Figure 4.6: Attack performance with full information.
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Figure 4.7: Impact of the side information on steady-state attack performance.
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Figure 4.8: Attack performance with null information.
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Chapter 5

Optimal Information-Based
Deception Attacks with
Multiple-Step Anomaly
Detectors *

This chapter studies the problem of optimal deception attacks on remote

state estimation, where an interval χ2 detector is deployed to reveal anoma-

lies. The information-based attack policy that can bypass the anomaly detec-

tor and cause the maximum estimation quality degradation is derived. For

both attacks with strict and relaxed stealthiness, the optimal compromised

measurements can be designed with three steps: obtain the minimum mean-

square error estimation of the prediction error, de-correlate the estimate with

historical compromised innovations, and design the compromised innovation

as an optimal linear transformation. All available information for attackers is

fully utilized for performance maximization while the stealthiness constraint

is satisfied precisely to deceive the anomaly detector. The attack effect de-

pends on both the amount of online information and the duration of detection

interval. Contrary to well-studied innovation-based attacks using static linear

*A preliminary version of this chapter has been published as: Jing Zhou, Jun Shang, and
Tongwen Chen, “Worst-case stealthy false-data injection attacks on remote state estima-
tion,” in 47th Annual Conference of the IEEE Industrial Electronics Society (IECON),
Toronto, Oct. 2021. A full version entitled “Optimal deception attacks on remote state
estimators equipped with interval anomaly detectors” has been submitted to Automatica
for publication. (Provisionally accepted as a regular paper)

86



combinations, the information-based deception policy is shown to be gener-

ated by a linear time-varying system, whose coefficients can be completely

determined offline. The optimality of the proposed attack is verified with

numerical examples and comparative studies.

This chapter is organized as follows. Section 5.1 describes the system

model and formulates the deception attack problem. Section 5.2 focuses on

optimal attacks with strict stealthiness. Section 5.3 studies optimal attacks

with relaxed stealthiness. Section 5.4 uses numerical examples to verify the

theoretical results. Finally, Section 5.5 concludes this paper.

𝑦𝑦𝑘𝑘

�𝑦𝑦𝑘𝑘

�𝑦𝑦𝑘𝑘

𝑥𝑥𝑘𝑘 Wireless Channel
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�𝑥𝑥𝑘𝑘

Attack?
AttackerSensor II

Sensor IProcess Remote Estimator

Interval 𝜒𝜒2 Detector

Figure 5.1: Deception attacks on remote state estimation with a multiple-step
χ2 detector.

5.1 Problem Formulation

The system architecture for remote state estimation and deception attacks

is illustrated in Fig. 5.1.

5.1.1 Process Model

The discrete linear time-invariant process is given by

xk+1 = Axk + wk, (5.1)

yk = Cxk + vk, (5.2)

where k ∈ N is the time index; xk ∈ Rn denotes the system state, yk ∈ Rm

is the measurement of sensor I; wk ∈ Rn and vk ∈ Rm are i.i.d. Gaussian

noises with covariance Q ∈ Sn
+ and R ∈ Sm

++, respectively. The initial state

x0 ∈ Rn is zero-mean Gaussian with covariance Π0 ∈ Sn
+, independent of wk
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and vk, ∀k ∈ N. Assume m ≤ n, the pair (A,
√
Q) is stabilizable and (A,C) is

detectable.

5.1.2 Remote Estimator

At nominal conditions, the measurement of sensor I is sent to the remote

end sequentially through a wireless channel. A standard Kalman filter without

packet loss and delays is adopted to estimate system states [3]:

xk|k−1 = Axk−1|k−1, (5.3a)

xk|k = xk|k−1 +Kkzk, (5.3b)

zk = yk − Cxk|k−1, (5.3c)

Kk = P−
k CT(CP−

k CT +R)−1, (5.3d)

Pk|k−1 = APk−1|k−1A
T +Q, (5.3e)

Pk|k = (In −KkC)Pk|k−1, (5.3f)

where xk|k−1 and xk|k denote the a priori and a posteriori minimum mean-

square error (MMSE) state estimates, respectively. Pk|k−1 and Pk|k are the

corresponding estimation error covariances. It is known that the Kalman

filter converges from any initial condition. In steady state, Pk|k−1 is given by

the unique solution of the Riccati equation:

P̄ = h[g[C,R](P̄ )], (5.4)

and the nominal innovation zk ∈ Rm is zero-mean i.i.d. Gaussian with covari-

ance Σ = CP̄CT +R.

5.1.3 Anomaly Detector

To reveal potential component faults, transmission errors and cyber-attacks,

we assume that a widely-used interval χ2 detector is deployed at the remote

end [22–24, 36]. Let τ ∈ N denote the width of the sliding window (detec-

tion interval). At each sampling instant, the anomaly detector evaluates the
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following detection function

gk(zk−τ+1, · · · , zk) =
k∑

i=k−τ+1

zTi Σ
−1zi, (5.5)

which has a χ2 distribution with mτ degrees of freedom. A representative

anomaly detector with τ = 3 is illustrated in Fig. 5.2. With a given acceptable

false alarm rate (FAR) α ∈ [0, 1] at nominal conditions, the threshold can be

determined by the following equation:

γ(
mτ

2
,
Jth
2
) = (1− α)Γ(

mτ

2
), (5.6)

where Γ(·) and γ(·) denote the gamma function and the lower incomplete

gamma function, respectively. If gk(·) ≥ Jth, an alarm indicating occurrence

of abnormal events will be raised.

ǁ𝑧ത𝑘𝑧ത𝑘−1𝑧ത𝑘−2 ǁ𝑧ത𝑘+1 ǁ𝑧ത𝑘+2 ǁ𝑧ത𝑘+3𝑧ത𝑘−3

𝑔ത𝑘(∙) 𝑔ത𝑘+2(∙)

𝑔ത𝑘+1(∙)

Figure 5.2: Interval χ2 detector with τ = 3.

5.1.4 Deception Attack

Since yk is transmitted through an unreliable wireless link, a malicious

opponent may implement a spurious transmitter to send falsified data to the

receiver [22]. Assume the attack starts from instant k̄. To investigate the

impact of worst-case deception attacks, we assume that the attacker has the

ability to modify yk to ỹk and also

1. knows all system parameters and xk̄|k̄−1,

2. can eavesdrop on the measurements of sensor I,
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3. can also place an extra sensor (denoted as sensor II in Fig. 5.1) to obtain

some side information of system states:

ŷk = Ĉxk + v̂k,

where v̂k is i.i.d. zero-mean Gaussian with covariance R̂ ∈ Sm̄
++. Owing

to common environmental disturbances, the measurement noises of the

two sensors can be correlated, i.e., E[viv̂Tj ] = δijS with S ∈ Rm×m̄.

At the kth sampling instant, the information available to the attacker is de-

noted by the set

Ik = Ik−1 ∪ {yk, ŷk}, Ik̄−1 = ∅.

Note that Ik defines a general information set that covers different attack sce-

narios. If owing to some defensive countermeasures, no online measurements

can be obtained, then Ik = ∅. If only the original measurement can be in-

tercepted, then Ik = Ik−1 ∪ {yk}. If only the side information is available,

then Ik = Ik−1 ∪ {ŷk}. All these cases will be studied in a unified framework

in this paper. Additionally, the assumption for knowing xk̄|k̄−1 is standard in

existing work on innovation-based linear attacks if the transmitted data is the

raw measurement, i.e., sensor I is not a smart sensor [23, 24]. In this case,

xk̄|k̄−1 is indispensable to infer the nominal innovation.

Based on Ik, the attacker sends the faked measurement ỹk to the remote

end to degrade the estimation quality. Let x̃k|k−1 and x̃k|k denote the a priori

and a posteriori state estimates under deception attacks, respectively. P̃k|k−1

and P̃k|k are the corresponding error covariances:

P̃k|k−1 = E[(xk − x̃k|k−1)(xk − x̃k|k−1)
T], (5.7a)

P̃k|k = E[(xk − x̃k|k)(xk − x̃k|k)
T]. (5.7b)

The attack performance is evaluated by Tr(P̃k|k).

5.1.5 Problem of Interest

Owing to the existence of an interval χ2 detector, the attacker should

design the falsified data ỹk precisely to remain stealthy. In this paper, we
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study the optimal information-based attack policy

ỹk = πk(Ik), (5.8)

which can maximize Tr(P̃k|k) step by step while satisfying the following stealth-

iness constraints:

DKL(z̃k∥zk) ≤ δ, (5.9a)

E[z̃kz̃Ti ] = 0m, ∀i ∈ Jk − τ + 1, k − 1K, (5.9b)

where z̃k is the compromised innovation, πk(·) is a general attack strategy

based on all available information, DKL(·) denotes the KL divergence�, and

δ ∈ R+ is the stealthiness level. Since z̃k = ỹk − Cx̃k|k−1 where x̃k|k−1 will be

given by (5.12), designing z̃k is equivalent to designing ỹk [23]. Hereinafter,

we use ỹk = πk(Ik) and z̃k = πk(Ik) interchangeably to represent the general

attack strategy. Without loss of generality, we assume the remote estimator

has entered steady state before k̄− τ +1. To ensure that (5.9b) is a consistent

constraint in the early stage of deception attacks (see Fig. 5.2), we define

z̃k = zk, ∀k ∈ Jk̄ − τ + 1, k̄ − 1K. For clarity, (5.9b) is also called the “interval

uncorrelation” constraint.

Remark 5.1. In (5.8), πk(·) denotes an information-based attack policy. Con-

trary to existing studies on deception attacks on remote state estimation [22–

24, 36, 39, 67, 68, 72, 97], we do not presuppose that the attack is innovation

based or has a linear form.

Remark 5.2. In existing studies, constraint (5.9b) has not been explicitly

addressed. Specifically, in [22–24], and [97], z̃k was a linear function of the

(current) nominal innovation, leading to i.i.d. compromised innovations. This

attack could successfully bypass an interval χ2 detector, but it posed an overly

restrictive constraint on z̃k (τ = ∞). In [68], an interval of historical nominal

�The KL divergence is a well-established metric that measures the statistical distance of
two random variables. DKL(z̃k∥zk) can reflect the influence of deception attacks on the
probability distribution of zk, and thus is a reasonable choice to indicate the stealthiness
level.
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innovations was utilized to design a linear attack, but the resulting compro-

mised innovations were correlated in every two consecutive steps. The corre-

sponding attack could deceive only a single-step χ2 detector (τ = 1).

5.2 Optimal Attacks with Strict Stealthiness

In this section, we let δ = 0 and derive the optimal deception attacks

satisfying (5.9). It is known that z̃k and zk have the same probability distri-

bution with zero KL divergence; thus the alarm rate under deception attacks

is also α. In this sense, the attack is called strictly stealthy. When k ≥ k̄, the

estimator becomes:

x̃k|k−1 = Ax̃k−1|k−1, (5.10)

x̃k|k = x̃k|k−1 +Kz̃k, (5.11)

where the fixed gain is K = P̄CTΣ−1. It follows that

x̃k|k−1 = Ax̃k−1|k−2 + AKz̃k−1. (5.12)

Since the estimator is not altered before k̄, the initial condition is x̃k̄|k̄−1 =

xk̄|k̄−1. According to (5.12), x̃k|k−1 is determined by all compromised innova-

tions in the interval Jk̄, k − 1K and xk̄|k̄−1, thus it is a known variable at the

kth instant. From (5.10)–(5.11), (5.7) becomes

P̃k|k−1 = AP̃k−1|k−1A
T +Q, (5.13a)

P̃k|k = P̃k|k−1 +KE[z̃kz̃Tk ]KT −KE[z̃kẽTk|k−1]− E[ẽk|k−1z̃
T
k ]K

T, (5.13b)

where ẽk|k−1 = xk− x̃k|k−1 denotes the prediction error with deception attacks.

Note that P̃k−1|k−1 is a constant at the kth instant. According to (5.13b), the

design of z̃k can be formulated as

P5.1 : min
z̃k=πk(Ik)

Tr{KE[z̃kẽTk|k−1]}

s.t. z̃k ∼ N (0m×1,Σ) and (5.9b).

Next we consider a special type of deception attacks and find the optimal

solution to P5.1.
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5.2.1 MMSE Estimation of Prediction Errors

Define the variables and matrices:

ȳk =

[
yk
ŷk

]
, v̄k =

[
vk
v̂k

]
, C̄ =

[
C

Ĉ

]
, R̄ =

[
R S

ST R̂

]
.

The online measurement becomes ȳk = C̄xk+ v̄k. For plant (5.1), the attacker

uses the following Kalman filter to obtain an optimal state estimation:

ᾱk = Aαk−1, (5.14a)

αk = ᾱk + K̄k(ȳk − C̄ᾱk), (5.14b)

K̄k = P̄ e
k C̄

T(C̄P̄ e
k C̄

T + R̄)−1, (5.14c)

P̄ e
k = AP e

k−1A
T +Q, (5.14d)

P e
k = (In − K̄kC̄)P̄ e

k , (5.14e)

where ᾱk and αk denote the a priori and a posteriori MMSE state estimates,

respectively. P̄ e
k and P e

k are the corresponding error covariances. Since the

attacker does not have any online information but knows xk̄|k̄−1 before instant

k̄, the initial state of the above Kalman filter is ᾱk̄ = xk̄|k̄−1, P̄
e
k = P̄ . Recall

that ẽk|k−1 = xk−x̃k|k−1 and x̃k|k−1 is a constant at the kth instant; the MMSE

estimate for ẽk|k−1 is therefore given by

βk = E[ẽk|k−1|Ik] = αk − x̃k|k−1. (5.15)

Denote P β
k = E[βkβ

T
k ]. Since the MMSE estimate is orthogonal to the estima-

tion error [3], we have

P β
k = E[ẽk|k−1ẽ

T
k|k−1]− E[(ẽk|k−1 − βk)(ẽk|k−1 − βk)

T]

= E[ẽk|k−1ẽ
T
k|k−1]− E[(xk − αk)(xk − αk)

T]

= P̃k|k−1 − P e
k . (5.16)

Denote êk = KTẽk|k−1 ∈ Rm; the MMSE estimate of êk and its covariance are

given by

ϕk = E[êk|Ik] = KTβk, (5.17)

P ϕ
k = E[ϕkϕ

T
k ] = KTP β

k K. (5.18)
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The objective function of P5.1 becomes

Tr{E[z̃k(KTẽk|k−1)
T]} = Tr{E[êkz̃Tk ]}. (5.19)

5.2.2 Linear Attack Based on MMSE Estimates

Let τk = min{τ, k − k̄ + 1}, τ̄k = mτk and define the following vector

θk =
[
ϕT
k , z̃Tk−1, · · · , z̃Tk−τk+1

]T ∈ Rτ̄k . (5.20)

The deception attack based on the MMSE estimate of êk is designed as

z̃k = Hkθk + bk, bk ∼ N (0m×1,Φk), (5.21)

where bk is an i.i.d. Gaussian sequence and independent of all other variables;

Hk ∈ Rm×τ̄k and Φk ∈ Sm
+ are decision variables. We now give the following

proposition to simplify the “interval uncorrelation” constraint.

Proposition 5.1. The attack in (5.21) satisfies E[z̃kzTi ] = 0m, ∀i < k̄ ≤ k.

Proof. See Appendix A.6. ■

Since z̃k is independent of zi, in the early stage of deception attacks (k <

k̄ + τ), we need only to ensure that z̃k is uncorrelated with all compromised

innovations in the interval Jk̄, k − 1K. The “interval uncorrelation” constraint

in (5.9b) becomes

E[z̃kz̃Ti ] = 0m, ∀i ∈ Jk − τk + 1, k − 1K. (5.22)

We now evaluate the objective function in (5.19):

Tr{E[êkz̃Tk ]} = Tr{E[êkθTk ]HT
k }

= Tr
{[

E[êkϕT
k ] E[êkz̃Tk−1] · · · E[êkz̃Tk−τk+1]

]
HT

k

}
= Tr

{[
P ϕ
k Mk,k−1 · · · Mk,k−τk+1

]
HT

k

}
, (5.23)

where E[êkϕT
k ] = E[ϕkϕ

T
k ] = P ϕ

k , and Mi,j is defined as

Mi,j = E[êiz̃Tj ] = E[ϕiz̃
T
j ], i, j ∈ N, i− 1 ≥ j ≥ k̄.
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The first stealthiness constraint in P5.1 becomes

Hk


P ϕ
k Mk,k−1 · · · Mk,k−τk+1

MT
k,k−1 Σ · · · 0m
...

...
. . .

...
MT

k,k−τk+1 0m · · · Σ

HT
k + Φk = Σ. (5.24)

The first “interval uncorrelation” constraint in (5.22) is

E[z̃kz̃Tk−1] = HkE[θkz̃Tk−1] = Hk


E[ϕkz̃

T
k−1]

E[z̃k−1z̃
T
k−1]

...
E[z̃k−τk+1z̃

T
k−1]

 = Hk


Mk,k−1

Σ
...
0m

 = 0m,

where we use the fact that z̃k−i and z̃k−j are uncorrelated ∀i, j ∈ J1, τk −

1K, i ̸= j. Similarly, all “interval uncorrelation” constraints can be written in

a compact form as

Hk


Mk,k−1 · · · Mk,k−τk+1

Σ · · · 0m
...

. . .
...

0m · · · Σ

 = 0m×(τ̄k−m). (5.25)

Define the following matrices

Mk =
[
Mk,k−1 · · · Mk,k−τk+1

]
, (5.26)

Σk = blkdiag {Σ, · · · ,Σ}︸ ︷︷ ︸
τk−1 times

. (5.27)

According to (5.23)–(5.25), the optimization problem becomes

P5.2 : min
Hk∈Rm×τ̄k ,Φk∈Sm+

Tr
{[

P ϕ
k Mk

]
HT

k

}
s.t. Hk

[
P ϕ
k Mk

MT
k Σk

]
HT

k + Φk = Σ,

Hk

[
Mk

Σk

]
= 0m×(τ̄k−m).

Remark 5.3. Without knowing the structure of z̃k, the original problem P5.1 is

not a standard optimization problem. By assuming a linear attack model based

on the MMSE estimate, it is reformulated as a convex optimization problem.

In next section we show how to obtain the constant parameters in P5.2.
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5.2.3 Recursion of Parameters

The recursions of P ϕ
k and Σk are given by (5.18) and (5.27), respectively.

From (5.14a)–(5.14b), we have

αk = Aαk−1 − K̄kC̄ᾱk + K̄kȳk. (5.28)

Combining (5.12), (5.28) and ȳk = C̄xk + v̄k yields

βk = Aβk−1 + K̄kC̄(xk − ᾱk) + K̄kv̄k − AKz̃k−1. (5.29)

Since z̃k−1 is based on the information set Ik−1 while xk − ᾱk is independent

of Ik−1 (by the orthogonality property of MMSE estimation), and v̄k is inde-

pendent of z̃k−1, (5.29) implies that

E[βkz̃
T
k−1] = AE[βk−1z̃

T
k−1]− AKE[z̃k−1z̃

T
k−1]. (5.30)

We now evaluate the second term in (5.30). Because bk is independent of βk,

we have

E[βkz̃
T
k ] = E[βk(Hkθk + bk)

T] = E[βkθ
T
k ]H

T
k

=
[
E[βkϕ

T
k ] E[βkz̃

T
k−1] · · · E[βkz̃

T
k−τk+1]

]
HT

k . (5.31)

Define the matrix

Wi,j = E[βiz̃
T
j ], i, j ∈ N, i− 1 ≥ j ≥ k̄. (5.32)

Since E[βkϕ
T
k ] = E[βkβ

T
k ]K = P β

k K, it follows from (5.30)–(5.31) that

Wk,k−1 = A
[
P β
k−1K Wk−1,k−2 · · · Wk−1,k−τk−1

]
HT

k−1 − AKΣ. (5.33)

Similarly, when i ≥ 2, from (5.29) we have

E[βkz̃
T
k−i] = AE[βk−1z̃

T
k−i],

where again we use the fact that z̃k−i is independent of z̃k−1, v̄k and xk − ᾱk.

It follows that

Wk,k−i = AWk−1,k−i, ∀i ∈ J2, τk − 1K. (5.34)
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Note that Mi,j = KTE[βiz̃
T
j ] = KTWi,j. The parameter Mk in P5.2 is recur-

sively determined by (5.33) and (5.34). At the k̄th sampling instant, θk̄ = ϕk̄,

then Mk̄ and Σk̄ vanish. The optimal coefficient H∗
k̄
can be obtained by

solving P5.2. When k = k̄ + 1, we have

Wk̄+1,k̄ = AP β

k̄
KH∗

k̄ − AKΣ. (5.35)

This is the initial condition of parameter recursion.

5.2.4 Explicit Solution of Attack Coefficients

In this section we derive the explicit optimal solution to P5.2. The main

result is summarized in the following lemma.

Lemma 5.1. The optimal solution to P5.2 is given by

H∗
k = −Σ

1
2 (UkS

−1
k UT

k + ZkŨ
T
k )Σ

1
2

[
Im −MkΣ

−1
k

]
,

Φ∗
k = Σ

1
2 ŨkŨ

T
k Σ

1
2 ,

where Uk and Sk satisfy the economy-size SVD:

Σ
1
2 (P ϕ

k −MkΣ
−1
k MT

k )
1
2 = UkSkV

T
k , Sk ∈ Srk

++;

Ũk is the orthogonal complement of Uk. P ϕ
k ,Mk and Σk are recursively given

by (5.18), (5.26) and (5.27), respectively. If τk = 1, then θk = ϕk, Mk and

Σk vanish�. Zk ∈ Rm×(m−rk) is a matrix of free entries.

Proof. At the kth sampling instant, define ∆k =
[
∆̄k ∆̂k

]
∈ Rm×τ̄k such

that

∆k

[
Mk

Σk

]
= ∆̄kMk + ∆̂kΣk = 0m×(τ̄k−m), (5.36)

then Hk can be parameterized as Hk = H̄k∆k, where H̄k ∈ Rm×m is a matrix

of free entries. Note that the second constraint in P5.2 is eliminated. Since

�This happens in two cases: i), ∀τ ∈ N, τk̄ = 1. ii), if τ = 1, then τk = 1, ∀k ≥ k̄.
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Σk is non-singular when τk ̸= 1, we have ∆̂k = −∆̄kMkΣ
−1
k . The objective

function becomes

Tr
{[

P ϕ
k Mk

]
HT

k

}
= Tr

{[
P ϕ
k Mk

] [∆̄T
k

∆̂T
k

]
H̄T

k

}
=Tr

{
(P ϕ

k ∆̄
T
k +Mk∆̂

T
k )H̄

T
k

}
= Tr

{
(P ϕ

k −MkΣ
−1
k MT

k )∆̄
T
k H̄

T
k

}
. (5.37)

The stealthiness constraint is

Hk

[
P ϕ
k Mk

MT
k Σk

]
HT

k + Φk

=H̄k

[
∆̄k ∆̂k

] [ P ϕ
k Mk

MT
k Σk

] [
∆̄T

k

∆̂T
k

]
H̄T

k + Φk

=H̄k∆̄k

[
Im −MkΣ

−1
k

] [ P ϕ
k Mk

MT
k Σk

] [
Im

−Σ−1
k MT

k

]
∆̄T

k H̄
T
k + Φk

=H̄k∆̄k(P
ϕ
k −MkΣ

−1
k MT

k )∆̄
T
k H̄

T
k + Φk = Σ. (5.38)

Define the temporary variables

Ĥk = Σ− 1
2 H̄k∆̄k(P

ϕ
k −MkΣ

−1
k MT

k )
1
2 ,

Ŷk = Σ
1
2 (P ϕ

k −MkΣ
−1
k MT

k )
1
2 , rk = rank(Ŷk),

Φ̄k = Σ− 1
2ΦkΣ

− 1
2 .

According to (5.37)–(5.38), P5.2 becomes

min
Ĥk∈Rm×m,Φ̄k∈Sm+

Tr(ŶkĤ
T
k ) (5.39)

s.t. ĤkĤ
T
k + Φ̄k = Im. (5.40)

Now perform economy-size singular value decomposition (SVD): Ŷk = UkSkV
T
k .

Subsequently, the objective function in (5.39) satisfies

Tr(ŶkĤ
T
k ) = Tr(UkSkV

T
k ĤT

k ) = Tr(SkV
T
k ĤT

k Uk) =

rk∑
i=1

S
[i,i]
k H̃

[i,i]
k , (5.41)

where H̃k = V T
k ĤT

k Uk ∈ Rrk×rk and X [i,j] denotes the (i, j)th entry of X. It is

clear that H̃kH̃
T
k ⪯ Irk , leading to H

[i,i]
k ∈ [−1, 1], ∀i ∈ J1, rkK. It follows from

(5.41) that

Tr(ŶkĤ
T
k ) ≥ −

rk∑
i=1

S
[i,i]
k = −Tr(Sk), (5.42)
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where the equality is attained only when H̃∗
k = V T

k ĤT
k Uk = −Irk . Solving this

matrix equation, we have

Ĥ∗
k = −UkV

T
k + ŨkXk + YkṼ

T
k , (5.43)

where Xk ∈ R(m−rk)×m and Yk ∈ Rm×(m−rk) are matrices of free entries; Ũk

and Ṽk are orthogonal complements of Uk and Vk, respectively. Note that we

have obtained the optimal solution to (5.39). The next step is to derive H∗
k

from Ĥ∗
k . According to the definitions of Ĥk and Ŷk, we have

Ŷ T
k Σ− 1

2 (H̄∗
k∆̄k)

TΣ− 1
2 = (Ĥ∗

k)
T.

The matrix equation yields

Σ− 1
2 (H̄∗

k∆̄k)
TΣ− 1

2 = (Ŷ T
k )+(Ĥ∗

k)
T + [Im − (Ŷ T

k )+Ŷ T
k ]Z̄k,

where Z̄ ∈ Rm×m is a free parameter. Substituting (Ŷ T
k )+ = UkS

−1
k V T

k and

(5.43) into the above equation, we obtain

H̄∗
k∆̄k = −Σ

1
2 (UkS

−1
k UT

k − ŨkXkVkS
−1
k UT

k − Z̄T
k ŨkŨ

T
k )Σ

1
2 . (5.44)

Note that ŶkŶ
T
k = UkS

2
kU

T
k . The stealthiness constraint in (5.38) becomes

H̄∗
k∆̄kΣ

− 1
2 ŶkŶ

T
k Σ− 1

2 (H̄∗
k∆̄k)

T + Φ∗
k

=(H̄∗
k∆̄kΣ

− 1
2UkSk)(H̄

∗
k∆̄kΣ

− 1
2UkSk)

T + Φ∗
k

=Σ
1
2 (Uk − ŨkXkVk)(Uk − ŨkXkVk)

TΣ
1
2 + Φ∗

k = Σ.

Since Φ∗
k ∈ Sm

+ , the following inequality holds:[
Uk Ũk

] [ Irk −V T
k XT

k

−XkVk XkVkV
T
k XT

k

] [
UT
k

ŨT
k

]
⪯ Im, (5.45)

which directly leads to XkVk = 0(m−rk)×rk . Then (5.44) reduces to

H̄∗
k∆̄k = −Σ

1
2 (UkS

−1
k UT

k + ZkŨ
T
k )Σ

1
2 , (5.46)

where the free parameter is re-defined as Zk = −Z̄T
k Ũk. From (5.38), the

covariance of bk is given by Φ∗
k = Σ

1
2 ŨkŨ

T
k Σ

1
2 . Recall that

H∗
k = H̄∗

k∆k = H̄∗
k∆̄k

[
Im −MkΣ

−1
k

]
. (5.47)

Substituting (5.46) into the above equation yields H∗
k . ■
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Remark 5.4. In (5.36), ∆k is defined to eliminate the “interval uncorrela-

tion” constraint. From (5.46)–(5.47), it is not necessary to explicitly calculate

∆k at each sampling instant. The explicit solution of optimal attack coeffi-

cients not only reduces the computational burden, but also serves as a key

ingredient in Theorem 5.1 to establish the optimality of the attack in (5.21).

Since P ϕ
k in (5.18) depends explicitly on P̃k|k−1, which by (5.13) is de-

termined by P̃k−1|k−1, to make the recursion a closed loop, P̃k−1|k−1 should

be evaluated at each sampling step. From the definition of êk, we have

ẽk|k−1 = (KT)+êk + [In − (KT)+KT]ϵk, where ϵk ∈ Rn is an arbitrary vec-

tor. It follows that

E[ẽk|k−1z̃
T
k ]K

T = (KT)+E[êkz̃Tk ]KT + [In − (KT)+KT]E[ϵkz̃Tk ]KT. (5.48)

The second term has zero trace, thus it does not affect the attack perfor-

mance. For simplicity, one can choose ϵk = 0n×1, leading to E[ẽk|k−1z̃
T
k ]K

T =

(KT)+E[êkz̃Tk ]KT. Then (5.13b) becomes

P̃k|k = P̃k|k−1 +KΣKT −KH∗
k

[
P ϕ
k Mk

]T
K+

−(KT)+
[
P ϕ
k Mk

]
(H∗

k)
TKT. (5.49)

Remark 5.5. We see from the objective function of P5.1 that if rank(K) < m,

the attacker can always design a part of z̃k that lies in Ker(K). This com-

ponent does not affect the attack performance but will impact the stealthiness

constraint. The definition of êk eliminates this phenomenon; but it should be

pointed out that the technique is valid only when we consider the “greedy” at-

tack policy. That is, the attack only maximizes Tr(P̃k|k) provided that P̃k−1|k−1

is given. In this setting we can design ϵk = 0n×1 because the choice of ϵk

has no impact on Tr(P̃k|k). Otherwise, if an interval attack performance is

considered [38], different values of ϵk lead to the same Tr{E[ẽk|k−1z̃
T
k ]K

T} but

different E[ẽk|k−1z̃
T
k ]K

T, which, by the recursion in (5.13), will affect the at-

tack performance in subsequent steps; thus the influence of Ker(K) cannot be

ignored.
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5.2.5 Optimal Attack Policy

In the above analysis, an optimal linear attack based on the MMSE esti-

mate of êk is derived. In this section, we prove that this attack strategy is

indeed the optimal one among all feasible policies satisfying the stealthiness

constraints. The following theorem summarizes the main results in this paper.

Theorem 5.1. The optimal deception attack policy with strict stealthiness is

given by

ỹ∗k = Cx̃k|k−1 +H∗
kθk + bk, bk ∼ N (0m×1,Φ

∗
k), (5.50)

where x̃k|k−1 and θk are given by (5.12) and (5.20), respectively, and H∗
k and

Φ∗
k are given in Lemma 5.1.

Proof. The optimal compromised innovation from Theorem 5.1 is z̃∗k = H∗
kθk+

bk. bk is only a compensation noise to ensure stealthiness; thus it has no im-

pact on the objective function of P5.1. Since Φ∗
k is a constant, one can verify

that ẑ∗k = H∗
kθk is the optimal linear attack based on MMSE estimate that is

derived from the following optimization problem (similar to P5.1):

P5.3 : min
z̃k=πk(Ik)

Tr{E[z̃kêTk ]}

s.t. z̃k ∼ N (0m×1,Σ− Φ∗
k) and (5.22).

Assume ẑk = πk(Ik) is an arbitrary attack policy satisfying the above con-

straints. Define the following matrices associated with the objective functions

of ẑk and ẑ∗k:

F̂k = E[ẑkêTk ], F̂∗
k = E[ẑ∗k êTk ].

Let Πk = −H̄k∆̄k. From (5.47), we have

ẑ∗k = H∗
kθk = −Πk

[
Im −MkΣ

−1
k

]
θk = −Πkθ̄k, (5.51)

where θ̄k ∈ Rm is given by

θ̄k = ϕk −MkΣ
−1
k

[
z̃Tk−1, · · · , z̃Tk−τk+1

]T
. (5.52)
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Define Izk = {z̃k−1, · · · , z̃k−τk+1}. For brevity, the set that contains all infor-

mation in Ik and excludes all information in Izk is denoted as Iy\zk . Note that

ϕk = E[êk|Ik]. Since θk is jointly Gaussian, (5.52) can be written as:

θ̄k = E[êk|Iy\zk ]. (5.53)

At the kth sampling instant, Πk is a constant; then ẑ∗k is the MMSE estimate of

−Πkêk conditioned on Iy\zk . To satisfy the “interval uncorrelation” constraint,

ẑk must also be designed based on Iy\zk . The following matrix inequality holds:

E[(−Πkêk − ẑ∗k)(−Πkêk − ẑ∗k)
T] ⪯ E[(−Πkêk − ẑk)(−Πkêk − ẑk)

T]. (5.54)

Expanding the inequality and canceling identical terms, we have

Πk(F̂∗
k − F̂k)

T + (F̂∗
k − F̂k)Π

T
k ⪯ 0. (5.55)

In (5.46), Zk is a parameter that can be designed freely. Let Zk = λŨk, where

λ > 0; then

Πk = Σ
1
2 (UkS

−1
k UT

k + λŨkŨ
T
k )Σ

1
2

= Σ
1
2

[
Uk Ũk

] [ S−1
k 0rk×(m−rk)

0(m−rk)×rk λIm−rk

] [
UT
k

ŨT
k

]
Σ

1
2 ≻ 0. (5.56)

By Lyapunov stability theory and (5.55)–(5.56), all eigenvalues of F̂∗
k − F̂k

have non-positive real parts. It follows that

Tr(F̂∗
k − F̂k) =

m∑
i=1

ℜλi
(F̂∗

k − F̂k) ≤ 0. (5.57)

The inequality implies that the objective value of ẑ∗k for P5.3 is no larger than

that of ẑk. Since ẑk is an arbitrary attack policy by assumption, the above

analysis proves the optimality of ẑ∗k. ■

Remark 5.6. There exist multiple optimal attacks owing to the freedom to

design Zk. All of them have the same attack performance. If P ϕ
k −MkΣ

−1
k MT

k

is non-singular, i.e., rk = m, Zk and Ũk vanish; then the optimal compromised

innovation is uniquely given by z̃∗k = H∗
kθk. If rk < m, the simplest design
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Algorithm 5.1 Design of optimal attacks in Theorem 5.1

1: Input: Online measurements yk, ŷk
2: Output: Optimal compromised measurement ỹ∗k
3: Initialize ᾱk̄ = x̂−

k̄
, x̃−

k̄
= x̂−

k̄
, P̄ e

k̄
= P̄ , P̃k̄|k̄−1 = P̄ .

4: for k = k̄ : ∞ do
5: Set τk = min{τ, k − k̄ + 1}, τ̄k = mτk.
6: Run the filter in (5.14) to obtain αk, P

e
k .

7: Calculate ϕk, P
ϕ
k with (5.17)–(5.18).

8: if τk = 1 then
9: Set θk = ϕk, Ŷk = Σ

1
2 (P ϕ

k )
1
2 .

10: else
11: Set θk as (5.20), Ŷk = Σ

1
2 (P ϕ

k −MkΣ
−1
k MT

k )
1
2 .

12: end if
13: Do SVD: Ŷk = UkSkV

T
k , design Ũk,Zk.

14: Design H∗
k , Φ

∗
k, z̃

∗
k, ỹ

∗
k with Theorem 5.1.

15: Evaluate P̃k with (5.49).
16: if τk ̸= 1 then
17: Update Wk+1,k with (5.33).
18: for i = 2 : τk − 1 do
19: Update Wk,k−i with (5.34).
20: end for
21: end if
22: Calculate Mk+1, Σk+1 with (5.26)–(5.27).
23: end for
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is Zk = 0m×(m−rk), [Uk Ũk] = Ûk where Uk ∈ Rm×rk and Ŷk = ÛkŜkV̂
T
k is

the full-size SVD. The design of the optimal attack policy is summarized in

Algorithm 5.1.

Remark 5.7. From Theorem 5.1, the optimal attack policy can be derived

with three steps. (1) Obtain the MMSE estimate of êk based on Ik, denoted

by ϕk; (2) de-correlate ϕk with {z̃∗k−1, · · · , z̃∗k−τk+1} to obtain θ̄k; (3) design

z̃∗k as a linear transformation of θ̄k added by a compensatory Gaussian noise.

The online measurement is utilized only in step 1. This separation principle

allows for handling different information scenarios in a unified framework.

The “interval uncorrealtion” constraint is tackled in step 2, which provides

the freedom for attackers to deceive anomaly detectors with different width.

The worst-case estimation performance degradation is determined by both the

amount of online information and the width of detection interval.

The optimal attack has made full utilization of online data {ȳk̄, ..., ȳk} since

the state estimation in (5.14) is based on Ik. In practical cases, the attacker

needs to design ỹ∗k firstly, then replace the nominal data with the compromised

one. This process can induce transmission delays and may cause the attack

being notified by the remote estimator. One solution to tackle the issue is

to adopt a one-step ahead predictor instead of (5.14) for state estimation.

Then ỹ∗k is based on the information set {ȳk̄, ..., ȳk−1}. The design procedure

is similar to Theorem 5.1. It is clear that this policy leads to less performance

degradation, but has lower level requirement on real-time calculation.

5.2.6 Dynamic Linear Attack Model

In this section, we show that the optimal attack policy in Theorem 5.1

is the output of a dynamic linear system, the model of which is given in the

following theorem.

Theorem 5.2. The optimal compromised measurement is generated by the
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LTV system:

ηk = Aη
k−1ηk−1 +Bu

kuk +By
k ȳk, (5.58)

ỹ∗k = Cη
kηk +Du

kuk + bk, bk ∼ N (0m×1,Φ
∗
k), (5.59)

with the initial condition ηk̄ = [αT
k̄
, βT

k̄
]T and coefficient matrices:

Aη
k−1 =

[
A− K̄kC̄A 0n
−K̄kC̄A A

]
, Bu

k =

[
0n×(τ̄k−m)

−AKLk

]
,

By
k =

[
K̄k

K̄k

]
, Cη

k =
[
C Hϕ

kK
T − C

]
, Du

k = Hz
k ,

where Hϕ
k ∈ Rm×m, Hz

k and Lk are given by

H∗
k =

[
Hϕ

k Hz
k

]
, Lk =

[
Im 0m×(τ̄k−2m)

]
.

The control input is uk = [(z̃∗k−1)
T, · · · , (z̃∗k−τk+1)

T]T.

Proof. From (5.14a)–(5.14b), we have

αk = (In − K̄kC̄)Aαk−1 + K̄kȳk. (5.60)

Combining (5.60) and (5.12) yields

αk − x̃k|k−1 = A(αk−1 − x̃k−1|k−2)− K̄kC̄Aαk−1

−AKz̃∗k−1 + K̄kȳk.

Since z̃∗k−1 = Lkuk, it follows that

βk = Aβk−1 − K̄kC̄Aαk−1 − AKLkuk + K̄kȳk. (5.61)

Define the state vector ηk = [αT
k , β

T
k ]

T. From (5.20), (5.60)–(5.61) and the

facts that ỹ∗k = z̃∗k + Cx̃k|k−1, z̃
∗
k = H∗

kθk + bk, and x̃k|k−1 = αk − βk, it is easy

to verify that the above conclusion holds. ■

Remark 5.8. All the involved matrices of the LTV system are independent

of measurement data and thus can be determined offline with Algorithm 5.1.

In practical cases, to reduce the computational burden, the attacker can store
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the parameters offline and generate the compromised measurement online with

(5.58)–(5.59). Note that if τk = 1, Bu
k , D

u
k and uk vanish; then the system is

driven only by the online measurement ȳk. Theorem 5.2 also indicates the dif-

ference of the information-based attack from the innovation-based one, where

a static linear model is adopted [22, 39, 68, 69, 97].

The filter in (5.14) will reduce to a fixed-gain estimator when k tends to

infinity; then Aη
k and By

k converge to constant matrices. If τ ̸= ∞, τ̄k and

Lk will become constants when k ≥ k̄ + τ − 1; then Bu
k is a constant. (5.58)

reduces to a linear time-invariant system.

5.2.7 Some Special Cases

From the separation principle in Remark 5.7, the attack performance de-

pends on the length of the detection interval and estimation quality for ẽk|k−1.

In this section, we discuss some special cases of Ik.

Theorem 5.3. If Ik = Ik−1 ∪{yk}, an optimal attack policy at the early stage

of deception attacks is given by z̃∗k = −zk, ∀k ∈ Jk̄, k̄ + τ − 1K.

Proof. We prove by induction. In the case that only the measurement of

sensor I is available, we have ȳk = yk, C̄ = C, R̄ = R. The Kalman filter in

(5.14) is the same as the one in (5.3). Since P̄ e
k̄
= P̄ , the filter is in steady

state; then K̄k = K,P e
k = (In −KC)P̄ , ∀k ≥ k̄. It follows from (5.14) that

αk = Aαk−1 +Kzk. (5.62)

Combining (5.62) and (5.12) yields

βk = Aβk−1 +Kzk − AKz̃k−1

= Ak−k̄βk̄ −
k−1∑
i=k̄

Ak−iKz̃i +
k∑

i=k̄+1

Ak−iKzi. (5.63)

When the attack starts, we have

βk̄ = αk̄ − x̃k̄|k̄−1 = xk̄|k̄ − xk̄|k̄−1 = Kzk̄. (5.64)
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Let k̄ < k̂ < k̄ + τ and assume that

z̃∗k = −zk, ∀k ∈ Jk̄, k̂ − 1K. (5.65)

From (5.63)–(5.64) we have

βk̂ = Ak̂−k̄Kzk̄ +
k̂−1∑
i=k̄

Ak̂−iKzi +
k̂−1∑

i=k̄+1

Ak̂−iKzi +Kzk̂. (5.66)

Recall that ϕk̂ = KTβk̂. To satisfy the “interval uncorrelation” constraint,

ϕk̂ should be made uncorrelated with all historical compromised innovations

in the interval Jk̄, k̂ − 1K to obtain θ̄k̂ (see the proof of Theorem 5.1 and the

separation principle in Remark 5.7). According to (5.65)–(5.66), the statement

directly leads to θ̄k̂ = KTKzk̂. Then z̃k̂ is designed as

z̃k̂ = −Πk̂K
TKzk̂ + bk̂, bk̂ ∼ N (0m×1,Φk̂). (5.67)

Since E[θ̄k̂θ̄Tk̂ ] = P ϕ

k̂
−Mk̂Σ

−1

k̂
MT

k̂
= KTKΣKTK, from Theorem 5.1, we have

Πk̂ = −H̄k̂∆̄k̂ = Σ
1
2 (Uk̂S

−1

k̂
UT
k̂
+ Zk̂Ũ

T
k̂
)Σ

1
2 , (5.68)

where Σ
1
2 (KTKΣKTK)

1
2 = Uk̂Sk̂V

T
k̂
. It follows that

Σ
1
2KTKΣ

1
2 = Uk̂Sk̂U

T
k̂
. (5.69)

According to (5.68)–(5.69), we have

−Πk̂K
TK = −Πk̂Σ

− 1
2 (Σ

1
2KTKΣ

1
2 )Σ− 1

2

= −Σ
1
2Uk̂U

T
k̂
Σ− 1

2 . (5.70)

If rank(C) = m, Ũk̂ vanishes; then Φk̂ = 0m, (5.70) implies −Πk̂K
TK = −Im;

hence (5.67) leads to the unique optimal attack z̃∗
k̂
= −zk̂. If rank(C) < m,

we choose

bk̂ = −Σ
1
2 Ũk̂Ũ

T
k̂
Σ− 1

2 zk̂.

With (5.70), we see that bk̂ is independent of −Πk̂K
TKzk̂ and thus is a legit-

imate choice. It follows from (5.67) that

z̃∗
k̂
= −Σ

1
2Uk̂U

T
k̂
Σ− 1

2 zk̂ + bk̂ = −zk̂. (5.71)
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The above analysis shows that if (5.65) holds, then −zk̂ is an optimal

attack at instant k̂ (not necessarily unique). Now it is sufficient to prove −zk̄

is an optimal attack at instant k̄. Since ϕk̄ = KTβk̄ = KTKzk̄ and

P ϕ

k̄
= KTP β

k̄
K = KT(P̃−

k̄
− P e

k̄ )K = KTKCPK.

From Theorem 5.1, the optimal attack is given by z̃k̄ = H∗
k̄
ϕk̄ + bk̄, with the

coefficients

H∗
k̄ = −Σ

1
2 (Uk̄S

−1
k̄

UT
k̄ + Zk̄Ũ

T
k̄ )Σ

1
2 ,

where Σ
1
2 (KTKCPK)

1
2 = Uk̄Sk̄V

T
k̄
. Note that CP = ΣKT. Following the

same arguments as in (5.67)–(5.71), one can verify that z̃∗
k̄
= −zk̄ is indeed an

optimal attack. This completes the proof. ■

Remark 5.9. If the attacker can only eavesdrop on the original measurement

and the compromised innovation is required to be white Gaussian (the width

of the anomaly detector is τ = ∞), our results reduce to [22], i.e., flipping the

sign of the current nominal innovation is the optimal attack policy. Note that

if rank(C) = m, z̃∗k = −zk is the unique optimal attack, otherwise there exist

multiple optimal solutions.

Theorem 5.4. If Ik = ∅, the optimal attack policy {z̃∗k}, k ∈ Jk̄, k̄ + τ − 1K is

a white Gaussian sequence.

Proof. If the attacker cannot gain any online information, the filter in (5.14)

becomes

αk = Aαk−1, P e
k = AP e

k−1A
T +Q,

with the initial condition αk̄ = xk̄|k̄−1, P
e
k̄
= P̄ . Following the similar ar-

guments as the proof of Theorem 5.3, one can verify that the conclusion

holds. ■

Remark 5.10. If Ik = ∅, the attacker can simply generate a white Gaussian

noise in the early stage of deception attacks to design z̃k. When k ≥ k̄ +

108



τ , the information contained in {z̃∗
k̄
, · · · , z̃∗k−τ} can be utilized to design z̃∗k,

making {z̃∗k} no longer white. This is the reason that the optimal attack policy

in Theorem 5.1 outperforms the intuitive one that z̃k is designed as a white

Gaussian noise in the whole time horizon.

5.3 Optimal Attacks with Relaxed Stealthi-

ness

In this section, we set δ > 0 and study the optimal deception attacks with

relaxed stealthiness. According to (5.13b), the problem is formulated as

P5.4 : min
z̃k=πk(Ik)

Tr{−KE[z̃kz̃Tk ]KT}+ 2Tr{E[êkz̃Tk ]}

s.t. DKL(z̃k∥zk) ≤ δ and (5.22).

The optimal attack can also be obtained with the separation principle in

Remark 5.7. In this scenario, the linear transformation coefficient in the third

step is derived by numerically solving an optimization problem. The main

result is given in Theorem 5.5.

Theorem 5.5. The optimal deception attack policy with relaxed stealthiness

is given by

ỹ∗k = Cx̃k|k−1 +H∗
kθk + bk, bk ∼ N (0m×1,Φ

∗
k), (5.72)

where H∗
k and Φ∗

k are obtained by solving

min
Σ̃k,Hk,Φk

Tr(−KΣ̃kK
T) + 2Tr

{[
P ϕ
k Mk

]
HT

k

}
s.t. Tr(Σ−1Σ̃k) + ln

|Σ|
|Σ̃k|

−m− 2δ ≤ 0,

Hk

[
P ϕ
k Mk

MT
k Σk

]
HT

k + Φk = Σ̃k,

Hk

[
Mk

Σk

]
= 0m×(τ̄k−m),

Φk ⪰ 0.
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P ϕ
k is given by (5.18). Σk and Mk are re-defined as

Mk =
[
Mk,k−1 · · · Mk,k−τk+1

]
,

Σk = blkdiag{Σ̃∗
k−1, · · · , Σ̃∗

k−τk+1},

with Mi,j = KTWi,j. The recursion of Wi,j is given by (5.34) and

Wk,k−1 = A
[
P β
k−1K Wk−1,k−2 · · · Wk−1,k−τk−1

]
H∗T

k−1

−AKΣ̃∗
k−1.

Proof. See Appendix A.7. ■

We see that Theorem 5.1 is a special case of the above result when δ = 0.

In P5.4, z̃k under KL divergence constraint can have an arbitrary probability

distribution. Theorem 5.5 shows that the optimal compromised innovation is

zero-mean Gaussian. The filter under deception attacks still provides unbiased

state estimation. The attack performance is now evaluated by

P̃k|k = P̃k|k−1 +KΣ∗
kK

T −KH∗
k

[
P ϕ
k Mk

]T
K+

−(KT)+
[
P ϕ
k Mk

]
(H∗

k)
TKT. (5.73)

The design of optimal attacks with relaxed stealthiness follows a similar pro-

cedure as Algorithm 5.1. Accordingly, ỹ∗k can also be generated by an LTV

system.

5.4 Examples

Numerical examples are provided in this section to verify the theoretical

results. A stable LTI system is given with the following parameters:

A =

 0.717 −0.043 −0.082
−0.043 0.666 −0.025
−0.082 −0.025 0.718

 , Q = diag


0.6120.435
0.754


C =

 1.326 0.756 2.352
−1.319 0.921 0.395
0.896 1.564 −1.887

 , R = diag


1.0542.026
1.648


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Figure 5.3: Performance evolution of optimal stealthy deception attacks (δ =
0) with different χ2 detectors.

Assume k̄ = 51, the attacker can only eavesdrop on the original measure-

ments (Ik = Ik−1 ∪ {yk}). The performance of optimal deception attacks that

can completely bypass different χ2 detectors is illustrated in Fig. 5.3. It shows

that the worst-case attack impact can be mitigated by increasing the width of

the detection window. τ = 1 and τ = ∞ correspond to the performance limits

of two extreme cases. The simulation also justifies the necessity to implement

multi-step χ2 detectors in practical systems. Compared with a single-step

detector, the multi-step one is not only more robust to disturbances but also

reduces the attack performance by imposing a more strict constraint for at-

tackers. The enlarged figure illustrates the effectiveness of Theorem 5.3, i.e.,

z̃∗k = −zk is the (unique) optimal attack when k < k̄ + τ .

The performance of optimal innovation-based and information-based at-

tacks is illustrated in Fig. 5.4. Both the attacks in Theorem 5.1 (τ = 1) and

[68] using 4 historical nominal innovations can only deceive a single-step χ2

detector. Note that when k ≤ 55, these two attacks have the same perfor-
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Figure 5.4: Performance comparison of innovation-based linear attacks and
information-based attacks.

mance because all information is fully utilized. When k > 55, the latter one

is no longer optimal. Both the attacks in Theorem 5.1 (τ = 2) and [39] can

deceive a 2-step detector. The figure shows that the information-based attack

can cause more estimation quality degradation compared with the innovation-

based ones.

We conduct Monte Carlo simulations for 5,000 times to show the stealthi-

ness property. Assume k̄ = 301, the detection window is of size 2 and Jth = 10,

leading to a theoretical FAR α = 12.47%. Fig. 5.5 indicates that the stealthy

deception attack from Theorem 5.1 with τ = 2 can completely deceive a 2-step

detector. If the attacker mistakenly uses τ = 1 to design the optimal attack,

Fig. 5.6 shows that the attack is no longer strictly stealthy as a higher alarm

rate is induced.

We then use the stable LTI system in [24] to illustrate the impact of side

information (Ik = Ik−1 ∪ {yk, ŷk}). Let k̄ = 31, S = 02 and

A =

0.8 0.6 0
0 0.5 0.3
0 0 0.7

 , C =

[
0 1 0
1 0 1

]
, Ĉ =

[
1 0 1
0 1 0

]
.
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Figure 5.5: The optimal attack in Theorem 5.1 (τ = 2) can completely bypass
a 2-step anomaly detector.
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Figure 5.6: The optimal attack in Theorem 5.1 (τ = 1) cannot deceive a 2-step
anomaly detector.

Fig. 5.7 shows that additional information can always improve the attack

performance. Since the attacks in [24] and [97] were based on the MMSE

estimate of xk but not ẽk|k−1, these policies have not utilized the online infor-

mation properly and thus did not achieve the maximum performance loss. We

also see that the attack performance depends on both the amount of available

information and the width of detectors.

Let δ = 0.1. Fig. 5.8 illustrates the performance of attacks with relaxed

stealthiness. It is clear that the attacker can achieve greater performance

degradation by sacrificing the stealthiness property. The information-based
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Figure 5.7: Attack performance with/without side information.

policy also outperforms the innovation-based one with the same stealthiness

level.

5.5 Conclusions

In this chapter, the problem of deception attacks on remote state esti-

mators equipped with interval anomaly detectors has been solved completely.

The major challenge is how to properly handle the stealthiness constraint such

that the attacker’s behavior is not overly restricted. A separation principle

consisting of three steps is proposed to design the information-based decep-

tion policy. The attack performance depends on both the amount of online

information and the width of the χ2 detector. Contrary to existing studies

that assume innovation-based (static) linear attacks, the information-based

one is shown to be generated by a dynamic LTV system. The result reduces

to optimal innovation-based attacks in some special cases.
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Chapter 6

Optimal Information-Based
Deception Attacks with
Maximum Interval Performance
*

This chapter studies the problem of optimal deception attacks against re-

mote state estimation, where the measurement data is transmitted through an

unreliable wireless channel. A malicious agent is capable of intercepting and

modifying raw data, with the goal to cause the maximum estimation quality

degradation and deceive an interval χ2 detector. Contrary to existing studies

that focused on greedy attack performance, we consider a more general sce-

nario that the attacker aims to maximize the summation of estimation errors

in a fixed interval. It is shown that the information-based optimal attack

is a linear combination of MMSE estimates of all historical prediction errors.

The combination coefficients can be obtained by solving a convex optimization

problem. The effectiveness of the method is verified with numerical examples

and comparative study with existing work.

This chapter is organized as follows. Section 6.1 gives the detailed prob-

lem description. The optimal attack structure and coefficients are derived in

*A preliminary version of this chapter has been submitted for publication as: Jing Zhou, Jun
Shang, and Tongwen Chen, Deception attacks on Kalman filtering with interval estimation
performance loss, 5th IFAC Workshop on Linear Parameter Varying Systems, Montreal,
Sept. 2022. (Accepted)
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Section 6.2. Section 6.3 discusses some special cases when multiple-step χ2

detectors and whiteness detectors are deployed to reveal anomalies. Numerical

examples are given in Section 6.3, followed by conclusions in Section 6.4.

6.1 Problem Formulation

The system architecture is illustrated in Fig. 4.1. In this Chapter, we

consider the same process model, remote state estimator, anomaly detector,

and cyber-attacks as in Chapter 4. The attack impact at each step can be

evaluated by Tr(P̃k|k). The problem of concern is to design an optimal stealthy

attack sequence Ik, such that the compromised innovation {z̃k} satisfies z̃k ∼

N (0m,Σ) and the following performance index in Jk̄, kK is maximized:

J[k̄,k] =
k∑

i=k̄

Tr P̃i|i. (6.1)

Remark 6.1. Compared with maximizing Tr(P̃i|i) directly step by step, the

optimization of J[k̄,k] is a more challenging task. The main difficulty is that

the attack effect at each step will propagate through the evolution of the filter

dynamics. Instead of analyzing the step-wise correlation of z̃k and prediction

error, the attack effects of z̃k in the entire time horizon should be considered

as a whole for interval performance optimization.

6.2 Preliminaries

With presence of deception attacks, the compromised Kalman filter be-

comes

x̃k|k−1 =Ax̃k−1|k−1, (6.2)

x̃k|k =x̃k|k−1 +Kz̃k. (6.3)

The dynamic of the prediction error is given by

ẽk|k−1 = Aẽk−1|k−2 − AKz̃k−1 + wk−1. (6.4)
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From (6.2)–(6.3), we see that x̃k|k−1 is determined by x̃k̄|k̄−1 and z̃i, i ∈ Jk̄, k−

1K; thus it is a known variable at instant k. According to (4.16), the “virtual

measurement” for ẽk|k−1 can be defined as

rk ≜ ȳk − C̄x̃k|k−1 = C̄ẽk|k−1 + v̄k. (6.5)

The attacker adopts the following Kalman filter to obtain an MMSE estimate

for ẽk|k−1:

θ̄k = Aθk−1 − AKz̃k−1, (6.6a)

θk = θ̄k + K̄k(rk − C̄θ̄k), (6.6b)

K̄k = P̄ e
k C̄

T
(
C̄P̄ e

k C̄
T + R̄

)−1
, (6.6c)

P̄ e
k = AP e

k−1A
T +Q, (6.6d)

P e
k =

(
In − K̄kC̄

)
P̄ e
k , (6.6e)

with initial condition θ̄k̄ = 0n, P̄k̄ = P̄ . According to (6.5) and (6.6a)–(6.6b),

we have

θk = (In − K̄kC̄)Aθk−1 − AKz̃k−1

+ K̄kC̄Aẽk−1|k−2 + K̄kC̄wk−1 + K̄kv̄k. (6.7)

Using the orthogonality property of MMSE estimation, we know that the

covariance of θk is given by

P θ
k = E[θkθTk ] = P̃k|k−1 − P e

k . (6.8)

The following lemma establishes the connection between an information-

based constrained optimization problem and MMSE estimation.

Lemma 6.1. Let S ∈ Rn×m, Π ∈ Sn
+, Σ ∈ Sm

++, and X be a random Gaussian

vector X ∼ N (0n,Π). The observed information set for X is denoted as Ix;

then a vector that satisfies Y ∼ N (0m,Σ) and also minimizes Tr{SE[YXT]}

is given by

Y∗ = LxX̂ + bx, bx ∼ N (0m,Φx),
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where X̂ = E[X|Ix] is the MMSE estimate of X , bx is a Gaussian noise, and

the coefficients are given as

Lx = −R+ST,

Φx = Σ− LxPsL
T
x ,

with R = Σ− 1
2 (Σ

1
2PsΣ

1
2 )

1
2Σ− 1

2 , Ps = ST(Π − Pe)S, and Pe the estimation

error covariance:

Pe = E[(X − X̂ )(X − X̂ )T|Ix].

Proof. See Appendix A.8. ■

An example is provided to briefly illustrate the intuition in Lemma 6.1.

Assume x ∼ N (0, 1). z1 and z2 are measurements of x corrupted by Gaussian

noises:

z1 = 2x+ w1, w1 ∼ N (0, 1),

z2 = 3x+ w2, w2 ∼ N (0, 3),

then the random variable that satisfies y ∼ N (0, 4) and also minimizes E[xy]

is given by

y∗ = LxE[x|z1, z2] = −0.5345z1 − 0.2673z2.

In this example we have Φx = 0, indicating that the Gaussian noise is not

needed to satisfy the constraint. Note that Y∗ is not unique when Ps is

singular. Multiple optimal solutions can be obtained by selecting different

free parameters Ẑ and Z̄. All of them achieves the same minimum objective

value. The details on the uniqueness of Y∗ are discussed in the proof of

Lemma 6.1. Specifically, if rank(Ps) = m, we have Lx = R−1ST, Φx = 0m.

The compensatory noise term vanishes.

The optimal deception attack that can completely deceive single-step χ2

detectors and achieve maximum interval performance is given in the next

section.
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6.3 Main Results

We first study the attack performance. Let s = k− k̄+1 denote the length

of attack horizon. Define P̂ = (In−KC)P̄ , Σ̂ = KΣKT+Q and the following

matrices

Yi =
k−i∑
j=0

(AT)jAj, i ∈ Jk̄, kK.

Lemma 6.2. The interval attack performance in (6.1) is evaluated by J[k̄,k] =

−2Ĵ[k̄,k] + Tr(C), where

Ĵ[k̄,k] =
k∑

i=k̄

Tr{YiKE[z̃iẽTi|i−1]} (6.9)

and C is a constant matrix given by

C =
s∑

i=1

i−1∑
j=0

AjΣ̂(AT)j +
s∑

i=1

AiP̂ (AT)i.

Proof. See Appendix A.9. ■

According to Lemma 6.2, we see that maximizing the interval performance

is equivalent to minimizing Ĵ[k̄,k]. The problem of concern is formulated as

P6.1 : min
z̃k=π(Ik)

Ĵ[k̄,k]

s.t. z̃i ∼ N (0m,Σ), ∀i ∈ Jk̄, kK.

6.3.1 Optimal Attack Structure

The information-based attack in P6.1 can have an arbitrary form. In this

section we show that the optimal policy minimizing Ĵ[k̄,k] is a linear transfor-

mation of the MMSE estimate for ẽk|k−1. The main result is summarized in

the following theorem.

Theorem 6.1. The optimal compromised innovation at instant i ∈ Jk̄, kK is

given by

z̃∗i = Liθi + bi, bi ∼ N (0m,Φi), (6.10)
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the coefficient matrices satisfy Li = −R+
i MT

i ,Φi = Σ − LiPiL
T
i where Ri =

Σ− 1
2 (Σ

1
2PiΣ

1
2 )

1
2Σ− 1

2 , Pi = MT
i P

θ
i Mi and

Mi−1 = Yi−1K − ATMiLiAK − ATLT
i MT

i AK,

with initial condition Mk = K.

Proof. Let t ∈ N and satisfy k̄ < t ≤ k. Assume ∀i ∈ Jt, kK, (6.10) holds and

the corresponding optimal cost-to-go function has the form:

Ĵ∗
[i,k] = Tr{MiE[z̃∗i ẽTi|i−1]}+ Ci, (6.11)

where Mi ∈ Rn×m and Ci ∈ R are constant parameters. We first consider

Ĵ[k,k], i.e., the attack performance in the last step. Note that Yk = In; we have

Ĵ[k,k] = Tr{KE[z̃kẽTk|k−1]}.

From Lemma 6.1, the optimal attack at instant k is

z̃∗k = Lkθk + bk, bk ∼ N (0m,Φk),

where Lk = −R+
k K

T,Φk = Σ−LkPkL
T
k ; thus (6.10) and (6.11) hold for i = k

with Mi = K and Ci = 0. We now consider Ĵ[t−1,k] :

Ĵ∗
[t−1,k] = min

z̃t−1,··· ,z̃k
{Ĵ[t,k] + Tr[Yt−1KE(z̃t−1ẽ

T
t−1|t−2)]}

=Ĵ∗
[t,k] +min

z̃t−1

Tr[Yt−1KE(z̃t−1ẽ
T
t−1|t−2)]

=min
z̃t−1

Tr{MtE[z̃∗t ẽTt|t−1] + Yt−1KE[z̃t−1ẽ
T
t−1|t−2]}+ Ct, (6.12)

where the last equality is from the assumption in (6.11). Since z̃∗t = Ltθt + bt

and bt is independent of other variables, it follows from (6.4) and (6.7) that

E[z̃∗t ẽTt|t−1] =E[(Ltθt + bt)(Aẽt−1|t−2 − AKz̃t−1 + wt−1)
T]

=LtE{[(In − K̄tC̄)Aθt−1 − AKz̃t−1 + K̄tC̄Aẽt−1|t−2

+ K̄tC̄wt−1 + K̄tv̄t](Aẽt−1|t−2 − AKz̃t−1 + wt−1)
T}.
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Note that z̃t−1 is designed based on Ik−1 and thus is independent of wt−1, v̄t;

the noises are mutually independent. Using the following equalities

E[θt−1ẽ
T
t−1|t−2] = P θ

t−1, E[ẽt−1|t−2ẽ
T
t−1|t−2] = P̄ e

t−1,

E[(ẽt−1|t−2 − θt−1)ẽ
T
t−1|t−2] = P̄ e

t−1 − P θ
t−1,

E[z̃t−1z̃
T
t−1] = Σ, E[wt−1w

T
t−1] = Q,

E[θt−1z̃
T
t−1] = E[ẽt−1|t−2z̃

T
t−1],

we can verify that

E[z̃∗t ẽTt|t−1] =− LtAKẼ[z̃t−1ẽ
T
t−1|t−2]A

T

− LtAE[ẽt−1|t−2z̃
T
t−1]K

TAT + Ĉt−1,

where Ĉt−1 is independent of z̃t−1 and given by

Ĉt−1 =LtAP
θ
t−1A

T + LtAKΣKTAT + LtK̄tC̄Q

+ LtK̄tC̄A(P̄ e
t−1 − P θ

t−1)A
T.

It follows from (6.12) that

Ĵ∗
[t−1,k] = min

z̃t−1

Tr{Mt−1E[z̃t−1ẽ
T
t−1|t−2]}+ Ct−1,

where

Mt−1 = Yt−1K − ATMtLtAK − ATLT
t MT

t AK,

Ct−1 = Tr(MtĈt−1) + Ct.

According to Lemma 6.1, the optimal attack at instant t− 1 is given by

z̃∗t−1 = Lt−1θt−1 + bt−1, bt−1 ∼ N (0m,Φt−1),

where Lt−1 = −R+
t−1MT

t−1,Φt−1 = Σ − Lt−1Pt−1L
T
t−1. Repeating the above

argument from i = k to k̄ completes the proof. ■

Remark 6.2. In this section, we utilize dynamic programming to show that

the optimal attack at each instant is a linear function of θk added by a Gaus-

sian noise. Though the optimality has been established, it is a challenging
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task to find these transformation matrices and covariances of bi. The main

difficulty lies in that P θ
i is given by (6.8), which is determined by all previous

attack coefficients Lt, t ∈ Jk̄, i− 1K, but the recursion of Mi in Theorem 6.1 is

backward from k to k̄. This leads to a dilemma: in order to find Li, one has

to know Lt, t ∈ Jk̄, i − 1K, but the later ones can only be obtained after Li is

available. Since Li and Φi can not be calculated in a recursive manner, one

has to find the matrices that satisfy these coupled equations simultaneously.

These attack coefficients are not unique if min{rank(Pi), rank(Mi)} < m.

Nevertheless, the most important finding in Theorem 6.1 is that the optimal

attack has a particular structure. In next sections we will show that the attack

coefficients can be obtained by solving a convex optimization problem.

6.3.2 Augmented Vectors of ẽk|k−1 and θk

We firstly define e = ẽk̄|k̄−1 and the following vectors:

E =
[
ẽT
k̄|k̄−1

ẽT
k̄+1|k̄ · · · ẽTk+1|k

]T
∈ Rn(s+1),

Θ =
[
θT
k̄

θT
k̄+1

· · · θTk+1

]T ∈ Rn(s+1),

Z =
[
z̃T
k̄

z̃T
k̄+1

· · · z̃Tk
]T ∈ Rms,

W =
[
wT

k̄
wT

k̄+1
· · · wT

k

]T ∈ Rns,

V =
[
v̄T
k̄

v̄T
k̄+1

· · · v̄Tk+1

]T ∈ R(m+m̄)(s+1).

In the considered attack horizon, all uncertainties in the system come from e,

W and V . Their covariances are respectively given by

Pe = E[eeT] = P̄ ,

Pw = E[WWT] = blkdiag(Q, s),

Pv = E[VVT] = blkdiag(R̄, s+ 1),

From (6.4) we have

ẽk|k−1 = Ak−k̄ẽk̄|k̄−1 −
k−1∑
i=k̄

Ak−iKz̃i +
k−1∑
i=k̄

Ak−1−iwi.
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It then can be verified that the augmented vector E can be written as

E = HZ +GW + Ee, (6.13)

where the constant matrices are given by

H[n,m](i, j) =


0n×m, j ≥ i

−AK, j = i− 1

AH[n,m](i− 1, j), j < i− 1

G[n,n](i, j) =


0n, j ≥ i

In, j = i− 1

AG[n,n](i− 1, j), j < i− 1

E[n,n](i, 1) =

{
In, i = 1

AE[n,n](i− 1, 1), i > 1

Now define Āk = (In − K̄kC̄)A and substitute the solution of (6.4) into

(6.7). When k ≥ k̄ + 2, we have

θk =Ākθk−1 + K̄kC̄Ak−k̄ẽk̄|k̄−1 − AKz̃k−1 + K̄kv̄k

− K̄kC̄
k−2∑
i=k̄

Ak−iKz̃i + K̄kC̄
k−1∑
i=k̄

Ak−1−iwi. (6.14)

From (6.6b), when k = k̄, the initial condition of θk is

θk̄ = θ̄k̄ + K̄k̄(rk̄ − C̄θ̄k̄) = K̄k̄C̄ẽk̄|k̄−1 + K̄k̄v̄k̄,

when k = k̄ + 1, we have

θk̄+1 =Āk̄+1θk̄ − AKz̃k̄ + K̄k̄+1C̄Aẽk̄|k̄−1

+ K̄k̄+1C̄wk̄ + K̄k̄+1v̄k̄+1.

It is clear that the LTV system in (6.14) admits a solution that is a linear

combination of z̃k, wk, v̄k, and ẽk̄|k̄−1. Therefore, Θ can be written in a compact

form:

Θ = H̄Z + ḠW + M̄V + Ēe, (6.15)

where the constant matrices are constructed as follows:
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(i) H̄[n,m](i, j) denotes the transformation matrix from z̃k̄+j−1 to θk̄+i−1.

Since θi is independent of z̃j, ∀j ∈ Ji, kK, we have H̄[n,m](i, j) = 0n×m, ∀j ≥

i. When i = j+1, the linear subsystem where z̃k̄+i−2 serves as the input

in (4.31) is extracted as:

θzk̄+i−1 = Āk̄+i−1θ
z
k̄+i−2 − AKz̃k̄+i−2,

thus H̄[n,m](i, i − 1) = −AK, ∀i ∈ J2, s + 1K. Similarly, when i ≥ j + 2,

from (6.14) we have

θzk̄+i−1 = Āk̄+i−1θ
z
k̄+i−2 − K̄k̄+i−1C̄Ai−jKz̃k̄+j−1.

It follows that

H̄[n,m](i, j) = Āk̄+i−1H̄[n,m](i− 1, j)− K̄k̄+i−1C̄Ai−jK.

(ii) Ḡ[n,n](i, j) represents the transformation matrix form wk̄+j−1 to θk̄+i−1.

Note that (6.14) implies Ḡ[n,n](i, j) = 0n, ∀j ≥ i. When j < i, we have

θwk̄+i−1 = Āk̄+i−1θ
w
k̄+i−2 + K̄k̄+i−1C̄Ai−j−1wk̄+j−1.

Then ∀i ∈ J2, s+ 1K, j ∈ J1, i− 1K, the recursion holds:

Ḡ[n,n](i, j) =Āk̄+i−1Ḡ[n,n](i− 1, j) + K̄k̄+i−1C̄Ai−j−1.

(iii) Similarly, M̄ and Ē can be obtained by

M̄[n,m+m̄](i, j) =


0n×(m+m̄), i < j

K̄k̄+i−1, i = j

Āk̄+i−1M̄[n,m+m̄](i− 1, j), i > j

Ē[n,n](i, 1) =

{
K̄k̄C̄, i = 1

Āk̄+i−1Ē[n,n](i− 1, 1) + K̄k̄+i−1C̄Ai−1, i > 1

Remark 6.3. The augmented vectors E and Θ have been expressed as linear

functions of Z, W, V, and e. The two equations in (6.13) and (6.15) serve

as the basics for the subsequent design of optimal attacks. Note that all these

coefficient matrices are independent of online data and thus can be calculated

offline. In the case that only the original measurement is available (Ii =

Ii−1 ∪ {yi}), we have K̄i = K, Āi = (In − KC)A, ∀i ∈ Jk̄, kK; the recursions

for H,G,E and H̄, Ḡ, M̄ , Ē can be simplified.
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6.3.3 Optimal Attack Policy

We now design the attack coefficients in (6.10). In Theorem 6.1, it has

been proved that the optimal attack z̃i is a linear function of θi. ∀i ∈ Jk̄, kK,

we consider a more general attack model:

z̃i =
i∑

j=k̄

F i
jθj + bi, bi ∼ N (0m,Φi). (6.16)

Define the matrices

F =


F k̄
k̄

0m×n · · · 0m×n

F k̄+1
k̄

F k̄+1
k̄+1

· · · 0m×n

...
...

. . .
...

F k
k̄

F k
k̄+1

· · · F k
k

 , T =
[
Ins 0ns×n

]
,

B =
[
bT
k̄

bT
k̄+1

· · · bTk
]T

, ΦB = E[BBT],

X = blkdiag{Yk̄K,Yk̄+1K, · · · , YkK},

then (6.16) can be written in a compact form as

Z = FTΘ+ B, B ∼ N (0ms,ΦB), (6.17)

the attack performance in (6.9) becomes

Ĵ[k̄,k] = Tr{TTXE[ZET]}. (6.18)

From (6.15) and (6.17), we have

Z = FTH̄Z + FTḠW + FTM̄V + FTĒe+ B. (6.19)

It can be verified that Ims − FTH̄ is invertible. Define the new variable

F̄ = (Ims − FTH̄)−1F, (6.20)

then (6.19) and (6.15) yield

Z =F̄ T ḠW + F̄ TM̄V + F̄ T Ēe+ b, (6.21)

E =(HF̄TḠ+G)W + (HF̄TĒ + E)e+HF̄TM̄V +Hb, (6.22)
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where b = (Ims−FTH̄)−1B denotes the compensatory Gaussian noise. Define

the constant matrices

X̂ = HTTTX,

X̃ = TḠPwG
TTTX + TĒPeE

TTTX,

X̄ = TḠPwḠ
TTT + TĒPeĒ

TTT + TM̄PvM̄
TTT.

From (6.21)–(6.22), the attack performance in (6.18) can be written as

Ĵ[k̄,k] = Tr[(F̄ X̄F̄T + Φ)X̂ + F̄ X̃], (6.23)

where Φ ∈ Sms
+ denote the covariance of b. The covariance of Z is obtained

from (6.21), i.e.,

E[ZZT] = F̄ X̄F̄T + Φ. (6.24)

To satisfy the stealthiness constraint in P6.1, the diagonal blocks of E[ZZT]

should be constants that equal to Σ. Note that F ∈ BL[ms,ns](m,n); from

(6.20) one can check that F̄ ∈ BL[ms,ns](m,n). It poses an additional con-

straint on F̄ .

Define an auxiliary variable S̄ = F̄ X̄F̄T + Φ. Summarizing the above

analysis, the optimal attack policy in (6.17) can be obtained by solving the

following optimization problem:

P6.2 : min
F̄ ,S̄

Tr(S̄X̂ + F̄ X̃)

s.t. F̄[m,n](i, j) = 0m×n, ∀ i ∈ J1, s− 1K, j ∈ Ji+ 1, sK,

S̄[m,m](i, i) = Σ, ∀i ∈ J1, sK,

S̄ − F̄ X̄F̄T ⪰ 0.

Then F ∗ is reconstructed from (6.20), i.e.,

F ∗ = F̄ ∗(Ims + TH̄F̄ ∗)−1, (6.25)

and the covariance of B is

Φ∗
B = (Ims − F ∗TH̄)Φ∗(Ims − F ∗TH̄)T

= (Ims − F ∗TH̄)(S̄∗ − F̄ ∗X̄F̄ ∗T)(Ims − F ∗TH̄)T.
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Remark 6.4. P6.2 has linear objective and equality constraints; the last con-

straint can be reformulated as a linear matrix inequality by applying Schur

complement. Thus the problem is convex and can be solved efficiently. Though

the definition tells that F ∈ BL[ms,ns](m,n), but in numerical examples one

can find that F ∗ in (6.25) is a block diagonal matrix. This in turn verifies

the effectiveness of Theorem 6.1. Another difference from attacks with the

maximum greedy performance is that Φ∗
B is not necessarily block diagonal, in-

dicating that the compensatory Gaussian noise can be mutually correlated.

The estimation error covariances evolve according to

P̃k|k−1 =AP̃k−1|k−1A
T +Q, (6.26)

P̃k|k =P̃k|k−1 +KΣKT −KF k
k P

θ
k − P θ

k (F
k
k )

TKT, (6.27)

with initial condition P̃k̄−1|k̄−1 = (In −KC)P̄ . At each instant, (6.26) is used

in (6.8) to calculate P θ
k , thus closing the loop of iteration (6.27).

6.3.4 General Cases

In P6.1, we assume that a single-step χ2 detector is deployed to reveal

anomalies. In this case, z̃k ∼ N (0m×1,Σ) is the only stealthiness constraint;

the compromised innovation {z̃k} can be correlated; the corresponding attack

cannot completely bypass a multiple-step χ2 detector. To tackle this issue, one

can simply add another constraint to the optimization problem. P6.2 becomes

P6.3 : min
F̄ ,S̄

Tr(S̄X̂ + F̄ X̃)

s.t. F̄[m,n](i, j) = 0m×n, ∀ i ∈ J1, s− 1K, j ∈ Ji+ 1, sK,

S̄[m,m](i, j) = 0m, ∀i ∈ J1, s− 1K, j ∈ Ji+ 1, τiK,

S̄[m,m](i, i) = Σ, ∀i ∈ J1, sK,

S̄ − F̄ X̄F̄T ⪰ 0.

where τi = min{i+ τ − 1, s} and τ ∈ N is the width of χ2 detectors.

The corresponding attack policy leads to a sequence {z̃k} that is uncorre-

lated in a sliding window of size τ ; thus it can completely deceive a τ -step χ2
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detector. Specifically, if the compromised innovation is required to be i.i.d.

white Gaussian (the width of χ2 detector is infinity), the second and third

constraints reduce to

S̄ = blkdiag {Σ, · · · ,Σ}︸ ︷︷ ︸
k−k̄+1 times

.

This attack can completely bypass a whiteness detector. We also see that if

a χ2 detector with larger τ is deployed, there will be more constraints im-

posed on S̄, leading to a greater optimal objective value; thus the worst-case

attack performance can be reduced. This conclusion justifies the advantage

of adopting multiple-step χ2 detectors in practical systems. Compared with

a single-step detector, a multiple-step one is more robust to disturbances and

can also mitigate the attack impact by imposing a more strict stealthiness

constraint.

6.4 Examples

In this section, we use numerical examples to illustrate the effectiveness of

the proposed method. Let

Q =

[
1.2 0
0 6

]
, R =

[
10 0
0 2

]
.

The system parameters A and C are 2×2 matrices that are randomly generated

with Matlab for 10,000 times. Let k̄ = 31 and k = 34; we compare the

estimation performance loss within a 4-step interval.

Fig. 6.1 shows the difference between the interval performance and the

summation of greedy performance in [98]. Both policies have made full uti-

lization of online information; but the one in this work is designed to maximize

J[31,34] directly. Since the performance difference is bounded below by zero,

we claim that for all randomly generated systems, the attack policy in this

chapter causes more severe estimation quality degradation in the considered

horizon. Now consider a stable LTI process:

A =

[
−0.0658 0
0.1972 0.9558

]
, C =

[
2.9405 0.9765
−1.9122 −0.6873

]
.
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Figure 6.1: Difference of interval and greedy performance.

The interval performances with different attack policies are listed in Table 6.1.

In [68], two historical innovations and the current one are utilized to design

a linear attack. It is clear that the proposed attack in this work achieves the

maximum interval performance.

Table 6.1: Attack performance comparison

Attack Policy Tr(P̃31|31 + P̃32|32 + P̃33|33 + P̃34|34)
[22] 229.5806
[68] 324.0134
[98] 342.0293
Theorem 6.1 342.0417

We then simulate the process for 10,000 times with randomly generated

process and measurement noises. The threshold of χ2 detector is set as 6,

leading to a theoretical alarm rate 4.98%. Fig. 6.2 shows that the alarm rate

remains unchanged after the attack occurs, thus verifying the stealthiness

property of the proposed attack.
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Figure 6.2: Theoretical and empirical alarm rates.

6.5 Conclusions

In this chapter, the optimal information-based attack that can maximize

performance degradation of Kalman filters in a fixed interval and also com-

pletely bypass χ2 detectors is studied. The attack is presupposed to be a linear

combination of MMSE estimates of all historical innovations; then the combi-

nation coefficients can be obtained by solving a convex optimization problem.

The proposed method can accommodate more general scenarios that an inter-

val χ2 detector is deployed to reveal anomalies; the worst-case attack impact

is determined by the amount of online information and width of detector. Ad-

ditionally, it can be shown that the optimal compromised measurements can

be generated by an LPV system.
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Chapter 7

Conclusions and Future Work

In this chapter, remarks are provided to conclude this thesis, and then

some potential research directions are pointed out for future work.

7.1 Conclusions

This thesis focuses on the design of optimal cyber-attacks on industrial

CPSs with energy and stealthiness constraints, aiming at revealing vulner-

abilities of CPSs and establishing a basis for the development of defensive

countermeasures. The outcomes of the studies in this thesis are summarized

as follows:

1. We have studied a DoS attack problem against control channels in LQR

systems, which has not been addressed in existing literature. Two com-

mon compensation strategies under DoS attacks are considered. Nec-

essary and sufficient conditions are derived to ensure attack optimality

from initial instants. A more general scenario that feasible attacks are

not required to be consecutive is also briefly discussed.

2. We have proposed a novel linear attack policy based on the combined

information and proved that it always outperforms the strategies using

only partial information, which clarifies the counter-intuitive conclusion

in [24]. More general scenarios are considered, including the correlated

measurement noises between two sensors and time-varying means of the
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injected bias. For attacks that can completely bypass χ2 detectors, we

give explicit solutions of the optimal attack policy, which avoids solving

optimization problems numerically at each sampling instant. Uniqueness

of the optimal stealthy attack strategy is analyzed. For scalar systems

with uncorrelated measurement noises in two smart sensors, we give an

easy-to-check criterion to compare the information fusion method with

existing work.

3. We have revealed the connection between FDI attacks and MMSE es-

timation of prediction errors. The optimal stealthy attack policy that

makes full utilization of attackers’ available information and causes the

maximum estimation performance loss is obtained. With theoretical

analysis and comparative studies, it is proved that there does not exist

another policy that outperforms the proposed one considering “greedy”

performance criterion and the KL divergence stealthiness constraint. It

is found that the optimal attack policy can be derived by recursively

solving a constrained optimization problem, which is different but simi-

lar to LQG control. The well-known separation principle still holds; the

optimal attack policy is a combination of MMSE estimation and linear

transformation. For attacks with strict stealthiness, the optimal trans-

formation matrix is obtained analytically without solving SDPs. For

attacks with relaxed stealthiness, it is shown that the optimal compro-

mised innovation is zero-mean Gaussian. The estimator with falsified

measurements still provides unbiased state estimation. In contrast to

existing literature that assumes static linear attacks, the optimal com-

promised measurement is shown to be generated by a linear time-varying

(LTV) system, the coefficient matrices of which are independent of mea-

surement data and thus can be determined offline. The cases that the

attacker has different information sources are studied in a unified frame-

work. It is found that the attack performance depends on the estimation

quality for the prediction error. The attacker’s additional information
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will always benefit his/her purpose.

4. We have extended the information-based FDI attacks to the case that an

interval anomaly detector is deployed to reveal anomalies. The optimal

deception policy that makes full utilization of available online informa-

tion and successfully deceives interval χ2 detectors with different width

is derived. Contrary to existing studies, the linearity assumption is re-

moved and stealthiness constraints are fulfilled precisely. As a special

case, if only the original measurement is available and the compromised

innovation is required to be white Gaussian, the result reduces to the

well-known conclusion in [22].

5. Finally, we have derived the optimal information-based FDI attack that

maximizes the estimation error of Kalman filters in a fixed interval. It

is shown that the information-based optimal attack is a linear combi-

nation of the MMSE estimates of all historical prediction errors. The

combination coefficients can be obtained by solving a convex optimiza-

tion problem. Moreover, the proposed attack can be generalized to de-

ceive interval χ2 detectors with different lengths by slightly modifying

the stealthiness constraint. For both attacks with greedy and holistic

performance, the worst-case attack impact is shown to be dependent on

the amount of online information and the width of detection interval.

The findings in this thesis also provide some insights on defending against

cyber-attacks in industrial CPSs. For stealthy FDI attacks producing compro-

mised innovations with unaltered statistical properties, the detection mecha-

nism based on only the probability density change of innovations is not suf-

ficient to reveal anomalies. Though increasing the width of χ2 detectors can

mitigate the impact of worst-case attacks, defenders need to incorporate ad-

ditional information or detection algorithms to completely resist stealthy at-

tacks. In Fig. 3.1, it is not difficult to ensure z̃k ∼ N (0,Σ) if attackers can

read and manipulate all measurements in the wireless channel. However, if
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the data packets of at least one sensor are secured by encryption mechanisms

and cannot be modified, it will be much harder for attackers to design com-

promised innovations that have a known probability distribution. From the

defenders’ point of view, protecting only a subset of sensors can greatly en-

hance the security of remote state estimators; this can be achieved by either

transmitting some measurements by wired channels or securing one dimension

of yk with data encryption. In addition to χ2 detectors, monitoring the co-

variance change of state estimates directly can be utilized as a complementary

detection strategy. These two detectors running in parallel may work more

efficiently to resist stealthy attacks.

7.2 Future Work

The future research directions on CPS security are summarized with the

following aspects:

1. Develop effective countermeasures that can mitigate the impacts of worst-

case cyber-attacks. In this thesis, it is shown that for standard Kalman

filters with Gaussian process and measurement noises, using statistical

properties of innovation sequences to configure anomaly detectors can-

not reveal the existence of stealthy FDI attacks efficiently. In order to

resist FDI attacks that compromise remote state estimators, proactive

defensive methods could be more suitable choices, such as encryption

algorithms that prevent manipulation of transmitted data and physical

authentication that enhances attack detectability with some sacrifice of

control performance. Therefore, two research topics can be investigated:

i) Designing optimal encryption algorithms that consume minimal com-

putational resources and achieve maximum resistance effects; ii) De-

signing optimal water-marking signals that can prevent stealthy FDI

attacks and have minimal or no negative impacts on the nominal system

performance.
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2. Explore worst-case deception attacks considering more general scenarios

like transmission delays and packet dropouts, which are common in net-

worked systems. A majority of existing work concentrates on only the

case that transmission links are perfect when there is no cyber-attack.

Little attention has been paid to these practical issues.

3. Study data-driven design methods for stealthy FDI attacks. In Section

5.1.4, three items are listed to describe attackers’ ability. The second

and third ones can be relaxed because even if attackers cannot gain any

online information, they can still launch stealthy deception attacks if

the transmitted raw data can be modified. The first assumption that

attackers know all system parameters is the most important one in or-

der to launch successful attacks. In practical cases, obtaining system

parameters is not an easy task; thus studying the vulnerabilities of re-

mote state estimation with limited knowledge is a meaningful topic. One

possible research direction is investigating data-driven design methods

that synthesize optimal attacks using only the online intercepted data.
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Appendix A

In this appendix, we collect proofs of some of the results in the thesis.

A.1 Proof of Proposition 3.2

For notation convenience, we use letters with lower cases to represent cor-

responding constant parameters (a = A, k = K,w = W, c = C, c̄ = C̄, σ =

Σ, θ = Θ, p = P, p̌ = P̌ ) and t ∈ N to denote time index. First, consider the

optimal attack in (3.14) at t = t̄ (when attack starts). From (3.18)–(3.19), we

obtain Pα
t̄ = p, P β

t̄ = θ. In Theorem 3.2, it can be verified that rt̄ = m = 1,

then Wt̄ vanishes; it follows that

H∗
t̄ = −

√
σVcU

T
c Π

− 1
2 , Φ∗

t̄ = 0 (A.1)

where Vc, Uc satisfy UcScV
T
c = k

√
σΠ− 1

2

[
cp, c̄θ

]T
. Note that this is a column

vector; the SVD becomes

Vc = 1, Sc = ∥k
√
σΠ− 1

2

[
cp, c̄θ

]T ∥2.

It follows that

Uc =
k
√
σΠ− 1

2

[
cp, c̄θ

]T
∥k

√
σΠ− 1

2

[
cp, c̄θ

]T ∥2
. (A.2)

The objective value in P3.2 becomes

Tr(H∗
t̄ Yt̄K) = −

√
σVcU

T
c Π

− 1
2

[
cp
c̄θ

]
k = −Sc.
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Similarly, by Theorem 3.3, the objective value in (3.51) is

−S̄c = −∥k
√
σΠ̌− 1

2

[
cp̌, c̄p̌

]T ∥2.

In (3.14), we apply the constant attack strategy denoted by A : {H∗
t =

H∗
t̄ ,Φ

∗
t = Φ∗

t̄}, ∀t ≥ t̄. Consider the recursions of Pα
t and P β

t with policy A.

From (3.18), we have Pα
t̄ = Pα

t̄−1 = p and

Pα
t − Pα

t−1 = a1(P
α
t−1 − Pα

t−2) + a2(T̄t−2 − T̄t−1)

=

{
−a1θc̄kT̄a t = t̄+ 1

a1(P
α
t−1 − Pα

t−2) t ≥ t̄+ 2
(A.3)

where a1 = a2(1 − kc) > 0, a2 = a1θc̄k. T̄a = H∗
t̄ [0; 1], i.e., the second

entry of H∗
t̄ . From (3.17), we have θ > 0. According to [97], we obtain

sgn(T̄a) = − sgn(kc̄θ) = − sgn(kc̄). It follows that −a1θc̄kT̄a > 0. Then (A.3)

indicates Pα
t+1 ≥ Pα

t , ∀t ∈ N. Following similar arguments, one can verify

P β
t̄ = P β

t̄−1 = θ and P β
t+1 ≥ P β

t , ∀t ∈ N. Both Pα
t and P β

t are non-decreasing

sequences with policy A. Now we compare the objective values of A and

{T ∗
t , T̄

∗
t } for P3.2 at instant t. Let Ta = H∗

t̄ [1; 0]; we have

J t
opt = kcP α

t T
∗
t + kc̄P β

t T̄
∗
t

(a)

≤ kcP α
t Ta + kc̄P β

t T̄a

= kcpTa + kc̄θT̄a + kc(P α
t − p)Ta + kc̄(P β

t − θ)T̄a

(b)

≤ kcpTa + kc̄θT̄a = J t̄
opt = −Sc (A.4)

where (a) is because that {T ∗
t , T̄

∗
t } is the optimal solution and (b) is from the

facts that sgn(Ta) = − sgn(kc), sgn(T̄a) = − sgn(kc̄) [97] and Pα
t ≥ p, P β

t ≥ θ.

The optimal objective values of P3.2 and (3.51) are denoted as J t
opt and J̄ t

opt,

respectively. By Theorem 3.2, we have J̄ t
opt = −S̄c, ∀t ≥ t̄.

If Y TΠ−1Y > Y̌ TΠ̌−1Y̌ , then −Sc < −S̄c. It follows from (A.4) that

J t
opt < J̄ t

opt, ∀t ∈ N. For scalar systems, this inequality is sufficient to show

that the attack performance of (3.14) is better than that of (3.49). One

the other hand, if (3.14) is a better policy, when attacks starts it holds that

−Sc < −S̄c, which directly leads to Y TΠ−1Y > Y̌ TΠ̌−1Y̌ .
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A.2 Proof of Proposition 4.1

We first show that (4.29) can be written as a linear combination of all

nominal historical innovations. Notice that in case Ik = Ik−1 ∪ {yk}, we have

y̌k = yk, v̌k = vk, C̃ = C, R̃ = R and Kξ
k = K, then the “virtual measurement”

is

žk = yk − Cx̃k|k−1 = zk + C(x̂k|k−1 − x̃k|k−1). (A.5)

From the dynamics of x̃k|k−1 and x̂k|k−1:

x̃k|k−1 = Ax̃k−1|k−2 + AKz̃∗k−1

x̂k|k−1 = Ax̂k−1|k−2 + AKzk−1

we have

x̂k|k−1 − x̃k|k−1 = A(x̂k|k−1 − x̃k|k−1) + AK(zk−1 − z̃∗k−1). (A.6)

Define the state vector ηk = x̂k|k−1 − x̃k|k−1. Substituting (4.29) into (A.6),

we obtain

ηk = Aηk−1 − AKT ∗
k−1ξk−1 + AKzk−1 − AKbk−1. (A.7)

Define Fk = (I −KC)(A−AKT ∗
k ). Substituting (4.29) and (A.5) into (4.46),

we have

ξk = Fk−1ξk−1 +K[zk + C(x̂k|k−1 − x̃k|k−1)]− (I −KC)AKbk−1

= Fk−1ξk−1 +KCηk +Kzk − (I −KC)AKbk−1. (A.8)

From (A.7)–(A.8), it can be obtained that

ξk =(Fk−1 −KCAKT ∗
k−1)ξk−1 +KCAηk−1

+ Lkzk +KCAKzk−1 − AKbk−1. (A.9)

Now define the state variable θk ∈ R2n and matrices

θk =

[
ξk
ηk

]
, F̄k−1 =

[
A−KCA− AKT ∗

k−1 KCA
−AKT ∗

k−1 A

]
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L̄ =

[
KCAK
AK

]
, L̃ =

[
K
0

]
, E =

[
−AK
−AK

]
, T̄k =

[
T ∗
k 0

]
.

From (4.29), (A.7) and (A.9), we have

θk = F̄k−1θk−1 + L̄zk−1 + L̃zk + Ebk−1 (A.10)

z̃∗k = T̄kθk + bk. (A.11)

The compromised innovation z̃∗k in (4.29) is the output of the above LTV

system. Notice that x̂k̄|k̄−1 = x̃k̄|k̄−1 leads to ηk̄ = 0; ξk̄ is the MMSE estimate

of ek̄|k̄−1. From (A.5), we have

žk̄ = zk̄.

Since Kξ

k̄
= K, from (4.19), we obtain the initial value

ξk̄ = ξ̄k̄ +Kξ

k̄
(žk̄ − Cξ̄k̄) = Kξ

k̄
žk̄ = Kzk̄.

Thus the initial condition of (A.10) is θk̄ =
[
(Kzk̄)

T, 0
]T
. It is observed that

the optimal attack policy in (A.11) is a linear combination of all nominal inno-

vations in Jk̄, kK, added by a compensatory Gaussian noise. The combination

coefficients can be obtained recursively. For clarity, we write (A.11) as:

z̃∗k =
k∑

i=k̄

Hizi + b̃k, b̃k ∼ N (0, Θ̃) (A.12)

where Hi, i ∈ Jk̄, kK and Θ̃ are known parameters determined by Theorem 1.

When τk = k − k̄, (52) is a presupposed innovation-based attack model:

z̃k =
k−k̄∑
i=0

T
[i]
k zk−i + bk, bk ∼ N (0,Φk) (A.13)

where T
[i]
k and Φk are parameters to be optimized. With (A.13), the attack

performance and stealthiness constraints in P4.2 have analytical forms; thus

the optimal attacks can be obtained by solving the following optimization

152



problem [68, Th. 1]:

min
T

[i]
k ,Φk

− Tr

{
τk∑
i=0

[
P̄CTΣ−1T

[i]
k

(
W

[i]
k

)T
]}

s.t.

τk∑
i=0

T
[i]
k Σ

(
T

[i]
k

)T

+ Φk − Σ = 0,

Φk ⪰ 0.

(A.14)

where W
[i]
k s are constant variables determined by system parameters. Note

that when Ik = Ik−1 ∪ {yk} and τk = k − k̄, [21] and this paper solve the

same problem. The objective functions and stealthiness constraints in (A.14)

and P4.2 are the same. We can study the equivalence of (A.12) and (A.13) by

comparing their objective values.

Suppose the optimal attack obtained from (A.14) is z̃⋆k. The objective

values of z̃⋆k for (A.14) and z̃∗k for P4.2 are denoted as fk(z̃
⋆
k) and fk(z̃

∗
k), re-

spectively. Since (A.12) is a special realization of (A.13) and also satisfies

z̃∗k ∼ N (0,Σ), we know that z̃∗k is in the feasible region of (A.14). Because z̃⋆k

is the optimal solution of (A.14), we have

fk(z̃
∗
k) ≥ fk(z̃

⋆
k). (A.15)

In the proof of Theorem 1, we have shown that z̃∗k is an optimal information-

based strategy that is no worse than any other feasible attacks, which directly

leads to

fk(z̃
∗
k) ≤ fk(z̃

⋆
k). (A.16)

The above two inequalities yield fk(z̃
∗
k) = fk(z̃

⋆
k). In this sense, we claim that

the optimal attack in (31) with Ik = Ik−1 ∪ {yk} and (52) with τk = k− k̄ are

equivalent because they have the same attack performance.

If r = m, both the optimal attacks in (4.29) and (4.50) are unique. Because

the involved optimization problem has a unique optimal solution, one can

verify that these two attacks lead to the same z̃k and hence the same ỹk.
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A.3 Proof of Proposition 4.2

Denote the optimal solution to problemP4.5 asO∗
k = {µ∗

k,Σ
∗
k, Σ̂

∗
k, T

∗
k , β

∗
k ,Θ

∗
k}.

At the k̄th sampling instant, (4.19) implies µ̂k̄ = UTE[ξk̄] = 0. The objective

function becomes

fk̄(Σ̂k̄, Tk̄) = Tr(−K̂Σ̂k̄K̂
T + 2K̂Tk̄P̂k̄).

The corresponding optimization problem is

min
µk̄,Σk̄,Σ̂k̄,Tk̄,Θk̄

fk̄(Σ̂k̄, Tk̄)

s.t. Tk̄P̂k̄T
T
k̄ +Θk̄ = Σk̄ (A.17)

Σk̄ + µk̄µ
T
k̄ = Σ̂k̄ (A.18)

g(Σk̄, Σ̂k̄) ≤ 0 (A.19)

Θk̄ ⪰ 0. (A.20)

We first show (A.19) holds with equality for O∗
k̄
. Assume g(Σ∗

k̄
, Σ̂∗

k̄
) = −ϵ <

0. There exist ωk̄ ∈ Rm and Ωk̄ = ωk̄ω
T
k̄
such that

ωk̄ ̸∈ ker(K̂), Tr(Σ−1Ωk̄) = ϵ.

Let µk̄ ∈ Rm satisfy µk̄µ
T
k̄
= µ∗

k̄
(µ∗

k̄
)T + Ωk̄. By setting Σ̂k̄ = Σ̂∗

k̄
+ Ωk̄, it can

be verified that {µk̄,Σ
∗
k̄
, Σ̂k̄, T

∗
k̄
,Θ∗

k̄
} fulfills the above constraints and

fk̄(Σ̂k̄, T
∗
k̄ )− fk̄(Σ̂

∗
k̄, T

∗
k̄ ) = −Tr(K̂Ωk̄K̂

T) < 0 (A.21)

which contradicts the optimality of O∗
k̄
. Therefore, we have g(Σ∗

k̄
, Σ̂∗

k̄
) = 0.

Now fixing µ∗
k̄
,Σ∗

k̄
and Σ̂∗

k̄
, we see that {T ∗

k̄
,Θ∗

k̄
} is the solution to the

optimization problem

min
Tk̄∈Rm×n,Θk̄∈Sm+

fk̄(Σ̂
∗
k̄, Tk̄) (A.22)

s.t. Tk̄P̂k̄T
T
k̄ +Θk̄ = Σ∗

k̄.
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Denote Ω̄k̄ = µ∗
k̄
(µ∗

k̄
)T ⪰ 0. Consider the candidate solutionO⋆

k̄
= {µ⋆

k̄
,Σ⋆

k̄
, Σ̂⋆

k̄
, T ⋆

k̄
,Θ⋆

k̄
},

where µ⋆
k̄
= 0,Σ⋆

k̄
= Σ∗

k̄
+ Ω̄k̄, Σ̂

⋆
k = Σ̂∗

k, and {T ⋆
k̄
,Θ⋆

k̄
} are obtained by solving

min
Tk̄∈Rm×n,Θk̄∈Sm+

fk̄(Σ̂
⋆
k̄, Tk̄) (A.23)

s.t. Tk̄P̂k̄T
T
k̄ +Θk̄ = Σ⋆

k̄.

One can verify that O⋆
k̄
satisfies (A.17)–(A.18) and (A.20). Note that

g(Σ⋆
k̄, Σ̂

⋆
k̄) =g(Σ∗

k̄, Σ̂
∗
k̄) + ln |Σ∗

k̄| − ln |Σ⋆
k̄|

= ln |Σ∗
k̄| − ln |Σ∗

k̄ + Ω̄k̄| < 0. (A.24)

This implies that O⋆
k̄
is a feasible solution. For (A.23), multiplying on both

sides of the equality constraint by (Σ⋆
k̄
)−

1
2 , we have

(Σ⋆
k̄)

− 1
2Tk̄P̂k̄T

T
k̄ (Σ

⋆
k̄)

− 1
2 + (Σ⋆

k̄)
− 1

2Θk̄(Σ
⋆
k̄)

− 1
2 ⪯ I. (A.25)

Denote T̂k̄ = (Σ⋆
k̄
)−

1
2Tk̄P̂

1
2

k̄
, Yk̄ = P̂

1
2

k̄
K̂(Σ⋆

k̄
)
1
2 . Note that the first term of

fk̄(Σ̂
⋆
k̄
, Tk̄) is a constant. (A.23) reduces to the following problem:

min
T̂k̄∈Rm×r

Tr(T̂k̄Yk̄) s.t. T̂k̄T̂
T
k̄ ⪯ I.

The constraint implies that σ1(T̂k̄) ≤ 1. The objective function satisfies

Tr(T̂k̄Yk̄) ≥ −
m∑
i=1

|λi(T̂k̄Yk̄)| ≥ −
m∑
i=1

σi(T̂k̄Yk̄)

≥ −
r∑

i=1

σi(T̂k̄)σi(Yk̄) ≥ −
r∑

i=1

σi(Yk̄). (A.26)

Therefore, the minimal objective value for (A.23) is

fk̄(Σ̂
⋆
k̄, T

⋆
k̄ ) = −K̂Σ̂⋆

k̄K̂
T − 2

r∑
i=1

σi(Yk̄)

= −K̂Σ̂⋆
k̄K̂

T − 2Tr[(Yk̄Y
T
k̄ )

1
2 ]. (A.27)

Similarly, for (A.22), we have the minimal objective value

fk̄(Σ̂
∗
k̄, T

∗
k̄ ) = −K̂Σ̂∗

k̄K̂
T − 2

r∑
i=1

σi(Xk̄)

= −K̂Σ̂∗
k̄K̂

T − 2Tr[(Xk̄X
T
k̄ )

1
2 ] (A.28)
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where Xk̄ = P̂
1
2

k̄
K̂(Σ∗

k̄
)
1
2 . It follows that

Xk̄X
T
k̄ − Yk̄Y

T
k̄ = −P̂

1
2

k̄
K̂Ω̄k̄K̂

TP̂
1
2

k̄
⪯ 0. (A.29)

From (A.27)–(A.28), we have

fk̄(Σ̂
⋆
k̄, T

⋆
k̄ )− fk̄(Σ̂

∗
k̄, T

∗
k̄ ) = 2

r∑
i=1

[σi(Xk̄)− σi(Yk̄)]

=2Tr[(Xk̄X
T
k̄ )

1
2 − (Yk̄Y

T
k̄ )

1
2 ] ≤ 0. (A.30)

The last inequality is derived from (A.29) and Lemma 4.2; the equality is

attained when µ∗
k̄
∈ Ker(K̂). (A.30) implies that the objective value of O⋆

k̄
is

no larger compared with that of O∗
k̄
. If µ∗

k̄
̸= 0, (A.24) is a strict inequality

constraint. From (A.21), we see that there exists another feasible solution

that is strictly better than O⋆
k̄
. This contradicts the optimality of O∗

k̄
. We

have µ∗
k̄
= 0. (4.54) leads to β∗

k̄
= 0. Recall that P4.5 should be solved at

each sampling instant; from (4.57), we have µ̂k̄+1 = 0. Following the same

arguments it can be verified that β∗
k = 0, ∀k ≥ k̄.

If r = m, Yk = P̂
1
2
k K̂(Σ⋆

k)
1
2 ∈ Rm is nonsingular. Then σi(Yk) ̸= 0, ∀i ∈

J1, rK. In order to achieve the lower bound in (A.26), we have σi(T̂k) = 1, ∀i ∈

J1, rK, i.e., T̂k = I. Then (A.25) implies Θk = 0; hence, bk = 0, ∀k ≥ k̄.

A.4 Proof of Theorem 4.3

Similar to the proof of Theorem 4.1, it can be shown that the optimal com-

promised innovation is a linear function of the MMSE estimate. Substituting

(4.44) into P4.2, we have

min
Tk∈Rm×n,Θk∈Sm+

Tr(TkP
ξ
kK) (A.31)

s.t. TkP
ξ
kT

T
k +Θk = Σ.

Let T̄k = Σ− 1
2TkΨkΛ

1
2
k , K̄k = Λ

1
2
kΨ

T
kKΣ

1
2 ; (A.31) is equivalent to the optimiza-

tion problem

min
T̄k∈Rm×n

Tr(T̄kK̄k) s.t. T̄kT̄
T
k − I ⪯ 0. (A.32)
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The objective function satisfies

Tr(T̄kK̄k) ≥ −
r̄∑

i=1

σi(T̄k)σi(K̄k) ≥ −
r̄∑

i=1

σi(K̄k). (A.33)

Define the Lagrange function

L(T̄k, νk) = Tr(T̄kK̄k) + Tr[νk(T̄kT̄
T
k − I)]

where νk ∈ Rm×m is the Lagrangian multiplier, which is symmetric owing to

the symmetry of T̄kT̄
T
k − I. The stationary points satisfy νk ⪰ 0 and

K̄T
k + 2νkT̄k = 0 (A.34)

νk(T̄kT̄
T
k − I) = 0. (A.35)

The above two equations lead to K̄T
k K̄k = 4νkT̄kT̄

T
k νk and νkT̄kT̄

T
k νk = ν2

k ,

respectively. Then K̄T
k K̄k = 4ν2

k . It follows that

2νk = (K̄T
k K̄k)

1
2 . (A.36)

Because Im(K̄T
k ) = Im[(K̄T

k K̄k)
1
2 ], (A.34) is a consistent equation. The general

solution is

T̄ ∗
k = −1

2
ν+
k K̄

T
k + (I − ν+

k νk)Wk

where Wk ∈ Rm×s is an arbitrary matrix. Substituting (A.36) into T̄ ∗
k yields

T̄ ∗
k = −ΦkΠ

− 1
2

k ΦT
k K̄

T
k + Φ̄kΦ̄

T
kWk. (A.37)

It follows that

T̄ ∗
k (T̄

∗
k )

T = Φ̄kΦ̄
T
kWkWT

k Φ̄kΦ̄
T
k − ΦkΠ

− 1
2

k ΦT
k K̄

T
k WT

k Φ̄kΦ̄
T
k

−Φ̄kΦ̄
T
kWkK̄kΦkΠ

− 1
2

k ΦT
k + ΦkΦ

T
k

then the constraint in (A.32) becomes[
I −Π

− 1
2

k ΦT
k K̄

T
k WT

k Φ̄k

−Φ̄T
kWkK̄kΦkΠ

− 1
2

k Φ̄T
kWkWT

k Φ̄k

]
⪯ I.
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It can be derived that

Φ̄T
kWkWT

k Φ̄k ⪯ I, Φ̄T
kWkK̄kΦkΠ

− 1
2

k = 0. (A.38)

Let Xk = Φ̄TWk ∈ R(m−r̄)×s be the free parameter, then (4.65) is obtained im-

mediately from (A.38). Substituting Xk, K̄k into (A.37), we have the optimal

solution

T̄ ∗
k = −ΦkΠ

− 1
2

k ΦT
kΣ

1
2KTΨkΛ

1
2
k + Φ̄kXk. (A.39)

Since Im(Φ̄k) = Ker(K̄T
k K̄k), Ker(K̄k) ⊆ Ker(K̄T

k K̄k), we have K̄kΦ̄k = 0;

then

Tr(Φ̄kXkK̄k) = Tr(XkK̄kΦ̄k) = 0.

Because the last term of T̄ ∗
k does not change the objective value, it follows

that

Tr(T̄ ∗
k K̄k) = −Tr(Π

1
2
k ) = −

r̄∑
i=1

σi(K̄k).

The lower bound in (A.33) is attained. Therefore, (A.39) gives the solution

set for (A.32). Note that TkΨk = Σ
1
2 T̄kΛ

− 1
2

k ; the solution to P4.3 satisfies

T ∗
k = Σ

1
2 T̄ ∗

kΛ
− 1

2
k ΨT

k + YkΨ̄
T
k (A.40)

Θ∗
k = Σ

1
2 [I − T̄ ∗

k (T̄
∗
k )

T]Σ
1
2 (A.41)

where Yk ∈ Rm×(n−s) is an arbitrary matrix. The optimal parameters in (4.64)

are obtained by substituting T̄ ∗
k into (A.40)–(A.41).

A.5 Proof of Proposition 4.3

From Theorem 4.1, we have

KT ∗
k̄ = −KV Σ̂

1
2Vk̄U

T
k̄ P̂

− 1
2

k̄
UT.

Substituting K = UŜKT yields

KT ∗
k̄K = −UŜΣ̂

1
2Vk̄U

T
k̄ P̂

− 1
2

k̄
UTUŜV T

= −UP̂
− 1

2

k̄
Uk̄Sk̄V

T
k̄ Vk̄U

T
k̄ P̂

− 1
2

k̄
ŜV T

= −UP̂
− 1

2

k̄
(P̂

1
2

k̄
ŜΣ̂ŜP̂

1
2

k̄
)
1
2 P̂

− 1
2

k̄
ŜV T. (A.42)
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Note that P̃k̄|k̄−1 = P̄ , P e
k̄
= (I −KC)P̄ . From (4.25), we have P ξ

k̄
= KΣKT.

Then P̂k̄ = UTP ξ

k̄
U = ŜΣ̂Ŝ. Substituting it into (A.42), we obtain

KT ∗
k̄K = −UŜV T = −K.

From (4.19), we have ξk̄ = E[ẽk̄|k̄−1|Ik̄] = Kzk̄. It follows that

Kz̃∗k̄ = K(T ∗
k̄ ξk̄ + bk̄) = KT ∗

k̄Kzk̄ +KV̄ ϵ̄k̄ = −Kzk̄.

If rank(C) = m, K has full column rank. Then z̃∗
k̄
= −zk̄.

A.6 Proof of Proposition 5.1

We prove by induction. ∀i < k̄, let k̂ ∈ N, k̂ ≥ k̄, and assume the following

statement holds:

E[z̃kzTi ] = 0m, ∀k ∈ Jk̄, k̂K. (A.43)

According to (5.17), (5.20) and (A.43), we have

E[z̃k̂+1z
T
i ] = Hϕ

k̂+1
KTE[βk̂+1z

T
i ], (A.44)

where Hϕ

k̂+1
is composed of the first m columns of Hk̂+1. From (5.14a)–(5.14b),

we have

αk̂ = Aαk̂−1 − K̄k̂C̄ᾱk̂ + K̄k̂C̄xk̂ + K̄k̂v̄k̂. (A.45)

Combining (A.45) and (5.12) yields

αk̂ − x̃k̂|k̂−1 = A(αk̂−1 − x̃k̂−1|k̂−2) + K̄k̂C̄(xk̂ − ᾱk̂)

+K̄k̂v̄k̂ − AKz̃k̂−1. (A.46)

It follows that

βk̂+1 = Aβk̂ + K̄k̂+1C̄(xk̂+1 − ᾱk̂+1)

+K̄k̂+1v̄k̂+1 − AKz̃k̂. (A.47)
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Since xk̂+1−ᾱk̂+1 is independent of all historical measurements up to instant k̂,

it is easy to verify that xk̂+1−ᾱk̂+1 and v̄k̂+1 are independent of zi; then (A.47)

leads directly to E[βk̂+1z
T
i ] = AE[βk̂z

T
i ]. Repeating the same arguments yields

E[βk̂+1z
T
i ] = Ak̂+1−k̄E[βk̄z

T
i ]. (A.48)

At the k̄th instant, from (5.14a)–(5.14b), we obtain

βk̄ = αk̄ − x̃k̄|k̄−1 = αk̄ − x̂k̄|k̄−1 = αk̄ − ᾱk̄

= K̄k̄(ȳk̄ − C̄ᾱk̄) = K̄k̄[C̄(xk̄ − x̂k̄|k̄−1) + v̄k]. (A.49)

Since zi is determined by the set {x̂0|−1, y0, . . . , yi} while xk̄ − x̂k̄|k̄−1 is inde-

pendent of {x̂0|−1, y0, . . . , yk̄−1}, βk̄ is independent of zi; i.e., E[βk̄z
T
i ] = 0n×m.

According to (A.44) and (A.48), we have E[z̃k̂+1z
T
i ] = 0m.

It is now sufficient to prove E[z̃k̄zTi ] = 0m. Note that z̃k̄ = Hk̄ϕk̄ + bk̄; we

have

E[z̃k̄zTi ] = Hk̄E[ϕk̄z
T
i ] = Hk̄K

TE[βk̄z
T
i ] = 0m,

which completes the proof.

A.7 Proof of Theorem 5.5

The KL divergence constraint in P5.4 does not restrict that z̃k must have a

specific form: neither be Gaussian distributed nor have zero mean. To prove

Theorem 5.5, it is sufficient to show that ∀k ≥ k̄ the optimal compromised

innovation has the following form:

z̃∗k = H∗
kθk + bk, bk ∼ N (0m×1,Φ

∗
k), (A.50)

where H∗
k and Φ∗

k are obtained by solving P5.4 after substituting z̃k = Hkθk +

bk, bk ∼ N (0m×1,Φk). We prove this statement by induction. Let k̂ ∈ N and

k̂ > k̄. Suppose that (A.50) holds ∀k ∈ Jk̄, k̂K. When k = k̂ + 1, assume that

an arbitrary feasible attack policy (not necessarily to be Gaussian or with zero

mean) is given by

z̃k̂+1 = πk̂+1(Ik̂+1), (A.51)
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then we define

µz
k̂+1

= E[z̃k̂+1], Σz
k̂+1

= Cov[z̃k̂+1]. (A.52)

Consider the following linear attack policy based on the MMSE estimate of

êk:

z̃⋆
k̂+1

= H⋆
k̂+1

θk̂+1 + bk̂+1, bk̂+1 ∼ N (µz
k̂+1

,Φ⋆
k̂+1

), (A.53)

where H⋆
k̂+1

and Φ⋆
k̂+1

are derived by solving

min
Hk̂+1,Φk̂+1

Tr
{[

P ϕ

k̂+1
Mk̂+1

]
HT

k̂+1

}
s.t. Hk̂+1

[
P ϕ

k̂+1
Mk̂+1

MT
k̂+1

Σk̂+1

]
HT

k̂+1
+ Φk̂+1 = Σz

k̂+1
,

Hk̂+1

[
Mk̂+1

Σk̂+1

]
= 0m×(τ̄k̂+1−m), (A.54)

Φk̂+1 ⪰ 0. (A.55)

The above optimization problem is obtained by substituting (A.53) into P5.4

and replacing the KL divergence constraint with the first equality constraint

(restricting Cov[z̃k̂+1]). Three facts are incorporated: i), θk̂+1 is independent

of bk̂+1; ii), θk̂+1 has zero mean, which follows directly from (5.29) and the

assumption that (A.50) holds ∀k ∈ Jk̄, k̂K; and iii), the second moment of z̃⋆
k̂+1

is a constant and equals to that of z̃k̂+1 in (A.51), thus the first term of the

objective function in P5.4 is omitted.

Note that the above optimization problem is similar to P5.2. Following the

same arguments as in the proof of Theorem 5.1, one can verify that z̃⋆
k̂+1

in

(A.53) causes no greater objective value for P5.4 compared with z̃k̂+1 in (A.51).

Additionally, since z̃k̂+1 and z̃⋆
k̂+1

have the same covariance and z̃⋆
k̂+1

is Gaus-

sian, by using the fact that Gaussian distribution has the maximal differential

entropy among all probability distributions with a specified covariance [12], it

is easy to verify that z̃⋆
k̂+1

satisfies the KL divergence constraint (see a similar

proof in [23]). We conclude that for an arbitrary attack in (A.51), there always

exists an MMSE estimate-based policy that causes no less attack performance
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and also satisfies the stealthiness constraint. It then suffices to limit the scope

of our discussion to the linear attack based on MMSE estimate. Suppose that

the optimal policy at instant k̂ + 1 is given by

z̃⋆
k̂+1

= H⋆
k̂+1

θk̂+1 + bk̂+1, bk̂+1 ∼ N (µ⋆
k̂+1

,Φ⋆
k̂+1

),

H⋆
k̂+1

, µ⋆
k̂+1

and Φ⋆
k̂+1

are obtained from the following optimization problem

min
Ak̂+1

Tr(−KΣ̃k̂+1K
T) + 2

{[
P ϕ

k̂+1
Mk̂+1

]
HT

k̂+1

}
s.t. Hk̂+1

[
P ϕ

k̂+1
Mk̂+1

MT
k̂+1

Σk̂+1

]
HT

k̂+1
+ Φk̂+1 = Σ̂k̂+1,

Σ̂k̂+1 + µk̂+1µ
T
k̂+1

= Σ̃k̂+1,

g(Σ̃k̂+1, Σ̂k̂+1) ≤ 0,

(A.54) and (A.55).

where Σ̂k̂+1 and Σ̃k̂+1 are the covariance and second moment of z̃k̂+1, respec-

tively. Since z̃⋆k is Gaussian, g(Σ̃k̂+1, Σ̂k̂+1) is the KL divergence constraint

function:

g(Σ̃k̂+1, Σ̂k̂+1) = Tr(Σ−1Σ̃k̂+1) + ln
|Σ|

|Σ̂k̂+1|
−m− 2δ.

For brevity, we denote the optimal solution asA⋆
k̂+1

= {H⋆
k̂+1

, µ⋆
k̂+1

,Φ⋆
k̂+1

, Σ̂⋆
k̂+1

, Σ̃⋆
k̂+1

}.

When µ⋆
k̂+1

, Σ̂⋆
k̂+1

and Σ̃⋆
k̂+1

are fixed, {H⋆
k̂+1

,Φ⋆
k̂+1

} is the solution of

min
Hk̂+1,Φk̂+1

Tr(−KΣ̃⋆
k̂+1

KT) + 2
{[

P ϕ

k̂+1
Mk̂+1

]
HT

k̂+1

}
s.t. Hk̂+1

[
P ϕ

k̂+1
Mk̂+1

MT
k̂+1

Σk̂+1

]
HT

k̂+1
+ Φk̂+1 = Σ̂⋆

k̂+1
,

(A.54) and (A.55).

Assume µ⋆
k̂+1

̸= 0m×1. Consider the attack policy

A∗
k̂+1

= {H∗
k̂+1

, µ∗
k̂+1

,Φ∗
k̂+1

, Σ̂∗
k̂+1

, Σ̃∗
k̂+1

},
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where µ∗
k̂+1

= 0m×1, Σ̂
∗
k̂+1

= Σ̃∗
k̂+1

= Σ̂⋆
k̂+1

+ µ⋆
k̂+1

(µ⋆
k̂+1

)T, H∗
k̂+1

and Φ∗
k̂+1

are

obtained by solving

min
Hk̂+1,Φk̂+1

Tr(−KΣ̃∗
k̂+1

KT) + 2
{[

P ϕ

k̂+1
Mk̂+1

]
HT

k̂+1

}
s.t. Hk̂+1

[
P ϕ

k̂+1
Mk̂+1

MT
k̂+1

Σk̂+1

]
HT

k̂+1
+ Φk̂+1 = Σ̂∗

k̂+1
,

(A.54) and (A.55).

Note that Σ̂∗
k̂+1

⪰ Σ̂⋆
k̂+1

, Σ̃∗
k̂+1

= Σ̃⋆
k̂+1

. When Σ̃k̂+1 is fixed, g(Σ̃k̂+1, Σ̂k̂+1)

is a decreasing function with respective to |Σ̂k̂+1|. It then can be verified

that A∗
k̂+1

satisfies the KL stealthiness constraint and thus is a feasible attack

policy. Denote the objective values of A⋆
k̂+1

and A∗
k̂+1

for the above two

optimization problems as fk̂+1(A⋆
k̂+1

) and fk̂+1(A∗
k̂+1

), respectively. According

to the explicit solution derived in Section 5.2.4 [see (5.42)], we have

fk̂+1(A
∗
k̂+1

)− fk̂+1(A
⋆
k̂+1

)

=2Tr[(Ω
1
2

k̂+1
Σ̂⋆

k̂+1
Ω

1
2

k̂+1
)
1
2 − (Ω

1
2

k̂+1
Σ̂∗

k̂+1
Ω

1
2

k̂+1
)
1
2 ] ≤ 0,

where Ωk̂+1 = P ϕ

k̂+1
− Mk̂+1Σ

−1

k̂+1
MT

k̂+1
. Additionally, it can be shown that

the optimal attack policy must satisfy DKL(z̃
⋆
k∥zk) = δ. If µ⋆

k̂+1
̸= 0m×1, then

g(Σ̃∗
k̂+1

, Σ̂∗
k̂+1

) < g(Σ̃⋆
k̂+1

, Σ̂⋆
k̂+1

) = 0. One can always find another attack policy

that causes strictly smaller objective value of P5.4 compared with A∗
k̂+1

. The

above analysis contradicts the optimality of A⋆
k̂+1

. It follows that µ⋆
k̂+1

= 0m×1.

When k = k̄, we have z̃⋆
k̄
= H⋆

k̄
ϕk̄ + bk̄. Following similar arguments

one can verify that z̃⋆
k̄
must have zero mean, i.e., µ⋆

k̂
= 0m×1. It follows

that µ⋆
k = 0m×1, ∀k ≥ k̄. The optimal attack has the form in (A.50), which

completes the proof. The recursion of Mk is re-defined similarly as in the

analysis in Section 5.2.3. According to (5.30), the last term in (5.33) is replaced

by −AKΣ̃∗
k. Note that Σk denotes the covariance of

[
z̃Tk−1, · · · , z̃Tk−τk+1

]T
.

Thus it is defined accordingly.
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A.8 Proof of Lemma 6.1

Define the following variables:

Xs = STX , X̂s = E[Xs|Ix] = STX̂ , Ps = E[X̂sX̂T
s ].

The proof is divided into two parts.

Part 1: We first assume that Y is a linear function of X̂s added by a

Gaussian noise:

Y = LX̂s + b, b ∼ N (0m,Φ), (A.56)

where L ∈ Rm×m and Φ ∈ Sm
+ are parameters to be designed; b is independent

of other variables. Substituting (A.56) into the objective and constraint yields

the optimization problem:

min
L,Φ

Tr(LPs), s.t. LPsL
T + Φ = Σ. (A.57)

Note the constraint can be rewritten as LPsL
T−Σ ⪯ 0 to eliminate Φ. Define

the Lagrange function

L(ν, L) = Tr(LPs) + Tr[ν(LPsL
T − Σ)],

where ν ∈ S+
m is the Lagrange multiplier. The station point satisfies ν ⪰ 0

and

Ps + 2νLPs = 0, (A.58)

LPsL
T − Σ = 0. (A.59)

Denote Z = 1
2
[(Im − P+

s Ps)Ẑ − Im]; from (A.58), we have LTν = Z, where

Ẑ ∈ Rm×m is an arbitrary matrix. Multiplying on both sizes of (A.59) with ν

and substituting LTν, we have ZTPsZ = νΣν. It follows that

(Σ
1
2νΣ

1
2 )2 = Σ

1
2ZTPsZΣ

1
2 .

Since ZTPsZ = 1
4
Ps, the above equation yields

ν =
1

2
Σ− 1

2 (Σ
1
2PsΣ

1
2 )

1
2Σ− 1

2 .
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Note that Ps can be singular. From LTν = Z we have L = ν+ZT + (Im −

ν+ν)Z̄, where Z̄ ∈ Rm×m is a matrix of free entries that satisfies LPsL
T ⪯ Σ.

Assume x ∈ Ker(ν), i.e., νx = 0; it can be verified that Psx = 0. Thus

Ker(ν) ⊆ Ker(Ps); we have Ps(Im−ν+ν) = 0. The free parameter Z̄ does not

affect the objective value in (A.57). Note that Ẑ can also be designed freely.

We chose Z̄ = Ẑ = 0m; then Z = −1
2
Im, which yields

L∗ = −1

2
ν+, (A.60)

Φ∗ = Σ− L∗Ps(L
∗)T. (A.61)

Part 2: We now prove that Y∗ in (A.56) with L and Φ given in (A.60)–(A.61)

is the vector that achieves the minimum objective compared with any feasible

Y .

Define r = rank(ν) and the eigenvalue decomposition ν = ΨΠΨT, where

Π ∈ Sr
++, Ψ ∈ Rm×r is an orthogonal matrix. Then ν+ = ΨΠ−1ΨT. Since

all choices of Z̄ and Ẑ yield the same objective value, we let Ẑ = 0m and

Z̄ = λZT = −λ
2
Im where λ > 0 is a free parameter. It follows that

L∗ =− 1

2
[ν+ + λ(Im − ν+ν)]

=− 1

2
(ΨΠ−1ΨT + λΨ̄Ψ̄T)

=− 1

2

[
Ψ Ψ̄

] [ Π−1 0r×(m−r)

0(m−r)×r λIm−r

] [
ΨT

Ψ̄T

]
≺ 0,

where Ψ̄ ∈ Rm×(m−r) is the orthogonal complement of Ψ. The covariance of b

is Φ∗ = Σ−L∗Ps(L
∗)T. For a given λ, Φ∗ is a constant. Since b merely serves

as a compensatory term to satisfy the constant in (A.57), it can be verified

that Y∗ = L∗X̂s is the optimal vector that solves the following problem:

min
Y

Tr{E[YXT
s ]}, s.t. Y ∼ N (0m,Σ− Φ∗). (A.62)

Assume Y is an arbitrary vector that satisfies the constraint in (A.62). It is

now sufficient to compare objective values of Y∗ and Y . Let S∗ = Tr{E[Y∗XT
s ]},
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S = Tr{E[YXT
s ]}. Since Y∗ = L∗X̂s is the MMSE estimate for L∗Xs, we have

E[(Y∗ − L∗Xs)(Y∗ − L∗Xs)
T]

⪯ E[(Y − L∗Xs)(Y − L∗Xs)
T].

It follows that

−(S∗ − S)(L∗)T − L∗(S∗ − S)T ⪯ 0.

Since −L∗ ≻ 0, the inequality indicates Tr(S∗−S) ≤ 0. Thus Y∗ achieves the

minimum objective value compared with an arbitrary feasible vector. This

completes the proof.

A.9 Proof of Lemma 6.2

According to (3.1) and (6.2)–(6.3), we have

ẽk|k = ẽk|k−1 −Kz̃k,

ẽk|k−1 = Aẽk−1|k−1 + wk−1.

It follows from (4.26)–(4.27) that

P̃k|k =E[ẽk|kẽTk|k] = E[(ẽk|k−1 −Kz̃k)(ẽk|k−1 −Kz̃k)
T]

=E[ẽk|k−1ẽ
T
k|k−1] +KE[z̃kz̃Tk ]KT −KE[z̃kẽTk|k−1]

− E[ẽk|k−1z̃
T
k ]K

T

=E[(Aẽk−1|k−1 + wk−1)(Aẽk−1|k−1 + wk−1)
T]

+KΣKT −KE[z̃kẽTk|k−1]− E[ẽk|k−1z̃
T
k ]K

T

=AP̃k−1|k−1A
T +Q+KΣKT − E[ẽk|k−1z̃

T
k ]K

T

−KE[z̃kẽTk|k−1]

Iterating the above equation from k = k̄ to k and using P̃k̄−1|k̄−1 = (In−KC)P̄ ,

one can verify that the holistic attack performance has the given form.
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