
1	
	

Our	GIS	is	a	Game	Engine:	Bringing	Unity	to	Spatial	Simulation	of	
Rockfalls	

R.M. Harrap*1, D.J. Hutchinson1, Z. Sala2, M. Ondercin2, P.M. Difrancesco1 

1Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario, Canada K7L3N6 
2BGC Engineering, Vancouver, B.C.  

*Email: Harrap@queensu.ca 
 

Abstract 

We employ a game engine – Unity – to create a rockfall simulation that integrates high 
resolution slope data from LiDAR scanning and photogrammetry, simulates hundreds of 
rocks moving on a slope, and provides outputs relevant to geological engineering decision 
support. This approach, in contrast to existing rockfall simulation tools that are specific to 
limited slope types, is general, extensible, and robust. The use of a game engine as a 
simulator for surface geological processes represents a novel approach to geocomputation 
that leverages the physics simulation capability of games and the powerful terrain 
representation and visualization capabilities of 3D game engines.  
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1.	Introduction	

Traditional	software	tools	used	to	simulate	surficial	geological	processes	are	custom,	typically	
produced	as	a	deliverable	of	graduate-level	research,	and	have	limited	audiences.	These	tools	have	
no	generality:	they	typically	simulate	one	surface	process	under	specific	conditions.	Nevertheless,	
they	are	essential	tools	in	geological	engineering,	both	for	planning	new	sites	and	for	post-incident	
analysis.		

Video	games	on	the	other	hand	have	a	wide	range	of	environments	they	might	represent,	are	
produced	by	expert	software	developers,	and	increasingly	rely	on	standardized	libraries	providing	
generalized	spatio-temporal	simulation	functionality,	as	well	as	standard	world	construction	tools	
that	closely	resemble	–	but	vastly	exceed	many	capabilities	of	–	GIS	and	3D	Visualization	tools.	These	
tools	and	games	are	now	a	significant	driver	both	of	consumer	culture	and	of	computer	hardware	
development,	and	have	budgets	to	match.		

While	early	computer	games	aimed	simply	to	provide	an	(often	wildly	unrealistic)	interactive	
experience	of	some	sort,	modern	games	increasingly	rely	on	sophisticated	feature	representation	
and	physics,	both	because	they	provide	enhanced	realism	and	because	a	generic	‘physics	of	the	
world’	library	can	serve	for	many	games.	In	contrast,	a	custom	solution	that	avoids	simulating	
processes	directly	and	instead	provides	a	simple	proxy	of	some	sort	is	often	not	re-usable.	There	is	a	
direct	parallel	between	the	representation	issues	in	GIScience	and	those	in	computer	games.		

The	specific	domain	of	interest	for	this	study	is	the	simulation	of	rockfalls	on	unstable	slopes,	where	
both	the	dynamic	motion	of	falling	rocks	and	their	subsequent	impact	and	position	on	a	road	or	rail	
line	could	damage	infrastructure	and	put	humans	at	risk.	While	the	intent	is	not	to	provide	a	‘game	
experience,’	many	of	the	software	subsystems	of	a	game	engine	(from	the	world	construction	tools	
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through	the	physics	subsystem)	can	be	directly	used	to	model	a	real	geological	situation	and	then	
accurately	simulate	rockfall	behaviour.		

By	using	a	game	engine,	we	avoid	one-off	recreation	of	all	the	code	required	to	support	a	3D	
simulation	that	is	not	specific	to	rockfalls.	We	rely	on	heavily	tested	code:	hundreds	of	eyes	on,	and	
hundreds	of	uses	for	a	tool	will	result	in	a	more	reliable	–	and	we	believe	more	accurate	–	result	than	
a	single	scientist	working	alone	who	is	not	an	expert	in	software	development.	The	ability	to	test	the	
same	scenario	with	different	code,	and	run	direct	comparisons,	also	allows	greater	confidence	in	
modeling	results.		

This	paper	documents	a	series	of	experiments	using	the	Unity	game	engine	to	build	and	evaluate	a	
rockfall	simulation	tool.	It	also	briefly	discusses	experiments	with	other,	similar,	tools	to	show	the	
generality	of	the	overall	concept	of	using	game	industry	tools.	The	resulting	tools	are	both	an	
example	of	a	rather	literal	geosimulation,	and	an	example	of	where	geosimulation	might	benefit	
from	an	entirely	new,	robust,	and	highly	functional	toolset	driven	by	development	budgets	orders	of	
magnitude	larger	than	typical	scientific	research	grants.		

1.1.	What	Are	Game	Engines	and	Where	Did	They	Come	From?		

Modern	video	games	are	sophisticated	blends	of	user	interface,	spatial	database,	simulation,	audio,	
and	special	effects	tools,	often	with	highly	tuned	peer-to-server	or	peer-to-peer	networking.	Gaming	
has	driven	the	development	of	graphics	technology	for	several	decades,	with	both	increased	
performance	and	new,	increasingly	photorealistic	graphics	being	introduced	with	each	successive	
generation.	As	of	2019	big-budget	Hollywood	effects	are	achievable	in	real-time	on	desktop	
machines	(e.g.	Nvidea,	2019).		

Early	computer	games	were	custom	written	for	a	specific	platform,	and	there	was	little	separation	
between	the	specific	environment	represented	and	the	software	itself,	with	the	emphasis	being	on	
wringing	every	possible	bit	of	performance	out	of	the	hardware	(Gregory,	2018).		

The	development	of	object-oriented	programming	methods	in	the	1970’s	and	1980’s,	and	the	shift	
to	modular	and	interface-based	software	development	that	resulted,	emphasized	re-use	of	code	at	
all	scales	of	development.	With	the	phenomenal	success	of	Doom	and	Quake,	id	Software	chose	to	
license	their	game	as	an	engine	for	other	developers	(Abrash,	1997),	and	the	idea	of	separation	
between	engine	and	a	specific	game	became	commonplace.	Since	the	early	1990’s	there	have	been	
dozens	of	commercial	game	engines	released,	often	tuned	to	a	specific	genre	of	game,	with	regular	
updates	to	keep	them	in-line	with	the	latest	hardware	advances.		

Over	this	period	the	emphasis	went	from	representing	a	space,	to	realistic	visual	representation,	to	
incorporating	sophisticated	physics	both	to	support	representation	of	the	natural	world	and	to	
support	events	in-game	(like	explosions,	destruction	of	materials,	and	behaviour	of	fluids).	As	a	
result,	game	engines	incorporate	sophisticated	representation	mechanisms	for	materials,	physics	
engines,	databases	to	store	unique	and	repeating	spatial	features,	methods	for	procedural	
generation	of	entire	environments,	dialog	and	interaction	AI	systems,	and	physically	accurate	
models	for	light	and	sound.		
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Figure 1: Is it real or is it Unity? A 2018 demonstration game using high resolution graphic assets for 
a forest environment (Unity Asset Store, 2019 *). 

A	significant	side	effect	of	game	engines	being	reusable	has	been	the	involvement	of	hobbyists	
making	new	games	or	modifying	-	modding	-	existing	ones.	Modding	communities	are	training	
grounds	for	aspiring	game	developers	with	sophisticated	web-based	training	sites,	development	
teams,	and	impressive	products,	for	the	most	part	being	produced	by	amateurs.			

Although	there	are	many	available	game	engines,	we	will	hereafter	focus	on	discussing	two:	the	
Unreal	Engine	(Unreal,	2019)	and	Unity	(Unity	Web,	2019).	We	will	also	briefly	discuss	one	tool	that	
operates	as	a	plug-in	for	game	engines	–	the	Houdini	toolkit	(SideFX,	2019).		

1.3	Building	Loading,	Scripting,	Modding	

Game	engine	and	authoring	environments	provide	a	visualization	interface	where	a	world	can	be	
constructed,	tested,	and	ultimately	packaged	and	distributed.	The	essential	elements	of	a	game	
world,	all	relying	on	robust	code	in	the	provided	engine,	are	lights,	objects,	sound	sources,	and	
special	purpose	features	for	special	effects	such	as	fires	and	waterfalls.	Generic	objects	include	
terrain,	buildings,	the	sky,	game	characters,	and	the	physical	manifestation	of	features	such	as	lights.	
Objects	can	have	physics	defined	–	how	they	interact	with	other	objects	upon	collision,	for	example.	
Game	developers	have	developed	a	series	of	knowledge,	feature,	and	process	representation	
frameworks	that	rival	those	found	in	a	modern	GIS,	although	with	significantly	different	emphasis.	
An	example	of	a	game	development	interface,	the	Unity	interface,	is	shown	in	Figure	2.		
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Figure 2: The layout of the Unity development interface (Unity 2019.1 Manual, 2019 *) 

The	physics	engine	in	a	game	engine	allows	a	game	world	to	operate	as	a	geosimulation.	Each	game	
object	can	have	physical	parameters	defined	and,	when	the	game	is	run,	the	behaviour	of	the	object	
under	various	forces	is	simulated.	This	might	include	a	rock	tumbling	down	a	slope,	wheels	
interacting	with	pavement,	or	an	object	responding	to	an	impact	from	another	object.	The	physics	
that	supports	making	a	good	game	is,	ideally,	the	physics	of	the	real	world.		

The	game	authoring	environment	supports	loading	datasets	from	varied	sources,	much	like	a	GIS	
would.	Terrain	can	be	imported,	models	of	physical	objects	can	be	inserted	and	varied,	and	a	
modular	software	architecture	allows	for	the	insertion	of	live	links	(plug-ins)	to	other	software	tools	
with	specific	capabilities.	Details	of	a	game	development	pipeline	are	found	in,	for	example,	Hallisey	
(2012).			

Object	behavior	is	controlled	by	scripts	attached	both	to	the	objects	themselves	and	to	the	larger	
environment.	Scripts	run	during	game	start,	for	each	frame,	or	when	a	specific	interaction	happens.	
Time	is	handled	both	explicitly	-	events	happen	in	time	-	and	implicitly	-	some	events	happen	once	
per	screen	update.		

There	are	two	stand-out	game	engines	widely	used	at	an	amateur	to	professional	level	at	the	current	
time.	These	are	Unity,	originally	Unity3d	to	highlight	the	fact	that	it	emphasized	3d	game	
construction,	and	Unreal,	originally	the	core	of	the	game	Unreal	by	Epic	Games,	released	in	1998.	
Both	have	seen	widespread	use	on	projects	ranging	from	independent	game	design	though	
commercial	game	projects	at	major	studios.	They	are	also	increasingly	used	to	support	scientific	
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research,	especially	projects	relying	on	virtual	or	augmented	reality,	since	both	tools	provide	
excellent	support	for	mobile-device	AR/VR	development.	These	environments	are	extensible,	an	
example	being	the	widely	used	Houdini	toolkit	that	allows	visually	scripted	effects	to	be	generated	
either	in	parallel	to	or	within	a	game	engine.		

1.4	Game	Engines	in	Science	

There	have	been	significant	attempts	to	use	game	engines,	game	development	tools,	and	game	
communities	as	a	basis	of	research	that	falls	within	the	general	purview	of	GIScience	in	the	past.	A	
very	brief	review	of	relevant	literature	follows.		

Early	examinations	of	games	in	science	include	Lewis	et	al	(2002),	Rhyne	(2002),	and	Zyda	(2005),	
Broad	discussions	of	computer	games,	cartography,	and	GIScience	are	provided	in	Ahlqvist	(2011),	
and	of	game	design	principles	in	Salen	et	al	(2004).	Bainbridge	(2007)	and	Ahlqvist	et	al	(2018)	
discuss	the	use	of	analytics	to	study	phenomena	related	to	game	communities.		

Zyda	(2005)	draws	the	link	between	games	and	simulation	for	educational	purposes.	A	detailed	case	
study	of	the	use	of	game	engines,	high	resolution	geospatial	data,	and	scientific	concepts	to	build	
educational	augmented	reality	experiences	is	given	in	Harrap	et	al.	(2012).	Serious	games	–	
educational	games	–	are	discussed	in	detail	in	Michael	et	al	(2005).	There	are	also	broad	parallels	
between	research	in	using	games	to	simulate	social	interaction	and	the	GIScience	discipline	of	agent	
modeling.		

The	current	project,	discussed	in	detail	below,	is	a	decision	support	tool,	not	a	game	as	such.	While	it	
is	informed	by	game	and	game-like	projects	in	the	past,	it	is	closer	to	geosimulation	in	that	we	aim	to	
carry	out	work	that	should	be	within	the	capability	of	a	modern	GIS	tool	but	is	not.	Our	direction	is	
quite	different.	It	is	more	in	the	spirit	of	a	reply	to	Gahegan	(2018):	our	GIS	is	a	game	engine.		

2.0	Using	Unity	to	Simulate	Rockfalls	

As	noted	above,	the	field	of	geological	engineering	deals	with	(among	other	things)	situations	where	
the	geological	environment	directly	or	indirectly	impacts	human	safety,	and	infrastructure	
development	or	maintenance.		

Rockfalls	occur	when	a	rock	on	a	slope	moves,	often	energetically.	The	issue	becomes	acute	when	
the	rock	or	rocks	interact	with	infrastructure	or	persons.	In	the	case	of	rail	infrastructure,	rockfalls	
can	derail	trains	immediately,	and	can	destroy	or	obstruct	track	causing	subsequent	derailment.	The	
impact	on	infrastructure	and	especially	human	life	can	be	significant.		

Our	research	group	has,	in	cooperation	with	Canadian	rail	companies	and	the	Federal	Government,	
been	using	an	active	section	of	rail	line	about	200	km	NE	Vancouver,	British	Columbia	(Figure	3)	as	a	
testing	area	for	new	ways	of	detecting,	assessing,	and	ultimately	forecasting	rockfalls.		
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Figure 3: Rail traffic in the Fraser Canyon, B.C. Note the presence of structures to deflect rockfalls 
over the track and the complex geometry of the slopes generating and deflecting rockfalls. (Photo 

courtesy D. Bonneau, 2019) 

The	slope	in	question	(Figure	3)	cannot	be	(safely)	directly	surveyed,	and	so	we	have	developed	
significant	protocols	using	terrestrial	and	airborne	laser	scanning	and	photogrammetry	to	
periodically	capture	the	geometry	of	the	slope.	Differencing	of	subsequent	surveys	allows	an	
approximate	change	model	to	be	made,	and	the	change	is	then	attributed	to	various	surface	
processes	including	rockfall.	Our	current	models	are	accurate	at	the	10cm	level	over	areas	many	
hundreds	of	meters	in	length	and	height,	and	we	have	had	significant	success	at	both	showing	
correspondence	between	change	detection	and	known	events	(Kromer	et	al,	2018)	and	in	limited	
forecasting	of	impending	events	(van	Veen	et	al,	2018).		

Existing	rockfall	simulation	tools	suffer	from	several	limitations.	Many	are	two-dimensional:	they	
treat	a	slope	as	a	profile,	and	rocks	are	only	simulated	in	the	plane	of	that	profile.	Many	have	limited	
outputs,	and	deriving	derivative	information	either	for	validation	or	for	consequence	analysis	is	
difficult.	All	suffer	from	being	black-boxes,	where	the	internal	method	used	to	simulate	events	
ranging	from	triggering	to	rock	fall	itself	may	not	be	accessible.	Most	simulations	are	based	on	a	
lumped	mass,	where	the	shape,	volume	and	potential	for	rock	fragmentation	during	the	fall	are	not	
considered	–	all	important	components	affecting	the	“real”	path	of	a	rock	down	a	slope.		

As	a	result,	and	given	the	growing	capabilities	of	game	engines,	we	chose	to	develop	a	rockfall	
simulation	tool	using	Unity,	to	test	it	against	known	cases,	and	to	evaluate	its	performance	against	
other	tools.	This	constituted	the	MSc	theses	of	two	of	the	authors	(Ondercin	and	Sala).	



7	
	

2.1	Prototype	1:	Simulating	Rockfalls	in	Unity	

The	first	implementation	of	a	rockfall	model	in	Unity	was	by	Ondercin	(2016).	The	thesis	represented	
several	scenarios	in	the	Fraser	Canyon	corridor	and	focused	on	basic	tool	development	through	
Unity	scripting.	Our	data	sources	are	at	least	an	order	of	magnitude	more	detailed	than	those	
normally	used	in	a	game,	so	a	significant	part	of	the	work	was	simply	working	out	how	to	build	a	
model	and	how	to	achieve	reasonable	performance	with	a	high-end	gaming	computer.		

In	Unity	all	objects	can	be	assigned	physical	parameters	(such	as	mass	and	bounciness)	that	control	
how	they	act	and	interact.	Time	is	modelled	both	in	real-world	and	per-frame	update	terms.	Physics	
is	modeled	in	real-world	time	and	aspects	of	interface	updating	are	controlled	by	the	per-frame	
update	to	keep	the	simulation	running	in	real	time.		

In	the	first	prototype,	blocks	were	placed	at	the	top	of	a	slope,	and	when	the	simulation	was	run	the	
Unity	physics	subsystem	simulated	the	rocks	interacting	with	the	terrain	and	each	other	as	they	
moved	down	the	slope.		

	

Figure 4: Two views of the same rockfall simulation. The slope is captured by terrestrial LiDAR 
scanning. This model has 287 blocks of cubic shape and .064 m3 size. Modified after Ondercin 

(2016).  

In	this	prototype	the	blocks	have	simple	geometry,	and	notably	do	not	fragment.	

Since	the	intent	is	to	produce	a	tool	useable	by	a	geotechnical	engineer,	the	system	can	output	
information	relevant	to	slope	engineering	tasks.	For	example,	a	sensor	“wall”	can	be	inserted	on	the	
slope	and	each	object	that	passes	through	that	polygon	reports	all	parameters:	engineers	are	often	
interested	in	the	maximum	height	of	a	bouncing	block,	and	the	energy	of	impact,	for	example,	to	
design	a	barrier	fence	or	wall	(Figure	5).	The	data	collected	was	passed	to	a	data	visualization	
package	(Tableau	data	analytics	software)	where	statistical	analysis	and	data	visualization	were	
carried	out.		
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Figure 5: Sensor fences (left figures) and retaining walls (right figures) in the Unity rockfall model. 
Simulation with 1000 blocks of .008 m3 (from Ondercin, 2016).  

Outstanding	issues	remaining	at	the	end	of	this	effort	included	the	lack	of	significant	geometric	
variation	between	blocks	and	the	lack	of	precise	validation	against	field	cases.		

2.2	Prototype	2:	Validating	Unity	Rockfalls	

The	second	phase	of	development	of	the	Unity	rockfall	tool	was	the	thesis	of	Sala	(2018).	This	
project	focused	on	block	geometry	and	comparison	to	existing	rockfall	case	studies.	In	particular,	it	
relied	on	several	cases	where	rocks	were	either	deliberately	dropped	down	slopes	(Ushiro	et	al,	
2006;	Vick,	2015;	Volkwein	et	al,	2018),	or	where	sufficient	records	existed	in	the	study	site	database	
to	precisely	determine	the	source	volume	and	geometry,	impact	positions,	and	deposition	
distribution	and	fragment	sizes.	This	study	is	documented	in	detail	by	Sala	(2018)	and	Sala	et	al.	(in	
press).		

The	first	issue	addressed	was	block	fragmentation.	Given	the	available	slope	data,	we	often	have	
superb	pre-fall	geometry	for	a	zone	that	fails,	but	only	in	rare	cases	see	how	a	falling	mass	
subdivides	both	initially	(as	it	is	triggered)	or	subsequently	(as	it	bounces	or	impacts	other	falling	
masses).	By	making	geologically	reasonable	assumptions	about	fragmentation,	a	model	was	
constructed	where	a	block	fragments	during	transport.		
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Figure	6:	1000	fragment	rockfall	simulation	using	discrete	and	variable	fragment	shapes.	Total	
volume	is	100	m3	(from	Sala	et	al.	in	press).		

Several	case	studies	were	then	recreated	mirroring	the	case	studies	from	the	literature,	to	
determine	if	the	Unity	model	provides	impact	points	and	energetics	similar	to	what	was	observed	in	
the	real	world.	The	coherence	between	the	models	and	the	observational	data	was	excellent,	as	
documented	in	Sala	(2018).		

2.3	Experiments	with	Other	Tools	

Briefly,	we	have	experimented	with	environment	creation	and	scripting	in	both	the	Unreal	Engine	
and	in	the	Houdini	effects	package	introduced	above.	We	highlight	work	in	progress	by	one	of	the	
authors	(Difrancesco)	that	examines	Houdini	use	for	the	same	slopes	and	same	environmental	
conditions.	Houdini	uses	a	procedural	node-based	workflow	(Figure	7)	and	is	thus	programmed	
visually.	A	breakable	object	set	was	defined	and	released	on	the	slope.	It	was	rendered	both	with	a	
photorealistic	render	option	(24	hours	on	a	modern	desktop	PC)	and	with	the	internal	quick	render	
option	as	a	‘Flipbook’	(1	hour).	Fragmentation	results	were	superb	(Figure	8)	but,	unlike	Unity,	the	
system	is	clearly	not	real-time.		
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Figure	7:	Hierarchical	visual	programming	of	a	rockfall	simulation	in	Houdini.	

	 	

	 	
	

Figure	8:	Extract	from	simulation	of	rockfall	with	material-based	fragmentation.	

Work	in	both	Unreal	and	Houdini	to	compare	and	contrast	with	Unity	continues.		

3.0	Discussion	and	Future	Work	

Our	ongoing	attempts	to	model	rockfalls	represent	a	specific	case	of	geological	geosimulation.	The	
novelty	of	our	approach	is	in	that	we	were	quickly	able	to	produce	results	that	appear	to	be	more	
realistic	by	relying	on	the	software	development	environment	provided	by	Unity,	and	that	this	then	
provided	several	distinct	advantages:	
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1.	Using	Unity	physics	engine	component	allowed	us	to	avoid	long	periods	of	development.		

2.	The	Unity	tool	ecosystem	allowed	rapid	world	and	feature	creation.		

3.	Unity	supports	add-ons	such	as	agent-based	simulation,	allowing	follow-on	studies	that	move	
from	hazard	to	risk	analysis.		

4.	Our	code	–	the	scripts	needed	to	add	the	rockfall	simulation	to	Unity	–	can	be	freely	distributed,	
and	Unity	is	widely	available	at	no	cost	for	academic	use.		

There	were	a	number	of	limitations	to	the	studies	done	to	date.	We	are	working	to	address	these	as	
development	continues.	As	noted,	we	are	also	making	similar,	limited	experiments	with	other	tools.		

While	we	can	replicate	real	world	tests,	testing	against	different	physics	models	–	the	physics	engine	
in	Unity	is	a	closed	subsystem	–	has	been	a	problem.	As	of	2019,	Unity	supports	multiple	physics	
engines	allowing	internal	validation.	Note	that	the	community	studying	rockfalls	do	not	have	enough	
calibration	data	sets	at	the	moment	to	come	up	with	a	recommended,	verified	set	of	physics	
parameters;	this	both	limits	validation	of	models	and	our	ability	to	directly	compare	results	from	
different	tools.			

While	we	are	now	simulating	disparate	rock	fragment	shapes	and	sizes,	we	are	not	directly	
simulating	rock	mechanics.	This	is	both	a	scientific	and	a	computing	performance	problem.	The	
performance	issue	will	be	addressed	through	GPU-based	computing.	The	scientific	problem	requires	
a	number	of	advances:	better	understanding	of	the	local	geology,	better	understanding	of	the	
collision	processes,	and	a	shift	from	approximations	for	particle	interactions	to	more	robust	(but	
computation-heavy)	representations.	The	interaction	issue	is	being	addressed	by	studies	where	
rocks	are	instrumented	and	observed	over	many	rockfall	events.	The	slope	geology	problem	is	being	
addressed	by	better	remote	sensing	approaches,	but	ultimately	geological	engineering	is	always	
limited	by	both	the	scale	of	observation	of	the	Earth	and	the	inherent	variability	of	geological	
materials.	A	completely	accurate	representation	of	surface	and	subsurface	geology	is	a	game	we	
cannot	win.		

A	playlist	of	example	videos	is	referenced	in	the	paper	notes	below.		

4.0	Conclusions	

This	initiative,	to	represent	and	simulate	rockfall	processes	in	Unity,	responds	to	some	of	the	
criticism	of	GIScience	posed	by	Gahegan	(2018):	that	there	is	a	need	to	study	temporal	phenomena,	
that	a	wider	view	of	representation	is	needed,	and	that	there	is	a	need	to	have	a	larger	community	
active	in	software	development.	We	leverage	a	spatiotemporal	simulation	engine	–	a	game	engine	–	
with	significant	physical	modeling	capabilities	to	develop	and	test	models	of	rockfalls.	Our	models	
are	open	source	and	run	on	the	freely	available	Unity	engine.	Related,	preliminary	models	run	in	
Houdini	and	Unreal.	We	successfully	replicate	real	world	cases	and	have	the	ability	(unlike	
commercial	rockfall	tools)	of	easy	modification,	linkage	to	other	software	packages,	and	ease	of	
transfer	of	terrain	data	from	other	products.	
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This	approach	can	be	generalized	to	a	wide	variety	of	cases	where	physical	process	simulation	is	
desired,	and	has	direct	links	to	the	application	areas	of	civil	engineering	and	infrastructure,	where	
simulating	infrastructure	proposals	under	different	traffic	and	natural	hazard	scenarios	is	required.		

This	approach	has	the	further	advantage,	echoing	Gahegan	(2018),	that	there	is	a	huge	resource	of	
young	scientists	schooled	in	game	development,	eager	to	apply	those	skills,	and	looking	to	make	a	
mark.	The	skills	these	students	acquired	modding	games	are	directly	transferable	to	projects	like	
ours.		

The	budgets	of	game	engine	providers	and	game	studios	dwarf	the	budgets	of	individual	
researchers,	or	even	entire	fields	of	research	at	an	international	level.	Since	advances	in	realistic	
physical	simulation	of	processes	makes	these	tools	better,	and	consequently	result	in	better	and	
cheaper	games,	there	is	a	significant	opportunity	for	cooperative	tool	development	between	the	
game	industry	and	researchers	in	GIScience.		
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6.0	Notes	

A	playlist	(not	searchable,	but	available	via	this	link)	has	been	posted	at:	
https://www.youtube.com/playlist?list=PLJzaXhGZdpBbyyZR_OhGHc5OoV47tCWzk	

*images	indicated	with	an	“*”	used	with	permission	of	Unity	Technologies;	"Unity"	and	Unity	logos	
are	registered	trademarks	and	trademarks	of	Unity	Technologies	or	its	affiliates	in	the	US	and	
elsewhere.	Neither	this	work	nor	its	author	is	affiliated	with,	or	endorsed	or	sponsored	by,	Unity	
Technologies	or	its	affiliates.	
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