
Economic Model Predictive Control:

Model Approximation and Robustness Analysis

by

Zhiyinan Huang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Chemical Engineering

Department of Chemical and Materials Engineering

University of Alberta

© Zhiyinan Huang, 2024



Abstract

Advanced process control has been considered as a promising tool for addressing various con-

trol objectives for complex industrial applications, including ensuring safe operation, reduc-

ing operational cost, improving process efficiency, achieving more environmentally friendly

practices, etc. Advanced process control strategies often suffer from two major challenges.

First, the computational costs for advanced control applications are often very significant.

Second, the control performance depends highly on the quality of the embedded model and

can be significantly affected by the presence of plant-model-mismatch. Based on the two

major challenges, this thesis can be partitioned into two parts. The first part focuses on

the investigation of advanced-control-oriented model approximation methods. Specifically,

Chapter 2 presents a study on three types of representative model approximation methods

applied to economic model predictive control (EMPC), including model reduction based on

available first-principle models (e.g., proper orthogonal decomposition), system identifica-

tion based on input-output data (e.g., subspace identification) that results in an explicitly

expressed mathematical model, and neural networks based on input-output data. Two pro-

cesses that are very different in dynamic nature and complexity were selected as benchmark

processes for computational complexity and economic performance comparison, namely an

alkylation process and a wastewater treatment plant (WWTP). The strengths and draw-

backs of each method are summarized according to the simulation results. In Chapter 3,

the observation obtained in Chapter 2 is extended and a two-layer neural network (NN)

framework to approximate the dynamics of the agro-hydrological system is proposed. The
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model is employed by a EMPC with zone-tracking (ZMPC) that aims to keep the root zone

soil moisture in the target zone while minimizing the total amount of irrigation. The per-

formance of the proposed approximation model framework is shown to be better compared

to a benchmark long-short-term-memory (LSTM) model for both open-loop and closed-loop

applications. Significant computational cost reduction of the ZMPC is achieved with the

proposed framework. The second part of the thesis focuses on the development of gener-

alized ZMPC with guaranteed robustness. In Chapter 4, we propose a generalized robust

ZMPC that has guaranteed convergence into the target zone in the presence of bounded

disturbance. The proposed approach achieves this by modifying the actual target zone such

that the effect of disturbances is rejected. A control invariant set (CIS) inside the modified

target zone is used as the terminal set, which ensures the closed-loop stability of the proposed

controller. Detailed closed-loop stability analysis is presented. Simulation studies based on

a continuous stirred tank reactor (CSTR) are performed to validate the effectiveness of the

proposed ZMPC. In Chapter 5, the robust ZMPC proposed in Chapter 4 is improved and

applied to an amine-based post-combustion carbon capture plant and is shown to have better

performance and enhanced robustness compared to a benchmark ZMPC design.
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Chapter 1

Introduction

1.1 Motivation

Due to the development in computational hardware, nonlinear model predictive control

(MPC) is considered to be a promising advanced control strategy and has attracted high

research interests over the past decades. Inspired by the linear quadratic regulator (LQR),

MPC has the ability to solve nonlinear optimization problems while considering constraints

simultaneously. However unlike LQR problems that can be solved explicitly for the infinite

horizon, the same cannot be achieved for MPC due to the presence of constraints. Instead,

MPC is solved in a receding horizon manner [1, 2], where the optimization problem is solved

for a finite control horizon at each sampling instant with only the very first control policy

applied to the system.

Various extensions of MPC are developed based on different objectives, for example,

economic MPC, MPC with zone-tracking, etc. More details regarding MPC extensions are

introduced in Section 1.2. Overall, MPC and its extensions all share some bottleneck chal-

lenges when it comes to real-world applications. One of the shared challenges is the high

computational cost of solving complex nonlinear optimization problems online. The com-

putational burden of MPC rises significantly when the complexity of the embedded model
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rises. Thus reducing the model complexity is essential for successful MPC applications and is

worth investigating. In this thesis, we investigated the performance of various model approx-

imation and reduction techniques in advanced process control applications. Furthermore, we

developed a case-specific model approximation approach for an agro-hydrological system and

validated its performance for MPC application.

The performance of MPC and its extensions highly depends on the accuracy of the process

model employed inside the controller. However, plant-model-mismatch is often unavoidable

in applications. It is thus vital to take this into consideration for controller design and

ensure reliable control performance in the presence of plant-model-mismatch, which is also

referred to as the robustness of the controller. This also aligns with the root motivations for

introducing automated control into processes: ensure operational safety. The investigation

of closed-loop stability and robustness of MPC and its extensions has been continuously

a vital scope of research. In this thesis, a robust MPC with zone-tracking is proposed

with mathematically proven robustness. Furthermore, the performance of this controller is

validated on a Post-Combustion Carbon Capture (PCC) process, which is a complex high-

dimensional nonlinear system.

1.2 Background

1.2.1 An overview of MPC and Its Extensions

The most basic form of MPC is the conventional MPC, which tracks a referencing trajec-

tory. The referencing trajectory is oftentimes an optimal steady-state operating point [2].

This approach, however, may limit the flexibility of the controller and sacrifice the control

performance during transient operations.

One popular extension of the conventional MPC is economic MPC (EMPC), which con-

siders a general economic objective directly in dynamic optimizations [3]. EMPC is recog-

nized as a promising extension of the decision-making framework for the next generation

2



smart manufacturing [4]. Improved transient economic performance has been observed in

EMPC compared to MPC [5, 6].

Another approach that helps to improve the flexibility of MPC/EMPC is to add zone

tracking (ZMPC). ZMPC relaxes the set-point-tracking objective to a zone-tracking one,

which aims to drive the system into a bounded set [7, 8]. More degrees of freedom are pro-

vided by ZMPC, which are beneficial for handling multiple control objectives (e.g. tracking

and economics) simultaneously. Furthermore, ZMPC is potentially more robust in the pres-

ence of noise or disturbance. Zone-tracking is also a natural objective that arises in many

real-world problems. For example, in agricultural practice, maintaining the soil moisture in

a certain range is often sufficient and more practical rather than attempting to maintain it

at a particular level. Various applications of ZMPC have been reported in the literature,

for example, treatment of diabetes in [9, 10], control of heat system inside a building in

[11], control of coal-fired boiler-turbine generating systems in [12], and control of irrigation

systems in [13] and [14].

1.2.2 Advanced Control Oriented Model Approximation

Solving advanced process control optimization problems often leads to significant computa-

tional load, especially in large-scale systems [4, 15]. Model approximation has been consid-

ered to be an effective way to reduce the computational burden and improve the applicability

of EMPC for large-scale processes [16]. It aims to approximate the original system with an

appropriately simplified model that captures the main dynamics of the original system. The

popular methods for model approximation can be broadly classified into three categories:

model reduction based on first-principle models (e.g., proper orthogonal decomposition) [17],

traditional data-based system identification (e.g., subspace identification) [18, 19, 20, 21], and

machine-learning-based model identification [22].

Model reduction techniques require the existence of a (typically first-principle) model of

the considered system [23, 24]. Many model reduction methods in this category belong to
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projection-based methods, in which the original high-order system is projected onto a lower-

order reduced space [24]. Among them, the proper orthogonal decomposition (POD) is one

of the most widely used methods, which is for example applied in [17] together with the

discrete empirical interpolation method to solve large-scale model predictive control (MPC)

problems for continuous chemical processes.

In the cases where only the input-output dataset is available, system identification tech-

niques are frequently used to establish the mathematical model of a dynamical system

[25, 26], where relatively simple models can be generated without knowledge of the un-

derlying physical laws of the system. There are mainly three types of system identifica-

tion methods, namely the prediction error method [27], maximum likelihood method [28],

and subspace identification method [18]. Different from the first two methods that require

pre-selected model structure and solving optimization problems, the subspace identification

method can directly extract the state-space model from the input-output data without using

optimization techniques [18, 21].

Different from system identification methods, data-driven machine-learning-based model

identification typically leads to neural network (NN) models that do not have explicit math-

ematical expressions [22]. With the ability to acquire knowledge from the input information

and remember the learning results, neural networks can approximate any continuous function

according to the universal approximation theorem [29]. Much attention has been attracted

to neural-network-based system modeling [30, 31] and control [32] recently. However, for var-

ious applications, neural networks often suffer from their black-box nature. Thus explicitly

expressed NNs were proposed and applied in some areas [33].

1.2.3 Closed-loop Stability and Controller Robustness

Closed-loop stability of the system is always an essential aspect to be considered in controller

design. Unstable controllers can lead to drastic safety risks in process operation. The closed-

loop stability theories of MPC and EMPC are well-developed and widely used in literature
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based on the Lyapunov stability theory [34, 35, 36, 37, 38]. However, most of these stability

theories rely on the assumption of the existence of an optimal operating point. On the

other hand, ZMPC is often considered to be a relaxation to conventional MPC but with

not many investigations done in terms of the stability property. The stability of ZMPC

with a secondary economic objective is investigated in [39]. An extension of [39] considered

the presence of disturbance, of which a ZMPC that tracks an alternative economic zone

is proposed [40]. In both works, the stability theories rely on the assumption that there

exists an optimal steady-state operating condition. On the other hand, a generalized ZMPC

was proposed with no assumption on steady-state optimal operating point in [41], however

without considering any system disturbance or noise.

1.3 Thesis Outline and Contributions

The remaining portion of this thesis is organized as follows:

A comparative study of the performance of three types of representative model approxi-

mation methods in MPC and EMPC applications is presented in Chapter 2. To be specific,

the three representative types of model approximation methods are 1) model reduction based

on available first-principle models, 2) system identification based on input-output data that

results in an explicitly expressed mathematical model, and 3) neural networks based on

input-output data. Out of each category, we studied the proper orthogonal decomposition

(POD) method integrated with trajectory piecewise linearization (TPWL), the subspace

identification method, and neural network (NN) training method in the explicit form. The

three methods are tested for two processes with very different dynamics, namely an alkyla-

tion process and a wastewater treatment plant (WWTP). The MPC and EMPC performance

based on each method is compared for each process of interest. The strengths and drawbacks

of each method are summarized according to the simulation results.

In Chapter 3, we took the observation obtained in Chapter 2 and investigated further with
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the NN training model approximation approach. A case-specific model approximation ap-

proach is developed for an agro-hydrological system. The dynamics of the agro-hydrological

system are studied and a two-layer NN framework is developed. To minimize the prediction

error, a linear bias correction is added to the proposed model. The model is employed by a

model predictive controller with zone-tracking (ZMPC), which aims to keep the root zone

soil moisture in the target zone while minimizing the total amount of irrigation. The per-

formance of the proposed approximation model framework is shown to be better compared

to a benchmark long-short-term-memory (LSTM) model for both open-loop and closed-loop

applications. Significant computational cost reduction of the ZMPC is achieved with the

proposed framework. To handle the tracking offset caused by the plant-model-mismatch of

the proposed NN framework, a shrinking target zone is proposed for the ZMPC. Different

hyper-parameters of the shrinking zone in the presence of noise and weather disturbances are

investigated, of which the control performance is compared to a ZMPC with a time-invariant

target zone.

In Chapter 4, we continued our study with MPC with zone-tracking and focused more

on the stability and robustness of the controller. We proposed a robust nonlinear model

predictive control design with generalized zone-tracking (ZMPC). The proposed ZMPC has

guaranteed convergence into the target zone in the presence of bounded disturbance. The

proposed approach achieves this by modifying the actual target zone such that the effect

of disturbances is rejected. A control invariant set (CIS) inside the modified target zone is

used as the terminal set, which ensures the closed-loop stability of the proposed controller.

Detailed closed-loop stability analysis is presented. Simulation studies based on a continuous

stirred tank reactor (CSTR) are performed to validate the effectiveness of the proposed

ZMPC.

In Chapter 5, we extend the robust ZMPC proposed in Chapter 4 and apply it to a Post-

Combustion Carbon Capture (PCC) plant. We modified the terminal constraint to track only

the system output instead of the system state to improve the applicability of the controller on
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complex large-scale systems. Furthermore, an algorithm that projects the ellipsoidal control

invariant set defined in the state space into the output space is developed and presented. The

performance of the modified robust ZMPC is validated through simulations and is compared

with that obtained based on a benchmark ZMPC controller. The controller is shown to

be more robust in the presence of system disturbances, where the flow rate of the flue gas

coming into the plant varies over time.

Finally, Chapter 6 summarizes the contribution of this thesis, followed by discussions on

potential research directions.
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Chapter 2

A comparative study of model

approximation methods applied to

economic MPC

We perform a critical examination of the three kinds of model approximation methods in-

troduced in Chapter 1 when used in conventional tracking MPC and EMPC in this chapter.

One representative model approximation method is selected from each of the three model ap-

proximation categories. Specifically, POD integrated with trajectory piecewise linearization

(TPWL) [20], subspace identification [21], and explicitly-expressed fully connected neural

network are selected. Two processes that are very different in dynamic nature and com-

plexity are selected as benchmark processes. Conventional tracking MPC controllers and

EMPC controllers designed based on the three model approximation methods are applied

to the benchmark processes. The performance of the control frameworks is compared from

different aspects, including computational complexity, tracking performance for MPC, and

economic performance for EMPC1.

Briefly, this chapter is structured as follows. Section 2.1 presents some preliminaries

1This chapter has been published as a journal paper.
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including the EMPC design employed. In Section 2.2, the selected model approximation

algorithms are introduced. Then in Section 2.4 the WWTP process is introduced, followed

by the simulation results and some remarks. Finally, Section 2.5 summarizes the work

performed in this chapter.

2.1 Preliminaries

2.1.1 System description and problem formulation

In this chapter, we consider model approximation of nonlinear dynamical systems that can

be described using the following ordinary differential equations:

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

(2.1a)

(2.1b)

where x ∈ Rn is the state vector, u ∈ Rr is the input vector, y ∈ Rl is the output vector, f

and g are nonlinear vector functions, f describes the dynamics of the system and g describes

the relation of the output to the state and the input. For convenience, we will refer to the

system in (2.1) as the original system in the remainder of this chapter.

Model approximation will be applied to either reduce the original system to a system of

a lower order that approximates the dynamics of the original system with sufficient accuracy

or to identify a linear or neural network model based on the input-output data of the original

system. These reduced or identified models will be applied in advanced control frameworks

as system constraints and their applicability and performance will be carefully examined.

To be specific, conventional set-point tracking MPC and EMPC will be investigated and

differences in control behaviors of these two frameworks with respect to different reduced or

identified models are of our interest.
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2.1.2 Model predictive control design

We consider a MPC formulation that tracks an optimal steady-state operating point (ys, us).

The tracking MPC at a specific sampling time ti is formulated as an optimization problem

as follows:

min
u(t)∈S(△)

i+N−1∑︂
j=i

(︂
|y(tj|ti)− ys|2Q+|u(tj|ti)− us|2R

)︂
+ |y(tk+N |ti)− ys|2Pf

s.t. : ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

x(ti) = x̄(ti)

u(t) ∈ U

y(t) ∈ Y

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

where S(△) is the family of piece-wise constant function with △ being the sampling time,

N is the prediction horizon and is a finite positive integer, y(t|ti), and u(t|ti) represent the

prediction of the variables at future time t made at the current time ti. Q, R and Pf are

diagonal weighting matrices, x̄(ti) is the estimated or measured state vector at current time

ti, U ⊂ Rr, and Y ⊂ Rl are compact sets. The optimization problem aims to optimize

u(t) from ti to ti+N−1, such that the accumulated difference between (y(t|ti), u(t|ti)) and

the set-point (ys, us) is minimized, which is defined by the objective function (2.2a). System

model (2.2b) - (2.2c) are employed to predict y(t|ti) with initial condition specified by (2.2d).

(2.2e)-(2.2f) are input and output constraints that have to be satisfied over the entire horizon

N while solving the problem.

Note that when a reduced or identified model is used to design the MPC controller,

the model equations (2.2b)-(2.2c) should be replaced with the reduced or identified model

equations accordingly.

The optimal solution of the above optimization problem can be denoted as u⋆
EMPC(t|ti).

10



However, only the values at the first time instant (i.e. the current time ti) will be applied

to the system:

u(t) = u⋆
EMPC(t|ti), t ∈ [ti, ti+1) (2.3)

Regarding the optimal operating point (ys, us) employed in (2.2a), it may be calculated

through a steady-state optimization problem as shown in (2.4),

(ys, us) =min
y,u

le(y, u)

s.t. : ẋ = f(x, u)

y = g(x, u)

u ∈ U

y ∈ Y

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

where the objective function le(y, u) represents an economic performance of the system.

2.1.3 Economic model predictive control design

As have presented in the previous section, MPC takes a two-layered design. The optimal

operating point is first obtained by solving a steady-state optimization problem. A series of

dynamic optimization problems that tracks the states and inputs to the optimal operating

point is then proceeded along the horizon of interest. In EMPC design, these two steps are

combined into a single step. The objective function used in the steady-state optimization,

which is often times economic performance related, is directly employed in the dynamic

optimization problems.

A basic EMPC formulation for the system described in (2.1) is employed in this chapter.

EMPC is in general formulated as an optimization problem, which takes the following form
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at the sampling time ti [4]:

min
u(t)∈S(△)

i+N−1∑︂
j=i

le(y(tj|ti), u(tj|ti))

s.t. : ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

x(ti) = x̄(ti)

u(t) ∈ U

y(t) ∈ Y

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

(2.5f)

The same definitions as used in the MPC formulation are also valid for the EMPC

formulation. The only difference lies in the objective function as used in (2.5a), where

the economic performance index employed in the steady-state optimization is adopted in

dynamic optimization directly.

2.2 Model Approximation Methods

In this section, the model approximation methods encountered in this chapter are briefly

introduced. The characteristics of each approaches are discussed, followed by step-by-step

descriptions of how the methods can be implemented.

2.2.1 Model reduction based on first-principle model

First, we introduce the proper orthogonal decomposition (POD) and trajectory piecewise

linearization (TPWL) methods. The two methods represent the two popular approaches

to reduce model complexity respectively, namely reducing the model order and mimicking

complex mathematical relationships in simpler structures (e.g. linearization). Applications

of these two methods can be found in various works, for example, [20, 42] for POD and

[20, 43] for TPWL. A combination of POD and trajectory piecewise linearization (TPWL)
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is considered in this chapter.

The key idea of the POD method is to obtain a projection matrix that projects the

original state vector onto a lower-dimensional space. To achieve this goal, a snapshot matrix

of the states X is first generated by simulating the original system with an input trajectory

that ensures persistent excitation of the system. The snapshot X contains sampled system

states at different time instants. Suppose that:

X = [x(t1), x(t2), x(t3), · · · , x(tN)] ∈ Rn×N

where x(ti), i = 1, · · · , N , is the sampled state vector at time ti, N is the total number of

samples, and n is the dimension of the state vector. Note that N should be much larger

than n to ensure that the snapshot captures the dynamics of the original system. After X

is generated, singular value decomposition (SVD) is applied to X to obtain the following

decomposition:

X = UΣV T (2.6)

where U ∈ Rn×n and V ∈ RN×N are orthogonal matrices and are referred to as the left and

right singular matrix of X respectively, and Σ = diag1([σ1, σ2, · · ·, σn]) ∈ Rn×N is a diagonal

matrix, where σ1, · · · , σn are the n singular values of X and are arranged in a descending

order. It is noted that the larger the value of a singular value, the more important system

dynamics it captures. In POD, the order of the reduced system is determined based on

these singular values. It is recommended that the order k is obtained such that there is a

significant drop in the singular value magnitude from σk to σk+1. Once k is determined,

the projection matrix Uk ∈ Rn×k is defined to be the first k columns of the matrix U . The

reduced system state z(t) has the following relationship with the original state x(t):

x(t) = Ukz(t) (2.7)

1diag(v) denotes a diagonal matrix with the diagonal elements being the elements of the vector v
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It is to be noted that although POD reduces the system order to a smaller number,

the underlying calculations in general do not reduce from a numeric optimization point of

view. This is because that it is in general challenging to explicitly express the reduced

system for medium to large-scale nonlinear systems. Thus when the original system has

complex nonlinear dynamics, applying only POD to the system often does not reduce the

computational complexity. A common way to deal with this problem is to simplify the

mathematical complexity of the original system first, followed by applying POD on the

simplified model. Readers can refer to [20] for an example application of this approach, where

POD was applied to a linear time-varying (LPV) reduced model obtained using TPWL.

Instead of linearizing at a single point, in TPWL, the original system is linearized along

a typical state trajectory at multiple points. With a predetermined number of linearization

points, the operating region of interest should be covered evenly by the selected lineariza-

tion points. This can be achieved by the application of a distance-based algorithm which

is introduced in [44]. After linearization, the linearized models at different points are com-

bined through weighted summation to form an LPV model. The weighting function may be

designed in a way such that once the state-input pair approaches one of the linearization

points, the weight for the corresponding sub-model increases to one quickly.

Let us assume that there are s linearization points. The weighting function wi(·), i =

0, · · · , n − 1 that combines the linearized models can be determined following [44]. The

procedure for implementing POD with TPWL is summarized as follows[44]:

1. Run open-loop simulations using the original model and generate the snapshot matrix

X using the open-loop simulation data.

2. Based on the snapshot matrix X, calculate the projection matrix Uk as the truncated

left singular matrix Uk of the snapshot matrix X following (2.6) and (2.7).

3. Based on extensive simulations of the original system, determine a representative tra-

jectory of the system and along the trajectory, determine the s linearization points
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based on the distance-dependent algorithm discussed in [44].

4. Obtain the s linearized models by linearizing the original system at each of the s

linearization points.

5. Based on the s linearized models and the weighting function wi(·), i = 0, · · · , n−1, the

LPV model that combines all the linearized models takes the following form:

ẋ =
s−1∑︂
i=0

wi(x)(Ai(x− xi) +Bi(u− ui) + f(xi, ui))

y =
s−1∑︂
i=0

wi(x)(Ci(x− xi) +Di(u− ui) + g(xi, ui))

(2.8a)

(2.8b)

where xi, ui for i = 0, 1, ...s − 1 represent the linearization points, and Ai, Bi, Ci, Di

are the partial derivatives
∂f

∂x
,
∂f

∂u
and

∂g

∂x
,
∂g

∂u
evaluated at the linearization points,

respectively.

6. Use the projection matrix Uk to project the high-order LPV model (2.8) onto a lower-

order state-space as follows:

ż =
s−1∑︂
i=0

wi(Ukz)U
T
k [(Ai(Ukz − Ukzi) +Bi(u− ui) + f(Ukzi, ui))]

y =
s−1∑︂
i=0

wi(Ukz)(Ci(Ukz − Ukzi) +Di(u− ui) + g(Ukzi, ui))

(2.9a)

(2.9b)

where zi represents the ith reduced linearization point.

2.2.2 Subspace model identification

When the first-principle model is not available, model identification based on input-output

data of the system is the common approach for model development. There are many different

model identification algorithms. In this chapter, we will focus on subspace identification.

Unlike other traditional identification methods that require predetermined model structure
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and order, subspace identification has the unique property that the model can be identified

with only the input-output dataset. Furthermore, the subspace method is purely linear-

algebra-based and does not involve solving optimization problems [18].

The subspace identification method leads to a discrete-time linear time-invariant (LTI)

state-space model in the following form:

zk+1 = Azk +Buk,

yk = Czk +Duk,

(2.10a)

(2.10b)

where zk ∈ Rs, uk ∈ Rr and yk ∈ Rl are the state vector, input vector and output vector,

respectively, A ∈ Rs×s, B ∈ Rs×r, C ∈ Rl×s and D ∈ Rl×r are system matrices. The model is

obtained by first calculating the extended observability matrix of the system using techniques

such as oblique projection, from which matrices C and A can be calculated. Matrices B and

D can then be obtained using least square methods.

One type of the subspace identification algorithms can be summarized as follows[18]:

1. Calculate the oblique projection of Yf along the row space of Uf on to the row space

of Zp, where Yf , Uf , and Zp are the block Hankel matrix consists of future outputs,

future inputs and past inputs and outputs (Zp = [UT
p Y T

p ]T , Up, and Yp are the Hankel

matrix consist the past input and outputs) respectively.

Oi = Yf/Uf
Zp (2.11)
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2. Perform SVD on Oi:

Oi =

(︃
U1 U2

)︃⎛⎜⎝ S1 0

0 0

⎞⎟⎠
⎛⎜⎝ V T

1

V T
2

⎞⎟⎠ ,

Γi = U1S
1/2
1 ,

Xf = Γ†
iOi,

(2.12a)

(2.12b)

(2.12c)

where the columns of (U1 U2) are the left singular vectors of Oi, S1 is the diagonal

matrix that contains the nonzero singular values of Oi, Γi is the extended observabil-

ity matrix, Xf is the Hankel matrix that consists the future states, and (·)† denotes

the Moore-Penrose pseudo-inverse of the matrix (·). The dimension s of the state is

determined by the dimension of S1.

3. Compute the extended observability matrix Γi based on (2.12b), and the orthogonal

complement of the row space of Γi can be calculated by Γ⊥
i = UT

2 , where (·)⊥ denotes

the orthogonal complement of the row space of the matrix (·).

4. Determine C as the first l rows of Γi, where l is the dimension of the output vector.

According to the definition of Γi, we can find the following relation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

CA

CA2

· · ·

CAi−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CA

CA2

CA3

· · ·

CAi−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ΓiA = Γi,

where Γi denotes Γi without the last l rows, and Γi is Γi without the first l rows. Then

A can be solved by A=Γi
† Γi.
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5. Calculate the matrix Γ⊥
i YfU

†
f , and construct

Γ⊥
i YfU

†
f =

(︃
M1 M2 · · · Mi

)︃
,

Γ⊥
i =

(︃
L1 L2 · · · Li

)︃
,

then B and D can be solved from

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M1

M2

...

Mi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 L2 · · · Li−1 li

L2 L3 · · · Li 0

L3 L4 · · · 0 0

· · · · · · · · · · · · · · ·

Li 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ Il 0

0 Γi

⎞⎟⎠
⎛⎜⎝ B

D

⎞⎟⎠

2.2.3 Neural network modeling

The last method to be introduced is to train neural networks (NNs) as system models. Similar

to the subspace identification method introduced in the previous section, neural network

training does not require a significant amount of knowledge regarding the dynamics of the

interested system. Furthermore, NNs can capture nonlinear dynamics while the subspace

identification is a linear method. According to the universal approximation theorem [45],

neural networks in general are capable of approximating any function f : Rn → Rm with

n-dimension inputs and m-dimension outputs up to some maximum error ε. In this chapter,

fully connected neural networks with nonlinear activation functions are considered. Unlike

models obtained with traditional identification methods, neural networks are often used

as black-box models without explicit expressions, which could be challenging for advanced

control applications. This is because many of the conventional optimization solvers require

Jacobian/Hessian information of the systems, which could be computationally expensive for

black-box models. In this chapter, NN system models are investigated in the form of basic
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black-boxes as well as explicitly expressed systems of equations.

A brief step-by-step procedure for identifying a NN model is outlined as follows [46]:

1. Determine the dimension of the NN input and output vectors:

NNin ∈ RNpast·(r+l)+(Nfuture−1)·r

NNout ∈ RNfuture·l

where Npast is the number of past steps considered, and Nfuture is the number of future

time steps to be predicted. Note that the inputs of the NN includes both system

inputs and outputs from the past. Furthermore, when system outputs at multiple

future steps are of interests, the future system inputs for the corresponding steps are

as well required as NN inputs.

2. Determine the number of NN layers, the number of nodes in each layer, and the activa-

tion function to be used. Note that there are no universal rules for determining these

parameters. Users can manually do guess-and-check or use tools such as grid search.

3. Reconstruct the dataset according to the predetermined input-output dimension.

4. Identify the NN using computational tools (e.g. the state-of-the-art application pro-

gram interface (API) Keras [47]).

5. Extract the trained parameters from the model.

6. Define explicit models with the trained parameters and the known NN structure. A

single fully-connected NN can be defined as follows:

y = σ(

nnode∑︂
i=1

wixi + bi) (2.13)

where x and y represents the input and output of the NN layer, wi and bi are the

weighting factor and the bias for the ith input, nnode is the number of nodes in the NN
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Figure 2.1: A schematic of the alkylation of benzene process

layer, σ(·) is the activation function.

In the following two sections, we consider two benchmark process examples and study

the performance of the three model approximation methods when they are used in MPC and

EMPC designs. The two benchmark processes are selected to be very different in scales and

dynamic natures, such that the performance of the model approximation methods applied

to different types of systems can be investigated and a more comprehensive comparison can

be made.

2.3 Case Study 1: Benzene Alkylation Process

2.3.1 Process overview

The first benchmark process considered is a benzene alkylation process. A schematic diagram

of the process is presented in Figure 2.1 [48]. The process considered consists of four CSTRs

and a flash tank separator. Stream F1 consist of pure benzene while streams F2, F4 and

F6 consist pure ethylene. Two catalytic reactions take place in CSTR-1, CSTR-2, and
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CSTR-3, of which benzene (A) react with ethylene (B) and produce the desired product

ethylbenzene (C) (reaction 1), while ethylbenzene further react with ethylene and produce

the byproduct 1,3-diethylbenzene (D) (reaction 2). The effluent of CSTR-3 is fed to the flash

tank separator, where the desired product is separated and leave from the bottom stream

F8. On the other hand, the left-over benzene leaves the separator from the top and splits

into Fr1 and Fr2 which go into CSTR-4 and CSTR-1 respectively. 1,3-diethylbenzene is fed

into CSTR-4 through F10, where it reacts with benzene to produce ethylbenzene under the

presence of catalysts (reaction 3). All the chemicals leaving from CSTR-4 eventually go to

the separator. Each vessel has an external heat supply stream which helps to adjust the

vessel temperature (Q1 - Q5).

The state variables of the process are the concentrations of the four chemical components

and the temperature in each vessel. The manipulated inputs are the external heat supply

and the feed stream flow rates of ethylene going into CSTR-2 and CSTR-3. Overall, the

system consists of 25 states and 7 manipulated inputs. A more detailed model description

with parameter values can be found in [48].

2.3.2 Control objective and controller setting

The control objective is to maximize the production rate of ethylbenzene while keeping the

energy cost at a reasonable level. Thus the economic performance measure employed for the

steady-state optimization and the EMPC controller is defined as follows:

le = −αF8CC4 + β
5∑︂

i=1

|Qis +Qi| (2.14)

where F8 and CC4 are the flow rate and ethylbenzene concentration leaving the separator

respectively, Qi represents the deviation heat inlet to vessel i with respect to the steady-

state values. Qis is the steady-state heat inlet for the corresponding vessel, α = 200, and

β = 0.0005 are the weighting coefficients selected so that a fair trade-off between production
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Figure 2.2: Step response of the alkylation process output.

rate and operating cost is established. Note that although the flow rates of ethylene feeding

into CSTR-2 and CSTR-3 do not present explicitly in the objection function, the value of

F8 however depends on them.

The weighting factors used in the MPC tracking objective function (2.2a) were selected to

be Q = 1, R = diag([7.5, 5, 5, 6, 5, 4.9 · 10−4, 4.9 · 10−4]) and Pf = 10, where a higher penalty

was added to the terminal output to enhance convergence. For simplicity, the output vector

y is CC4, which is the only state appeared in (2.14). The observability of the system is

confirmed using the PBH test along the data trajectory with the selected output. The

optimal steady-state operating point ys = 5526, us = [1.0, 1.0, 1.0,−1.0,−0.86, 1.0, 1.0] is

obtained by solving the steady-state optimization (2.4). The input vector and the output
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are bounded based on physical properties of the process.

U = {u| u ≤ u ≤ ū}

Y = {y| y ≥ 0}

(2.15a)

(2.15b)

where u and ū are the upper and lower bound of the input vector. The exact values of u

and ū can be found in [48].

The controller sampling time is 2 minutes, and the prediction horizon is N = 15. The

two parameters are picked based on the output response (Figure 2.2) with a unit step change

in the input vector u. As presented in Figure 2.2, the major dynamics of the system can be

captured in the 30-minute window defined by the sampling time and prediction horizon.

2.3.3 Data generation and model approximations

All the methods discussed in section 2.2 require the generation of a dataset that can repre-

sent the dynamics of the original process. Given that the considered alkylation process is

nonlinear, multi-level input signals are used as the input excitation to the process for input-

output data generation. Open-loop simulations are carried out with the multi-level inputs

applied to the original nominal system model. For consistency, one dataset is generated and

is used for all the model approximation methods.

Figure 2.3 shows a portion of the input signal employed for the alkylation process and

the corresponding output response. Note that the input signal is normalized with respect to

the steady-state.

At a given time step k, each element in the input vector u randomly takes a value

from a predetermined set Ud and holds onto that value until time (k + nhold). Note that

nhold ∈ Iba = {a, a+1, ..., b}, where Iba is an integer set with a and b being the lower and upper

bounds. At time step k + nhold, the element values of the input vector u will be reselected

from Ud.
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Figure 2.3: Multi-level input and the corresponding output response.

The sets Ud and Iba can be designed based on the dynamics of the system such that the

frequency and magnitude of the step changes can excite the system properly. If only the

upper and lower bounds of the input vectors are included in Ud, the input signal becomes

a pseudorandom binary sequence (PRBS). For the alkylation process to be specific, the set

Ud was designed to have five elements which were obtained by equally splitting the input

domain U:

Ud = {u, u +
δu
4
, u +

δu
2
, u +

3δu
4

, ū}, δu = ū− u

Taking into account of the rapid ongoing chemical reactions in the alkylation process, the

integer set Iba, a = 10, b = 16 was used. This means that the input will hold onto the same

values for 20 to 32 minutes before the next set of values can be picked from Ud.

To ensure reasonable results from the considered methods, 5000 data points were gener-
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ated. The reduced model order k was determined by guess and check, where reduced models

of different orders were generated based on the original model first and open-loop prediction

performances were checked and compared through a step test. The model order that gives a

satisfying balance between prediction accuracy and model order was selected and employed

for the TPWL-POD models.

Data scaling and reconstructions are required for NN identification such that the pre-

selected input-output dimension is satisfied. The Python library Keras [47] was used to

identify a fully-connected NN model which takes the form of:

f : R359 → R15

where 359 = 30 × 8 + 14 × 7, 8 is the number of inputs plus outputs, 30 is the number

of past data points used, 7 is the number of inputs, and 14 is the number of future inputs

encountered. The model takes 30 points from the past plus 17 future inputs and predicts

system outputs 15 steps into the future (including the current step). Note that the number

of predictions obtained by the model is the same as the length of the prediction horizon(

N = 15), meaning that the NN needs to be called only once in the optimization problem.

This helps to reduce the prediction offset caused by identifying a single-step-ahead prediction

NN and calling it recursively. As for activation functions, ‘sigmoid’ and ‘swish’ were used

in this chapter. Note that ‘sigmoid’ function leads to smooth nonlinear NN dynamics, while

‘swish’ captures steep changes better but is more aggressive at the same time.

All simulations were done in Python. Different programming libraries were employed for

different model approximation methods. To be specific, MPCTools [49] was used for solving

TPWL/POD-model-based EMPC, and CasADi [50] was used for solving subspace-model-

based EMPC and NN-model-based EMPC. Note that the optimization solver IPOPT [51]

was employed for all EMPC simulations.
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2.3.4 Results and discussion

2.3.4.1 Approximation models

Six models are developed to approximate the nonlinear dynamics of the process. First, two

TPWL models are developed by linearizing the original nonlinear model around 3 and 5

points respectively. Then, POD method is applied to the TPWL models, leading to two

POD-TPWL models. One LTI model that takes the form of (2.10) is developed using the

subspace identification method. The dimension of the LTI model is 2. A fully-connected NN

with two hidden layers is generated. The hidden layers have 10 and 3 nodes individually.

The original model is used as the reference for performance evaluation of the approxima-

tion models. The output responses and the corresponding input trajectory of the original

model and the approximation models are shown in Figure 2.4. The prediction performance

is measured by the normalized root mean square error (NRMSE):

NRMSE =
1

ys

√︃∑︁n
i=1(yî − yi)2

n
(2.16)

where ys is the optimal steady-state output, n is the number of data points, yî is the ith

output predicted by the approximation model, and yi is the ith output obtained from the

original nonlinear model. The NRMSEs of the approximation models are summarized in

Table 2.1.

From Figure 2.4, it is observed that the TPWL and POD-TPWL models with five lin-

earization points perform better than models with three linearization points. The application

of the POD method did not impact the prediction performance significantly. Table 2.1 also

shows consistent results. It was noticed that models perform differently with different vari-

ations in inputs. The NN model has a more noisy response compare to other models. The

reason for this is that NNs are complex nonlinear functions with a significant number of

parameters. Thus it is impractical to obtain the absolute optimal set of parameters, making
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Figure 2.4: Open-loop output responses of the alkylation first-principle model and approxi-
mation models.

numerical prediction errors harder to eliminate. Furthermore, it is noteworthy that NNs

works with scaled variables in the range of -1 to 1, leading to more numerical errors. All the

models respond to input changes without delays and converge to values that are very close

to the steady-state output of the original nonlinear system when the input returns back to

the steady-state value.
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Table 2.1: Open-loop prediction performance of approximation models - Alkylation

Model applied Dimension Normalized RMSE

3 p.t. linearized 25 0.008

5 p.t. linearized 25 0.002

3 p.t. linearized & POD 15 0.008

5 p.t. linearized & POD 15 0.002

Subspace LTI 2 0.005

Neural Network N/A 0.005

2.3.4.2 Conventional tracking model predictive control

The approximation models discussed in the previous section are employed by the MPC

controller (2.2) with parameter settings as discussed in Section 2.3.2. The simulation results

are summarized in Table 2.2. The order of the reduced model, the average time consumed in

solving the MPC problem at a given time step, and the accumulated objective function value

under the corresponding trajectories are presented for the considered models. Figures 2.5

and 2.6 present the tracking performance of the system output (product concentration)

and the optimal control strategy of the heat supply going into CSTR-4, which is one of

the manipulated inputs. The dashed black line represents the tracking set-point, while the

tracking performances obtained with different approximation models are differentiated by

colors and markers.

As can be observed in Table 2.2, TPWL models failed to improve the average compu-

tational speed for solving the optimization problem but provide satisfying tracking results.

This could be caused by the complexity of the TPWL models, leading to more iterations

required before the numerical solver converges to the optimal solution. The increased num-

ber of linearization points does not improve MPC controller performance. A small offset

in the manipulated variable can be observed in Figure 2.6. Computational speed improve-
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Table 2.2: MPC results of the original model and approximation models - Alkylation

Model applied Dimension Time (s) Objective function value

Original 25 1.16 23564.71

3 p.t. linearized 25 4.28 15619.71

5 p.t. linearized 25 2.36 22655.89

3 p.t. linearized & POD 15 0.52 46990.54

5 p.t. linearized & POD 15 0.73 48512.75

Subspace LTI 2 0.07 49933.00

Neural Network N/A 0.27 182511.67
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Figure 2.5: The optimal product concentration trajectory under different model-
approximation-based conventional MPC frameworks.

ments were observed with model order reduction applied on top of TPWL models while the

tracking performance became worse. The observation from Figure 2.5 matches the results in
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Figure 2.6: Manipulated input trajectory under different model-approximation-based con-
ventional MPC frameworks - the heat supply going into CSTR-4

Table 2.2, where slight offsets in tracking were observed for the TPWL-POD models. This is

reasonable since applying model order reduction and linearization at the same time further

reduces the model accuracy.

The subspace-model-based MPC provides significant computational cost reduction with

an under-damping response as presented in Figures 2.5 and 2.6. It is also noticed that the

control strategy obtained with the subspace model changes rapidly and more aggressively.

This observation is reasonable as the subspace model is linear. Compare to nonlinear models

that give predictions that are smoother and closer to the actual dynamics of the system,

the linear model leads to more aggressive prediction and thus more aggressive controller

responses.

As for the NN model, a more significant offset was observed. The offset could be due

to the input-output normalization required during training as well as prediction applica-

tions, leading to significant numerical errors. The non-smooth noisy prediction of the model

30



Table 2.3: EMPC results of the original model and approximation models - Alkylation

Model applied Dimension Time (s) Objective function value

Original 25 0.68 -6867.40

3 p.t. linearized 25 0.67 -4244.25

5 p.t. linearized 25 0.88 -6840.55

3 p.t. linearized & POD 15 0.60 -3012.19

5 p.t. linearized & POD 15 1.39 -6825.65

Subspace LTI 2 0.06 -6739.46

Neural Network N/A 0.52 -5396.95

also contributed to the offset. Computational cost reduction that is better than the first-

principle-model-based models but worse than the subspace model was achieved. Note that

the presented input happened to converge to the set-point for the NN model, which is not

the case for all input variables.

2.3.4.3 Economic model predictive control

In this subsection, we study the performance of the different models in EMPC (2.5). The

EMPC simulation results of the alkylation process are summarized in Table 2.3. Figure 2.7

presents the product concentration under the optimal control trajectory obtained under

different model-approximation-based EMPC frameworks, of which an example is shown in

Figure 2.8, where the trajectory of the heat supply for CSTR-4 is presented.

The TPWL model with 5 linearization points gives the best performance. Significant

performance improvements are observed with increased linearization points regardless of the

presence of model order reduction, which is different from the observation made for MPC

controller design. It was also observed that the computational cost rises as the number of

linearization points increases. Applying POD on top of TPWL leads to worse EMPC perfor-
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Figure 2.7: The optimal product concentration trajectory under different model-
approximation-based EMPC frameworks.
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Figure 2.8: Manipulated input trajectory under different model-approximation-based EMPC
frameworks - the heat supply going into CSTR-4
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mance, which is similar to what has been observed in the MPC simulation results. When the

reference model is relatively simple, further applying POD reduces the computational cost.

The opposite is observed with increased reference model complexity (i.e when more lineariza-

tion points are used). Furthermore, the performance deviates more significantly when the

referencing LPV model is less accurate. Note that from Figure 2.7, it can be observed that

if only the product concentration is considered, different conclusions regarding simulation

performance will be obtained, as the heating cost index is ignored. However, it can still be

observed from Figure 2.7 and 2.8 that the 5-point-TPWL model gives control strategy that

is closest to that obtained with the original model.

Overall, no significant improvement in computational speed is achieved from using first-

principle-model-based model reduction. The reason is that the complexity of the original

system is relatively low, which can be proved by the fast computational speed while solving

the EMPC problem with the original model. In the following section, it will be shown

that the speed improvements with the usage of reduced models are significant for the more

complex WWTP system.

As can be observed from Table 2.3, the computational load reduction with the subspace

model employed is the highest out of all models considered. Two factors contributed to this

result, namely the significant reduction in the model order and the linearity of the subspace

model. A reasonable EMPC performance was also achieved with the model.

The optimal control trajectory obtained with the NN model is similar to that obtained

with the models with 3 linearization points. The response is less smooth and oscillations in

the control strategy can be observed from Figure 2.8. The improvement in computational

speed achieved is slightly less than the subspace LTI model but is still quite significant. The

overall performance of the NN model is better than models with 3 linearization points, but

worse than models with 5 linearization points and the subspace LTI model.
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Figure 2.9: A schematic of the wastewater treatment plant.

2.4 Case Study 2: Wastewater Treatment Plant

2.4.1 Process overview

In this section, we consider a wastewater treatment plant which is a more complex nonlinear

system. A schematic of the WWTP process is shown in Figure 2.9. The WWTP process

consists of an activated sludge bioreactor with five compartments and a secondary settler

with ten layers. The reactor consists of two sections, being the non-aerated section including

the first two chambers, and the aerated section which includes the latter three chambers.

The wastewater stream enters the plant with a concentration Z0 and a flow rate Q0. After

passing through the reactor, the effluent is separated into two streams, in which one of them

is recycled back into the first reactor chamber at flow rate Qa and the other is fed into the

settler on the fifth layer. The stream leaving from the top of the settler contains the purified

water that can be disposed, while the bottom effluent is split into a recycle stream with flow

rate Qr and a waste sludge stream Qw.

A detailed description of the dynamical model of the WWTP can be found in [52].

The model considers 8 biological reactions with 13 major compounds, including 7 soluble

compounds and 6 insoluble compounds. The concentrations of the 13 compounds in each

of the reactor chambers are the state variables. In the settler, a variable that represents all
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insoluble compounds is defined, leading to 8 states for each settler layers. The dynamical

first-principle model of the WWTP consists of 145 states. Two manipulated input variables

are considered, namely the oxygen transfer rate in the fifth chamber of the reactor KLa5

and the flow rate of the recirculation stream Qa.

2.4.2 Control objective and controller setting

The economic control objective used for the EMPC controller and the steady-state opti-

mization layer of MPC are adopted from [15]. Two performance indices are considered for

assessing the economic performance of the process, namely effluent quality (EQ) and overall

cost index (OCI). The economic performance measure is a weighted summation of the two

performance indices as follows:

le = α · EQ + β ·OCI (2.17)

where EQ (kg pollution · day−1) is a factor that measures the processed water quality eval-

uated as the daily average of a weighted summation of various effluent compound concen-

tration, OCI covers the factors that have significant impacts on the process operating cost

including sludge production (kg · day−1), aeration energy (kWh · day−1), pumping energy

(kWh · day−1), and mixing energy (kWh · day−1), and α and β are two weighting factors for

EQ and OCI, respectively. More detailed description of the cost function can be found in

[15].

The system outputs are chosen to be the states required to calculate EQ and OCI.

The observability of the system is validated by PBH test. In total, 41 outputs are used.

However, with only 2 inputs, it is very challenging and in fact impossible to track all 41

outputs. Thus the MPC controller is designed to track two of the outputs that deviate the

most from the set-point, namely the slowly biodegradable and soluble substrate in the first

and second reactor compartments. The two tracked outputs will be denoted as XS1 and XS2
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Figure 2.10: Step response of a WWTP process output.

in the following sections. The weighting parameters are defined to be Q = diag([100, 100]),

R = diag([100, 100]) and Pf = diag([1000, 1000]). Similar to the alkylation process, the

input and output vectors are only bounded:

U = {u| u ≤ u ≤ ū}

Y = {y| y ≥ 0}

(2.18a)

(2.18b)

where u = [0, 0], ū = [240, 92230]. Scaling is performed in implementations to reduce numer-

ical errors.

An open-loop response of XS1 with respect to step changes in the input vector at t = 1hr

is presented in Figure 2.10. The controller sampling time is 30 minutes and the prediction

horizon is N = 10. The dynamics five hours into the future are considered by the controller,

which is enough to cover the essential dynamics of the process according to Figure 2.10.
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2.4.3 Data generation and model approximation

A dataset with 5376 data points (112 simulation days) is generated for the WWTP process.

Samples of the training dataset are presented in Figure 2.11. Two output trajectories and

one input trajectory are presented. Recall that XS1 is the slowly biodegradable and soluble

substrate in the first reactor compartment, Qa is the flow rate of the recirculation stream.

X1 represents the total sludge concentration in the bottom layer of the settler. Note that

the input signal is designed differently compare to the alkylation process. Instead of equally

splitting the input domain, the signal is generated by adding small additional steps to a PRBS

signal. This is because if the same approach is used, the complex nonlinear dynamics of the

WWTP lead to an ill-conditioned dataset that can not be used for model identification. By

making small changes to a working PRBS input signal, the corresponding output responses

would be similar to those obtained with the PRBS signal but are able to capture the system

nonlinearity. Here the small steps are added by another PRBS signal with magnitudes

[0, 0.1× (ūdata − udata)], where ūdata and udata are the upper and lower bounds of the PRBS

signal.

System orders of the approximation models are again determined by guess and check

such that fair prediction performances are achieved. A fully-connected NN model in the

following form is generated:

f : R878 → R410

where 878 = 20 × 43 + 9 × 2, 410 = 10 × 41, 43 is the number of inputs plus outputs (2

inputs and 41 outputs), 20 is the number of past data points, 9 is the number of future

inputs, and 10 is the number of output steps been predicted. Again the NN is designed to

fit the controller design such that the model needs to be called only once while defining the

optimization problem.
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Figure 2.11: Multi-level input and the corresponding output response.

2.4.4 Results and discussion

2.4.4.1 Approximation models

Six approximation models are identified for the WWTP process. Based on the original

model, three sets of linearization points are investigated, namely 1, 4, and 5 linearization

points. Note that due to the complexity of multi-point linearized TPWL models, simulations

are not performed with TPWL models with 145 states. Instead, only TPWL-POD models

with 47 artificial reduced states are employed in MPC and EMPC simulations. An LTI

model with state vector dimension s = 48 is identified using the subspace method. The
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Table 2.4: Open-loop response of the reduced model and the original model - WWTP

Model applied Order RMSE

1 p.t. linearized 145 0.056

1 p.t. linearized & POD 47 0.057

4 p.t. linearized & POD 47 0.059

5 p.t. linearized & POD 47 0.057

Subspace LTI 48 0.070

Neural Network N/A 0.067

fully-connected NN with input-output design mentioned in the previous section consists of

two hidden layers, of which each layer contains 40 nodes.

Figure 2.12 presents the open-loop response of XS1 and the corresponding input signal

of KLa5. The average NRMSEs of the outputs predicted by approximation models are

summarized in Table 2.4. The application of the POD method has little effect on the open-

loop prediction performance of the model with a single linearization point. As for the TPWL-

POD models, the model performance improves slightly with increased linearization points.

The subspace model has the worst performance due to significant information loss caused

by limiting to a linear model. The NN model performs slightly better than the subspace

model as it captures the nonlinearity of the system to some extent. From Table 2.4, it can

be concluded that the single-point-linearized model has the best prediction performance. To

summarize, all approximation models respond to input changes without delay.

2.4.4.2 Conventional tracking model predictive control

MPC simulations based on the approximation models introduced in the previous section are

carried out and the results are summarized in this section. Table 2.5 presents the average

computational costs and the accumulated objective function values of the original model
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Figure 2.12: Open-loop output responses of the WWTP first-principle model and approxi-
mation models.

and the approximation models. The dynamic trajectories of XS1 under each of the MPC

controllers are shown in Figure 2.13, while Figure 2.14 presents the optimal control strategies.

As can be observed from Table 2.5, the single-point linearized model with reduced order

converges to the set-point fastest. According to Figures 2.13 and 2.14, it also gives the op-

timal control strategy closest to that obtained with the original nonlinear model. Note that

the model leads to the largest computational cost among first-principle-model-based approx-

imation models, indicating the effect of the number of states considered in the optimization

problem. The second fastest convergence to the set-point is given by the single-point lin-

earized model with order reduction. A milder response in the output is also observed from

Figure 2.13. The multi-point-linearized TPWL-POD models give similar responses, with

more significant overshoots in the output at the beginning. It is also noticed that for in-
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Table 2.5: MPC results of the reduced model and the original model - WWTP

Model applied Order Time (s) Objective

Original 145 39.63 1170.32

1 p.t. linearized 145 4.75 3891.11

1 p.t. linearized & POD 47 2.46 1403.76

4 p.t. linearized & POD 47 2.78 4736.07

5 p.t. linearized & POD 47 2.84 4736.07

Subspace LTI 48 0.48 11696.64

Neural Network N/A 9.62 6647.17

put Qa, the control strategies obtained based on these two models start further from the

set-point. It is also observed that with an increased number of linearization points, the

computational complexity increases.

Being the most efficient in terms of computational cost, the subspace model has the

worst performance. A huge overshoot is observed at the beginning and it failed to converge

to the set-point without offset. As shown in Figure 2.13, the subspace model leads to an

underdamped response after the first overshooting peak. These indicate a more significant

plant-model-mismatch between the subspace model and the real system. The NN model is

the most computationally expensive out of all approximation models considered. This could

be due to the less smooth multi-step-ahead prediction trajectory, leading to higher costs in

computing Jacobian and Hessian while solving the optimization problem. It shows better

performance compared to the subspace model, however offset is as well observed. Figure

2.14 indicates the NN model leads to an significant offset for input Qa. To be noteworthy,

the NN model is the only model that leads to an output response without overshoot in the

beginning.
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Figure 2.13: Optimal output trajectory of the WWTP under different model-approximation-
based conventional MPC frameworks.

2.4.4.3 Economic model predictive control

EMPC simulations are as well performed with the approximation models and the original

nonlinear model. Table 2.6 presents the EMPC simulation results of the WWTP process.

Figure 2.15 shows the trajectory of the effluent quality (EQ) index under the optimal control

strategies obtained with different methods, which is presented in Figure 2.16.

For the first-principle-model-based model reduction, it is observed from Table 2.6 that

the single-point linearized model has the best economic performance, which is the same as

that observed in MPC simulations. With model order reduction, the computational speed

was further improved however with a worse performance at the same time. The time required

to solve the optimization problem increases steeply when the number of linearization points

increases. The effect of model complexity is noticed to have a greater impact on EMPC

compare to MPC. The economic performance however, did not improve when the number
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Figure 2.14: Optimal control policy of the WWTP under different model-approximation-
based conventional MPC frameworks.

of linearization points increases. This could be because the system operates closely around

the steady-state. It can be seen from Figure 2.15 that apart from that obtained with the

original model, the best effluent quality is achieved with the single-point TPWL model. The

EQ index trajectories of the multi-point TPWL-POD methods are worse and similar to each

other, which matches with the results as shown in Table 2.6.

The subspace model leads to EMPC performances better than the multi-point linearized

models but worse than the single-point linearized model. The reduction in computational

cost is more significant than that achieved with the single-point linearized model as the order

of the subspace models is much lower.

The NN-based EMPC framework provides economic performance slightly better than

that obtained by the multi-point TPWL-POD models. The computational cost is lower

than multi-point TPWL-POD models but higher than the LTI models. This is reasonable

as NN is nonlinear by its nature. It is noticed from Figure 2.16 that the optimal control
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Table 2.6: EMPC results of the reduced model and the original model - WWTP

Model applied Order Time (s) Objective

Original 145 396.07 115862.71

1 p.t. linearized 145 7.06 118614.70

1 p.t. linearized & POD 47 5.64 122521.16

4 p.t. linearized & POD 47 23.68 138520.05

5 p.t. linearized & POD 47 42.16 138520.05

Subspace LTI 48 6.86 121468.84

Neural Network N/A 12.65 135274.59

trajectory of Qa obtained based on the NN osculates the most out of all models considered.

This may be caused by the non-smooth dynamics of the NN, leading to challenges while

solving the optimization problem.

2.5 Summary

This chapter evaluates the applicability and performance of representative model approxi-

mation methods in MPC and EMPC. While these model approximation methods have been

successful in open-loop dynamic prediction, the nature of advanced control indeed poses

great challenges for these existing model approximation methods as demonstrated in the

simulations of this chapter. We have the following remarks:

� Approximation models do not always lead to faster computation. The time required

to do one iteration while solving the optimization problem might be reduced by using

an approximation model. However, depending on the model structure, the number of

iterations required might increase, resulting in a longer computational time.

� The same approximation method could perform very differently on different systems.
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Figure 2.15: Effluent quality (EQ) index trajectory under different model-approximation-
based EMPC frameworks.

For example, increased linearization points improve model performance for the alkyla-

tion process but not the WWTP process.

� For MPC, model accuracy and structure are essential for achieving satisfying set-

point-tracking without offsets. More investigations are necessary for dataset-based

approximation approaches.

� EMPC tries to track the trajectory that maximizes the economic performance. This

requires the model to have sufficient accuracy over the entire operating range, which

poses challenges for the existing methods.

� The computational complexity of POD combined with linearization increases quickly

with the increase of the number of linearization points. At the same time, the in-

creased number of linearization points does not necessarily lead to improved control

performance in the examples. How to determine the optimal number of linearization
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Figure 2.16: Optimal control trajectories under different model-approximation-based EMPC
frameworks

points may be a question worth further investigation.

� The NN models identified in this chapter focus on multi-step-ahead prediction. These

models may give sufficiently accurate approximations of nonlinear systems. However,

oftentimes these models return non-smooth prediction trajectories, which may pose

challenges in the associated optimization. More work needs to be done to improve the

overall framework. For example, an optimal operating point can be determined with

NN-based EMPC first, followed by designing a more accurate controller based on the

obtained set-point for better control strategies.
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Chapter 3

Model predictive control of

agro-hydrological systems based on a

two-layer neural network modeling

framework

Water scarcity is a rapidly escalating global issue due to various factors such as population

growth and climate change. Approximately 70% of the freshwater is consumed by agriculture

activities [53, 54]. Thus, improving the water-use efficiency in the agriculture sector is

essential. Currently, practical irrigation policies are mostly open-loop, which are determined

based on heuristic or empirical knowledge. Real-time feedback from the field is often not

considered. This approach typically has low irrigation efficiency, as the applied irrigation

amount can be imprecise, leading to over or insufficient irrigation2.

Increasing attention has been drawn to closed-loop irrigation over the past decade [54, 55].

Among various approaches, advanced control strategies are popular due to their ability

to handle constraints and multiple objectives simultaneously [56, 57, 58, 13, 59, 60]. In

2This chapter has been published as a journal paper.
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[56, 57, 58], conventional model predictive control (MPC) is employed to optimize the soil-

moisture dynamics in real-time in the presence of weather disturbances. Instead of tracking

a set-point, Mao et al. proposed an MPC controller that tracks a target zone (ZMPC), which

provides more degrees of freedom in control actions [13]. Long-term irrigation scheduling

that aims to optimize crop production over a longer time duration is investigated in [59, 60].

To be more specific, Nahar et al. proposed a hierarchical framework including a scheduler

and a controller [59]. The scheduler has a larger sampling time and optimizes over the entire

crop growth season. Some soil moisture reference is provided by the scheduler and is tracked

by the controller over shorter horizons. Sahoo et al. proposed a knowledge-based scheduler

that optimizes the irrigation amount and time explicitly and is shown to be effective under

different scenarios [60].

One of the major challenges in applying advanced control to the agro-hydrological system

is the high computational cost. The water dynamics are often described by the Richards

equation, which is a nonlinear PDE developed based on first principles [61]. Spatial dis-

cretization is often required to simplify the Richards equation in applications [61], however,

the resulting nonlinear ODE system is still difficult to solve and leads to states with higher

dimensions.

Model approximation based on neural network (NN) is a rather generalized approach

compared to traditional model identification. Motivated by the accuracy and computational

efficiency of the NN model reduction observed in Chapter 2 and inspired by the structure

of the LPV model developed in [13], we propose a two-layer NN framework to approximate

the agro-hydrological dynamics in this chapter. The proposed framework is shown to have

better open-loop prediction performance compared to a benchmark single long short term

memory (LSTM) NN.

The developed two-layer NN model is employed in a ZMPC controller in the presence

of noise and weather disturbances. The control objective is to minimize the amount of

irrigation required while keeping the soil moisture content inside the target zone. In order to
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address the plant-model-mismatch, open-loop bias correction is added to the model, while

a shrinking target zone is employed for ZMPC. Two bias correction models are investigated

with different updating frequencies and the one with better open-loop prediction performance

is used in ZMPC. The shrinking ZMPC target zone is designed such that the shape of the

zone can be tuned by modifying the hyper-parameters, of which the effects on the control

performance are investigated.

This chapter is organized as follows. The agro-hydrological system of interest is intro-

duced in Section 3.1. Details of the proposed two-layer NN framework are discussed in

Section 3.2, of which the open-loop validation is provided in Section 3.3 with two plant-

model-mismatch compensation strategies investigated in Section 3.4. The ZMPC controller

employed is introduced in Section 3.5. The closed-loop simulation results are presented in

Section 3.6. Finally, concluding remarks are provided in Section 3.7.

3.1 Preliminaries

A schematic of the agro-hydrological system of interest is shown in Figure 3.1 with grass

being the crop of interest. The soil properties are assumed to be homogeneous horizontally

and only the soil water dynamics on the vertical axis are considered. Irrigation is applied

with a sprinkler and is assumed to reach the soil surface evenly. Precipitation and evapo-

transpiration are considered as known disturbances based on weather forecasting data. It is

assumed that precipitation reaches the soil surface in identical ways as irrigation.

3.1.1 Soil Water Dynamics

Based on first principles, the soil water dynamics can be modeled using the 1-dimensional

Richards equation with the crop and weather information taken into account [61]:

c(h)
∂h

∂t
=

∂

∂z

[︃
K(h)

(︃
∂h

∂z
+ 1

)︃]︃
− α(h)

KcET0

zr
(3.1)
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Figure 3.1: A schematic diagram of the considered agro-hydrological system.

where h [m] is the capillary potential, c [m−1] denotes the soil capillary capacity, and K

[m/s] is the soil hydraulic conductivity. The −α(h)KcET0

zr
term captures the effect of weather

and crop, where α(h) and Kc are dimensionless factors, namely the water stress factor and

the crop coefficient. ET0 [m] denotes the reference evapotranspiration and is assumed to be

a known weather-dependent disturbance. zr = −0.13 m represents the rooting depth of the

crop and is assumed to be time-invariant in this chapter. Note that z [m] represents the

vertical axis of the soil with upwards as the positive direction. c(h) and K(h) are modeled
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Table 3.1: Soil parameters of sandy loamy soil

Ks [m/s] 1.23e-5

θs [m
3/m3] 0.41

θr [m
3/m3] 0.065

α [m−1] 7.5

n 1.89

m 0.47

by the van Genuchten-Mualem soil hydraulic model [62]:

c(h) = (θs − θr)αn

(︃
1− 1

n

)︃
(−αh)n−1[1 + (−αh)n]

1
n
−2 (3.2)

K(h) = Ks

[︂
(1 + (−αh)n)−(1−

1
n)
]︂ 1

2

[︄
1−

[︃
1−

[︂
(1 + (−αh)n)−(1−

1
n)
]︂ n

n−1

]︃1− 1
n

]︄2

(3.3)

where Ks [m/s] denotes the saturated hydraulic conductivity, θs [m3/m3] and θr [m3/m3]

represent the saturated and the residual soil moisture, respectively. α [m−1] and n are the van

Genuchten-Mualem parameters related to the soil properties. Sandy loam soil is considered

in this chapter and the corresponding parameters are adopted from [63] and are presented

in Table 3.1.

3.1.2 Boundary Conditions

The boundary conditions employed in this chapter are presented in (3.4)–(3.5). The Neu-

mann boundary condition is used at the soil surface as shown in (3.4), while free drainage is

assumed for the bottom boundary as described in (3.5).

∂h(t)

∂z

⃓⃓⃓⃓
T

= −1− I(t) + P (t)

K(h(t))
(3.4)

∂h(t)

∂z

⃓⃓⃓⃓
B

= 0 (3.5)
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where I(t) [m/s] and P (t) [m/s] denote the rate of irrigation and precipitation at time t. Note

that interception caused by grass leaves is ignored in this chapter, only evapotranspiration,

precipitation, and irrigation are considered.

3.1.3 Model Discretization

The system of equation (3.1) is discretized over the vertical spatial axis following the approach

proposed in [61], which leads to an ODE system:

ẋ(t) = f(x(t), u(t)) (3.6)

where x ∈ R26 and u ∈ R1 are the state and input vectors respectively, while f defines

the nonlinear system dynamics. The total depth of soil considered is 0.5 m and is evenly

discretized into 26 nodes. The water dynamics at the center of each node are used to

represent the dynamics of the entire node. In this chapter, irrigation rate I(t) [m/s] is the

system input, and h [m] at the discretized nodes represents the system states. The system

output y ∈ R1 is the volumetric water content θ [m3/m3] at the rooting depth zr, which is

an algebraic function of the state vector defined by the soil-water retention equation of van

Genuchten (3.7). Eqn. (3.6) and Eqn. (3.7) are used to generate all training datasets.

θ(h) = (θs − θr)

[︃
1

1 + (−αh)n

]︃1− 1
n

+ θr (3.7)

3.2 Proposed Two-Layer Neural Network

To reduce the computational complexity of the first-principle model, a two-layer NN frame-

work is proposed to approximate its nonlinear dynamics. In this section, details regarding the

proposed framework will be discussed. Section 3.2.1 introduces the motivation and provides

an overview of the proposed framework. Sections 3.2.2 and 3.2.3 discuss the data generation
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Figure 3.2: A schematic diagram of the proposed two-layer NN framework.

procedure for the individual layers of the framework respectively.

3.2.1 Overview

In this chapter, LSTM NNs will be used to approximate the original nonlinear system dy-

namics due to their ability of efficiently handle sequential data [64, 65]. The motivation for

designing the proposed framework is that a single LSTM is not able to capture the complex

nonlinear dynamics of the agro-hydrological system over the entire operating range of in-

terest. It was noticed, however, within a smaller operating region, a single LSTM provides

satisfying modeling performance. Detailed simulation results will be presented in Section

3.3.

A schematic diagram of the proposed framework is presented in Figure 3.2. The first

layer contains K sub-models, namely Model 1– Model K, which will be referred to as

M1,M2, · · · ,MK in the following text. The second layer consists of a single model (Model

A, referred to as MA). Each sub-model in the first layer is responsible for a sub-operating
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region. The union set of the sub-operating regions forms the entire operating region of in-

terest. M1 −MK are LSTMs while MA is a fully connected NN. At the current time step t,

M1 −MK take the system input u and output y obtained from p previous time steps as NN

inputs:

NNin(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u(t− p+ 1), y(t− p+ 1)

u(t− p+ 2), y(t− p+ 2)

· · ·

u(t), y(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and returns K one-step-ahead predictions regarding the system output:

NNout1 = [ȳ1(t+ 1), · · · , ȳK(t+ 1)]T

Recall that each sub-model is only reliable in a sub-operating region. Inspired by Mao et al.

[13], the proposed framework adopts the idea of the LPV models. The model performance

can be improved by combining predictions made by multiple sub-models. The one-step-

ahead predictions made by M1−MK are fed to MA, where the final prediction of the system

output at the next time step (NNout2 = ypred(t+ 1)) is obtained.

Overall, at any time step t, the proposed framework takes NNin(t) as input and returns

the one-step-ahead prediction of the system output y(t + 1), which can be expressed as a

nonlinear function:

ŷ(t+ 1|t) = g(NNin(t)) (3.8)

3.2.2 Design and training of first-layer NNs

As discussed in the previous section, the first layer of the proposed framework consists of K

LSTMs. In this chapter, K = 3 is used. The operating regions in terms of the system output

for each sub-model are summarized in Table 3.2. The number of LSTM layers employed

in the models is also included. Each model consists of 1 or 2 LSTM layers, followed by a
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Table 3.2: Operating ranges of the sub-models

Operating range # of LSTM layers

M1 y ∈ [0.12, 0.27] 1

M2 y ∈ [0.21, 0.32] 1

M3 y ∈ [0.29, 0.40] 2
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Figure 3.3: A segment of the training dataset of M2

fully connected layer. Activation functions ‘sigmoid’ and ‘tanh’ are used. Both activation

functions have smooth dynamics, where ‘tanh’ function provides steeper responses compare

to ‘sigmoid’ function. Each sub-model is equivalent to a nonlinear function:

mi : R20×2 → R1, i = 1, 2, 3

where the model input is a matrix with 20 rows and 2 columns, and the output is a scalar.

20 is the number of the past input-output data points (p = 20), while 2 is the number of
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system input (n = 1) plus the number of system output(l = 1). All models have a sampling

time of 2 hours.

Three training datasets that vary in the corresponding operating region are generated

for the sub-models respectively. Each dataset contains 30000 data points. Multi-level pseu-

dorandom input signals are employed to generate all three datasets, which are fed into the

discrete ODE system (3.6) and the algebraic equation (3.7) for open-loop simulations. A

multi-level pseudorandom signal is similar to a pseudorandom binary signal, except that it

has multiple levels, which helps to stimulate the nonlinear dynamics of the agro-hydrological

system. More details regarding the design of multi-level pseudorandom inputs can be found

in our previous work [66]. Figure 3.3 presents a segment of the training input signal and

the corresponding system output for M2. Note that a random noise signal ϵ is added to the

output trajectory to mimic real process operations, which is shown in Figure 3.3(b) in red.

The max magnitude of ϵ is defined as follows:

ϵmax = 0.1[ymax − ymin]

where ymax and ymin are the maximum and minimum value of the system output in the

dataset.

All datasets need to be reorganized to match the input-output structure of the NNs.

Scaling is also required such that the magnitudes of the scaled data are less than 1. All

simulations are carried out in Python. TensorFlow [67] is used to train the NN models.

Readers may refer to our previous work [66] for more details regarding data pre-processing

and NN training.
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Figure 3.4: A segment of the training dataset of MA

3.2.3 Design and training of second-layer NN

The second layer of the proposed framework consists of a fully connected NN equivalent to

the following nonlinear function:

mA : R3 → R1

The inputs to model MA are the one-step-ahead predictions of the system output made

by M1, M2 and M3, while the output is the actual system output prediction. Two fully

connected layers with the activation function ‘sigmoid’ are used in MA.

Under the objective of predicting the system output over the entire operating range of

interest, the training dataset of MA covers the entire operating range. A section of the

training dataset including 100000 points is presented in Figure 3.4, where the input signal

and the corresponding output trajectories without and with white noise added are presented.

Note that the training dataset ofMA spans all the sub-operating regions with more aggressive

dynamics. Instead of continuous irrigation with lower magnitudes, an impulse irrigation
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Table 3.3: NRMSE of multi-step-ahead-predictions of the sub-models

# of prediction steps M1 M2 M3

1 0.015 0.016 0.073

10 0.042 0.049 0.111

20 0.060 0.050 0.111

signal is used to provide a more aggressive output response that varies in a larger operating

range, which is desired for MA training.

Similar to that discussed in the previous section, reconstruction and scaling are necessary

for this dataset. Note that the inputs to MA are not the system input and output. The

dataset is passed through the pre-identified sub-models after the data pre-processing. The

predictions made by the sub-models are collected, which are the designed inputs for MA and

are used to train MA.

3.3 Model Validation

The prediction performance of the proposed framework is validated in this section. The

maximum number of prediction steps is N = 20 for this chapter, which is also the control

horizon of interest for following ZMPC applications. Section 3.3.1 presents the validation

results of the sub-models. The proposed framework is then compared with a single LSTM

in Section 3.3.2.

3.3.1 Validation of the first-layer sub-models

The multi-step-ahead prediction performances of M1 − M3 are presented in this section.

Validation datasets are obtained in similar manners as the training datasets with 20% white

noise added to the system output. This helps to better test the prediction performance of

the models. At any given time step, noise-treated validation data are fed to the model for

one-step-ahead prediction. Starting from the second time instant, the prediction made by

the model at the previous time instant will be used as the initial condition of the current
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time instant. This procedure is repeated 20 times, providing twenty-steps-ahead predictions.

The prediction performance is measured by the normalized root mean square error

(NRMSE) of the multi-step-ahead predictions in the desired operating range of each model

and is summarized in Table 3.3. The NRMSE is defined as follows:

NRMSE = (ymax − ymin)
−1

√︄∑︁tf
i=1(yact(i)− ypred(i))2

tf
(3.9)

where tf is the total number of validation data points, yact and ypred are the true and predicted

system outputs, respectively. Figures 3.5, 3.6, and 3.7 present the multi-step-ahead open-

loop prediction performance of M1, M2, and M3 respectively. The same line styles are used

in Figures 3.5–3.7 for consistency.

All three models provide reasonable multi-step-ahead prediction without delays in the

presence of noise. When the magnitude of the system output is low, small prediction offsets

can be observed for M1 in Figure 3.5. Figure 3.6 shows only some minor offsets exist at the

local extremes for M2. For both M1 and M2, the effect of noise seems to be minor. For M3,

Figure 3.7 indicates that the noise has a stronger impact on the single-step-ahead prediction,

which deviates and becomes insignificant as the number of prediction steps increases. It is

also noticed that when the output converges to steady-states, the impact of the noise is

the most significant. Similar to M1 and M2, M3 also has some minor offsets at the local

extremes.

For different operating ranges, different system output dynamics are observed. When

the soil moisture content and the irrigation rate are low, no obvious steady-state is observed

(Figure 3.5). As the operating range shifts to the higher magnitude side, the soil moisture

content tends to saturate to steady-states under continuous irrigation (Figure 3.7).
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Figure 3.5: One-step-ahead prediction (solid), ten-step-ahead prediction (dash-dotted), and
twenty-step-ahead prediction (dashed) of M1 compared to the actual trajectory (dark solid).
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Figure 3.6: Multi-step-ahead prediction performance of M2.
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Figure 3.7: Multi-step-ahead prediction performance of M3.
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Figure 3.8: Multi-step-ahead prediction performance of an single LSTM.
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Figure 3.9: Multi-step-ahead prediction performance of the two-layer NN framework.

3.3.2 Validation of the proposed two-layer framework

The multi-step-ahead prediction performance of the proposed framework is investigated in

this section. A single LSTM that aims to predict the agro-hydrological dynamics over the

entire operating region is used as the benchmark approximation model. The benchmark

LSTM has the same input (NNin) and output (NNout2) structures as the proposed two-layer

NN framework, which are discussed in Section 3.2.1. The single LSTM has 2 LSTM layers

followed by a fully connected output layer. Both the LSTM layers use the activation function

‘sigmoid’ while the output layer uses the activation function ‘tanh’. Note that the dataset

employed for training the benchmark LSTM is the same as that used to train the two-layer

NN model.

The same validation dataset is used to compare the performance of the two approximation

approaches, which spans the entire operating range of interest. The open-loop prediction

trajectories of the system output based on the benchmark LSTM and the proposed framework
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Table 3.4: NRMSE of multi-step-ahead-predictions of the NN models

# of Pred. steps Single LSTM two-layer NN % Diff. △
1 0.076 0.044 42.5

10 0.096 0.082 14.5

20 0.100 0.093 7.14

are presented in Figures 3.8 and 3.9 respectively. The single-step-ahead, ten-step-ahead,

and twenty-step-ahead predictions are presented in each figure with the same line styles

as those employed in the previous section. The NRMSE values under the two cases and

the percentage difference △ between them are summarized in Table 3.4. The percentage

difference is calculated with respect to the NRMSE of the benchmark LSTM:

△ =
NRMSELSTM −NRMSEproposed

NRMSELSTM

As presented in Figure 3.8, the LSTM can respond to aggressive dynamics efficiently

without delays. However, significant offsets are observed at the local extremes with larger

magnitudes. A section of the trajectories is amplified, which can be seen on the top-right

corner of Figure 3.8. At both the local maximum and the minimum, significant offsets can

be observed in the zoomed-in plot, of which the predicted local minimums are at the level

of the true local maximum. Better prediction performance is observed in Figure 3.9. To

be specific, the dynamics at the local minimums can be captured by the proposed two-layer

framework much better compared to the LSTM. From the zoomed-in window on the top

right, it can be observed that the predictions of the local minimum and maximum are more

accurate compared to the LSTM. Table 3.4 indicates comparison results, showing that the

NRMSE values of the proposed framework are significantly lower than those obtained with

the LSTM for all different prediction steps. The improvement of the proposed framework

is the most significant with one-step-ahead predictions and slowly reduces as the prediction

steps increase.

It is noticed that the proposed framework cannot accurately approximate the local max-
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imums with larger magnitudes. To account for this problem, we introduce a bias-and-scale-

updated model to capture the plant-model-mismatch, of which the details are provided in

the following section.

3.4 Plant-Model-Mismatch Correction

To capture the plant-model-mismatch, two correction approaches are investigated based on

the proposed two-layer NN framework. The first approach is to add a simple bias term b1

based on the prediction error:

yact = ypred + b1 (3.10)

where yact and ypred represent the actual output measurement and the prediction made by

the two-layer NN framework respectively.

The second approach is to fit a first order linear model that maps the predicted output

to the actual measurement:

yact = a · ypred + b2 (3.11)

where a and b2 are parameters to be identified.

For both approaches, an updating frequency f of the parameters needs to be determined

first. In this chapter, we are interested in accurately predicting the system dynamics 20

steps into the future, thus the updating frequency should be a divisor of 20. To test the

performance of the two approaches, the validation dataset used in the previous section is

employed. The updating policies of the two approaches are presented in Algorithms 1 and

2, respectively. In both algorithms, t represents the current time step, i denotes the step of

predictions made ahead of time t, and η(i) represents the prediction error at step i.

At any given time instant t, the parameters are first initialized with some initial guess.

The initial condition NNin(t) is provided to the proposed framework for multi-step ahead

predictions. In the next N = 20 steps, predictions will be made with the correction model
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considered, which will be updated every f time steps for N
f
times.

The updating policy of the first approach is to take the average of the accumulated

prediction errors over the last f prediction steps. For the second approach, a constrained

optimization problem that finds the best-fit parameters for the linear model is solved. Note

that the parameters are held in bounded compact sets, which help to limit the parameters

in a reasonable range. To be more specific, a ∈ [0.8, 1.5] and b2 ∈ [−0.2, 0.3] are used. If a

simple linear-regression function is employed, the resulting parameters might be impractical.

The toolbox CasADi [50] is employed to solve the optimization problems in Python.

Algorithm 1 Parameter updating algorithm for the first correction approach

Set the number of prediction steps N = 20
Set the updating frequency f = f
Initialize b1 = 0
At each time step of the dataset t, set i = 1
Provide the model with the initial condition ypred(0) = yact(t)
while i ≤ N do

Predict the future system output ypred(i) = NNout2(i) + b1
Record the error with respect to the actual output value η(i)← (yact(t+ i)− ypred(i))
if f is a divisor of i then

Update b1 =
1
f

∑︁i
j=i−f+1 η(j)

end if
Set i = i+ 1

end while

Algorithm 2 Parameter updating algorithm for the second correction approach

Ensure: a ∈ A, b2 ∈ B
Set the number of prediction steps N = 20
Set the updating frequency f = f
Initialize a = 1, b2 = 0
At each time step of the dataset t, set i = 1
Provide the model with the initial condition ypred(0) = yact(t)
while i ≤ N do

Predict the future system output ypred(i) = a ·NNout2(j) + b2
if f is a divisor of i then

Update a and b2 by solving the optimization problem
a∗, b∗2 = mina,b2

∑︁i
j=i−f+1(yact(t+ j)− ypred(i))

end if
end while
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Table 3.5: Performance of the mismatch correction approach in terms of average absolute
error

f No corr. Single bias Linear Model

1 0.101 0.066 -

2 0.101 0.064 0.063

5 0.101 0.195 0.090

10 0.101 0.265 0.098

Recall the prediction horizon of interestN = 20. Thus updating frequencies f = 1, 2, 5, 10

are tested and compared. The correction performance is measured by the average absolute

prediction error υmm:

υmm =
1

N · tf

tf∑︂ N∑︂
|yact − ŷpred|

where the same definitions are kept for all variables. The absolute prediction errors of the

two correction approaches are summarized in Table 3.5. The absolute prediction error of just

the proposed NN framework is as well included in Table 3.5 and is used as the comparison

benchmark.

With f = 5, 10, the single-bias correction approach leads to more significant errors, which

is not applicable. The linear model correction shows very minor performance improvements.

When f = 2, similar improvements in the prediction performance are observed in both

approaches. The single bias correction performs similarly for f = 1 and f = 2. For the

linear model correction, f = 1 is not applicable. Considering the computational complexity

of the two approaches, the single-bias correction with f = 2 is selected.

3.5 Controller Design

A ZMPC controller with a shrinking target zone is employed in this chapter and is presented

in this section. The major target here is to provide sufficient irrigation such that the crop can

live and grow healthily, which implies the soil moisture content at the crop root zone needs

to be kept in a bounded range instead of one particular point. Compared to a conventional
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tracking MPC, ZMPC provides more degrees of freedom to the system and can handle

economic objectives better, which fits the objective of this chapter.

In the basic design of a ZMPC controller, the target zone is kept time-invariant over the

control horizon. In this chapter, we propose a ZMPC design with a time-variant target zone

that shrinks over the control horizon to handle plant-model-mismatch. The proposed ZMPC

formulation is presented as follows:

min
u(tj |ti)∈S(△)

i+N−1∑︂
j=i

||ŷ(tj|ti)− yz(tj|ti)||2Q+||u(tj|ti)||2R

s.t. : ŷ(tj+1|ti) = g(NNin(tj|ti)), j = i, i+ 1, · · · , i+N − 1

ŷ(ti|ti) = y(ti)

u(tj|ti) ∈ U, j = i, i+ 1, · · · , i+N − 1

ŷ(tj|ti) ∈ Y, j = i, i+ 1, · · · , i+N − 1

yz(t) ∈ Yz(tj), j = i, i+ 1, · · · , i+N − 1

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12e)

(3.12f)

where u, y are the system input and output vector, yz is the zone-tracking slack variable.

ti represents the current time step, u(tj|ti) and ŷ(tj|ti) denote the system input and output

at future time tj predicted at the current time ti. (3.12a) is the objective function, where

Q and R are diagonal weighting matrices for the zone-tracking objective and the irrigation

amount respectively. The control objective is to drive the system into a particular operating

zone while minimizing the irrigation amount at the same time. (3.12b) represents the two-

layer NN framework discussed in the previous section, which is used to predict the system

dynamics under the selected input trajectory over the control horizon N . (3.12c) defines the

initial state y(ti) at time ti. (3.12d) - (3.12f) are the state, output and the zone-tracking

constraints, where U, Y, and Yz are compact sets. The time-variant target zone Yz(tj) is a
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subset of Y and is defined as follow:

Yz(tj) = {y(t)|y(tj) ≤ y(tj) ≤ y(tj)}, j = i, i+ 1, · · · , i+N − 1

y(tj) = min
[︂
y(ti) · eµ·

tj−ti
N , Y

]︂
y(tj) = max

[︂
y(ti) · e−µ·

tj−ti
N , Y

]︂
(3.13a)

(3.13b)

(3.13c)

where y(tj) and y(tj) represent the lower and upper bound of the target zone at time step

tj. The boundaries of the target zone varies over time exponentially from their initial value

y(ti) and y(ti) until they are converged to the final value Y and Y , where Y ≤ Y . µ is a

non-negative scalar that determines the shrinking speed of the boundaries. Larger µ leads

to more aggressive shrinkage and vise versa. When µ = 0, the target zone becomes time-

invariant (i.e. y(tj) = y(ti), y(tj) = y(ti)). In this chapter, y(ti) = 0.18 and y(ti) = 0.23 are

used.

Note that the magnitude of the system input u is on the scale of 10−8 to 10−5, which

poses numerical issues for solving optimizations problems. Thus u is scaled before feeding

to the optimization solver. The scaled input uscaled takes values between 0 and 1. Unless

specified otherwise, Q = 4000, R = 100 are employed.

N = 20 is used in this chapter. The sample time ∆ of the optimization is 2 hours (i.e.

∆ = 7200s), meaning that at a given time instant i, the agro-hydrological dynamics in the

next 40 hours will be optimized (u∗ = [u∗(ti|ti), u∗(ti + 1|ti), · · · , u∗(ti + N |ti)]). Following

the receding horizon control strategy, only the optimal input at the first step u∗(ti|ti) will

be applied to the system. The optimization problem is solved repeatedly over the horizon of

interest Nsim = 60, which optimizes the system dynamics over a 5 days duration.

3.6 ZMPC Simulation Results

ZMPC simulation results under various operating conditions are presented in this section.

The same initial condition is employed for all simulations for fair comparisons. To be more
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specific, x0 = −0.2 [m] is the initial state at the rooting depth and is employed for the

discretized Richards equation, while the corresponding system output y0 = 0.266 [m3/m3]

is used for the NN models. First, in Section 3.6.1, the control performance of the proposed

framework is compared with the discretized Richards equation and the single LSTM discussed

in previous sections. Simulations are performed under the controller defined by (3.12) with

a time-invariant target zone (µ = 0) in the presence of process and/or measurement noises.

Then the performance of the two-layer-NN-based ZMPC with a shrinking target zone in the

presence of significant noise and weather disturbance is presented in Section 3.6.2. The effects

of tuning parameters µ, Y , and Y in ZMPC performance are investigated. The basic ZMPC

with a time-invariant target zone is employed as the benchmark controller for performance

comparison.

3.6.1 Optimization performance validation

In this section the performance of the proposed framework in ZMPC applications is validated

by comparing the simulation results with those obtained based on the discretized Richards

equation and the single LSTM. Table 3.6 summarizes the average computational time for

solving the optimization problem, the economic performance of ZMPC simulations, and the

percentage difference in economic performance based on different models. The economic

performance is measured by the accumulated irrigation amount IT in millimeters, which is

calculated as follows:

IT =

Nsim∑︂
t=0

u(t) ·∆ · 1000

where u(t) is the irrigation rate at time t with the unit m/s. The percentage difference in

the accumulated irrigation is calculated with respect to the result obtained based on the

Richards equation. The optimal control strategy and the corresponding output trajectories

obtained based on different models are presented in Figure 3.10. The results shown in

Table 3.6 and Figure 3.10 are obtained in the presence of 2% process noise. Figure 3.11
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Table 3.6: ZMPC simulation results in the presence of 2% process noise.

Model Avg. Time (s) IT (mm) % Diff. in IT

Richards Eqn. 493 8.33 -

Single LSTM 12.5 11.8 41.4

two-layer NN 35.4 9.05 8.66

Table 3.7: ZMPC simulation results in the presence of process noise (P.N.) and measurement
noise (M.N.).

Noise Model IT (mm)

2% M.N.
Single LSTM 11.6

two-layer NN 8.74

5% P.N.
Single LSTM 12.0

two-layer NN 9.54

5% M.N.
Single LSTM 12.0

two-layer NN 9.91

2% P.N. &
2% M.N.

Single LSTM 11.7

two-layer NN 9.46

5% P.N. &
5% M.N.

Single LSTM 12.1

two-layer NN 11.2

presents the optimal system input and output trajectories obtained with 5% process and 5%

measurement noise based on the single LSTM and the proposed framework. The colors and

markers employed in Figure 3.11 are the same as those in Figure 3.10. Table 3.7 summarizes

more ZMPC simulation results based the single LSTM and the proposed framework in the

presence of process and measurement noise.

As presented in Table 3.6, both the single LSTM and the proposed framework help to
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Figure 3.10: Optimal control strategy and the corresponding output response of ZMPC in
the presence of 2% process noise. Discretized Richards equation (star marker), the single
LSTM (dot marker), the two-layer NN framework (triangle marker).
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Figure 3.11: Optimal control strategy and the corresponding output response of ZMPC in
the presence of 5% process noise and 5% measurement noise.
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reduce the computational cost significantly. The computational cost reduction achieved by

the single LSTM is more significant compare to the two-layer NN due to the simplicity of

its structure. With only 8.66% deviation, the economic performance of controller using the

two-layer NN is similar to that using the Richards equation, which is significantly better

compared to that obtained with the single LSTM. The trajectories in Figure 3.10 indicate

the same, as the optimal control law and the system response of the two-layer NN and the

Richards equations are highly overlapped. Based on the Richards equation, no irrigation

is applied for the first a few steps and starts to increase slowly over time. The two-layer

NN leads to similar control strategy with the minor differences caused by the plant-model-

mismatch. As for the single LSTM, the irrigation policy is less efficient, which is nonzero over

the entire horizon. The output trajectories converge to the lower bound of the target zone for

simulations based on the Richards equation and the proposed framework. The responses are

reasonable as the economic objective is to reduce the amount of irrigation required. On the

other hand, for the single-LSTM-based ZMPC, slower convergence and offsets with respect

to the lower bound of the target zone is observed in the optimal output trajectory.

From Tables 3.6 and 3.7, it is observed that compared to process noise, measurement noise

has stronger impacts on the simulation results. As shown in Table 3.7, except for the case

that considered 5% process noise and 5% measurement noise, control with the two-layer NN

has significantly better economic performances compared to that using the single LSTM. As

shown in Figure 3.11, in the presence of 5% process noise and 5% measurement noise, the two-

layer NN provides more aggressive control policy to capture the effect of the noise compare

to the single LSTM. However, the impact of noise in this case is more significant compare

to the control action due to the slow-responding nature of the agro-hydrological system, as

the output trajectories obtained based on the two models are similar. To summarize, the

proposed framework is shown to have better performances compared to the single LSTM in

ZMPC applications. However, some minor violations of the target zone is observed at the

end of the horizon of interest (Figure 3.11) due to the effect of noise, which is not ideal as low
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Table 3.8: ZMPC simulation results with different Y and Y

Target Zone IT (mm) % Diff. - IT Zone Viol. (m3/m3) % Diff. - Zone Viol.

Time Inv. Z. 6.16 - 0.007 -

Y = Y , µ = 1 9.91 61.0 0.0005 93.1

Y < Y , µ = 1 9.53 54.9 0.001 85.1

soil moisture may cause severe consequences in crop growing. Furthermore, precipitation is

an essential disturbance in real-world applications and should be considered. In the following

section, we investigate the performance of a shrinking target zone in capturing the effect of

significant noise and weather disturbances.

3.6.2 Shrinking zone v.s. time-invariant zone

In this section, the performance of the proposed shrinking-zone ZMPC and the ZMPC with

time-invariant zone (referred to as the basic ZMPC in the following text) is compared in

the presence of 5% measurement noise and weather disturbance. The controller is assumed

to have information regarding the weather through weather forecasting with some uncer-

tainties. In this chapter we consider 20% error in weather forecasting. Various parameter

combinations are investigated. In Section 3.6.2.1, µ is kept constant and the effect of Y and

Y discussed. The opposite is done in Section 3.6.2.2, where Y and Y are kept constant with

varying µ.

3.6.2.1 Tuning Y and Y

Figure 3.12 presents two sets of shrinking zones defined with different Y and Y . The darker

zone bounded by dashed boundaries has Y = Y = 0.205, meaning that the target zone

shrinks to the center point of the original zone. The lighter zone bounded by dashed-dotted

boundaries terminates to a zone with Y = 0.20, Y = 0.21. For both controllers, µ = 1 is used.
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Figure 3.12: Shrinking zones with different Y and Y .

The ZMPC results are shown in Figure 3.13. The results obtained based on the basic ZMPC

(i.e. Y = 0.18, Y = 0.23) is employed as the performance benchmark. The results obtained

based on the two shrinking zone design are presented with the same line style as those used

in Figure 3.12. The economic and zone-tracking performance of the ZMPC controllers are

summarized in Table 3.8. The percentage difference of the total amount of irrigation and

zone-tracking performances are calculated based on the basic ZMPC controller.

From Figure 3.13, it is observed that with a time-invariant zone, the controller is able

to capture the effect of the weather disturbance in general. When precipitation is foreseen,

the irrigation amount is reduced. However, minor violation of the target zone at the lower

bound is still observed due to the presence of noise. As presented in the figure, the usage of

shrinking zone helps to avoid the violation. Instead of oscillating around the lower bound

of the target zone, the output trajectories converge toward the center of the zone. This

provides more robustness in the controller in the presence of significant noise. It is also

noticed however, the employment of shrinking zones has significantly affect the total amount

of irrigation. As summarized in Table 3.8, the two shrinking zones considered increase the

accumulated irrigation amount by 61.0% and 54.9% respectively. Figure 3.13 and Table
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Figure 3.13: The precipitation data (top), optimal control strategies (middle), and corre-
sponding output response (bottom) of ZMPC with different Y and Y .
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Table 3.9: ZMPC simulation results with different µ

Target Zone IT (mm) % Diff. - IT Zone Viol. (m3/m3) % Diff. - Zone Viol.

Time Inv. Z. 6.16 - 0.007 -

Y < Y , µ = 1 9.53 54.9 0.001 85.1

Y < Y , µ = 0.7 8.45 37.2 0.003 62.0

Y < Y , µ = 0.5 7.46 21.2 0.005 40.4

Figure 3.14: Shrinking zones with different µ.

3.9 indicate that the output responses based on the two shrinking zone designs are very

similar, while the design that terminates to a zone performs better economically. Thus, in

the following section we investigate the effect of µ with Y = 0.20, Y = 0.21.

3.6.2.2 Tuning µ

Three shrinking zone designs with different µ are shown in Figure 3.14. µ = 1 provides

the fastest shrinking speed and thus the smallest zone. The second largest zone bounded

by dotted lines has µ = 0.7, while the largest zone with solid boundaries has µ = 0.5.

The shrinking process becomes less aggressive as µ decrease. Figure 3.15 shows the optimal
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Figure 3.15: The optimal control strategies (top), and corresponding output response (bot-
tom) of ZMPC with different µ.
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control strategies and the corresponding output responses of the three ZMPC controllers.

The same line styles as those used in Figure 3.14 are used in Figure 3.15. The total irrigation

consumption of the three controllers is summarized in Table 3.9, where the result obtained

with the basic ZMPC is again presented as the performance benchmark for consistency.

From Figure 3.15, it is observed that as the magnitude of µ decrease, the output response

shifts towards the lower bound of the original target zone. The target zone violation thus

becomes more significant, which is consistent with the results presented in Table 3.9. It

is also noticed that with reducing µ value, the total irrigation consumption reduces. In

summary, in the presence of noise and disturbances, a trade off exists between the amount

of irrigation applied and the zone-tracking performance. Depending on the priority of the

control objectives, parameters can be tuned accordingly. If some slight zone violation is

allowed, a time-invariant target zone or a shrinking zone with smaller µ and greater difference

between Y and Y can be employed for better economic performance. Vice versa, a shrinking

zone that shrinks more significantly over the control horizon (i.e. larger µ and narrower

terminating zone) can be used if the zone-tracking objective is superior compared to the

economic performance.

3.7 Summary

A two-layer NN framework is proposed in this chapter to approximate the agro-hydrological

system of interest, which is shown to be superior to a single LSTM for both open-loop

prediction and closed-loop control applications. Based on the two-layer NN model, a ZMPC

strategy is proposed to maintain the soil moisture content at the root zone within a certain

zone. To handle the effect of noise and weather disturbance, a target zone that shrinks

along the control horizon is employed in the controller. The effects of different shrinking

rates and widths of the terminal zone are discussed. Through simulations, it is noticed that

steeper shrinking zones help to reduce the zone violation while significantly increasing the
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amount of irrigation required. Mild shrinkage in the target zone leads to lower economic

costs but also minor zone violations. Depending on the priority of the control objective, the

hyper-parameters can be tuned accordingly.
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Chapter 4

Robust MPC with zone-tracking

In this chapter, we will investigate the theoretical stability aspect of MPC. In particular,

we propose a robust ZMPC with guaranteed convergence in the presence of bounded distur-

bance, which is an extension of the results obtained in [41]. The proposed design rejects the

effect of disturbance by modifying the target set. The modified target set is a subset of the

actual target set, and the shrinkage is proved to be upper-bounded. A terminal constraint

is employed to ensure the closed-loop stability, which forces the system state to converge to

a forward control invariant set (CIS) inside the modified target set. Based on the stability

theory, an algorithm for determining the modified target zone is proposed3.

On top of the generalized robust ZMPC, we consider a secondary economic objective.

Instead of introducing economic zones as proposed in [40], we prioritize the zone-tracking

objective and establish stability based on the ZMPC alone. This implies that the economic

objective is optimized only if the zone-tracking objective is satisfied, which provides a larger

feasible region and more flexibility, as the economic objective can be modified without af-

fecting the stability property of the controller.

The performance of the proposed ZMPC is validated through simulations based on a

continuous stirred tank reactor (CSTR). The performance of the generalized ZMPC proposed

in [41] is employed as the benchmark reference. To show the effectiveness of the proposed

3This chapter has been published as a journal paper.
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design, simulations based on alternative controller formulations are performed and the results

are compared with those obtained based on the proposed design. The effectiveness of the

proposed algorithm for computing the modified target set is tested through simulations with

different values of the tuning parameter. A remark regarding the selection of the tuning

parameter is summarized.

4.1 Preliminaries

4.1.1 Notation

Throughout this chapter, |·| denotes the Euclidean norm of a scalar or a vector. The operator

||·||n denotes the n-norm of a scalar or a vector. INM represents the set of integers from M

to N {M,M + 1, · · · , N}. I≥0 = {0, 1, 2, ...} denotes the set of non-negative integers. For

two sets A and B, the set subtraction is defined as A\B = {a ∈ A|a /∈ B}. The operators

max {·} and min {·} find the maximum and minimum of each element in a vector variable

respectively.

The operator a⊙ b represents element-wise multiplication between vectors a and b.

4.1.2 Description and problem formulation

The following discrete-time nonlinear system is considered in this chapter:

x(n+ 1) = f(x(n), u(n), w(n)) (4.1)

where x(·) ∈ X ⊆ Rnx denotes the state vector, u(·) ∈ U ⊆ Rnu denotes the control input

vector, and w(·) ∈W ⊆ Rnw denotes the disturbance vector. n ∈ I≥0 denotes the time step.

A few assumptions are enforced on the system of interest throughout this chapter and

are listed below:
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Assumption 1. The constraint sets X and U are compact and coupled such that:

(x(n), u(n)) ∈ Z ⊆ X× U

Furthermore, the sets can be expressed as following element-wise constraints:

X :=
{︂
x
⃓⃓⃓
xlb ≤ x ≤ xub

}︂
, U :=

{︂
u
⃓⃓⃓
ulb ≤ u ≤ uub

}︂

where xlb, xub, ulb, and uub are constant vectors, with each elements being the element-wise

lower and upper bound of the state and input. The expressions imply that the constraint sets

are polyhedrons in the corresponding space bounded by hyperplanes.

Assumption 2. The disturbance vector w is bounded and contains the origin in its domain:

W := {w ∈ Rnw : ||w||∞≤ θ, θ > 0} (4.2)

such that the infinity norm of w is bounded by a positive constant θ.

Assumption 3. The function f : Rnx × Rnu × Rnw → Rnx is locally Lipschitz with respect

to x and w for all x ∈ X, u ∈ U, w ∈W. This implies there exist positive constants Lx and

Lw such that:

|f(x, u, w)− f(z, u, 0)|≤ Lw|w|+Lx|x− z| (4.3)

which indicates that the function f cannot change drastically as x and w changes.

The control objective of this chapter is to drive the state of system (4.1) into a tracking

target set Xt and keeps it inside Xt thereafter in the presence of process uncertainties. The

target set Xt can be expressed as the following element-wise constraints:

Xt :=
{︂
x
⃓⃓⃓
xt
lb ≤ x ≤ xt

ub

}︂
(4.4)

where xt
lb and xt

ub are constant vectors, with each element being the element-wise lower and
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upper bound on the state.

To achieve the control objective, we propose a robust ZMPC with guaranteed closed-loop

stability in the Lyapunov sense, which is introduced in Section 4.2. The proposed robust

ZMPC is an extension of the generalized ZMPC proposed in [41], which is introduced first

in Section 4.1.3 for the completeness.

4.1.3 A generalized ZMPC formulation

The generalized ZMPC proposed in [41] is presented in this section. This generalized ZMPC

assumes perfect knowledge regarding the system dynamics (i.e. x(n+1) = f(x(n), u(n), 0)).

Throughout this chapter, we refer to this generalized ZMPC as the nominal ZMPC, which

is used as the referencing benchmark for the performance validation of our proposed ZMPC.

The generalized ZMPC formulation for time instant n is defined as follows:

V 0
N(x(n)) = min

u(0),···,u(N−1)

N−1∑︂
i=0

ℓz(x̂(i)) (4.5a)

s.t. x̂(i+ 1) = f(x̂(i), u(i), 0), i ∈ IN−1
0 (4.5b)

x̂(0) = x(n) (4.5c)

x̂(i) ∈ X, i ∈ IN−1
0 (4.5d)

u(i) ∈ U, i ∈ IN−1
0 (4.5e)

x̂(N) ∈ Xf (4.5f)

where (4.5b) is the nominal process model constraint, (4.5c) is the initial condition constraint,

and (4.5d) and (4.5e) are the state and input constraints, respectively. (4.5f) denotes the ter-

minal constraint, where Xf denotes the terminal set. N is a positive constant that represents

the control horizon of the controller. x̂(i) denotes the predicted states over the prediction
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horizon for i ∈ IN−1
0 . ℓz(·) represents the zone-tracking objective and is defined as follows:

ℓz(z) = min
zz

c1||z − zz||1+c2||z − zz||22 (4.6a)

s.t. zz ∈ Xt (4.6b)

where c1 and c2 are non-negative weighting factors, Xt ⊂ X denotes the target zone, and zz

is a slack variable that is forced to stay inside the target zone by (4.6b). The zone-tracking

objective is a weighted summation of the 1-norm and squared 2-norm of the minimum

difference between the actual state and the slack variable, which is a representation of the

distance between the system state x and the target set Xt. When the system state is outside

the target set, ℓz is positive. When the system state converges to the target set, ℓz equals

to zero.

Taking the definition of (4.6) into consideration, the objective of the controller (4.5) is

to find the optimal input sequence for N future steps such that the system state is driven

towards and kept inside the target zone while constraints (4.5b) - (4.5e) are satisfied. In

addition, the terminal state xN is forced to converge to Xf ⊆ XM
t ⊆ Xt, where XM

t denotes

the largest forward control invariant set (CIS) inside Xt. The definition of a forward CIS is

provided as follows:

Definition 1. (Forward control invariant set [68]) A set Xr ⊆ X is said to be a forward

control invariant set (CIS) for the system x(n+1) = f(x(n), u(n), 0) if there exists a control

policy u(n) = µ(x(n)) for every x(n) ∈ Xr such that x(n+ 1) = f(x(n), µ(x(n)), 0) ∈ Xr.

We refer to the forward CIS as CIS hereafter for simplicity. The nominal ZMPC is proved

to be closed-loop stable in the Laypunov sense when the system model is exactly known.

In this chapter, we extend the design of the nominal ZMPC to consider nonlinear systems

with model-plant mismatch in the form of process disturbance as shown in (4.1). A robust

ZMPC with guaranteed closed-loop stability is proposed in the following section.

Remark 1. Recall from the previous session, the objective of an ZMPC is to keep the state
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inside the target set Xt, while in (4.5f), the state is forced to converge into a forward CIS

Xf . It is worth mentioning that if Assumptions 1 and 3 hold, the state converges into Xt

asymptotically if and only if the state converges into the terminal set Xf , which is proved in

[41]. Thus, the terminal constraint (4.5f) ensures the closed-loop stability of the generalized

ZMPC (4.5).

4.2 The Proposed Robust ZMPC

The proposed robust ZMPC is presented in this section. The effect of process uncertainty is

encountered through modifying the tracking target set and the terminal set. The proposed

robust ZMPC is designed based on the nominal system x̃(n + 1) = f(x(n), u(n), 0), which

predicts the nominal state one-step into the future based on the known actual state at any

given time n ∈ I≥0. The value of the disturbance w(n) is unknown and is assumed to be 0 in

the nominal model. The proposed ZMPC design for time instant n is presented as follows:

V 0
N(x(n)) = min

u(0),···,u(N−1)

N−1∑︂
i=0

ℓ̃z(x̃(i)) (4.7a)

s.t. x̃(i+ 1) = f(x̃(i), u(i), 0), i ∈ IN−1
0 (4.7b)

x̃(0) = x(n) (4.7c)

x̃(i) ∈ X, i ∈ IN−1
0 (4.7d)

u(i) ∈ U, i ∈ IN−1
0 (4.7e)

x̃(N) ∈ X̃f (4.7f)

where ℓ̃z(·) is defined as follows:

ℓ̃z(z) = min
zz

c1||z − zz||1+c2||z − zz||22 (4.8a)

s.t. zz ∈ X̃t (4.8b)
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Figure 4.1: Potential nominal state trajectory (dotted line) and actual state trajectory
(dashed line) of the closed-loop system under the proposed ZMPC.

Similar notations employed in (4.5) and (4.6) are adopted in the proposed controller (4.7)

and (4.8) except that x̃ is used to represent the nominal state predicted by the nominal

model. Compare to the nominal ZMPC, the key changes took place in the proposed design

are the modified target set X̃t and the terminal set X̃f in (4.8b) and (4.7f), respectively. The

modified target set is a subset of the original target set (X̃t ⊂ Xt). The terminal constraint

is needed to ensure the closed-loop stability with a CIS inside the modified target zone X̃t.

The proposed ZMPC is applied to system (4.1) in the receding horizon fashion. At each

time instant n ∈ I≤0, the optimal input u(i|n)∗, i ∈ IN−1
0 for N future steps is obtained by

solving the optimization problem (4.7). Only the optimal input for i = 0 is applied to the

system at time n. At time n + 1, the optimization problem (4.7) is evaluated again with

updated initial condition.

Figure 4.1 presents potential trajectories of the closed-loop nominal state and the actual

state based on the proposed robust ZMPC. The solid box represents the state space X, while

the rectangles bounded by the dashed and the dotted lines represent the actual target set

Xt and the modified target set X̃t, respectively. The ellipsoid bounded by the dotted line

denotes the largest CIS X̃M

t inside the modified target set, which is used as the terminal set
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X̃f of the proposed controller. Oftentimes, a nominal ZMPC tends to drive the system state

to the boundary of the target set, which likely leads to target set violation in the presence

of process uncertainties. By ensuring the closed-loop convergence of the nominal state to

the modified target set, which is a subset of the actual target set, a buffer zone is provided

to reject the effect of process uncertainties. The terminal constraint (4.7f) ensures that the

nominal state will stay inside the control invariant terminal set X̃f and thus X̃t once it has

first converged. More details regarding the closed-loop stability of the proposed controller

are discussed in the following section.

Remark 2. Throughout the manuscript, we use x(·) to denote the true system state at a

given time step. Contrarily, x̃(·) denotes the system state predicted based on the knowledge

available to the controller. Following similar ideas, the set Xt reflects the true zone control

objectives we have on the system of interest, which is referred to as the actual target set.

For example, the objective is to keep the reactor temperature in a certain range. The set X̃t

in comparison, is mathematically determined based on the actual target set with no physical

significance and is referred to as the modified target set. Furthermore, we define the set XM
t

and X̃M

t as the largest CIS inside Xt and X̃t, respectively.

4.3 Stability Analysis

In this section, we investigate the closed-loop stability of the proposed robust ZMPC (4.7).

First, we introduce the definition of the N -step reachable set, which is essential in charac-

terizing the feasibility of the proposed robust ZMPC.

Definition 2. (N-step reachable set [41]) We use XN(X,Xf ) to denote the set of states

in X that can be steered to Xf in N steps while satisfying the state and input constraints

(x, u) ∈ Z. That is,

XN(X,Xf ) = {x(0) ∈ X | ∃ (x(n), u(n)) ∈ Z, n ∈ IN−1
0 , x(N) ∈ Xf}

87



The following assumption is employed to ensure the feasibility of the proposed robust

ZMPC.

Assumption 4. The terminal set X̃f and the N-step reachable set XN(X, X̃f ) are compact

and nonempty.

For the completion of this chapter, here we summarize the essential results obtained in

[41] regarding the nominal ZMPC as Theorem 1.

Theorem 1. (Stability of the nominal ZMPC [41]) If Assumptions 1 and 4 hold, x0 ∈

XN(X,Xf ), w(n) = 0, and in addition, the optimal value function V 0
N(x(n)) is locally contin-

uous on Xt, then: (i) the zone MPC is recursively feasible with x(n)→ XM
t , (ii) the terminal

set XM
t is asymptotically stable, (iii) the following inequality holds:

V 0
N(x̃(n+ 1))− V 0

N(x̃(n)) ≤ −ℓz(x̃(n)), n ∈ I≥0 (4.9)

where V 0
N is the optimum control objective function and is a Lyapunov function with respect

to the set XM
t , and ℓz(·) denotes the zone-tracking objective function defined in (4.6).

As the proposed ZMPC is applied to the system of interest in the receding horizon fashion,

the optimization problem is solved at each time step with the updated information regarding

the actual state at the initial time step over the prediction horizon (i.e. x̃(n) = x(n)). This

implies only the one-step-ahead deviation caused by the plant-model mismatch between the

nominal model and the actual model needs to be considered. The following Proposition

provides an upper bound on the one-step-ahead deviation of the predicted state from the

actual state:

Proposition 1. (c.f. [40]) Consider the actual system (4.1) and the nominal system with

w(n) = 0. If Assumption 2 is satisfied, starting from a known initial condition x(n), the

deviation of the actual state x(n + 1) from the predicted state x̃(n + 1) in one time step is

bounded:

|x(n+ 1)− x̃(n+ 1)|≤
√
nxLwθ, ∀x(n+ 1), x̃(n+ 1) ∈ X (4.10)
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Based on the upper bound of the one-step-ahead deviation in the state, Proposition 2

provides an upper bound on the progression of the Lyapunov function V 0
N(·) in one time step

from x(n) to x(n+ 1).

Proposition 2. Consider the Lyapunov function V 0
N(x). There exist positive constants KV

and H such that:

V 0
N(x(n+ 1))− V 0

N(x(n)) ≤ −ℓ̃z(x̃(n)) + fV (
√
nxLwθ) (4.11)

where nx and θ are known parameters, ℓ̃z(·) denotes the zone-tracking objective function

defined in (4.8), and fV is a function defined as follows:

fV (x) = KV x+Hx2

where KV and H are positive constants.

Proof. Upon applying Taylor expansion to V 0
N(x) around the predicted state x̃(n + 1),

the following relation can be obtained:

V 0
N(x(n+ 1)) = V 0

N(x̃(n+ 1))+

∂V 0
N

∂x

⃓⃓⃓⃓
x̃(n+1)

|x(n+ 1)− x̃(n+ 1)|+H.O.T.
(4.12)

where H.O.T. includes the higher order terms of the Taylor expansion. A positive constant

H can be found for x ∈ X such that the following holds:

H.O.T. ≤ H|x(n+ 1)− x̃(n+ 1)|2 (4.13)

Consider (4.12) and (4.13) correspondingly, we can obtain the following inequality regarding
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the difference in V 0
N due to the effect of disturbance in one step:

V 0
N(x(n+ 1)) ≤ V 0

N(x̃(n+ 1))

+
∂V 0

N

∂x

⃓⃓⃓⃓
x̃(n+1)

|x(n+ 1)− x̃(n+ 1)|

+H|x(n+ 1)− x̃(n+ 1)|2

(4.14)

If Assumptions 3 and 4 are satisfied, there exists a positive constant KV such that the

magnitude of the partial derivative
∂V 0

N

∂x
is bounded by it:

⃓⃓⃓⃓
∂V 0

N

∂x

⃓⃓⃓⃓
≤ KV (4.15)

Define fV (x) = KV x+Hx2. Based on (4.14) and (4.15), applying Proposition 1, the following

relationship can be derived:

V 0
N(x(n+ 1)) ≤ V 0

N(x̃(n+ 1)) + fV (
√
nxLwθ) (4.16)

Taking into account of (4.9) and (4.16), plus the fact that x(n) = x̃(n), the relationship in

(4.11) can be obtained and this proves Proposition 2. ■

To derive the amount of shrinkage required in the target set that ensures the closed-

loop convergence of the system in the presence of disturbance, we introduce the following

definition of Lyapunov function level set:

Definition 3. (Level set of Lyapunov function [40]) The set Ωρ is defined to be the level set

of the Lyapunov function V 0
N(·):

Ωρ := {x ∈ X : V 0
N(x) ≤ ρ} (4.17)

A Lyapunov function can be considered as a generalized energy function of the system of

interest. Thus, the level set of a Lyapunov function is a set that contains all the states such
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that the system energy is less than or equal to ρ.

Let Ωρmax be the largest level set of V 0
N inside XM

t :

ρmax := max{ρ : x ∈ XM
t , V 0

N(x) ≤ ρ} (4.18)

Define Ωρe ⊂ Ωρmax that satisfies:

ρe = ρmax − fV (
√
nxLwθ) (4.19)

Assumption 5. Ωρe is nonempty.

Theorem 2. Consider system (4.1) under the control of the proposed ZMPC (4.7). If

x(n) ∈ Ωρe and Assumptions 3 - 5 are satisfied, then it is guaranteed that x(n+ 1) ∈ Ωρmax.

Proof. At a given time instant n, with the initial condition x(n) ∈ Ωρe , it is guaranteed

that there exists a feasible control policy such that the nominal state at the next time

step x̃(n + 1) ∈ Ωρe , as Ωρe is control invariant. Take the inequality expression (4.16) into

consideration, the deviation in the value of Lyapunov function V 0
N from x̃(n+1) to x(n+1)

is bounded by fV (
√
nxLwθ). Recall that Ωρe is a shrunk Lyapunov function level set with

respect to Ωρmax , with the shrinkage defined in the Lyapunov function value by fV (
√
nxLwθ),

which proves Theorem 2. ■

Theorem 2 indicates the convergence of the actual state into a control invariant subset

of the actual target set Xt if the initial state x(n) ∈ Ωρe . The following theorem provides

statements on the upper bound of the shrinkage amount in the target set required in the

proposed ZMPC design such that the state is guaranteed to be driven into Ωρe .

Definition 4. (The smallest polyhedron set around a known set) We define the smallest

polyhedron set bounded by orthogonal hyperplanes P(S) around a given set S ⊆ Rns as follows:

P(S) = {s|slb ≤ s ≤ sub} (4.20)
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Figure 4.2: A sample diagram of P(S).

where slb, sub ∈ Rns are vectors with each element silb, i = 1, 2, · · · , ns and siub, i = 1, 2, · · · , ns

being the lower and upper bound of each dimension of the set S:

silb = min{si|s ∈ S}, i = 1, 2, · · · , ns (4.21a)

siub = max{si|s ∈ S}, i = 1, 2, · · · , ns (4.21b)

where si is the i-th element of the vector s. A possible representation of the smallest polyhe-

dron set P(S) and the corresponding set S is presented in Figure 4.2.

Theorem 3. Consider system (4.1) under the control of the proposed ZMPC (4.7). If

Assumptions 1 - 5 are satisfied, x(0) ∈ XN(X, X̃f ), and the following relationship holds:

−ℓ̃z(x) + fV (
√
nxLwθ) < 0, ∀x ∈ XN(X, X̃f )\Ωρe (4.22)

then there exists ε, ε ∈ Rnx with non-negative elements that define the modified target zone

X̃t as follows:

X̃t = {x : x̃t
lb ≤ x ≤ x̃t

ub|x̃t
lb − xt

lb ≤ ε, xt
ub − x̃t

ub ≤ ε} (4.23)

such that the proposed ZMPC controller is recursively feasible and guarantees the closed-loop

convergence of the system state into the actual target zone Xt. Note that xt
lb and xt

ub are

known vectors containing the element-wise lower and upper bound of the actual target set Xt

as defined in Assumption 1.
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Proof. We define the modified target set as the smallest polyhedron set around Ωρe

(i.e. X̃t = P(Ωρe)) and the corresponding terminal set X̃f as the largest CIS inside X̃t. If

Assumption 5 holds, it means there exists a valid set of x̃t
lb and x̃t

ub such that X̃t ⊂ Xt is

bounded and nonempty. Recall that the actual target set Xt is bounded, meaning that the

elements in vectors ε, ε ∈ Rnx are bounded and non-negative.

Take the relationship defined by (4.22) into consideration. The value of the Lyapunov

function V 0
N is guaranteed to be decreasing until the state converges to Ωρe , thus ensuring

the convergence of the nominal state x̃ into Ωρe .

In the presence of disturbance, the actual state x may deviate from Ωρe after the first

convergence of the nominal state x̃. Taking Theorem 2 into consideration, it is guaranteed

that with x(n) ∈ Ωρe , x(n + 1) ∈ Ωρmax , meaning the actual state is kept inside Ωρmax ⊂

XM
t ⊂ Xt in one step. As Ωρe ⊂ Ωρmax ⊂ XN(X, X̃f ), the actual state that has deviated

in one step due to the effect of disturbance is guaranteed to be driven back to Ωρe in finite

steps as (4.22) holds. This indicates that the proposed ZMPC controller is able to drive the

system state into the actual target set Xt and keeps it inside. ■

Remark 3. By definition, any CIS inside the modified target set X̃t can be used as the

terminal set X̃f . However, in order to gain a controller with a larger feasibility region and

more degrees of freedom, we define X̃f = X̃M

t . The largest CIS inside the modified target

set is approximated using the algorithm proposed in [69]. The algorithm provides an inner

approximation of the largest CIS in the form of a polyhedron bounded by hyperplanes.

4.4 An Algorithm for Estimating the Modified Target

Set X̃t

The stability proof in the previous section ensures the existence of an upper bound of the

shrinkage amount on the actual target set, however, it is very challenging to obtain explicit

expressions of the Lyapunov function and numerical values of the parameters. In order to
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make the proposed controller more practical in applications, we propose an algorithm for

estimating and tuning the modified target set.

The proposed algorithm is inspired by a study on the problem in the context of linear

systems. Consider a linear system as follows:

x(n+ 1) = Ax(n) +Bu(n) + Ew(n) (4.24)

where A, B, and E are matrices of the appropriate dimensions. Let us assume that the

linear system is controllable and there exists the following quadratic Lyapunov function for

the system:

V 0
N(x) = xTPx (4.25)

where P is a symmetric positive definite matrix. Recall the Lipschitz continuity Assumption

3. If we substitute the linear system model (4.24) into the left hand side of the inequality

(3), the following expression can be obtained:

|f(x, u, w)− f(x, u, 0)|= |Ew|≤ Lw|w| (4.26)

By the property of norm, the following expression holds:

|Ew|≤ |E||w| (4.27)

Thus, we may define Lw = |E| such that Assumption 3 holds. Recall the inequality relation

(4.10):

|x(n+ 1)− x̃(n+ 1)|≤
√
nxLwθ

where nx is the dimension of the state, θ is the upper bound of the one-norm of the dis-

turbance and is assumed to be known. Thus for the linear system, the right-hand side of

the inequality can be determined explicitly. By calculating the term
√
nxLwθ, a conserva-
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tive approximation of the norm of the one-step-ahead difference between the actual state

x(n+ 1) and the nominal state x̃(n+ 1) in the presence of disturbance is obtained. For the

nonlinear system of interest, the matrix E is essentially the sensitivity matrix of the state

with respect to the disturbance (i.e. ∂x
∂w

). The value of the sensitivity matrix is a function of

the state, input, and disturbance and can be calculated explicitly with a given combination

of the variables.

Practically, based on inequality (4.10), we propose the following definition of the shrinkage

amount s in the state boundaries of the target zone for the nonlinear system:

s = γxd
max (4.28)

where γ ∈ R+ is a risk factor that helps to tune how conservative the proposed controller

is, and xd
max essentially estimates the largest potential effect the disturbance can have on

the actual state compared to the nominal state in one-step-ahead prediction, of which the

definition is inspired by (4.10). xd
max can be calculated using Algorithm 3 based on sensitivity

analysis.

In Algorithm 3, the set Xd contains 2nz+nw number of vectors. Each vector represents

the amount of accumulated effects of the disturbance w have on the state x at one of the

extremes of the joint space XM
t ×U×W. It is worth pointing out that the sensitivity matrix is

computed for states inside the maximum CIS XM
t , that is, inside the actual target set. This is

because it has been proved in [41] that for the nominal system, guaranteed convergence into

the actual target set Xt is equivalent to the convergence into its maximum control invariant

subset XM
t . Since the purpose of modifying the target set is to avoid zone violation once it

has converged, we focus on rejecting the effect of disturbance when x ∈ XM
t . Furthermore,

the effect of disturbance is only investigated for the individual state variables that have a

zone-tracking objective on them, as it is common that the zone-tracking objective is not

enforced on all state variables.
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Algorithm 3 Estimation of the state deviation due to the presence of disturbance

Ensure: x ∈ XM
t , u ∈ U, w ∈W

It ← [ ]
for i = 0 : nx − 1 do

if xlb < xt
lb or xub > xt

ub then
It ← [It, 1]

else It ← [It, 0]
end if

end for
Define z ∈ Rnz ← [x, u], nz = nx + nu

Determine the sensitivity function ∂x
∂w

: Rnz+nw → Rnx×nw

Find and store the maximum and minimum of each variables

zmax ∈ Rnz ← max {z}, zmin ∈ Rnz ← min {z}

wmax ∈ Rnw ← max {w}, wmin ∈ Rnw ← min {w}

Calculate the set of the accumulated sensitivity Xd for the state variables with zone-
tracking objective at each extreme point of z and w:

Xd :=

{︃[︃
∂x

∂w

⃓⃓⃓
zi,wj
· w

]︃
⊙ It

⃓⃓⃓
zi ∈ [zimax, z

i
min], i ∈ Inz−1

0 , wj ∈ [wj
max, w

j
min], j ∈ Inw−1

0

}︃
Find the element xd

max with the largest norm in Xd

xd
max ←

{︂
xd
max

⃓⃓⃓
xd
max ∈ Xd, |xd

max|≥ |xd|,∀xd ∈ Xd
}︂

return xd
max
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The modified target zone can be calculated based on the shrinkage amount s as follows:

X̃t :=
{︂
x
⃓⃓⃓
xt
lb + s ≤ x ≤ xt

ub − s
}︂

(4.29)

Remark 4. The inequality relationship (4.10) is defined in terms of the norm of vectors

and matrix. However, in practice, the shrinkage amount s should be a vector that has the

same dimension of the state, as the shrinkage required for each state needs to be determined

individually. Thus, xd
max is selected to be the accumulated effect of w on x that has the largest

norm, which mimics the idea of (4.10), however in the state space.

Remark 5. In Algorithm 3, the value of the sensitivity matrix needs to be calculated 2nz+nw

times, as every combination of the maximum and minimum of the state, input, and dis-

turbance are considered. For higher-dimension systems, the computational effort may be

significant. One way to reduce the computational cost is to utilize available physical knowl-

edge in the implementation. For example, the optimal operating condition may be estimated

based on the nominal model, or it is known to be on one edge of the zone. In these cases,

the sensitivity matrix may be calculated only at the estimated optimal operating point, or in

the extremes on one edge.

Furthermore, (4.29) assumes that the target set shrinks in the same amount on the upper

and lower bound. If the optimal operating point is known to be on one edge of the target zone,

then the shrinkage can be applied to that edge only. This again helps to preserve a larger

modified target zone and terminal zone, which helps to reduce the economic performance loss

and feasibility issue.

4.5 Consideration of Economic Objectives

A natural extension to the proposed ZMPC (4.7) is to include an economic objective, as

the proposed design provides the system with more degrees of freedom to optimize addi-

tional objectives. The proposed ZMPC design that handles additional economic objective is
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presented as follows:

min
u0,···,uN−1

N−1∑︂
i=0

ℓ̃z(x̃i) + ℓe(x̃i, ui)

s.t. (4.7b)− (4.7f)

(4.30)

With weighting factors being large enough on the zone control objective, namely c1 in

(4.8), the controller will prioritize the zone-tracking objective over the economic objective

such that the economic objective will be optimized only after the system enters the target

zone [41]. Thus the stability properties of the controller (4.30) remain unchanged from that

of (4.7). In the following section, simulation results based on (4.30) are presented.

Remark 6. By tuning the parameter γ in (4.28), a trade-off between the size of the initial

feasible region, the economic performance, and zone-tracking performance can be achieved

due to changing target zone shrinkage s. A larger γ leads to a smaller modified target zone

and correspondingly, a smaller terminal zone. This enhances convergence to the actual target

zone while potentially reducing the flexibility and feasibility of the controller, as the system

is forced to converge into a smaller region at the end of the control horizon. Higher sacrifice

in the economic performance may be observed as well. On the other hand, smaller γ poses

less effect on the controller feasibility and economic performance but the closed-loop system

has a greater chance to violate the actual target zone.

4.6 Simulations

In this section, we use a continuous stirred tank reactor (CSTR) as the benchmark process

to demonstrate the effectiveness of the proposed design. After introducing the CSTR process

(Section 4.6.1) and the detailed setting of the proposed controller (Section 4.6.2), the perfor-

mance of the proposed controller is first validated without and with a secondary economic

objective with respect to the nominal ZMPC in Section 4.6.3. The importance of shrinking
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the target set in the proposed controller design is verified in Section 4.6.4. The significance

of the terminal constraint in ensuring stability is investigated in Section 4.6.5. Finally, the

impact of the tuning parameter γ is investigated in Section 4.6.6.

4.6.1 Process description

The benchmark CSTR process is introduced in this section. An irreversible first-order

exothermic reaction A → B takes place inside the CSTR reactor, where A and B are the

reactants and the desired product, respectively. A cooling jacket is used to control the tem-

perature of the CSTR. Assuming perfect mixing and constant mixture volume inside the

reactor, the system can be described by the following ordinary differential equations:

dCA

dt
=

q

V
(CAf

− CA)− k0 exp
(︂
− E

RT

)︂
CA (4.31a)

dT

dt
=

q

V
(Tf − T ) +

UA

V ρCp

(Tc − T ) +
−△H

ρCp

k0 exp
(︂
− E

RT

)︂
CA (4.31b)

where CA [mol/L] denotes the molar concentration of the reactant, T [K] represents the

temperature inside the reactor, Tc [K] represents the temperature of the cooling stream, and

CAf
[mol/L] and Tf [K] denote the molar concentration of the reactant and the temperature

of the feed stream, respectively. q [L/min] represents the volumetric flow rate of the streams

entering and leaving the reactor, V [L] and ρ [g/L] denote the volume and the density of

the mixture inside the reactor respectively, and k0, E and R are reaction-related parame-

ters, namely the pre-exponential factor of the reaction rate, the activation energy, and the

universal gas constant. Cp denotes the specific heat capacity of the mixture, and △H and

UA denote the heat of reaction and the heat transfer coefficient between the reactor and the

cooling jacket, respectively. The values of the parameters are adopted from [40].

Recall the system defined in (4.1). For the CSTR example specifically, we define the

system state vector to be x = [CA, T ]
T and the control input to be u = Tc. The disturbance

vector is defined as w = [CAf
− C̄Af

, Tf − T̄ f ]
T , where C̄Af

= 1.0mol/L and T̄ f = 350K
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are the nominal values of the corresponding variables. The following bounds are employed

for the state, input, and disturbance, respectively:

[0.0, 345.0]T ≤ x ≤ [1.0, 355.0]T (4.32)

285.0 ≤ u ≤ 315.0 (4.33)

[−0.1,−2.0]T ≤ w ≤ [0.1, 2.0]T (4.34)

4.6.2 Controller setup and implementation

The proposed ZMPC controller is implemented on the CSTR system both without and with

a secondary economic objective. Following the design proposed in (4.7) and (4.30), we define

the zone control objective and economic objective. The zone control objective is to hold the

reactor temperature T between 348.0K to 352.0K. Recall the definition of ℓz in (4.6), which

implies the following:

Xt = {x : [0.0, 348.0]T ≤ x ≤ [1.0, 352.0]T}

The largest CIS inside the original and modified target zones are approximated using the

algorithm proposed in [69].

We computed the value of xd
max to be 0.511 for the states inside the largest CIS with the

input and disturbances in their stated boundaries. It was found that the disturbance has

the strongest effect on the state at the following point:

x = [0.754, 352.0], u = 315.0, w = [0.1, 2]

Unless otherwise mentioned, γ = 1 is used, which means s = xd
max = 0.511. The economic

objective is to minimize the concentration of the reactant inside the reactor, i.e. ℓe = CA.

For all the simulations, the control horizon N = 5 unless otherwise mentioned.
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Figure 4.3: Proposed ZMPC without economic objectives.

The value of the disturbance w(n) at any time step is selected randomly inside the

boundaries specified by (4.34). Except for the CIS approximation that is carried out in

Julia, all other simulations are performed in Python. The optimization problems are solved

using the CasADi toolbox developed by [50].

4.6.3 Control performance validation

In this section, we validate the performance of the proposed controller. Figure 4.3 presents

the state trajectories under the proposed ZMPC without any economic objective (4.7) with

and without the presence of disturbance. Figures 4.4 and 4.5 present the performance of the

proposed ZMPC with economic objective (4.30) in comparison to the nominal ZMPC based

on different initial conditions. In all figures, the solid black box represents the overall state

space, and the dashed blue and red lines denote the boundaries of the original target set

Xt and the modified target set X̃t respectively. The shaded areas represent the largest CIS
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Figure 4.4: Proposed ZMPC v.s. the nominal ZMPC with economic objective, x0 =
[0.12, 355].

inside Xt and X̃t. The larger shaded area represents XM
t , while the smaller one is X̃M

t .

It can be observed from the blue trajectory in Figure 4.3 that without any economic

objective, the system converges to a steady-state in the center of the target zone. In the

presence of disturbance, as represented by the red trajectory, the state oscillates around the

optimal steady-state but is able to stay inside the terminal CIS once entered. Thus, for this

particular setup, the benefit of the proposed controller is not significant.

To validate the benefits of the proposed approach, the secondary economic objective

is added to the system. With the economic objective considered, the optimal operating

condition shifts to the boundary of the target zone. In Figures 4.4 and 4.5, starting from

different initial conditions, the state progressions under the control of the nominal ZMPC

are shown in blue, while the state trajectories controlled by the proposed ZMPC are red.

Under the nominal ZMPC, the state leaves the terminal CIS after converging to the optimal

operating point due to the fluctuation caused by the presence of disturbance. These violations
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Figure 4.5: Proposed ZMPC v.s. the nominal ZMPC with economic objective, x0 =
[0.9, 345].

on the zone-tracking objective are unfavored and should be eliminated. As presented by the

red trajectories, violations with respect to the actual target zone are avoided by the proposed

ZMPC. Although the state trajectories violate the upper bound of the modified target zone

X̃t, they are still enclosed in the actual target zone Xt. Furthermore, Figures 4.4 and 4.5

verify that the proposed controller is able to drive the system state to the same economically-

optimal neighborhood even under different initial conditions.

4.6.4 The significance of modifying the target set

One natural question that rises is that instead of modifying just the terminal set, why both

the tracking target set and the terminal set are modified in the proposed approach. Figure

4.6 investigates the controller performance if the original target set Xt is tracked and only

the terminal set is modified. The state trajectories under the control of the nominal ZMPC

(blue solid trajectory with hexagon markers), the proposed ZMPC (red dashed trajectory
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Figure 4.6: ZMPC with economic objective that tracks the original target set (Xt) with
modified terminal set (Xf = XM

t ).

with dot markers), and the ZMPC that tracks the original target set Xt and the modified

terminal set X̃M

t (cyan dotted trajectory with cross markers) are presented, respectively.

It can be observed that if only the terminal set is modified, the optimal state trajectory

is identical to that obtained based on the nominal ZMPC. This implies that the control

performance is not affected if only the terminal set is modified. This matches the theory

proposed in [39], which indicates the controller performance remains equivalent in terms of

stability as far as X̃f ⊆ XM
t . Note that the state trajectory obtained based on the proposed

ZMPC is presented in the figure for reference, which verifies the effectiveness of modifying

the tracking target set.

4.6.5 The significance of the terminal constraint

The significance of the terminal constraint in ensuring closed-loop stability is investigated

in this section. With the control horizon N = 3, Figure 4.7 shows the state trajectory
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Figure 4.7: ZMPC without the terminal constraint v.s. the proposed ZMPC with economic
objective.

under the ZMPC without any terminal constraint in cyan with cross markers, while the

trajectory obtained based on the proposed controller is presented in red with dot markers

for reference. Without the terminal constraint, the controller is able to drive the system to

the optimal operating point, however with aggressive violations of the hard state constraint

represented by the solid black box. These violations are avoided by the proposed controller

with the terminal constraint. Furthermore, it can be observed that under the controller

without terminal constraint, the system takes significantly more steps to converge compared

to that taken based on the proposed approach, indicating the effectiveness of the terminal

constraint in ensuring closed-loop stability and enhancing convergence.

4.6.6 The impact of γ

The impact of the tuning parameter γ is investigated in this section. Figure 4.8 presents

the modified target sets and the corresponding maximum CIS inside the modified target
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Figure 4.8: The modified target sets and the corresponding maximum CISs under different
γ.

sets with different values of γ. Figure 4.9 displays the accumulated zone-tracking cost and

the economic cost as γ increases. The accumulated zone-tracking costs are presented in

blue with pentagon markers, while the accumulated economic costs are shown in red with

circle markers. Note that the accumulated zone-tracking cost is calculated based on the

actual target set for a fair comparison, as the modified target zone provided to the controller

changes with different γ. Table 4.1 acts as a supplement of Figure 4.9 and presents the

number of violations with respect to the actual target set after the system converges to the

optimal operating neighborhood for the first time, plus the average magnitude of violation

out of all the violations with different γ.

The actual target set is bounded by solid black lines in Figure 4.8. The sets with γ equal

to 0.5, 1, and 3 are bounded by green dash-dotted, red dashed, and blue dotted curves,
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Figure 4.9: The zone-tracking performance and economic performance under different γ.

Table 4.1: The number of violations and the average violation value after the first convergence
to the actual target set with different γ.

γ # of Vio. Avg. Vio.

0.3 9 0.097

0.5 4 0.045

0.6 2 0.027

0.7 0 -

1 0 -

3 0 -

respectively. The information regarding the optimal operating condition is not considered,

both the upper bound and the lower bound of the target zone are shrunk equally. Figure

4.8 indicates the size of the target set and the corresponding largest terminal set available
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to the controller reduce as the value of γ increases. This implies the controller becomes

more conservative with a smaller feasible region, which leads to a sacrifice in the economic

performance. The economic performance is affected in two ways. First, since a smaller

feasible zone leads to a shifting in the feasible economically-optimal operating condition.

Second, with a more conservative target and terminal zone, the controller tends to drive

the system into the zone more aggressively and potentially sacrifice the transit economic

performance. This can be seen from Figure 4.9 that the accumulated economic cost function

continuously increases as γ increases.

It is however noteworthy that a more conservative controller does not necessarily leads

to better zone-tracking performance. It is observed that the accumulated zone-tracking cost

first decreases and then increases after reaching a minimum at γ = 0.6. From Table 4.1, it

can be observed that at γ = 0.6, two violations are observed with a very small magnitude

of the average violation. At γ = 0.7, no violation is observed after convergence, however,

the accumulative zone-tracking cost is slightly higher than that obtained with γ = 0.6. The

reason for the increase in zone-tracking cost as γ increase is due to the shrinkage in the

feasible operating range and the more aggressive control action chosen by the controller,

which sacrifices the transit performance of the system. A larger γ helps to reduce the zone-

violation and thus the accumulative tracking cost; however, this reduction is saturated once

the violations are insignificant (γ = 0.6) or are fully eliminated (γ = 0.7). The sacrifice

in the transit performance on the other hand, continuously increases as γ increase, which

slowly overtakes the cost reduced by shrinking the target zone.

Remark 7. It is observed from Figure 4.9 and Table 4.1 that the optimal zone-tracking

performance is not achieved at γ = 1. This indicates that directly shrinking the target zone

by the xd
max only provides a conservative estimation of the amount of shrinkage required.

It is essential to tune γ to obtain a better zone-tracking performance. On the other hand,

it is noteworthy that the economic performance always reduces as γ increases. Thus, it is

recommended to use the smallest γ that provides reasonable zone-tracking performance in
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applications.

4.7 Summary

In this chapter, we proposed a robust ZMPC formulation with guaranteed convergence to

the actual target set in the presence of bounded disturbance. This is achieved by modify-

ing the actual target set, which helps to reject the effect of the disturbance. A terminal

constraint is utilized to ensure the closed-loop stability of the system. The system state is

forced to converge to a CIS inside the modified target set at the end of the control horizon.

Without assuming the existence of an optimal steady-state operating condition, this gen-

eralized approach provides more degrees of freedom. Furthermore, the proposed design is

able to handle a secondary economic objective without affecting closed-loop stability. Apart

from the theoretical stability proof, an algorithm for determining the modified target set is

provided. The proposed design is applied to a CSTR system and has proved to be effective

from various perspectives. The effect of the tuning parameter in the proposed algorithm is

investigated with the rule of thumb for parameter selection provided.
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Chapter 5

Robust ZEMPC Application to an

amine-based post-combustion CO2

capture process

Global warming is a significant global issue that needs to be addressed with high priority.

Among various contributing factors, reducing the emission quantity of anthropocentric green-

house gases, especially CO2, from industrial processes is an essential way to help address

this issue. To be more specific, a major source of CO2 emission is the electricity generation

facilities powered by fossil fuel (e.g. natural gas, coal, etc.) combustion [70]. Although it

has been shown that switching the power source to low-carbon energy sources such as renew-

able energies can reduce the carbon footprint of these processes [71], these energy sources

are currently insufficient to meet the continuously increasing demand. Thus, it is essential

to investigate approaches that reduce carbon emissions for power plants that utilize fossil

fuel while providing time to let the low-carbon energy generation practices mature. Various

approaches for CO2 emission reduction have been proposed. For example, pre-combustion

[72], post combustion [73], and oxy-fuel combustion [74] approaches.

One of the state-of-the-art practices is the amine-based post-combustion CO2 capture
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process (PCC), which is the most promising and viable approach available at the moment.

Amine-based PCCs can be retrofitted relatively easily into existing power plants. An amine

solvent is used to absorb the CO2 in the post-combustion flue gas generated by the power

plant, which helps to reduce the amount of CO2 released into the atmosphere. However,

research has shown that the attachment of an amine-based PCC reduces the power plant

efficiency by roughly 10% with the state-of-art methamphetamine (MEA) solvent due to the

high energy requirement for solvent regeneration [75]. Maintaining the CO2 concentration in

the solvent within a certain range in the absorption unit is shown to be vital for the efficient

operation of the regeneration unit [76]. Thus, the application of advanced process control

is essential for sufficient operation of amine-based PCC plants. Various works have been

performed in this field, for example, a linear MPC is investigated by Panahi and Skogestad

[77], scheduling and MPC have been used collectively in [78], and the operational flexibility

of a PCC that is attached to a load-following power plant is studied based on MPC in [79].

In this chapter, we extend the robust ZMPC with the economic objective proposed in the

previous chapter [80] and apply it to a large-scale process with nonlinear dynamics, namely

the Post-Combustion Carbon Capture (PCC) process. Instead of aiming for the convergence

of all states into a terminal set, the constraint is relaxed such that the convergence is required

for system outputs only, which helps to improve the feasibility of the proposed controller.

Section 5.1 introduces the PCC plant of interest and discusses the first-principle model

employed, which is developed by [81]. The control objective is defined in Section 5.2. The

proposed algorithm for the system-output-based terminal set computation is introduced in

Section 5.3. Section 5.4 presents the simulation performance of the proposed controller. The

proposed controller is compared with multiple ZMPC controller designs and is shown to be

beneficial in terms of disturbance rejection and stability.
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5.1 Preliminaries

5.1.1 Process Overview

A schematic diagram of the PCC process of interest is presented in Figure 5.1. The process

consists of two major operating units, specifically the absorption and desorption columns.

Flue gas with high CO2 concentration enters the process from the bottom of the adsorption

column and is in contact with the lean solvent (low in CO2 concentration) that enters the

column from the top. Reaction-based separations take place in the column and the treated

flue gas leaves the column at the top with low CO2 concentration. The rich solvent with high

CO2 concentration exits the column at the bottom and is sent off to the desorption column

upon passing through a heat exchanger, where the rich solvent is heated by the lean solvent

exiting the reboiler. CO2 is separated from the lean solvent in the desorption column and

leaves the column at the top as the product gas. The concentration of CO2 in the product

gas is typically between 90% and 99%. The solvent flows through the desorption column and

reaches the reboiler, where it is heated by steam to about 120◦C. Part of the liquid solvent

vaporizes in the reboiler and moves up the desorption column, while the rest is recycled

back to the absorption column as the lean solvent upon cooled down to the appropriate

temperature. Make-up solvent is added to the absorption column as needed to compensate

for the loss of solvent throughout the process.
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Figure 5.1: A schematic diagram of an amine-based post-combustion carbon capture plant
(PCC).

5.1.2 Model Description and Control Objective

The first principle model developed by [81] is employed in this chapter to describe the system

dynamics. The model is a system of Differential Algebraic Equations (DAEs) that can be

represented in the following form:

ẋ = f(x, z, u, w) (5.1a)

g(x, z, u, w) = 0 (5.1b)

y = h(x, z, u, w) (5.1c)

where x ∈ R103 and z ∈ R7 represent the differential and algebraic state variables, respec-

tively. u ∈ R2 denotes the manipulated input, w ∈ R represents the system disturbance. y

is the system output. f(·), g(·), and h(·) are nonlinear functions.

For the completeness of this chapter, we briefly discuss the physical meaning of the
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process variables introduced in (5.1). More details on the model can be found in [81]. Four

components are considered in this model, namely CO2, MEA, H2O, and N2. Each column is

discretized into 5 sections along the vertical spatial axis, with the dynamics of each section

represented by the dynamics at the center of them. The differential states are the composition

of each component and the temperature at each column section, plus the temperature of the

shell side and the tube side of the heat exchanger and the temperature inside the reboiler.

The algebraic states are the liquid composition of each component in the reboiler, the reboiler

vapor fraction, the CO2 concentration in the liquid stream going into the absorption column,

and the gas flow rate entering the desorption column, respectively. Two system outputs

are considered, namely the percentage of CO2 captured in the absorption column, and the

reboiler temperature Treb, which is to be monitored closely kept in a relatively tight range

to ensure the smooth operation of the entire process. The percentage of CO2 captured is

defined as follows:

CRCO2 =
Molar flow rate of CO2 in−Molar flow rate of CO2 out

Molar flow rate of CO2 in
× 100%

The manipulated inputs of the process are the lean solvent flow rate FMEA and the energy

supply rate to the reboiler Qreb. The system disturbance is the fluctuation of the flue gas

flow rate entering the PCC plant with respect to its nominal value. It is assumed that at

any given time, the actual magnitude of w is unknown but bounded and has the origin in

its domain, such that the following relationship is satisfied:

w ∈W := {w ∈ R : ||w||∞≤ θ, θ > 0} (5.2)

where the infinity norm of w is bounded by a positive constant θ.
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5.2 Robust Economic Model Predictive Control with

zone-tracking

The primary control objective for the PCC plant is to optimize the CO2 treatment perfor-

mance, in other words, maximize CRCO2 while keeping the lean solvent consumption and

the energy consumption in the reboiler reasonable. To achieve these control objectives in

the presence of system disturbance, we propose a robust EMPC with zone-tracking. The

zone-tracking objective aims to maintain the system outputs in a certain range, and the

economic objective penalizes the solvent and energy consumption. The proposed controller

is discussed in detail in the following section.

We extend the robust EMPC with zone-tracking proposed in Chapter 4 and apply it to

the PCC process. The terminal constraint is modified such that only the system outputs,

instead of the system states, are tracked, which improves the feasibility of the controller on

large-scale systems.

At time instant tk, the proposed robust ZMPC with economic objective can be represented

as follows:

V 0
N(x(tk)) =min

u

∫︂ tk+N

tk

ℓz(ỹ(t)) + ℓe(x̃(t), z(t), u(t)) (5.3a)

s.t. ẋ̃x(t) = f(x̃(t), z̃(t), u(t), 0) (5.3b)

g(x̃(t), z̃(t), u(t), 0) = 0 (5.3c)

ỹ(t) = h(x̃(t), z̃(t), u(t), 0) (5.3d)

x̃(tk) = x(tk) (5.3e)

x̃(t) ∈ X (5.3f)

z̃(t) ∈ Z (5.3g)

u(t) ∈ U (5.3h)

115



ỹ(tk+N) ∈ Ỹf (5.3i)

where similar notations are used as those used in (4.7).

The objective function (5.3a) consists of two parts, namely the zone-tracking objective

ℓ̃z(·) and the economic objective ℓ̃e(·). The economic objective captures the heat duty of the

reboiler and is defined as follows:

ℓe(x, z, u) =
Qreb

FMEA ·RVreb ∗MCO2

(5.4)

where FMEA and Qreb are the system input, RVreb is the vapor fraction in the reboiler, MCO2

is the molar mass of CO2.

Ỹt represents the zone-tracking set seen by the controller. It is worth mentioning that Ỹt

is a subset of the actual target set Yt, which is defined based on the first principle knowledge

regarding the ideal system operating condition.

Similar to that discussed in Chapter 4, we define the actual target set Yt, and the modified

target set Ỹt, which represents the target set defined based on first-principle knowledge and

the target set seen by the controller, respectively. The modification in the target set helps

provide a buffer zone for disturbance rejection and thus improves the robustness of the

proposed controller. The following relationship between the modified target set, the actual

target set, and the output space Y holds:

Ỹt ⊂ Yt ⊂ Y

where the output space Y is defined as follows:

Y := {y = h(x, z, u, p)|x ∈ X, z ∈ Z, u ∈ U, p ∈ P}

Note that instead of aiming for the convergence of all the states into a control invariant

116



terminal set as proposed in Chapter 4, in this chapter, we relax the terminal constraint

and only focus on the system output. This helps enhance the feasibility of the proposed

controller on large-scale systems while still keeping the closed-loop system robust. In the

following section, we review the detailed procedure of determining the terminal set Yf ∈ Ỹt.

5.3 Determining the Control Invariant Terminal Set

In this section, we present the approach taken to obtain the control invariant terminal set.

Section 5.3.1 introduces the approach taken for approximating the CIS in the state space,

while Section 5.3.2 presents the method used to project the CIS into the output space.

5.3.1 Approximation of CIS in the state space

The proposed algorithm for obtaining the terminal set Yf is an extension of that proposed

in [82]. The algorithm is built based on the algorithm developed by Polyak and Shcherbakov

[83] that compute an ellipsoidal inner approximation of the CIS for linear systems in the

form of:

ẋ̄x = Ax̄+Bū (5.5)

where x̄ = x−xs and ū = u−us are the deviation form of the state and input with respect to

the steady-state nominal operating point (xs, us). The ellipsoidal CIS is obtained by solving

the following semi-definite program (SDP):

max
P,Y

trace(P ) (5.6a)

s.t. AP + PAT +BY + Y TBT ≺ 0 (5.6b)⎡⎢⎣P Y T

Y ū2
maxI

⎤⎥⎦ ⪰ 0 (5.6c)
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where P and Y are matrices with appropriate dimensions, ūmax ≤ ||u||, ∀u ∈ U upper

bounds the 2-norm of the input vector. The matrix P is assumed to be positive definite and

symmetric (i.e. P T = P , P ≻ 0). The maximum ellipsoidal inner approximation of the CIS

can be represented based on the matrix P as follows:

XI := {x|x ∈ X, x̄TPx̄ ≤ 1} (5.7)

Note that if the linear system (5.5) is stable, the maximum ellipsoidal CIS in the state

space can be calculated by solving the continuous Lyapunov equation AP + PAT +Q = 0.

In this case, the maximum ellipsoidal CIS can be described as follows:

XI := {x|x ∈ X, x̄TPx̄ ≤ α} (5.8)

where α is a tuning parameter that ensures XI ∈ X. To implement the algorithm introduced

above, the nonlinear system of interest needs to be linearized first around a steady-state of

the system (xs, us). Note that here the algebraic states are excluded from the computation

for simplicity, as their effects on the overall system dynamics are relatively minor. The

linearized system takes the form of (5.5) with A = ∂f
∂x xs,us , B = ∂f

∂u xs,us .

Note that nonlinear systems have multiple steady-states, and the objective is to obtain

the largest Yf ⊂ Ỹt. Thus, an iterative algorithm that tunes the steady-state (xs, us) and α

until a set that satisfies the objective is developed. In order to tune the steady-state (xs, us)

that acts as the center of the linearized model, we first find the optimal economic cost ℓ∗e that

exists in the modified target set by solving the following steady-state optimization problem:

ℓ∗e = min
x,z,u

ℓe (5.9a)

s.t. f(x, z, u, 0) = 0 (5.9b)

g(x, z, u, 0) = 0 (5.9c)
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y = h(x, z, u, 0) (5.9d)

x ∈ X (5.9e)

z ∈ Z (5.9f)

u ∈ U (5.9g)

y ∈ Ỹt (5.9h)

Oftentimes, the state-input pair that provides the optimal economic cost ℓe is on the bound-

ary of the set Ỹt. To find a different steady-state inside Ỹt, the following optimization

problem is solved:

(x∗, u∗) = argmin
x,z,u

0 (5.10a)

s.t. f(x, z, u, 0) = 0 (5.10b)

g(x, z, u, 0) = 0 (5.10c)

y = h(x, z, u, 0) (5.10d)

ℓe(x, z, u) = ℓre (5.10e)

x ∈ X (5.10f)

z ∈ Z (5.10g)

u ∈ U (5.10h)

y ∈ Ỹt (5.10i)

where ℓre is an economic cost that is worse than the optimal economic cost ℓ∗e such that:

ℓre = (1 + r) · ℓ∗e, r ∈ (0, 1)

To tune α, we introduce the tuning parameter δ < 1 to tune down α when needed. Thus,

the problem of finding the largest ellipsoidal CIS approximation inside the modified target
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set is transferred into finding the best combination of ℓre and α. Algorithm 4 summarizes the

proposed iterative algorithm that returns the CIS approximation XI and Yf in Nmax number

of iterations at the maximum.

Algorithm 4 Estimation of the terminal CIS

Input: f , h, ℓe, ℓ
∗
e, X, U, Ỹt, umax, ε, r, α, δ, Nmax

Output: XI , Yf

Ensure: x ∈ X, u ∈ U
ȳt = {max (y) | y ∈ Ỹt}, yt = {min (y) | y ∈ Ỹt}
X0 ← X, Y0 ← Ỹt, α← α
i← 0
while Yi + εB ∩ Ỹt\Y do

i← i+ 1
ℓre ← (1 + r)ℓre
Define ȳi = {max (y) | y ∈ Yi}, yi = {min (y) | y ∈ Yi}
if ȳi − yi > ȳt − yt then

r ← 0, α← δα
elser ← r, α← α
end if
Solve the steady-state optimization and obtain (xs, us)
Linearize the system w.r.t. (xs, us) and obtain A and B
if A is stable then

Solve the continuous Lyapunov Equation to obtain P
Xi ← x ∈ X|xTPx ≤ α
Yi ← h(Xi)

else
Solve the SDP to obtain P
Xi ← x ∈ X|xTPx ≤ 1
Yi ← h(Xi)

end if
end while
if i = Nmax then Xi ← ∅, Yi ← ∅

Break
end if
XI ← Xi, Yf ← Yi

return XI

To assist the understanding of Algorithm 4, Figure 5.2 presents a diagram of three po-

tential iterations while Algorithm 4 runs. The solid rectangles represent the modified target

set Ỹt, the solid ellipses represent the CIS approximation Yi, and the dashed ellipses are the
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relaxed CIS approximation referred to as Yi+εB in Algorithm 4, where B is a unit ball of the

appropriate dimension centered at the origin. As presented in Algorithm 4, the algorithm

runs until the relaxation Yi + εB is fully inside the modified target zone Ỹt, as shown in

Figure 5.2(3). This means that we compute a relatively conservative approximation of the

CIS since the ellipsoid is an approximation obtained based on a linearized model with limited

accuracy as the system moves away from the center steady-state (xs, us). As can be seen

from Figure 5.2, the shift in the steady-state (xs, us) shifts the center of the obtained CIS,

while the change in α changes the size of the CIS. If the steady-state (xs, us) is too close to

the boundary of Ỹt, as shown in Figure 5.2(1), increasing ℓre is desired. On the other hand,

for the case in Figure 5.2(2), both the maximum and the minimum value of the relaxed CIS

Yf + εB falls outside the modified target set Ỹt, meaning that α is too big and needs to be

tuned down.

Algorithm Converged

(1) (3)(2)

Figure 5.2: An illustrative diagram showing three potential iterations Algorithm 4
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5.3.2 Projecting XI into the output space

Since the proposed controller enforces the terminal constraint on the system output, we

define Yf to be the projection of XI onto the output space:

Yf := {y y = h(x, z, u), x ∈ XI , z ∈ Z, u ∈ U} (5.11)

Despite the simplicity of the above definition, it is not in a mathematically explicit form and

thus cannot be used directly in (5.3). Taking the geometrical property of the ellipsoidal CIS

XI into consideration, a method that computes the explicit expression of Yf is developed.

Figure 5.3: A schematic diagram of the relationship between Yf and XI

To enhance understanding of the proposed algorithm, we visualize the relationship be-

tween Yf and XI in a 3-dimensional space, which is shown in Figure 5.3. The system state

for this example is x = [a, b, c], with the system output being y = [a, b]. The large ellipsoid

centered at the origin represents XI defined based on the deviation state x̄ = x− xs, where
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xs is the steady-state center of the linearized model. It can be observed that the largest

cross-section of XI in the output space, i.e. Yt, is obtained when the value of the other

system state c is set to 0, which is represented by the shaded ellipse.

Since the set Yf is an ellipsoidal shape centered at the origin in the deviation output

space, it can be expressed explicitly as follows:

Yf = {y | y ∈ Ỹt, ȳ
TQȳ ≤ 1} (5.12)

where ȳ = y − ys, ys = h(xs, us), Q is a positive definite symmetric matrix of the correct

dimension. To calculate Q, one simple way is to obtain the coordinates of the endpoint on

each system output axis, which are highlighted in Figure 5.3 by star markers. Recall that

the points on the boundary of XI satisfy the following equation:

xTPx = α (5.13)

The coordinates of the points marked by star markers can thus be found by setting the

states on all other axes to 0. For example, solving the following equation provides us with

the boundary point on the a-axis:

xT
aPxa = α, xT

a = [a∗, 0, 0] (5.14)

With the endpoints for each system output variable calculated, the matrix Q can be solved

accordingly. Thus, the explicit form of Yf is obtained.

Extending the observation from Figure 5.3, we can calculate Yf based on XI for the PCC

process following a similar procedure. It is noteworthy that the system output of the PCC

process is a linear function of the system state. Thus, calculating Yf and obtaining the

largest hyperplane in the space formed by the output-determining state variables inside XI

are merely the same problem.
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5.4 Simulations

In this section, we validate the performance of the proposed ZEMPC controller in the pres-

ence of system noise and disturbance. A ZEMPC that tracks the actual target set without

using any terminal constraint is used as the benchmark ZEMPC for comparison and is re-

ferred to as the nominal ZEMPC hereafter. Section 5.4.1 introduces the detailed controller

setup, while Section 5.4.2 presents the simulation results of the proposed ZEMPC and the

nominal ZEMPC along with discussions.

5.4.1 Controller setup and implementation

Recall the system output vector selected for the PCC process y = [CRCO2 , Treb]
T , where the

two elements are the CO2 capture efficiency and the reboiler temperature, respectively. The

actual target set Yt is defined with respect to the two output variables as follows:

Yt = {y | [90%, 390]T ≤ y ≤ [95%, 391]T} (5.15)

Different from the approach taken in Chapter 4, we obtain the ellipsoidal terminal set Ỹf

first, and then define the modified target set to be the smallest polyhedron around Ỹf , where

the smallest polyhedron set around a known set is defined in Definition 4. We used r = 0.01,

α = 0.01, ε = 0.008 for the computation of Ỹf . Figure 5.4 shows the spacial relationship of

Yt, Ỹt, and Ỹf , which are represented by the solid rectangle, the dashed rectangle, and the

dashed-dotted ellipse. Note that the carbon capture efficiency is the limiting variable in the

terminal set computation, which causes the modified target set and the terminal set to be

rather conservative with respect to the boiler temperature.
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Figure 5.4: The actual target set, modified target set, and the terminal set of the proposed
ZEMPC

For fair comparisons, the prediction horizon of the proposed ZEMPC and the nominal

ZEMPC are both set to N = 18, with a 10 minute sampling interval. The overall simulation

time is 15 hours. 2% process noise is considered for both controller designs. Furthermore, the

inlet flow rate of the flue gas acts as a system disturbance for both controllers by changing

over time around its nominal value, with the deviation from the nominal value upper bounded

by 2%.

Remark 8. The two system outputs are carefully selected such that when they are tightly

controlled, the system stability and efficient performance monitoring are both ensured. To

be specific, CRCO2 is the key performance measurement to monitor, while Treb is critical for

the stable operation of the system. The significance of regulating Treb in terms of system

stability can be explained by the first principle. Maintaining a valid phase equilibrium inside

the desorption column is necessary for proper system operation. Assuming a realistic stable

reboiler pressure, Treb has to be tightly controlled to achieve this.
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Figure 5.5: The system output trajectories obtained based on the proposed robust ZEMPC
v.s. the nominal ZEMPC

5.4.2 Result and discussion

The simulation results of the proposed robust ZEMPC and the nominal ZEMPC are pre-

sented in this section. Figure 5.5 presents the output progression in the output space over

time, where the orange trajectory is obtained based on the nominal ZEMPC, and the blue

trajectory is obtained based on the proposed controller. Figures 5.6 and 5.7 show the zone-

tracking cost and the economic cost obtained based on the two controllers over the simulation

horizon, respectively. The same colors as those used in Figure 5.5 are used in Figures 5.6 and

5.7. Note that Figures 5.6 and 5.7 focus on presenting how the controllers handle noise and

disturbance after the system output has converged to the neighborhood of a steady-state,

thus only the costs after t = 100 min are shown. The zone-tracking costs are computed

with respect to the actual target set for both controllers. Table 5.1 summarizes the total

zone-tracking cost and the economic cost obtained based on the two controllers.

Figure 5.5 indicates that the proposed ZEMPC can handle noise and system disturbance
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Figure 5.6: The zone-tracking cost over the simulation time obtained based on the proposed
robust ZEMPC v.s. the nominal ZEMPC
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Figure 5.7: The economic cost over the simulation time obtained based on the proposed
robust ZEMPC v.s. the nominal ZEMPC
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Table 5.1: The total zone-tracking cost and economic cost of the proposed robust ZEMPC
v.s. the nominal ZEMPC

The proposed ZEMPC The nominal ZEMPC

ℓz 5.45× 104 1.09× 105

ℓe 405 398

better compared to the nominal ZEMPC since it is able to keep the system output inside

the actual target set once converged. On the other hand, under the control of the nominal

ZEMPC, the system output fluctuates around the boundary of the actual target set and thus

violates the target set more frequently. This can also be observed in Figure 5.6, where the

proposed ZEMPC leads to no violation of the actual target zone, while the nominal ZEMPC

suffers from zone violation over the entire simulation horizon. It is to be noted that the

proposed robust ZEMPC enhances the closed-loop robustness with some scarification in the

economic performance. This can be observed in Figure 5.7, where the economic cost obtained

based on the proposed controller has a larger average value compared to that obtained with

the nominal ZEMPC. However, it is also noticed that the proposed ZEMPC leads to economic

costs with less variation, which is more robust compared to the nominal ZEMPC. Table 5.1

shows matching results, where the proposed ZEMPC significantly reduces the zone-tracking

cost at the price of a slightly higher economic cost compared to the nominal ZEMPC.

Remark 9. Note that overall, the zone-tracking cost has a much larger magnitude compared

to the economic cost. This is designed on purpose in both controllers to prioritize the zone-

tracking objective over the economic objective, since the zone-tracking objective is more vital

for the safe and robust operation of the process.

5.5 Summary

In this chapter, we extended the robust ZEMPC proposed in Chapter 4 and applied it to the

PCC process, which is a large-scale nonlinear system with complex dynamics. A practical

approach for approximating a control invariant set with respect to the system output is
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developed, which improves the applicability of the robust ZEMPC. The performance of the

proposed controller is compared with the performance of a benchmark nominal ZEMPC

in the presence of system noise and disturbance, and is shown to have better capacity for

plant-model-mismatch rejection and is more robust.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

In this thesis, we systematically investigated advanced-control-oriented model approxima-

tion methods and controller robustness in the presence of plant-model-mismatch. We also

extended our studies and tested the performance of the proposed methodologies on essential

complex real-world applications.

In Chapter 2 we investigated three model approximation approaches, namely the proper

orthogonal decomposition (POD) method integrated with trajectory piecewise linearization,

the subspace model identification method, and neural network training method with ex-

plicit expressions. Each method is applied to two benchmark systems, namely an alkylation

process and a wastewater treatment process (WWTP). The performance of the model ap-

proximation methods is evaluated in open-loop prediction and closed-loop advanced process

control performance. It is found that regardless of the model approximation method em-

ployed, a trade-off between the model complexity and model performance needs to be made.

Furthermore, it is found that offset-free steady-state prediction is essential for offset-free con-

ventional tracking MPC, while for EMPC, high accuracy in transitional dynamic prediction

is vital. NN is found to be a powerful generalized tool for model approximation due to its
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ability to predict nonlinear dynamics. However, it is noticed that the NN training process

quickly becomes very challenging as the number of system inputs and outputs increases.

In Chapter 3, we continued our study of advanced-control-oriented model approximation

for an agro-hydrological system. We selected NN training with explicit expressions as our

base and proposed a two-layer NN modeling framework for the system of interest with

its unique dynamics taken into consideration. The structure of the proposed framework is

inspired by the design of linear time-varying (LPV) models. The operating range of interest is

divided into three overlapping smaller operating regions with an NN sub-model developed for

each operating region. The three sub-models form the first layer of the proposed framework.

The second layer of the proposed framework consists of one fully connected NN, which aims to

capture the nonlinear mapping between the predictions made by the sub-models to the actual

system output. The proposed framework is tested for ZMPC application and shows better

performance compared to a single LSTM NN model. The control performance of ZMPC

under different hyperparameters is as well investigated in the presence of system disturbance,

where more conservative ZMPC designs are shown to have less zone violations (i.e. more

robust closed-loop control performance) with some sacrifice in economic performance.

Followed by the simulation-based investigation of ZMPC robustness performed in Chap-

ter 3. In Chapters 4 and 5, we focus on the design of a generalized ZMPC with mathemati-

cally proved convergence in the presence of bounded plant-model-mismatch. In Chapter 4 we

proposed the controller with detailed mathematical proof presented. The performance of the

proposed controller is validated on a continuous stirred tank with 2 system states, 1 system

input, and one system output. Systematic guidelines on hyperparameter tuning is provided

and the performance of various tuning parameter combination is shown via simulations. In

Chapter 5, we modified the generalized robust ZMPC proposed in Chapter 4 such that it is

applicable to a post-combustion carbon capture plant that has 103 system states, 2 system

inputs, and 2 system outputs. The control performance of the proposed controller is shown

to be more robust compared to a benchmark ZMPC.
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6.2 Future Work

Physics-Informed Neural Network In this thesis, the investigation in NN-based model ap-

proximation approaches is purely data-driven. It is observed that if the number of inputs

and outputs desired from the NN is high, the training complexity of the NN increases signif-

icantly with reduced prediction performance, making the approach impractical for detailed

dynamic prediction of large-scale systems. However, if known first-principle knowledge can

be intertwined into the NN model development, the structure of the NN can be optimized

with less number of parameters to be identified in training. This could reduce the amount of

data, the computational resources, and the effort required for training. Some existing results

in this field include [84, 85, 86].

Transfer Learning for Online Update of Control Models Transfer learning is a powerful

machine learning tool that employs a better-identified NN for a similar problem of interest

with limited data available. It can significantly reduce the amount of data required and

the computational effort for training, which makes it suitable for online model updates with

limited time and measurement available. A neural network can be trained offline first with

the historical data available. This NN can be reused and updated online with a time-

triggering or task-triggering mechanism when a certain amount of time has passed or when

the prediction error is larger than a preset threshold. Some existing results on this approach

are [87, 88, 89]

Explicit Representation of Invariant Sets Approximating invariant sets for high dimen-

sional systems is in general a very challenging task. A graph-based algorithm that obtains

an inner-approximation of the invariant set was proposed in [90]. The algorithm discretizes

the state space into small grids and determines the sectors that are inside the invariant set.

Since this algorithm does not pre-specify the shape of the invariant set approximation, it

is able to obtain a larger inner-approximation of the invariant set. However, the obtained

set is not explicitly expressed and thus cannot be utilized directly in control applications
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as constraints. A neural network could be a powerful tool in providing approximations of

explicit mathematical expressions of these invariant sets and is worth investigating.

133



Bibliography

[1] E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings, “Receding

horizon control and discontinuous state feedback stabilization,” International Journal

of Control, vol. 62, no. 5, pp. 1217–1229, Nov. 1995. [Online]. Available:

https://www.tandfonline.com/doi/full/10.1080/00207179508921593

[2] J. B. Rawlings, “Tutorial: model predictive control technology,” in Proceedings of

the 1999 American Control Conference (Cat. No. 99CH36251). San Diego, CA,

USA: IEEE, 1999, pp. 662–676 vol.1. [Online]. Available: http://ieeexplore.ieee.org/

document/782911/

[3] J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of economic model

predictive control,” in 2012 IEEE 51st IEEE Conference on Decision and Control

(CDC). Maui, HI, USA: IEEE, Dec. 2012, pp. 3851–3861. [Online]. Available:

http://ieeexplore.ieee.org/document/6425822/

[4] M. Ellis, J. Liu, and P. D. Christofides, Economic Model Predictive Control, ser.

Advances in Industrial Control. Cham: Springer International Publishing, 2017.

[Online]. Available: http://link.springer.com/10.1007/978-3-319-41108-8

[5] M. Diehl, R. Amrit, and J. B. Rawlings, “A Lyapunov Function for Economic

Optimizing Model Predictive Control,” IEEE Transactions on Automatic Control,

vol. 56, no. 3, pp. 703–707, Mar. 2011. [Online]. Available: http://ieeexplore.ieee.org/

document/5672577/

134

https://www.tandfonline.com/doi/full/10.1080/00207179508921593
http://ieeexplore.ieee.org/document/782911/
http://ieeexplore.ieee.org/document/782911/
http://ieeexplore.ieee.org/document/6425822/
http://link.springer.com/10.1007/978-3-319-41108-8
http://ieeexplore.ieee.org/document/5672577/
http://ieeexplore.ieee.org/document/5672577/


[6] M. Ellis, H. Durand, and P. D. Christofides, “A tutorial review of economic

model predictive control methods,” Journal of Process Control, vol. 24, no. 8, pp.

1156–1178, Aug. 2014. [Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S0959152414000900

[7] P. O. M. Scokaert and J. B. Rawlings, “Feasibility issues in linear model predictive

control,” AIChE Journal, vol. 45, no. 8, pp. 1649–1659, Aug. 1999. [Online]. Available:

https://onlinelibrary.wiley.com/doi/10.1002/aic.690450805

[8] M. Askari, M. Moghavvemi, H. A. F. Almurib, and A. M. A. Haidar, “Stability of

Soft-Constrained Finite Horizon Model Predictive Control,” IEEE Transactions on

Industry Applications, vol. 53, no. 6, pp. 5883–5892, Nov. 2017. [Online]. Available:

http://ieeexplore.ieee.org/document/7959196/

[9] B. Grosman, E. Dassau, H. C. Zisser, L. Jovanovič, and F. J. Doyle, “Zone Model
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[45] B. Csáji, “Approximation with Artificial Neural Networks,” Ph.D. dissertation, Eötvös
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[55] M. S. Goodchild, K. D. Kühn, M. D. Jenkins, K. J. Burek, and A. J. Dutton, “A Method

for Precision Closed-loop Irrigation Using a Modified PID Control Algorithm,” Sensors

and Transducers, vol. 188, no. 5, pp. 61–68, May 2015.

[56] S. K. Saleem, D. K. Delgoda, S. K. Ooi, K. B. Dassanayake, L. Liu, M. N. Halgamuge,

and H. Malano, “Model Predictive Control for Real-Time Irrigation Scheduling,” IFAC

Proceedings Volumes, vol. 46, no. 18, pp. 299–304, Aug. 2013. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S1474667015350011

[57] C. Lozoya, C. Mendoza, L. Mej́ıa, J. Quintana, G. Mendoza, M. Bustillos,
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