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Abstract

In financial market, risk management is very critical to a company. How-

ever, some risks in the market ( market risk) can not be controlled or eliminated

through management improvement or appropriate asset allocation. Thus, it is

important to accurately measure these kinds of risks.

In this thesis, we introduce two most widely used risk measures: value-at-

risk and expected shortfall. Their estimation from data is the issue we are

concerned with in this thesis. We divide this thesis into two parts:

First, we survey the currently used estimation methods. We introduce these

methods from the theoretical backgrounds. Then, we propose some criteria

used to judge the performance of these methods.

Second, we apply all these methods to data. We use the criteria introduced

to compare these methods. This empirical study can shed some light on the

application of these methods, bringing us some guidelines about their use in

the future.
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Chapter 1

Introduction

In the financial industry, all institutions are exposed to a great variety of risks.

Whether they can successfully deal with risks directly determines whether they

could survive in this field and earn profits. From theory, risk in finance is de-

fined as the degree of uncertainty about future net earning. Based on the

sources of the risk, all kinds of risks can be classified into four categories[18]:

default risk, liquidity risk, operational risk and market risk. Default risk is the

potential loss for your counterpart’s inability to meet the debt obligation, such

as unable to repay the interest or principal. Liquidity risk is caused by the

lack of cash or cash equivalent so that the corporation can not continue the

business. If the corporation is facing liquidity troubles, it may be forced to sell

some of its assets at discount to obtain cash. Operational risk accounts for pos-

sible losses deriving from execution of inadequate or failed internal processes,

people and systems, or from external events. For example, accounting errors,

theft of information, inappropriate business decision all belong to this kind of

risk. Market risk estimates the uncertainty coming from changes of market

condition, such as interest rate, economic environment or inflation rate. One
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great distinction between market risk and the first three is that it cannot be

greatly reduced or eliminated through diversification, appropriate asset allo-

cation and management control. Therefore, the best we can do is to correctly

estimate the market risk and take the proper safeguards.

Beyond dispute, accurate measures of market risk are of great importance.

Many methods of measuring risks have been developed and the most commonly

used one is Value at Risk (VaR). VaR is defined as the minimum amount of

loss in value of a portfolio with a specified probability over a certain period. To

put it in a simple way, it gives a lower bound on the loss made in the worst p

percent of scenarios with a certain probability and period. From mathematical

standpoint, VaR is actually a quantile of the distribution of future returns or

losses. More specially, conditional on the information up to time t, the VaR

for period t + h of the financial return could be expressed as

V aRp(t + h) = Qp(rt+h | Ft) (1.1)

= inf
r

(r ∈ Re : Pr(rt+h ≤ r | Ft) ≥ p), 0 < p < 1, (1.2)

where Qp(∗) denotes the quantile function; rt is the financial return on an

asset or portfolio in period t; and Ft represents the information available at

time t.

This provides us the theoretical foundations upon which we can develop

methods to estimate the VaR. The great popularity of VaR among financial

institution lies in its theoretical simplicity. They reduce the market risk of any

portfolio to just a number, which is easier for us to evaluate and compare.

VaR is widely used in different aspects, from risk management, evaluation

of the performance of risk manager to regulatory requirements. What makes
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the use of VaR so prevalent in financial industry is the requirement so-called

”Basel rules”[19] imposed by securities commissions. All banks and financial

institutions are required to report their estimate of VaR and hold capital

reserve based on it. VaR has to be reported daily. Thus, precise estimate

of this risk measure is quite important. If the underlying market risk is not

correctly estimated, this may cause improper capital allocation with the result

of losing profitability, incurring unnecessary loss or even bankruptcy.

However, VaR has been criticized for its failure to meet the coherent con-

ditions set by Artzner, Delbaen and Eber in 1998[2], which is discussed in

detail later. In addition, the practical usefulness of VaR is limited by the fact

that it tells nothing about the potential size of loss beyond VaR. Therefore,

the expected value of the loss or returns beyond VaR has been proposed as

a supplement. This value is usually called expected shortfall (ES). From the

view of mathematics, ES for a financial return can be defined as

ESp(t + h) = E(rt+h|rt+h < V aRt+h), 0 < p < 1. (1.3)

In contrast with its conceptual simplicity, the estimation of VaR and ES is

a very challenging topic in the academic field. The fact that return distribution

does not stay constant over time or belong to any typical distributions we have

known, puts tremendous complications in the VaR and ES estimation. The

main objective of this paper is to survey the most currently used methods of

estimating VaR and ES, summarize their advantages and flaws from theoretical

analysis and empirical applications, in the hope of providing some guidelines

for our use of these methods.

Because the estimation of ES is based on that of VaR, we mainly discuss
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the methods of estimating VaR. The performances of all these methods are

evaluated through interval forecast test and empirical application, from aspects

of accuracy, procedure simplicity and applicable conditions. Moreover, we use

Monte Carlo simulation to study the performance of these methods on ES

estimation.

The thesis is organized as follows: Chapter 2 is an introduction to char-

acteristics of financial data and how they influence the estimation methods;

Chapter 3 reviews most currently used methods for estimating VaR; Chapter

4 describes the criteria used to evaluate the performance of these methods;

Chapter 5 discusses the properties of coherent risk measure and necessity of

ES as a supplement to describe the risk; Chapter 6 is the core of the thesis, for

it provides the details of how these methods are applied to data and reports

the empirical results, which is the base for our conclusion. Finally, Chapter 7

briefly concludes the thesis.
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Chapter 2

Properties of financial data

In order to build a model to predict risk in the financial industry, one needs first

to understand the properties of financial data. These properties can lead us to

create models which are able to reflect the realities in financial industry, and

give us standards to evaluate the fitness of the methods. The most significant

data in finance are prices, so we first research the dynamic distribution of

prices. Even though financial practitioners usually prefer to work with the

concepts of profit and loss, it is not well suited for risk management, with

returns being a preferred measure. There are two equivalent ways to calculate

returns[8],

rt =
Pt − Pt−1

Pt−1

and (2.1)

rt = log(
Pt

Pt−1

), (2.2)

where Pt is the price of stock or portfolio for time t. The compound return in

(2.2) is generally preferred for risk analysis, due to its connection with common

views of the distribution of returns, as well as the link with derivatives pricing.
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Some empirical facts about financial returns are already known, due to the

contribution of Mandelbrot (1963)[17] and Fama (1965)[12]. Financial returns

usually exhibit the following characteristics:

(1) non-normality of returns,

(2) volatility clustering, and

(3) asymmetry in return distribution.

Now, we discuss these characteristics in more detail in following sections.

2.1 Non-normality

The fact that returns are not normally distributed is recognized both by risk

managers and supervisory authorities. The non-normality property implies

the following the relationship between the return distribution and a normal

distribution with the same mean and variance[8]:

(1) the center of the return distribution is higher,

(2) the sides of the return distribution are lower, and

(3) the tails of the return distribution are higher.

Figure (2.1)and Figure(2.2) can evidently exhibit these features.
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Figure 2.1: Solid line is the density plot for standardized daily returns for
NYSE (New York Stock Exchange) Composite Index, from Jan 3rd,1986 to
Dec 31st, 2002. It has mean=0 and standard deviation=1. Dashed line is
the density plot for standard normal distribution. Non-normality, especially
higher center and lower sides, can be clearly seen in this plot.

Figure 2.2: QQ-plot for standardized daily returns for NYSE (New York Stock
Exchange) Composite Index, from Jan 3rd, 1986 to Dec 31st, 2002. It has
mean=0 and standard deviation=1. Solid line is for standard normal distri-
bution. Non-normality,especially higher tails, can be clearly seen in this plot.
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Figure 2.3: Plot for daily returns of NYSE (New York Stock Exchange) Com-
posite Index, from Jan 3rd, 1986 to Dec 14th, 1989.

This implies that the market is either too quiet or too turbulent relative to

the normal distribution. Of these three points in non-normality, the last one

is most relevant to risk. The heavy-tailed property results in large losses and

gains being more frequent than predicted by a normal model. An assumption

of normality for the lower tail is increasingly inaccurate with the further going

into the tail. For example, if one uses the normal distribution to forecast the

probability of the crash in 1987 (Figure(2.3)), one would estimates that a crash

of the 87’s magnitude occurs only once in human’s history. Most financial

analysis, until recently, has been based on the assumption of normality of

returns. The reason for that is the mathematical tractability of normal, since

non-normal distributions are very difficult to work with. While normality may

be a relatively innocuous assumption in many other situations, it is disastrous

in risk management and needs to be addressed.
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Figure 2.4: Plot for daily returns of auto manufacturer Ford’s stock, from Feb
2nd, 1984 to Dec 31st, 1991.

2.2 Volatility clustering

The second obvious fact is the returns go through periods when volatility

is high and period when volatility is low. This means that large volatilities

tend to cluster together and small volatilities tend to cluster together. This

phenomenon could be apparently seen from Figure (2.3) and (2.4). The natural

inspiration from this fact is that we would make a forecast with large volatility

if we know the market is in a high volatility state, and vice versa. It requires

our risk measure model should adjust the volatility instantly according to the

market. Any risk measure model which cannot reflect this volatility change

will fail in its prediction.

A direct consequence of volatility clustering is that financial return exhibits

dependence upon its anterior ones. Extreme returns, either positive or nega-

tive, tend to occur in a period of high volatility. The chance of extreme return

9



happening after a previous extreme return is much greater than the chance of

its happening after a regular(non-extreme) return.

2.3 Asymmetry

One feature of conditional volatility models is the implicit assumption of sym-

metry of the return distribution. As discussed below, this is not correct. Usu-

ally, one of the tails is heavier than the other. For example, for equities, the

lower tails is commonly thicker than the upper tail. In general, if the market

trend is upward, the upper tail is thinner than the lower tail, it means the

market moves in small steps in the direction of the market trend, and in large

jumps away from this trend. Thus, if we are using symmetrical distribution,

such as normal or student-t distribution, we would underpredict losses relative

to gains.

We should say the best way to predict risk would be to use skewed con-

ditional distributions. However, this is not commonly done because of the

difficulty of finding an appropriate distribution and estimating its parameters.

2.4 Violation Clustering

When the concepts of volatility clustering applies to the return data, it is also

of interest to consider clustering in violations of the VaR. Violation clustering

is the phenomenon that violations of VaR (the real return is smaller than VaR)

are likely to occur in series, not independently.

While financial extreme returns have a tendency to cluster, the job of risk

measure is to forecast this trend. It is a very important feature for the risk
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measure to adjust quickly to the new returns. Therefore, violation clustering

is a phenomenon we should avoid when building a risk measure. Instead, we

should set a model which can exhibit independent violation.

2.5 Summary

These properties we have discussed, should give us some insight and guidance

to build an appropriate VaR estimation model. In brief, these points can be

summarized:

(1) the model should exhibit non-normality of the return distribution ,

(2) the model should capture the asymmetry in return distribution, and

(3) the model should adjust to volatility quickly, exhibiting independent

violation.
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Chapter 3

VaR Estimation Methodologies

While VaR is a very easy and intuitive concept, its estimation is a very chal-

lenging statistical problem due to the facts discussed in last chapter that fi-

nancial returns exhibit ”non-standard” statistical characteristics. Although

the existing methods for estimating VaR employ different methodologies, they

all follow a common structure, which can be summarized in three steps:

(1) Record the returns of the portfolio,

(2) Estimate the distribution of portfolio returns, and

(3) Compute the risk measure of the portfolio.

The major difference among these methods is reflected in the second step,

which deals with the way of estimating the change in the portfolio returns.

Based on this point, we can classify the current models into three broad cate-

gories: Non-Parametric, Parametric and Semi-parametric.

These methods yield very different results. Some methods outperform in

certain circumstances while others show superiority in other situations. Our
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objective here is to analyze these differences and provide some guidelines for

future selection of these methods. The models are designed to account for the

three characteristics of financial returns. And each method is introduced in

the following procedure:

(1) Provide a formula for calculating VaR(t) as a function of variables known

at time t-1 and a set of parameters that need to be estimated,

(2) Provide a procedure ( a loss function and a suitable optimization pro-

cedure) to estimate the set of unknown parameters,

(3) Analyze the properties of this method from the theoretical aspect.

Finally, in chapter 6, we compare their performance from the empirical

application.

3.1 Nonparametric Method

3.1.1 Historical Simulation

One of the most common methods for VaR estimation is Historical Simulation.

This method drastically simplifies the procedure for computing the VaR, since

it does not make any distribution assumption about portfolio returns. Histor-

ical Simulation is based on the concept of a rolling window. First, one needs

to choose a window of observations, which generally ranges from 6 months to

two years. Then portfolio returns with this window are sorted in ascending

order and the p -quantile of interest is given by the return that leaves p of the

observations on its left side and 1− p on its right side. If such a number falls

between two consecutive returns, then some interpolation rule is applied. To
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compute the VaR the following day, the whole window is moved forward by

one observation and the entire procedure is repeated. This estimation can be

expressed as:

V̂ aR(p) = |M − pK|r[M+1] + |pK + 1−M |r[M ], (3.1)

where K is the number of observations in the window and M is the lower

integer of pK.

Even if this approach makes no explicit assumptions on the distribution of

portfolio returns, an underlying assumption is hidden behind this procedure:

the distribution of portfolio returns does not change within the window. From

this implicit assumption several problems arise.

First, this method is simply controversial. If all the returns within the win-

dow are assumed to have the same distribution, then the logical consequence

must be that all the returns of the time series must have the same distribu-

tion. Second, the empirical quantile estimator can be accurate only if K, the

window size, goes to infinity. Third, the window size is a disputable issue. If

the size is too large, the measure will respond very slowly to the latest change

in the market. If it is too small, it will adversely affect the estimation accuracy

because there are too few observations contained in the sample. These are two

contradictory points very hard to balance.

Moreover, assume that the market is moving from a period of relatively low

volatility to a period of relatively high volatility. In this case, VaR estimates

based on the historical simulation will be biased upward, since it will take

some time before the observation with the low volatility to leave.
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3.2 Parametric Method-GARCH model

3.2.1 Introduction

Fully parametric methods are based on the assumption that financial returns

belong to a location-scale family of probability distribution in the form

rt = ut + εt = ut + σtzt, (3.2)

where location ut and scale σt are parameters and zt ∼iid fz, where fz is a

zero-location, unit-scale probability density distribution. The h-period-ahead

VaR forecast based on information up to time t is

V̂ aRt+h = ût+h + σ̂t+hQp(z), (3.3)

where Qp(z) is the p-quantile implied by fz.

Different approaches use different specifications on the conditional location

ut, conditional scale σt and especially zt.

Unconditional parametric models set ut ≡ u and σt ≡ σ, which will come

to Ito’s lemma process after taking derivative to t.

Conditionally homoskedastic parametric models account for a changing

conditional mean, which is captured by an ARMA(p,q) models:

ut = a0 +

p∑
i=1

airt−i +

q∑
j=1

bjεt−j (3.4)

with σt ≡ σ, t = 1, 2, · · · , T.

In view of volatility clustering in financial data, this model needs some
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improvements for its inability to capture the volatility change. Naturally,

conditionally heteroskedastic would be our choice. This model allows us to

describe the scale parameter with a function of past information. If we update

the volatility change with the form:

σ2
t = c0 +

r∑
i=1

ciε
2
t−i +

s∑
j=1

djσ
2
t−1, (3.5)

which would become the most widely used parametric method, generalized

autoregressive conditional heteroskedasticity, GARCH(r, s) model.

3.2.2 GARCH Model

In econometrics and finance, a model featuring autoregressive conditional het-

eroskedasticity considers the variance of the current residual term to be a

function of the actual sizes and variance of the previous time periods’ residual

terms. Such models are often called GARCH models (Bollerslev,1986)[4], al-

though a variety of other forms are applied to particular structures of model

which have a similar basis. GARCH models perform very well in modeling

financial time series that exhibit time-varying volatility clustering[10]. That

is one reason why it is selected to be the base for estimating the risk measure.

To give us a clear view of this method, we list the structure of this method

again. We model the financial returns in the form:

rt = ut + εt = ut + σtzt. (3.6)
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And we obtain the above ut and σt through following processes:

ut = a0 +

p∑
i=1

airt−i +

q∑
j=1

bjεt−j, (3.7)

σ2
t = c0 +

r∑
i=1

ciε
2
t−i +

s∑
j=1

djσ
2
t−j, (3.8)

where ai, bi, ci and di are parameters we need to estimate.

Then the one-day-ahead p-VaR for rt can be estimated by:

V aRt+1 = ut+1 + σt+1Qp(z). (3.9)

This model lies on two important points: the accurate expression of the

variance equation and the assumption that the standardized residuals are i.i.d.

The first one was triggered by the characteristics of financial data discussed

above. The assumption of i.i.d standardized residuals, however, is just a nec-

essary condition to estimate the unknown parameters in the model. A further

step to implement any GARCH method is to determine the specification of the

distribution of zt. It is commonly assumed that zt follows the standard normal

distribution N(0, 1), because it is easier for us to derive some conclusion in

theory and estimate the unknown parameters in the model.

As we know, GARCH model is actually composed of two parts: we use

ARMA to describe the conditional mean and GARCH model to capture the

changing volatility. For simplicity, we just call it ”GARCH” model. Therefore,

the estimation of the parameters is also to be conducted in two steps. We

first estimate the parameters in ARMA by minimizing the conditional sum-of-
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square error, the details of which can be referred to [13]. Then, we utilize the

maximum likelihood method to estimate the parameters in GARCH model[21].

Since we assume the error terms follow standard normal distribution, the log-

likelihood of the models for the observed series rt with length n is

log(L) = −n

2
log(2π)− 1

2

n∑
t=1

(rt − ut)
2

σ2
t

− 1

2

n∑
t=1

log σ2
t , (3.10)

where σ2
t is in the form of (3.8).

Thus the parameters could be obtained by maximizing log(L). Normally,

GARCH(1,1) is good enough to capture the change of volatility in financial

data and convenient for us to estimate the parameters. In the empirical study

later, we use GARCH(1,1) as well.

The primary advantage of this model is that it allows a complete charac-

terization of the distribution of returns and there may be room for improving

their performance by avoiding the normality assumption. The main problem

of this approach is that it tends to underestimate the VaR, because the nor-

mality assumption of the standardized residuals seem to be at odds with the

real behavior of financial returns. Furthermore, this method is subject to three

different sources of error: the specification of the variance equation and the

distribution chosen to build the likelihood may be wrong, and the standard-

ized residuals may not be i.i.d. Whether or not these misspecification issues

are relevant for VaR estimation purpose is mainly an empirical issue.

Fortunately, Bollerslev and Woolridge (1992)[5] have showed that the max-

imization of the normal GARCH likelihood is able to deliver consistent esti-

mates, provided that the variance equation is correctly specified, even if the

standardized residuals are not normally distributed. Based on this important
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result, we can use other distributions, like student-t or exponential based dis-

tributions instead of standard normal distribution, which can better reflect

the skewness and fat-tail of financial returns, to improve the performances of

GARCH method.

3.3 Semi-parametric Method

Included in the semi-parametric category are methods based on Extreme Value

Theory (EVT) or Quantile Regression.

3.3.1 Extreme value theory

Origin of Extreme Value Theory

Extreme value theory is concerned with the distribution of the smallest and

largest order statistics. While the models discussed in previous subsections

specify the entire return distribution, the EVT approach focuses only the tails

of the return distribution. Thus, it is very natural to consider employing

extreme value theory when extreme VaR (normally p ≤ 0.05 ) estimation is

our interest.

In this subsection, we first review the extreme value theory in the statis-

tical literature[23]. Denote the return of an asset or portfolio, measured in a

fixed time interval such as daily, by ri. Consider the collection of n returns

r1, r2 · · · rn. The minimum return of the collection is r(1), that is, the smallest

order statistic. We focus on properties of the minimum return r(1) because of

the convenience for discussion. And this minimum corresponds to VaR calcu-

lation for a long position. However, the theory discussed here also applies to
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the maximum return of an asset or portfolio over a given time period because

properties of the maximum return can be obtained from those of the minimum

by a simple sign change. The maximum return is relevant to holding a short

financial position.

When applying extreme value theory, we must assume that the returns

rt are serially independent with a common cumulative distribution function

F (x) and that the range of the return rt is [L,U ]. For log returns, we have

L = −∞ and U = ∞. Then the CDF(Cumulative Distribution Function) of

r(1), denoted by Fn,1(x), is given by

Fn,1(x) = Pr[r(1) ≤ x] = 1− Pr[r(1) > x]

= 1− Pr[r1 > x, r2 > x, · · · , rn > x]

= 1−
n∏

j=1

Pr(rj > x) (by independence)

= 1−
n∏

j=1

[1− Pr(rj ≤ x)]

= 1−
n∏

j=1

[1− F (x)]

= 1− [1− F (x)]n.

In practice, the CDF F (x) of rt is unknown and, hence, Fn,1(x) of r(1) is

also unknown. However, as n increases to infinity, Fn,1(x) becomes degenerate,

Fn,1(x) −→ 0 if x ≤ L and Fn,1(x) −→ 1 if x > L as n goes to infinity.

This degenerate CDF has no practical value. Therefore, the extreme value

theory is concerned with finding two sequences cn and dn, where cn > 0, such

that the distribution of (r(1)−dn)c−1
n converges to a non-degenerate distribution

H as n goes to infinity. The sequence dn is a location series and cn is a series

20



of scaling factors. Under the independence assumption for ri, Fisher-Tippett

theorem says that if there exist cn and dn, such that the distribution of the

normalized minimum x = (r(1) − dn)c−1
n converges to limiting distribution H

as n goes to infinity, then H is in the form

H ≡ Hk(x) = 1− exp(−(1 + kx)1/k) with 1 + kx > 0. (3.11)

The special case H0(x) is interpreted as limk→0 Hk(x). H is called the Gener-

alized Extreme Value (GEV) distribution and describes the limit distribution

of normalized minimum(x = (r(1) − dn)c−1
n ). The parameter k is referred to

as the shape parameter that governs the tail behavior of the limiting distri-

bution. An important concept for the application of EVT to VaR estimation

is Maximum Domain of Attraction: the random variable X belongs to the

Maximum Domain of Attraction of the extreme value distribution H ( and we

write X ∈ MDA(H)) if and only if Fisher-Tippett theorem holds for X, with

limit distribution H.

It has been proved by Gnedenko (1943) that F (x) of rt is strongly as-

sociated with the types of limiting distribution. Simply speaking, the tail

behavior of F (x), not the specific distribution, determines the limiting dis-

tribution H of the normalized minimum. However, the corresponding cn and

dn may depend on the CDF F (x). Thus, this theory is applicable to a wide

range of distributions for the return rt. To be specific, heavy tailed distribu-

tions(such as Cauchy, Student-t, Pareto, log-gamma) belong to MDA(H), for

k < 0. Gamma, normal, log-normal and exponential distributions belong to

MDA(H0), while distributions with finite endpoints (such as the uniform and

beta) belong to MDA(H0), for k > 0.
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Although this extreme value theory seems applicable to practice, it encoun-

ters some problems due to the estimation of parameters (k, cn and dn). Thus,

this method is not the one directly used for estimating VaR. Instead, it is the

foundation of the advanced method.

A New Approach on EVT

In this part, a new Extreme Value Theory[23] based on last section is in-

troduced. Here, we use maximum instead of minimum of rt for ease of our

presentation. Thus, it is necessary to derive the GEV (Generalized Extreme

Value) distribution for normalized maximum (x = (r(n) − dn)c−1
n ), which be-

comes

H∗ ≡ H∗k(x) = exp(−(1− kx)1/k) with 1− kx > 0, (3.12)

where the special case H∗0(x) is also interpreted as limk→0 H∗k(x).

The basic theory of this new approach is to consider the conditional distri-

bution of r = x + u given r > u for the limiting distribution of the maximum

given in (3.12). Then the conditional distribution of r ≤ x + u given r > u is

Pr(r ≤ x + u | r > u) =
Pr(u ≤ r ≤ x + u)

Pr(r > u)

=
Pr(r ≤ x + u)− Pr(r ≤ u)

1− Pr(r ≤ u)
. (3.13)

Using the CDF H∗ given in (3.12) and the approximation e−z ≈ 1− z, we
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can get

Pr(r ≤ x + u | r > u) =
H∗(x + u)−H∗(u)

1−H∗(u)

=
exp(−[1− k(x+u−d)

c
]1/k)− exp(−[1− k(u−d)

c
]1/k)

1− exp(−[1− k(u−d)
c

]1/k)

= 1− 1− exp(−[1− k(x+u−d)
c

]1/k)

1− exp(−[1− k(u−d)
c

]1/k)

≈ 1− [1− k(x+u−d)
c

]1/k

[1− k(u−d)
c

]1/k

= 1− [1− kx

c− k(u− d)
]1/k, (3.14)

where x > 0 and c− k(u− d) > 0.

In (3.14), if we make β = c − k(u − d) and ξ = −k, we will have the

expression as:

Gξ,β(x) = 1− [1 +
ξx

β
]−1/ξ, (3.15)

which is the Generalized Pareto Distribution(GPD).

Based on the CDF in (3.15), we easily derive the expression of PDF( Prob-

ability Density Function) for Generalized Pareto Distribution as below:

gξ,β(x) =
1

β
[1 +

ξx

β
]−1/ξ−1, (3.16)

Combining (3.13),(3.14) and (3.15), we conclude that the conditional dis-

tribution of r ≤ x + u given r > u can be approximated by Generalized

Pareto Distribution(GPD). And this conclusion was verified by Pickands(1975)
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through the property:

F ∈ MDA(Hk) ⇔ lim sup
u→xF 0<x<xF−u

| Fu(x)−Gk,β(x) |= 0, (3.17)

where xF is the right endpoint ( which could be infinite) of the distribution F .

This result states that if F is in the Maximum Domain of Attraction of GPD,

as the threshold u approaches the endpoint of F , GPD becomes an accurate

approximation of the excess distribution function Fu.

The parameters ( ξ and β ) in GPD can be estimated by maximum likeli-

hood, once the threshold u is given. These parameters could be obtained by

maximizing the following log-likelihood function based on (3.16):

max
ξ,β

(−N log β − (1 + 1/ξ)
N∑

i=1

log(1 + ξ/β(Xki
− u))), (3.18)

where N = N(u) denotes the number of observations exceeding the threshold

u and Xk1 , Xk2 · · · , XkN
are the upper order statistics exceeding this threshold.

Meanwhile, from the conditional probability principle

Pr(r ≥ x + u) = Pr(r > u) ∗ Pr(r ≥ x + u | r > u)

and using the (3.14) and (3.15), we can have:

1− F (u + x) = [1− F (u)][1− Fu(x)]

≈ [1− F (u)][1−Gξ,β(x)]. (3.19)

Here, an estimator for the p- quantile of F (u + x) for x > 0 can be easily

derived. The term 1−F (u) can be estimated using the empirical distribution
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function: [1 − F (u)] = N/n. Substituting the maximum likelihood estimator

of ξ and β in the GPD, we get:

[1− F (u + x)] = (1 + ξx/β)−1/ξN/n. (3.20)

Inverting the above formula and making F (u + x) = p, we get:

x = [((1− p)
n

N
)−ξ − 1]

β

ξ
. (3.21)

And the real p-quantile estimator is

xp = u + [((1− p)
n

N
)−ξ − 1]

β

ξ
. (3.22)

Note that this estimator is valid only for very high p, as the approximation

is valid only asymptotically.

To summarize, EVT seems to be a very general approach to tail estimation.

The main strength is that the use of a GEV distribution does not seem to

be a very restrictive assumption, as it covers most of the commonly used

distributions. On the other hand, there are several problems that need to be

considered.

First, the assumption of i.i.d observations seems to be at odds with the

characteristic of financial data. Although generalizations to dependent obser-

vations have been proposed, they either estimate the marginal unconditional

distribution or impose conditions that rule out the volatility clustering behav-

iors typical of financial data.

Second, EVT works only for very extreme probability levels. How extreme

these probability must be is hard to tell on a priori ground. A Monte Carlo
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study might help to shed some light on how fast the performance of the EVT

estimators deteriorates as we more away from tail.

Closely related to this issue is the selection of the cut-off point that deter-

mines the number of order statistics to be used in the estimation procedure.

The choice of the threshold u presents the same problems encountered in the

choice of the number of k extreme order statistics. If the threshold is too

high, there are too few exceptions and the result is a high variance estimator.

On the other hand, a threshold too low produces a biased estimator, because

the asymptotic approximation might become very poor. Unfortunately, there

is no statistical method to choose u and we have to rely on simulations and

graphical devices.

Threshold choice for EVT by simulation

As we have already pointed out, a critical aspect of the implementation of

EVT is the determination of the threshold beyond which the observations are

assumed to follow a Generalized Pareto Distribution. To address this issue we

need to refer to a Monte Carlo simulation[18].

We generated 1000 samples of 1000 observations each, using three different

distribution, the standard normal and Student-t(5) and Exponential(1). For

each sample, we estimated the quantile p= 0.005, 0.01 and 0.05 using the

formula of the extreme value theory provided above and different threshold

value. We chose the threshold values indirectly, by choosing the number of

observations to be included in the maximum likelihood estimation. We started

with k=50 and we increase it by 10 until it reached 500. To compare the

different estimates, we computed the bias and the mean squared error of the

estimators as follows:
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biasp =
1000∑
j=1

q̂p/1000− qp, (3.23)

MSEp =
1000∑
j=1

(q̂p − qp)
2/1000. (3.24)

Our goal is to determine how sensitive these estimatsor are to the choice of

the parameter k, to the underlying distribution and to p-level of the estimated

quantile. The results are reported in Figure (3.1,3.2 and 3.3). We plot the bias

the MSE of the EVT estimates against k, together with historical simulation

quantile estimates, which do not depend on k.

From these plots, we can notice several points:

First, the p = 0.005 EVT estimators appear to be very accurate compared

with historical simulation, for all three different distributions, both from bias

and MSE. This verifies that EVT works very well for extreme tails. But its per-

formance deteriorates with k increase, especially for the normal distribution.

We prefer to keep k below 150.

Second, for p = 0.01, 0.05, the superiority of using EVT method is not so

evident as for p = 0.005, which is not surprising given that EVT works well

only for extreme tails. For Exp(1) distribution, the bias and MSE of EVT

are not stable but always smaller than the ones of historical simulation. For

normal distribution, the bias and MSE show clear trend that they grow rapidly

with k increase. They become greater than the ones of historical simulation

when k is larger than 130. And the t(5) distribution exhibits very similar

behaviors as normal distribution. Thus, the k ranging from 70 to 130 seems

to be appropriate for EVT estimation. In our following empirical study, we

27



Figure 3.1: Simulation result for k selection. We estimate the exponential(1)
0.5%,1% and 5% quantile. Solid line is the bias of EVT method; dashed
line is MSE of EVT method; dotted line is bias of Historical simulation and
dashdotted line is MSE of Historical simulation.28



Figure 3.2: Simulation result for k selection. We estimate the normal 0.5%,1%
and 5% quantile. Solid line is the bias of EVT method; dashed line is MSE of
EVT method; dotted line is bias of Historical simulation and dashdotted line
is MSE of Historical simulation. 29



Figure 3.3: Simulation result for k selection. We estimate the t(5) 0.5%,1%
and 5% quantile. Solid line is the bias of EVT method; dashed line is MSE of
EVT method; dotted line is bias of Historical simulation and dashdotted line
is MSE of Historical simulation. 30



choose k equal to 100.

3.3.2 Conditional Autoregressive Value at Risk

The definition of VaR naturally leads us to the concept of quantile regression.

To estimate conditional quantiles, the time series of the specified quantile is

explicitly modeled using any information deemed to be relevant. No distribu-

tion assumption for the time series behavior of returns is needed. The basic

idea is to model the conditional p-quantile as some function of the information

available. A good choice of relevant information and of the functional form

should yield a close approximation to the population quantile. Koenker and

Basset(1978)[14] generalize the common linear regression framework by shift-

ing the focus from the conditional mean to conditional quantiles. As shown

below, for example, in Koenker and Portnoy( 1997), the unconditional sample

p-quantile can be found as the solution to

min
β∈R

(
∑

rt≥β

p | rt − β | +
∑

ri<β

(1− p) | rt − β |). (3.25)

Extending this to the classical linear regression framework, Koenker and

Bassett(1978)[14] define the p-regression quantile estimator by

arg min
β∈Rk

(
∑

rt≥x
′
tβ

p | rt − x
′
tβ | +

∑

rt<x
′
tβ

(1− p) | rt − x
′
tβ |), (3.26)

where the xt are non-random vectors containing information available to time

t. The key assumption in the linear quantile regression model is that

rt = x
′
tβp + zt,p. (3.27)

31



Note that the distribution of the error term is left unspecified. The only

assumption is that the conditional quantile function is given by Qp(rt | xt) =

x
′
tβ.

Because our focus is exclusively on one-step forecasting performance, we

more closely examine the conditional VaR approaches formulated in Engle and

Manganelli(2002)[11]. They link VaR to the conditional standard deviation of

the returns such that an increase in the latter leads a more dispersed return

distribution and thus, to a higher VaR. Their conditional autoregressive VaR

specifications includes V aRt−1 as an explanatory variable in rt, to adapt to

serial dependence in volatility and mean. A function of rt−1 is also included

to link the conditional quantile to return innovations.

As mentioned above, no explicit distributional assumptions need to be

made, guarding against this source of model error. Although many specifi-

cations for regression model (3.27) are conceivable, we first adopt those put

forth in Engle and Manganelli(2002). The baseline CAViaR models is give by

V aRt = V aRt−1 + β[I(rt−1 ≤ V aRt−1)− p]. (3.28)

As typically p ≤ 0.05 for risk management purpose, we have an asymmetric

response: V aRt will jump upward when a violation occurs and will slowly

decrease. In the baseline model, the adaptive process learns nothing from the

actual size of returns, except that whether or not the returns exceed VaR.

It is a very preliminary form of CAViaR model, and it cannot satisfy our

requirements for the model. Thus, we make some improvement on it, as is the
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case with the symmetric absolute value CAViaR specification

V aRt = β0 + β1V aRt−1 + β2 | rt−1 | . (3.29)

It allows the autoregressive parameter to be different from one, and introduces

a direct response of the quantile to the return process, treating the effect of

extreme returns on VaR -and implicitly, on volatility - symmetrically. In order

to reflect the asymmetry in financial returns, we can use asymmetric slope

CAViaR specification,

V aRt = β0 + β1V aRt−1 + β2max[rt−1, 0] + β3min[rr−1, 0], (3.30)

which allows the VaR prediction to respond asymmetrically to positive and

negative returns and so can accommodate the leverage effect.

The specifications for symmetric absolute value and asymmetric slope CAViaR

are two very typical ones, and we would test their performance in real data in

empirical study later. The specifications for CAViaR can be very flexible, as

long as they can reflect the real situations.
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3.4 Other Estimation Methods

In our discussion of GARCH models, we emphasized how the assumption of

normality distributed standardized residuals seemed to be at odds with the

fact that financial data tend to exhibit non-normality characteristic. It turns

out, however, that the normality assumption might not be as restrictive as we

think. This is due to a very important result Bollerslev and Woolridge(1992)[5]

who showed that the maximization of the normal GARCH likelihood is able to

deliver consistent estimates, provided that the variance equation is correctly

specified, even if the standardized residuals are not normally distributed. We

refer to this result as the quasi-maximum likelihood GARCH. Many papers

have exploited this property. Engle and Magnanelli(2002)[11], suggests com-

puting the VaR of a portfolio by first fitting GARCH and then multiplying the

empirical quantile of the standardized residuals by the square root of the esti-

mated variance. This estimation method is a mix of GARCH fitted to portfolio

returns and historical simulation applied to the standardized residuals. As a

consequence it retains some of the drawbacks of these approaches. First, the

assumption of that the standardized residual are i.i.d is still required. Given

this assumption, however, flaw of historical simulation still exists, as they use

a window of the whole series of standardized residuals. On the other hand,

the problem of discreteness of extreme returns remains. Historical simulation

will provide very poor and volatile quantile estimation in the tails. A natural

alternative seems to use EVT instead of historical simulation. GARCH-EVT

is estimated by McNeil and Frey(2000)[19].

Given the very general results of EVT, the GARCH augmented by the

EVT requires very weak assumptions. The only required assumption is that
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the variance is correctly specified and that the standardized residuals are i.i.d

and in the maximum domain of attraction of some extreme value distribution.
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Chapter 4

Testing the Fit of Value-at-risk

Models

To assess the predictive performance of the methods under consideration, we

follow the framework in paper [6] and [16], which is evaluating the accuracy

of out-of-sample interval forecasts. By defining Ht = I(rt < V aRt), Christof-

fersen(1998) terms the sequence of VaR forecasts efficient with respect to Ft−1

if

E[Ht|Ft−1] = p,

which, by applying iterated expectations, implies that Ht is uncorrelated with

any function of a variable in the information set available at t-1. If the above

condition holds, then VaR violations will occur with the correct conditional

and unconditional probability, and neither the forecast for V aRt nor that for

Ht can be improved.

Although a general test of this condition is desirable, we follow Christof-
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fersen(1996) in using intermediate statistics for testing specific implications

of the general hypothesis, so that particular inadequacies of a model can be

revealed. The following specifies an LR test of correct unconditional coverage,

an LR test of independence, and an LR test, which combines the two to form

a complete test of the conditional coverage. By specifying Ft−1 to include at

least H1, H2, · · · , Ht−1, it is straightforward to show (Christoffersen,1998) that

efficiency implies

Ht|Ft−1 ∼ Ber(p), t = 1, 2, · · · , T, (4.1)

where Ber(·) denotes the Bernoulli distribution.

4.1 Test of Unconditional Coverage

From (4.1), we should first test the unconditional coverage through the follow-

ing hypothesis

H0 : E[Ht] = p vs HA : E[Ht] 6= p. (4.2)

This hypothesis could be done through likelihood ratio test. The likelihood

under the null hypothesis is simply

L(p; H1, H2, · · · , HT ) = (1− p)n0pn1 , (4.3)

and under the alternative

L(π; H1, H2, · · · , HT ) = (1− π)n0πn1 , (4.4)
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where n0 is the number of violations that do not occur and n1 is the number

of violations that occur. Also, we have n0 + n1 = T and π = n1/(n0 + n1) is

the violation ratio.

Testing for the unconditional coverage can be formulated as a standard

likelihood ratio test,

LRuc = 2[L(π; H1, H2, · · · , HT ]− L(p; H1, H2, · · · , HT ] ∼asy χ2
1. (4.5)

4.2 Test of Independence

The above test is just the first step because it does not take into account the

possibility that a model that passes the unconditional coverage test(violation

ratio is close to p), may have serious violation clustering problem. In the test

above, the order of 0 and 1 in Ht does not matter, only the total number of 1

plays a role. Therefore, a test for violation independence should be employed.

Several tests for independence have been proposed in the literature, includ-

ing the runs tests. Most recently, a test based on the time between violation

was proposed in Danielsson and Morimoto(2000)[8]. Under the null, a viola-

tion today should have no influence on the probability of a violation tomorrow.

Christoffersen(1998) models Ht as a binary first-order Markov chain with tran-

sition probability matrix

Π =




1− π01 π01

1− π11 π11


 , πij = P (Ht = j|Ht−1 = i), (4.6)

as the alternative hypothesis of independence. The approximate joint likeli-
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hood, conditional on the first observation, is

L(Π; H2, H3, · · · , HT |H1) = (1− π01)
n00πn01

01 (1− π11)
n10πn11

11 , (4.7)

where nij represents the number of transitions from stat i to stat j,

nij =
T∑

t=2

I(Ht = j|Ht−1 = i),

and the maximum likelihood estimators under the alternative hypothesis are

π01 = n01/(n00 + n01) and π11 = n11/(n10 + n11).

Under the null hypothesis of independence, we have π01 = π11 ≡ π1; and

π1 = (n01 + n11)/(T − 1), which is similar to π in the unconditional coverage

test. The likelihood under the null hypothesis is

L(π1; H1, H2, · · · , HT ) = (1− π1)
(n00+n10)π

(n01+n11)
1 , (4.8)

and the likelihood ratio test is given by

LRind = 2[L(Π; H2, · · · , HT |H1]− L(π1; H2, · · · , HT |H1] ∼asy χ2
1. (4.9)

4.3 Test of Conditional Coverage

Because the tests for unconditional coverage and independence each exam-

ines one aspect of the problem, these two tests must be combined to form

a complete test for conditional coverage. In fact, the null hypothesis of the
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unconditional coverage test will be tested against the alternative hypothesis

of the independence test. Based on Christoffersen(1998), we can utilize the

likelihood ratio

LRcc = 2[L(Π; H2, · · · , HT |H1]− L(p; H2, · · · , HT |H1] ∼asy χ2
2 (4.10)

to test conditional coverage. Notice that if we condition on the first observation

in the test for unconditional coverage, we can have π = π1. It leads us, if we

do not use the first observation in unconditional coverage test, to the following

relationship among three likelihood ratio

LRcc = LRuc + LRind, (4.11)

which provides a means to check whether the violation series Ht fails the

correct conditional property.
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Chapter 5

Expected shortfall

Value-at-Risk has been criticized for the adequacy of being a risk measure for

it lacks the coherent property defined by Artzner (1999)[2]. Because benefit

and loss is an equivalent way to say financial return( positive return implies

benefit and negative return implies loss), we use benefit and loss to introduce

the definition of coherence for ease of explanation. For a risk measure ρ, we

call it coherent, if for any random loss x and y, it can satisfy the following four

axioms:

(1) Subadditivity - For all random loss x and y,

ρ(x + y) ≤ ρ(x) + ρ(y).

(2) Monotonicity - If x ≤ y for each scenario, then

ρ(x) ≤ ρ(y).

(3) Positive homogeneity - For all µ ≥ 0 and random loss x,

ρ(µx) = µρ(x).

(4) Translation Invariance - For any random loss x and constant α,

ρ(x + α) = ρ(x) + α.
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The concept of coherence is so important to us because these four axioms

represent the most basic requirements for the measure of risk.

Subadditivity reflects the diversification in portfolio management, which

expresses the fact that the portfolio made up of sub-portfolios will suffer a risk

no more than the sum of the risks of sub-portfolios. This is the most significant

feature for a risk measure. Because diversification is the most common concept

in financial and investment field, any measure of risk that does not meet this

axiom will encounter some problems in the practice.

For example, in insurance field, we all know one saying” Do not put all

the eggs in one basket”. This is just talking about the diversification in the

portfolio management. Therefore, any risk measure without subadditivity

property can not capture the essence of how the portfolio will behave with

the addition of other portfolios. Unfortunately, the most commonly used risk

measure, Value at risk is not in line with this term.

Monotonicity is very easy to understand, which means that the greater

measure of risk will correspond to the greater risks. This is the essential

requirement of the risk measure.

Positive Homogeneity is a limiting case of subadditivity, showing what will

happen when there is no diversification effect between the portfolios.

Translation Invariance is not so straightforward, but it can be explained in

this way: when the capital is withdrawn from one portfolio, the risk this new

portfolio will undertake is equal to the previous risk of this portfolio plus the

capital already withdrawn. This is saying another common sense in banking

and insurance industry, that the less reserve or margin there is at hand, the

more risk the bank and insurance company will confront in the future.
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Expected shortfall is the expected value of portfolio losses exceeding VaR.

It has been proven by Carlo Acerbi(2002)[1] as a coherent measure and is

usually proposed as a supplement to VaR. Since most methods to estimate ES

are based on the estimation of VaR, we do not specially introduce them here.

The procedures to ES estimation will be provided later in empirical study.
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Chapter 6

Empirical study

6.1 Introduction to empirical study

In this chapter, we apply the methods discussed in preceding chapters to em-

pirical study and evaluate their performance. We divide this chapter into two

parts.

The first section is about estimations of VaR. We employed the methods

discussed in Chapter 3 to estimate the VaR of two data sets: BMW stock

price returns and NYSE(New York Stock Exchange) index returns. Then,

we use the three criteria introduced in Chapter 4 to evaluate their perfor-

mance. All these computations and programming are completed by myself in

R( Details are provided in next section). I also did the computations of some

methods(GARCH-normal, GARCH-HS) in Matlab, which give very similar

results to ones from R. This verifies the validity of estimation from R.

The second section is related to estimation of ES. Because the ES is usually

estimated after VaR, the methods we use to estimate VaR are still compared

in this section. Since no very efficient ways to evaluate estimation of ES for
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real data exist, we generate data in R from three different GARCH processes

for comparison. Unlike VaR estimation, we use bias and MSE to determine

the performance of different methods.

6.2 Empirical study for VaR

6.2.1 Procedures for different methods

In our empirical study, we use one-day-ahead VaR prediction to study the

performance of these methods, because of its conceptual simplicity and wide

application. We divide the whole data set(N observations) into two parts. The

first part is called ”window”(K observations), which is used to estimate the

parameters in each model. The second part is used to evaluate the estimating

performance of different methods. We move this window one day ahead each

time, keeping the window length constant at K. At very advancement of the

window, the first observation in the window will go out and the first new

observation out of the window will come in. For each moving window, we

recalculate model parameters and make the VaR prediction. This leaves us

with N−K one-step-ahead VaR forecasts to study the predictive performance

of the models.

For example, if there are 6146 observations(N=6146), we first take observa-

tions from 1 to 1000 as the window, using them to estimate the parameters for

each method. We use the estimated model to calculate the VaR and compare

it with the real return( observation 1001). If this real returns is smaller than

our predicted VaR, we would call this a ”violation”. And we would count the

number of violation during the whole process. Then we move the window one
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step ahead, which would be composed of observations from 2 to 1001. We use

this new window to make the new prediction and compare it with observation

1002. This process would be repeated for 5146 times until the VaR prediction

is made for last observation(6146).

In addition to regular GARCH approaches, which rely on the normal as-

sumption for residual terms, we consider alternative conditional distributions

which use the student’s t(5) and modified Exponential(1) distribution instead

of the normal distribution in order to better account for conditional asymme-

try and heavy-tail. We also utilize the GARCH model combined with EVT

and Historical Simulation.

We estimate the VaR at p = 0.01, 0.025, 0.05, 0.1 and 0.25 using the fol-

lowing methods:

(1) Historical simulation,

(2) Extreme value theory,

(3) GARCH-Normal,

(4) GARCH-Student’s t(5),

(5) GARCH-Exponential(1),

(6) GARCH-Extreme value theory,

(7) GARCH-Historical simulation,

(8) CAViaR-Symmetric absolute value, and

(9) CAViaR-Asymmetric slope.

All the estimating and evaluating procedures are performed in R. Now, we

provide the operation details of these methods in the order shown above.
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(1)Historical simulation

From the discussion in chapter 3, we know that estimation of p-VaR by his-

torical simulation is actually the unconditional p-quantile of the return distri-

bution. The ”window” is used to obtain this unconditional quantile. First, we

sort all the observations(K = 1000) in the window from smallest to greatest

and denote them by r[1], r[2] · · · r[1000]. Then, we would use following formula

to compute p-quantile:

V aR(p) = |M − pK|r[M+1] + |M − pK + 1|r[M ], (6.1)

where M is the floor integer of pK.

(2) Extreme value theory

We apply EVT to VaR estimation with help of package ”evir” in R. Since

the program in ”evir” is using maximum order to estimate ( as we discussed

in chapter 3) while we need the VaR estimation on the minimum side, we

should first take negative sign on all the observations ri, i = 1, 2 · · · 1000 in

the window, and then apply the command ”gpd” in R. After we get the result

from R, we can get the real VaR by making another sign change.

(3) GARCH-Normal

We perform this estimation also in R , using the package of ”tseries”. In this

model, we use ARMA(1,1) to compute the conditional mean for the financial

return and GARCH(1,1) to capture the changing volatility. We use command

”arma” and ”garch” in package ”tseries” to conduct the computation. The es-

timation of parameters in ’arma’ is finished by conditional least square method
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while the parameters in ’garch’ are estimated by maximum likelihood method,

as we discussed in chapter 3. Every time, we use observations in the ”win-

dow” to calculate the parameters and then make the prediction. I also did

the estimations for parameters in ARMA and GARCH in Matlab, because my

supervisor, Pro. Mizera ever doubted about the computation validity from

R. The results for these two software turned out to be very similar, probably

because R has updated its package and made some progress. After we have

fitted the ARMA(1,1)

ut = a0 + a1rt−1 + b1εt−j, (6.2)

and GARCH(1,1) model

σ2
t = c0 + c1ε

2
t−1 + d1σ

2
t−1, (6.3)

the one-day-ahead VaR can be expressed as

V aRt = ut + σtQp(z), (6.4)

where Qp indicates the p-quantile and zt follows the standard normal distri-

bution.

(4) GARCH-t(5)

The procedure to use GARCH-t(5) is basically the same to GARCH-Normal,

except we assume that zt follows t(5) distribution instead of standard normal
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distribution. And the form of VaR estimation has some little modification as

V aRt = ut +

√
3

5
σtQp(z), (6.5)

where Qp indicates the p-quantile and zt follows t(5) distribution. Here,
√

3
5

is used to normalized zt because t(v) distribution has variance of ( v
v−2

).

(5) GARCH-Exponential(1)

Using GARCH-Exponential(1) follows the same as GARCH-Normal except

that we replace standard normal distribution with Exponential(1). The reason

for doing this is that we want to use Exponential(1) to account for heavy-tail

property of financial returns. The one-day-ahead VaR estimation is in the

form of

V aRt = ut + σt(1 + Qp(−z)), (6.6)

where Qp indicates the p-quantile and zt follows Exponential(1) distribution.

We take negative of z in Qp to have infinite left end. We add 1 to Qp(−z)

because we want the error term to have mean 0 and variance 1.

(6) GARCH-Extreme value theory

This method combines GARCH model and extreme value theory together and

we still implement it in R with the package ”tseris” and ”evir”. We do not

assume any distribution for error terms zt. Because extreme value theory

can be applied to any i.i.d observations, we use it for normalized residuals
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r1−u1

σ1
, r2−u2

σ2
· · · , rK−uK

σK
. Then the one-day-ahead VaR estimation is

V aRt = ut + σtQp(z), (6.7)

where Qp indicates the p-quantile we get from normalized residuals by using

extreme value theory.

(7) GARCH-Historical simulation

Instead of applying extreme value theory, we get the p-quantile of normalized

residuals through historical simulation. We still sort the normalized residuals

r1−u1

σ1
, r2−u2

σ2
· · · , rK−uK

σK
from smallest to greatest and then use formula(6.1) to

calculate the p-quantile. Then the one-day-ahead VaR estimation is

V aRt = ut + σtQp(z), (6.8)

where Qp indicates the p-quantile we get from normalized residuals by using

historical simulation.

(8) CAViaR-Symmetric absolute value

In order to conduct the quantile regression estimation, we would refer to pack-

age ”quantreg” in R. And the relationship we want to find is

V aRt = β0 + β1V aRt−1 + β2 | rt−1 |, (6.9)

where β0, β1, β2 are the parameters we need to estimate.
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These parameters could be found by minimizing the following equation

arg min
β0,β1,β2∈R

(
∑

rt≥V aRt

p | rt − V aRt | +
∑

rt<V aRt

(1− p) | rt − V aRt |), (6.10)

which could be done by ’rq” command in package ”quantreg” in R.

In order to fit the quantile regression model, we should first have the data

for independence factors and response factor. In practice, we can fit the re-

gression relationship rt ∼ |rt−1|+ V aRt−1 by using the following ”window” of

data:

rt rt−1 V aRt−1

rL+1 |rL| V aRL = p− quantile of data[r1, rL]
rL+2 |rL+1| V aRL+1 = p− quantile of data[r2, rL+1]

...
...

...
rL+K |rL+K−1| V aRL+K−1 = p− quantile of data[rK , rL+K−1]

Table 6.1: Window of data for regression of CAViaR-Symmetric absolute value
method

We use this K groups of data to estimate the parameters β0, β1, β2. Then

we calculate V aRL+K and compare it with rL+K . If rL+K < V aRL+K , we call

it ”violation”.

Then we use the new estimated V aRL+K to update the data as below,

keeping the ”window” length as K.

rt rt−1 V aRt−1

rL+2 |rL+1| V aRL+1 = p− quantile of data[r2, rL+1]
rL+3 |rL+2| V aRL+2 = p− quantile of data[r3, rL+2]

...
...

...
rL+K+1 |rL+K | V aRL+Kjust estimated from CAV iaR model

Table 6.2: Updated window of data for regression of CAViaR-Symmetric ab-
solute value method

We keep updating the ”window” until we estimate the VaR for last return
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rN , which gives us N −K − L forecasts for VaR. These forecasts are used to

evaluate the performance of CAViaR-Symmetric absolute value method.

(9) CAViaR-Asymmetric slope

The way to employ asymmetric slope method is quite similar to symmetric

absolute value method, except that the specification of regression relationship

is

V aRt = β0 + β1V aRt−1 + β2max[rt−1, 0] + β3min[rr−1, 0]. (6.11)

We follow the same procedure to build the ”window” of data, estimate the

parameters and make the forecasts.

6.2.2 Empirical results for BMW stock returns

We first examine the performance of various methods for estimating VaR by

using the stock price return of BMW. The data comprise daily closing price,

pt, of the BMW stock from January 1 ,1973 to July 22, 1996, yielding a

total of N=6146 observations of percentage log-returns, rt = 100(log pt −
log pt−1). Table 6.3 presents the relevant summary statistics. The sample

skewness indicates considerable asymmetry, which is taken together with the

sample kurtosis, indicating a substantial violation of normality.

Sample Size Mean Std.Dev. Skewness Kurtosis Min Max
6146 0.034 1.476 -0.0458 10.161 -14.061 11.719

Table 6.3: Summary Statistics for BMW equity returns

These statistical characteristics for BMW stock returns can be more clearly

seen from Figures (6.1, 6.2, 6.3 ).
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Figure 6.1: Plot for daily returns of BMW equity, from January 1, 1973 to
July 22, 1996.

Figure 6.2: Solid line is the density plot for standardized daily returns for
BMW equity, from January 1, 1973 to July 22, 1996. It has mean=0 and
standard deviation=1. Dashed line is the density plot for standard normal
distribution. Non-normality, especially higher center and lower sides, can be
clearly seen in this plot.
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Figure 6.3: QQ-plot for standardized daily returns for BMW equity, from
January 1 ,1973 to July 22, 1996. It has mean=0 and standard deviation=1.
Solid line is for standard normal distribution. Non-normality, especially higher
tails, can be clearly seen in this plot.

The performance of these methods are evaluated by the criteria we dis-

cussed in chapter 4. In the following tables, p denotes the theoretical prob-

ability with which the observations should fall below our VaR estimation;

Violation rate is the actual probability with which the return is smaller than

our VaR estimation; LRuc is the p-value for unconditional coverage likelihood

ratio test; LRind is the p-value for independence likelihood ratio test; LRcc is

the p-value for conditional coverage likelihood ratio test. The best scenario

for one method is that it can pass all these three tests, with all the p-value

greater than 0.05.

Because historical simulation and extreme value theory methods are both

unconditional methods, we put their results together in Table(6.4) and make

some comparisons first. From this table, we can easily notice these points:

First, as the unconditional models do not account for volatility change,
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none of them is able to produce i.i.d VaR violations( none of them pass the

independence test, with p-value greater than 0.05 ), causing us to strongly

reject independence of the Ht sequences for all unconditional models.

Second, at almost p-levels, the historical simulation performs well with

respect to violation rate. For EVT, the estimation accuracy is much better

when p is small than when p is large, which can be seen from the p-value of

unconditional coverage test. This is not surprising for the fact that EVT only

works well in extreme tails.

Model P Vio Rate LRuc LRind LRcc

Historical Simulation 0.01 0.0113 0.369 0.004 0.0109
0.025 0.024 0.6113 0.00 0.00
0.05 0.0487 0.6858 0.00 0.00
0.1 0.1007 0.9851 0.00 0.00
0.25 0.2503 0.9615 0.00 0.00

EVT 0.01 0.0118 0.9485 0.0145 0.0505
0.025 0.0289 0.8123 0.00 0.00
0.05 0.0585 0.7337 0.00 0.00
0.1 0.1207 0.7776 0.00 0.00
0.25 0.2755 0.00 0.00 0.00

Table 6.4: VaR Prediction Performance: Unconditional Models

Methods (3),(4) and (5) are typical fully-parametric approaches to esti-

mating VaR, which assume the distributions for financial returns. The success

of this method largely depend on whether the distribution we have assumed

can accurately reflect the properties of real financial data. Comparing these

three methods, we can notice these points:

First, although they use GARCH(1,1) model to reflect the changing volatil-

ity of the financial return, none of them pass the independence test and exhibit

independent ”violation”. The possible reason is that these assumptions for re-

turn distribution do not hold for the real data.
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Second, we can note that the violation rate from GARCH-Normal and

GARCH-T(5) methods are always higher than the target probability, which is

the result of the ”light tail” of normal and t(5) distributions compared with

real financial return. However, the violation rate from GARCH-Exponential(1)

is less than the target probability( except p=0.25 ), which can be explained

its ”heavier tail”.

Third, when p becomes larger than 0.1, the VaR estimation from GARCH-

normal method comes to be very accurate, which can be verified by p-value of

unconditional likelihood ratio test. This implies that GARCH-normal method

is an option for moderate-tail VaR estimation.

Model P Vio Rate LRuc LRind LRcc

GARCH-Normal 0.01 0.0205 0.00 0.00 0.00
0.025 0.0400 0.00 0.00 0.00
0.05 0.0602 0.001 0.00 0.00
0.1 0.1063 0.538 0.00 0.00
0.25 0.2507 0.9167 0.00 0.00

GARCH-t(5) 0.01 0.0132 0.04 0.00 0.00
0.025 0.0362 0.00 0.00 0.00
0.05 0.0721 0.007 0.00 0.00
0.1 0.124 0.026 0.00 0.00
0.25 0.2855 0.00 0.00 0.00

GARCH-Exponential(1) 0.01 0.0033 0.00 0.00 0.00
0.025 0.0128 0.00 0.00 0.00
0.05 0.0334 0.00 0.00 0.00
0.1 0.0987 0.7586 0.00 0.00
0.25 0.3461 0.00 0.00 0.00

Table 6.5: VaR Prediction Performance: CAViaR Models

Then, we compare the two methods combining GARCH(1,1) model re-

spectively with EVT and historical simulation. With the test result shown

in Table(6.6), we can note that the performances from GARCH-EVT and
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GARCH-Historical simulation are very excellent: (1) Their estimations are

very accurate. From the table, we can see that the ”violation rate” is very

close to ”target probability” for GARCH-EVT with p < 0.05, and for GARCH-

HS with almost all p levels. (2) These two methods pass all three tests with

p = 0.025, 0.05 for GARCH-EVT and with p ≥ 0.025 for GARCH-HS methods.

Their performances are much superior to other methods, exhibiting indepen-

dent violation, which means they successfully capture the changing volatility

of financial returns. Comparatively, GARCH-EVT estimation is more credible

for extreme p and GARCH-HS is more appropriate for moderate p, which is

natural result given their theoretical differences.

To conclude the GARCH-based methods, introducing GARCH volatility

dynamics gives us the possibility to improves VaR prediction performance,

because GARCH model enables our VaR forecasts to adjust more quickly to

the new situation. This can be clearly seen from Figure(6.4). However, we can

also see, GARCH-Normal, GARCH-t(5) and GARCH-Exponential(1) methods

do not bring us the convincing results. Their failure can be greatly attributed

to the inappropriate assumptions for return distribution. Meanwhile, the suc-

cess of GARCH-Hs and GARCH-EVT can be perceived as the consequence of

utilizing GARCH model and the proper ways to deal with the dynamic factor

zt. If we want to improve the performance of regular GARCH models, we need

to find a distribution which can better reflect the asymmetry and heavy-tail

of the financial returns, such as Skew-t distribution.

Comparing the results in Table (6.7), we can draw these conclusions: (1)

Their estimations are both accurate for p ≥ 0.05; (2) CAViaR-asymmetric

slope method almost pass all the violation independence test (except p =

0.001) while CAViaR just pass for p = 0.05, which is resulted from the fact
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Figure 6.4: Plot 1 is BMW stock return and its estimation of VaR for p = 0.05
from Historical Simulation; Plot 2 is BMW stock return and its estimation of
VaR for p = 0.05 from GARCH-Historical simulation method. Solid line is the
VaR plot and dotted line is financial return plot. Apparently, we can tell that
VaR from GARCH-HS adjusts more quickly to the changing volatility.
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Model P Vio Rate LRuc LRind LRcc

GARCH-EVT 0.01 0.0091 0.5259 0.00 0.00
0.025 0.0233 0.4347 0.5766 0.6307
0.05 0.0503 0.9135 0.3699 0.6651
0.1 0.117 0.00 0.00 0.00
0.25 0.2265 0.00 0.1922 0.00

GARCH-HS 0.01 0.0079 0.1709 0.00 0.00
0.025 0.0234 0.5037 0.7741 0.7674
0.05 0.0494 0.8695 0.1228 0.3000
0.1 0.0950 0.2826 0.5986 0.4888
0.25 0.2499 0.4611 0.0648 0.1386

Table 6.6: VaR Prediction Performance: CAViaR Models

Model P Vio Rate LRuc LRind LRcc

Symmetric Abs.Value 0.01 0.0139 0.0099 0.8471 0.0353
0.025 0.02905 0.0840 0.0072 0.0061
0.05 0.05258 0.4494 0.2683 0.4070
0.1 0.1041 0.3706 0.0037 0.01
0.25 0.2551 0.4416 0.00 0.00

Asymmetric slope 0.01 0.0159 0.0004 0.00 0.00
0.025 0.0323 0.0038 0.04631 0.0021
0.05 0.05282 0.4085 0.3732 0.4781
0.1 0.1013 0.7802 0.1021 0.2528
0.25 0.2522 0.7335 0.4432 0.7033

Table 6.7: VaR Prediction Performance: CAViaR Models

that asymmetric method uses two parameters (positive return and negative

return) to describe the volatility change while symmetric just employ one pa-

rameter ( absolute value of return) to do the job.

To sum up, the performance of these two methods is better than uncon-

ditional and GARCH regular methods, but a little inferior compared with

GARCH-HS and GARCH-EVT methods.
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6.2.3 Empirical results for NYSE index returns

To strengthen the persuasion, we can apply these methods to another data

set, NYSE (New York Stock Exchange) Composite Index from Jan 3rd, 1986

to Dec 31st, 2002. NYSE Composite Index is the price mathematic average

of all the common stocks listed on NYSE, weighted by the number to stocks

issued by each issuer. We still utilize the rt = 100(log pt− log pt−1) as returns,

which yields 4290 observations.

To avoid the repetition, we do not describe the data by plots here again. We

implement all the procedures we did for last data, and have the results in Ta-

ble(6.8). We can notice that GARCH-HS and CAViaR-Asymmetric slope still

perform best among these methods, both giving us very accurate estimation

for p ≥ 0.05. But for extreme p, none of these methods give us very satisfied

estimation, including GARCH-EVT. Although the results for these two data

are not exactly the same, we can see that their conclusions are consistent.

Because of the limit of pages, we do not present many empirical examples

here, but all these procedures can be repeated very easily to as many data as

we like.
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Model P Vio Rate LRuc LRind LRcc

(1)Historical Simulation 0.01 0.0164 0.00 0.00 0.00
0.025 0.0313 0.0257 0.00 0.00
0.05 0.0586 0.0263 0.00 0.00
0.1 0.1064 0.2266 0.00 0.00
0.25 0.2465 0.6428 0.00 0.00

(2)EVT 0.01 0.0152 0.1716 0.0144 0.0197
0.025 0.0370 0.0697 0.0116 0.0197
0.05 0.0766 0.0074 0.00 0.00
0.1 0.1371 0.2054 0.00 0.00
0.25 0.2993 0.1628 0.00 0.00

(3)GARCH-Normal 0.01 0.0255 0.00 0.00 0.00
0.025 0.0379 0.0319 0.00 0.00
0.05 0.0583 0.001 0.00 0.00
0.1 0.1006 0.9075 0.00 0.00
0.25 0.2237 0.0004 0.00 0.00

(4)GARCH-t(5) 0.01 0.0179 0.00 0.00 0.00
0.025 0.0371 0.00 0.00 0.00
0.05 0.0665 0.00 0.00 0.00
0.1 0.1249 0.00 0.00 0.00
0.25 0.2568 0.3664 0.00 0.00

(5)GARCH-Exponential(1) 0.01 0.0048 0.001 0.0659 0.0008
0.025 0.0158 0.0003 0.0009 0.00
0.05 0.0371 0.0004 0.00 0.00
0.1 0.0978 0.6832 0.00 0.00
0.25 0.3158 0.00 0.00 0.00

(6)GARCH-EVT 0.01 0.0155 0.0033 0.0509 0.0020
0.025 0.0319 0.0147 0.0073 0.0014
0.05 0.0568 0.0778 0.094 0.0521
0.1 0.1072 0.1675 0.0294 0.0360
0.25 0.2051 0.00 0.0041 0.00

(7)GARCH-HS 0.01 0.0164 0.0007 0.0696 0.0006
0.025 0.0297 0.0876 0.0027 0.0026
0.05 0.0544 0.2524 0.0894 0.1228
0.1 0.1051 0.3268 0.0336 0.0648
0.25 0.2499 0.8878 0.0796 0.2130

(8)Symmetric Abs.Value 0.01 0.0114 0.4458 0.0541 0.1169
0.025 0.0287 0.2243 0.0088 0.0155
0.05 0.0527 0.5182 0.2251 0.3888
0.1 0.1061 0.2876 0.0008 0.0021
0.25 0.2530 0.7105 0.0001 0.0005

(9)Asymmetric slope 0.01 0.0262 0.00 0.5812 0.00
0.025 0.0367 0.00 0.1476 0.0012
0.05 0.0572 0.1216 0.4901 0.2377
0.1 0.1113 0.0747 0.5682 0.1736
0.25 0.2524 0.7908 0.1139 0.0470

Table 6.8: VaR Prediction Performance for NYSE
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6.3 Empirical study for expected shortfall

6.3.1 Procedures for different methods

In this section, we still employ the methods for VaR estimation. Because

ES estimation is not easy to evaluate, we compare its performance by the

simulated data instead of real data. We respectively generate 5000 observa-

tions for 3 different processes. They all follow ARMA process with parameters

[2.6,-0.06,0.9]. But the error terms are assumed to come from 3 different dis-

tributions: (1) standard normal, (2) Student-t with 5 degrees of freedom, (3)

Exponential with parameter 1. Note that in order to have error terms with

mean zero and variance 1( as required by GARCH model), the distributions

above had to be standardized. For the Student-t distribution, we simply di-

vide the random numbers from t(5) by
√

5/3, the standard deviation of t(5)

distribution. For the Exponential(1) distribution, instead, we first subtracted

the mean 1, then reversed the sign in order to have an infinite left tail.

To be specific, the data is generated through the following process:

ut = 2.6− 0.06ut−1 + 0.9zt−1, (6.12)

rt = ut + zt, (6.13)

where we set u0 = 1 and zt is the random number from the specified distribu-

tion: N(0,1), t(5) or modified Exponential(1). Repeating this process for 5000

times will gives us 5000 observations. Although we call it a GARCH process,

we actually do not utilize a change volatility. Instead, we assume that σ = 1

in the process. We are doing it because this process is much simpler but good

enough to make the comparison.
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Thus, we can easily obtain the real expected shortfall for each observation:

ES(p) = ut + σtCEp(zt), (6.14)

where CEp(z) is the conditional expectation of error term zt and σt = 1. It

can be calculated as

CEp(z) = p−1

∫ V aRp

− inf

ztft(zt)dz, (6.15)

where ft is the PDF of the corresponding error distribution.

Therefore, we evaluate the performance of various methods through bias

and MSE:

biasp =
4000∑
j=1

ÊS(p)/4000− ES(p), (6.16)

MSEp =
4000∑
j=1

(ÊS(p)− ES(p))2/4000. (6.17)

The estimation of ES is directly related to the estimation of VaR. Therefore,

we still compare the expected shortfall estimations based on VaR from the 9

models we used in last section. The operation details for each methods are

provided below.

(1) Historical simulation

After we have calculated the V aR(p) from formula(6.1), we can get the ex-

pected shortfall through the following formula

ES(p) = E[r[i]|r[i] < V aR(p)], (6.18)
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which is actually a conditional expectation.

(2) Extreme value theory

If we assume that the standardized residuals follow an EVT distribution, EVT

provides a very simple formula to compute the expected shortfall, which has

be proved by McNeil and Frey(2000)[19]. It can be expressed as

E[rt|rt > V aR(p)] = V aR(p)(
1

1− ξ
+

β − ξu

(1− ξ)V aR(p)
). (6.19)

Because we were interested in the minimum side of the returns and already

reversed the sign before applying the extreme value theory, this conditional

expectation formula can be utilized to compute the expected shortfall.

(3) GARCH-Normal

The expected shortfall for this models is relatively simple because they as-

sume specific distributions for the error term. Referring to formula (6.4), the

estimation for expected shortfall is

ES(p) = ût + σ̂tCEp(z), (6.20)

where CEp(z) is the conditional expectation of error term z. It can be calcu-

lated as

CEp(z) = p−1

∫ V aRp

− inf

ztft(zt)dz, (6.21)

where ft is the PDF of standard normal distribution.
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(4) GARCH-t(5)

(5) GARCH-Exponential(1)

The procedures of these two methods are basically the same with GARCH-

normal except that we replace standard normal distribution with t(5) and

exponential(1) distribution for error terms. Here we do not repeat again.

(6) GARCH-EVT

Because in this Monte Carlo simulation, all the error terms are generated from

standardized distribution, we can directly apply extreme value theory to these

error terms. After we get the CEp(z) by formula (6.19), the expected shortfall

is

ES(p) = ût + σ̂tCEp(z), (6.22)

(7) GARCH-Historical simulation

As the GARCH-EVT method, we apply the historical simulation not to the

original data, but to the error terms. Using the formula (6.18) to calculate

CEp(z), the expected shortfall is

ES(p) = ût + σ̂tCEp(z), (6.23)

(8) CAViaR-Symmetric absolute value

(9) CAViaR-Asymmetric slope

Since there are still not good ways to compute ES for VaR estimated from

these two models, we can try a regression method. One can calculate the p-ES
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by simply regressing the returns less than the p-VaR against the corresponding

estimated p-VaR.

rt = βV aRt(p) + εt, for rt < V aRt(p). (6.24)

Now the expected shortfall is estimated by

ES(p) = β̂V̂ aRt(p), (6.25)

where β is the regression coefficient in (6.24).

6.3.2 Empirical results for expected shortfall

We generated the data through the specified GARCH process with three differ-

ent error distributions. We compare the estimated and real expected shortfall,

and then calculate the bias and MSE. In order to present the results more

clearly, we multiply all the bias and MSE we obtained with 100. The results

are displayed in Table (6.9, 6.10, 6.11). Obviously, the method always with

small bias and MSE is the one we need.

In the table, the number still indicates the selected method as before.

(1) Historical simulation,

(2) Extreme value theory,

(3) GARCH-Normal,

(4) GARCH-Student’s t(5),

(5) GARCH-Exponential(1),
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(6) GARCH-Extreme value theory,

(7) GARCH-Historical simulation,

(8) CAViaR-Symmetric absolute value, and

(9) CAViaR-Asymmetric slope.

From Table(6.9),(6.10) and (6.11), we can notice several points:

First, there is always a method which works best. For data generated with

normal error terms, (3) performs best. For data with t(5) and Exponential(1)

error terms, (4) and (5) methods respectively give most accurate estimation.

It is an expected result. But these methods’s performance would be very poor

when they are applied to data from other distributions. For example, the ES

estimations of GARCH-normal method on data from t(5) are very terrible.

Second, (6) and (7) perform very well, giving very small bias and MSE.

And (6)’s estimations do not deteriorate with p increase, which is a behavior

different from VaR estimation.

Third, (1) and (2) methods usually give us the largest bias and MSE, as

they did for VaR estimation. It is not surprising because in nature, these two

are just unconditional method.

Fourth, (8) and (9) methods behave superior to unconditional methods, but

inferior to (6) and (7) methods. Compared with methods(6) and (7), they have

one more source of error from regression, which is probably the reason for their

inferiority. Meanwhile, between them two, the estimation from (9)asymmetric

slope method is better than the one from (8)symmetric absolute value method,

because method (9) can produce a more accurate estimation of VaR.
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Last, the performance of all methods gets better when p becomes large,

which is resulted from more observations contained in the estimation.

Bias (1) (2) (3) (4) (5) (6) (7) (8) (9)
p=0.01 -80.40 -81.51 0.08 60.16 -193.91 2.52 -1.93 49.62 35.99
p=0.025 -69.23 -77.89 0.08 52.78 -135.02 -0.55 -0.48 35.17 33.73
p=0.05 -63.23 -71.78 0.08 46.57 -93.21 -1.64 -1.76 30.94 30.76
p=0.1 -56.57 -62.17 0.08 39.64 -54.67 -1.96 -2.47 27.99 27.31
p=0.25 -43.20 -43.61 0.08 28.73 -11.43 -2.73 -2.62 22.82 21.28
MSE (1) (2) (3) (4) (5) (6) (7) (8) (9)

p=0.01 140.03 143.05 0.3 37.16 376.98 1.38 2.06 64.93 58.85
p=0.025 121.24 136.45 0.3 28.83 183.28 1.02 1.21 53.92 50.39
p=0.05 113.23 127.41 0.3 22.66 87.86 0.92 0.97 49.17 43.82
p=0.1 105.15 114.71 0.3 16.68 30.86 0.87 0.89 44.26 42.98
p=0.25 91.61 95.23 0.3 9.23 2.28 0.11 0.82 42.52 40.35

Table 6.9: ES Prediction Performance: Normal

Bias (1) (2) (3) (4) (5) (6) (7) (8) (9)
p=0.01 -83.26 -74.50 76.91 0.39 -116.96 -2.92 -8.74 44.51 20.24
p=0.025 -74.05 -71.18 37.43 0.39 -97.55 -4.73 -7.09 50.18 34.05
p=0.05 -65.97 -65.01 16.01 0.39 -77.16 -4.19 -6.46 42.59 32.07
p=0.1 -57.60 -56.89 1.27 0.39 -53.37 -3.05 -3.75 38.58 30.36
p=0.25 -43.60 -45.83 8.37 0.39 -19.77 -3.15 -3.95 27.61 24.66
MSE (1) (2) (3) (4) (5) (6) (7) (8) (9)

p=0.01 150.25 137.34 59.79 1.14 139.93 4.69 6.55 71.05 56.47
p=0.025 132.71 128.04 14.65 1.14 98.29 1.96 2.18 72.51 53.38
p=0.05 119.57 118.23 3.21 1.14 62.67 1.37 1.76 61.29 48.54
p=0.1 108.41 107.58 0.66 1.14 31.61 1.09 1.13 56.30 46.04
p=0.25 93.97 96.24 1.34 1.14 7.04 1.06 1.02 48.03 42.11

Table 6.10: ES Prediction Performance: Student-t(5)
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Bias (1) (2) (3) (4) (5) (6) (7) (8) (9)
p=0.01 -72.68 -61.69 193.85 115.08 -0.48 10.43 4.93 58.17 7.86
p=0.025 -63.80 -58.34 134.96 95.67 -0.48 6.17 5.16 45.96 18.47
p=0.05 -59.36 -55.59 93.16 75.28 -0.48 3.52 2.87 44.30 15.98
p=0.1 -52.46 -51.71 54.61 51.48 -0.48 1.71 0.73 33.70 17.54
p=0.25 -41.99 -43.27 11.37 17.89 -0.48 1.08 -0.51 24.11 17.17
MSE (1) (2) (3) (4) (5) (6) (7) (8) (9)

p=0.01 175.24 163.24 376.31 134.33 1.89 12.70 15.08 94.52 84.41
p=0.025 125.84 119.48 182.67 93.42 1.89 4.49 5.19 72.49 46.51
p=0.05 110.92 106.01 87.31 58.57 1.89 2.41 2.11 64.82 45.86
p=0.1 99.71 98.92 30.35 28.41 1.89 1.51 1.50 56.81 39.68
p=0.25 89.13 91.23 1.81 5.09 1.89 0.88 1.01 55.05 43.42

Table 6.11: ES Prediction Performance: Exponential(1)
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Chapter 7

Conclusion

For VaR estimation, from the empirical study in last chapter, we can clearly

see GARCH-Historical Simulation and Asymmetric Slope have the best per-

formance, especially when p is greater than 0.05. Both of them passed all the

tests for moderate quantile. Their superiorities derive from their successful

captures of the volatility clustering in their models. Comparatively, their per-

formances when p is equal or smaller than 0.01, are much poorer, probably

because there are too few observations contained in the estimations.

GARCH-EVT, however, works very well for low quantile estimation. It

passed all the tests for p smaller and equal to 0.05, which is a sharp contrast

with the GARCH-HS. This is not surprising for the property of EVT.

The other methods behave poorly, either due to their inability to describe

the change in volatility, like historical simulation and EVT, or to their inac-

curate assumption about the financial returns, such as GARCH-Normal.

For ES estimation, after comparing the bias and MSE, we can clearly con-

clude that GARCH-HS and GARCH-EVT always work best, no matter what

distribution we are dealing with.
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To conclude, GARCH-EVT and GARCH-HS perform best for both VaR

and ES estimation. CAViaR-Asymmetric slope method can give us very precise

estimation for VaR, but its estimation on ES still needs a great improvement.
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