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Abstract

This thesis explores the effect of fluid substitution, pore-pressure diffusion

and stresses due to hydraulic fracturing on the elastic velocities and microc-

rack orientations in the surrounding rock. I develop a workflow incorporating

three main components to model the velocity field around the fracture. Frac-

ture induced confining-stresses are analytically modelled using Eshelby’s inclu-

sion method, pore-pressure diffusion is numerically modelled and the resulting

anisotropic velocity is found by modelling preferential opening/closing of a mi-

crocrack distribution using the Anisotropic Poroelasticity model. I investigate

two categories of subsurface scenario: an isotropic reservoir experiencing an

uniaxial confining-stress perturbation and an anisotropic reservoir experiencing

pore-pressure diffusion and a triaxial confining-stress perturbation. I find that

the simplified uniaxial-stress implementation is inadequate in approximating

the triaxial stress with pore-pressure diffusion implementation, and the region

around a hydraulic fracture can be divided into four spatiotemporal zones of

differing modelled characteristics: the proximal, compressive, shear and tensile

zones.
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Preface

Portions of this thesis have been presented at national and international confer-

ences. The material presented in Chapter 3 is based on work that was presented

in a poster session at the 2016 GeoConvention in Calgary, Alberta. The mate-

rial presented in Chapters 4 and 5 is based on work that was presented orally

at the 2017 Society of Exploration Geophysicists Annual International Meeting

in Houston, Texas.
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Chapter 1

Introduction

1.1 Hydraulic Fracturing

The technique of hydraulic fracturing has been known for over 70 years with the

first hydraulic fracturing experiment being performed in 1947 (King, 2012). By

2012 the Society of Petroleum Engineers estimates that approximately 2.5 mil-

lion hydraulic fracturing treatments had been completed globally. The process

of hydraulic fracturing is primarily used to maximize recovery of hydrocarbons

from producing reservoirs and to facilitate hydrocarbon recovery from uncon-

ventional reservoirs, such as shale-gas and tight-gas plays (Van der Baan et al.,

2013). The introduction of horizontal drilling coupled with improvements in

hydraulic fracturing technology has led to a boom in unconventional resource

production. In 2000 only 1% of the total hydrocarbon gas production in the

United States originated from shale-gas fields. Compare that to 2016 where

the United States Energy Information Administration estimates that approxi-

mately 70% of dry natural gas produced in the United States originated from

shale-gas and tight-gas fields (US EIA, 2016). Figure 1.1 illustrates that in

North America alone there are several untapped prospective shale plays, indi-

cating that there is still room for growth in the unconventional sector. This

potential for growth is reflected in the United States Energy Information Ad-
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ministrations 2040 projection for dry natural gas production, see Figure 1.2.

By 2040, approximately 85% of the total United States dry natural gas pro-

duction is projected to originate from shale-gas and tight-gas plays with the

majority of growth expected from shale-gas plays.

Improved hydrocarbon recovery is not the only useful application of hy-

draulic fracturing. For example, the efficiency of heat transfer in enhanced

geothermal systems has been improved by hydraulically fracturing hot imper-

meable crystalline rock, such as granite (Shao et al., 2015).

Figure 1.1: A map of current and prospective shale plays in North America.
Source: US EIA (2016).

The process of hydraulic fracturing first involves drilling a well, either ver-

tical or horizontal, into a target formation. Then fluids are injected into the

formation via the well-bore under high pressures with the goal of inducing the

growth of a fracture or fracture network into the reservoir (Van der Baan et al.,
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Figure 1.2: United States dry natural gas production broken down by source
for 1990 to 2015 with projections of production extended to 2040. Source: US
EIA (2016).

2013). High pressures are needed in order to reverse the flow of fluids back into

the reservoir (King, 2012). The fracture or fracture network will enhance reser-

voir drainage by increasing the effective permeability of the reservoir rock by

creating high permeability flow paths through the fractures themselves. The

volume of the reservoir that has been connected to the well-bore by the high

permeability flow paths is referred to as the stimulated reservoir volume. The

fracturing fluids often contain a granular proppant to help maintain the frac-

ture aspect ratio during production. Hydraulic fractures are typically two to

three millimetres in width and are often oriented such that the plane of the

fracture is perpendicular to the minimum confining-stress direction.
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1.2 Thesis Motivation

In order to estimate the stimulated volume of the reservoir, a complete ‘image’

of the hydraulic fracture network is needed. However, there are no direct meth-

ods of completely imaging a fracture in the subsurface. Borehole cameras can

be used to directly image the extent of a fracture at the borehole walls (King,

2012). This method requires a clear fluid in the borehole and most cameras do

not function under high pressures. More importantly, images obtained with a

borehole camera fail at capturing the full extent of the fracture into the rock

formation.

There are several indirect methods of estimating the stimulate volume in-

cluding tilt meter measurements and microseismic event locations. Event loca-

tions of microseismic events provide the most complete ‘image’ and are com-

monly used to create a map of the fracture system. Microseismic measurements

allow for near real-time mapping of the fracture system. However, there is cur-

rently a large degree of uncertainty inherent in event location positioning and

this can lead to an incomplete or incorrect fracture map (Van der Baan et al.,

2013). This uncertainty can lead to different service companies obtaining dif-

ferent event locations using the same dataset.

One source of uncertainty is that current emphasis is placed on mapping

brittle failure but evidence indicates that only a small portion of the total

energy injected into the subsurface is released through brittle failure (Maxwell

et al., 2009). Up to 85% of the input energy may be released aseismically or at

frequencies that are too low to be detected using current recording instruments

(Maxwell et al., 2008; Boroumand and Eaton, 2012).

Another source of event location uncertainty stems from the demand for

near real-time hypocentre locations. Currently, real-time microseismic process-

ing requires automation and information reduction. Uncertainty arises from the

use of different event location algorithms, the choice of how to consistently pick
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P- an S-wave arrivals in large datasets and the choice of the most appropriate

velocity model (Van der Baan et al., 2013).

A recent study by Nolte et al. (2017) shows that time-lapse seismic obser-

vations of variation in S-wave splitting over time can be used to detect pore-

pressure increases in the subsurface. S-wave splitting is caused by orthogonally

polarized S-waves having different velocities which is caused by anisotropy. S-

wave splitting and elastic anisotropy are discussed in more detail in Chapter

2 and Chapters 4 to 6. Velocity anisotropy can be caused by the opening

and closing of preferentially oriented fractures and cracks, for instance due to

changes in pore-pressure and/or elastic-stress perturbations, such as those oc-

curring during hydraulic fracturing treatments. S-wave splitting as a result of

pore-pressure changes has been observed in the field. Any three component mi-

croseismic dataset could contain information regarding S-wave splitting. There-

fore, if we understand the processes acting around a given hydraulic fracture

that influence seismic velocities, we can predict the velocity character that will

manifest in the vicinity of a hydraulic fracture and vice versa.

The goal of this thesis to develop an additional tool that can be used along

with tilt meter measurements and microseismic event locations to create hy-

draulic fracture maps with lower associated uncertainty. To achieve this goal

we develop a model that integrates the geomechanics of hydraulic fracture

opening/closing and the rock physics of seismic velocity determination. Hence,

observations of seismic velocity changes and changes in velocity anisotropy may

enable a more accurate ‘image’ of the fracture system. Additionally, this model

may be used with seismic velocity measurements to reveal information about

the reservoir in-situ stress field that can aid operators in optimizing fracture

treatments.
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1.3 Thesis Organization

This thesis is organized into an introduction chapter, Chapter 1, followed by

five stand-alone studies, Chapters 2 to 6, and ending with a summary chapter,

Chapter 7. The summary chapter also includes a section on suggested future

work that could extend the body of knowledge produced in this thesis. The five

stand-alone studies follow a logical progression of topics involved in building an

integrated model of velocity anisotropy in the vicinity of a hydraulic fracture,

as outlined below.

1.3.1 Chapter 2 - A Review of Processes Affecting Seis-

mic Velocities

In Chapter 2, we discuss the processes that occur in the vicinity of a hydraulic

fracture that affect seismic velocities. We introduce the processes of fluid inva-

sion, pore-pressure perturbation and confining-stress change. Then we discuss

the predicted effect of each process on P- and S-wave velocities and the pre-

dicted effect on elastic anisotropy.

1.3.2 Chapter 3 - Isotropic Velocity Sensitivity

In Chapter 3, we consider the case of a hydraulic fracture in an isotropic

medium. We develop a workflow to model the isotropic P- and S-wave veloc-

ity response to fluid invasion, pore-pressure perturbation and confining-stress

change. Then we perform a sensitivity analysis on the model input parameters

and discuss the results in regards to the volume of rock around a hydraulic

fracture.
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1.3.3 Chapter 4 - Pore-Pressure Diffusion and Confining-

Stress Modelling

In Chapter 4, we consider the case of a hydraulic fracture growing in a low-

porosity, isotropic reservoir. We develop a workflow to model triaxial confining-

stress change and hydrostatic pore-pressure perturbation in the vicinity of the

fracture. Then we combine the stress and pressure changes as effective stress

change and discuss the results in the context of the predicted effect on seismic

velocities.

1.3.4 Chapter 5 - Uniaxial Stress: Anisotropic Velocity

Sensitivity

In Chapter 5, we consider the case of a hydraulic fracture in an initially isotropic

medium that contains an isotropic distribution of microcracks. We assume

that the permeability of the medium is very small and we ignore pore-pressure

changes. We focus on the large region adjacent to the fracture faces that

experiences compressive stress and we assume that the compressive stress in

this region is uniaxial. Then we use the Anisotropic Poroelasticity model of

Crampin and Zatsepin (1997) and Zatsepin and Crampin (1997) to model the

anisotropic velocity response and we perform a sensitivity analysis on the model

input parameters. Finally, we discuss the results in regards to the volume of

rock around a hydraulic fracture.

1.3.5 Chapter 6 - Triaxial Stress: Shear Wave Anisotropy

In Chapter 6, we consider the case of a hydraulic fracture growing in an ini-

tially anisotropic medium. The initial anisotropy is the result of a triaxial

in-situ stress field causing an anisotropic microcrack distribution. We develop

a workflow model the heterogeneous anisotropic S-wave velocity response in

the vicinity of the fracture by integrating a modified version of Crampin and
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Zatsepin (1997) and Zatsepin and Crampin (1997)’s Anisotropic Poroelasticity

model with the pore-pressure perturbation and triaxial confining-stress change

models from Chapter 4. Finally, we discuss the results in regards to the volume

of rock around a hydraulic fracture.

1.3.6 Chapter 7 - Summary and Future Work

Chapter 7 contains the conclusions and the recommendations for future re-

search.
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Chapter 2

A Review of Processes Affecting

Seismic Velocity

As a hydraulic fracture is propagated and held open by the injected high pres-

sure fluids, several processes occur simultaneously that change the physical

environment in the rock volume surrounding the fracture. These processes

include pore-pressure diffusion, fracturing fluid invasion and rock matrix defor-

mation (Cipolla et al., 2011; Warpinski, 1994; Warpinski et al., 2004). Figure

2.1 illustrates the relative regions of influence of pore-pressure diffusion, fractur-

ing fluid invasion and rock matrix deformation. A decaying pressure gradient

is created between the high-pressure fracture and the lower-pressure, far field,

reservoir pore space. This pressure gradient drives the displacement of reser-

voir pore fluids by fracturing fluids. The fracturing fluids flow through the

walls of the fracture into the porous reservoir rock and into existing natural

fractures that intersect the hydraulic fracture. Additionally, the opening of a

fracture involves the displacement of rock away from a plane oriented along the

median of the fracture. This displacement induces perturbations to the in-situ

confining-stress field in the rock volume near the fracture. The combined effect

of these three processes will alter the bulk mechanical properties of the reser-

voir close to a hydraulic fracture and these changes should be detectable using
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seismic data.

Figure 2.1: A horizontal cross-section through a vertical hydraulic fracture
extending from a vertical well illustrating the relative zones of influence of pore
pressure, rock deformation and crack propagation in the surrounding region,
modified from Cipolla et al. (2011). The term leakoff refers to pore-pressure
changes due to fluid invasion into the pore system of the reservoir. The spatial
extent of the leakoff region is time dependent and at the initiation of fluid
injection has a much smaller spatial extent than shown here. This cross-section
is a ”snapshot” in time after fluid invasion has had sufficient time to reach the
present spatial extent. In this figure, Cipolla et al. (2011) denotes fluid injection
pressure as Pf, confining stress as σc and initial pore pressure as Pi. We limit
the use of Cipolla et al. (2011)’s symbology to this figure alone.

2.1 Pore-Pressure Diffusion

During a hydraulic fracture treatment the pressure in the fracture is raised

above that of the in-situ reservoir pore pressure. This creates a spatial pres-

sure gradient that decays with increasing distance from the fracture (Howard,

1970). The pressure gradient itself will also decay with increasing time from the

termination of the treatment. The shape of this spatiotemporal pressure gradi-

ent is controlled by many parameters including, the difference between fracture
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and reservoir pressure, the reservoir and natural fracture permeabilities, reser-

voir porosity, and the fracture and reservoir fluid density and compressibility

(Warpinski, 1994). For example, a highly-compressible gas saturated reservoir

will exhibit a steep pressure gradient due to the inefficiency of a compressible

gas in communicating pressure through the pore system. However, in a liquid-

saturated reservoir the pressure gradient will be more gradual, and will extend

a further distance from the fracture.

By considering the effect of elevated pore pressure in the region of a sin-

gle spherical fluid-filled pore we can understand the resultant changes in rock

density and seismic velocities. Increased pressure within a pore tends to force

the surrounding rock grains apart, thus tending to increase the volume of the

pore. The effective density, ρeff , of the effective medium describing a porous

rock is given by the following equation:

ρeff = (1− φ)ρrock + φρfluid , (2.1)

where φ is the porosity of the effective medium, ρrock is the density of the rock

and ρfluid is the density of the pore fluid (Jaeger et al., 2007). Equation 2.1

shows that an increase in porosity will result in a decrease in effective density,

as solid rock is generally more dense than common pore saturating fluids (i.e.

brine and hydrocarbons). A decrease in effective density will tend to cause an

increase in S-wave velocity. This can be seen by considering the equation for

S-wave velocity in a homogeneous, isotropic, elastic medium:

vs =

√
μ

ρeff
, (2.2)

where vs is the S-wave velocity, μ is the shear modulus and ρeff is the effective

density of the medium (Mavko et al., 2009). The shear modulus is determined

only by rock matrix properties as it is insensitive to changes in pore fluids. The

effect of increased pore pressure on P-wave velocity can be seen by considering
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Wyllie’s time-average equation for P-wave velocity in porous, isotropic, fluid-

saturated rock under high pressure. Based on laboratory measurements on

porous sedimentary rocks, Wyllie et al. (1956) gave a empirical expression for

P-wave velocity, vp, in fluid-saturated porous rock,

1

vp
=

φ

vp,fluid
+

1− φ

vp,matrix

, (2.3)

where vp,fluid is the P-wave velocity in the fluid, vp,matrix is the P-wave velocity

in the matrix alone, and φ is the porosity of the rock. Typical sedimentary

rocks have P-wave velocities in the range of 5480-7925 m/s (Mavko et al., 2009),

whereas fluid hydrocarbons and water typically have P-wave velocities that are

less than 2000 m/s (Batzle and Wang, 1992). Equation 2.3 is interpreted by

(Mavko et al., 2009) as the P-wave travel time through the fluid-saturated

rock is the sum of the travel time through the rock matrix and the fluid-filled

pore. Hence, increasing the volume of pore space will increase the relative

contribution of travel time through the pore fluid, resulting in a lower P-wave

velocity in the fluid-saturated rock. It should be noted that while the concept of

travel time through small pores is not physically valid for exploration seismic

signals which have wavelengths on the order of tens or hundreds of meters,

Wyllie’s empirical relationship nonetheless approximates lab observations and

we simply use it to demonstrate the concept of P-wave velocity sensitivity to

pore pressure.

2.2 Fluid Invasion

A hydraulic fracture is filled with a high-pressure fracturing fluid and is sur-

rounded by a porous reservoir that is characterized by lower-pressure pore

fluids. The resulting pressure gradient will drive fracturing-fluid flow through

the surfaces of the fracture. The fluid flow can be modelled based on Darcy’s

Law as given by Mavko et al. (2009):
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Q = −κ

η
A∇P, (2.4)

where Q is the vector volumetric fluid velocity field, κ is the permeability

tensor, η is the dynamic viscosity of the fluid, A is the cross-sectional area

normal to the pressure gradient, and ∇P is the pressure gradient. Formation

fluid will be replaced with the fracturing fluid in a temporally expanding zone

around the hydraulic fracture.

The effect of fluid substitution on seismic velocities can be seen by consid-

ering the isotropic P-wave, vp, and S-wave, vs, velocity equations for a fluid-

saturated poroelastic effective medium, for example (Jaeger et al., 2007):

vp =

√
3Ksat +

4
3
μsat

ρeff
, (2.5)

and

vs =

√
μsat

ρeff
, (2.6)

where ρeff is the effective density given by equation 2.1, Ksat and μsat are the

effective bulk modulus and effective shear modulus of the saturated medium re-

spectively. The effect of pore-fluid substitution on seismic velocities is twofold.

First, variation in fluid density will inversely effect seismic velocity. Second,

variation in elastic moduli of the effective medium will directly effect seismic

velocity. The low frequency Gassmann-Biot theory can be used to predict the

expected change in the relevant elastic moduli (Gassmann, 1951; Biot, 1956).

Mavko et al. (2009) give the Gassmann equations for effective bulk and shear

moduli of a fluid saturated rock respectively as:

Ksat = Kdry +
(1− Kdry

K◦ )2

φ
Kfluid

+ (1−φ)
K◦ − Kdry

K2◦

, (2.7)

and
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μsat = μdry, (2.8)

where Kdry is the bulk modulus of the dry rock, Kfluid is the bulk modulus

of the pore fluid, K◦ is the bulk modulus of the matrix material, φ is the

porosity, and μdry is the shear modulus of the dry rock. Combining equation

2.6 and equation 2.8 we see that the S-wave velocity is only affected by the

change in density of a replacing fluid. In the case of a higher-density fluid

replacing a lower-density fluid, for example brine replacing fluid hydrocarbons,

S-wave velocity will tend to decrease. Conversely, in the case of increasing

gas saturation, that is a low density fluid replacing high density fluid, S-wave

velocity will tend to increase as shown in Figure 2.2.

Figure 2.2: Theoretical S-wave velocities calculated using the equations from
Gassmann (1951) for increasing gas saturation in a thirty-five percent porosity
sandstone buried at 1828 meters, modified from Ostrander (1985).

By considering equations 2.5 and 2.7 we see that P-wave velocity is affected

by variations in both fluid density and effective bulk modulus, with the bulk

modulus being the dominant contributor. The effect of fluid substitution on P-

wave velocity can be seen in Figure 2.3 where Landro (2001) used the Gassmann

equation for effective bulk modulus calibrated to well log data to model the

effect of increasing water saturation of P-wave velocity. Increasing the water
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saturation tends to increase the effective density and the effective bulk modulus.

The increase in density tends to decrease P-wave velocity and the increase in

bulk modulus tends to increase the P-wave velocity. Figure 2.3 clearly shows

that the effect of increasing bulk modulus overwhelms the effect of increasing

density resulting in a positive correlation between water saturation and P-wave

velocity.

Figure 2.3: Theoretical P-wave velocities calculated using the equations from
Gassmann (1951) calibrated to wells in the Gullfaks field, North Sea for in-
creasing water saturation, modified from Landro (2001).

2.3 Matrix Deformation

When a hydraulic fracture is opened under pressure a volume of rock is dis-

placed in a direction normal to the face of the fracture. This displacement

induces changes in the confining-stress distribution surrounding the fracture.

Analytic solutions to model the changes in stress have been developed for sev-

eral simple crack geometries (Green and Sneddon, 1950; Eshelby, 1957). These

models assume a constant uniform pressure in the crack and an effective matrix

medium that is homogenous, isotropic, linear-elastic. Warpinski et al. (2013)
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use the pressurized 3D elliptical crack model of Green and Sneddon (1950) to

calculate the perturbation of confining stress in the three principle directions.

As seen in Figure 2.4, moving in a direction normal to the crack face the total

normal stress is increased, with the largest increase in compressive stress ex-

perienced in the direction normal to the crack face. In contrast, moving in a

direction parallel to the crack at the crack tip, the change in confining stress

is seen to be tensile in both horizontal principle directions and nearly zero

in the vertical direction as seen in Figure 2.5. There will be a zone of shear

stress between the compressive and tensile zones. The equations used for the

calculations can be found in Warpinski et al. (2004). The magnitude of stress

change is determined by the size of the fracture, the pressure maintained in the

fracture, and the elastic moduli of the rock.

Figure 2.4: Magnitude of induced stress as a function of distance from a
vertical hydraulic fracture in the direction normal to the fracture face in the
plane containing the centreline of the fracture, modified from Warpinski et al.
(2013).

Consider the case in which the reservoir in the vicinity of a hydraulic fracture

has a dual character porosity of macro- and micro-porosity. The macro-pore
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Figure 2.5: Magnitude of induced stress as a function of distance from a vertical
hydraulic fracture in the direction ahead of the length tip of the fracture in the
plane of the fracture, modified from Warpinski et al. (2013).

system consists of stiff approximately equant shaped pores and the micro-pore

system consists of an isotropic (random) distribution of compliant microcracks.

After the fracture is opened, the region adjacent to the fracture face will expe-

rience an increase in compressive stress. The porosity of the macro-pore system

will tend to be reduced and the isotropic P-wave and S-wave velocities will tend

to change in the opposite direction from that due to a pore-pressure increase.

Now, recall that the confining-stress increase adjacent to the fracture face is the

largest in the direction normal to the plane of the fracture. We can approximate

this stress change as an uniaxial compression and consider the behaviour of the

micro-pore system. An uniaxial compression will tend to close those microc-

racks with face-normals that are parallel or nearly parallel to the direction of

compression. In contrast, those microcracks with face-normals perpendicular or

nearly perpendicular to the direction of compression will tend to remain open,

see Figure 2.6. This results in the development of an anisotropic microcrack
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Figure 2.6: Illustration of the development of preferential microcrack orienta-
tion in an initially isotropic distribution of vertical microcracks under condi-
tions of increased maximum horizontal stress, SH . This figure is modified from
Crampin (2003).

distribution, and consequently an elastically anisotropic matrix (Nur, 1971).

Using ultrasonic wave measurements on uniaxially and triaxially stressed rock

samples, many studies have demonstrated that an anisotropic microcrack dis-

tribution will influence the elastic anisotropy of the rock as a whole (Sayers

et al., 1990; Scott et al., 1993; Nur and Simmons, 1969). In general, these

studies revealed that seismic wave velocity is most reduced when the normals

to the planes of the preferentially aligned microcracks are parallel to either the

direction of wave propagation or polarization, see Figure 2.7.
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Figure 2.7: P-wave and S-wave velocities for various magnitudes of uniaxial
applied stress as a function of the angle of propagation, θ, with respect to the
axis of applied stress, modified from (Nur and Simmons, 1969). The plane of
polarization for vSH always contains the direction of uniaxial stress. Nur and
Simmons (1969) obtained these results from labratory measurements made on
samples of Barre granite.
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2.4 Pore Pressure and Confining Stress Com-

bined

To consider the combined effect of elevated pore pressure and perturbations of

confining stress on density, seismic velocity, and fracture orientations we need

to introduce the effective-stress concept. Effective stress, σ′
ij, is defined the

difference between the confining stress, σij, and the pore pressure, Ppore, with

the pore pressure scaled by an effective-stress coefficient, α (Brandt, 1955). By

convention, compressive stress and pressure are assigned positive values. The

general form of effective stress is given by,

σ′
ij = σij − αPporeδij, (2.9)

with δij being the Kroenecker delta. Berryman (1992) and Zimmerman (1991)

theoretically predict that elastic moduli of a porous monomineralic rock are a

function of effective stress with the effective-stress coefficient equal to one. The

assumption of a monomineralic reservoir matrix may not always be appropriate,

and Mavko et al. (2009) note that experimental results show the effective-stress

coefficient for elastic moduli is often less than one. It can be seen from equation

2.9 that a pore-pressure increase and/or confining-stress decrease will result

in a decrease in effective stress. Conversely, a pore-pressure decrease and/or

confining-stress increase will result in an increase in effective stress.

The effective density of rock will tend to vary in direct proportion to ef-

fective stress. The relation between effective stress and microcrack orientation

is more complex, also depending on the magnitude of the critical stress of in-

dividual microcracks. The critical stress is the minimum stress required to

collapse a microcrack applied in the direction normal to the crack face. Con-

sider an isotropic distribution of uniform penny-shaped microcracks contained

in a homogeneous rock matrix. A penny-shaped crack is the special case of an

ellipsoidal body with semi-axes (a1 � a2 = a3) and the aspect ratio is given
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by (a1
a2

<< 1). Zatsepin and Crampin (1997) give the critical stress, σc, of a

penny-shaped crack as:

σc =
1

ccr
= (

π

2
)

g◦μ◦
(1− ν)

, (2.10)

where ccr is crack compressibility, g◦ is the initial aspect ratio of the microcrack,

and ν and μ◦ are respectively the Poisson’s ratio and shear modulus of the

rock matrix. Let us assume a simple scenario of an uniaxial confining-stress

increase. If this confining-stress increase is larger than the increase in pore

pressure and the resulting effective stress is equal to the crack critical stress,

any microcracks with face normals aligned in the same direction as the uniaxial

stress will collapse. Conversely, microcracks with face normals oriented in any

other direction will remain open. Fracture anisotropy, and consequently elastic

anisotropy, will develop as seen in Figure 2.6. Alternatively, if the resulting

effective stress is less than the crack critical stress then microcracks of all

orientations will remain open and no fracture anisotropy will develop. The

same is always true if the increase in confining stress is less than the increase

in pore pressure.

The Hertz-Mindlin grain contact model can be utilized to show the con-

nection between effective stress and the reservoir dry-rock bulk modulus and

shear modulus, hence the P-wave and S-wave velocities (Mavko et al., 2009).

The model was developed by Mindlin (1949) to describe a precompacted, un-

consolidated, dry, random packing of identical spherical grains experiencing

lithostatic confining stress in terms of dry-rock bulk and shear moduli, Kdry

and μdry respectively. It is assumed in the model that there is no slip between

grains and no relative grain rotation. The effective moduli are given by Dvorkin

and Nur (1996) as,

Kdry =
3

√
C2(1− φ)2μ2◦
18π2(1− ν)2

σeff , (2.11)
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and

μdry =

[
5− 4ν

5(2− ν)

]
3

√
3C2(1− φ)2μ2◦
2π2(1− ν)2

σeff , (2.12)

where C is the average number of contacts per grain, φ is porosity, μ◦ is the

shear modulus of the solid grains, ν is the Poisson’s ratio of the solid grains,

and σeff is a scalar lithostatic effective stress given by equation 2.9. In general,

seismic velocities increase with increasing effective stress and by extension de-

creasing pore pressure. This is in agreement with the Hertz-Mindlin model, as

seen in Figure 2.8. The obvious drawbacks to using the Hertz-Mindlin model

to describe reservoir rock are that real reservoirs are fluid or gas saturated,

they are commonly consolidated, and the grains are not identical or perfectly

spherical.

Figure 2.8: Relative change in P-wave velocity as a function of increased effec-
tive stress, modified from (Landro, 2001). The squares represent measurements
made on twenty-nine dry rock core samples from the Gullfaks field, North Sea
and the black diamonds represent a second-order approximation. Negative rel-
ative velocity change corresponds to increased pore pressure or decreased con-
fining stress. Positive relative velocity change corresponds to decreased pore
pressure or increased confining stress.
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2.5 Implications

The net effect of pore-pressure diffusion, fluid invasion and matrix deformation

is the creation of four spatiotemporal zones surrounding a hydraulic fracture:

the proximal zone, the compressive zone, the tensile zone and the shear zone.

The velocity behaviour in each of the four zones is discussed in the Subsections

2.5.1 to 2.5.4 by considering the case of a hydraulic fracture in a reservoir that

initially contains a macropore system of equant pores and a micropore system

of isotropically distributed penny-shaped microcracks. The spatial extent of the

four zones depends on reservoir, pore fluid and hydraulic fracture properties,

the details of which are discussed in Chapter 4. Figure 2.9 shows the relative

spatial extent of each zone for two reservoir scenarios. In the first scenario, the

reservoir has a very low permeability and pore-pressure diffusion is limited to

a narrow region adjacent to the hydraulic fracture. In the second scenario, the

reservoir permeability is high and pore-pressure diffusion extends further from

the hydraulic fracture. The temporal dependancy is explained by considering

a growing hydraulic fracture versus a fracture of fixed size. As the hydraulic

fracture is growing, all four zones will continue to grow. If the fracture stops

growing, the extent of the confining-stress perturbations will remain constant

but the extent of pore-pressure changes will continue to expand.

2.5.1 Proximal Zone

The proximal zone is the region directly adjacent to the hydraulic fracture

that experiences fluid replacement, the largest pore-pressure increase, and the

largest confining-stress perturbation. In the case of a brine fracturing fluid and

a hydrocarbon reservoir fluid, fluid replacement will tend to increase the ef-

fective density and decrease S-wave and P-wave isotropic velocities. Increased

pore pressure tends to open all pores, both macro- and micro-sized ones, re-

sulting in a decrease in S-wave and P-wave isotropic velocities. Increased pore
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pressure on its own will not result in the development of anisotropy because all

microcracks are initially open. However, the proximal zone also experiences a

confining-stress perturbation and can be subdivided into two zones of triaxial

confining-stress change. One region adjacent to the fracture tip experiences

a reduction in confining stress and a second region adjacent to the fracture

face experiences an increase in confining stress. In the tip proximal zone, the

decrease in confining stress acts in concert with the increased pore pressure,

resulting in no velocity anisotropy development and a decrease in S-wave and

P-wave isotropic velocities. In the face proximal zone, confining-stress increase

will tend to close preferentially oriented microcracks and the pore-pressure in-

crease will act in opposition to open all microcracks. If pore-pressure diffusion

effects dominate then S-wave and P-wave isotropic velocities will tend to de-

crease and stress-induced fracture and velocity anisotropy will not develop.

However, if confining-stress effects dominate then S-wave and P-wave isotropic

velocities will tend to increase and preferentially oriented microcracks will tend

to close, resulting in the development of stress-induced microcrack and velocity

anisotropy.

2.5.2 Compressive Zone

The region normal to the hydraulic fracture face from the outer surface of the

face proximal zone to a variable distance from the hydraulic fracture face is

the compressive zone. The transition from the proximal zone to the compres-

sive zone is loosely defined as the extent of significant pore-pressure increase.

As is discussed in Chapters 4 and 6, the determination of what constitutes a

significant pore-pressure increase depends on several reservoir, pore-fluid and

microcrack parameters, including but not limited to reservoir velocities, pore-

fluid compressibility and initial microcrack aspect ratio. The same balance of

pore-pressure and confining-stress increase exhibited in the proximal zone ex-

ists here, but with the confining-stress perturbations being generally larger in
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magnitude than the pore-pressure increases. As seen in Figure 2.9, the relative

size of the proximal zone is affected by reservoir permeability and can be seen

by considering two end-member scenarios. In the first scenario, the reservoir

has high permeability and the pore-pressure gradient is effectively communi-

cated through the pore system such that it extends beyond a distance of one

half the hydraulic fracture height. At distances greater than one half the hy-

draulic fracture height the effect of confining-stress increase will be negligible

(Warpinski, 2009). In this scenario, the compressive zone is entirely absent

and only the proximal zone exists. In the alternate scenario, the reservoir has

very low permeability and the pore-pressure gradient decays to negligible values

rapidly. In this scenario, the proximal zone is confined to the region immedi-

ately adjacent to the fracture and the compressive zone extends perpendicular

to the fracture face to a distance of one half the hydraulic fracture height.

2.5.3 Tensile Zone

The tensile zone is a relatively small region extending from the outer surface

of the tip proximal zone in directions parallel and sub-parallel to the fracture

plane. This region will experience tensile stress with the largest perturbations

occurring at the transition from the tip proximal zone (Warpinski et al., 2013).

Figure 2.9 shows that the relative size of the tensile zone is affected in a similar

way to that of the compressive zone.

2.5.4 Shear Zone

The shear zone is a relatively small transition region between the tensile zone

and the compressive zone that experiences shear stresses (Warpinski et al.,

2013). If the effective stress in a particular direction exceeds the microcrack

closure stress then there is potential for preferential microcrack orientation

and velocity anisotropy to develop. However, the transitional nature of the
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stress field in this zone will tend to limit the potential for velocity change and

anisotropy development. Figure 2.9 shows that the relative size of the shear

zone is affected in a similar way to that of the compressive zone.

Figure 2.9: A horizontal cross-section through a vertical hydraulic fracture
extending from a vertical well illustrating the four spatiotemporal zones in
the surrounding region, modified from Cipolla et al. (2011). Red, blue and
green indicate a regions experiencing respectively an increase in compressive,
shear and tensile stress. The area with black diagonal lines indicates a region
experiencing significant pore-pressure increase. For simplicity, we assume that
the extent of fluid invasion corresponds to the extend of pore-pressure increase;
however, this is not always true. Panel (a) shows the case of a low-permeability
reservoir at t minutes after the initiation of injection and panel. Note that the
compressive zone has the largest spatial extent. Panel (b) shows the case of a
high-permeability reservoir at the same time. Note that the proximal zone has
the largest spatial extent.
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2.6 Conclusions

The volume of rock surrounding a hydraulic fracture experiences fluid inva-

sion, pore-pressure increase, and triaxial confining-stress perturbation. These

three processes combine to change the isotropic P-wave and S-wave velocities

in the surrounding reservoir rock, creating four zones of varying size. Funda-

mental principles can be employed to predict the combined effect of these three

processes on the bulk density and the effective elastic constants of the rock,

in addition to the range of orientations of microcrack distributions contained

within the rock. Furthermore, information regarding bulk density and pref-

erentially aligned microcrack distribution can be used to forward model the

resulting changes in P-wave and S-wave velocities, as well as the development

of velocity anisotropy. Consequently, is possible to obtain information regard-

ing effective stress and microcrack orientation using several different sources

of seismic data, including microseismic, reflection seismic, and VSP datasets.

This thesis will explore the exact dependence of stress, pore pressure and fluid

saturation changes on the elastic velocities in detail in the following chapters.
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Chapter 3

Isotropic Velocity Sensitivity

Analysis

3.1 Introduction

As a hydraulic fracture is propagated and held open by the injected high-

pressure fluids, several processes occur simultaneously that change the density

and the elastic properties in the rock volume surrounding the fracture. These

processes include pore-pressure diffusion, fracturing fluid invasion and rock ma-

trix deformation (Warpinski, 1994; Warpinski et al., 2004; Cipolla et al., 2011).

The combination of these three effects leads to complex spatial and temporal

variations in the elastic velocities as discussed in Chapter 2. For instance, the

increase in pore pressure may lead to a porosity increase, thus decreasing the

P- and S-wave isotropic velocities. Conversely, when a hydraulic fracture is

opened, a volume of rock is displaced in a direction normal to the face of the

fracture. This displacement induces changes in the confining-stress distribution

surrounding the fracture. An increase in confining stress increases both P- and

S-wave isotropic velocities. Finally, replacement of the original reservoir fluids

with fracturing fluids can either increase or decrease the isotropic velocities

depending on the actual fluid properties.
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The material presented in this chapter is based on work that was presented

in a poster session at the 2016 GeoConvention in Calgary, Alberta (Brisco and

Van der Baan, 2016). In this chapter, we consider the case where a hydraulic

fracture treatment is performed in an initially isotropic porous rock. In gen-

eral, this leads to an heterogeneous triaxial stress perturbation at all spatial

points in the vicinity of the fracture and this causes the development of ve-

locity anisotropy (Nur and Simmons, 1969; Warpinski et al., 2004). However,

as a first step to understanding the interaction of confining stress, pore pres-

sure and seismic velocities we assume a simplified case of lithostatic (i.e. scalar)

stress change. This can be thought of as the mean stress change. Pore-pressure

changes are necessarily hydrostatic (i.e. scalar) in nature. We conduct an input

parameter sensitivity analysis for changes in isotropic P- and S-wave velocities

in response to variations in pore fluid, lithostatic stress and pore pressure.

3.2 Theory

To predict seismic velocities in a fluid-saturated reservoir the elastic moduli

and density of an effective medium representing the rock are required. This

can be seen by considering the equations for P-wave velocity, equation 2.5, and

S-wave velocity, equation 2.6, in a fluid-saturated poroelastic effective medium.

Effective density, equation 2.1, is calculated as the sum of the densities of the

individual components of the medium weighted by their volume fractions. In

this case, the components are the minerals comprising the rock matrix and the

fluids contained in the pore space.

Most natural rock is comprised of more than one mineral and pore fluids

are often a mixture of several fluids, so the matrix density and pore density

are themselves effective densities that can be calculated as a weighted average

of the individual constituents. The effective elastic moduli of a mixture of

solid grains and pore fluid can be predicted if the volume fraction and elastic
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moduli of the constituent phases are known in addition to the geometry of the

pore network (Mavko et al., 2009). If no assumptions are made regarding pore

geometry then it is not possible to obtain a precise value for the effective elastic

moduli. However, as discussed in Subsection 3.2.2, it is possible to determine

the bounds of possible moduli for the given mixture. Using these bounds as

a guide, it is possible to estimate the effective elastic moduli such that rock

containing a highly compliant pore geometry will have moduli close to the lower

bound and rock containing a stiff pore geometry will have moduli close to the

upper bound.

The physical properties for several common minerals can be seen in Table

3.1 and the physical properties of common pore fluids are discussed in Subsec-

tion 3.2.1.

Table 3.1: Density and isotropic elastic moduli of several common minerals.
Values are from Bass (1995) and Smyth and Mccormick (1995) as reported by
Schmitt (2015).

Mineral α-Quartz Albite Anorthite Calcite Dolomite
Density
(kg/m3)

2648 2610 2765 2712 3795

Adiabatic
Bulk Modulus
(GPa)

37.8 56.9 84.2 73.3 94.9

Shear Modu-
lus (GPa)

44.3 28.6 39.9 32 45.7

The low frequency Gassmann-Biot theory can be used to predict the ex-

pected change in the effective elastic moduli of a fluid-saturated poroelastic

medium when a new pore-saturating fluid replaces the initial fluid (Gassmann,

1951; Biot, 1956). To solve the fluid substitution problem, as discussed in

Subsection 3.2.3, the Gassmann equations require the porosity and the pre-

dicted/estimated effective bulk moduli of the saturated rock, the pore fluid

and the matrix material.

Equation 2.9 for effective stress can be expressed in a simplified scalar form
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if the confining stress, σlitho, is lithostatic and we assume an effective-stress

coefficient of one as follows:

σeff = σlitho − Ppore , (3.1)

where σeff is scalar effective stress and Ppore is pore pressure. It can be

seen from equation 3.1 that a pore-pressure increase and/or lithostatic-stress

decrease will result in a decrease in effective stress. Conversely, a pore-pressure

decrease and/or lithostatic-stress increase will result in an increase in effective

stress. The Hertz-Mindlin grain contact model can be utilized to show the

connection between effective stress and the dry-rock bulk and shear moduli,

see Subsection 3.2.4 (Mavko et al., 2009).

3.2.1 Properties of Gas and Fluids

The majority of pore fluid in sedimentary basins is brine, a mixture of water

and mostly NaCl (Schmitt, 2015). In contrast, the pore fluid in hydrocarbon

reservoirs can be a mixture of brine, gas and oil. Batzle and Wang (1992) use

empirical measurements to give the following approximate formulae for P-wave

velocity and density of brines, hydrocarbon gases and oils. In the following

expressions, density values are in g/cm3 and velocity values are in m/s. Using

density and velocity, the relevant bulk moduli can be found using equation 2.5.

Brine

The density of brine, ρB, is

ρB =ρW + S {0.668 + 0.44S + 10−6[300P − 2400PS

+ T (80 + 3T − 3300S − 13P + 47PS)]},
(3.2)
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where S is salinity, T is temperature in ◦C, P is pressure in MPa and ρW is

the density of pure water is given by

ρW =1 + 10−6(−80T − 3.3T 2 + 0.00175T 3 + 489P

− 2TP + 0.016T 2P − 1.3× 10−5T 3P

− 0.333P 2 − 0.002TP 2).

(3.3)

Salinity is the concentration of NaCl dissolved in water given as a fraction of

one. The P-wave velocity in brine, vB, can be expressed as the P-wave velocity

in pure water, vW , adjusted for salinity and pressure-temperature conditions,

vB =vW + S(1170− 9.6T + 0.055T 2 − 8.5× 10−5T 3

+ 2.6P − 0.0029TP − 0.0476P 2)

+ S
3
2 (780− 10P + 0.16P 2)− 820S2

(3.4)

and

vW =
4∑

i=0

3∑
j=0

ωijT
iP j , (3.5)

where the coefficients ωij are

ω00 = 1402.85 , ω02 = 3.437× 10−3 ,

ω10 = 4.871 , ω12 = 1.739× 10−4 ,

ω20 = −0.04783 , ω22 = −2.135× 10−6 ,

ω30 = 1.487× 10−4 , ω32 = −1.455× 10−8 ,

ω40 = −2.197× 10−7 , ω42 = 5.230× 10−11 ,

ω01 = 1.524 , ω03 = −1.197× 10−5 ,

ω11 = −0.0111 , ω13 = −1.628× 10−6 ,

ω21 = 2.747× 10−4 , ω23 = 1.237× 10−8 ,

ω31 = −6.503× 10−7 , ω33 = 1.327× 10−10 ,

ω41 = 7.987× 10−10 and ω43 = −4.614× 10−13 .

(3.6)
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Gas

Hydrocarbon gas can be a mixture of many component gases. This gas mixture

can be characterized simply by its gravity, G, which is the ratio of gas density

to air density at standard temperature and pressure conditions (Mavko et al.,

2009). The density of gas at non-standard conditions is approximately given

by

ρG ≈ 28.8GP

ZGRTa

, (3.7)

where

ZG = aGPr + bG + EG,

EG = 0.109(3.85− Tr)
2e{−[0.45+8(0.56− 1

Tr
)2]

P1.2
r
Tr

},

bG = 0.642Tr − 0.007T 4
r − 0.52,

aG = 0.03 + 0.00527(3.85− Tr)
3 .

(3.8)

Ta is the absolute temperature in Kelvin, P is pressure in MPa, G is the gas

gravity and R is the gas constant (8.31441J/g ·mol ·deg). Pr and Tr are a

pseudo-pressure and pseudo-temperature respectively and are calculated as

Pr =
P

4.892− 0.4048G
and Tr =

Ta

94.72 + 170.75G
. (3.9)

The adiabatic bulk modulus of gas, KG, measured in MPa is approximated

by

KG ≈ PγG

1− fGPr

ZG

, (3.10)

where
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γG = 0.85 +
5.6

Pr + 2
+

27.1

(Pr + 3.5)2
− 8.7e−0.65(Pr+1) (3.11)

and

fG = 1.2EG

{
−

[
0.45 + 8

(
0.56− 1

Tr

)2]P 0.2
r

Tr

}
+ aG . (3.12)

Oil

Hydrocarbon oils tend to be very complex mixtures of component organic com-

pounds (Schmitt, 2015). An oil mixture can be characterized by its reference

density, ρ◦, at standard pressure-temperature conditions and the gas-oil ratio

(Mavko et al., 2009). In-situ oil can contain a large volume of dissolved gas.

If the oil is brought to lower pressure-temperature conditions the dissolved gas

will tend to be released from solution. The gas-oil ratio is the volume ratio

of liberated gas to remaining oil at standard pressure-temperature conditions

and is measured in L/L. The density of oil containing dissolved gas, ρoil, at

non-standard conditions is given by

ρoil =
ρP

[0.972 + 3.81× 10−4(T + 17.78)1.175]
, (3.13)

where the pressure-adjusted density, ρP , is

ρP =ρG + (0.00277P − 1.71× 10−7P 3)(ρG − 1.15)2

+ 3.49× 10−4P ,
(3.14)

where ρG is the true density of oil with dissolved gas at saturation given by

ρG = (ρ◦ + 0.0012GRG)B
−1
o , (3.15)

where
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Bo = 0.972 + 0.00038

[
2.4RG

(
G

ρ◦

)1/2

+ T + 17.8

]1.175

(3.16)

and

ρ◦ =
141.5

API + 131.5
, (3.17)

where API is the American Petroleum Institute’s oil gravity measured in de-

grees and ρ◦ is a reference oil density measured at 15.6◦C and atmospheric

pressure. The P-wave velocity in oil with dissolved gas, vp,oil, is

vp,oil = 2096

(
ρ′

2.6− ρ′

)1/2

− 3.7T + 4.64P

+ 0.0115

[
4.12

(
1.08

ρ′
− 1

)1/2

− 1

]
TP ,

(3.18)

where ρ′ is a pseudo-density as given by

ρ′ =
ρ◦
Bo

(1 + 0.001RG)
−1. (3.19)

3.2.2 Effective Elastic Media: Mixtures

The simplest bounds for the elastic moduli of an isotropic linearly elastic mix-

ture of mineral grains and/or pore fluids are the Voigt-Reuss bounds (Mavko

et al., 2009). For the upper Voigt bound, by assuming all of the constituents

experience the same strain, Schmitt (2015) gives the isostrain average equation

as

MV =
N∑
i=1

fiMi , (3.20)

whereMV is the desired elastic modulus, N is the number of constituent phases,

fi is the volume fraction of the ith phase and Mi is the corresponding elastic
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modulus of the ith phase. MV can be any desired elastic modulus, for example

bulk modulus or shear modulus. The physical interpretation of the upper

Voigt bound is the stiffer constituent dominates the behaviour of the mixture

(Barkved, 2012). For the lower Reuss bound, by assuming all of the constituents

experience the same stress, Reuss (1929) gives the isostress average equation

as

MR =
N∑
i=1

fi
Mi

, (3.21)

whereMR is the desired elastic modulus, N is the number of constituent phases,

fi is the volume fraction of the ith phase and Mi is the corresponding elastic

modulus of the ith phase. As with the Voigt bound, MR can be any desired

elastic modulus. The physical interpretation of the lower Reuss bound is the

softer constituent dominates the behaviour of the mixture (Barkved, 2012).

Hill (1963) shows that the Reuss bound describes the exact bulk modulus of

a mixture when all of the constituents have the same shear modulus. Hence,

the Reuss bound gives the exact equation for the bulk modulus of a mixture of

fluids and/or gases when the constituent shear moduli are all zero.

An alternative to the Voigt-Reuss bounds that gives a smaller deviation

between the upper and lower limits are the Hashin-Shtrikman-Walpole bounds

(Hashin and Shtrikman, 1963; Walpole, 1966). For a mixture of 50% quartz

and 50% calcite with no porosity, Schmitt (2015) shows the Voigt-Reuss bounds

deviate by < 3% for shear modulus and 11% for bulk modulus, whereas the

Hashin-Shtrikman-Walpole bounds deviate by < 1%. By assuming a simple

mixture comprised of two phases, the physical interpretation of the Hashin-

Shtrikman-Walpole bounds can be described (Mavko et al., 2009). The entire

volume of the mixture is filled by an assembly of spherical cores of one phase

coated with a uniform shell of the second phase. The core plus shell units are

of a wide variety of sizes such that there is no empty space. For each individual
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core plus shell unit, the thickness of each shell is such that volume fraction of

the unit is the same as the mixture. The upper bound is obtained when the

cores are comprised of the softer phase and the lower bound is obtained when

the cores are comprised of the stiffer phase. Berryman (1995) gives a general

form of the Hashin-Shtrikman-Walpole bounds that is valid for mixtures of N

components as follows:

KHS+ = ΛHS(μmax),

KHS− = ΛHS(μmin),

μHS+ = ΓHS(ζHS(Kmax, μmax)) and

μHS− = ΓHS(ζHS(Kmin, μmin)) ,

(3.22)

where

ΛHS(μz) = 〈 1

K(r) + 4
3
μz

〉−1 − 4

3
μz,

ΓHS(μz) = 〈 1

μ(r) + μz

〉−1 − μz and

ζHS(Kz, μz) =
μz

6

(
9Kz + 8μz

Kz + 2μz

)
, where r ∈ [1, ..., N ] .

(3.23)

KHS+ is the bulk modulus upper bound, KHS− is the bulk modulus lower

bound andKz takes the value of eitherKmax orKmin which are respectively the

largest and smallest bulk moduli of the N constituent phases. Likewise, μHS+

is the shear modulus upper bound, μHS− is the shear modulus lower bound and

μz takes the value of either μmax or μmin which are respectively the largest and

smallest shear moduli of the N constituent phases. The brackets 〈〉 indicate

an average over the medium, which is equivalent to a volume fraction weighted

average of the constituent phases (Mavko et al., 2009). The average of the

Hashin-Shtrikman-Walpole bounds provide a very good estimate of the effective
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elastic moduli of a multimineralic rock matrix and a reasonably good estimate

of the effective elastic moduli of an isotropic, fluid-saturated, poroelastic rock.

3.2.3 Low Frequency Gassmann-Biot Theory

The elastic properties of a fluid-saturated porous rock are sensitive to the elastic

properties of the pore filling fluid. Hence, if a new fluid replaces an initial pore

fluid, the elastic properties of the rock will change. If the rock is isotropic, the

low frequency Gassmann-Biot theory introduced in Chapter 2 can be used to

predict the elastic moduli of the dry rock frame (Gassmann, 1951; Biot, 1956).

The Gassmann equations make no assumptions regarding pore geometry, so

it is compatible with Hashin-Shtrikman-Walpole average estimates of elastic

moduli. Mavko et al. (2009) give the rearranged Gassmann equations 2.7 and

2.8 as:

Kdry =
Ksat

(
φK◦

Kfluid
+ 1− φ

)
−K◦

φK◦
Kfluid

+ Ksat

Ko
− 1− φ

(3.24)

and

μdry = μsat , (3.25)

where Kdry is the effective dry rock bulk modulus, Ksat is the effective bulk

modulus of the saturated rock, Kfluid is the effective bulk modulus of the pore

fluid, K◦ is the effective bulk modulus of the matrix material, φ is the porosity

μdry is the effective dry rock shear modulus and μsat is the effective shear

modulus of the saturated rock. The dry rock bulk modulus, Kdry, corresponds

to the drained rock bulk modulus and is generally unknown for in-situ rock.

Recall, using equation 2.7 we can predict the bulk modulus of a fluid saturated

rock.
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3.2.4 Pressure Sensitive Effective Elastic Media

Hertz-Mindlin Model

As discussed in Chapter 2, the Hertz-Mindlin grain contact model can be uti-

lized to show the connection between effective stress and the dry-rock bulk and

shear effective moduli, hence the P- and S-wave velocities (Mavko et al., 2009).

The model was developed by Mindlin (1949) to describe a precompacted, un-

consolidated, dry, random packing of identical spherical grains experiencing

lithostatic stress in terms of effective bulk, KHM , and effective shear, μHM ,

dry-rock moduli. Long wavelength seismic waves like those typically used in

exploration seismic are assumed in the model. The effective dry-rock moduli

are given by Dvorkin and Nur (1996) as

KHM = 3

√
C2(1− φ)2μ2

18π2(1− ν)2
σeff (3.26)

and

μHM =

[
5− 4ν

5(2− ν)

]
3

√
3C2(1− φ)2μ2

2π2(1− ν)2
σeff , (3.27)

where C is the average number of contacts per grain, φ is porosity, μ is the

shear modulus of the solid grains, ν is the Poisson ratio of the solid grains,

and σeff is a lithostatic effective stress. Equations 3.26 and 3.27 are equivalent

to equations 2.11 and 2.12 with the symbols for the dry-rock moduli, Kdry

and μdry, replaced with KHM and μHM . The updated symbols will provide

clarity in the following section where there are more than one set of dry-rock

moduli. Smith et al. (1929) found that a shaken, tamped, random packing

of identical spheres has a porosity of ∼ 0.36 and a coordination number of

∼ 9. The Hertz-Mindlin model can be extended to more realistic grain packing

scenarios through one of several models, for example the soft-sand model, the

stiff-sand model and the intermediate stiff-sand model (Mavko et al., 2009).
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Effective stress sensitivity is accounted for in the sand models through the

Hertz-Mindlin effective dry-rock moduli, KHM and μHM .

Soft-Sand Model

The soft-sand model enables the prediction of effective elastic moduli for an

uncemented sand with porosity lower than 0.36 (Mavko et al., 2009). The model

assumes an isotropic framework of identical elastic spherical grains consistent

with the Hertz-Mindlin model. The framework has a porosity, φ◦ of 0.36 and a

coordination number of 9. Conceptually, a lower value of porosity, φ, is achieved

by deposition of cement away from grain contacts. The effective elastic moduli

are calculated by using a heuristic modified Hashin-Shtrikman lower bound as

follows:

Ksoft =

[
φ
φ◦

KHM + 4
3
μHM

+
1− φ

φ◦

K◦ + 4
3
μHM

]−1

− 4

3
μHM (3.28)

and

μsoft =

[
φ
φ◦

μHM + zsoft
+

1− φ
φ◦

μ◦ + zsoft

]−1

− zsoft , (3.29)

where Ksoft is the effective dry-rock bulk modulus, μsoft is the effective dry-

rock shear modulus, KHM is the Hertz-Mindlin effective dry-rock bulk modulus,

μHM is the Hertz-Mindlin effective dry-rock shear modulus, K◦ is the bulk

modulus of the solid grains, μ◦ is the shear modulus of the solid grains and

zsoft =
μHM

6

(
9KHM + 8μHM

KHM + 2μHM

)
. (3.30)

The model connects two end members in porosity-elastic modulus space. At

zero porosity, the modulus is equal to that of the solid mineral grains and at high

porosity, the Hertz-Mindlin model predicts the pressure-dependent modulus.
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Stiff-Sand and Intermediate Stiff-Sand Model

The stiff-sand model uses the same format as the soft-sand model but connects

the two end members with a heuristic modified Hashin-Shtrikman upper bound

as follows:

Kstiff =

[
φ
φ◦

KHM + 4
3
μ◦

+
1− φ

φ◦

K◦ + 4
3
μ◦

]−1

− 4

3
μ◦ (3.31)

and

μstiff =

[
φ
φ◦

μHM + zstiff
+

1− φ
φ◦

μ◦ + zstiff

]−1

− zstiff , (3.32)

where Kstiff is the effective dry-rock bulk modulus, μstiff is the effective dry-

rock shear modulus, KHM is the Hertz-Mindlin effective dry-rock bulk modulus,

μHM is the Hertz-Mindlin effective dry-rock shear modulus, K◦ is the bulk

modulus of the solid grains, μ◦ is the shear modulus of the solid grains and

zstiff =
μ◦
6

(
9K◦ + 8μ◦
K◦ + 2μ◦

)
. (3.33)

The intermediate stiff-sand model uses the soft-sand model with an larger artifi-

cial coordination number but with the stipulation that if the predicted effective

elastic modulus, either bulk or shear, is larger than the corresponding modulus

predicted by the stiff-sand model, then the stiff-sand modulus is used.

3.3 Method

We develop three workflows in order to conduct an input parameter sensitivity

analysis for changes in isotropic P- and S-wave velocities in response to varia-

tions in pore fluid, lithostatic stress and pore pressure. The basic methodology

is the same for testing the sensitivity of the change in isotropic velocity re-

sulting from fluid replacement, variation in lithostatic stress and variation in
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pore pressure. The first step is to set the default input parameters, including

fluid properties (i.e. API, gas-oil ratio , gas gravity, salinity and initial pore

fluid type), depth, rock properties (i.e. porosity and matrix mineralogy). The

density and bulk modulus of the pore fluid are then obtained using equations

3.2 to 3.19. If the pore fluid is a mixture of fluids, the effective bulk moduli

can be found using the Reuss average, equation 3.21.

Next, the elastic moduli of the rock matrix are determined. If the rock

matrix is monomineralic, the moduli are selected directly from Table 3.1. The

minerals list in Table 3.1 represent common minerals found in sedimentary rock.

If the rock matrix is multimineralic, the moduli are estimated by taking the

arithmetic mean of the Hashin-Shtrikman-Walpole upper and lower bounds,

as seen in equations 3.22 and 3.23. The dry-rock effective elastic moduli are

then obtained using an appropriate effective medium model, where Gassmaan’s

equations 3.24 and 3.25 are used for fluid substitution and the Hertz-Mindlin

model is used for effective-pressure sensitive moduli.

Next, the effective bulk modulus and the effective density of the fluid-

saturated rock are calculated respectively with Gassmann’s equation 2.7 and a

volume-fraction weighted average of the rock-matrix density and the pore-fluid

density, equation 2.1. Rock-matrix and pore-fluid density can themselves be

effective densities if they consist of more than one phase. In this case, a mod-

ified version of equation 2.1 is used to calculate the effective densities of the

rock matrix and the pore fluid where φ represents the volume fraction of the

individual phases.

Finally, isotropic P- and S-wave velocities of the fluid-saturated rock are

calculated using equations 2.5 and 2.6. Although the workflow framework is

consistent, there are minor but important differences in the details involved

in several steps for testing the sensitivity of the change in isotropic velocity

resulting from fluid replacement, variation in pore pressure and variation in

lithostatic confining stress. These differences are outlined in the following Sub-
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sections 3.3.1 to 3.3.3 and illustrated in Figures 3.1 to 3.3.

3.3.1 Fluid Replacement

Figure 3.1 outlines the basic steps involved in modelling the isotropic velocity

response to fluid replacement. To simulate fluid invasion during a hydraulic

fracture treatment, the isotropic velocities of an increasingly brine-saturated

porous rock, from the initially 100% hydrocarbon-saturated (either gas or oil)

rock to a final 100% brine-saturation, are calculated. Hence, the fluid bulk

modulus and effective density need to be obtained for all pore fluid mixtures

using equations 3.2 to 3.19 which feed into equation 3.21 for the fluid moduli

and equation 2.1 for effective density. Next, the rock matrix effective moduli

are calculated as the average of the Hashin-Shrikman-Walpole upper and lower

bounds of a mixture of the matrix mineral constituents, equations 3.22 and 3.23.

Additionally, the determination of the saturated-rock elastic properties requires

the estimation of the effective elastic moduli of the 100% brine-saturated rock

using the average of the Hashin-Shtrikman-Walpole upper and lower bounds a

second time for a mixture of the rock matrix and the pore fluid. The dry-rock

bulk modulus is then obtained using Gassmann’s equation 3.24 with the 100%

brine-saturated rock bulk modulus and the rock matrix bulk modulus. Then

Gassmann’s equation 2.7, with the previously obtained dry-rock bulk modulus

and the rock matrix bulk modulus, is used to calculate bulk moduli for the

full range (from 100% to 0% hydrocarbon saturation) of hydrocarbon/brine-

saturated rock. Finally, the effective density from equation 2.1 and the elastic

moduli from equations 3.22, 3.25 and 2.7 for the fluid saturated rock are com-

bined in equations 2.5 and 2.6 to give the desired P- and S-wave velocity.

The order of determining the dry-rock bulk modulus in equation 3.24 is

important. Using the bulk modulus of the 100% brine-saturated rock from the

average of the Hashin-Shtrikman-Walpole bounds, equations 3.22 and 3.23,

results in a relatively constant dry-rock bulk modulus for a given porosity.
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Figure 3.1: The basic workflow for modelling the isotropic velocity response
to fluid replacement where Ksat and Kdry are respectively the fluid-saturated
and dry-rock bulk moduli and μsat and μdry are respectively the fluid-saturated
and dry-rock shear moduli.

However, if we use the bulk modulus of the hydrocarbon-saturated rock, the

calculated dry-rock bulk modulus varies for a given porosity depending on the

physical properties of the saturating hydrocarbon, and this will produce non-

physical results for velocity sensitivity.

The sensitivity of isotropic velocities to variation in the input parameters

of porosity, API, gas-oil ratio , gas gravity, salinity, pore pressure and tem-

perature is tested by comparing the velocity change for a range of values of

a single parameter while holding all other parameters constant. The default

temperature and pore-pressure conditions are calculated for a depth of 3km

assuming a temperature gradient of 25oC/km and a pore-pressure gradient of

∼ 10MPa/km. It is important to note that effective stress is assumed con-

stant for the fluid substitution problem, so dry rock bulk/shear moduli remain

unchanged. The default setting for the parameters are as follows: the rock

matrix is 70% quartz and 30% calcite, 10% porosity, 25oAPI, 40L/LRG, gas

gravity of 1 and 0.05 salinity. These parameter settings are representative of a

moderate-weight hydrocarbon oil in a simple cemented sandstone reservoir of

moderate porosity.
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3.3.2 Lithostatic Stress

Varying effective stress while assuming a constant pore pressure can simulate

lithostatic-stress variation in a reservoir, since effective stress is defined as the

difference between the lithostatic stress and the pore pressure, equation 3.1.

Hence, fluid properties are constant and are calculated in the same way as

described in Subsection 3.3.1 for constant pore pressure obtained by assuming

an average water column density of 1000 kg/m3. Figure 3.2 outlines the basic

steps involved in modelling the isotropic velocity response to lithostatic-stress

variation.

Figure 3.2: The basic workflow for modelling the isotropic velocity response
to lithostatic-stress variation where φ denotes porosity. KHM , Ksat and Kdry

are respectively the Hertz-Mindlin, the fluid-saturated and the dry-rock bulk
moduli and μHM , μsat and μdry are respectively the Hertz-Mindlin, the fluid-
saturated and the dry-rock shear moduli.

First, the effective density of the saturated rock is calculated using equation

2.1. Next, the rock matrix effective moduli are calculated as the average of the

Hashin-Shrikman-Walpole upper and lower bounds of a mixture of the mineral

constituents, equations 3.22 and 3.23. The dry-rock elastic moduli of a 36%

porosity grain-pack are then calculated using the Hertz-Mindlin equations 3.26

and 3.27 with the rock matrix elastic moduli as inputs. The Hertz-Mindlin

dry-rock elastic moduli and the rock matrix elastic moduli are then fed into

one of the sand model equations to obtain an estimate of the dry-rock elastic

moduli of a grain-pack with less than 36% porosity: use equations 3.28 to
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3.30 for the soft-sand model, equations 3.31 to 3.33 for the stiff-sand model

and intermediate stiff-sand model. Next, the saturated-rock bulk modulus is

calculated with Gassmann’s equations 3.25 and 2.7 using the sand-model dry-

rock bulk modulus and the rock matrix bulk modulus. Finally, the effective

density from equation 2.1 and the elastic moduli from equations 3.25 and 2.7

for the fluid-saturated rock are combined in equations 2.5 and 2.6 to give the

desired P- and S-wave velocity.

The sensitivity of isotropic velocities to variation in the input parameters

of porosity, depth and pore fluid type is tested for the various sand models by

observing the velocity change for a range of values of a single parameter while

holding all other parameters constant.

3.3.3 Pore Pressure

Varying effective stress while assuming a constant lithostatic stress can simulate

pore-pressure variation in a reservoir, since effective stress is defined as the

difference between the lithostatic stress and the pore pressure, equation 3.1.

The procedure for calculating isotropic P- and S-wave velocity is the same as

discussed for lithostatic stress (Subsection 3.3.2) with the exception that new

fluid properties must calculated for each value of pore pressure using equations

3.2 to 3.19 which feed into equation 3.21 for fluid moduli and equation 2.1 for

effective density. Figure 3.3 outlines the basic steps involved in modelling the

isotropic velocity response to pore-pressure variation.

The sensitivity of velocity change to variation in the input parameters of

porosity, depth and pore fluid type is tested for the soft-, stiff- and intermediate

stiff-sand models by observing the velocity change for a range of values of a

single parameter while holding all other parameters constant. The confining

stress is obtained by assuming an average overburden density of 2400 kg/m3

and the same parameter defaults are used as in the Subsection 3.3.1.
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Figure 3.3: The basic workflow for modelling the isotropic velocity response
to pore-pressure variation where φ denotes porosity. KHM , Ksat and Kdry

are respectively the Hertz-Mindlin, the fluid-saturated and the dry-rock bulk
moduli and μHM , μsat and μdry are respectively the Hertz-Mindlin, the fluid-
saturated and the dry-rock shear moduli.

3.4 Results and Discussion

3.4.1 Fluid Replacement

To evaluate the sensitivity of velocity change for each input parameter, we

first show the P- and S-wave velocity response to increasing gas saturation at

various porosity values (Figures 3.4 and 3.5). Figures 3.6 to 3.9 then show the

dependence of P-wave velocity respectively for variations in gas gravity, pore

pressure, temperature and salinity with increasing gas saturation. Finally,

Figures 3.10 and 3.11 show the dependence of S-wave velocity respectively

for variations in gas gravity and salinity with increasing gas saturation. To

link Figures 3.4 to 3.11 to a hydraulic fracture treatment, keep in mind that

initially the reservoir will be close to 100% gas saturation and as the treatment

progresses the fracturing fluid will replace some to all of the gas, thus decreasing

gas saturation. For simplicity we assume the fracturing fluid to be brine. Hence,

moving from right to left along a particular curve simulates time passed in the

vicinity of a hydraulic fracture.

P- and S-wave velocities are significantly sensitive to porosity, as seen in

Figures 3.4 and 3.5 respectively. Figure 3.4 shows that for porosities greater

than 5%, P-wave velocity decreases or remains constant when gas saturation
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Figure 3.4: P-wave velocity versus gas saturation at various porosity values.
The parameter default conditions are 25oAPI, 40L/LRG, gas gravity of 1,
0.05 salinity, 30MPa pore pressure and 75◦C temperature.
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Figure 3.5: S-wave velocity versus gas saturation at various porosity values.
All other parameters are set to the default conditions stated in Figure 3.4.
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Figure 3.6: P-wave velocity versus gas saturation at various gas gravity values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4.

decreases from 100% to roughly 20%. However, if gas saturation decreases

below 20%, P-wave velocity responds with a sharp increase. In contrast, for

porosity less than or equal to 5%, P-wave velocity always shows an increase

with decreasing gas saturation but with a smoother increase as gas saturation

decreases below 20%. Figure 3.5 shows that S-wave velocity consistently de-

creases linearly with decreasing gas saturation but with a steeper gradient for

higher porosity. The behaviour of P- and S-wave velocity can be explained
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Figure 3.7: P-wave velocity versus gas saturation at various pore-pressure
values shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity
values. All other parameters are set to the default conditions stated in Figure
3.4.

by considering equations 2.5 and 2.6. As gas saturation decreases, the effec-

tive density of the rock increases while the effective shear modulus remains

unchanged resulting in a S-wave velocity decrease. The effective bulk modulus

increases as gas saturation decreases and the amount of bulk modulus increase

relative to density decrease controls the P-wave velocity response. For large

porosity, as gas saturation decreases from 100% to 20%, the approximately lin-

ear decrease in P-wave velocity is caused by density decrease being the dominate
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Figure 3.8: P-wave velocity versus gas saturation at various temperature values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4.

factor (Ostrander, 1985). However, as gas saturation decrease below 20%, the

non-linear P-wave velocity increase is caused by changes in the effective bulk

modulus being the dominant factor. This has important implications near a

hydraulic fracture in a greater than 10% porosity reservoir. If the fracturing

fluid leaves 20% gas saturation in the pore space, the P-wave velocity will show

no change or a slight decrease. However, if the fracturing fluid replaces more

than 80% of the gas, the P-wave velocity will show an increase.
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Figure 3.9: P-wave velocity versus gas saturation at various salinity values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4.

The terms Δvp and Δvs are used to describe the velocity sensitivity to a

particular input parameter. For example, consider Figure 3.6 which shows P-

wave velocity change with gas saturation for five values of the input parameter

gas gravity (G = 0.6, 0.9, 1.2, 1.5, 1.8) at three porosity values (φ = 1%, 10%,

20%). The values of gas gravity are differentiated by line style and the porosity

values are indicated by grey scale. The term Δvp refers to the separation

between the individual gas gravity curves for a specific porosity. For a 20%
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Figure 3.10: S-wave velocity versus gas saturation at various gas gravity values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4.
This plot is representative of pore-pressure sensitivity but with pore-pressure
sensitivity showing less variation at 10% and 20% porosity.

porosity Δvp is relatively large when gas saturation is 15% and moderate when

gas saturation is 100%. More specifically, at 100% gas saturation Δvp is very

small for gas gravity in the range of 0.6− 1.5 but is moderate when these gas

gravity curves are compared to the 1.8 gas gravity curve. Table 3.2 provides a

quick-access summary of the velocity sensitivity terms used in this chapter.

Over the input parameter ranges tested, Δvp is most sensitive to variation
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Table 3.2: A summary of velocity sensitivity terms.

Term Definition
Δvp The separation between the parameter P-wave velocity curves for

a specific porosity.
Δvs The separation between the parameter S-wave velocity curves for

a specific porosity.
Δvp,total The total P-wave velocity change over a range of effective stress

for a single sand model at a single depth.
Δvs,total The total S-wave velocity change over a range of effective stress

for a single sand model at a single depth.

in gas gravity and pore pressure with only minor sensitivity to temperature

and almost no sensitivity to salinity, as seen in Figures 3.6 to 3.9 respectively.

As seen in Figure 3.6, total vp change with 100% fluid replacement is larger for

smaller values of gas gravity. This is due to larger gas gravity values having

densities and bulk moduli closer to that of brine. Figure 3.7 shows that total vp

change with 100% fluid replacement is larger for smaller values of pore pressure

and this is due to a highly-compressible gas having density and bulk moduli

closer to that of a less-compressible brine at high pore pressures. Additionally,

Δvp shows a higher sensitivity to gas gravity, pore pressure and temperature

at high porosity. Plots for API and gas-oil ratio are not shown as they are not

input parameters for brine or gas, so Δvp is insensitive to them.

Over the input parameter ranges tested, Δvs is most sensitive to varia-

tion in gas gravity with minor sensitivity to pore pressure (Figures 3.10 and

3.11 respectively) and almost no sensitivity to salinity and temperature. The

sensitivity of Δvs to salinity, seen in Figure 3.11, is representative of the corre-

sponding plot for temperature. Figure 3.10 shows that Δvs sensitivity to gas

gravity increases with increasing porosity. The sensitivity of Δvs to gas grav-

ity, seen in Figure 3.10, is representative of the same plot for pore pressure but

with pore pressure showing less sensitivity at 10% and 20% porosity. The ini-

tial and final pore fluids have a large difference in density and a larger porosity

will result in the fluid portion of the saturated rock having a larger influence
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Figure 3.11: S-wave velocity versus gas saturation at various salinity values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4. This
plot is representative of temperature sensitivity.

on the effective density of the saturated rock. Expectedly, in very low porosity

reservoirs Δvs appears to be insensitive to all pore-fluid input parameters.

In the case of an initially oil-saturated rock, Figures 3.12 and 3.13 show

the dependence of P-wave velocity respectively for variations in API and gas

gravity with increasing oil saturation. The sensitivity of Δvp to API, seen in

Figure 3.12, is representative of the same plots for gas-oil ratio, temperature

and pore pressure. The sensitivity of Δvp to gas gravity, seen in Figure 3.13,
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Figure 3.12: P-wave velocity versus oil saturation at various API values shown
for 1% (black), 10% (dark grey) and 20% (light grey) porosity values. All
other parameters are set to the default conditions stated in Figure 3.4. This
plot is also representative of the gas-oil ratio, temperature and pore-pressure
sensitivity.

is representative of the same plot for salinity. Figures 3.14 and 3.15 then show

the dependence of S-wave velocity respectively for variations in API and gas

gravity with increasing gas saturation. The sensitivity of Δvs to gas gravity,

seen in Figure 3.15, is representative of the same plots for gas-oil ratio, salinity,

temperature and pore pressure. The same method of linking Figures 3.12 to

3.15 to a hydraulic fracture treatment that was used for gas saturation can be
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Figure 3.13: P-wave velocity versus oil saturation at various gas gravity values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4. This
plot is also representative of salinity sensitivity.

used here. That is, moving from right to left along a particular curve simulates

time passed in the vicinity of a hydraulic fracture.

Over the input parameter ranges tested, Δvp is moderately sensitive to

variation in API, pore pressure, temperature and gas-oil ratio (Figure 3.12)

with little sensitivity to gas gravity and salinity (Figure 3.13). The sensitivity

of Δvp to API, pore pressure, temperature and gas-oil ratio is greater at high

porosity values. Also, Δvs shows minor sensitivity to API at high porosity and
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Figure 3.14: S-wave velocity versus oil saturation at various API values shown
for 1% (black), 10% (dark grey) and 20% (light grey) porosity values. All other
parameters are set to the default conditions stated in Figure 3.4.

is relatively insensitive to all other pore-fluid input parameters (Figure 3.14).

In this case, Δvs is only slightly sensitive to porosity because oil and brine have

relatively similar density, especially at low API.

If all input parameters are set to the default values and we compare Δvp

and Δvs in an initially gas-saturated rock to Δvp and Δvs in an initially oil-

saturated rock, the change in velocities are greater when brine replaces gas.

This is due to the larger difference in density and bulk modulus between brine
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Figure 3.15: S-wave velocity versus oil saturation at various gas gravity values
shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity values.
All other parameters are set to the default conditions stated in Figure 3.4.
This plot is also representative of the gas-oil ratio, salinity, temperature and
pore-pressure sensitivity.

and gas than between brine and oil.

3.4.2 Lithostatic-Stress Variation

In the previous subsection we investigated the effect of changing pore pressure

while assuming the effective stress remained constant. In the next two sub-

sections we investigate the effect of varying the effective stress by assuming
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either pore pressure (Subsection 3.4.2) or lithostatic stress (Subsection 3.4.3)

is constant.

To investigate velocity sensitivity to lithostatic stress, the pore pressure is

assumed constant and any change in effective stress must be due to lithostatic-

stress change. We first show the P-wave velocity response to increasing effective

stress for gas, oil and brine saturated rock at various porosity values at various

depths (Figure 3.16). Figures 3.17 to 3.20 then show the dependence of P- and

S-wave velocity respectively on variation in effective stress for the soft-sand

model and the stiff-sand model at a single depth of 2 km. We now introduce an

additional sensitivity term, Δvp,total, that is defined as the total P-wave velocity

change when effective stress increases from ≈ 0MPa to ≈ 55MPa. The term

Δvs,total is analogous for S-wave velocity. Recall, Table 3.2 at the end of this

section provides a quick-access summary of the velocity sensitivity terms used

in this chapter.

Figure 3.16 shows P-wave velocity response to variable effective stress for

gas, oil and brine saturated rock shown for three porosity values (φ = 1%,

10%, 20%) using the soft-sand model at four depths (depth = 1 km, 2 km,

3 km, 4 km). The dashed vertical lines respectively indicate the initial litho-

static stress at each depth (σlitho = 24MPa, 47MPa, 71MPa, 94MPa). The

type of fluid saturating the rock is differentiated by line style, the porosity

values are indicated by grey scale and there is no differentiation for depth. For

example, a solid black line represents a brine saturated rock with 1% poros-

ity at 1km, 2km, 3km and 4km depths. It is seen that the Δvp between the

four depth curves for each of the fluid-fill/porosity combinations is very small.

The behaviour of S-wave velocity response to effective stress is similar to that

observed in Figure 3.16, and therefore is not shown.

Figure 3.17 shows the dependence of P-wave velocity on variation in effective

stress for the soft-sand model at a single depth of 2 km. Increasing porosity

results in a larger Δvp,total for all saturation-fluid curves. However, at a given
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Figure 3.16: P-wave velocity versus effective stress for gas, oil and brine satu-
rated rock shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity
values using the soft-sand model at various depths (1 km, 2 km, 3 km, 4 km).
The velocity curves for each depth are mostly overlapping. However, in the
case where there is a slight separation between the curves, the velocity curves
for greater depths are have slightly larger velocity magnitudes. The dashed
vertical lines indicate the initial lithostatic stress at each depth from left to
right. Variation in effective stress is due to lithostatic-stress variation and all
other parameters are set to the default conditions stated in Figure 3.4.

porosity the Δvp,total is similar regardless of saturation fluid. Also, Δvp between

the three saturation-fluid curves is small at low porosity but is significantly

larger at moderate and high porosity. The shape of the P-wave velocity curve
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Figure 3.17: P-wave velocity versus effective stress for gas, oil and brine satu-
rated rock shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity
values using the soft-sand model at 2 km depth. Variation in effective stress is
due to lithostatic-stress variation and all other parameters are set to the default
conditions stated in Figure 3.4.

in Figure 3.17 illustrates two things. First, for an equal magnitude deviation

from an initial effective stress, an effective stress increase will always result in a

smaller magnitude change in P-wave velocity than an effective stress decrease.

Second, P-wave velocity is more sensitive to effective stress variation at a low

initial effective stress. In general, lower effective stresss are encountered at

shallow depth. Hence, the increase in lithostatic stress due to a hydraulic
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Figure 3.18: S-wave velocity versus effective stress for gas, oil and brine satu-
rated rock shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity
values using the soft-sand model at 2 km depth. Variation in effective stress is
due to lithostatic-stress variation and all other parameters are set to the default
conditions stated in Figure 3.4).

fracture will result in a smaller increase in P-wave velocity in a reservoir at

greater depth.

The dependence of S-wave velocity on variation in effective stress for the

soft-sand model at a single depth of 2 km is similar to that of P-wave veloc-

ity with two noticeable differences (Figure 3.18). First, the Δvs between the

three saturation-fluid curves is very small regardless of porosity and second, the
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Figure 3.19: P-wave velocity versus effective stress for gas, oil and brine satu-
rated rock shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity
values using the stiff-sand model at 2 km depth. Variation in effective stress
is due to lithostatic-stress variation and all other parameters are set to the
default conditions stated in Figure 3.4.

Δvs,total of each curve is smaller than the Δvp,total of the corresponding curve.

The change in P- and S-wave velocity with effective stress is sensitive to

the sand model used, as seen by respectively comparing Figure 3.17 to Figure

3.19 and comparing Figure 3.18 to Figure 3.20. Figures 3.19 and 3.20 show

that Δvp,total and Δvs,total are smaller for the stiff-sand model for all fluid types

and porosity values. This is the result of the physical properties of a stiff rock
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Figure 3.20: S-wave velocity versus effective stress for gas, oil and brine satu-
rated rock shown for 1% (black), 10% (dark grey) and 20% (light grey) porosity
values using the stiff-sand model at 2 km depth. Variation in effective stress
is due to lithostatic-stress variation and all other parameters are set to the
default conditions stated in Figure 3.4.

varying less than a compressible rock in response to effective stress variation.

3.4.3 Pore-Pressure Variation

To investigate velocity sensitivity to pore pressure the confining stress is as-

sumed constant, therefore any change in effective stress must be due to pore-

pressure change. A plot of P- or S-wave velocity response to variable effective
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stress for gas, oil and brine saturated rock at three porosity values (φ = 1%,

10%, 20%) using the soft-sand model at four depths (depth = 1 km, 2 km,

3 km, 4 km) is nearly identical to Figure 3.16. That is, an effective stress vari-

ation of a given magnitude from a given initial effective stress will result in the

same change in velocity whether the pressure change is due to pore-pressure

variation or lithostatic-stress variation. As a result, Figures 3.16 to 3.20 are

nearly identical for effective stress due to pore-pressure variation. This is pri-

marily a result of assuming the effective-pressure coefficient, α, in equation

3.1 is approximately equal to one. However, if we were to assume an effec-

tive stress coefficient of α < 1, the seismic velocities would be less sensitive to

pore-pressure variation than to lithostatic-stress variation.

Finally, it is instructive to compare the relative magnitude of isotropic veloc-

ity change due to fluid substitution versus effective stress variation for realistic

reservoir conditions. We compare an effective stress change with no fluid sub-

stitution to a 100% brine substitution in an initially gas-saturated rock with

no effective stress change. Modelling performed by Warpinski et al. (2004)

gives a maximum effective stress variation in the vicinity of a hydraulic frac-

ture of −14MPa . Using the stiff-sand model for a 2 km depth reservoir with

10% porosity for a 14MPa effective stress decrease in a brine saturated rock,

P-wave velocity changes by ≈ −40m/s and S-wave velocity by ≈ −30m/s.

Compare these values to the P- and S-wave velocity change when a 100% brine

saturation replaces a 100% gas saturation in a reservoir at the same depth and

porosity with no effective stress change: ≈ 60m/s and ≈ −30m/s respectively.

Hence, under the stated reservoir conditions, the effect of fluid substitution and

effective stress variation on isotropic P-wave and S-wave velocities are on the

same order of magnitude and represent an approximately 1% overall change.

In most unconventional reservoirs the porosity is actually significantly smaller

than 10% which would result in even smaller isotropic velocity variations.
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3.5 Conclusions

The volume of rock surrounding a hydraulic fracture experiences fluid invasion,

lithostatic-stress increase, and pore-pressure increase. These three processes

change the in-situ isotropic P- and S-wave velocities of the rock.

When a brine saturation replaces a 100% hydrocarbon gas saturation, P-

wave velocity is most sensitive to variation in gas gravity and pore pressure at

high porosity, and S-wave velocity is most sensitive to variation in gas gravity

at high porosity. The porosity and the completeness of fluid replacement are

the primary controls on P-wave velocity behaviour. If fluid replacement is

inefficient and greater than 20% gas saturation remains in a moderate-to-high

porosity reservoir, P-wave velocity remains constant or shows a slight decrease.

However, if the reservoir is low porosity or if less than 20% gas saturation

remains in a moderate-to-high porosity reservoir, P-wave velocity will show an

increase. When brine replaces a hydrocarbon oil, P-wave velocity is moderately

sensitive to variation in API, gas-oil ratio, pore pressure and temperature with

higher sensitivities at high porosity. In contrast, S-wave velocity only shows

minor sensitivity to API and only at high porosity.

Isotropic seismic velocites, both P- and S-wave velocity, also respond to

change in effective stress with a higher velocity sensitivity at low initial effective

stress and high porosity. The magnitude of change in P- and S-wave velocities

are largely insensitive to the pore-saturating fluid type. Given a set magnitude

of effective stress deviation from an initial effective stress with all other input

parameters constant, the magnitude of P- and S-wave velocity responses are

larger for an effective stress decrease than for an increase. Additionally, the

stiff-sand model shows P- and S-wave velocity are less sensitive to effective

stress than the soft-sand model shows.

These observations imply that in a low porosity, gas-saturated reservoir in

the region adjacent to a shallow hydraulic fracture where pore-pressure increase
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is greater than lithostatic-stress increase and incomplete displacement of the

pore-saturating hydrocarbons takes place, P-wave velocity will increase slightly

due to fluid replacement. However, this increase will be counteracted by the

slight decrease in P-wave velocity due to effective stress decrease. The magni-

tude of P-wave velocity change under these conditions is sensitive to gas gravity,

pore pressure and rock stiffness. In contrast, S-wave velocity will decrease due

to both fluid replacement and effective stress decrease while the magnitude of

S-wave velocity change is sensitive only to rock stiffness.

Given the above observations, the volume of rock in the vicinity of a hy-

draulic fracture can now be described in terms of effective-stress changes and

the expected isotropic seismic velocity changes. Recall, the compressive, shear

and tensile zones will not experience significant fluid replacement or pore-

pressure changes. The compressive zone will experience effective-pressure in-

crease and we expect to see a P- and S-wave isotropic velocity increase. The

shear zone will experience low-magnitude effective-pressure changes and we

expect to see little P- and S-wave velocity change. The tensile zone will experi-

ence effective-pressure decrease and we expect to see a P- and S-wave isotropic

velocity decrease. Furthermore, given an equal-magnitude effective-pressure

perturbation in the compressive and tensile zones, the velocity perturbation

will be tend to be larger in the tensile zone. The determining the expected

velocity perturbations in the proximal zone is more complicated, where fluid

replacement, pore-pressure increase and confining-stress changes are happening

simultaneously. For simplicity, let us assume the proximal zone is dominated

by pore-pressure increase, therefore experiencing an effective-pressure decrease.

Let us assume the reservoir is low-porosity, is initially hydrocarbon saturated

and following the hydraulic fracture treatment a brine replaces the pore fluid

within the proximal zone. In this case, we expect a P-wave isotropic veloc-

ity increase due to fluid replacement and a P-wave isotropic velocity decrease

due to the effective-stress decrease. We expect the competing effects of fluid
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replacement and effective-stress decrease will tend to result in low-magnitude

P-wave isotropic velocity changes. In contrast, we expect an S-wave isotropic

velocity decrease due to both fluid replacement and effective-stress decrease,

resulting in a relatively large S-wave isotropic velocity decrease. Figure 3.21

shows the four spatiotemporal zones introduced in Chapter 2, along with the

expected isotropic velocity changes in each zone.

Δvp
Δvs

Δvp
Δvp
Δvs

Δvp
Δvs

Δvs

Figure 3.21: A horizontal cross-section through a vertical hydraulic fracture
extending from a vertical well illustrating the four spatiotemporal zones in
the surrounding region, modified from Cipolla et al. (2011). The area with
black diagonal lines indicates the proximal zone, the solid red area indicates
the compressive zone, the solid blue area indicates the shear zone and the
solid green area indicates the tensile zone. For simplicity, we assume that
the extent of fluid invasion corresponds to the extent of pore-pressure increase;
however, this is not always true. Expected isotropic P-wave and S-wave velocity
perturbations are indicated in each of the four zones, denoted by Δvp and Δvs
respectively. A negative sign, ‘−’, indicates a decrease, a positive sign, ‘+’,
indicates an increase and ‘+/−’ indicates a possible increase or decrease.
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Chapter 4

Pore-Pressure Diffusion and

Confining-Stress Modelling in

the Vicinity of a Hydraulic

Fracture

4.1 Introduction

The material presented in this chapter is based on work that was presented

orally at the 2017 Society of Exploration Geophysicists Annual International

Meeting in Houston, Texas (Brisco and Van der Baan, 2017). Keeping in mind

the ultimate goal of this thesis is to create a realistic model of the anisotropic

velocity field around a hydraulic fracture, in Chapter 2 we discussed the three

main processes acting around a hydraulic fracture affecting seismic velocites:

pore-pressure diffusion, pore-fluid replacement and confining-stress change due

to rock matrix deformation. In Chapter 3, we showed in low-porosity reservoirs,

typical targets for hydraulic fracturing, variation in the properties of the pore-

saturating fluid have little-to-no effect on seismic velocities. Also, in Chapter

3 we demonstrated that seismic velocities respond to the combined effects of
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pore-pressure diffusion and confining-stress change, i.e. effective-stress change.

That is, for common hydraulic fracturing environments, predictions of pore-

pressure diffusion and confining-stress change are essential input parameters

required to model the resulting anisotropic velocity field, but we can ignore the

effects of pore-fluid replacement.

In this chapter, we consider the case of a hydraulic fracture growing in

a low-porosity, isotropic, homogeneous reservoir. First, we use a classic ana-

lytical solution to model the triaxial confining-stress change that results from

the pressurized fracture displacing a volume of rock in a direction normal to

the fracture face. Then, we use a second-order partial differential diffusion

equation in a three dimensional finite-difference scheme to model pore-pressure

diffusion through the surfaces of the hydraulic fracture. We treat pore pres-

sure as a hydrostatic stress. Next, we combine the confining-stress change and

pore-pressure perturbation to obtain the triaxial effective-stress change in the

vicinity of the hydraulic fracture. Confining and effective-stress changes are

displayed in terms of mean stress values, in addition to, breaking the stress

changes down into the three principle components. Finally, we discuss aspects

of the modelled effective-stress changes in the context of eventually modelling

the seismic velocity field around the hydraulic fracture.

4.2 Theory

4.2.1 Confining Stress

Eshelby (1957, 1959) derived a three dimensional solution for the stress field in

and around an ellipsoidal inclusion and demonstrated that elastic stress within

an ellipsoidal inclusion embedded in a matrix is homogeneous when the system

is subjected to an external far-field stress. This holds true if the far-field stress

is either lithostatic or triaxial in nature. In our case, the surrounding matrix

is a fluid-saturated poroelastic medium. An inclusion, as described by Eshelby
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(1957, 1959), can be used to approximate a hydraulic fracture held open by

elevated fluid pressure. Following Eshelby (1957, 1959)’s work, the stress at

any point inside an inclusion, σ, is given by Ju and Sun (1999) as

σ = σ◦ +C◦ · [S − I] : ε∗∗ , (4.1)

where the symbol “·” denotes tensor multiplication, the symbol “:” denotes

tensorial contraction, σ◦ is the far-field stress, C◦ is the isotropic 4th-order

stiffness tensor of the fluid-saturated poroelastic medium, S is the 4th-order

Eshelby S tensor, I is the 4th-order identity tensor and ε∗∗ is the eigenstrain.

The term eigenstrain was introduced by Mura (1987) in reference to Eshelby’s

‘strain-free stress’ and in our case represents the strain that would result from

the pore pressure in the inclusion if the inclusion was not confined by the fluid-

saturated poroelastic medium. The Eshelby S tensor is invariant with respect

to position within the inclusion (Eshelby, 1957, 1959). Ju and Sun (1999)

express the eigenstrain as

ε∗∗ = (S +A)−1 : [B : (εt − ε◦)] , (4.2)

where a tensorial variable raised to the power of −1 (eg. (S +A)−1) indicates

the inverse of the tensor, εt is the prescribed eigenstrain and ε◦ is the far-field

strain that can be calculated using Hooke’s Law as follows:

ε◦ = (C◦)−1 : σ◦ . (4.3)

The prescribed eigenstrain, εt, is found in a similar manner to the far-field

strain in equation 4.3 by instead using the inclusion material stiffness, C1,

and the prescribed eigenstress, σt, which in our case is given by the injection

pressure within the hydraulic fracture. In equation 4.2, the 4th-order elastic-

phase “mismatch tensors” A and B are given by
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A = (C1 −C◦)−1 ·C◦ (4.4)

and

B = (C1 −C◦)−1 ·C1 , (4.5)

where C1 is the isotropic 4th-order stiffness tensor of the inclusion material.

Using Voigt notation to express the stiffness tensor of an isotropic medium as a

6×6 matrix, CISO, that is a function of bulk, K, and shear, μ modulus results

in

CISO =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.6)

where C11 = K + 4/3μ, C12 = K − 2/3μ and C44 = μ. Poisson’s ratio, ν can

likewise be expressed as a function of bulk and shear modulus as follows:

ν =
3K + 2μ

2(3K + μ)
. (4.7)

The external stress field, σ(x), surrounding an ellipsoidal inclusion is po-

sition dependent and is given by

σ(x) = σ◦ +C◦ ·G(x) : ε∗∗ (4.8)

where x is the position vector of the point of interest and G(x) is a 4th-order

tensor that is a function of ellipsoid geometry, the fluid-saturated poroelastic

medium Poisson’s ratio and the position vector (Ju and Sun, 1999).

If we assume a vertical hydraulic fracture is a specific case of ellipsoid, an
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oblate spheroid with semi-axis dimensions of (a1 << a2 = a3), explicit solutions

for the Eshelby S and G(x) tensors can be used to calculate the internal and

external stress fields within and around the inclusion. The remainder of this

subsection is dedicated to describing the explicit expression of S and G(x).

Eshelby G(x) Tensor (Exterior Point)

The external stress field surrounding an oblate spheroid can be found using the

explicit expression for the Eshelby G(x) tensor given by Ju and Sun (2001).

In the remainder of this chapter, we assume that the centre of the ellipsoidal

inclusion coincides with the origin of the coordinate system. The same tensorial

indicial notation as decribed by Mura (1987) is used, where repeated lower-

case indices are summed and upper-case indices take on the same values as

the corresponding lower-case ones, but are not summed. All indices i, j, k, l ∈
{1, 2, 3}. Ju and Sun (1999) derive explicit expressions for all components

of G(x) by introducing the outward facing unit normal vector, n̂, at any

fluid-saturated poroelastic medium point x on an imaginary ellipsoid. This

imaginary ellipsoid has the same centre point and the same geometry as the

inclusion but is expanded in size. The components of G(x) are given by Ju

and Sun (1999) as

Gijkl(x) =
1

4(1− ν◦)

[
S
(1)
IK(ω)δijδkl + S

(2)
IJ (ω)(δikδjl + δilδjk)

+ S
(3)
I (ω)δijn̂kn̂l + S

(4)
K (ω)δkln̂in̂j + S

(5)
I (ω)(δikn̂jn̂l + δiln̂jn̂k)

+ S
(6)
J (ω)(δjkn̂in̂l + δjln̂in̂k) + S

(7)
IJKL(ω)n̂in̂jn̂kn̂l

] (4.9)

where ν◦ is the fluid-saturated poroelastic medium Poisson’s ratio, δij is the

Kroenecker delta tensor, n̂i are the components of the outward facing unit

normal vector and are given by

74



n̂i =
xi

(a2I + ω)
√
Θ(ω)

, (4.10)

where

Θ(ω) = Θi(ω)Θi(ω) (4.11)

and

Θi(ω) =
xi

(a2I + ω)
. (4.12)

Recall, the repeated indices in equation 4.11 imply summation. All S(m) terms

are described below and are functions of the fluid-saturated poroelastic medium

Poisson’s ratio, ellipsoidal geometry and observation position, where super-

script numbers in brackets, (m), simply indicate the term number. Expressed

as a matrix, the terms S
(1)
IK(ω) and S

(2)
IJ (ω) respectively take the forms of

S(1) =

⎡
⎢⎢⎢⎣
S
(1)
11 S

(1)
12 S

(1)
12

S
(1)
21 S

(1)
22 S

(1)
22

S
(1)
21 S

(1)
22 S

(1)
22

⎤
⎥⎥⎥⎦ (4.13)

and

S(2) =

⎡
⎢⎢⎢⎣
S
(1)
11 S

(1)
12 S

(1)
12

S
(1)
12 S

(1)
22 S

(1)
22

S
(1)
12 S

(1)
22 S

(1)
22

⎤
⎥⎥⎥⎦ . (4.14)

Explicit expression for all S
(1)
IK(ω) and S

(2)
IJ (ω) components are given by Ju

and Sun (1999, 2001). However, Healy (2009) notes the first two terms of

components S
(1)
11 (ω), S

(1)
12 (ω), S

(2)
11 (ω) and S

(2)
12 (ω) are reported with the incorrect

sign in Ju and Sun (2001). The correct S
(1)
IK(ω) and S

(2)
IJ (ω) components are as

follows:
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S
(1)
11 (ω) =

[
4ν◦ +

2

α2◦ − 1

]
g(ω)− 2

3(α2◦ − 1)
ρ31(ω) +

[
4ν◦ +

2

α2◦ − 1

]
ρ1(ω)ρ

2
2(ω) ,

(4.15)

S
(1)
12 (ω) =

[
4ν◦ − 2α2

◦ + 1

α2◦ − 1

]
g(ω) +

[
4ν◦ +

2α2
◦

α2◦ − 1

]
ρ1(ω)ρ

2
2(ω) , (4.16)

S
(1)
21 (ω) =

[
− 2ν◦ − 2α2

◦ + 1

α2◦ − 1

]
g(ω)− 2α2

◦
α2◦ − 1

ρ1(ω)ρ
2
2(ω) , (4.17)

S
(1)
22 (ω) =

[
− 2ν◦ +

4α2
◦ − 1

4(α2◦ − 1)

]
g(ω) +

α2
◦

2(α2◦ − 1)

ρ42(ω)

ρ1(ω)
, (4.18)

S
(2)
11 (ω) =

[
4ν◦− 4α2

◦ − 2

α2◦ − 1

]
g(ω)− 2

3(α2◦ − 1)
ρ31(ω)−

[
4ν◦− 4α2

◦ − 2

α2◦ − 1

]
ρ1(ω)ρ

2
2(ω) ,

(4.19)

S
(2)
12 (ω) =

[
ν◦ +

α2
◦ + 2

α2◦ − 1

]
g(ω)−

[
2ν◦ +

2

α2◦ − 1

]
ρ1(ω)ρ

2
2(ω) , (4.20)

S
(2)
22 (ω) =

[
2ν◦ − 4α2

◦ − 7

4(α2◦ − 1)

]
g(ω) +

α2
◦

2(α2◦ − 1)

ρ42(ω)

ρ1(ω)
, (4.21)

where

α◦ =
a1
a2

, (4.22)

g(ω) = − α2
◦

α2◦ − 1

ρ22(ω)

ρ1(ω)
+

α◦
(1− α2◦)1.5

tan−1 α◦√
1− α2◦ρ1(ω)

, (4.23)
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ρI(ω) = − aI√
a2I + ω

(4.24)

and

ω =
xixi − a21 − a22 +

√
(xixi + a21 − a22)

2 − 4x2
1(a

2
1 − a22)

2
. (4.25)

The remainder of the components of Eshelby’s Gijkl(x) tensor in equation 4.9

are given as follows:

S
(3)
I (ω) = 2ρ3(ω)[1− ρ2I(ω)] , (4.26)

S
(4)
K (ω) = 2ρ3(ω)[1− 2ν◦ − ρ2K(ω)] , (4.27)

S
(5)
I (ω) = 2ρ3(ω)[ν◦ − ρ2I(ω)] , (4.28)

S
(6)
J (ω) = 2ρ3(ω)[ν◦ − ρ2J(ω)] (4.29)

and

S
(7)
IJKL(ω) = 2ρ3(ω)

[
2[ρ2I(ω) + ρ2J(ω) + ρ2K(ω) + ρ2L(ω)]

+ ρm(ω)ρm(ω)− 4ρ2M(ω)Θm(ω)Θm(ω)

Θ(ω)
− 5

]
,

(4.30)

where

ρ(ω) = [ρ1(ω)ρ1(ω)ρ1(ω)]
1/3 . (4.31)
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Eshelby S Tensor (Interior Point)

Ju and Sun (1999) give the explicit expression of Eshelby’s S tensor. For a

spheroidal inclusion it takes the form:

Sijkl =
1

4(1− ν◦)

[
S
(1)
IK(0)δijδkl + S

(2)
IJ (0)(δikδjl + δilδjk)

]
, (4.32)

where Sijkl is a function of only the ellipsoid dimensions and the Poisson’s ratio

of the fluid-saturated poroelastic medium. S
(1)
IK(0) and S

(2)
IJ (0) are special cases

of S
(1)
IK(ω) and S

(2)
IJ (ω) where ω is set to zero. When expressed as a matrix, the

components of S
(1)
IK(0) and S

(2)
IJ (0) take the same form as shown respectively in

equations 4.13 and 4.14 and for the special case of an oblate spheroid are given

by:

S
(1)
11 (0) =

[
4ν◦ +

2

α2◦ − 1

]
g(0) + 4ν◦ +

4

3(α2◦ − 1)
, (4.33)

S
(1)
12 (0) =

[
4ν◦ − 2α2

◦ + 1

α2◦ − 1

]
g(0) + 4ν◦ − 2α2

◦
α2◦ − 1

, (4.34)

S
(1)
21 (0) =

[
− 2ν◦ − 2α2

◦ + 1

α2◦ − 1

]
g(0)− 2α2

◦
α2◦ − 1

, (4.35)

S
(1)
22 (0) =

[
− 2ν◦ +

4α2
◦ − 1

4(α2◦ − 1)

]
g(0) +

α2
◦

2(α2◦ − 1)
, (4.36)

S
(2)
11 (0) =

[
− 4ν◦ +

4α2
◦ − 2

α2◦ − 1

]
g(0)− 4ν◦ +

12α2
◦ − 8

3(α2◦ − 1)
, (4.37)

S
(2)
12 (0) =

[
− ν◦ − α2

◦ + 2

α2◦ − 1

]
g(0)− 2ν◦ − 2

α2◦ − 1
, (4.38)

S
(2)
22 (0) =

[
2ν◦ − 4α2

◦ − 7

4(α2◦ − 1)

]
g(0) +

α2
◦

2(α2◦ − 1)
, (4.39)
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where

g(0) = − α2
◦

(α2◦ − 1)1.5
[
α◦

√
1− α2◦ − cos−1 α◦

]
. (4.40)

As seen in equations 4.32 to 4.40, the Eshelby S tensor is a function of only

the ellipsoidal inclusion aspect ratio, α◦, and the Poisson’s ratio of the fluid-

saturated poroelastic medium surrounding the inclusion, ν◦ (Eshelby, 1957,

1959). Voigt notation can be used to express the interior Eshelby S tensor as

a 6× 6 matrix gives the following form:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1111 S1122 S1133 0 0 0

S1122 S2222 S2233 0 0 0

S1133 S2233 S3333 0 0 0

0 0 0 S2323 0 0

0 0 0 0 S1313 0

0 0 0 0 0 S1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.41)

4.2.2 Pore-Pressure Diffusion

For the case of a diffusively anisotropic homogeneous medium, Biot (1956,

1962)’s low-frequency limit equation for slow P-waves can be used to express

pore-pressure perturbation in terms of hydraulic diffusivity as follows:

∂Ppore

∂t
= Dij

∂

∂xi

∂

∂xj

Ppore , (4.42)

where Ppore is pore pressure, t is time, Dij are the components of the diffusivity

tensor and xi (i = 1, 2, 3) are the components of the radial vector from the

injection point to an observation point (Shapiro et al., 2002). If the poroelastic

medium through which diffusion is taking place is elastically isotropic and

homogeneous, Darcy’s Law can be combined with the conservation of mass to

relate hydraulic diffusivity to permeability as follows:
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Dij =
Nmκij

η
, (4.43)

where κij are the components of the permeability tensor, η is the dynamic

viscosity of the pore-saturating fluid and Nm is a poroelastic modulus (Mavko

et al., 2009). The poroelastic modulus Nm is given by:

Nm =
MPd

H
, (4.44)

M =

[
φ

Kfluid

+
(ι− φ)

Kmatrix

]−1

, (4.45)

ι = 1− Kdry

Kmatrix

, (4.46)

H = Pd + ι2M and (4.47)

Pd = Kdry +
4

3μdry

, (4.48)

where φ is the rock porosity, Kfluid is the pore-fluid bulk modulus, Kmatrix is

the matrix material bulk modulus, Kdry is the dry rock bulk modulus and μdry

is the dry rock shear modulus (Shapiro et al., 2002). If the poroelastic medium

through which diffusion is taking place is diffusively isotropic and homogeneous,

the diffusion tensor Dij becomes a constant scalar value, D.

4.2.3 Central Scheme Finite Difference Method

We use a central differentiation scheme of order 2 to approximate the partial

derivatives of pore pressure with respect to space. Time is treated as order

1. If we assume isotropic diffusivity, we can take advantage of the resultant

radial symmetry of the spheroid about the x1-axis and we are able to reduce
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numerical calculation time by only calculating pore-pressure diffusion in a grid

of the x1x2-plane for x3 = 0 and only for positive x2 values. In other words, a

horizontal cross-section of one half of a vertical fracture through the centre of

the fracture is used. The cross-section through the other half of the fracture

is simply a mirror image. For the rest of this subsection, to avoid confusing

notation we refer to (x1, x2, x3) as (x, y, z). Subscripts on position variables

refer to the grid node position and subscripts on t refer to time steps. For

example, xi = (i − 1)Δx, where i is the grid index in the x-direction and Δx

is the spatial sampling rate in the x-direction. For each time step (tk=1 to

tk=kmax), we calculate the pore pressure as

P (x, y, tk+1) = P (x, y, tk) +
∂P (x, y, tk)

∂t
Δt , (4.49)

where Δt is the temporal sampling rate, k is the time index, kmax is the last

time step and we shorten Ppore to P for ease of reading. If we assume the

medium through which diffusion is taking place is isotropic and homogeneous

with respect to diffusion, ∂P
∂t

in equation 4.49 is given by

∂P (xi, yj, tk)

∂t
= D

(∂2P (xi, yj, tk)

∂x2
+

∂2P (xi, yj, tk)

∂y2
+

∂2P (xi, yj, tk)

∂z2(yj)

)
, (4.50)

where D is the scalar diffusivity and j is the grid index in the y-direction. If

imax is the last grid node in the x-direction and jmax is the last grid node in

the y-direction then for i ∈ {2, imax − 1} and j ∈ {2, jmax − 1}

∂2P (xi, yj, tk)

∂x2
≈ P (xi+1, yj, tk)− 2P (xi, yj, tk) + P (xi−1, yj, tk)

Δx2
, (4.51)
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∂2P (xi, yj, tk)

∂y2
≈ P (xi, yj+1, tk)− 2P (xi, yj, tk) + P (xi, yj−1, tk)

Δy2
(4.52)

and, in order to enforce the condition of radial symmetry about the x-axis,

∂2P (xi, yj, tk)

∂z2(yj)
≈ 2[P (xi, yj+1, tk)− P (xi, yj, tk)]

Δz2(yj+1)
, (4.53)

where Δz2(yj+1) is a function of the distance from yj+1 to the x-axis such that

Δz2(yj) = yj+1 sin θ (4.54)

and

θ = cos−1 yj
yj+1

. (4.55)

In the case that j = 1, that is any point perpendicular to the centre of the

spheroid in the xy-plane, the condition of radial symmetry about the x-axis

requires that

∂2P (xi, y1, tk)

∂y2
=

∂2P (xi, y1, tk)

∂z2
≈ 2[P (xi, y2, tk)− P (xi, y1, tk)]

Δy2
. (4.56)

4.3 Method

In order to model confining stress and pore pressure at any point around a hy-

draulic fracture, we use code written in Matlab to implement Eshelby’s solution

and Shapiro’s pore-pressure diffusion model. The Matlab code we have written

for the confining-stress analytical model is primarily based on the Matlab code

written by Healy (2009), and our Matlab code for the pore-pressure finite dif-

ference model is based on Matlab code provided by Professor David Eaton at
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the University of Calgary. We use Voigt notation to express all 4th-order ten-

sors as 6× 6 matrices. Stress and strain tensors are expressed as 6-component

column vectors.

We assume a hydraulic fracture grows at a defined constant velocity as an

oblate spheroid with semi-axes dimensions such that (a1 << a2 = a3). Hence,

the oblate spheroid as defined represents a low aspect-ratio vertical hydraulic

fracture with the fracture plane in the x2x3-plane. The spheroid is oriented such

that the three semi-axes are aligned with the three principle stress directions

which are in turn aligned with the Cartesian coordinate axes (i.e. ai ‖ σi ‖ xi).

We also assume the fracture initiates as a small-radius spheroid and grows to

reach a defined maximum radius.

To start, we first set a number of model input variables that are required

for both the confining-stress and pore-pressure models. These variables fall

under five categories: stress properties, inclusion or fracturing fluid properties,

matrix frame or dry rock properties, matrix constituent material properties

and matrix effective media properties. For inclusion properties, we assume the

fracturing fluid has the same physical properties as the in-situ pore saturat-

ing fluid. This assumption allows us to ignore complications arising from two

phase fluid flow. Recall, in Chapter 3 it is shown for a low-porosity stiff rock,

seismic velocity change due to effective-stress change is relatively insensitive to

pore fluid type, as long as the fluid is brine, oil or high pressured hydrocarbon

gas. It is important to note, in order to allow us to find the fluid compliance,

C1
−1 in equation 4.3, the fluid shear modulus can not equal zero. We set the

following variables: injection pressure, in-situ far-field stress conditions, fluid

bulk and shear moduli, fluid viscosity, dry rock bulk and shear moduli, ma-

trix material bulk modulus, bulk and shear moduli of the isotropic effective

medium representing the fluid-saturated poroelastic rock, fracture width, frac-

ture propagation velocity and maximum fracture diameter. Table 4.1 gives the

parameter values that we use for all simulations.
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As the spheroid radius increases at the defined velocity, we calculate ‘snap-

shots’ of the external-stress field and the pore-pressure perturbation surround-

ing the spheroid at set times. For each time step, and the corresponding

spheroid geometry, we implement the following workflows.

4.3.1 Confining-Stress Analytical Model

First, we set the far-field stress such that σ◦ = [σh, σH , σv, 0, 0, 0]
T and the pre-

scribed eigenstress such that σt = [−Pinject,−Pinject,−Pinject, 0, 0, 0]
T , where

the superscript T indicates the transpose.

Next, we perform the following steps:

1. Calculate the elasticity coefficients, C1, of the inclusion material using

the defined bulk and shear moduli in equation 4.6.

2. Calculate the elasticity coefficients, C◦, and Poisson’s ratio, ν◦ of the

poroelastic matrix using the defined bulk and shear moduli in equations

4.6 and 4.7 respectively.

3. Calculate the Eshelby S tensor using equation 4.32 and equations 4.33

to 4.41.

4. Calculate the prescribed eigenstrain, εt, and the matrix strain due to the

far-field stress, ε◦, using equation 4.3.

5. Calculate the total eigenstrain, ε∗∗ using equation 4.2 and equations 4.4

and 4.5

6. Calculate the Eshelby G(x) tensor using equation 4.9 and equations 4.10

to 4.31.

7. Calculate the external stress field, σ(x), using equation 4.8.
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4.3.2 Pore-Pressure Diffusion Finite-Difference Model

First, we set a number of parameters for the central scheme finite-difference

model, including the number of nodes in the grid, the distance between nodes,

the temporal sampling rate, the total time for the model to run and the reservoir

permeability, as seen in Table 4.2. These values are fixed for all simulations.

We specify a uniform spatial sampling in the x- and y-directions. The grid

boundaries are fixed at a constant pore pressure of zero MPa. Then we run

the finite-difference code as outlined in equations 4.42 to 4.56 for all time steps.

We specify that the fracture must grow in the yz-plane. To simulate fracture

growth, at each time step we define all grid nodes in the yz-plane that fall

within the radius of the spheroid as a point source injector. The magnitude of

the spheroidal radius at each time step is obtained by multiplying the defined

velocity of fracture propagation by the total propagation time.

4.3.3 Effective Stress

The effective stress is calculated using the modelled confining stress and pore-

pressure diffusion results from the previous subsections. At all grid nodes,

confining stress and pore pressure are fed into equation 2.9 to obtain effective

stress. The effective-stress coefficient, α, is assumed to be equal to one.

4.4 Results

We outline the general behaviour of pore-pressure diffusion and confining-stress

perturbation in the vicinity of a growing vertical hydraulic fracture by display-

ing and qualitatively discussing the model outputs for a single set of input

parameters. Both models are computed with the input parameters contained

in Table 4.1 with the pore-pressure diffusion finite-difference model requiring

the additional inputs contained in Table 4.2. We allow the models to run for
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20hrs with the hydraulic fracture growing until it reaches a maximum diameter

of 200m at t = 9.3hrs, at which point we force the fracture to stop growing.

This allows us to observe both the evolving confining-stress and pore-pressure

perturbations as the fracture is growing (t = 0 − 9.3hrs) and the evolving

pore-pressure perturbation when the confining-stress field is constant after the

fracture has stopped growing (t = 9.3− 20hrs). Figures 4.1 to 4.4 display the

modelled confining stress results, Figure 4.5 shows pore pressure results and

figures 4.6 to 4.9 show effective stress from equation 3.1, assuming an effective-

stress coefficient of one. The results in figures 4.1 to 4.9 are displayed as six

horizontal cross-sections, panels (A) to (F), through the centre of the vertical

hydraulic fracture at time steps of 4hrs or 240min. Hence, for the first three

time steps the fracture is growing and for the last three the fracture is static in

size. All colourbars are formatted such that white is the in-situ stress/pressure

while reds indicate an increase and blues indicate a decrease. In each cross-

section, the hydraulic fracture is indicated by the horizontal black line in the

centre of the plot. The x1-direction is horizontal on the page, the x2-direction is

vertical on the page and the x3-direction is into/out of the page. Additionally,

in each cross-section, there are two points indicated by black dots, the com-

pressive zone point and the tensile zone point, herein respectively referred to as

the CZP and TZP. Each point is always located at the same spatial position.

The CZP is located 40m perpendicular to the centre of the hydraulic fracture,

and the TZP is located in the plane of the hydraulic fracture and 120m from

the centre of the fracture.

4.4.1 Confining Stress

Figures 4.1 to 4.4 display the modelled confining-stress perturbation respec-

tively for mean stress, stress measured in the x1-direction (σ11), stress mea-

sured in the x2-direction (σ22) and stress measured in the x3-direction (σ33).

Mean stress is the average of (σ11 + σ22 + σ33). In respect to all measured
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Table 4.1: Stress model and pressure model input parameters.

Stress Properties
Injection Pressure, Pinject 28MPa
Far-field Stress, (σh, σH , σv) (47, 47, 25)MPa

Matrix Constituent Material Properties
Bulk Modulus, Kmatrix 45.82GPa

Matrix Frame Properties
Bulk Modulus, Kdry 45.71GPa
Shear Modulus, μdry 40.04GPa

Matrix Effective Medium Properties
Bulk Modulus, K◦ 45.73GPa
Shear Modulus, μ◦ 40.04GPa

Fluid Properties
Bulk Modulus, Kfluid 2.72GPa
Shear Modulus, μfluid 1× 10−20 GPa
Viscosity, η 0.00019Pa · s
Fracture Properties
Width, a1 1× 10−3 m
Propagation Velocity 0.003m/s
Maximum Diameter, a2 = a3(Max) 200m

Table 4.2: Finite-difference model input parameters.

Grid Properties
Grid Nodes (x-direction) 199
Grid Nodes (y-direction) 100
Initial Injection Point (x100, y1)

Sampling Properties
Temporal Sampling Rate 0.04 s
Spatial Sampling Rate (x- and y-directions) 2m

Reservoir Properties
Permeability 0.1mD
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stresses, the perturbation pattern is proportional to the fracture radius. Also,

the stress always decreases at the TZP and increases at the CZP. If we exam-

ine the perturbations of the four stress measurements in more detail, we note

several important differences between the evolving stress patterns.

Figure 4.1 shows mean stress in the region perpendicular to the fracture

face increases moderately near the fracture and gradually decreases as distance

from the fracture increases. Mean stress decreases significantly in the region

directly adjacent to the fracture tips with the magnitude of decrease becoming

less pronounced with increasing distance from the fracture. The stress gradient

moving away from the fracture, in the plane of the fracture, is steeper than the

gradient moving perpendicular to the fracture face. This results from localized,

large-magnitude, tensile stress concentrations at the fracture tips. Finally,

the region experiencing a stress increase is significantly larger than the region

experiencing a stress decrease.

Figure 4.2 shows confining stress in the x1-direction, σ11, exhibits roughly

the same pattern as seen for mean confining stress with stress in the region

perpendicular to the fracture face increasing significantly near the fracture and

gradually decreasing as distance from the fracture increases. Observing the

region perpendicular to the centre of the fracture face, there is a significant

increase in confining stress in the x1-direction up to a distance approximately

equal to the fracture radius. Stress in the x1-direction decreases significantly

in a dual-lobed the region directly adjacent to the fracture tips with the lobes

extending approximately 45◦ relative to the plane of the fracture. Similar to

the pattern for mean stress, the magnitude of stress decrease becomes less

pronounced with increasing distance from the fracture. However, the overall

region experiencing a stress decrease in the x1-direction is noticeably larger than

seen for mean stress. Also similar to mean stress, the stress gradient moving

away from the fracture, in the plane of the fracture, is steeper than the gradient

moving perpendicular to the fracture face. This results from localized, large-
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magnitude, tensile stress concentrations at the fracture tips. Finally, the region

experiencing a stress increase is significantly larger than the region experiencing

a stress decrease.

Figure 4.3 shows confining stress in the x2-direction, σ22, has a more com-

plex pattern than seen for the x1-direction, σ11. Observing the region perpen-

dicular to the centre of the fracture face, there is a moderate increase in stress

near the fracture that gradually decreases to zero stress change as distance from

the fracture approaches a distance approximately equal to the fracture radius.

If we move farther from the fracture face, near the centre of the fracture, there

is a lobe of low-magnitude stress decrease. Similar to mean stress, stress in

the x2-direction decreases significantly in the region directly adjacent to the

fracture tips with the magnitude of decrease becoming less pronounced with

increasing distance from the fracture. Between these two tensile regions are

four regions of low-magnitude stress increase which have local maximum val-

ues located perpendicular to the outer parts of the fracture face. These stress

increases dominate the shear stress zones seen in Figure 2.9. Hence, moving

clockwise around the fracture, at a distance greater than the fracture radius,

there are alternating regions of stress increase and stress decrease.

Figure 4.4 shows confining stress in the x3-direction, σ33, has the simplest

stress pattern. Observing the region perpendicular to the fracture face, there is

a moderate increase in stress near the fracture that gradually decreases to zero

stress-change as distance from the fracture approaches a distance approximately

equal to the fracture radius. If we move farther from the fracture, there is a

lobe of low-magnitude stress decrease.

4.4.2 Pore Pressure

Figure 4.5 shows the pore-pressure perturbations are simpler than any of the

previously mentioned elastic stress perturbation patterns. It is important to

note, the pore pressure colourbar has double the range of the confining-stress
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colourbars. There is a large pressure increase in the region directly adjacent

to the fracture and the pressure decreases relatively quickly moving in any

direction away from the fracture. The perturbation pattern is proportional to

the time from initiation, as opposed to the proportionality to fracture radius

seen for confining stress.

4.4.3 Effective Stress

Figures 4.6 to 4.9 show the combined effects of confining stress and pore pres-

sure respectively as mean effective stress, effective stress measured in the x1-

direction (σ′
11), effective stress measured in the x2-direction (σ′

22) and effective

stress measured in the x3-direction (σ′
33). Mean effective stress is the average

of (σ′
11+σ′

22+σ′
33). Recall, an increase in pore pressure results in a decrease in

effective stress. Based on our previous observations of a pore-pressure increase

that is larger than the confining-stress increase near the fracture, we expect

the region near the fracture to experience a decrease in effective stress which

we see in all four effective stresses. For all cases, this region of effective-stress

decrease grows in size for the entire time the model is run. In contrast, regions

further away from the fracture tend to have pore-pressure and confining-stress

perturbations of similar magnitude which results in the variable effective-stress

patterns discussed below.

Figure 4.6 shows mean effective-stress decreases in the region close to the

fracture. This region of effective-stress decrease is characterized by significant

decrease in a small zone near the fracture tips and moderate decrease perpendic-

ular to the fracture face. The magnitude of decrease diminishes with distance

from the fracture. In the distal region perpendicular to the fracture faces, there

is a moderately sized zone of low-magnitude effective-stress increase. As the

fracture is growing (t = 0−480min) the largest effective-stress increase occurs

perpendicular to the centre of the fracture face at a distance approximately

equal to the fracture radius. When the fracture stops growing (t ≥ 720min)
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the two points of maximum effective-stress decrease in magnitude and migrate

further away from the fracture faces.

As seen in Figure 4.7, effective stress in the x1-direction, σ
′
11, exhibits a

similar pattern to mean effective stress but with larger magnitude effective-

stress increases in the distal zones perpendicular to the fracture faces. In this

case, the region experiencing effective-stress increase is approximately the same

size as the region experiencing effective-stress decrease.

Figure 4.8 shows the effective-stress perturbation pattern in the x2-direction,

σ′
22, is similar to that seen for confining stress in the same direction with one

important difference. The fracture-proximal region perpendicular the fracture

faces experiences an effective-stress decrease, as opposed to the confining-stress

increase seen in Figure 4.3.

Figure 4.9 shows effective stress in the x3-direction, σ
′
33, has a simple pat-

tern with a moderate effective-stress decrease occurring adjacent to the frac-

ture. The magnitude of this effective-stress decrease gradually decreases with

increasing distance from the fracture. The effective-stress gradient is steepest

moving away from the fracture tips in the plane of the fracture.

Finally, Table 4.3 qualitatively summarizes the confining-stress, pore-pressure

and effective-stress perturbations observed at the TZP and CZP for all time

steps. Positive symbols denote an increase and negative symbols denote a de-

crease in the measured value. Relatively small perturbations are denoted by a

single symbol, relatively moderate perturbations are denoted by two symbols

and relatively large perturbations are denoted by three symbols. For example,

“+ + +” is a relatively large increase and “−” is a relatively small decrease.

A very small perturbation is denoted by “≈ 0”, meaning approximately no

change.
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Table 4.3: Summary of confining-stress, pore-pressure and effective-stress per-
turbations observed at the TZP and CZP.

Time (min)
Point Measurement 0 240 480 720 960 1200

TZP

Confining Stress (x1-dir.) ≈ 0 ≈ 0 − −− −− −−
Confining Stress (x2-dir.) ≈ 0 − −− −− −− −−
Confining Stress (x3-dir.) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Pore Pressue ≈ 0 ≈ 0 ≈ 0 ≈ 0 +++ +++

Effective Stress (x1-dir.) ≈ 0 ≈ 0 − −− −− −−
Effective Stress (x2-dir.) ≈ 0 ≈ 0 − −− −− −−
Effective Stress (x3-dir.) ≈ 0 ≈ 0 ≈ 0 − − −−

CZP

Confining Stress (x1-dir.) ≈ 0 ++ +++ +++ +++ +++

Confining Stress (x2-dir.) ≈ 0 − + + + +

Confining Stress (x3-dir.) ≈ 0 − + + + +

Pore Pressue ≈ 0 + ++ ++ +++ +++

Effective Stress (x1-dir.) ≈ 0 + + ≈ 0 − −
Effective Stress (x2-dir.) ≈ 0 ≈ 0 − − −− −−
Effective Stress (x3-dir.) ≈ 0 ≈ 0 − − −− −−

4.5 Discussion

It is academically interesting to discuss the fine variations seen in our models

of pore-pressure diffusion, confining-stress change and effective-stress change.

However, in the context of modelling seismic velocities in the vicinity of a hy-

draulic fracture, we are primarily interested in low-frequency effective-stress

change patterns. The reason for this is threefold. First, in Chapter 3 we

demonstrated that seismic velocities respond to effective stress: the combined

effects of pore pressure and confining stress. Second, typical observable seismic

wavelengths are on the order of tens to hundreds of meters, so high-frequency

variations in effective stress will tend to be undetectable or averaged out by

seismic signals. Third, in order for changes in seismic velocity to be detectable,

the propagation path of two observed seismic waves must travel through a sig-

nificant distance of rock exhibiting a perturbed velocity. For example, consider

a case in which the initial seismic P-wave velocity of a reservoir is 4000m/s

and the distance from source to receiver is 500m resulting in a travel-time of
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0.125 s. An effective-stress change then causes the seismic velocity in part of

the reservoir to decrease by 5% or 200m/s. If the path of seismic propaga-

tion travels through 200m of reduced velocity reservoir, the travel-time will

increase by 0.003 s which may be possible to detect. However, if the path of

seismic propagation travels through only 100m of reduced velocity reservoir,

the travel-time will increase by only 0.001 s which is likely below detectability.

We now describe the low-frequency patterns of effective-stress perturbation

in the vicinity of a growing vertical hydraulic fracture with a fracture normal

in the x1-direction, as seen in panels (A)-(C) of figures 4.6 to 4.9. Figure 4.10

shows four low-frequency zones of effective stress around a growing hydraulic

fracture: the proximal zone, the compressive zone, the shear zone and the ten-

sile zone. The proximal zone is defined as the region immediately adjacent to

the fracture in which the mean effective-stress decreases significantly. In gen-

eral, the effective stresses measured in all three principle directions decrease

to some degree in the proximal zone. These decreases in effective stress are

due to an increase in pore pressure greater than the increase in confining stress

that has occurred in any given direction. It is important to note, the region

experiencing pore-pressure increase extends beyond the proximal zone. How-

ever, beyond the proximal zone the magnitude of pore-pressure perturbation

is smaller than or equal to the corresponding magnitude of confining-stress

change. The compressive zone extends beyond the proximal zone in the re-

gion perpendicular to the fracture faces. The compressive zone is characterized

by a small increase in mean effective stress, a moderate increase in effective

stress in the x1-direction and a very small decrease in effective stress in the

x2- and x3-directions. It is interesting to note that the increase in mean ef-

fective stress is entirely due to effective-stress increase in the x1-direction. As

noted in Chapter 2, this uniaxial stress will tend to preferentially align crack

sets in the reservoir which will lead to anisotropic velocities. The tensile zone

extends beyond the proximal zone in the region sub-parallel to the fracture
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plane and is characterized by no change in effective stress in the x3-direction

and a moderate to small decrease in mean effective stress and effective stress in

the x1- and x2-directions. Finally, the shear zone exists beyond the proximal

zone in the regions between the compressive and shear zones. The shear zone

exhibits roughly no change in mean effective stress and effective stress in the

x3-direction, a small decrease in effective stress in the x1-direction and a small

increase in effective stress in the x2-direction.

Now consider the case in panels (D)-(F) of figures 4.6 to 4.9, where the pres-

surized vertical hydraulic fracture is static in size. In each successive time step

the size of the proximal zone increases but the magnitudes of effective-stress

decrease do not significantly change. In contrast, the sizes of the compressive,

shear and tensile zones decrease with each successive time step. Addition-

ally, with increasing time, the magnitudes of effective-stress perturbation are

increased in the tensile zone and decreased in the compressive and shear zones.

Although not shown here, it is worth commenting on the effect of varia-

tion in the confining-stress and pore-pressure model input parameters. If input

parameter variation is realistic for a hydraulic fracture in a low-porosity reser-

voir, the majority of the input parameters do not have a significant effect on

the overall pattern or magnitude of effective-stress change. As such, we will

only discuss those parameters that do have a significant effect, including the

hydraulic fracturing injection pressure, fluid viscosity, matrix permeability and

fracture propagation velocity. A change in injection pressure tends to cause

a proportional change in the magnitude of the effective-stress perturbations,

whereas the general patterns of effective-stress change tend to remain more-or-

less unchanged. Additionally, the relative size of the proximal zone versus the

compressive zone will change slightly, but not in a significant way. An increase

in fluid viscosity or a decrease in matrix permeability tends to decrease the ex-

tent of pore-pressure diffusion while having no effect on confining-stress change.

This causes a steeper gradient of the magnitude of pore-pressure increase, and
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this tends to reduce the distance the proximal zone extends away from the

fracture. Finally, an increase in fracture propagation velocity means that for a

given fracture size, the extent of pore-pressure diffusion will be smaller. This

also reduces the distance the proximal zone extends away from the fracture.

4.6 Conclusions

Using Eshelby’s solution for modelling confining stress and Shapiro’s method

for modelling pore-pressure diffusion in the vicinity of a hydraulic fracture

in a low-porosity, isotropic, homogeneous medium, we find the resulting low-

frequency effective-stress perturbation field can be categorized into four zones

of influence: the proximal zone, compressive zone, shear zone and tensile zone.

The proximal zone is located immediately adjacent to the fracture walls and

tips. The proximal zone experiences the largest pore-pressure increase that re-

sults in a significant decrease in effective stress. It is important to note that the

proximal zone is not defined by the extent of pore-pressure increase. Instead,

the proximal zone is defined by a decrease in effective stress resulting from an in-

crease in pore pressure greater than the increase in confining stress occurring in

any of the three principle directions. While the fracture is growing the proximal

zone tends to be confined to a relatively small region immediate adjacent to the

fracture. After the fracture stops growing and elevated pore pressure continues

to diffuse, the proximal zone expands away from the fracture with each time

step. The compressive zone is relatively large and is found perpendicular to the

fracture faces extending from the outer edge of the proximal zone. The com-

pressive zone experiences an approximately uniaxial effective-stress increase in

the direction perpendicular to the fracture faces. The tensile zone is the small-

est zone and extends beyond the proximal zone in the region sub-parallel to

the fracture plane. The tensile zone experiences moderate-magnitude to zero

effective-stress decrease. The shear zone experiences low-magnitude or zero
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effective-stress change and extends beyond the proximal zone in the regions

between the compressive and tensile zones. We find fluid viscosity, reservoir

permeability and fracture propagation velocity are important parameters con-

trolling the relative sizes of the zones. Injection pressure can have a relatively

small effect on the relative zone sizes but is an important parameter controlling

the overall magnitude of effective-stress changes.
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Figure 4.1: A series of horizontal cross-sections illustrating the evolution of
mean confining stress in the vicinity of a spheroidal vertical hydraulic fracture
at 240 minute time steps. The black line in the centre of each plot represents
the fracture. The vertical axis corresponds to the x1-direction, the horizontal
axis corresponds to the x2-direction and the x3-direction is perpendicular to
the page. As seen in Figures 4.2 to 4.4, stress perturbations in the x1-direction
dominate the mean stress perturbations.
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Figure 4.2: A series of horizontal cross-sections illustrating the evolution of
confining stress in the x1-direction in the vicinity of a spheroidal vertical hy-
draulic fracture at 240 minute time steps. The black line in the centre of each
plot represents the fracture. The vertical axis corresponds to the x1-direction,
the horizontal axis corresponds to the x2-direction and the x3-direction is per-
pendicular to the page.
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Figure 4.3: A series of horizontal cross-sections illustrating the evolution of
confining stress in the x2-direction in the vicinity of a spheroidal vertical hy-
draulic fracture at 240 minute time steps. The black line in the centre of each
plot represents the fracture. The vertical axis corresponds to the x1-direction,
the horizontal axis corresponds to the x2-direction and the x3-direction is per-
pendicular to the page.
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Figure 4.4: A series of horizontal cross-sections illustrating the evolution of
confining stress in the x3-direction in the vicinity of a spheroidal vertical hy-
draulic fracture at 240 minute time steps. The black line in the centre of each
plot represents the fracture. The vertical axis corresponds to the x1-direction,
the horizontal axis corresponds to the x2-direction and the x3-direction is per-
pendicular to the page.
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Figure 4.5: A series of horizontal cross-sections illustrating the evolution of
pore-pressure diffusion in the vicinity of a spheroidal vertical hydraulic fracture
at 240 minute time steps. The black line in the centre of each plot represents
the fracture. The vertical axis corresponds to the x1-direction, the horizontal
axis corresponds to the x2-direction and the x3-direction is perpendicular to
the page.
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Figure 4.6: A series of horizontal cross-sections illustrating the evolution of
mean effective stress in the vicinity of a spheroidal vertical hydraulic fracture
at 240 minute time steps. The black line in the centre of each plot represents
the fracture. The vertical axis corresponds to the x1-direction, the horizontal
axis corresponds to the x2-direction and the x3-direction is perpendicular to
the page.
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Figure 4.7: A series of horizontal cross-sections illustrating the evolution of
effective stress in the x1-direction in the vicinity of a spheroidal vertical hy-
draulic fracture at 240 minute time steps. The black line in the centre of each
plot represents the fracture. The vertical axis corresponds to the x1-direction,
the horizontal axis corresponds to the x2-direction and the x3-direction is per-
pendicular to the page.
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Figure 4.8: A series of horizontal cross-sections illustrating the evolution of
effective stress in the x2-direction in the vicinity of a spheroidal vertical hy-
draulic fracture at 240 minute time steps. The black line in the centre of each
plot represents the fracture. The vertical axis corresponds to the x1-direction,
the horizontal axis corresponds to the x2-direction and the x3-direction is per-
pendicular to the page.
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Figure 4.9: A series of horizontal cross-sections illustrating the evolution of
effective stress in the x3-direction in the vicinity of a spheroidal vertical hy-
draulic fracture at 240 minute time steps. The black line in the centre of each
plot represents the fracture. The vertical axis corresponds to the x1-direction,
the horizontal axis corresponds to the x2-direction and the x3-direction is per-
pendicular to the page.
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Figure 4.10: A horizontal cross-section through a growing vertical hydraulic
fracture extending from a vertical well illustrating the relative size of the four
low-frequency zones of effective-stress perturbation in the surrounding region,
modified from Cipolla et al. (2011). The area with black diagonal lines indicates
the proximal zone, the solid red area indicates the compressive zone, the solid
blue area indicates the shear zone and the solid green area indicates the tensile
zone.
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Chapter 5

Uniaxial Stress: Anisotropic

Velocity Sensitivity

5.1 Introduction

The material presented in this chapter is based on work that was presented

orally at the 2017 Society of Exploration Geophysicists Annual International

Meeting in Houston, Texas (Brisco and Van der Baan, 2017). We consider the

case where a hydraulic fracture treatment is performed in an isotropic rock ma-

trix with a pervasive and initially isotropic distribution of microcracks. As seen

in Figure 4.10, the opened fracture creates a large region extending perpendicu-

lar to the fracture face that experiences a confining-stress increase and relatively

small regions near the fracture tips that experience an increase in shear stress

and tensile stress. As discussed in Chapter 4, the region of increased confining

stress is characterized by a stress increase that is significantly larger in the di-

rection normal to the fracture face than directions parallel to the fracture face.

This stress perturbation can be approximated as a uniaxial compressive stress

acting perpendicular to the fracture face. Uniaxial compression will tend to

close those microcracks with face-normals that are parallel or nearly parallel

to the direction of compression, see Figure 2.6. In contrast, those microcracks
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with face-normals perpendicular or nearly perpendicular to the direction of

compression will tend to remain open. This results in the development of an

anisotropic microcrack distribution, and consequently an elastically anisotropic

matrix (Nur, 1971). Several methods have been developed to model the effects

of stress perturbations on the elastic properties of an effective medium. Sayers

and Kachanov (1995) and Schoenberg and Sayers (1995) describe the fourth

order compliance tensor of a fractured medium as the sum of the compliance

tensor of the uncracked medium and an additional compliance tensor represent-

ing the contribution of aligned cracks or fracture system. Alternatively, stress

induced anisotropy can be modelled with the theory of nonlinear elasticity, as

developed by Prioul et al. (2004) and discussed by Fuck et al. (2009), where

the second-order elasticity tensor of a stressed medium is described as a func-

tion of the second-order elasticity tensor of the unstressed medium, the strain

tensor and the third-order elasticity tensor. Finally, Zatsepin and Crampin

(1997) and Crampin and Zatsepin (1997) develop the anisotropic poroelastic-

ity (APE) model to describe the elastic anisotropy behaviour of a pervasively

microcracked medium as the sum of the variations in the elastic moduli due to

changes in microcrack orientations due to the preferential opening and closing

of microcracks and the variations in the elastic moduli due to changes in the

geometry of individual microcracks. In this chapter, we conduct a sensitivity

analysis for anisotropic changes in P-wave and S-wave velocities in response to

variations in uniaxial confining stress using the APE model.

5.2 Theory

5.2.1 APE Model

The APE model assumes that all rock contains an isotropic distribution of uni-

form fluid-isolated microcracks, herein referred to simply as cracks (Zatsepin

and Crampin, 1997; Crampin and Zatsepin, 1997). Fluids can flow from one
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crack into some of the closest neighbouring cracks almost immediately in re-

sponse to changes in the stress field. However, the permeability of the crack

network is very low and no macroscopic fluid flow is possible. We describe a

crack as an ellipsoidal body with semi-axes (a1 ≥ a2 ≥ a3). A penny-shaped

crack is the special case of an ellipsoidal body where (a1 � a2 = a3) and the

aspect ratio is given by (a1
a2

� 1).The effective elasticity coefficients, CE, of a

stressed rock matrix containing a particular crack distribution can be expressed

as

CE = CM + ε

∫∫
γ≥0

R(Ω)CD dΩ

+ ε

∫∫
γ≥0

R(Ω)CG dΩ ,

(5.1)

where CD and CG are fourth order tensors representing the perturbations

to the elasticity coefficients due respectively to a distribution of cracks of

a single orientation and the geometry of these cracks, CM is a fourth or-

der tensor containing the elasticity coefficients of the solid matrix, R(Ω) is

the fourth order rotation tensor, Ω is an orientation in spherical coordinates

(ψ, θ)=(inclination, azimuth) and dΩ=(4π)−1 sinψ dψ dθ is a normalized differ-

ential element of solid angle. Normalized crack density, ε, is a nondimensional

parameter given by

ε =
Ncr

V
a32 , (5.2)

where Ncr is the number of cracks in volume V with a radius of a2. The limits of

integration in equation 5.1 are defined by γ, a term describing crack geometry

where γ > 0 for open cracks. Crack geometry is a function of stress acting

normal to the crack face, σn, pore-fluid pressure within the crack, pf , and the

critical closing stress of the crack, σc, as follows:
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γ = 1− (σn − pf )

σc

. (5.3)

The term in the numerator of equation 5.3 represents the effective pressure

acting normal to the crack face. By convention we assign compressive stress

and pore pressure as positive. For penny-shaped cracks, the critical closing

stress can be expressed as

σc =
1

ccr
= (

π

2
)

g◦μ
(1− ν)

, (5.4)

where ccr is crack compressibility, g◦ is the initial aspect ratio, μ is the rock

matrix shear modulus and ν is the rock matrix Poisson’s ratio. The pore-fluid

pressure in equation 5.3 is a function of crack face normal stress, σn, critical

closing stress, σc, and fluid compressibility, cf , and can be expressed as

pf =
σn

1 + r
, (5.5)

where r is the normalized pore-fluid compressibility given by

r = σccf =
cf
ccr

. (5.6)

For the case of penny-shaped cracks, γ approximately represents the nor-

malized crack aspect ratio,

γ =
g

g◦
, (5.7)

where g is the aspect ratio after the confining-stress perturbation is applied.

By examining equations 5.3 and 5.7 we see that crack aspect ratio does not

change when σc � |σn − pf | and cracks will close when σc≤ (σn − pf ). For

penny-shaped cracks, the normalized pore-fluid compressibility in equation 5.6

can be expressed as
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r = (
1

2
)
πμcfg◦
(1− ν)

. (5.8)

The terms in equation 5.1 representing perturbation due to crack distribution,

CD, and crack geometry, CG, can respectively be expressed as

CD
ijkl = μΛijkl (5.9)

and

CG
ijkl = μΛijkl

[
γr

(1 + γr)

]
, (5.10)

where Λijkl is a dimensionless combination of Lamé parameters obtained from

an appropriate crack model (see section 5.2.2). The fraction in square brackets

in equation 5.10 acts as a scaling term and can have values between zero and

one. This scaling term will decrease the influence of cracks that have squeezed

partially shut (i.e. 0 < γ < 1) and will increase the influence of cracks that

have been forced open such that the aspect ratio is larger than the initial aspect

ratio (i.e. γ > 1). Also, by examining equations 5.6 and 5.10 we can see that

the perturbation due to pore geometry will be small if fluid compressibility, cf ,

is much less than crack compressibility, ccr.

The APE model can account for more than one isotropic distribution of

cracks with different initial aspect ratios, as would be expected in the real world.

To do this, simply include addition sets of CD and CG representing the crack

distributions of each individual aspect ratio present. However, the selection of

a single aspect ratio representing the average of all aspect ratios present should

give a reasonable first order approximation of the overall response to variable

confining stress.

Consider an isotropic rock matrix containing an initially isotropic distri-

bution of uniform, low aspect ratio, spheroidal, fluid-isolated cracks that is

subjected to a compressive uniaxial stress in the vertical (x3) direction. In this

111



case, the APE model has a relatively simple expression in terms of dimension-

less excess pore-fluid pressure, p, and dimensionless differential stress, sij as

follows:

p =
(pf − pfo)

σc

(5.11)

and

sij =
(σij − σ◦ δij)

σc

, (5.12)

where δij is the Kroenecker delta, pf is the excess pore-fluid pressure induced

by the applied stress, σij. The initial pore-fluid pressure, pfo, of an isotropic

crack distribution is in equilibrium with the initial lithostatic stress, σ◦, such

that

pfo = σ◦ . (5.13)

At depth in the Earth, this would imply highly over-pressured cracks because

generally pore pressure is determined by a surface connected water column and

vertical stress determined by the rock overburden. Water is commonly half

the density of rock. Hence, pore pressure should be less than vertical stress,

pfo < σ◦.

The boundary between open and closed cracks is independent of azimuth,

θ, and is defined by the function ψ◦ where ψ◦ is the angle measured from the x3

axis at which cracks begin to close. That is, all cracks with normals oriented

at ψ≤ψ◦ are closed by the applied differential stress, sij, and all cracks with

normals oriented at ψ > ψ◦ remain open. We define the vertical differential

stress, sv, from equation 5.12 as sv = s33 − s11 and for the case of uniaxial

vertical stress, (s33 > s11 = s22 = 0), we get sv = s33. When sv ≤ 3
2
all cracks

remain open giving
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ψ◦ = 0 , (5.14)

and the excess pore-fluid pressure is given by

p =
sv
3
. (5.15)

When all cracks are open the crack density remains constant and can be ex-

pressed as

ε = ε◦ , (5.16)

where ε is the current crack density and ε◦ is the initial crack density. When

sv>
3
2
, some cracks are closed,

cosψ◦ = (
2

3
sv)

− 1
3 , (5.17)

and the excess pore-fluid pressure is given by

p = sv cos
2 ψ◦ − 1 . (5.18)

As cracks begin to close the crack density will decrease as follows:

ε = ε◦ cosψ◦ . (5.19)

For open cracks, the normalized crack aspect ratio can be expressed as

γ = sv(cos
2 ψ◦ − cos2 ψ) , (5.20)

which gives a maximum dilation of pore space occurring for vertical cracks of

all azimuthal orientations (ψ= π
2
) as follows:

γmax = sv cos
2 ψ◦ . (5.21)
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5.2.2 Hudson’s Model for Cracked Media

The Hudson Model, developed by Hudson (1980), allows us to express the

effective elastic coefficients for cracked media, CE, as the sum of the elastic

coefficients of the solid matrix, CM , and the perturbations due to a single crack

set of a specified crack density, CD, as follows:

CE = CM +CD . (5.22)

The first order corrections to the elasticity coefficients due to a single crack set

of penny-shaped cracks with crack normals aligned with the x3 axis are given

by:

CD
1111 = −λ2

μ
εU3 , (5.23)

CD
1133 = −λ(λ+ 2μ)

μ
εU3 , (5.24)

CD
3333 = −(λ+ 2μ)2

μ
εU3 , (5.25)

CD
2323 = −μεU1 (5.26)

and

CD
1212 = 0 , (5.27)

where λ and μ are the matrix Lamé parameters and the terms U1 and U3 depend

on the conditions within the crack (Mavko et al., 2009). For the general case,

U1 =
16(λ+ 2μ)

3(3λ+ 4μ)
× 1

(1 + βH)
(5.28)

and
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U3 =
4(λ+ 2μ)

3(λ+ μ)
× 1

(1 + κH)
, (5.29)

where

βH =
4μI

πg◦μ
× (λ+ 2μ)

(3λ+ 4μ)
, (5.30)

κH =
(KI +

4
3
μI)(λ+ 2μ)

πg◦μ(λ+ μ)
, (5.31)

g◦ is the crack aspect ratio and KI and μI are the bulk and shear moduli of

the crack-filling material. For infinitely thin, fluid-filled cracks we assume an

incompressible fluid with a bulk modulus that is large enough and a crack aspect

ratio that is small enough that the normal component of crack displacements

is vanishingly small. Hence, the effective bulk modulus of the matrix remains

unchanged with the introduction of the saturated crack distribution and U3 = 0.

By setting the crack-filling material shear modulus to zero in equation 5.30 we

see that βH reduces to zero and equation 5.28 simplifies to

U1 =
16(λ+ 2μ)

3(3λ+ 4μ)
. (5.32)

For dry cracks we set the bulk and shear moduli of the inclusion material to

zero, causing equation 5.29 to simplify to

U3 =
4(λ+ 2μ)

3(λ+ μ)
. (5.33)

It should be noted that the bulk modulus of a hydrocarbon gas at high

pressures approaches that of an incompressible fluid but can be significantly

smaller (Mavko et al., 2009). For example, the bulk modulus of methane gas

at 20MPa and 50 ◦C is two orders of magnitude smaller than a typical oil or

brine at the same temperature and pressure. Thus, from equations 5.29 and

5.31, this methane gas could result in a non-vanishing U3 value, depending on
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the crack aspect ratio.

The perturbations due to more than one crack set are calculated separately,

rotated to a consistent coordinate system and added together (Hudson, 1980).

Certain special cases of crack distributions can be expressed with simple ana-

lytical equations. For example, the first order perturbations to the elasticity

coefficients due to an isotropic distribution of infinitely thin, fluid-filled cracks

are

CD
1111 = CD

2222 = CD
3333 = − 8

15
μεU1, (5.34)

CD
1122 = CD

2211 = CD
1133 = CD

3311 = CD
2233 = CD

3322 =
4

15
μεU1 (5.35)

and

CD
2323 = CD

1313 = CD
1212 = −2

5
μεU1. (5.36)

The resulting effective medium satisfies the conditions for isotropy. Addition-

ally, Mavko et al. (2009) gives the first order perturbations to the elasticity

coefficients due to an azimuthally-random distribution of infinitely thin, fluid-

filled cracks with crack normals at a fixed angle, ψi, from the x3 axis as

CD
1111 = CD

2222 = −1

2
μεiU1 sin

2 ψi(4− 3 sin2 ψi), (5.37)

CD
3333 = −4μεiU1 cos

2 ψi sin
2 ψi, (5.38)

CD
1122 = CD

2211 =
1

2
μεiU1 sin

4 ψi, (5.39)
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CD
1133 = CD

3311 = CD
2233 = CD

3322 = 2μεiU1 cos
2 ψi sin

2 ψi, (5.40)

CD
2323 = CD

1313 =− 1

2
μεiU1 sin

2 ψi

(sin2 ψi + 2 cos2 ψi − 4 cos2 ψi sin
2 ψi)

(5.41)

and

CD
1212 = −1

2
μεiU1 sin

2 ψi(2− sin2 ψi). (5.42)

In this case, the resulting effective medium satisfies the conditions for transverse

isotropy. Also, crack density, εi, is independent of crack normal azimuth, θ, and

is zero for all crack normal inclinations except for ψ=ψi.

5.2.3 Velocity

The P-wave and S-wave phase velocities for an isotropic medium are respec-

tively given by

vp =

√
C1111

ρ
(5.43)

and

vs =

√
C2323

ρ
, (5.44)

where ρ is the density of the medium. In a transversely isotropic medium the

quasi P-wave, vqp, quasi S-wave, vqsv and pure S-wave, vsh phase velocities can

be expressed as
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vqp = (C1111 sin
2 ψ + C3333 cos

2 ψ + C2323 +
√
Mv)

1
2 (2ρ)−

1
2 , (5.45)

vqsv = (C1111 sin
2 ψ + C3333 cos

2 ψ + C2323 −
√
Mv)

1
2 (2ρ)−

1
2 (5.46)

and

vsh = (
C1212 sin

2 ψ + C2323 cos
2 ψ

ρ
)
1
2 , (5.47)

where ψ is the angle of propagation from the symmetry axis and

Mv = [ (C1111 − C2323) sin
2 ψ − (C3333 − C2323) cos

2 ψ ]2

+ (C1133 + C2323)
2 − sin2 2ψ ,

(5.48)

for example (Slawinski, 2015). A convenient measure of the degree of P-wave

velocity anisotropy, PWAT , of a transversely isotropic medium is given by

PWAT =
vqp(ψ)max − vqp(ψ)min

vqp(ψ)max

× 100% , (5.49)

where ψ ∈ [ 0, π
2
], vqp(ψ)max is the maximum qP-wave velocity and vqp(ψ)min

is the minimum qP-wave velocity. The analogous measure of S-wave velocity

anisotropy, SWAT , of a transversely isotropic medium is given by

SWAT =
vs1(ψ)max − vs2(ψ)min

vs1(ψ)max

× 100% , (5.50)

where ψ∈ [ 0, π
2
], vs1(ψ)max is the maximum fast S-wave velocity and vs2(ψ)min

is the minimum slow S-wave velocity.
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5.3 Method

To test the anisotropic velocity sensitivity of a medium containing an initially

isotropic, fluid-isolated, crack distribution under a range of uniaxial compres-

sive stresses we use the APE model along with the Hudson model to calculate

the effective elasticity coefficients of the stressed medium. We first set the de-

fault parameter values for isotropic matrix P-wave velocity (vp,matrix), isotropic

matrix S-wave velocity (vs,matrix), matrix density (ρ), initial crack aspect ratio

(g◦), initial crack density (ε◦), and pore-fluid compressibility (cf ), as seen Table

5.1. In order to test the anisotropic velocity sensitivity for a single input pa-

rameter, a series of values for the parameter of interest are used while holding

all other input parameters at the default values.

Table 5.1: Uniaxial APE model default parameters.

Matrix vp,matrix 4700m/s
Matrix vs,matrix 3000m/s
vp/vs Ratio 1.567
Matrix Density, ρ 2500 kg/m3

Initial Crack Aspect Ratio, g◦ 1× 10−5

Initial Crack Density, ε◦ 0.14
Pore-fluid Compressibility, cf 3× 10−10 Pa−1

The next step is to use the matrix property inputs (vp,matrix, vs,matrix and ρ)

in equations 5.43 and 5.44 to obtain the elasticity coefficients for the isotropic

matrix. These elasticity coefficients along with the initial crack aspect ratio

are used to calculate the crack critical closure stress with equation 5.4. The

normalized pore-fluid compressibility is then obtained using the crack critical

closure stress and the pore-fluid compressibility in equation 5.8.

The remaining steps are repeated for each value of uniaxial compressive

stress in the desired range of stress. Equation 5.12 is used to obtain the nor-

malized differential stress corresponding to an input stress. Then it is deter-

mined if all cracks will remain open, i.e. sv≤ 3
2
, under this differential stress or

if some cracks will be closed, i.e. sv >
3
2
. If all cracks remain open, equations
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5.14, 5.15 and 5.16 are used respectively to find the angle of crack closure,

dimensionless excess pore-fluid pressure and crack density. If some cracks are

closed, equations 5.17, 5.18 and 5.19 are used respectively to find the angle of

crack closure, dimensionless excess pore-fluid pressure and crack density of the

remaining open cracks. The differential stress and crack closure angle are then

used in equation 5.7 to calculated normalized crack aspect ratio as a function

of ψ for values of ψ between 0o and 90o. Next, equations 5.23 to 5.27, exclud-

ing the ε and μ terms, are used to obtain the perturbation to the elasticity

coefficients for a random crack distribution with normals at a fixed angle from

the x3-axis for each value of ψ between ψ◦ and 90o. In other words, elasticity

perturbations are calculated for cracks that remain open. These values then

feed into equations 5.9 and 5.10 to obtain the elasticity perturbations due to

the remaining crack distribution and the elasticity perturbations due to the

remaining crack geometries.

Now consider equation 5.1 for an evolving isotropic crack distribution uniax-

ial stress. In this case, the integration limits and the integrand are independent

of azimuth. Furthermore, we have calculated all terms in the integrand in a

common coordinate system, so equation 5.1 simplifies to

CE = CM + ε

∫ π
2

ψ◦
CD(ψ) sinψ dψ

+ ε

∫ π
2

ψ◦
CG(ψ) sinψ dψ ,

(5.51)

for which there are no unknowns. We implement numerical integration of

equation 5.51 to obtain the effective elasticity coefficients of the cracked medium

for a specific value of applied stress. Then we use these effective elasticity

coefficients in equations 5.45 to 5.48 to calculate vp, vs1 and vs2 as a function of

angle of propagation measured from vertical. Finally, we feed these velocities

into equations 5.49 and 5.50 to calculate the degree of P-wave and S-wave
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anisotropy respectively.

5.4 Results & Discussion

Using our default parameter values for an evolving isotropic crack distribution

due to a uniaxial compressive stress, the APE model as outlined in equations

5.11 to 5.21 predicts an evolving crack distribution as a function of normalized

differential stress alone: sv. Figure 5.1 displays the behaviour of crack closure

angle, normalized aspect ratio, normalized crack density and normalized excess

pore-fluid pressure with increasing differential stress. Panel (A) shows that for

sv≤ 3
2
, the average normalized aspect ratio is constant at one: all cracks remain

open. However, the maximum normalized aspect ratio begins to increase with

the first increase in differential stress, i.e. sv>0, as cracks with normals parallel

to the applied stress are squeezed. Panel (B) shows when sv >
3
2
, the normal-

ized crack density initially decreases rapidly but asymptotically approaches a

value of approximately 40% of the initial crack density. Panel (C) shows that

the normalized excess pore-fluid pressure matches the thermodynamic equilib-

rium until cracks begin to close. The crack closure angle, seen in Panel (D),

shows an initially rapidly increasing value asymptotically approaching a value

approximately equal to 65◦.

We can use the observations made in Figure 5.1 to set a realistic upper

bound to the expected PWAT and SWAT . The maximum degree of anisotropy

possible due to a uniaxial compressive stress would be obtained if the crack

density remained constant and only vertical cracks, normals of ψ◦ = π
2
, re-

mained open. However, this situation is not feasible based on our observations

because as applied stress increases crack density decreases to a minimum of

40% of the initial crack density and crack closure angle increases to a maxi-

mum of 65◦. Additionally, Zatsepin and Crampin (1997) note that evolving

crack distributions with crack closure angles greater than 45◦ behave similar

121



ε

p

γ

ψo

Figure 5.1: The behaviour of several APE model parameters as a function of
applied differential stress, sv. Note that the y-axis of Panel (D) is in radians
and the y-axes of Panels (A) - (C) are dimensionless. (A) The black line is the
average of the normalized aspect ratio, γ, for all open cracks and the grey line
is the maximum normalized aspect ratio, γmax, which is found for vertically
oriented cracks. (B) Shows the normalized crack density, ε. (C) The black
line is the normalized excess pore-fluid pressure, p, and the dashed line is the
normalized thermodynamic equilibrium pressure, p = sv/3. (D) Shows the
crack closure angle, ψ◦.

to a vertical crack distribution with normals randomly distributed through az-

imuths of 0 ≤ θ≤2π. Crampin (1994) gives a maximum initial crack density in
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natural rock approximately equal to the percolation threshold of ε◦ = 0.14. Us-

ing this along with crack closure angles ψ◦=45◦ and ψ◦=60◦ in equation 5.19

we obtain corresponding values for normalized crack density of 0.10 and 0.07.

Now, we obtain a range for the maximum expected anisotropy by approximat-

ing these two crack distributions scenarios respectively as vertical crack distri-

butions with crack densities of 0.10 and 0.07. As we will demonstrate later,

maximum PWAT and SWAT due to a increasing uniaxial applied stress tends

to increase with smaller values of matrix vp/vs ratios and is unaffected by the

initial crack aspect ratio, matrix P-wave velocity, matrix density and pore-fluid

compressibility, as long as the pore-fluid is incompressible. Using a reasonable

minimum vp/vs ratio for a low-porosity sandstone of 1.4 in the 0.10 and 0.07

vertical crack density scenarios, we obtain a range for the maximum expect

anisotropy, as seen in Figure 5.3. Panel (A) shows PWAT = 3.3% for the 65◦

crack closure angle scenario and PWAT =4.7% for the 45◦ crack closure angle

scenario. Panel (B) shows SWAT =3.7% for the 65◦ crack closure angle scenario

and SWAT =5.3% for the 45◦ crack closure angle scenario. However, the actual

degree of anisotropy due to uniaxial stress will be less than these maximums

because the crack distributions will not be uniformly aligned. Instead, the

crack distributions will be sub-vertical sets with normals evenly oriented over

inclinations of ψ◦ ≤ ψ ≤ 90◦, resulting in interference effects. Throughout the

remainder of this thesis, we use upper hemisphere projections of crack normal

orientation, as outlined in Figure 5.2, to visualize crack distributions.

The crack distribution and velocity behaviours of the APE model in re-

sponse to increasing uniaxial stress for our default parameters are illustrated

in Figures 5.4 to 5.7. When sv is at the point just before crack closure com-

mences, less than 0.001% velocity anisotropy has developed due entirely to

changing pore geometries, as seen in Figure 5.4. When sv is doubled to 3,

Figure 5.5 shows an increase in PWAT to 0.5% and SWAT to 1.4%. Figures 5.6

and 5.7 show that PWAT stays constant at 0.5% as sv is increased to 10 and 20

123



while SWAT decreases slightly to 1.0% and 0.8% respectively. It is interesting

to note that PWAT is less than half the SWAT for all scenarios.

−x2, σH

−x3, σv

−x1, σh

Figure 5.2: An example upper hemisphere projection showing the orientation
of the three coordinate axes (x1, x2, x3), the three principle stress directions
(σh, σH , σv) and three example crack normal orientations. Azimuthal value is
indicated by red numbers and is measure clockwise from the x1-axis around the
circle. The straight lines on the projection are isoclines of azimuth. Inclination
is indicated by black numbers and is measured from the x3-axis. The circles
on the projection are isoclines of inclination. Crack A is a horizontal crack
with vertical crack normal. Crack B is a vertical crack with a crack normal
azimuthally oriented 45 degrees from the x1-direction and crack C has a crack
normal inclined 30 degrees from the x3-axis and having the same azimuth as
crack B. The fracture normal for a vertical hydraulic fracture with a fracture
plane perpendicular to the minimum horizontal stress (σh) plots at the same
point as the x1-axis and σh.

Observing the behaviour of PWAT and SWAT as a function of applied stress,

σv, is convenient way to analyze the velocity anisotropy sensitivity to various in-

put parameter perturbations. Figure 5.8 shows PWAT and SWAT as a function
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ε
ε

Figure 5.3: Velocity behaviour as a function of the angle of propagation for
two separate azimuthally isotropic distributions of vertical cracks. The first
distribution has a normalized crack density of ε = 0.07 and the second distri-
bution has a normalized crack density of ε = 0.10. (A) P-wave phase velocity.
(B) S-wave phase velocity splitting.

of applied stress for our parameter default settings. The SWAT curve shows

five segments that are characterized by distinct S-wave splitting behaviour as a
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Figure 5.4: APE model crack distribution and velocity behaviour in response
to a uniaxial vertical different stress of sv = 1.49 with all of the model param-
eters set to the default values, see Table 5.1. (A) An equal area projection of
crack normal orientation. The black numbers indicate degrees inclination from
vertical. (B) P-wave velocity as a function of propagation angle. (C) S-wave
velocities as a function of propagation angle.
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Figure 5.5: APE model crack distribution and velocity behaviour in response
to a uniaxial vertical different stress of sv = 3 with all of the model param-
eters set to the default values, see Table 5.1. (A) An equal area projection
of crack normal orientation. The black numbers indicate degrees inclination
from vertical with the critical angle of crack closure being ψ◦ = 37◦ (B) P-wave
velocity as a function of propagation angle. (C) S-wave velocities as a function
of propagation angle.
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Figure 5.6: APE model crack distribution and velocity behaviour in response
to a uniaxial vertical different stress of sv = 10 with all of the model param-
eters set to the default values, see Table 5.1. (A) An equal area projection
of crack normal orientation. The black numbers indicate degrees inclination
from vertical with the critical angle of crack closure being ψ◦ = 58◦ (B) P-wave
velocity as a function of propagation angle. (C) S-wave velocities as a function
of propagation angle.
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Figure 5.7: APE model crack distribution and velocity behaviour in response
to a uniaxial vertical different stress of sv = 20 with all of the model param-
eters set to the default values, see Table 5.1. (A) An equal area projection
of crack normal orientation. The black numbers indicate degrees inclination
from vertical with the critical angle of crack closure being ψ◦ = 65◦ (B) P-wave
velocity as a function of propagation angle. (C) S-wave velocities as a function
of propagation angle.
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function of angle of propagation, as shown in Figures 5.9 and 5.10 where each

panel (A) - (D) corresponds to the labelled segments (a) - (d) in Figure 5.8. In

segment (o), all cracks remain open and all anisotropy is due to crack geome-

try alteration and is characterized by very little to no SWAT . In segment (b),

cracks begin to close and SWAT increases rapidly to a global maximum value

that corresponds to sv=2.7. As seen in Figure 5.9, the S-wave splitting shows

a low-angle local maximum, a zero-angle and a mid-angle zero-splitting point

and a global maximum at 90◦. Both the low-angle local maximum and the mid-

angle zero-splitting point shift to smaller angles as applied stress increases. The

S-wave splitting value at the global maximum rapidly increases with applied

stress. Segment (c) is characterized by moderately decreasing SWAT to a local

minimum that corresponds to sv =5.4, see Figure 5.8. As seen in Figure 5.9,

the S-wave splitting low-angle local maximum rapidly decreases and eventu-

ally disappears as it, and the mid-angle zero-splitting point, migrate towards

and eventually merge with the zero-angle zero-splitting point as applied stress

increases. The global maximum moderately decreases but remains at 90◦. Seg-

ment (d) is characterized by a gradually increasing SWAT to a local maximum

that corresponds to sv=7.4, see Figure 5.8. Figure 5.10 shows that as applied

stress increases the S-wave splitting global maximum migrates away from 90◦

to a smaller angle and the S-wave splitting curve between approximately 55◦

and 90◦ flattens out. Figure 5.8 shows that in segment (e), SWAT gradually

decreases when sv>7.4. As applied stress increases, the S-wave splitting global

maximum slowly becomes more pronounced and migrates towards 45◦, while a

local non-zero minimum occurs at 90◦, see Figure 5.10. The S-wave splitting

behaviour as a function of propagation angle now resembles that expressed by

wholly vertical cracks as seen in Figure 5.3.

The SWAT segments in Figure 5.8 are defined in terms of sv values. How-

ever, the amount of applied stress, σv, required to reach a particular value of sv

and the absolute value of SWAT reached in each segment will vary depending
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Figure 5.8: Phase velocity anisotropy as a function of applied uniaxial stress,
σv, when all parameters are set to the default values. (A) PWAT and (B)
SWAT where the segments (o) and (a) - (d) represent regions of the SWAT

curve with common S-wave splitting character. The characteristics of each
segment are shown in Figures 5.9 and 5.10.

on the input parameter values. That is, as input parameters are varied, the

SWAT curves may be stretched or squeezed in the x− and/or y−direction but
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Figure 5.9: S-wave phase velocity splitting as a function of propagation angle.
The black arrows show the migration direction of the associated maxima and
minima as applied stress is increased. Panels (A) and (B) correspond to the
segments of the SWAT curve that are labelled in Figure 5.8.

they will always exhibit the five segments (o) and (a) to (d). Figures 5.11 to

5.16 show the SWAT sensitivity to various input parameters. As seen in Fig-

ure 5.11, the SWAT curve is stretched only in the vertical direction as initial

132



Figure 5.10: S-wave phase velocity splitting as a function of propagation angle.
The black arrows show the migration direction of the associated maxima and
minima as applied stress is increased. Panels (C) and (D) correspond to the
segments of the SWAT curve that are labelled in Figure 5.8.

normalized crack density is increased. The magnitude of SWAT as a function

of applied differential stress, sv, shows a significant sensitivity to initial nor-

malized crack density, and the amount of applied stress, σv, required to reach
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a segment on the SWAT curve is insensitive to initial normalized crack density.

In contrast, Figures 5.12 to 5.14 show the SWAT curve is stretched only in the

horizontal direction as matrix density, matrix P-wave velocity, and initial crack

aspect ratio are respectively increased. The magnitude of SWAT as a function

of applied differential stress, sv, is insensitive to these three input parameters.

However, the amount of applied stress, σv, required to reach a segment on the

SWAT curve is slightly sensitive to matrix density and is significantly sensitive

to matrix P-wave velocity and initial crack aspect ratio. This makes sense

as crack aspect ratio is important in determining the critical stress of crack

closure, see equation 5.4. Figure 5.15 shows that both SWAT magnitude as

a function of applied differential stress, sv, and the amount of applied stress,

σv, required to reach a segment are moderately sensitive to vp/vs ratio. Larger

SWAT magnitudes are achieved and more applied stress is required as vp/vs

ratio is decreased. Finally, although not shown here, when the pore-saturating

fluid is incompressible the SWAT curve is insensitive to fluid compressibility.

As an addition, while not strictly valid for the APE model, it is instructive to

look at SWAT behaviour when the compressibility of the pore-saturating fluid

is slightly larger than a truly incompressible fluid. Figure 5.16 illustrates that

SWAT magnitude as a function of applied differential stress, sv, is slightly larger

for increasing fluid compressibility. Also, we see that segment (o) now shows

non-zero SWAT . This results from the elasticity coefficient perturbations due to

crack geometry having a larger contribution to the overall elasticity coefficient

perturbations when fluid compressibility is large.

As illustrated in Figure 5.17, the volume of rock surrounding an open hy-

draulic fracture can now be described in terms of S-wave splitting behaviour.

Recall, the large region normal to the fracture face is characterized by compres-

sive stress increase. The magnitude of increased stress is significantly larger

in the direction normal to the fracture face than in the other two principle

directions. This fracture-normal component of stress is largest adjacent to the
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Figure 5.11: Phase velocity SWAT versus uniaxial applied stress for various
values of initial normalized crack density, ε◦.

g◦
g◦
g◦
g◦

Figure 5.12: Phase velocity SWAT versus uniaxial applied stress for various
values of initial crack aspect ratio, g◦. The range of initial crack aspect ratios
is representative of common real-world microcrack aspect ratios (Kranz, 1983).

fracture and gradationally decreases as distance from the fracture increases.

Assuming the reservoir permeability is small enough to restrict pore-pressure

diffusion to a negligible distance from the fracture and the stress field in this

region can be approximated as a uniaxial compressive stress, we can use our
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Figure 5.13: Phase velocity SWATA versus uniaxial applied stress for various
values of matrix density, ρ. The range of matrix density is representative of
hydrocarbon-reservoir rock types that are commonly targeted for hydraulic
fracturing, including dolostone, limestone and low-porosity sandstone (Mavko
et al., 2009).

vp,matrix

vp,matrix

vp,matrix

vp,matrix

Figure 5.14: Phase velocity SWATA versus uniaxial applied stress for various
values of matrix P-wave velocity, vp◦. The range of matrix P-wave velocity
is representative of hydrocarbon-reservoir rock types that are commonly tar-
geted for hydraulic fracturing, including dolostone, limestone and low-porosity
sandstone (Mavko et al., 2009).
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Figure 5.15: Phase velocity SWAT versus uniaxial applied stress for various
values of matrix vp/vs ratio, keeping vp and density constant. The range of
matrix vp/vs ratio is representative of hydrocarbon-reservoir rock types that
are commonly targeted for hydraulic fracturing, including dolostone, limestone
and low-porosity sandstone (Mavko et al., 2009).

observations in Figures 5.8 to 5.10 to predict the expected S-wave splitting. To

properly apply our observations we must keep in mind that the uniaxial stress

normal to the fracture face corresponds to the sv direction discussed through-

out this chapter. The APE model predicts that S-wave splitting will manifest

when sv > 1.5, and for our default parameters this occurs at σv = 0.6MPa, a

relatively small stress perturbation. The maximum SWAT occurs at sv = 2.7 or

σv = 1MPa. The local SWAT minimum between segments (b) and (c) occurs

at sv = 5.4 or σv = 2.3MPa and the local maximum between segments (c) and

(d) occurs at sv = 7.4 or σv = 3.1MPa. Let us assume the uniaxial fracture-

normal stress has a maximum value of σv = 3.5MPa immediately adjacent to

the fracture faces. In this case, Figure 5.17 shows the volume of rock around

the fracture experiencing increased compressive stress will exhibit the full range

of SWAT seen in Figure 5.8 and S-wave splitting character seen in Figures 5.9

and 5.10. Moving from fracture-distal to fracture-proximal, we expect to see
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Figure 5.16: Phase velocity SWAT versus uniaxial applied stress for various
values of quasi-incompressible pore-fluid compressibility. In other words, for
pore-fluids with relatively large compressibility. The range of pore-fluid com-
pressibility is representative of hydrocarbon gases at high pressures (Mavko
et al., 2009). The largest compressibility corresponds to pure methane at
20MPa and 50◦C. The smallest compressibility corresponds to a heavy gas
at 50MPa and 50◦C.

SWAT as described for segment (o) at the outer edge of the compressive re-

gion and then segments (a) through to (d) as we move closer to the fracture.

Hence, starting directly adjacent to the fracture face and moving away from it,

initially we would expect to see moderate and approximately constant SWAT

with the maximum S-wave splitting occurring for propagation sub-parallel to

the fracture plane. There will be a small increase followed by a small decrease

but the magnitude of these changes will be relatively small. With continued

separation from the fracture, the SWAT will increase to a maximum value oc-

curring at a distance where sv = 2.7 and then rapidly decrease to zero SWAT

beyond that point. This somewhat counterintuitive behaviour is the result of

two opposing processes. As compressive stress increases cracks begin to close,

increasing the degree of preferential crack alignment and this tends to increase

SWAT . However, as a result of cracks closing the crack density decreases and

this tends to decrease SWAT . Also, as seen in Figure 5.1 Panel (D), the APE

138



model predicts the crack distribution near the fracture face will consist of cracks

with normals oriented sub-parallel to the fracture face. As distance from the

fracture face increases the crack distribution will move toward and eventually

achieve an isotropic configuration. Alternatively, we can describe the region

normal to the fracture face in terms of S-wave splitting as a function of prop-

agation direction. Moving from fracture-distal to fracture-proximal, we expect

to see S-wave splitting as a function of propagation direction as described for

segment (o) at the outer edge of the compressive region and then segments (a)

through to (d) as we move closer to the fracture. Hence, starting directly adja-

cent to the fracture face and moving away from it, initially we would expect to

see maximum S-wave splitting occurring for propagation directions sub-parallel

to the fracture plane. There is a lower magnitude local maximum occurring

close to 50 degrees from the fracture plane. Moving further from the fracture,

this local minimum S-wave splitting value reduces in magnitude to approxi-

mately zero and all propagation directions sub-perpendicular to the fracture

face will experience approximately zero S-wave splitting. With increased dis-

tance from the fracture, the magnitude of maximum S-wave splitting decreases

and is spread out over a range of propagation directions less than 40 degrees

from the fracture plane. Moving further from the fracture, maximum S-wave

splitting migrates to propagation directions approximately 45 degrees from the

fracture plane and gradually decreases to zero magnitude.

5.5 Conclusions

The volume of rock normal to an open hydraulic fracture face experiences

increased compressive stress. This change in stress will tend to change the

microcrack distribution in the rock. The APE model can be used to predict

the changes in crack distribution and the resulting S-wave and P-wave velocity

anisotropy. Assuming an initially isotropic crack distribution experiencing a
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σv

Figure 5.17: A horizontal cross-section through a growing vertical hydraulic
fracture extending from a vertical well illustrating the relative size of the four
low-frequency zones of confining-stress perturbation in the surrounding region,
modified from Cipolla et al. (2011). We assume a very low permeability hence,
the proximal zone (the area with black diagonal lines) is restricted to the re-
gion immediately adjacent to the facture. The solid blue area indicates the
shear zone and the solid green area indicates the tensile zone. We assume
the compressive zone (the solid red area) can be approximated as experiencing
a uniaxial stress perpendicular to the fracture plane, σv. A case example is
shown where we assume a maximum confining stress of 3.5MPa adjacent to the
fracture face. In the lower compressive zone, the letters in brackets indicate
the segment of the SWAT curve expressed at that point given our default input
parameters and the dashed lines are hypothetical isobars of compressive stress.
The same pattern is mirrored in the upper compressive zone.

uniaxial compressive stress, we expect S-wave anisotropy to be approximately

double the P-wave anisotropy. We find the SWAT curve as a function of applied

stress displays five distinct segments that are characterized by unique S-wave

splitting behaviour. Furthermore, the maximum SWAT occurs at relatively

small applied stresses. The sensitivity of SWAT to various input parameters

can be described in two ways; either the amount of applied stress required to

reach a particular segment of the SWAT curve or the absolute value of SWAT

achieved within a particular segment. In regards to the former description,
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SWAT is most sensitive to initial crack aspect ratio and matrix P-wave velocity

with slight sensitivity to matrix density and matrix vp/vs ratio. As for the lat-

ter description, SWAT is most sensitive to initial crack density with moderate

sensitivity to matrix vp/vs ratio. Also, SWAT is not sensitive to the type of sat-

urating pore-fluid, as long as the fluid is an incompressible liquid hydrocarbon

or brine. However, if the saturating fluid is a high pressure hydrocarbon gas,

the magnitude of SWAT is only slightly sensitive to the saturating pore-fluid.
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Chapter 6

Triaxial Stress: Shear Wave

Anisotropy in the Vicinity of a

Hydraulic Fracture

6.1 Introduction

In this chapter, we consider the case where a hydraulic fracture treatment is

performed in a isotropic rock matrix containing a certain microcrack distribu-

tion and experiencing an initially triaxial in-situ stress field. The microcrack

distribution is assumed to be isotropic under zero effective-stress conditions

resulting in elastic isotropy. However, as discussed in Chapter 5, a triaxial

confining-stress field will tend to close some of the microcracks and produce a

particular expression of elastic anisotropy in the surrounding rock. As discussed

in Chapter 4, the opened fracture creates a large region normal to the fracture

face that experiences a compressive confining stress and several smaller regions

near the crack tips that experience shearing confining stress and tensile confin-

ing stress. Additionally, the region adjacent to the fracture will experience a

gradient of pore-pressure increase with the largest increase immediately adja-

cent to the fracture. In Chapter 3 we showed the effective stress, a combination
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of confining stress and pore pressure, controls the behaviour of seismic veloc-

ities and Figure 4.10 illustrates the four zones of effective-stress character in

the vicinity of a hydraulic fracture as defined in Chapter 4: the proximal zone,

compressive zone, shear zone and tensile zone. The effective-stress perturba-

tions caused by the hydraulic fracture treatment superimpose on the in-situ

triaxial far-field stress and will alter the particular initial expression of elastic

anisotropy in the surrounding rock. In this chapter, we model the heteroge-

neous elastic anisotropy resulting from triaxial effective-stress perturbations in

the vicinity of a hydraulic fracture in a normal faulting regime.

6.2 Theory

The uniaxial stress model, as described by Roche and Van der Baan (2017),

can be used to determine a reasonable value for the minimum horizontal in-situ

stress in a normal faulting regime. Using this model, the minimum horizontal

stress is given by

σh =
ν◦(σv − αPpore)

(1− ν◦)
+ αPpore, (6.1)

where σh is the minimum horizontal stress, σv is the vertical stress, ν◦ is Pois-

son’s ratio of the fluid-saturated porous rock, α is Biot’s effective-stress coef-

ficient and Ppore is the hydrostatic pore pressure. By convention, we assign a

compressive stress and pore pressure as positive values.

The condition for hydraulic fracture propagation is given by the following:

σh − αPinject ≥ Kf

√
π

2
√
f◦

(6.2)

where Pinject is injection pressure in the fracture, Kf is the fracture toughness,

f◦ is the initial radius of the fracture (Fischer-Cripps, 2007). The fracture is

a low aspect ratio spheroid such that the dimensions are given by f◦ � fw,

where fw is the fracture half-width. Taking a closer look at equation 6.2, the
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left hand side of the equation represents the effective pressure acting in the

direction normal to the fracture plane and the right hand side of the equation

is the geometry-scaled fracture toughness.

As discussed in Chapter 5 the Anisotropic Poroelasticity (APE) model de-

veloped by Crampin and Zatsepin (1997) and Zatsepin and Crampin (1997)

provides a link between confining stress, pore pressure and elastic anisotropy.

The general concept of this model can be expressed as follows:

CE = CR +CD +CG, (6.3)

where CE are the elasticity coefficients of a stressed rock containing a par-

ticular microcrack distribution, CR are the effective elastic coefficients of the

fluid-saturated porous rock matrix and CD and CG are respectively the per-

turbations to the elasticity coefficients due to a distribution of microcracks and

the geometries of these microcracks. A triaxial confining stress can result in

an anisotropic crack distribution which will produce an anisotropic medium,

CE. The size of these microcracks are on the order of the width of a human

hair and will herein be referred to simply as cracks. In Chapter 5 we applied

the APE model in only the compressive zone for the approximated case of uni-

axial stress in an effectively zero-permeability reservoir, allowing us to ignore

pore-pressure diffusion, and this enabled a relatively simple implementation

of the APE model. However, the implementation of the APE model for the

triaxial stress case is more complicated requiring the use of numerical methods

of non-linear optimization to solve a system of equations. A full description of

this system of equations is beyond the scope of this thesis but can be found in

Section 5 of Zatsepin and Crampin (1997), specifically equations 5.19 and 5.20.

We wish to model realistic properties commonly observed in tight gas reser-

voirs targeted for hydraulic fracturing, meaning reservoir permeabilities in the

range of 0.001mD to 1mD and porosities in the range of 5% to 10%. Zatsepin

and Crampin (1997) note under these conditions individual cracks are able to
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communicate fluid via the macropore system and, therefore, are no longer fluid

isolated. A fluid isolated crack system is a core condition for the validity of the

APE model. However, Zatsepin and Crampin (1997) postulate that the APE

model can be used a first order approximation of the stress dependent elastic

reservoir properties by assuming the crack pore-fluid pressure, pf , is known

and equal to the macropore fluid pressure. The limits of integration for the

fluid-filled crack distribution in equation 5.1 are then given by

γ = 1 + p− sh − sH sinψ2 sin θ2 − sv cosψ
2 , (6.4)

where γ is crack aspect ratio, p is dimensionless excess pore-fluid pressure given

by equation 5.11, (sh, sH , sv) are components of dimensionless differential stress

given by equation 5.12, (ψ, θ) are angles of inclination and azimuth in spherical

coordinates and open crack-normal orientations are given by γ > 0.

Pore-pressure diffusion around the hydraulic fracture can be modelled using

the method of Shapiro et al. (2002) and the confining-stress perturbation due to

the opening of a hydraulic fracture can be calculated analytically using Eshelby

(1957)’s equivalent inclusion method as outlined in Chapter 4.

6.3 Method

The general workflow for modelling the evolution of S-wave velocity anisotropy

(SWA) in the volume of rock around a hydraulic fracture is outlined in Figure

6.1. Each step in this workflow will be described in detail in each of the

following subsections. The SWA is calculated as the difference between the fast

and the slow S-wave velocity scaled by the fast S-wave velocity, expressed as a

percentage. It is important to note, in the previous chapter SWAT refers to the

scaled percent difference between the maximum fast S-wave and the minimum

slow S-wave velocities over all propagation directions in a transversely isotropic

medium; whereas, in this chapter SWA is the scaled percent difference between
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the fast and slow S-wave velocities for a single propagation direction in any

non-isotropic media.

Figure 6.1: The main steps involved in modelling S-wave velocity anisotropy
in the vicinity of a hydraulic fracture.

6.3.1 Input Parameters

In order to model the seismic velocity field in the vicinity of a hydraulic fracture

we require several input parameters. The required input parameters fall into

several categories as follows:

1. Reservoir properties
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2. In-situ confining-stress field

3. Initial crack properties

4. Injection pressure and duration

5. Modelling accuracy and duration

6. Hydraulic fracture properties

Several reservoir input properties are required including depth, porosity,

permeability, initial pore pressure, pore-saturating fluid and rock matrix min-

eral composition. We assume a normal pore-pressure gradient and obtain the

initial pore pressure using an average water column density of 1000 kg/m3 and

an acceleration due to gravity of 9.81m/s2. The pore-saturating fluid can be

a brine, a hydrocarbon oil, a hydrocarbon gas or a mixture of the three where

the properties for each type of fluid are defined separately. Brines are defined

by salinity, gases are defined by gas gravity and oils are defined by API, GOR

and gas gravity. We assume a temperature gradient of 25oC/km. In addition,

pore-fluid viscosity, η, is defined independently of the preceding fluid properties.

For the in-situ confining-stress field, we assume a normal faulting regime

and define a triaxial confining stress at the target reservoir depth. The maxi-

mum principle stress, σv, is in the vertical direction and is obtained using an

average overburden density of 2400 kg/m3 and an acceleration due to grav-

ity of 9.81m/s2. The minimum horizontal stress, σh, is calculated later using

the uniaxial stress model. The maximum horizontal stress, σH , is arbitrarily

defined within the range of σv ≥ σH ≥ σh.

For the initial crack properties, we assume an initially isotropic distribution

of cracks with a defined aspect ratio and normalized distribution density. The

crack distribution is assumed to be filled with the same fluid as the macropore

system. Additionally, the individual cracks are assumed to be low aspect ratio

spheroidal cracks, such that the crack dimensions are (a = b � c).
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The injection pressure, Pinject, is the pressure maintained in the hydraulic

fracture and is arbitrarily defined. The injection duration, tinject, is the length

of time the hydraulic fracture treatment and is arbitrarily defined such that

tinject>0min.

The modelling duration, tmodel, is the length of time that we calculate pore-

pressure diffusion, confining-stress change and the resulting velocity field. The

duration can be set to continue model calculations beyond the hydraulic frac-

ture treatment. The modelling accuracy is determined to a large extent by

three interval parameters set to obtain a reasonable compromise between sam-

pling density and computation times. The first and second parameters are

used to determine the coarseness of a grid search over all orientation directions

to find the crack distribution after a triaxial confining stress is applied. The

first parameter, int1, defines the search interval for inclination of orientation

and the second parameter, int2, defines the interval for azimuth of orientation.

The third parameter, int3, gives the interval of inclination and azimuth used to

calculate S-wave velocities in a particular propagation direction when creating

upper hemisphere plots of SWA, as seen in Figure 6.4.

In order to understand the evolution of SWA around a hydraulic fracture

we perform the workflow described below for four different initial in-situ stress

scenarios at two different reservoir depths. The first depth is 2 km and the

second depth is 1 km below surface level. The four initial in-situ stress scenar-

ios are chosen such that the ratio of maximum horizontal stress to minimum

horizontal stress, σH/σh, is equal to 1, 1.3, 1.6 and 1.9 respectively. The in-

jection pressure is set to be 3MPa larger than the minimum horizontal stress.

Both the total injection time and the model calculation time are run for 20

hours. The model accuracy parameters are set to the following in radians:

int1 = π/700, int2 = π/500 and int3 = π/90. All other input parameters are

held constant and can be seen in Table 6.1. The mineral composition of the

sandstone matrix is 70% quartz and 30% calcite. The hydraulic fracture in-
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Table 6.1: Triaxial APE model input parameters.

Porosity, φ 5%
Permeability, κ 0.1mD
Pore Fluid 5% salinity brine

Fluid Viscosity, η 0.00019Pa·s
Matrix Composition Sandstone

Initial Crack
Aspect Ratio, g◦ 0.0001
Initial Normalized
Crack Density, ε◦ 0.14
Initial Fracture

Radius, f◦ 2m
Maximum Fracture

Radius 100m
Fracture Width, fw 0.01m

Fracture Toughness, Kf 2MPa·√m
Fracture Propagation

Velocity, vfrac 0.003m/s

puts are set to reasonable values for a hydraulic fracture in a sandstone and

include fracture propagation velocity, vfrac, initial fracture size, f◦, maximum

fracture size, fracture width, fw, and fracture toughness, Kf . If condition 6.2

is satisfied, the fracture initiates growth from the defined initial fracture size

at t=0min and continues to grow at a constant propagation velocity until the

maximum defined fracture radius is reached. At this point, fracture growth

stops irrespective of condition 6.2. We assume the hydraulic fracture grows

as a spheroidal fracture in the vertical plane perpendicular to the direction

of minimum horizontal stress with the defined propagation velocity and main-

tains a constant fracture width. The assumption of a constant fracture width,

although not realistic, simplifies the confining-stress perturbation calculations.

In reality, we would expect the fracture aspect ratio to remain more-or-less con-

stant. We justify using the constant fracture width assumption by recalling the

observation made in Chapter 4 that the magnitude of stress perturbations in

the vicinity of the fracture are not affected significantly by realistic variations
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of hydraulic fracture width, i.e. on the order of 10 cm.

6.3.2 Elastic Properties for Zero Effective Stress

We first obtain approximate rock properties for the reservoir by assuming an

isotropic rock experiencing a lithostatic stress at the reservoir depth. The

reservoir rock has all of the previously defined properties with the lithostatic

stress equal to the vertical confining stress. However, at this point we have not

included the crack distribution. We then obtain the isotropic, stress-sensitive,

effective elastic properties, Cr, for the fluid-saturated porous reservoir rock

using the process outlined in Figure 6.2. The full details of this process are

described in Chapter 3. Next, we simulate moving the reservoir rock to a

shallow depth. In our case we choose 200m, but this is an arbitrary choice. At

this shallow depth we assume a zero effective-stress state with pore pressure

equal to the calculated lithostatic stress at 200m depth. The APE model

requires the crack distribution to initially exist in a state of zero effective stress.

The isotropic, stress-sensitive, effective elastic properties, Cs, of the shallow

reservoir rock are now obtained using the same process as before but with the

new lithostatic stress and pore pressure at 200m depth, see Figure 6.2. We

lower the gas-oil ratio to account for degassing at lower pore pressure.

6.3.3 Elastic Properties at Hydraulic Fracture Depth

The next step is to simulate moving the shallow reservoir back to the ac-

tual reservoir depth. First, the uniaxial stress model is used to determine

the minimum horizontal stress, σh. We use the elastic moduli of the reser-

voir under lithostatic conditions at the target depth, Cr, and assume a Biot’s

effective-stress coefficient of one in equation 6.1. Now we have the triaxial

in-situ confining-stress state at the reservoir level before the hydraulic fracture

treatment is initiated, (σv, σH , σh), and the initial hydrostatic pore pressure due
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Figure 6.2: The main steps involved in modelling stress-sensitive elastic moduli
of an isotropic porous medium. Chapter 3 provides a comprehensive description
of each step. In brief, the fluid properties are calculated using the Batzle-
Wang equations and Reuss averaging and the matrix properties are calculated
using Hashin-Strikman-Walpole averaging. The dry rock frame effective elastic
moduli are obtained using the Hertz-Mindlin model and the Stiff-Sand model.
The effective elastic moduli and the density of the fluid saturated rock are
calculated with the Gassmann equations.

to the water column, Ppore. The APE model, equations 5.1 , 5.2 , 5.4 and 5.7

to 5.10, is then used to determine the initial state of elastic anisotropy present,

CE, after the in-situ triaxial confining stress is applied at the actual reservoir

depth. The limits of intergration in equation 5.1 are given by equation 6.4 and

the value of Λijkl in equations 5.9 and 5.10 is obtained using the Hudson Model

as outlined in Chapter 5 with equations 5.23 to 5.31. Finally, the elasticity

perturbations due to the open crack distribution are added to the elasticity

coefficients of the uncracked, zero-stress state reservoir, that is CR = Cs in

equation 5.1.

It is necessary to comment on our use of Cs. To be more realistic we

should have instead used the initial uncracked reservoir rock under lithostatic
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conditions, Cr. The problem with using Cs is the perturbations due to a crack

distribution, CD + CG in equation 6.3, are only strictly compatible with Cr

because CD +CG depends on the reservoir elasticity coefficients. In general,

the elasticity coefficients are larger at greater depth, so the coefficients due to

a crack distribution would be slightly different using Cr. However, the APE

model requires a zero-stress state as a starting point, and this is unrealistic

at the reservoir depth. Hence, we should not determine CD + CG from the

elasticity coefficients of the uncracked reservoir at depth, Cr. In practice, for

low porosities the difference between Cr and Cs is small, so we can justify

using Cs as a reasonably good approximation.

6.3.4 Elastic Properties after Pore-Pressure Diffusion

and Confining-Stress Change

Pore-pressure diffusion and confining-stress change are calculated at a uniform

grid of nodal points as outlined in Chapter 4, specifically see section 4.3 for

the method of implementation. We use the input values for fluid shear mod-

ulus, fluid velocity and the fracture properties seen in Table 4.1 and the grid,

sampling and reservoir properties seen in Table 4.2. To find the stress field

in the vicinity of the hydraulic fracture, we add the sum of the pore-pressure

perturbations and the confining-stress perturbations to the initial in-situ tri-

axial stress field. We have now evolved from a homogeneous anisotropic stress

field into an heterogeneous, anisotropic stress field. The APE model is then

used as outlined in the previous subsection to calculate the resulting elasticity

coefficients at all grid nodes in the vicinity of the hydraulic fracture.

6.3.5 S-Wave Velocity Anisotropy

The SWAvert is SWA for propagation in the vertical direction and is calculated

at all grid nodes. Additionally, to gain a deeper understanding of the anisotropy

152



behaviour, we observe the SWA for all possible propagation directions at two

spatially fixed points: the compressive zone point (CZP) and the tensile zone

point (TZP). These are the same two spatial points discussed in Chapter 4. Re-

call, the first point is located 40m perpendicular to the centre of the hydraulic

fracture and the second point is located in the plane of the hydraulic fracture

and 120m from the centre of the fracture. In general, as the hydraulic frac-

ture grows, the CZP experiences increased confining stress and pore pressure

and the TZP experiences confining-stress decrease with pore-pressure increase.

The reader is directed to Chapter 4 for a more detailed discussion regarding

the evolution of pore pressure, confining stress and effective stress at the CZP

and TZP with Table 4.3 providing a useful summary. The fast and slow S-

wave velocities and their polarization directions are calculated using the classic

Christoffel equations (Slawinski, 2015).

6.4 Results

For each case, we present the modelling results for times t=0min to 1200min

at time steps of 240min. The modelling results include the initial crack dis-

tribution, the initial SWA, the evolution of SWAvert at all points around the

hydraulic fracture and the evolution of SWA for all propagation directions at

the CZP and TZP. Propagation directions are described in terms of degrees in-

clination measured from vertical and degrees azimuth measured clockwise from

the direction of σh (i.e. perpendicular to the fracture face).

6.4.1 2 km Depth Reservoir

In each of the following sub-subsections, we present the modelling results for

the four in-situ confining-stress cases (σH/σh of 1, 1.3, 1.6 and 1.9 respectively

for Cases 1 to 4) at 2 km depth.
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2 km Depth - Case 1: σH/σh=1

The in-situ confining-stress field is given by σV=47MPa, σH=25MPa and σh=

25MPa. It is important to note that in this case where σH=σh there would be

no preferential orientation for the hydraulic fracture to open. We modelled this

situation for comparison even though the formation of simple planar hydraulic

fracture is not realistic to expect. As seen in panel (A) of Figure 6.3, the

resulting initial crack distribution consists of azimuthally isotropic, sub-vertical

crack sets. Figure 6.4 shows that this crack distribution produces a transversely

isotropic medium with a vertical axis of symmetry. There is 0% SWA in the

vertical direction and a maximum SWAmax≈1.7% at inclination ≈50◦ and all

azimuths.

The evolution of SWA at the CZP and TZP are not shown because the

changes are very subtle. At the CZP, a slight deviation from TI symmetry

gives an orthotropic SWA symmetry immediately. However, the change in

SWA pattern is very small with the inclination and magnitude of the SWAmax

being relatively unchanged. At the TZP, the same trend is seen but the changes

are almost imperceptible.

The SWAvert is not shown because there are only very low magnitude in-

creases, less than ±0.5%, seen for all time steps. The compressive zone and

shear zone experience a very small SWAvert increase. There is no SWAvert

change observed in the part of the compressive zone directly adjacent to the

fracture, the tensile zone, and the zone of transition between the compressive

zone and shear zone.

2 km Depth - Case 2: σH/σh=1.3

The in-situ confining-stress field is given by σV=47MPa, σH=32MPa and σh=

25MPa. Panel (B) of Figure 6.3 shows the resulting initial crack distribution

consists of sub-vertical crack sets that are sub-parallel to the hydraulic fracture

face and panel (A) of Figure 6.5 shows this distribution produces an orthotropic
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Figure 6.3: This figure shows four upper hemisphere projections illustrating
the initial crack distribution of the four in-situ stress conditions at 2 km depth
where panels (A) through (D) respectively show Cases 1 through 4. See Figure
5.2 for a description of upper hemisphere projection. The projections show
open crack normal orientations with blue and closed crack normal orientations
with white. The centre of the plot indicates a vertical crack normal orientation
and the concentric circles indicate degrees inclination measured from vertical.
Horizontal crack normal orientation occurs at inclinations of 90◦ and plots on
the outer most circle. The azimuth of crack normal orientation is given by the
position on a circle measured clockwise from 12 o’clock which corresponds to
0◦. For reference, σV plots in the centre of the projection, σH plots on the outer
circle at 12 and 6 o’clock and σh plots on the outer circle at 3 and 9 o’clock.

medium with SWAmax=3.2% in the vertical direction. There is a band of high

SWA at all inclinations with azimuths approximately parallel to the fracture

face and SWA is small or zero for propagation directions within 65◦ of σh.
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Figure 6.4: 2 km Depth - Case 1: The initial SWA pattern displayed as an up-
per hemisphere projection. See Figure 5.2 for a description of upper hemisphere
projection. The centre of the plot indicates a vertical propagation direction and
the concentric circles indicate degrees inclination measured from vertical. Hor-
izontal propagation occurs at inclinations of 90◦ and plots on the outer most
circle. The azimuth of propagation is given by the position on a circle measured
clockwise from 12 o’clock which corresponds to 0◦. The colour indicates the
magnitude of SWA and the short bold lines indicate the polarization orienta-
tion of the fast S-wave. For reference, σV plots in the centre of the projection,
σH plots on the outer circle at 12 and 6 o’clock and σh plots on the outer circle
at 3 and 9 o’clock.

Figure 6.5 and 6.6 show the evolution of SWA at the CZP and TZP respec-

tively. At the CZP, the pattern of SWA remains relatively unchanged. However,

the band of high SWA initially decreases by approximately 0.5% followed by

a return to the initial values and then decreases again by less than 0.5%. At

the TZP, the pattern of SWA initially remains relatively unchanged. When

the fracture tip and the proximal zone approach, the band of high SWA is

successively reduced until all propagation directions have less than 1.6% SWA.

As seen in Figure 6.7, SWAvert shows distinct character in the compressive

zone, shear zone, tensile zone and a fourth zone adjacent to the fracture. Herein

referred to as the proximal zone, this fourth zone corresponds to the effective-

stress proximal zone discussed in Chapter 4. The proximal zone extends a

variable distance away from the fracture and is defined as the region where the
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Figure 6.5: 2 km Depth - Case 2: Upper hemisphere projections of the SWA
at t=0 to 1200min at time steps of 240min modelled at the CZP. See Figure
5.2 for a description of upper hemisphere projection.
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Figure 6.6: 2 km Depth - Case 2: Upper hemisphere projections of the SWA
at t=0 to 1200min at time steps of 240min modelled at the TZP. See Figure
5.2 for a description of upper hemisphere projection.
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mean effective stress decreases significantly. The transition from the proximal

zone to any of the other three zones is characterized by a pore-pressure gradi-

ent that is significantly steeper than the confining-stress gradient. Figure 6.7

shows in Case 2 at 2 km depth, the proximal zone experiences a large decrease in

SWAvert of up to 3.2%. The proximal zone expands in size with each time step

reaching a maximum distance of 25m from the fracture tips. The transition

between the proximal zone and the other three zones experiences very little to

zero change in SWAvert. The compressive zone experiences a small decrease in

SWAvert of less than 0.5% with a local minimum value occurring perpendicular

to the centre of the fracture and close to the proximal-compressive zone transi-

tion. The compressive zone expands in size as long as the fracture is growing.

When the fracture reaches the maximum radius, the compressive zone starts

to shrink in size as the continually expanding proximal zone encroaches on it.

Also, the local minimum value becomes more pronounced with each time step

as the fracture grows, but becomes less pronounced with each time step at

which the fracture size is constant. The shear zone and tensile zone beyond

the proximal zone experience a small increase in SWAvert of less than 0.5%.

2 km Depth - Case 3: σH/σh=1.6

The in-situ confining-stress field is given by σV=47MPa, σH=40MPa and σh=

25MPa. Panel (C) of Figure 6.3 shows the resulting initial crack distribution

is very similar to that seen in Case 2 at 2 km depth, and consists of sub-

vertical crack sets that are sub-parallel to the hydraulic fracture face. As seen

in panel (A) of Figure 6.8, this distribution produces an orthotropic medium

with SWAmax=3.5% in the vertical direction. There is a band of high SWA at

all inclinations with azimuths approximately parallel to the fracture face. SWA

is small or zero for propagation directions within 65◦ of σh.

Figures 6.8 and 6.9 show the evolution of SWA at the CZP and TZP respec-

tively. At the CZP and TZP, the patterns of SWA remain relatively unchanged.
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Figure 6.7: 2 km Depth - Case 2: The SWAvert at t=0 to 1200min at time
steps of 240min. In this figure and all similar figures to follow, the colour scale
is set such that the initial SWAvert is white. Increases in SWAvert are indicated
by shades of red and decreases in SWAvert are indicated by shades of blue.
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At the CZP, the band of high SWA initially decreases by approximately 0.5%

and then gradually increases to reach a final value of 4%. At the TZP, the

band of high SWA initially remains relatively unchanged. When the fracture

tip and the outer proximal zone approach, the band of high SWA is increased

to 4% and then as the transition to the inner proximal zone approaches the

SWA magnitudes return to the initial values.

As seen in Figure 6.10, the SWAvert shows distinct character in the com-

pressive zone, shear zone, tensile zone and proximal zone. In this case, the

proximal zone displays a dual character with inner and outer regions. The

inner proximal zone experiences no change in SWAvert adjacent to the fracture

face and experiences a decrease of up to 3.5% adjacent to the fracture tips.

The outer proximal zone experiences an increase in SWAvert of up to 1%. The

proximal zone expands in size with each time step reaching a maximum dis-

tance of 75m from the fracture tips. The transition from the inner and outer

proximal zone experiences very little to zero change in SWAvert. Beyond the

proximal zone, the compressive zone experiences a small decrease in SWAvert of

less than 0.5% with a local minimum value occurring perpendicular to the cen-

tre of the fracture and close to the proximal-compressive zone transition. The

compressive zone expands in size as long as the fracture is growing. When the

fracture reaches the maximum radius, the compressive zone shrinks in size as

the continually expanding proximal zone encroaches on it. Also, the local min-

imum value in the compressive zone becomes more pronounced with each time

step as the fracture grows, but this local minimum becomes less pronounced

with each time step after the fracture has reached its maximum size. The shear

zone and tensile zone beyond the proximal zone experience a small increase in

SWAvert of less than 0.5%.
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Figure 6.8: 2 km Depth - Case 3: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the CZP. See Figure
5.2 for a description of upper hemisphere projection.
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Figure 6.9: 2 km Depth - Case 3: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the TZP. See Figure
5.2 for a description of upper hemisphere projection.
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Figure 6.10: 2 km Depth - Case 3: The SWAvert at t=0 to 1200min at time
steps of 240min.
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2 km Depth - Case 4: σH/σh=1.9

The in-situ confining-stress field is given by σV=47MPa, σH=47MPa and σh=

25MPa. Panel (D) of Figure 6.3 shows the resulting initial crack distribution

is very similar to that seen in Case 3 at 2 km depth, and consists of sub-vertical

crack sets that are sub-parallel to the hydraulic fracture face. However, this

slightly different distribution now produces a transversely isotropic medium

with an axis of symmetry parallel to σh, see Figure 6.11. There is a band of

SWAmax = 3.6% at all inclinations with azimuth normal to the fracture face.

SWA is small or zero for propagation directions within 65◦ of σh.

Figure 6.11: 2 km Depth - Case 4: The initial SWA pattern displayed as
an upper hemisphere projection. See Figure 5.2 for a description of upper
hemisphere projection.

In this case, the SWAvert evolves almost identically to that seen in Figure

6.10 with two important differences. First, the inner proximal zone is not

present adjacent to the fracture face and only manifests in a smaller region at

the fracture tips. Second, the magnitude of SWAvert expressed in the outer

proximal zone is slightly larger at 4.3%. Additionally, the evolution of SWA

at the CZP and TZP is very similar to that seen in Figures 6.8 and 6.9. The

sole difference at the CZP is that the band of high SWA increases to a larger

magnitude of 4.3%. The TZP differs in that the inner proximal zone does not
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approach the point as close as seen in Case 3 at 2 km depth, hence the SWA

decreases by a smaller amount between t=720min and 1200min.

6.4.2 1 km Depth - Reservoir

In each of the following sub-subsections, we present the modelling results for

the four in-situ confining-stress cases at a depth of 1 km.

1 km Depth - Case 1: σH/σh=1

The in-situ confining-stress field is given by σV = 24MPa, σH= 12MPa and

σh= 12MPa. Again, it is important to note that in this case where σH= σh

there would be no preferential orientation for the hydraulic fracture to open.

We modelled this situation for comparison even though the formation of simple

planar hydraulic fracture is not realistic to expect. Panel (A) of Figure 6.12

shows the resulting initial crack distribution consists of azimuthally isotropic,

sub-vertical crack sets that produce a transversely isotropic medium with a

vertical axis of symmetry. All cracks with crack normal inclination of greater

than 50◦ are open. There is 0% SWA in the vertical direction and a SWAmax≈
1.6% at all azimuths in the horizontal plane. The initial SWA pattern can be

seen in panel (A) of Figure 6.13.

The SWAvert is nearly identical to that seen in Case 1 at 2 km depth, except

the magnitude of increase is smaller at all time steps. However, Figure 6.13

shows that the evolution of SWA at the CZP is significantly different from that

seen in Case 1 at 2 km depth. At the CZP, the SWA immediately decreases to

approximately 0% for all azimuths and inclinations less than 50◦. Additionally,

in this range of propagation direction, the polarization direction of the fast

S-wave rotates by 90◦. With each successive time step the range of inclination

experiencing this polarization rotation gradually increases reaching a maximum

range of less than 60◦. The same trend is seen at the TZP but at a slower rate

and the maximum inclination range experiencing the polarization rotation is
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Figure 6.12: This figure shows four upper hemisphere projections illustrating
the initial crack distribution of the four in-situ stress conditions at 1 km depth
where panels (A) through (D) respectively show Cases 1 through 4. The pro-
jections show open crack normal orientations with blue and closed crack normal
orientations with white. See Figure 5.2 for a description of upper hemisphere
projection.

slightly smaller at approximately 55◦.

1 km Depth - Case 2: σH/σh=1.3

The in-situ confining-stress field is given by σV=24MPa, σH=16MPa and σh=

12MPa. Panel (B) of Figure 6.12 shows the resulting initial crack distribution

consists of azimuthally anisotropic sub-vertical crack sets. The maximum range
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Figure 6.13: 1 km Depth - Case 1: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the CZP. See Figure
5.2 for a description of upper hemisphere projection.
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of crack normal inclination occurs in the azimuthal direction of σh and the

minimum range occurs in the direction of σH . There is approximately 0%

SWA in sub-vertical propagation directions and the polarization direction of

the fast S-wave is rotated 90◦ with respect to all other propagation directions.

The initial orthotropic SWA pattern can be seen in Figure 6.14.

Figure 6.14: 1 km Depth - Case 2: The initial SWA pattern displayed as
an upper hemisphere projection. See Figure 5.2 for a description of upper
hemisphere projection.

The SWAvert is very similar to that seen in Case 2 at 2 km depth, except

the magnitudes of increase/decrease are much smaller at all time steps, i.e. less

than 0.2%. The evolution of SWA at the CZP is very similar to that seen in at

the TZP in Case 1 at 1 km depth but with the range of inclination experiencing

the polarization rotation reaching a smaller maximum range of less than 30◦.

Also, the evolution of SWA at the TZP is very similar to that seen in Figure

6.13 at the CZP in Case 1 at 1 km depth but with the range of inclination

experiencing the polarization rotation reaching a smaller maximum range of

less than 50◦.
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1 km Depth - Case 3: σH/σh=1.6

The in-situ confining-stress field is given by σV=24MPa, σH=20MPa and σh=

12MPa. Panel (C) of Figure 6.12 shows the resulting initial crack distribution

is similar to that seen in Case 3 at 2 km depth, and consists sub-vertical crack

sets that are sub-parallel to the hydraulic fracture face but with a larger range

of crack normal inclination and azimuth. That is, the crack distribution is

further from a purely vertical crack set parallel to the fracture face. As seen

in panel (A) of Figure 6.15, this distribution produces an orthotropic medium

with SWAmax=2.7% in the vertical direction. There is a diffuse band of high

SWA at all inclinations with azimuths sub-parallel to the fracture face. SWA

is small or zero for propagation directions within approximately 40◦ of σh.

Figures 6.15 and 6.16 show the evolution of SWA at the CZP and TZP

respectively. At the CZP, the pattern of SWA initially remains relatively un-

changed. However, as the proximal zone approaches, the band of high SWA is

successively reduced until all propagation directions have less than 2% SWA.

At the TZP, the pattern of SWA initially remains relatively unchanged. How-

ever, as the fracture tip and the proximal zone approach, the band of high

SWA is reduced so all propagation directions have less than 1.5% SWA with

the largest reduction occurring for sub-vertical propagation directions. Then,

as the proximal zone overtakes that TZP, the polarization direction of the fast

S-wave rotates by 90◦ for sub-vertical propagation directions. The range of

inclinations experiencing this polarization rotation is greater in the direction

of σh than in the direction of σH : 0
◦−50◦ versus 0◦−30◦ respectively.

As seen in Figure 6.17, the SWAvert shows distinct character in the compres-

sive zone, tensile zone and proximal zone. Also, the shear zone is not detectable

in this case. The proximal zone experiences a large decrease in SWAvert of up

to 2.7% and expands in size with each time step reaching a maximum distance

of 50m from the fracture face. The transition between the proximal zone and

tensile zone is gradational while the transition between the proximal zone and
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Figure 6.15: 1 km Depth - Case 3: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the CZP. See Figure
5.2 for a description of upper hemisphere projection.
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Figure 6.16: 1 km Depth - Case 3: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the TZP. See Figure
5.2 for a description of upper hemisphere projection.
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compressive zone experiences very little to zero change in SWAvert. The com-

pressive zone experiences an increase in SWAvert of less than 0.5% with a local

maximum value occurring perpendicular to the centre of the fracture and close

to the proximal-compressive zone transition. The compressive zone expands in

size as long as the fracture is growing. When the fracture reaches the maximum

radius, the compressive zone starts to shrink in size as the continually expand-

ing proximal zone encroaches on it. Also, the local maximum value becomes

more pronounced with each time step as the fracture grows, but become less

pronounced with each time step that the fracture size is constant. The beyond

the proximal zone, the tensile zone experiences a small decrease in SWAvert of

less than 1%.

1 km Depth - Case 4: σH/σh=1.9

The in-situ confining-stress field is given by σV=24MPa, σH=24MPa and σh=

12MPa. Panel (D) of Figure 6.12 shows the resulting initial crack distribution

is very similar to that seen in Case 3 at 1 km depth, and consists of sub-vertical

crack sets that are sub-parallel to the hydraulic fracture face. However, this

slightly different distribution now produces a transversely isotropic medium

with an axis of symmetry parallel to σh, see panel (A) of Figure 6.18. There is

a band of high SWA at all inclinations with azimuths sub-parallel to the fracture

face. There is a SWAmax=3.6% at all inclinations with azimuth parallel to the

fracture face. SWA is small or zero for propagation directions within 45◦ of σh.

The initial SWA pattern is very similar as to that observed for Case 4 at 2 km

depth.

Figures 6.18 and 6.19 show the evolution of SWA at the CZP and TZP

respectively. At the CZP, the pattern of SWA remains relatively unchanged.

Initially, the band of high SWA increases by 0.2% and then as the proximal

zone approaches and eventually overtakes the CZP the band of high SWA is

successively reduced to 2.8% SWA. At the TZP, the pattern of SWA initially
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Figure 6.17: 1 km Depth - Case 3: The SWAvert at t=0 to 1200min at time
steps of 240min.
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remains relatively unchanged. However, as the proximal zone approaches and

overtakes the TZP, the band of high SWA is rapidly reduced and diffused so all

propagation directions have less than 2% SWA and only propagation directions

within 20◦ of σh having less than 0.5% SWA.

In this case, the SWAvert evolves similarly to that seen in Figure 6.17 with

two important differences. First, the proximal zone displays a dual character

with a fracture tip region and a fracture face region. The tip-proximal zone

region experiences a large decrease in SWAvert of up to 3.6% and the face-

proximal zone region experience a moderate SWAvert decrease of up to 1.6%.

Second, the proximal-compressive zone transition occurs slightly closer to the

fracture face. For example, at t = 1200min the proximal-compressive zone

transition occurs at 100m perpendicular to the fracture centre for Case 3 at

1 km depth and 75m for Case 4 at 1 km depth.

6.5 Discussion

Our results indicate that in a normal faulting regime where σh is determined

by the uniaxial stress model the behaviour of SWA in the vicinity of a hy-

draulic fracture is highly variable. The type of behaviour depends on the

initial in-situ effective-stress field, including both the confining-stress field and

the initial pore-pressure components with reservoir depth determining the ini-

tial pore pressure. The in-situ effective-stress field determines the initial crack

distribution and the resulting initial SWA.

Although the specific SWA behaviour depends on the reservoir depth and

in-situ confining stress, there are a number of characteristics that are observed

for all cases tested. In general, the magnitude of SWA decreases in any given

scenario are always larger than the SWA increases for the same scenario. Also,

there are four distinct zones of behaviour in the vicinity of the fracture for

each case, the compressive zone, shear zone, tensile zone and proximal zone.
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Figure 6.18: 1 km Depth - Case 4: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the CZP. See Figure
5.2 for a description of upper hemisphere projection.
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Figure 6.19: 1 km Depth - Case 4: A upper hemisphere projection of the SWA
at t=0 to 1200min at time steps of 240min modelled at the TZP. See Figure
5.2 for a description of upper hemisphere projection.
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The relative sizes of these zones are variable but the proximal zone always

experiences the largest degree of SWA pattern change and continues to grow

as long as the injection pressure is maintained in the fracture. Finally, the

shear zone typically experiences very little to zero change in SWAvert and the

compressive zone and tensile zone alway exhibit opposite SWAvert changes.

That is, if the magnitude of SWAvert increases in the compressive zone then

SWAvert will decrease in the tensile zone and vice versa. This suggests that

the contrast in SWA between ray paths through the two zones at a single time

may be more detectable than observing the temporal change in SWA along a

ray path through a single zone or along a ray path through both zones.

In the following two subsections we compare and contrast the SWA be-

haviour observed for the reservoirs at 1 km and 2 km depths.

6.5.1 2 km Depth - Reservoir

Of the four 2 km depth reservoir cases, we observe the largest change in SWAvert

when σH/σh = 1.3. In this case, SWAvert decreases by up to 3.2% in the

proximal zone and up to 0.9% in the compressive zone. The spatial extent of

the proximal zone is relatively small, being restricted to a maximum of 40m

from the fracture. For the cases where σH/σh > 1.3 we observe moderate to

small changes in SWAvert with the proximal zone now experiencing increases up

to 0.7% and the compressive zone experiencing decreases up to 1%. However,

the size of the proximal zone is larger for cases where σH/σh>1.3.

Considering the pattern of SWA for the four 2 km depth reservoir cases, we

only observe a significant pattern change in the proximal zone when σH/σh=

1.3. In this case, the band of high magnitude SWA is diffused and reduced

by ≈ 1.6%. For all other cases, the pattern of SWA is relatively unchanged.

Furthermore, the magnitude of SWA change for all propagation directions does

not exceed ±1%.

Considering the above observations, our modelling suggests that it will be
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difficult to detect the changes in SWAvert and SWA in general for a reservoir at

2 km depth. The conditions giving the best chance for detection are for vertical

or sub-vertical propagation through the proximal zone when σH/σh=1.3.

6.5.2 1 km Depth - Reservoir

Of the four reservoir cases at 1 km depth, we observe the largest change in

SWAvert of up to a 3.6% decrease when σH/σh=1.9 and this decrease occurs in

the relatively small tip-proximal zone. When σH/σh=1.6, we observe a smaller

decrease of up to 2.7% in the entire proximal zone which is significantly larger

in extent. In contrast to the reservoir cases 2 km depth, when σH/σh<1.6 we

observed very little to zero change in SWAvert.

Considering the pattern of SWA for the four 1 km depth reservoir cases,

we observe two distinct types of pattern change. First, when σH/σh ≤ 1.6 we

observe a 90◦ rotation of the polarization direction of the fast S-wave for vertical

and sub-vertical propagation directions. When σH/σh = 1.6 this rotation is

observed only in the proximal zone and when σH/σh ≤ 1.3 this rotation is

observed in the compressive zone, tensile zone and proximal zone. Furthermore,

this rotation should be detectable with 3-component geophones. The second

type of change involves the diffusion of the band of high SWA over a larger range

of inclination and azimuth. Concurrent with this diffusion, the magnitudes of

SWA in the band are reduced. This behaviour is observed in the proximal-

tensile zone and proximal-compressive zone transition zones when σH/σh≥1.6

and SWA reaches a maximum reduction of 1.2%. Additionally, this behaviour

is observed in the face-proximal zone when σH/σh = 1.9 and SWA reaches a

maximum reduction of 2%.
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6.5.3 General Implications

Considering the above observations, the region around a pressurized hydraulic

fracture can be classified into four spatio-temporal zones of S-wave anisotropy

behaviour: the compressive zone, the shear zone, the tensile zone and the

proximal zone. These zones are closely aligned with the four spatio-temporal

zones of effective-stress perturbation observed in Chapter 4. Figure 6.20 shows

the relative spatial location of the four zones and their temporal development.

Panel (A) illustrates as long as the fracture is growing in radius, the proximal

zone remains relatively small compared to the compressive zone. However,

panel (B) illustrates if the fracture remains pressurized and static in size, the

proximal zone continues to grow into the other three zone while the maximum

extent of the other three zones remains constant. It is possible for the proximal

zone to completely override one or more of the other zones.

Additionally, our modelling suggests that in general it will be easier to

detect the changes in SWAvert and SWA for a reservoir at 1 km depth. The

conditions giving the best chance for the detection of a fast S-wave polarization

rotation are for vertical or sub-vertical propagation through the compressive

zone, tensile zone or proximal zone when σH/σh is close to one. The conditions

giving the best chance for the detection of a reduction and diffusion of the

high SWA band are for propagation directions that are greater than 45◦ from

σh and travel through the face-proximal zone or the proximal-tensile zone and

proximal-compressive zone transition zones when σH/σh=1.9.

Finally, although we have not shown results for a relatively stiff versus

a relatively compliant reservoir, it is worth commenting on. If we were to

model the above cases with a more compliant reservoir and all other input

parameters held constant, including the in-situ confining stress (i.e. the in-situ

minimum confining stress is no longer determined by the uniaxial stress model),

we are unable to make general predictions regarding the SWA response. We

would expect different changes in the SWA evolution for each case due to the
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Figure 6.20: Panel (A) A horizontal cross-section through a growing vertical
hydraulic fracture extending from a vertical well illustrating the relative size of
the four zones of S-wave anisotropy in the surrounding region, modified from
Cipolla et al. (2011). The area with black diagonal lines indicates the proximal
zone, the solid red area indicates the compressive zone, the solid blue area
indicates the shear zone and the solid green area indicates the tensile zone.
Panel (B) A horizontal cross-section through the same fracture at a later time
where the fracture has remained pressurized for a length of time after it has
stopped growing. Note the relative size of the proximal zone has increased at
the expense of the spatial extent of the other three zones, modified from Cipolla
et al. (2011).
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complexity of the interaction between the in-situ confining stress, the initial

pore pressure and the initial crack distribution and the resulting SWA. For

example, consider a case where σH/σh=1. In this case, there is an initial crack

distribution of sub-vertical crack sets that are sub-parallel to the hydraulic

fracture face and this distribution produces a transversely isotropic medium

with an axis of symmetry parallel to σh. The sub-vertical crack sets have

normals that are oriented with inclinations within a certain number degrees

from σh. If the reservoir compliance is increased, the cracks are easier to close

and the range of inclinations for open crack normals is reduced. There are

two possible responses for this single case. First, it is possible that all of the

cracks will close, resulting in an initially isotropic medium. Hence, there would

be no change in SWA due to increased confining stress and the only possible

change in SWA would be an increase due to increased pore pressure in the

proximal zone and decreased confining stress in the tensile zone. In the second

possible response, assume the increase in compliance is smaller; this results in

only a portion of the initial sub-vertical crack sets closing. The sub-vertical

crack sets now have a higher degree of preferential alignment which tends to

result in a higher degree of SWA. However, the open crack distribution also has

a smaller normalized crack density which tends to decrease SWA. These two

counteracting effects occur at different rates from each other and the magnitude

of difference depends on the initial crack distribution.

6.6 Conclusions

In modelling the four in-situ stress scenarios where σH/σh is equal to 1, 1.3,

1.6 and 1.9 at 1 km and 2 km depth, we find that there is no simple connection

between SWA and the pore-pressure increases and confining-stress changes in

the vicinity of a hydraulic fracture. The complex interplay between in-situ

stress-induced background SWA and that from the growing hydraulic fracture
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and pore-pressure diffusion into the rock matrix gives rise to significantly dif-

ferent SWA evolution for the majority of the modelled scenarios. However, we

are able to identify some general characteristics that may be used to identify

the position of a hydraulic fracture. As discussed in Chapter 4, the proxi-

mal zone experiences an effective-stress decrease caused by the relatively large

pore-pressure increase present in this zone. In this chapter, we find that the

effective-stress decrease in the proximal zone tends to produce the largest vari-

ations in SWAvert, either increases or decreases, while the compressive zone

tends produce a smaller and opposite SWAvert variation. The only exception

is for Case 2 at 2 km depth where both the proximal and compressive zones

produce a decrease in SWAvert. Additionally, the cases at 1 km depth all show

a 90◦ rotation of the polarization direction of the fast S-wave for vertical and

sub-vertical propagation directions in the proximal zone.
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Chapter 7

Summary and Future Work

In this thesis, we develop a comprehensive workflow for forward modelling the

anisotropic velocity field around a hydraulic fracture. This integrated model

involves three main components. First, we analytically model triaxial confining-

stress change due to the opening of a hydraulic fracture. Next, we numerically

model pore-pressure diffusion through the walls of a spheroidal fracture. Then,

we give the resulting anisotropic velocity by modelling the preferential open-

ing and closing of an initially isotropic distribution of microcracks. Using this

workflow, we investigate two broad categories of subsurface scenario. In Chap-

ter 5, we assume an initially isotropic reservoir with low permeability. Hence,

pore-pressure diffusion does not significantly penetrate into the reservoir rock

and the proximal zone is virtually non-existent. We, also, assume the confining-

stress perturbation in the compressive zone can be approximated as uniaxial.

In Chapter 6, we assume an initially anisotropic reservoir, and we include pore-

pressure diffusion and triaxial confining-stress perturbation. We find that the

resulting anisotropic velocity fields for each scenario are significantly different

from each other. Hence, the simplified uniaxial implementation of the unmod-

ified Anisotropic Poroelasticity model with no pore-pressure diffusion does not

provide an adequate approximation of the modified Anisotropic Poroelastic-

ity model taking pore-pressure diffusion into account. This demonstrates the
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somewhat intuitive fact that the in-situ reservoir stress state and pore-pressure

diffusion must not be ignored.

In Chapter 3, we find that given an equal magnitude effective-stress change

from a common initial effective stress, isotropic P- and S-wave velocities are

more sensitive to an effective-stress decrease. In Chapter 4, we find that a

relatively large region around a hydraulic fracture is predicted to experience

effective-stress perturbation leading to expected velocity changes. In Chapter

5, we find that S-wave velocities are more sensitive to effective-stress changes

than P-wave velocities. This coupled with the added advantage that anisotropy

along a single ray path can be determined using the time delay between the two

orthogonally polarized S-waves means that S-wave observations in addition to

P-wave observations are far more useful than P-wave observations alone.

The region around a hydraulic fracture can be divided into four spatiotem-

poral zones: the proximal zone, the compressive zone, the shear zone and the

tensile zone. These four zones can be characterized in terms of size, effective-

stress perturbation, isotropic velocity change and anisotropic velocity changes.

As shown in Chapter 5 and 6 the anisotropic velocity changes depend strongly

on the initial reservoir stress state, so a simple description is not possible.

However, the four zones can be generally characterized as seen in Table 7.1.

7.1 Future Work

There are several interesting directions that we could take from this point

forward including investigating a more complex fracture network using the

current integrated forward model, applying the current model to the inverse

problem or current model refinement. We touch on aspects of each of these

investigation directions below.

We have shown the forward modelled anisotropic velocity predictions for a

simple scenario: a single vertical hydraulic fracture. What would the predicted
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Table 7.1: The general characteristics of the four zones of influence in the
vicinity of a hydraulic fracture.

Zone General Characteristics
Proximal - size and relative size increases with time.

- permeability has a large effect on the size of this zone.
- effective stress decreases
- isotropic P-wave velocity remains relatively unchanged.
- isotropic S-wave velocity decreases.

Compressive - size increases with fracture radius.
- larger in relative size than shear and tensile zones.
- effective stress increases.
- isotropic P- and S-wave velocities increase.

Shear - size increases with fracture radius.
- effective stress remains relatively unchanged.
- isotropic P- and S-wave velocities remain relatively un-
changed.

Tensile - size increases with fracture radius.
- effective stress increases.
- isotropic P- and S-wave velocities increase.

velocity field look like for multiple parallel fractures or a more complicated

fracture network? What would the predicted velocity field look like if the

reservoir permeability is anisotropic?

If we accept the current integrated model as a reasonable approximation

of the resulting velocity field in the vicinity of a single planar fracture, we

can apply the model to an appropriate field dataset and predict the hydraulic

fracture position and geometry from S-wave splitting observations. Ideally,

we would want a time-lapse three-component microseismic dataset with a low

signal to noise ratio in which the event locations show a single defined planar

feature. We would need to perform S-wave picking and polarization direction

determination. An important factor in the uncertainty of the fracture position

and geometry is the coverage of ray propagation directions. A larger range of

coverage will give a lower uncertainty. Therefore, it would be beneficial to have

more than one monitoring well and a surface array, as this will increase the

possible propagation directions that can be measured.
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In our current integrated model we make a number of simplifying assump-

tions to reduce model complexity and computation time. What if our model

could be significantly more accurate by increasing the model complexity? We

assume an average initial crack aspect ratio. However, there could be a wide

array of micropore aspect ratios present in real rock. Low aspect ratio cracks

will be more sensitive to triaxial stress changes than high aspect ratio crack.

Hence, possibly more realistic modelling could be completed by assuming a

certain distribution of aspect ratios. Additionally, we assume a hydraulic frac-

ture can be modelled as a low-aspect ratio spheroid. Hydraulic fractures may

be more accurately modelled as low-aspect ratio ellipsoids. We could develop

a new method of modelling confining-stress change and pore-pressure diffu-

sion that is valid for an ellipsoidal fracture geometry. Finally, we assume that

poroelastic feedback effects are small enough that we can ignore them. That

is, confining stress and pore pressure are uncoupled in our model. We could

refine our model by including a one-way or two-way coupling of stress and pore

pressure such that changes in confining stress induce pore-pressure changes

and/or changes in pore pressure induce confining-stress changes. There are

many assumptions that we could discard. However, in our opinion, removing

model assumptions should not take priority over modelling multiple fracture

scenarios or obtaining field data and inverting for fracture properties using the

current model.
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