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Abstract 
 

Understanding the factors influencing the distribution of species is one of the 

main goals of ecology. This thesis presents three contributions to better and more 

efficiently understand the factors defining the composition of ecological 

communities. First, I studied the impact of anthropogenic disturbances, habitat 

heterogeneity, and spatial autocorrelation on Carabidae in a mature boreal forest. I 

showed that carabids were influenced mainly by forest floor cover, soil drainage, 

and tree composition. Moderate levels of anthropogenic disturbance only mildly 

influenced the spatial distribution of the carabid assemblages. I concluded that, 

carabid diversity would be best conserved in boreal forests if a network of large 

forest patches were left after harvest. Second, I considered the difficulty of 

analysing multivariate data, the main challenge in analysing species communities. 

Canonical redundancy analysis (RDA) is a flexible approach to relating a species 

community to environmental constraints. Although flexibility flows from the fact 

that any resemblance measure can be used within this framework, there is little 

guidance for how to select from the large number of existing resemblance 

measures. Using communities simulated from 25 different species abundance 

distributions (SAD), I compared results from 16 different resemblance measures 

within the RDA framework. The results showed that, independent of SADs, all 

resemblance measures gave equivalent results whether the communities were 

recorded as abundance or presence-absence data. In light of these results, I 

proposed a new canonical ordination to make a consensus of RDAs across 

resemblance measures. In my simulations presence-absence data were directly 



 

derived from abundance data, and so I also evaluated if the information in 

presence-absence and abundance data gave equivalent result. I found that the data 

formats may be complementary. Lastly, in ecological applications, either 

abundance/cover or presence-absence data are collected when species 

communities are sampled. With the help of resemblance measures, I propose a 

new way to survey ecological communities that is intermediate between presence-

absence and abundance data. This approach is more cost-effective than counting 

abundance yet more informative than recording presence-absence. Overall, this 

thesis contributes to understanding spatial distribution of carabids in boreal forests 

and provides new methods to analyse multivariate ecological data. 
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Introduction 

Understanding the relationships species have with each other and with 

their habitat is a main goal of ecology (Morin 2011). Because of the multivariate 

nature of community data, researchers often resort to dimension reduction tools 

such as ordinations to better understand the patterns defining these ecological 

communities. “Ordination” is the arrangement of objects (e.g., sites) in a 

particular order (Goodall, 1954, Legendre and Legendre 2012, Chapter 9). Central 

to these multivariate methods are resemblance measures that quantify the 

association between sites. They are at the core of modern statistical analysis in 

community ecology.  

Many resemblance measures have been proposed in the ecological 

literature. To understand why so many of these measures have been introduced in 

ecology, I present a historical overview of resemblance measures in the context of 

ordinations. 

Of the many resemblance measures used in ecology, the basic and most 

widely known one is Euclidean distance, which measures the geometric distance 

between two objects. Principal component analysis (PCA, Pearson 1901; 

Hotelling 1933) is based on the Euclidean distance. It was the first ordination 

method ever by ecologistsused to analyse community data, as introduced by 

Goodall (1954) in a plant community study. Even though PCA is a good 

dimension reduction method, its assumptions constrain its use to ecological 

problems focussing on total, not proportional, changes in abundances, biomass, or 

cover. Changes in total abundances, biomass, or cover are generally the result of 
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sudden changes in the environment such as upwelling, disturbance, or the 

introduction of a predator. On the other hand, changes in proportional 

abundances, biomass, or cover are more often associated to smoother variation 

from resource gradient, such as moisture or salinity gradients. For example, if a 

study focuses on the impact of an oil spill or ocean currents like the Gulf Stream 

(i.e. sudden changes) on a species community, it is appropriate to use PCA to 

extract ecological information because the absence (or presence) of a species can 

be directly associated to these changes. All resemblance measures that are 

symmetrical, like Euclidean distance, should only be used in situations where 

changes in total abundances are of interest (Anderson et al. 2011).  

With the exception of a few probabilistic resemblance measures (e.g., 

Raup-Crick measure [Raup and Crick 1979]), most measures can be considered to 

be symmetrical or asymmetrical. When measuring the resemblance of two sites, a 

symmetrical resemblance measure will give importance to the absence of a 

species at both sites. In contrast, asymmetrical resemblance measures do not 

attribute any weight to a species absent at two sites. Symmetrical resemblance 

measures suffer from a problem known in ecology as the double-zero problem. 

This problem (and its name) stems from the difficulty in interpreting the absence 

of a species from two sites. There are many causes for a species to be absent from 

a site. For example, it is possible that the niche of a species happens to be 

occupied by other species due to some stochastic processes or that a species was 

missed because sampling effort was not important enough to catch all species. 

Therefore, the absence of a species at two sites is not necessarily an indication of 

resemblance between the two sites. In that context, PCA may be ill adapted to 
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extract community patterns because it relies on a symmetrical resemblance 

measure. As explained in the previous paragraph, it is justified to use it only when 

the reason for species to be absent is of interest. 

With the double-zero problem, the need to perform ordinations based on 

asymmetrical resemblance measures became apparent. Ecologists have found a 

solution in correspondence analysis (CA, Greenacre 2007, Legendre and 

Legendre 2012, subsection 9.2), which relies on the χ2 distance, an asymmetric 

resemblance measure (Legendre and Legendre 2012, Subsection 7.4.1). It was 

first applied to study plant communities by Roux and Roux (1967). 

Parallel to the introduction of CA in community ecology, ecologists more 

versed in mathematics and statistics have also developed ordination methods 

appropriate for analyses of multivariate species data. An example of such 

development is the classic paper by Bray and Curtis (1957), which presents an 

ordination method based on the percentage difference distance. Note that Bray 

and Curtis (1957) proposed no distance measure, but referred to Motyka et al. 

(1950) for the resemblance measure that underlies the Bray-Curtis ordination. 

This resemblance measure was attributed to Steinhaus by Motyka (1947) and was 

rediscovered by Odum (1950) who named it percentage difference (Legendre and 

Legendre, 2012, Subsection 7.4.2).  

With the introduction of PCA, CA, and the Bray-Curtis ordination to 

community ecology, researchers could perform ordinations based on the 

Euclidean, χ2, and percentage difference distance, respectively. However, by the 

time these ordination methods were applied to the study of ecological 
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communities, many other resemblance measures had already been proposed both 

to and by ecologists. However, no ordination methods could be performed using 

these new measures. This problem was overcome in 1962 by Shepard who 

introduced non-metric multidimensional scaling (NMDS) and by Gower (1966) 

who proposed principal coordinate analysis (PCoA). Any resemblance measure 

can be used in ordinations performed with either of these two methods. These two 

methodological developments were of utmost importance because they offered the 

possibility for use of any resemblance measure through a single methodological 

framework.  

As is true for all other ordinations, NMDS and PCoA are dimensional 

reduction methods. However, because of their flexibility, they also offer the 

possibility of comparing resemblance measures through an ordination framework 

to decide which one is better adapted to study species communities. Compared to 

PCA and CA, at pitfall of NMDS and PCoA is that the information about species 

is lost because NMDS and PCoA are performed on matrices calculating distance 

between sites and that the information about species is lost in these matrices. 

Following the development of simple ordinations (PCA, CA, Bray-Curtis 

ordination, NMDS, and PCoA) came the widespread use of canonical ordinations. 

Canonical ordinations relate a matrix of response variables, such as a species 

community, with a matrix of explanatory variables. As for simple ordinations, the 

first canonical ordination methods introduced in the ecological literature were not 

flexible with regards to the resemblance measure that underpinned them. 

Canonical redundancy analysis (RDA, Rao 1964, Wollenberg 1977), for example, 

is based on Euclidean distance while canonical correspondence analysis (CCA, 
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ter Braak 1986) relies on the χ2 distance. With the development of distance-based 

RDA (db-RDA, Legendre and Anderson 1999), the canonical equivalent of 

PCoA, it became possible to perform canonical ordinations based on any 

resemblance measure. However, similar to the implications for PCoA of this 

flexibility, the information on species is lost in db-RDA.  

To adapt the use of PCA and RDA to a wider range of ecological 

problems, Legendre and Gallagher (2001) proposed to pre-transform community 

data using ecologically meaningful transformations. These pre-transformations 

enable researchers to perform PCAs and RDAs with distances other than the 

Euclidean distance because the distance preserved between sites after pre-

transformation is different than the Euclidean distance and of course depends on 

the pre-transformation. Because PCA and RDA conserve the information about 

the response variables (species), as do CA and CCA, it became possible to extract 

ecological information from species using resemblance measures other than the 

Euclidean and χ2 distances. Until recently the approach proposed by Legendre and 

Gallagher (2001) was the only one that allowed choice among a reduced group of 

resemblance measures to perform ordinations that conserved information about 

species. Borcard et al. (2011), Legendre and Legendre (2012, Subsection 9.3.3) 

and Oksanen et al. (2012), however, have now shown that it is possible to gather 

information on species even when using PCoA and db-RDA.  

Methodological developments since the second half of the twentieth 

century allow researchers to perform ordinations (simple and canonical) using any 

resemblance measure. However, because of the large number of resemblance 
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measures used to model community data, ecologists face difficulties in deciding 

which resemblance measure to use. Although some evaluates the strength and 

weaknesses of different resemblance measures, most such studies do not apply to 

recent methodological developments, such as canonical ordinations.  

The history of attemps to resolve this problem has been full of 

controversy. Hajdu (1981) proposed to construct a set of test cases, which he 

named “ordered comparison case series” (OCCAS), that may be used as reference 

to choose a resemblance measure among a set of candidate measures. These test 

cases present linear changes in the abundance of two species along a set of 

simulated gradients. A pitfall of the OCCAS approach is that simulated species 

generally have high abundance and thus poorly reflect the abundance patterns of 

real ecological communities. Moreover, linear relationships between a species and 

its environment are not necessarily a pattern found in nature. 

Gower and Legendre (1986) used the OCCAS to evaluate the behaviour of 

25 resemblance measures (15 for binary data and 10 for quantitative data). They 

concluded that only two of the measures compared should be avoided because 

they are strongly non-linear, a pattern that species simulated with the OCCAS 

does not have. These are the Yule (Sokal and Sneath 1963) and Kulczynski 

(1927) resemblance measures. These results suggest either that the OCCAS does 

not effectively discriminate among the resemblance measures compared by 

Gower and Legendre (1986) or that the information in the test data is presented 

equivalently by 23 of the 25 resemblance measures compared.  

Also using simulations, Bloom (1981) compared four resemblance 

measures including the Morisita index (Morisita 1959), and concluded that the 
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percentage difference distance is the only one that should be used to study 

ecological communities. Although this result is in accordance with Faith et al. 

(1987), it contradicts Wolda (1981) who compared 22 resemblance measures with 

simulations, among them percentage difference, and concluded that only the 

Morisita index should be used. During the same time period, but using empirical 

data from the fungi genus Chaetomium, Hubàlek (1982) compared 43 binary 

resemblance measures using cluster analysis. Contrary to Gower and Legendre 

(1986), he suggested using the Kulczynski resemblance measure. He also 

highlighted the Jaccard (1901), Sørensen (Dice 1945, Sørensen 1948), and Ochiai 

(1957) resemblance measures as good measures to study communities sampled 

using presence-absence data. 

More recently, Legendre and Gallagher (2001) have offered guidelines to 

select resemblance measures. Unlike the papers comparing resemblance measures 

discussed above (Bloom 1981, Wolda 1981, Hubàlek 1982, Gower and Legendre 

1986, Faith et al. 1987), they put ordinations into constant perspective, focusing 

on simple ordinations. They compared seven resemblance measures using only 

abundance data and conclude that the Hellinger (Rao 1995) and chord (Orlóci 

1967, Cavalli-Sforza and Edwards 1967) distances are good alternatives to the 

percentage difference distance, although the later distance was still deemed valid. 

Legendre and Gallagher (2001) also proposed generalizing their conclusions to 

canonical ordinations and to other data formats (e.g., presence-absence) but they 

did not test these ideas. Recently, Legendre and Legendre (2012, Subsection 7.6) 

proposed a decision key to choose resemblance measures based on their 

properties.  
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As can be understood from the various papers that compare resemblance 

measures as discussed above, it is difficult to decide which measure to use 

because studies have often contradicted each other, favouring or discrediting the 

same resemblance measures. All of these authors aimed at identifying one or a 

few resemblance measures that could be used for almost any situation where 

community data are analysed. One goal of this thesis is to compare resemblance 

measures with respect to addressing particular research questions. I started with 

the premise that it is unlikely that a single resemblance measure can be used to 

answer all statistical questions about species composition or community ecology.  

The species abundance distribution (SAD) is another approach that has 

been developed to study ecological communities. Like resemblance measures it 

has a long history. McGill (2007) traces its origin back to 1909, however, it was 

popularized by Fisher et al. (1943) and Preston (1948). Since then, theoretical and 

empirical studies have been carried out to better understand the patterns defined 

by SAD. Although the general patterns of SAD are consistent regardless of the 

communities studied (rare species are common and common species are rare 

[McGill 2011]), there is still significant variation among SADs of different 

ecological communities. Understanding why species are distributed the way they 

are has been studied independently with SAD and with ordinations using 

resemblance measures. However, no research has been carried out using both 

approaches together. In this thesis, I used SAD to evaluate the strengths and 

weaknesses of a group of resemblance measures when used in canonical 

ordinations (Chapter 3), and to evaluate if it is possible to be more cost-efficient 

when sampling ecological communities (Chapter 4).  
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Legendre and Gallagher (2001) proposed to select a resemblance measure 

for a canonical ordination as the one that yielded the largest fraction of explained 

variance (R2). However, they did not explicitly test if this was a good approach to 

selecting a resemblance measure. In the third chapter, I evaluated if SADs could 

serve as a reference to choose a resemblance measure to analyse community data 

through the RDA framework (that is with RDA, or db-RDA). Results using 

sixteen different resemblance measures were compared to evaluate how their R2 

varies. I assessed usefulness and effectiveness of the different resemblance 

measures in analysing community data using simulated communities based on 

different SADs. The results showed that all resemblance measures yielded similar 

R2 regardless of the SAD from which the data were simulated. Thus, in chapter 3 I 

propose a new procedure to use when more than one resemblance measure is 

applicable to study species communities. This new method makes a consensus of 

a series of canonical ordinations performed on the same data using different 

resemblance measures.  

Most community surveys involve sampling a large number of species. 

Counting the abundance of every species for each sampling unit can be tedious 

and laborious. In contrast, measuring species presence-absence is easier and more 

cost-effective, but the information lost by collecting only presence-absence data 

may reduce our ability to efficiently describe and reconstruct the studied 

communities. In the fourth chapter of this thesis, I propose a new approach that is 

intermediate to counting abundance and measuring presence-absence. This new 

data gathering approach is designed to be more cost-effective than counting 

species abundances and prevents the loss of information caused by recording only 
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presence-absence. When applied to a species community, we should first evaluate 

the importance of SADs, the species aggregation level, and the choice of 

resemblance measure to decide how cost-effective the sampling would be. The 

approach proposed in this chapter can be applied to virtually any multivariate 

count datasets (ecological or others). 

In addition to presenting two methodological developments that can be 

applied directly to investigate patterns on ecological communities, this thesis also 

presents a study aimed at understanding the factors that influence the distribution 

of ground beetles (Carabidae) in a mature boreal forest. I chose to present this 

study in the second chapter of this thesis because the third and fourth chapters will 

use the same data for ecological illustrations. In the second chapter, I examine the 

effect of landscape disturbances, habitat heterogeneity, and spatial autocorrelation 

on a ground beetle assemblage in boreal forest. Ecologically, boreal ground 

beetles are diverse and sensitive to variation in environmental factors making 

them good bioindicators (Rainio and Niemelä 2003). Carabids have also been 

shown to react strongly to harvesting (Pearce and Venier 2006). In a spatial 

context, the way ground beetles interact with the environment, and the effect 

disturbances have on this relationship may vary considerably, depending on the 

scale of the study (Niemelä and Spence 1994). Many carabid studies have been 

carried out at a scale of a few hectares (Thiele 1977, Lövei and Sunderland 1996), 

but very few studies have been conducted at scales larger than a square kilometre 

(Vanbergen et al. [2005] and Woodcock et al. [2010] are two notable exceptions). 

The second chapter considers carabid in 70 km2 of boreal forest where 194 sites 

were sampled in a near-regular grid. Forest floor cover, soil drainage, and tree 
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composition were used to define habitat heterogeneity. To evaluate the 

importance of spatial autocorrelation, Moran’s eigenvector maps (Dray et al. 

2006) were used. To study landscape disturbances I referred to the shortest 

distance to an anthropogenic disturbance (road, seismic line, or harvest block). In 

this chapter, all analyses were performed using the Hellinger distance. This 

resemblance measure was chosen based on knowledge of the carabid community 

and its property when applied to the statistical methods used to carry out the 

analyses.  

In summary, the factors structuring species in a community are often of 

different nature, as illustrated in Chapter 2. However, the methodological 

approaches used to count and model ecological communities can influence the 

interpretations made of these data. This thesis presents methodological 

developments that will help ecologists more efficiently gather community data 

and better analyse them when using resemblance measures. To show how these 

new analytical developments can increase the understanding of real ecological 

systems, I used Carabidae sampled in northwestern Alberta as illustration. 
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Chapter 2 – Landscape effects of 

disturbance, habitat heterogeneity and 

spatial autocorrelation for a ground 

beetle (Carabidae) assemblage in mature 

boreal forest 
A version of this chapter has been accepted for publication with minor 

corrections: Blanchet F. G., J. A. C. Bergeron, J. R. Spence, and F. He. 2012. 
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INTRODUCTION 

Many factors influence the distribution of species. The traditional autecological 

paradigm suggests that environmental factors exert the main influence on location 

of species in landscapes (Hutchinson 1957). Over the past forty years, however, 

researchers have emphasized the impact of factors such as disturbances (Sousa 

1984) on establishing and maintaining patterns of species distribution and have 

studied how these species are spatially autocorrelated (Legendre and Fortin 1989). 

Clearly, spatial aggregation of species in communities can result from species 

interacting either with their environment or among themselves (Legendre 1993). 

In this paper, we use the concept of ‘space’ in a general sense, to reflect 

unmeasured spatially structured habitat variables (e.g., geological formations, 

moisture, soil conditions) and/or dispersal limitations (caused by reproduction 

strategies, mortality, migration, predation, etc.) that may affect distribution of 

species in an area.  

Inclusion of disturbance and space in models of community structure can 

significantly increase the understanding of both species interactions and the 

dynamics of the ecosystem in which they occur. The effects of disturbances, 

habitat heterogeneity, and space on species assemblages have been the focus of 

studies in various ecosystems, with this theme having been particularly relevant 

for forests (Parisien and Moritz 2009), coral reefs (Connell et al. 1997) and 

agricultural landscapes (Kleyer et al. 2007). Effects of disturbance, habitat 

heterogeneity and space have also been featured in numerous studies on boreal 

landscapes. For example, several Canadian studies of forest ecosystems [e.g., the 
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EMEND (Ecosystem Management Emulating Natural Disturbance) project in 

northwestern Alberta (Spence et al. 1999) and the SAFE (Silviculture et 

Aménagement Forestiers Écosystémique) project in Québec (Harvey et al. 1997)] 

consider disturbances, habitat heterogeneity and space on a broad spatial scale in 

an effort to understand forest dynamics and conserve biodiversity. Increasing 

knowledge about factors influencing species distributions through such long-term 

studies is central to ecosystem–based management of boreal forests because 

resource extraction patterns (e.g., forest harvesting, mining) involves broad spatial 

scales and can have long lasting effects. 

In this study we focus on boreal ground beetles (Carabidae), as they are 

diverse and have been identified as good bioindicators due to their sensitivity to 

changes in environmental factors (Rainio and Niemelä 2003). Changes in ground 

beetle assemblages are tightly linked to the edaphic conditions of habitats (Lövei 

and Sunderland 1996) and, as such, carabid community dynamics may be a model 

for other organisms responding to these same habitat conditions (e.g., epigaeic 

fauna, understory flora). As a functional group, ground dwelling arthropods, 

including carabid beetles, react strongly to industrial harvesting (Buddle et al. 

2006, Pearce and Venier 2006).  

Although it is well understood that harvest disturbances and environmental 

factors interact to widely affect assemblages of epigaeic invertebrates in boreal 

forests (e.g., Niemelä et al. 1993, Niemelä 1997, Work et al. 2004), it remains a 

challenge to partition the effects of environment and disturbance in space. Thus, 

by examining the landscape scale response of a ground dwelling beetle 
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assemblage to disturbances, habitat heterogeneity, and space, we provide insights 

about how the species-rich epigaeic fauna may be affected by these factors. Such 

insights are highly relevant to basic understanding of forest function and for 

implementing biodiversity conservation in development of sustainable forest 

management (Burton et al. 2003; Lindenmayer and Franklin 2003). 

Interactions between an epigaeic fauna and the environment, as well as the 

effect of disturbances on this relationship vary notably from fine to broad scales 

(Niemelä and Spence 1994); however, many aspects of biodiversity can only be 

studied meaningfully at a broad scale (Wiens 1989). In contrast, studies of ground 

dwelling invertebrates are rarely conducted in areas larger than a few square 

kilometres; most are undertaken in single locales. Among the largest scale studies 

reported in the literature, Vanbergen et al. (2005) sampled six 1 km2 quadrats 

while Woodwork et al. (2010) sampled an area of 10 km2. The carabid dataset 

analysed here is exceptional as it covers 70 km2, an area sufficiently large to 

capture the spatial variation in a species assemblage and to understand the 

possible impact of disturbances that operate over broad scales. A study at this 

scale is important to understand more completely what structures the epigaeic 

community at scales corresponding to the phenomena shaping the structure and 

variation of the boreal forest. 

The general objective of this study is to assess the effects of habitat 

heterogeneity and anthropogenic disturbances on boreal carabid diversity at a 

landscape scale. Specifically, we aimed to answer the following three questions: 

(1) Is the spatial pattern of ground beetle assemblages in mature forest affected by 
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surrounding anthropogenic disturbance? From the numerous studies carried out at 

finer local scales, we expected anthropogenic disturbance to influence the 

distribution of carabids in our study. (2) What portion of the environmental 

factors structuring beetle assemblages is spatially autocorrelated? (3) What 

commonly recognized components of the habitat (e.g., forest floor cover, soil 

drainage, vegetation structure or topography) are most important for structuring 

boreal carabid assemblages? Carabids disperse mainly by running on the forest 

floor. We thus expected that descriptors of ground conditions would be the main 

factors structuring boreal ground beetles. However, because descriptors of ground 

conditions and vegetation structure interact strongly, we hypothesized that both 

would notably influence the structure of the carabid community. 

MATERIAL AND METHODS 

Study area and Forest Sampling 

The data analysed here were collected at the EMEND study site located in 

northwestern Alberta, Canada (56º46’13’’N, 118º22’28’’W) on the southeast 

slopes of the Clear Hills formation. The site is dominated by boreal mixedwood 

forest, as defined by Rowe (1972). In the summer of 2002, 194 sites distributed on 

a near-regular grid were established in an area of 70 km2 (Figure 2.1). Each site 

was positioned in never-harvested mature forests, a minimum of 40 meters away 

from any anthropogenic disturbance or major water bodies. On average, sites were 

700 meters apart, with a minimum distance between any two sites of 260 meters. 

Forest harvesting (tree felling), two roads and a number of seismic lines produce 

some forest fragmentation in the sampling area. In addition to the never-harvested 
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mature forests stands in which the sites were located, the EMEND experiment 

also includes burned, slash burned (harvested forest in which the harvest residuals 

have been spread and subsequently burned) and slash harvested (harvested forest 

in which the harvest residuals have been spread) stands as well as sites with 

different levels of harvesting (0%, 10%, 20%, 50%, and 75% of unharvested 

forest).  

Prior to c. 1960 the forest on our study site was strictly natural, including 

limited aboriginal use, and the fragmentation mentioned above resulted from the 

first industrial anthropogenic disturbances in this area. In short, the area studied 

was probably about as ‘natural’ as can be found on the western boreal plain of 

Canada or in similar latitudes of boreal forest anywhere on Earth. Although the 

sampled sites were all located in never-harvested mature forests, the epigaeic 

fauna may still be influenced by surrounding anthropogenic disturbances due for 

example to forest fragmentation (Davies and Margules 1998). 

Carabid samples  

Carabids were sampled with three pitfall traps (Spence and Niemelä 1994) at each 

site during the summer of 2003 (Bergeron et al. 2011). Traps were distributed 

around the centre point of each site on the circumference of a circle 15 meters in 

radius, starting at due north and with traps separated from each other by 120 

degrees. Such spacing is sufficient to render depletion effects insignificant for 

ground beetles in the boreal forest (Digweed et al. 1995). Pitfall traps consisted of 

a 500 mL circular plastic cup of 11 cm in diameter filled with silicate-free 

ethylene gycol (GM Dex-Cool®) used as preservative. They were placed into the 
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ground with the lip at soil surface and covered by a wooden roof to reduce 

accumulation of debris and water.  

Traps were emptied every three weeks from early May to the end of 

August, and so the samples comprised a total of 99 possible trapping days with 

traps emptied 4 times. Prior to any analysis, total beetle catches at each site were 

divided by the number of days over which traps were operating. When a trap was 

non-functional at collection time, the trap content was discarded and the sampling 

effort for the site was reduced by a third for that specific collection period. This 

was done to correct for non-demonic intrusions (Hurlbert 1984) such as flooding 

or destruction of traps by large mammals. To ensure that this correction does not 

over-emphasize common species we examined the species richness, abundance, 

and composition at each site in relation to the number of days traps were active. 

No distinct patterns were found, suggesting that traps were active long enough to 

effectively capture the carabid composition at each site. All of the 9729 beetles 

collected in the samples were identified to species using Lindroth (1961–1969) 

and various updates available in the literature. Overall, the relative activity-

density of 43 carabid species was recorded in this study. 

Habitat heterogeneity 

Variables representing habitat heterogeneity were grouped in two broad 

categories, comprising descriptors of ground condition and vegetation structure. 

These variables were recorded as the grid was laid out in 2002 (Bergeron et al. 

2011). 
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Descriptors of ground condition included forest floor cover, soil drainage 

and topography. The 1st, 2nd and 3rd most dominant floor cover were recorded at 

each site; each was considered as an independent factor. Throughout the sampling 

area, seven floor covers were found: mosses, peat, leaves, lichen, needles, grass, 

and litter. Lichen and litter were never the most dominant cover, and litter was 

never 3rd most dominant. Each of the three factors describing a dominant level of 

floor cover was transformed into a set of dummy variables, providing a total of 18 

binary descriptors, one per floor cover for each dominance level. For example, if a 

factor measures the levels A and B, binary descriptors can be constructed for each 

level. Whenever A was measured a binary descriptor is coded as 1, otherwise 0 is 

used. The same procedure was used for all levels generating as many binary 

descriptors as there are levels in a factor.  

Soil drainage was characterized in two 0.5 m2 soil pits dug to mineral soil 

substrate at opposite ends of each site. Drainage was recorded following a 

modified version of the Beckingham et al. (1996) classification. We attributed 

intermediate levels to sites exhibiting characteristics of two adjacent categories of 

the original classification. A detailed presentation of the 13 level classification we 

used in this study is presented in Appendix A where it is contrasted to the 

classification of Beckingham et al. (1996). Nine of the 13 levels were found in our 

study (from rapidly drained to poorly drained soil). Soil drainage was also 

transformed into dummy variables, as above for floor cover.  

Lastly, three standard topographic measurements were recorded for each 

site: slope, aspect (cardinal direction toward which the slope faces), and elevation. 
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Because aspect was recorded in degrees, it was transformed into aspect easting 

(sine of aspect values) and aspect northing (cosine of aspect values). In all, we 

used 31 descriptors of ground conditions. 

Characterization of vegetation structure was based on the 25 individual 

trees closest to the centre of each site. Eight tree species were found: aspen 

(Populus tremuloides Michx.), balsam fir (Abies balsamea (L.) Mill.), balsam 

poplar (Populus balsamifera L.), black spruce (Picea mariana (Mill.) BSP), larch 

(Larix laricina (Du Roi) K. Koch), lodgepole pine (Pinus contorta Doug. ex 

Loud. var. latifolia Engelm.), paper birch (Betula papyrifera Marsh.) and white 

spruce (Picea glauca (Moench) Voss). For each individual tree, the diameter at 

breast height (DBH) and the basal area was measured. The DBH average per site 

was used as surrogate for site productivity. The coefficient of variation (CV) of 

the DBH was used as a measure of forest structure. We also calculated the relative 

basal area per species for each site as the area covered by one tree species at a site 

divided by the area covered by all trees at the same site. We also derived the 

Shannon diversity (Shannon 1948) and the Pielou’s evenness (Pielou 1966) 

indices from the tree basal area for each sites. Together, 11 variables were used to 

define vegetation structure. 

Statistical analyses 

We first performed a Hellinger transformation (Rao 1995) on the ground beetle 

catch per trap-day per site. The transformation increases the weight given to rare 

species and yields little ‘horseshoe effect’, as described by Legendre and 

Legendre (2012, Subsection 9.2.5). Essentially, when using ordinations, it may 
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happen that the first axis presents a gradient where sites at the end of the gradient 

are folded inward and this results in a horseshoe shaped configuration of points on 

the ordination. The horseshoe effect is often explained as a mathematical 

construct resulting from progressive changes in species composition of sites along 

an environmental gradient (Legendre and Legendre 2012, Subsection 9.2.5). 

Nonetheless, the Hellinger transformation is well adapted to extract ecological 

patterns from species community data (Legendre and Gallagher 2001). All 

analyses were performed using the Hellinger transformed data. We also 

standardized (centred and divided by their standard deviation) all continuous 

explanatory variables to remove any unit effects. 

We analysed the carabid data with a principal component analysis (PCA) 

calculated on the correlation matrix to identify outlier sites with clearly different 

species composition. As a result, two sites were removed from subsequent 

analyses and examined separately. 

To test if anthropogenic disturbances (forest harvesting, roads, and seismic 

lines) influence the spatial distribution of ground beetle assemblages we grouped 

the sites based on species composition using spatial constrained clustering 

(Legendre and Legendre 2012, Subsection 13.3.2) following Ward’s (1963) 

criterion and tested if the shortest distance to an anthropogenic disturbance 

differed between groups using a permutation-based one-way analysis of variance 

(ANOVA) with 5000 permutations. This ANOVA does not require the data to be 

normal because it is permutation-based, however it does assume that variance 

between groups is homogeneous and this was confirmed by Levene’s test. To find 
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the best cluster solution for the carabid data, we tested clustering results with 2 to 

15 groups using cross-validation with 1000 iterations for each set of groups. The 

clustering result with the lowest cross-validation residual error was retained. The 

spatial constraint was defined by a connexion diagram (Figure 2.1), where 

fictitious (open circles) and outlier sites (open squares) were not considered. 

Given the experimental design of EMEND, we considered all stands with 75% or 

less of forest retained as disturbed. All burned, slash burned, and slash harvested 

stands were also considered disturbed. Spatial constrained clustering was 

performed with the ‘const.clust’ package (Legendre 2011) within the R statistical 

language (R Development Core Team 2011). 

We used Moran's eigenvector maps (MEM, Dray et al. 2006) to evaluate 

spatial patterns in the carabid assemblage. The spatial variables (eigenfunctions) 

were constructed based on a connexion diagram (Figure 2.1). To ensure spatial 

continuity, outlier sites and six fictitious sites as described above were included in 

the construction of the eigenfunctions. These sites were removed from all spatial 

variables so that MEMs could be used in subsequent analyses. Five sets of spatial 

eigenfunctions constructed with different weights were compared: (1) All links 

have equal weights (presence of link = 1, absence = 0), (2-3) following a concave-

up function of the distance (ƒ1(dij) = 1/dij
α), and (4-5) a concave-down function of 

the distance (ƒ2(dij) = 1 – (dij /max(dij))α 
). In f1 and f2, dij is the distance between 

sites i and j, and α is either 1 or 2. Spatial variables were constructed with the 

package ‘spacemakeR’ (Dray 2011) within the R statistical language. 
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The MEMs and the spatially constrained clustering introduced in the two 

previous paragraphs are based on the same connexion diagram (Figure 2.1). They 

are designed to highlight the same spatial pattern. However, they have different 

purposes. The spatially constrained clustering defines spatial groups by 

partitioning the carabid assemblages, while the selected MEMs highlight spatial 

patterns at varying scales across the sampling area. 

Moran’s I coefficients of spatial correlation (Legendre and Legendre 2012, 

Subsection 13.1.1) were used to test the significance of each spatial eigenfunction 

(using 999 random permutations). A spatial eigenfunction associated with a 

Moran’s I larger than the expected value of the Moran’s I models positive spatial 

correlation. Similarly, a spatial eigenfunction associated with a Moran’s I smaller 

than the expected value of the Moran’s I describes negative spatial 

autocorrelation. We retained the spatial eigenfunctions that had a significant (P-

value < 0.05) Moran’s I and that modelled either positive or negative 

autocorrelation. 

Both groups of spatial variables were tested independently for use in 

modelling the ground beetle assemblage. A Šidák correction (Šidák 1967) was 

applied to the P-values of each test because carabid species were tested twice. If 

the corrected P-value was significant (Pc < 0.05), the adjusted coefficient of 

multiple determination (R2
a, Zar 1999) calculated for the carabid assemblage was 

retained. This procedure was proposed by Blanchet et al. (2008) as a way to 

coarsely choose which group of spatial variables (positively or negatively 

autocorrelated) should be considered in more detail. This procedure is carried out 
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on the detrended species data if the linear trend is significant (Borcard and 

Legendre 2002). The linear trend models a spatial gradient broader than the 

sampling area using the X and Y coordinates of the sites. It increases (or 

decreases) in a north-south and/or east-west direction. We tested it using a 

permutation test (using 999 random permutations). Because MEMs are akin to 

sine waves, half of all MEMs are required to model a linear gradient. 

The values of R2
a calculated with different weighting functions were 

compared and the highest one was retained for further analyses. Forward selection 

(Blanchet et al. 2008) was then used to find the spatial variables that best 

modelled distribution of the ground beetle assemblage. We used the ‘packfor’ 

package (Dray et al. 2011) in R to select the variables. If significant, the linear 

trend described in the previous paragraph was re-introduced as an extra spatial 

variable after the forward selection for all following analyses to be performed on 

the non-detrended data. Note that even after including the linear trend, the spatial 

variables present low collinearity among each other. The largest correlation 

between any pair of spatial variables was 0.29. 

Effects on the carabid community of the descriptors of ground condition, 

those reflecting vegetation structure and the selected spatial variables were 

quantified using variation partitioning (Borcard et al. 1992). R2
a was used to 

measure the importance of each fraction in the variation partitioning results 

because it corrects for the number of variables which may vary between each 

group in the variation partitioning analyses (Peres-Neto et al. 2006). To perform 

this analysis, we used the ‘varpart’ function in the ‘vegan’ package (Oksanen et 
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al. 2012) in R. Variation partitioning was also performed independently on the 

descriptors of ground condition, using five sub-groups: soil drainage, forest floor 

cover (from the 1st most to 3rd most dominant), and topography. We also 

partitioned the variance of the forest vegetation structure into three sub-groups: 

tree basal area, forest productivity (DBH average) and structure (coefficient of 

variance of the DBH), and the Shannon and Pielou diversity indices. Appendix B 

describes the two types of Venn diagram used to present the results of variation 

partitioning. 

To better understand the impact of ground condition and vegetation 

structure on the carabid community, we performed a partial canonical redundancy 

analysis (partial RDA, Davies and Tso 1982; Legendre and Legendre 2012, 

Subsection 11.1.6), using the selected spatial eigenfunctions as covariates. 

Controlling the spatial component allowed us to focus specifically on the aspects 

of the beetle community that are not spatially autocorrelated, making this analysis 

complementary to the spatially constrained clustering described earlier. All 

canonical axes were tested using 1000 permutations; only the significance (P-

value ≤ 0.05) axes were retained for interpretation. 

RESULTS 

Influence of anthropogenic disturbances on ground beetles 

The PCA performed on the ground beetle data isolated two of the 194 sites as 

having notably different species structure (Figure 2.1, open squares); these were 

the only two sites located in forest patches retained within harvest blocks. Six 

carabid species [Agonum cupreum Dejean, Amara erratica (Duftschmid), Amara 
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laevipennis Kirby, Harpalus laevipes Zettersted, Notiophilus semistriatus Say and 

Poecilus lucublandus (Say)] were present only at these two sites, making the total 

number of species at these sites double than that of the other sites. These six 

species are all open-area specialists (Lindroth 1963, 1968, 1969a), suggesting that 

their presence expresses local sensitivity of the carabid assemblage to harvest. We 

removed these two sites for subsequent analyses, bringing the ground beetle 

species count to 37 in 192 sites. 

Six groups of the remaining sites were suggested as the best clustering 

solution by the spatial constrained clustering (Figure 2.2), as determined by a 

cross-validation residual error of 0.614. Levene’s test showed that the variance 

was homogeneous among the six groups of sites (P-value = 0.288). We found no 

significant differences among these groups with respect to the minimum distance 

to any of the modest anthropogenic disturbance in the area (i.e., road, seismic 

lines, edges of harvested blocks) (ANOVA, P = 0.1074). Thus, even harvest 

effects appeared to have impacts that were quite locally expressed. 

Influence of space on ground beetles 

The carabid data were detrended both in the east-west and north-south directions. 

The spatial eigenfunctions constructed using the second order (α = 2) concave-up 

function (f1) explained the largest amount of variance (R2
a = 5.8%, Pc < 0.002). Of 

the 68 positively autocorrelated spatial variables with a significant Moran’s I, 

eight eigenfunctions were chosen by the forward selection procedure: 

eigenfunctions numbered 3 and 9 defined broad scale patterns; 13, 21 and 23 

encompassed patterns at an intermediate scale; 31, 40, and 44 described a fine 
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scale of pattern (Appendix C). Together, these spatial eigenfunctions explained 

4.1% of the detrended species data. With the addition of the linear trend defined 

by the site coordinates to the selected eigenfunctions, purely spatial variables had 

an R2
a = 16.0% for explaining the non-detrended ground beetle data. 

Influence of environment on ground beetles 

The three groups of explanatory variables describing the ground beetle 

community at EMEND were employed for variation partitioning (Figure 2.3a). 

The descriptors of ground condition were the most important group of explanatory 

variables (R2
a = 43.8%). These also explained the largest independent fraction of 

the variance ([a], R2
a = 12.0%). Vegetation structure was the second most 

important group of variables, both independently (fraction [b], R2
a = 4.6%) and as 

a group (R2
a = 34.6%). The selected spatial variables accounted for the least 

amount of variance (R2
a = 16.0%). For space alone, the independent fraction [d] 

was 1.4%. 

Interaction among the five sub-groups of descriptors of ground condition 

is shown in Figure 2.3b. The most important sub-group of variables structuring 

the carabid community was drainage (R2
a = 31.1%). The most dominant forest 

floor cover alone explained 22.9% of the variance in carabid assemblages, while 

the second and third most important covers explained 16.0% and 3.9%, 

respectively. Combining the three sub-groups of floor cover variables yielded an 

overall R2
a of 39.1%. Topography alone explained 10.3% of the variance in the 

structure of ground beetle assemblages. 
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Relationships among the three sub-groups of vegetation structure variables 

are illustrated in Figure 2.3c. The relative basal area of tree species explained the 

largest portion of the variance with an R2
a = 31.5%, followed by forest 

productivity and forest structure (R2
a = 18.1%). Finally, indices of tree species 

diversity were the least important group of variables (R2
a = 7.3%). 

In a partial RDA triplot calculated with space as covariate (Figure 2.4), 

axis 1 seems to mainly represent a gradient from higher well-drained sites with 

relief on the right side to lower, flatter and more poorly drained sites on the left 

side. Axis 2 suggests a gradient from deciduous sites with high leaf litter at the 

top of the figure to coniferous sites with high amounts of lichen toward the 

bottom.  

Most of the relationships found between carabid species and their habitats 

(Figure 2.4) are typical of what has been found in boreal forests. Pterostichus 

punctatissimus (Randall) (Pterpunct), for example, was generally found at sites 

dominated by black spruce that have low relief and are poorly to imperfectly 

drained. Agonum gratiosum (Mannerheim) (Agongrati) and Platynus 

mannerheimii (Dejean) (Platmanne) have very similar habitat requirements; they 

were found at sites dominated by larch having low relief and poor to somewhat 

poor drainage. Agonum retractum LeConte (Agonretra), Patrobus foveocollis 

(Eschscholtz) (Patrfoveo), Platynus decentis (Say) (Platdecen) and Trechus 

chalybeus Dejean (Trecchaly) have similar habitat requirements, and these species 

were commonly trapped at rapidly drained sites with balsam poplar and paper 

birch. Leaves were the dominant forest floor cover at these sites. It seems that 
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topography has little influence on the distributions of these four species. In 

contrast, Calathus ingratus Dejean (Calaingra) and Pterostichus adstrictus 

Eschscholtz (Pteradstr) were found at somewhat rapid to somewhat well-drained 

sites dominated by aspen, with steeper and higher slopes. Calathus advena 

(LeConte) (Calaadven) was collected mainly in steeper, higher and well-drained 

sites dominated by white spruce. Finally, Stereocerus haematopus (Dejean) 

(Sterhaema) was found in moderately well drained sites where balsam fir and 

lodgepole pine are present. Topography had little influence on the distribution of 

this species. 

In the partial RDA triplot, binary variables were re-projected by averaging 

the corresponding data points. They are projected as points on the plot, not 

arrows, because they do not represent gradients. Eight axes of the partial RDA 

were significant, but only the first two are shown in Figure 2.4, together 

accounting for 25.5% of the variance in R2
a (Borcard et al. 2011). Although 

statistically significant, axes 3 to 8 explain so little of the variance in carabid 

assemblages (2.8%, 1.7%, 1.1%, 0.9%, 0.5%, and 0.4%, respectively) that they 

cannot be interpreted ecologically. Also, in order to simplify interpretation of 

Figure 2.4, all species close to the centre of the triplot were removed. The 

interpretable data were about species sampled at a minimum of 18 sites and these 

contributed to at least 29% of the variance of all canonical axes. All other species 

were located consistently close to the centre of the triplot, making any ecological 

interpretation impossible. 
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DISCUSSION 

Ground beetle assemblages at our study site are structured by both environmental 

and spatial factors. However, while a combination of environmental (i.e. 

descriptors of ground condition and vegetation structure) and spatial variables 

explains half of the variability in species’ composition ([abcdefg] in Figure 2.3a), 

the spatial component is almost entirely shared with the environmental fractions 

[efg]. This demonstrates that the heterogeneity of resource gradients is the main 

driver of spatial autocorrelation for this local epigaeic assemblage.  

It is well understood that carabid species move away from unsuitable 

habitat (Niehues et al. 1996, Riecken and Raths 1996). However, the small but 

significant portion of the overall variance in the data uniquely explained by the 

spatial variables (1.4%; Figure 2.3a) suggests that neutral dispersal processes also 

affect to a lesser extent the structure of these communities (Cottenie 2005). This 

may happen when species are mostly excluded from a local community because 

of immigration from nearby populations constantly tests the suitability of 

surrounding habitats. 

Alternatively, the portion of the ground beetle data uniquely explained by 

the spatial variables may reflect response to an environmental gradients not 

sampled in this study (Peres-Neto and Legendre 2010). Nonetheless, because the 

fraction attributed solely to space (Figure 2.3a, fraction [c]) is so small compared 

to all other fractions we are confident that landscape variation in dispersal-limited 

epigaeic invertebrate communities is mostly controlled by environmental 

gradients and that neutral dispersal of species contributes little to structuring local 
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assemblages. Because epigaeic organisms appear to disperse mostly in relation to 

environmental gradients, even coarse filter biodiversity conservation strategies 

employed in forest land management should focus on observable environmental 

factors known to evoke biotic responses. 

Overall, the variance explained uniquely by the spatial variables (fractions 

[cefg]) is quite small compared to that explained by the other groups of variables. 

In itself, this is an interesting finding that may be partly attributed to the scale at 

which this study was carried out. As noted in the Introduction, most studies of 

ground beetle community patterns have been conducted at much finer scale. 

Given the broad scale of our study, we can confidently conclude the spatial 

distribution of carabids is not strongly autocorrelated on the landscape scale, but 

rather it is the heterogeneity of the habitat that was partly autocorrelated, and this 

in turn seems to be a main influence on ground beetles distribution. 

We discovered that carabid species composition was quite distinctive in 

the only two forest remnants isolated by harvesting. Note that edge effect was not 

enough to characterize carabid species composition at these two sites because 

some sites located in larger intact forest patches were as close to a disturbance as 

the two isolated sites but did not have a carabid species composition that differed 

markedly from sites located far from any disturbances. This result supports the 

practice of connecting forest patches retained in harvested areas with unharvested 

areas in efforts to conserve the local structure of epigaeic assemblages 

characteristic of mature forest.  
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Although a low density of roads and seismic lines, as well as a variable 

retention harvest experiment are included on the studied landscape, we did not 

identify significant broad effects of such disturbances on the spatial organisation 

of carabid assemblages. Thus, the much discussed conservation issue of 

maintaining forest connectivity on working boreal landscapes, may simply 

involve determining tolerable disturbance thresholds. For carabids and likely for 

other epigaeic arthropods with similar lifestyles using forest-floor habitats that 

remain after harvest, such thresholds appear to be relatively high, at least in the 

immediate aftermath of variable retention harvests. Studies of longer duration will 

be required to delimit harvesting thresholds that support full recovery of 

biodiversity on local sites over the longer term (Work et al. 2010). Our results, 

however, suggest that the overall level of anthropogenic disturbance on the 

EMEND landscape (27.4%) is not associated with detectable landscape effects on 

the epigaeic fauna in forest that remains undisturbed. 

Use of Moran's Eigenvector Maps for investigating organization of insect 

assemblages is a salient and innovative feature of this study. MEMs using a 

second order concave-up weighting function (f1) effectively represented ground 

beetle species of mature boreal forest, probably because these species have 

restricted dispersal abilities (Larochelle and Larivière 2003). This pattern suggests 

that spatial processes driving the distribution of such epigaeic invertebrates in 

forested landscapes can act on a very local scale and that their dispersal abilities 

are constrained to short distances, at least when considered at the landscape scale. 
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Thus, it is not surprising to find highly heterogeneous epigaeic faunas within 

relatively small areas (Niemelä et al. 1992, Niemelä and Spence 1994).  

The selected MEMs highlighted significant spatial patterns in carabid 

assemblages on the boreal landscape, allowing us to identify the spatial scale at 

which the carabid community was structured. The finest scales of autocorrelation 

detected in our study represent spatial patterns of roughly 2 km (MEMs 31, 40 

and 44; Appendix C). All other selected eigenfunctions describe patterns at 

broader scales. This is an indication that even when dealing with an epigaeic 

fauna strongly affected by local conditions, patterns at a scale of at least 2 km can 

clearly affect community structure (Niemelä and Spence 1994). Furthermore, the 

fact that we found fine (MEMs 31, 40 and 44; Appendix C), medium (MEMs 13, 

21 and 23; Appendix C) and broad (MEMs 3 and 9, Appendix C) scale spatial 

patterns emphasises the importance of considering a variety of scales in both 

ecological studies and forest management.  

Interestingly, anthropogenic disturbances other than forest harvest that 

completely segregates small forest patches in large harvested blocks seem to have 

little effect on the spatial distribution of carabids in mature forests. At the scale of 

this study, modest fragmentation through roads and seismic lines registered no 

detectable influence on the spatial structure of these epigaeic invertebrates. 

However, we note that the results of a PCA performed on the ground beetle 

assemblage, which isolated the two sites in forest retention plots, showed clear 

differences in species composition in patches with radius ≤ 40 m. 
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It is noteworthy that the factors found to be influential in our analyses do 

not operate independently but interact to determine composition and structure of 

the beetle assemblages. This is clearly shown by the large overlaps in explanatory 

power among the spatial variables, the descriptors of ground condition, and 

vegetation structure in Figure 2.3a (fraction [dfg], R2
a = 31.9%). Thus, 

understanding of singular cause and effect remains elusive and we favour the 

hypothesis that complex interactions are the norm for most ecological systems 

(Pickett et al. 2007). This hypothesis can, and should, be used as a null hypothesis 

to increase understanding of factors structuring ecological communities such as 

these boreal ground beetles. A next logical step is to decipher these complex 

interactions through careful experiments coupled to theoretical development. 

The importance of variables reflecting substrate characteristics and 

vegetation structure for understanding the structure of carabid assemblages is 

consistent with results of previous studies (Thiele 1977, Lövei and Sunderland 

1996). However, the close association found here between these two groups of 

explanatory variables (Figure 2.3a, fractions [dfg], Ra
2 = 31.9.%) illustrates well 

that their interactive influence on the ground beetle community cannot be 

effectively separated. This is not surprising. Trees contribute significantly to soil 

development and soil reciprocally influences growth of tree species (Perry 2008). 

It is thus expected to find concomitant variation in spatial patterns of soil and 

trees. The ecological link between ground beetles and vegetation or soil is not 

understood well enough to identify the mechanisms responsible for the patterns 

observed. However, the fact that these two groups of variables explained the 
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largest proportion of the variance in beetle assemblages should help focus a new 

generation of hypotheses about how such factors influence the structure of carabid 

and other epigaeic assemblages.  

Among the descriptors of ground condition, soil drainage and forest floor 

cover were the most important. Interestingly, topography itself showed little 

impact on carabid assemblages (Figure 2.3b fraction [a], Ra
2 = 1.6%). Although 

drainage explained 31.1% of the variance (Figure 2.3b fraction [bgnpuwAD]), 

only a small portion (3.4%, fraction [b]) was explained solely by this factor. 

Taken together, information about the three dominant floor covers was the best of 

the descriptors of ground condition for defining carabid assemblages. This is 

consistent with the suggestion that epigaeic beetles depend greatly on the edaphic 

factors prevailing in their environment (Lövei and Sunderland 1996). The first 

dominant floor cover explained not only the most variance (Figure 2.3b fraction 

[cghpA], Ra
2 = 22.9%), but its independent fraction explained more variation in 

the carabid data than any other variable ([c], Ra
2 = 7.3%). The 2nd dominant floor 

cover was less important than the 1st, and the 3rd dominant forest floor cover 

showed negligible ecological (and statistical) significance. Many levels of the 

same forest floor cover types cluster together in the partial RDA (Figure 2.4), 

suggesting that subdominant floor covers frequently occupy a large enough area 

to support beetle species associated with them. A test of this hypothesis awaits 

investigation at a finer scale than considered here. 

The variables defining vegetation structure were chosen to understand the 

potential influence of trees species composition and diversity, stand structure and 
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tree productivity on ground beetle assemblages. The composite variable that we 

have called ‘tree relative basal area’ was quite important in structuring the ground 

beetle assemblages (Figure 2.3c, fractions [bdg], R2
a = 31.5%). Although tree 

relative basal area explained more of the carabid data than other descriptors of 

vegetation structure, forest structure and productivity also contributed notably in 

defining the boreal forest beetle assemblage (Figure 2.3c, fractions [adg], R2
a = 

18.1%). In fact, the larger number of beetle species associated with high forest 

productivity and tree diversity (Shannon index) in Figure 2.4 suggests that highly 

productive forests rich in tree species support more diverse ground beetle 

assemblages. Because harvesting operations generally target highly productive 

sites, unharvested residuals relegated by default to poorer sites may be insufficient 

to meet conservation goals. Furthermore, our results together with those of 

Bergeron et al. (2012) suggest that reforestation operations that maximize the 

match between pre- and post-harvest species diversity of boreal trees will more 

effectively maintain ground beetle diversity. 

By considering descriptors of ground condition and vegetation structure 

together, patterns in carabid assemblages are more easily understood. The 

dynamic characteristics of boreal forests generate distinct habitats that have 

influenced evolution of particular invertebrate species. The sustainable forest 

management perspective being adopted across the Canadian boreal forest and 

elsewhere demands that this diversity of habitats be maintained in the wake of 

industrial activity on these landscapes if biodiversity is to be maintained. Our 

study underscores that habitat diversity is critical for conserving the full range of 
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ground beetle diversity that occupies the forest. Research can provide further 

guidance. Although the ground characteristics were somewhat stronger predictors 

of assemblage structure here, vegetation structure is likely easier to manage and 

other studies at EMEND have identified a sound rationale for doing so (Bergeron 

et al. 2011, 2012). 

Applying variation partitioning to study the relationship between 

environmental variables and space, as we did in Figure 2.3a, has recently been 

criticized by Gilbert and Bennett (2010) and Smith and Lundholm (2010). 

However, both papers agree that it can yield useful results if used carefully, and 

we hold that the present analysis supports optimism about this approach.  

Gilbert and Bennett (2010) explain that both sampling scale and analytical 

techniques should be carefully chosen to answer the ecological question at hand. 

They suggest, in particular, that the literature about spatial sampling should be 

consulted to explore the trade-offs amongst sampling designs for particular study 

organisms. Our study provides data highly germane for design of sampling 

regimes for carabids. Moreover, the landscape scale at which our study was 

carried out is unique with respect to carabid studies in general, and allowed us to 

evaluate the relationship between space and environment using variation 

partitioning. 

 Smith and Lundholm (2010) show that the common fraction of variance 

explained by environment and space is of utmost importance and should not be 

neglected because it represents patterns generated by both environmental factors 

and dispersal limitation. They recognize that at some scale all environmental 



  44 

patterns are spatially correlated. In our paper, we carefully chose the scale at 

which we sampled ground beetles to focus on landscape patterns. Literature in 

boreal forest ecology (e.g., Beckingham 1996, and Kimmins 2004) strongly 

suggests that the environmental variables we measured are spatially 

autocorrelated at the scale of our study. We controlled for space specifically to 

obtain the ordination result in Figure 2.4, so as to more clearly depict the 

independent effects of various environmental factors. Many of the relationships 

we found between the ground beetle distributions and the different environmental 

constraints are consistent with other studies (Lindroth 1961–1969, and Larochelle 

and Larivière 2003), validating to some extent the results of the variation 

partitioning used here. 

Patterns described for the carabid community studied here suggest that 

composition of local assemblages is strongly influenced at several scales on 

boreal landscapes by interactions among vegetation structure, soil drainage and 

forest floor cover. Conversely, assemblages were not markedly influenced by 

anthropogenic disturbances (harvesting, roads and seismic lines) on the same 

landscape. Because of its unusually broad scale, this study contributes a new 

much needed perspective that is highly relevant to improved understanding of 

arthropod communities on forest landscapes.  

The statistical methodology used to obtain our conclusions provides 

insights to improve understanding about why particular carabid species were 

found at particular sites, and were absent from others on the landscape. These 

results connect statistical theory, now the backbone of spatial ecology, to natural 
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history and provide confidence that our process-oriented investigations are not 

missing much that is important. Although uncommon in epigaeic invertebrate 

community research, the methods used here have a solid foundation in the 

statistical literature and have overdue potential to inject more rigorous spatial 

reasoning into work about distributions of particular organisms in nature. From an 

ecological perspective, our study suggests that underlying gradients in 

environmental factors on landscapes regenerating after harvest will determine the 

structure and spatial distribution of organisms like these epigaeic invertebrates. 

And thus, further attention to understanding these gradients, their spatial 

configuration and their impacts on the biota will contribute significantly to both 

the science of spatial ecology and to making better predictions useful for 

managing boreal landscapes in a manner that conserves biodiversity.  
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FIGURE 2.1 Map of the studied area. Full circle represent sampled sites, empty squares are outlier 
sites, and empty circles illustrate fictitious sites added to ensure continuity in the construction of 
spatial variables. The lines linking the sites represent the connexion diagram used to perform the 
spatially constrained clustering and to construct the spatial eigenfunctions. 
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FIGURE 2.2 Spatially constrained clustering constructed using Ward’s criterion constrained by the 
connexion diagram presented in Figure 2.1. The six groups solution yielded the lowest cross-
validation residual error (0.614). Each group is defined by a specific symbol. Anthropogenic 
disturbances occurring in the landscape are illustrated in light grey in the background of the 
figure. 
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FIGURE 2.3 (a) Venn diagrams presenting the results of the variation partitioning between 
descriptors of ground condition, vegetation structure and the spatial structure (Moran’s 
eigenvector maps and the sites spatial coordinates). (b) Venn diagram presenting the variation 
partitioning results between soil drainage, the three sets of forest floor cover variables (Floor 1, 2 
and 3 are the 1st, 2nd and 3rd most dominant floor cover), and topography. These variables are 
only representing descriptors of ground condition. (c) Venn diagram presenting the variation 
partitioning results between tree relative basal area by species and forest productivity (mean tree 
diameter at breast height [DBH]) and structure (coefficient of variation of tree DBH). The Pielou 
and Shannon indices were also calculated on the tree species. These variables are only 
representing vegetation structure. Fraction sizes for all Venn diagrams are approximations. 
Appendix B presents the conceptual representation the two types of Venn diagram used in the 
variation partitioning presented in this figure. All fractions that had an Ra

2 smaller than 1% were 
not plotted. 
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FIGURE 2.4 Partial canonical redundancy analysis (partial RDA) of the carabid species with spatial 
structure (Moran’s eigenvector maps and the sites spatial coordinates) as covariate. Results are 
presented in two triplots to make them easier to read. Top plot – Forest floor cover is represented 
by empty squares and topography by the black arrows. Floor covers followed by 1, 2 and 3 are 
the 1st, 2nd and 3rd most dominant, respectively. Bottom plot – Drainage is represented by full 
circles and vegetation structure variables are the black arrows. Drainage is defined following 
Appendix A. Forest productivity is the mean tree diameter at breast height (DBH) and forest 
structure is the coefficient of variation of the trees DBH. Carabid species are represented in both 
plots by segments. Ground beetles species close to the center of the triplot were removed. The 
remaining species were sampled at a minimum of 18 sites and contributed to at least 29% of the 
variance of all canonical axes. Agongrati = Agonum gratiosum (Mannerheim), Agonretra = 
Agonum retractum LeConte, Calaadven = Calathus advena (LeConte), Calaingra = Calathus 
ingratus Dejean, Patrfoveo = Patrobus foveocollis (Eschscholtz), Platdecen = Platynus decentis 
(Say), Platmann = Platynus mannerheimi Dejean, Pteradstr = Pterostichus adstrictus 
Eschscholtz, Pterpunct = Pterostichus punctatissimus (Randall), Sterhaema = Stereocerus 
haematopus (Dejean), Trecchaly = Trechus chalybeus Dejean. Each axis represents the variance 
in R2

a. The dimensions of the triplot are proportional to the explained variance of each axis. The 
partial RDA was drawn using a correlation triplot. 
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APPENDIX 2A 

TABLE 2A1. Soil drainage classification used in the study in comparison with Beckingham et al. 
(1996) classification.  

Beckingham et al. (1996) classification Drainage classification used in this study 

Very Rapidly Drained Extremely Rapidly Drained 
 Very Rapidly Drained 

Rapidly Drained Rapidly Drained 
 Somewhat Rapidly Drained 

Well Drained Well Drained 
 Somewhat Well Drained 

Moderately Well Drained Moderately Well Drained 
 Somewhat Moderately Well Drained 

Imperfectly Drained Imperfectly Drained 
 Somewhat Poorly Drained 

Poorly Drained Poorly Drained 
 Very Poorly Drained 

Very Poorly Drained Extremely Poorly Drained 
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APPENDIX 2B 

 

FIGURE 2B1 Conceptual Venn diagram presenting the variation partitioning results between three 
groups of explanatory variables. Each letter presents an independent fraction of explained 
variance.  
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FIGURE 2B2 Conceptual Venn diagram presenting the variation partitioning results between five 
groups of explanatory variables. The contribution of the fourth set of explanatory variables is 
illustrated by the two rectangles in bold. The contribution of fifth set of explanatory variables is 
illustrated by the three rectangles non-bold rectangles. Each letter presents an independent 
fraction of explained variance. 
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APPENDIX 2C 

TABLE 2C1 R2
a and significance of spatial models (MEM) constructed with the different values of 

α, f1 and f2 proposed in the main text. The ground beetle data were Hellinger 
transformed. The MEM models were computed on detrended data. The results 
presented for MEMs refer to a subset of eigenfunctions measuring positive 
autocorrelation only (all variables in the subset were associated to a positive 
Moran's I). 

Distance function α R2
a P Pcorr 

f1 1 4.8% < 0.001 0.002 
 2 5.8% < 0.001 0.002 

f2 1 4.3% 0.002 0.004 
 2 4.3% < 0.001 0.002 

Binary  4.3% < 0.001 0.002 
* A Šidák correction was applied to the P-values. 

** Bold highlights the weight used to compute the results reported in the main text. 

Note: The subset MEMs measuring negative autocorrelation are not presented because 
they yield a corrected P-value always equal to 1. 
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FIGURE C1 MEM eigenfunctions selected to model ground beetle distribution. The square bubble 
size is proportional to the value associated to it, whereas the color reflects the sign of the value 
associated to the bubble (black = positive, white = negative). 
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Chapter 3 – Consensus RDA across 

association coefficients for canonical 

ordination of community composition 

data 
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INTRODUCTION 

The species composition of an ecological community is heavily influenced 

by local variation in habitats. In theory, this intimate species-habitat relationship 

results because many characteristics of the environment influence organisms and 

these influences structure the niches of the species living together in the same 

community (Hutchinson 1957). Whittaker (1972) expanded this idea using the 

concept of environmental gradient. These gradients are essentially spatial and 

different species use distinct sections of the same gradient in a manner analogous 

to the dispersion of niches envisioned under Hutchinson’s multivariate niche 

concept. 

Numerous studies have shown that most communities using a complex 

configuration of local habitats are composed of a few common species, and a 

large proportion being less abundant, enve quite rare. In contrast, species-poor 

communities with no dominant species are generally affected by only a few 

habitat gradients (Loreau 2010, Chapter 2). Thus, we may suggest that the 

complexity of species-habitat relationships influences the species abundance 

structure of a community. 

Variation in species abundance and the effects of multi-habitat gradients 

on this variation have been studied extensively. A common approach for depicting 

variation in species abundance is the species abundance distribution (SAD), which 

ranks species in terms of the number of individuals observed for each species in 

samples from a community. SADs were first mathematically described in the 

pioneering papers of Fisher et al. (1943) and Preston (1948). McGill et al. (2007) 
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review the various types of SADs and explain the utilities of SADs in describing 

and comparing communities. 

At the community level, species-habitat relationships are often described 

using ordinations. Unconstrained ordinations such as principal component 

analysis (PCA, Pearson 1901) and correspondence analysis (Hirschfeld 1935) 

have been widely used to study associations between species and habitat factors 

(Legendre and Legendre 2012, Chapter 9). More recently, constrained ordinations 

such as canonical redundancy analysis (RDA, Rao 1964) and canonical 

correspondence analysis (CCA, ter Braak 1986) have been used to more directly 

evaluate how specific habitat components affect species assemblages. Two 

variants of RDA have also been proposed to ecologists in the last decade: 

distance-base RDA (db-RDA, Legendre and Anderson 1999) and transformation-

based RDA (tb-RDA, Legendre and Gallagher 2001). These two variants, in 

contrast with earlier approaches, make it possible to use a range of association 

coefficients to perform canonical ordinations, offering much more flexibility in 

analysing community data. An association coefficient assesses the resemblance in 

species composition among sampled sites by condensing the community data into 

a symmetric square matrix of association among sites (using either similarity S or 

distance D). For example, the Euclidean distance (Table 3.1) uses Pythagore’s 

formula between all pairs of sites, which result in a symmetric square matrix 

where the information from the species between two sites is condensed into one 

value.  
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Choosing an association coefficient well suited to study of a particular 

community and particular questions is a problem often faced by ecologists 

because of the overwhelming number of coefficients available in the literature. As 

an example, Legendre and Legendre (2012, Chapter 7) describe 26 association 

coefficients designed specifically for studying species assemblages. Although 

they propose theory-based guidelines and decision keys to help choose among 

coefficients (e.g., Legendre and Legendre 2012, Section 7.6), it often happens that 

more than one coefficient can be used to answer a particular ecological question. 

When such situations occur, Legendre and Gallagher (2001) suggest selecting the 

coefficient that yields the highest fraction of explained variance in canonical 

ordination; in other words, let the data determine which association coefficient to 

use. Under this procedure, the abundance structure of a community can influence 

the selection of association coefficients used to describe it. 

Although variation in SADs complicates coefficient selection, little is 

known about how variations in SADs affect the performance of association 

coefficients. In this study, we compare the performance of association coefficients 

most commonly used in canonical ordinations of community composition data 

and use simulations to evaluate the sensitivity of the coefficients to varying SADs. 

The comparisons are made for communities described either in terms of 

abundance or presence-absence data. The analysis meets two objectives. Firstly, 

by comparing performance of association coefficients within data type, we show 

that the choice of coefficients based on the proportion of explained variance may 

influence the resulting interpretation of the species-habitat relationship. To solve 
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this problem, we propose a new technique that computes a consensus among the 

canonical ordination results obtained from several association coefficients. 

Secondly, by comparing association coefficients between data types, we evaluate 

the extent to which information in abundance data is preserved after 

transformation to presence-absence data. We illustrate these effects using ground 

beetle (Carabidae) data from the boreal forest of northwestern Alberta, Canada. 

DEFINING A COMMUNITY WITH A SAD 

There are many ways of displaying a SAD. In this paper, we use a 

variation on Preston’s (1948) graphs to describe species abundance distributions 

where the abundance classes are arranged along the abscissa and increase 

according to a geometric progression, such that their lower bounds are 2k where k 

represents the successive integers from 0 and up. This approach was 

recommended by Gray et al. (2006) as the SAD construction that most accurately 

represents the species-abundance pattern of an ecological community. These 

graphs can be compared visually, making them effective tools to differentiate 

communities.  

The twenty-five graphs presented in Figure 3.1 present a range of possible 

SADs; most of which can be found in nature. All of them will later be employed 

to simulate site-by-species abundance matrices. For all SADs, the total number of 

species was fixed at 20 but the total abundance varied from 261 (the sum of the 

abundance classes’ lower bound for each species of the community depicted by 

Figure 3.1a) to 20460 (the sum of the abundance classes’ upper bound for each 

species of the community depicted in Figure 3.1j). Therefore, the SADs of Figure 
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3.1 represent a huge variation of species-abundance distribution as would 

typically be observed in real communities (see Dewdney [2000] for a comparison 

of 50 SADs constructed from many different species communities). SADs were 

selected to represent a broad range of species abundance patterns found in natural 

communities.  

Figure 3.1a-b present communities with the largest number of rare species. 

Note that communities with a larger number of rare species are often found in 

nature, however because the SADs in Figure 3.1 will later be used to define the 

abundance of species in simulated communities, the SADs in Figure 3.1a-b are 

the most extreme cases that would not generate empty sites in the site-by-species 

table. 

Ecologists sometimes remove species with low abundances because the 

many zeros introduced by including these rare species can be troublesome during 

data analysis, especially with methods based on Euclidean distances as explained 

by Legendre and Legendre (2012, Subsection 7.4.1). For example, in the classical 

Oribatid mite study of Borcard et al. (1992), 14 poorly represented species which, 

together, summed to 50 individuals, were removed from the data matrix before 

analysis. Depending on the group of organisms studied, removing rare species can 

yield SADs similar to what is found in Figure 3.1c-g, m-o, u-v.  

In a recent paper, Gaston (2011) emphasized the importance of also 

studying common species. In light of this work, we included a few SADs (Figure 

3.1h-j, w-y) that define communities composed mainly of common species. Other 

SADs have been found to characterize well certain groups of organisms. For 
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example, boreal carabid communities often present bimodal SADs (Niemelä 

1993) such as the ones in Figure 3.1k-l. Finally, the SADs presented in Figure 3p-

t are mainly theoretical and unlikely to be found in nature. We chose them 

because analysis of such extreme cases may lead to a better understanding of 

association coefficients. 

RDA AND ASSOCIATION COEFFICIENTS 

In this study, we used the RDA framework to compare commonly used 

association coefficients (Table 3.1), all of which can be used within db-RDA. 

Although most models were constructed through db-RDA, the chord, χ2, 

Hellinger, Ochiai, and distance between species profiles coefficients were applied 

in tb-RDA because it is computationally more efficient. These five association 

coefficients are mathematically equivalent in tb-RDA and db-RDA (Legendre and 

Legendre 2012). 

Euclidean distance is linearly related to the square root of the complement 

of the simple-matching coefficient (first entry of Table 3.1). This relationship was 

established by Gower (1966) when he described PCA based on binary descriptors. 

PCA based on binary data produces the same ordination as the principal 

coordinate analysis of a matrix of . The same 

relationship holds when binary descriptors are used in an RDA because it is the 

canonical extension of PCA. As a consequence, RDA based on binary data is 

equivalent to db-RDA of a matrix of  and no 

data transformation is required. 

p
1� simple matching coe�cient

p
1� simple matching coe�cient
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By using the RDA framework for all association coefficients, we were 

able to compare our simulation results directly. In particular, we used the χ2 

distance through the tb-RDA approach instead of calculating CCAs. In practice, 

tb-RDA with the χ2 distance coefficient and CCA yield very similar, although not 

identical, ordination results (Legendre and Gallagher 2001).  

An RDA is computed by regressing the community matrix Y, composed of 

p species, on a matrix of m explanatory variables X observed at the same n sites. 

This is carried out by a sum of squares minimization, leading to  

 (3.1) 

where t is the transpose of a matrix and –1 the inverse of a matrix. X must either 

be centred by columns, or contain a column of 1’s to estimate the regression 

intercepts. In Equation 3.1, B is the matrix of regression coefficients of all species 

in Y on the explanatory variables X. The residuals of the models are obtained 

through Equation 3.2: 

 (3.2) 

By performing a PCA on , a matrix of eigenvectors U defining the species 

scores and a diagonal matrix of eigenvalues Λ  are obtained. The site scores can 

then be computed using X (3.3.1) or Y (3.3.2). 

 (3.3.1) 

 (3.3.2) 

If required, the canonical coefficients can be calculated following Equation 3.4:  

bY

Z = XBU = bYU
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 (3.4) 

A more detailed description of the RDA algebra is available in Legendre and 

Legendre (2012, Section 11.1). 

These calculations are exactly the same for tb-RDA, with the exception 

that the community matrix Y is pre-transformed before calculating an RDA, using 

any of the transformations proposed by Legendre and Gallagher (2001). In db-

RDA, an association coefficient is applied to a community matrix, yielding a 

dissimilarity matrix. A principal coordinate analysis (PCoA, Gower 1966) is then 

calculated on this dissimilarity matrix and all the eigenvectors given by the PCoA 

are used as the Y matrix in an RDA (Legendre and Anderson 1999). In db-RDA, 

the sites scores (Equation 3.3) and canonical coefficients (Equation 3.4) are 

readily obtained. However, the species scores need to be calculated a posteriori. 

We used the procedure proposed in the vegan package (Oksanen et al. 2012) to 

calculate the species scores:  

 (3.5) 

All binary coefficients with the exception of the Raup-Crick coefficient 

were transformed into dissimilarities using  because Gower and 

Legendre (1986) have shown that this transformation makes them metric as well 

as Euclidean. This is important because a PCoA of these transformed coefficients 

does not produce negative eigenvalues that would have to be corrected for before 

performing the RDA. Thus, this transformation facilitates the calculations. In 

contrast, the probabilistic nature of the Raup-Crick coefficient makes it special 

p
1� coe�cient
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because two sites with exactly the same species will not necessarily result in a 

dissimilarity of 0; neither will two sites with completely different species 

automatically lead to a dissimilarity of 1. We decided to include it in our analyses 

because the probabilistic nature of the Raup-Crick coefficients may present a 

solution to the double-zero problem.  

The double-zero problem stems from the difficulty in relating two sites 

where a species was not found (Legendre and Legendre 2012, Subsection 7.2.2). 

Asymmetrical association coefficients are designed to ignore double zeros 

altogether; for binary association coefficients, this amounts to ignoring the value d 

(Table 3.2) in the calculation of association coefficients. Conversely, symmetrical 

coefficients treat double zeros as any other relation. For example, for presence-

absence community data, double zeros (or double absences) are considered as an 

indication of similarity in the same way as double presence (value a in Table 3.2). 

Symmetrical coefficients should be used only when the goal of a study is to 

evaluate total changes in a community such as the effect of pollution. Studies 

focussing on the impact of predation or disturbances may also find symmetrical 

coefficients interesting because the absence of a species at two sites is 

ecologically meaningful and should be considered (Anderson et al. 2011).  

In the present study, we performed simulations that reflected species 

variation in undisturbed communities and where predation was not considered. In 

that instance, the Euclidean and simple matching coefficients are ill adapted to 

these types of ecological problems because they are symmetrical (Legendre and 

Legendre 2012, Subsection 7.4.1). We decided to include them when comparing 
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coefficients within data types because both coefficients have been used, often 

wrongfully, to study ecological communities through the use of RDA on 

abundance or presence-absence data (ter Braak and Verdonsschot 1995).  

The Jaccard, Sørensen, and simple-matching coefficients were computed 

with the ade4 package (Dray and Dufour, 2007). All other calculations were 

performed with the vegan package (Oksanen et al. 2011) with the exception of the 

Raup-Crick coefficient, which was programmed independently using McCoy et 

al. (1986) permutation procedure. We used McCoy et al. (1986) permutation 

approach following Legendre and Legendre (2012, Subsection 7.3.5) who found 

that it was better at recognizing significant site associations compared to the 

original permutation procedure of Raup and Crick (1979). All analyses were 

carried out using the R statistical language (R Development Core Team 2012).  

SIMULATING COMMUNITIES WITH VARYING SPECIES ABUNDANCES 

In our simulations we constructed eight explanatory variables at 49 sites 

structured as a regular grid of 7×7 sites, using the RsimSSDCOMPAS package 

(Ouellette and Legendre 2011) within the R statistical language. These 

explanatory variables (matrix X) define linear gradients, waves, large patches, or 

random patterns. They are presented in Figure 3A1 of Appendix 3A with a 

detailed description of how they were constructed. The same eight descriptors 

were used for all simulations. 

In a simulated community, each of the 20 species had a different 

underlying structure constructed by combining pairs of the eight explanatory 

variables presented above. This structure remained constant for all simulated 
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communities. The reference structure yref of a species was constructed following 

Equation 3.6, where ω is a weight, xi and xj are two of the eight explanatory 

variables, and ε  is an error vector of standard normal deviates. 

 (3.6) 

The weight ω acts as a regression coefficient to influence the abundance of each 

species in the community, which is directly related to the size of the absolute 

value of ω (i.e. |ω |). A value of ω was predefined for each species. A large |ω | 

generates species with larger abundances Half of the species were constructed 

with positive weights and the other half with negative weights. 

Ten species were characterized by strong links (ω = 2 or –2) with the 

explanatory variables defining them. In ecological terms, a large absolute weight 

represents a species that has a strong relationship with the measured 

environmental variables. The other ten simulated species had lower weights 

representing weak relationships (if ω = 1 or –1) or an absence of relationship (if 

|ω | < 1), between a species and the descriptors defining it. There are no 

relationships for species with |ω | < 1 because the standard deviation of the error ε  

is equal to 1 in the simulation. 

As will be explained at the end of this section, additional sets of 

communities were simulated where the error ε  was smaller, giving importance to 

species with lower absolute weights. Note that Equation 3.6 without the error ε  

represents the true pattern defining a species. The reference structure of each 

species was determined following a predefined combination of ω, xi, and xj (Table 
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3A1). Also, the explanatory variables used to construct each species were 

carefully selected in such a way that each one was independently used to create 

five different species, making all explanatory variables equally important to 

define the simulated community. 

To construct a species, we transformed yref for it to range from 0 to 1 in 

order to use the information it encompasses as a probability distribution. Equation 

3.7.1 was used if ω was positive and Equation 3.7.2 if ω was negative. In these 

two Equations, |yref | is the absolute value of yref and yprob defines the probabilities 

of sampling a species at each of the 49 sites in the sampling area. 

 (3.7.1) 

 (3.7.2) 

Equation 3.7.1 defines the probability of sampling a species directly related to the 

patterns in yref whereas Equation 3.7.2 defines the probability of sampling a 

species inversely related to the patterns in yref. If the probability of sampling a 

species is high for a site in proportion to the other sites, it is more likely for at 

least one individual of that species to be found at the site.  

As explained in section Defining a community with a SAD, the abundance 

patterns of each simulated community followed one of the predefined SADs 

presented in Figure 3.1. Each species was assigned to a bin of the SAD in order 

for the abundance distribution of the community to be reproduced when summing 

the number of individuals for each species in the site-by-species table. To define 
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the exact abundance of a species in a simulated community, we randomly sampled 

the number of individuals of that species within its SAD bin boundary. To 

allocate these individuals to specific sites, we sampled, with replacement, the sites 

using the species probability distribution yprob. 

By repeating this procedure for the 20 species, we obtained a site-by-

species table representing one simulated community. We constructed 1000 

communities for each of the 25 SADs in Figure 3.1. Four other sets of 25 000 

communities were also constructed where the error terms ε  in Equation 3.6 were 

standard normal deviates with standard deviations of 0.001, 0.25, 0.5, and 2. In 

all, we simulated 125 000 communities describing the abundance of species at 

each site.  

To create site-by-species presence-absence tables, we transformed all 

abundances larger than 0 to 1s for all species abundance community data 

generated above.  

COMPARING ASSOCIATION COEFFICIENTS WITH EXPLAINED VARIANCE 

The amount of explained variance in canonical ordinations was estimated 

with the coefficient of determination (R2) according to the procedure proposed by 

Legendre and Gallagher (2001). Coefficients of determination are calculated by 

dividing the total variance in  (which, incidentally, is also the sum of the 

canonical eigenvalues) by the total variance in Y (which is also the sum of all 

eigenvalues, canonical and non-canonical).  

bY
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In the present study, only the canonical eigenvalues associated with 

significant canonical axes (P ≤ 0.05 after 999 random permutations) were 

considered in calculation of R2. Figure 3.2 compares the performance of RDAs for 

different association coefficients for each of the 25 SADs presented in Figure 3.1. 

In Figure 3.2, the RDAs were carried out on the simulated species abundances 

constructed with the smallest error (normal distribution with a standard deviation 

of 0.001). Results of simulations with larger error are presented in Figures 3B1-

3B4. All simulations yielded the same conclusions (see next paragraph), 

regardless of the error size. The only difference between the sets of simulations is 

that the larger the error when constructing species is associated to lower R2. The 

inverse relation between error term and variance explained, which is consistant 

for all association coefficients compared, suggests that the amount of error does 

not favour (or disfavour) any coefficient. Note that if all canonical eigenvalues are 

used to calculate the R2 instead of using only the significant eigenvalues, the 

conclusions are unchanged because the fractions of the explained variance 

corresponding to the non-significant canonical axes are too small to markedly 

affect the results. The variance explained by all the non-significant canonical axes 

considered together is above 0.1 only in extreme cases (above the 95%) and is 

usually around 0.06. The variance explained by a single non-significant canonical 

axis is usually less than 0.025. 

In the simulation results presented in Figure 3.2, the most striking feature 

is that the confidence intervals for all asymmetrical association coefficients 

overlap considerably. Moreover, detailed inspection of the results shows that 
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independent of the SAD structures, a community having a high R2 for one 

association coefficient generally also has high R2 for other coefficients.  

The R2 values for the Euclidean distance differ most from the other 

association coefficients, although its confidence intervals still overlap with the 

other coefficients (Figure 3.2, top panel). This is because the Euclidean distance is 

a symmetrical association coefficient. It is for the same reason that the confidence 

intervals are much wider for the Euclidean distance than for any other 

coefficients. At sites with the same environmental conditions, one should expect 

to find the same species, but species abundances usually vary. Although these 

variations in abundance may have important implications when species are rare, 

they should have only negligible effect on the results when species are common. 

In that instance, the Euclidean distance considers common and rare species 

similarly. The results associated with the Euclidean distance suggest that 

symmetrical association coefficients should only be used to address ecological 

questions where double-zeros are ecologically meaningful as suggested by 

Anderson et al. (2011).  

Ecologists should also be careful in using the distance between species 

profiles, especially in the presence of many common species, because it seems to 

loose explanatory power in these circumstances (Figure 3.1h-j, w-y). This is 

probably because variations in the most abundant species contribute 

predominantly in reducing the coefficient value when it is used (Legendre and 

Legendre 2012, Subsection 7.4.1). For this reason, the distance between species 
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profiles suffers from the same problem as Euclidean distance in the presence of 

common species, but to a lesser extent.  

When comparing association coefficients with simulated presence-absence 

data, the R2 are very similar between association coefficients across the different 

SADs. Results for the Raup-Crick coefficient were the only exception, although 

its confidence intervals still overlap importantly with the others. It yields a 

somewhat lower R2 when there are many common species (Figures 3B5-3B9). 

Because a high R2 for the Raup-Crick coefficient is generally associated with a 

high R2 of the other coefficients, it may be that the Raup-Crick coefficient does 

not as effectively capture patterns as the other coefficients when many common 

species are sampled (Figure 3.1 h-j, y). These results are consistent with Legendre 

and Legendre (2012, Subsection 7.3.5) who showed that the statistical power of 

the Raup-Crick coefficient to detect significant association between pairs of sites 

is low even when McCoy’s et al. (1986) permutation procedure is used.  

We were surprised that the simple-matching coefficient produced results 

equivalent to other coefficients. We expected it to be burdened by the same 

problems as the Euclidean distance because the simple-matching coefficient is the 

presence-absence equivalent of the Euclidean distance, making it a symmetrical 

coefficient that considers double-zeros. However, it seems that when abundances 

are considered, the importance of double-zeros increases. If a single species is 

sampled in large abundances at two sites, the Euclidean distance between these 

sites for that particular species will not be 0 even though it is clear that these sites 

are quite similar. For this reason, the Euclidean distance down-weights the 
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importance of abundant species, a problem that does not exist for the simple-

matching coefficient because the species will be recorded as present (or 1) for 

both sites, yielding a distance of exactly 0.  

Another aspect of our simulations is the increase in explained variance 

with the number of common species (progression of R2 from SAD a to j in Figure 

3.1). This trend is consistent for all coefficients compared (with the exception of 

the Euclidean, species profile, and Raup-Crick coefficients, discussed above), in 

abundance and presence-absence data alike, although it is weaker for presence-

absence data (Figures 3B5-3B9). Similar conclusions were found with 

communities simulated with larger error (Figures 3B1-3B9).  

A NEW WAY TO PERFORM CANONICAL ORDINATIONS 

The previous simulations have shown that within data types, association 

coefficients yield similar value of R2 independently for each SAD compared 

(Figure 3.2 and Figures 3B1-3B9). This is shown by the substantial overlap 

between confidence intervals of all association coefficients calculated for any 

particular SAD. Each association coefficient has particularities making it more 

appropriate for specific ecological situations or research questions, and less so for 

others. With the wealth of association coefficients available in the ecological 

literature, it is common for more than one coefficient to be appropriate for a 

particular ecological study. In that aspect, the question “Which association 

coefficient should be used?” remains unanswered.  

Here, we propose a three-step procedure to handle this problem. Even 

though most of the information highlighted by the different association 
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coefficients is often quite similar, the mathematical properties of each coefficient 

emphasize certain characteristic in the data that other coefficients do not and vice 

versa. In that instance, the first step is to compare association coefficients and 

evaluate how different the information they explain diverge. This is carried out by 

comparing all aspects of the canonical ordination models (i.e., the sites, the 

species, and the canonical coefficients), not only the variance explained. 

Secondly, a selection of association coefficients may be carried out if necessary. 

The RDA models constructed using association coefficients that differ markedly 

from the others should be considered separately or their usage should be 

revaluated. The differences between RDA models can be in the ordination of the 

sites, the site-species relationships and/or, the relationships between canonical 

coefficients and the sites and the species. In a nutshell, the differences between 

RDA models can be found in all aspect of the models. Comparison and selection 

of association coefficients is recommended because if an association coefficient is 

markedly different from the others, its inclusion in the following step may blur 

ecological relationships that could be apparent if this coefficient was removed. 

Thirdly, only the information common to RDA models that differ strickly by their 

association coefficients should be considered. It is important to focus only on the 

information shared by the different RDA models to ensure that no misguided 

ecological interpretations are made. Because it is difficult to extract common 

information by an examination of independent canonical ordination triplots, we 

propose a new method that calculates a consensus among canonical ordinations 

that differ only by the association coefficients used to construct them. The 

consensus focuses on the patterns found by all RDA models, leaving out the 
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information emphasized by only one or a few association coefficients. We call 

this new approach “consensus RDA”. A detailed explanation of how these three 

steps are carried out is presented bellow. 

Comparison of RDA models.—To compare RDA models where only the 

association coefficients differ, the first step is to isolate the significant axes (P-

value ≤ 0.05) found in each Z matrix (Equation 3.3.1). Model comparisons rely on 

the Z matrices, which contain the ordination coordinates of the sites; the variance 

of each canonical axis in Z is equal to its associated eigenvalue when the 

distances among sites are preserved in the ordination results (RDA scaling 1). In 

the RDA framework, canonical eigenvalues are measures of variance explained 

by canonical axes. The significant canonical axes of the Z matrix obtained with 

each association coefficient are correlated to those obtained with the other 

association coefficients using RV coefficients (Escoufier 1973, Robert and 

Escoufier 1976). The RV coefficient is a multivariate generalization of the 

Pearson correlation that correlates two matrices with corresponding rows (sites). It 

produces values that range between 0 (no correlation) and 1 (perfect correlation). 

The RV coefficients for all pairs of association coefficients are recorded in a 

matrix of pairwise RV coefficients. Using this matrix of pairwise RV coefficients, 

we propose to draw a minimum spanning tree (MST, Legendre and Legendre 

2012, Section 8.2) to compare association coefficients. This requires the matrix of 

RV coefficients to be transformed into a dissimilarity matrix. We use (1 – RV) to 

perform the transformation because it ensures that the correlation information 

brought by the RV coefficient is conserved. This dissimilarity ranges from 0 to 1. 
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Although the procedure proposed compares Z matrices (sites scores), matrices U 

(species scores) and C matrices (canonical coefficients) should also be compared 

to ensure that all aspects of the models are considered.  

Selection of RDA models.—After an examination of the MST a selection 

of association coefficient can then be made. We leave it at the discretion of the 

user to decide how association coefficients should be selected. For example, the 

association coefficients linked by the longest branches in the MST can be 

removed. If the longest branch in the MST links two groups of association 

coefficients, it may be interesting to calculate two consensus RDAs, one for each 

group of coefficients.  

Consensus RDA.—To calculate a consensus RDA, the significant axes of 

the Z matrices selected to compare RDA models are used again (Figure 3.3a). Of 

course, only the Z matrices from coefficients that have been selected in the 

previous step should be considered. In consensus RDA, all significant axes are 

grouped in a large matrix (Figure 3.3b). A PCA is then performed on this large 

matrix to obtain Z*, the site-by-axes consensus RDA site scores (Figure 3.3c). 

This PCA also yields eigenvalues, which express the amount of variance 

represented by each Z* axis, and more generally by each axis of the consensus 

RDA (Figure 3.3b). These eigenvalues can be used to measure the strength of the 

consensus.  

Using Z* as a reference, it becomes possible to compute a rotation matrix 

Hk for the Zk matrix of significant axes associated to the kth association coefficient 

(Figure 3.3c). This rotation matrix can be obtained through an orthogonal 
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Procrustes analysis (Peres-Neto and Jackson 2001; Gower and Dijksterhuis 2004, 

Chapter 4; Legendre and Legendre 2012, Section 10.5). In essence, the rotation 

matrix Hk pivots an RDA result calculated with one association coefficient to best 

fit the consensus RDA by a sum-of-squares minimization. 

The rotation matrix Hk defines the orthogonal rotation needed to maximize 

correlation between Z* and the Zk matrix of significant axes. The rotation matrix 

Hk is obtained following Equation 3.8, where Vk is a matrix of eigenvectors and 

Dk a diagonal matrix of eigenvalues; both are extracted from . In 

this calculation, Z* and Zk are scaled by dividing each matrix by the square root of 

its sum-of-squares. When applied to any matrix whose values have been centred 

by columns, this scaling gives it a sum-of-squares of 1 (Gower and Dijksterhuis 

2004), allowing Hk to be optimal. 

 (3.8) 

Equation 3.8 applies only when Z* has the same number of axes as Zk, a situation 

that does not always happen.  

When the dimensions of Z* and Zk differ, a different procedure needs to be 

used to construct Hk. Firstly, columns of zeros need to be added to Zk to ensure 

that it has the same dimensions as Z*. With the zero-inflated Zk, Vk and Dk can be 

extracted from  as explained in the previous paragraph. The 

columns of zeros in Zk are necessary for the matrix multiplication to be carried 

out. Note that only the eigenvectors and eigenvalues that correspond to the rank of 

Zk are meaningful. The zero-inflated Zk, and the computed eigenvectors and 

(Z⇤tZk)
t(Z⇤tZk)

(Z⇤tZk)
t(Z⇤tZk)
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eigenvalues are used to calculate . Columns of random values 

orthogonal to each other and to all eigenvectors in Vk are then constructed to 

inflate the rank of the non-zero inflated Zk for it to be equal to the rank of Z*. The 

resulting matrix is then multiplied with  (using all the eigenvectors it 

includes) to obtain Hk.  

With the rotation matrices, it becomes possible to compute the consensus 

of species scores and canonical coefficients (Equations 3.9 and 3.10, Figure 3.3d). 

Because the position of the site scores in an RDA is directly related to the species 

scores and the canonical coefficients, if site scores are rotated, the species scores 

and the canonical coefficients also need to be rotated for the information 

presented by an RDA to be consistent before and after rotation. The key to 

making this rotation is matrix Hk. To construct the consensus RDA species scores 

U*, the matrices Uk are rotated with their respective Hk and averaged (Equation 

3.9). The same procedure is carried out to obtain the consensus RDA canonical 

coefficients (Equation 3.10) and, if required, for the Fk matrices (Equation 3.11) 

(Figure 3.3d).  

 (3.9) 

 (3.10) 

 (3.11) 

(Z⇤tZk)VkD
�1/2
k
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k
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In equation 3.9 to 3.11, K is the number of association coefficients whose 

consensus is sought. Note that the Uk, Ck and Fk matrices are all scaled by 

dividing each matrix by the square-root of their respective sum of squares to 

ensure that the consensus obtained by averaging is not influenced by the scale 

imposed by individual association coefficients.  

When performing an RDA, the results can be presented either in a distance 

(scaling 1) or a correlation (scaling 2) triplot. Scaling can also be used in 

consensus RDA. All the calculations presented above are carried out using the 

scaling 1 matrices Z because, as explained in the subsection Comparison of RDA 

models, the consensus method relies on a property of Z that is only present in 

scaling 1. To obtain a consensus result in scaling 2, the consensus site scores 

(matrices Z* or F*) need to be rescaled following  (or ). A 

similar procedure is used to apply a scaling 2 on species scores consensus             

( ).  

An interesting aspect of this new method is that as long as the association 

coefficients are the only aspect that differs between the different RDAs, a 

consensus RDA can be computed. This also includes partial RDAs.  

The explanations to perform a consensus RDA were given so that any 

number of axes can be used for any of the RDAs that are considered in the 

calculation of the consensus. However, it is not clear if all or only the significant 

canonical axes should be used in a consensus RDA to obtain the model that best 

explains the community data. To evaluate which approach should be used, the 

simulated site-by-species tables presented in section Simulating communities with 

Z⇤⇤⇤�1/2 F⇤⇤⇤�1/2

U⇤⇤⇤�1/2
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varying species abundances were used. Each site-by-species table was correlated 

with Z* (consensus site scores), which was calculated using all canonical axes. 

The RV coefficient was used for the correlation. We then compared these RV 

coefficients with RV coefficients correlating the site-by-species tables with the 

consensus site scores calculated using only the significant axes. The comparisons 

were carried out using both abundance and presence-absence simulated data. All 

association coefficients discussed in this paper were used in the construction of 

the consensus site scores.  

The results in Figure 3.4 were obtained using abundance data where the 

error was the largest (ε  in Equation 3.6 followed a Normal distribution with a 

mean = 0 and a standard deviation = 2), which yielded the largest variations in the 

comparison made. In Figure 3.4 (note the fine ordinate scale), the differences 

between the RV coefficients calculated using all canonical axes and the RV 

coefficients computed using only significant axes ranges almost always between 

0.05 and -0.05. Although, for certain extreme cases, slightly more information can 

be obtained using all canonical axes, in the majority of situations very little 

information is gained (or sometimes lost) from using all canonical axes instead of 

only the significant ones. Results from the simulations where communities were 

generated with larger error terms are presented in Appendix 3C. In these 

simulations, presence-absence and abundance data were considered. For 

abundance data the results yield the same conclusions. For presence-absence data, 

it seems slightly better to use all canonical axes, however the information gain is 

minimal. In doubtful cases, the best solution is found by comparing a consensus 
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RDA obtained using all canonical axes with a consensus RDA constructed with 

only the significant axes and choosing the solution that yields the largest RV 

coefficient. This approach ensures that the result of the consensus RDA always 

represents the largest amount of information from the community data. 

A comparison of association coefficients and a consensus RDA is 

performed in the Ecological illustration section, for abundance and presence-

absence data.  

SHOULD WE USE PRESENCE-ABSENCE DATA? 

Modelling presence-absence data is more challenging than abundance data 

because information on species abundance is missing. The results of our 

simulations confirm this statement; the R2 are consistently higher for abundance 

data (Figure 3.2, 3B1-3B4) than for presence-absence data (Figures 3B5-3B9). 

This result is not surprising because one would expect to obtain better species-

environment linear models when using more informative data. This finding 

remains the same irrespective of the level of error in the data (Figures 3.2, 3B1-

3B9). However, comparison between presence-absence and abundance data using 

R2 does not reflect how well the true species structure is modelled. To compare 

the ordination results of abundance and presence-absence data, we first need to 

measure how much information from the true species (Equation 3.6 without the 

error term) structure is extracted by the canonical analyses. As explained at the 

end of section RDA and association coefficients, the Euclidean and simple 

matching coefficients are symmetrical; they are designed to answer ecological 

questions where double-zeros are ecologically meaningful. In our simulations, 
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double-zeros do not necessarily reflect a strong similarity between sites. For this 

reason, symmetrical association coefficients were not included in the comparison 

between abundance and presence-absence data. For both data types, we calculated 

RV coefficients between the true species structure (Equation 3.6 without the error 

term) and the significant canonical axes.  

We regrouped all RV coefficient results within data type and compared the 

grouped abundance to the grouped presence-absence results (Figure 3.5). 

According to the results obtained by comparing association coefficients within 

data type (Figure 3.2 and Figures 3B1-3B9), it is valid to group association 

coefficients used on the same data type because no association coefficient 

dominates over the others for any SAD. Figure 3.5 illustrates the grouped results 

for simulations where the error is the smallest (standard deviation = 0.001). What 

is striking about these results is that when there are many common species 

(Figure 3.1, i-j, y), the amount of information extracted by canonical ordinations 

is much less for presence-absence than for abundance data. These conclusions can 

be extended to situations where there are at least as many common as there are 

rare species (Figure 3.5, g, h, l, t) because the overlap between confidence 

intervals is small in these situations. This suggests that for communities with at 

least as many common as rare species, the information lost by measuring 

occurrences should not be interpreted the same way in canonical ordinations as 

results obtained from canonical ordinations on abundance data. Similar results 

were obtained for data simulated with larger errors (Figures 3D1-3D4). We will 
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show in the Ecological illustration section how these findings apply to real 

ecological data.  

ECOLOGICAL ILLUSTRATION: CARABIDAE OF NORTHWESTERN ALBERTA 

To show how the previous findings may be applied in real ecological 

situations, we extend the analysis to a data set about ground beetles (Carabidae) 

sampled at 192 sites in a boreal mixedwood forest of northwestern Alberta, 

Canada (see Bergeron et al. 2011, Chapter 2 of this thesis). In this illustration, we 

aim at finding how trees influence the ground beetle community in the boreal 

forest. This question has already been approached with the same data by Bergeron 

et al. (2011). The only difference here is that we used all asymmetrical 

resemblance measures discussed in this paper and performed our analyses on 

abundance and presence-absence data. Bergeron et al. (2011) performed all their 

analyses using the percentage difference distance calculated on abundance data. 

The sites, which covered an area of 70 km2, were located in the Ecosystem 

Management Emulating Natural Disturbances (EMEND) experimental area. The 

community data are composed of 37 ground beetle species sampled with pitfall 

traps (Spence and Niemelä 1994) throughout the summer of 2003. Beetle 

abundances were divided by the number of days each trap was active to remove 

the effect of trap disturbance and of non-demonic intrusions (Hurlbert 1984). 

Presence-absence data for each site were obtained by transforming all abundances 

larger than 0 to 1. 

As explanatory variables, the relative basal areas of the 25 trees closest to 

the centre of each site were used. Eight tree species were present in the 
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experimental area and the relative basal area of each species was used as an 

explanatory variable. Because the relative basal area of all trees sums to 1 for each 

site, only seven tree species may be drawn in the ordination triplot. Further 

analysis of this data set may be found in Chapter 2 of this thesis and in Bergeron 

et al. (2011, 2012). The Hellinger distance was used in Chapter 2 of this thesis 

and by Bergeron et al. (2012), and the percentage difference distance was 

employed by Bergeron et al. (2011). Note that Bergeron et al. (2012) used non-

metric multidimentional scaling (Legendre and Legendre 2011, Section 9.4) to 

study carabids, unlike the Chapter 2 of this thesis and Bergeron et al. (2012) who 

used RDAs. 

In this ecological illustration, we compare canonical ordinations calculated 

on abundance and presence-absence data, considering results from all association 

coefficients used in our simulations, with the exception of the symmetrical 

coefficients. We did not use symmetrical coefficients because they consider 

double-zeros (the absence of a species at two sites) as informative, which may 

lead to wrongful interpretations. The carabid dataset used in this illustration was 

sampled to study how habitat variation influenced the ground beetle community. 

In Chapter 2 of this thesis it is also shown that this community is mostly 

unaffected by anthropogenic disturbances. In this context, Anderson et al. (2011) 

explained that double-zeros are not necessarily ecologically meaningful, making 

the use symmetrical association coefficients inappropriate for studying this 

particular carabid community.  
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A comparison of the RDA models constructed with different association 

coefficients is presented using MSTs in Figure 3.6b for abundance data and in 

Figure 3.6e for presence-absence data. Each MST was constructed from a 

dissimilarity matrix of RV coefficients correlating all pairs of RDA models 

obtained from the different association coefficients following the procedure 

presented in the section A new way to perform canonical ordinations. As a 

reference, we included in Table 3.3 the amount of variance explained (R2) by the 

full RDA models with the different association coefficients. We used the full 

RDA models because the final consensus RDA results were more informative 

than when only the significant axes were used. This was true for abundance and 

presence-absence data. 

We found that for both abundance and presence-absence data, the RDA 

model construct using the χ2 distance is most different from the others (Figure 

3.6b, e). This is probably because unlike the other association coefficients used, 

the χ2 distance gives higher weights to species represented by only a few 

individuals (Legendre and Legendre 2012, Subsection 7.4.1). Because we did not 

want to give undue importance to rare species, we did not further consider the χ2 

distance in analysis of this carabid community. 

Using the remaining association coefficients, we constructed a consensus 

RDA. We conserved as many species as we could in the consensus RDA triplots 

without loosing overall interpretability. The species not presented on the 

ordinations were consistently near the centre of the triplots, which made it 

impossible to interpret the ecological relationships of these species with respect to 
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the tree basal areas. The first two axes of the consensus RDA represent 88.4% of 

the variance for abundance data and 85.2% for presence-absence data, and thus 

represent well the information present in the different RDA models. All other 

consensus axes for abundance as well as presence-absence data described less 

than 7% of the variance, making the information they present too small to justify 

use of additional axes.  

Although the amount of information explained by the first two axes of the 

consensus RDAs based on abundance (Figure 3.6c) and presence-absence data 

(Figure 3.6f) is similar, the underlying information is different. For example, the 

data about Agonum gratiosum (Agongrat), Agonum sordens (Agonsord), Carabus 

chamissonis (Caracham), Nebria gyllenhali (Nebrgyll), Platynus mannerheimii 

(Platmann), and Pterostichus brevicornis (Pterbrev), and Trechus apicalis 

(Trecapic) are impossible to interpret in the consensus RDA performed using 

species abundance because they were too close to the ordination centre. However, 

in the presence-absence ordination, information about these species is 

interpretable. Also, relationships between beetle and tree species were not always 

consistent between the two ordinations. For example, Calathus ingratus 

(Calaingr) and Pterostichus adstrictus (Pteradst) are more closely related to 

Populus tremuloides (Pt) in the abundance ordination (Figure 6c) than they are in 

the presence-absence ordination (Figure 6f).  

The SAD (Figure 3.6a) of this beetle community depicts many rare and 

many common species, which is typical for carabid communities (Niemelä 1993). 

The species presence distribution that describes species occurrence for these data 
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highlights more sharply the two groups of species in the carabid data (Figure 

3.6c). Our simulations suggest that a community composed of many rare and 

many abundance species (Figure 3.1, l and t) does not preserve well community 

patterns after having been transformed into (Figure 3.5, l and t). Although this 

may suggest that presence-absence ordinations are not useful on their own, 

differences between the abundance and the presence-absence ordinations may 

have an ecological foundation. It may be that differences between ordinations 

based on abundance and presence-absence data reflect the spatial aggregation of 

carabid species. It is also possible that the consensus RDA calculated on 

abundance data brings complementary information to the consensus RDA result 

obtained from presence-absence data. To know if the differences between the two 

consensus RDA is directed by ecological processes, a detailed study of this 

carabid community needs to be carried out contrasting presence-absence and 

abundance data at multiple scale using other variables characterizing the habitat of 

Carabidae in addition to tree basal area. 

It is not the goal of this paper to present a detailed ecological study of 

northwestern Alberta boreal carabids. However, by comparing the consensus 

RDA calculated on the carabid abundance data (Figure 3.6c) with the ordination 

results from Bergeron et al. (2012, Figure 4) who also studied the relationship 

between carabids and tree relative basal area with the same data using RDA, 

differences can be found that are solely attributed to the association coefficient 

used. For example, in our result, Stereocerus haematopus (Sterhaem) is more 

closely related to Pinus contorta (Pc) than it is in the analyses of Bergeron et al. 
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(2012). To prevent a bias interpretation that stems from the use of a specific 

association coefficient, as was the case for S. haematopus, consensus RDA is a 

better option. 

DISCUSSION 

A surprising result of this study is that the SAD of a community is 

unimportant for choosing an association coefficient (Figure 2 and 5, Figure 3B1-

3B9 and 3D1-3D4) when used with canonical ordinations. This is what prompted 

us to developed consensus RDA. These results may also bring insight in the 

comparison of SADs, an important line of research (McGill et al. 2007). Using the 

result in Figure 3.5 (and Figure 3D1-3D4) obtained from abundance data, we can 

compare SADs because the communities simulated with different SADs were 

correlated with the same true underlying structure of the data (Equation 3.6 

without the error term). The true underlying structure of the data serves as a 

reference to know how well a SAD defines the raw community data because it is 

the basic information from which all species are constructed. From the discussion 

in McGill et al. (2007) on SAD comparison, it can be expected that SADs 

defining abundance patterns as different as the ones in Figure 3.1b, l, m, q, and u 

would correlate differently with the true underlying structure of the data. 

However, in Figure 3.5 they all correlate equally well with the true underlying 

structure of the simulated communities. Moreover, the fairly broad range of the 

95% confidence intervals for any one of the 25 SADs indicates that the variations 

in the raw multivariate community data can be surprisingly important even if 

species have the same abundance structure. Such results may suggest that the 
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SAD of a community may present only a small fraction of the information that 

characterizes a community matrix. However, further research still need to be 

carried out to confirm the findings we made that the information lost when 

constructing SADs may make it difficult to develop a valuable approach to 

compare communities using SADs. 

Our study shows that the choice of association coefficients in canonical 

ordinations should primarily be based on ecological knowledge available for the 

community under study. The ecological questions and the data types should guide 

the researchers in choosing one or a group of association coefficients. Legendre 

and Legendre (2012, Table 7.4) offer a decision key designed to help ecologists 

select association coefficients for community composition data based on data 

types (presence-absence or abundance) and type of information to be extracted. If 

a canonical analysis is performed using only one association coefficient when 

more than one can potentially be used, Legendre and Gallagher (2001) would 

select the association coefficient that explains the largest amount of variance. 

However, the properties of the selected association coefficient may influence the 

interpretation. 

If more than one association coefficient is chosen, it is important to 

compare them using an MST based on dissimilarities of pairwise RV coefficients 

to determine if any of them presents results markedly different from the others. 

This comparison can be seen as a selection procedure for association coefficients. 

It evaluates the similarities between different RDA models where association 

coefficients are the only element differentiating the models and finds which 
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model(s) differs notably from the others. This comparison can be used to decide if 

any association coefficients should be discarded. Comparing RDA models 

constructed using different association coefficients through an MST is a first step 

to better understand an ecological community by studying the ordination results 

produced by more than one association coefficient. 

When more than one association coefficient presents similar information, a 

consensus RDA allows to extract the most information out of the data because it 

focuses on the common information brought out by different association 

coefficients. Using only one coefficient may put too much emphasis on a 

particular aspect of the data because each association coefficient was designed to 

highlight different particularities of a community matrix. This may lead to a 

suboptimal ecological interpretation. Consensus RDA prevents this problem from 

occurring by extracting only the common information generated by a group of 

association coefficients. In that instance, consensus RDA indirectly solves the 

technical problem of choosing an association coefficient by using all the ones that 

can be suitable to analyse community data. Also, because it diminishes the 

importance of the information highlighted by one or a few association coefficients 

it gives a result less influenced by the mathematical properties of an association 

coefficient. For this reason, consensus RDA gives a more accurate representation 

of a community and will help researchers better understand the factors structuring 

the species in the community they study.  

Conceptually, the new canonical ordination procedure proposed in this 

paper has similarities with model averaging (Anderson et al. 2008, Chapter 5; 
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Burnham and Anderson 2004). In model averaging, the best models are given 

more weights than the poor ones. This can be related to the selection procedure 

we propose where association coefficients are considered independently, 

discarded, or used to construct a consensus model. However, the association 

coefficients used in consensus RDA are all weighted equally. If a model is given 

more weight than another, it would mean that a particular association coefficient 

should be favoured. In that instance, why use a “weighted” consensus of RDA 

models if one association coefficient ought to be favoured? It would be simpler 

and better to build an RDA model using the association coefficient that is best 

adapted to answer the ecological problem at hand.  

A problem that we have not approached but warrants further investigation 

is selection of explanatory variables in RDA. Methods such as forward selection 

(e.g., Blanchet et al. 2008) assume that an RDA is performed using only one 

association coefficient. Consensus RDA requires all explanatory variables to be 

the same and that only the association coefficient differs between RDAs. If an 

automatic variable selection procedure is used independently for each RDA, it is 

likely that different sets of variables will be selected. In this situation, we propose 

that a consensus analysis should employ the union of all explanatory variables 

selected for the various association coefficients. That is, if for an association 

coefficient, explanatory variables A and B are selected and with another 

association coefficient it is explanatory variables A and C that are chosen, the 

union of the explanatory variables for the consensus RDA would be variables A, 

B, and C. Using this approach, one can at least eliminate the explanatory variables 
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that are totally useless. This idea of using the union of the selected variables is 

inspired by the selection method of Peres-Neto and Legendre (2010) for Moran’s 

eigenvector maps eigenfunctions.  

Species abundance data are more informative than presence-absence data 

in understanding community variations through RDA. However, for certain 

organisms sampling abundances is not reliable. For example, in palynology 

presence-absence data are sometimes favoured because abundance data are 

subject to large bias (Davis 2000). Similarly, in studies of fish biodiversity, 

variation in size of fish species living in the same area demands that different 

instruments be used to catch them, and thus the abundance data are not 

comparable. The only way to consider all species of fish together in a consistent 

analysis is by using presence-absence data. This is likely to be true for any 

communities where variations in size between species require that different 

trapping methods be used to catch enough species to have a representative 

fraction of the studied species community. 

When working with presence-absence data, we suggest that one should 

first draw a species presence distribution, as we did in Figure 3.6c. The ratio 

between common and rare species should serve as a general guideline when 

devising the ecological conclusions. Although it is possible that canonical 

ordinations performed on presence-absence data present biased results, it is more 

likely that such ordinations can be complementary to those performed on 

abundance data. Certain environmental factors may be necessary for a species to 

occur in an area (e.g., certain plant species are found only in the presence of 



  100 

certain geological formations) while other factors may make species abundance 

vary (e.g., precipitation). Variation in abundance is efficient in describing how a 

species is related to a gradient (environmental, physical, or others). However 

species abundances may conceal the strict relationship a species has with its 

habitat defining if that species occurs or not at a site. The nature of presence-

absence data may be more efficient in capturing the strict relationship a species 

may have with its habitat. In that instance, considering both abundance and 

presence-absence data may be ecologically valuable to better understand the 

factors structuring a community. As explained in the previous paragraphs, 

abundance data may be unreliable when sampling certain group of organisms. 

However, for all communities where species abundances can be sampled without 

diminishing the value of the data, presence-absence data can be easily obtained by 

transforming all abundances larger than 0 to the value 1, allowing ecologists to 

get a more complete understanding of the data they gathered.  

In conclusion, besides presenting a new approach to perform canonical 

ordination using a group of association coefficients, in this paper we also propose 

a new framework to analyze species communities using abundance and presence-

absence data together. 
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TABLE 3.1. List of association coefficients compared. All coefficients are presented in a 
dissimilarity (distance) format. The association coefficients in bold can be applied to 
presence-absence as well as abundance data directly.  

 
Association coefficient Equation Reference Comment 

Binary symmetrical    

Simple-matching 
 

Sokal and 
Michener 
(1958) 

Binary equivalent of 
Euclidean (Sneath and 
Sokal 1973) 

Binary probabilistic    

Raup-Crick  

Raup and 
Crick (1979) 
McCoy et al. 
(1986) 

 

Binary asymmetrical    

Jaccard 
 

Jaccard (1901) Binary equivalent of 
any variation of the 
modified Gower 
dissimilarity 

Sørensen 
 

Sørensen 
(1948) 

Binary equivalent of 
percentage difference 

Ochiai 
 

Ochiai (1957) Binary equivalent of 
chord and Hellinger 

Abundance 
symmetrical    

Euclidean 
 

Mesopotamia 
~1800 BC 
(Maor 2007) 

Distance preserved in 
RDA 

Abundance 
asymmetrical    

Chord 
 

Orlòci (1967) 
Cavalli-Sforza 
and Edwards 
(1967) 

 

Hellinger 
 

Rao (1995) 
 

χ2 

 

Lebart and 
Fénelon (1971) Dissimilarity preserved 

in CCA 
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TABLE 3.1. Continue 
 

Abundance 
asymmetrical    

Distance between 
species profiles 

 

Legendre and 
Gallagher 
(2001) 

A species’ contribution 
is directly related to 
their abundance. 

Percentage difference 
 

Odum (1950) This dissimilarity is 
often wrongfully 
referred to as the Bray-
Curtis indexe 

 

 
 

Clarke and 
Green (1988) 

 
 

Clarke and 
Green (1988) 

Square or fourth 
rooting the raw data 
prior to calculating 
Percentage difference is 
often used when there 
is marked variation in 
abundance between 
species 

Modified Gower log2 
 

Anderson et al. 
(2006) 
 
 

Modified Gower log5 
 

Anderson et al. 
(2006) 
 
 

Modified Gower log10 
 

Anderson et al. 
(2006) 
 
 
 

Different log base are 
often used when there 
is marked variation in 
abundance between 
species. A high log 
base will generally 
reduce the emphasis of 
very abundant species 
more than a smaller one 

a The letters a, b, c, and d are defined in Table 3.2. 
b h and i defined two different sites. 
c y++ is the total sum of table Y, y+j is the abundance of species j, and yi+ is the sum of all 
abundance of site i. 
d  is used to exclude double-zeros by setting  whenever y1j = y1j = 0 and 
elsewhere. 
e Bray and Curtis (1957) did not design this coefficient nor was it their purpose. They used a 
transformed version of Steinhaus coefficient (Motyka 1947) in their paper, which is equivalent to 
the coefficient proposed by Odum (1950) described above (Legendre and Legendre, 2012).  
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TABLE 3.2. Contingency table describing the similarity between two sites where species presence 
or absence were sampled. a is the number of species present at site 1 and 2, b is the 
number of species present at site 1 but absent at site 2, c is the number of species 
found at site 2 but not at site 1, and d is the number of species absent at both sites. The 
mathematical formulas explain how to calculate a, b, c, or d from a community matrix 
Y composed of p species, where y1j and y2j present the species occurrence of site 1 and 
2 for species j. 

 

  Site 2 

  1 
(species present) 

0 
(species absent) 

1 
(s

pe
ci

es
 p

re
se

nt
) 

a 

 

b 

 

Si
te

 1
 

0 
(s

pe
ci

es
 a

bs
en

t) 

c 

 
d 

 

pX

j=1

y1jy2j

pX

j=1

y2
1j �

pX

j=1

y1jy2j

pX

j=1

y2
2j �

pX

j=1

y1jy2j p�
pX

j=1

y2
1j �

pX

j=1

y2
2j �

pX

j=1

y1jy2j



  111 

TABLE 3.3. Variance explained (R2) by RDA models constructed independently with each 
association coefficient using data from the ecological illustration, where the tree 
relative basal area was used to model a ground beetle (Carabidae) assemblage. The 
abundance data are the abundance of carabids divided by the number of days traps 
were active at each sites while the presence-absence data are the occurrence of species 
at each site. Results are given for all but the symmetrical association coefficients. All 
association coefficients are defined in Table 3.1.  

 
Association coefficient R2 

Abundance data 
Species profiles 0.303 

Chord 0.321 
Hellinger 0.340 

χ2 0.094 
Percentage difference 0.203 

 0.238 

 0.249 
Modified Gower log2 0.297 
Modified Gower log5 0.304 
Modified Gower log10 0.302 

Presence-absence 
Species profiles 0.225 

Ochiai 0.244 
Raup-Crick 0.190 

χ2 0.048 
Jaccard 0.188 

Sørensen 0.244 
 

p
Percentage di↵erence

4
p

Percentage di↵erence
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FIGURE 3.1. Species-abundance distributions (SAD) used in the simulations. These SADs are 

presented using Preston (1948) graphs where the abundance classes in the abscissa increase 
according to a geometric progression whose lower bound is made of the values 2k with k being 
the successive integers from 0 and up and the ordinate indicates the number of species in each 
abundance class. These SADs were used as a basis for the simulations to generate site-by-species 
data table. Each SAD presents a community of 20 species. They were constructed to encompass 
a wide range of variations in abundance patterns. 
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FIGURE 3.2. Comparison of explained variance (R2) between 11 association coefficients calculated 

from simulated communities following different species abundance distributions (SAD) using 
abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes were 
conserved to calculate R2. Points are R2 means of all simulations and error bars represent 95% 
confidence intervals. Association coefficients are presented in different panels for visual clarity. 
Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was drawn 
between each SAD of each association coefficient to ease comparisons between coefficients. 
Results are based on species simulated with an error term sampled from a Normal distribution 
(mean = 0, standard deviation = 0.001). A thousand simulations were run for each SAD.  
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FIGURE 3.3. Schematic representation of consensus RDA. (a) The first step of the procedure is to 

perform a series of RDAs (tb-RDA or db-RDA) to model the community data Y using 
explanatory variables X. Each RDA is performed using a distance scaling (scaling 1) but with a 
different association coefficient. In the figure, K different association coefficients are used. An 
RDA result is composed of four principal matrices: the species scores U, the sites scores Z 
calculated in the space of X, the site scores F calculated in the space of Y and the canonical 
coefficients C. Because K different meaningful association coefficients are used and thus K 
RDAs are performed, K sets of matrices U, Z, F, and C are calculated. (b) For each of the K 
association coefficients, the significant axes within each Z matrix are grouped in a large matrix. 
A PCA is then performed on this large matrix yielding the site scores consensus matrix Z* and a 
diagonal matrix of eigenvalues Λ*. (c) Using Z* as a reference, a matrix of orthogonal rotation H 
is calculated for each Z matrix. The construction of H matrices are carried out using the scaled 
Z* and Zk. By that we mean that Z* and Zk were divided by their sum of squares before being 
square root transformed. (d) The consensus species scores U* can then be computed by 
multiplying each Uk by its respective orthogonal rotation matrix and averaging all the rotated Uk 
matrices. The same calculation is performed to obtain the consensus canonical coefficients C* 
and if necessary F*. For U*, C* and F* to be optimal, they need to be calculated from the 
independent matrices with a sum of squares equal to 1. (e) Z*, U*, C* and F* can than be used to 
draw a consensus RDA triplot. The eigenvalues in Λ* can also be used in the consensus RDA 
triplot to show the importance of each axis.  
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FIGURE 3.4. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 2). A thousand simulations were run for 
each SAD.  
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FIGURE 3.5. Comparison between abundance and presence-absence data to know how much of the 

true species structure (Equation 3.6 without the error term) is modelled by the canonical 
ordination models. For each data type (abundance and presence-absence), the significant 
canonical axes for all association coefficients (with the exception of the symmetrical 
coefficients) were grouped. RV coefficients were then used to correlate the true species structure 
with the grouped significant canonical axes. Error bars represent 95% confidence intervals. 
Letters along the abscissa refer to the species-abundance distribution (SAD) as presented in 
Figure 3.1. A line was drawn between each SAD of each association coefficient to ease 
comparisons between the two data types. Results are based on species simulated with an error 
term sampled from a Normal distribution (mean = 0, standard deviation = 0.001). A thousand 
simulations were run for each SAD. 
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FIGURE 3.6. Comparison of (a) species-abundance distributions (SAD) and (d) species-presence 

distributions (SPD), and consensus RDA results for abundance (c) and presence-absence data (f) 
using Carabidae data sampled at the Ecosystem Management Emulating Natural Disturbances 
(EMEND) experimental area in Alberta, Canada. (b) The minimum spanning trees (MST) 
comparing association coefficients for abundance data and (e) the MST comparing association 
coefficient for presence-absence data show that the χ2 distance presents an RDA very different 
from the other association coefficients. For both data types the χ2 distance was the only 
association coefficient not used to compute the consensus RDA in (c) and (f). The SAD and SPD 
are constructed the same way, with the exception that for SPD it is the occurrence of species that 
is considered, not their abundance. The SAD (a) and SPD (d) are used as reference to relate the 
results presented in this figure to the simulation results presented in Figures 3.2 and 3.5. The 
consensus RDA triplots describe the relationship between ground beetle species (arrows), the 
relative basal area of trees by species (lines), and the sampling sites (grey points) using all but 
the symmetrical association coefficients and the χ2 distance. The species codes for the Carabidae 
and trees are provided in Tables 3E1-3E2. In (b) and (e) MG stands for modified Gower and PD 
for percentage difference, the name of all other association coefficients are written fully.  
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APPENDIX 3A 

Explanatory variables used in the construction of species during the simulations 
 

 
FIGURE 3A1. Bubble plots presenting the eight variables used in the construction of the simulated 

species through Equation 3.6. Each variable was constructed on a 7 × 7 regular grid. 
Each individual bubble is associated to a simulated site. The size and colour of the 
bubbles characterize the value associated to the bubble (black are positive values, 
white are negative, and bubble size is related to the associated value). The absence 
of bubble represents a value of 0. All variables have a range of 10 except for 
variable 5, which has a range of 2.5. 

 
These variables were constructed using the RsimSSDCOMPAS package through 
the R statistical language using the following R code: 
 
variable1<-SimSSDR(7,7,1,10,range11=5,range12=5,range21=1, 
range22=1,nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=TRUE, 
SAR=FALSE)$E 

 
variable2<-SimSSDR(7,7,1,5,range11=1,range12=1,range21=1, 
range22=1,nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=TRUE, 
SAR=FALSE)$E 

 
variable3<-SimSSDR(7,7,0,range11=5,range12=5)$E 
 
variable4<-SimSSDR(7,7,2,10,range11=5,range12=5,range21=1, 
range22=1,nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=TRUE, 
SAR=FALSE)$E 
 
variable5<-SimSSDR(7,7,4,5,range11=2,range12=2,range21=1, 
range22=1,nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
SAR=FALSE)$E 
 
variable6<-SimSSDR(7,7,3,10,range11=10,range12=10,range21=1, 
range22=1,nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
SAR=FALSE,centroide=list(c(0,0)))$E 
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variable7<-SimSSDR(7,7,3,10,range11=10,range12=10,range21=1, 
range22=1, nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
SAR=FALSE,centroide=list(c(1,1)))$E 
 
variable8<-SimSSDR(7,7,3,10,range11=10,range12=10,range21=1, 
range22=1,nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
SAR=FALSE,centroide=list(c(10,0)))$E 

 
 
TABLE 3A1: Explanatory variables and weight (regression coefficient) used to construct each 

species (following Equation 3.6) in the simulated communities. The number 
associated to each species is the order given in the site-by-species table 

 

Species Explanatory variables 
combined 

Weight given to 
(regression coefficient of) 

each species 
1 1 and 4 2 
2 1 and 5 0.1 
3 1 and 6 -2 
4 1 and 7 -0.1 
5 1 and 8 2 
6 2 and 3 0.5 
7 2 and 5 -2 
8 2 and 6 -0.5 
9 2 and 7 2 
10 2 and 8 1 
11 3 and 5 -2 
12 3 and 6 -1 
13 3 and 7 2 
14 3 and 8 0.5 
15 4 and 5 -2 
16 4 and 6 -0.5 
17 4 and 7 2 
18 4 and 8 0.1 
19 5 and 8 -2 
20 6 and 7 -0.1 
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APPENDIX 3B 

 
FIGURE 3B1. Comparison of explained variance (R2) between 11 association coefficients 

calculated from simulated communities following different species abundance distributions 
(SAD) using abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical 
axes were conserved to calculate R2. Points are R2 means of all simulations and error bars 
represent 95% confidence intervals. Association coefficients are presented in different panels for 
visual clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run for each 
SAD.  
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FIGURE 3B2. Comparison of explained variance (R2) between 11 association coefficients 

calculated from simulated communities following different species abundance distributions 
(SAD) using abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical 
axes were conserved to calculate R2. Points are R2 means of all simulations and error bars 
represent 95% confidence intervals. Association coefficients are presented in different panels for 
visual clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for each 
SAD.  
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FIGURE 3B3. Comparison of explained variance (R2) between 11 association coefficients 

calculated from simulated communities following different species abundance distributions 
(SAD) using abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical 
axes were conserved to calculate R2. Points are R2 means of all simulations and error bars 
represent 95% confidence intervals. Association coefficients are presented in different panels for 
visual clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 1). A thousand simulations were run for each SAD. 
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FIGURE 3B4. Comparison of explained variance (R2) between 11 association coefficients 

calculated from simulated communities following different species abundance distributions 
(SAD) using abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical 
axes were conserved to calculate R2. Points are R2 means of all simulations and error bars 
represent 95% confidence intervals. Association coefficients are presented in different panels for 
visual clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 2). A thousand simulations were run for each SAD. 
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FIGURE 3B5. Comparison of explained variance (R2) between 7 association coefficients calculated 

from simulated communities following different species abundance distributions (SAD) using 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was drawn 
between each SAD of each association coefficient to ease comparisons between coefficients. 
Results are based on species simulated with an error term sampled from a Normal distribution 
(mean = 0, standard deviation = 0.001). A thousand simulations were run for each SAD. 
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FIGURE 3B6. Comparison of explained variance (R2) between 7 association coefficients calculated 

from simulated communities following different species abundance distributions (SAD) using 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was drawn 
between each SAD of each association coefficient to ease comparisons between coefficients. 
Results are based on species simulated with an error term sampled from a Normal distribution 
(mean = 0, standard deviation = 0.25). A thousand simulations were run for each SAD. 
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FIGURE 3B7. Comparison of explained variance (R2) between 7 association coefficients calculated 

from simulated communities following different species abundance distributions (SAD) using 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was drawn 
between each SAD of each association coefficient to ease comparisons between coefficients. 
Results are based on species simulated with an error term sampled from a Normal distribution 
(mean = 0, standard deviation = 0.5). A thousand simulations were run for each SAD. 
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FIGURE 3B8. Comparison of explained variance (R2) between 7 association coefficients calculated 

from simulated communities following different species abundance distributions (SAD) using 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was drawn 
between each SAD of each association coefficient to ease comparisons between coefficients. 
Results are based on species simulated with an error term sampled from a Normal distribution 
(mean = 0, standard deviation = 1). A thousand simulations were run for each SAD. 
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FIGURE 3B9. Comparison of explained variance (R2) between 7 association coefficients calculated 

from simulated communities following different species abundance distributions (SAD) using 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters along the abscissa refer to the SADs as presented in Figure 3.1. A line was drawn 
between each SAD of each association coefficient to ease comparisons between coefficients. 
Results are based on species simulated with an error term sampled from a Normal distribution 
(mean = 0, standard deviation = 2). A thousand simulations were run for each SAD. 
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APPENDIX 3C 

 
FIGURE 3C1. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.001). A thousand simulations were run 
for each SAD. 
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FIGURE 3C2. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run 
for each SAD. 
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FIGURE 3C3. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for 
each SAD. 
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FIGURE 3C4. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 1). A thousand simulations were run for 
each SAD. 
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FIGURE 3C5. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.001). A thousand simulations were run 
for each SAD. 
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FIGURE 3C6. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run 
for each SAD. 
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FIGURE 3C7. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for 
each SAD. 
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FIGURE 3C8. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 1). A thousand simulations were run for 
each SAD. 
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FIGURE 3C9. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 2). A thousand simulations were run for 
each SAD. 
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APPENDIX 3D 

 
 
FIGURE 3D1. Comparison between abundance and presence-absence data to know how much of 

the true species structure (Equation 3.6 without the error term) is modelled by the canonical 
ordination models. For each data type (abundance and presence-absence), the significant 
canonical axes for all association coefficients (with the exception of the symmetrical 
coefficients) were grouped. RV coefficients were then used to correlate the true species structure 
with the grouped significant canonical axes. Error bars represent 95% confidence intervals. 
Letters along the abscissa refer to the species-abundance distribution (SAD) as presented in 
Figure 3.1. A line was drawn between each SAD of each association coefficient to ease 
comparisons between the two data types. Results are based on species simulated with an error 
term sampled from a Normal distribution (mean = 0, standard deviation = 0.25). A thousand 
simulations were run for each SAD. 
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FIGURE 3D2. Comparison between abundance and presence-absence data to know how much of 

the true species structure (Equation 3.6 without the error term) is modelled by the canonical 
ordination models. For each data type (abundance and presence-absence), the significant 
canonical axes for all association coefficients (with the exception of the symmetrical 
coefficients) were grouped. RV coefficients were then used to correlate the true species structure 
with the grouped significant canonical axes. Error bars represent 95% confidence intervals. 
Letters along the abscissa refer to the species-abundance distribution (SAD) as presented in 
Figure 3.1. A line was drawn between each SAD of each association coefficient to ease 
comparisons between the two data types. Results are based on species simulated with an error 
term sampled from a Normal distribution (mean = 0, standard deviation = 0.5). A thousand 
simulations were run for each SAD. 
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FIGURE 3D3. Comparison between abundance and presence-absence data to know how much of 
the true species structure (Equation 3.6 without the error term) is modelled by the canonical 
ordination models. For each data type (abundance and presence-absence), the significant 
canonical axes for all association coefficients (with the exception of the symmetrical 
coefficients) were grouped. RV coefficients were then used to correlate the true species structure 
with the grouped significant canonical axes. Error bars represent 95% confidence intervals. 
Letters along the abscissa refer to the species-abundance distribution (SAD) as presented in 
Figure 3.1. A line was drawn between each SAD of each association coefficient to ease 
comparisons between the two data types. Results are based on species simulated with an error 
term sampled from a Normal distribution (mean = 0, standard deviation = 1). A thousand 
simulations were run for each SAD. 
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FIGURE 3D4. Comparison between abundance and presence-absence data to know how much of 
the true species structure (Equation 3.6 without the error term) is modelled by the canonical 
ordination models. For each data type (abundance and presence-absence), the significant 
canonical axes for all association coefficients (with the exception of the symmetrical 
coefficients) were grouped. RV coefficients were then used to correlate the true species structure 
with the grouped significant canonical axes. Error bars represent 95% confidence intervals. 
Letters along the abscissa refer to the species-abundance distribution (SAD) as presented in 
Figure 3.1. A line was drawn between each SAD of each association coefficient to ease 
comparisons between the two data types. Results are based on species simulated with an error 
term sampled from a Normal distribution (mean = 0, standard deviation = 2). A thousand 
simulations were run for each SAD. 
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APPENDIX 3E  

Species code and name for Carabidae and tree species 
 

    TABLE 3E1: Species code and Latin name for Carabidae. 
 

Code Latin name 
Agongrat Agonum gratiosum 
Agonplac Agonum placidum 
Agonretr Agonum retractum 
Agonsord Agonum sordens 
Agonsupe Agonum superioris 
Amarlitt Amara littoralis 
Amarluni Amara lunicollis 
Badiobtu Badister obtusus 
Bembgrap Bembidion grapii 
Bembrupi Bembidion rupicola 
Calaadve Calathus advena 
Calaingr Calathus ingratus 
Calofrig Calosoma frigidum 
Caracham Carabus chamissonis 
Dichcogn Dicheirotrichus cognatus 
Elapamer Elaphrus americanus 
Elaplapp Elaphrus lapponicus 
Harpfulv Harpalus fulvilabris 
Loripili Loricera pilicornis 
Miscarct Miscodera arctica 
Nebrgyll Nebria gyllenhali 
Notibore Notiophilus borealis 
Notidire Notiophilus directus 
Patrfove Patrobus foveocollis 
Patrsept Patrobus septentrionis 
Platdece Platynus decentis 
Platmann Platynus mannerheimii 
Pteradst Pterostichus adstrictus 
Pterbrev Pterostichus brevicornis 
Pterpens Pterostichus pensylvanicus 
Pterpunc Pterostichus punctatissimus 
Pterripa Pterostichus riparius 
Seriquad Sericoda quadripunctata 
Sterhaem Stereocerus haematopus 
Synuimpu Synuchus impunctatus 
Trecapic Trechus apicalis 
Trecchal Trechus chalybeus 
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TABLE 3E2: Species code, common and Latin name of trees species. 
 

Code Common name Latin name 
Pt Aspen Populus tremuloides 
Bp White birch Betula papyrifera 
Ab Balsam fir Abies balsamea 
Ll Tamarack Larix laricina 
Pb Balsam poplar Populus balsamifera 
Pc Lodgepole pine Pinus contorta 
Pm Black spruce Picea mariana 
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Chapter 4 –A new cost-effective 

approach to survey ecological 

communities 
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INTRODUCTION 

In ecological studies, the data collected in the field or obtained from 

laboratory experiments are the window through which we look to describe the 

patterns found in nature and to understand the processes that allow these patterns 

to emerge. Data collection is undoubtedly the most important step of any 

ecological study because if data acquisition is badly performed, data analysis 

cannot yield good results. Deciding how ecological data should be obtained is of 

crucial importance. This starts with the sampling design, which must be related to 

the ecological question or to the hypothesis to be tested. 

In community ecology, researchers have proposed many different 

approaches to sample organisms (e.g., Anderson 1965, Martin 1977). The 

resulting data are usually in the form of either presence-absence or abundance. 

There are pros and cons for data collection and analysis of either data type. It is 

usually more time and cost effective to obtain presence-absence data; however, 

accuracy (the detail of the information the data convey) is lost because the 

information is only about where a species occurs. In contrast, abundance data may 

be tedious to obtain, but the data are more informative, and more knowledge 

about ecological processes can be gained from them. 

Spatial or temporal distribution of individuals is an aspect that influences 

the number of individuals of a species that can be counted within a sampling unit 

(SU). Generally, individuals of a species are clustered in space or through time. 

Aggregation of species in space may be the result of animal behaviour, dispersal 

limitation, or environmental patchiness to which organisms respond (Legendre 
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and Fortin 1989). Through time, species succession and reproductive cycles may 

also generate clustered patterns (Legendre and Legendre 2012, Chapter 12). 

Clustered patterns of species in space or time usually lead to a lower α diversity, 

compared to species that are randomly or regularly distributed. If species are 

aggregated, they are generally found in large abundances in some SUs if the size 

of a cluster is smaller than the span of a SU. When highly aggregated species are 

sampled, many individuals are found only in one or a few SUs. In that instance, 

the information lost by recording only presence-absence data can be very large. 

However, the cost of counting all individuals (abundances) for the same 

community can be overwhelming. It may also be unethical to count all 

individuals, for example when species determination requires killing individuals 

belonging to rare species. 

We first examined whether counting all individuals of a species in each SU 

is necessary to identify the distribution patterns characterizing a community. This 

was done to study how abundance distributions and aggregation influence the 

number of individuals of species found in a SU. We then devised a method to 

determine a counting threshold, which is the maximum number of individuals per 

species that needs to be counted within a SU to extract sufficient information to 

represent the multivariate structure of the community (as if all individuals had 

been counted). Regardless of the species considered, when the counting threshold 

is reached within a SU, the patterns describing the variance of a community 

should be as apparent as if all individuals had been counted.  

We constructed an example explaining the counting procedure we are 

proposing. Table 4.1 (top) shows the complete abundance of five fictitious species 
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at two SUs. Note that all individuals need to be counted to obtain these data. 

Assuming that the patterns defining this fictitious community are apparent if a 

counting threshold of 8 individuals is reached, the resulting community matrix 

would be the one presented in Table 4.1 (bottom). Whenever there are 8 or more 

individuals for a species in a SU, a count of 8 is recorded. For abundances smaller 

then 8, the counted abundance is recorded.  

The counting method we propose in this paper aims at finding a balance 

between presence-absence and abundance data that maximizes cost-efficiency 

when surveying ecological communities. Because abundance and aggregation 

patterns can vary in many ways, our aim is not to find a universal counting 

threshold that applies to all communities. Rather, we propose a general procedure 

to determine the counting threshold for any particular community of interest.  

The procedure proposed in this paper is validated using simulations. To 

illustrate how this procedure can be applied to real ecological data, we 

implemented it for a community of boreal forest Carabidae sampled in 

northwestern Alberta, Canada.  

FROM PRESENCE-ABSENCE TO ABUNDANCE 

Presence-absence and abundance data are extremes of a spectrum of data 

formats characterizing composition and distribution of communities. Intermediate 

cases between these two extremes can be found by counting individuals of each 

species within a SU until either a predefined (user-defined) counting threshold is 

reached or all individuals of a species within the SU are accounted for, as 

illustrated in Table 4.1. By sequentially increasing the counting threshold from 1 
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to the largest number of individuals for a species found within a SU, all 

intermediate cases can be studied from presence-absence to full abundance data. 

We will refer to the case where all individuals are counted as “complete-

abundance” counts while all cases with counts of fewer individuals will be 

referred to as “partial-abundance” counts. 

In this paper we consider a species as abundant if it is found with high 

abundance in at least one SU. As a rule of thumb, we consider the abundance of a 

species to be high if it counts more individuals than there are SUs. Conversely, a 

rare species can potentially be found in many SUs but its abundance may be low 

in all SUs. Given these definitions, modest variation in abundance do not 

generally influence the interpretation of the patterns of variation of abundant 

species but can importantly impact the interpretation of rare species. Based on this 

premise, use of partial-abundance counts instead of complete-abundance counts 

can effectively produce information about rare species while the associated loss of 

information for common species is largely inconsequential to understanding 

community variance patterns. The challenge, therefore, is to find the lowest 

counting threshold that efficiently and accurately allows the description of the 

variance pattern of a community. 

SIMULATING ECOLOGICAL COMMUNITIES 

Species abundance distribution (SAD) and patterns of spatial or temporal 

aggregation of species vary among communities. As we argued in the 

Introduction, these are the two major components of a community that will 

influence the choice of a counting threshold. To evaluate how these two 
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components influence the efficiency of partial-abundance data for characterizing 

patterns of variation in a community, we simulated community matrices 

comprised of 100 SUs and 50 species. Sample size and species richness should 

not influence the counting threshold required for community patterns to be 

accurately characterized because these two components do not impact the spatial 

or temporal aggregation patterns of species or the positively skewed abundance 

distribution typical of ecological communities. 

In our simulations, the sampling area (i.e., the area where all samples are 

collected) was a square of unit size. The abundance of each species in the 

community ranged from 1 to 500. A probability was given to each abundance 

value following a lognormal distribution (Preston 1948) with a standard deviation 

of 5. In that lognormal distribution, the probabilities of finding a species with an 

abundance of 1, 2, or 3 individuals in the sampling area are respectively, 0.18, 

0.090, and 0.059. Note that a standard deviation of 5 was the smallest for which a 

community could be generated where at least one individuals was found at all of 

the 100 SUs of the community matrix. Because multivariate analyses commonly 

used in community ecology, such as χ2-based ordinations (e.g., principal 

component analysis after χ2 transformation of the data, and correspondence 

analysis), have trouble handling situations where SUs where no individuals of any 

species were counted, we did not simulate these cases.  

For each species of a simulated community, the spatial position of each 

individual was specified using a Matérn cluster process (Illian et al. 2008), in 

which a homogeneous Poisson process is used to define the position of the cluster 

centers. The intensity of the Poisson process is used to determine the number of 
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clusters to generate. In a statistical context, the intensity of the Poisson process is 

also the average of a Poisson distribution. In our simulations, the intensity of the 

Poisson process was defined by random selection of an integer value between 1 

and the species abundance previously obtained from the lognormal distribution. 

Using this approach, the number of clusters is on average equal to the randomly 

selected value. This generates species with spatial patterns ranging from 

aggregated into one patch (if a single cluster is generated), to randomly dispersed 

where each individual is a separate spatial cluster (if the number of clusters equals 

the number of individuals in a species).  

In the Matérn cluster process, a parameter defines how many individuals 

should on average be included in each cluster. We obtained that parameter by 

dividing the abundance chosen from the lognormal distribution by the intensity of 

the Poisson process. Individuals within each spatial cluster are uniformly 

distributed. The radii of spatial clusters are used as surrogates of aggregation 

levels because it is the zone of influence of a cluster. For example, if a cluster has 

a radius of one meter, all individuals associated to that cluster will be anywhere 

within a one-meter radius of the centre of the cluster. Radii of spatial clusters are 

chosen by the user. The Matérn cluster process also allows clusters to overlap, 

potentially presenting patches of individuals of different shapes and sizes. A 

variety of spatial patterns can thus be generated even though the radii of all 

clusters are the same when individuals of a species are grouped into more than 

one cluster. The simulated species spatial distribution can thus represent patterns 

similar to what is found in nature. Unlike the number of clusters and the species 
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abundance, which are related to each other in the Matérn cluster process, the 

choice of cluster radii is not influenced by other parameters. 

Because the Matérn cluster process is a random process that relies on the 

three parameters described above (the intensity of the Poisson process that defines 

the number of clusters, the average number of individuals within each cluster, and 

the radii of clusters), the total number of individuals of a species generated by the 

Matérn cluster process may vary around the abundance value defined by the 

random sampling of the lognormal distribution. We inspected the abundance 

patterns of all simulated communities to ensure that the random variation resulting 

from the Matérn cluster process did not make the resulting abundance distribution 

diverge markedly from the reference lognormal SAD defined in the first step of 

the simulation. The random variations introduced by the Matérn cluster process 

had only minor influences on the abundance distribution, which will not affect the 

following steps of the simulations. 

Keeping in mind that the sampling area is a square of unit size, we 

generated a first set of communities where the range of aggregation was broad 

(cluster radii varied from 0.01 to 0.5) and another in which individuals were 

highly aggregated (cluster radii varied from 0.01 to 0.02). For all species in each 

set of communities, cluster radii were randomly sampled from a uniform 

distribution within the cluster radii range. For each aggregation level, we 

simulated 1000 communities. The spatstat package (Baddeley and Turner 2005) 

was used through the R statistical language (R Development Core Team 2012) to 

simulate these communities. 
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Simulations based on the same parameters were also performed, where the 

broken-stick model (McArthur 1957) was used as the reference SAD instead of 

the lognormal distribution to define the probability of choosing the abundance of 

a species. In the broken-stick model, the probability of finding a species with an 

abundance ranging from 1 to 500 is defined by randomly cutting a conceptual 

stick of unit length 499 times. The broken stick pieces are then ordered from the 

longest to the shortest to define the probability of sampling a species with an 

abundance of 1 through 500. Because the length of the stick pieces in the broken-

stick model can vary between iterations, we used the expected stick lengths to 

choose the abundance of a species (Barton and Davis 1956). The probability of 

sampling any abundance n from 1 to 500 can be obtained from . 

For example, the probability of sampling exactly one individual of a species is 

0.0136 whereas the probability of sampling exactly 500 individuals of a species is 

0.000004. The broken-stick model is negatively skewed compared to the 

lognormal distribution. The lognormal distribution and the broken-stick model are 

commonly used to model SADs, making them relevant choices to define our 

simulated community abundances. 

We also simulated three other sets of communities where the abundance of 

all species was defined as 500. The first two sets of communities used the Matérn 

cluster process to distribute individuals in a square sampling area of unit size 

following the procedure described above where the number of clusters was 

randomly selected between 1 and 500 and the cluster radii ranged from 0.01 to 

0.02 for the first set of communities, and from 0.01 and 0.5 for the second set of 

(
P500

n=1 1/n)/500
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communities. As previously explained, because the Matérn cluster process is a 

random process, the exact abundance of each species was not necessarily 500; it 

often diverged slightly from that value. In a third set of communities, the locations 

of individuals in the unit size sampling area was defined using a uniform 

distribution (minimum = 0, maximum = 1) for the X and Y coordinates. In this set 

of simulated communities, the abundance of each species was exactly 500 

because the Matérn cluster process was not used to distribute the individuals in 

the sampling area. This last set of communities differs from the others in that all 

species were not clustered but randomly distributed in the sampling area. These 

three sets of communities were used to evaluate the importance of the abundance 

distribution and aggregation patterns in defining a counting threshold. 

Finally, we divided the sampling area into 100 non-overlapping SUs of 

equal sizes (the SUs completely covered the study area) and counted the number 

of individuals of each species in each SU for all simulated communities. This 

count provided the complete-abundance community matrix. Note that although in 

these simulations the SUs completely covered the study area, this condition is not 

necessary for the counting approach we propose. In the Ecological illustration, we 

apply our procedure to an experimental research area where the SUs covered only 

a small fraction of the whole study area. 

CORRELATION OF ALL PARTIAL-ABUNDANCE TO THE COMPLETE-ABUNDANCE DATA 

To evaluate how much information is included in the increasingly precise 

partial-abundance data, we used the RV coefficient (Escoufier 1973, Robert and 
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Escoufier 1976) to correlate the partial-abundance community matrices with the 

complete-abundance community matrix. The RV coefficient is defined by:  

 (4.1) 

where X and Y are two column-centered matrices with the same number of rows, 

t is the transpose of a matrix, and tr the trace of a matrix. The RV coefficient is a 

multivariate extension of the squared Pearson correlation coefficient. It ranges 

from 0 (no correlation) to 1 (perfect correlation). When comparing species 

communities defined by partial and complete-abundance counts, the RV 

coefficient measures the accuracy in the estimation of the spatial (temporal) 

variation of the data. 

Figure 4.1 presents the correlation results between the increasingly 

accurate partial-abundance data (abscissa) and the complete-abundance data for 

the seven different sets of simulated communities. In this figure, the first row 

highlights the results obtained from the two SADs (lognormal distribution and 

broken-stick model) while the second row presents communities where species 

are all abundant (~500 individuals) and the aggregation patterns range from 

random to highly aggregated. The most striking result was that the stronger the 

aggregation of species, the more individuals had to be counted to reach the same 

RV coefficient, compared to communities where species had a wider range of 

aggregation or were randomly distributed; compare panels a and b, c and d, f and 

g in Figure 4.1. Another noteworthy observation was that in all simulated 

communities, including those in which individuals were randomly distributed in 

the study area (Figure 4.1e), the number of individuals that needed to be counted 
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to reach a high RV coefficient (e.g. > 0.9) was much smaller than the maximum 

number of individuals per species per SU found in the complete-abundance data. 

In Figure 4.1, this is illustrated by the long horizontal line showing an RV 

coefficient = 1 found for all sets of communities.  

These results confirm our hypothesis that the effort placed on counting all 

individuals is not necessary to reconstruct and analyze the variance of 

communities. Finally, although the abundance distribution used to construct 

communities influenced the number of individuals needed to obtain a good 

representation of the complete-abundance data, a positively skewed abundance 

pattern (typical of SAD found in nature) is not necessary. Regardless of the SAD 

used, it is not required to count all individuals to identify the variance patterns 

defining a community. This is an important observation because it implies that the 

counting approach we are proposing is not limited to community data, it can be 

used on virtually any type of multivariate count data sets. However, for the 

remainder of this paper we will continue to present our results and interpretation 

in terms of ecological communities, species, and sampling units.  

In this paper we use the lower bound of the 99% confidence interval 

exclusively to elaborate conclusions. By using only these extreme scenarios of our 

simulation results, we minimize the impact of losing important information by 

counting too few individuals. 

If we assume that the minimum RV coefficient required between partial 

and complete-abundance count needs to be at least 0.9 to give an acceptable 

representation of the community patterns, we can evaluate the cost of counting 

partial-abundance data with a good level of accuracy. In the most optimistic case, 
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where all species are composed of 500 individuals uniformly distributed in the 

sampling area (Figure 4.1e), a 0.9 RV coefficient is reached with a counting 

threshold of 7 individuals, an RV coefficient of 0.95 is attained with a counting 

threshold of 8 individuals, and a 0.99 RV coefficient requires a counting threshold 

of 11 individuals. These results are interesting because they show that with 

randomly distributed individuals in space or time, it is possible to be very cost-

effective when counting.  

At the other end of our simulation spectrum, when species are all abundant 

(i.e. composed of ~500 individuals) but highly aggregated (Figure 4.1g), to reach 

a 0.9, 0.95, and 0.99 RV coefficient between partial and complete-abundance 

data, a counting thresholds of 293, 343, and 430 individuals are needed, 

respectively (lower bound of the 99% confidence interval).  

By comparing the results presented in Figure 4.1, we show that for the 

ecological situations that we simulated, aggregation is the dominant factor 

increasing the number of individuals that need to be counted to reach a predefined 

RV coefficient. Thus, because species are known to aggregate in space and time, 

we must ask whether this procedure is interesting for community data?  

CORRELATING PARTIAL TO COMPLETE-ABUNDANCE DATA USING ECOLOGICALLY 

MEANINGFUL DISTANCES 

Multivariate analyses of communities are rarely carried out on raw count 

data because using raw count data is equivalent to performing an ordination (or a 

clustering) analysis based on Euclidean distances. Euclidean distance is 

appropriate to answer ecological questions focusing on phenomena that cause 
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changes in total abundances, such as disturbances or predation, but it is ill-adapted 

for other types of ecological questions (Anderson et al. 2011). Numerous other 

distances have been proposed to study patterns in community data resulting from 

habitat variation. Legendre and Legendre (2012, Chapter 7) described many 

distances specifically designed for modeling a variety of ecological data.  

Currently, community data are almost always analyzed with tools that use 

distances other than the Euclidean to extract ecological patterns. A typical 

example is the widespread use of correspondence analysis (CA, e.g., Greenacre 

2007) and its canonical counterpart CCA (ter Braak 1986), which involves the χ2 

distance. Other distances are commonly used to analyze the variation of 

community composition data. In these instances, it becomes relevant to study how 

partial-abundance counts can accurately characterize the community patterns 

defined by complete-abundance data using distances other than the Euclidean 

distance. We can then evaluate if by using different distances, the information in 

the complete-abundance data can be recovered by counting a smaller number of 

individuals of each species.  

Six distances commonly used with community composition data were 

considered: the Hellinger (Rao 1995), chord (Orlòci 1967, Cavalli-Sforza and 

Edwards 1967), the distance between species profiles (Legendre and Gallagher 

2001), χ2 (Lebart and Fénelon 1971), percentage difference (Odum 1950), and 

modified Gower using a base 2 logarithm (Anderson et al. 2006). All these 

distances are well adapted to the analysis of community composition data 

(Legendre and Legendre 2012, Chapter 7). The χ2 distance is widely used in 

ecology because it is the basis for CA and CCA. The percentage difference (also 
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known as the Odum or, incorrectly, the Bray-Curtis distance) has been shown by 

Faith et al. (1987) to be well adapted to extract ecological patterns. Anderson et 

al. (2006) applied their transformation to the asymmetrical form of the Gower 

distance coefficient and called the combination the modified Gower dissimilarity 

(or distance). Anderson et al. (2006) transformed all abundances in a community 

matrix using a logarithm of the abundance + 1, with the exception 0s, which 

remain unchanged. When calculating the modified Gower distance, an increase in 

the base of the logarithm decreases the emphasis on abundances. For this reason, 

we chose the modified Gower using a base 2 logarithm because any larger base of 

logarithm would give less importance to abundant species and thus make it easier 

to find a higher correlation between partial and complete-abundance data. 

When applied directly to a community matrix, each of the distances 

presented in the previous paragraph yields a symmetric distance matrix. However, 

it is also possible to transform a community matrix in such a way that a distance 

other than the Euclidean distance is preserved. Two different approaches were 

followed to transform the community data (partial and complete), depending on 

the distance used (Figure 4.2). (1) Legendre and Gallagher (2001) have shown 

that the Hellinger, chord, species profiles, and χ2 transformations can be applied 

directly to a community matrix using pre-transformations without calculating a 

distance. A pre-transformation is a transformation applied to a community matrix 

before any analyses are carried out; the transformation changes the distance 

preserved between SUs in the analysis using a linear model such as principal 

component analysis (PCA), redundancy analysis (RDA), or K-means partitioning. 

Calculating the Euclidean distance of a pre-transformed community matrix yields 
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a symmetric distance matrix where the distance between each pair of SUs is the 

distance corresponding to the pre-transformation. We thus pre-transformed all 

partial-abundance community data and correlated them to the pre-transformed 

complete-abundance community matrix using the RV coefficient (Figure 4.2a). 

(2) The percentage difference and modified Gower using a base 2 logarithm 

distances cannot be obtained by pre-transforming a community matrix. To 

compare partial and complete-abundance for these two distances, we first 

calculated the distance matrices for all partial-abundance community matrices and 

the complete-abundance community matrix. We then performed a principal 

coordinate analysis (PCoA, Gower 1966) independently on each distance matrix 

(partial and complete) and used all the eigenvectors of each partial-abundance 

community data and correlated them with all the eigenvectors from the complete-

abundance data using RV coefficients (Figure 4.2b). The PCoA is not used here as 

a dimension reduction tool, it is used to transform a distance matrix into a matrix 

with the same format as the original community matrix but where the species 

(columns of the community matrix) are replaced by eigenvectors (Figure 4.2). 

Performing a PCoA on non-Euclidean distance matrices may generate complex 

eigenvectors (Legendre and Legendre 2012, Subsection 9.3.4), which are difficult 

to handle. To ensure that no complex eigenvectors are generated when the 

percentage difference is used, we square-rooted all percentage difference distance 

matrices. This makes the percentage difference a metric and the resulting 

distances have the Euclidean property (Legendre and Legendre 2012, Subsection 

7.4.2), which ensures that no complex eigenvectors are generated when PCoA is 

applied to a square-rooted percentage difference distance matrix. Applying a 
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square-root transformation to a modified Gower distance matrix, however, may 

not make it Euclidean. For this reason, we added a constant equal to the largest 

positive eigenvalue to all values of each modified Gower distance matrix to 

ensure that was Euclidean and that no complex eigenvectors were generated from 

the PCoA (Gower and Legendre 1986, Legendre and Legendre 2012, Subsection 

9.3.4). This procedure is known as the Cailliez correction (Cailliez 1983).  

All of the calculations presented in the previous paragraph were performed 

with the vegan package (Oksanen et al. 2012), with the exception of the PCoA, 

which was carried out with the stats package (R Development Core Team 2012). 

All calculations were performed within the R statistical language.  

To compare the different distances, we focused on simulated communities 

where the abundances of all species were large (~500 individuals) and species 

were highly aggregated. We chose to focus on this set of communities instead of 

any other set because they required the most individuals to reach the same RV 

coefficients between partial and complete-abundance data than when raw count 

data were used (Figure 4.1g). 

The results in show that regardless of the transformations used, the 0.9, 

0.95, and 0.99 RV coefficients between partial and complete-abundance are 

reached with many fewer individuals than when raw community data are used 

(Figure 4.3). Of the distances compared, the distance between species profiles 

required the largest number of individuals to reach the same RV coefficients 

between partial and complete-abundance (Figure 4.3c). To reach a 0.99 RV 

coefficient between partial and complete-abundance, a counting threshold of at 

least 350 individuals was needed. Although it is the worst of the distances 
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compared, it is still much more efficient than using raw count data (compare to 

Figure 4.1g).  

The χ2 (Figure 4.3d) and the Hellinger (Figure 4.3a) distances also required 

many individuals to reach a predefined RV coefficient. To attain the 0.99 RV 

coefficient value, a counting threshold of 224 individuals was needed for the χ2 

distance and of 207 for the Hellinger distance. The percentage difference (Figure 

4.3e) and chord (Figure 4.3b) distances were more efficient since they required 

counting thresholds of 160 and 102 individuals, respectively, to reach a 0.99 RV 

coefficient between partial and complete-abundance data. For these simulated 

data, the most striking result was obtained from the modified Gower (Figure 4.3f) 

distance: a counting threshold of merely 9 individuals was needed to reach a 0.99 

RV coefficient between partial and complete-abundance data.  

The results found with the other sets of simulated communities are 

presented in Appendix 4A. They yield the same conclusion as discussed in this 

paragraph but a lower counting threshold was needed when any of the other six 

sets of simulated communities were used.  

The results that stem from Figures 4.1 and 4.3 are interesting because they 

show that few individuals need to be counted in a community for the variance 

patterns to be identified. However, these results are not helpful when planning a 

survey because they are not useful to suggest a counting threshold that needs to be 

reached before all sites have already been sampled. 
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PILOT STUDY: THE BASIS FOR A NEW SAMPLING PROCEDURE 

The generality of the results presented in Figures 4.1 and 4.3 makes it 

possible to apply the same procedure on a reduced number of randomly selected 

sampling units, in a pilot study, to estimate the counting threshold required for a 

sample that provides a good representation of the actual community. We propose 

to use pilot studies as a tool to improve the cost in time and money of a study. In 

this paper, a pilot study is a study used as a reference to estimate a counting 

threshold. It can result from data collected in a previous sampling year or it can 

include SUs selected at random or in a systematic design in the sampling area of 

an ongoing study.  

The size of the pilot study is important to infer a counting threshold. A 

pilot study that includes two SUs will likely not yield the same counting threshold 

as one that comprises ten SUs. From the results in Figures 4.1 and 4.3, we know 

that it is possible to estimate community patterns by counting a fraction of all the 

individuals. In this section, our goal is to evaluate the minimum number of SUs 

that needs to be randomly sampled in a pilot study to ensure that the counting 

threshold associated to a particular RV coefficient can be reached.  

To ensure that our simulation results can be used as a reference for studies 

on real communities, we estimated the counting threshold of the pilot study data 

by constructing a 99% empirical confidence interval from the RV coefficient 

correlating partial and complete-abundance of the full survey data. We 

consistently referred to the lower bound of the confidence interval. In other 

words, we referred to extreme cases where the number of individuals to count is 

large. Also, the choice of the SUs in the pilot study may influence considerably 
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the estimation of the counting threshold, especially when the number of SUs 

within a pilot study is small. In practice, the SUs in the pilot study should always 

be selected randomly throughout the sampling area. However, for our simulation 

to be exactly reproducible and to represent the worst-case scenario that can be 

designed, we selected the SUs to be included in the pilot study to form an 

abundance gradient, from the ones that contained the lowest maximum counts of 

individual for any one species to the ones that presented the largest counts. For 

example, referring to the complete-abundance in Table 4.1 (top), sampling unit 2 

would be considered first because the maximum count of individuals for any one 

species is 500 (species A). Sampling unit 1 would follow because the maximum 

count for any one species is larger (900 individuals for species E). This simulation 

procedure has an additional advantage over randomly choosing the SUs, it makes 

the number of individuals that are needed to reach a predefined RV coefficient 

larger than for all other situations. This constraining approach to consider SUs in 

a pilot study was chosen to ensure that the counting threshold was not 

underestimated in the pilot study.  

Using the communities previously simulated, we carried out a pilot study 

that included 3% of the SUs. We then correlated the increasingly accurate partial-

abundance data with the complete-abundance data using RV coefficients, but 

referring only to the data collected within the pilot study. This is the same 

procedure as used in the previous sections. Note that the number of species in the 

pilot study will not affect the estimation of the counting threshold because the 

procedure we propose focuses on variation at the individual level. We then 

compared the 0.9, 0.95 0.99, 0.999, and 0.9999 RV coefficients calculated from 
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the pilot data with the 0.9, 0.95, 0.99, 0.999, and 0.9999 RV coefficients 

computed from the full-survey data. We repeated the same procedure using pilot 

studies that included 4%, 5%, …, up to 100% (the whole sampling area) of the 

SUs. This procedure was carried out for each set of simulated communities and 

using all the distances considered in the previous section. 

In our simulations, we know the abundance and aggregation patterns of the 

sampled species because these parameters formed the basis of our artificial 

communities. However, such patterns are difficult to evaluate using only data 

obtained from a pilot study. For this reason, through our interpretation of Figure 

4.4 and Figures 4B1-4B7, we decided to consistently select the number of SUs 

where the RV coefficient calculated with all SUs was exceeded. This ensured that 

the survey-wide RV coefficients between partial and complete-abundance were 

reached even in the most difficult scenarios. 

Figure 4.4 presents the results calculated for the set of communities where 

the abundance of each species was large (~500 individuals for each species) and 

species had a broad range of aggregation levels. With this set of communities, a 

pilot study generally required more SUs to reach a predefined survey-wide RV 

coefficient. This set of communities presents the worst-case scenario we 

simulated for all the distances we compared, except for the modified Gower 

distance, which performed poorly when the abundance pattern of the communities 

followed a lognormal distribution (Figure 4B7a). Focussing on the worst cases 

makes our interpretation of these results more conservative because more 

individuals need to be counted in this set of communities. 
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From these results, the modified Gower distance has a clear advantage 

over the other dissimilarities for the type of communities that we simulated. It is 

the only distance to produce a survey-wide 0.95 RV coefficient calculated 

between partial and complete-abundances based on 3% of the SUs. For this 0.95 

RV coefficient to be reached, the RV coefficient calculated between partial and 

complete-abundances within the pilot study data needs to be at least 0.999. 

However, we favor using a 0.9999 RV coefficient between partial and complete-

abundances to reach the survey-wide 0.95 RV coefficient because Figure 4B7a 

shows that with a 0.999 RV coefficient, the pilot study barely meets the criterion 

that defined the 0.95 RV coefficient calculated using all SUs. If higher accuracy is 

required, the modified Gower is the only distance that is worth using. To reach a 

survey-wide 0.99 RV coefficient, at least 47% of the study area needed to be 

surveyed with a pilot study where a 0.9999 RV coefficient was used as a 

reference. 

The percentage difference is the next best choice of distance after the 

modified Gower distance. We can expect that by using 37% of the study area it is 

possible to reach a survey-wide 0.9 RV coefficient if we refer to the pilot study 

0.9999 RV coefficient.  

All other distances required a pilot study to cover at least 85% of the study 

area to reach a survey-wide 0.9 RV coefficient, and to reach this survey-wide RV 

coefficient value the RV coefficient of the pilot study needs to be at least of 

0.9999. If the Euclidean, chord, χ2, and Hellinger distances and the distance 

between species profiles need to be used to extract community patterns, it is 

preferable to use a pilot study that includes at least as many SUs as what is 
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planned for the complete study. For example, if the same group of organisms has 

been sampled in previous years, such community data could serve as a reference 

pilot study. In the Ecological illustration, we show how data from a previous year 

can be used as a pilot study to estimate a counting threshold. 

The results discussed above represent the worst scenario of our 

simulations. However, because species abundance distributions are always 

positively skewed for ecological communities, one can refer to the results 

obtained from simulated communities where the species abundance distributions 

follow a lognormal distribution or a broken-stick model (Figure 4B1-4B7). 

However, these simulations should only be referred to if all species sampled in a 

community are used. In any case, it is preferable to refer to the scenario where the 

number of SUs to sample is the largest, as we did in this section. 

ECOLOGICAL ILLUSTRATION 

To illustrate how this new method can be applied to real ecological data, 

we used data about boreal Carabidae data. In that study, 196 sites were sampled 

using pitfall traps (Spence and Niemelä, 1994) in a near-regular grid of 70 km2 of 

mature boreal forest at the Ecosystem Management Emulating Natural 

Disturbances (EMEND) research site located in northwestern Alberta, Canada 

(see Bergeron et al. 2011, 2012 and in Chapter 2 of this thesis). The data include 

9869 individuals defining 45 carabid species. Calathus advena was most abundant 

at any single site with 128 individuals. 

By using data from all the sites, we first estimated the counting threshold 

for future studies with the modified Gower distance using base 2 logarithms. 
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Following, we estimated the counting threshold that would be needed to extract 

the patterns found in this carabid assemblage at different levels of accuracy, again 

with the modified Gower distance.  

When sampling is carried out using pitfall traps, it is common to correct 

for disturbances (e.g., flooding of the trap) by dividing the abundance of each 

species by the number of days a trap was active. The procedure proposed in this 

paper is unaffected by that normalization because the time for which a trap was 

active remains constant regardless of the number of individuals of a species 

counted in a trap. In other words, the normalization does not affect the calculation 

of the counting threshold. For this reason, we can omit any normalizing procedure 

applied on the SUs when estimating the counting threshold.  

Using all beetles sampled at the 196 sites as a pilot study, we estimated 

that with a counting threshold of 4 individuals, a 0.9 RV coefficient can be 

reached with the modified Gower distance using base 2 logarithms. This counting 

threshold of 4 individuals can be used for any future carabid study carried out on 

the EMEND landscape that includes up to 196 sites. This counting threshold of 4 

individuals is valid as long as the modified Gower using a base 2 logarithm is 

used and that a level of correlation between partial and complete-abundance data 

of 0.9 (RV coefficient) is considered reasonable. As can be logically expected, a 

more constraining RV coefficient requires more individuals to be counted. For 

example, a counting threshold of 8 individuals would be needed to attain a 0.95 

RV coefficient whereas a 0.99 RV coefficient would require a counting threshold 

of 19 individuals. 
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These counting thresholds can be translated into cost-effectiveness by 

evaluating the number of individuals that would be counted in total to reach the 

0.9, 0.95, and 0.99 RV coefficient if the same 196 sites were sampled. To reach a 

0.9 RV coefficient, a total of 3513 individuals would have to be counted. This is 

35.6% of all the individuals counted for the full survey. To reach a 0.95 RV 

coefficient we would need to count 5211 individuals (52.8% of all individuals), 

and 7525 individuals (76.2% of all individuals) needed to be counted to reach a 

0.99 RV coefficient. This evaluation of cost-effectiveness shows it is possible 

with real ecological data to be more efficient by counting only a subset of all the 

individuals. 

If we were to sample carabids at 1000 sites across the EMEND landscape, 

what counting threshold should be reached to analyze the future data assuming the 

modified Gower distance with base 2 logarithm was used? If we refer to the 196 

sites already sampled as the pilot study and use the simulation results presented in 

Figure 4B7a, we can answer that question. Because 196 sites = 19.6% of the 1000 

sites we plan to sample, to reach at least a survey-wide 0.95 RV threshold 

between the partial and complete-abundance, a 0.999 RV threshold must be 

attained in the pilot study. With these parameters, we estimated that with a 

counting threshold of 38 individuals, we expect to reach at least a 0.95 RV 

coefficient between partial and complete-abundance. 

Assuming now that we want to plan a survey where 200 sites are sampled 

to study the carabid assemblage on the EMEND landscape, as was originally the 

plan for the carabid study (Bergeron et al. 2011), but that no previous data is 

available to evaluate a counting threshold. To estimate the counting threshold, we 
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first have to decide the particular distance measure in which all analyses need to 

be performed. As for the other examples, we chose the modified Gower distance 

using a base 2 logarithm. 

Referring to the simulation results in Figure 4B7a, we know that 6 

randomly selected sites (3% of the sampling area) are required to estimate the 

counting threshold for a survey-wide 0.95 RV coefficient between partial and 

complete-abundance data by referring to the pilot study 0.9999 RV coefficient 

calculated between partial and complete-abundance data. Because the results in 

Figure 4.4 and Figure 4B7 present extreme cases, it is highly unlikely that the 6 

sites chosen in the pilot study will not reach the minimum number of individuals 

required to reach a survey-wide 0.95 RV coefficient. In fact, it is likely that the 

pilot study will present a number of individuals larger than the minimum required.  

As an example, if we randomly choose six sites in the study area 1000 

times and evaluate the counting threshold for all iterations, we can estimate that 

45 would be the average number of individuals necessary as counting threshold. 

This counting threshold is much larger than the 8 individuals required when we 

have information from the whole dataset. Furthermore, it is comforting that the 

pilot study tends to propose a number of individuals much larger than the 

minimum number required if the survey-wide data was considered. 

Using all the carabid assemblage data, the probability to count too few 

individuals after sampling 6 sites can be calculated. From the example presented 

above, we know that to reach a 0.95 RV coefficient between partial and complete-

abundance, a counting threshold of 8 individuals is needed. For a pilot study to 

underestimate the counting threshold, all six sites in the pilot study need to have 
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fewer than 8 individuals per species. In the actual carabid assemblage data, 35 

sites out of 196 have fewer than 8 individuals. The probability of randomly 

selecting six of these sites is (35/196) × (34/195) × (33/194) × (32/193) × (31/192) 

× (30/191) or 0.000022. If any of the other 161 sites is considered in the pilot 

study, the number of individuals estimated by our procedure will be equal or 

higher than 8, thus reaching at least a survey-wide 0.95 RV coefficient.  

DISCUSSION 

Counting partial-abundance data is a cost-effective approach for sampling 

ecological communities. Because of its flexibility, the approach proposed in this 

paper makes it possible for researchers to decide the accuracy they want to have 

in the data they collect and then to reduce the sampling and identification effort to 

achieve this accuracy. In addition to saving cost, this would help overcome the 

taxonomic impediment to biodiversity studies of arthropods.  

In our simulations, we showed that it was possible to estimate a counting 

threshold by using as few as 3% of the SUs. Although our results lead us to 

believe that, up to a certain extent, a larger pilot study points to a smaller counting 

threhold, it is left at the discretion of the researcher to consider a larger number of 

SUs in the pilot study. However, for surveys where the number of SUs to be 

sampled is small, a pilot study should include a minimum of 5 SUs to ensure that 

the chance of sampling too few individuals is low. 

Pilot studies are at the core of the procedure we proposed in this paper. If 

in the pilot study the counting threshold calculated seems too low, considering 

more SUs in the pilot study should improve the estimation of the counting 
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threshold. Because the information gained in the pilot study may be included in 

the full study, the cost of considering additional SUs in the pilot study is not as 

important as it would be if it was carried out independent from the survey-wide 

study. Moreover, if the SUs considered in the pilot study present a surprising low 

number of individuals, they should be quick to count compared to SUs with larger 

abundances, making the effort to include new SUs in the pilot study less of a 

constraint. 

Counting partial-abundance data in a pilot study may be easy or difficult 

depending on the survey design and the organisms sampled. For example, if 

individuals are collected in the field and brought to a laboratory for sorting, 

identification, and counting, it is easy to reevaluate the counting threshold with a 

minimum of effort because all pilot study SUs are readily available. Insects, 

mites, and spiders are typical examples of organisms that allow such flexibility 

because they are usually sample in traps, and when sorting and identification is 

carried out all traps are easily accessible. Conversely, if organisms need to be 

recorded in the field (e.g., trees or birds), a pilot study would need to be carried 

out before the full-scale survey begins. However, as explained in the previous 

paragraph, the time spent on the pilot study is not usually lost because the data 

collected while carrying out the pilot study can often be included in the final 

dataset. Moreover, as we have shown, the pilot study will make it possible to be 

much more cost-effective when surveying. 

In the context of this procedure, community data can be organized in two 

distinct groups: (1) Where the sampling is carried out blindly (e.g., fish in a lake, 

birds in a forest, mites in soil cores) or (2) where the number of individuals within 



  172 

a SU can be coarsely assessed (e.g., trees in a forests, carabids in pitfall traps). 

When sampling is carried out blindly, we have to rely on the knowledge gained 

from the pilot study to estimate a counting threshold. As we have shown, this is 

by no mean constraining because it is highly unlikely that one will consistently 

sample SUs with very low abundance.  

If coarse evaluation of the number of individuals can be made, the SUs 

used to carry out a pilot study do not need to be randomly selected; in fact, they 

can be chosen by considering the ones with large numbers of individuals. This 

would prevent researchers from estimating a counting threshold that is too low.  

We have also shown that the distance used to analyze the data can have 

tremendous impact on the number of sites to consider in a pilot study. In that 

instance, it becomes important to choose the distance with which all our analysis 

will be carried out before sampling the community. For simple and canonical 

ordinations, it is common for researcher to be ambivalent about the choice of 

dissimilarity to use. This confusion is justified at least for canonical ordinations 

where the differences for using one distance over another are usually minor 

(Blanchet et al. unpublished). With the result found here, we show that the 

modified Gower distance using a base 2 logarithm is very efficient. Although the 

modified Gower distance has been given more emphasis in this paper, it does not 

mean that the other distances should not be used. However, the counting threshold 

should be expected to be higher than when the modified Gower distance is used.  

The counting procedure we propose in this paper applies to a broad range 

of ecological surveys, but not to all of them. If each individual needs to be 

handled separately for taxonomic identification, it is irrelevant to use the proposed 
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counting approach because all individuals sampled would need to be manipulated 

anyways. For example, the counting procedure cannot be applied to zooplankton 

collected in vials because each animal needs to be handled individually for 

identification. Note, however, that our counting procedure can be used for 

vegetation quadrats, where percentage of cover can be readily estimated, as well 

as for any group of organisms where individuals can be easily identified and 

counted. 

In this paper, we showed that using prior information from a pilot study to 

evaluate community patterns can be useful to increase cost-effectiveness while 

minimizing the loss of information. The proposed counting procedure has the 

potential to be applied to numerous types of studies within and outside the scope 

of ecology. In ecology, it can be valuable for large-scale monitoring studies such 

as the Alberta Biodiviersity Monitoring Institute project (Boutin et al. 2009). In 

some studies involving organisms whose sizes differ greatly, abundance data may 

be transformed to biomass data. It is possible to evaluate a counting threshold on 

biomass data using the approach proposed in this paper. Our approach is also 

applicable to landscape genetics where gene (or marker, etc.) frequencies in local 

populations are used instead of species frequencies. Since the lab work is costly in 

genetic studies, our approach could lead to important savings of technician time 

and materials. Although our counting approach has been presented mainly in the 

context of terrestrial surveys, it can be applied as well to aquatic communities. 

Outside the scope of ecology, it can be applied to any situations where many 

count variables are measured for a series of SUs. 
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The conclusions reached in this paper rely on simulated data. Although we 

tried to make these simulations as general as possible, we knew it was impossible 

to simulate all possible cases found in nature (Milligan 1996).  
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TABLE 4.1: Fictitious example illustrating the counting procedure proposed in this paper. 

 Complete abundance 
 Species A Species B Species C Species D Species E 

Sampling unit 1 0 2 10 100 900 
Sampling unit 2 500 100 9 0 3 

 After reaching a counting threshold of 8 individuals 
 Species A Species B Species C Species D Species E 

Sampling unit 1 0 2 8 8 8 
Sampling unit 2 8 8 8 0 3 
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FIGURE 4.1. Simulation results of the multivariate correlation (using RV coefficient) between 
increasingly precise partial-abundance community data and the complete-abundance 
community data using raw data. The counting threshold (abscissa) is the maximum number of 
individuals counted for a species within a sampling unit. The ordinate represents the RV 
coefficients. Each panel presents the results of a set of simulated communities. Light grey areas 
represent the 99% empirical confidence intervals of the simulation results (constructed using 
the 5th and 995th largest RV coefficients associated with each increasingly precise partial-
abundance data), the dark grey areas the 95% empirical confidence intervals (constructed using 
the 25th and 975th largest RV coefficients associated with each increasingly precise partial-
abundance data), and the black lines are the medians per count threshold value. 
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FIGURE 4.2. Explanation of the procedure used to correlate (using the RV-coefficient) partial (Yp) 
and complete-abundance (Yc) community matrices using different distances. (a) If the distance 
can be applied to the community data using pre-transformation, or if the raw data are used, 
partial and complete-abundance community matrices can be correlated after the pre-
transformation is carried out. (b) If the distance cannot be applied to the community data using 
pre-transformation, symmetric distance matrices must be computed for partial (Dp) and 
complete-abundance (Dc) data. Because the RV-coefficient can only be used to correlate 
rectangular matrices with the same number of rows, a principal coordinates analysis (PCoA) is 
calculated on the symmetric distance matrices to obtain rectangular matrices Yp

* and Yc
*where 

the number of rows equals the number of SUs and the columns are eigenvectors. It then becomes 
possible to use the RV-coefficient to correlate Yp

* and Yc
*. 
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FIGURE 4.3. Simulation results of the multivariate correlation (using RV coefficient) between 

increasingly precise partial-abundance community data and the complete-abundance community 
data. All species in the simulated communities were composed of ~500 individuals and species 
were highly aggregated in the sampling area. The counting threshold (abscissa) is the maximum 
number of individuals counted for a species within a sampling unit. The ordinate represents the 
RV coefficients. Each panel presents the results for one distance measure. Light grey areas 
represent the 99% empirical confidence intervals of the simulation results (constructed using the 
5th and 995th largest RV coefficients associated with each increasingly precise partial-abundance 
data), the dark grey areas the 95% empirical confidence intervals (constructed using the 25th and 
975th largest RV coefficients associated with each increasingly precise partial-abundance data), 
and the black lines are the medians per count threshold value. 
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FIGURE 4.4. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between six distances for 0.9, 0.95, 0.99, 0.999, and 0.9999 RV coefficient 
calculated between partial and complete-abundance to be met. The species in the simulated 
communities were all composed of ~500 individuals and the range of their spatial aggregation 
level was broad. The survey-wide RV coefficients are represented by dotted lines. They are the 
lower bounds of the 99% confidence intervals of the simulations results presented in Figure 4.2. 
The full lines represent the RV coefficient between partial and complete-abundance calculated 
using pilot studies data. To obtain the pilot study RV coefficient, the sampling units were 
ordered to form an abundance gradient, from the ones that contained the lowest maximum counts 
of individual for any one species to the ones that presented the largest counts. Following this 
order, the sites were sequentially included in the pilot study. The values on the ordinates 
represent the number of individuals that need to be counted to reach an RV coefficient between 
partial and complete-abundance data. The ordinates were log-transformed for visual clarity. The 
counting threshold is the maximum number of individuals counted for a species within a 
sampling unit. 
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APPENDIX 4A 

 
FIGURE 4A1. Simulation results of the multivariate correlation (using RV coefficient) between 

increasingly precise partial-abundance community data and the complete-abundance community 
data. The species abundance distribution of the simulated communities used to obtain this result 
follow a lognormal distribution and the range of aggregation of the species in the sampling area 
was broad. The counting threshold (abscissa) is the maximum number of individuals counted for 
a species within a sampling unit. The ordinate represents the RV coefficient. Each panel presents 
the results of one distance. Light grey areas represent the 99% empirical confidence intervals of 
the simulation results (constructed using the 5th and 995th largest RV coefficients associated with 
each increasingly precise partial-abundance data), the dark grey areas the 95% empirical 
confidence intervals (constructed using the 25th and 975th largest RV coefficients associated with 
each increasingly precise partial-abundance data), and the black lines are the medians per count 
threshold value. 
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FIGURE 4A2. Simulation results of the multivariate correlation (using RV coefficient) between 
increasingly precise partial-abundance community data and the complete-abundance community 
data. The species abundance distribution of the simulated communities used to obtain this result 
follow a broken stick model and the range of aggregation of the species in the sampling area was 
broad. The counting threshold (abscissa) is the maximum number of individuals counted for a 
species within a sampling unit. The ordinate represents the RV coefficient. Each panel presents 
the results of one distance. Light grey areas represent the 99% empirical confidence intervals of 
the simulation results (constructed using the 5th and 995th largest RV coefficients associated with 
each increasingly precise partial-abundance data), the dark grey areas the 95% empirical 
confidence intervals (constructed using the 25th and 975th largest RV coefficients associated with 
each increasingly precise partial-abundance data), and the black lines are the medians per count 
threshold value. 
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FIGURE 4A3. Simulation results of the multivariate correlation (using RV coefficient) between 

increasingly precise partial-abundance community data and the complete-abundance community 
data. The species abundance distribution of the simulated communities used to obtain this result 
follow a lognormal distribution and species were highly aggregated. The counting threshold 
(abscissa) is the maximum number of individuals counted for a species within a sampling unit. 
The ordinate represents the RV coefficient. Each panel presents the results of one distance. Light 
grey areas represent the 99% empirical confidence intervals of the simulation results 
(constructed using the 5th and 995th largest RV coefficients associated with each increasingly 
precise partial-abundance data), the dark grey areas the 95% empirical confidence intervals 
(constructed using the 25th and 975th largest RV coefficients associated with each increasingly 
precise partial-abundance data), and the black lines are the medians per count threshold value. 
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FIGURE 4A4. Simulation results of the multivariate correlation (using RV coefficient) between 

increasingly precise partial-abundance community data and the complete-abundance community 
data. The species abundance distribution of the simulated communities used to obtain this result 
follow a broken-stick model and species were highly aggregated. The counting threshold 
(abscissa) is the maximum number of individuals counted for a species within a sampling unit. 
The ordinate represents the RV coefficient. Each panel presents the results of one distance. Light 
grey areas represent the 99% empirical confidence intervals of the simulation results 
(constructed using the 5th and 995th largest RV coefficients associated with each increasingly 
precise partial-abundance data), the dark grey areas the 95% empirical confidence intervals 
(constructed using the 25th and 975th largest RV coefficients associated with each increasingly 
precise partial-abundance data), and the black lines are the medians per count threshold value. 
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FIGURE 4A5. Simulation results of the multivariate correlation (using RV coefficient) between 

increasingly precise partial-abundance community data and the complete-abundance community 
data. All species in the simulated communities were composed of ~ 500 individuals and species 
were randomly distributed in the sampling area. The counting threshold (abscissa) is the 
maximum number of individuals counted for a species within a sampling unit. The ordinate 
represents the RV coefficient. Each panel presents the results of one distance. Light grey areas 
represent the 99% empirical confidence intervals of the simulation results (constructed using the 
5th and 995th largest RV coefficients associated with each increasingly precise partial-abundance 
data), the dark grey areas the 95% empirical confidence intervals (constructed using the 25th and 
975th largest RV coefficients associated with each increasingly precise partial-abundance data), 
and the black lines are the medians per count threshold value. 
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FIGURE 4A6. Simulation results of the multivariate correlation (using RV coefficient) between 

increasingly precise partial-abundance community data and the complete-abundance community 
data. All species in the simulated communities were composed of ~ 500 individuals and the 
range of aggregation of the species in the sampling area was broad. The counting threshold 
(abscissa) is the maximum number of individuals counted for a species within a sampling unit. 
The ordinate represents the RV coefficient. Each panel presents the results of one distance. Light 
grey areas represent the 99% empirical confidence intervals of the simulation results 
(constructed using the 5th and 995th largest RV coefficients associated with each increasingly 
precise partial-abundance data), the dark grey areas the 95% empirical confidence intervals 
(constructed using the 25th and 975th largest RV coefficients associated with each increasingly 
precise partial-abundance data), and the black lines are the medians per count threshold value. 
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APPENDIX 4B 

 
 
FIGURE 4B1. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the Euclidean distance is used. The survey-wide RV coefficients are represented by dotted lines. 
They are the lower bounds of the 99% confidence intervals of the simulations results presented 
in Figure 4.2. The full lines represent the RV coefficient between partial and complete-
abundance calculated using pilot studies data. To obtain the pilot study RV coefficient, the 
sampling units were ordered to form an abundance gradient, from the ones that contained the 
lowest maximum counts of individual for any one species to the ones that presented the largest 
counts. Following this order, the sites were sequentially included in the pilot study. The values 
on the ordinates represent the number of individuals that need to be counted to reach an RV 
coefficient between partial and complete-abundance data. The ordinates were log-transformed 
for visual clarity. The counting threshold is the maximum number of individuals counted for a 
species within a sampling unit. 
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FIGURE 4B2. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the Hellinger distance is used. The survey-wide RV coefficients are represented by dotted lines. 
They are the lower bounds of the 99% confidence intervals of the simulations results presented 
in Figure 4.2. The full lines define the RV coefficient between partial and complete-abundance 
calculated using pilot studies data. To obtain the pilot study RV coefficient, the sampling units 
were ordered to form an abundance gradient, from the ones that contained the lowest maximum 
counts of individual for any one species to the ones that presented the largest counts. Following 
this order, the sites were sequentially included in the pilot study. The values on the ordinates 
represent the number of individuals that need to be counted to reach an RV coefficient between 
partial and complete-abundance data. The ordinates were log-transformed for visual clarity. The 
counting threshold is the maximum number of individuals counted for a species within a 
sampling unit. 
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FIGURE 4B3. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the chord distance is used. The survey-wide RV coefficients are represented by dotted lines. 
They are the lower bounds of the 99% confidence intervals of the simulations results presented 
in Figure 4.2. The full lines define the RV coefficient between partial and complete-abundance 
calculated using pilot studies data. To obtain the pilot study RV coefficient, the sampling units 
were ordered to form an abundance gradient, from the ones that contained the lowest maximum 
counts of individual for any one species to the ones that presented the largest counts. Following 
this order, the sites were sequentially included in the pilot study. The values on the ordinates 
represent the number of individuals that need to be counted to reach an RV coefficient between 
partial and complete-abundance data. The ordinates were log-transformed for visual clarity. The 
counting threshold is the maximum number of individuals counted for a species within a 
sampling unit. 
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FIGURE 4B4. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the distance between species profile is used. The survey-wide RV coefficients are represented by 
dotted lines. They are the lower bounds of the 99% confidence intervals of the simulations 
results presented in Figure 4.2. The full lines define the RV coefficient between partial and 
complete-abundance calculated using pilot studies data. To obtain the pilot study RV coefficient, 
the sampling units were ordered to form an abundance gradient, from the ones that contained the 
lowest maximum counts of individual for any one species to the ones that presented the largest 
counts. Following this order, the sites were sequentially included in the pilot study. The values 
on the ordinates represent the number of individuals that need to be counted to reach an RV 
coefficient between partial and complete-abundance data. The ordinates were log-transformed 
for visual clarity. The counting threshold is the maximum number of individuals counted for a 
species within a sampling unit. 
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FIGURE 4B5. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the χ2 distance is used. The survey-wide RV coefficients are represented by dotted lines. They 
are the lower bounds of the 99% confidence intervals of the simulations results presented in 
Figure 4.2. The full lines define the RV coefficient between partial and complete-abundance 
calculated using pilot studies data. To obtain the pilot study RV coefficient, the sampling units 
were ordered to form an abundance gradient, from the ones that contained the lowest maximum 
counts of individual for any one species to the ones that presented the largest counts. Following 
this order, the sites were sequentially included in the pilot study. The values on the ordinates 
represent the number of individuals that need to be counted to reach an RV coefficient between 
partial and complete-abundance data. The ordinates were log-transformed for visual clarity. The 
counting threshold is the maximum number of individuals counted for a species within a 
sampling unit. 
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FIGURE 4B6. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the percentage difference distance is used. The survey-wide RV coefficients are represented by 
dotted lines. They are the lower bounds of the 99% confidence intervals of the simulations 
results presented in Figure 4.2. The full lines define the RV coefficient between partial and 
complete-abundance calculated using pilot studies data. To obtain the pilot study RV coefficient, 
the sampling units were ordered to form an abundance gradient, from the ones that contained the 
lowest maximum counts of individual for any one species to the ones that presented the largest 
counts. Following this order, the sites were sequentially included in the pilot study. The values 
on the ordinates represent the number of individuals that need to be counted to reach an RV 
coefficient between partial and complete-abundance data. The ordinates were log-transformed 
for visual clarity. The counting threshold is the maximum number of individuals counted for a 
species within a sampling unit. 
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FIGURE 4B7. Percentage of sites required in a pilot study to accurately estimate the number of 

individuals that needs to be counted when sampling partial-abundances. In this figure, we focus 
on the differences between the seven types of simulated communities for 0.9, 0.95, 0.99, 0.999, 
and 0.9999 RV coefficient calculated between partial and complete-abundance to be met when 
the modified Gower distance calculated with a log base 2 is used. The survey-wide RV 
coefficients are represented by dotted lines. They are the lower bounds of the 99% confidence 
intervals of the simulations results presented in Figure 4.2. The full lines define the RV 
coefficient between partial and complete-abundance calculated using pilot studies data. To 
obtain the pilot study RV coefficient, the sampling units were ordered to form an abundance 
gradient, from the ones that contained the lowest maximum counts of individual for any one 
species to the ones that presented the largest counts. Following this order, the sites were 
sequentially included in the pilot study. The values on the ordinates represent the number of 
individuals that need to be counted to reach an RV coefficient between partial and complete-
abundance data. The ordinates were log-transformed for visual clarity. The counting threshold is 
the maximum number of individuals counted for a species within a sampling unit. 
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Conclusion 

This thesis presents a detailed study of the use of space ad habitat by 

boreal forest Carabidae (Chapter 2) and two methodological developments 

(Chapter 3 and 4) to improve the use of resemblance measures in analysis of 

ecological communities. In chapter 2, I use a broad scale study of Carabidae to 

more fully understand how anthropogenic disturbances, habitat heterogeneity, and 

spatial autocorrelation influence the distribution of these insects. In chapter 3, I 

present a new approach to canonical ordination that makes a consensus of RDAs 

performed on the same data but with different resemblance measures. These 

resemblance measures capture similar patterns of a dataset when used in a 

canonical analysis and a consensus amplifies the most constant patterns. In 

chapter 4, I propose a new procedure that allows researchers to obtain the same 

conclusions from a study but using only a fraction of the data that would 

otherwise be required.  

The second chapter of this thesis revealed that forest floor cover, soil 

drainage, and tree composition were the main factors explaining the boreal forest 

ground beetle assemblages in northwestern Alberta. It also showed that roads, 

seismic lines, and forest harvest viewed at the landscape scale had little impact on 

the spatial distribution of Carabidae. Although effects were more notable at the 

stand scale, the results provided encouragements and showed that it is possible to 

manage boreal forest in the presence of anthropogenic disturbances in a way that 

conserves insect biodiversity. At the landscape scale, however, it appears that 
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presence of large interconnected patches of mature boreal forest is important to 

the maintenance of ground beetle diversity. This research focuses on broad scale 

patterns of ground beetles. This study says little about how these insects are 

spatially structured at a fine scale. However, together with the literature focusing 

on carabid communities at a scale of less than a few hectares (for reviews see 

Thiele 1977 and Lövei and Sunderland 1996), the results obtained can be useful to 

generate novel hypotheses about the factors that influence the distribution of 

carabids across scales. 

The third chapter showed through extensive simulations that the species 

abundance distribution (SAD) of a community cannot serve as a tool to select a 

resemblance measure. I could however show that most resemblance measures are 

equivalent and the performance of the measures is not affected by variations in 

SADs. These conclusions are valid for both abundance and presence-absence 

data. This result prompted the development of a mathematical method where a 

consensus among RDAs is constructed across resemblance measures. This new 

approach was developed because resemblance measures may influence the 

interpretation of community data. A consensus of RDAs across a group of 

resemblance measures has the advantage to prevent the bias imposed by 

resemblance measure from occurring. By using this approach, more emphasis is 

given to the commonality among resemblance measure in term of the information 

on sites, species, and explanatory variables that they provide. In this chapter, I 

also show that when a community is composed of many rare species, abundance 

data brings little new information about community structure not already given by 

presence-absence data. Based on these findings, I propose to use species presence 
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distribution to evaluate the importance of the information lost by sampling 

presence-absence. The research presented in this chapter gives only rudimentary 

insights about SAD comparisons and suggests that the information lost from 

converting the multivariate community data into SADs is important. However, 

because this chapter focuses only on the SADs presented in Figure 3.1, further 

work needs to be carried out to develop a robust theory to compare all SADs, as 

proposed by McGill et al. (2007). 

The fourth chapter of this thesis showed that patterns defining a species 

community (spatial, environmental, and/or others) can be effectively elaborated 

even when not all individuals of a community are counted. This result suggests it 

is possible to estimate a counting threshold, the maximum number of individuals 

per species that need to be counted within a sampling unit, to extract a minimum 

set of data that would sufficiently represent the true community. When this 

counting threshold is reached, the community patterns revealed will present very 

high correlation with the community where all individuals are counted. We show 

that when this counting approach is used in association with a resemblance 

measure, it becomes much more efficient and has the potential to be applied to 

almost any type of multivariate count datasets - ecological or other. The new 

counting method proposed in this chapter will increase cost-efficiency when 

sampling is done to construct multivariate datasets. However, this new counting 

approach is not useful in situations where all individuals need to be independently 

examined to identify them. Also, although this approach is well adapted to 

multivariate datasets, this chapter does not show if the same counting approach 

could be generalized to univariate data.  
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The conclusion reached and the analytical development proposed in 

chapters 3 and 4 are based on simulated data. Although all efforts were put in 

place to make these simulations as general as possible, it is impossible to simulate 

all types of ecological data (Milligan 1996). Further empirical tests of the 

developed methods are warranted. 
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