B+l e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wallinglon Street 395, rue Wellinglon

Ottawa, Onlario Onawa (Onlario)

K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

- Canada

Youw g VOdre rdieTE
(kw Ma Notre iplérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide diun
ruban usé ou si P'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
a la Lol canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

A Hierarchy of DRAM Testing Problems

BY

Lin Shen @

A Thesis

Submitted to the Faculty of Graduate Studies and Research
In partial fulfillment of the requirements for the degree

of Master of Science

Department of Electrical Engineering

Spring, 1994

l* National Library Bibliothé

ue nationale

Direction des acquisitions et

of Canada du Canada

Acquisitions and B ,)] ICQ ne
Bibliographic Servicas Branch des services bibliographiques
395 Wellington Street 385, rue Wellington

Ottawa, Ontario Ottawa (Ontano)

K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your e Volie réfdrence

O Mg Nidre rgldionce

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése & la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-11370-1

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Lin Shen

TITLE OF THESIS: A Hierarchy of DRAM Testing Problems
DEGREE: Master of Science

YEAR THIS THESIS GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and o lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever with-
out the author's prior written permission.

7.
e [P

Permanent Address:

3B
8913,112 8t

Date Edmonton, Alberta,
Canada

Te #1093

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read. and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitled A Hierarchy of DRAM Testing Problems
submitted by Lin Shen in partial fulfillment of the requirements for the degree of Master of
Science.

Supervisor: Dr. B.F. Cockburn

Date

/\jOL/'" 23)‘*(93

Abstract

In this thesis, we apply a formal methodology for memory testing and diagnosis
using deterministic Mealy automata to the case of a 4 Mbit DRAM. Based on
an informal description of the faulty behaviours, a realistic formal fault model is
developed that differs substantially from traditional fault models that contain only

stuck-at faults, coupling faults, and pattern sensitive faults. Based on this fault

that iticludes fault detection,

model, we propose a hierarchy of testing asabler:-
faulty cell location, fault type locatios. and fanit diagnesss. For the problem of
fault detection, we derive lower bows™s of “: as:! 57 - - on the lengths of any
march test and any unrestricted tess smectivels sihere a is the number of single
bit memory words. An optimal memeeh test of lesth 3, is also proposed for this
problem and proved correct. For themishlem of faglts cell location, we derive a lower
bound of 8n on the length of anw mesreh test that achieves the location. Again, an
optimal march test of length 8n is pwspoard assll proved correct. For the problem of
fault type location, we derive a lower bowné of 8n on the length of any march test,
and we propose a near-optimal march test of length 13n that, in the best case, can
locate all of the fault types in the fault model. For the problem of fault diagnosis,
we report some preliminary work and conjecture on the existence of a lower bound

proportional to nlog, n.

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Dr. Bruce F. Cockburn,
for his support, patience and insightful guidance throughout this thesis work. Dr.
Cockburn's encouragement and valuable contribution have been essentiial to the
progress of this thesis. I would also like to thank the other members of my thesis
committee for their helpful comments.

I would also like to thank the many other faculty, stafl, and fellows students for
their criticism, suggestions, discussion, and all the good time we had together.

Finally, I would like to acknowledge the financial support of the National Science

and Engineering Research Council under grant OGP105567.

Contents

1 Introduction
1.1 Motivation for Testing and Diagnosing DRAMs

1.2 Thesis Overview

2 Review of DRAM Structure and Operation

3.1 Basic Typesof Memory Testso v v v v v nenn
32 FaultModellingot eeneunenn
33 Functional Tests0 00t enens

4 Definitions and Notation

4.1 FiniteAutomatat tenvionasons

17

17

18

29

A Realistic DRAM Fault Model 36

51 Stuck Bits e .. 38
5.2 Interconnected Cells 39
5.3 Shorts Between Word Lines 42
5.4 Shorts Between Bit Lines 48
5.5 Shorts Between Word and Bit Lines 50
56 Interrupted BitLines. &0
5.7 Fault Model Overview &2
Fault Detection 53
6.1 LowerBound Results. 53

6.1.1 A Lower Bound for March Tests &5

6.1.2 A Lower Bound for Unrestricted Tests &8
6.2 An Optimal March Test for Fault Detection 63
Faulty Cell Location a8
71 LowerBound Result 69
7.2 An Optimal March Test for Faulty Cell Location 80
Fault Type Location 85
8.1 AnIrredundant DRAMFault Model 85
8.2 A March Test for Fault Type Location 86
Conclusions 25

9.1 SummaryofResults 95

92 FutureResearch0.'e...... 07

9.2.1 The Lower Bound for Fault Type Location 07
922 FaultDiagnosis 08
9.2.3 Detection of Linked Multiple Faults 09

Ribliographys : 100

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

5.6

Trends in DRAM die size and memory cell size [12). 3
Ratio of test cost to total chipcost [12}. 4
The architectureofa DRAM. 10
Detail of a DRAMcellarray. 12
The schematic of arowdecoder. 13
The schematic of a column decoder. WM
The transition diagram of a good memory Mp. 28
The transition diagram of a faulty memory M,. 35
Afaultymemoryt eeee.. 35
Transition diagram for a fault My of type Ty (n=2).. 40
Transition diagram for a fault My of type T, (n=2).. 4l
Transition diagram for a fault M3 of type T3 (n=2).......... 45
Transition diagram for a fault My of type Ty (n=2).. 46
Transition diagram for a fault Msof type Ts (n=2).. 47
Transition diagram for a fault Mg of type Tg (n=2).. 48

5.7

6.1

7.1

8.1

Transition diagram for a fault M7 of type Ty (n=2).. 49
Specification for MARCH5N. 63
Specification for MARCHS8N. 81

Specification for MARCHI3N.. 86

List of Tables

1.1 Past and Projected Memory Market Share [18] 2
4.1 Transition and Output Functionsfor Mg 27
5.1 Categoriesof Defects 38
8.1 Response Summaries00t 03

9.1 A Hierarchy of DRAM Testing Problems. 97

Chapter 1

Introduction

1.1 Motivation for Testing and Diagnosing DRAMs

Semiconductor memory technology continues to make impressive advances. Multi-
megabit memory chips are now available on the market, and gigabit memory chips
seem likely to appear by the end of this decade [17]. Accompanying this rapid growth
in memory chip density, i.e., the number of bits per chip, is increased concern about
testing and reliability.

Conventionally, semiconductor memory chips are divided into five different types

and 5) Electrically Erasable and Programmable, Read-Only Memories (EEPROMs).
Of these memory types, DRAMs have the largest production volume. Since the be-

ginning of the 1970s, the dynamic RAM has been the main technology driver for the

Table 1.1: Past and Projected Memory Market Share [18)

1988 | 1990 | 1994

DRAMs 56% | 54% | 58%

SRAMs 17 22 21

EPROMs 17 14 12

EEPROMs 2 2 3

Total 100% | 100% | 100%

semiconductor industry. Table 1.1 shows the market shares for each of the above
five types of memory chips [18].

Ongoing developments in DRAM technology have resulted in continually increas-
ing memory chip densities. As shown in Fig. 1.1, DRAM die size has grown by 40%
to 50% every generation; at the same time, memory cell size has decreased by 60%
to 656% every generation. The growth in die size and the shrinking of memory cell
size are expected to continue as DRAMs approach the gigabit level [12].

Along with increasing die sizes and shrinking cell sizes, major cell parameters
such as feature width, chip area, and pitch width have dramatically decreased. As
a result of the decrease, DRAM chips have tended to become more vulnerable to

faults for at least the following two reasons [36, 15]:

e The growing die size produces larger metal resistance, which leads to such

circuit problems as wiring delay, crosstalk, noise, and V,, bounce.

Cell Size (um ?) Die Size (mm ?)

1,000 Y = Y Y 1 100
..... T ’
srecprecraases ,Q;: pereeeseny ',....'. Cell Size kesss 50
[RTT: TIDIIPSOR 2 gereeoherreecronbocs “ S beeed

1O Die Size !
10
5
10 ’ — 1

Memory capacity (bits)

Figure 1.1: Trends in DRAM die size and memory cell size [12].
o Crosstalk problems get worse as signal wires are packed more closely together.

Major factors contributing to the chip cost of DRAMs are process complexity,
die size, equipment cost, test cost, and yield. A consequence of the increasing
capacity and susceptibility to defects of DRAMs is that the test cost is growing at
an especially rapid rate. This situation is illustrated by Fig. 1.2 [12], which shows
the ratio of test cost to total chip cost as a function of memory capacity.

Economic considerations have been playing a progressively larger role in DRAM
chip design and manufacturing. Test cost is directly related to test time. Thus to
keep the test cost low, novel methods that can speed up the DRAM testing process
and improve its quality are of interest to test engineers [18].

As memory chip density increases, the production of chips without defects be-

comes increasingly difficult, and the yield has a tendency to decrease. Rejection of

Test cost ratio (%)
100 7

80

Memory capacity (Mbits)

Figure 1.2: Ratio of test cost to total chip cost [12).

a chip, and thus an overall lower production yield, can be caused by only a small
number of faults. Therefore, to obtain economically acceptable yields, semiconduc-
tor manufacturers have employed fault-tolerant memory designs. The main idea of
these designs is to add spare rows and columns of memory cells. Faulty memory
cells can be replaced with either a spare row or spare column by reprogramming
the modified row and/or column decoders using laser or electrical fusing [31, 14, 3].
This technique, which was originally used as a yield improvement aid for the early
stages of memory development, has become an essential activity in the design and
manufacture of today’s multi-megabit memories. To perform memory repair, pro-
duction tests are required not only to detect at least one fault in a faulty memory
(fault detection), but also to locate all of the cells affected by all of the faults (faulty

cell location), to determine which cells are involved in each type of fault (fault type

location), and to determine all of the faults present, including the type and set of

cells associated with each fault component (fault diagnosis) [7].

1.2 Thesis Overview

The three specific problems studied in this thesis are 1) fault detection, 2) faulty cell
location, and 3) fault type location under a realistic DRAM fault model. The fault
model is based on the physical defects and resulting faulty behaviours observed in
4 Mbit DRAMs manufactured by Siemens [21].

March tests are a family of RAM tests that are relatively simple in structure
and have linear time complexity. They are also very attractive from an on-chip
testing point of view because of their regularity and hence ease of implementation.
Therefore, in this thesis we will usually restrict our discussion to march tests.

In Chapter 2, we review the structure and operation of a typical DRAM. Some
unique features of the Siemens DRAM are also described.

In Chapter 3, we provide background on memory testing and diagnosis.

Chapter 4 describes the fundamental definitions, notation and methodology used
in this thesis. Brzozowski and Cockburn developed a formal methodology for RAM
testing using the theory of finite automata [5]. This methodology allows us to derive
fault models that are suitable for rigorous analysis. Our lower bound proofs and
fault coverage analysis are all based on this methodology. Hence a description of
this methodology is also included in Chapter 4.

Oberle et al. developed a realistic fault model based on the physical defects and

resulting faulty behaviours that were observed in 4M x1 DRAMs manufactured
by Siemens [21]. In addition to stuck-at faults, the fault model also includes more
complex faults such as interconnected cells, word line shorts, bit line shorts, world
line to bit line shorts, and interrupted bit lines. However, the fault model is specified
informally and hence is not suitable for applying mathematical proof techniques. In
Chapter 5, we present a slightly generalized formal version of the same fault model.
The formal fault model forms the basis for the remaining chapters of this thesis.

Chapter 6 addresses the fault detection problem. To detect a fault we mean that
at least one of the faulty cells in a faulty memory must be identified. We derive
a lower bound of 5n on the length of any march test that detects all faults in the
fault model, where n is the number of memory cells. We also derive a lower bound
of 5n ~ 2 on the length of any boolean test of arbitrary structure that detects all
faults in the fault model. A march test whose length matchs the 5n lower bound
is also provided in this chapter. We then prove that the march test has 100% fault
coverage.

In Chapter 7, we investigate the faulty cell location problem. To locate the
faulty cells of a fault we mean that all of the faulty cells involved in a fault must
be determined. We derive a lower bound of 8n on the length of any march test
that locates all faulty cells in the fault model. We also propose a march test whosé
length matchs the lower bound and then prove that it indeed locates all faulty cells
in the fault model.

In Chapter 8, we investigate the fault type location problem. To locate all the

fault types we mean that all of the faulty cells involved in all faults of each fault type

must be detected. Since equivalent faults cannot be distinguished by pure boolean
tests, we have to eliminate all redundant faults in the fault model before considering
fault type location. An irredundant fault model is therefore first derived from the
original fault model. Then we propose a march test of length 13n and prove that
this test locates all fault types in the irredundant fault model. We do not provide
a greater lower bound than 8n due to the increased difficulty of the fault type
location problem (Note: any test that performs fault type location must at least
perform faulty cell location).

Finally in Chapter 9, the results obtained in the preceding chapters are sum-
marized and the main contributions of this thesis are enumerated. Discussions of

potential areas of future research are also included.

Chapter 2

Review of DRAM Structure

and Operation

A basic knowledge of DRAM structure and operation is required to better under-
present in the realistic DRAM fault model. The DRAM structure discussed here
is meant to be representative of the many different DRAM designs that have been
published; usually each DRAM manufacturer uses a different design. However, the
fundamental principles of all DRAM designs are similar. Where it is appropriate,
we will describe the unique features of the Siemens DRAM.

Dynamic random-access memories store binary data as charges on an array of
capacitors. Each storage cell uses one capacitor to store one bit of data. The

DRAM is random-access because data can be stored to and fetched from all cells

power to the DRAMs is shut off, the stored data will be lost. However, compared
with other semiconductor memories, DRAMs have some advantages. The basic
memory cell of a DRAM consists of only one transistor and one capacitor, which
means that very dense DRAMs can be made. Other memories, such as static random

access memories (SRAMs), require more circuitry per bit (4 or 6 transistors per bit

memories. Because DRAMs consume only transient current, the power dissipation
can be quite low. The main disadvantage of DRAMs is that the memory cells need to
be refreshed. Because of the finite reverse-biased junction leakage current of the cell
transistor, the amount of stored charge will decrease with time. In order to guarantee
that a read operation will still produce the logic value originally etored in the cell,
the charge must be periodically sensed and restored to its original voltage; otherwise,
the data will be irretrievably lost. The need for refreshing makes the supporting
circuitry for DRAMs more complicated and hence their access times tend to be
slower than some other memories such as SRAMs. In spite of this disadvantage,

DRAMs are the most widely used semiconductor random access memories.

2.1 DRAM Structure

Figure 2.1 depicts a simplified view of the architecture of a typical n x 1 DRAM,
where n is the number of storage cells and the “x1” indicates that one storage cell
is associated with each of n distinct addresses. If k£ > 1 bits are associated with

each address then we have an n x k architecture. In this thesis, as in most RAM

_ PPN ' S .
| ' \
T — ——
1 1
|) I
x_! celli | !
_ 2 | e o i
row row " : word
address dec. | | | lines
I]
| 1
] I
1 I
— e —
I [}
L. /

, v— ! sense-amplifiers
;311?;: and column decoder
Y ' $ S
data

Figure 2.1: The architecture of a DRAM.

testing work, we will only consider n x 1 RAMs.

As shown in Fig. 2.1, a DRAM consists of the following main components:

e Memory cell array: The cell array, where the information is stored, comprises
a group of n storage cells. There are several possible implementations of
DRAM cells. Among them, the single-device DRAM cell, which consists of an
used design because it provides for a high-density, low cost per bit memory cell

with a reasonable performance. For a good summary of single-device designs

see [25).

In addition to storage cells, the cell array contains a group of parallel bit lines
and a group of parallel word lines. The two groups of lines cross each other to
form a rectangular grid. Every cell is located at an intersection of a bit line
and a word line. By selecting a specific bit line and a specific word line we
can uniquely address each cell. Figure 2.2 depicts a cell array in more detail.
The horizontal lines labelled “WL” are word lines; the vertical lines labelled
“BL” are bit lines. Here, as in most modern DRAMs, the storage cells are
implemented as single-device cells, To access cell (3,1), for example, WL3 is
activated and data is written or read via BL1.

Note that in Fig. 2.2, each sense-amplifier is connected to two adjacent bit
lines. This is called a “folded bit line” layout and is typical of many modern
memory designs and is used by the Siemens DRAM. As described in [21], in
the Siemens DRAM’s cell array, the rectangular grid is distorted in such a way

that each cell is actually surrounded by three immediate neighbours.

» Decoders: These are used to access a particular cell or a group of cells (in
word-oriented RAMs) in the memory cell array. Row and column decoders
are used to activate one word line and one bit line, respectively. There are
several popular implementations of row and column decoders. The schematics
of a typical row decoder and a typical column decoder are shown in Figs. 2.3
and 2.4, respectively [24]. In a complete row decoder, each word line is driven

by a separate circuit as in Fig. 2.3. The row address connections are different

11

e T bTE
LR
L
L

- + +
Sense- Sense-
Amplifier Amplifier
BL! BLO

Figure 2.2: Detail of a DRAM cell array.

for each word line so that only one word line is activated for each possible row
address. In the small column decoder shown in I'ig. 2.4, each possible column
address sets up a conducting path from the data line at the top to exactly one
bit line at the bottom. Note that the data flows in both directions (upwards

and downwards) through the column decoder.

Sense-amplifier: A sense-amplifier is basically a combined differential amplifier
and driver that operates together with clock signals and precharge circuitry.
It is used to sense the voltage across the two connected bit lines and to thereby

recover the value stored in the memory cell that is being read.

12

Row Address = (RAddrl,...,RAddrN)

vaa
r —d R1 = RAddrl or RAddrl
Rz —d R2 = RAddr2 or RAddr2

. <t -

———= Word Line RN = RAddrN or RAdJdIN

Figure 2.3: The schematic of a row decoder.

Not shown in Fig. 2.1 are the following circuits:

Refresh logic: Binary data are represented physically in a DRAM cell as either
a high or low voltage charge stored dynamically on the storage node of a cell
capacitor. This charge must be restored periodically, or else the data will
be lost due to the finite cell leakage current. Basically, the refresh operation
reads an entire row of cells at. one time in parallel, then passes the data to the
corresponding sense-amplifiers to determine the logic value stored in each cell;
slightly later, the sense-amplifiers write-back the data such that the original

charge is restored to all cells of that row. The sequence of events in the refresh

Data latches: A group of latches in which input and output data words are
stored.

13

Column Address = (CAddrl, ..., CAddrN)

Data

CAddr) e[I

CAddrd

"G

Bil Lines
Figure 2.4: The schematic of a column decoder.

o Address latches: A group of latches in which the address of the memory cell
to be accessed is stored. The row and column addresses for an operation are
usually provided at different times on the same address lines to reduce the
number of external connections. The falling edges of two signals, called RAS
and CAS, are used to indicate the distinct times when the row and column

addresses, respectively, are valid on the shared address lines.

In addition to read and write operations, it is possible for a DRAM to provide
some other specialized operations such as read-modify-write, fast page mode, static
column mode, etc.. However, usually only read and write operations are considered

when DRAM testing and diagnosis are concerned. We therefore only describe these

14

two operations in detail. To illustrate the two basic operatioﬁs more clearly, consider
read and write operations to cell ¢ in Fig. 2.1.

A read operation to cell ¢ does four things: 1) addresses cell i; 2) evaluates the
charge stored in the capacitor of cell i; 3) routes the appropriate logic signal, either
0 or 1, to the output pin of the DRAM; and 4) writes the same logic signal back
along the bit line to restore the stored change. We now describe these events in
more detail. First, all pairs of bit lines are precharged to half of the positive supply
voltage Vpp. This is achieved by precharge circuits at one end of the bit lines. Then,
the word line to which the transistor of cell i is connected is activated (word line z
in Fig. 2.1). This turns on the cell’s transistor and thus causes a conducting path
to be formed between the capacitor of cell ¢ and the bit line to which the transistor
of cell i is connected (bit line y). As a result, the voltage of bit line y is pulled
down or raised up slightly depending on whether a valid high or a valid low voltage
is stored in cell {. At the same time, since the other bit line that is connected to
the same sense-amplifier as bit line y is not connected to any capacitor, its voltage
remains unchanged, i.e., half of Vpp. The slight difference in the voltage across
the two bit lines is detected and amplified by the sense-amplifier to which they are
connected so that a full-strength logic signal corresponding to the bit stored in cell
is produced at the output of the sense-amplifier. At the same time, the resulting
voltage signal from the sense-amplifier is then routed through the column selector
to the data latches and hence to the output pin of the DRAM.

A write operation to cell ¢ does three things: 1) addresses cell i; 2) routes the

input data from the input pin of the DRAM through the column decoder and along

15

one bit line to the capacitor of cell #; and 3) charges or discharges the capacitor
of cell i. As with read operations, a write operation has to first precharge the bit
line pairs, and then form a conducting path between bit line y and cell 1. Since the
driven input signal is much stronger than the signals on the bit lines connected to
the sense-amplifier, the voltage from the input pin of the DRAM is routed through
bit line y and charges the capacitor of cell i.

If no cell on a particular row is accessed for a sufficiently long time (approaching
10ns), then all of the cells on that row can be refreshed by simply reading any one
cell in the row. If refreshing is not done soon enough, then the stored data will start

to be lost,

16

Chapter 3

DRAM Testing Background

3.1 Basic Types of Memory Tests

DRAM testing includes functional testing and parametric testing. Funclional test-
ing verifies whether the DRAM chip under test is fault-free with respect to its logical
behaviour. Two types of DRAM functional tests, deterministic and pseudo-random
tests, are commonly used. By deterministic tests we mean that the test patterns
and reference data for the memories under test are predetermined before the tests
are executed. By pseudo-random tests we mean that the test patterns for the mem-
ories under test are determined pseudo-randomly during the test. Paramelric tests
verify whether the DRAM under test works properly with respect to the specified
parameters of the chip such as voltage/current levels and propagation delays from
the input pins to the output pins of the chip. Two types of parametric tests, DC
parametric and dynamic tests, are commonly used. In thesis we will only be con-

cerned with functional tests. All of the DRAM tests that are proposed in this thesis

17

are deterministic functional tests. If we assume that a test can store intermediate
results and make use of those results for further testing, then the test is said to be
an adaptive test; otherwise, the test is said to be a nonadaptive test. In this thesis,

as with most previous research, we assume that the tests are nonadaptive.

3.2 Fault Modelling

According to the way the faults affect DRAMs, we can divide them into two different
types: permanent and nonpermanent faults. Permanent faults cause DRAMs to
malfunction all of the time. An example of a permanent fault is a broken or incorrect
connection between components such as memory cells, word lines, and bit lines.
Nonpermanent faults randomly cause a DRAM to malfunction for finite periods of
time. A common example of a nonpermanent fault is a loose connection between
two components. Due to the uncertain characteristics of nonpermanent faults, it is
very hard to model them with functional fault models. Also, to detect some of the
nonpermanent faults, external equipment and detailed knowledge of the fabrication
technology must be used. In this thesis, we only consider permanent faults.

It has been shown that the the length of any functional test that can detect all
possible functional faults in a memory is O(2"), where n is the size of .e memory
under test [11]. Therefore, it is not feasible in practice to consider all possible faults
that may occur in DRAMs when designing tests. As a result, all practical tests
restrict themselves to a subset of all possible faults, i.e., by choosing a fault model.

A DRAM chip typically consists of many functional blocks including the cell

18

array, row and column decoders, read/write logic, and timing and enabling circuits
(including refresh logic). Conventionally, however, most testing procedures only deal
with faults that occur in the memory cell array. This is because the frequency of
faults occurring in the field of peripheral circuits is much lower than in the cell array
and, as we show later, most of the faults that occur in decoders and read/write logic
circuits can be modelled as faults that occur in the cell array [20, 23]. Defects in
the timing and refresh circuits usually induce time-dependent faults that are quite
different from the faults in cell array. Normally, dynamic tests are used to detect
these faults. In this thesis we will not discuss defects that occur in timing and
refresh circuits.

The following faults are commonly used to model the functional behaviour of

faulty memory cells [33):

o Stuck-at fault (SAF): The logic value of the affected cell is always 0 (stuck-at-
0 fault) or 1 (stuck-at-1 fault). That is, the content of the cell can never be

changed to the opposite logic value.

o Transition fault (TF): A memory cell fails to undergo either 0 to 1 or 1 to 0
transition when a write operation is applied to the cell. In other words, a cell

may make one transition, but then will forever appear like a stuck-at fault.

o Coupling fault (CF): A write operation to a memory cell causes an unexpected
transition in other memory cell. If ¥ memory cells are coupled together, then
we call the fault a k-coupling fault, where 1 < k < n, where n is the capacity

of the memory. In practice, & is usually much smaller than n. The 2-coupling

19

fault has appeared in many fault models and has been extensively studied (20,
23, 5]. According to the faulty behaviours, there can be quite a few coupling
relations between a pair of coupled cells. For example, for a 2-coupling fault
that consists of two coupling cells i and j, there are four different relations: 1)
inversion coupling (CFin), 2) idempotent coupling (CFid), 3) bridging coupling
(BF), and 4) state coupling (SF). For the definition of these coupling relations,

refer to [33).

o Neighborhood pattern sensitive fault (NPSF): The content of a cell, or transi-
tions in the content of a cell, are influenced by the contents of some other cells
in the memory. For example, consider four distinct cells i, j, k, and [. One
possible pattern sensitive fault involving these four cells is the situation when,
if cells j and k contain 1, and cell ! contains 0, then cell i cannot make a 1 to
0 transition when a 0 is written to cell 2. As in coupling faults, an arbitrary
number of cells can be involved in a pattern sensitive fault. In practice, how-
ever, the number is usually restricted to be less than or equal to 5. Several
different pattern sensitive faults have been studied [33]: 1) active neighbour-
hood pattern sensitive fault, 2) passive neighbourhood pattern sensitive fault
(PNPSF), and 3) static neighbourhood pattern sensitive fault (SNPSF). Refer

to [33] for the definitions of these different types of pattern sensitive faults.

An instance of any of the above listed faults is called a single fault. It is also
possible for several such faults to appear simultaneously. Such a fault is called a

multiple fault. If the component faults in a multiple fault involve disjoint sets of

20

cells, then the component faults are said to be unlinked. If two component faults
have at least one faulty cell in common, then those faults are said to be linked. In
this thesis we will make the simplifying assumption that the component faults in
any multiple fault are unlinked.

As we mentioned earlier, in addition to faults in the cell array, faults can occur
in other functional blocks of the DRAM. However, those faults are usually modelled
as faults in the cell array.

Assuming that the decoders are not changed into sequential circuits, then any
failure occurring in the decoders can be divided into one of the three following faulty

behaviours:
1. No cell in the memory cell array is accessed.

2. Cells other than the addressed cell are accessed.

In the case of faulty behaviour 1, a valid but unchanging voltage signal will be
generated by the peripheral circuitry of the memory and then read out. Therefore
we can consider the addressed cell as a stuck bit. In the case of faulty behaviour
2, we can still consider the addressed cell as a stuck at bit. Note, however, that at
least one other cell will be affected. Faulty behaviour 3 is assumed to be modelled
as a multiple coupling fault [20].

The most common failures occurring in the read/write logic circuits are either
that the data input and data output lines are stuck-at-0 (1), or that some of the
input (output) lines are shorted together. For the former case, we can consider the

21

faults [20).
In this way, we can model faults occurring in decoders and read/write logic
circuits as faults in the memory cell array. Therefore, in order to test a memory, we

need to concentrate on the faults in the memory cell array only.

3.3 Functional Tests

Various functional tests have been proposed and used in industry since the 1970’s.
The earlier tests were not based on high-level functional fault models. Four well-
known traditional tests are:

o Zero-one [1]: It detects all SAFs. The test is very simple in structure and has

a length of only 4=n.

o Checkerboard [4]: It detects all SAFs and shorts between adjacent cells, under
the condition that the address decoder functions correctly. The test first writes
1 and 0 alternatively into all of the cells in either ascending or descending
address order, reads out all of the cells; then it repeats the two steps by
exchanging 1 and 0. Obviously, this test has a length of only 4n too.

o GALPAT [4]: It detects all SAFs, TFs, and CFs. This test has a length of
Bfn + 272). Therefore, it is not feasible for testing modern multi-megabit
RAMs because the test times would be several days.

e Sliding Diagonal [33]: It detects all SAFs and TFs. This test has a length of
6n + 2n/n.

22

Today DRAM functional testing is dominated by a family of tests called march
tests. March tests are relatively simple and have linear complexity. Many march
tests have been proposed to detect and locate faults in different fault models with
different fault coverages and often different complexities. An excellent survey by
van de Goor [33] describes many different march tests. Here, we only describe three

typical march tests [34]:
¢ MAST+: Detects all SAFs and has a length of 5n.

e March C-: Detects all unlinked SAFs, TFs, and some of CFs. This test has a

length of 10n.

e March B: Detects most linked SAFs, TFs, and CFs. This test has a length of

17n.

In addition to these tests, built-in self-tests, parallel tests, and concurrent tests
are also used for DRAM functional testing. However, they are beyond the scope of
this thesis, so we omit describing them here. Detailed descriptions are available in

26, 32].

23

Chapter 4

Definitions and Notation!

4.1 Finite Automata

An alphabet is a finite, nonempty set of symbols. By convention, in this thesis we use
letters in italics to denote symbols, and bold letters to denote sequences of symbols;
e.g., 8 = abed. The length of a sequence s, denoted by [s|, is the number of symbols
in 8; e.g., |abed] = 4. If X denotes an alphabet, then X* denotes the set of all
sequences composed of zero or more symbols from X. We use € to denote the null
sequence, that is, the sequence of length 0.

A prefiz of a sequence s is a sequence comprising 0 or more leading symbols of
s. A suffiz of s is a sequence comprising 0 or more trailing symbols of 5. A segment
of 8 is a prefix of a suffix of 8. A subsequence of s is a sequence obtained from
8 by deleting 0 or more symbols. For example, if s = abcacbaa, then € and abca

are prefixes, baa and € are suffixes, € and cach are segments, and baca and e are

fMany of these definitions appeared previously in [5].

24

subsequences of 8. The concatenation of two sequences s and t, written st, is a
sequence comprising the symbols of s followed immediately by the symbols of t. For
example, if 8 = acd and t = cdef, then the concatenation of s and t is acdedef.

If § is a set, then 2% denotes all possible subsets of §. For example, if § = {a, b},
then 25 = {€a,b,ab}. A nondeterministic finite Mealy automaton is a quadruple
A = (Q,X,Y,6), where @ is the finite nonempty set of states, X is the input
alphabet, Y is the output alphabet, § : Q x X — 29%Y ig the combined transition
(Q,X,Y,6,)), where @ is the finite nonempty set of states, X is the input alphabet,
Y is the output alphabet, 6 : Q x X — @ is the transition function,and A : Q x X —
Y is the outpul function. A deterministic finite Mealy automaton is just the special
case of a nondeterministic finite Mealy automaton in which there is only one next

state and only one output for each present state and input pair.

In order to perform rigorous analysis for RAM testing and diagnosis, we need a

formal mathematical framework on which the analysis can be based. Brzozowski and

Jiirgensen developed a mathematical model for general sequential circuit testing and
diagnosis using deterministic Mealy automata [6]. By noting that memories are a
specific family of sequential circuit, Brzozowski and Cockburn [5] adapted this model
to a formal methodology for RAM testing and diagnosis. In this methodology, which

we now describe, the behaviour of both good and faulty memories is represented

25

unambiguously using finite automata.

A binary value is either 0 or 1. The complement of 0 is 1, and of 1 is 0. The
complement of a binary value b € {0,1} is denoted by b. Formally, a memory is a
one binary value which can be evaluated and changed when necessary. We use
s to denote a read operation for which the expected value of is b, r' to denote
a read operation applied to cell i, and use r} to denote that the expected value
ofarisbe {0,1}). Similarly, we use w, to denote the operation of writing the
value b, w' to denote a write operation applied to cell i, and use w} to denote
the operation of writing b to cell i. The contents of a cell i is denoted by ¢', where
0 < i < n—-1. A good memoryofsize n > 1is a deterministic Mealy automaton Mp =
(Qo, X, Yo, 60, Ao), where Qo = {0,1}" is the set of memory states, X = {rf, w}, w] |
0 < ¢ < n -1} is the input alphabet corresponding to all possible “operations”
that can be performed on the memory, Y = {0,1,#]} is the output alphabet, and
b0:@xX —=Qand Ao:Q x X — Y are the “good” transition and “good” output
functions, respectively, which are defined in Table 4.1. (Note that, in the table, we
represent an arbitrary memory state ¢ € Qo using the notation [c%,...,c""!], where
%,...,c"1 denote the contents of cells 0,...,n = 1, respectively.) The value # is a
convenient place-holding symbol used to denote the null output produced by a write
operation. Note that the initial state of a memory is left unspecified; this reflects
our assumption that each cell can power up containing randomly either 0 or 1.

By a faulty memory, we mean a memory that has different logic behaviour from

that of a good memory. We assume that all faulty memories can be represented

26

Table 4.1: Transition and Output Functions for M,

Input, Next State, Output,

. folg)_ ola,?)_

[, L e L e ¢

wy [c9...,¢"1,0,6, ..., ™) #

w} [%...,c=1, 1,2, ..., ™Y #

as nondeterministic Mealy automata. A faulty memory or faull of size n > 1is a
deterministic Mealy automaton M; = (Q,, X, Y;, 6;, A;), where @, C Qo and Y; C Y5.
Both My and M; have the same input alphabet X. However, the Q;,Y;,6;, and A;
could be different from Qo, Yo, bp, and Ao, respectively.

To better understand the definitions, we now provide two examples that specify,
using finite automata, the behaviours of a pair of cells in both good and faulty
memories.

Let Mo = (Qo, X, Yo, 60, Ao) be a deterministic Mealy automaton that describes
the behaviour of a pair (i, k) of memory cells in a good memory. We use a transition
diagram as shown in Fig 4.1, instead of the formal description in Table 4.1, to de-

scribe the transition function of My. Transition diagrams are often more convenient
to use when describing memory cell behaviour. In Chapter 5, when we describe
faults in DRAMs, we will also use transition diagrams to describe the transition
functions.

The pair of numbers in each circle of the diagram represents the states of cells i

and k. For example, “[0,0)” (which we will abbreviate 00) in the upper-left circle

27

rrbwgwd rhorfw g

Figure 4.1: The transition diagram of a good memory M,.

indicates that both cells i and k contain logic 0. Here Qo = {00,01,10,11} is the
set of all four possible joint states of the two cells. Since the only operations that
can be applied to a memory are read and write operations, the input alphabet
is X = {w,wi,w),w),r’,ri}. The output alphabet is still Yo = {0,1,#}. The
transition function is implied by the transition diagram in Fig 4.1. For example,
if cells ¢ and k are in state “00” and a read operation is applied to cell i (r'), the
state of cell ¢ remains 0 and hence the joint states of cells ¢ and k will remain “00".
If cells i and k are in joint state “00” and a 1 is written to cell i (w}), then the
joint state of cell ¢ will be changed to 1 and hence the state of cells i and k will be
changed to “10”.

Let M, = (Q,,X,Y,,6,,)A,) denote the deterministic Mealy automaton that
describes the behaviour of a pair (i, k) of memory cells in a faulty memory in which
cell i is stuck-at-0. Since cell i has only one state, Q, = {00,01} has only two

possible states instead of four. The input and output alphabets of M,, however, are

28

the same as M. The transition function for this fault is depicted by the transition
diagram in Fig. 4.2. Since there is a fault in the memory, the transition diagram of
M, is different from that of My. For example, if cells ¢ and j are in state “00” and
a 1 is written to cell 4, then the states of cells i and k will not be changed because
cell i cannot be changed to 1. The output function A, for this fault is the same as

Ao over the restricted domain @, x X.

4.3 Testing Terminology

We give basic definitions for testing terms using the methodology described in the
preceding section. Similar definitions of testing terminology have appeared in other
references [33, 10, 13].

A physical defect is a deviation beyond the specified physical structure or compo-
sition of a device. A physical defect can be introduced during the manufacturing pro-
cess by inappropriate operations such as dust particle contamination, over-etching,
and mask misalignments. We assume that the erroneous behaviour of memories con-
taining one or more physical defects can be specified mathematically using faults.
Cell 1 is said to have an error if there exists no initialization (Mp, ¢) of a good mem-
ory, where g € @, such that cell i contains b € {0,1} after a sequence of operations
has been applied.

An erroneous transition is a transition from a state ¢ € @; under an input z € X
to a state other than 6p(g, z), that is, a transition that differs from the corresponding

transition in the good memory. For example in Fig. 4.2, applying an operation w} to

29

state 00, the resulting state is still 00. In a good memory, applying an operation w}
to state 00, causes a transition to 10. Thus, the transition in the fault is erroneous.
If an output of M;, Ai(g,z), is different from the output of Mp, Ao(q.z), then the
output of M; is said to be an erroneous output. A nonirivial faull is a fault that
contains at least one erroneous transition. For convenience, we will sometimes refer
to a fault type by which we mean a class of faults that share similar definitions. An
example of a fault type is the set of all 2n possible single stuck-at faults affecting
cells 0,---,» = 1. The simultaneous presence of two or more faults in a memory
is called a multiple fault. For example, if we assume that both cells i and k are

stuck-at-0, then we have a multiple fault. Let [g]; denote the content of cell i in

least one test which causes an error to arise in cell i. A test t locates a faulty cell i
in a memory My if A;(g,7') is an erroneous output, where ¢ € Q. A faulty cell
address is the address of a cell with an error,

In dynamic RAMs, a boolean signal is stored as a charge on a small capacitor.
As we described in Chapter 2, the act of reading the logical value stored in a cell
destroys the charge. To avoid data loss, read operations must be followed by write
operations that restore the original data. Usually, the restore operation is performed
automatically by the DRAM. The write operation that automatically follows a read
operation is called a write-back cycle. For some types of faulty memories, it is possi-
state transition. A state in a transition diagram is said to be stable if no read op-

eration can cause further transitions from this state. Otherwise, the state is said

30

to be unstable. Clearly all states in a good memory must be stable. Examples of
stable and unstable states will be given in Chapter 5.

A fault model is a set of faults that represents all of the expected faulty be-
haviours. Let My = (Qo, X, Yo,80, Ao) be a good memory. A fault model for My
is a finite family Fp, = {M; = (Q;, X,Y;, 6, A)|i € I} of faults of My, where
I€{1,2,3,4,..}). Note that a fault model may contain multiple faults if it is conve-
nient. For example, it is common to use multiple faults to represent the behaviour
of memories containing multiple defects.

A boolean test, or simply a test, is a sequence t € X* composed of read and write
operations. An initialization (M,q) of a memory M is a copy of M started in state
g € Q. The response p(M,q) of an initialization (M,q) to a test t = z1-:-z, is
the sequence y, - - -y, of outputs produced when t is applied to (M, q). Two faults
M and M’ are said to be equivalent if, for all initial states p,q € Q, if (M, p) and
(M’,g) have the same response for all tests t € X*. It follows that no boolean test
can be used to distinguish between two equivalent faults. Let F’ denote a fault model
obtained from fault model F by including one fault from each fault equivalence class.
A fault model, such as F/, that contains no equivalent faults is called irredundant.
A test t decides between (Mp, q) and (M, p), where M is a fault of Mg and ¢,p € Q,
if p(My,q) differs fmm p(M,p). A test t delects a fault M if t decides between
(Mo, q) and (M, p), for all initial states q,p € Q. For example, consider the fault
M, whose transition diagram is illustrated in Fig. 4.2. We assume, for simplicity,
that the memory under test is only composed of two cells. Therefore, the cells i

and k in Fig. 4.2 correspond to cell 0 and 1, respectively. Assume that we have

31

a test t = wywPrlr], and two initial states ¢ = [0,0) and p = [0,1]. Then, the
responses of a good memory Mo and a faulty memory M, to t are p(Mo,q) = ##11
and p(M,,p) = #4401, respectively. Note that the two responses are different.
Therefore, t decides between (Mp,q) and (M,,p). Note also that no matter what
initial states that Mg and M, start with, their responses to t are #4#11 and ##01,
respectively. Therefore, test t detects M,. If a fault cannot be detected by any
boolean test, then the fault is said to be unclean.

I DC {0,...,n—1} denotes a set of cell addresses, then we shall write Sp C F to
denote the set of all (single or multiple) faults whose sets of faulty cell addresses are
exactly D. Any irredundant finite fault model F can be partitioned into a finite set
of classes Sp,,...,Sp,, where Dy,..., D, are distinct sets of faulty cell addresses.
Given a set Sp of faults and a test t, we shall write R(Sp) to denote the set of all
possible responses of faults in Sp to t, for all possible initial states.

Consider a fault model F = Sp, U ---U Sp,, where Sp,,...,Sp, are disjoint
classes corresponding to the distinct sets Dy,..., D, of faulty cell addresses. A test
t is said to locate the faulty cells of an unknown fault M € F if there exists exactly
one set Sp, such that, for all initial states ¢ € @, the response of (M, g) to t appears
in R(Sp;) and does not appear in any other R(Sp,), for j € {1,...,v} = {i}. A test
t is said to locate the faulty cells of a fault model F if t locates the faulty cells of M,
for all M € F.

Consider a set Sp, of faults that share the same set D; of faulty cell ad-

32

cells caused by fault components of the same fault type. Any set Sp, can therefore

faulty cell addresses for each fault type.

Consider a fault model F = §§ U --.U S}, where 5i,..., 5/, are disjoint classes
each fault type. A test t is said to locate the fault types of a fault M if there exists
exactly one set S! such that, for all initial states ¢ € Q, the response of (M,q) to t
appears in R(S!) and does not appear in any other R(S}), for j € {1,...,v} = {i}.
A test t is said to locale the faull types of a fault model F if t locates the fault types
of M, for all M € F. It follows from the preceding definitions that any test that
locates the fault types of M (F) must also locate the faulty cells of M (F).

Fault detection, faulty cell location and fault type location are key problems
studied in this thesis. To better understand the definitions of these problems, we
present the following example.

Figure 4.3 illustrates a memory with eight faulty cells A, B, C, D, E, F, G, and
H. Among them, cells A and B, and C and D are involved in two different faults
of the same fault type My; cells E and F, G, and H are involved in three different
faults of different fault types Mm, M,, and M,, respectively.

For the faulty memory shown in Fig. 4.3, by fault detection we mean that a test
t must detect at least one of the faulty cells A, B, C, D, E, F, G, and H. In other
words, any such test t determines whether the memory under test is good or faulty.
By faulty cell location we mean that a test t must detect all of the faulty cells A, B,

C,D,E, F, G, and H. By fault type location we mean that a test t must not only

33

detect all of A, B, C, D, E, F, G, and H, but also separate the faulty cells into the
different fault types, i.e., the set of faulty cells must be divided into four different
subsets {A, B, C, D}, {E, F}, {G}, and {H}. By fault diagnosis, which we will not
define formally, we mean that the test t determines the five subsets {A,B}, {C,D},
{E,F}, {G}, and {H}.

An ascending (descending) march element is a finite sequence s € {rg, ry, wp, wy}*
of operations repeated to each memory cell, in ascending (descending) address or-
der. In this thesis we will use the notation {} (8) ({ (8)) to denote an ascending
(descending) march element, where s € {rg, 7y, wp, w;}*. For example, f (rouy) =
rQwfriw] .- -r3~1wP? and §(wo) = wi~ w2 ... wd are ascending and descending
march elements, respectively, where n is the size of a memory. Naturally, § (s)
denotes a march element that can be either descending or ascending. A march test
is a test that is composed of a series of zero or more ascending or descending march
elements. For example, § (wo) f+ (row1) { (71) is a march test that contains three

march elements.

34

r{{!"ﬁi‘i’é !w%]iwii fé.rf.({;wfgwf

Figure 4.2: The transition diagram of a faulty memory M,.

a fauh of type M, a fault of type M

a fault of type M;

e~ & fault of type Mg

a fault of type M,

~

Figure 4.3: A faulty memory

Chapter 5

A Realistic DRAM Fault

Model

Many of the fault models that have appeared in the literature appear to have been
proposed without analyzing the manufacturing defects that actually occur in RAM
chips [33]. As a result, those fault models may not be able to accurately repre-
sent the failure mechanisms that occur in real RAMs. With the increasing density
of RAM chips and the use of new manufacturing technologies, new types of de-
transition, coupling, and pattern sensitive fault models [33]) are inadequate for de-
scribing the faulty behaviours of some defects. Therefore, new fault models and new
methodologies for developing accurate fault models are needed.

Defect-oriented analysis is a recently proposed way of developing realistic fault

models [9, 16, 28]. Usually, systematic manual or automated procedures are used

36

to predict and analyze all possible defects likely to occur in a RAM chip, and then
the behaviour of each defect is modelled as a functional fault. A fault model is
obtained by including all of the functional faults that are derived from the defects.
Fault models developed in this way have been shown to be realistic and hence more
accurate than traditional ones {21]. Two major methods of defect-oriented analysis
are inductive fault analysis (IFA), in which the defects are predicted from simulation,
and physical defect analysis where the defects are determined from actual failed
devices.

Oberle et al. used IFA to develop a fault model that they found to be an ac-
curate description of the faulty behaviours observed in real DRAMs [21]. The cell
arrangement in this particular DRAM was depicted in Fig. 2.2. In [21], the faulty
behaviours observed in the DRAMs were described informally and are not suitable
for rigorous analysis. For example, it is difficult to derive lower bounds and prove
fault coverage. In this chapter, by using the mathematical methodology introduced
in Chapter 4, we introduce a slightly generalized formal fault model for the same
DRAM.

Eleven physical defects were reported by Oberle et al. [21] to be the most
frequently occurring defects in a Siemens 4M x1 DRAM. The defects fall into two
categories: those that create stuck bits and those that create more complex faults.
The defects are listed in Table 5.1.

In the following sections, we model the functional behaviours of those defects
using the methodology introduced in Chapter 4. We assume that refresh operations

may be triggered to any particular cell(s) whenever any other cell is accessed. In

37

Table 5.1: Categories of Defects

Defects resulting in stuck bits:
¢ a short from a word line to a cell capacitor
e a short from a bit line to a cell capacitor
¢ interrupted word lines
¢ no connection between a bit line and a cell
¢ no connection between a word line and a transfer transistor
¢ excessive leakage current across a cell capacitor

Defects resulting in more complex behaviour:

¢ a short between adjacent bit lines
¢ a short between a word line and a bit line
o the capacitors of two adjacent cells are shorted together

e interrupted bit lines

the case of a faulty DRAM, it is possible for refresh operations to induce new errors
or to mask existing errors. Therefore, we have to consider the effects of refresh

operations when modelling the functional behaviours of the defects.

5.1 Stuck Bits

Stuck bits, including single and multiple stuck bits, can be modelled formally as
single and multiple stuck-at faults, respectively. A single stuck-at-b fault affecting

cell i, where b € {0,1} and 0 < i < n ~ 1, is defined to be a deterministic Mealy

38

automaton of the form My, = (Qu, X,Y, 6y, A), where Qi = {g € {0,1}" | [g]; = b}
and é;, is identical to p on the restricted domain except for erroneous transitions
of the form:

bip(wh, [0 ... e=N, b, e,) = [0, 6 b, e L e

gle stuck-at fault and a single or multiple stuck-at fault. Let M”, M’, and M
denote a multiple stuck-at fault, a single or multiple stuck-at fault, andfa. sin-
gle stuck-at fault affecting cell i, respectively. Assume that M’ = (Q’, X,Y, 8,)).
Then M” is defined as M" = M’ o My, provided Q' N Q;p # {}, such that Q" =
Q' N Qip and 6" is derived from & on the restricted domain such that if §'(g,q) =
[€%...,e"1, ¢, c*L, ..., e, then 6”(g,q) = [°,...,c""1,b,ci*), ..., c""1], for all
g€ Xandge Q.

5.2 Interconnected Cells

A defect in the mask for field oxidation may cause the absence of lateral isolation
between two or more cells, in which case those cells are erroneously interconnected.
In practice, only physically adjacent cells are likely to be interconnected. However,
to know which cells are physically adjacent, we need detailed knowledge of the
chip layout. In this generalized DRAM fault model, we assume that such detailed
knowledge of the chip layout is not available. Therefore, we generalize and permit
any two cells in the DRAM to be shorted together.

The effect of a pair of interconnected cells is that, when one of the two inter-

39

Interconnected cells, same encoding.

Figure 5.1: Transition diagram for a fault M, of type T (n = 2).

connected cells is addressed for a write operation, the same physical voltage level,
either high (H) or low (L), is written into both cells.

Note that if a H is stored in a DRAM cell, it does not necessarily mean that a
logic 1 is stored. The same situation is true for a L. The corresponding logic value
of a H (L) in a particular cell is determined by the encoding scheme that the cell is
using. In the Siemens DRAM, two encoding schemes are used in the same device,
namely positive and negative encodings. The cells whose bit lines are connected to
the “+” (“-") terminals of the sense-amplifiers use positive (negative) encoding. By
posilive encoding, we mean that a physical H represents a logic 1 and a physical L
represents a logic 0. By negative encoding, we mean that a H represents a 0 and a
L represents a 1.

Let cells ¢ and k denote the addresses of two interconnected cells, where ¢ < k.

If the two cells use the same encoding scheme, then writing a logic value to one

40

rhrboni g

Interconnected cells, different encoding.

Figure 5.2: Transition diagram for a fault M; of type T3 (n = 2).

cell will cause the same logic value to be written into the other cell; otherwise, if

the two cells are using different encoding schemes, then writing a logic value to one

cell will cause the opposite logic value to be written into the other cell. Therefore,
two possible types of faults, namely T} and T3, can be induced by the same kind of
physical defect. They can be formally defined as follows:

Type T. (cells i and k use the same encoding) The behaviour of the fault, in which
only cells i and k are involved, is given by a deterministic Mealy automaton
of the form M; = (@1, X,Y,é;,7), where @ = {g € {0,1}" | [¢); = [q];} and
all transitions in &, are identical to the corresponding transitions in &y except

for erroneous transitions of the form:

&(zy[c% ..., =1, b, L. FL, B, ek L L ™)

(0 i~1 7 4 - k+1 n-1
(..., Y, e *, L F L b, 4L e,

where z € {w}, wf} and b € {0,1}. Figure 5.1 gives the transition diagram

41

for M;. Note that states {0, 1] and [1, 0] have been omitted from the diagram
because once the memory is powered up, the two cells must contain the same
value. According to the transition diagram, any read operations cannot cause
states [0,0] and [1,1] to make further transitions. Therefore, both states are

stable states.

Type T,. (cells ¢ and k use different encodings) The behaviour of the fault, in which
only cells i and k are involved, is given by a deterministic Mealy automaton
of the form M; = (Q2, X,Y, 63, 1), where Q2 = {g € {0,1}" | [q); # [¢];} and
all transitions in 6, are identical to the corresponding transitions in ép except

for erroneous transitions of the form:

, . _ »
ba(wh, [0 ... 60, e L b, L Y] =

0 -1 p i k=1 T k+1 -1
[%...,¢ 71 b, e, L b, L e,

where z € {w},wf} and b € {0,1}. Figure 5.2 gives the transition diagram
for M,. Note that states [0,0] and [1,1] have been omitted because once the
memory is powered up, the two cells must contain different values. According
to the transition diagram, any read operations will not cause states [1,0] and

[0,1] to make further transitions. Therefore, these are stable states.

5.3 Shorts Between Word Lines

Additional or missing metal can cause two word lines to be shorted together. In
practice, only physically adjacent word lines are likely to be shorted together. The

effect of this physical defect is that writing to a cell along one of the word lines will

42

cause that one cell and another cell along the other affected word line to be written.
Let cells ¢ and k denote two cells that are connected to the two shorted word lines,
respectively. In the Siemens DRAM cell array layout shown in Fig. 2.2, we note that
the cells that are along two adjacent word lines can either use the same encoding,
like the cells along word lines W L0 and W L3, or use different encodings, like the

cells along word lines W.L0 and WL1.

It is easier for L signals to pass through the n-channel of MOS transistors than
for H signals [35]. It is therefore possible for the resistance of the short between
the two word lines to be high enough to stop the transfer of H signals through the
transistor (but not affect the transfer of L signals), so that writing a H signal to a
cell along one word line will not affect the second cell along the other word line.

Considering all possible combinations of encoding scheme and short resistance,
there are five types of faults, namely T3, Ty, Ts, Ts, and T, that can be created by
the physical defect. The transition diagrams in Figs. 5.3-5.7 define the functional
behaviours of faults of types T, ..., T7 by only considering how ¢/ and ¢* respond
to operations addressed to cells i and k. However, a real fault that is induced by
a short between word lines defect contains all of the cells along the two shorted
word lines. For example, in the Siemens DRAM, 2048 cells are affected by a word
line to word line short. Therefore, we must represent a single inter-word line short
defect as a multiple fault that is composed of a certain number of single faults. For
example, a low resistance inter-word line short is composed of 1024 instances of
faults of type T3. These multiple faults operate together in parallel so that if one

cell in one component is addressed for a read or write operation, all of the other

43

faults receive read operations (to simulate the automatic write-back mechanism).

The behaviours of the five types of faults can be specified formally as follows:

Type T3.(low short resistance; cells use the same or different encodings) Since either
H or L signals can be easily transferred as a result of a low resistance short,
whenever a physical level is written to either cell, the corresponding physical
level will be written to the other cell. If both cells i and & use the same encod-
ing, then writing a H(L) to cell i (k) will cause a H(L) to be written to cell k
(#). That is, writing a logic value b, where b € {0, 1}, to cell i (k), causes a b
to be written to cell k (i). If cells i and k use different encodings, then writing
a H(L) to cell i (k) will cause a L(H) to be written to cell k¥ ({). Note that
since different encodings are being used by cells i and k, writing a logic value
b, where b € {0,1}, to cell i (k), will still cause a b to be written to cell k ().
As before, a fau’it, M3 of type T3 can be formally defined as a finite nonde-
terministic automata. However, since the functional behaviour of a fault is
specified adequately using a transition diagram only, we omit formal defini-
tions in terms of alphabets and transition functions. The transition diagram
of M3 is depicted in Fig. 5.3.

It is possible, as shown in the figure, for ¢’ and c* to have different values after
or k, the values stored in cells i and k must become the same and will never
be different during the remaining period that the memory is on. Therefore,

after the first operation to cells i or k, M3 and M; have the same functional

44

i orfwiwt

e ok
!'i-!'f:ﬁ'gél’j

Low resistance inter-word line short.

All possible encodings for cells ¢ and k.

Figure 5.3: Transition diagram for a fault M3 of type T3 (n = 2).

behaviours. According to the transition diagram, any refresh operations will

not cause states [0,0] and [1,1] to make further transitions. Therefore, these

automata due to nondeterministic transitions exiting states 01 and 10; these
transitions reflect the uncertainty as to how the sense-amplifiers will interpret

slightly corrupted bit line signals.

Type Ty.(high short resistance; both cells use positive encoding) When a L is writ-
ten to either cell, the other cell will be loaded with a L too. However, since

H signals can not pass through the weakly activated channel of a transistor

well, when a H is written to one of the two cells, the other one will not be

High resistance inter-word line short.
Encoding forcell i: 0 «+ L and 1 ~ H;

Encoding for cell k: 0 «» L and 1 — H.

Figure 5.4: Transition diagram for a fault M4 of type 7 (n = 2).
affected. Note that positive encoding is used by both cells. The behaviour of
Mj is depicted in Fig. 5.4. States [0,0] and [1,1] are stable states. Reading
cell £ will change the state from [1,0] to [0,0] and reading cell { will change
state [0,1] to [0,0). Thus states [1,0] and [0,1) are unstable. Note that a fault

M of type Ty is a nondeterministic Mealy automaton,

Type Ts.(high short resistance; both cells use negative encoding) Figure 5.5 depicts
the transition diagram of a fault M5 of type Ts. It is interesting to note that
by interchanging 0's and 1’s in Fig. 5.4, we can obtain Fig. 5.5. Once again
states [0,0] and [1,1] are stable and states [1,0) and [0,1] are unstable. Note

that a fault M; of type T is a nondeterministic Mealy automaton.
Type Te.(high short resistance; different encodings, cell i uses positive encoding

46

whrhwiwd 7 rdwd
y
o
o w‘ " a Py |
rgwé Ut

High resistance inter-word line short.
Encoding for cell i: 0 & H and 1 ~ L;

Encoding for cell k: 0 & H and 1 ~ L.

Figure 5.5: Transition diagram for a fault My of type T5 (n = 2).
and cell k uses negative encoding)
When either cell is loaded with a H, the other cell is simultaneously loaded
with a L; however, when one of the cells is loaded with a L, the other cell is
not affected. The behaviour of a fault Mg of type Tg is depicted in Fig. 5.6.
All of the possible states, except [1,0], are stable. However, after any first

operation is applied to either cell, state [1,0] will never be re-entered.

Type T7.(high short resistance; different encodings, cell i uses negative encoding
and cell k uses positive encoding)
Figure 5.7 depicts the transition diagram of a fault My of type T7. It is
interesting to note that by interchanging 0’s and 1’s in Fig. 5.6, we can obtain

Fig. 5.7. All of the possible states, except [0,1], are stable. However, after any

47

rfrdwiwd résrf, wgw |

High resistance inter-word line short,
Encoding forcell : 0 = Land 1 « H;

Encoding for cell k: 0 —» H and 1 = L,

first operation is applied to the memory, state [0,1] will never be re-entered.

5.4 Shorts Between Bit Lines

Due to a structuring defect similar to the one that induces shorts between word
lines, two bit lines can be shorted together. In practice, only adjacent bit lines are
likely to be shorted together. The two cells at the intersection of a word line and
the two bit lines are affected by faulty behaviour. Referring back to the cell array

layout in Fig. 2.2, we have two types of shorts to consider:

Case 1. (The shorted bit lines are connected to the same sense-amplifier.)
Assume that cell i is connected to one of the two shorted bit lines. During a
write operation to cell i, either a full-strength or a reduced-strength voltage

48

ol b f) i pkgd sk
rhrgw v rirtowlwf

High resistance inter-word line short.
Encoding for cell i: 0 « H and 1 — L;

Encoding for cell k: 0 ~ Land 1 «~ H.

Figure 5.7: Transition diagram for a fault My of type T7 (n = 2).
signal will be written to cell i depending on the relative positions of cell ¢,
the short, and the sense-amplifier. During a read operation, the short will
further reduce the already weak voltage signal stored in cell i. As a result, the
output of a read operation to cell i is likely to produce a weak voltage signal.
Therefore, this fault will be classified as untestable because it is not reliably

detected by a boolean test.
Case 2. (The shorted bit lines are connected to different sense-amplifiers.)

either the data for the two cells will correspond to opposite physical levels, or
the data will correspond to the same physical level. In the first sub-case, as

in Case 1, weak signals may result, so the fault is not testable. In the second

49

sub-case, no faulty behaviour is observed, so again the fault is untestable.

As a consequence of Case 1 and 2, the fault that is induced by the shorts between

bit lines is unclean. Therefore, this fault will not be included in the fault model.

5.5 Shorts Between Word and Bit Lines

Due to a structuring defect, it is possible for a word line and a bit line to be shorted
together. Let BL and BL denote a pair of bit lines that are connected to the same
sense-amplifier. Under this defect, during a read operation that is applied té any
cell along BL or BL, the enable or disable signal on the shorted word line will be
transferred to BL or BL. Since the enable or disable signal is much stronger than
the voltage stored in the cell to be read, the latter one will be overridden. The
resulting behaviours of those cells along BL and BT are the same as for stuck-at
faults. Depending on whether the bit line is connected to “+" or “-" terminals, the
stuck-at bit can be either stuck-at-1 or stuck-at-0 bit. The fault that is induced by
the physical defect is therefore equivalent to a multiple stuck-at fault affecting all

cells on the shorted bit line.

5.6 Interrupted Bit Lines

If a bit line contains a break somewhere between the sense-amplifier and the precharge
circuitry, then one bit line of a bit line pair can no longer be precharged to midlevel
M. That means that the voltage level from the last write or refresh operation re-

mains on the bit line due to the significant capacitance of the bit line, As a result,

50

the next read operation to any cell along the bit line pair will sense this voltage
level instead of the voltage level stored in the cell. The functional behaviour of this
fault is that following the first operation, all of the cells that are along the bit line
pair appear to be connected together logically, much like multiple interconnected

cells with the same encoding. This fault can be formally defined as follows: Let

bit lines. We define a single interrupted bit line fault involving cells i,,...,i, to be
a fault of the form Mg = (@, X,Y, g, Ag). Erroneous transitions due to write oper-
ations have the form ég(w,q) = ¢, for all g € Q, where [¢); = bif j € {ir,... 00},
and [¢]; = [g]; otherwise. (Note that some nonerroneous transitions will also have
this form.) Erroneous transitions and erroneous outputs are produced nondeter-
ministically from some initial states; the nondeterminism models the random sig-
Qs = {g € {0,1}" | [g};, = -+ = [g];,} to be the set of states in which all cells on
the two affected bit lines, namely cells iy, -, 4., contain the same logical value. For
all states g € (@ ~ Qs), 8s(r,q) € {1,492}, where g1, g2 € Qs such that [¢]; = b and
lg2); = bif j € {iry... 45}, and [@1]; = [a2]; = [q); otherwise. The corresponding
erroneous outputs are Ag(r?,q) = b when 83(r7,q) = ¢, and Ag(r?,q) = b when
8s(r, q) = ga. We define fault type Ts to be the set of all faults of the same form as

Ms.

51

5.7 Fault Model Overview

In this chapter we described a realistic DRAM fault model that assumes that a finite

number of unlinked instances of the following faults can occur simultaneously in the

memory:

Stuck Bits: A single or multiple stuck-at fault.

Interconnected Cells: A fault of type Ty or T3.

Inter-Word Line Short: A multiple fault equal to the appropriate composition of m
faults of the same type T € {T3,...,T7}, where m is the number of cells that

are along one word line (in the Siemens DRAM, m = 1024).
Word Line to Bit Line Short: A multiple stuck-at fault.

Interrupted Bit Line: A fault of type Ts.

This new fault model differs substantially from traditional fault models that
contained stuck-at faults, coupling faults, transition faults, and pattern sensitive

faults.

52

Chapter 6

Fault Detection

Fault detection, faulty cell location, fault type location and fault diagnosis form a
hierarchy of increasingly difficult memory testing problems. Fault detection is the
easiest problem in the hierarchy while fault diagnosis is the most difficult problem.
The more difficult the problem, the more information that must be obtained about
the faults in the memory (at the cost of increased test length). If memory repair and
manufacturing-process analysis are not of concern, then fault detection probably is
the appropriate test level to use.

6.1 Lower Bound Results

deeper insight into the problem being studied. A tight lower bound is also a good
criterion for judging the efficiency of an algorithm. In this section, we derive two

lower bounds on the length of any march test and any test of unrestricted structure

53

that accomplish fault detection for the DRAM fault model, respectively. The effect

of refresh operations must of course be considered.

Proposition 6.1 If the first operation to a cell i is a read operation, then that

operation can be deleted with no loss in detection.

Proof: After the memory is powered up, cell i can contain either a 1 or a 0. Note
that the tester cannot adapt the test by storing any logic value read earlier on from
the memory under test and then comparing it with values read later. Therefore, the
first read operation does not help to detect any fault in the memory and can thus

be safely deleted. O

Corollary 8.1 Proposition 6.1 implies that in our lower bound derivation the first

operation to each cell can be assumed to be a write operation.

Proposition 8.2 If a test t detects all possible stuck-at faults, then t must contain

at least one of the subsequences riwiri or riwirl, for all n addresses i.

Proof: To detect a stuck-at-1 fault at cell i, a r§ must be included in t. Similarly,
a r{ must be included in t in order to detect a stuck-at-0 fault at cell i. Therefore,
to detect both stuck-at faults at cell i, t must contain one of the subsequences rir}
or rirf. According to the definition of a good memory, at least one write operation
must be inserted between the two required read operations to change the content of

cell i. Thus the proposition is proved. O

54

Let a' denote the number of operations applied to cell i in t. Then we have the

following proposition.

Proposition 6.3 If a test t detects all single stuck-at faults, then t must contain

all four of wi, wi,r§ and r} and hence a* > 4, for0<i<n -1,

Proof: Follows from Corollary 6.1 and Proposition 6.2. O

According to Proposition 6.3, we have obtained a lower bound of 4n. However,
since we have only considered stuck-at faults, it may be possible to increase the
lower bound by including some other faults. In the following, we improve the lower
bound by focusing on the increased difficulty for a test to also detect single faults
Mg and M7 of types Tg and T, respectively. Except for state [1,0] in Mg and [0,1] in
M3, all of the other states in the transition diagrams of Mg and M7 are stable states.
Note that [1,0) of Mg and [0,1] of M7 cannot be re-entered after the first operation
has been applied to either cells i or k. Thus no subsequent refresh operations can

change the state of Mg and M;. Therefore, we need not consider the effect of refresh

operations when deriving the lower bound.

6.1.1 A Lower Bound for March Tests

Proposition 8.4 If there ezist two cells i and k such that &' = a* = 4 in a given
march test t, then t cannot detect separate single instances of Mg and M7 involving

only cells i and k.

o
o

Proof: Assume that there exists a test t that detects single instances of faults Mg
and M, and that @' = aF = 4, According to Proposition 6.3, if t is to detect
stuck-at faults, then the four operations wj, w}, w§, and wf must all be included in
t. Consider the subsequence s of t containing all the write operations to cells i and
k. Without loss of generality, assume that the first write operation to cell i occurs

before the first write operation to cell k. Given that t is a march test, we have the

Case 1. (8 = whwiwhwk)
Refer to the transition diagrams of Mg and M7 in Figs. 4.1 and 5.7. After the
w} is applied, M7 must be in state [0,0]; Mo, however, could be in either [0,0]
or [0,1]. After the w} is applied, M7 must be in state (1,0); My, however, could
Finally, the w§ causes both M7 and Mj to enter state [1,1). An error is never
created in M7, so the test cannot detect the fault,

Case 2. (8 = whwlwjw?)

Similar to Case 1.

Case 3. (8 = whwlwiwl)
Refer to the transition diagrams of My and Mg in Figs. 4.1 and 5.6. After the
w}) is applied, both Mg and My can be in states [0,0] or [0,1]. After the w} is
applied, both Mg and Mg must be in state [0,0]. The wf causes both Mg and
My to enter state [0,1]. Finally, the w{ causes both Mg and My to enter state

[1,1). An error is never created in Mg, 80 the test cannot detect the fault.

56

Case 4. (s = wjuvhwiuwf)
Refer to the transition diagrams of My and Mg in Figs. 4.1 and 5.6. After the
w} is applied, Mg must be in state [1,1]; Mo, however, could be in either [1,0]
or [1,1]. After the w}, is applied, Mg must be in state [0,1]; Mo, however, could
be in either [0,0] or [0,1). The w} causes both Mg and Mo to enter state [0,1].

created in Mg, so the test cannot detect the fault,

Case 5. (8 = wjwfwhwf)
Similar to Case 4.

Case 6. (s = wjwiwfw))
Refer to the transition diagrams of My and My in Figs. 4.1 and 5.7. After the
v} is applied, both My and Mo can be in states [1,0] or [1,1). After the w} is
applied, both M7 and My must be in state [1,1). The wf causes both M7 and

Mo to enter state [1,0]. Finally, the wj causes both M7 and Mp to enter state

All of the above six cases lead to contradictions with the assumption. Therefore,

the proposition must be true. O

Proposition 6.5 If, for all interacting pairs of cells on two adjacent word lines
WLi and WLj, a test t does not detect the corresponding instance of the same one

Jault type T € {T3,...,Ty), then t does not detect all possible shorts between W Li

57

and WLj.

Proof: As described earlier, the short between two word lines can be defined as the
composition of faults of one particular type T' € {T3,...,77}. Note that any errors
only affect cells on W L:i and WLj. We can conclude that if no errors are detected
on any cells on WLi and WLj for a particular fault type T', then at least one type

of short between word lines WLi and WLj cannot be detected. O

From the above propositions, we now obtain the lower bound for march tests.

Theorem 6.1 Any march test t that detects the fault model has a length of at least
5n.

Proof: According to Proposition 6.3, if t detects all stuck-at faults in the fault
ther imply that t cannot detect all possible shorts between word lines if the test

only has a length of 4n. Hence the theorem is proved. O

6.1.2 A Lower Bound for Unrestricted Tests

Refer back to the proof of Proposition 6.4. If we do not restrict our consideration
to march tests when considering the subsequence s of t containing all of the write

operations to cells i and k that are required for detecting stuck-at faults, then there

are six more cases to consider, namely, 1) wiwi whwf, 2) wjwiwiw§, 3) whwfwiwi,

4) wiwjwhw}, 5) wiwfwiw}, and 6) wiwfwiwj.

58

Proposition 6.8 Cases 2), 8), 5), and 6) can detect separate single instances of

both Mg and My, cases 1) and 4), however, cannot.

Proof:

Case 1. (wwiwfwl)
Refer to the transition diagrams of Mp and M7 in Figs. 4.1 and 5.7. After the
w}, is applied, M7 must be in state [0,0]; Mo, however, could be in either [0,0]
or [0,1). After the w} is applied, M7 must be state [1,0); Mo, however, could
be in either [1,0] or [1,1]. The w¥ causes both M7 and My to enter state [1,1].
Finally, the w} causes both M7 and My to enter state [1,0). An error is never

created in M7, so the test cannot detect the fault.

Case 2. (whwhwiwf)
Refer to the transition diagrams of My, Mg, and My in Figs. 4.1, 5.6, and 5.7.

After the w} is applied, My must be in state [0,0]; Mg and Mo, however, could

Mg and Mp to enter [0,1]. Note that an error is created in M. Thus, My is
detected. After wi is applied, both Mg and Mp must be in state [1,1]. The
wk causes Mg to enter [0,0); however, causes My to enter [1,0). Note that an
error ir created in Mg. Thus, Mg is detected.

Case 3. (wiwiw§wi)
Similar to Case 2.

Case 4. (wiwhwlw})

59

Similar to Case 1.
Case 5. (wiw§wjw})

Similar to Case 2.
Case 6. (wiwiwfw))

Similar to Case 2,

(]

Proposition 6.6 implies that it is possible for a test to detect Mg and My in-
volving only cells ¢ and k when o' = a* = 4, However, as we show in the following

proposition, the other cells in the memory must then be accessed at least five times.

Proposition 6.7 If a test t detects both Mg and Mz for all pairs of cells and a =
a* = 4 for two particular distinct address i and k, thena’ 2 5 for all j € {0,...,n-

1} = {i, k}.

Proof: Assume that there exists a test t that detects both Mg and M7 such that
@' = a* = @’ = 4. Note that an instance of Mg or M7 may involve any pair of cells
among i, k, and j. Thus, in order to detect both Mg and M7 in the fault model, t
must be able to detect all possible pairs of cells among i, k, and j, i.e., pairs (¢, k),
(i,7), and (k,j). As specified in Proposition 6.6, there exist four forms of tests that
can detect both Mg and My involving cells i and k such that @' = a* = 4. Therefore,

we have four cases to consider:

60

Case 1. (wywfwiw§) Again, according to Proposition 6.6, four forms of tests can
detect both Mg and M; that involve cells i and j such that o' = o/ = 4.

Therefore, we have four subcases to consider:

Subcase 1.1. (whwiwiw)) Any test that detects both Mg and M-, involving

k..l

cells i and k, or i and j must be one of the forms whw}w]wjw§w),

whwiw]w wiw, wiwiwfe,vfw), or wiw]wfwiwjws. Note that none

of the four forms can detect both Mg and M7 involving cells k and j be-
cause the first write operations to cells k and j write the same value, and
this situation does not appear in any of the four allowed subsequences.
This leads to a contradiction.
Subcase 1.2, (whw]wjwi)
Similar to Subcase 1.1.
Subcase 1.8, (wiwjwiw])
Similar to Subcase 1.1.
Subcase 1.4. (wiwgw{wg)
Similar to Subcase 1.1,
Case 2. (wiwkwfw!)
Similar to Case 1.
Case 3. (wiwfwiwf)
Similar to Case 1.
Case 4. (wiwfwFw))

61

Similar to Case 1.

All of the four cases lead to a contradiction with the initial assumption. Thus,

the proposition is proved. O

We now prove the lower bound for unrestricted tests.

Theorem 6.2 Any test t that detects the DRAM fault model has a length of at least

5n—2-

Proof: Let i be the address of the cell with smallest value of a'. Proposition 6.3

implies that a' > 4. We therefore have the following two cases to consider:

Case 1. (a' = 4) Let k be the address of the cell which, apart from cell i, has the

Subcase 1.1. (a* = 4) Proposition 6.7 implies that a’ > 5 for any third cell j
such that j € {0,.--,n = 1} — {4, k}. Therefore, |t| >4+ 4+ 5(n—2) =
5n = 2.
Subcase 1.2. (a* > 5) Clearly, @’ 2 5 for all cells j € {0,---,n~ 1} = {i,k}.
Therefore, |t| 2 4+ 5(n ~ 1) = 5n - 1.
Case 2. (a' > 5) Clearly, a* > 5 for all cells k € {0,++,n — 1} — {i}. Therefore,

[t| = &n.

The lowest lower bound in all possible cases is 5n — 2. O

Addr | Seq A | SeqB
0 |w, row,
1 W, oW,
2 W, ToW,
n%l Wo | ToWi | TiWo
Figure 6.1: Specification for MARCH5N.
6.2 An Optimal March Test for Fault Detection

A march test, called MARCHS5N, that detects all of the faults in the fault model
is proposed. As sepcified in Fig. 6.1, MARCHS5N consists of three march elements,
which we will call e4,ep, and ec, respectively. All of the states in the transition
diagrams for M), M3, M3, Mg, and M7 are stable states (except for those states that
cannot be re-entered after the first operation has been applied). States [0,0] and
[1,1] in both My and Mj are also stable states. Therefore, we need not consider the

effect of refresh operations on those states.

Proposition 6.8 MARCH5N detects all single and multiple stuck-at faults.

Proof: For each cell i, ep contains a r§ operation and ec contains a r} operation.
Therefore, any stuck bit must be detected in either eg (stuck-at-1) or ec (stuck-at-

0). O

63

Corollary 6.2 MARCHS5N detects all single shorts between word lines and bit lines.

Proof: The claim follows because such shorts are equivalent to multiple stuck-at

faults, O

In the following proofs, we use i and k to denote two distinct cell addresses.

Proposition 8.9 MARCHS5N detects all single interconnected cell faults of type Ty

and T,.

Proof: Let cells { and k be the two cells involved in an arbitrary single intercon-
nected cell fault M. Let M be either a fault M; of type T, or a fault M; of type

T;. We have two cases to consider:

Case 1. (M = M) Refer to the transition diagrams in Figs. 5.1 and 4.1. After
e4 has been applied, both M; and My must be in state [0,0). The w} in eg
causes M; and Mp to enter states [1,1] and [1,0], respectively. The following

read operation, rf, to cell k will detect the fault.

Case 2. (M = M;) Refer to the transition diagrams in Figs. 5.2 and 4.1. After e,
has been applied, M; and My must be in states [1,0] and [0,0], respectively.

Thus next operation to cell i, the rf in ep, will detect the fault. O

64

Proof: Follows because an interrupted bit line fault is composed of a certain num-

ber of faults of type T}. O

Proposition 6.10 MARCHS5N detects all single shorts between word lines.

Proof: As described earlier, shorts between word lines are modelled as the compo-
sition of single faults of types T5,...,T7. Let cells { and k& be the two cells involved
in an arbitrary fault M € {Mj,..., My} of type T € {T3,...,T7}, respectively. If a
test can detect all single faults Ma,..., My of types Tj,...,T7, then we claim it will

detect shorts between word lines. We have five cases to consider:

Case 1. (M = Mj3) Refer to the transition diagrams in Figs. 5.3 and 4.1. After e4
has been applied, both M3 and Mp will be in state [0,0]. Note also that M3 is

equivalent to M, after e4. Thus M; is detected by the test.

Case 2. (M = M,) Refer to the transition diagrams in Figs. 5.4 and 4.1. After e,4
has been applied, both My and My must be in state [0,0]. The r{ in eg will
cause both My and M to enter state [1,0]. However, refresh operations to
cells ¢ and k can cause M, to make further transitions to states [1,1] or [0,0].
If M, was in state [1,1], then the following read operation to cell k, rf, will
detect the fault. If M4 was in state [0,0] or [1,0], the fault will not be detected
at this moment. The following read and write operations to cell k¥ will cause
M, to enter state [0,1]. Note again that refresh operations may cause state
[0,1] to change to [0,0] or [1,1]. At this moment, My, is in state [1,1]. If M, was

in states [0,0] or [0,1], the the fault is detected by the following read operation

65

Case

Case

Case

to cell 1, r{i in ec. Otherwise, the fault will not be detected at this time.
enter state [0,1). Note that [0,0] is a stable state. Therefore, the following

read operation to cell k, a rf, will detect the fault.

3. (M = Mjg) Refer to the transition diagrams in Figs. 5.5 and 4.1. After the
w} in e4 has been applied, both Ms and Mo can be in states (0,0] or [0,1].
However, the following refresh operations can cause the state of Mj to make a
further transition to state [1,1). Thus after the wg in @4, Ms will be in states
[0,0] or [1,0] while Mp must be in state [0,0]. Since the state [1,0) of M5 is
not stable, subsequent refresh operations will lead it to states [0,0] or [1,1]. If
Mj is in states [1,0] or [1,1], the following read operation to cell ¢, rf, in ep
will detect the fault. Otherwise, if the state of My was in [0,0], then after the
write operation to cell 4, w‘i. in eg will force M; to enter state [1,1], which is
a stable state. The state of Mg, however, will be [1,0). Thus the next read

operation, r¥, in eg will detect the fault.

4. (M = Mg) Refer to the transition diagrams in Figs. 5.6 and 4.1. After e4

has been applied, Mg must be in states [0,0], [0,1], or [1,1]. Note that all of
the three states are stable. Thus by applying a similar argument as that of

Case 1, we can prove that the fault is detected.

5. (M = Mjy) Refer to the transition diagrams in Figs. 5.7 and 4.1. After e4
has been applied, M7 must be in states [0,0], [1,0], or [1,1]. Note that all of

the three states are stable. Thus by applying a similar argument as that of

66

Case 2, we can prove that the fault is detected.

From the above argument, we know that all single faults of types T, ..., Ty are de-
tected, which means that all single shorts between word lines faults are also detected.

a

Theorem 8.3 MARCHSN is an optimal march lest for detecting the DRAM fault

model,

Proof: Follows from Theorem 6.1 and Propositions 6.6-6.8 together with their corol-

laries. O

MARCHSN is n operations (13%) shorter than the march test described in [21]

lower bound for unrestricted tests implies that the march test is near optimal for

unrestricted tests as well.

67

Chapter 7

Faulty Cell Location

In order to repair a RAM chip using redundancy, not only must at least one fault
be detected (fault detection), it is also necessary to locate all of the cells affected by
all of the faults (faulty cell location).

In [22], the faulty cell location problem was investigated for the Siemens DRAM
fault model. Two march tests, namely MARCH6N and MARCH9N, were proposed

to locate faulty cells in the DRAM fault model as follows:

o MARCHG6N: 1 (wo) ft (rows) 4 (r1wo) ¥ (ro).

MARCH6N was claimed to be able to locate 98% of all the faulf.y cells and
MARCHIN was claimed to have 100% fault coverage. However, in [22] the fault
coverages of the two march tests were only evaluated with simulation data; a prov-
ably optimal test was not provided for the faulty cell location problem for this

particular DRAM. In this chapter, we first derive a lower bound of 8n on the length

68

of any march test that locates all of the faulty cells in our formalized version of the
Siemens DRAM fault model. We then propose an optimal march test of length 8n

that locates all of the faulty cells in faulty DRAMs.

7.1 Lower Bound Result

We derive the lower bound by focusing on the difficulty of locating simultaneous
unlinked instances of arbitrary faults Mg and M7 of types Tg and T, respectively.
Consider a double fault that includes Mg and M7 as components. Let cells ¢ and
k, where i < k, denote the two faulty cells created by Mg, and let cells i and &',
where i’ < k', denote the two faulty cells created by M7, In the following, we derive
a lower bound on the length of any march test that locates all four of cells i, k, #,
and k’.

We first investigate the problem of locating each cell separately. Propositions 7.1
to 7.4 describe necessary and sufficient conditions on march tests that locate each
of the four cells. Before we describe the propositions, we introduce a notation
{3(r5)}*, where b € {0,1}, which will be used in the following propositions. The
notation {{f(r})}* denotes zero or more march elements each of which is composed

of zero or more r, operations to each cell.

Proposition 7.1 Any march test that locates cell i must contain a segment of the
Jorm f(aw b)u Y(ricwod) or f(awgew; b) §(ryd), where a,¢,d € {ry, ro, wy, we)*,
be {f'liwl}-s and u € {ﬂ(r?)}’

Proof: Refer to the state diagrams in Figs. 4.1 and 5.6. According to the transition

69

diagram, errors can be caused in cell i by only three operations: (1) a r& when
[¢',c¥] = [1,0], (2) a wk when [¢',¢*] = [1,0], and (3) a w§ when [¢',¢*] = [1,1]).
Situations (1) and (2) can only detect the error if the memory happens to power
up in [¢',c¥] = [1, 0] because, after the first march element, it is impossible to reach
[1,0]. Therefore, any test that locates i must at least use erroneous transition (3).
To detect the error, and hence locate cell i, a | must be applied after the w§ in (3).
After the memory is powered up, the content of cell i is assumed to be unknown. To
ensure that [¢!,c¥] is in state [1,1], a w} must be applied before the wf. Note that,
because we are restricted to march tests, every cell undergoes the same operations,
Therefore, any march test that can locate cell i must apply wy, wp and r; to each
we can either separate the required w; and wy into two march elements such that
the w, is in a preceding element, or we can put them in the same ascending march

element such that the wy precedes the wy. Thus we have two cases to consider:

Case 1. (¢he w, and the wg are in different march clements) The r; and the wy
must be in the same march element. Otherwise, the error in cell i would be
over-written and the r} operation would not detect the error. For the same
element we allow a finite number of operations (segment a) to precede the
w;. However, only ry and w; operations (segment b) can be allowed to follow
the wy; otherwise, the error in cell { would be over-written. The first march
element can be either ascending or descending. For the second march element,
we allow a finite number of operations (segment c¢) to appear between the r,

70

Case

and the wp operations, and a finite number of operations (segment d) to follow
the wo operation, However, no operation can precede the ry: a preceding write
operation would overwrite the error, and a preceding ro would not recognize
the error, Therefore, the second march element must start with a r;. Note that
the wo must be applied to cell k& before cell ¢, and cell k¥ has a higher address
than cell i. Thus the second march element must be descending. Finally, a
sequence u comprising a finite number of march elements containing only r;
operations can be inserted, without loss of fault location, between the two

march elements.

2. (the wg and the w; are in the same march element) The wg maust be fol-
lowed by the r{ to excite and then detect the fault. The march element that
includes the wi and w§ must be an ascending march element; therefore, the
r1 must be in a different march element. To preserve generality, for the first
march element we allow a finite number of operations (segment a) to precede
the wg, and a finite number of operations (segment ¢) to appear between the
wp and w,. However, only 7, and w,; operations (segment b) can be allowed to
follow the w;; otherwise, the error in error in cell { would be over-written. For

the second march element, we allow a finite number of operations (segment d)

ment: a preceding write operation would overwrite the error, and a preceding
ro would not recognize the error. Therefore the second march element must

start with a ry. Finally, the second march element can be either ascending

or descending because, as noted at the start of the proof, operations to cell k
cannot affect cell i if ¢ = 0. Unlike Case 1, the two march elements must be

adjacent. O

Propositions 7.2, 7.3, and 7.4 below are proved in the same way as Proposition 7.1.

Proposition 7.2 Any march test that locates cell k must contain two adjacent
march elements of the form {§(awgb)u f(rocwd) or §(aw,cupb) $(rod), where

a, c’d € {7‘),1‘0, wl,wo}', be {7'0, WO}‘, and u € {11("5)}'-

Proposition 7.8 Any march test that locates cell i’ must contain two adjacent
march elements of the form {(aweb)u J(rocw;d) or ft(awicwob) §(rod), where

a,c,d € {ry,r0, w1, wo}"*, b € {ro,wp}*, and u € {$(r§)}".

Proposition 7.4 Any march test that locates cell k' must contain two adjacent
march elements of the form {(aw;b)u f(rycwod) or | (awgew;b) §(r1d), where

a,c,d € {ry,ro, wy, wp}"*, b € {ry,w1}", and u € {§(r7)}".

Let 8y, 2, S3, and S5 denote four march elements of the forms {§(ajw,by)uy §
(r1e1wody), Y(agwobz)uz f(roczwridz), $laswobs)us Yrocswids), and f(agwibg)uqg
(r1cq4wpdy), respectively, where aj,...,a4,¢3,...,¢4,d1,...,dg € {r1,70, w1, wp}",
b1,bg € {r1,w1}", bz, bs € {ro, wo}*, u1,uq € {§(r)}*, and uz,us € {§(r3)}".

Let 81, 53, 53, and S} denote four march elements of the forms f{aj wocjw b}) §
(r1d}), $(a5wicqwoby) $(rody), MH(azwicgwoby) $(rody), and Y(ajwocywiby) §
(r1dy), respectively, where aj, ..., 8%, €}, ..., €4, d}, ..., d% € {r1, 70, w1, wo}"*, b}, b} €
{r1,w1}", and by, b € {ro, wo}".

72

Note that there are at least two march elements in every S; or S/ (the u element

and use ejy to represent the jth march element in ej, where1 <i < 4,and1<j < 2.

For example, e; = e;1e32 represents an element from §; or 5.

Proposition 7.8 Any march test t that locates cells ¢, k, i', and k' either must
have a length of at least 8n, or must have one of the forms (i) {wow,) Y riw;we) §
(rowy); (1) fwiwo) M(rowow:) fH(riwo); (i) Mwows) M(rawiwoe) M(rows); or (iv)

Ywywo) Y rowowr) Y(r1wo).

Proof: According to Propositions 7.i 7.4, t must contain at least one element from
each of §; U S/, where 1 < i < 4. Every element has a length of at least 3n, so
we will see later, adjacent march elements may sometimes be overlapped such that
the resulting march element contains all of the original march elements and, at the
same time, has a length that is shorter than the sum of the lengths of all the original
march elements. In order to derive a correct lower bound, we need to consider all
2¢ = 16 possible combinations of the four elements (e;,ez,e3,e4) from §; U S/,

where1 <i<4:

Case 1. (e1 € 81, e3 € 53, eg € 53, e4 € §4) Note that e;2 and egp are descending
march elements, while eg2 and e42 are ascending march elements. Therefore,
the only possible mergings between those march elements are ey with egs,
and ezz with eq2. However, since e;2 must start with r; while egz must

start with ro, we cannot combine e;2 with egz such that the resulting march

73

element contains both e;3 and ess. Similarly, we cannot combine egz with
€42. Thus t must contain at least four march elements e13, e33, eg3, and
€42, each of which has a length of at least 2n. The length of ¢ is therefore at

least 8n.

Case 2. (e; € Sj,ez € Sj,e3 € §},e4 € S1) Similar to Case 1, considering march

elements e;1, e21, egy, and eq;.

Case 3. (ey € 51, e3 € Sz, eg € 53, ¢4 € S,) Applying an argument similar
to that used in Case 1, we can prove that ejg, ez, and egz must stay in
different march elements. Since eq; is descending and egz is ascending, they
also must stay in different march elements. However, it may still be possible to
combine eq with e;z, or eq1 with eg2. Therefore, we have three possibilities

to consider:

Subcase 1. (e4; is not combined with ez or ez2) Test t will contain at least
four march elements ey2, e22, e32, and eq;, each of which has a length
of at least 2n. Thus t has a length of at least 8n.

Subcase 2. (eq; is combined with e12) If the combination, called s, contains
both e4; and ez and has a length that is shorter than 4n, then s must
have the form {(rywow;). Note that ega must start with r,. Thus s must
be followed by a march element that starts with r;. But both egs and
eg2 start with 7o, so neither of them can be the required march element.
Therefore, in addition to ez2, €32, and 8, t must contain at least one other

march element that starts with r; and follows s immediately. Thus, the

74

length of t is still at least 8n.

Subcase 3. (eq1 is combined with egz) If the combination, called s’, contains
both eq; and egz and has a length that is shorter than 4n, then s’ must
have the form | (rowow;). Note that eqs must start with r;. Thus s’
must be followed by a march element that starts with r,. Of e;3 and
ez, only eja starts with ry. So only ej3 could be the required march

element. Note, also, that eg; must end with wp or ro. This implies that

only ey2 satisfies this condition. Thus, we reach the contradiction that
ez must precede and, at the same time, follow &'. Therefore, t must
contain at least one other march element that either starts with r; or
ends with wp or ro and the length of t is still at least 8n.
Similar to Case 3.
Similar to Case 3.
Case 6. (ey € 51, €2 € 52, e3 € 53, e4 € 5,)
Similar to Case 3.
Case 7. (e1 € S1,e3 € §3,e3 € 55, e4 € 54)
Note that e;2 and eq; are descending while e22 and egy are ascending. The

possible mergings are ej2 with e4;, and egs with eg;. Ther+fore, we have

75

four possibilities to consider:

Subcase 1. (Do not combine eya with e4;, nor egz with eg1) Test t will con-
tain at least four march elements ey2, eq;, €22, and esy, each of which

has a length of at least 2n. Therefore, t has a length of at least 8n.

Subcase 2. (Combine e12 with eq1, and ez2 with egy) Let s and s denote the
merging of e13 with e43, and ez2 with egj, respectively. If s and s’ have
lengths that are shorter than 4n, they must have forms (r;wow,;) and
f(rowow,), respectively. Note that ez must be preceded by a march ele-
ment that ends with wg or 7o. However, s ends with w, or r;. Therefore,
in addition to s and 8/, t must contain at least one other march element
that ends with wg or ro, say m. Similarly, s must be followed by a march
element that starts with r;. However, neither 8’ nor m starts with ;.
Therefore, t must contain s, 8, m, and at least one other march element

that starts with ry. So, the total length of t is at least 8n.

Subcase 3. (Combine eyz with eq3, do not combine ez with egy) Let s rep-
resent the combination of ey2 with eq;. If 8 has a length that is shorter
than 4n, then s must have the form {(r;wow;). Note that eq; must be
followed by a march element that starts with r;. Thus s must be followed
by a march element that starts with r;. But neither ezs nor eg; starts
with r;. Therefore, in addition to e3s, e, and s, t must contain at least
one other march element that starts with ;. Thus, the length of t is still

at least 8n.

76

Subcase {. (Combine ez2 with eg1, do not combine ez with e4;)

Similar to Subcase 3.

Case 8. (e1 € 51, e3 € 53, e3 € 53,84 € 5)

Since all of the four march elements are descending. Thus the possible merg-

ings are ey with eg;, ez with eq;, egz with ez;, and egp with eq;. We

have seven possibilities to consider:

Subcase 1. (Do not combine any of them) Test t will contain at least four
march elements ey2, e2;, egz, and eq3, each of which has a length of at
least 2n. Then, t has a length of at least 8n.

Subcase 2. (Combine ej with ez;, and egz with eq;)

Similar to Subcase 2 of Case 7.

Subcase 3. (Combine eyz with e4;, and eg2 with ez1)
Similar to Subcase 2 of Case 7.

Subcase 4. (Combine ej3 with ez, do not combine egz with e4q) If the com-
bination of e;a with ez, called s, contains both e;2 and e3; and has
a length that is shorter than 4n, then s must have the form {(ryw;we).

Note that ey starts with ro. Thus s must be followed by a march ele-

can be combined with s. Thus we have a segment, §(rjwywo) | (row;),
that contains e;2, e2), and egz. Note, also, that e;; must end with w;
or ry. Thus s must follow a march element that ends with w; or r;. Only
e4) satisfies this condition. Note that eqs can be combined with s. So

7

we end in a segment of length 7n, §(wow,) Y(rywywe) § (rowy), that

contains e;2, €21, €32, and eq3.

Subcase 5. (Combine egz with eq;, do not combine ejz with ezy) Similar to
Subcase 4. The segment of length 7n has the form J(w;wo) Y rowow;)
(r1wo).

Subcase 6. (Combine ey with e4q), do not combine egz with ez1) If the com-
bination of e;2 with e43, called &', contains both e;2 and eq;, and has
a length that is shorter than 4n, then s must have the form §(rywow;).
Note, however, that eq2 must start with r;, which means that s’ must
be followed by a march element that starts with r,. However neither egy
nor eg; starts with r;. Thus, in addition to egs, ez;, and s8’, t must
contain at least one other march element that starts with ;. Thus the
length of t is still at least 8n.

Subcase 7. (Combine egz with ez;, do not combine ez with eq;)

Similar to Subcase 6.
Case 9. (e1 € 51, ez € §), e3 € 53, eq4 € S4)
Similar to Case 7.
Case 10. (e1 € 5, e2 € S, e3 € S3,e4 € 54)
Similar to Case 7.
Case 11. (e1 € S}, ez € S2,e3 € 5}, e4 € S4)

Applying a similar argument as in Case 8, we can prove that if t locates all

78

faulty cells and has a length that is shorter than 8n, then t must have length 7n
and must have the form ff(wywo) fH(rowow;) f(r1wo) or M wow,) H{rywywo) 4
(row:).
Case 12. (ey € S],e3 € §},e3 € S3,eq4 € 54)
Similar to Case 7.
Case 13. (ey € S],e2 € 5, e3 € 55, e4 € 54)
Similar to Case 3.
Case 14. (eg € 5], e2 € S2,e3 € 55,e4 € §))
Similar to Case 3.
Case 15, (e1 € 5], e2 € S2,e3 € 55, eq4 € 53)
Similar to Case 3.
Case 16. (e € 51, e3 € 5}, e3 € 55, eq4 € 54)

Similar to Case 3. O

Proposition 7.8 A march test t' of the form (a) H(wow;) Y(r1wiwe) Y(rowr), (b)
fH(wowr) fH(riwiwo) fH(rowr), (c) $(wiwo) Y(rowows) §(r1wo), or (d) f(wiwo) %

(rowow;) r1wo) eannot locate fault M,.

fault M; of type T,. Without loss of generality, assume that { < k. Assume that
t’ has form (a). After the memory is powered up, [¢',c*] is [1,0] or [0,1]. The

79

first march element changes [¢', ¢*] to [1,0], which means that cell k is changed to 0
erroneously. Thus the ry in the second march element detects the fault and locates
cell k. Since the following operations w{w} restore a 1 to cell i, the ry cannot detect
and locate cell i. Note that in the third march element, w} will keep cell { in 0. Thus
ro in the third march element still cannot detect and locate cell i. As a result, t/
cannot locate cell i and hence cannot locate M,. Forms (b), (c), and (d) are proved

in the same way as (a). O

Theorem 7.1 Any march test that locates all faults in the DRAM fault model must

have a length of at least 8n.

Proof: Follows from Propositions 7.5-7.6. O

7.2 An Optimal March Test for Faulty Cell Location

A march test, called MARCHSN, that locates all of the faulty cells in the DRAM
fault model is proposed. As specified in Fig. 7.1, MARCHSN consists of four march
elements, which we will call e4,ep,ec, and ep. Note that sequence e ep is an
element from both sets §; and Sj; in addition, sequence ecep is an element from
both 52 and S3.

We now prove that MARCHSN locates all of the faulty cells in the DRAM fault
model. Write-back cycles are an additional consideration in DRAMs. Write-back
cycles cannot disturb the contents of a good memory; however, they can trigger

80

f (wow,) ﬂ'(!'lwo) "U'(Wg Wp) U (row)

Addr | Seq.A | Seq.B | Seq.C __Seq.D__
YoM W W W ToW;
1 Wo Wi rWo
W, W, r,w, / /
\ \ W ¥ ToW;
' W % ToW;
W, W, rw, | W w oW,

<

[]

o —

\=‘
[
[

Figure 7.1: Specification for MARCHS8N.
errors in a faulty memory. Thus the effect of refresh operations must be considered
in our proof. However, as discussed before, only faults of types T4 and T5 contain
unstable states that may affect the location. Thus we only consider the effect of

refresh operations in the cases of T4 and T;.

Proposition 7.7 MARCHSN locates all of the faulty cells involved in single and

multiple stuck-at faults.

Proof: Let cell i be a stuck bit. If cell i is stuck-at-0, then it is located by the r}
in eg. Similarly, if cell i is stuck-at-1, then it is located by the r§ in ep. Finally,
we note that write-back cycles to cell i will not change its content and thus do not

prevent location. O

Corollary 7.1 MARCHSN locates all of the faulty cells created by a word line to

bit line short.

81

Proposition 7.8 MARCHSN locates all single interconnected cells,

Proof: Let cells i and k be two interconnected cells whose behaviour is governed
by a fault of types T or T;. Without loss of generality, assume that i < k. We have

two cases to consider:

Case 1. (M = M;) Consider the transition diagram in Figs. 5.1 and 4.1. After
sequence e, both M and Mo must be in state [1,1]. The wf in eg causes
[¢/, c*] to become [0,0] in the fault and [1,0] in a good memory. Hence, the 7}
in eg detects the fault and thereby locates cell i. Sequence ec causes [c', c¥]
to become [0, 0] in both the faulty and the good memory. The w} in ep causes
[¢*, ¢*] to become [1,1] in the fault and [1,0] in a good memory. Hence, the ré

in ep detects the fault and thereby locates cell &.

Case 2. (M = M;) Consider the transition diagram in Figs. 5.2 and 4.1, The w)
in e4 causes [c',c¥] to become [1,0] in the fault and [1,1]in a good memory.
[¢!, ¢*] to become [1,0] in the fault and [0,0] in a good memory. Hence, the r},

in ep detects the fault and locates cell 1. O

Proposition 7.9 MARCHSN locates all faulty cells caused by shorts between word
lines.

Proof: Let i and k be two cells that interact erroneously according to a fault
M € {T3U ..U Ty} because of a short between two word lines. Without loss of
generality, assume that i < k. We have five cases to consider:

82

Case 1. (M = M3) Consider the state diagrams in Figs. 5.3 and 4.1. After e4 has
been applied, both M and My must be in state [1,1]. The fault is located
by Proposition 7.8 because M, and M3 are equivalent faults following the

application of e4.

Case 2. (M = M) Consider the state diagrams in Figs. 5.4 and 4.1, The wf in e4
causes [c’, c*] to become [0, 0] in the faulty memory and state [0, 0] or [1,0] in
a good memory. The following w§ causes M to enter state [0, 1] while causing
My to enter state [0, 1] or [1,1]. The w} in e4 causes [c', c¥] to become [0, 0)
again in the faulty memory and [0,1] in a good memory. Any subsequent
the r{ in ep detects the fault and locates cell k. Note that after e, is appied,
Mo must be in state [1,1]. The wf in eg causes M to enter state [0, 0] while
causing Mp to enter [1,0]. Any subsequent write-back operations to cells i and
k cannot change cell i in M from 0 to 1. Hence, the 7} in ep detects the fault

and locates cell 4.

Case 3. (M = Ms5) Refer to the state diagrams in Figs. 5.5 and 4.1, and then apply
a similar argument to the one used in Case 2. Cells ¢ and k are located by e¢

and ep.

Case 4. (M = Mg) Refer to the state diagrams in Figs. 5.6 and 4.1. After e, is
applied, both M and Mo must be in state [1,1). Thus w} in ep causes M to
enter state [0,0] while My enters state [1,0]. The r} in ep therefore detects

the fault and locates cell i. After ec is applied, My must be in state [0,0].

83

Any write-back operations do not affect the good memory. Thus Mo will stay
in state [0,0]. No matter what state M is in, the w} in ep will change M to

state [1,1]. Hence the r§ in ep detects the fault and locates cell k.

Case 5. (M = M) Refer to the state diagrams in Figs. 5.7 and 4.1. The wf in ey
causes M to enter [1,1] and causes My to enter [1,1] or [0,1]. The w} in the
same sequence causes M to enter [0,0] while causing Mo to enter [0, 1]. This
means that cell k has been changed from 1 to 0 erroneously. The following
w} will not change cell k from 0 to 1. Thus the r} in ep detects the fault
and locates cell k. The w} in ec causes both M and M, to enter [0,0]. The
w§ in the same sequence causes M to enter [1,1) while causing My to enter
[0,1]. This means that cell i has been changed from 0 to 1 erroneously. The
following w§ won’t change cell i from 1 ot 0. Thus the r} in ep detects the

fault and locates cell i, O

Theorem 7.2 MARCHSN is an optimal march test for locating all faulty cells

caused in the DRAM fault model.

Proof: Follows from Theorem 7.1 and Propositions 7.7, 7.8, and 7.9. O

MARCHSN is n operations shorter (11%) than the shortest test for fault location
described in [22] and the new test locates all faulty cells for a more general fault

model.

84

Chapter 8

Fault Type Location

Failure analysis and memory repair are two key activities that are required to im-
prove the yield of newly manufactured DRAMs. In order to perform failure analysis,
and more efficiently repair faulty memories, we need to know more about the faults
in the memories beyond just locating the faulty cells (faulty cell location) [7}. Specif-
ically, we prefer to know which faulty cell is created by which type of fault; that is,

we would like to perform fault type location.

8.1 An Irredundant DRAM Fault Model

As shown in Chapter 4, a short between a bit line and a word line is equivalent to
multiple stuck bits. Also, following the application of an initialization sequence, a
fault of type Ty is equivalent to a fault of type T3. By selecting multiple stuck bits
and a fault M; of type T as canonical faults for the preceding two fault equivalence

classes, we obtain an irredundant fault model whose fault types can be located as

85

Pwg) frgw)) Yar) Hrwo) Y Pargw)) M) Ylrwe) My

A;dr Seqg. A VSeq;BV VSeéiC Squ Seq.E | Seq.F 7Seqri(3 Seq.H | Seq.l |
0 W, |row; r,|r,w, I, oW, rwolr,
1 W I, w I, ws . r, / r
2 ‘:a urn“‘vi 77 / ;léﬂ . / / :'1 . : 'gn
NN N e N e | N
n-1 Y oW1 Ty IWo|To FoWi %% Ty

Figure 8.1: Specification for MARCH13N.
compositions of component faults of the following eight types: T,o (Stuck-at-0 bits),

T.l] (Stuck‘atd bits)i Th T23 Téi TEH TS: and T5.

8.2 A March Test for Fault Type Location

Figure 8.1 specifies a march test of length 13n, which we will call MARCH13N, that
locates the fault types for all possible combinations of fault instances of the above
listed eight fault types. MARCHI13N contains 9 march elements. We will refer to

separate data files. In general each data file contains the addresses of cells caused

by faults of more than one fault type. A post-processing step is therefore required

in which set operations are applied to the data files to completely determine which
faulty cells are created by each fault type.

Clearly, all of the stuck-at-0 (1) bits will be located by march elements that

86

stuck bits.

Let cells 7 and k, where i < k, be the addresses of the two faulty cells created
by one instance My, M, My, Ms, Mg, or My of fault types 74,73, T4, Ts, Ts, or
T, respectively. The following propositions specify how each march element of
MARCHI3N affects cells in a good memory My and single instances of each of the
eight fault types.

We assume, after the memory is powered up, that all of the faults are in arbitrary

states, i.e., one of the four possible states 00, 01, 10, or 11.

Proposition 8.1 Afier e4 has been applied, the good and faully memories will
change states as follows:

M, : {00,01,10,11} — {00}

M, : {00,01,10,11} — {00}

M, : {00,01,10,11} — {10}

M; : {00,01,10,11} — {00,10,11}

Mg : {00,01,10,11} — {00}

My : {00,01,10,11} — {00}

My : {00,01,10,11} — {00}

Proof: Since every state in the transition diagrams of My, M;, and M; is stable,

it is straightforward to determine the states that My, M;, and M, will be in, after

diagrams.

Some of the states in Mj,..., M7 are unstable, However, note that after the

87

initializing march element e4 has been applied, the unstable states in M3, Mg and
M7 can never be re-entered. Hence we can still treat M3, Mg and M, in the same
way as Mg, M, and M,.

Whatever state My is in, once a w“, is applied, it will enter state 00. Note that
state 00 is a stable state and that write-back cycles cannot cause a further transition.
Also, the r% will not cause the state to change. Thus after march element e4 has
been applied, M4 will be in state 00.

After a w} is applied, Ms can be either in state 00 or 01. Note that state 01
is unstable, so possible write-back cycles will change it to 11. As a result, we have
three possible states, 00, 01, and 11, that M5 may be in. Applying a r§ to the three
states, we obtain the two possible states, 00 and 10, that M; may be in. Again,
since state 10 is unstable, we have to consider the effect of write-back cycles. After
write-back cycles, 10 will change to 11. Therefore, after e4 has been applied, Ms

will be in one of the three states 00, 10, or 11. O

Propositions 8.2-8.9 below are proved in the same way as Proposition 8.1.

Proposition 8.2 After eg has been applied, the good and faulty memories will
change states as follows:

Mo, : {00} — {11}

M; : {00} — {11}, cell k located

M, : {10} — {01}, cell i located

M, : {00} — {00,01}

88

Ms : {00,10,11} — {11}, cell k located, cell i possibly located
Mg : {00} — {11}, cell k located

M7 : {00} — {11}

Note that in Proposition 8.2, we have stated that cell i of My is only possibly
located. The reason cell i is only possibly located is that, as we already knew, M,
depending on the refresh operations. For instance, after e4 has been applied to Ms,
there are three possible states in which Ms may be. When a r}, is applied to cell i
and M; is in state 00, then cell i is not located. However, if M; is in states 10 or
11, then it is located.

An unstable state will be further changed if a write-back cycle is applied to a cell
that is on the same word line as cell i or k. Therefore, if we have detailed knowledge
of the DRAM layout, then we can uniquely determine whether an unstable state
state will be further changed by write-back cycles. That means that with detailed

knowledge of the DRAM layout, the ambiguity can be avoided.

Proposition 8.3 After ec has been applied, the good and faulty memories will
change states as follows:

My : {11} - {11}
1: {11} = {11}

M; : {01} — {01}, cell i located

X

M, : {00} — {00,01}, cell i located, cell k possibly located

Ms : {11} — {11}

89

M : {11} — {11}

My : {11} — {11}

Proposition 8.4 After ;. hns been applied, the good and faulty memories will
change states as follows.

M, : {11} - {00}

My : {11} - {00}, cefl & uird

M, : {01} - {10}, cell i located

M, : {00} — {00}, cells i and k located

M; : {11} - {10,11}

Mg : {11} — {00}

My : {11} — {00}, cell k located

Proposition 8.5 After e has been applied, the good and faulty memories will
change states as follows:

M, : {00} — {00}

M, : {00} — {00}

M, : {10} — {10}, cell ¢ located

M, : {00} — {00}

Ms : {10,11} — {11}, cell i located, cell k possibly located

Mg : {00} — {00}

Mz : {00} — {00}

Proposition 8.8 After er has been applied, the good and faulty memories will
change states as follows:

90

Mo : {00} — {11}

M, : {00} — {11}, cell i located

My : {10} — {10}

M, : {00} — {00, 10}

M;s : {11} — {11}, cells i and k located
Ms : {00} — {11}

M : {00} — {11}, cell i located

Proposition 8.7 After eg has been applied, the good and faulty memorics will
change states as follows:
Mo : {11} - {11}
My : {11} = {11)
M; : {10} — {10}, cell k located
M, : {00,10} — {00}, cell k located, cell i possibly located
M;s: {11} — {11}
Mg : {11} - {11}

My : {11} - {11}

Proposition 8.8 After ey has been applied, the good and faully memories will
change states as follows:

M, : {11} — {00}

M, : {11} — {00}, cell i located

M; : {10} — {01}, cell k located

M, : {00} — {00}, cells i and k located

91

Ms : {11} — {01,11}
Mg : {11} — {00}, cell i located

My : {11} = {00}

Proposition 8.9 Afier e; has been applied, the good and faulty memories will
change slales as follows:

M, : {00} — {00}

M, : {00} — {00}

M, : {01} — {01}, cell k located

M, : {00} — {00}

M; : {01,11} — {01,11}, cell k located, cell i possibly located

Mg : {00} — {00}

My : {00} ~ {00)

Table 8.1 summarizes the faulty cell information obtained by march elements
eg,...,e; according to Propositions 8.1-8.9. In Table 8.1, each row represents a
march element, and each column represents a type of faulty cell. For example M}
denotes all cell i’s created by M3. If a faulty cell, say M¢, is located by a march
element, say eg, then the entry at (E,M}) is assigned a “M". If a faulty cell, say
My, is possibly located by a march element, say ep, then the entry at (B,M}) is
assigned a “+”. If a faulty cell is neither located or possibly located by a march
element, then a “-” appears at the corresponding entry.

Let Sp,..., ST denote the eight sets of faulty cells included in the data files that

are generated in march elements ep,...,e;, respectively. Note that some of the

92

Table 8.1: Response Summaries

March

Elements | Mo | Moy | M} M} | M} A} My MEL M) ME| AL MEL M AR
B - [} - L] L] - - - - L] . L]
C b4 - - -] - ™ .
D ™ - - L] & - ™ L] - - - - - L
E - > - -] - - - ™ . - -
F . Y] ™ - - - - (% 9] ™
G X - - - -] - e -
H M - 4] - - L] 4 (] -] - -
1 - ™4 - - - be - - .]

entries in Table 8.1 denote possible locations. We have the following two theorems.

Theorem 8.1 Assuming that all of the possible locations do not happen, then all

of the eight types of faults in the irredundant fault model can be located as follows:

Proof: To show the correctness of these equations, we prove the first one as an
example. The others can be proved in the same way.

Note that Sc only contains all of the faulty cells created by M,q, M{, and Mj;
S only contains all of the faulty cells created by M,g, M.f ,and M¥. Since one one
faulty cell can be involved in one type of fault, by applying an “AND" operation to
Sc and Sg, the resulting set will contain exactly all of the faulty cells created by

M,o. Thus the stuck-at-0 fault type is located. O

Theorem 8.2 Assuming that all of the possible locations do happen, then faulls of

types Ty and Ty, T,y and Ts cannot be distinguished. The remaining fault types,

93

Tw=8cNSc T =5 NSF

1§ = Sp N Sy T¥ =(5sNSp)~Tj
Tj = g N Sc TF = SgN 81
Tj = (Sc N Si) - Tuo Tf = (50N 56) - To

75‘:(Sgﬁ5F)=‘T,1 T.EIE:(SBHSI)ETQI
Ti=Sy~Tw-T{-Tf~Ti~Tf Té=S5p-Tu-Tf-Tj-T}

Tj=8p~Tn~-T{-T{-T¢ Tf=8Sp—Tw-TF-Tj-T| - T}

Proof: Note that a data file contains faulty cells created by M, iff it contains
faulty cells created by M, (M and MF). Thus there is no way to distinguish them.
The same situation happens to faulty cells created by M,; and Ms (M{ and M¥).
If we treat the two pairs of indistinguishable fault types as two new types of faults.

Using an argument similar to that of Theorem 8.1, we can prove the theorem. O

94

Chapter 9

Conclusions

9.1 Summary of Results

portan. , .- blems in DRAM testing and diagnosis. Together they form a hierarchy
of problems in terms of test lengths and fault coverages: fault diagnosis — fault type
location — faulty cell location — faull detection. In the hierarchy, fault diagnosis has
the highest level, while fault detection has the lowest level. The relationship among
the problems is that the higher level a problem is in the hierarchy, the more infor-
mation is obtained from faulty memories under test. However, the corresponding
march test must be longer.
The main results obtained in this thesis are as follows:
e A realistic formal fault model for a 4 Mbit Siemens DRAM was proposed using
the mathematical methodology for RAM testing developed by Brzozowski and
Cockburn. This fault model allows us to perform rigorous analysis such as

95

lower bound derivation and proof of fault coverage.

o A lower hound of 5n was derived on the length of any march test that detects
all of the faults in the fault model, where n is the size of the memory under
test that detects all of the faults in the fault model. A march test whose
length matches the 5n lower bound was described and shown to detect the

fault model.

¢ A lower bound of 8n was derived on the length of any march test that locates
all of the faulty cells in the fault model. A march test, whose length matches
the 8n lower bound, was proposed and shown to locate all of the faulty cells

in the fault model.

e An irredundant fault model was derived from the original fault model by
identifying and removing all of the equivalent faults. A march test of length
13n was proposed to locate the fault types in the fault model. In the best
case, the march test can locate all eight types of faults in the fault model; in
the worst case, however, it still can locate four types of faults, and separate
the other four types of faults into two groups each of which contains exactly
two types of faults.

Table 9.1 gives the hierarchy of DRAM testing problems studied in this thesis.
Every problem and its corresponding lower bound and the length of its march test
are given in the table. Note that the test length and upper bound for fault diagnosis
are currently only conjectures supported by preliminary work.

96

Table 9.1: A Hierarchy of DRAM Testing Problems.

;Prliﬁblem Lower Bound Test L;i%(h
Fault Diagnosis O(nlog ;)? O(nlog z;)?)
Fault Type Locaticn > 8n [30] 13n [30]
Faulty Cell Location 8n [29) fn [29)]
Fault Detection 5n [8] 5n (8]

appears to be representative of modern DRAM technology. Thus, given suitable
descriptions of the faulty behaviours that can be caused by physical defects, it
should not be hard to extend the methodology that was used in this thesis to the

testinz and diagnosis of other DRAMs.

9.2 Future Research

In the following subsections we describe three areas that should be investigated

further as a consequence of this thesis.

9.2.1 The Lower Bound for Fault Type Location

In Chapter 8 we described a march test of length 13n that, in the best case, locates
all of the fault types in the fault model. Fault type location appears at a higher
level in the hierarchy of problems than faulty cell location, so any march test that
locates the fault types of the fault model must also locate all of the faulty cells. In

Chapter 6 we showed that any march test that locates all faulty cells must have a

97

length of at least 8n. Thus 8n is a lower bound on the length of any march test for
fault type location. We conjecture that it is possible to improve the 8n lower bound
to closer to 13n. The derivation, however, could be very long because many cases

need to be considered.

9.2.2 Fault Diagnosis

The fault diagnosis problem, the highest level in the hierarchy, was not studied in
this thesis. However, in order to efficiently repair memory, it is sometimes necessary
to distinguish each fault component in multiple faults. For example, to repair a
pair of interconnected cells, only one of the two faulty cells needs to be replaced by
redundancy. Assume that there are z pairs of interconnected cells. If we do not
separate each fault component from the others, then we have to replace all of the
2z faulty cells. In the worst case, in which each faulty cell is on a distinct word line,
2z redundant word lines are needed to repair the memory. If we separate each fault
component from the others, in the same worst case, only = redundant word lines are
needed. Further research can be done to propose a march test that diagnoses all of
the faults in the fault model. Early work on this problem suggests that by using a
divide-and-conquer strategy [2], we can design an algorithm to solve this problem in
a complexity of O(nlogn), where n is the number of faulty cells. It may be possible
to derive a lower bound of O(nlogn) for an algorithm that can solve this problem.
The essential idea of the derivation of the lower bound is to prove that this problem

is equivalent to sorting, which has a lower bound of O(nlogn).

98

9.2.8 Detection of Linked Multiple Faults

As mentioned in Chapter 5, the fault model that is used in this thesis is restricted
to unlinked faults. That is, any memory cell can be involved in at most one fault
component. However, in practice, more than one fault component of the same or
different fault types may be linked together. Therefore, the problems of fault detec-
tion, faulty cell location, fault type location, and fault diagnosis for an unrestricted

fault model remain a subject for future research.

99

Bibliography

[1] M.S. Abadir and J.K. Reghbati, “Functional Testing of Semiconductor Random

Access Memories”, AMC Computing Surveys, 15(3), pp. 175-198, 1983.

[2] S. Baase, Computer Algorithms: Introduction to Design and Analysis, 2nd ed.,

Addison-Wesley, Reading, MA, USA, 1988,

[3] C.A. Benvit, J.M. Cassard, and K.J. Dimmler, “A 256K dynamic random-
access memory”, IEEE J. Solid-State Circuits, v. SC-17, no. 5, pp.857-862,
Oct. 1982,

[4] M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of Digital
Systems, Computer Science Press, Inc., Woodland Hills, CA, USA.

[5] J.A. Brzozowski and B.F. Cockburn, “Detection of Coupling Faults in RAMs",
J. of Electronic Testing: Theory and Applications, v. 1, no. 2, May 1990, pp.

151-162.

[6] J.A. Brzozowski and H. Jiirgensen, “A Model for Sequential Machine Testing
and Diagnosis”, J. of Electronic Testing: Theory and Applications, vol. 3, no.

[7] M.F. Chang, W. K. Fuchs, and J.H. Patel, “Diagnosis and Repair of Memory
with Coupling Faults”, IEEE Trans. Computers, v. 38, no. 4, pp. 493-500, April
1989,

[8] B.F. Cockburn and L. Shen, “An Optimal Test for a Realistic DRAM Fault
Model”, Sizth Workshop on New Directions for Testing, Montréal, Canada,

May 20-22, 1992.

[9] R.Dekker et al., “A Realistic Fault Model and Test Algorithms for Static Ran-
dom Access Memories”, IEEE Trans. Computers, vol. c-9, no. 6, pp. 567-572,

1990.

[10] A.D. Friedman and P.R. Menon, Fault Detection in Digital Circuits, Prentice-

Hall, Inc., Englewood Cliffs, NJ, USA, 1971.

[11] J.P. Hayes, “Detection of pattern-sensitive faults in random-access memories",

IEEE Trans. Comput., v. c-24, pp. 150-157, Feb. 1975.
[12] M. Inoue, T. Yamada, and A. Fujiwara, “A New Testing Acceleration Chip
for Low-Cost Memory Tests”, IEEE Design & Test of Computers, vol. 3, pp.

[13] B.W. Johnson, Design and Analysis of Fault- Tolerant Digital Systems, Addison-

Wesley, Don Mills, Canada, 1989.

[14] K. Kokkonen, P.O. Sharp, and R. Albers, “Redundancy techniques for fast

static RAMs”, ISSCC Dig. Tech. Papers, pp.80-81, Feb. 1981.

[
(=]
[

(15} L.L. Lewyn and J.D. Meind], “Physical Limits of VLSI DRAM’s", IEEE J. of

Solid-State Circuits, SC-20(1), pp. 231-241, 1985.

[16] W.Maly, “Modelling of Lithography Related Yield Losses for CAD of VLSI

circuits”, JEEE Trans. CAD, vol. CAD-4, no. 3, pp. 166-177, 1985.

[17) P. Mazumder and J.P. Hayes, “Testing and Improving the Testability of Mul-

timegabit Memories”, IEEE Design & Test of Computers pp. 6-7, March 1993.

(18] W.J. McClean, A Report On the Integrated Circuil Industry, Integrated Circuit

Engineering Corporation, Scotsdale, AZ, USA, 1990.

(19] W.R. Moore, “A Review of Fault-Tolerant Techniques for the Enhancement of

Integrated Circuit Yield”, Proc. IEEE, vol. 74, pp. 684-697, May 1986.

[20] R. Nair and S. M. Thatte, “Efficient Algorithms for Testing Semiconductor
Random-Access Memories”, IEEE Trans. on Comput., v. ¢-27, no. 6, pp. 572-

576, June 1978.

[21] H.-D. Oberle, M. Maue, and P. Muhmenthaler, “Enhanced Fault Modeling for
DRAM Test and Analysis”, Digest of the 1991 IEEE VLSI Test Symp., Atlantic
City, NJ, U.S.A,, April 15-17, 1991, IEEE Comp. Soc., Washington, 1991, pp.

149-154

[22] H.-D. Oberle and P. Muhmenthaler, “Test Pattern Development and Evaluation
for DRAMs with Fault Simulator RAMSIM", Proc. Int. Test Conf. 1991, pp.

548-555.

102

[23] C. A. Papachristou and N. B. Sahgal, “An Improved Method for Detecting
Functional Faults in Semiconductor Random Access Memories”, IEEE trans,

on Comput., vol. ¢-34, no. 2, pp. 110-116, Feb. 1985,
[24] B. Prince, Semiconductor Memories, 2nd ed., John Wiley and Sons, 1991.

[25] V.L. Rideout, “One-Device Cells for Dynamic Random-Access Memories”,

IEEE Trans. on Electron. Devices, ED-26 (6), pp. 839-852, 1979,

[26] K.K. Saluja, S.H. Sng, and K. Kinoshita, “Built-In Self Testing RAM: A Prac-
tical Alternative”, IEEE Design & Test of Computers, vol. 4, no. 1, pp. 42-51,
Feb. 1987.

[27] S.E. Schuster, “Multiple Word/Bit Line Redundancy for Semiconductor Mem-
ories”, IEEE J. Solid-State Circuits, vol. SC-13, pp. 698-702, Oct. 1978.

[28] J.P. Shen et al., “Inductive Fault Analysis of CMOS Intergrated Circuits",
IEEE Design & Test of Computers, pp. 13-26, Dec., 1985,

[29] L. Shen and B.F. Cockburn, “An Optimal March Test for Locating Faults in
DRAMSs", Proc. IEEE Int. Workshop on Memory Testing, Aug, 9-10, San Jose,
1993.

[30] L. Shen and B.F. Cockburn, “A March Test for Fault Type Location in
DRAMs", Proc. CCVLSI’93, Banff, Canada, 1993.

[31] R.T. Smith, J.D. Chlipala, and J.F.M. Bindels, “Laser programmable redun-
dancy and yield improvement in a 64K DRAM", IEEE J. Solid-State Circuits,

103

(32] T. Sridhar, “A New Parallel Test Approach for Large Memories,” IEEE Design

& Test of Computers, vol. 3, no. 4, pp. 15-22, Aug. 1986.

[33]) A.J. van de Goor, Testing Semiconductor Memories, Theory and Practice, John

Wiley and Sons, 1991.

[34] A.J. van De Goor, “Using March Tests to Test SRAMs”, IEEE Design & Test

of Computers, vol. 10, no. 1, pp. 8-14, March 1993.

[35] N. Weste and K. Eshraghian, “Principles of CMOS VLSI Design”, Addison-

Wesley, Reading, MA, USA, 1895.

[36] T. Yamada et al., “A 64-Mb DRAM with Meshed Power Line”, IEEE J. Solid-

State Circuils, vol. 26, pp. 1506-1510, Nov. 1991.

104

