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blood pressure.

SHR VSMC significantly inhibited the proliferation response of SHR and
WKY lymphocytes. SHR VSMC also produced significantly higher amounts of NO.
The increase in NO synthesis in VSMC was significantly correlated with the rise in
blood pressure in SHR. VSMC of rats with sali-induced hypertension also exhibited
elevated NO production. These findings suggested that high blood pressure may
influence the expression of inducible NO synthase in VSMC in an attempt to
compensate for elevated blood pressure.

Elevated NO synthesis in SHR macrophages and VSMC suggested that a
general activation of the inducible NO synthesis system may exist in SHR. The
lymphocyte depression was the result of this activated NO synthesis, especially NO
synthesis by macrophages. This abnormality in immune system, therefore, is not

causally associated with hypertension or vice versa in SHR.
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CHAPTERI. INTRODUCTION

I INTRODUCTION

Essential hypertension is a disease that afflicts 20-25% of North Americans
(Rowland and Robert, 1982). While many factors have been postulated to contribute
to hypertension, the pathogenesis of this complex disorder is not fully understood.
During the last fifteen years, a large body of evidence has come to suggest that
altered immunological activity may contribute to both the initiation and the
maintenance of the hypertensive state in human hypertension as well as in
experimental animal models (Dzielak, 1992). It has also been documented that
spontaneously hypertensive rats (SHR), a widely used experimental animal model of
essential hypertension, exhibit abnormal immune responses (Takeichi er al., 1988).

The substantial number of studies concerning the interaction between the
immune and vascular systems point to two possibilities in this relationship. One is
that hypertension may be intimately related to immune dysfunction. This possibility
is supported by the evidence that more advanced lymphocyte abnormalities could be
correlated with increasing age and severity of hypertension (Takeichi et al., 1980;
Pascual er al., 1992). Thymic transplants and other immunological manipulations
alleviated immune abnormalities and lowered blood pressure in SHR (Ba et al.,1982;
Strausser, 1983; Khraibi er al., 1984; Norman et al., 1985). Interleukin-2 (IL-2)

administration has been shown to prevent the development of hypertension in young
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SHR and reduce blood pressure in adult SHR with established hypertension (Tuttle
and Boppana, 1990). It has also been shown that both food restriction and/or
physical exercise reduced blood pressure and restored lymphocyte function in SHR
(Fernandes et al., 1986). The second possibility is that hypertension and immune
dysfunction may not be related, but may, instead, be co-occurring defects. This
hypothesis is supported by observations showing that immune abnormalities were
present in prehypertensive rats, and did not change as the hypertensive state
progressed (Fannon er al., 1992). Hilme and co-workers did not observe a
relationship between the severity of hypertension and immune abnormalities (Hilme
et al.,1993). Correction of the lymphocyte defect by IL-2 administration in SHR did
not result in a reduction in blood pressure (Ofosu-Appiah et al.,1993). Despite a
decade of effort, the precise relationship between hypertension and immune
abnormalities remains unclear.

Therefore, the overall objective of this thesis is to investigate the relationship
between immune abnormalities and hypertension. Immune function in SHR and
Wistar Kyoto (WKY) rats, their genetic normotensive control, will first be defined
and compared. Because lymphocytes are the major effector cells in the immune
system and also because of the complexity of the immune system, only the
lymphocyte proliferation response and its relevant aspects will be studied and
discussed. The role of nitric oxide (NO) in the mechanism of the lymphocyte
proliferation defect in SHR will also be elucidated. These studies constitute chapters

III and IV of this thesis.
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Hypertension is characterized by an increase in the peripheral vascular
resistance in the presence of normal cardiac output. The increased resistance may
be caused by either excessive vascular smooth muscle contraction mediated by an
altered regulatory system or by morphological and functional changes in the vascular
wall. It has been suggested that vascular smooth muscle cells (VSMC) can influence
the immune response by antigen presentation and cytokine production (Warner and
Libby, 1989; Fabry et al., 1990a; Loppnow and Libby, 1990; Ikeda er al., 1993). The
immune system can also influence VSMC and the vascular wall, especially in
pathological conditions, by producing antibodies, cytokines and subsequent immune
responses (Beasley ef al., 1989; Chen and Schachter, 1993; Hilme er al., 1993).
Therefore, it is of great interest to see if in hypertension there is any interaction
between lymphocytes and VSMC, the major effecior cells in the immune system and
the vascular system, respectively. No direct evidence is available concerning this
relationship. In chapter V of this thesis, the influence of VSMC on lymphocytes in
the hypertensive state will be presented. The mechanism responsible for the effect
of VSMC will also be discussed.

The final question that the present study addresses concerns the relationship
between immune dysfunction and hypertension in SHR. The last two chapters will
present the interrelationship of immune dysfunction and hypertension, and the
involvement of NO in this relationship.

The main focus of this thesis is on immune abnormalities in relation to

hypertension in SHR and not a study on the immune system in SHR per se.
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Therefore, an extensive literature review of the immune system will not be included.

The following section reviews relevant fields which this study attempts to address.

II. BLOOD PRESSURE CONTROL AND HYPERTENSION

A. GENERAL MECHANISMS

The overall goal of the blood pressure control system is to provide a steady
pressure to ensure proper blood flow through each organ. There are two major
parameters of blood pressure control: total peripheral resistance and cardiac output
(MAP = CO x TPR). There is no single simple arterial pressure regulatory
mechanism. Instead, arterial blood pressure is regulated by a fine control complex.
It consists of a rapid feedback control which is vested almost entirely in the nervous
control of circulation acting through reflexes and direct signals from the central
nervous system. This short-term regulation depends on changes in the strength of
contraction of the heart, the capacity of the blood vessels and the total peripheral
resistance. The pressure controls that act with intermediate rapidity include capillary
fluid shift between the circulation and the interstitial fluids and hormonal control
involving angiotensin, vasopressin and other substances. The long-term pressure
control system is primarily vested in the structural changes in the cardiovascular
tissues and in the kidney and its related systems acting through the control of blood

volume and extracellular fluid volume. Through these well designed mechanisms, the
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cardiovascular system maintains a constant pressure that is high enough so that any
tissue can receive an appropriate blood flow depending on circumstances.
Hypertension is a manifestation of disease processes which are the result of
a derangement of the blood pressure control system. Many factors have been
postulated to contribute to the hypertensive state, including alteration in renal
function, enhanced vascular smooth muscle reactivity, increased sympathetic tone,
alteration in the renin-angiotensin system, alteration in the endocrine system, diet
and genetic factors. Despite continuing intense effort, the pathogenesis of essential
hypertension is still poorly understood. The overall complexity of mechanisms is well
illustrated by "Page’ s mosaic concept of hypertension”, which el ..dated that

hypertension was the result of these interrelated mechanisms (Page, 1987).

B. CONTROL AND CHANGES OF VASCULAR RESISTANCE

IN HYPERTENSION

Arteries with diameters less than 300 uM play a key role in the determination
of peripheral resistance and, thereby, blood pressure. Vascular resistance is under
the control of multiple vasodilators and/or constrictors acting on VSMC. The
hallmark of hypertension is an increase in peripheral vascular resistance. This
increase is considered to be related to an increase in tone of the resistance arteries

as well as sometimes to structural changes in these blocd vessels.



1. Neural Mechanisms

It has been well documented that neuromechanisms are involved in the
pathogenesis of hypertension (de Champlain, 1990; Dickinson, 1991a). Since a
complete review of this subject is beyond the scope of this thesis, only
nevrotransmitters will be discussed. Norepinephrine is released by the adrenergic
vasoconstrictor fibers of the sympathetic nervous system at the site of the blood
vessels. It acts on oeadrenergic receptors eliciting vasoconstriction.  Neural
regulation of vascular resistance is accomplished primarily by alteration of the
number of impulses passing down through these nerve fibers to the blood vessels.
Acetylcholine is released by sympathetic cholinergic fibers innervating the resistance
vessels of skeletal muscle and skin. It acts on muscarinic receptors causing
vasodilation. Active sympathetic vasodilation can be observed in the resistance
vessels that have B-adrenergic receptors. A small proportion of the resistance vessels
receive parasympathetic fibers. Stimulation of these fibers induces vasodilation.
However, the effect of these cholinergic fibers on toial vascular resistance is small.

A large number of studies have reported that essential hypertension is
frequently characterized by sympathetic activation and that this is more evident in
the early phases of hypertension development (Floras and Hara, 1993; Mancia et al.,
1993). There are also reports demonstrating that the release or metabolism of certain
neurotransmitters  is altered in hypertension (Michel et al., 1990). Increased
norepinephrine has been reported in human essential hypertension (de Champlain

et al.,1991; Ferrier er al.,1993). SHR exhibit increased sympathetic neural input to
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a number of organs, including the vasculature, spleen and thymus (Donohue e al.,
1988; Burnstock, 1990; Gattone et al., 1990; Purcell and Gatton, 1992). SHR show
an increase in directly recorded sympathetic nerve activity (Thoren and Ricksten,
1979; Schramm and Choronboy, 1982) as well as augmented release of
norepinephrine (Tsuda ez al., 1987; Westfall et al., 1987). Recently, Pacak and co-
workers observed that norepinephrine release and catecholamine synthesis in the
posterolateral hypothalamus of SHR were elevated (Pacak et al., 1993). They also
observed that the aradrenergic receptor inhibition of both norepinephrine release
and catecholamine synthesis was augmented in juvenile SHR (Pacak ef al., 1993).
Alterations in adrenergic receptors, such as o, and f3 receptors, have been reported
in SHR (Castellano et al., 1993). Renal denervation (Norman et al., 1985) and
systemic sympathectomy (Yamori er al., 1985) prevented the onset of hypertension.
Another regulatory function of adrenergic nerves is probably a long-term trophic
effect. The evidence for this hypothesis comes mainly from experiments in which
VSMC proliferation and wall-to-lumen ratio are attenuated and decreased,
respectively, by ganglionectomy (Bevan, 1984) and by neonatal central and peripheral
catecholaminergic lesions (Slotkin er al.,1988). It has been suggested that due to the
trophic effect, sympathetic hyperinnervation may protect smooth muscle cells from
necrosis caused by the greater tangential wall stress associated with chronic
hypertension (Tenkova et al., 1993). However, the established blood pressure
elevation is supported mainly by other means, many of which involve structural

changes, especially in the systemic arterioles, kidney and heart.
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Many autonomic vascular nerves release other transmitters, such as ATP,
vasoactive intestinal peptide (VIP), substance P, calcitonin gene-related peptide
(cGRP), serotonin, dopamine, neuropeptide-Y, somatostatin, etc. It has been
suggested that many of these transmitters are co-stored and, presumably, co-released
(Dickinson, 1991a). The amount of overspill of most of these neurotransmitters
from nerve ending is small and difficult to measure. The involvement of these

transmitters in hypertension is, therefore, not clear.

2, Humoral Factors
Genetic and environmental factors participate in the regulation of blood
pressure and in the etiology of hypertension via intermediary phenotypes which
control cardiac output and total peripheral resistance and, thus, blood pressure.
Vasoactive humoral factors are important components of these intermediary
phenotypes and blood pressure is the result of a balance between vasoconstrictors
and vasodilators. Alteration of this equilibrium may result in hypertension. Humoral
factors may affect vascular resistance by either altering vascular smooth muscle
reactivity or by influencing cell growth.
a. Renin-angiotensin system
Over 30 years ago the renin-angiotensin system was revealed as a hormonal
axis functioning as a major regulator of blood pressure and electrolyte homeostasis
(Laragh, 1960). The enzyme renin, normally secreted by juxtaglomerular cells in

response to the local perception of reduced perfusion, sets off a blood borne chain
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reaction that yields angiotensin II which by its potent vasoconstrictor properties and
its release of aldosterone, elevates blood pressure to the point where the local
reduced renal perfusion is eliminated and the secretion of renin stops (Laragh et al.,
1972; Lynch and Peach, 1991). Accumulated evidence suggests the existence of a
local renin-angiotensin system in various tissues, including those involved in
cardiovascular regulation, such as heart, vascular wall, kidney, adrenal gland and
brain (Gould et al., 1964; Dzav, 1988; Mulrow, 1989; Soubrier er al., 1993). The
efficiency of angiotensin converting enzyme inhibitors in reducing blood pressure in
SHR is thought to be due to inhibition of angiotensin II formation (Clough et al.,
1982) and inhibition of bradykinin degradation (Gohlke er al., 1994). In essential
hypertension, plasma renin concentrations are variable. On the average, the values
are not notably different but the spread of values is wider (Brunner et al., 1972).
As a group, hypertensive patients appear to exhibit an impaired ability to turn off
their renin secretion (Laragh and Brenner, 1990). Recent studies have
demonstrated that plasma renin activity was increased in hypertensive subjects
(Licata er al.,1994) and the SHR VSMC contained a higher number of angiotensin
binding sites (Jaiswal ef al., 1993). It has been shown that SHR have a genetically
determined enhanced responsiveness to angiotensin II mediated by the AT1 receptor
(Kost and Jackson, 1993). It has been reported that intracellular free calcium
concentration is increased and intracellular free magnesium concentration is
decreased in VSMC of hypertension and that the angiotensin II stimulated calcium

response may be related to the simultaneously decreased intracellular magnesium
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concentration (Tonyz and Schiffrin, 1993).  Angiotensin II has also been
demonstrated to increase VSMC growth rate and cell size (Campbell-Boswell and
Robertson, 1981; Black ef al., 1993). It has been suggested that angiotensin II may
act as a growth factor to promote structural changes in the vasculature in
hypertension (Lever ef al., 1992; Oddie et al.,1993). In addition, linkage analysis and
transgenic studies suggest that abnormally elevated expression of the angiotensinogen
gene may contribute to the development of hypertension (Jeunemaitre et al., 1992,
Kimura et al., 1992).

b. Parathyroid hypertensive factor (PHF)

PHF, the most recent arrival in the family of circulating pressor factors, was
described by Lewanczuk and Pang in 1989. PHF is isolated from plasma of SHR and
of patients with essential hypertension (Benishin e al., 1991). PHF appears to
originate primarily in the parathyroid gland (Pang and Lewanczuk, 1989). This
secretion was inhibited by an increase in dietary calcium (Lewanczuk et al., 1990)
It is believed that PHF directly influences the calcium balance in VSMC thereby
increasing vascular resistance (Shan er al., 1994). Since PHF has also been linked
to a characteristic pattern of abnormalities in overall calcium regulation, it may,
therefore, serve as a marker indicating the effectiveness of calcium channel blockade.
In human hypertensive patients, the presence of PHF has been shown to predict a
favourable therapeutic response to calcium channel blockade (Pang er al., 1994).
PHF has been strongly implicated as a causative factor in low-renin and salt-sensitive

forms of rat and human hypertension (Pang et al., 1994).
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¢. Vasopressin

Vasopressin is a powerful arterial vasoconstrictor at concentrations higher
than those which reduce water excretion (Verney, 1947). In recent years, there has
been considerable interest in the possible role of vasopressin in the pathogenesis of
hypertension. Numerous studies have attempted to demonstrate the contribution of
vasopressin to several forms of hypertension, particularly in deoxycorticosterone
acetate (DOCA)-salt hypertensive rats and in SHR. Although it is likely that
vasopressin is essential for the production of DOCA-salt hypertension (Zicha et al.,
1989), the contribution of vasopressin to hypertension in SHR is still a subject of
controversy. Plasma vasopressin concentration, posterior pituitary vasopressin
content, and urinary vasopressin excretion were found to be elevated in SHR
(Crofton et al., 1978; Morris, 1982). However, it has also been reported that the
endogenous level of renal activity of vasopressin was suppressed in SHR (Li and
Bukoski, 1993). Enhanced pressor responsiveness to AVP was observed in SHR
(Ashida er al., 1983). It has been reported that the AVP-induced increase in
intracellular sodium concentration is augmented in SHR VSMC (Okada et al.,1993).
Treatment with a vasopressin antagonist significantly attenuated the development
of hypertension in SHR (Sladek er al., 1988; Yamada et al., 1994) and in Dahl salt-
sensitive hypertension (Crofton er al., 1993) suggesting that vasopressin may play a
role through V, receptors (vascular receptors) in the pathogenesis of hypertension.

d. Ouabain-like factor

Several laboratories have presented evidence that plasma from experimental



12
animals or patients with hypertension contains a factor that inhibits the electrogenic
sodium-potassium pump (Poston, 1987; Kramer et al., 1991; Ferrandi et al., 1993).
It was suggested that this inhibitory factor increases vascular resistance by turning off
the electrogenic pump and causing membrane depolarization thereby opening voltage
operated calcium channels, and by permitting sodium to accumulate intracellularly
thereby causing a decrease in calcium extrusion (Bohr et al.,1991; Meyer-Lehnert et
al., 1993). Recently, it has been shown that ouabain enhances the mitogenic effect
of serum in VSMC (Golomb et al., 1994) and induces the transcription of proto-
oncogenes in different cell types (Nakagawa et al., 1992). In addition, long-term
ouabain administration has been shown to produce hypertension in rats (Yuan ez al.,
1993).

e. Insulin

A growing number of studies in the last few years suggest an association
between hyperinsulinemia or insulin resistance and hypertension (Reaven, 1990;
Dengel et al., 1994). It has been proposed that insulin plays a role in the
pathogenesis of hypertension (Modan er al., 1985), possibly by stimulating the
sympathetic nervous system (Modan and Halkin, 1991), promoting kidney sodium
retention (Defronzo et al.,1976; Gupta et al.,1992), and by affecting Na/K-ATPase,
pH, calcium and other potential cellular functions (Ferrari and Weidman, 1990).
Recently, it has been shown that a reduction in insulin sensitivity precedes the
development of hypertension and may also be coupled to low physical fitness (Endre

et al., 1994). Blockade of insulin secretion with octreotide prevents fructose-induced
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hypertension (Reaven et al.,1989). VSMC have been shown to possess receptors for
both insulin and insulin-like growth factor-1 (Pfeifle and Ditschuneit, 1983) implying
that VSMC is an important insulin-sensitive tissue (Standley er al.,1994). Insulin has
been demonstrated to stimulate vascular smooth muscle cell growth (Pfeifle et al.,
1980; Banskota er al., 1989). It has been suggested recently that insulin sensitivity
was more closely related to blood pressure, serum triglycerides and HDL cholesterol
than to hyperinsulinemia. Thus, insulin resistance may be more important than
hyperinsulinemia as a determinant of the risk factors for cardiovascular diseases
including hypertension (Lind er al., 1993).

On the other hand, it has also been reported that insulin concentration was
not positively related to hypertension and blood pressure in some races such as Asian
Indian or Chinese (Tappy et al., 1991; Dowse et al., 1993). Adipocytes from young
normotensive SHR showed resistance to insulin-stimulated glucose uptake. Chronic
infusion of insulin resulted in lower blood pressure and total peripheral resistance
in the dog (Brands e al., 1991) and no change in blood pressure in rats (Bursztyn er
al., 1993). Renovascular hypertension was not associated with insulin resistance
(Reaven and Chang, 1992). There was no significant difference in insulin stimulated
calcium influx in VSMC of SHR or WKY (Zhu et al., 1993). There is a lack of
hypertension in patients with polycystic ovary syndrome despite profound insulin
resistance (Zimmermann et al.,1992). Clearly, much more investigation is needed

to assess the possible role of hyperinsulinemia and insulin resistance in hypertension.
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f. Serotonin
Serotonin (SHT) can cause either vasoconstriction or vasodilation depending
upon the circumstances. The SHT,receptor mediates the vasoconstricting actions
of serotonin. This receptor is also responsible for the amplifying effect of serotonin
on other vasoconstrictor agents such as angiotensin II, norepinephrine and endothelin
(Van-Hueten et al.,1982; Yang, 1992). In addition, serotonin also promotes platelet
aggregation. It has been suggested that these mechanisms might augment or cause
hypertension (Vanhoutte, 1987). In hypertension, the vasoconstrictor effects of
locally released serotonin are increased (Vanhoutte, 1987). Pressor responses to the
serotonin receptor agonist a-Me-5HT were significar:tly greater in SHR than in WKY
suggesting the possibility of SHT sreceptor hypersensitivity in SHR (Balasubramaniam
et al., 1994). Furthermore, the serotonin antagonist ketanserin lowered blood
pressure in hypertensive patients (Vanhoutte et al, 1988) and in SHR
(Balasubramaniam et al.,1993). This antihypertensive action of ketanserin has been
suggested to be due to a synergistic effect of combined peripheral 5HT, and or
receptor blockade.
g. Kallikrein-kinin system
The kallikrein-kinin system is an important component of the vasodepressor
side of the vasoconstrictor and vasodilator systems. Thus, a deficiency in the
kallikrein-kinin  system may result in hypertension, especially where the
vasoconstrictor system is over expressed. Kallikreins are serine proteases which are

divided into two groups: tissue or glandular kallikrein and plasma kallikrein (Bhoola
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et al., 1992). The common link is that both plasma kallikrein and tissue kallikrein

release kinins from kininogens. Plasma kallikrein is synthesized in the liver,
circulates in the plasma as enzymogen and releases bradykinin from light molecular
weight kininogen (Seidah et al., 1990). Interacting with the Hageman factor, this
kininogen participates in the intrinsic blood clotting and fibrinolysis cascade, local
vascular resistance and inflammation (Kaplan and Silverberg, 1987). The glandular
or tissue kallikrein gene is expressed in tissue such as the salivary glands and
pancreas and in various tissues involved in the regulation of cardiovascular function,
such as the kidney, arteries, veins, heart, brain and adrenal glands. This enzyme has
strong kininogenase activity and releases bradykinin (Carretero et al., 1993).
Kinins act mainly as local hormones (autocrine and paracrine) via two
different types of receptors: Bl and B2 (Regoli ef al., 1989). Bl receptors appear to
primarily mediate the response in inflammation. Most of the known cardiovascular
effects of kinins are mediated by B2 receptors. NO and eicosanoids may mediate
some of the effects of kinins (Carretero er al.,1993). There are numerous indications
that the kallikrein-kinin system is under-expressed in various forms of hypertension.
In SHR, urinary Kkallikrein excretion was decreased (Carretero et al., 1978).
Hypertension itself may alter the expression of the kallikrein-kinin system. For
example, in renovascular hypertension arterial kallikrein and urinary Kkallikrein
excretion was decreased (Margolius et al., 1972). It has been reported that a
restriction of fragment length polymorphism (RFLP) of the kallikrein gene in SHR

is linked to high blood pressure (Pravence ef al.,1991). RFLP in the kininase II or
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angiotensin converting enzyme (ACE) gene is also linked to the development of
hypertension (Hilbert et al., 1991). Over-expression of ACE may result in a
decrease in vasodepressor kinins and an increase in the vasopressor angiotensin II
(Carretero et al., 1993). There is significant evidence that genetic alterations of the
various components of the kallikrein-kinin system may be important in the
pathogenesis of hypertension. Recently, a role for the brain kallikrein system in the
central regulation of blood pressure and also in alterations in blood pressure in SHR
has been reported (Maddu et al., 1990; Khan et al., 1993).

h. Atrial natriuretic peptide (ANP) and
brain natriuretic peptide (BNP)

ANP is a naturally occurring hypotensive agent which probably antagonizes
end organ responses to vasoconstrictors such as angiotensin II (Laragh, 1986). It has
been shown that a longer period of ANP infusion was required for significant effects
on blood pressure to be observed in hypertensive subjects (Cusson et al., 1990).
Deficiency of ANP might thus theoretically raise blood pressure. However, plasma
ANP levels are either increased or normal in essential hypertension (Sagnella er al.,
1986; Schiffrin, 1989). It is most unlikely that ANP deficiency plays a part in raising
blood pressure.

BNP is a recently identified member of the atrial peptide family. Initially
isolated from porcine brain (Sudih et al., 1988), it was later demonstrated to be
present in other species including the rat (Kambayashi et al., 1989) and human

(Mukoyama et al., 1991). BNP appears to be constitutively released from cardiac
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ventricular tissue (Mukoyama et al., 1991). Plasma concentrations of BNP are
increased in heart failure and in acute myocardial infarction (Mukoyama et al.,1991;
Morita et al., 1993). In essential hypertension, pathophysiological plasma
concentrations of BNP had significant acute effects in promoting natriuresis and
suppressing plasma aldosterone (Richards et al., 1993). These effects are similar to
the action of ANP. BNP and ANP may play separate but complementary roles in
fluid volume and blood pressure con‘trol (Richards et al., 1993).
i. Medullipin II

Medullipin II was initially described by Muirhead and co-workers (Muirhead,
1990). Renomedullary interstitial cells secrete medullipin I, which is conveyed to the
liver where it is converted to medullipin II. This factor is a vasodilator that
suppresses sympathetic tone, causes natriuresis and affects the central nervous system
(Muirhead, 1993). It has been suggested that medullipin has actions that counter the
major actions of the renin-angiotensin system (Muirhead, 1993). A deficiency of
medullipin is considered to contribute to the pathogenesis of various hypertensive
states. Medullipin lowered the blood pressure of SHR (Muirhead et al., 1991),
raising the possibility of using medullipin as a therzpeviic agent in human

hypertension.

3. Endothelium
The endothelium, an important tissue in the regulation of both contraction

and growth of vascular smooth muscle, produces and releases relaxing and
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contracting factors (Furchgott and Vanhoutte, 1989). It also synthesizes factors that
keep the surface nonadhesive and nonthrombogenic for circulating blood cells as well
as inhibiting proliferation of vascular smooth muscle cells (Vane, 1990). In
hypertension, it has been proposed that the endothelium is abnormal in all of these
aspects (Vanhoutte, 1989). The most important factor, endothelium-derived relaxing
factor (EDRF or nitric oxide) will be reviewed in a separate section.

a. Endothelin

Endothelin is a linear 21-amino acid peptide (Yanagisawa et al.,1988). There
are three structurally and pharmacologically separate endothelin isopeptides, named
endothelin-1,-2,and -3 (Yanagisawa et al.,1989). Activation of endothelin-1 receptors
on the cell membrane is coupled to phospholipase C, increase of inositol phosphates
and diacylglycerol and elevation of intracellular free calcium levels (Resink et al.,
1988). The most striking property of endothelin-1 is its long-lasting vasoconstrictive
and hypertensive action (Vane, 1990). It has been reported that the plasma
endothelin level was increased in essential hypertension (Naruse e al., 1991;
Fernandez-Cruz et al.,1993). The plasma levels of endothelin and the reactivity to
endothelin are altered in SHR (Miyamori er al., 1991) and in diabetic patients with
hypertension (Haak er al., 1992). However, contradictory results have also been
reported (Suzuki et al.,1990). Most forms of vascular diseases as well as congestive
heart failure and renal insufficiency are associated with increased circulating levels
of endothelin. The discrepancies in plasma endothelin concentration in hypertension

may be related to the presence or absence of these conditions. Endothelin may be
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a useful marker of end-organ damage, but its pathogenic role in hypertension
remains unclear at the present time (Luscher et al., 1993; Neild ez al., 1994).
b. Cyclooxygenase products

Other vasoconstrictors released from endothelial cells are cyclooxygenase
products of arachidonic acid metabolism including thromboxane A , prostaglandin H,,
superoxide anions and unidentified factors. Abnormal prostaglandin synthesis has
been implicated in the pathophysiology of hypertension (Dunn and Grone, 1985).

i. Prostacyclin (prostaglandin I, [PGI])

PGI , is a potent vasodilator, stimulates natriuresis, and is a potent inhibitor
of platelet aggregation (Dusting, 1982). PGI ,activates the adenylate cyclase pathway
leading to stimulaticn of protein kinase A (PKA). PKA phosphorylates proteins from
the motile apparatus and cellular structure elements, and phosphorylates proteins in
signal transduction pathways resulting in inhibition of phospholipase C and activation
of phosphodiesterase. PKA also phosphorylates the proteins that regulate gene
transcription (Thierauch et al., 1994). Vascular tissue has a large capacity to
generate PGI, Moreover, PGI,attenuates vasoconstrictor responses to vasoactive
stimuli such as angiotensin II (Moncada and Vane, 1979). In turn, angiotensin II
augments the release of PGI, from a variety of organs (Jaiswal et al., 1993).
Recentiy, it has been reported that the basal and stimulated levels of PGI, were
markedly reduced in SHR (Jaiswal et al., 1993). The ability of PGI, to attenuate

angiotensin II-induced vasoconstriction is also reduced in SHR (Jackson and Herzer,

1993).
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ii. Thromboxane A, (TXA)

TXA, is produced by activated platelet aggregation and causes
vasoconstriction and platelet aggregation (Hamberg et al.,1975). TXA ,activates the
phospholipase C pathway resulting in the release of calcium from intracellular stores
and the opening of calcium channels leading to increased intracellular free calcium
(Thierauch et al., 1994). It has been shown that when stimulated with
acetylcholinethe, endothelium of arteries from hypertensive rats releases this
vasoconstrictor which was not observed in normotensive rats (Luscher and
Vanhoutte, 1986). In SHR the endothelium-dependent vasoconstriction induced by
acetylcholine can be prevented by inhibitors of cyclooxygenase and antagonists of
endoperoxide-thromboxane receptors (Auch-Schwelk and Vanhoutte, 1992). It has
been suggested that the reduced relaxing response to acetylcholine in SHR resistance
arteries may result from the release of TXA ,or prostaglandin H,, a prostaglandin
precursor, which opposes endothelium-derived NO mediated relaxation (Dai et al.,
1992).

iii. Superoxide anions

Recently, it has been demonstrated that endothelium-dependent relaxation in
SHR is impaired and that this endothelium-dependent vasoconstriction was
selectively prevented by inhibitors of superoxide production. This suggests that
superoxide anions may be one of the endothelium-derived contracting factors
(Katusic et al., 1989; Jameson ef al., 1993). The generation of oxygen derived free

radicals including superoxide anions is significantly higher, and is positively correlated
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with blood pressure, in essential hypertension (Sagar eral.,1992). Superoxide anions
are potent chemical inactivators of NO and inhibitors of PGI , synthesis (Gryglewski
et al., 1986). In contrast, they do not inhibit production of contractile prostanoids
(Katusic and Vanhoutte, 1989). Superoxide anions cause endothelium-dependent
contraction by preventing endothelium-dependent relaxation.  Thus, increased
production of superoxide anions may impair the balance between relaxing and
contracting factors released from the endothelium and may lead to contraction of
underlying VSMC (Cosentino ez al.,1994). This mechanism is probably responsible
for the observation that endothelium-dependent contraction in response to
acetylcholine and arachidonic acid was seen only in SHR and not in WKY aorta
(Boulange and Luscher, 1993; Jameson et al., 1993).
¢. Endothelium-derived hyperpolarizing factor (EDHF)

Bolton and colleagues first reported that acetylcholine can cause endothelium-
dependent hyperpolarization (Hoeffner er al.,1989). Most studies indicated that NO
does not mediate endothelium-dependent hyperpolarization (Vanhoutte, 1993). It
appears likely that EDHF acts on vascular smooth muscle by opening K channels
(Chen et al., 1991). However, the exact type of K channel involved is still unclear.

At present, an attractive hypothesis has been advanced that an imbalance in
endothelium-derived constricting factors outweighs the action of endothelium-derived
dilating factors, leading to increased peripheral vascular resistance (Junquero ef al.,
1992). The damage to the endothelium may also serve as a stimulus for abnormal

vascular smooth muscle growth in hypertension (Chobanian, 1990).
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4. Vascular smooth muscle cells

Vascular smooth muscle is responsible for controlling the lumen diameter of
resistance vessels and, thus, controlling the vascular resistance. A common finding
in hypertensive individuals and animals is an increase in the wall to lumen ratio of
the arteries (Folkow, 1982). Several studies have shown that the thickening of the
wall of small resistance arteries in SHR is due to an increase in VSMC number, i.e.
hyperplasia (Lee, 1985; Mulvany, 1992). In contrast, in the large conduit arteries an
increase in the size of smooth muscle cells accounts for much of the increase in
vessel wall thickness, i.e. hypertrophy (Owens and Schwartz, 1982). It has been
shown that VSMC from young SHR exhibited enhanced proliferation and that there
was an age-dependent, differential and specific up-regulation of growth rate
mechanisms in SHR VSMC (Saltis er al., 1993a). The inhibitory effect of
transforming growth factor- 81 (TGF- 81) on VSMC proliferation were absent in SHR
(Agrotis et al., 1993). The enhanced proliferative ability of VSMC from SHR
appears to be not only an intrinsic property of this smooth muscle but also of growth
factors to which VSMC are exposed (Saltis ez al., 1993b; Zhu et al., 1994). A large
number of molecules are mitogenic for smooth muscle in vitro. These molecules
include catecholamines, angiotensin II, prostaglandins, LDL, lipoprotein, IL-1,
neuropepetides and polypeptides, such as PDGF, FG.F, and EGF (Schwartz 1990;
Sachinidis et al., 1993; Bjorkerud and Bjorkerud, 1994). It has been shown that SHR
developed vascular hypertrophy before the rise of blood pressure (Rizzoni er al.,

1994), suggesting that a genetic factor may play a major role in the pathogenesis of
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vascular hypertrophy.,

In some vascular beds of hypertensive individuals, however, it has been
reported that the ratio of wall-to-lumen is increased while the total mass of cells is
the same. This phenomenon has been termed remodelling (Baumbach and Heistad,
1989). The alteration of vascular structure by remodelling has been suggested to play
a more important role in essential hypertension than does vascular growth (Mulvany,
1992).

The intrinsic properties of the VSMC that are different in hypertension have
been described both in the resting state and in response to stimuli (Bohr ez al., 1991;
de Champlain et al.,1991). VSMC in hypertension are more sensitive than normal
VSMC to many constrictor agonists including epinephrine, serotonin, ouabain, Bay
K 8644, and phofbol ester (Raval et al., 1989; Storm et al., 1990). It has been
suggested that the plasma membrane of the VSMC has a primary defect causing
rdysfunction of many membrane transport systems including channels for sodium,
potzssium and calcium, exchangers for sodium-hydrogen, for sodium-calcium, and
sodium-potassium_ (Bohr er al., 1991; Aviv, 1994; Ellstrom et al., 1994). These
multiple abnormalities of diverse transporter proteins might be related to an
alteration in the lipid bilayer (Carruthers and Melchior, 1986). It has also been
observed that the number and affinity of various membrane receptors (o, B,
serotoninergic, etc) are changed (Michel er al., 1990). However, it appears that the
cellular events following receptor activation also contribute significantly to abnormal

vascular responsiveness (Bohr er al.,1991). Phosphoinositide metabolism has been
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reported to be augmented in SHR VSMC (Turla and Webb, 1990; Hamilton, 1994).

Phospholipase D activity in VSMC from SHR was also enhanced (Kondo, 1994).
Impaired calcium transport and handling associated with enhanced free calcium
content has been reported in various cell types of hypertensive individuals and
animals (Sharme and Bhalla, 1988; Lograno et al.,1993; Neusser et al.,1993; Bukoski
et al., 1994; Higashino, 1994). The increase in calcium sensitivity of VSMC
contractile machinery in SHR may be linked to the increase in PKC activity
(Soloviev and Bershtein, 1992) or to signal transduction events distal to PKC
activation (Silver et al., 1992; Zhu et al., 1992). There are a number of possible
mechanisms underlying the relationship between abnormal calcium metabolism and
hypertension, and no single explanation can be used to clarify this association. There
is also evidence of other factors that may cause parallel changes in both blood

pressure and calcium metabolism (Hvarfner, 1991; Storm ez al., 1992).
C. NITRIC OXIDE

In 1980, Furchgott and Zawadzki demonstrated that the vascular relaxation
?nduced by acetylcholine was dependent on the presence of the endothelium. Their
investigations provided evidence that this effect was mediated by a labile humoral
factor, later known as endothelium-derived relaxing factor (EDRF) (Furchgott and
Zawadzki, 1980). Moncada and his associates subsequently provided evidence that

EDRF was identical to nitric oxide (NO) (Palmer er al.,1987). Since then it has
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been revealed that the generation of NO by nitric oxide synthase (NOS) is an

important autocrine and paracrine signalling pathway in the regulation of various cell

functions and communications (Culo:ta and Koshland, 1992).

1. NO Synthase

In mammalian cells, NO is formed from a terminal guanidino-nitrogen of L-
arginine (Schmidt er al., 1988; Palmer ef al., 1988) by a gene family of NOS
(Marletta, 1993). The expanding family of NOS isoforms generally falls into two
categories: i. a constitutive form, and ii. a cytokine-inducible form (Moncada er al.,
1991)

a. Isoforms

Constitutive NOS is expressed in vascular endothelial cells and the brain
(Lowenstein et al.,1992; Marsden et al., 1992; Nishida et al., 1992). The constitutive
NOS isolated from rat and porcine cerebella have been reported to be cytosolic
proteins (Mr=150,000 - 160,000) that are dimeric in the native state (Bredt and
Snyder, 1990; Mayer 1990). An endothelial constitutive NOS isoform was purified
from bovine aortic endothelial cells and found to be a membrane-bound protein with
a Mr=135,000 (Pollock er al., 1991).

Inducible NOS purified from lipopolysaccharides (LPS) or cytokine-treated
murine macrophages (Hevel et al.,1991; Stuehr et al.,1991) is also a cytosolic protein
that has a Mr=130,000 and is a dimer under native conditions. After stimulation by

cytokines, the inducible NOS has been found in VSMC (Kanno et al., 1993;
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Nunokawa ef al., 1993; Koide et al., 1994), hepatocytes (Geller et al., 1993a) and
insulin-producing cells (Eizirik ef al., 1992). Recently, it has been shown that even
without stimulation NO is released by VSMC, but to a lesser extent (Zehetgruber et
al., 1993). The significance of this NO generation is, however, unknown.
b. Amino acid sequences
The amino acid sequences derived from the isolated cDNA for constitutive
NOS from rat cerebellum and bovine aortic endothelial cells have now been reported
(Bredt eral.,1991; Lamas et al., 1992; Ogura et al.,1993). The inducible NOS genes
have also been cloned in macrophages (Xie et al., 1992), VSMC (Nunokawa et al.,
1993) and hepatocytes (Geller et al.,1993b). It was found that the derived sequence
from rat brain had a significant homology to NADPH cytochrome P-450 reductase
(Bredt er al., 1991). The nucleotide binding sequence as well as those sequences
associated with FAD, NADPH and FMN binding were highly conserved when
compared with P-450 reductase from rat liver. Overall, approximately a 50%
homology has been observed in all the reported NOS sequences. The N terminus
in all sequences shows a great deal of similarity suggesting a common functional role.
Such a role is most likely related to the arginine binding site and catalysis. Further
analysis of sequences suggests that NOS isoforms from endothelial cell, neurons,
macrophages and hepatocytes are the products of distinct genes (Sessa er al., 1993),
while a comparison of rat and bovine brain sequences is consistent with their being
derived from the same gene (Marletta, 1993).

¢. Regulation of NO
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When Bredt and his co-workers initially purified constitutive NOS from rat
brain, they found that the activity of this NOS was calmodulin-dependent (Bredt and
Snyder, 1991). Subsequently, all constitutive NOS have been shown to require
calcium and calmodulin. Intracellular calcium levels, therefore, can strictly regulate
constitutive NOS activity in cells that express this isoform (Schmidt er al., 1993). The
activation of constitutive NOS occurs within seconds or, at most, a few minutes. This
activation occurs by diverse substances including acetylcholine, bradykinin and
agonists that are known to elicit prompt increases in intracellular calcium, such as
arginine vasopressin, norepinephrine, histamine, thrombin and shear stress (Shepherd
and Katusic, 1991). Endothelial cells, neurons, neutrophils and mast cells produce
NO in this manner and are unaffected by inhibitors of transcription and translation
(Schmidt et al., 1993).

The inducible NOS are activated by cytokines or LPS within hours and are
sensitive to inhibitors of DNA transcription or mRNA translation and to inhibitors
of protein synthesis (Moncada er al., 1991). Once induced, this inducible NOS
isoform irreversibly binds calmodulin independent of calcium (Moncada et al.,1991).
NO released by inducible NOS may persist for days. What terminates this high
output of NO is not known. Interleukin-1 8 (IL-1p), tumor necrosis factor (TNF),
interferon- v and LPS have all been shown to induce this form of NOS in
macrophages, VSMC, hepatocytes and fB-cells (Xie et al., 1992; Geller er al., 1993a;
Nunokawa et al., 1993; Koide et al., 1994). On the other hand, interleukin-4 (IL-4)

and TGF- 1 have been observed to down-regulate inducible NOS gene expression
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(Nelson et al.,1991; Bogdan et al.,1994). It has been reported that TGF- 81 inhibited
cytokine-induced NO production by blocking the post-transcriptional synthesis of
inducible NOS (Koide er al., 1994). TNF has been shown to down-regulate an
endothelial NOS (Yoshizumi et al., 1993). It has been reported that although
endothelial cells constitutively express NOS, they can also be induced by cytokines

to express inducible NOS (Gross et al., 1991).

2. NO Functions

Recently, work in several disciplines has converged to establish NO as a major
messenger molecule regulating immune function and blood vessel dilatation and
serving as a neurotransmitter in the brain and peripheral nervous system. Once
synthesized, NO diffuses within the cell or to adjacent cells where it stimulates
soluble guanylate cyclase or other heme-containing proteins. The resultant increase
in cyclic guanosine monophosphate (cGMP) in the target cell produces the
physiological effects (Culotta and Koshland, 1992). NO alsc attacks susceptible iron
groups in certain enzymes, including those that synthesize DNA and help cells to
respire (Moncada et al., 1991).

a. Immune system

There is strong evidence that NO contributes to immune function and, in
particular, to the phenomenon previously labelled as "non specific host defence".
Macrophages can kill tumor cells when activated to generate NO (Moncada et al.,

1991). NO has been shown to be involved in cytokine-induced killing of microbes
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(Nathan and Hibbs, 1991). NO may also be involved in the tissue damage associated

with rejection of transplanted organs (Langrehr et al., 1993). In addition to
mediating cell killing, NO may play a role in cell-cell communication within the
immune system (Langrehr et al., 1993).
b. Nervous system

NO is a central and peripheral neuronal messenger. It is involved in classical
anterograde neuronal signalling and also has unique properties as a retrograde
transmitter. Within the CNS, NO is increased in response to the increase in
intracellular calcium that follows stimulation of excitatory amino acid receptors
(NMDA receptors). NO may be a mediator of long-term synaptic depression (LDT)
and long-term potentiation of synaptic transmission (LTP). Therefore, NO may be
involved in learning and memory (Shibuki and Okada, 1991; Nowak, 1992).

Recent evidence suggests that NO may also serve as a mediator of
nonadrenergic noncholinergic (NANC) nerve neurotransmission. NANC nerves have
been observed to be widely distributed in the vascular system, GI tract (Fang and
Christensen, 1994) and genital area (Grozdanovic er al., 1994).

¢. Cardiovascular system

NO is a powerful endogenous vasodilator influencing blood pressure and
organ perfusion. Constitutive NO synthesis in the endothelial cells provides a rapid-
responding physiological control mechanism. Basal generation of NO is enhanced
for short periods in response to physical and chemical stimulation. Changes in vessel

wall shear stress affect basal NO release and this may be the most important
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mechanism by which blcod flow through vascular networks is controlled (Moncada
et al., 1991). NO also influences blood pressure and heart rate via baroreceptors
(Silva e: al., 1994) and the central nervous system (Dinerman et al., 1993).

Therefore, it appears that when the cardiovascular system is in a normal resting state,
there is an active vasodilatation mediated by NO (Moncada, 1994). Inflammatory
stimuli, including cytokines, induce the expression of inducible NOS in VSMC,
cardiac myocytes, and many other cell types, causing prolonged release of large
amounts of NO (Warren et al.,1994). This overproduction of NO by inducible NOS
contributes to the profound hypotension and resistance to vasoconstrictor agents that
characterise endotoxic shock (Nava e al., 1992).

In biological systems, NO is metabolised within seconds because it is a free
radical, reacting readily with sulfhydryl groups in amino acids or protein, superoxide
and oxygen (Star, 1993). In aqueous solution, NO reacts rapidly with oxygen and
accumulates as nitrite and nitrate ions, which can be easily measured.

It has been revealed that NO increases the intracellular levels of cGMP in
VSMC (Holzmann, 1982). Several mechanisms have been proposed to explain
c¢GMP-evoked vascular relaxation: (1) inhibition of inositol triphosphate (IP
generation, (2) stimulation of iniracellular calcium sequestration, (3) increase in the
dephosphorylation of the myosin light chain, (4) inhibition of receptor operated
calcium channels, (5) activation of cGMP-dependent protein kinase, (6) stimulation
of membrane calcium-ATPase, and (7) increase of K permeability through K

channels causing membrane hyperpolarization (Marin and Sanchez-Ferrer, 1990;
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Blatter and Wier, 1994). It is not known whether the relaxation is only produced by
an increase in cGMP or whether other intracellular mechanisms of NO could also
contribute to vasodilatation (Beasley and McGuiggin, 1994).

In addition to its vasodilating effect, other effects of NO have now been
identified. These include synergistic action with prostacyclin to contribute to the
inhibition of adhesion and aggregation of platelets (Moncada et al., 1991), inhibition
of leukocyte adhesion (Kubes ef al., 1991), endothelin generation (Boulanger and
Luscher, 1990, Yokokawa et al., 1993) and smooth muscle cell proliferation (Nakaki
et al., 1990). Each of these effects has the potential to play an important

physiological or pathophysiological role.

3. Nitric oxide and hypertension

A considerable number of studies have provided evidence that alteration of
NO synthesis may be involved in the pathogenesis of hypertension. Persistent
hypertension following inhibition of NO formation has been reported in animal
models (Manning et al., 1993; Morton et al., 1993). It has been proposed that the
NO pathway is abnormal in patients with essential hypertension. The endothelium-
dependent NO mediated vasodilatation appears to be impaired (Calver et al., 1992;
Luscher, 1992; Panza er al., 1993), suggesting that the reduced endothelium-
dependent vasodilatation in hypertension may be associated with decreased release
of endothelium-derived NO (Luscher et al., 1992; Deng et al., 1993; Malinski et al.,

1993). It has been demonstrated that administration of L-arginine lowered blood
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pressure in patients with esscial hypertension. The plasma concentration of
aldosterone was also decreased significantly, suggesting that the NO synthesis
pathway may play an important role in the pathogenesis of hypertension, not only by
controlling vascuiar tone directly, but also by modulating the endocrine and central
nervous systems (Hishikawa et al., 1993). It has been reported that in essential
hypertension the sensitivity to NC may be reduced (Woods, 1993) while the
generation of superoxide anions and hydrogen peroxide, substances that inactivate
NO, are increased (Kumar and Das, 1993).

Although there are many reports concerning the involvement of NO in the
pathogenesis of hypertension, the results are not clear. Several groups have shown
that the release of NO in arteries is decreased in SHR (Lockette et al., 1986;
Diederich er al., 1990; Keller and Huang, 1994). However, other investigators
reported that the release of NO in SHR is not reduced (Fozard and Part, 1991;
Amal er al.,1993; Li and Bukoski, 1993). It was also reported that an NOS inhibitor
produced a greater inhibition of the arterial relaxation response to acetylcholine (Lee
and Webb, 1992) and an exaggerated hypertension in SHR (Lacolley er al., 1991).
L-arginine has been demonstrated to induce a greater fall in blood pressure in SHR
than in WKY (Schleiffer er al., 1991). Furthermore, the cGMP content of SHR
blood vessel wall was either increased (Mourlon-Le Grand et al., 1992; Legrand et
al., 1993) or exhibited no change compared with that in WKY (Amal et al., 1993)
Recently, it was reported that the cGMP content was increased in cultured VSMC

and aortic ring of SHR compared to these cells and tissues of WKY, suggesting that
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NOS activity is probably increased in SHR. A very recent report showed that the

cGMP content was increased in cultured VSMC and aortic rings of SHR and the
mRNA for the Bl subunit of soluble guanylate cyclase was enhanced in response to
both endogenous and exogenous NO (Papapetropoulos et al., 1994). Therefore, the
enhanced NOS activity or increased NOS protein may serve as a major counter-
regulatory vasodilator mechanism to balance the elevated vasoconstriction seen in
SHR.

It has been observed recently that pregnancy is associated with increased NO
production (Chu and Beilin, 1993; Conrad et al.,1993). It is tempting to suggest that
NO mediates the vascular responses in pregnancy, including the fall in systemic blood
pressure, vasodilatation and increased circulating blood volume. Endogenous NO
may contribute to vasodilation in pregnancy by directly controlling vascular tone and
modulating vascular responses to sympathetic nerve activity and circulating
catecholamines (Beilin and Chu, 1993). Pre-eclampsia is associated with an increase
in blood pressure and this may be secondary to a fall in NO production (Warren et
al.,1994). Inhibition of NO synthesis in rats during pregnancy produced symptoms
similar to those of pre-eclampsia (Yallampalli and Garfield, 1993). Recently, it has
been demonstrated that estrogen can induce NOS mRNA in the vascular wall and
activate constitutive NOS. This may explain the gender difference in ter:i of
decreased frequency of vascular diseases in pre-menopausal women (Moncada, 1994).

Thus, it appears that the involvement of NO in hypertension is complicated.

In some forms of hypertension, there is a deficiency of NO production or effect
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leading to an increase in vasoconstriction. In other situations, NO synthesis is
increased to compensate for the primary increase in vasoconstriction. This, however,
is still not enough to counter-balance the vasoconstriction. It may also be possible
that the alterations of NO synthesis in different vascular beds or in different cells of
the same vascular bed are not the same. Furthermore, the mechanisms of NO
synthesis alteration in hypertension remain unclear.

Understanding the nature of the NO pathway, especially the alteration of the
NO system in hypertension is important. Manipulating this system in the right

direction at the right time may provide a new approach to the therapeutic

management of hypertension.

IIl. IMMUNE SYSTEM AND HYPERTENSION

While many factors have been postulated to contribute to the hypertensive
state, a large body of evidence has come to suggest that in many forms of
experimental and human essential hypertension altered immune function may

contribute to both the initiation and the maintenance of hypertension.

A. HUMAN ESSENTIAL HYPERTENSION

Over 20 years ago, Ebringer and his co-workers reported that serum

immunoglobulin G (IgG) levels were significantly higher in hypertensive patients
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compared with normal subjects (Ebringer and Doyle, 1970). This finding was

subsequently confirmed by other investigators (Olsen ef al., 1973; Kristensen, 1978).
The immunoglobulin level was significantly elevated in 20-40% of patients with
essential hypertension (Suryaprobha et al., 1984). There is a positive correlation
between the level of serum IgG and standing blood pressure in untreated
hypertensive patients and in patients with poorly controlled hypertension (Kristensen,
1978). Why serum immunoglobulin levels are elevated in patients with essential
hypertension is not known. It is also unclear whether the elevation in serum
immunoglobulin levels is related to a primary pathological process or is secondary
to vascular damage caused by the elevated arterial pressure.

Another finding in patients with essential hypertension was the presence of
an elevated level of autoantibodies to a number of cell structures and smooth muscle
(Kristensen, 1978; Wilson er al.,1978). It has been shown recently that hypertensive
patients had increased frequency of antinuclear antibodies (Hilme er al., 1993).
There was also an association between antinuclear antibodies and blood pressure in
untreated hypertensive patients (Kristensen, 1978). However, some antihypertensive
agents can induce autoantibody formation (Booth et al.,1982). Although these data
suggest a possible involvement of these antibodies in the pathogenesis of
hypertension, no information is available to support the involvement of
autoantibodies in the etiology of hypertension.

There is evidence to suggest that cellular immune response may also be

altered in patients with essential hypertension. It has been shown that the number
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of T lymphocytes was decreased in malignant hypertension. The lymphocyte
proliferation response to Concanavalin-A (Con A), a T-cell mitogen, is also
depressed (Hilme et al.,1993). The human leucocyte antigen (HLA) B15 tended to
occur more frequently in hypertensive patients than in control subjects, especially if
the family history of hypertension was taken into consideration (Kristensen, 1979;
Hilme er al., 1993). Hypertensive patients with positive B15 were 3-4 times more
prone to vascular complications than patients without this antigen (Hilme er al.,
1993). A study on the association between essential hypertension and
histocompatibility antigens revealed that there was increased frequency of HLA-DR4
(Gerbase-Delima et al., 1992) and HLA-DR7 (Sengar et al., 1985) suggesting that
these antigens may act as genetic markers for the development of essential
hypertension.

The complement system is a system of functionally linked proteins that
interact with one another in a highly regulated manner to provide many of the
effector functions of humoral immunity and inflammation. C,F, a component of the
complement proteins, was found expressed in 64% of patients with essential
hypertension (Schaadt et al., 1981). Expression of this protein increases the risk of
cardiovascular complications in hypertension (Kristensen, 1978). The mechanism for
this association is also unknown.

Because of the complexity of the pathophysiology of essential hypertension,
a definitive connection between immunologic factors and the hypertensive state is

difficult to prove. It is possible that elevated arterial pressure in itself leads to
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arterial damage and the subsequent release of vascular antigens which trigger the
immune responses. Humoral i..unune components directed against a vascular
antigen could then perpetuate the pathology. Alternatively, primary activation of
immunologic mechanisms directed against renal or vascular tissue could induce the

hypertensive state. Clarification of these problem awaits further investigation.

B. THE SPONTANEOUSLY HYPERTENSIVE RAT (SHR)

The SHR was developed as a model of hypertension by Okamoto and Aoki
30 years ago using subsequent selective breeding of litter-mates with high blood
pressure (Okamoto and Aoki, 1963). The increased arterial pressure eventually
results in cardiovascular complications and premature death (Khraibi ef al., 1984)).
The SHR has since been accepted as an animal model for human essential
hypertension by many investigators (Trippodo and Frohlich, 1981). Although the
etiology of hypertension in SHR has been a subject of intense investigation for many
years, the primary cause remains unexplained.

There is a growing body of evidence suggesting that alterations in the immune
system may be related to hypertension in SHR. It was shown that SHR had a
reduced number of rosette-forming cells in thymus tissue indicating a reduction in the
number of T-lymphocytes (Takeichi and Boone, 1976). The T non-helper cell
population was found to be depressed from 2 weeks of age onward. This change

persisted throughout the 4 month study period (Fannon et al., 1992) and was also



38
found in adult SHR (Norman e al., 1985). It has also been reported that the

blastogenic responses of spleen cells, lymph node cells, and peripheral blood
lymphocytes were depressed in SHR (Takeichi er al.,1980; Strausser, 1983; Takeichi
et al.,1988). The proliferation response of SHR spleen cells was depressed in mixed
lymphocyte reactions and in response to T cell receptor monoclonal antibody or
interleukin-2 (IL-2) (Purcell et al.,1993). Morphological investigations revealed that
the medullary/cortical ratio in SHR thymus is reduced although thymic weight was
not significantly different from that observed for WKY. The volume density of white
pulp, composed of dense lymphoid tissues, in spleen was also reduced, suggesting
decreased immunologic responsiveness in vivo (Fannon et al., 1992).

Other immune abnormalities have also been identified in the SHR. These
include a reduced delayed-type hypersensitivity, a delayed allograft rejection time,
and the inability of T-thymocytes to cooperate with B-lymphocytes in the production
of antibodies (Takeichi er al., 1980, 1981). It has been reported that a thymotoxic
autoantibody was present in SHR (Takeichi er al., 1981) and that the production of
natural thymotoxic autoantibody was enhanced by natural infection by
microorganisms (Takeichi et al., 1988). Recently, it was reported that plasma
immunoglobulin A (IgA) and circulating IgA autoantibodies to DNA and
thyroglobulin were increased in SHR (Chen and Schachter, 1993).

Immunological interventions including thymus transplantation (Norman et al.,
1985), and treatment with thymic hormone (Ba et al., 1982; Strausser, 1983),

immunosuppressant drugs such as cyclophosphamide and cylosporine A (Khraibi et
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al.,1984) showed antihypertensive and/or immunological modulatory effects. It has
been reported that a single injection of human recombinant IL-2 can lower blood
pressure in adult SHR and prevent the development of hypertension in young SHR
(Tuttle and Boppana, 1990). However, this finding has not been confirmed by other
investigators (Pascual er al., 1990; Dzielak, 1991; Ofosu-Appiah et al., 1993).
Recently, it was reported that the leucocyte count in SHR was 10-100% above that
found in WKY and the number of spontaneously activated granulocytes was also
higher (Schmid-Schonbein e al.,1991; Arndt et al., 1993). These findings suggested
that an elevated leucocyte count and an increased number of activated leucocytes
may be closely associated with the enhanced level of vascular injury, altered vascular
smooth muscle contractility and elevated blood pressure in hypertension.

Several possible mechanisms responsible for immune dysfunction in SHR have
been considered. It has been reported that experimental infection with Sendai virus
induced T cell depression and increased autoantibody production in SHR (Takeichi
et al., 1988). Microbial, particularly viral infection may be able to suppress immune
response through destruction of lymphocytes. There is evidence of a close
relationship between the sympathetic nervous system and the immune system
(Hadden et al., 1970). It has been shown that norepinephrine inhibits lymphocyte
proliferation in vitro and neonatal sympathectomy increases in vivo immune
responsiveness (Besedovsky er al., 1979). Several investigators studied the
involvement of the sympathetic nervous system in immune dysfunction in SHR.

Increased norepinephrine concentration was seen in SHR spleen and kidney
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(Donohue et al., 1988). The innervation of thymus, spleen (Pircell and Gatton,
1992) and kidney (Gattone et al., 1990) was increased in SHR, suggesting that
abnormal sympathetic innervation may be contributing to the immune deficiency.
SHR also exhibit an increased AVP secretion (Crofton et al., 1978). The increased
AVP secretion may influence the immune system in SHR through a variety of
mechanisms (Fannon et al., 1992). It was reported that renal IL-6 mRNA was
extremely low in SHR and the regulation of IL-6 mRNA expression is different from
that of WKY (Nakamura et al.,1993). However, the way in which this change may
be related to immune dysfunction is not clear. Although these studies are suggestive,
both the mechanism underlying immune dysfunction in SHR and the relationship

between immune dysfunction and hypertension are largely unknown.

C. HYPERTENSION AFTER PARTIALRENAL INFARCTION

Partial infarction of the kidney produced by ligation of two of the three
branches of the renal artery results in the development of a sustained hypertension
in the rat (Loomis, 1946). It was shown that if the partially infarcted kidney was
removed within 1-2 days after induction of the infarction, the hypertension was not
sustained. However, if the infarcted kidney remained in the animal for longer than
1 week, the hypertension was sustained (Sokabe and Grollman, 1963). In addition,
the same investigator reported that injection of extracts of normal or infarcted renal

tissue resulted in a sustained hypertension that was similar to the hypertension which
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occurred after partial infarction.

The immune system has been suggested to play an important role in this type
of hypertension. Autoantibodies directed against renal tissue were found in animals
with partial renal infarct hypertension (White and Grollman, 1964). The
hypertension could be transferred by means of viable lymph node cells from animals
with established renal infarct hypertension into normotensive recipient rats and this
hypertension was partly prevented by splenectomy and thymectomy (Okuda and
Grollman, 1967). Chronic immunosuppressive therapy with cyclophosphamide
prevented the later maintenance phase of hypertension and could also completely
reverse established infarct hypertension (Norman et al.,1988). It has been suggested
that the infarcted kidney releases an antigenic substance, and, subsequently, induces
an immune reaction that not only acts against damaged tissue but also against viable
renal tissue (Norman er al., 1988). It has been shown that plasma renin activity was
elevated 3-6 fold after partial renal infarction. After 4 weeks, as plasma renin
activity returned to pre-infarct levels, arterial pressure remained elevated. In
contrast, in animals treated with immunosuppressive agents, arterial pressure
paralleled plasma renin activity. As plasma renin activity returned to pre-infarct
levels, so did arterial pressure (Norman et al., 1988). These data suggest that
activation of the renin-angictensin system is responsible for the initial rise in blood
pressure, whereas immunological reaction appears to be responsible for the
maintenance of partial renal infarct hypertension. However, the question of which

immunological mechanisms are involved in the perpetuation of hypertension remains
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to be answered.

D. MINERALOCORTICOID SALT HYPERTENSION

Mineralocorticoid  salt hypertension is induced by the simultaneous
administration of a salt-retaining hormone (deoxycorticosterone) and a salt load in
rat (Friedman and Friedman, 1949). This DOCA-salt hypertension has been
characterized as a form of volume-expansion hypertension. The hypertension
persisted after removal of the mineralocorticoid hormone and the salt (post DOCA-
salt hypertension) (Friedman er al., 1953). It has been proposed that persistence of
hypertension may result from damage to resistance vessels and the renal vasculature
caused by the high blood pressure itself (Beilin and Ziekas, 1972), and that it may
cause irreversible changes in the renal handling of salt and water(Anderson et al.,
1985). There is evidence to suggest that tissue and organ damage caused by DOCA-
salt administration may initiate an immunological response that can sustain the post-
DOCA-salt hypertension. It was 1ported that induction of this type of hypertension
is dependent on the presence of the thymus (Svendsen, 1976) and that the
hypertensive state could be transferred to untreated control animals by an
intravenous injection of spleen cells from the hypertensive rats (Olsen, 1980). It has
been reported that after exposure to DOCA and salt, glomerulopathy was
significantly less in mice that were complement-deficient than in normal mice,

suggesting that activation of the complement cascade may play an important role in
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this type of hypertension (Raij er al., 1989). It seems that a dysregulation of
immunological function is a factor in the pathogenesis of hypertension that persists
after exposure to mineralocorticoid hormone and a salt load. Whether the elevated
blood pressure initiates the vascular damage which then activates an immunologic
response or whether the immunologic mechanism is primary to the hypertension is

unclear.

IV. OBJECTIVES

As mentioned earlier, a substantial body of evidence suggests that immune
abnormalities may be associated with hypertension. The present study investigates
the relationship between immune abnormalities and hypertension. The objectives of

this work are as follows:

1. characterization of immune abnormalities in SHR.

2. delineation of the mechanism responsible for immune dysfunction.

3. study of the interaction between the immune system and the vascular system.
4. investigation of the relationship between immune abnormalities and

hypertension.
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CHAPTER II. MATERIALS AND METHODS

I. ANIMALS

A. SHR and WKY

Male SHR and WKY controls matched for age were obtained from Taconic
Farms (Germantown, NY). The animals had been randomly bred in a closed colony
from breeding stock obtained at the F;5(SHR) or F o (WKY) generations from the
National Institutes of Health (Bethesda, MD). In some experiments, male SHR and
age matched WKY were obtained from Charles River Breeding Laboratories
(Wilmington, MA). These rats had been continuously inbred from stock obtained
from the National Institutes of Health at the F;, (SHR) or F,, (WKY) generations.
The rats were fed with a rodent laboratory chow (Purina No. 5001, Purina Mills,
Richmond, IN) and given tap water. The rats were housed two to three in a cage in
a temperature controlled room with a 12 hour light, 12 hour dark cycle. All the rats

were housed for at least one week after arrival before experiments.

B. Borderline Hypertensive Rats (BHR) and WKY
Male WKY and BHR, which are the first generation offspring of SHR females
and WKY males (Lawler er al., 1987; DiBona and Jones, 1993), were purchased from

Taconic Farms. The rats were weaned at 4 weeks of age. Standard rat chow (Purina



45

No. 5001) and tap water were available to all rats until the dietary regimens were
instituted. At 5 weeks of age, the animals were housed two in a cage and randomly
assigned to two groups. One group received the standard rat chow containing 1%
NaCl. Another group received a chow containing 8% NaCl (Purina No. 5001C-2) for
8 weeks (DiEona and Jones, 1991; Melby er al., 1991). All animals had free access
to tap water. Because the rats which were fed with a high NaCl diet urinated more
frequently, the cages were changed twice a week to keep them dry and clean. At
13 weeks of age, blood pressures were measured in both BHR and WKY rats and

tissues were collected for further experiments.

C. Newborn SHR and WKY

Pregnant SHR and WKY dams (fifteen to seventeen days) were purchased
from Taconic Farms. The dams were housed in individual cages with a soft bedding
material in a temperature controlled room with a 12 hour light, 12 hour dark cycle.
On the 20th or 21th day of pregnancy, the dams gave birth. One day after birth, the
newborn rats were mixed in a clean cage. Nine to eleven newborns were randomly
put back to a dam in a clean cage and housed with the dam for 4 weeks. The dams
did not reject the newborns during the entire experimental period (described later

in this chapter).
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II. BLOOD PRESSURE MEASUREMENT

Male SHR or WKY rats were injected with sodium pentobarbital (65 mg/Kg,
i.p.). While the rat was fully anaesthetized, a polyethylene tubing (PE-50, Clay
Adams, Parsippany, NIJ), filled with heparinized saline (100 unit/ml) (Sigma
Chemical Co.,St. Louis, MO) was inserted into the right carotid artery. The arterial
cannula was connected to a Statham pressure transducer and the arterial pressure
was continuously recorded with a Dynograph (Beckman Instrument Inc., Fullerton,
CA) for at least 5 minutes or until the blood pressure was stable. Mean arterial
blood pressure (MAP) was calculated as the diastolic blood pressure plus one-third

of the prlve pressure. The tissues were then collected and the rats were sacrificed

by pentobarbitai overdose.

II. CELL PREPARATION

A. Spleen cells and thymocytes

Lymphocytes from rat spleen and thymocytes were prepared using a method
modified from that described in Current Protocols in Immunology (Kruisbeek, 1991).
The spleen and thymus were removed from anaesthetized animals. The tissues were
place in 90 x 20 mm petri dishes containing 10 ml Hanks’ Balance Salt Solution
(HBSS, Gibco Laboratories, Grand Island, NY). The tissues were gently ground

through fine steel meshes with the plunger of a 10-ml syringe until mostly fibrous
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tissue remained. The cell suspension was transferred into a centrifuge tube and
centrifuged at 200 x g for 10 minutes. The cells were re-suspended with HBSS and
distributed into centrifuge tubes at 0.5-1x 10® cells/5 ml (15-ml tube) or 1-5 x 10*
cells/10 ml (50-ml tube). Four ml (for 15-ml tubes) or 10 ml (for 50-ml tubes) of
high-density histopaque solution (Sigma Chemical Co.) was layered under the cell
suspension by drawing the high-density solution intc a pipet, placing the tip of the
pipet at the bottom of the tube, and slowing letting the solution flow under the eli
suspension. The tubes were then centrifuged at 800 x g at room temperature for 20
minutes. The cells floating on the top of the histopaque, from which red blood cells
and dead lymphocytes had been removed, were collected and washed twice with
HBSS. The lymphocytes were .c-suspended in RPMI-1640 medium (Sigma
Chemical Co.) supplemented with 10% fetal calf serum (FCS) (Hyclone Laboratories
Inc, Logan, Utah), 2 mM L-glutamine, 0.1 mM MEN non-essential amino acids, 1¢0
unit/ml penicillin and 50 ug/ml streptomycin (Gibco Laboratories), complete RPMI-
1640 medium). Cell viavility was usually more than 98% as tested by trypan blue

exclusion,

B. T-enriched lymphocytes

Different adherence properties of T cells, B cells, and accessory cells such as
macrophages can be employed for T cell enrichment (Kruisbeek, 1991). Arat T
immunocolumns kit (Biotex Laboratories, Edmonton, Alberts, Canada) is a rapid

affinity chromatography tool fur rat T cell enrichment. By a process of pegative
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selection, virtually all rat B cells were removed by immunocolumns coated with
polyclonal goat-anti-rat IgG (H+L) antibody (anti-B cell antibody). Macrophages
and monocytes were also largely removed due to their non-specific binding
properties. During the experimental procedure, the columns were activated by
adding the antibody and then allowing the columns to remain at room temperature
for at least one hour. The activated columns were washed with HBSS before they
were ldaded with the cells. One to 1.5x 10®spleen cells from SHR and WKY were
applied to the column, The T-enriched lymphocytes were then eluted by slowly
washing the column with HBSS. The effluent cell suspension was centrifuged at 200
x g for 10 minutes. The cell pellets were re-suspended with complete RPMI-1640
medium. Flow cytometric analyses showed more than 85% T cell enrichment after

passage through the column according to the information provided by Biotex

Laboratories.

C. Macrophage-depleted lymphocytes

Spleen cells from SHR and WKY (2-5 x 107 in 10 ml 5% FCS RPMI-1640)
were incubated in a 90 x 20-mm plastic tissue culture dish for 60 minutes at 37%C.
The nonadherent lymphocyte suspension was transferred into a new plastic tissue dish
and incubated for another 60 minutes at 37°C. Macrophages were removed because
they adhered to the plastic surface (Mills, 1991). The cell suspension was centrifuged
at 200 x g for 10 minutes. The cell pellet, which contained macrophage-depleted

lymphocytes, was re-suspended with complete RPMI-1640 medium. The
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contamination of macrophages was examined by immunocytochemical staining for
macrophage marker ED1 and ED2 (Beelen et al., 1987). The results showed that

there were 0% (ED2 *) or less than 2% (ED1 *) of positive cells.

D. Macrophages

Spleen cells from SHR and WKY were incubated in 60 x 15 mm plastic dishes
(5 x 10%ells/dish) or in 96 well tissue culture plates (0.5-1.5 x 10° cells/well) in
complete RPMI-1640 medium for 90 minutes at 37°C (Wahl and Smith, 1991). The
media which contained nonadherent lymphocytes were decanted. The dishes or
plates were washed twice with HBSS to remove any residual nonadherent cells. The
majority of adherent cells expressed macrophage marker ED1 or ED2, examined by
immunocytochemical staining. Therefore, this cell population was considered to be

composed of mainly macrophages (Beelen er al., 1987).

E. VSMC

VSMC were isolated from SHR or WKY rat aortic artery according to a
standard method established in our laboratory (Pang et al.,1990). The aortic artery
was dissected out and cleaned free of connective tissues in cold calcium-free HBSS.
The artery was cut open longitudinally. The inner layer of artery was gently scraped
with a forceps to remove the endothelium. The muscle layer was torn off from the
artery and left at 4°C in calc'v~-free HBSS for 30 minutes. The medium was then

changed to enzyme sownic:: 1 [HBSS containing 1.5 mg/mi collagenase/dispase
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(Boehringer Mannheim, Laval, Quebec), 0.5 mg/ml elastase, 1 mg/ml trypsin
inhibiior, 2 mg/m] bovine serum albumin (BSA), 0.2mM CaCl ,and 10 mM HEPES
(Sigma Chemical Co., St. Louis, MO)]. After 60 to 90 minutes, the arterial tissue
was washed with cold calcium-free HBSS and incubated with enzyme solution 2
[HBSS containing 1 mg/ml collagenase (Sigma Chemical Co.), 0.3 mg/ml trypsin
inhibitor and 2 mg/ml BSA] for another 60 minutes. All incubations were carried
out under 5% CO,in air at 37C. The arterial tissues were then triturated with a
pipet in order to disperse them into single cells. The VSMC suspension was
centrifuged at 200 x g for 8 minutes and washed twice with HBSS. The VSMC were
subsequently planted in a 50 x 15 mm culture dish in 10% FCS DMEM medium with
100 units/ml penicillin and 50 ug/ml streptomycin (Gibco Laboratories), at 37°C in
a humidified atmosphere of 5% CO, in air. The primary VSMC proliferated

sufficiently to be passed in 2-3 weeks. The subcultured VSMC were passed every

week.

VI. LYMPHOCYTE PROLIFERATION STUDY

Measurement of the proliferation response of lymphocytes is a fundamental
technique for the assessment of their biological responses to various stimuli. This
involves the measurement of the number of cells present in a culture before and
after the addition of a stimulating agent. However, this can be both laborious and

difficult inasmuch as the proliferating cells under investigation may constitute only
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a small component of the total cell population. In practice, therefore, cell
proliferation is determined by estimating incorporation of tritiated thymidine (H-
thymidine) into DNA, a process which is closely related to underlying changes in cell
number.

Spleen cells, thymocytes, T-enriched lymphocytes or macrophage-depleted
lymphocytes were counted using a hemocytometer. The cell concentration was
adjusted to 1 x 10° cells/ml with complete RPMI-1640 medium. 200 u! of the cell
suspension was dispensed into each well of a 96 flat-bottom well tissue culture plate.
Triplicate or quadruplicate wells were prepared for each experimental condition, i.e.
each concentration of stimuli to be tested, including wells with no stimuli to measure
background response. Con A and PHA, which primarily stimulate T cell
proliferation, or other activators were added into the culture in a volume of no more
than 20 . The plate was incubated at 37<C in a humidified atmosphere of 5% CO,
in air for three days. *H-thymidine (sp act 2 Ci/mmol, Dupont, Boston, MA) was
added to the culture (0.5 uCi/10 w/well) for the final 18 hours. The cells were
harvested using a semiautomatic multiwell cell harvester (Skatron, Sterling, NJ) that
aspirates cells, lyses cells and transfers cell debris including DNA onto filter paper
while allowing unincorporated *H-thymidine to be washed out. The filter discs for
each well were transferred to scintillation vials. Scintillation fluid was added to each
vial. The vials were then placed in a liquid scintillation counter (3217 Rackbeta,
LKB Wallac). The amount of radinactivity on each disc was represented as CPM

(Takeichi et al., 1980).
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V. VSMC GROWTH AND PROLIFERATION STUDY

A. VSMC culture

Isolated aortic VSMC from SHR and WKY were grown in 10% FCS DMEM
medium using 90 x 20 mm tissue culture dishes, and were passed every week. Only
VSMC below passage 20 were used in experiments. When VSMC were grown to
near confluence (approximately 1x 10°cells/ml) in dishes, the mediun was decanted.
The dishes were washed twice with calcium-free HBSS. Each dish received 1.5 ml
of 0.25% trypsin (Gibco Laboratories). After 10to 15 minutes at room temperature,
10 ml HBSS was added into dishes and the cell suspension obtained was centrifuged
at 200 x g for 8 minutes. The cell pellet was washed once more with HBSS and re-
suspended with 10% FCS DMEM medium. Cell viability was tested by trypan blue

exclusion. The VSMC were either used in experiments or split for continuous

culture.

B. VSMC proliferation study

VSMC (1 x 10* cells/well) were dispensed into 96 flat-bottom well tissue
culture plates in 10% FCS DMEM medium and incubated at 37°C in a humidified
atmosphere of 5% CO,in air for 24 hours to allow VSMC attachment to the bottom
of the plate. The medium was changed to 0.4% FCS DMEM medium to render the
VSMC quiescent (Rao and Berk, 1992) for 4 days. The test substances re-suspended

in 5 or 10% FCS DMEM medium were added to quiescent VSMC. After a 24 hour



53
incubation, the VSMC were pulsed with *H-thymidine 1 uCi/ml (0.2 x Ci/well) and

incubated for another 18-40 hours. The medium was then removed and the VSMC
were washed twice with HBSS. Each well of the plates received 100 @ 0.5% trypsin
followed by a 30 minute incubation at room temperature. The VSMC were then
harvested onto filter paper by the cell harvester. The amount of radioactivity
incorporated into cells was determined using a liquid scintillation counter (Saltis er

al., 1993).

C. Protein determination

VSMC (1.5 ml of 1x10°cells/ml) from SHR and WKY were incubated in 24
well tissue culture plates in 10% FCS DMEM medium for 36-40 hours. The
medium was changed to 0.4% FCS DMEM medium for 48 hours to render the
VSMC quiescent. The medium was then replaced by 10% FCS DMEM in the
presence of ligands. At various times, the VSMC were washed twice with HBSS.
The VSMC were solubilized by addition of 200 ul 1 M NaOH to each well followed
by a 30 minute incubation at room temperature (Beasley er al., 1991). The protein
concentrations were determined by the Pierce BCA protein assay (Pierce, Rockford,
IL). This reagent system combines the well known reaction of protein with Cu?*in
an alkaline medium (yielding Cu'*) with a highly sensitive and selective detection
reagent for Cu'*, namely bicinchoninic acid. The purple reaction product is water
soluble and exhibits a strong absorbance at 562 nM (Brown et al.,1989). The protein

concentration was determined relative to a standard curve obtained with aqueous
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solution of BSA.

VI. IL-2 PRODUCTION AND QUANTIFICATION

IL-2, first described as T cell growth factor (TCGF), is a cytokine produced
by activated T cells, and was originally identified by its ability to promote and
maintain in vitro long-term T cell cultures (Gillis and Smith, 1977). Mitogenic or
antigenic stimulation of resting lymphocytes induces IL-2 production from the
activated lymphocytes and expression of the IL-2 receptor on the lymphocytes. 'L-2
acts as both an autocrine and a paracrine growth factor to activate lymphocytes
producing IL-2 and to induce lymphocyte proliferation. To determine the capacity
of lymphocytes to produce IL-2, spleen cells from SHR and WKY were cultured in
12 well tissue culture plates at a concentration of 4 x 10° cells/well in 4 ml of
complete RPMI-1640 medium in the presence of Con A (2.5 or 5 pg/ml) at 37°C in
a humidified atmosphere of 5% CO,in air for 48 hours. The cell suspensions were
centrifuged at 800 x g, 4°C for 15 minutes. The supernatant was collected and
stored at -20°C until tested.

The amount of IL-2 in a culture supernatant can be determined by its ability
to stimulate the growth of an IL-2-dependent murine cell line, CTLL-2. The CTLL-2
line was derived from murine spleen cells that were stimulated by allogeneic cells
and propagated with crude T cell supernatant. These cells transformed

spontaneously, but remained dcpendent on exogenous IL-2. CTLL-2 proliferation
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can be determined by a standard *H-thymidine incorporation method (Gillis and

Smith, 1977). Briefly, 1 x 10 CTLL-2 cells (obtained from late Dr. Wegmann,
Department of Immunology, University of Alberta, Edmonton, AB) were added in
triplicate to 96 flat-bottom tissue culture plates with different dilutions of culture
supernatant and IL-2 standards including a negative control of medium alone. After
24 hours incubation at 37°C in a humidified atmosphere of 5% CO, in air, *H-
thymidine was added to the culture (0.5 u Ci/well) for 4 hours. The cells were
harvested onto filter paper and counted (Xiao and Brahmi, 1989). One unit of IL-2
was defined as the amount of IL-2 that was required to support half-maximal *H-
thymidine incorporation into CTLL-2 cells.

Continuously proliferating CTLL-2 cells were maintained in complete RPMI-
1640 medium containing 1 unit/ml rat IL-2 at a density between 0.5x 10°to 1 x 10°
cells/ml in a flask. When the cell density reached 1 x 10°cells/ml, the culture was
split 1:5 or 1:10 with the same culture conditions. The cells were used at least 2 days
after they were split to avoid high background and reduced sensitivity. In addition,

the cells were washed twice with HBSS before use to wash out any residual IL-2.

VII. IMMUNOCYTOCHEMICALSTAINING

The expression of rat macrophage markers, ED1 and ED2, on cells was

examined using an immunoperoxidase staining kit, Histostain-SP Kit (Zymed Lab.

Inc., South San Francisco, CA). The method was adopted from Dr. Larry Guilbert
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(Department  of Immunology, University of Alberta).

A. Coating slide

Microscope slides (Fisher Scientific Co., Pittsburgh, PA) were soaked in 10%
detergent overnight, and were then washed thoroughly with running water and dried
in an oven at 60°C. The slides were dipped in each of the following solutions for 2
minutes: acetone, 2% 3-aminopropyl triethoxy silane (Aptex) (Sigma Chemical Co.)

in acetone, acetone, water and water. The treated slides were dried at 37°C and

stored until use.

B. Cell preparation

Spleen cells or macrophage-depleted lymphocytes from SHR and WKY were
fixed with 4% phosphate-buffered paraformaldehyde (paraformaldehyde 40g/l,
NaH PO . H,0 16.8g/l, NaOH 3.25g/1 and glucose 5.4g/l, pH 7.4) for 10 minutes
(Sander et al.,1991). The cells were washed 3 times with phosphate-buffered saline
(PBS). An aliquot of cell suspension (3-5 x 10°cells in 20 @) was added to a circle
drawn on an aptex coated slide. The cells were dried at room temperature and
stored at -70°C until use.

Spleen cells from SHR and WKY were incubated in a 96 well tissue culture
plate (0.5-1.5x 10%cells/well) in 10% FCS RPMI-1640 for 4 hours. The nonadherent
cells were discarded and the remaining adherent cells were washed 3 times with PBS.

The adhered cells in the wells were then fixed with 4% phosphate-buffered
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paraformaldehyde for 10 minutes. The fixed cells were washed 2 times with PBS

and stained for the expression of ED1 or ED2 the next day.

C. Immunochemical staining

The slides or plates containing fixed cells were washed with 3% H 0, for 10
minutes. Because ED1 antigen was predominantly located intracellularly (Dijkstra
et al.,1985), the cells were permeabilized with 0.1% saponin (Sigma Chemical. Co.)
in PBS for 10 minutes (Sander et al.,1991) followed by a 30 minute incubation with
3% HL,in 0.1% saponin PBS. Non-immune mouse serum (10%) plus 0.1 % saponin
was added to the circles or wells containing fixed cells and incubated at room
temperature for 1 hour to reduce non-specific binding. The cells were then
incubated with mouse anti-rat ED1 (1:1000 dilution) or anti-rat ED2 (1:800 dilution)
antibody plus 0.1% saponin at room temperature for 1 hour. Normal mouse IgG,,
the same isotype as ED1 and ED2 antibody, was used as a negative control. The
cells were then washed thoroughly with PBS. The Biotinylated goat anti-mouse IgG
antibody plus 2% rat serum (to reduce non-specific binding) was added to the cells
and incubated for 15 minutes. The cells were then washed 3 times with PBS.
Peroxidase conjugated streptavidin was added to the cells and incubated for 15
minutes followed by 3 washings with PBS. The substrate chromagen was added to
cells and incubated for 5 to 10 minutes and then rinsed with water. The cells in 96
well plate were kept in PBS without counterstaining. The cells on slides were

counterstained with 50% hematoxylin.
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IIX. MIXED CELL CULTURE
A, Macrophage-iymphocyte
The spleen cells from SHR or WKY (2 x 10° cells/well) were incubated in 96
flat-bottom well tissue culture plates at 37°C in a humidified atmosphere of 5% CO,
in air for 90 minutes. The medium which contained nonadherent lymphocytes was
decanted. The plates were washed twice with cold HBSS to remove any residual
nonadherent cells. The majority of adherent cells were macrophages (Wahl and
Smith, 1991). Macrophage-depleted lymphocytes (2 x 10° cells/well) were addsd
into the plates in quadruplicate and incubated in the presence of 2.50r 5 ug/ml Con
A at 37°C in a humidified atmosphere of 5% CO,in air for 72 hours. “H-thymidine
was added to the culture for the last 18 hours and the cells were harvested. The

amount of radioactivity incorporated into cells was counted using a liquid scintillation

counter.

B. Lymphocyte-lymphocyte

The spleen cells from SHR or WKY were mixed with one another. The
control 1 group contained only SHR or WKY spleen cells (2 x 10%ells/well). The
control 2 group also contained only SHR or WKY spleen cells but only 80% of the
total cell number (1.6 x 10%ells/well). The mixture group contained 80% (1.6 x
10%ells/well) of one type of cells plus 20% (0.4 x 10° cells/well) of another type of
cells. The proliferation response was induced by 2.5 pyg/ml Con A and determined

by ‘H-thymidine uptake. The amount of radioactivity incorporated into cells was
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counted using a liquid scintillation counter.

C. VSMC-lymphocyte

VSMC (10-20 passages) were planted in 96 well tissue culture plates at various
cell concentrations in 10% FCS DMEM medium for 36-40 hours. The medium was
then replaced by fresh 10% FCS DMEM medium. For some experiments, the
VSMC in the plates were irradiated using a '*'Cs r-irradiator at a dose of 4000 rad
to prevent VSMC proliferation (Kruisbeek and Shevach, 1991). After irradiation, the
cells were washed twice with HBSS. The efficiency of irradiation was cxamined by
the amount of *H-thymidire incorporated into VSMC as described previously. The
lymphocytes from SHR or WKY (2 x 10° cells/well) were co-cultured in
quadruplicate with VSMC at a ratio of VSMC : lymphocytes 1:40, 1:20 or 1:10 in
complete RPMI-1640 medium in the presence of 2.50r 5 ug/mil of Con A at 37C
in a humidified atmosphere of 5% CO, in air for 72 hours. ’H-Thymidine was
added to the culture for the last ‘8 itours and the cells were harvested. The amount
of radioactivity incorporated into cells was counted using a liquid scintiliation counter

(Xiao and Pang 1993).

IX. NO PRODUCTION AND MEASUREMENT

A. NO production by spleen cells

Five ml of 1x10%cells/ml spleen cells were incubated in each of the 12 wells
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in tissue culture plates in complete RPMI-1640 medium for 72 hours in the presence
of 2.5 pg/ml Con A or 40 ug/ml LPS. The supernatant was collected by centrifuging

at 4°C, 800 x g for 10 minutes, and kept at 4°C until tested.

B. NO production by macrophages

Five ml of 1x10¥ml spleen cells were incubated in 60 x 15 mm plasuc dishes
in complete RPMI-1640 medium for 90 minutes. The media which contained
nonadherent !yviiphocytes were decanted. The dishes were washed twice with HBSS
to remove any residual nonadherent cells and 5 ml of fresh medium was added. The
majority of adherent cells were macrephages. The macrophages were then incubated
for 72 hours in complete RPMI-1640 medium in the presence of 2.5 ug/ml of Con

A or 40 pg/ml of LPS. The supernatant was coliccted as described above.

C. NG production by VSMC

VSMC (1.5 ml of 1x10° cells/ml) were incubated in 24 well tissue ¢ 'ture
plates in 10% FCS DMEM medium for 36-40 hours. The medium was changed to
0.4% FCS DMEM medium for 48 hours to render the VSMC quiescent. To induce
NO production, the VSMC were incubated with LPS or a cytokine mixture containing
5 units/ml interleukin-1 8 (IL-16); 5 nM tumor necrosis factor « (TNF o); 200
units/ml interferon y (IFN4) and 10 pg/ml LPS in 10% FCS DMEM medium for 43

hours (Geller er al.,1993a). The supernatant was collected as described above.
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D. NO measurement

Although the complex nature of the biosynthesis or metabolism of NO is not
completely clear, it is widely accepted that in aqueous solution NO rcacts rapidly
with O,and accumulates in the culture medium as nitrite and nitrate ions (Hibbs er
al., 1987a). Nitrite was measured by a standard method (Green er al., 1982;
Junquero et al., 1992). An aliquot of cell culture supernatant was mixed with an
equal volume of Greiss reagent (prepared by adding 1 part 0.1%
napthylethylenediamine dihydrochloride to 1 part 1% sulfanilamide in 5% phosphoric
acid) and incubated at room temperature for 10 minutes. The absorbance at 550 nm
was measured and nitrite concentration was determined by reference to a standard
curve obtained by using different concentrations of sodium nitrite diluted in the stock

culture medium. The background value of the medium was calibrated to zero.

X. T CELL ABLATION AND ASSESSMENT

A. Antibody treatment

Anti-T cell monoclonal antibedies have been used in vivo to prolong allograft
and xenograft survival time by depletion of certain T cells (Chavin ¢« ., 1992;
Teramoto et al., 1992). It is believed that anti-T cell antibodies bind to specific
surface antigens on T cells. This antigen aitibody complex triggers a cascade of
events which leads to activation of the complement system and other mechanisms

causing depletion of these specific T cells. Since CD2 and CD5 antigens -re
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expressed on most T cells, anti-CD2 and anti-CD5 monoclonal antibodies were used
to ablate T cells in this study.

Three groups of one week old SHR or WKY were injected with mouse anti-rat
CD2, mouse anti-rat CD5 monoclonal antibodies (ascites) or mouse control ascitic
fluid. The rats were injected three times a week for two weeks. Three days after the
last injection, the rats were sacrificed and the spleen were collected. Single antibody
treatment is not usually sufficient to deplete all T celis. Previous studies have shown
that six treatments in a period of two weeks should achieve an optimal depletion.
This multiple treatment schedule has been successfully used by others (Barlow and
Like, 1992). It has also been shown that this schedule was well tolerated by animals
and did not cause morbidity or mortality. A control mouse ascites fluid was used to

ensure that there was no non-specific antibody effect.

B. Ass. sment of T cell ablation

Since it is important to ensure that anti-CD2 and anti-CD5  .noclonal
antibodies can induce T cell depletion in SHR, a proliferation response of spleen
cells to T cell mitogens was carried out. If T celis are ablated by these antibodies,
the number of proliferative cells will be minimal. Since SHR already have a reduced
lymphocyte proliferation response, WKY which have normal lymphocyte proliferation

are used as the control group to assess the level of T cell depletion.



X'.  REAGENTS

Con A, LPS, PDB, ionomycin, napthylethylenediamine dihydrochloride and
sulfanilamide were obtained from Sigma Chemical Co. L-NMMA and D-NMMA
were purchased from Calbiochem, La Jolla, CA. Rat IL-2 was purchased from
Collaborative Research Inc.,Bedford, MA. Recombinant IL-18,Recombinant TNF a,
Recombinant IL-6 and Recombinant IFN+y were purchased from Boehringer
Mannheim. Mouse anti-rat CD2, mouse anti-rat CD5, mouse control ascitic fluid,
mouse anti-rat ED1, mouse anti-rat ED2 and Mouse IgG, were purchased from

Cedarlane, Hornby, Ontario.

XII. ST/ VISTICALANALYSIS

Data are presented as mean =+ SD when origi-.al values are used. The results
of lymphocyte proliferation studies are summarized as mean i+ SE from the mean
values of 4 to 6 original results. The paired or non-paired Student ’s t test is used
for the comparisons between two groups. The analysis of variance or Newman-
Keul ’s analysis is used for multiple comparisons. The analysis of the regression line
is used to estimate a correlation relationship between two variances. \When a third
variance is involved, the analysis of covariance is performed. In all the statistical
analyses, results wers considered to be significant at p < 0.05. Correlation is

considered to be significant when the correlation coefficient (r) > 0.5and p < 0.05.



CHAPTEK til. CHARACTERIZATION OF IMMUNE FUNCTION IN SHR

I. INTRODUCTION

Lymphocytes are major effector cells in the immune system. Activation of
lymphocytes initiated by antigen recognition is the biological event that enables
lymphocytes to mount a useful immune response to foreign antigens. Lymphocyte
activation includes a series of interrelated steps: an early signal transduction event,
transcriptional activation of a variety of genes, expression of new cell surface
molecules, secretion of cytokines, and the end result of proliferation or clonal
expansion of the antigen specific lymphocytes. Naturally, the number of individual
cells with a particular antigen specificity represents a very small fraction of the total
cell number and, inus, it 15 not possible to measure antigen-specific responses.
Functional responses of lymphocytes can be more easily studied by the use of
polyclonal aciivators, which bind to many or all TCR:CD3 complexes or bypass this
event, regardless of their antigen specificity, and mimic large scale activation events,
which may occur normally ir vivo.

In this study, the following activators were used to study the function of SHR
lvmphocytes compared with that of WKY lymphocytes. Con A and PHA are
polymeric plant proteins called lectins which are strong mitogens. They bind
specifically to certain sugar residues on T cell surface glycoproteins (Goldstein and

Poretz, 1986), including the TCR:CD3 complex. They thereby stimulate the T cells
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and induce lymphocyte proliferation and release of cytokines (Lis and Sharon, 1986).
Con A and PHA have been widely used to study the function of lymphocytes.

IL-2, a T cell-derived cytokine with several immunoregulatory functions, is
known to be the principal cytokine responsible for clonal expansion of antigen or
mitogen activated T cells (Giliis and Smith, 1977; Shaw et al., 1978). IL-2 functions
as an autocrine and paracrine growth factor. Because IL-2 stimulates lymphocyte
growth, the IL-2-T cell system provides the means to investigate fundamental
questions in immunology as well as in other fields. These inciude the understanding
of lymphocyte regulation and immune function and also regulation of both normal
and neoplastic cell growth.

PKC is presumably activated, as a result of an increase in diacylglycerol and
calcium. The relevance of PKC activation to the functional activation of T cells is
supported by the fact that PKC activators and calcium jonophores act synergistically
to promote the later differentiation and proliferation of T cells (Goldsmith er al.,
1989). The fact that neither PKC activators nor calcium ionophores alone arc
sufficient for T cell activation has been interpreted as evidence for a two-signal
model of T cell activation in which T cells require at least two different signals in
order to generate a full response. One signal may be provided by the binding of
MHC-associated antigen to TCR or the binding of a mitogen to cell surface sugar
residues. The second signal may act ihrough accessory molecules or unidentified co-
stimulatory factors (Abbas er al., 1991a).

A substantial number of reports have shown that hypertension in SHR may
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result, in part, from immune dysfunction. In this thesis, the proliferation response
of lymphocytes to activators and IL-2 production were first investigated in order to

better understand the nature of immunological dysfunction in SHR.

IL. EXPERIMENTAL DESIGN

A. Proliferation responses of three populations of lymphocytes: a) spleen
cells which are a mixture of cells containing T cells, B cells, macrophages, and others,
b) thymocytes which are mature and developing T cells isolated from thymus and c)
T-enriched lymphocytes which are spleen cells from which adherent cells including
macrophages have been removed by adherence onto a plastic surface. To study
function of immune system, the proliferation responses of these cells were carried out
as described in the Materials and Methods chapter. Briefly, the spleen cells,
thymocyte and T enriched lymphocytes were cultured in a 96 well tissue plate.
Different concentrations of Con A or IL-2, 20 ug/ml PHA or 1 x 107 M PDB plus
1 x 10°M ionomycin were added into the cultures =nd tested separately. Three days
after incubation at 37°C in a CO,incubator, the proliferation responses of these cells
were determined by *H-thymidine incorporation.

B. Effect of exogenous IL-2 or IL-18 on the mitogen-induced proliferation
response of spleen cells from SHR and ¥'KY. Cytokines such as IL-2 and IL-1 play
important role in lymph« . yte activation and proliferation. A reduced lymphocyte

proliferation response could result frem a deficiency of these cytokines. To examine
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this possibility, different concentrations of IL-2 or IL-18 were added into the spleen
cell culture simultaneously with 2.5 ug/ml Con A for three days. The proliferation
responses were determined by *H-thymidine uptake.

C. Effect of the supernatant from SHR or WKY spleen cell culture on the
proliferation responses of SHR and WKY spleen cells. A reduced lymphocyte
proliferation response might be due to the inhibition caused by substances which
present in the culture medium. To test this possibility, the spleen cells isolated from
SHR or WKY were cultured in 12 well tissue culture plates at the concentration of
1x10¥ml in the presence of 2.5 ug/ml Con A for 72 hours. The culture supernatant
was collecte! by centrifugation at 200 x g, at 4C for 15 minutes. The supernatant
was kept at -20°C until tested.  Three preparations of supernatant (40 ) from
SHR and three from WKY were added into SHR or WKY spleen cell culture (200
W in each well) in the presence of 2.5 pg/ml Con A, and incubated for 72 hours.
The proliferation response of spleen cells was determined by *H-thymidine uptake.

D. Mixed culture of spleen cells frorz. 314 a2 WKY. Spleen cells are a
mixture of cells including the cells which have isfibin.  “unction. A lymphocyte
inhibition ccild be due to these inhibitory cells presentec in spleen cell culture. To
test this possibility, the spleen cells from SHR and WY were mixed with one
another. The group designated control 1 contained caly SHR or WKY spleen cells
(2 x 10°%cells/well). The group designated control 2 also contained SHR or WKY

spleen cells but was only 80% of the total cell number of control 1 (1.6 x

10%ells/well). The mixture group contained 80% (1.6 x 10°cells/well) of one type
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of cells plus 20% (0.4 x 10° cells/well) of another type of cells. The proliferation
response was induced by 2.5 ug/ml Con A and determined by *H-thymidine uptake.

E. IL-2 production by spleen cells from SHR and WKY. The ability to
produce IL-2 is an important index of T cell function. The spleen cells of SHR or
WKY were stimulated with 2.50r 5 pyg/ml Con A for 48 hours. The amount of IL-2
produced by the spleen cells was determined by a bioassay as described in the

Materials and Methods chapter.

II. RESULTS

A. SHR spleen cells showed a significantly attenuated response to Con A (¢
test), exhibiting only 10 - 20% of the response of WKY spleen cells (Figure III-1).
The proliferation response of SHR spleen cells to IL-2 was also significantly reduced
(Figure 11I-2). Decreased proliferation responses of SHR spleen cells were also
observed after administration cf PHA and phorbol 12,13-dibutyrate (PDB), a protein
kinase C stimulator, plus ionomycin ( Figure III-3).

B. When exogenous IL-2 was added to SHR spleen cell culture in the
presence of 2.5 yg/ml Con A, the reduced proliferation response persisted (Figure
I1I-4). Exogenous IL-1 also failed to restore the reduced proliferation response of
SHR spleen cells, even at high doses (Figure III-5).

C. WKY spleen cell culture medium did not have any significant effect on the

proliferation response of SHR spleen cells nor did SHR culture medium on WKY
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spleen cell proliferation (Table III-1). When WKY spleen cells were co-cultured

with SHR spleen cells (20%), the proliferation response of WKY was slightly, but not
significantly, decreased. On the other hand, when SHR spleen cells were co-cultured
with WKY spleen cells (20%), the proliferation response of SHR was slightly, but
not significantly, increased (Figure III-6). The amount of proliferation of the added
portion (20%) of lymphocytes was probably too small in both cases to produce any
significant effect.

D. IL-2 production of spleen cells in response to Con A was tested in both
SHR and WKY. The results show no significant difference in the production of IL-2
between SHR and WKY (Figuse III-7).

E. However, SHR thymocytes and T-enriched lymphocytes had very similar
proliferation responses to those from WKY. There was no statistically significant
difference in proliferation between SHR and WKY in response to Con A (Figure
III-8; Figure III-9) and IL-2 (Figure III-10; Figure III-11), except that SHR T-
enriched lymphocytes had a greater response to IL-2 when compared to those of
WKY (Figure III-11). SHR thymocytes and SHR T-enriched lymphocytes also had
similar proliferation responses to PHA and PDB plus ionomycin compared with those
of WKY (Figure III-12; Figure III-13).

F. After removing macrophages from SHR spicen cells, the prolifciation
response of SHR spleen cells increased dramati:-iv and reached the same level as,

or became even higher than, those from WK™ ./ =iz III-14).
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IV. DISCUSSION

It has been reported that the proliferation responses of peripheral
lymphocytes, lymph node cells, and spleen cells obtained from SHR were significantly
depressed when compared with those from WKY (Takeichi ef al., 1980; Bendich et
al.,1981; Strausser, 1983). The depressed proliferation response to T cell mitogens,
Con A and PHA, were more substantial than the response to B cell mitogen. In
addition, the number of rosette-forming cells was also decreased suggesting that the
number of T cells is reduced in SHR. In a recent report, patients with malignant
hypertension exhibited a reduced T cell count and a depressed lymphocyte
proliferation response to Con A (Hilme er al.,1993). Based on these observations,
it has been suggested that SHR T cells had a proliferation defect. With a deficit in
T cells, especially a deficit in the T suppressor subset, awa. “ibodies were generated
as seen in hypertensive patients and SHR. Therefore, -~ . study, the proliferation
responses of SHR spleen cells to Con A, PHA and IL-2 were first investigated. The
results showed that the response of SHR spleen cells, which contain T cells, B cells
and macrophages, was markedly decreased when compared with spleea cel’. fiam:
WKY.

To determine the mechanism responsible for this proliferation defect, the PKC
pathway was studied using PDB plus ionomycin to stimulate PKC in SHR
lymphocytes. The severely reduced proliferation response of SHR spleen cells

suggested two possibilities. One was that the defect might occur at the level of PKC
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or its dowsstream. An abnormal PKC distribution was found in spleen, thymus and
aorta from SHR and gamma-interferon corrected aberrant PKC levels in SHR (Sauro
and Hadden, 1992) suggesting that an abnormal PKC pathway may exist in SHR.
Another possibility might be that the whole signal transduction pathway in SHR
lymphocytes is intact and normal, and the reduced proliferation response is a result
of a lack of cytokines, and/or a lack of the second signal or co-stimulator that is
required to activate lymphocytes. It is also possible that this lymphocyte inhibition
may be due to the presence of inhibitory substances or inhibitory cells in the spleen
cell population. Since the signal transduction events are not clear beyond the level
of PKC at the present time, the second possibility was investigated.

To study the mechanism of lymphocyte depression, the effects of IL-2 on the
mitogen induced proliferation response of SHR spleen cells were tested. The results
showed that IL-2 failed to restore the decreased Con A induced proliferation
response in SHR. This result agreed with a recent report that IL-2 cannot restore
the Con A activated suppressor T cell activity of SHR when administrated in vivo or
in vitro (Ofosu-Appiah et al., 1993). However, they showed that IL-2 restored
suppiessor T cell function in the syngeneic mixed lymphocyte reaction. Their
explanation for these conflicting results was that either SHR lost precursors of Con
A activatable suppressor cells or that the generation of Con A activated suppressor
T cells may require other growth factors.

IL-2 is the major growth factor for T cells and other cells in the immune

system. The quantity of IL-2 synthesized by activated helper '} cells is an important
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determinant of the magnitude of the immune response. Antigen or mitogen-driven
T cell activation stimulates IL-2 production and the expression of high-affinity
receptors for IL-2, which allows the cell to receive an IL-2 growth signal in either an
autocrine or paracrine fashion (Kuziel and Greene, 1990). It has been demonstrated
that the proliferation response of lymphocy’ a~ T~duced in lupus-prone mice, in
BB rats with autoimmune diabetes and in pz - ents =t systemic lupus erythematosus,
rheumatoid arthritis and active multiple sclerosis. In those pathological conditions,
there was often a markedly decreased IL-2 production in cell culture (Kroemer and
Wick, 1989). The incapacity of helper T cells to produce IL-2 was attributed to the
decreased proliferation responses (Kroemer and Wick, 1989). Tuttle and Boppana
reported that a bolus injection of IL-2 prevented the increase in blood pressure in
youn- “HR (1990). However, other investigators have failed to confirm this
or (Dzielak 1991; Pascual et al., 1992). Recently, it has been reported that
IL-2 - asent lowered Dslood pressure in Pahl salt-sensitive rats.  This
antihypertensive effect was associated with an inr-ease in glomerular filtration rate
and reduction in cardiac weight (Ishimitsu er al., 1994). Therefore, it was of great
interest to investigate the capability of SHR T cells to synthesize IL-2. The results
showed that SHR spleen cells had the same capacity to produce IL-2 as did those
from WKY, suggesting that the function of SHR T cells might be essentially normal.

The possibility of a lack of IL-1 in SHR spleen cell culture was tested by
adding exogenous IL-18to induced SH% ~een cell culture in the presence of Con

A. The results showed that IL-18 could not restore the depressed proliferation
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response. Thus, the reduced proliferation response ot SHR spleen cells does not
appear to be caused by a lack of production of IL-2 or of IL-18 which is able to
induce proliferation. Thus far, thirteen cytokines have been identified. The
functions of most of them have been elucidated. Although the capacity of SHR
lymphocytes to produce these cytokines could be altered, screening the whole
cytokine profile in SHR would be both laborious and time consuming. It was
considered not practical to be performed in this thesis. Therefore, other possibilities
were studied.

The effect of culture medium from SHR or WKY spleen cells on lymphocyte
proliferation response was examined for the presence of any released inhibitory or
stimulatory sitsiances. The results showed that SHR spleen cell culture medium did
not have any stable inhibitory effect on the WKY proliferation response. In
addition, the culture medium from WKY spleen cells did not have any stable
stimulatory effect on the SHR proliferation response. However, this did not rule out
the presence of an inhibitory substance in the culture medium that was not detectes]
because of its instability. An experiment involving co-culture of SHR and WKY
spleen cells was also carried out to determine whether SHR spleen cells had the
ability to inhibit WKY spleen cells by cell-cell contact. The results of this experiment
showed that SHR spleen cells slightly inhibited the prolifeiaticn response of WKY
spleen cells while WKY spieen cells slightly increase¢ the proliferation response of
SHR spleen cells. This small decrement in WKY response and small increment in

SHR response may be due to the small proportion of the added cells (20% of total
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cell number). It is also possible that the effect of the added cells, i.e, the inhibitory
effect of SHR spleen cells or the stimulatory effect of WKY spleen cells, was
shielded by the response of the majority of the cells in the culture. The data from
this experiment do not provide any conclusive answers to the question under
investigation.

A striking result in this present study involved T cells which were purified
from SHR spleen cells. The proliferation response of those T-enriched cells to all
mitogens and activators tested was normal. The same result was observed in the
proliferation response of SHR thymocytes. These results clearly indicated that SHR
T cells are normal and that they have the same ability to proliferate as do those from
WKY (Xiao et al.,1991). This fact is supported by the finding that SHR spleen cells
have the same capacity to produce IL-2. More than ten years ago it was reported
that the proliferation response of SHR lymphocytes was depressed, and it has always
been thought that this defect resided in the SHR T cells, especially suppressor T ceils
(Takeichi et al., 1981; Norman et al., 1985; Fannon et al., 1992). In these
investigations, however, only proliferation responses of mixed cells such as spleen
cells, lymph node cells and peripheral blood lymphocytes were studied. The present
study demonstrates for the first time that the proliferation defect of SHR
lymphocytes does not reside in the T cells themselves because enriched T cells and
thymocytes exhibit normal proliferation responses. This suggests that cells other

than T cells may be responsible for this proliferation defect as seen in mixed

lymphocyte populations.
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To investigate the cell type that was involved in this proliferation defect in
SHR, macrophages were removed from the spleen cell population. After removing
the macrophages, the proliferation response of these macrophage-depleted spleen
cells was increased dramatically and reached the same level as, or was even higher
than, that in WKY (Xiao et al.,1991). A similar result was reported later by Pascual
and co-workers (1992) showing that SHR spleen cells had proliferation responses
cqual to or greater than those of WKY after removal of adherent cells. Since
macrophages were removed from the SHR spleen cells, the remaining cells included
T cells and B cells. These remaining cells showed a normal response not only to T
cell mitogens but also to other activators, suggesting that B cells might not be
involved in the SHR spleen cell proliferation defect. Indeed, it has been observed
that the number of blood lymphocytes capable of producing Ig A (B cells) in
response to B cell mitogens is increased in SHR (Chen and Sanders, 1993) suggesting
that the proliferation response in SHR B cells may be increased. Therefore, the
involvement of B cells in this defect can be ruled out.
In summary, the proliferation response of SHR spleen cells was depressed.
However, the proliferation responses of SHR thymocytes and T-enriched lymphocytes
were normal. In addition, SHR T cells had same capacity to produce IL-2 as those

of WKY. Removing macrophages restored the depressed proliferation response of

SHR spleen cells.
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Figure III-1. The proliferation response of spleen cells from SHR and WKY in
response to Con A. The spleen cells (2 x 10° cells/well) were dispensed in 96 well
tissue culture plates in quadruplicate. The different concentrations of Con A were
added into the culture and incubated for 72 hours. 3H-thymidine was added to the
culture for the final 18 hours. The cells were then harvested and counted. The data
represent the means of *H-thymidine uptake by the cells (CPM) per well + SE from
five rats. Significant difference: ** P < 0.01, compared with respective SHR spleen
cells.
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Figure 1II-2. The proliferation response of spleen cells from SHR and WKY in
response to IL-2. Different concentrations of IL-2 were added into the spleen cell
culture and incubated for 72 hours as described in Figure III-1. The data represent
the means of H-thymidine uptake by the cells (CPM) per well + SE from five rats.
Significant difference: * P < 0.05; ** P < 0.01, compared with respective SHR
spleen cells.
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Figure III-3. The proliferation response of spleen cells from SHR and WKY in
response to PHA or PDB plus ionomycin. PHA (20 pg/ml) or PDB (1x10”7 M) plus
ionomycin (1x10® M) was added to the spleen cell culture. The culture was then
incubated for 72 hours as described in Figure III-1. The data represent the means
of *H-thymidine uptake by the cells (CPM) per well + SE from four rats. Significant
difference: ** P < 0.01, compared with respective SHR spleen cells.
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Figure III-4. The effect of IL-2 on the proliferation response of spleen cells in
response to Con A. IL-2 (25 or 50 unit/ml) were added to the spleen cell culture
in the presence of 2.5 ug/ml Con A and incubated for 72 hours. The datz represent
the means of *-thymidine uptake by cells (CPM) per well + SE from four rats.
Significant difference: * P < 0.05; ** P < 0.01, compared with respective SHR
spleen cells.
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Figure III-S. The effect of IL-18 on the proliferation response of spleen cells in
response to Con A. IL-18 (10 or 100 units/ml) were added to the spleen cell culture
in the presence of 2.5 g/ml Con A and incubated for 72 hours. The data represent
the means of *H-thymidine uptake by cells (CPM) per well + SE from four rats.
Significant difference: * P < 0.05, compared with respective SHR spleen cells.
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TABLE III-1

Effect of culture supernatant from SHR or WKY spleen
cell culture on lymphocyte proliferation response

% changes

control WKY supernatant SHR supernatant
WKY 100 100 = 2.9 98 + 4.1
SHR 100 103 £ 15 98579

The spleen cells from SHR and WKY (1 x 10° cells/ml in S ml) were

cultured for 72 hours in the presence of 2.5 ug/ml Con A. The culture
supernatant was collected.
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The culture supernatant (40 ul) was added into each
well (200 ul) of spleen cell culture in the presence of 2.5 pg/ml Con A and

incubated for 72 hours as described in Figure III-1. The values represent the %

changes in uptake of *H-thymidine (CPM) by spleen cells from SHR or WKY.
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Figure I1I-6. The mixed culture of spleen cells from SHR and WKY. The spleen
cells from SHR or WKY were mixed with one another. The group of control 1
contained only SHR or WKY spleen cells (2 x 10°cells/well). The group of
control 2 also contained SHR or WKY spleen cells but only 80% of the total cell
number (1.6 x 10°cells/well). The mixture group contained 80% (1.6 x
10°cells/well) of one type of cells plus 20% (0.4 x 10° cells/well) of another type
of cells. The proliferation response was induced by 2.5 ug/ml Con A and
determined by *H-thymidine uptake. The data represent the means of *H-
thymidine uptake by cells (CPM) per well £ SE from four experiments.
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Figure III-7. IL-2 production by spleen cells from SHR and WKY. The spleen
cells from SHR or WKY (1 x 10° cells/ml) were stimulated by 2.5 or 5 ug/ml Con
A for 48 hours. The amount of IL-2 present in the culture supernatant was tested
by a bioassay. One unit is defined as the amount of IL-2 that is required to
support half-maximal *H-thymidine incorporation into CTLL-2 cells. N=14.
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Figure III-8. The proliferation response of thymocyte from SHR and WKY in
response to Con A. The thymocytes from SHR or WKY (2 x 10° cells/well) were
dispensed in 96 well tissue culture plates in quadruplicate. The various
concentrations of Con A were added into the culture and incubated for 72 hours.
3H-thymidine was added to the culture for the final 18 hours. The cells were then
harvested and counted. The data represent the means of *H-thymidine uptake by
the cells (CPM) per well + SE from five rats.
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Figure III-9. The proliferation response of T-enriched lymphocytes from SHR and
WKY in response to Con A. The T-enriched lymphocytes from SHR or WKY (2 x
10° cells/well) were dispensed in 96 well tissue culture plates in quadruplicate.
The various concentrations of Con A were added to the culture and incubated for
72 hours. *H-thymidine was added to the culture for the final 18 hours. The cells
were then harvested and counted. The data represent the means of *H-thymidine
uptake by the cells (CPM) per well + SE from five rats.
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Figure III-10. The proliferation response of thymocyte from SHR and WKY in
response to IL-2. Various concentrations of IL-2 were added to the thymocyte
culture and incubated for 72 hours as described in Figure III-1. The data
represent the means of *H-thymidine uptake by the cells (CPM) per well + SE
from five rats.
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Figure III-11. The proliferation response of T-enriched lymphocytes from SHR
and WKY in response to IL-2. Various concentrations of IL-2 were added into
the T-enriched lymphocyte culture and incubated for 72 hours as described in
Figure I1I-1. The data represent the means of *H-thymidine uptake by the cells
(CPM) per well + SE from five rats. Significant difference: * P < 0.05,
compared with respective WKY cells.
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Figure III-12. The proliferation response of thymocytes from SHR and WKY in
response to PHA or PDB plus ionomycin. PHA (20 pg/ml) or PDB (1x107 M)
plus ionomycin (1x10® M) was added to the thymocyte culture and incubated for
72 hours as described in Figure III-1. The data represent the means of *H-
thymidine uptake by the cells (CPM) per well + SE from four rats.
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Figure 11I-13. The proliferation response of T-enriched lymphocytes from SHR
and WKY in response to PHA or PDB plus ionomycin. PHA (20 pg/ml) or PDB
(1x10"7" M) plus ionomycin (1x10°¢ M) was added to the T-enriched lymphocyte
culture and incubated for 72 Lours as described in Figure III-1. The data
represent the means of *H-thymidine uptake by the cells (CPM) per well + SE
from four rats.
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Figure III-14. The effect of removal of macrophages on the proliferation response
of spleen cells in response to Con A. Spleen cells (2-5x107 in 10 ml of 5% FCS
RPMI-1640) were incubated in a 90x20 mm plastic tissue culture dish for 60
minutes. The nonadherent lymphocyte suspension was transferred into a new dish
and incubated for another 60 minutes. The cell suspension was centrifuged. The
cell pellet, which contained macrophage-depleted lymphocytes (Spleen cell-Mac),
was re-suspended with complete medium. The proliferation responses of the
macrophage-depleted lymphocytes to 2.5 ug/ml Con A were examined as
described in Figure III-1. The data represent the means of *H-thymidine uptake
by the cells (CPM) per well + SE from five experiments. Significant difference:
** P < 0.01, compared with SHR spleen cells.



CHAPTER IV. MACROPHAGES AND NITRIC OXIDE PATHWAY

IN LYMPHOCYTEABNORMALITYOF SHR

I. INTRODUCTION

Macrophages play a key role in diverse aspects of immune responses,
including the regulation of specific and nonspecific immunity, by virtue of their
capacity to either augment or inhibit lymphocyte activation or proliferation (Unanue
and Allen, 1987). Antigen processing and presentation, and the production of soluble
factors such as IL-1 by macrophages are required for the development of T cell
mediated immune responses (Gery and Handschumaker, 1974; Weaver and Unanue,
1990). On the other hand, macrophages have also been reported to act as “"natural
suppressor” cells that down-reguiate lymphocyte-dependent immune responses
(Metzger et al., 1980; Denham and Rowland, 1992). Lymphocyte proliferation in
vitro can be suppressed by the addition of excess macrophages to the culture system
(Allison, 1978). Evidence has been presented suggesting that superoxide anion,
prostaglandins, and other macrophage products may mediate this suppressive effect
(Kung, 1977; Allison, 1978; Metzger et al., 1980; Schultz, 1991). Recently, it was
reported that the concentration of arginine available to macrophages, and the
pathway utilized in its metabolism, play important roles in determining the functions
of macrophages (Hibbs er al., 1987a; Green ez al., 1990). In this regard, macrophages

can convert arginine to NO and citrulline (Stuehr and Marletta, 1985; Mills, 1991)
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and produce lymphocyte inhibition.

In the previous chapter, the removal of macrophages was shown to correct the
depressed lymphocyte proliferation response in SHR. The expression of rat
macrophage markers, ED1 or ED2 antigen, on different cell population was
examined to prove that the cells removed by adhering process were macrophages.
In order to confirm the involvement and the mechanism of action of these
macrophages in lymphocyte proliferation inhibition, the effect of isolated SHR
macrophages on the proliferation response of WKY spleen cells or SHR
macrophage-depleted lymphocytes was tested. NO production in SHR macrophages

in comparison with that in WKY macrophages was also investigated.

II. EXPERIMENTAL DESIGN

A. Examination of the expression of rat macrophage markers on spleen cells,
macrophage-enriched adherent cells and macrophage-depleted lymphocytes from
SHR and WKY. The details for the immunocytochemical staining of ED1 or ED2
antigen were described in the Materials and Methods chapter.

B. Effect of SHR or WKY macrophages on the lymphocyte proliferation
response. Spleen cells from SHR or WKY (2 x 10%ells/well) were incubated in 96
well tissue culture plates in a CO, incubator for 90 minutes. The medium, which
contained non-adherent lymphocytes, was decanted. The plates were washed twice

with HBSS to remove any residual non-adherent cells (Albina and Henry, 1991).
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Most of the adherent cells were macrophages (Wahl and Smith, 1991). Macrophage-
depleted lymphocytes (2 x 10%ells/well) were then added to these plates, to which
the macrophages were already adhered, in quadruplicate and incubated in the
presence of 2.5 or 5 ug/ml Con A for 72 hours. ’H-thymidine was added to the
culture for the final 18 hours, and the cells were harvested. The amount of
radioactivity incorporated into the cells was counted.

C. The effect of N%monomethy-L-arginine (L-NMMA) on lymphocyte
proliferation responses. L-NMMA has been shown to inhibit the NO synthesis
pathway specifically and to reverse the suppression of mouse lymphocyte proliferation
brought about by NO (Albina er al., 1991). In this study, various concentrations of
L-NMMA were added to the lymphocyte culture simultaneously with 2.5 ug/ml Con
A. The proliferation responses of SHR and WKY lymphocytes were carried out as
described in the Materials and Methods chapter. In the study of the effect of L-
NMMA exposure time on the SHR lymphocyte proliferation response, 0.05mM L-
NMMA was added to the culture of SHR spleen cells in the presence of 2.5 or 5

pe/ml Con A at various times during the 72 hours incubation period. The

proliferation assay was carried out as described before.

D. Comparison of NO production in spleen cells and macrophages from SHR
and WKY. Con A (2.5 pg/ml) or PHA (40 pg/ml) were used to induce NO
synthesis in macrophages and spieen cells from SHR and WKY. The experimental

procedures were described in the Materials and Methods chapter.
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II. RESULTS

A. Figure IV-1 presents colour photos of the negative control, in which mouse
IgG, (the same isotype as mouse anti-rat ED1 and ED2 antibody) was used as a
primary antibody. Nuclei of the cells were stained by hematoxylin as blue colour
dots. There was no dark red colour in the cytoplasm of the cells, indicating no
nonspecific staining. The results of the expression of ED1 or ED2 antigen (rat
macrophage marker) on spleen cells from SHR and WKY is shown in Figure IV-2.
The cells with dark red colour deposits around the nuclei are the cells expressing
ED1 or ED2 antigen. The number of ED1 positive cells in SHR spleen cells was not
significantly different from that in WKY spleen cells. In addition, the number of
ED2 positive cells in SHR spleen cells was very similar to that in WKY spleen cells.
Figure IV-3 demonstrates the efficiency of the adherent process by which
macrophages were removed from spleen cells. The numbers of ED1 positive (ED1 *)
cells in the non-adherent cell population were minimal, indicating that the majority
of macrophages had been removed. On the other hand, the zdherent cells on the
plastic surface of 96 well culture plates were mostly ED1 or ED2 positive (Figure IV-
4), The results from cells in 96 well plates for negative staining are shown in Figure
IV-S.

B. Figure IV-6 shows the effects of macrophages on lymphocyte proliferation
responses. When SHR macrophages were co-cultured with WKY macrophage-

depleted lymphocytes, the proliferation response of WKY macrophage-depleted
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lymphocytes was significantly inhibited. As demonstrated before, removal of the
macrophages from SHR spleen cells corrected the reduced SHR lymphocyte
proliferation response. When SHR macrophages were added back to these SHR
macrophage-depleted lymphocytes, the proliferation response to Con A was again
significantly suppressed (examined by ANOVA). WKY macrophages had no
significant effect on SHR or WKY lymphocyte proliferation responses.

C. The involvement of NO in the proliferation defect in SHR spleen cells was
studied using L-NMMA. Figure IV-7 shows that L-NMMA at 0.05 mM can fully
reverse the reduced proliferation response of SHR spleen cells in response to Con
A. D-NMMA, a stereoisomer of L-NMMA, failed to correct the reduced SHR
lymphocyte proliferation response (Figure IV-8).

D. Figure IV-2 shows the effects of different concentrations of L-NMMA on
the spleen cells and macrophage-depleted lymphocytes obtained from SHR and
WKY. L-NMMA markedly increased the proliferation response of SHR spleen cells
in response to Con A. This effect occurred in a dose-dependent manner. L-NMMA
had no significant effect on SHR macrophage-depleted lymphocytes nor on WKY
spleen cells or WKY macrophage-depleted lymphocytes. In addition, L-NMMA had
no significant effect on the proliferation response of thymocytes from either SHR or
WKY (Figure 1V-10).

E. The time course of the L-NMMA effect on the proliferation response of
SHR spleen cells is shown in Figure IV-11. In order to completely reverse the

suppressed SHR lymphocyte proliferation response, it was necessary to add L-
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NMMA to the SHR spleen cell culture for at least 48 hours before termination of
the cell culture at 72 hours. When L-NMMA was added to the culture for 24 hours
before termination of the culture, the proliferation response of SHR spleen cells was
only partially corrected.

F. Figure IV-12 shows the effect of L-NMMA on the inhibition of lymphocyte
proliferation responses caused by SHR macrophages. L-NMMA at a concentration
of 0.05 mM fully reversed the inhibition of the proliferation response of WKY
macrophage-depleted  lymphocytes or SHR macrophage-depleted  lymphocytes
brought about by SHR macrophages. Again, WKY macrophages had no significant
effect on the lymphocyte proliferation response. L-NMMA had no effect on the
proliferation response of lymphocytes co-cultured with WKY macrophages.

G. The results of NO synthesis by macrophages from SHR and WKY is
shown in Figure IV-13. Without stimulation, a very small amount of NO was
produced in either SHR or WKY macrophages. After being stimulated with Con A
or LPS, SHR macrophages produced significantly higher levels of NO than did those
of WKY. The production of NO by SHR spleen cells was also significantly higher
than that of WKY spleen cells (Figure IV-14). In addition, L-NMMA at 0.05 mM,
the same concentration used to reverse the inhibited lymphocyte proliferation

response, inhibited the increased NO production ii. SHR spleen cells.
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1IV. DISCUSSION

The present study continues the investigation into the mechanism of immune
abnormalities observed in SHR. In the previous chapter, it was demonstrated that
the proliferation response of SHR spleen cells was severely decreased. This
decreased response can be reversed by removing macrophages from the lymphocyte
population, suggesting that SHR macrophages might be involved in this inhibition.
In this study, the involvement of SHR macrophages in SHR lymphocyte depression
was confirmed. SHR macrophages not only inhibited SHR lymphocytes but also
inhibited WKY lymphocytes, suggesting that this inhibition brought about by SHR
macrophages may be due to a soluble molecule released by SHR macrophages in the
culture.

The inhibition of lymphocyte proliferation may also be due to an increased
number of macrophages in SHR. It is known that ED1 antigen is expressed on most
rat macrophages and monocytes but ED2 antigen is expressed on certain
subpopulation of macrophages in rats (Dijkstra et al.,1985; Westermann et al.,1989).
Therefore, a comparison of expression of these macrophage markers on the spleen
cells between SHR and WKY was investigated. The staining of ED1 and ED2
antigens reveals that the percentages of cells expressing these antigen on SHR spleen
cells were not significantly different from that in WKY spleen cells. Compared with
an earlier study in which the percentage of ED1 * cells was 13% in spleen cells

(Westermann et al., 1989), the percentages of ED1 *cells were 18-23% in this study.
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The reason for this difference is not known. That about 93% of adherent cells
removed from spleen cell population and less than 3% of non-adherent spleen cells
expressed ED1 antigen confirms that macrophages were the cells depleted from
spleen cells and the macrophages are indeed the cells which induce lymphocyte
inhibition in SHR.

Activated macrophages can produce a variety of substances. The list of these
products is now quite long (more than 50), including clotting factors, neutral and acid
proteinases, lipoproteins, TGF- §, toxic oxygen intermediators, prostaglandins and
leukotrienes (Cohn, 1986; Nathan, 1987). Some of them such as superoxide anions,
prostaglandins and TGF- 8 act as inhibitory substances to lymphocytes and immune
responses. The release of these substances by SHR macrophages may potentially be
the mechanism responsible for SHR lymphocyte inhibition. However, in recent years,
NO has been identified as an intermediate molecule for tumor cytotoxicity and
microbiostasis of activated macrophages (Hibbs et al., 1988; Stuehr and Nathan,
1989). Recent studies demonstrated that NO was responsible for macrophage
inhibition of normal T cell proliferation in response to alloantigens or mitogens
(Hoffman et al., 1990; Albina et al., 1991). Although it is not known whether this
mediator also plays a role in pathology-associated immunosuppression such as
hypertension, this mechanism was first investigated here to see if NO may be
involved in the inhibition of lymphocyte proliferation by SHR macrophages.

The present study provides evidence for the first time that the overproduction

of NO by SHR macrophages is responsible for the lymphocyte proliferation defect
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in SHR. This was accomplished by showing that L-NMMA, NOS inhibitor, fully
reversed the inhibition of the SHR lymphocyte proliferation response. Furthermore,
L-NMMA also reversed the inhibitory effect of added SHR macrophages on
macrophage depleted lymphocytes. In addition, macrophages from SHR produced
more NO upon stimulation (Xiao er al.,1993). This finding agrees with a recent
report that the iymphoid depression in SHR is mediated by a mononuclear
subpopulation through NO (Pascual ef al., 1993). The fact that D-NMMA failed to
correct the inhibition suggests that L-NMMA reversed the suppressed lymphocyte
proliferation response by specifically inhibiting NO synthase in SHR macrophages.
This study also shows that L-NMMA inhibited elevated NO production by SHR
spleen macrophages. L-NMMA at the same concentration, however, did not
significantly inhibit NO production by WKY macrophages. The explanation for this
is not clear.

The present study also shows that without stimulation, only a small amount
of NO was produced. After stimulation with Con A or LPS, large amounts of NO
were present in the culture media. This is in agreement with the fact that NOS in
macrophages is an inducible isoform. After the induction process, SHR produced
significantly greater amounts of NO than did WKY in both isolated macrophages and
total spleen cells including macrophages. The magnitude of increased NO production
in isolated macrophages was lower than that in spleen cells in SHR. The reason
might be due to the number of macrophages present in the test system. Although

the isolation process started with the same number of spleen cells, some of the
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macrophages may be lost by wash out from the dishes during the isolation process.
It would be ideal if a known number of macrophages were studied. However, this
was technically difficult because the removal of adherent macrophages for
enrichment and counting from petri dishes would cause damage to the macrophages.
The overproduction of NO could be the result of increased NOS activity in individual
macrophages or the result of increased total number of macrophages in SHR spleen
cell populations.  However, the result from the staining study showed that the
number of macrophages in SHR spleen was not significantly different from that in
WKY spleen. This suggests that the overproduction in SHR spleen cells is not due
to an increased total number of macrophages, but raither to changes in the
macrophages themselves or in the regulation of NO synthase in macrophages.

It has been reported that the number of spontaneously activated monocytes
and neutrophils in SHR was > 300% above control values (Schmid-Schonbein et al.,
1991). In addition, young SHR already display an elevaied circulating leukocyte
count at the time when blood pressure is beginning to increase. In the
subendothelium of SHR arteries, where there was infiltration by macrophages, the
angiotensin-converting enzyme inhibitors could prevent the macrophage infiltration
and attenuate the impairment of endothelium-dependent relaxation (Clozel et al.,
1991). These observations suggest that the abnormal function of macrophages per
se may be associated with the hypertensive state in SHR. It is possible that
hypertension may lead to changes in macrophage function or that the alteration of

macrophage function and the elevated blood pressure may be coupled to a similar,
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or possibly commor, causative factor or genetic defect in SHR. The precise
molecular mechanism of NO action that led to the inhibition of lymphocyte
proliferation is not fully understood. One possibility is that it is identical to the
mechanism responsible for the NO cytotoxic effect on tumor cells and micro-
organisms, i.e. inactivation of iron-sulfur enzymes known to be crucial for ATP
production and DNA replication (Hibbs et al., 1991). NO could also inhibit the
synthesis of some pro-stimulating cytokines. It has been reported that syndonimine,
a NO supplying agent, decreased IL-1p synthesis in human monocytes and that this
inhibition is correlated with an increase in intracellular cGMP level (Fulle et al.,
1991). The half-life of NO is very short (within seconds). This short half-life
contributes to the oxidation of NO in the presence of oxygen and superoxide anions
(Ignarro, 1991). This could explain the earlier result which showed that the culture
supernatant of SHR spleen cells failed to inhibit lymphocyte proliferation because
the NO had been inactivated.

It has been reported that endothelium-dependent relaxation was impaired in
SHR suggesting that the NO released from endothelial cells is probably reduced
(Diederich et al., 1990; Koller and Huang, 1994). However, in this study it was
observed that NO synthesis in SHR macrophages was increased. The explanation for

this paradox is not known at this time and requires further investigation.
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Figure IV-1. Negative control of inmunoperoxidase staining. The fixed spleen cells
were incubated on slides with mouse IgG ,antibody (the same isotype as anti-rat EDI
and ED2 antibody). A goat anti-mouse IgG antibody was then incubated with the
cells followed by a peroxidase staining. The cells were counter-stained by
hematoxylin with a blue colour.
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The expression of ED1 or ED2 antigen on spleen cells

| EDI * cells (%) ED2 * cells (%)
| SHR spieen cells 23.1 +£3.7 4.03 +2.1

|| WKY spleen cells 18.2 £ 1.1 6.7 £ 3.8

The fixed spleen cells were incubated on slides with mouse anti-rat ED1
(1:1000 dilution) or ED2 (1:800 dilution) monoclonal antibody. A goat anti-
mouse IgG antibody was then incubated with the cells. The cells expressing ED1
and ED2 antigens were detected by an immunoperoxidase staining method. The
values are Mean + SE of positive cells counted from 3 areas in each slide, one
slide for each 4 rats. A:ED1 expressed on SHR spleen cells; B: ED1 expressed
on WKY spleen cells; C: ED2 expressed on SHR spleen cells; D: ED2 expressed
on WKY spleen cells.
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Figure IV-3
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The expression of ED1 or ED2 antigen on non-adherent cells

—

ED1 * cells (%)

ED2 * cells (%)

SHR non-adherent cells

3.2 £ 1.1

N/A °

WKY non-adherent
cells

1.7 £0.9

N/A °

The fixed non-adherent cells were incubated on slides with mouse anti-rat
ED1 (1:1000 dilution) or ED2 (1:800 dilution) monoclonal antibody. A goat anti-
mouse IgG antibody was then incubated with the cells. The cells expressing EDI1
and ED2 antigens were detected by an immunoperoxidase staining method. The
values are Mean + SE of positive cells counted from 3 areas in each of 2 slides.
A: EDI1 expressed on SHR non-adherent cells; B: ED1 expressed on WKY non-
adherent cell; C: ED2 expressed on SHR non-adherent cells; D ED2 expressed

on WKY non-adherent cells.

*. The number of cells in each area of the slide is too small to obtain an

accurate percentage.
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The expression of ED1 or ED2 antigen on adherent cells

ED1 * cells (%) EDZ * cells (%)
SHR adherent cells 93.6 + 3.4 69.3 + 0.6
WKY adherent cells 88.2 +4.2 673 +1.2

The fixed adherent cells in a 96 well tissue plate were incubated with
mouse anti-rat ED1 (1:1000 dilution) or ED2 (1:800 dilution) monoclonal
antibody. A goat anti-mouse IgG antibody was then incubated with the cells. The
cells expressing ED1 and ED2 antigens were detected by an immunoperoxidase
staining method. The values are Mean = SE of positive cells counted from 3
areas in each well, 2-3 wells per tested antigen. A:EDI expressed on SHR
adherent cells; B: EDI1 expressed on WKY adherent cells; C: ED2 expressed on
SHR adherent cells; D: ED2 expressed on WKY adherent cell.
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Figure IV-5. Negative control of immunoperoxidase staining. The fixed adherent
cells in a 96 well plate were incubated with mouse IgG, antibody (the same
isotype as anti-rat ED1 and ED2 antibody). A goat anti-mouse IgG antibody was
then incubated with the cells followed by a peroxidase staining. There was no
hematoxylin staining for nuclei of these cells.
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Figure IV-6. Effect of macrophages on the proliferation response of macrophage-
depleted lymphocytes from SHR and WKY. Spleen cells (2 x 10° cells/well) were
incubated in 96 well tissue culture plates for 90 minutes. The medium which
contained nonadherent lymphocytes was decanted. The plates were washed twice
with HBSS to remove any residual nonadherent cells. Macrophage-depleted
lymphocytes from SHR or WKY were added onto plates, which contained adherent
macrophages, in quadruplicate and incubated for 72 hours in the presence of 2.5
ug/ml Con A. Data represent the mean of *H-thymidine uptake by the cells (CPM)
per well + SE from six rats. Significant difference: * P < 0.05; ** P < 0.01,
compared with respective control and + WKY macrophage group.
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Figure IV-7. Effects of L-NMMA on the proliferation response of SHR and WKY
spleen cells. L-NMMA (0.05 mM) was added to the culture simultaneously with
Con A. The data represent the mean of *H-thymidine uptake by the cells (CPM) per
well  SE from six rats. Significant difference: * P < 0.01, compared with respective
SHR spleen cells.
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Figure IV-8. Effect of D-NMMA on the proliferation response of SHR and WKY
spleen cells. D-NMMA (0.01 mM) was added to the culture simultaneously with 2.5
pg/ml Con A. The data represent the mean of *H-thymidine uptake by the cells
(CPM) per well + SE from three rats. Significant difference: ** P< 0.01, compared
with respective WKY spleen cells.
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Figure IV-9. Effects of L-NMMA on the proliferation response of spleen cells or
macrophage-depleted lymphocytes obtained from SHR and WKY. Various
concentrations of L-NMMA were added to the culture simultaneously with 5 ug/ml
Con A. SHRLym: SHR spleen cells; SHRLym-Mac: SHR macrophage-depleted
lymphocytes; WKYLym: WKY spleen cells; WKYLym-Mac: WKY macrophage-
depleted lymphocytes. The data represent the mean of 3H-thymidine uptake by the
cells (CPM) per well + SE from six rats. Significant difference: * P < 0.01 when
the responses of SHR spleen cells were compared with those of SHR macrophage-
depleted lymphocytes.
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Figure IV-10. Effects of L-NMMA on the proliferation response of thymocytes
obtained from SHR and WKY. Various concentrations of L-NMMA were added to
the culture simultaneously with 2.5 or 5 ug/ml Con A. The data represent the mean
of 3H-thymidine uptake by the cells (CPM) per well + SE from six rats.
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Figure IV-11. The effect of L-NMMA exposure with time on the proliferation
response of SHR spleen cells, L-NMMA (0.05 mM) was added into the SHR spleen
cell culture at various times during the 72 hours culture period. The time points
represent the duration of exposure to L-NMMA at the termination of the culture, i.e.
24 hours represents the addition of L-NMMA at the final 24 hours of the culture
period; 72 hours represents the addition of L-NMMA at the beginning of the culture.
The data represent the mean of *H-thymidine uptake by the cells (CPM) per well +
SE from 3 rats. **: P < 0.01, compared with respective response at 24, 48, 58 and
72 hours (except the response to 5 pg/ml Con A at 24 hours). #: P < 0.05,
compared with respective response at 72 hours. ## P < 0.01, compared with
respective response at 48, 54 and 72 hours.
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Figure IV-12. Effect of L-NMMA on the inhibition of lymphocyte proliferation
responses caused by SHR macrophages. Macrophages in 96 well plates were
prepared as described in Figure IV-1. Macrophage-depleted lymphocytes from SHR
or WKY were added to the plates and incubated for 72 hours in the presence of 2.5
pg/ml Con A and 0.05 mM L-NMMA. WKYLym: WKY macrophage-depleted
lymphocytes; WKYMac: WKY macrophages; SHRLym: SHR macrophage-depleted
lymphocytes; SHRMac: SHR macrophages. The data represent the mean of ’H-
thymidine uptake by the cells (CPM) per well + SE from six rats. Significant

difference: * P < 0.01, compared with respective cells treated with L-NMMA.
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Figure IV-13. Nitric oxide production by macrophages from SHR iand WKY.
Five ml of 1x10%cells/ml spleen cells were incubated in 60x15 min plastic dishes in
complete medium for 90 minutes. The medium which contained nonadherent
lymphocytes was decanted. The dishes were washed twice to remove any residual
nonadherent cells and 5 ml of fresh medium was added. The adherent
macrophages were then incubated for 72 hours in the presence of 2.5 pg/ml

Con A or 40 pg/ml LPS. The supernatant was collected by centrifuging at 4°C, at
800 x g for 10 minutes. Nitrite concentration in the supernatant was determined
by a colorimetric assay. Data represent mean + SE from four experiments.

* P < 0.05, compared with SHR.
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Figure IV-14. Nitric oxide production by spleen cells from SHR and WKY. Five ml
of 1x10° cells/ml spleen cells were incubated in 12 well tissue culture plates in
complete medium for 72 hours in the presence of 2.5 ug/ml Con A or 2.5 pg/ml Con
A plus 0.05 mM L-NMMA. The supernatant was collected by centrifugation at 4°C,
800 x g for 10 minutes. The nitrite concentration in the culture supernatant was
determined by a colorimetric assay. Data represent mean + SE from four rats. **
P < 0.01, compared with WKY spleen cells. ## P < 0.01, compared with SHR
spleen cells stimulated by Con A.



CHAPTER V. INTERACTION OF LYMPHOCYTES AND VSMC:

THE ROLE OF THE NITRIC OXIDE PATHWAY

I. INTRODUCTION

The main objective of this thesis is to investigate the relationship between
immune dysfunction and hypertension in SHR. Although it was shown in the last
chapter that the overproduction of NO by macrophages is responsible for lymphocyte
depression in SHR, it is possible that NO production by other cells may also
contribute to this inhibition. Lymphocytes circulate throughout the body in the
ongoing process of immune surveillance by travelling through the bloodstream,
moving into tissues and then returning to the circulatory system via the lymphatics
(Butcher, 1990; Shimizu er al.,1992). It is possible that VSMC and endothelial cells
of blood vessels can influence the properties of lymphocytes or vice versa.

The hallmark of hypertension is an increase in vascular resistance. VSMC are
responsible for controlling the lumen diameter of resistance vessel and thus,
controlling vascular resistance. In hypertension, VSMC exhibit abnormal growth
(Lee, 1985; Mulvany, 1992) and responsiveness to vasoactive agents (Bohr er al.,
1991a; de Champlain et al., 1991). It was of great interest to determine if any
interaction exists between VSMC and lymphocytes.  An understanding of this
interaction in SHR may provide evidence for a relationship between immune

dysfunction and hypertension. Therefore, the interaction between lymphocytes and
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VSMC was investigated. The role of NO in this interaction and NO production by

VSMC from SHR or WKY were also studied.

II. EXPERIMENTAL DESIGN

A. Mixed culture of lymphocytes with VSMC. As described in Chapter II,
VSMC from SHR and WKY were plated in 96 well tissue plates at various cell
concentrations for 36-40 hours to allow attachment of VSMC to the plates. To study
the effect of VSMC on the proliferation response of lymphocytes, lymphocytes (0.2
x 10%ells/well) isolated from SHR or WKY were then co-cultured in quadruplicate
with VSMC at a ratio of VSMC:lymphocytes of 1:40,1:20 or 1:10in the presence of
Con A for 72 hours. *H-thymidine was added to the cell culture during the last 18
hours and the cells were harvested and counted. Because VSMC can take up a
substantial amount of *H-thymidine thus making the interpretation of results difficult,
the VSMC were irradiated using a '¥'Cs r-irradiator at a dose of 4000 rads to prevent
proliferation (Kruisbeek and Shevach, 1991). As shown later in this chapter, this
irradiation dose sufficiently prevented VSMC proliferation. The mixed cell culture
was carried out as described previously.

B. The effect of L-NMMA on the mixed cell culture. L-NMMA (0.05 mM)
was simultaneously added to the mixed cell culture with 2.5 ug/ml of Con A and
cultured for 72 hours. °H-thymidine was added to the culture during the last 18

hours. The cells were harvested and counted as described previously.
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C. NO production by VSMC from SHR and WKY.

1. Comparison of NO production in VSMC of SHR and WKY. VSMC were
incubated in 24 well tissue culture plates in 10% FCS DMEM medium for 36-40
hours to allow attachment of VSMC to the plates. The medium was changed to
0.4% FCS DMEM medium for 48 hours to render the VSMC quiescent (stopping at
G, phase in the cell cycle). To induce NO production, VSMC were cultured with
either LPS, IL-18, TNF q, INF or a cytokine mixture containing 5 units/ml IL-18,
5 nM TNF o, 200 units/ml IFN~yand 10 pg/ml LPS in 10% FCS DMEM medium for
48 hours. The amount of NO in the culture supernatant was determined by a
colorimetric assay.

2. Time-dependent and dose-dependent NO production by VSMC. After
being rendered quiescent, VSMC from SHR or WKY were cultured with LPS or a
cytokine mixture as described previously. At different times during the culture
period, the supernatant was collected and kept in 4%C until tested. VSMC were
cultured in the presence of various concentrations of LPS for 48 hours as described
previously. The amount of NO in the supernatant was tested by a colorimetric assay.

D. Growth of SHR and WKY VSMC.

1. Proliferation study. VSMC (1 x 10%ells/well) were cultured in 96 well
tissue culture plates in 10% FCS DMEM medium for 24 hours to allow attachment
of VSMC to the plates. The medium was changed to 0.4% FCS DMEM medium for
4 days to render the VSMC quiescent. The quiescent VSMC were, then, cultured

in 10% FCS DMEM medium in the presence of either LPS or L-NMMA or both for



119
72 hours. *H-thymidine was added to the culture for the final 24 hours. The

VSMC were harvested by trypsin treatment and counted.

2. Protein synthesis in VSMC. Protein synthesis .. cells is correlated with
growth rate. In order to examine the growth of SHR and WKY VSMC with time,
1.5ml of 1 x 10°cells/ml VSMC were cultured in 24 well tissue culture plates in 10%
FCS DMEM medium for 36-40 hours and were then rendered quiescent. The
medium was then replaced with 10% FCS DMEM medium. At various times, the
VSMC were washed twice with HBSS and solubilized. The protein content in VSMC
was determined as described in Chapter II.

E. Effect of cytokines on VSMC proliferation. VSMC (1 x 10%cells/well) were
cultured in 96 well tissue culture plates in 10% FCS DMEM medium for 24 hours
to allow attachment of VSMC to the plates. The medium was changed to 0.4% FCS
DMEM medium for 4 days to render the VSMC quiescent. The medium was, then,
replaced with 5% FCS DMEM medium in the presence of IL-2,IL-18, INFyor IL-6.
After 24 hours of incubation, the VSMC were pulsed with *H-thymidine and
incubated for another 40 hours. The VSMC were harvested by trypsin treatment and

counted.

IoI. RESULTS

A. Two non-irradiated SHR VSMC preparations significantly inhibited the

proliferation response of WKY lymphocytes. SHR lymphocytes had reduced
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proliferation responses as seen before. When these cells were co-cultured with SHR
VSMC, the proliferation response was further reduced. WKY VSMC had no
significant effect on the lymphocyte proliferation response in either SHR or WKY.
(Figure V-1).

B. Figure V-2 shows that after VSMC were irradiated the amount of *H-
thymidine incorporation was minimal, suggesting that the proliferation of VSMC
ceased. The effect of irradiation on cell viability was tested by trypan blue exclusion.
The results showed that more than 90% of VSMC were viable.

C. Irradiated SHR VSMC significantly inhibited the proliferation of WKY
(Figure V-3) and SHR (Figure V-4) lymphocytes and macrophage-depleted
lymphocytes in response to 2.5 pg/ml of Con A. The lymphocytes co-cultured with
SHR VSMC exhibited only one-seventh to one-ninth of the control response. When
macrophages were removed from SHR spleen cells, the proliferation response
increased dramatically. However, the increased response was again suppressed by
co-culturing with SHR VSMC (Figure V-4). WKY VSMC had no significant effect
on lymphocyte proliferation responses.

D. Figure V-5 shows that SHR VSMC inhibited lymphocyte proliferation in
a dose-dependent manner. As the proportion of VSMC increased, the inhibition of
lymphocyte proliferation increased.

E. At a concentration of 0.05 mM, L-NMMA fully corrected the inhibited
proliferation response of WKY lymphocytes (Figure V-6) and WKY macrophage-

depleted lymphocytes (Figure V-7) caused by SHR VSMC . L-NMMA not only
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reversed the inhibitory effect of SHR VSMC on SHR lymphocyte proliferation but

also further increased the SHR lymphocyte proliferation to a much higher level even
though SHR VSMC were present (Figure V-8). L-NMMA also fully corrected the
inhibition of SHR VSMC on the proliferation response of SHR macrophage-depleted
lymphocytes (Figure V-9).

F. The results of NO production by irradiated VSMC from SHR and WKY
are shown in Figure V-10. The irradiated SHR VSMC produced a significantly
larger amount of NO than did irradiated WKY VSMC after stimulation by LPS.
Without stimulation a small amount of NO was produced by VSMC. Similar results
were obtained when non-irradiated VSMC were used in this study. After
stimulation by 40 pg/ml LPS, 25 units/ml IL-18 or a cytokine mixture, the non-
irradiated SHR VSMC produced a significantly greater amount of NO than did those
from WKY (Figure V-11). However, no significant amount of NO was produced
when the VSMC were stimulated by either TNFa or IFNy alone (Figure V-12).
When 0.05 mM L-NMMA was added to the VSMC culture stimulated by LPS, the
increased NO production in SHR VSMC was inhibited (Figure V-13).

G. Figure V-14 shows time-dependent changes in NO production by VSMC
from SHR and WKY, stimulated by a the cytokine mixture. At each interval, SHR
VSMC produced a significantly greater amount of NO than did WKY VSMC. A
similar time-dependent relationship was observed when the VSMC were stimulated
with LPS (Figure V-15). Again, SHR VSMC produced larger amounts of NO than

did WKY VSMC.
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H. LPS stimulated NO production by VSMC from SHR or WKY in a dose-

dependent manner (Figure V-16). At each concentration tested, SHR VSMC
produced a significantly greater amount of NO than did WKY VSMC.,

I. Time-dependent protein synthesis in VSMC is shown in Figure V-17.
There was no significant difference in the protein content of VSMC of SHR and
WKY during the first 48 hours of the culture period which started after quiescence.
However, the protein content of SHR VSMC increased significantly after that period
of culture time.

J. Figure V-18 shows the effect of LPS or LPS plus L-NMMA on VSMC
proliferation. When cultured in 10% FCS DMEM medium for 72 hours, SHR
VSMC exhibited a greater proliferation rate than did WKY VSMC. When SHR
VSMC were cultured in the presence of LPS, the increased proliferation rate was
inhibited. L-NMMA reversed the inhibited SHR VSMC proliferation caused by LPS.

K. The effect of cytokines on VSMC proliferation is shown in Figure V-19.
IL-2,IL-18, INFyand IL-6 did not show a significant stimulatory or inhibitory effect

on the proliferation of VSMC.

IV. DISCUSSION

No direct evidence is available concerning the interaction between

lymphocytes and VSMC in hypertension. Although SHR macrophages were found

to be responsible for the lymphocyte inhibition defect in SHR, the involvement of
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other SHR cell types could not be excluded (Fabry et al., 1990a). To test this
possibility, the interaction between lymphocytes and VSMC was investigated. The
results showed that SHR VSMC significantly inhibited the proliferation response of
lymphocytes from SHR or WKY. The fast growth of SHR VSMC could cause
changes in culture conditions and *H-thymidine uptake and makes the interpretation
of the results difficult. To avoid this, the VSMC were irradiated at 4000 rad to stop
the proliferation. The results from lymphocytes co-cultured with irradiated VSMC
would then more closely reflect lymphocyte proliferation. When lymphocytes were
co-cultured with irradiated SHR VSMC, the proliferation of lymphocytes was
inhibited to the same degree as by non-irradiated SHR VSMC. Because SHR
macrophages were involved in the suppressed lymphocyte proliferation in SHR,
macrophages were removed from lymphocytes before co-culturing to exclude this
effect. The same inhibition was seen in the proliferation response of macrophage-
depleted lymphocytes when co-cultured with SHR VSMC, suggesting that SHR
VSMC were the cells involved in this inhibition. This is further supported by the
inhibitory effect of SHR VSMC on WKY spleen cells with or without normal
macrophages.

To elucidate the mechanism involved in the inhibition of lymphocyte
proliferation caused by SHR VSMC, the NO synthesis pathway was studied. When
L-NMMA was added to the mixed culture, the inhibition of the proliferatibn
responses of lymphocytes and macrophage-depleted lymphocytes caused by SHR

VSMC was fully corrected. In the case of SHR lymphocytes, L-NMMA not only
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reversed the inhibition but also increased the response dramatically, suggesting that
L-NMMA inhibited NO synthesis in both SHR macrophages and SHR VSMC. In
addition, both irradiated and non-irradiated SHR VSMC produced a significantly
greater amount of NO than did WKY VSMC. This provides direct evidence for
increased NO synthesis in SHR VSMC. This overproduction of NO by SHR VSMC
mediated the inhibition of lymphocyte proliferation in the mixed culture system. The
overactive NO synthesis in SHR VSMC may also have mediated lymphocyte
depression in vivo because lymphocytes are constantly in contact with cells within the
blood vessel wall and the lymphocytes are continuously recirculated between the
blood stream and lymphoid tissue. It has been shown that vascular smooth muscle
and endothelium can influence lymphocyte function by antigen presentation (Fabry
et al., 1990a) and cytokine production (Warner and Libby, 1989). The interaction
between VSMC and lymphocytes has been suggested to be important in conditions
such as vasculitis, atherosclerosis and multiple sclerosis (Hart et al., 1985; Fabry et
al., 1990b). The present study demonstrates for the first time that a significant
interaction between VSMC and lymphocytes exists in hypertension, and that this
interaction is mediated through the NO synthesis pathway (Xiao and Pang, 1994a).

Regarding NO synthesis in VSMC, it is possible that the increased NO
production in cultured SHR VSMC may be due to the greater number of VSMC
present in the culture because SHR VSMC grow more rapidly than do WKY VSMC.
This possibility was examined in the experiment which demonstrated that the

difference in growth rate between SHR VSMC and WKY VSMC was only observed
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after 48 hours in culture. In this experiment, VSMC from SHR or WKY had been

rendered quiescent (stop at G,phase of the cell cycle) by a 4-day culture in 0.4%
FCS DMEM medium. That the difference in growth rate was only evident after 48
hours agrees with an earlier report that the difference in growth rates between SHR
and WKY became significant only after 4 days in culture (Hadrava et al., 1989).
Therefore, it is unlikely that the increase in the number of VSMC contributed to the
greater NO production in SHR VSMC since the VSMC were only cultured for 48
hours after quiescence. This fact is also supported by the finding that even at 24
hours in culture, SHR VSMC produced a larger amount of NO than did WKY
VSMC (Xiao and Pang, 1994b). The results of the present study agree with a recent
report that the production of NO evoked by IL-18in SHR VSMC was greater than
that from WKY VSMC (Junquero et al., 1993).

Since the increased NO synthesis in SHR VSMC was only observed after
stimulation by LPS or cytokines, this suggests that the enhanced NO production may
result from an alteration in inducible NOS. This agrees with previous finding that
like NOS in macrophages, NOS in VSMC can be induced by cytokines or LPS (Busse
and Mulsch, 1990; Beasley er al., 1991; Xie et al.,1992). 1t is well established that
the constitutive NO synthesis pathway in endothelial cells is important in the
regulation of blood pressure. The involvement of NO synthesis, however, especially
inducible NO synthesis in VSMC in the hypertensive state is not clear. Shear stress,
arginine vasopressin, norepinephrine, histamine and thrombin have all been reported

to stimulate endothelial cells in blood vessels to produce NO (Shepherd and Katusic,
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1991). The production and release of these factors could be altered in hypertensive

state. Recently, it was reported that the cGMP content of blood vessels was
increased in SHR (Mourlon-Le Grand er al., 1992). L-arginine has been
demonstrated to induce a greater fall in blood pressure in SHR (Schleiffer et al.,
1991). These observations suggested that the NO synthesis system was probably
increased in SHR. These studies, however, did not distinguish the inducible NO
synthesis from the constitutive NO synthesis. The present study provides evidence
that the inducible NO synthesis was elevated in SHR VSMC. Upon stimulation by
vasoconstrictors, SHR arteries release endothelium-derived contracting factors
(EDCF) (Luscher and Vanhoutte, 1986; Dai er al.,1992). Among EDCF, superoxide
anion is a potent chemical inactivator of NO (Rubanyi, 1991; Moroi et al., 1994)
Cosentino er al.,1994). It has been speculated that an imbalance between NO and
EDCF may exist in SHR (Rubanyi, 1992; Ito and Carretero, 1992; Junquero et al.,
1992). The overproduction of NO in SHR macrophages and VSMC suggests that
there may be a general alteration in inducible NO synthesis. The activated NO
synthesis system in macrophages and VSMC reflect a general compensatory
protective mechanism against the vasoconstricting effect of EDCF and other
vasoconstricting substances. This general activation of inducible NO synthesis,
especially in macrophages, results in the lymphocyte depression in SHR.

It has been well characterized that the responsiveness of resistance arteries
to endothelium-dependent vasodilating substance such as acetylcholine was reduced

in SHR and patients with essential hypertension (Tesfamariam and Halpern, 1988;
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Deng et al., 1993; Malinski et al., 1993; Li ez al., 1994). It has been suggested that
a defect in the endothelium-derived NO synthesis system may at least partly account
for both the increased vascular resistance and the impaired response to endothelium-
dependent vasodilators (Tesfamariam and Halpern, 1988; Panza et al., 1993).
However, it was also reported that SHR coronary artery exhibited a higher sensitivity
to the endothelium-dependent vasodilator, bradykinin, paralleled by a higher release
of NO into the coronary circulation (Kelm e al.,1992). Recently it was shown that
UV light-activated NO release from aorta was greater in SHR than that in WKY
(Kubaszewski ef al., 1994). Furthermore, the release rate of endothelium-derived
NO into kidney did not differ between SHR and WKY (Hayakawa et al.,1993). It
has been reported that despite a reduced vascular response to acetylcholine,
endothelium-derived NO synthesis was normal in isolated microperfused afferent
arterioles of SHR (Ito and Carretero, 1992). These results suggest that the reduced
endothelium-dependent relaxation in hypertension may not be due to an insufficient
NO synthesis by constitutive NO synthase in endothelial cells. The reduced
endothelium-dependent relaxation may be due to factors other than endothelium-
derived NO, such as increassd EDCF or decreased endothelium-derived
hyperpolarization factor (EDHF).
The NO synthesis pathway has been recognized to not only play a significant
role in the regulation of blood pressure and also in the regulation of VSMC
proliferation (Nakaki er al., 1990). It was reported that IFNr inhibited VSMC

proliferation by NO generation in normal rats (Nunokawa and Tanaka, 1992). The
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present study shows that SHR VSMC proliferate to a significantly greater extent than
do those of WKY after 72 hours in culture. However, when SHR VSMC were
cultured with LPS, the proliferation was significantly inhibited and this inhibition
could be completely reversed by the addition of L-NMMA to the culture. This study
provides the first evidence suggesting that the enhanced NO synthesis pathway in
SHR VSMC may have an important role in the prevention of VSMC proliferation
in the hypertensive state. This inhibitory effect may serve as a negative feedback
mechanism. However, this mechanism is not strong enough to counterbalance the
increased VSMC proliferation and, hence, in hypertension the vascular system still
exhibits hypertrophy and hyperplasia.

The present study also examined the possibility that the immune system affects
VSMC. This was accomplished by studying the effect of cytokines on VSMC
proliferation. IL-2 and INF v, the two T cell-derived cytokines, and also IL-1 and IL-
6, the cytokines mainly produced by macrophages, were tested. The results showed
that these cytokines had no significant effect on VSMC proliferation in either SHR
or WKY. It has been reported that IL-1 promoted proliferation of VSMC in
coordination with platelet derived growth factor (PDGF) (lkeda et al., 1990). In
contrast to a report that IL-6 stimulated c-myc (an oncogene involved in DNA
replication) expression and proliferation of VSMC (Nabata et al., 1990), this study
showed that IL-6 did not have a stimulatory effect on VSMC proliferation. The
reason for this discrepancy is not clear at this time.

In summary, the present study demonstrated that 1) SHR VSMC significantly
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inhibited the proliferation response of lymphocytes from SHR and WKY, 2) L-
NMMA corrected the inhibited lymphocyte proliferation caused by SHR VSMC, 3)
the overproduction of NO by SHR ViMC was responsible for this inhibition, 4)
upon stimulation, NO synthesis in SHR VSMC was greater compared with that in
WKY VSMC. These results suggest that a general activation of the inducible NO
synthesis system may exist in SHR to serve as a compensatory protective mechanism
against the elevated blood pressure. The alteration of NO synthesis in VSMC may
be an important factor contributing to lymphocyte depression in hypertension.
However, the precise relationship, i.e. causative or parallel, between lymphocyte

depression and hypertension is still not clear at this time.
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Figure V-1. Effect of non-irradiated VSMC on the proliferation response of
lymphocytes. Two SHR and two WKY subcultured VSMC preparations (2 x 10°
cells/well) were planted in 96 well tissue culture plates and incubated in 10% FCS
DMEM medium. After incubated for 36-40 hours, the medium was decanted. The
lymphocytes from SHR and WKY were then added in quadruplicate onto the plates
at a lymphocyte : VSMC ratio of 10:1. The cells were incubated in 10% FCS RPMI-
1640 in the presence of 2.5 ug/ml Con A for 72 hours. 3H-thymidine was added to
the culture for the final 18 hours. Data represent means of *H-thymidine uptake by
the cells (CPM) per well + SE from three experiments. **: P < 0.01, compared with
respective control group (lymphocytes only) and the groups which contained
lymphocytes plus WKY VSMC.
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Figure V-2. Effect of irradiation on VSMC proliferation. VSMC (2 x 10* cells/well)
were planted in 96 well plates and incubated for 36-40 hours. One plate was then
irradiated using a ¥’Cs r-irradiator at a dose of 4000 rads. Another plate was not
irradiated. VSMC in the plates were washed twice with HBSS and cultured in 10%
FCS DMEM medium for 72 hours. *H-thymidine was added to the culture for the
final 18 hours. Data represent means of *H-thymidine uptake by the cells (CPM) per
well + SE (N=9) from 3 cell preparations, 3 experiments for each preparation.
**. P < 0.01, compared with respective non-irradiated VSMC.,
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Figure V-3. Effect of irradiated VSMC on the proliferation response of WKY
lymphocytes. Irradiated VSMC were prepared as described in Figure V-2. WKY
lymphocytes (WKYLym) or WKY macrophage-depleted lymphocytes (WKYLym-
Mac) were subsequently added in quadruplicate onto the plates at a lymphocyte :
VSMC ratio of 10:1. The cells were incubated for 72 hours in the presence of 5
pg/ml Con A in 10% FCS RPMI-1640 medium. 3H-thymidine was added to the
culture for the final 18 hours. Data represent means of *H-thymidine uptake by the
cells (CPM) per well + SE (N=12) from 3 VSMC preparations, 4 experiments for
each preparation. **: P < 001, compared with respective control group
(lymphocytes only) and the group which contained lymphocytes plus WKY VSMC.
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Figure V-4. Effect of irradiated VSMC on the proliferation response of SHR
lymphocytes. Irradiated VSMC were prepared as described in Figure V-2. SHR
lymphocytes (SHRLym) or SHR macrophage-depleted lymphocytes (SHRLym-Mac)
were subsequently added in quadruplicate onto plates at a lymphocyte : VSMC ratio
of 10:1. The cells were incubated for 72 hours in the presence of 5 ug/ml Con A in
10% FCS RPMI-1640 medium. 3H-thymidine was added to the culture for the final
18 hours. Data represent means of *H-thymidine uptake by the cells (CPM) per well
+ SE (N=12) from 3 VSMC preparations, 4 experiments for each preparation.

*. P < 0.05, **: P < 0.01, compared with respective control group (lymphocytes only)
and the group which contained lymphocytes plus WKY VSMC.
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Figure V-5. Dose dependent effect of VSMC on the proliferation response of
lymphocytes from SHR and WKY. Various concentrations of VSMC were planted
in 96 well plates and incubated for 36-40 hours. The plates were then irradiated at
4000 rads. Lymphocytes (2 x 10°cells/well) from SHR or WKY were subsequently
added in quadruplicate onto plates at a lymphocyte : VSMC ratio of 40:1, 20:1 and
10:1. The cells were incubated for 72 hours in the presence of 5 ug/ml Con A.
Data represent means of *H-thymidine uptake by the cells (CPM) per well £ SE
(N=12) from 3 VSMC preparations, 4 experiments for each preparation. **: P<0.01,
compared with respective group which contained lymphocytes plus WKY VSMC.
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Figure V-6. Effect of L-NMMA on the interaction of VSMC and WKY lymphocytes.
L-NMMA (0.05 mM) was added to the co-cultures of WKY lymphocytes with VSMC
from SHR or WKY as described in Figure V-3 in the presence of 2.5 ug/ml Con A.
(control: WKY lymphocytes; WKYVSMC: WKY lymphocytes plus WKY VSMC;
SHRVSMC: WKY lymphocytes plus SHR VSMC). Data represent means of *H-
thymidine uptake by the cells (CPM) per well + SE (N=12) from 3 VSMC
preparations, 4 experiments for each preparation. **: P < 0.01, compared with
SHRVSMC group that without L-NMMA treatment. ##: P < 0.01, compared with
both control and WKYVSMC groups that without L-NMMA treatment.
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Figure V-7. Effect of L-NMMA on the interaction of VSMC and WKY macrophage-
depleted lymphocytes. L-NMMA (0.05 mM) was added to the co-cultures of WKY
macrophage-depleted lymphocytes with VSMC from SHR or WKY as described in
Figure V-3 in the presence of 2.5 pg/ml Con A. (control: WKY macrophage-
depleted lymphocytes; WKYVSMC: WKY macrophage-depleted lymphocytes plus
WKY VSMC; SHRVSMC: WKY macrophage-depleted lymphocytes plus SHR
VSMC). Data represent means of *H-thymidine uptake by the cells (CPM) per well
+ SE (N=12) from 3 VSMC preparations, 4 experiments for each preparation.

**; P < 0.01, compared with SHRVSMC group that without L-NMMA treatment.
##: P < 0.01, compared with both control and WKYVSMC groups that without L-

NMMA treatment.
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Figure V-8. Effect of L-NMMA on the interaction of VSMC and SHR lymphocytes.
L-NMMA (0.05 mM) was added to the co-cultures of SHR lymphocytes with VSMC
from SHR or WKY as described in Figure V-3 in the presence of 2.5 ug/ml Con A.
(control: SHR lymphocytes; WKYVSMC: SHR lymphocytes plus WKY VSMC;
SHRVSMC: SHR lymphocytes plus SHR VSMC). Data represent means of *H-
thymidine uptake by the cells (CPM) per well + SE (N=12) from 3 VSMC
preparations, 4 experiments for each preparation. **: P < 0.01, compared with
respective group that without L-NMMA treatment. #: P < 0.05, compared with both
control and WKYVSMC groups that without L-NMMA treatment.
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Figure V-9. Effect of L-NMMA on the interaction of VSMC and SHR macrophage-
depleted lymphocytes. L-NMMA (0.05 mM) was to the co-cultures of SHR
macrophage-depleted lymphocytes with VSMC from SHR or WKY as described in
Figure V-3 in the presence of 2.5 pg/ml Con A. (control: SHR macrophage-depleted
lymphocytes; WKYVSMC: SHR macrophage-depleted lymphocytes plus WKY VSMC;
SHRVSMC: SHR macrephage-depleted lymphocytes plus SHR VSMC). Data
represent means of *H-tiiymidine uptake by the cells (CPM) per well + SE (N=12)
from 3 VSMC preparations, 4 experiments for each preparation. **: P < 0.01,
compared with SHRVSMC group that without L-NMMA treatment. ##: P < 0.01,
compared with both control and WKYVSMC groups that without L-NMMA
treatment.
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Figure V-10. Nitric oxide production by irradiated VSMC from SHR and WKY
induced by LPS. VSMC were incubated in 10% FCS DMEM medium for 36-40
hours to allow attachment of VSMC to ‘he plates. The medium was changed to
0.4% FCS DMEM medium for 48 hours to render the VSMC quiescent. The
VSMC were then irradiated using a '¥'Cs-irradiator at dose of 4000 rads. To induce
NO production, the irradiated VSMC were cultured with 40 ug/ml LPS in 10% FCS
DMEM medium for 48 hours. The amount of NO in the culture supernatant was
determined by a colorimetric assay. Data represent means of nitrite concentrations
+ SE (N=6) from 3 VSMC preparations, 2 experiments for each preparation.

**: P < 0.01, compared with WKY VSMC treated with LPS. ##: P < 0.01,
compared with SHR VSMC treated with LPS.
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Figure V-11. Nitric oxide production by VSMC from SHR and WKY induced by
LPS, IL-18 and a cytokine mixture. VSMC were incubated in 10% FCS DMEM
medium for 36-40 hours to allow attachment of VSMC to the plates. The medium
was changed to 0.4% FCS DMEM medium for 48 hours to render the VSMC
quiescent. To induce NO production, VSMC were cultured with either 40 pg/ml
LPS, 25 units/ml IL-18 or a cytokine mixture (CC) containing S units/ml IL-18, 5
nM TNFe, 200 units/ml IFNy and 10 pg/ml LPS in 10% FCS DMEM medium for
48 hours. The amount of NO in the culture supernatant was determined by a
colorimetric assay. Data represent means of nitrite concentrations + SE (N=12)
from 3 VSMC preparations, 4 experiments for each preparation. *: P < 0.05,

**: P < 0.01 compared with respective WKY VSMC. ##: P < 0.01, compared with
SHR VSMC treated with LPS, IL-18 or the cytokine mixture. #: P < 0.05,
compared with WKY VSMC treated with LPS, IL-18 or the cytokine mixture.
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Figure V-12. Nitric oxide production by VSMC from SHR and WKY induced by
TNFa and IFNy. VSMC were incubated in 10% FCS DMEM medium for 36-40
hours to allow attachment of VSMC to the plates. The medium was changed to
0.4% FCS DMEM medium for 48 hours to render the VSMC quiescent. To induce
NO production, VSMC were cultured with either 5 nM TNFe or 200 units/ml IFNy
in 109% FCS DMEM medium for 48 hours. The amount of NO in the culture
supernatant was determined by a colorimetric assay. Data represent means of nitrite
concentrations + SE (N=12) from 3 preparations, 4 experiments for each
preparation.
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Figure V-13. Effect of L-NMMA on VSMC NO production induced by LPS. L-
NMMA (0.05 mM) was added to VSMC culture as described in Figure V-10. In
these experiments, the concentration of LPS was 40 pg/ml. The amount of NO in
the culture supernatant was determined by a colorimetric assay. Data represent
means of nitrite concentrations + SE (N=12) from 3 VSMC preparations, 4
experiments for each preparation. **: P < 0.01, compared with WKY VSMC treated
with LPS only. ##: P < 0.01, compared with SHR VSMC treated with LPS only.
#: P < 0.05, compared with WKY VSMC treated with LPS only.
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Figure V-14. Time course of NO production in VSMC induced by a cytokine
mixture. VSMC were incubated in 10% FCS DMEM medium for 36-40 hours to
allow attachment of VSMC to the plates. The medium was changed to 0.4% FCS
DMEM medium for 48 hours to render the VSMC quiescent. VSMC were then
cultured with a cytokine mixture in 10% FCS DMEM medium as described in Figure
V-11. At various times, the culture supernatant was collected. The amount of NO
in the supernatant was determined by a colorimetric assay. Data represent means
of nitrite concentrations + SE (N=12) from 3 preparations, 4 experiments for each
preparation. **: P < 0.01, compared with respective WKY VSMC.
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Figure V-15. Time course of NO production in VSMC induced by LPS. VSMC were
incubated in 10% FCS DMEM medium for 36-40 hours to allow attachment of
VSMC to the plates. The medium was changed to 0.4% FCS DMEM medium for
48 hours to render the VSMC quiescent. VSMC were then cultured in 10% FCS
DMEM medium in the presence of 40 pg/ml LPS. At various times, the culture
supernatant was collected. The amount of NO in the supernatant was determined
by a colorimetric assay. Data represent means of nitrite concentrations + SE {N =12)
from 3 preparations, 4 experiments for each preparation. *: P < 0.05, compared with
respective WKY VSMC.
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Figure V-16. Dose dependent NO production in VSMC induced by LPS. VSMC
were incubated in 10% FCS DMEM medium for 36-40 hours to allow attachment of
VSMC to the plates. The medium was changed to 0.4% FCS DMEM medium for
48 hours to render the VSMC quiescent. ~VSMC were cultured with various
concentrations of LPS in 10% FCS DMEM medium for 48 hours. The amount of
NO in the culture supernatant was determined by a colorimetric assay. Data
represent means of nitrite concentrations + SE (N=12) from 3 preparations, 4
experiments for each preparation. **: P < 0.01, compared with respective WKY
VSMC.
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Figure V-17. Time dependent protein synthesis in VSMC from SHR and WKY.
VSMC were incubated in 24 well tissue culture plates in 10% FCS DMEM medium
for 36-40 hours to allow attachment of VSMC to the plates. The medium was
changed to 0.4% FCS DMEM medium for 48 hours to render the VSMC quiescent.
VSMC were then cultured in 109% FCS DMEM medium. At various times, VSMC
in the wells were washed twice with HBSS and solubilized with 1M NaOH (0.2
ml/well). The protein content of the VSMC was determined by the Pierce BCA
protein assay. Data represent means of protein concentrations per well (zg/ml) *
SD (N=9) from 3 preparations, 3 experiments for each preparation. **: P < 0.01,
compared with that of WKY VSMC :ultured for 60 hours.
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Figure V-18. Effect of LPS and L-NMMA on VSMC proliferation. VSMC (1x10°*
cells/well) were cultured in 96 well plates in 10% FCS DMEM medium for 24 hours
to allow attachment of VSMC to the plates. The medium was changed to 0.4% FCS
DMEM medium for 4 days. The quiescent VSMC were then cultured in 10% FCS
DMEM medium for 72 hours in the presence or absence of 40 pg/ml LPS or LPS
plus 0.05 mM L-NMMA. °*H-thymidine was added for the final 24 hours The
VSMC were harvested by trypsin treatment. Data represent means of 3H-thymidine
uptake by VSMC (CPM) per well + SE (N=9) from 3 VSMC preparations, 3
experiments for each preparation. **: P < 0.01 compared with respective WKY
VSMC. ##: P < 0.01, when control SHR VSMC was compared with SHR VSMC

treated with LPS.
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Figure V-19. Effect of cytokines on YSMC proliferation. VSMC (1 x 10%celleweil)
were cultured in 96 well plates as described in Figure V-18. The VSMC were then
cultured in 5% FCS DMEM medium in the presence of 20 units/ml IL-2, 5 units/ml
IL-18, 50 units/ml INFy or 100 units/ml IL-6. After 24 hours of incubation, the
VSMC were pulsed with *H-thymidine and incubated for another 40 hours. The
VSMC were harvested by trypsin treatment. Data represent the percentage changes
in 3H-thymidine uptake by VSMC % SE (N=6) from two VSMC preparations, three
experiments for each preparation.



CHAPTER VI. RELATIONSHIP OF IMMUNE DYSFUNCTION,

NO SYNTHESIS ALTERATIONAND HYPERTENSION

I INTRODUCTION

In the previous chapters the enhancement of NO synthesis in SHR
macrophages was described. This increased NO production resulted in lymphocyte
suppression. It was also shown that SHR VSMC produced a significantly higher
amount of NO upon stimulation. Furthermore, SHR VSMC inhibited the
proliferation response of lymphocytes from either SHR or WKY. This inhibition was
mediated by overproduction of NO in SHR VSMC. Whether the activation of NO
synthesis is related to age and the development of hypertension is not clear. In order
to elucidate the role of NO in hypertension and to understand the relationship
between immune dysfunction and hypertension in SHR, the time course of the
development of hypertension, NO synthesis alteration in macrophages and VSMC
and lymphocyte depression were investigated.

Although the age-related study could provide information on the time
sequence of these events which occur in SHR, it may not provide direct evidence on
the effect of high blood pressure per se on NO synthesis alteration. Thus, it is
necessary to examine NO synthesis alteration in a hypertensive state and a
normotensive state. One possible approach is to use pharmacological means to lower

blood pressure in SHR and then examine the changes in NO synthesis and
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lymphocyte depression. However, results from the pharmacological study miay be
difficult to interpret since the drug used to lower blood pressure may have other
effects in addition to those on the NO synthesis pathway. The borderline
hypertensive rat (BHR) isa genetic model for environmentally induced hypertension.
BHR is the first generation offspring of a mating between a female SHR and a male
WKY. BHR possesses genetic information from both a normotensive WKY and a
hypertensive SHR parent. The BHR becomes permanently hypertensive when
subjected to a time-limited period of exposure to environmental stress or to increased
dietary sodium intake (Lawler er al., 1981; Lawler et al., 1987; DiBona and Jones,
1993). The study of the NO synthesis pathway and the proliferation response of
lymphocytes in both normotensive BHR and hypertensive BHR may be another way

to provide supportive evidence for the effect of high blood pressure on these changes.

II. EXPERIMENTAL DESIGN

A. Investigation of age related blood pressure elevation, lymphocyte
proliferation and NO synthesis alteration in SHR compared with those of WKY. To
study the relationship between hypertension and immune dysfunction, the time
courses of development of hypertension, lymphocyte inhibition and NO synthesis
activation in macrophages and VSMC were investigated.  As described in the
Materials and Methods chapter, 3, 6 and 10 weeks old male SHR and WKY were

purchased and housed for one or two weeks to allow adjustment to a new
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environment and then used at 4, 8 and 12 weeks of age. Some rats were housed for
up to one year. After blood pressure was measured under anaesthetized condition,
the rat was sacrificed and the spleen and aorta were collected. The proliferation
responses of spleen cells and macrophage-depleted lymphocytes were determined.
NO production by spleen cells containing macrophages was also tested as described
previously. VSMC were isolated and subcultured under the same conditions as
described in Chapter II. VSMC NO production induced by LPS or a cytokine
mixture was examined in cells between passage 3 and 10.

B. Examination of blood pressure, lymphocyte proliferation and NO synthesis
in hypertensive BHR, normotensive BHR and WKY. To study the effect of high
blood pressure on lymphocytes and the activation of NO synthesis, hypertension was
induced in BHR. As described in Chapter II, 5 weeks old BHR and WKY were
assigned to two groups. One group received a normal diet containing 1% NaCl,
another group received an 8% sodium diet for 8 weeks. At 13 weeks of age, blood
pressures were measured and the tissues were then collected. The proliferation
response of lymphocytes, NO production by spleen macrophages and NO production

by VSMC were examined as described previously.

III. RESULTS

A. Age Study:
1. SHR had significantly higher mean arterial blood pressure than did WKY



152

at all ages. The blood pressure increased continuously from 4 weeks of age and
reached a plateau value of about 150 mmHg by 12 weeks of age (Figure VI-1).

2. At 4 weeks of age, SHR spleen cells showed the lowest lymphocyte
proliferation response of any age groups, exhibiting only 5-10% of the response of
WKY cells. As age advanced, the response of SHR spleen cells increased but
remained significantly lower than that of WKY spleen cells. At 4 weeks of age, the
proliferation response of SHR spleen cells was significantly lower compared with that
of SHR spleen cells at 8 or 12 weeks of age. The depressed SHR lymphocyte
proliferation response persisted for up to one year (Figure VI-2).

3. Figure VI-3 shows that in all age groups the depressed proliferation
responses of SHR spleen cells could be fully reversed by L-NMMA. After removing
macrophages from SHR spleen cells, the proliferation response of these cells was
significantly increased, except in the one year old group. Neither L-NMMA nor the
removal of macrophages had any effect on the proliferation response of WKY spleen
cells (Figure VI-4).

4. The results of NO synthesis by spleen cells, which contained macrophages
at different ages are shown in Figure VI-5. After stimulation by Con A or LPS, SHR
spleen macrophages produced a significantly greater amount of NO than did WKY
spleen ceils. Compared to 8 or 12 weeks of age groups, SHR spleen macrophages
produced larger amounts of NO at 4 weeks of age, but the difference was not
significant. This increased NO synthesis by SHR spleen mnacrophages was inhibited

by L-NMMA (Figure VI-6). L-NMMA also inhibited NO production in WKY spleen
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macrophages (Figure VI-7).

5. After being induced by the cytokine mixture, VSMC isolated from SHR
produced a significantly greater amount of NO than did WKY VSMC in all age
groups (Figure VI-8). At 4 weeks of age, the difference in NO production was
already profound. There was an increase in NO synthesis in VSMC from 4 weeks,
which reached a plateau at 12 weeks of age. A similar result in NO production was
obtained in VSMC stimulated with LPS (Figure VI-9).

6. Figure VI-10 shows that without stimulation, only a trace amount of NO
was produced in SHR VSMC. It was also shown that L-NMMA inhibited NO
production in SHR VSMC in all age groups. The same result was observed in WKY
VSMC (Figure VI-11).

7. When lymphocyte proliferation response was plotted against the rise in
blood pressure, no correlation was observed between the lymphocyte proliferation
and the blood pressure in either WKY or SHR. The correlation coefficients (r) were
0.18 and 0.03, respectively (Figure Vi-12).

8. There was no correlation between spleen macrophage NO production and
the increase in blood pressure in SHR (r= -0.15) (Figure VI-13, Panel B). In
addition, there was no correlation between spleen macrophage NO production and
blood pressure in WKY (r = -0.24) (Figure VI-13, Panel A).

9. Figure VI-14 shows the relationship between blood pressure and VSMC
NO synthesis induced by a cytokine mixture. When NO synthesis in SHR VSMC was

plotted against the blood pressure in SHR, there was a significant positive correlation
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(r =0.71,P = 0.0003) (Panel B). However, this correlation did not exist in WKY

(r = 0.13) (Panel A). Figure VI-15 also shows that a similar relationship exists
when VSMC NO synthesis was induced by LPS. There was a significantly positive
correlation in SHR (r = 0.69,P = 0.0006) (Panel B). No significant correlation was

found in WKY (r = -0.07) (Panel A).

B. BHR_Study:
1. The blood pressure of BHR was slightly, but not significantly higher than

that of WKY under normal diet. After an 8 week high sodium diet, the blood
pressure was significantly increased in BHR. There was an increment of more than
30 mmHg compared with the blood pressure of BHR fed a normal diet. High
sodium intake did not, however, significantly affect blood pressure in WKY (Figure
VI-16).

2. The proliferation response of spleen cells was tested (Figure VI-17). The
BHR which had high blood pressure exhibited a normal lymphocyte proliferation
respO:>~ similar to that of normotensive BHR and WKY. The proliferation response
o W¥ [ spleen cells was also not affected by the high sodium intake.

3. Figure VI-18 shows spleen cell (containing macrophages) NO production
induced by Con A in BHR and WKY. In hypertensive BHR, the NO synthesis was
not significantly different from that of BHR with normal blood pressure or WKY.
In WKY fed a high sodium diet, NO synthesis in spleen macrophages was very

similar to that of spleen macrophages of WKY fed a normal diet. Similar results
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were observed when spleen macrophages were stimulated by LPS (Figure VI-19).
There was no difference in NO production between hypertensive BHR and
normotensive BHR. 4, However, BHR with high blood pressure exhibited an
elevated NO synthesis in VSMC. There was a more than 2 fold increase in NO
production in VSMC of hypertensive BHR compared with that of normotensive BHR
after stimulation by a cytokine mixture (Figure VI-20). When stimulated by LPS,
the VSMC of hypertensive BHR also produced a greater amount of NO than did
VSMC of normotensive BHR (Figure VI-21). High sodium intake did not produce
any significant effect on VSMC NO synthesis in WKY.

5. Figure VI-22 shows there was no correlation between blood pressure and
spleen macrophage NO production induced by the cytokine mixture in hypertensive
BHR fed a high sodium diet (r= -0.01,Panel A). No correlation was observed in
normotensive BHR fed a control diet (r= - 0.37,Panel B), WKY fed a high sodium
diet (r= -0.03,Panel C) and WKY fed a control diet (r= -0.1,Panel D).

6. When VSMC NO production induced by the cytokine mixture was plotted
against the blood pressure, there was a significant positive correlation in hypertensive
BHR, which were fed a high sodium diet, (r= 0.87,P= 0.02) (Figure VI-23, Panel
A). No such correlation was found in normotensive BHR, which fed a control diet
(r= -0.28,Panel B), WKY fed a high sodium diet (r= 0.14,Panel C) and WKY fed

a control diet (r= -0.16, Panel D).



IV. DISCUSSION

Previous studies have demonstrated that the proliferation response of spleen
cells was severely depressed in 12 weeks old SHR. This depression was mediated by
overproduction of NO from SHR macrophages. In addition, it has been shown that
SHR VSMC produced a greater amount of NO than WKY VSMC. Furthermore,
SHR VSMC were capable of inhibiting lymphocyte proliferation responses in either
SHR or WKY. These observations indicate that there may be a general activation
of the inducible NO synthesis system in SHR, contributing to the lymphocyte
proliferation defect. The present study was designed to determine if the
development of hypertension, lymphocyte depression and changes in the inducible
NO synthesis system are related.

As soon as it was technically possible to cannulate the carotid artery (4 weeks
of age), the blood pressure of SHR was found to be significantly higher than that of
WKY. Similar results have been reported by other investigators, i.e., at 4 to 5 weeks
of age the blood pressure was elevated in SHR (Head and Adams, 1992; Pascual er
al.,1993). In this study, the proliferation response of SHR spleen cells was already
significantly reduced at 4 weeks of age. As blood pressure continued to increase with
advancing age, the reduced lymphocyte proliferation response in SHR persisted but
to a lesser extent than that observed at 4 weeks of age. An age deperdent
lymphocyte depression has been reported by Pascual and co-workers (1992). They

showed that at 4 weeks of age the prcliferation response of SHR spleen cells was
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similar to that of WKY spleen cells. The reason for this disparity in these results is
not clear. It is possible that different experimental systems were used. In the
present study, the data were generated from 10 rats, 4 wells for each individual rat,
while their data were presented from only 5 wells, in one experiment. Because
lymphocyte proliferation depression was observed at 4 weeks of age when the blood
pressure was already significantly higher, it is difficult to determine whether a
causative relationship exists between these two changes or whether these changes
happen concurrently. However, taking into consideration the observation that the
greatest lymphocyte depression occurred at 4 weeks when the blood pressure was the
lowest, it is likely thai there isa dissociation between blood pressure and lymphccyte
depression in SHR. This dissociation is supported by the observation that showed
no correlation exists between lymphocyte dunression and blood pressure in SHR.

The fact that L-NMMA dramatically increased the proliferation response of
SHR lymphocytes in all age groups indicates the involvement of NO in the
lymphocyte proliferation defect throughout the development of hypertension.
Removal of macrophages from SHR spleen cells also correcied the lymphocyte
depression in the 4, 8 and 12 weeks of age groups indicating that the activation of
NO synthesis in SHR macrophages is responsible for the lymphocyte proliferation
defect during development. It is not clear why removal of macrophages did not show
any significant effect on the lymphocyie proliferation response in the one year old
group. It is possible that the adhering ability of macrophages onto plastic surfaces

was decreased in aged SHR, resulting in incomplete depletion of macrophages from
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spleen cells. It is also possible that one year of hypertension causes activation of the
NO synthesis in SHR spleen cells other than macrophages, i.e., granulocytes and
dendritic cells and that these cells were not removed by the adhering process. Direct
evidence of NO synthesis activation was provided by measuring NO production in
SHR spleen cells containing macrophages, in all age groups. After stimulation by
Con A or LPS, SHR spleen macrophages produced more than two fold the amount
of NO compared with those of WKY in all ages. Compared with the 8 or 12 weeks
of age groups, NC production by spleen macrophages at 4 weeks of age was higher.
This greater NO production correlated with the lowest lymphocyte proliferation
response in SHR (4 weeks of age), suggesting that the onset of NO synthesis
activation in SHR and the resulting suppression of lymphocyte proliferation may
either occur at a very early stage of life as soon as blood pressure begins to rise or
may be genetic in origin. That the higher NO production in spleen macrophages
occurred at the time when the blood pressure was lowest also suggests that the
activation of NO synthesis in spleen macrophages may not be related to the increase
in blood pressure in SHR. However, the correlation analysis showed that there was
no correlation between activation of NO synthesis in spleen macrophages and
hypertension, and no correlation between lymphocyte depressior. and hypertension.
These results impiicated a dissociation between lymphocyte depression and
hypertension in SHR.

The present study demonstrates that after induction by LPS or the cytokine

mixture, SHR VSMC produced significantly greater mnounts of NO than did WKY
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VSMC in all age groups. Unlike NO synthesis in macrophages, when NO production

in SHR VSMC is plotted against blood pressure there is a significant positive
correlation, indicating that the increase in NO synthesis in VSMC is significantly
associated with the rise in blood pressure in SHR. Because the increase in NO
synthesis in VSMC correlated with blood pressure with advancing age, age itself may
affect NO synthesis in SHR VSMC. However, when age was analyzed as a covariant,
it did not show any significant effect on NO synthesis. It is not yet understood what
is the mechanism responsible for activation of NO synthesis in SHR VSMC. It is
possible that this mechanism and the mechanism responsible for the activation of NO
synthesis in SHR macrophages may or may not be the same.

This study is the first to demonstrate that NO synthesis in SHR macrophages
and VSMC is activated throughout ail stages of the development of hypertension,
supporting the hypothesis that a general alteration of inducible NO synthesis system
may exist in SHR (Xiao and Pang, 1994c). However, this age related study did not
elucidate whether a causative or parallel relationship exists between the development
of hypertension and the iymphocyte depression as a result of activaticn of NO
synthesis in SHR macrophages.

The BHR study was designed to further define the relationship between
lymphocyte depression, NO synthesis alteration and hyperiension. The results of this
study demonstrated that blood pressure was significantly increased in BHR fed a high
sodium diet. The lymphocyte proliferation response in hypertensive BHR was very

similar to the response of normotensive BHR and WKY. NQ synthesis in splees
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macrophages of hypertensive BHR was not significantly different from that of
normotensive BHR. Correlation analysis showed that there was no correlation
between 0.00d pressure and spleen macrophage NO synthesis in hyperiensive BHR.
These observations suggest that lymphocyte depression and NO synthesis activation
in macrophages are not related to high blood pressure, at least in salt-induced
hypertension. This confirms the results of the age study which showed that NO
synthesis in SHR spleen macrophages are not related to blood pressure. The
normal response of lymphocyte proliferation and normal production of NO by spleen
macrophages in hypertensive BHR suggest that lymphocyte depression and
hypertension are two different, and perhaps parallel, phenomena which occur in
hypertension.

However, unlike NO synthesis in macrophages of hypertensive BHR, this study
showed that NO synthesis was significantly increased in VSMC of the hypertensive
BHR but not in thuwe of normotensive BHR. In addition, there was a significant
correlation between blood pressure and VSMC NO synthesis in hypertensive BHR,
but not in normotensive BHR and WKY. These observations support the results of
the age study Whiéi:l showed that the blood pressure is positively correlated with the
increase in VSMC NO synthesis in SHR. These findings suggest that increased blood
pressure may influence the activation of the NO synthesis in VSMC. In SHR and
hypertensive BHR, both a dissociation between macrophage NO synthesis and blood
pressure, and an association between VSMC NO synthesis and blood pressure suggest

that the activation of NO synthesis in VSMC and macrophages in SHR may be two
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separate parallel ¢vents. This also suggests that the mechanisms for activation of
NO synthesis in SHk vSMC and macrophages may be different.

In BHR, dietary sodium intake induced a transition from the normotensive
state (that of the WKY parent) to the hypertensive state (that of the SHR parent).
The hypertensive BHR exhibit many characteristics of the SHR phenotype such as
sustained increase in arterial pressure, exaggerated natriuresis and increased efferent
renal sympathetic nerve activity. These characteristics persist even after dietary
sodium has return to normal levels (DiBona and Jones, 1991). The mechanism
involved in the induction of hypertension in BHR fed a high sodium diet is not fully
understood. Several lines of evidence suggest that neural mechanisms may contribute
to the development of salt-induced hypertension. Increased dietary sodium intake
can act on the central nervous system resulting in alterztions in the regulation of the
peripheral sympathetic nervous system activity, especially the control of renal
function (DiBona and Jone., 1991). Increased renal sympathetic nerve activity has
been suggested to be involved in genetically predisposed individuals (Tucker and
Hunt, 1993). The hypothesis of the involvement of neural mechanisms was also
supported by the observation that salt-induced hypertension in BHR could be
picvented by disrupting central nervous system control of sympathetic activity
(Sanders and Johnson, 1989). However, it has also been suggested that the increase
in sympatbetic activity may have occurred during the initial exposure to high sodium
at an early phase in the rise in blood pressure. Long-term elevation of blood

~.ussure was maintained by other factors (Tucker and Hunt, 1993). It has also been
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demonstrated that salt-induced hypertension is produced via a mechanism related to

extracellular fluid volume and increased cardiovascular and renal responses (DiBona
and Jones, 1992; 1993). Various abnormalities in microvascular structure and
function have been documented in animals with salt-induced hypertension (Vial ef
al., 1989; Takenaka er al., 1992). The ability to excrete electrolytes and water was
reportedly impaired in BHR on a high sodium diet compared to similarly treated
WKY (Lawler et al., 1987). Thus, it is possible that a higher blood pressure is
needed in BHR to excrete a given load of sodium. Whatever the underlying
mechanism, the blood pressure was significantly and persistently increased in BHR
fed a high sodium diet.

It has become clear that NO plays an important role in extracellular volume
regulation as a natriuretic factor. Several recent studies showed that NO production
increased in response to increased dietary salt intake in rats. It has been reported
that both plasma concentrations of nitrite and nitrate and urine excretion of nitrite
and nitrate were increased in salt-induced hypertension (Shultz and Tolins, 1993).
Circulating and excreted nitrite and nitrate reflect in vivo production of NO and are
also correlated with urinary cGMP excretion (Shultz and Raij, 1991). Chen and
Sanders (1991) reported that an increased dietary salt load resulted in increased
activity of the NO system in Sprague-Dawley rats and in salt-resistant, but not salt-
sensitive, Dahl rats. Later, the same authors reported that plasma concentrations of
citrulline, a by-product of NO synthase, did not differ between salt-sensitive and salt-

resistant Dahl rats.  Administration of L-arginine lowered blood pressure to
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noi:nutensive levels and simultaneously increased urinary nitrate excretion in rats fed
a high sodium diet (Chen and Sander, 1993). Contradictory to their earlier findings,
their later observations suggested that NO production was enhanced in salt-induced
hypertension. In these studies, the source of the increased NO detected in response
to increased salt intake was not clear and was only hypothesized to be vascular tissue
and the kidney. It has been shown that NO synthase inhibition results in renal
vasoconstriction and decreased GFR (Shultz and Toline, 1993). NO synthase
inhibition also attenuated the natriuresis and diuresis induced by extracellular volume
expansion (Atucha et al.,1994). These results suggested that in addition to the effect
of regulating vascular tone, the endogenous NO system may play an important role
in the modulation of renal sodium handling, extracellular and blood volume
regulation, and, therefore, in blood pressure regulation.

The current study showed that the blood pressure of WKY fed a high salt diet
did not differ from that of WKY fed a normal diet. In addition, despite the high salt
intake, the NO synthesis in WKY VSMC was very similar to that of WKY fed a
normal sodium diet. These results are different from the results reported by others
(Chen and Sanders, 1991; Shultz and Tolins, 1993). Explanations for these
differences are probably related to experimental design. Previous investigators
measured NO production in plasma and urine whereas in this study induced NO
production in VSMC was measured. Since high salt intake affects NO synthesis in
neither BHR macrophages nor WKY macrophages or VSMC, the increased NO

synthesis in VSMC of BHR fed a high sodium diet maybe related to the elevated
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blood pressure.

The mechanism for increase in NO synthesis in VSMC of salt-induced
hypertensive rats is not clear at this time. It has been reported that persistent
hypertension caused damage to resistance vessels and the renal vasculature (Ager,
1993; Ruilope et al., 1994). There is evidence suggesting that tissue and organ
damage might initiate an immunological response (Norman ef al., 1988; Hancock et
al., 1993). The cytokines, especially inflammatory cytokines such as IL-1 and TNF,
produced and released in immunological reactions, are potent inducers of NO
synthase expression. The increase in cytokine production in local arterial walls may
result in increased expression of inducible NO synthase. Dexamethasone has been
shown to prevent expression of inducible, but does not alter constitutive NO synthase
in the arterial systen: (Knowles ef al., 1990). When dexamethasone was added with
the high salt diet, despite supplementation with L-arginine, hypertension developed
in a fashion typical of salt-induced hypertension (Chen and Sander, 1993). This
observation suggested that inducible NO synthase was involved in the increase in NO
production in response to high sodium intake. The prescnt stuady provides direct
evidence that inducible NO production was increased ' VSHA{ in sali-induced
hypertension.

The functional consequences of NO formation by inducibc NO syuthase in
VSMC have not been clearly determined.  Because massi, @ infiltration of
inflammatory cells was observed in vascular lesions in hypeitensive humans and

animals (Olsen, 1972; Ishimitsu et al., 1992), it seems possible that inducible NO



165
synthesized in VSMC may modulate the formation of hypertensive vascular lesion.
NO may decrease the sev<rity of such lesions via inhibitory effects on adhesion and
aggregation of platelets, superoxide anion production, leukocyte adhesion, endothelin
generation, and VSMC proliferation. Furthermore, the enhanced NO synthesis in
the vasculature may play a compensatory role in states of elevatec bicod pressure.
NO synthesized in the vascular wall may counter-balance the effect of
vasoconstrictive factors whose production isusually elevated in the hypertensive state.

In summary, the current study showed that lymphocyte depression and NO
synthesis activation in SHR macrophages persisted throughout the dcvelopment of
hypertension. The alteration of NO synthesis in macrophages and the resulting
lymphocyte depression were not associated with the increase in blood pressure in
SHR. Inducible NO synthesis in VSMC was significantv zlevated in SHR throughout
the development of hypertension and there was a positive correlation between the
increase in NO synthesis in SHR VSMC and the rise in blood pressure.
Hypertensive BHR induced by high salt intake exhibited normal lymphocyte
proliferation responses and normal NO synthesis in macrophages. However,

inducible NO synthesis in VSMC was significantly enhanced in hypertensive BHR.

£
?

These results sggest that hypertension and the lymphocyte depression as a result o
NO synthesis activation in macr.jhages are two parallel, but perhaps unrelated
phenomena that occur in SHR. In VSMC, the NO synthesis was closely associated
with high blood pressure in both SHR and BHR, suggesting that inducible NO

synthase in VSMC may be related to elevated blood pressure.
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Figure VI-1. Mean arterial blood pressure of SHR and WKY from age 4 weeks to
one year., The blood pressure was measured via carotid artery cannulation under
anaesthetized condition. The values represent means of arterial bicod pressure + SD
for age 4 weeks (n=6), 8 weeks (n=10), 12 weeks (n=5) and one year (n=3).

*: P < 005, **: P < 0.01, compared with respective Wi
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Figure *'[-2. The proliferation responses of spleen cells of SHR and WKY from age
4 weeis to one year. The spleen cells (2 x 10°cells/well) were dispensed 7 96 well
tissue culture plates in quadruplicate in the presence of 2.5 or 5 ug/ml Con A which
produced similar effects. The cells were cultured for 72 hours. *H-thymidine was
added to the culture for the final 18 hours. The data represent the means ot *H-
thymidine uptake by cells (CPM) per well + SE from age of 4 weeks (n=10), 8 weeks
(n=10), 12 weeks (n=5) and one year (n=3). *: P < 0.05, **: P < 0.01, compared
with respective SHR.
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Figure VI-3. Effect of L-NMMA or macrophage depletion on the proliferation
responses of SHR spleen cells from age 4 weeks to one year. L-NMMA (0.05 mM)
was added to the spleen cell culture in quadruplicate in the presence of 2.5 ug/ml
Con A. Macrophages were removed from spleen cells bv adherence onto plastic.
The cells were cultured under the conditions described in Figure VI-2. The data
represent the means of *H-thymidine uptake by cells (CPM) per well + SE from age
4 weeks (n=10), 8 weeks (n=10), 12 weeks (n=5) and one year (n=3). * :P < 0.05,
**. P < 0.01, compared with respective control group.
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Figure VI-4. Effect of L-NMMA or macrophage depletion on the proliferation
responses of WKY spleen cells from age 4 weeks to one year. L-NMMA (0.05 mM)
was added to the spleen cell culture in quadruplicate in the presence of 2.5 ug/ml
Con A. Macrophages were removed from spleen cells by adherence onto plastic.
The cells were cultured under the conditions described in Figure VI-2. The data
represent the means of *H-thymidine uptake by cells (CPM) per well + SE from age
of 4 weeks (n=10), 8 weeks (n=10), 12 weeks '~ ) and one year (n=3).
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Figure VI-S. Nitric oxide production by spleen macrophages of SHR and WKY from
age 4 weeks to one year. Spleen cells were cultured with 2.5 pg/ml Con A or 40
pg/ml LPS for 72 hours. The nitrite concentration of the culture supernatant was
determined by a colorimetric assay. The data represent the meuns of nitrite
concentration + SE from age of 4 weeks (n=10), 8 weeks (n=10), iz - reeks (n=5)
and one year (n=3). **: P < 0.01, compared with respective WKV,
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Figure VI-6. Effect of L-NMMA on nitric oxide production by SHR spleen cells
containing macrophages from age 4 weeks to one year. L-NMMA (0.1 mM) was
added to SHR spleen cell culture in the presence of 2.5 ug/ml Con A. The nitrite
concentration in the culture supernatant was determined by a colorimetric assay.
The data represent the means + SE from age of 4 weeks (n=10), 8 weeks (n=10),
12 weeks (n=5) and one year (n=3). **: P < 0.01, compared with the same age
group treated with Con A.
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Figure VI-7. Effect of L-NMMA on nitric oxide production by WKY spleen cells
containing macrophages from age 4 weeks to one year. L-NMMA (0.1 mM) was
added to WKY spleen cell culture in the presence of 2.5 ug/ml Con A. The nitrite
concentration of the culture supernatant was determined by a colorimetric assay.
The data represent the means + SE from age of 4 weeks (n=10), 8 weeks (n=10),
12 weeks (n=5) and one year (n=3). **: P < 0.01, compared with the same age
group treated with Con A.
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Figure VI-8. Nitric oxide production by VSMC of SHR and WKY from age 4 weeks
to one year induced by a cytokine mixture. At least 5 SHR and 5 WKY VSMC
preparations (for one year group, SHR n=3, WKY n=2) were used between passages
4 t0 9. Quiescent VSMC were incubated with a cytokine mixture containing 5
units/ml IL-18, 5 nM TNFe, 200 units/ml INFy and 10 ug/ml LPS for 48 hours.
The nitrite concentration in the supernatant was determined by a colorimetric assay.
The data represent the means * SE (N=15) from 5 VSMC preparations, 3
experiments for each preparation (N=9 for one year SHR, N =6 for one year WKY).
*s. P < 0.01, compared with respective WKY.
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Figure VI-9. Nitric oxide production by VSMC of SHR and WKY from age 4 weeks
to one year induced by LPS. At least 5 SHR and 5 WKY VSMC preparations (for
one year group, SHR n=3, WKY n=2) were used between passages 4 to 9.
Quiescent VSMC were incubated with 40 pg/mi LPS for 48 hours. The nitrite
concentration in the culture supernatant was determined by a colorimetric assay.
The data represent the means * SE (N=15) from 5 VSMC preparations, 3
experiments for each preparation (N =9 for one year SHR, N=6 for one year WKY).
*. P < 0.05, **: P < 0.01, compared with respective WKY.
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Figure VI-10. Effect of L-NMMA on nitric oxide production by SHR VSMC from
age 4 weeks to one year. L-NMMA (0.1 mM) was added to SHR VSMC culture as
described in Figure VI-9. The nitrite concentration in the culture supernatant was
determined by a colorimetric assay. The data represent the means * SE (N=15)
from 5 VSMC preparations, 3 experiments for each preparation (N=9 for one year
SHR, N=6 for one year WKY). **: P < 0.01, compared with the same age group
treated with LPS.
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Figure VI-11. Effect of L-NMMA on nitric oxide production oy WKY VSMC from
age 4 weeks to one year. L-NMMA (0.1 mM) was :1«dded to SHR VSMC culture as
described in Figure VI-9. The nitrite concentration in the culture supernatant was
determined by a colorimetric assay. The data represeni the means * SE from at
least S VSMC preparations, 3 experiments for each preparation (N =9 for one year
SHR, N=6 for one year WKY). **: P < 0.01, compared with the same¢ .ige group
treated with LPS.
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Figure VI-12. Relationship between blood pressure and lymphocyte proliferation
response in WKY and SHR. Panel A: lymphocyte proliferation response to 2.5
ug/ml Con A (CPM) versus mean blood pressure (mm Hg) in WKY (r= 0.18).
Panel B: lymphocyte proliferation response to Con A versus mean blood pressure in

SHR (r= 0.03).



WKY macrophages stimulated uwith Con A 178
nitric oxide

30
- A
20}
10} .
i w\aag\ o PLOT
O-lllil'll'!l'll'll.l?lll'lLlll——REGRESS
0O 1S5S 30 45 60 75 S0 105 120 135 130
blood pressure
SHR macrophages stimulated vith Con R
30mt.'lc oxide
- B
20} a
i e A
10 o TE e,
I o PLOT
....l.l..l....l.,L.l....|....|....1....|....v,.,k—'—RECQESS

0 25 S0 75 100 125 150 175 200 225 230

blood pressure

Figure VI-13. Relationship between blood pressure and nitric oxide production in
spleen cells containing macrophages. Panel A: nitric oxide synthesis in WKY spleen
macrophages induced by 2.5 pg/ml Con A (nitrite concentration uM) versus mean
blood pressure (mm Hg) in WKY (r = -0.24). Panel B: nitric oxide synthesis in SHR
spleen macrophages induced by Con A versus SHR mean blood pressure (r = -0.15).
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Figure VI-14. Relationship between blood pressure and nitric oxide production in
VSMC induced by a cytokine mixture. Panel A: nitric oxide synthesis in WKY
VSMC induced by a cytokine mixture (nitrite concentration uM) versus mean blood
pressure (mm Hg) in WKY (r = 0.13). Panel B: nitric oxide synthesis in SHR
VSMC induced by the cytokine mixture versus SHR mean blood pressure (r = 0.71,
P = 0.0003).
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Figure VI-15. Relationship between blood pressure and nitric oxide production in
VSMC induced by LPS. Panel A: nitric oxide synthesis in WKY VSMC induced by
40 pg/ml LPS (nitrite concentration uM) versus mean blood pressure (mm Hg) in
WKY (r = -0.07). Panel B: nitric oxide synthesis in SHR VSMC induced by LPS
versus SHR mean blood pressure (r = 0.69, P = 0.0006).



181

Bl control 7777} high NaCl
diet diet
180

160

140

mmHg

120

100

|

80
BHR WKY

Figure VI-16. Mean arterial blood pressures of BHR and WKY. Five weeks old
BHR and WKY were assigned to two groups. One group received a normal diet
(1% NaCl), another group received a 8% NacCl diet for 8 weeks. At 13 weeks of age,
blood pressures were measured in either anaesthetized BHR or WKY. The values
represent means of arterial blood pressure (mm Hg) + SD from 7 rats. **: P < 0.01,
compared with BHR or WKY fed a normal diet and WKY fed a 8% NaCl diet.
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Figure VI-17. The proliferation responses of spleen cells from BHR and WKY fed
a high sodium diet. The spleen cells from BHR or WKY (2 x 10°cells/well) were
dispensed in 96 well tissue culture plates in quadruplicate in the presence of 2.5
ug/ml Con A. The cells were cultured for 72 hours. *H-thymidine was added to the
culture for the final 18 hours. The data represent the means of *H-thymidine uptake
by cells (CPM) per well + SE from 7 rats.
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Figure VI-18. Con A-induced nitric oxide production by spleen cells containing
macrophages of BHR and WKY i=d a high sodium diet. Spleen cells were cultured
with 2.5 pg/ml Con A for 72 hours. The nitrite concentration in the culture
supernatant was determined by a colorimetric assay. The data represent the means

+ SE from 7 rats.
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Figure VI-19. LPS-induced nitric oxide production by spleen cells containing
macrophages of BHR and WKY fed a high sodium diet. Spleen cells were cultured
with 40 ug/ml LPS for 72 hours. The nitrite concentration in the culture supernatant
was determined by a colorimetric assay. The data represent the means + SE from

7 rats.
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Figure VI-20. Cytokine-induced nitric oxide production by VSMC of BHR and
WKY fed a high sodium diet. Quiescent VSMC (passages 3-5) were incubated with
a cytokine mixture containing S units/ml IL-18, S nM TNFa, 200 units/ml INFy and
10 ug/ml LPS for 48 hours. The nitrite concentration in the culture supernatant was
determined by a colorimetric assay. The data represent the means + SE (N=12)
from 4 VSMC preparations, 3 experiments for each preparation. **: P < 0.01,
compared with BHR fed a control diet.
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Figure VI-21. LPS-induced nitric oxide production by VSMC of BHR and WKY fed
a high sodium diet. Quiescent VSMC (passages 3-5) were incubated with 40 pg/ml
LPS for 48 hours. The nitrite concentration in the culture supernatant was
determined by a colorimetric assay. The data represent the means + SE (N=12)
from 4 VSMC preparations, 3 experiments for each preparation. *: P < 0.05,
compared with BHR fed a control diet.



Blood Pressure vs NO Production by

Spleen Cells in BHR Fed A
High Sodium Diet

NO Production

30
- A
20
ofF
[ T ’ « PLOT
0- | PP B BT | [N ] ' : L —REGRESS
100 120 140 160 180 200
110 130 150 170 190
Blood Pressure
Blood Pressure vs NO Production by
Spleen Cells in UKY Fed A
High Sodium Diet
30NO Produc tion
L C
20 -
10}-
[ 5 - - . = PLOT
ol e . . . . -— REGRESS
70 80 90 100 110 120 130 140 150

Blood Pressure

187

Blood Pressure vs NO produc tion by
Spleen Cells 1n BHR Fed R Control Diet

NO Produc tion

BOL
L. B
20
10f ’
i D
0 ] t N (] ] ] 1 ]
80 S0 100 110 120 130 140 150 160

Blood Pressure

Blood Pressure vs NO Production by
Spleen Cells i1n WKY Fed A Control Diet

NO Production

30
[ D
20
10
0 b, ! ! L 1
60 70 80 90 100 110 120

Blood Pressure

Figure VI-22. Relationship between mean blood pressure and cytokine-induced
nitric oxide production in spleen cells containing macrophages. Panel A: blood
pressure (mm Hg) versus NO production (nitrite concentration uM) by spleen cells
of hypertensive BHR fed a high sodium diet (r= -0.01). Panel B: blood pressure
versus NO production by spleen cells of normotensive BHR fed a control diet (r= -
0.37). Panel C: blood pressure versus NO production by spleen cells of WKY fed a
high sodium diet (r= -0.03). Panel D: blood pressure versus NO production by

spleen cells of WKY fed a control diet (r= -0.1).
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Figure VI-23. Relationship between mean blood pressure and cytokine-induced
nitric oxide production in VSMC. Panel A: blood pressure (mm Hg) versus VSMC
NO production (nitrite concentration uM) of hypertensive BHR fed a high sodium
diet (r= 0.87, P= 0.02). Panel B: blood pressure versus VSMC NO production of
normotensive BHR fed a control diet (r= -0.28). Panel C: blood pressure versus
VSMC NO production of WKY fed a high sodium diet (r= 0.14). Panel D: blood
pressure versus VSMC NO production of WKY fed a control diet (r= -0.16).



CHAPTER VII. THE ROLE OF T CELLS IN THE ALTERATIONOF

NO SYNTHESIS IN SHR MACROPHAGES

L INTRODUCTION

In previous chapters the elevated NO synthesis in SHR macrophages and the
resulting SHR lymphocyte depression were described. There is a positive correlation
between activation of VSMC NO synthesis and the rise in blood pressure in SHR.
Such a correlation, however, has not been observed between blood pressure and NO
synthesis in SHR macrophages.  Furthermore, the activation of NO synthase in
VSMC was associated with elevated blood pressure induced by high salt intake. The
activation of NO synthase in macrophages, however, was not associated with this salt-
induced hypertension. These observations suggest that in the hypertensive state the
mechanism involved in the activation of NO synthase in macrophages may differ
from the mechanism for activation of NO synthase in VSMC. What is the
mechanism for the activation of NO synthase in macrophages in SHR?

Several reports have shown that NOS mRNA and enzyme activity in
macrophages could be induced by LPS and various T cell-derived cytokines (Stuehr
and Marletta, 1987; Stout and Bottomly, 1989; Zhang et al., 1994). It has also been
demonstrated that there was synergistic cooperation between INFyand either IL-2
or TNFa (Deng ef al., 1993). Recently, it has been reported that T cell mediated

activation of NO synthesis in macrophages required cell-cell contact (Tao and Stout,

189
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1993). Although the molecular mechanisms involved have not been defined, these
results indicate that T cells play an important role in the regulation of the expression
of NO synthase activity in macrophages. Therefore, it was of great interest to
examine the involvement of T cells in the alteration of NO synthesis in SHR
macrophages. An understanding of the mechanism responsible for NO synthesis
alteration in SHR macrophages may provide evidence for the relationship between

immune dysfunction and hypertension.

II. EXPERIMENTAL DESIGN

A. Antibody treatment. Anti-T cell monoclonal antibodies have been used
in vivo to prolong allograft and xenograft survival time by depletion of certain T cells
(Chavin et al., 1992; Teramoto et al.,1992). 1t is believed that anti-T cell antibody
binds to a specific surface antigen on T cells. This antigen-antibody complex triggers
a cascade of events which leads to activation of complement and other mechanisms
causing depletion of these specific T cells. Since CD2 and CD5 antigens are
expressed on most T cells (Jones et al.,1986; Beyers et al., 1989), anti-CD2 and anti-
CD5 monoclonal antibodies were chosen to ablate T cells in this study.

Three groups of one week old SHR or WKY rats were injected (i.p.) with mouse
anti-rat CD2 ( 1-1.5 mg/kg ), mouse anti-rat CD5 ( 1-1.5 mg/kg ) monoclonal
antibodies (ascites) or mouse control ascitic fluid ( 1-1.5 mg/kg ). Because single

antibody treatment is not usually sufficient to deplete all T cells, the rats were
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injected three times a week for two weeks. Three days after the last injection, the
rats were sacrificed and the spleens were collected. Previous studies have shown that
multiple treatments achieved an optimal depletion (Barlow and Like, 1992). It has
also been shown that this schedule was well tolerated by animals and did not cause
morbidity and mortality. A control mouse ascites fluid was used to ensure that there
was no non-specific antibody effect.

B. Assessment of T cell ablation. It is important to ensure that anti-CD2 and
anti-CD5 monoclonal antibodies can induce T cell depletion in SHR. Therefore, the
proliferation response of spleen cells to T cell mitogens was examined. If T cell are
ablated by these antibodies, the number of proliferative cells will be minimal. Since
SHR already have a reduced lymphocyte proliferation response, WKY which have
normal lymphocyte proliferation were used as a control to assess the level of T cell
depletion.

C. NO production in SHR macrophages. After six antibody treatments, the
rats were sacrificed and the spleens were collected. NO production by spleen

macrophages was carried out as described previously.

OI. RESULTS

A. The role of T cells in the alteration of NO synthesis in SHR spleen
macrophages was examined by ablating T cells with anti-T cell monoclonal

antibodies.  Neither anti-CD2 nor anti-CDS antibody treatment showed any
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significant effect on the production of NO in SHR spleen macrophages ( Figure VII-
D).

B. After administration of anti-CD5 monoclonal antibody, the production of
NO in WKY spleen macrophages was significantly reduced (Figure VII-2). Anti-CD2
monoclonal antibody did not exhibit a significant effect on NO production in WKY
spleen macrophages.

C. Figure VII-3 demonstrated that control SHR spleen macrophages
produced a significantly greater amount of NO than did control WKY spleen
macrophages.

D. The efficiency of antibody treatment was demonstrated as proliferation
responses of spleen cells. The proliferation responses were significantly decreased
in SHR (Figure VII-4, left panel) and WKY (Figure VII-S, left panel) after treated
with anti-CDS monoclonal antibody. Anti-CD2 antibody treatment had no significant
effect on the lymphocyte proliferation responses in either SHR or WKY. Once
again, the reduced lymphocyte proliferation response was evident in newborn SHR
compared with that in newborn WKY. SHR exhibited only one fifth to one seventh
of the response observed in WKY.

E. L-NMMA markedly increased the proliferation responses of lymphocytes
in control and anti-CD2 antibody treated SHR (Figure VII-4, right panel). L-
NMMA also significantly increased the response of lymphocytes in control WKY
(Figure VII-S, right panel). The lymphocyte proliferation response of anti-CD5

antibody treated SHR was increased slightly when L-NMMA was added to the
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culture, but the response was significantly lower than that of control or anti-CD2
treated SHR. The lymphocyte proliferation response of anti-CDS antibody treated

WKY remained significantly lower even though L-NMMA was added to the culture.

IV. DISCUSSION

In an attempt to elucidate the mechanism for the activation of NO synthase
in SHR macrophages, the role that T cells play in the alteration of NO synthesis in
SHR macrophages was investigated. The reasons for choosing newborn SHR and
WKY in this study were: 1) at 4 weeks of age, the altered NO synthesis in SHR
macrophages was already evident, 2) immunity of the rat pups were not hindered
by the process of T cell ablation because they were receiving immunoglobulins from
the dam’s milk, 3) at same dose, a rat with a small body weight consumes a lesser
amount of costly monoclonal antibody.

It was important to ascertain that antibody treatment caused T cell depletion
or inactivation in this study. Anti-CD5 antibody treatment markedly reduced the
proliferation responses of lymphocytes in either SHR or WKY, suggesting that T cells
possessing CDS antigen were ablated. This was further supported by the results of
L-NMMA study, in which L-NMMA failed to restore the lymphocyte proliferation
responses in anti-CDS treated rats, indicating that the reduced lymphocyte
proliferation responses were not due to an inhibitory effect of NO. The proliferation

studies confirmed that the T cells were either eliminated or inactivated by anti-CD5
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antibody treatment. On the other hand, anti-CD2 antibody treatment did not
produce any significant effect on the lymphocyte proliferation response, suggesting
that this treatment did not cause cell elimination or inactivation.

The main observation arising from this study was that the activation of NO
synthesis in SHR macrophages was CD5* T cell-independent because ablation of
these T cells by anti-CD5 antibody in vivo did not affect the elevated expression of
NO synthase activity in SHR macrophages. In normotensive rats, however, the
ablation of CD5* T cells significantly decreased NO production by macrophages,
suggesting that CD5 * T cells were involved in the activation of macrophage NO
synthase under normal condition.

CDS5 antigen is a 69-KDa surface glycoprotein present on most peripheral T
lymphocytes and thymocytes (Jones et al., 1986). All mature resting T cells express
this antigen (McAteer et al., 1988). It was reported that treatment with anti-CD5
antibody prevented the development of experimental autoimmune encephalomyelitis
(Sun et al., 1992). Anti-CD5 antibody destroyed peripheral T cells when
administered to rats (McAteer et al., 1988; Strigard et al., 1989). Consistent with
these observations, the present study showed that anti-CD5 antibody treatment
produced dramatic reduction in lymphocyte proliferation responses in both SHR and
WKY. This suggested that the T cells which possess CD5 antigen were either
physically eliminated or functionally inactivated in these treated rats. That the
activated NO synthesis in SHR macrophages was not affected by ablation of CD5 *

T cells suggests that the activation of NO synthase in SHR macrophages is CD5 *T
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cell-independent. Considering that CDS antigen is expressed on most, and all resting,
T cells (Jones et al., 1986; McAteer et al., 1988), this CDS * T cell-independency may
suggest that the alteration of NO synthesis in SHR macrophages is not dependent on
T cells at all. On the other hand, however, T cells were involved, at least in part,
in NO synthesis in normal rats because anti-CD5 antibody treatment produced
significant decrease in NO production by WKY macrophages.

Because most T cells also possess the CD2 antigen which functions both as
an adhesion molecule and as a receptor involved in initiating T cell activation
(Beyers et al., 1989), anti-CD2 monoclonal antibody was used in an attempt to ablate
T cells. In this study, however, anti-CD2 antibody treatment did not produce a
significant effect on lymphocyte proliferation responses in either SHR or WKY,
suggesting that the lymphocytes were not eliminated. In addition, anti-CD2 antibody
did not affect NO synthesis in macrophages.

The mechanism by which anti-CDS antibody treatment produces T cell
depletion or inactivation is not clear. It may involve complement-mediated
cytotoxicity and result in elimination of CD5* T cells (Sun er al., 1992). The
modulation of the CDS molecule through a receptor-mediated endocytosis of the
CD5-antibody complex may also be involved (Strigard et al., 1989). Recently, it has
been shown that anti-CD5 antibody induced an increase in the kinase activity
associated with the CDS5 molecule (Alberola-lla et al., 1993) and that CDS5 acted as
a receptor and substrate for the protein-tyrosine kinase p56*‘ (Raab et al., 1994).

These results suggest that the CD5 antigen may play a role in T cell signalling and



196
that CDS and anti-CD5 antibody complex may cause inactivation of CD5* T cells.
Whatever mechanisms underlie the effect of anti-CD5 antibody treatment, CDS* T
cells do not appear to be involved in the elevated NO synthesis in SHR
macrophages. The reason for the ineffectiveness of anti-CD2 treatment is
unknown. It is possible that CD2 and anti-CD2 antibody complex do not activate
the complement system and do not cause cell elimination. It has been reported that
in association with inhibition of immunity by anti-CD2 antibody treatment there was
a down-modulation of cell surface CD2 molecule without cellular depletion and
without alteration of other T cell surface markers (Bromberg et al., 1991; Guckel er
al., 1991). It is also possible that the unaffected lymphocyte proliferation response
may be due to the signalling pathway activated by Con A, in which the CD2 antigen
is bypassed.

It has been known for some time that T cells play a key role in the induction
of NO synthesis in macrophages via synthesis and release of cytokines (Stuehr and
Marletta, 1987; Stout and Bottomly, 1989; Martin ez al., 1992). Changes in T cell
functions or numbers may result in changes in the cytokine profile (Arai et al.,1990;
Miethke er al.,1993). An alteration in the production and release of cytokines may
result in changes in expression of NO synthase and, therefore, changes in NO
production by macrophages. However, whether T cells are involved in the alteration
of NO synthesis in macrophages in hypertensive state is unknown. The present
study provides evidence showing that CD5* T cells may not be involved in the NO

synthase alteration in hypertension. That the ablation of T cells did not affect the
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NO synthesis in SHR macrophages suggests that the alteration of NO synthesis in
SHR macrophages is T cell-independent and this alteration may be due to some
other mechanism.

The present study showed that without stimulation by Con A or LPS only a
trace amount of NO was synthesized. SHR macrophages produced large amounts
of NO only after stimulation by Con A or LPS, suggesting that the induction of NO
synthase expression in SHR macrophages still requires signals provided by LPS or
Con A. It was reported that the induction of NO synthase in macrophages required
signals provided by LPS and T cell-derived cytokines such as IFNy (Tao and Stout,
1993). In this study, since CD5 * T cells, which are the majority of T cells, were
depleted, the signals for induction of NO synthase must come from other sources.
Macrophages could be activated viaa T cell-independent mechanism by which IFNy
was thought to be released from non T cell sources (Bancroft er al.,1987). IFN yalso
augmented synthesis of TNF, a potent NO synthase inducer, in macrophages (Abbas
et al.,1991b).  Recently, it was shown that NO was produced in macrophages via
a T cell-independent pathway (Beckerman et al.,1993). It is likely that LPS or Con
A activates the expression of NO synthase in SHR macrophages via these T cell-
independent mechanisms.

The physiological significance of this T cell-independent pathway, which
induces NO synthase in SHR macrophages and results in overproduction of NO, is
not clear at this time. The T cell-independent mechanism may also be involved in

activation of NO synthase in WKY macrophages sirce anti-CDS5 antibody treatment
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did not completely abolish NO production by WKY macrophages.

The present study also demonstrated that the proliferation response of spleen
cells was significantly reduced in newborn SHR. It supports the results of the age
study which showed that SHR lymphocyte depression was not related to the
maturation and the development of hypertension. L-NMMA markedly increased the
lymphocyte proliferation response in newborn SHR, indicating that NO was
responsible for the lymphocyte depression. NO production by macrophages in
newborn SHR was significantly increased. This supports the finding that the elevated
NO synthesis in SHR may not be related to the development of hypertension. The
result that L-NMMA increased the lymphocyte proliferation response in anti-CD2
antibody treated SHR confirmed that anti-CD2 antibody treatment did not cause cell
elimination or inactivation. On the other hand, the result that L-NMMA failed to
increase the lymphocyte proliferation response in anti-CDS5 antibody treated rats
supports the finding that the lymphocytes were eliminated or inactivated by anti-CD5
antibody treatment, otherwise, the lymphocytes should regain ability to proliferate.

In summary, this study showed that the alteration of NO synthesis in SHR
macrophages was T cell-independent. However, T cells were involved in the
activation of macrophage NO synthase under normal condition. The lymphocyte
depression as the result of overproduction of NO in macrophages is evident in
newborn SHR, which unlikely have high blood pressure. This study further proves

that the lymphocyte depression and hypertension are not related.
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Figure VII-1. Nitric oxi(}e production by SHR spleen macrophages. Newborn SHR
were injected with either anti-rat CD2, anti-rat CD5 monoclonal antibody or control
ascites fluid (1-1.5 mg/kg, i.p.) three times a week for two weeks. Three days after
the last injection, the rats were sacrificed and the spleens were collected. The spleen
cells were cultured with 2.5 ug/ml Con A or 40 pg/ml LPS for 72 hours. The nitric
oxide concentration in the culture supernatant was determined by a colorimetric
assay. The data represent the mean + SE from 7 rats.
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Figure VII-2. Nitric oxide production by WKY spleen macrophages. Newborn
WKY were injected with either anti-rat CD2, anti-rat CD5 monoclonal antibody or
control ascites fluid (1-1.5 mg/kg, i.p.) three times a week for two weeks. Three days
after the last injection, the rats were sacrificed and the spleens were collected. The
spleen cells were cultured with 2.5 pg/ml Con A or 40 ug/ml LPS for 72 hours. The
nitric oxide concentration in the culture supernatant was determined by a
colorimetric assay. The data represent the mean * SE from 7 rats. *: P < 0.05,
**; P < 0.01, compared to respective control ascites and anti-CD2 antibody treated

rats.
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Figure VII-3. Comparison of nitric oxide production by spleen macrophages between
SHR and WKY. Newborn SHR or WKY were injected with control ascites fluid (1-
1.5 mg/kg, i.p.) three times a week for two weeks. Three days after the last injection,
the rats were sacrificed and the spleens were collected. The spleen cells were
cultured with 2.5 ug/ml Con A or 40 pg/ml LPS for 72 hours. The nitric oxide
concentration in the culture supernatant was determined by a colorimetric assay.
The data represent the mean * SE from 7 rats. *: P < 0.05, ** P < 0.01,
compared with respective control ascites treated WKY.
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Figure VII-4. The proliferation responses of spleen cells from SHR and effect of L-
NMMA on the proliferation response. SHR spleen cells (2 x 10°cells/well) were
dispensed in 96 well tissue culture plates in quadruplicate in the presence of 2.5
pg/ml Con A or 2.5 ug/ml Con A plus 0.05 mM L-NMMA. The cells were cultured
for 72 hours. 3H-thymidine was added to the culture for the final 18 hours. The data
represent the mean of 3H-thymidine uptake by the cells (CPM) per well + SE from
7rats. *:P < 0.05, **: P < 0.01, compared with respective control ascites and anti-
CD2 antibody treated rats. ##: P < 0.01, compared with respective control group

that without L-NMMA treatment.
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Figure VII-5. The proliferation responses of spleen cells from WKY and effect of L-
NMMA on the proliferation response. WKY spleen cells (2 x 10°cells/well) were
dispensed in 96 well tissue culture plates in quadruplicate in the presence of 2.5
pug/ml Con A or 2.5 ug/ml Con A plus 0.05 mM L-NMMA. The cells were cultured
for 72 hours. *H-thymidine was added to the culture for the final 18 hours. The data
represent the mean of *H-thymidine uptake by the cells (CPM) per well + SE from
7 rats. **: P < 0.01, compared with respective control ascites and anti-CD2
antibody treated rats. ##: P < 0.01, compared with control ascites treated rats that
without L-NMMA treatment.



CHAPTER VIII. GENERAL CONCLUSIONS AND DISCUSSION

There are many reports on immune dysfunction and hypertension suggesting
that a causal relationship may exist between immune abnormalities and hypertension.
The overall hypothesis of this thesis, at the beginning, was that an immune defect
may play a role in the pathogenesis of hypertension in SHR. The thesis work
originally consisted of two major directions: 1) a description of immune abnormalities
in SHR and of the underlying mechanisms, 2) the elucidation of the relationship
between immune dysfunction and hypertension in SHR. As the studies progressed,
a third theme emerged and that is 3) NO production by macrophages and VSMC as
related to the development of hypertension.

In an attempt to investigate the relationship between immune dysfunction and
hypertension, and to elucidate the mechanism of immune dysfunction, SHR immune
function in’comparison with that in WKY was first characterized. The results are as
follows.

1. The proliferation response of spleen cells, a mixed population of cells, was
significantly reduced in SHR.

2. The decreased proliferation response could not be corrected by IL-2 or
IL-1.

3. The capacity of SHR spleen cells to produce IL-2 was normal.

4. The proliferation responses of T-enriched lymphocytes and thymocytes in

SHR were not different from those in WKY.
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5. After removal of macrophages, the proliferation response of SHR spleen
cells increased dramatically, reaching the same, even a higher, level than those of
WKY.

An important finding in this study is that SHR T cells are essentially normal
as demonstrated by the fact that SHR T-enriched lymphocytes and thymocytes
exhibited normal ability to proliferate and normal capacity to produce IL-2.
Furthermore, this study shows that removal of macrophages from SHR spleen cells
corrected the inhibited lymphocyte proliferation response, ihdicating that SHR
macrophages are the cells involved.

To confirm the role of SHR macrophages played in SHR lymphocyte
depression and to elucidate the mechanism of this inhibition, the effect of SHR
macrophages on WKY lymphocytes and SHR macrophage-depleted lymphocytes was
examined. Since macrophages play an important role in the regulation of immune
responses via antigen presentation and the production of stimulatory or inhibitory
substances (Unanue and Allen, 1987), one of the inhibitory pathways, the NO
synthesis pathway, in SHR macrophages was investigated. The results are
summarized as follows.

1. It was shown histochemically that the cells isolated by adhesion were
indeed macrophages.

2. Isolated SHR macrophages significantly inhibited WKY lymphocyte
proliferation response.

3. SHR macrophages also inhibited the proliferation response of SHR
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macrophage-depleted lymphocytes.

4. Inhibition of NO synthase by L-NMMA fully reversed the depressed
proliferation response of SHR spleen cells.

5. L-NMMA also corrected the inhibited WKY lymphocyte proliferation
response caused by SHR macrophages.

6. Both SHR spleen cells, which contain macrophages, and the isolated
macrophages from SHR spleen cells produced significantly higher amounts of NO

than did those of WKY.

7. L-NMMA at the same concentration used to reverse the reduced
lymphocyte proliferation response inhibited the elevated NO production in SHR
macrophages.

8. The elevated NO synthesis in SHR spleen cells was not due to an increase
in the number of macrophages because the number of cells possessing macrophage
markers in SHR spleen cells was similar to that in WKY spleen cells.

This group of studies confirms that SHR macrophages are indeed the cells
involved in the SHR lymphocyte depression. It also provides evidence that the
activated NO synthesis pathway is responsible for SHR lymphocyte depression. It
is likely that abnormal function of macrophages per se,and not the increased number
of macrophages, is responsible for overproduction of NO in SHR. This elevated NO
production in SHR macrophages mediates the lymphocyte proliferation inhibition.

In the last decade, an hypothesis that immune dysfunction might be involved

in the etiology and pathogenesis of hypertension has been proposed (Khraibi et al.,
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1984; Norman et al., 1985). There is a growing body of evidence showing that

immune function is abnormal in many forms of experimental and human essential
hypertension. It has been documented that SHR and hypertensive patients have
elevated humoral immune responses including increased serum concentrations of IgG
and IgA, and a generation of autoantibodies against VSMC and thymocytes (Ebringer
and Doyle, 1970; Kristensen, 1979; Takeichi et al.,1981; Chen and Schachter, 1993).
The cell-mediated immune response, however, is reduced. SHR exhibit a decreased
T cell count, a depressed lymphocyte proliferation response, a reduced delayed-type
hypersensitivity and a delayed allograft rejection time (Takeichi et al., 1980; 1981;
Fannon et al., 1992; Purcell et al.,1993). These abnormalities in the immune system
could disrupt the immunoregulatory pathway. Associated with the depression in
suppressor T cell activity, there is often an autoimmune process, including the
generation of autoantibodies and an increase in immunoglobulin levels.  An
interesting feature of the immune dysfunction in hypertension is that there is an
increased humoral response and a decreased cell-mediated response. It has been
suggested that the primary defect observed in hypertension was in T cells.  With
this defect, especially the defect in the suppressor T cells whose function is to inhibit
undesirable immune responses, the humoral immune response was elevated in
hypertension (Takeichi et al.,1981; Norman et al., 1985; Fannon et al.,1992). The
increase in immunoglobulins and autoantibodies against VSMC could damage the
vasculature, especially the blood vessels in the kidneys, resulting in increased vascular

resistance and, thus, causing hypertension. Although these earlier studies are
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suggestive, the mechanisms underlying immune dysfunction and the relationship
between immune dysfunction and hypertension remain largely unknown.

The present study delineates the mechanism for the immune dysfunction in
SHR. It provides the first evidence to suggest that the immune defect in SHR does
not directly involve T cells (Xiao et al.,1991). The T cell depression is the result of
abnormal function of SHR macrophages. SHR macrophages overproduce NO which
mediates this lymphocyte depression (Xiao and Pang, 1993). Pascual and co-workers
(1993) reported a similar result also indicating that NO was responsible for immune
dysfunction in SHR. It has been well documented that NO synthase in macrophages
is an inducible isoform. The enzyme activity in macrophages is induced by various
T cell-derived cytokines or LPS, indicating that T cells play an important role in the
regulation of the expression of NO synthase activity. In order to elucidate the
mechanism underlying the alteration of NO synthesis in SHR macrophages, the
involvement of T cells in SHR NO synthesis was investigated. The results showed
that NO synthesis in SHR macrophages was not affected by ablation of CD5 * T cells,
suggesting that the activation of NO synthesis in SHR macrophages is CD5 *T cell-
independent. However, the ablation of CD5 * T cells significantly decreased the NO
production in WKY macrophages, suggesting that the activation of NO synthase is
T cell-dependent under normal conditions. Since the CDS antigen is expressed in
most of the active, and all of the resting T cells (Jones er al., 1986; McAteer et al.,
1988), this study suggests that T cells may not play any significant role in the

activation of NO synthesis in SHR macrophages. It is possible that other
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mechanisms may be responsible for the alteration of NO synthesis in SHR
macrophages, including genetic mechanisms.

Although the above studies characterized the mechanism responsible for the
immune dysfunction in SHR, it did not address the question of how the immune
dysfunction relates to hypertension. The hallmark of hypertension is an increase in
vascular resistance. VSMC are responsible for controlling the lumen diameter of
resistance vessels, and, thus, controlling vascular resistance. In hypertension, vascular
smooth muscle exhibits abnormal growth (Lee, 1985; Mulvany, 1992) and
responsiveness to vasoactive agents (Bohr et al.,1991a; de Champlain er al., 1991).
It is of great interest to determine whether there is any interaction between VSMC
and lymphocytes. An understanding of this possible interaction in SHR may provide
evidence for a relationship between immune dysfunction and hypertension. Thus, the
effect of SHR VSMC on the lymphocyte proliferation response was investigated.
Once it was shown that VSMC caused inhibition of lymphocyte proliferation in SHR,
the role of NO in this interaction and NO production by VSMC were also studied.
The results are summarized as follows.

1. SHR VSMC but not WKY VSMC inhibited the proliferation response of
lymphocytes from SHR and WKY.

2. L-NMMA reversed the inhibited lymphocyte proliferation response caused
by SHR VSMC.

3. NO synthesis in SHR VSMC was significantly increased compared with

that in WKY.
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4. The expression of NO synthase activity in VSMC of SHR and WKY was
induced by cytokines and LPS.

5. The stimulation of NO production in VSMC by inducers was dose-
dependent and time-dependent.

No direct evidence is available concerning the interaction between
lymphocytes and VSMC in hypertension. The present study provides the first
evidence that VSMC can influence lymphocyte activity in SHR (Xiao and Pang,
1994a). The overproduction of NO in VSMC contributes to the lymphocyte
depression in SHR. Increased NO synthesis in both VSMC and macrophages in
SHR is an interesting and important phenomenon. It suggests that there may be a
general activation of inducible NO synthesis in the hypertensive state. The present
data also provide the first evidence that the overproduction of NO in SHR VSMC
is biologically functional as SHR VSMC can inhibit lymphocyte proliferation in co-
culture.

The generation of NO by NO synthase is an important autocrine and
paracrine signaling pathway in the regulation of various cell functions and in
communication (Culotta and Koshland, 1992). The importance of NO in the
physiological control of blood pressure is now well established. The vasorelaxing
effect of NO acts as a counter balance to the effect of vasoconstricting substances
and also serves to maintain the blood pressure constant. In SHR as well as human
essential hypertension, it has been well documented that the amounts of a variety of

vasoconstricting substances and the responsiveness to these vasoconstrictors are
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increased (de Champlain et al.,1991; Dai et al., 1992; Ferrier et al., 1993; Jameson

et al.,1993). Although a considerable number of studies on the involvement of NO
in the hypertensive state have been reported, the results are not clear and are often
contradictory. It has been well documented that endothelium-dependent
vasorelaxation was reduced in hypertension (Tesfamariam and Halpern, 1988; Deng
et al., 1993a; Malinski er al., 1993; Panza et al., 1993). This suggests that
endothelium-derived NO synthesis by constitutive NO synthase was impaired in
hypertension (Calver et al.,1992; Luscher, 1992a). However, it was also reported
that the constitutive endothelium-derived NO synthesis in SHR was not different
from that in WKY (Ito and Carretero, 1992; Hayakawa e al., 1993). Recently, it
was demonstrated that light-activated release of NO from aortic rings was greater in
SHR than in WKY (Kubaszewski et al.,1994). The present study provides clear
evidence for the first time that inducible NO synthesis is elevated in SHR VSMC and
macrophages (Xiao and Pang, 1994a) . The activation of NO synthesis in
macrophages and VSMC may reflect a general activation of the inducible NO
synthase activity in SHR. This elevated inducible NO synthesis may play a
compensatory protective mechanism against the increased vasoconstriction in
hypertension. The increased NO synthesis in VSMC and macrophages may also be
important for our understanding of the involvement of the NO synthesis system in
hypertension.

At this time, however, it is not clear whether the activation of NO synthesis

in SHR VSMC and macrophages is related to hypertension. An understanding of
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the time sequence of the development of hypertension, changes in the NO synthesis
system in macrophages and VSMC and lymphocyte depression may elucidate the
relationship between immune dysfunction and hypertension. Therefore, an age
related study was performed. The results are summarized as follows.

1. SHR had significantly higher blood pressures than did WKY at 4, 8, 12
weeks and 1 year of age. The blood pressure increased continuously from 4 weeks
of age and reached a plateau value by 12 weeks of age.

2. The proliferation responses of SHR spleen cells were significantly reduced
in all age groups. The lowest response occurred at 4 weeks of age.

3. In all age groups, the depressed proliferation response of SHR spleen cells
was fully reversed by L-NMMA or removal of macrophages from the spleen cell
population.

4. SHR spleen macrophages produced greater amounts of NO than WKY
spleen macrophages in all age groups. The production of NO by SHR macrophages
at 4 weeks of age tended to be higher than that of SHR macrophages at 8 or 12
weeks of age.

5. There was no correlation between lymphocyte depression and hypertension

0.03) nor between NO production by macrophages and blood pressure in SHR

(r
(r

-0.15).
6. SHR VSMC produced significantly higher amounts of NO than did WKY

VSMC in all age groups.

7. In SHR, a significant positive correlation was observed between blood
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pressure and NO synthesis in VSMC (r= 0.71 or r= 0.69 by cytokines or LPS

stimulation, respectively). No significant correlation was found in WKY (r= 0.13or
r= -0.07, respectively).

One of the important findings in this study is that SHR lymphocyte depression
is not related to age or to the degree of development of hypertension, indicating a
dissociation between lymphocyte depression and the development of hypertension in
SHR. Because the lymphocyte depression is the result of excessive NO production
by macrophages, this dissociation is supported by the finding that NO synthesis in
SHR macrophages is not correlated to the blood pressure in SHR. These results
showed evidence for the first time that immune dysfunction and hypertension may
not be related (Xiao and Pang, 1994c).

This study confirms the previous observations that NO synthesis in SHR
VSMC was elevated. This result agrees with a recent report showing that NO
production in SHR aortae was enhanced by IL-1 (Junquero er al., 1993). The
importance of this study is that it shows for the first time that the increase in NO
synthesis in VSMC was significantly correlated with the rise in blood pressure in
SHR. This positive correlation suggests that the elevated blood pressure may be
related to the expression of NO synthase in SHR VSMC or vice versa.

This age related study also supported the hypothesis that a general alteration
of inducible NO synthesis may exist in SHR.  Hypertension and lymphocyte
depression appear to be two separate and parallel events that occur in SHR.

Because the blood pressure of SHR was already significantly increased at 4 weeks
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of age, it cannot be ruled out that changes in blood pressure before 4 weeks of age
may cause the alteration in NO synthesis. In order to clarify this question,
lymphocyte proliferation and NO synthesis in macrophages and VSMC were
investigated in an induced hypertensive state for comparison with those parameters
in the normotensive state. The results are summarized as follows.

1. The lymphocyte proliferation response was normal in rats with salt-induced
hypertension.

2. NO production by the macrophages in rats with induced hypertension was
very similar to that of normotensive rats.

3. In rats with induced hypertension, the NO production in macrophages was
not correlated with blood pressure (r= -0.01).

4, The rats with high blood pressure exhibited an elevated inducible NO
synthesis in VSMC.

5. The increase in VSMC NO synthesis was significantly and positively
correlated with the rise in blood pressure in these hypertensive rats (r= 0.87).

This study supports the hypothesis that blood pressure is not associated with
the increased NO synthesis in macrophages or lymphocyte depression in SHR. The
high blood pressure per se dose not appear to influence the elevated expression of
NO synthase activity in macrophages and cause the lymphocyte depression. This
result confirms that hypertension and immune dysfunction are two separate
concurrent phenomena in SHR. The elevated inducible NO synthesis seems to serve

as a common denominator between these two phenomena.
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This study also supports the second hypothesis that the activation of NO

synthesis in VSMC, unlike that in macrophages, is associated with the rise in blood
pressure. The increased blood pressure may activate the expression of inducible NO
synthesis in VSMC through an undefined mechanism(s). Whatever the underlying
mechanism is, the increased NO production in VSMC may serve a compensatory role
against the elevated blood pressure in SHR.

As discussed earlier, the involvement of NO in hypertension is not completely
understood. Inhibition of NO synthesis by treatment of NO synthase inhibitors in
vivo increased blood pressure in normotensive rats (Ikeda et al., 1992; Ribeiro ef al.,
1992; Morton et al., 1993). Administration of L-arginine to hypertensive patients
(Hishikawa et al., 1993) or animals (Patel et al., 1993) lowered the blood pressure.
These results suggested that NO synthesis may be impaired in the hypertensive state.
The present study and the studies reported by others demonstrated that inducible NO
synthesis is actually increased in SHR. It seems paradoxical that NO synthesis is
elevated at the cellular level but is insufficient when the whole body is considered.
This suggests, however, that increased NO production in VSMC may tend to
compensate for the elevated blood pressure in hypertension but that this
compensatory mechanism is not sufficient enough to combat the effect of increased
vasoconstricting factors and structurally altered vasculature. Furthermore, the
constitutive NO synthase may also be involved in the overall blood pressure
regulation in hypertension. It is also possible that constitutive and inducible NO

synthases may be affected differently in hypertension.
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The significance of this thesis study is summarized as follows:

1. This thesis is the first report to shov' a dissociation between abnormalities
in the immune system and hypertension.

2. This work delineates for the first time that the immune dysfunction in SHR
is mediated by the overproduction of NO in macrophages and, possibly, in VSMC.

3. Solid evidence is provided to show that inducible NO synthesis in
macrophages and VSMC is elevated in SHR, suggesting that a general activation of
the inducible NO synthesis system may exist in this hypertensive animal model.

4. A significant positive correlation is shown in this study between the
increased VSMC NO synthesis and the rise in blood pressure in SHR, suggesting that
hypertension may influence the expression of inducible NO synthase in VSMC.

5. The mechanism of NO synthase activation in SHR macrophages and
VSMC is explored. The activation of NO synthesis in SHR macrophages is T cell-
independent and blood pressure-independent.  The enhanced NO synthesis in SHR
VSMC, however, is related to the increased blood pressure.

Although the physiological significance of this elevated expression of NO
synthase in hypertension is not yet completely understood, this work provides a basis
and direction for future investigations. The following questions need to be
addressed:

1. Does the enhanced activation of NO synthesis occur in other types of cells
or tissues in SHR?

2. What is the mechanism underlying this general activation of inducible NO
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synthesis in hypertension?
3. What is the significance of the NO synthesis alteration in hypertension.
Understanding the nature of the NO synthesis pathways in hypertension may
not only help to elucidate the pathogenesis of hypertension but may also provide a
new approach to the therapeutic management of hypertension by manipulating the
NO synthesis in the right direction at the right time. If this is accomplished, the

immune abnormalities in hypertensive patients may also be corrected.
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