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Abstract

Unlike continuous processes, a batch process has a certain period of operation

time, and there are a number of batches in a typical operation. Hence variables

in a batch process have dynamics in two dimensions, along time and across

batches. Besides, batch processes involve large transient phases covering a

wide range of operating envelopes, which cause challenges in both modeling

and control.

To meet the control objectives of batch processes, set-point tracking and

disturbance rejection, iterative learning control (ILC) has been widely at-

tempted. This thesis is concerned with the optimal design and performance

assessment of ILC based on the minimum variance benchmark.

When performance of ILC is unsatisfactory, alternative control strategies

should be considered. Generalized predictive control (GPC) is a popular con-

trol strategy for continuous processes. Developing a two-dimensional GPC

structure for batch processes is another focus of this research. Finally, ILC

and suggested GPC are compared through simulation studies.
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Chapter 1

Introduction

1.1 Objective of the thesis

Control and monitoring of batch processes have received remarkable atten-
tion [28], as industrial batch applications have increased over the past years.
Literature has focused on developing control strategies to improve the per-
formance in terms of set-point tracking and disturbance rejection. Although
many strategies have been developed for continuous processes, most of them
can hardly be directly applied to batch processes due to feasibility problem.
The main features of a batch process can be classified as follow:

• The process lasts for a certain time duration, called a batch. Hence
batch data are two-dimensional, which implies that the dynamics of the
variables across batches as well as along time must be taken into account
for modeling purposes.

• The process involves large transient phases covering a wide range of
operating envelopes.

A successful control strategy of a batch process needs to address the set-
point tracking and disturbance rejection problems. To meet these require-
ments, iterative learning control (ILC) is one of the most recommended strate-
gies. Several structures have been proposed for design and implementation of
ILC. To ensure the efficiency of the design, various methods have been investi-
gated to assess the performance of the control. This thesis elaborates upon the
optimal design and performance assessment procedures for the ILC algorithm
with minimum variance control (MVC) as the benchmark.

Some of the existing control strategies for continuous processes can be
modified and applied to batch processes. Several strategies from the family
of predictive controllers have already been extended for control of batch pro-
cesses. The basis of predictive controllers is to anticipate future output and
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minimize its error - difference from the set-point. From this family, general-
ized predictive control (GPC) utilizes the optimal predictor to anticipate the
future output, which results in rejecting the stochastic disturbance as well as
tracking the set-point. To derive the optimal predictor, knowledge of process
models is required. However, since batch processes possess non-linearity and
two-dimensional dynamics of variables, process modeling is considerably chal-
lenging. This thesis targets two-dimensional modeling and extension of GPC
for batch processes.

Two strategies, ILC and GPC, are introduced for control of batch processes.
The optimal design and performance assessment of ILC based on the minimum
variance benchmark are elaborated, followed by two-dimensional modeling and
extension of GPC. Simulation studies for control of a batch process using both
strategies are carried out, and suggestions for the implementation of each
strategy are made.

1.2 Technical background

1.2.1 Batch process monitoring

Among the techniques introduced for modeling and monitoring of batch pro-
cesses, multivariate statistical process control (MSPC) techniques have ob-
tained popularity due to their abilities to handle the dynamics of batch pro-
cesses in three dimensions, i.e. variable , time and batch [56]. MSPC tech-
niques include several algorithms, with different degrees of effectiveness, such
as parallel factor analysis, multi-way principle component analysis (MPCA)
and multi-way partial least squares (MPLS). Smilde (1992) [75] thoroughly
discusses the advantages of parallel factor analysis, but a more recent contri-
bution by Westerhuis (1999) [81] demonstrates the superior performance of
the multi-way techniques.

Originally, Nomikos and MacGregor (1994) [62] used MPCA and MPLS to
determine whether a batch operates well or not. Then expanding upon the
applications, the multi-way techniques were implemented on-line to estimate
product quality [45]. Currently, the multi-way techniques are considered for
various monitoring purposes of batch processes like quality control and batch
estimation [52, 82].

Considering all the variables, batch data are three-dimensional. To execute
the multi-way techniques, we need to convert the data into two dimensions by
unfolding them along one dimension. Conventionally, batch-wise unfolding
was used for off-line batch monitoring [42, 81]. The literature covers a variety
of techniques to unfold batch data [18, 23].

Alternative methods for modeling of batch processes have also been sug-
gested. Ramaker (2005) [67] discusses the use of local and evolving models
for batch processes. Local models are estimated from the data at only one
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sampling time across the batches, while evolving models are estimated from
the measurements obtained from the beginning to the current sampling time.
Rannar (1998) [68] elaborates Hierarchical PCA which uses evolving models
with different weights given to the current measurements. Another method is
called Moving Window PCA (MWPCA), in which the models are estimated
from the current and some past data [48]. To avoid dealing with a large number
of models, Batch Dynamic PCA (BDPCA) was introduced which estimates a
single model based on PCA theory [8]. More theoretical and practical aspects
of batch modeling and monitoring can be found in [6, 7, 9, 31, 43, 55, 63].

1.2.2 Conventional identification procedure

Estimation of process models is needed for design and performance monitoring
of many control strategies. This section addresses the procedure for estimation
of linear time-invariant continuous processes. The goal is to estimate a model
from data which can describe the dynamics of the input and the output, as
shown in Figure 1.1.

n

k+1

k

k-1

yu
1

w

Figure 1.1: Variable relations for a SISO continuous process

Here w, u, and y denote a white noise, an input and an output, respectively.
A model can be structured as:

yk = T (q−1, θ)uk +N(q−1, θ)wk (1.1)

where T,N are plant and disturbance models, respectively. These models con-
sist of numerators and denominators which are functions of back-shift operator
and model parameters.
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Since the actual models are unknown, the identification procedure is fol-
lowed to estimate the models. The estimated models are then used to derive an
one-step ahead predictor, which predicts the next step output from available
data. One-step ahead predictors are structured as:

ŷ(k|k−1) = L1(q
−1, θ)yk + L2(q

−1, θ)uk (1.2)

where L1, L2 are predictor models.

Optimal predictor

An optimal predictor anticipates the future output based on minimization of
the prediction error variance. To derive the optimal predictor in terms of
the estimated plant and disturbance models, one method is to minimize the
prediction error variance with respect to L1, L2. The prediction error can be
rewritten as:

ε(k, θ) = yk − ŷ(k|k−1)

= T (q−1, θ)uk +N(q−1, θ)wk − L1(q
−1, θ)yk − L2(q

−1, θ)uk

= [T (q−1, θ)− L2(q
−1, θ)]uk + [N(q−1, θ)− I]wk − L1(q

−1, θ)yk + wk

(1.3)

From Equation 1.1, white noise can be rewritten as:

yk = T (q−1, θ)uk +N(q−1, θ)wk

→ wk = N−1(q−1, θ)[yk − T (q−1, θ)uk] (1.4)

Updating Equation 1.3 yields:

ε(k, θ) =[N−1(q−1, θ)T (q−1, θ)− L2(q
−1, θ)]uk

+ [1−N−1(q−1, θ)− L1(q
−1, θ)]yk + wk (1.5)

Let us define two variables:

ψu(q
−1, θ) = N−1(q−1, θ)T (q−1, θ)− L2(q

−1, θ) (1.6)

ψy(q
−1, θ) = 1−N−1(q−1, θ)− L1(q

−1, θ) (1.7)

Substituting the new variables in Equation 1.5, we have:

ε(k, θ) = ψu(q
−1, θ)uk + ψy(q

−1, θ)yk + wk (1.8)
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Remark: If a transfer function has at least one time delay between input
and output, its value will become zero by replacing the back-shift operator
with zero. Hence T (0, θ) = L1(0, θ) = L2(0, θ) = 0.

The disturbance model can be normalized so that its leading term in both
numerator and denominator is 1 so thatN−1(0, θ) = 1. Hence we can conclude:

ψu(0, θ) = 0 (1.9)

ψy(0, θ) = 0 (1.10)

In other words, the first two terms in Equation 1.8 have time delay, and are
not correlated with the third term. Hence the variance of the prediction error
can be computed as:

var(ε(k, θ)) = var(x) + var(wk) ≥ var(wk) (1.11)

where

x = ψu(q
−1, θ)uk + ψy(q

−1, θ)yk (1.12)

Equation 1.11 indicates that the minimum prediction error variance is
reached when x=0. Equating x with zero, the optimal predictor is derived:

ŷ(k|k − 1) = Lopt
1 (q−1, θ)yk + Lopt

2 (q−1, θ)uk (1.13)

where

Lopt
1 (q−1, θ) = 1−N−1(q−1, θ) (1.14)

Lopt
2 (q−1, θ) = N−1(q−1, θ)T (q−1, θ) (1.15)

Prediction error method

Prediction error method (PEM) is an algorithm to estimate plant and dis-
turbance models. Substituting the optimal predictor in Equation 1.5, the
prediction error can be written as:

ε(k, θ) = yk − [1− N̂−1(q−1, θ)]yk − [N̂−1(q−1, θ)T̂ (q−1, θ)]uk (1.16)

In Equation 1.16, T̂ and N̂ are two general linear models with unknown
parameters that represent estimated models. Note that the estimated models
are used to build the optimal predictor, Equation 1.13. A scalar objective
function is defined based on minimization of the prediction error variance:
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min
θ

1

N
tr{

∑
ε(k, θ)εT (k, θ)} (1.17)

where N denotes the number of data points available for prediction. Solving
the objective function with respect to unknown parameters, T̂ and N̂ are
found.

Model validation tests

Estimated models need to be tested to ensure there is no evidence to reject
validity of the estimation. Recalling Equation 1.8 and substituting the optimal
predictor, we have:

ε(k, θ) =ψu(q
−1, θ)uk + ψy(q

−1, θ)yk + wk

ψu(q
−1, θ) = N−1(q−1, θ)T (q−1, θ)− N̂−1(q−1, θ)T̂ (q−1, θ)

ψy(q
−1, θ) = 1−N−1(q−1, θ)− 1 + N̂−1(q−1, θ)

(1.18)

Two tests are introduced:

1. Auto-correlation test:

From Equation 1.18, the first two terms of the prediction error will be-
come zero if estimated models are equal to the actual ones. Therefore,
the prediction error must be a white noise.

In practice, a signal is considered white noise if more than 99% of its
autocorrelation points fall within the range of [− 3√

N
, 3√

N
] [76]. Based on

definition, autocorrelation is a normalized autocovariance which can be
calculated as shown below:

ρε(τ) =
rε(τ)

rε(0)
(1.19)

where rε(τ) represents the prediction error autocovariance with τ lags.
To conclude, if more than 99% ρε(τ) satisfy |ρε(τ)| < 3√

N
, the prediction

error is considered white noise and estimated models pass the test.

2. Cross-correlation test:

From Equation 1.18, if the plant model estimation is good, ψu(q
−1, θ)

will become zero and there will be no cross-correlations between the
prediction error and the input. Based on definition, cross-correlation is
a normalized covariance which can be computed as shown below:

ρεu(τ) =
rεu(τ)√
rε(0)ru(0)

(1.20)
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where rεu(τ) represents covariance between the prediction error and the
input with τ lags. If more than 99% ρεu(τ) satisfy |ρεu(τ)| < 3√

N
, the

estimated plant model passes the test and is validated.

Note that the cross-correlation test validates only the plant model es-
timation, while the auto-correlation test validates both the plant and
disturbance models.

If the estimated models are validated, there is no evidence to reject the
estimation and the models are accepted. Otherwise, different model structures
are chosen and the procedure is repeated.

Input design

Process data need to be suitable for identification. To collect suitable iden-
tification data, an input sequence is designed and given to the system in an
experiment. In order to cover all process frequencies, the input is required to
have a bandwidth at least equal to 1

τ
[51, 76], where τ is the time constant of

the equivalent first order model obtained after a step test. Hence the input
should have a maximum frequency of k

τ
, where k is a recommended integer

equal to 2 or 3, in order to ensure the coverage of all desired frequencies.
In MATLAB, actual frequency is normalized to a number between 0 and

1, called the normalized frequency. The maximum normalized frequency is
equivalent to the maximum actual frequency for discrete signals, which equals
half the sampling frequency, i.e. π

Ts
. Note that Ts represents the sampling

time, and as a rule of thumb, can be set equal to (0.1-0.2) time constant [76].
Actual frequencies can be normalized based on the normalization standard.

Therefore, the input sequence for the experiment should have a maximum
normalized frequency of:

ωmax =
k
τ
π
Ts

=
kTs
τπ

(1.21)

After setting the frequency range, the type of signal is selected, and the de-
sired input is generated. Finally, identification data are collected after running
the experiment all the way through.

1.2.3 Performance assessment of control loops

To ensure the operation of the process, the performance of control loops needs
to be monitored in real-time. The performance is indicated in terms of cur-
rent results compared to a benchmark. Several benchmarks have already been
developed, among which the minimum variance benchmark is remarkably pop-
ular. This benchmark, first proposed by Harris (1989) [26], is established based
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on the minimum variance control theory introduced by Astrom (1970) [3]. As-
trom developed linear time-invariant minimum variance control, which was
followed by notable progress in the fields of predictive control [11, 21, 73] and
adaptive control [24, 25, 44]. This theory was then extended by Harris (1989)
[26] to build a benchmark, against which the performance of a process can be
assessed. He proved that some terms of the process output are never affected
by the feedback controller. This contribution has led to significant progress
in the area of performance assessment [13, 14, 27, 30, 32, 35, 41, 53, 77, 78].
Minimum variance benchmark has also been extended for time-varying sys-
tems [33, 49, 50]. Huang and Shah (1999) [34] have discussed the theoretical
and practical aspects of performance assessment of control loops.

Although simple, the minimum variance solution may not be achievable
for practical controllers. The need for a more practical solution leads to the
development of other benchmarks. Ko and Edgar (1998) [40] introduced the
PID control benchmark. In addition, the linear quadratic Guassian (LQG)
regulator benchmark, based on the process model, was proposed by Huang and
Shah (1999) [34]. Some model-based benchmarks have also been suggested for
performance assessment of MPC strategies [20, 74].

Since this thesis in part deals with performance assessment of iterative
learning control loops based on minimum variance control law, conventional
minimum variance performance assessment is introduced in details. Consider
the closed-loop control of a continuous process described in Figure 1.2 and
Equation 1.22.

+
+

-

ky

kw

1( )C q 1( )T q

1( )N q

ku

Figure 1.2: Closed-loop control of a continuous process

yk = T (q−1)uk +N(q−1)wk (1.22)

Note that T (q−1), N(q−1) and C(q−1) represent the plant, disturbance and
controller models. In addition, wk and yk denote the white noise and the
output of the process.
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Minimum variance control

The purpose of the conventional minimum variance control law is merely to
reject the disturbance. Therefore, no set-point is assigned, and the regulatory
control problem is studied, as shown in Figure 1.2. Hence control action can
be described as:

uk = −C(q−1)yk (1.23)

Since the output is dependent on disturbance, Diophantine identity [26] is
used to split the disturbance model:

N(q−1) = F (q−1) +R(q−1)q−d (1.24)

where d denotes the plant delay. Transforming the disturbance model into the
impulse response format, F and R are obtained. Substituting Equation 1.24
into Equation 1.22, we find:

yk = T̃ (q−1)q−duk + [F (q−1) +R(q−1)q−d]wk (1.25)

yk = T̃ (q−1)uk−d + F (q−1)wk +R(q−1)wk−d (1.26)

where T̃ represents the delay-free part of the plant model. Note that F in-
cludes the first d terms of the disturbance impulse response model. Hence
there are no correlations between F (q−1)wk and other terms in Equation 1.26.
Consequently, the variance of the output can be written as:

var(yk) = var(X) + var(F (q−1)wk) (1.27)

where

X = T̃ (q−1)uk−d +R(q−q)wk−d (1.28)

Since F (q−1)wk is not dependent on the controller, the optimal output is:

yoptk = F (q−1)wk (1.29)

To achieve the optimal solution, the following must hold:

X = 0 (1.30)

→ T̃ (q−1)uoptk−d = −R(q−q)wk−d (1.31)

→ uoptk−d = −T̃−1(q−1)R(q−q)wk−d (1.32)

Substituting the inverse of Equation 1.29, the optimal input is simplified:

uoptk = −T̃−1(q−1)R(q−q)F−1(q−1)yoptk (1.33)
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From Equation 1.23, in order to set the optimal input, the following controller
must be implemented:

Copt(q−1) = T̃−1(q−1)R(q−1)F−1(q−1) (1.34)

It is noted that to have a proper optimal controller, the plant model needs
to be minimum phase, i.e. has no unstable zeros.

Conventional performance assessment

Closed-loop modeling of the process yields:

yk =
N(q−1)

1 + T (q−1)C(q−1)
wk (1.35)

Substituting the Diophatine identity into Equation 1.35, we find:

yk =
F (q−1) + R(q−1)q−d

1 + T (q−1)C(q−1)
wk

= [F (q−1) +
R(q−1)q−d − F (q−1)T (q−1)C(q−1)

1 + T (q−1)C(q−1)
]wk

= [F (q−1) + q−dR(q
−1)− F (q−1)T̃ (q−1)C(q−1)

1 + T (q−1)C(q−1)
]wk (1.36)

Let us define a new variable:

L(q−1) � R(q−1)− F (q−1)T̃ (q−1)C(q−1)

1 + T (q−1)C(q−1)
(1.37)

Updating Equation 1.36 gives:

yk = [F (q−1) + q−dL(q−1)]wk (1.38)

To assess the performance of a control loop, routine operating data are
collected for the identification of F and L. From Equation 1.29, the optimal
output depends only on F. Therefore, the following index is used to determine
the performance of the control loop:

η =
‖F‖22

‖F + q−dL‖22
(1.39)

which reflects the ratio between the optimal and current performance.
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1.2.4 Iterative learning control

Iterative learning control (ILC) strategy was first introduced by Arimoto and
Kawamura (1984) [2] for control of robot systems. This strategy, owing to
its specific structure, has proved useful for set-point tracking and disturbance
rejection purposes for batch processes [19, 38, 46, 83].

Design of ILC strategy has received remarkable attention in literature [57,
64, 65, 84]. Since reliable models are required for the design, various model un-
certainties of batch processes, such as parameter uncertainties or across-batch
stochastic uncertainty, have been studied [1, 15, 59, 60, 61]. Another challenge
in ILC design arises when the plant model is non-minimum phase, i.e. it has
at least one non-stable zero. Roh (1996) [72] and Jeong (2002) [37] elaborated
thoroughly on this problem. To improve the control performance, combining
the iterative learning algorithm with some existing control strategies has been
suggested. For instance, Lee (1999) [47] and Wang (2008) [80] demonstrate
the implementation of iterative learning model predictive control. The com-
bination of ILC and partial least squares models is another example [17]. For
more on design and implementation of ILC, readers are referred to [79, 58].

ILC algorithm

In batch systems, the process lasts for a certain time period, with each period
called a batch. After one batch is complete, another batch continues. The
idea of ILC is to use previous batches to control the current batch. Figure 1.3
illustrates a well-known structure of ILC.

+
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+
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kw
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1i
ke
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1i
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1( )C q 1( )T q

1( )N q

1( )L q 1( )Q q

Figure 1.3: Example of an ILC structure

Note that T (q−1), N(q−1) and C(q−1) are plant, disturbance and feedback
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controller models, and L(q−1) and Q(q−1) are iterative controllers. i, k and
q−1 denote batch index, time index and time back-shift operator, respectively.
As clear in Figure 1.3, this ILC structure consists of three loops. The loop
that incorporates the plant model is the main one. The other two loops are
specifically designed to cooperate in setting the input.

The mathematical equations of this structure are:

yik = T (q−1)uik +N(q−1)wi
k (1.40)

uik = C(q−1)(ydk − yik) + L(q−1)ei−1
k +Q(q−1)ui−1

k (1.41)

In conventional closed-loop control, the feedback controller takes action
solely based on real-time output error, while in ILC the use of previous batches
is considered as well. At each batch, memorized input and error signals of the
previous batch are filtered by L(q−1) and Q(q−1), then added to feedback
controller’s action. Simultaneously, the current input and error signals are
memorized for the next batch. If a stable algorithm is designed, repeating
the procedure will result in shrinking the error over batches. After a certain
number of batches, the error variance remains constant, which means that
convergence has been reached. However, an unstable algorithm could yield
unstable output after a few batches.

1.2.5 Generalized predictive control

Predictive control strategies are based on minimization of future output error—
the difference between predicted future output and set-point. In 1979, engi-
neers at Shell Oil Company presented their predictive controller, called dy-
namic matrix control (DMC) [12]. DMC minimizes the least squares of out-
put error, predicted from the step response model of linear processes. This
strategy avoids taking drastic actions by penalizing the input increments over
time. DMC is mostly implemented in petrochemical industries with multivari-
able processes [36, 66].

The next member of the predictive controllers family is model algorith-
mic control (MAC) [70]. Like DMC, this strategy is based on step response
models. But, the objective of MAC is to minimize the predicted output error
with respect to the input rather than the input increments [5]. To implement
predictive controllers for a wider range of plants, predictive functional control
(PFC) has been introduced, which is capable of handling non-linear and un-
stable linear internal models [29]. However, due to its specific structure, it can
only use state space models [4, 69]. PFC is well-known for its ability to deal
with quick tracking control problems [54]. Extended prediction self-adaptive
control and extended horizon adaptive control are other members of this fam-
ily [22, 39, 71, 85, 86]. Comprehensive reviews of all the predictive controllers
can be found in literature [29, 36, 66].
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In 1987, Clarke introduced generalized predictive control (GPC) [11]. This
strategy can be used to reject the disturbance, as well as to track the set-point,
since it implements the optimal predictor to anticipate the future output. The
design procedure for this algorithm has been well-established in literature [10,
16].

Owing to a focus of this thesis on GPC, the basics of this strategy are
explained here in more detail. First step is to derive the optimal predictor.
Then an objective function is defined to minimize the predicted future error
with respect to input increments over time.

Consider a linear process described by:

yk = Tuk +Nwk (1.42)

where T and N are functions of time back-shift operator. At time k, a-step
ahead predictor is used to anticipate the output at time k+a:

ŷ(k+a|k) = L1yk+a + L2uk+a (1.43)

where L1 and L2 are predictor models. Splitting the disturbance model into
two parts, we find:

N = Fa +Raq
−a (1.44)

where Fa includes the first a terms of the disturbance impulse response model.
Updating Equation 1.42 with Equation 1.44 gives:

yk = Tuk + Fawk +Raq
−awk (1.45)

From Equation 1.42, we have:

wk = N−1[yk − Tuk] (1.46)

Substituting Equation 1.46 into Equation 1.45 yields:

yk = Tuk + Fawk +Raq
−aN−1[yk − Tuk]

= Raq
−aN−1yk + [T −Raq

−aN−1T ]uk + Fawk

= Raq
−aN−1yk + FaN

−1Tuk + Fawk

(1.47)

Having the output expression, the prediction error can be derived:

εk+a = yk+a − ŷ(k+a|k) (1.48)

= Raq
−aN−1yk+a + FaN

−1Tuk+a + Fawk+a − [L1yk+a + L2uk+a] (1.49)

= [Raq
−aN−1 − L1]yk+a + [FaN

−1T − L2]uk+a + Fawk+a (1.50)
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As L1 operates on past data, it is delayed by at least a steps. Hence
[Rq−aN−1 − L1] is delayed by a steps, which makes the first term of Equa-
tion 1.50 uncorrelated with Fawk+a. The second term of Equation 1.50 is
also uncorrelated with Fawk+a, since an open-loop control strategy is being
implemented. Therefore, the variance of the prediction error can be written
as:

var(εk+a) = var([Raq
−aN−1 − L1]yk+a + [FaN

−1T − L2]uk+a) + var(Fawk+a)
(1.51)

The optimal predictor can be found by minimizing the variance of the
prediction error. Since the last term of Equation 1.51 is independent of the
predictor, the optimal predictor is derived by equating the first term of Equa-
tion 1.51 to zero:

→Lopt
1 = Raq

−aN−1 (1.52)

→Lopt
2 = FaN

−1T (1.53)

A number of future outputs are chosen for the prediction purpose—called
prediction horizon. The minimization of future error is executed with respect
to input increments of selected steps—called control horizon. After defining
prediction and control horizons, the GPC objective function can be defined:

min
Δuk

J = min
Δuk

[
n∑

i=1

(ydk+i − ŷ(k+i|k))2 + λ(Δuk)
2] (1.54)

where yd, n and λ are the set-point, the length of the prediction horizon and
a weighting variable, respectively. Note that for the sake of simplicity, control
horizon is composed of a single input. To optimize the objective function, we
need to write the optimal predictor in terms of the input increment. Let us
define a new variable:

ŷ∗(k+a|k) = L1yk+a + L2uk+a, uk+i = uk−1, i � 0 (1.55)

Equation 1.55 represents the constant part of the predicted output. In
other words, assuming the input increment of zero, the predicted output can
be computed from Equation 1.55. To compensate for the input increment in
prediction, another term is introduced:

ŷ(k + a|k) = ŷ∗(k + a|k) + haΔuk (1.56)

where ha is an impulse response coefficient of L2, computed from:

L2 = h0 + h1q
−1 + h2q

−2 + · · · (1.57)
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Note that L2 is itself dependent on a. Let us define vectors to represent data
over prediction horizon:

Y d = [ydk+1, · · · , ydk+n]
T (1.58)

Ŷ = [ŷk+1, · · · , ŷk+n]
T (1.59)

Ŷ ∗ = [ŷ∗k+1, · · · , ŷ∗k+n]
T (1.60)

Rewriting the objective function in quadratic form gives:

min
Δuk

J = min
Δuk

[(Y d−Ŷ ∗−HΔuk)
TQ(Y d−Ŷ ∗−HΔuk)+(Δuk)

TR(Δuk)] (1.61)

where Q and R are weighting matrices. Note that H is a matrix composed of
impulse response coefficients of L2, as shown below:

H =

⎡
⎢⎢⎢⎣
h1
h2
...
hn

⎤
⎥⎥⎥⎦
n∗1

(1.62)

Taking the derivative of Equation 1.61 with respect to the input increment,
the optimal solution is found:

Δuk = (HTQH +R)−1HTQT (Y d − Ŷ ∗) (1.63)

This solution is used to compute the input at time k. Once the next output is
collected, the procedure is repeated to calculate the next input.

1.3 Thesis outline

The main focus of this thesis is on performance monitoring of ILC and de-
velopment of ILC and GPC strategies for control of batch processes. This is
elaborated through five chapters, with the initial chapter providing an overview
of the objectives, the research scope, and technical background.

Chapter 2 addresses the performance monitoring procedure for ILC strat-
egy, based on the minimum variance benchmark for linear time varying (LTV)
batch processes. First, a detailed discussion on the noncommutativity prop-
erty of LTV models is presented. Then the minimum variance benchmark and
the performance monitoring procedure for ILC strategy of LTV processes are
elaborated. Finally, simulation results are illustrated to verify the proposed
algorithm.

The minimum variance benchmark obtained in chapter 2 is designed to es-
timate the optimal solution in terms of the best stochastic performance of ILC
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strategies that yield the best deterministic performance. Chapter 3 illustrates
that the optimal solution, based on the minimum variance control law, is com-
posed of a balance between the deterministic and stochastic performance of the
strategy. For all the ILC strategies with equal deterministic performance, an
optimal solution in terms of the stochastic performance needs to be calculated.
Chapter 3 proposes a method to estimate the optimal solutions from routine
operating data. Finally, performance assessment of the control strategy based
on the optimal solutions is described, followed by an illustration of simulation
studies.

Chapter 4 deals with the extension and implementation of GPC for con-
trol of batch processes. Since the dynamics of batch variables are in two
dimensions, along time and across batches, a method is proposed to estimate
two-dimensional linear dynamics models. An optimal predictor is derived to
anticipate the future output. This predictor is then used to develop a two-
dimensional structure for GPC strategy. To verify the feasibility of the pro-
posed method, simulation studies are carried out. It should be noted that
the implementation of both GPC and ILC strategies is illustrated for all case
studies, and comments on applications are made. To wrap up, chapter 5 gives
concluding remarks and suggests the potential future work.
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Chapter 2

Performance monitoring of
iterative learning control for
linear time-varying processes

2.1 Introduction

Iterative learning control (ILC) is a strategy recommended for batch processes
in order to improve the control performance in terms of set-point tracking
and disturbance rejection. This strategy was first introduced by Arimoto and
Kawamura (1984) [2] for robot systems. The idea is to use the data collected
from previous trials to control the current trial. In the case of batch processes,
each operation has a certain time duration, called a batch. To implement ILC,
an algorithm is defined to use previous batches for the control of the current
batch [4, 12, 16]. Design of an ILC algorithm requires reliable models [18,
23, 24, 27]. But models have several kinds of uncertainties in practice, which
make the design procedure more challenging [1, 6, 20, 21, 22]. To understand
more about different characteristics of ILC, readers are referred to the reviews
by Verwoerd (2005) [26] and Moore (1993) [19].

While operating on-line, performance of a process needs to be monitored to
ensure satisfaction of the implemented control strategy. Many methods have
been proposed in literature to monitor the performance of batch processes
for different control strategies [25, 8, 17]. For the implementation of ILC,
Kong and Chen (2009) [3] have recently suggested a method to monitor the
performance based on the minimum variance benchmark. Although claimed
applicable for time-varying batch processes, this method fails to consider the
noncommutativity property of time-varying models by doing point-wise multi-
plication. This chapter proposes an extension to the existing method in order
to correctly estimate the benchmark and monitor the performance of ILC loops
when the batch process has time-varying property.

The remainder of this chapter is structured as follows: The noncommuta-
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tivity property of time-varying models and multiplication rules are explained
in Section 2. Section 3 introduces the ILC set-up and its algorithm as well
as the minimum variance benchmark estimation and performance monitoring
of time-varying batch processes. Simulation studies are provided in Section 4,
followed by concluding remarks in Section 5.

2.2 Linear time-varying models

In this chapter, linear time-varying (LTV) models are assumed to maintain
a constant structure, but parameters change over time. Suppose a process
is represented by an LTV model with d samples of delay. Depending on the
location of the delay, two structures are possible, as shown in Figure 2.2.

1( )kT qdqkx k dx ky

1( )kT q dqkx kz k dz

(A) 

(B) 

Figure 2.1: A comparison between two LTV structures

The delay-free plant model is represented by T̃k(q
−1), and xk denotes the

input to the process. In structure (A), the delayed input (xk−d) enters the
plant model with parameters at time k. But in structure (B), the input at
time k enters the plant model with parameters at the same time, and the
output is delayed. Therefore, the outputs of (A) and (B) will not be identical.
However, if the parameters of the plant model are shifted forward by d time
steps in structure (B), the same output will be expected since the same model
parameters are executed upon the input. Putting this in mathematical terms,
we have:

q−dT̃k(q
−1) = T̃k−d(q

−1)q−d (2.1)

Equation 2.1 indicates a unique property of LTV models, called noncom-
mutativity [14]. Based on this property, the back-shift operator alters the order
of the parameters with respect to time. Assume that two LTV polynomials
are given as:

Ak(q
−1) = a0,k + a1,kq

−1 + · · ·+ an,kq
−n (2.2)

Bk(q
−1) = b0,k + b1,kq

−1 + · · ·+ bm,kq
−m (2.3)
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Two methods for the multiplication of these polynomials can be used [13]:

[1] Normal multiplication, which considers the noncommutativity property
by changing the order of the parameters with respect to time after the
back-shift operator is moved:

Ak(q
−1)Bk(q

−1) =
n∑

i=0

m∑
j=0

ai,kq
−ibj,kq

−j =
n∑

i=0

m∑
j=0

ai,kbj,k−iq
−(i+j) (2.4)

Bk(q
−1)Ak(q

−1) =
m∑
i=0

n∑
j=0

bi,kq
−iaj,kq

−j =
m∑
i=0

n∑
j=0

bi,kaj,k−iq
−(i+j) (2.5)

Changing the location of the polynomials during the multiplication pro-
cedure affects the output. Therefore, normal multiplication is noncom-
mutative:

Ak(q
−1)Bk(q

−1) �= Bk(q
−1)Ak(q

−1) (2.6)

[2] Point-wise multiplication, which disregards the noncommutativity prop-
erty by maintaining the order of the parameters with respect to time
after the back-shift operator is moved:

Ak(q
−1)Bk(q

−1) =
n∑

i=0

m∑
j=0

ai,kq
−ibj,kq

−j =
n∑

i=0

m∑
j=0

ai,kbj,kq
−(i+j) (2.7)

Bk(q
−1)Ak(q

−1) =
m∑
i=0

n∑
j=0

bi,kq
−iaj,kq

−j =
m∑
i=0

n∑
j=0

bi,kaj,kq
−(i+j) (2.8)

Therefore the point-wise multiplication is commutative:

Ak(q
−1)Bk(q

−1) = Bk(q
−1)Ak(q

−1) (2.9)

Although both these methods have been used for the multiplication of
LTV models, normal multiplication is the appropriate one because it provides
accurate solutions by considering the noncommutativity property. Extending
normal multiplication for LTV models, we find:

Gk = B−1
k (q−1)Ak(q

−1) (2.10)

Hk = D−1
k (q−1)Ck(q

−1) (2.11)

Gk ∗Hk = B−1
k (q−1)Ak(q

−1)D−1
k (q−1)Ck(q

−1) (2.12)

This chapter will use normal multiplication for design and implementation
of LTV models. To demonstrate the differences of this method from the point-
wise multiplication, simulation studies will also be carried out.
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2.3 Control performance monitoring of ILC

2.3.1 ILC set-up

Figure 2.2 illustrates a recommended structure for ILC [3]. Note that Tk(q
−1),

Nk(q
−1), Ck(q

−1), and Lk(q
−1) are linear time-varying models representing the

plant, disturbance, inner controller, and outer controller, respectively. i, k, and
q−1 denote batch index, time index, and time back-shift operator.

1i
kw

d
kyi

ke

i
kyi

kx

+
+ -

+

+

+

-

i
kw

+

1( )kN q

d
ky1i

ke

1i
ky1i

kx

+
+ -

+

+

+

-

+

( )thi batch

( 1)thi batch

1( )kT q1( )kC q

1( )kL q

1( )kN q

1( )kT q1( )kC q

1( )kL q

Figure 2.2: A recommended ILC structure

This structure can be used for the control of different batches with a con-
stant batch duration. Essentially, two loops determine the structure: the inner
loop, drawn with solid lines, and the outer loop, drawn with dashed lines. The
inner loop operates in the same way as the conventional closed-loop feedback
control. At each batch, a reference (xik) is set to the inner controller. When
finishing a batch, the output is compared with the set-point (ydk) and the error

26



(eik) is computed in the outer loop, where the outer controller filters the error
before adding it to the current reference for the next batch.

The design procedure for ILC includes deriving the inner and the outer
controllers in order to achieve desirable performance in terms of set-point
tracking and disturbance rejection. The inner controller operates on-line in
the inner loop, while the outer controller operates off-line in the outer loop.
The purpose of the off-line operation is to set the reference signal such that
the inner loop tracks the set-point. The term ”off-line” is in the sense that the
outer control is executed after the previous batch has been completed. Since
the reference signal is set by the outer controller, the inner controller can focus
on disturbance rejection.

2.3.2 Minimum variance control law

The first step in performance monitoring of a process is to establish a bench-
mark. This thesis adopts the minimum variance benchmark. This benchmark
is based on the minimum variance control law, according to which minimiza-
tion of error variance yields optimal output. To derive the error expression for
the ILC algorithm, the following process model is considered:

yik = Tku
i
k +Nkw

i
k (2.13)

where uik is the input to the plant, set by the inner controller. Note that for
the sake of simplicity, the back-shift operator has been dropped. However,
the subscript k in the plant and disturbance models reflects the time-varying
property of the process models.

Considering the update rule of ILC, as illustrated in Figure 2.2, closed-loop
model of the process is as follows:

yik = (1 + TkCk)
−1TkCkx

i
k + (1 + TkCk)

−1Nkw
i
k (2.14)

where

xik = xi−1
k + Lk(y

d
k − yi−1

k ) (2.15)

Since all the variables are two-dimensional, another back-shift operator
is required to shift the data across batches. Let us define z−1 as the batch
back-shift operator:

z−1xik = xi−1
k (2.16)

Rewriting the ILC update rule gives:

xik = (1− z−1)−1Lky
d
k − (1− z−1)−1z−1Lky

i
k (2.17)

Substituting the reference signal in Equation 2.14 with Equation 2.17 yields:
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yik = (1 + TkCk)
−1Nkw

i
k

+ (1 + TkCk)
−1TkCk[(1− z−1)−1Lky

d
k − (1− z−1)−1z−1Lky

i
k] (2.18)

which can be further simplified as:

[1 + (1− z−1)−1(1 + TkCk)
−1z−1TkCkLk]y

i
k

= (1 + TkCk)
−1Nkw

i
k + (1− z−1)−1(1 + TkCk)

−1TkCkLky
d
k (2.19)

Multiplying both sides of Equation 2.19 by (1− z−1)(1 + TkCk) gives:

[(1− z−1)(1 + TkCk) + z−1TkCkLk]y
i
k

= (1− z−1)Nkw
i
k + TkCkLky

d
k (2.20)

Hence the output can be written as a function of the set-point and the white
noise:

yik = [(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)Nkw

i
k

+ [(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1TkCkLky

d
k (2.21)

Note that in the derivation of Equation 2.21, we have followed the rule
of normal multiplication without altering sequence of terms in the multiplica-
tions. Once the output expression is found, the error can be derived as:

eik = ydk − yik (2.22)

= [(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)(1 + TkCk − TkCkLk)y

d
k

(2.23)

− [(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)Nkw

i
k (2.24)

The error is composed of two parts: the deterministic part which is derived
from the set-point and the stochastic part which is derived from the white
noise. Therefore, the error term can be split, as shown below:

eik = ei,detk + ei,stok (2.25)

where

ei,detk =[(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)

(1 + TkCk − TkCkLk)y
d
k (2.26)

ei,stok =[(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)Nkw

i
k (2.27)
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Error variance minimization is considered in order to achieve the optimal
set-point tracking and disturbance rejection. The performance of set-point
tracking can be determined through the deterministic error. Similarly, distur-
bance rejection can be determined by the stochastic error. Therefore, two cost
functions are defined:

Jdet =E[(ei,detk )2] (2.28)

=E[([(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1

(1− z−1)(1 + TkCk − TkCkLk)y
d
k)

2] (2.29)

Jsto =E[(ei,stok )2] (2.30)

=E[([(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)Nkw

i
k)

2] (2.31)

By minimizing the deterministic cost function, the optimal outer controller
is derived:

Lopt
k = (TkCk)

−1[1 + TkCk] = C−1
k T−1

k [1 + TkCk] (2.32)

From Equation 2.29, the optimal outer controller equates the deterministic
cost function to zero. Hence after one operation of the outer loop, the deter-
ministic error becomes zero, and perfect tracking of the set-point is reached.

Note that owing to the delays in the plant model, the optimal outer con-
troller has non-causal operators, which require future data for computation
purposes. Since this controller executes off-line, the error signal is known at
all time steps. Hence the implementation of non-causal operators is feasible.
More details on non-causal iterative learning control can be found in literature
[5, 26].

Substituting the optimal controller in Equation 2.31, the stochastic cost
function is simplified:

Jsto = E[((1− z−1)[1 + TkCk]
−1Nkw

i
k)

2] (2.33)

From the Diophantine identity [9], we can split the disturbance model:

Nk = Fk +Rkq
−d (2.34)

where d is the time delay of the process, and Fk includes the first d terms of
the disturbance model in impulse response form. Substituting Equation 2.34
into Equation 2.33 yields:
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Jsto = E[((1− z−1)[1 + TkCk]
−1[Fk +Rkq

−d]wi
k)

2] (2.35)

= E[((1− z−1)Fkw
i
k + [1 + TkCk]

−1(1− z−1)[Rkq
−d − TkCkFk]w

i
k)

2]
(2.36)

= E[((1− z−1)Fkw
i
k + [1 + TkCk]

−1(1− z−1)q−d[Rk+d − T̃kCkFk]w
i
k)

2]
(2.37)

Note that T̃k represents the delay-free plant model and can be written as:

T̃k = qdTk (2.38)

The second term of Equation 2.37 has a d-step time delay, while the first one
has finite impulse response form containing white noise terms wi

k−d+1, . . . , w
i
k.

Therefore, the two terms are uncorrelated. Since the first term is not de-
pendent on any controllers, it is called the controller independent term. To
minimize the cost function, the optimal inner controller can be set to equate
the second term of Equation 2.37 with zero. The following equation gives the
optimal inner controller:

Copt
k = T̃−1

k Rk+dF
−1
k (2.39)

From Equation 2.37, the optimal value of the stochastic cost function can be
found by applying the optimal inner controller:

Jopt
sto = E[((1− z−1)Fkw

i
k)

2] (2.40)

= E[(Fka
i
k)

2] (2.41)

where aik is a white noise whose variance is double of that of wi
k, and defined

as:

aik = wi
k − wi−1

k (2.42)

2.3.3 Performance monitoring

Minimum variance benchmark

In general, to monitor the performance of a control strategy, an acceptable
operating range for the output needs to be defined. For ILC strategy, we
define an acceptable range for the output error of each batch operation, and
check if the current error falls within that range. Basically, the expected error
is calculated for each batch, and upper and lower control limits are introduced.

The expected error of each batch can be written as:
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E[eik] = E[ei,detk ] + E[ei,stok ] (2.43)

where

E[ei,detk ] =E[[(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1

(1− z−1)(1 + TkCk − TkCkLk)y
d
k] (2.44)

E[ei,stok ] =E[[(1− z−1)(1 + TkCk) + z−1TkCkLk]
−1(1− z−1)(1− z−1)Nkw

i
k] = 0
(2.45)

An ILC is considered to have good performance if the difference between
the error term of each batch and the expected error is less than three times
of the standard deviation of the optimal error [3]. To put it in mathematical
terms, the following upper and lower control limits are defined:

UCL = E[eik] + 3σk (2.46)

LCL = E[eik]− 3σk (2.47)

where UCL and LCL are the upper and lower control limits, and σk is the
standard deviation of the optimal error computed with parameters at time k.
Since the optimal deterministic error is zero, the optimal error is composed of
only the stochastic error. Hence the variance of the optimal error is equal to
the optimal value of the stochastic cost function, which can be calculated as
[10]:

σ2
k = σ2

a

∫ π

−π

φe(ω)dω (2.48)

where σ2
a is the variance of aik and

φe(ω) =
1

2π
| Fk(e

−jω) |2 (2.49)

This leads to:

σ2
k = σ2

a

∫ π

−π

1

2π
| Fk(e

−jω) |2 dω = ‖Fk‖22σ2
a (2.50)

It has been proved that the square of the 2-norm of a transfer function in
impulse response form is equal to the summation of the squares of its impulse
response coefficients [7]. In other words:

‖Fk‖22 =
∑
j

f 2
j,k (2.51)
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where fj,k is an impulse response coefficient of Fk at time k, corresponding to
q−j.

By defining the upper and lower control limits, the control benchmark is
established [3]. The error for each batch is expected to remain within the
boundaries of UCL and LCL. If the error exceeds the limits of this range,
the performance is deviated from the benchmark, and tuning of the control
strategy can be considered.

Time-varying model identification

The computation of control limits requires knowledge of the process model and
Fk, and in ILC case, identification of these two models from routine operating
data is feasible. Simplifying the closed-loop model, originally presented in
Equation 2.14, yields:

yik = T cl
k x

i
k +N cl

k w
i
k (2.52)

where T cl
k and N cl

k are the deterministic and stochastic closed-loop models,
equal to:

T cl
k = 1− [1 + TkCk]

−1 (2.53)

N cl
k = [1 + TkCk]

−1Nk (2.54)

After collecting data, identification is performed with regard to Equation
2.52. For this purpose, Kalman filter algorithm is applied to recursively es-
timate the time-varying closed-loop models [15]. To explain the procedure,
assume that θk and θ̂k represent the actual and estimated parameters of linear
time-varying models. The following is the general equation for the recursive
identification algorithm:

θ̂k = θ̂k−1 +Kk(y
i
k − ŷik) (2.55)

where ŷik is the predicted output. The gain, Kk, determines the effects of the
prediction error yik − ŷik on the estimated parameters and has the following
form:

Kk = Qkψk (2.56)

where Qk and ψk are the weighting variable and the gradient of the predicted
output ŷik with respect to θ, respectively. For models with linear-regression
form, the output can be modelled as:

yik = ψT
k θk + eik (2.57)
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Note that eik represents the noise source. The predicted output is also given
by:

ŷik = ψT
k θ̂k−1 (2.58)

Assume that the actual parameters can be described by a random walk, as
shown below:

θk = θk−1 + wk (2.59)

In Equation 2.59, wk is a white noise with the covariance matrix of R1.
From Equation 2.56, Qk is needed for the computation of the gain. Based on
the Kalman filter algorithm [15], Qk can be calculated from:

Qk =
Pk−1

R2 + ψT
k Pk−1ψk

(2.60)

where R2 is the covariance of eik in Equation 2.57 and

Pk = Pk−1 +R1 − Pk−1ψkψ
T
k Pk−1

R2 + ψT
k Pk−1ψk

(2.61)

At each sample time, the Kalman gain is computed from Equation 2.56.
Then models parameters can be estimated from Equation 2.55.

Next step is to recover the plant model and Fk from the estimated T cl
k and

N cl
k . When doing this, care has to be taken to the noncommutativity prob-

lem by following the rules of normal multiplication. To explore the problem,
consider the following two cases:

• Case 1: estimating Fk

Substitute the Diophantine identity, Equation 2.34, into the stochastic
closed-loop model, Equation 2.54:

N cl
k = [1 + TkCk]

−1[Fk +Rkq
−d]

= [1 + TkCk]
−1[Fk + TkCkFk +Rkq

−d − TkCkFk]

= Fk + [1 + TkCk]
−1[Rkq

−d − TkCkFk]

= Fk + [1 + TkCk]
−1[Rkq

−d − q−dT̃kCkFk]

= Fk + [1 + TkCk]
−1q−d[Rk+d − T̃kCkFk] (2.62)

The second term of Equation 2.62 possesses d samples of delay. Hence
the stochastic closed-loop model can be rearranged to give:

N cl
k = Fk + Ŕkq

−d (2.63)
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From the Diophantine identity, Fk is composed of the first d terms of the
disturbance model in impulse response form. Similarly, the first d terms
of the stochastic closed-loop model in impulse response form compose
Fk. Hence the estimated stochastic closed-loop model needs to be trans-
ferred to an LTV moving average (MA) model. Then the first d terms
are chosen to compose Fk. To verify the necessity of using normal mul-
tiplication in estimating the MA model, consider the following structure
for Fk:

Fk = f0,k + f1,kq
−1 + · · ·+ fd−1,kq

d−1 (2.64)

As an example, consider a stochastic closed-loop model N cl
k is identified

as an LTV AR model, which can be expanded as follows [11]:

[1− λkq
−1]−1 = f0,k + f1,kq

−1 + · · ·+ fd−1,kq
d−1 +Rkq

−d (2.65)

Simplifying Equation 2.65 yields:

1 =[1− λkq
−1][f0,k + f1,kq

−1 + · · ·+ fd−1,kq
d−1 +Rkq

−d] (2.66)

=f0,k + [f1,k − λkf0,k−1]q
−1 + [f2,k − λkf1,k−1]q

−2 + · · ·
+[fd−1,k − λkfd−2,k−1]q

−d+1 + [Rk − λkfd−1,k−1 − λkq
−1Rk]q

−d (2.67)

Equating coefficients of the both hand sides of Equation 2.67 gives:

f0,k = 1

f1,k = λk

f2,k = λkλk−1

...

fd−1,k = λkλk−1 · · ·λk−d+2

Repeating the procedure by doing point-wise multiplication would yield:

Fk = 1 + λkq
−1 + λkλkq

−2 + · · ·+ λkλk · · ·λkq−d+1 (2.68)

which is incorrect. Hence following the rules of normal multiplication is
necessary when transferring the estimated stochastic closed-loop model
into a moving average model.
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• Case 2: estimating Tk

Recall the deterministic closed-loop model, Equation 2.53:

T cl
k = 1− [1 + TkCk]

−1 (2.69)

As an example, suppose the process possesses a first order plant model,
and a proportional controller is implemented, as shown below:

Tk = (1− Λq−1)−1γkq
−d (2.70)

Ck = κk (2.71)

Substituting Equations 2.70 and 2.71 into Equation 2.69 yields:

T cl
k = 1− [1 + (1− Λq−1)−1γkq

−dκk]
−1

= 1− [(1− Λq−1)−1(1− Λq−1 + γkq
−dκk)]

−1

= 1− (1− Λq−1 + γkκk−dq
−d)−1(1− Λq−1)

= (1− Λq−1 + γkκk−dq
−d)−1((1− Λq−1 + γkκk−dq

−d)− (1− Λq−1))

= (1− Λq−1 + γkκk−dq
−d)−1γkκk−dq

−d (2.72)

Performing identification, the estimated deterministic closed-loop model
should have the following form:

T̂ cl
k = (1− Λq−1 + bkq

−d)−1bkq
−d (2.73)

Let us assume that perfect model identification results are obtained.
From Equation 2.72, we know that the estimated parameter of bk is
equal to γkκk−d. Based on the inverse of Equation 2.69, the plant model
can be recovered from:

T̂k = ([1− T̂ cl
k ]

−1 − 1)C−1
k (2.74)

Substituting Equation 2.73 into Equation 2.74 gives:

T̂k = ([1− (1− Λq−1 + bkq
−d)−1bkq

−d]−1 − 1)κ−1
k

= ([(1− Λq−1 + bkq
−d)−1(1− Λq−1 + bkq

−d − bkq
−d)]−1 − 1)κ−1

k

= [(1− Λq−1)−1(1− Λq−1 + bkq
−d)− 1]κ−1

k

= [(1− Λq−1)−1bkq
−d]κ−1

k

= (1− Λq−1)−1bkκ
−1
k−dq

−d

= (1− Λq−1)−1γkq
−d
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which is equal to the actual plant model. For the sake of comparison, we
also derive the plant model by using point-wise multiplication. Substi-
tuting Equation 2.73 into Equation 2.74 and simplifying the result, we
have:

T̂k = [(1− Λq−1)−1bkq
−d]κ−1

k

= (1− Λq−1)−1bkκ
−1
k q−d

Replacing bk with its actual value, γkκk−d, yields:

T̂k = (1− Λq−1)−1γkκk−dκ
−1
k q−d

which is not equal to the actual plant model. Although the estimation of
the deterministic closed-loop model is assumed to be sufficiently good,
point-wise multiplication for recovering the plant model brings inaccu-
racy into the estimation.

As shown in the above two cases, using point-wise multiplication can be
problematic particularly when the time-varying parameters vary sufficiently
fast. Therefore, it is necessary to use normal multiplication for recovering
desired models from the estimated closed-loop models if the batch process
does have time-varying property.

2.4 Simulation studies

Consider the following process and disturbance models [11]:

Tk = (1− 0.67q−1)−1γkq
−4 (2.75)

Nk = (1− λkq
−1)−1 (2.76)

where γk and λk are time-varying parameters. This process is expected to
follow the set-point given in Figure 2.4.

Two ILC strategies are designed for control of this process. Both strategies
implement the optimal inner and outer controllers, but the first uses normal
multiplication for design purposes, while the second uses point-wise multipli-
cation. After collecting routine batch operating data, models parameters are
estimated using the time varying model identification algorithm, presented in
the previous section.

Three case studies with different rates of parameter change over time are
considered:
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• Case 1) Quick change of time-varying parameters is considered:

γk = 0.33 + 0.3sin(0.2k + 0.1) (2.77)

λk = 0.9|sin(0.2k + 0.1)| (2.78)

Figures 2.4 and 2.5 illustrate the simulation results for performance mon-
itoring of both strategies. The second strategy needs more batches to
achieve perfect tracking of the set-point. In terms of the performance,
the first strategy yields satisfactory outputs for all batches. But the sec-
ond one yields unsatisfactory outputs for the first few batches, which is
due to disregarding the noncommutativity property of LTV models.

• Case 2) Slower change of time-varying parameters is considered:

γk = 0.33 + 0.3sin(0.05k + 0.1) (2.79)

λk = 0.9|sin(0.05k + 0.1)| (2.80)

Simulation results of performance monitoring are given in Figures 2.6
and 2.7. It is clear that a few batches exceed the benchmark limits after
the implementation of the second strategy. However, compared to the
previous case, there is less difference between the outputs of the two
strategies.
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• Case 3) All the parameters remain constant over time:

γk = 0.5 (2.81)

λk = 0.6 (2.82)

Comparing the simulation results of both strategies, given in Figure 2.8,
no difference between the outputs is identified. Since the models are
time-invariant, both normal and point-wise multiplication methods yield
the same results.

According to the simulations, the slower the model parameters change, i.e.
the less models are dependent on time, the less difference is made between
the results of normal and point-wise multiplication. If the parameters remain
constant over time, there will be no differences between the results of the
multiplication methods, which is expected since the models are time-invariant.

2.5 Conclusions

This chapter addressed performance monitoring of ILC loops for linear time-
varying (LTV) batch processes. After a literature review, the basic noncommu-
tativity property of LTV models was explained. Two multiplication methods
were introduced: normal multiplication which considers time varying property,
and point-wise multiplication which disregards it. Following the rules of nor-
mal multiplication, the minimum variance benchmark for the ILC algorithm
of time-varying processes was established, and the procedure for monitoring
the performance based on the proposed benchmark was explained. To ver-
ify the necessity of using normal multiplication, two control strategies were
designed using normal and point-wise multiplications respectively, and simu-
lation results illustrated the difference. The faster model parameters change
over time, the less accurate results are obtained using point-wise multiplica-
tion. However, regardless of the rate of parameter change, the use of normal
multiplication is recommended for design and implementation of ILC strategy
for LTV batch processes.
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Figure 2.4: Performance monitoring simulation results for case 1
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Figure 2.5: Performance monitoring simulation results for case 1
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Figure 2.6: Performance monitoring simulation results for case 2
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Figure 2.7: Performance monitoring simulation results for case 2
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Figure 2.8: Performance monitoring simulation results for case 3
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Chapter 3

Deterministic versus stochastic
performance assessment of
iterative learning control loops

3.1 Introduction

Due to increasing industrial applications of batch processes, there is a growing
interest in investigating different control and monitoring methods [17] in order
to improve control performance in terms of set-point tracking and disturbance
rejection. Batch processes inherit large transient phases covering a wide range
of operating envelopes. This implies that both the tracking and disturbance
rejection problems must be addressed in any control design of batch processes.

To achieve the mentioned objectives, iterative learning control (ILC) has
been widely attempted [11, 24, 27, 45]. This method, first introduced by
Arimoto and Kawamura (1984) [2] for robot systems, considers the use of in-
formation from the previous batch to control the current one. At each batch,
the input and error signals are kept for the use of the next batch. Design of
ILC needs reliable models [32, 37, 38, 46], but in practice models have sev-
eral kinds of uncertainties including parameter uncertainties or across-batch
stochastic uncertainty, which have been discussed in literature [1, 9, 34, 35,
36]. To improve the performance of batch process control, combination of it-
erative learning algorithm with the model predictive control strategy has been
proposed [28, 44]. For certain aspects of ILC such as design and convergence,
readers are referred to Verwoerd (2005) [43] and Moore (1993) [33].

Since the global competition in chemical industry is increasing rapidly,
performance assessment of control loops is receiving more attention as a means
to ensure high efficiency of process operations. To assess the performance of
a control loop, a benchmark is required as a reference. Minimum variance
benchmark has gained popularity after it was first proposed by Harris (1989)
[15], based on the minimum variance control introduced by Astrom (1970) [3].
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Astrom developed linear time-invariant minimum variance control, which was
followed by remarkable progress in the fields of predictive control [5, 12, 40] and
adaptive control [13, 14, 26]. Harris (1989) [15] suggested the use of minimum
variance control as the benchmark. It was shown that there exists a feedback
controller independent term in the process output that represents the minimum
variance output and can be estimated from routine operating data. Since then,
great progress in the area of performance assessment has been achieved [6, 7,
16, 18, 20, 23, 25, 31, 41, 42]. The reason behind the popularity of this method
is its simplicity and non-intrusiveness. It provides the best possible control,
with respect to the output error variance, without relying on the process model
or complicated computation process. This benchmark has also been extended
to time-varying processes [21, 29, 30]. Theoretical and practical aspects of this
subject have been well-covered by Huang and Shah (1999) [22].

Performance assessment of continuous processes deals with disturbance re-
jection problem since the process often operates at a constant set-point. But
for batch processes set-point tracking performance must also be taken into ac-
count. Qin (1998) [39] has categorized two different performance assessment
problems. Chen and Kong (2009) [4] proposed a method to assess the per-
formance of an ILC algorithm, that consists of two levels of controllers, by
deriving the optimal control law for each controller. However, this method
assumes that each of the two-level ILC controllers affects either the stochastic
or deterministic control performance but without considering interaction.

This chapter elaborates the ILC controllers effects on both the stochastic
and deterministic performance of batch control. For stochastic performance,
the goal is to reject the disturbance, while for deterministic performance faster
convergence is the goal. It is shown that there is a trade-off between conver-
gence and disturbance rejection. A method is proposed to estimate the trade-
off curve, which is then used as the benchmark to assess the performance of
ILC controllers.

The remainder of this chapter is structured as follows: Section 2 contains
ILC set-up and a detailed explanation of its algorithm. In Section 3, the
optimal design of ILC controllers and estimation of the trade-off curve are
discussed. Section 4 addresses performance assessment of the ILC controllers.
Simulation studies are conducted in Section 5, followed by concluding remarks
in Section 6.

3.2 Preliminaries

Figure 3.1 illustrates an ILC algorithm that is applied to a process which oper-
ates over different batches with a constant batch period. Note that i, k, and q−1

represent batch index, time index, and time back-shift operator, respectively.
As shown in Figure 3.1, the ILC algorithm consists of two loops. The inner
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loop, drawn with solid lines, operates similarly to a conventional control loop
and includes the inner controller (C), plant model (T ) and disturbance model
(N). At each batch, the reference (xik) is set by the outer loop, drawn with
dashed lines. Disturbance is considered as another input to the process which
can be modeled by a colored noise derived from a white noise (wi

k). After a
batch is over, the output trajectory is compared with the set-point trajectory
(ydk) and the error (eik) is computed in the outer loop. The outer controller (L)
filters the error trajectory which will then be added to the current reference
to set the new reference for the next batch.
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Figure 3.1: A recommended ILC structure

The outer loop sets the reference for each batch to reduce the error in the
next batch. Under a good control policy, the process can track the set-point
after a few batches. This is called convergence. For instance, in Figure 3.2
the third batch tracks the desired output, and its output error is caused only
by stochastic disturbance. Hence the designed control converges after three
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batches.
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Figure 3.2: ILC convergence

Equation 3.1 gives the relation between the inputs and output in a discrete-
time transfer function format. Note that for the sake of simplicity, the back-
shift operator has been dropped.

yik = [1 + TC]−1TCxik + [1 + TC]−1Nwi
k (3.1)

The outer loop holds an update rule, as follows:

xik = xi−1
k + Lei−1

k (3.2)

Let us define z−1 as the batch back-shift operator, as shown below:

z−1xik = xi−1
k (3.3)

Hence Equation 3.2 can be rearranged to give:

xik = (z − 1)−1Leik (3.4)

3.3 Optimal ILC design

This section elaborates upon the optimal design procedure for the ILC con-
trollers based on the minimum variance control law. Error terms are derived
and effects from both controllers on the error terms are discussed. To achieve
desired output with respect to set-point tracking and disturbance rejection,
control algorithms are developed.

49



3.3.1 General derivations

From the Diophantine identity [15], we can write the closed-loop disturbance
model in an impulse response form:

[1 + TC]−1N = F +Rq−d (3.5)

where F includes the first d terms of the impulse response and R includes the
remainder. Substituting the closed-loop disturbance model with the Diophan-
tine identity, Equation 3.1 can be rewritten as:

yik = [1 + TC]−1TCxik + [F +Rq−d]wi
k (3.6)

The reference signal is set according to the update rule, presented in Equation
3.4. Substituting the update rule into Equation 3.6 yields:

yik = [1 + TC]−1TC(z − 1)−1Leik + (F +Rq−d)wi
k (3.7)

Equation 3.7 can be rearranged to give:

(z − 1)yik = [1 + TC]−1TCLeik + (z − 1)(F +Rq−d)wi
k (3.8)

For the sake of simplicity, let us define a new variable:

G � [1 + TC]−1TCL (3.9)

Substituting G into Equation 3.8 yields:

(z − 1)yik = Geik + (z − 1)(F +Rq−d)wi
k (3.10)

which can be further simplified as:

yi+1
k − yik = Geik + (F +Rq−d)(wi+1

k − wi
k) (3.11)

By adding and subtracting the set-point to the left side of Equation 3.11, the
error can be written as a function of the previous batch error:

yi+1
k − yik + ydk − ydk = Geik + (F +Rq−d)(wi+1

k − wi
k) (3.12)

→ eik − ei+1
k = Geik + (F +Rq−d)(wi+1

k − wi
k) (3.13)

→ ei+1
k = (1−G)eik + (F +Rq−d)(wi

k − wi+1
k ) (3.14)

Equation 3.14 gives the relation between the error sequences of different
batches. In order to write the error as a function of the set-point and white
noises, the error of the first batch is needed. For the first batch, it is common to
use the set-point directly as the reference signal [33]. Let us rewrite Equation
3.6 for the first batch:

50



y1k = [1 + TC]−1TCydk + (F +Rq−d)w1
k (3.15)

Subsequently, the error is found to be:

e1k = ydk − y1k = ydk − [1 + TC]−1TCydk − [F +Rq−d]w1
k

= [1 + TC]−1ydk − (F +Rq−d)w1
k (3.16)

Having calculated the error expression of the first batch and according to
Equation 3.14, all the error terms can be derived, as shown below:

e2k =(1−G)[1 + TC]−1ydk +G(F +Rq−d)w1
k − (F +Rq−d)w2

k (3.17)

...

enk =(1−G)n−1[1 + TC]−1ydk + (1−G)n−2G(F +Rq−d)w1
k + · · ·

+ (1−G)G(F +Rq−d)wn−2
k +G(F +Rq−d)wn−1

k − (F +Rq−d)wn
k

(3.18)

Since all the terms are derived from the set-point or white noises, the error of
each batch can be split into deterministic and stochastic parts:

enk = en,detk + en,stok (3.19)

where

en,detk =(1−G)n−1[1 + TC]−1ydk (3.20)

en,stok =(1−G)n−2G(F +Rq−d)w1
k + · · ·+ (1−G)G(F +Rq−d)wn−2

k

+G(F +Rq−d)wn−1
k − (F +Rq−d)wn

k (3.21)

Consider two special cases:

[1] G=0

The outer controller is inactive, and the outer loop is therefore discon-
nected. Hence the reference signal remains constant across batches, and
convergence cannot be achieved. From Equation 3.18, the error can be
computed as follows:

enk = [1 + TC]−1ydk − (F +Rq−d)wn
k (3.22)
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[2] G=1

From Equation 3.20, the deterministic error becomes zero after the oper-
ation of the outer loop, which implies that convergence will be achieved
after one batch. From Equation 3.18, the error is found to be:

enk = (F +Rq−d)(wn−1
k − wn

k ), n > 1 (3.23)

3.3.2 Rate of convergence

Based on the definition, convergence of the ILC algorithm is achieved when the
output error is caused only by stochastic disturbance, i.e. the deterministic
error becomes zero. Rate of convergence is defined as the number of batches
required to achieve convergence, which can be used as a measure for the de-
terministic performance of the algorithm. The higher the rate of convergence,
i.e. the fewer batches required for convergence, the better the deterministic
performance.

Let us define a new variable:

ȳdk � [1 + TC]−1ydk (3.24)

which is the deterministic error of the first batch. Updating the deterministic
error, Equation 3.20, gives:

en,detk = (1−G)n−1ȳdk (3.25)

To achieve convergence, we need to equate Equation 3.25 with zero:

en,detk = (1−G)n−1ȳdk = 0 (3.26)

Based on the expansion of Parseval’s theorem [10], we propose the following
method to determine the convergence.

Expansion of Parseval’s theorem: Let u(t) and y(t) be the input and output
of a system with the following relation:

y(t) = Hu(t) (3.27)

where H is a discrete time transfer function. The following inequality holds
between the 2-norms of the input and output [10]:

‖y‖2 ≤ ‖H‖∞‖u‖2 (3.28)

Applying this theorem to Equation 3.25 yields:

‖en,detk ‖2 ≤ γn‖ȳdk‖2 (3.29)

where
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γn = ‖(1−G)n−1‖∞ (3.30)

The algorithm is called converged after n batches, if the 2-norm of the
deterministic error of the nth batch decreases to less than 100ε% of the 2-
norm of the first batch deterministic error, where 0 < ε << 1. Therefore,
the rate of convergence is equal to the smallest number of n that satisfies the
following:

γn ≤ ε (3.31)

Convergence condition

In some cases, the ILC algorithm may never converge. When designing the
algorithm, we need to consider the convergence property.

From the submultiplicative property of the ∞-norm [10], we can expand
Equation 3.30:

γn = ‖(1−G)n−1‖∞ = ‖(1−G)‖n−1
∞ (3.32)

If the following holds:

‖(1−G)‖∞ < 1 (3.33)

Then Equation 3.31 will certainly hold for a finite value of n. Otherwise,
γn increases (or never decreases) after each batch and Equation 3.31 will not
hold. Therefore, Equation 3.33 represents a sufficient condition of a convergent
algorithm.

3.3.3 The inner controller

Recall the error expressions:

en,detk =(1−G)n−1[1 + TC]−1ydk

en,stok =(1−G)n−2G(F +Rq−d)w1
k + · · ·+ (1−G)G(F +Rq−d)wn−2

k

+G(F +Rq−d)wn−1
k − (F +Rq−d)wn

k

where G,F, and R are related in the following equations:

G = [1 + TC]−1TCL

F +Rq−d = [1 + TC]−1N

As shown in the first chapter, F is the feedback controller independent
term. The outer controller affects only G, while the inner controller affects
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both G and R. Since the outer controller is capable of executing both causal
and non-causal operators [8, 43], all the possible values of G can be reached
by changing the outer controller. The inner controller can focus on changing
R which is in the stochastic error expression. Therefore, the optimal inner
controller is derived by minimizing the stochastic error of the inner control
loop. The derivation of the minimum variance control law is the same as the
conventional minimum variance control law, as presented in the first chapter.
The result is given by:

Copt = T̃−1ŔF−1 (3.34)

where T̃ is the delay-free plant model and Ŕ is obtained from the following
Diophantine identity:

N = F + Ŕq−d (3.35)

3.3.4 The outer controller

The outer controller affects both the deterministic and stochastic error terms.
Among all the ILC algorithms with the same deterministic performance (the
same rate of convergence), the one with the highest stochastic performance (the
minimum variance of the stochastic error) is considered optimal. Therefore, a
different optimal solution exists at each convergence rate.

To find the optimal solutions, the variance of the stochastic error needs to
be minimized with respect to the outer controller while the rate of convergence
is set at the desired value. Note that the existing inner controller (not neces-
sarily the minimum variance inner controller) is considered in the stochastic
error term. The optimal solution for an ILC algorithm that converges after n
batches meets two conditions:

[1] The rate of convergence is n. From Equation 3.31, the following holds:

γn = ‖(1−G)n−1‖∞ ≤ ε (3.36)

[2] The variance of the stochastic error, Equation 3.21, is minimized. Orig-
inated from different white noises, all the terms of the stochastic error
are uncorrelated. Therefore, the variance of the stochastic error is equal
to:

var(en,stok ) =var((1−G)n−2G(F +Rq−d)w1
k)

+ · · ·+ var((1−G)G(F +Rq−d)wn−2
k )

+ var(G(F +Rq−d)wn−1
k ) + var((F +Rq−d)wn

k )

(3.37)
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To calculate the variance of each term, the following Lemma is used:

Lemma1: Given an expression y(t) = Hw(t) where w(t) is a white noise
with variance of σ2

w, the variance of y(t) can be computed as follows [19]:

var(y(t)) =

∫ π

−π

φy(ω)dω (3.38)

where

φy(ω) =
1

2π
| H(e−jω) |2 σ2

w (3.39)

This leads to:

var(y(t)) =

∫ π

−π

1

2π
| H(e−jω) |2 dωσ2

w = ‖H‖22σ2
w (3.40)

According to Lemma1, the variance of the stochastic error is found to
be:

var(en,stok ) = (‖(1−G)n−2G(F +Rq−d)‖22 + · · ·
+ ‖(1−G)G(F +Rq−d)‖22 + ‖G(F +Rq−d)‖22 + ‖(F +Rq−d)‖22)σ2

w

(3.41)

Hence the following objective function is defined to minimize the variance
of the stochastic error:

J(G) = min
G

[var(en,stok )] (3.42)

= min
G

[‖(1−G)n−2G(F +Rq−d)‖22 + · · ·+ ‖(1−G)G(F +Rq−d)‖22
+ ‖G(F +Rq−d)‖22 + ‖(F +Rq−d)‖22] (3.43)

Optimization algorithm

To find the optimal solutions, we combine the two conditions into one objective
function, as shown below:

Gopt = argmin
G

[var(en,stok ) + λ|γn − ε|] (3.44)

where λ is a weighting variable. As an example, consider a first order structure
for Gopt:
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Gopt =
b0 + b1q

−1

1 + f1q−1
(3.45)

Optimization is performed with respect to three parameters of Gopt. For this
example, the procedure is as follows:

[1] Assign an integer to n.

[2] A small initial value is set for λ.

[3] A numerical method, like Newton-Raphson, is used to do the minimiza-
tion.

[4] If γn ≤ ε (e.g. ε = 0.05) is satisfied, the solution is found. If not,
continue to step 4.

[5] A larger weighting variable is chosen, and step 2 is repeated.

Following the algorithm for different values of n, all the optimal solutions
for the considered Gopt can be found. Plotting the stochastic error variance
of all the solutions versus the rate of convergence, we obtain a trade-off curve
which illustrates the trade-off between the deterministic and stochastic per-
formance of the ILC algorithm.

For each optimal solution, the optimal outer controller can be computed
from the inverse of the definition of G, as shown below:

Lopt = (TC)−1[1 + TC]Gopt (3.46)

3.4 Performance assessment

After collecting routine operating data from ILC controlled batch process, esti-
mation of the process and disturbance models can be conducted. Let us rewrite
the closed loop model of the inner loop, originally presented in Equation 3.1:

yik = (1− S)xik + SNwi
k (3.47)

where

S = [1 + TC]−1 (3.48)

Performing identification using output data yik and the batch set-point
reference data xik, S and N are estimated. Since the existing inner controller
is available, the plant model can also be estimated from S. F, R, and G are
accordingly determined based on definitions, presented in Equations 3.5 and
3.9.
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3.4.1 The inner controller

As mentioned in section 3.3.3, the inner controller minimizes the stochastic
error of the inner loop, and the optimal inner controller is equivalent with the
optimal feedback controller with respect to the conventional minimum variance
benchmark. Hence performance index of the inner controller is defined the
same as the conventional method, as presented in the first chapter:

ηC =
‖F‖22

‖F +Rq−d‖22
(3.49)

which reflects the ratio between the optimal and existing performance.

3.4.2 The outer controller

Following the procedure for the optimal design of the outer controller for dif-
ferent convergence rates (n), a trade-off curve is obtained, as illustrated in
Figure 3.3.
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Figure 3.3: An example of the trade-off curve

Having estimated F, R, and G, the rate of convergence and the stochastic
error variance for the current ILC can be obtained from Equations 3.31 and
3.41, respectively. If the current algorithm converges after n batches, the
optimal solution with the rate of convergence equal to n is selected from the
curve for performance assessment. The comparison of the variance of the
current stochastic error with the variance of the optimal stochastic error for
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the same rate of convergence can offer a measure to determine the performance
of the outer controller. Hence we define an index equal to the variance of the
stochastic error under the optimal outer control loop divided by the variance
of the current stochastic error, as shown below:

ηL =
‖(1−Gopt)n−2Gopt(F +Rq−d)‖22 + · · ·+ ‖(F +Rq−d)‖22
‖(1−G)n−2G(F +Rq−d)‖22 + · · ·+ ‖(F +Rq−d)‖22

(3.50)

The numerator in Equation 3.50 represents the solution under the optimal
outer control loop. Note that since performance assessment of the outer con-
troller is the objective, the existing inner controller (which is not necessarily
optimal) is used for the calculation of the solution. Hence the difference in the
error terms of the current and optimal solutions is caused only by the outer
controller.

3.5 Simulation studies

A batch process is given as below:

T =
0.9q−2 − 0.6q−3

1− 0.7q−1

N =
1− 0.2q−1

1− 0.9q−1

This process is expected to follow the set-point trajectory given in Figure 3.4.
Three cases with different sets of ILC controllers are studied:

• Case 1

The optimal inner controller is implemented. The outer controller is
chosen to achieve the fastest convergence, as shown below:

G = 1 → L = (TC)−1[1 + TC]

After collecting data, G, F, and R are estimated:

F̂ = 1 + 0.7015q−1

R̂ 	 0

Ĝ = 1.004− 0.007q−1

To obtain the trade-off curve, the optimization procedure is applied.
Table 3.1 shows the parameters of the optimal G and the minimum
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Figure 3.4: Desired output for simulation

variance solutions (optimal stochastic error variance) under the optimal
outer loop at different rates of convergence. Figure 3.5 also illustrates the
trade-off curve and the current performance of the designed algorithm.

Table 3.1: Optimal controller and minimum variance values for Case 1
Conv. 2 3 4 5 6 7 8 9
b0 0.789 0.54 0.404 0.322 0.267 0.228 0.201 0.192
b1 0.039 0.058 0.046 0.037 0.028 0.033 0.031 0.029
f1 0.143 0.253 0.281 0.293 0.293 0.340 0.362 0.376

min. var. 2.404 2.001 1.839 1.754 1.702 1.667 1.641 1.622

The current ILC algorithm converges after two batches with the error
variance of 2.98. The minimum variance solution under the optimal outer
loop at the same rate of convergence is 2.4041. Hence the performance
index for the outer controller is:

ηL =
2.4041

2.98
= 0.807

Based on 3.49, the performance index of the inner controller is 1, which
is expected since the optimal inner controller is implemented.

• Case 2

The optimal inner controller and a relatively slower outer controller (L =
0.5) are implemented. Estimated G, F, and R are as follow:
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Figure 3.5: Trade-off curve for Case 1

F̂ = 1 + 0.7033q−1

R̂ 	 0

Ĝ = 0.3173 + 0.053q−1 + 0.022q−2 + 0.016q−3 + 0.006q−4

Table 3.2 shows the parameters of the optimal G and the minimum
variance solutions under the optimal outer loop. The trade-off curve and
the current performance of the designed algorithm are also presented in
Figure 3.6.

Table 3.2: Optimal controller and minimum variance values for Case 2
Conv. 2 3 4 5 6 7 8 9
b0 0.789 0.540 0.405 0.322 0.267 0.228 0.199 0.190
b1 0.046 0.061 0.048 0.039 0.029 0.034 0.034 0.027
f1 0.151 0.257 0.287 0.299 0.295 0.342 0.370 0.368

min. var. 2.408 2.005 1.843 1.758 1.705 1.670 1.645 1.620

The inner controller is the same as that in the previous case. Hence its
performance index remains to be 1. This can be verified by calculating
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Figure 3.6: Trade-off curve for Case 2

3.49. The current ILC converges after 5 batches with the error variance
of 1.821, while the minimum variance solution under the optimal outer
loop for the same rate of convergence is 1.758. Hence the performance
index of the outer controller is:

ηL =
1.758

1.821
= 0.962

• Case 3

Two non-optimal inner and outer controllers are implemented, as shown
below:

C =
0.5

1− 0.9q−1

L = 0.5

After obtaining data, G, F, and R are estimated:

F̂ =1 + 0.6983q−1

R̂ 	0.1836− 0.1681q−1 − 0.2499q−2 − 0.1663q−3 − 0.043q−4 + 0.034q−5

Ĝ =0.2241 + 0.205q−1 + 0.0913q−2 − 0.0097q−3 − 0.0578q−4 − 0.0532q−5
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Table 3.3 and Figure 3.7 show the parameters of the optimal G and the
minimum variance solutions under the optimal outer loop, as well as the
current performance of the designed algorithm.

Table 3.3: Optimal controller and minimum variance values for Case 3
Conv. 4 5 6 7 8 9 10
b0 0.407 0.325 0.252 0.233 0.187 0.175 0.164
b1 -0.004 -0.003 -0.003 -0.002 -0.002 -0.002 -0.001
f1 0.180 0.193 0.271 0.332 0.356 0.381 0.394

min. var. 2.024 1.932 1.875 1.837 1.810 1.788 1.762
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Figure 3.7: Trade-off curve for Case 3

The current performance indicates convergence after 10 batches with the
error variance of 2.3129. The minimum variance solution under the opti-
mal outer loop for the ILC algorithm with the same rate of convergence
is 1.7627. Therefore, the performance index of the outer controller is:

ηL =
1.7627

2.3129
= 0.762

Based on 3.49, the performance index of the inner controller can be
determined as:
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ηC =
12 + 0.69832

12 + 0.69832 + 0.18362 + 0.16812 + · · · = 0.9

3.6 Conclusions

In this chapter certain aspects of performance assessment for the ILC algo-
rithm including identification, the extension of minimum variance benchmark
and performance assessment were discussed. First the ILC set-up and its algo-
rithm were explained. Then the effects of both ILC controllers on the stochas-
tic and deterministic performance were studied, followed by the optimal design
procedure for each controller. The deterministic control performance of a pro-
cess was determined by its rate of convergence, i.e. the number of batches
required for convergence, while the stochastic control performance was deter-
mined by the stochastic error variance. Based on this consideration, it was
shown that the solution of the inner loop under the optimal inner controller is
equivalent to the conventional minimum variance solution. But for the outer
controller, there is a trade-off between the deterministic and stochastic perfor-
mance of control loops. Therefore, optimal solutions under the optimal outer
controller were equivalent to the minimum variance solutions at given rates of
convergence. All the optimal solutions were presented by a curve to demon-
strate the mentioned trade-off. To compute the trade-off curve, error variance
minimization was conducted to find the optimal solutions under the optimal
outer controller for different rates of convergence. This chapter also elaborated
the performance assessment of ILC controllers and verified the feasibility of
the proposed methods through three simulation case studies.
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Chapter 4

Two-dimensional generalized
predictive control for batch
processes

4.1 Introduction

Minimization of the predicted future output error (from the set-point) is the
basis for many control strategies, referred to as predictive control strategies.
Dynamic matrix control (DMC), first presented by Shell oil Company engineers
[4], is probably one of the simplest predictive controllers and deals with step
response model of linear processes. This method minimizes the least squares of
the future output error while penalizing the input increments to avoid drastic
changes in control actions [7]. DMC has been applied in many multivariable
petrochemical processes [8, 12].

Model algorithmic control (MAC), also called model predictive heuristic
control (MPHC), is another predictive controller introduced by Richalet (1978)
[14]. This strategy also uses the step response model of the process, but mini-
mizes the output error with respect to input rather than the input increment.
One disadvantage of this method is that penalizing input reduces the ability
to remove offset [7]. Next member of predictive controllers family is predictive
functional control (PFC), which is popular due to its ability to deal with non-
linear and unstable linear internal models [7]. Because of the specific structure,
this control strategy is capable of handling quick tracking control problems
[11]. It is noted that only state space models are used in this algorithm [1,
13]. Generalized predictive control (GPC), developed by Clarke (1987) [3], has
the same objective of the output error minimization, but utilizes an optimal
predictor to anticipate the future output. Hence this method is capable of
rejecting the stochastic disturbance in addition to set-point tracking. Design
and robustness analysis of GPC have been well-covered in literature [2, 5].
Extended prediction self-adaptive and extended horizon adaptive control are
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other members of this family [6, 9, 15, 17, 18]. Interested readers are referred
to the reviews of predictive control strategies [7, 8, 12].

This work extends the structure of GPC to batch processes. As mentioned,
GPC utilizes an optimal predictor to predict the future output. To obtain an
optimal predictor, knowledge of the process is required. Hence batch process
modeling constitutes the first part of this chapter. Since batch processes are
correlated across batches as well as along time, two-dimensional models are
necessary for batch process identification. As a result, two-dimensional model
structure is used for the development of GPC for batch processes, followed by
an elaboration on design and implementation procedures. Simulation studies
are conducted to illustrate the feasibility of the proposed methods.

The remainder of this chapter is structured as follows: Section 2 elaborates
upon the identification procedure for two-dimensional batch processes. A new
method is proposed to estimate two-dimensional linear models. Section 3
extends the structure of GPC to batch processes and explains the design and
implementation procedures. Simulation studies are carried out in Section 4,
followed by concluding remarks in Section 5.

4.2 Two-dimensional identification

Since continuous processes operate solely along time dimension, the conven-
tional identification algorithm considers the dynamics of process variables
along time dimension only [10, 16]. However, batch processes operate in two
dimensions, along time and across batches. Hence the dynamics of the process
variables in both dimensions need to be taken into account in identification.

Figure 4.1 illustrates the dependency of the actual and predicted outputs
(y and ŷ) on the inputs (u which is the deterministic input and w which is
a white noise). The area shown by dot-dashed lines includes the data needed
to model the actual output at batch i and time k. As shown in Figure 4.1,
the actual output depends on both inputs. The area shown by dashed lines
includes the data needed to predict the output at batch i and time k. The
past deterministic inputs and the past actual outputs are used to predict the
future output.

Stochastic responses can be originated from various disturbance sources.
Since some sources can affect more than one batch, it is reasonable to assume
the stochastic responses have correlations across batches. Similarly, determin-
istic responses can also be interacted across batches. This chapter uses data
across batches for identification.

Since process data of concern are two-dimensional, two back-shift operators
are required to shift along time and across batches. z−1 and q−1 are defined
as batch and time back-shift operators, respectively. Equation 4.1 shows a
general linear model of the process at batch i and time k.

68



uw yyuw
1

n

k+1

k

k-1

ŷ ŷ
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Figure 4.1: Variable relations for a SISO batch process

yik = T (q−1, z−1, θ)uik +N(q−1, z−1, θ)wi
k (4.1)

To model the stochastic response of a batch process, a two-dimensional
white noise is defined. A two-dimensional white noise has no autocorrelations
along time or across batches. In mathematical terms, the following equation
holds for a two-dimensional white noise when k �= m and i �= n.

E[wi
k][w

n
m] = 0 (4.2)

For identification purposes, output predictors are developed first. General
predictors require the input and output sequences for all previous time and
previous batches. Equation 4.3 presents a general structure for one-step ahead
predictors.

ŷi(k|k−1) = L1(q
−1, z−1, θ)yik + L2(q

−1, z−1, θ)uik (4.3)

4.2.1 Optimal one-step ahead predictor

Chapter 1 has provided an overview of the optimal one-step ahead predictor
for one-dimensional linear models. This section extends the mentioned pro-
cedure to two-dimensional linear models. Like the conventional identification
procedure, the optimal predictor is found by minimizing the prediction error.
Rewrite the definition of the prediction error for a two-dimensional process:
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εik(θ) = yik − ŷi(k|k−1) (4.4)

Substituting Equations 4.1 and 4.3 into Equation 4.4 yields:

εik(θ) =T (q
−1, z−1, θ)uik +N(q−1, z−1, θ)wi

k

− L1(q
−1, z−1, θ)yik − L2(q

−1, z−1, θ)uik (4.5)

=T (q−1, z−1, θ)uik + (N(q−1, z−1, θ)− 1)wi
k + wi

k

− L1(q
−1, z−1, θ)yik − L2(q

−1, z−1, θ)uik (4.6)

From the inverse of Equation 4.1, we have:

wi
k = N−1(q−1, z−1, θ)[yik − T (q−1, z−1, θ)uik] (4.7)

Replacing the white noise in Equation 4.6 with Equation 4.7 gives:

εik(θ) =T (q
−1, z−1, θ)uik + (N(q−1, z−1, θ)− 1)

N−1(q−1, z−1, θ)[yik − T (q−1, z−1, θ)uik] + wi
k

− L1(q
−1, z−1, θ)yik − L2(q

−1, z−1, θ)uik (4.8)

which can be further simplified as:

εik(θ) = ψu(q
−1, z−1, θ)uik + ψy(q

−1, z−1, θ)yik + wi
k (4.9)

where

ψu(q
−1, z−1, θ) =N−1(q−1, z−1, θ)T (q−1, z−1, θ)− L2(q

−1, z−1, θ)

ψy(q
−1, z−1, θ) =1−N−1(q−1, z−1, θ)− L1(q

−1, z−1, θ) (4.10)

Prediction is derived based on data from previous time as well as previous
batches. Therefore, all the parameters of the predictor have either time delay
or batch delay. In mathematical terms, the following holds:

L1(q
−1 = 0, z−1 = 0, θ) = 0 (4.11)

L2(q
−1 = 0, z−1 = 0, θ) = 0 (4.12)

The disturbance model can be normalized so that its leading term in both
numerator and denominator is 1 and the following equation holds:

N(0, 0, θ) = 1 (4.13)
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The plant model also has either time delay or batch delay in all terms.
Hence from Equation 4.9, the following holds:

ψu(0, 0, θ) = 0 (4.14)

ψy(0, 0, θ) = 0 (4.15)

which implies that both ψu, ψy have either time delay or batch delay. There-
fore, in the right hand side of Equation 4.9 there are no correlations between
the first two terms and the white noise. Consequently, the variance of the
prediction error can be derived as below:

var(εik(θ)) = var(x) + var(wi
k) ≥ var(wi

k) (4.16)

where

x � ψu(q
−1, z−1, θ)uik + ψy(q

−1, z−1, θ)yik (4.17)

Equation 4.16 presents the minimum variance of the prediction error. The
optimal predictor is derived by equating x with zero, which results in:

ψu(q
−1, z−1, θ) = 0 → N−1(q−1, z−1, θ)T (q−1, z−1, θ)− L2(q

−1, z−1, θ) = 0
(4.18)

ψy(q
−1, z−1, θ) = 0 → 1−N−1(q−1, z−1, θ)− L1(q

−1, z−1, θ) = 0
(4.19)

Therefore, the optimal predictor is found to be:

ŷi(k|k−1) = Lopt
1 (q−1, z−1, θ)yik + Lopt

2 (q−1, z−1, θ)uik (4.20)

where

Lopt
1 (q−1, z−1, θ) = 1−N−1(q−1, z−1, θ) (4.21)

Lopt
2 (q−1, z−1, θ) = N−1(q−1, z−1, θ)T (q−1, z−1, θ) (4.22)

4.2.2 Prediction error method

Extending the prediction error method from one-dimensional process [10, 16]
to two-dimensional process, the following objective function is defined:

min
θ

1

N
tr{

ni∑
i=1

nk∑
k=1

εik(θ)ε
iT

k (θ)} (4.23)
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where ni and nk denote the number of batches and data samples collected,
respectively. N represents the total data points. The prediction error is com-
puted from:

εik(θ) = yik−[1−N̂−1(q−1, z−1, θ)]yik−[N̂−1(q−1, z−1, θ)T̂ (q−1, z−1, θ)]uik (4.24)

where T̂ , N̂ are the plant and disturbance models to be estimated. A general
linear two-dimensional model is structured as:

G(q−1, z−1, θ) =
b00 + b01q

−1 + b10z
−1 + b11z

−1q−1 + · · ·
f00 + f01q−1 + f10z−1 + f11z−1q−1 + · · · (4.25)

Two linear two-dimensional models are considered for T̂ and N̂ , and model
orders with respect to each back-shift operator are chosen. Model parameters
can then be estimated by optimizing Equation 4.23.

4.2.3 Model validation tests

In the prediction error method, selected model orders may not be suitable
for the process. Hence we need to validate the estimated models. Recall the
optimal predictor:

ŷi(k|k−1) = [1− N̂−1(q−1, z−1, θ)]yik + [N̂−1(q−1, z−1, θ)T̂ (q−1, z−1, θ)]uik (4.26)

Substituting Equation 4.1 into Equation 4.26 gives:

ŷi(k|k−1) =[1− N̂−1(q−1, z−1, θ)][T (q−1, z−1, θ)uik +N(q−1, z−1, θ)wi
k]

+ [N̂−1(q−1, z−1, θ)T̂ (q−1, z−1, θ)]uik (4.27)

Hence the prediction error can be rewritten as:

εik(θ) =y
i
k − ŷi(k|k−1)

=[N̂−1(q−1, z−1, θ)(T−1(q−1, z−1, θ)− T̂−1(q−1, z−1, θ))]uik

+ [N̂−1(q−1, z−1, θ)N(q−1, z−1, θ)]wi
k (4.28)

Three tests can be considered:

[1] Cross-correlation test:

This test checks the plant model estimation. From Equation 4.28, if
the estimated plant model is sufficiently close to the actual plant model,
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then the prediction error and the current batch input will not be cross-
correlated. Cross-correlation between the prediction error and the input
is computed from:

ρεiui(τ) =
rεiui(τ)√
riε(0)r

i
u(0)

(4.29)

where rεiui(τ) represents the covariance between the prediction error and
input sequences of ith batch with τ time lags. In practice, if more than
99% ρεiui(τ) satisfy |ρεiui(τ)| < 3√

N
, plant model estimation is acceptable

and the estimated plant model is validated [16].

[2] Auto-correlation test along time:

From Equation 4.28, if the estimated models are sufficiently close to the
actual models, the prediction error will be a two-dimensional white noise.
Therefore, two tests are defined to ensure there are no autocorrelations
in the prediction error along time or across batches. The first test is to
calculate the autocovariance for each batch, as shown below:

ρεi(τ) =
rεi(τ)

rεi(0)
(4.30)

where rεi(τ) denotes the prediction error autocovariance for ith batch
with τ time lags.

If more than 99% ρεi(τ) satisfy |ρεi(τ)| < 3√
N
, the prediction error is a

white noise along time and the estimated models pass the test.

[3] Auto-correlation test across batches

To ensure that the prediction error is a white noise across batches, its
autocovariance at a given time step is calculated as below:

ρεk(τ) =
rεk(τ)

rεk(0)
(4.31)

where rεk(τ) denotes the prediction error autocovariance for all batches
at time k with τ batch lags.

If more than 99% ρεk(τ) satisfy |ρεk(τ)| < 3√
N
, the prediction error is a

white noise across batches and the estimated models pass the test.

If all the tests are passed, the estimated models are validated. Otherwise, a
different model structure is chosen and the prediction error method is repeated.
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4.2.4 Equivalent one-dimensional models

In terms of mathematical modeling, batch processes can be represented by
one-dimensional linear models equivalent to two-dimensional models. In other
words, two-dimensional models can be converted into one-dimensional models.
To elaborate this conversion, first we represent two-dimensional data by a
vector, as shown in Figure 4.2.

1

i kn n

( 1) 1i kn n

2 kn

1kn
kn

in

kn

1

1

conversion

Figure 4.2: Conversion of two-dimensional data into one dimension

Note that nk and ni represent the total number of time and batch steps.
A new dimension is defined which we call time-batch.

Definition: For two-dimensional data, two indices are used to distinguish
data. When turning the data into a vector, one index along the new defined
dimension is needed. A function, called 1-D converter, is defined to calculate
the equivalent index:

Γ(i, k) = (i− 1) ∗ nk + k (4.32)

The sample data obtained at batch i and time k can be found at time-batch
Γ(i, k) after building the vector.

All the dynamics of data along time and across batches can be presented
in time-batch dimension. To explain the idea further, suppose the following
two-dimensional linear model holds for a batch process:

yik = (b01q
−1 + b10z

−1)uik = b01u
i
k−1 + b10u

i−1
k (4.33)
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The time back-shift operator shifts data one time step within the batch,
which is equivalent to one time-batch step. The batch back-shift operator
shifts data one batch step at current time, which is equivalent to nk time-
batch steps. Hence Equation 4.33 is equivalent to:

Y (l) = b01U(l − 1) + b10U(l − nk) (4.34)

where m, U and Y denote the time-batch index, input and output along time-
batch, respectively. Index l can be computed from 1-D converter function.

Equation 4.34 presents an equivalent linear correlation between variables
along time-batch. By defining p−1 as time-batch back-shift operator, the fol-
lowing model is obtained:

Y (l) = (b01p
−1 + b10p

−nk)U(l) (4.35)

which shows an equivalent one-dimensional linear model for the process.

4.2.5 Example

Consider the following process:

T =
0.7q−2

1− 0.3q−1
(4.36)

N =
1 + 0.2q−1

1− 0.7z−1
(4.37)

In this process, the plant model has dynamics along the time but not
along the batches while the disturbance model has two-dimensional dynamics.
Conventional identification procedure is applied first to identify the process by
one-dimensional models. Note that this procedure can be done by any batch
data. In this example, the tenth batch data were used. The estimated models
are:

T̂ =
0.6911q−2

1− 0.301q−1
(4.38)

N̂ =
1 + 0.2782q−1

1 + 0.0572q−1
(4.39)

which fail to capture the dynamics of the disturbance model across batches.
Performing the residual tests, Figure 4.3 is obtained. Obviously, the autocor-
relation test across batches is not passed.

Following the proposed procedure for identification of two-dimensional
models, the following models are estimated:
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Figure 4.3: Residual tests for the conventional identification procedure for the
Example

T̂ =
0.6962q−2

1− 0.3041q−1
(4.40)

N̂ =
1 + 0.3018q−1

1− 0.7048z−1
(4.41)

which are close to the actual models. Performing the residual tests, as shown
in Figure 4.4, the estimated models are validated.

4.3 Generalized predictive control

This control strategy deals with minimization of the predicted output error
from the set-point trajectory. For this purpose, an optimal predictor is de-
rived based on the estimated plant and disturbance models. Since the pre-
dicted outputs depend on the input, minimizing the predicted output error
can determine optimal inputs for the process.
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Figure 4.4: Residual tests for the two-dimensional identification procedure for
the Example

4.3.1 Algorithm set-up

Since batch variables are correlated along time and across batches, the fu-
ture outputs in both dimensions need to be considered for the optimization.
To demonstrate this idea, Figure 4.5 is considered. Note that filled circles
represent past outputs.

Assume that the process is at ith batch and kth time. The input is set by
solving the optimization problem. Prior to setting up the objective function,
some concepts need to be introduced:

[1] Prediction horizon: Minimization of the predicted output error is
performed over some future outputs along both dimensions. The dashed
rectangular area is called prediction horizon, and includes the selected
outputs. This horizon consists of m2∗n2−1 outputs in both dimensions.

[2] Control horizon: Current and several future inputs are chosen to be
the minimization decision parameters. The area including the selected
inputs is called control horizon, shown by solid rectangle in Figure 4.5.
This horizon consists of m1 ∗ n1 inputs in both dimensions.

[3] Available index set: This set encompasses batch and time indices of
all the available data. In mathematical terms:
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Figure 4.5: Two-dimensional GPC

φ(i, k) = {(m,n)|(m < i) or (m = i and n <= k)}

Equivalently, we can introduce the set in time-batch dimension:

Φ(l) = {l|l <= Γ(i, k)} (4.42)

[4] Future index set: This set encompasses batch and time indices of the
future data. In mathematical terms:

φ́(i, k) = {(m,n)|(m > i) or (m = i and n > k)}

The equivalent set in time-batch dimension is:

Φ́(l) = {l|l > Γ(i, k)} (4.43)

[5] Computable transfer function: AssumeG is a two-dimensional trans-
fer function operating on yi+a

k+b. If all the terms of G address the available
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data, i.e. obtained prior to ith batch and kth time, then G is called com-
putable with respect to (a,b). Equation 4.44 gives a general structure
for G.

G =

mg∑
m=0

ng∑
n=0

gm,nz
−mq−n (4.44)

Each term that satisfies Equation 4.45 is called computable with respect
to (a,b). If all the terms of G satisfy the equation, then G is called
computable with respect to (a,b).

(i+ a−m, k + b− n) ∈ φ(i, k)

Γ(i+ a−m, k + b− n) ∈ Φ(Γ(i, k))
(4.45)

Note that the conditions in Equation 4.45 are equivalent. The first one
is used for two-dimensional models, while the second one is used for the
converted one-dimensional models.

Remark: If a transfer function is computable with respect to (a,b), its
equivalent one-dimensional model has a delay of at least Γ(a, b) because
it does not address the Γ(a, b) data samples that are collected between
yik and yi+a

k+b.

Computable transfer functions have two important properties:

• Summation: If G and H are computable transfer functions with
respect to (a,b), then G+H will also be computable with respect to
(a,b).

Proof:

G =

mg∑
m=0

ng∑
n=0

gm,nz
−mq−n (4.46)

H =

mh∑
m=0

nh∑
n=0

hm,nz
−mq−n (4.47)

G+H =

max(mh,mg)∑
m=0

max(nh,ng)∑
n=0

gm,n + hm,nz
−mq−n (4.48)

Since G and H are computable, all the values of m and n satisfy
Equation 4.45. Therefore, from Equation 4.48, G+H is computable
with respect to (a,b).
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• Multiplication: If G is a computable transfer function with respect
to (a,b), then G*R will also be computable with respect to (a,b).

Proof: Let us write the equivalent one-dimensional models for G
and R:

G =

lg∑
l=Γ(a,b)

glp
−l (4.49)

R =
lr∑
l=0

rlp
−l (4.50)

(4.51)

The equivalent one-dimensional model for G*R is:

G ∗R =

lg∗lr∑
l=Γ(a,b)

grlp
−l (4.52)

G*R has a delay of at least Γ(a, b), which indicates that it is com-
putable with respect to (a,b).

4.3.2 Design procedure

The basis of the predictive controllers is minimization of the output error from
the set-point trajectory. Hence the following cost function is considered over
the prediction horizon:

J(m2, n2) = E{
m2−1∑
a=0

n2−1∑
b=0

[y
(i+a)
(k+b) − ydk+b]

2} (4.53)

where m2, n2, and ydk+b represent the across-batch and along-time lengths of
the prediction horizon and the set-point at time (k + b), respectively. Note
that since only data up to ith batch and kth time is available, expectation of
the future output error is used. However, we can substitute the future output
with its predicted value.

Optimal a-b-step ahead predictor

Output of a process consists of deterministic and stochastic responses. Since
deterministic response is derived from the process input, it can be directly cal-
culated. But predicting the stochastic response is more challenging because its
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input is noise. However, an optimal predictor can use previous outputs to esti-
mate parts of future disturbance effects. The optimal a-b-step ahead predictor
estimates the output a-step ahead across batches and b-step ahead along time.

Consider the following linear process model:

yik = T (q−1, z−1, θ)uik +N(q−1, z−1, θ)wi
k (4.54)

General a-b-step ahead predictors are structured as:

ŷ
(i+a|i)
(k+b|k) = L1(q

−1, z−1, θ)yi+a
k+b + L2(q

−1, z−1, θ)ui+a
k+b (4.55)

Lemma: The optimal a-b-step ahead predictor is:

Lopt
1 (q−1, z−1, θ) = Ra

b (q
−1, z−1, θ)N−1(q−1, z−1, θ) (4.56)

Lopt
2 (q−1, z−1, θ) = F a

b (q
−1, z−1, θ)N−1(q−1, z−1, θ)T (q−1, z−1, θ) (4.57)

where F and R are computed from:

N(q−1, z−1, θ) = F a
b (q

−1, z−1, θ) +Ra
b (q

−1, z−1, θ) (4.58)

with Ra
b including all the computable terms of N with respect to (a,b).

Proof: Substituting Equation 4.58 into Equation 4.54 and writing for the
future output yields:

yi+a
k+b = Tui+a

k+b + F a
b w

i+a
k+b +Ra

bw
i+a
k+b (4.59)

Note that for the sake of simplicity, the back-shift operators have been
dropped. From the process model, we find:

wi+a
k+b = N−1[yi+a

k+b − Tui+a
k+b] (4.60)

Let us rewrite Equation 4.59:

yi+a
k+b = Tui+a

k+b + F a
b w

i+a
k+b +Ra

bN
−1[yi+a

k+b − Tui+a
k+b] (4.61)

The optimal predictor is defined by minimizing the prediction error. Based
on definition, the prediction error can be written as:

ε
(i+a|i)
(k+b|k) = yi+a

k+b − ŷ
(i+a|i)
(k+b|k) (4.62)

= Tui+a
k+b + F a

b w
i+a
k+b +Ra

bN
−1[yi+a

k+b − Tui+a
k+b]− [L1y

i+a
k+b + L2u

i+a
k+b]
(4.63)

= [T −Ra
bN

−1T − L2]u
i+a
k+b + [Ra

bN
−1 − L1]y

i+a
k+b + F a

b w
i+a
k+b (4.64)
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Let us define two new variables:

ψu = T −Ra
bN

−1T − L2 (4.65)

ψy = Ra
bN

−1 − L1 (4.66)

Updating Equation 4.64 yields:

ε
(i+a|i)
(k+b|k) = ψuu

i+a
k+b + ψyy

i+a
k+b + F a

b w
i+a
k+b (4.67)

Because L1 uses available data for prediction, it is computable with respect
to (a,b). In addition, Ra

b is, by definition, computable with respect to (a,b).
Therefore, from the multiplication property of computable transfer functions,
ψy is computable with respect to (a,b). On the other hand, F a

b is composed of
only non-computable terms with respect to (a,b). Consequently, ψyy

i+a
k+b and

F a
b w

i+a
k+b are uncorrelated. Besides, there are no cross-correlations between the

future input and the white noise. Therefore, the variance of the prediction
error is equal to:

var(ε
(i+a|i)
(k+b|k)) = var(ψuu

i+a
k+b + ψyy

i+a
k+b) + var(F a

b w
i+a
k+b) (4.68)

≥ var(F a
b w

i+a
k+b) (4.69)

To achieve the minimum variance solution for the prediction error, the follow-
ing must hold:

ψu = 0 → Lopt
2 = T −Ra

bN
−1T = F a

b N
−1T (4.70)

ψy = 0 → Lopt
1 = Ra

bN
−1 (4.71)

Predictive control law

Each batch process has a set-point trajectory to follow. The objective of the
predictive control law is to compute control actions such that the difference be-
tween the future output and set-point is minimized. Since the future outputs
are unknown at the time of making the decision, the difference between the pre-
dicted output and set-point (predicted output error) is minimized. Nonethe-
less, drastic control actions may be required to achieve the minimum output
error, which may be expensive or infeasible to take. Hence control actions
must be considered to be within an acceptable range with regard to cost and
feasibility.

The challenge is to manipulate the objective function in order to guarantee
acceptable control actions. For a continuous process, this problem is solved
by minimizing control increments over time. In other words, change of control
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actions over time is penalized, and each control action cannot be too far away
from the previous ones. For a batch process, penalizing control increments
over batch can also be considered. Therefore, various objective functions can
be defined:

[1] This objective function combines the minimization of the predicted out-
put error and control increments over time. For this purpose, the follow-
ing cost function is defined:

J(m1, n1,m2, n2) =

m2−1∑
a=0

n2−1∑
b=0

[ŷ
(i+a|i)
(k+b|k) − ydk+b]

2

+

m1−1∑
a=0

n1−1∑
b=0

λ(a, b)[Δi+aui+a
k+b]

2 (4.72)

where λ(a, b) is a two-dimensional control-weighting sequence, and con-
trol increment is defined as:

Δi+aui+a
k+b = ui+a

k+b − ui+a
k+b−1 (4.73)

To compute the cost function, all the terms should be written as functions
of control increments. Let us recall the optimal a-b-step ahead predictor:

ŷ
(i+a|i)
(k+b|k) = F a

b N
−1Tui+a

k+b +Ra
bN

−1yi+a
k+b (4.74)

The input is undetermined after batch i and time k-1. A new variable
(rnm) is defined equal to the input for all available data. For unavailable
data, after batch i and time k-1, input increments over time are assumed
zero, and rnm contains the inputs at previous time steps. In mathematical
terms:

rnm = unm, (n,m) ∈ φ(i, k − 1) (4.75)

rnm = unk , (n,m) ∈ φ́(i, k − 1) (4.76)

Hence rnm is known for all the batches and time steps. Replacing the
input in Equation 4.74 with rnm yields:

ŷ
(i+a|i)
(k+b|k) = Ha

b ũ
i
k(m1, n1) + F a

b N
−1Tri+a

k+b +Ra
bN

−1yi+a
k+b (4.77)

where
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ũik(m1, n1) =

⎡
⎢⎢⎢⎣

Δiuik Δi+1ui+1
k · · · Δi+m1−1ui+m1−1

k

Δiuik+1 Δi+1ui+1
k+1 · · · Δi+m1−1ui+m1−1

k+1
...

...
...

...
Δiuik+n1−1 Δi+1ui+1

k+n1−1 · · · Δi+m1−1ui+m1−1
k+n1−1

⎤
⎥⎥⎥⎦
n1∗m1

(4.78)

Ha
b is a transfer function defined for the incremental input. Prior to

calculating Ha
b , note that only the first term of Equation 4.77 depends

on the input increments and the rest are constant. A new variable can
be defined to represent the constant part:

ȳi+a
k+b � F a

b N
−1Tri+a

k+b +Ra
bN

−1yi+a
k+b (4.79)

Substituting Equation 4.79 into Equation 4.77 yields:

ŷ
(i+a|i)
(k+b|k) = Ha

b ũ
i
k(m1, n1) + ȳi+a

k+b (4.80)

For the sake of simplicity, all two-dimensional matrices are converted to
vectors:

Ŷ = [ŷi(k+1|k), ŷ
i
(k+2|k), · · · , ŷi(k+n2−1|k), ŷ

(i+1|i)
k , · · · , ŷ(i+m2−1|i)

(k+n2−1|k)]
T
(m2n2−1)∗1

(4.81)

Ũ = [Δiuik,Δ
iuik+1, · · · ,Δiuik+n1−1, · · · ,Δi+m1−1ui+m1−1

k+n1−1 ]
T
(m1n1)∗1 (4.82)

Ȳ = [ȳik+1, ȳ
i
k+2, · · · , ȳik+n2−1, ȳ

i+1
k , · · · , ȳi+m2−1

k+n2−1 ]
T
(m2n2−1)∗1 (4.83)

Y d = [ydk+1, y
d
k+2, · · · , ydk+n2−1, y

d
k, · · · , ydk+n2−1]

T
(m2n2−1)∗1 (4.84)

Ŷ includes the future outputs within the prediction horizon, and Ũ in-
cludes the input increments within the control horizon. Ȳ is a constant
vector that can be computed based on available data. Extending Equa-
tion 4.80, we have:

Ŷ = HŨ + Ȳ (4.85)

Equation 4.85 presents the optimal predictor over the entire prediction
horizon with respect to the control horizon. To complete the structure
of the predictor, definition of H is required. First, we model the future
outputs one by one:
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ŷi(k+1|k) = h01(0, 1)Δ
iuik + ȳik+1

ŷi(k+2|k) = h02(0, 2)Δ
iuik + h02(0, 1)[Δ

iuik +Δiuik+1] + ȳik+2

...

ŷ
(i+1|i)
k = h10(1, 0)Δ

iuik + ȳi+1
k

ŷ
(i+1|i)
(k+1|k) = h11(1, 1)Δ

iuik + h11(1, 0)[Δ
iuik +Δiuik+1] + ȳi+1

k+1

...

(4.86)

where hab (i, j) is an impulse response coefficient calculated from:

F a
b N

−1T =
∑
i

∑
j

hab (i, j)z
−iq−j (4.87)

Generalizing the derivations of the future outputs, we have:

ŷ
(i+a|i)
(k+b|k) =[hab (a, 0) + · · ·+ hab (a, b)]Δ

iuik

+[hab (a, 0) + · · ·+ hab (a, b− 1)]Δiuik+1

...

+hab (a, 0)Δ
iuik+b

+[hab (a− 1, 0) + · · ·+ hab (a− 1, b)]Δi+1ui+1
k

+[hab (a− 1, 0) + · · ·+ hab (a− 1, b− 1)]Δi+1ui+1
k+1

...

+[hab (a−m2 + 1, 0) + · · ·
+ hab (a−m2 + 1, b− n2 + 1)]Δi+m2−1ui+m2−1

k+n2−1

+ȳi+a
k+b

(4.88)

Note that the future input increments beyond the control horizon are
assumed zero. In other words,

Δi+aui+a
k+b = 0, a ≥ 0, b ≥ m2 (4.89)

Modeling all the future outputs within the prediction horizon, H can be
written in terms of the impulse responses of F a

b N
−1T .

Having introduced the optimal predictor in vector format, i.e. Equation
4.85, the cost function defined in Equation 4.72 can be updated:

J = (HŨ + Ȳ − Y d)TQ(HŨ + Ȳ − Y d) + ŨTRŨ (4.90)
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where Q and R are weighting matrices. Accordingly, the following ob-
jective function is considered:

min
Ũ
J = min

Ũ
[(HŨ + Ȳ − Y d)TQ(HŨ + Ȳ − Y d) + ŨTRŨ ] (4.91)

Assuming no constraints on the input or the output, the minimization
can be conducted by taking the derivative of the cost function with
respect to Ũ and equating it with zero. Equation 4.92 yields the optimal
solution for the input increments.

Ũ opt = (HTQH +R)−1HTQT (Y d − Ȳ ) (4.92)

[2] The second objective function combines the minimization of the pre-
dicted output error and control increments over batches. The following
cost function is defined:

J(m1, n1,m2, n2) =

m2−1∑
a=0

n2−1∑
b=0

[ŷ
(i+a|i)
(k+b|k) − ydk+b]

2

+

m1−1∑
a=0

n1−1∑
b=0

λ(a, b)[Δk+bu
i+a
k+b]

2 (4.93)

where input increment is defined as:

Δk+bu
i+a
k+b = ui+a

k+b − ui+a−1
k+b (4.94)

Let us define a new variable, rik, to contain all the available data of the
input sequence with the future input increments over batch equal to zero,
as shown below:

rnm = unm, (n,m) ∈ φ(i, k − 1) (4.95)

rnm = uim, (n,m) ∈ φ́(i, k − 1) (4.96)

Updating the optimal predictor gives:

ŷ
(i+a|i)
(k+b|k) = Ha

b ũ
i
k(m1, n1) + ȳi+a

k+b (4.97)

where
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ȳi+a
k+b = F a

b N
−1Tri+a

k+b +Ra
bN

−1yi+a
k+b (4.98)

and

ũik(m1, n1) =

⎡
⎢⎢⎢⎣

Δku
i
k · · · Δku

i+m1−1
k

Δk+1u
i
k+1 · · · Δk+1u

i+m1−1
k+1

...
...

...
Δk+n1−1u

i
k+n1−1 · · · Δk+n1−1u

i+m1−1
k+n1−1

⎤
⎥⎥⎥⎦
n1∗m1

(4.99)

Two-dimensional matrices are converted into vectors. All the vectors are
defined the same as the previous case, apart from the input increment
which is:

Ũ∗ = [Δku
i
k,Δk+1u

i
k+1, · · · ,Δk+1u

i+1
k , · · · ,Δk+n1−1u

i+m1−1
k+n1−1 ]

T
(m1n1)∗1

(4.100)

Writing the optimal predictor in terms of the vectors, Equation 4.101 is
obtained.

Ŷ = H∗Ũ∗ + Ȳ (4.101)

To build H∗, a general structure for the future outputs is given:

ŷ
(i+a|i)
(k+b|k) =[hab (0, b) + · · ·+ hab (a, b)]Δku

i
k

+[hab (0, b− 1) + · · ·+ hab (a, b− 1)]Δk+1u
i
k+1

...

+[hab (0, 0) + · · ·+ hab (a, 0)]Δk+bu
i
k+b

+[hab (0, b) + · · ·+ hab (a− 1, b)]Δku
i+1
k

+[hab (0, b− 1) + · · ·+ hab (a− 1, b− 1)]Δk+1u
i+1
k+1

...

+[hab (0, b− n2 + 1) + · · ·+ hab (a−m2 + 1, b− n2 + 1)]

Δk+n2−1u
i+m2−1
k+n2−1

+ȳi+a
k+b

(4.102)

where hab (i, j) is an impulse response coefficient calculated from:
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F a
b N

−1T =
∑
i

∑
j

hab (i, j)z
−iq−j (4.103)

The future input increments beyond the control horizon are assumed zero
and H∗ is constructed. Then, the following cost and objective functions
are defined:

J = (H∗Ũ∗ + Ȳ − Y d)TQ(H∗Ũ∗ + Ȳ − Y d) + Ũ∗TRŨ∗ (4.104)

min
Ũ∗

J = min
Ũ∗

[(H∗Ũ∗ + Ȳ − Y d)TQ(H∗Ũ∗ + Ȳ − Y d) + Ũ∗TRŨ∗]

(4.105)

Conducting the minimization under no constraints, the optimal input
increments are achieved:

Ũ∗opt = (H∗TQH∗ +R)−1H∗TQT (Y d − Ȳ ) (4.106)

This section has introduced two cost functions, Equations 4.90 and 4.104,
which are equivalent in terms of predicted error minimization, but compute
the input increments differently, one along time and the other along batch.
However, only one cost function is needed while designing GPC strategy. Ap-
plications of both cost functions are shown in the following section. When
making the decision, minimizing the cost function yields the optimal input
increments at each step. For receding horizon implementation, only the first
input increment is actually implemented. This procedure repeats at each time
of each batch.

4.4 Simulation studies

Two case studies are considered for simulation of controlling batch processes,
having GPC strategies with different objective functions and settings. In ad-
dition, ILC as a common control strategy for batch processes, introduced in
previous chapters, is implemented for the sake of comparison. The optimal so-
lutions of the ILC algorithm are computed based on the procedure mentioned
in the previous chapter.

• Case 1: In this example, only the stochastic model is two-dimensional,
and the plant model has dynamics only along time. The process is given
as:
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T (q−1, z−1) =
0.5q−2

1− 0.8q−1
(4.107)

N(q−1, z−1) =
1 + 0.8q−1

1− 0.7z−1
(4.108)

Figure 4.6 illustrates the set-point trajectory for the process.
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Figure 4.6: Desired output for simulation

A number of control strategies are implemented, as listed in Table 4.1.
Note that objective functions GPC1 and GPC2 refer to the strategy pe-
nalizing over time and batch, respectively. Besides, (m1, n1) and (m2, n2)
determine the control and prediction horizons.

Table 4.1: Control strategies structure for case 1
Name Objective function m1 n1 m2 n2 Q

gpc-time-1 GPC1 1 1 1 3 10R
gpc-time-2 GPC1 1 1 1 3 100R
gpc-time-3 GPC1 2 1 2 3 10R
gpc-batch-1 GPC2 1 1 1 3 10R
gpc-batch-2 GPC2 1 1 3 2 10R

ILC-1 ILC - - - - -
ILC-2 ILC - - - - -

For ILC strategies, the optimal solutions are computed and shown in
Figure 4.7. Recalling from the previous chapter, the process is converged
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when the output error consists of only stochastic error. The rate of
convergence is equal to the number of batches required before process
achieves convergence. Table 4.2 shows the results of all the algorithms.
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Figure 4.7: ILC optimal solutions for case 1

Table 4.2: Results of control strategies for case 1
Name Convergence Rate of convergence Error variance

gpc-time-1
√

1 2.25
gpc-time-2

√
1 1.74

gpc-time-3
√

1 2.30
gpc-batch-1

√
1 2.28

gpc-batch-2 - - -
ILC-1

√
4 2.07

ILC-2
√

8 1.72

The first strategy, gpc-time-1, minimizes the cost function over a pre-
diction horizon of 3 with respect to a control horizon of 1. Increasing
the output error weight over the input increment weight, in the second
design, results in less error variance, at the cost of more input changes.
Enlarging the control and prediction horizons, on the other hand, does
not affect the outputs significantly. Fourth strategy, gpc-batch-1, imple-
ments the GPC objective function which penalizes the input increment
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over batch. The results, however, are similar to previous strategies.

For the last GPC design, gpc-batch-2, the process cannot track the set-
point and convergence will not be achieved. To find the problem, con-
sider the structure illustrated in Figure 4.8. Solid and dashed line areas
represent the control and prediction horizons. The dot line area includes
the outputs that are dependent on the selected control horizon, obtained
from the plant model. As shown in Figure 4.8, since the plant model has
two samples of delay along time and no dynamics along batch, none of
the outputs within the prediction horizon depends on the selected control
horizon. Therefore, minimizing the prediction error is not considered in
the objective function, and decisions are made based on minimizing the
input increments only.

3i

2k

1k

k

i-1 1ii 2i

k-1

3k

Figure 4.8: Selected horizons for the last GPC design for case 1

ILC strategies provide smaller output error variance for the process.
However, the first few batches cannot track the set-point. For instance,
ILC-1 provides the final output error variance of 2.07, which is less than
gpc-time-1’s. But at least 4 batches of the process are required to achieve
convergence.

Figure 4.9 gives the results obtained from gpc-time-1 at the first batch
and ILC-1 at 4th batch. Error variance gained from ILC is relatively
smaller. However it is only beneficial if we can afford to lose three
batches. Otherwise, implementation of GPC is recommended.

• Case 2: We consider the two-dimensional dynamics of both the plant
and disturbance models, along time and across batches. The following
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Figure 4.9: Simulation results for gpc-time-1 and ILC-1 strategies

is the process:

T (q−1, z−1) =
0.9q−2 + 0.8z−1

1− 0.7q−1
(4.109)

N(q−1, z−1) =
1 + 0.8q−1

1− 0.7z−1
(4.110)

The same set-point trajectory given in Figure 4.6 is desired. Table 4.3
lists the selected strategies.

Table 4.3: Control strategies structure for case 2
Name Objective function m1 n1 m2 n2 Q

gpc2-time-1 GPC1 1 1 1 3 10R
gpc2-time-2 GPC1 2 1 2 3 10R
gpc2-batch-1 GPC2 1 1 1 3 10R
gpc2-batch-2 GPC2 2 1 2 3 10R

ILC2-1 ILC - - - - -
ILC2-2 ILC - - - - -

Applying the ILC optimization algorithm, the optimal solutions are
found and shown in Figure 4.10.
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Figure 4.10: ILC optimal solutions for case 2

Implementing the GPC strategies, the results are obtained. Table 4.4
presents the results of the selected strategies.

Table 4.4: Results of control strategies for case 2
Name Convergence Rate of convergence Error variance

gpc2-time-1
√

1 1.80
gpc2-time-2 - - -
gpc2-batch-1

√
1 1.81

gpc2-batch-2
√

2 2.15
ILC2-1

√
2 2.85

ILC2-2
√

7 1.75

As shown in Table 4.4, choosing a short prediction horizon of only three
along time, in gpc2-time-1, can yield a relatively small error variance
for all the batches. The second strategy, gpc2-time-2, does not even
guarantee convergence. This strategy considers the minimization of the
prediction error for two batches in a row. Because the input and output
are strongly interacted across batches, the prediction error of the second
batch has a large weight in the objective function. Hence the prediction
error of the first batch cannot be minimized, and the process cannot
track the set-point.

In the last GPC strategy, gpc2-batch-2, convergence is achieved after one
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batch operation. For the first batch, due to the initial values of the input
and penalizing the input increments, set-point tracking is infeasible. But
for the next batches the input is previously valued and convergence is
reached. Figure 4.11 shows the outputs for the first two batches when
gpc2-batch-2 is implemented.
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Figure 4.11: The first two batches outputs for gpc2-batch-2

Comparing the results of ILC strategies, ILC-1 converges after seven
batches and has an error variance of 1.75. If we can afford to lose six
batches, the outputs will have smaller error variance compared to GPC
strategies. Otherwise, GPC is capable of converging for all the batches
(with appropriate choices of control and prediction horizons) and yields
a reasonable error variance.

4.5 Conclusions

Identification of two-dimensional batch processes was discussed in this work.
Since the process operates along time and across batches, batch variables are
correlated in two dimensions. This should be taken into account for identi-
fication purposes. This chapter proposed a new method for two-dimensional
identification, followed by an extension of generalized predictive control for
two-dimensional batch processes. The optimal two-dimensional predictor was
derived and embedded inside the GPC structure. Then a new objective func-
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tion was established and an algorithm to solve it was developed. All the
algorithms were successfully verified through simulation studies.

Iterative learning control (ILC) strategy has been elaborated in the previ-
ous chapters. For the sake of comparison, all simulation studies were carried
out by implementation of ILC as well as GPC. Based on the simulation re-
sults, ILC can be designed to perform better in terms of disturbance rejection.
However, the first few batches yield undesirable results. If we can afford to
lose a few batches, then ILC implementation will be beneficial. Otherwise, the
use of GPC is recommended.
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Chapter 5

Conclusions and future work

5.1 Concluding remarks

The objective of this thesis is to study two control strategies, iterative learning
control (ILC) and generalized predictive control (GPC), for batch processes.
The main contributions are classified as follows:

• Performance monitoring of ILC strategy for linear time-invariant models
based on the minimum variance benchmark has been discussed in litera-
ture. This work proposes the extension of this algorithm for linear time
varying models.

• Based on the minimum variance control law, there is a trade-off between
the deterministic and stochastic performance of the ILC strategy, which
can be illustrated in a trade-off curve. A method is proposed to compute
the curve from routing operating data and assess the performance of the
control strategy.

• Since batch processes operate along time and across batches, the dy-
namics of process variables in both dimensions should be considered
for modeling purposes. This work proposes a method to estimate two-
dimensional linear models.

• A two-dimensional linear optimal predictor is developed, followed by
an extension of GPC for two-dimensional batch processes. Design and
implementation challenges are also elaborated.

5.2 Future work

Here are some suggestions for future work:

• Deriving minimum variance benchmark for ILC strategy of LTV MIMO
plants or non-minimum phase plants
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• Performance assessment of ILC strategy for MIMO plants

• A more robust numerical method to calculate the trade-off curve for the
minimum variance solutions

• Although the proposed identification procedure considers the dynamics
of process variables in two dimensions, it still fails to cover nonlinearities
of the process. Combining two-dimensional identification with multi-
local linear modeling can be a potential research topic.
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