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Abstract

Game theory models are widely used in biology to model behaviour, but the 

dynamics of models which exceed the simplest levels of complexity have not 

been widely explored. This is due, in part, to the difficulty inherent in 

providing analytical solutions when model complexity is increased to allow 

for more realistic descriptions of behaviour. I explored two game theoretical 

models used in the study of animal communication using genetic algorithms - 

a powerful heuristic search technique - and found alternative, unknown 

solutions to both models. As well, the use of a genetic algorithm on these 

models highlighted that the dynamics of a model may not lead a population 

to adopt the mathematically optimal solution. I suggest that authors of 

game theory models should take these considerations into account when 

designing models to demonstrate a theoretical point, and advocate genetic 

algorithms as a sensible method for solving complex game theory models.
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Chapter 1 

Introduction
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I

This thesis explores the population dynamics of game theory models of 
biological communication using genetic algorithms. Game theoretical models 
attempt to capture the essence of a social interaction by stripping them down 
to their barest minimum. These caricatures may not accurately depict 
biologically realistic situations, but they are required to be kept very simple 
in order to be formally solvable. I advocate genetic algorithms as a heuristic 
search technique for identifying potential solutions to game theory models 
which are too complex to completely solve analytically. I also attem pt to 
demonstrate that the assumptions about evolutionary dynamics which have 
underlied the use of Evolutionarily Stable Strategy (ESS) analyses in 
biological game theory models are flawed, and suggest that they should be 
re-examined in the light of the dynamics which emerge from these genetic 
algorithm simulations.

1.1 M odels of communication
The study of animal communication has been an important part of the study 
of animal behaviour (Tinbergen 1951; Dawkins and Krebs 1978; Dawkins 
1982; Krebs and Dawkins 1984). Specifically, why would communication 
between animals ever evolve in the absence of strictly common interests? If 
animals have overlapping interests there is obviously no paradox, as the 
evolution of signalling then leads to increased benefits for both parties. Yet if 
the relationship between two animals includes conflicting interests, then 
communication suddenly becomes much more difficult to explain. Classic 
examples of such communication can be found in the study of animal 
aggression, where signalling seems entirely paradoxical: if an animal can gain 
an advantage during a conflict with another animal (conspecific or not) by 
producing a signal, such as ”1 am strong” (an example of a signal indicating 
Resource Holding Potential, or RHP), then it would seem to be to the benefit 
of all animals in this situation to produce the same signal, whether they are 
strong or not (Dawkins and Krebs 1979). But if all animals produce the same 
signal, then the signal loses its usefulness - i.e. it no longer says anything 
interesting to the other parties in the conflict, since even weak animals signal 
that they have high RHP - and it should quickly lose the power to arouse a 
response.

Many ideas have been advanced to deal with this question. Early efforts 
centred around cooperative or group selectionist arguments (reviewed in 
Dawkins and Krebs 1978; Krebs and Dawkins 1984), but these were 
challenged by the introduction of game theoretical modelling. Building on 
the work of W. D. Hamilton (Hamilton 1967) and George Price, John 
Maynard Smith (Maynard Smith and Price 1973; Maynard Smith 1974;
1982) pioneered the use of game theory in modelling biological situations by 
advancing the notion of the Evolutionarily Stable Strategy (ESS), and the 
technique was quickly applied to questions of animal communication (e.g.

2
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Caryl 1979; Hinde 1981; Enquist 1985; Grafen 1990; Grafen and Johnstone 
1993), and continues to be widely used to this day (Johnstone 1998; 
Bradbury and Vehrencamp 1998; Maynard Smith and Harper 2003; Hurd 
and Enquist 2005).

ESS theory revolves around questions of evolutionary stability. In intuitive 
terms, an ESS is a strategy which is “uninvadable” : if a population is 
composed entirely of individuals playing that strategy, there is no mutant 
which can invade in small proportions. ESS theory has led to a great shift in 
the way that many biological problems are thought about and modelled, due 
largely to its plausible and easily-understood nature. It was with game 
theory that models of handicapped (Zahavi 1975; 1977; Grafen 1990) and 
conventional (Enquist 1985; Hurd and Enquist 1998) signalling were first 
created, and it was with ESS theory that they were shown to be 
evolutionarily stable.

1.2 Population dynamics
It is here that I tu rn  my focus from animal communication to the population 
dynamics of these game theory models.

Most analyses of game theory models in biology has been restricted to the 
hunt for the ESS (or ESSs) of the game. In fact, many of these sort of 
models are implicitly constructed with a simple process: after identifying the 
theoretical issue of interest, the authors of the models come up with a 
plausible game theory model that will contain the desired strategy and then 
conclude by demonstrating that this strategy is, in fact, evolutionarily stable. 
In itself, the procedure is reasonable and works well to highlight theoretical 
points.

However, in the process of generating these models, important questions 
regarding population dynamics are often left by the wayside. To begin, an 
ESS is guaranteed - by definition - to be stable against small invasions (by a 
single strategy), but one might ask how a population comes to be at an ESS. 
If it is not composed entirely of ESS players to begin with, is it reasonable to 
assume that the evolutionary process will drive the population to the ESS?
In mathematical terms, this is the same as asking if an ESS is an attracting 
state, whether globally or locally.

The answer to that question is a resounding “no” , at least not always. 
Nowak (1990) was among the first to identify this problem, when he wrote:

If all members of a population use an evolutionarily stable 
strategy (Maynard Smith, 1972), then no mutant strategies can 
invade. However, it is a common but misleading conclusion that 
evolution will tend towards such a strategy (p. 237).

These words have not received their deserved attention since their 
publication (exceptions include Takada and Kigami 1991; Fogel et al. 1997;

3
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Orzack and Hines 2005), and further problems abound. Models with 
complexity exceeding the most basic level of 2x2 matrix games are difficult to 
completely analyze by hand, and even the relatively implausible models such 
as those analyzed in this thesis push the limits of analytical approaches. 
Adding in more complexity by modelling biologically realistic states such as 
multiple signals, RHP states, temporal sequences, etc. can create models 
with millions of strategies, which are analytically intractable.

To help solve this problem, I have applied the powerful heuristic 
(trial-and-error) search tool known as a genetic algorithm to game theory 
models. Genetic algorithms simulate the processes of evolution, such as 
mutation, recombination, and selection, to evolve potential candidate 
solutions until an optimum is reached (Mitchell 1998). Genetic algorithms 
are widely used in many areas (Mitchell 1998), and their use has been 
suggested for game theory models before (Sumida et al. 1990), though the 
call has gone relatively unheeded (examples include Barta et al. 1997; Huse 
et al. 1999). To demonstrate the potential of genetic algorithms to solve 
game theory models which are too complex for analytical approaches, I 
applied a genetic algorithm to a well-known model of conventional signalling 
(Enquist 1985, hereafter referred to as the E85 model). The E85 game 
models an aggressive interaction between two players, where each player has 
a strength state (RHP) of “Strong” or “Weak” and can send one of two 
signals to indicate their strength state before choosing one of three actions. 
Because there is no cost to producing the signal, signal reliability is 
maintained by receiver response. For instance, a player signalling “Strong” 
may end up in an escalated fight that will end badly if they have chosen to 
signal unreliably. (Strictly speaking, because the signals are conventional, the 
form of the signal could be reversed without penalty. As long as strong 
signallers always use the “Weak” signal and vice versa, the model’s logic and 
the formal solutions are simply inverted.) The E85 model is among the most 
complex of models which currently exist in the animal communication 
literature and in the biological game theory literature in general. The results 
of applying a genetic algorithm to the E85 model, which are presented in 
Chapter 2, provide evidence that genetic algorithms are a sensible choice for 
analyzing hard game theory models.

1.3 Game complexity
In Chapter 3 I turned to a simpler game, intermediate in complexity between 
E85 and the overly simplistic realm of 2x2 matrix games. Sir Philip Sydney 
games (Maynard Smith 1991) are among the simplest published models of 
signalling, in which two players, the donor and beneficiary are each in one of 
two states (thirsty or not thirsty) and the beneficiary can choose one of two 
signals (also thirsty or not thirsty) to entice the donor to give a water 
resource to the beneficiary. Johnstone and Grafen (1993) used the Sir Philip

4
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Sidney paradigm to create a model of handicapped signalling in which 
signalling only had to be “honest” on average - that is, free-riding by a 
distinct class of signallers could be tolerated at low levels if reliable signalling 
was to the benefit of the majority class. Johnstone and Grafen analyzed the 
model to demonstrate that this handicapped signalling strategy was an ESS, 
and so I used a genetic algorithm to explore the dynamics of this model. We 
found that the game’s simple form concealed a surprising fragility, since 
changing parameters to the model - while maintaining the conditions which 
guaranteed the original ESS - easily generated multiple solutions beyond 
those that had already been discovered.

1.4 Chapter Overview
Chapter 2 presents my work on the E85 model, in which I advocate the use 
of genetic algorithms and challenge the naive, ESS-focused analysis of game 
theory models. Chapter 3 is the report of our work on the simpler Sir Philip 
Sydney game of Johnstone and Grafen (1993), in which I continue to show 
that genetic algorithms are a good choice for solving game theory models and 
demonstrate that the problems I discussed in Chapter 2 apply to games of a 
surprisingly low level of complexity.

5
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2.1 Introduction
Game theory is one of the most well-established tools for modelling of social 
interactions, the application of which has led to notable advances in 
biological topics as diverse as sex ratio theory, cooperative behaviour, sexual 
selection, sperm competition, parent-offspring conflict, social foraging, and 
agonistic behaviour (Hamilton 1967; Maynard Smith 1982; Axelrod 1984; 
Andersson 1994; Giraldeau and Livoreil 1998; Reichert 1998). The topic of 
biological communication has been particularly influenced by game 
theoretical thinking (Johnstone 1997; 1998; Bradbury and Vehrencamp 1998; 
Maynard Smith and Harper 2003; Searcy and Nowicki 2005). The question of 
whether or not animals with conflicting interests should be expected to 
communicate reliably (or “honestly”) has been strongly shaped by both 
intuitive (e.g. Zahavi 1975; 1977; Dawkins and Krebs 1978; Caryl 1979;
Hinde 1981; Krebs and Dawkins 1984) or formal (e.g. Enquist 1985; Enquist 
et al. 1985; Grafen 1990; Owens and Hartley 1991; Maynard Smith 1991; 
Johnstone and Grafen 1993; Johnstone and Norris 1993; Hurd 1995; Kim 
1995; Hurd and Enquist 1998) game theoretical models.

In this paper we draw attention to properties of communication which 
make it a particularly difficult subject to model using formal game theory. In 
particular, we argue that the highly influential concept of an evolutionary 
stable strategy (ESS) is a poorly suited solution concept for models of 
communication, and discuss the need for the use of more powerful analytic 
solution concepts on such models. To aid in this task, we explore genetic 
algorithms as an alternative method of finding analytic outcomes to a 
relatively complicated model of communication. Communication requires a 
more complex model structure than many other biological game theoretical 
problems; while we will focus on models of biological communication to 
provide a concrete setting for our discussion, the general lessons and caveats 
will apply to any game theoretical model of comparable structure. Any game 
theoretical model in which players have hidden underlying states, or make 
more than one move per game, will have the level of complexity required for 
these ESS-presenting effects to present a problem (Selten 1975; 1983; 1988; 
Cressman 2003).

Most behavioural biologists axe familiar with game theoretical models 
presented in their normal form, as payoff matrices. This form is appropriate 
in games where all players choose and play their strategies simultaneously 
(Gibbons 1992). Such interactions, with a single simultaneous behaviour, fail 
to capture the essence of communication, and most other social interactions. 
Communication requires individuals not only react to each other in a 
temporal sequence, but these individuals will most likely also vary in some 
underlying states such as differing RHP (Resource Holding Potential) states, 
varying resource valuations, or territorial ownership status which may be 
hidden from each other (Johnstone 1998; Maynard Smith and Harper 2003). 
Extensive form games are the appropriate game theoretical formulation of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

such interactions as they allow strategies to be explicitly composed of several 
different possible moves made under different contingencies (Selten 1983; 
1988; Cressman 2003; Hurd and Enquist 2005). Any game theory model 
which incorporates individual variation in ability or need, or variable moves 
made in response to the choices of other players, cannot properly be 
expressed in payoff matrix form alone.

The extra clarity inherent in the extensive form is especially obvious when 
the game is one of imperfect information, where one or more choices may be 
made by a player who is unaware of the outcome of decisions made by other 
players. Card games such as poker are the classic examples of games of this 
type. Each player knows the cards in their hand, but not those of other 
players (except in a probabilistic sense) while actions such as bets are 
common knowledge and provide information (even if ambiguous) to receivers 
about the signaller’s hand. The parallels to biological communication are 
clear, but the discussion is not limited to communication games. For 
instance, a forager in a social foraging game who makes use of one 
conditional strategy when hungry and another when relatively satiated, or a 
sequence of life-history decisions in which the payoffs are not only frequency 
dependent but a  function of the earlier and subsequent decisions, will have 
the same structural consequences as the communication game studied here.

Whether in their normal or extensive forms, game theoretical models in 
biology are typically solved by identifying evolutionary stable strategies 
(ESSs) (Parker 1984; Houston and McNamara 1999). ESSs are single 
strategies —or a single specific mixture of strategies (see Appendix 1)— 
which, if adopted by all members of a population, cannot be invaded by any 
other strategy (Maynard Smith 1982). The ESS concept has the virtue of 
intuitive clarity that allows for a greater understanding of social behaviour, 
but it is a mathematical formalism that is strongest when applied to simple 
models. Attempts to increase the biological realism of these models, by 
adding variables such as strength states or signalling stages, can easily create 
a model which has no ESS (Kim 1995). This problem is especially pressing in 
extensive form games (Selten 1975; 1980; 1983; 1988), due to two interrelated 
problems: non-pervasive strategies, and large strategy spaces.

The first, and most serious, problem in solving extensive form games 
stems from the formal conditions required to be an ESS (Appendix 1), which 
can only be met if the strategy is “pervasive” (Selten 1983). Pervasiveness is 
a property of strategies in which all possible decision points (information 
sets) in the game are reached with a non-zero probability. For example, 
consider the game presented in Figure 2.1. Player 2’s node “b” is never 
reached when the players are playing optimally, and therefore neither are 
Player l ’s nodes “c” and “d” . It does not matter which moves the players 
would make at these nodes, but the formal definition of an ESS requires not 
only that the moves to be made be specified, but that the strategy be stable 
against invasion by strategies that differ only in the moves at these nodes. 
This requirement that the “ESS” be stable against invasion by silent

12
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mutations is obviously impossible to meet.

P I WeakP I  Strong
,P1P1J.

Appease
\b p 2

Threaten
P 2 ./

Threaten
P 2 . /

PI ,P1 PI ,P1PI,

Figure 2.1: An example of a simple non-ESS extensive form game solution. 
The game has two players, Player 1 is either Strong or Weak, and chooses 
an initial move, either “Threaten” or “Appease”. Player 2 responds with 
either “Challenge” or “Mitigate” , then Player 1 moves again choosing one of 
“Engage” or “W ithdraw” . Assume that evolution converges upon an optimal 
strategy in which Player 1 always chooses “Threaten” when Strong, so that 
the population evolves to a point at which, whenever the node marked “a” 
is reached, play never proceeds to the node marked “b” . Since “b” is never 
reached, Player 2’s behaviour at this node is never under any selective pressure, 
and neither is Player 1 ’s at the nodes “c” and “d”. Strategies which differ only 
in their choice of behaviour at these nodes are functionally equivalent, but no 
single strategy can possibly meet the definition of an ESS.

To cope with the problem of non-pervasive strategies, more powerful 
analytic solution concepts such as evolutionarily stable sets (ES Sets) must 
be used. In intuitive terms, an ES Set is a set of strategies which, 
individually, would be ESSs were it not for the fact that each member of the 
set scores equally well against all other members of the set, making the set’s 
members neutral to each other (Thomas 1985b;a; Cressman 1992; Balkenborg 
and Schlag 2001, see also Appendix 1). Thus, any strategy which would 
invade by a silent mutation will be part of the ES Set. Note that this is 
different from a mixed ESS in that a mixed ESS requires a precise mixture of 
pure strategies to be present, whereas for an ES Set, any of the members 
may be present in any ratio. If we view the players as being chosen from a 
polymorphic population where each member plays a pure strategy, then at

13
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equilibrium a mixed ESS would be in the form of a specific ratio of each pure 
strategy in support of the ESS. An evolutionarily stable set would differ in 
that the equilibrium population could be equivalently composed of any 
conceivable mixture of the ES Set strategies, to the point where the entire 
population could play only one member of the set. ES Sets are not the only 
way to circumvent the pervasiveness issue (e.g. Limit ESSs: Selten 1983; 
1988) but they are the most amenable to an intuitive definition and fit 
naturally with the results of our genetic algorithm explorations (see below).

The second problem to solving realistic communication games is that of 
large strategy spaces. Simple communication models are constrained to 
produce a single type of signal; more complicated models are required to 
produce phenomena such as conventional signals, which arguably have good 
empirical support (Hurd and Enquist 2001; Hurd 2004; Hurd and Enquist 
2005). For example, in the simplest signalling game (Hurd 1995) each player 
has four pure strategies to choose between. The original Sir Philip Sidney 
game (Maynard Smith 1991) has four pure strategies per player, the version 
presented by Johnstone and Grafen (1993) has four for the donor and 16 for 
the beneficiary, while Maynard Smith’s (1994) mutual signalling version has 
four beneficiary strategies and 64 donor strategies. In Kim’s (1995) 
aggressiveness signalling game, each player has 32 pure strategies, while the 
conventional signalling game (Enquist 1985) (hereafter called the E85 game) 
each player has 324 pure strategies. Increasing the number of player states in 
the E85 game from just two possible values, to two different states with three 
levels each (while retaining the dichotomous signals and three end moves) 
results in over ten million pure strategies per player. Even if an ESS exists in 
such a large game, other forms of solutions - such as ES Sets or limit cycles 
in strategy space - will become more likely as the strategy space expands.
The existence of any single form of solution does not preclude other, 
potentially more biologically relevant, forms. This suggests that analytic 
demonstrations of stable outcomes ought to be supplemented by searches for 
other regular patterns of strategy change.

A commonly used alternative for identifying solutions to games is an 
approach known as “evolutionary game theory” (Hammerstein 1998) - or 
“replicator dynamics” - in which a reasonable method of strategy replication 
and population dynamic is posited, and the space of all possible population 
compositions is mapped analytically (Taylor and Jonker 1978; Hofbauer and 
Sigmund 1988; Cressman 2003). Evolutionary game theory analysis may be 
tractable when there are few pure strategies. However, since each new 
strategy adds another dimension to the strategy space, analyzing dynamics 
in a dozen, or more, dimensions is not.

Further, in terms of population evolution, equilibria such as ESSs and ES 
Sets are strategies which are presupposed to have reached fixation in a 
population. There is nothing in the definition of an ESS which requires that 
selection take the strategy to fixation from even a small proportion of the 
phenotypic strategy space. In other words, while ESSs are stable points, they
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are not necessarily attracting states (Nowak 1990). Games may also have 
more than one equilibrium solution, and the question of which solution has 
more attractive power in the strategy space may be analytically intractable. 
Games with large strategy spaces may even have non-equilibrium solutions, 
such as strategies with large attractive basins which are nonetheless beaten 
by an otherwise poor strategy, or quasi-stable outcomes such as limit cycles 
through strategy space. Although evolutionary game theory (replicator 
dynamics) can provide a picture of the population dynamics, we have already 
noted the problems of analyzing these dynamics in a large strategy space.

Analytic solutions are a way of describing what an evolutionarily stable 
population equilibrium will look like, in terms of what strategy or strategies 
will be used by the population when it is at that equilibrium. Evolutionarily 
stable sets and other solution concepts provide a remedy to the shortcomings 
of the ESS concept, but as noted in the introduction, a final problem 
remains: for all but the most simplistic models, finding these solutions to can 
prove to be a vexing exercise. For games as large as E85 or the Kim game, 
considerable effort is required to find and demonstrate these solutions, and 
for games tha t are much larger than E85, the task may prove difficult or even 
impossible.

We suggest a possible alternative to deal with the computational challenge 
of finding solutions to more complex game theory models. Genetic algorithms 
(Holland 1975; Goldberg 1989; Sumida et al. 1990), computer simulations of 
strategy change by natural selection, hold great promise as a method for 
solving games. By tapping their heuristic optimization capabilities, a genetic 
algorithm can clarify attractive points in the strategy space which correspond 
to analytic solutions of game theory models, and by examining the evolution 
of the population over time and across runs, we can gain insight into the 
population dynamics. Despite the apparent promise, this approach remains 
relatively unexplored. To demonstrate the advantages of adopting this 
technique, we have applied a genetic algorithm to a well-studied game of 
communication, the conventional signalling game (Enquist 1985; Hurd 1997; 
Hurd and Enquist 1998; Enquist et al. 1998; Szamado 2000; 2003) in order to 
compare the simulation results to prior analytic work.

2.2 M ethods

2.2.1 The Conventional Signalling Game
In the E85 game two players of varying discrete strength states compete over 
an indivisible resource, communicating with conventional signals before 
choosing behaviours with which to respond. The structure of the game is as 
follows:

1. Each player is randomly assigned a strength state, either “Strong” or 
“Weak” in a “move by nature” .
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2. Knowing their own state, but not that of their opponent, each player 
then chooses a signal, ( “A” or “B”) and sends it simultaneously.

3. Knowing their own state and the opponent’s signal, each player chooses 
and executes a behavioural response, one of “Full Attack” ,
“Pause-Attack” , or “Flee” (hereafter A, P or F) at the same time.

4. Payoffs are then calculated based on the players’ strength states and 
their behavioural responses.

Note that the choice of signal has no direct effect on payoff; any cost to 
making a particular signal will come from the response of the other player, 
which makes the signals “conventional” (Hurd and Enquist 2005). The E85 
game, with its 324 pure strategies, is the simplest example of a conventional 
signalling game of which we are aware (Hurd and Enquist 2005).

The E85 model has more than one payoff representation. We used two 
different payoff quantitifications for the genetic algorithms fitness function. 
The first, which we will refer to as TCNP, is the minimum variable version of 
the E85 game (Table A3.1 in Hurd and Enquist 1998), where 
T  =  1.0, C — 0.7, N  =  0.4, and P  — 0.1. The second payoff scheme, referred 
to here as VCDF, is from the most biologically plausible version of the model 
(Table 1 in Hurd 1997); where V  = 100, C_i =  15, C0 = 15, Cx = 70, Fa = 5, 
Fp = 5.

Both the TCNP and VCDF payoffs used have only one ESS, the 
communicating strategy described by Enquist (1985) (actually, there are two 
ESSes, which are identical by symmetry, when the use of the costless signals 
is reversed; we can safely ignore this for the most part, but we will revisit the 
mirror ESS briefly in the results). The property of having a single ESS is 
useful in that it allows us to identify, a priori, a single strategy tha t should 
predominate. We can also use this strategy as a test of the genetic 
algorithm’s ability to find the “correct” solution.

2.2.2 The G enetic Algorithm
Simulations of the E85 model were done with a population size of 100 for a 
total of 500 generations. Each generation, we calculated the fitness of each 
population member as the mean from 5 plays of the game against other 
randomly chosen members of the population. Five percent of the population 
was killed each generation. The probability that a population member was 
killed was inversely proportional to their share of the total fitness of the 
population, and each killed member was replaced with a strategy chosen at 
random from the top 5% of the population, as ranked by fitness. After 
replacing the killed strategies, each locus of every member of the new 
population was mutated with a probability set by the mutation rate 
parameter. If a locus was selected to be mutated, the current value was
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replaced equiprobably with any of the allowable values (including the original 
value) for that locus.

We tested the genetic algorithm on simpler problems with known 
solutions: the genetic algorithm performed well in finding the ESS to the 
Hawk-Dove game, and readily found the ESS to the E85 game when the 
opponent population was fixed to that strategy (see Appendix 2).
Preliminary work with alternative genetic algorithm methods, such as other 
methods of selecting strategies to die or reproduce, or implementation of 
cross-over matings showed no discernible sensitivity to the details of the 
simulation methodology (see Appendix 3).

Representation of a strategy from the E85 game in the genetic algorithm 
was done using a six character chromosome in string form. Each locus 
specified the pure local strategy (sensu Selten 1983) for a different 
information set. All information sets in the game except for the move by 
nature which assigns strength states to each player corresponded to a 
chromosome locus, so that the entire chromosome codes for a pure behaviour 
strategy (sensu Selten 1983) with the noted exceptions. The first two loci 
represented the signalling portion of the chromosome, and the final four loci 
represented the end-game behaviours when: 1) ego state is strong and the 
opponent uses signal “A”, 2) state is weak and opponent uses signal “A” , 3) 
state is strong and opponent signals “B” , and 4) when state is weak and 
opponent signals “B” . The representation of the E85 ESS under this scheme 
is ’ABAFPA’ - signal “A” when strong, signal “B” when weak, and end-game 
behaviours of attack, pause attack, flee, and pause attack under the 
combinations given above. Another example: a non-signalling strategy that 
displays “A” when strong and “A” when weak and then attacks at all 
end-move combinations would be represented as ’AAAAAA’. Further 
example strategies are presented in Table 2.1.
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Signal choice loci End-game behaviour choice loci Chromosome
When Ego strong When Ego weak Opp. Signal is ’A’ Opp. Signal is ’B ’

Ego strong Ego weak Ego strong Ego weak
locus number 1 2 3 4 5 6

Example Strategies
ESS A B A F P A ABAFPA
Anti-ESS B A P A A F BAPAAF
Non-signalling (A), 
all-attack

A A A A A A AAAAAA

Signalling, all
attack

B A A A A A BAAAAA

Non-Signalling (B), 
attack if strong, flee 
if weak

B B A F A F BBAFAF

Table 2.1: Encoding strategies onto chromosomes. Five example strategies are presented here as encoded into chromosome form 
for the genetic algorithm. The first two loci code for signal choice, either signal “A” or “B” when strong and weak respectively. 
If the signals used in these two strength states are the same, i.e. the alleles at loci number 1 and 2 are identical, then we say 
that the strategy is non-signalling. Loci 3 through 6 code for end-game moves as a function of the opponents signal choice and 
ego’s strength state.
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We performed two sets of simulations. The first varied mutation rate from 
0-001 to 0.005 (0.1 to 0.5%) at levels of initial “seed” (percentage of the 
population initialized to the ESS strategy) from 0 to 75%; ten runs were 
done at each combination of mutation rate and initial seed, for a total of 750 
distinct simulations. This set was used to explore the probability of the ESS 
achieving fixation at different levels of the parameters (Experiment 1). The 
second set was used to investigate non-ESS endpoints found by the genetic 
algorithm (Experiment 2). These runs varied mutation rate from 0.001 to 
0.005 at three low levels of initial seed (0, 5, and 10%) to explore what 
solutions the genetic algorithm would find when starting away from a 
population composed largely of ESS players. One hundred runs at each 
combination of mutation rate and seed were done for this set, giving a total 
of 1500 distinct simulations. This set was used to enumerate the various 
outcomes of the genetic algorithm and determine the formal solutions that 
arose from the runs.

2.2.3 Characterizing outcom es
For each simulation we plotted the change in strategy composition of the 
population over the course of the 500 generations. To plot the strategies we 
first divided each into two components, those loci used when weak, and those 
used when strong. Each of these two components had 18 possible 
permutations and can be represented as a point in a three dimensional array. 
One dimension indicated which signal the player uses (A or B), the other two 
dimensions indicated which behaviour to use (A, P or F) in response to 
opponent signal A, and which behaviour to use (again, A, P or F) in 
response to opponent signal B. Nine colours were chosen to represent the 
possible allelic combinations of the two behaviour loci (Table 2.2). We used 
the red-green colour dimension for the “Always Attack” to “Always Flee” 
dimension, and the yellow-blue colour dimension for the orthogonal 
dimension (running from Flee from A signallers and Attack B signallers 
—yellow— to Attack A signallers and Flee B signallers —blue). Dark or light 
shades of these colours indicated whether the player’s signal move was A or 
B respectively.

This colour coding was used to graph the evolution of strategies over the 
500 generations (Figure 2.2). The strategy each run fixated on was recorded, 
or if no strategy predominated, this was also recorded. A strategy was 
considered to have gone to fixation if it had achieved 80% representation in 
the population for the last 50 generations (10% of the simulation). 80% 
dominance was chosen to serve as a criterion for those runs with higher 
mutation rates, where mutation pressure could create a large amount of noise 
variation from the clearly dominant strategy. Only a small number of cases 
required this liberal threshold. For example, in the simulations done for 
Experiment 2, only 87 (7%) of the 1263 runs that were labeled as having 
achieved fixation did so at less than 95% representation.
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Figure 2.2: A representative graph of strategy change over 500 discrete gen
erations of time. The run depicted was conducted at mutation rate 0.003 and 
initial ESS (light purple — dark yellow) seed of 10%. The ES Set (pink — 
red) reaches fixation by approximately the 300th generation.
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2.3 Results
We tested the performance of the GA in a number of runs in which the 
opponent population was held fixed at the ESS. Instead of playing the game 
against other random members of the population, strategies played against 
only the ESS. In every single run, the GA evolved from a random starting 
population to fixation on the ESS in under 100 generations.

2.3.1 Experim ent 1 —  ESS fixation as a function of 
m utation rate and seed level

The genetic algorithm only converged on the ESS when the initial population 
was seeded with a high proportion of ESS players (Figure 3.3). Both payoff 
parameters and mutation rate influenced the probability that the ESS would 
go to fixation. Fixation on the ESS was more likely in the TCNP payoff 
version of the model. At least 10 to 15% initial ESS players was required to 
ensure a reliable fixation on the ESS in this case. Mutation rate had a larger 
effect on probability of ESS fixation in the VCDF payoff version. 
Progressively higher rates made it more and more difficult for the genetic 
algorithm to fixate on the ESS. Even at low mutation rates, 20-30% of the 
initial population had to be playing the ESS before fixation was likely. In 
both cases, the ESS is clearly a very weak attractor, the probability that a 
randomly generated population will evolve to the ESS is virtually nil, 
particularly at high mutation rates.

2.3.2 Experim ent 2 —  Characterization o f non-ESS 
outcom es.

While the ESS appears to have a very small basin of attraction (only 11% of 
the runs converged on the ESS; Figs. 2.4 & 2.5), there is another outcome 
which the genetic algorithm converges upon with high probability for most 
parameter combinations (73% or the runs). This outcome corresponds to the 
strategy set **AAAA, where * is any choice of allele at the loci responsible 
for choice of signal. None of these strategies is an ESS because they are 
invaded by their fellow set members, but the set as a whole meets the 
definition of an evolutionarily stable set (Thomas 1985b;a, Appendix 4). This 
solution has not been identified in previous analytical work on the model 
(e.g. Enquist 1985; Hurd 1997; Hurd and Enquist 1998; Szamado 2000;
2003), and will hereafter be referred to as the All-Attack ES Set.

We can easily verify that the ESS is a global optimum and the ES Set is a 
local optimum by examining the payoffs to ESS and ES Set players in 
populations of either ESS or ES Set players. From the stability table (see 
Appendix 2 in Hurd and Enquist 1998), we can show that the expected 
payoff in a population of ESS players (summed over all four possible ego and 
opponent states) is:
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Figure 2.3: The probability that the ESS goes to fixation as a function of 
initial seed from 0 to 75%, increasing by 5% each time, and mutation rate 
from 0.001 to 0.005, increasing by 0.001 each time. Logistic curves were fit to 
data from 10 simulations per mutation rate and initial seed combination, for 
a total of 750 individual runs used.
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= ( ± V - C o) + V  + 0 + (±V -  Co) (2.1)

= 2 V -  2Co (2.2)

or, the value of winning twice minus the cost of fighting an opponent of equal 
strength twice.

The expected payoff to any member of the ES set playing in a population 
of ES Set players (from Table C.4 in Appendix 4) is:

=  (\v -  Co) + ( V -  CL,) +  ( - C 0  +  ( | v  -  Co) (2.3)

= 2 V -  2C0 -  C_i -  Ci (2.4)

or, the value of winning twice minus the cost of fighting twice against an 
opponent of equal strength opponent and once each against a stronger and a 
weaker opponent.

The ESS equilibrium payoff is greater, on average, than the All-attack ES 
Set equilibrium payoff by C_i +  Ci, or the cost of two fights, one against a 
stronger opponent, the other against a weaker opponent, for every four 
encounters. Prom this, it is clear that a population composed of ESS players 
will be globally maximizing their fitness, making the ES set a local optimum.

The ESS and “Light red/Red” All-Attack evolutionarily stable set are not 
the only outcomes from the genetic algorithm simulations (Figs. 2.4 & 2.5). 
Two hundred and thirty six of the 1500 runs (16%) resulted in outcomes that 
were neither of the two stable outcomes identified above. These are grouped 
into several different classes summarized in Table D.7. In the first case, the 
genetic algorithm did not fixate on a single strategy, or set of strategies, and 
the population was still in flux at the end of the run. The second case is 
where the genetic algorithm was clearly trending toward either the ESS or 
ES Set but simply did not reach the fixation criteria in time. In some runs at 
higher mutation rates, this occurred when mutation pressure kept enough 
other players in the population to forestall any strategy from reaching the 
cutoff for fixation no m atter how dominant it was. Between them, the 
strategies in the first two categories accounted for 12% of the 1500 runs of 
the VCDF model (see the first entry in Table D.6). The third case is 
comprised of outcomes where the genetic algorithm found the reversed signal 
convention version of the E85 ESS, the strategy BAPAAF. The small number 
of outcomes in which this occurred is unsurprising given that when a run was 
seeded with ESS players, it was done solely with the ABAFPA version of the 
ESS.

The fourth case includes all of those runs wherein the genetic algorithm 
fixated on a strategy or strategy set not yet mentioned. The single strategy 
outcomes (lines 2 through 8 in Table 2.3) are composed of non-signalling
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strategies which appear to be indifferent at two loci and play Pause Attack at 
loci 3 (strategies which always signal A) or 4 (strategies which always signal 
B) as well as similarly playing Flee at loci 5 or 6. Analytical investigation 
has confirmed that these strategies are indifferent at some loci, similar to the 
All-Attack ES Set, but they do not meet the formal criteria of an 
evolutionarily stable set and should not be stable. Their ability to invade 
each other likely gives them a slightly greater attractive power in the 
strategy space, but they still amount to a relatively small basin of attraction 
that the genetic algorithm was stranded in by the end of the simulation. The 
sporadic appearance of these strategies and their lack of analytically 
demonstrated stability suggests that runs in which they appeared to be 
dominant were simply not continued long enough for them to be displaced. 
These cases do, however, highlight that the genetic algorithm will find 
outcomes that might be attracting, if only temporarily, even if they do not 
demonstrate analytical stability. They also highlight the continued need for 
analytical investigation to distinguish between and describe outcomes that 
are stable as opposed to those that merely appear stable.

In the fifth case are outcomes where the genetic algorithm appeared to 
fixate on a mixture of three or more strategies. These were not analysed 
extensively, but their low rate of occurrence (1.3%) suggests that these are 
unstable local attractors, though a more detailed analytical examination 
would be required to prove that conclusively.

2.4 Discussion
In our genetic algorithm investigation of the E85 conventional signalling 
game, we discovered a previously unknown ES Set solution to the game. The 
All-Attack ES Set is a non-communicating strategy —it does not respond to 
signals— and has a very large basin of attraction in the fitness landscape. 
This equilibrium is a local optima, it scores less at fixation than does the 
ESS.

W hat these results mean for the E85 game as a model of the evolution of 
conventional signalling is not clear. The simulations show the importance of 
assumptions about the evolutionary starting points of strategic signalling 
systems. The process of display ritualization (Tinbergen 1952) may mean 
that the strategic evolution of signal use starts so close to the eventual ESS 
that arguments based on the relative sizes of the attractive basins are moot. 
However, the difficulty in reaching the global optimum, the ESS, in this case 
is quite remarkable.

Since its formal introduction by Maynard Smith and Price (1973), the 
notion of an evolutionary stable strategy has had a profound impact not 
merely on formal models of social behaviour, but more informally in verbal 
models and discussions. Among non-theoreticians, the term “ESS” has 
become nearly synonymous with frequency dependence and game theoretical
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Behaviour when:
Opp. Sig. Opponent signal is A 

is B A P F
A Red Pink Yellow
P Purple Grey Brown
F Blue Cyan Green

Table 2.2: Colours used to map strategy evolution. Each of the nine possi
ble behaviour strategies (for each ego strength state) was assigned a different 
colour. The Red-Green dimension was used to map the always Attack to al
ways Flee dimension, and the Blue-Yellow dimension was used to map the 
other dimension. Colour saturation was used to map the choice of signal. A 
lighter shade denoted use of signal “A” and a darker shade the use of the 
signal “B” . This scheme allowed for 18 colours to represent behaviour in a 
given strength state, and therefore each of the 324 possible strategies could be 
denoted by a colour pair. The ESS is light purple -  dark yellow.

Mutation Rate
Outcome 0.001 0.002 0.003 0.004 0.005 Total
Unstable mixture 21 25 27 40 36 149
Did not fixate in time 3 1 3 10 14 31
BAPAAF (alternative ESS) 8 8 6 0 0 22
BBAPAF 5 0 0 0 0 5
BBAPPF 2 0 0 0 0 2
AAPAAF 1 0 0 0 0 1
AAPPFF 1 2 0 0 0 3
AAPAFF 0 1 0 0 0 1
BBAPFF 0 1 1 0 0 2
Stable mix of 3 or more strategies 11 3 6 0 0 20

Table 2.3: Breakdown of every unclassified outcome in 1500 runs of the VCDF 
model by mutation rate and outcome type. Note that stable non-ESS and non- 
ES set runs are increasingly uncommon as the mutation rate increases, with 
most non-optimal outcomes at mutation rates of 0.004 and 0.005 comprised of 
unstable mixtures or runs that did not reach the fixation criteria by the end 
of 500 generations. W ith the exception of the symmetric version of the ESS 
(BAPAAF), none of the alternative outcomes are analytically stable.
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Figure 2.4: Stacked bar graph showing the percentage of runs for the TCNP 
model in which the ESS, ES Set, or Other strategies fixated at each level of 
mutation rate (0.001-0.005) and initial seed (0, 5, or 10). Each combination 
of mutation rate and initial seed was simulated 100 times, for a total of 1500 
individual runs.
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Figure 2.5: Stacked bar graph showing the percentage of runs for the VCDF 
model in which the ESS, ES Set, or Other strategies fixated at each level of 
mutation rate (0.001-0.005) and initial seed (0, 5, or 10). Each combination 
of mutation rate and initial seed was simulated 100 times, for a  total of 1500 
individual runs.
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thinking in general. This term communicates an important and intuitive 
biological concept. While undoubtedly useful, this wider non-technical use 
risks theoretical work by focussing formal attention on this one single 
equilibrium definition. There are several reasons why it is necessary to widen 
the definition of evolutionary stability when solving communication models, 
and other games of similar complexity.

First, as in the E85 game studied here, ESSs may not be strong attractors. 
As Nowak (1990) noted of ESSs some time ago, “it is a common but 
misleading conclusion that evolution will tend towards such a strategy”. 
Although other investigations have examined the dynamic stability of a 
population tha t is already at or in the neighbourhood of an evolutionarily 
stable solution (Nowak 1990; Takada and Kigami 1991; Thomas 1984; 
1985b;a; Selten 1975; Leimar 1997; Taylor and Jonker 1978; Selten 1983;
1988; Hofbauer and Sigmund 1988), little attention has been paid to the 
process by which a population might come to approach an ESS in the first 
place. We have shown that a local optima in the form of an evolutionarily 
stable set with a large basin of attraction is the most likely evolutionary 
endpoint from most starting populations of this game.

Secondly, and possibly more importantly, is the likelihood that games will 
not have an ESS at all. Any game of realistic complexity - be they foraging 
games with hidden states influencing strategy choice, or games modelling any 
social interaction with more than one move per player - will likely have 
reasonable non-pervasive strategies. These games may have no ESSes at all, 
or may have ES Sets that are equally sound solutions as ESS. The number of 
strategies per player increases geometrically with increases in the complexity 
of extensive form games. While the condition of pervasiveness is met by the 
ESS solutions of communication games such as E85 and Kim’s aggressiveness 
signalling game (Enquist 1985; Kim 1995), it becomes less and less likely as 
variables are added. Games any more complicated than E85, especially 
games with both variable RHP and subjective resource valuation states, are 
virtually guaranteed not to have ESSs for this reason. Methods using other 
solution definitions must be developed to allow for the complexity of 
biological models. Given that these models are exceptionally difficult to solve 
by hand, genetic algorithms provide one tractable alternative to analytical 
investigation. Genetic algorithms can never replace analytic work completely, 
even for complicated game theoretical problems. Ideally, once potential 
solutions are identified by the genetic algorithm, analytic methods may be 
brought to bear to investigate strategies identified by the genetic algorithm. 
This is the process th a t we followed in proving analytically that the solution 
the genetic algorithm converged on is an ES Set (see Appendix 4).

A potential caveat to the use of genetic algorithms on game theory models 
lies in the nature of the search space. A genetic algorithm is a powerful 
optimization tool with which we can quickly and reliably simulate the 
dynamics in games like the E85 game to determine what solution a random 
starting population will evolve to. However, despite the widespread use of
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genetic algorithms to solve optimization problems in a variety of fields 
(Mitchell 1998), genetic algorithms work best on a solution space that is 
static and unchanging (e.g. a system of equations); less is known about the 
performance of genetic algorithms in a dynamic solution space, such as a 
constantly evolving population. The magnitude of this effect can be seen in 
the difference in fixation times when the target population is forced to 
remain at the ESS (< 100 generations) versus the time to fixation when the 
target population evolves («  300 generations).

Previous investigations using genetic algorithms have usually either 
investigated the effect of stochastic events on very simple 2x2 matrix games 
(e.g. Maynard Smith 1988; Bergstrom and Godfrey-Smith 1998; Orzack and 
Hines 2005), or explored interactions far too complicated to be solved 
analytically (Barta et al. 1997; Hoffmeister and Roitberg 1998; Just and 
Morris 2003). More work needs to be done on games of intermediate 
complexity if genetic algorithms are to be applied to game theory with the 
intention of finding the solutions that would be found using analytic 
techniques. The results of the two techniques must be compared before their 
results are considered interchangeable. This caveat does not apply to the use 
of genetic algorithms in evolving neural networks to address the same issues 
(e.g. Enquist and Arak 1993; 1994; Johnstone 1994; Ezoe and Iwasa 1997; 
Blumstein et al. 2006; Huse et al. 1999). Neural network models seek to 
avoid assumptions made by game theoretical models about signal space 
divisions, and whose purpose is to produce results at odds with game theory. 
When stochastic simulations disagree with analytical results (e.g. McNamara 
et al. 2004), it may be argued that the simulations are more biologically 
important than the analytic results. In the present case, however the 
simulations identify an overlooked class of analytic solutions, ES Sets. These 
non-ESS evolutionarily stable outcomes which may, or may not, be more 
biologically plausible outcomes than the ESS depending on the assumptions 
made about the evolutionary starting point of the population.

Taken together, the questions raised by our application of evolutionary 
algorithms to the conventional signalling model present an interesting avenue 
for exploration in game theoretical approaches to evolutionary questions, as 
well as casting healthy skepticism on the biological relevance of ESSs. Not all 
evolutionarily stable outcomes are ESSs. ESSs are not the best, or only, 
solutions to biological game theory questions.
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Appendix 2.A Stability concepts
The following are definitions of the solution concepts used in this paper.

Nash equilibrium A Nash equilibrium (Nash 1951) is a set of strategies, 
one for each player, such that no player can increase their payoff by 
unilaterally switching to another strategy. In a symmetrical game such as 
E85, if a player choosing strategy J  in a population where all other players 
play strategy I  receives a payoff of E(J,  I),  then strategy I  is a Nash 
equilibrium if:

E { I , I ) > E ( J , I ) \ / J ^ I  (5)

The Nash equilibrium definition allows for the possibility that strategy J  is a 
neutral alternative to I. It may score equally well, but not better. A Nash 
equilibrium is presumed to be stable even if J  scores equally well, on the 
assumption that players do not play J  due to the application of rational 
foresight. Strict Nash equilibria are stable without such biologically 
implausible foresight.

Strict Nash equilibrium At a strict Nash equilibrium (Harsanyi 1973) no
player can unilaterally switch to another strategy without decreasing their
payoff:

E { I , I ) >  E(J , I )  M J ± I  (6)

An ESS is a less restrictive subset of Nash equilibria than strict Nash, but 
still requires no rational foresight to maintain stability.

Evolutionary stable strategy Maynard Smith (1982) defined an ESS as
follows:
either

E(I ,  I)  > E(J,  I)  V /  ^  J  (7)

or

E(I ,  I) = E(J,  I)  and (8)
E(I ,  J) > E(J,  J) V I ^ J  (9)

Condition (7) is that I  is a strict Nash or, failing that, an ESS may be a
Nash equilibrium (8) tha t meets the additional condition (9) that the
strategy is a better alternative against a potential neutral invader than that 
neutral invader is against itself. This “second condition” means that a 
strategy may invade by drift, but that it must be selected against by the 
original strategy if the invader becomes appreciably common in the 
population.

ES Sets relax the “second condition” (9) and allow for equilibria composed 
of a set of mutually inter-invading strategies whose proportions are free to
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drift.

Evolutionary stable sets A set of Nash equilibrium strategies L  is an ES 
Set (Thomas 1985b) if:

E(I ,  J ) > E(J,  J ) V I  e  L, J  i  L and (10)
E(I ,  J) = E(J,  J)  V J , J e L  (11)

ES Sets vs. M ixed equilibria An evolutionarily stable set is only 
superficially similar to the concept of a mixed Nash equilibrium or a mixes 
ESS. Mixed equilibria, either Nash or ESS, are compositions of two or more 
pure strategies at precise proportions. Any deviation of the population away 
from this optimal mixture, either in terms of population composition in the
case of a polymorphic population of pure strategists, or a uniform population
of probabilistic mixers, will be returned to the optimal mixture in the case of 
an ESS, or lead to non-equilibrium strategies in the case of a mixed Nash. 
Either way, these mixed equilibria form a single equilibrium point in the 
strategy space. On the other hand, an ES Set produces a line, area, or 
volume in the strategy space which contains an infinite number of different 
pure strategy mixtures which are all co-equilibria.
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Appendix 2.B Performance of the GA on 
other tasks

To test the ability of the genetic algorithm to find the ESS to a simpler game 
we ran a minimally-modified version on several versions of the Hawk-Dove 
game (Maynard Smith 1982) without role asymmetry (Hurd 2006). This 
game has a simple mixed ESS when V  < C, to play Hawk with probability 
p =  V/C,  and a pure Hawk ESS when V  < C. We ran three versions, in 
which V  and C  were varied so that the ESS was to play Hawk with 16, 83 or 
100% probability.

We ran ten replications for each of the three variable combinations, the 
GA parameters were kept as close as possible to those used in the E85 
simulations: population size of 100, simulation length of 500 generations, 5 
encounters per individual per generation, and mutation rate of 0.005. Initial 
seed of ESS players was not used (all initial populations were randomly 
generated). No crossover operator was used (since the chromosome consisted 
of a single locus (Hawk or Dove allele) none could be implemented anyway). 
The percentage of the population playing Hawk was averaged over the last 
200 generations of each run.

When the ESS was to play Hawk with 16% the GA resulted in a mean of 
17.4±0.6%, when the ESS was 83% the GA produced a mean of 80.0±0.7%, 
when the ESS was 100% the GA produced a mean of 97.9±0.3%. The bias 
towards 50% evident in these results can be explained by the fact that 
mutation will increase the percentage of the least common strategy. Indeed, 
when we did a further set of 10 simulations for the 83% Hawk ESS with 
mutation set to 0, the mean outcome was 82.9% Hawk.

We also ran a number of simulations of the E85 GA in which we held the 
opponent strategy constant at the ESS. From a 0% ESS seed starting point, 
the population evolved to the ESS in about 100 generations. These results 
show that the genetic algorithm is capable of finding ESSes when they exist, 
have large basins of attraction and other non-ESS optima do not exist.
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Appendix 2.C Sensitivity of the results to  
methods and parameters

To test for sensitivity of the major results to the simulation parameter values 
we ran a set of simulations in which we varied the following model 
parameters: length of simulation (i.e. number of generations), population 
size, number of fights per individual per generation, and the use of a crossover 
operator to make reproduction sexual. Each manipulation was simulated 50 
times at each of two levels of initial ESS seed, 0% and 25%. Mutation rate 
was held constant at 0.002 (a value favorable to the ESS), and all other 
parameters were held constant at the values used in the main simulations.

These simulations are compared to two similar sets with no manipulations 
(one at each of 0% and 25% ESS seed) with respect to the number of ESS, 
ES Set, or Other outcomes obtained. The parameter manipulations 
comprised of: 6 sets of simulations in which we increased the number of 
fights per individual per generation from 5 to 25, 50, and 100 fights, two sets 
in which we increased population size to 1000, and four sets which increased 
the generations simulated from 500 to 1000 and 5000. Finally, we added a 
uniform crossover operator which formed an offspring chromosome by 
swapping between parental chromosomes with a fixed percentage (the 
crossover “weight”) at each locus. For example, if the first parent was 
AAAAAA and the second was BBFFFF, with a crossover weight of 20%, 
each locus would be evaluated individually and swapped with a 20% change. 
Thus, if the second and sixth loci were selected to be swapped, the returned 
offspring would be ABAAAF and BAFFFA. We ran four sets of simulations, 
with crossover weights of 20% and 50% (and ESS seed at 0 and 25 %).

None of the manipulations show an improvement in convergence on the 
ESS (Table 2.3) with the exception of the population size increases at 25% 
initial seed. Significant improvement in convergence on the ESS was found at 
both the 1000 (G(2) =  10.5, p = 0.005) and 2500 (G{2) -  10.3, p = 0.006) 
population sizes. The number of Other outcomes did not decrease, but the 
ES Set outcomes were less likely at these larger populations sizes. Note 
however that no such effect was seen when the population was started from a 
random point in strategy space. When the ESS seed was 0% the population 
never evolved to the ESS at these population sizes.

In conclusion, above and beyond the demonstrated analytical stability of 
the evolutionarily stable set (see Appendix 4), the present results suggest 
that our discovery of the new solution to the E85 game using the genetic 
algorithm was not due simply to our specific choice of implementation or 
parameter values.
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P a ra m e te r V alue ESS ES Set O th e r
0% ESS seed

Baseline Defaults 1 41 8
#  of Fights 25 4 38 8

50 3 46 1
100 1 41 8

Population size 1000 0 44 6
2500 0 49 1

Simulation length 1000 3 41 7
5000 1 40 9

Crossover Weight: 20% 0 46 4
Weight: 50% 1 46 3

25% ESS seed
Baseline Defaults 40 7 3
#  Fights 25 28 19 3

50 38 11 1
100 36 11 3

Population size 1000 45 0 5
2500 46 0 4

Simulation length 1000 34 14 2
5000 39 9 2

Crossover Weight: 20% 28 15 7
Weight: 50% 23 24 3

Table C.4: Effect of varying genetic algorithm parameters on the simulation 
outcomes. The parameters varied (and their default values) were: #  Fights 
(the number of fights used to calculate each individual’s fitness each genera
tion, 5), Population size (500), Simulation length (the number of generations 
simulated, 500), Crossover weight (the likelihood of recombination, 0). The 
only parameter to increase the probability that the ESS would go to fixation in 
the population was the population size, but only when the initial population 
was heavily loaded with ESS players. Increasing the population size did not 
favor the ESS when starting from a random population.
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Appendix 2.D Proof that **AAAA is an ES 
Set

Following Enquist (1985) and Hurd (1997) we can confirm the stability of the 
All-Attack ES Set analytically using what we have termed “stability tables” . 
A stability table for a particular strategy lists the payoffs to a player playing 
against a population of the target strategy (e.g. the ESS or the ES set) and is 
logically equivalent to performing a dynamic programming optimization 
(Houston and McNamara 1999) against the target strategy. From the table, 
we can determine what the best reply to the target strategy is; if the best 
reply is the target strategy alone, then it is a strict Nash. Here, we present 
stability tables for two strategies in the All-Attack set, ABAAAA and 
AAAAAA. The other strategies of the set, BAAAAA and BBAAAA, are 
identical by symmetry to the two presented, and so we have omitted their 
stability tables.

(a) Strong
Opponent Opponent Behaviour

Display display behaviour Attack Pause-Attack Flee
A A Attack I V  - C o  [1]

£11-dCN —Co
B Attack V - C - i  [2] V  - C - x -  FP -C -x

B A Attack j V - C 0 [1] ± V - C 0 -  FP -Co
B Attack V - C - !  [2] V - C ^ -  FP —C-x

(b) Weak
A A Attack - C l  [3] - C i  -  FP [4] - C i  [5]

B Attack W - C „  [6]

r-£1o°1i-H|CS -C o
B A Attack - C l  [31 - C i - F p  [4] - C i  [5]

B Attack h v - c 0 [6] l y - C o - F p  [7] -C „

Table D.5: Stability table for ABAAAA. Payoffs for all possible outcomes 
while playing against the communicating all-attack strategy ABAAAA. The 
variables used as in Hurd (1997): V  is the value of the resource, Cx is the cost 
of an escalated fight against an opponent x  strength states higher or lower (1 
is higher, -1 is lower, 0 is equal), and Fp is the cost of pausing before attacking 
an opponent that is simply attacking.

From the tables, it is clear that the following conditions will make 
ABAAAA stable (numbers in brackets refer to the numbered cells in the 
tables):

> Co and V  > C-x [1,2], and 
FP > 0 [3,4,6,7]

Since cells [3] and [5] are equal, the best reply to ABAAAA is 
**A[A/F]AA —where * is any allele at the signalling loci. To demonstrate
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(a) Strong
Opponent Opponent Behaviour

Display display behaviour Attack Pause-Attack Flee
A A Attack j V - C o I V - C o -  FP -C o

B Attack v ~ f a V 2 V
B A Attack iV '- C o I V - C o -  FP -C o

B Attack V - C _ 1 V - C - X-  FP -C _ i

(b) Weak
A A Attack - C l 1 0 1 £ - C l

B Attack V - F a V 2 V
B A Attack - C x

£101 - C l
B Attack v - f a V V

Table D.6: Stability table for ABAFAA. Payoffs for all possible outcomes while 
playing against the communicating strategy ABAFAA. The variables used are 
as in Table D.5.

that a strategy choosing F at the fourth locus is not a member of the ES set, 
we present its stability table (Table C.4). The best reply to ABAFAA, one of 
the potential set members, is not itself but a different strategy AAA[A/F]PP. 
This strategy is therefore not a member of the ES Set. Similar analysis (not 
shown) demonstrate that the other three strategies with F at the fourth locus 
(AAAFAA, BAAFAA, BBAFAA) are not ES set members either.

(a) Strong
Opponent Opponent Behaviour

Display display behaviour Attack Pause-Attack Flee
A A (s) Attack A ^ -C o W - C o -  FP -C o

A (w) Attack V - C - i

£1r—t
di C—x

B A (s) Attack 7j,V -  Co \V  -  Co -  FP Co
A (w) Attack V - C - x V - C - x -  Fp C_i

(b) Weak
A A (s) Attack - Cx 1 £ 1 $ - C i l

A (w) Attack \ V - C o

£11'-UCNj -C o
B A (s) Attack - Cx

£1<51 —Cx
A (w) Attack \ V - C o

£11«—tjĉ -C o

Table D.7: Stability table for AAAAAA. Payoffs for all possible outcomes 
while playing against the non-communicating all-attack strategy AAAAAA. 
The variables used are as in Table D.5.

The situation for AAAAAA is slightly more complicated, as the strategy 
violates pervasiveness such that the best response to AAAAAA is **AA**. 
As in the previous case, the two alleles at the signalling loci all achieve the
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same payoff. The last two loci, which code for responses to the “B” signal are 
silent, since the target population never uses the “B” signal. The stability 
table is constructed with the labels “strong” - “s” - or “weak” - “w” - in place 
of the signals “A” or “B” . Both these rows happen equiprobably following an 
“A” signal, and so the expected payoff is the mean of their values. The 
**AA** silent mutations produces 36 potential invaders (18 by symmetry). 
The method for separating the ES set members from the non-members 
proceeds exactly as in the last case. In the interest of space, the details are 
omitted.
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3.1 Introduction
Biologists have long wondered whether animals communicate “honestly” 
when using signals such as threats, begging calls, or courtship displays, or 
whether they sometimes deceive each other (Dawkins and Krebs 1978; Krebs 
and Dawkins 1984; Johnstone 1997). Game theoretical modelling has been 
the principal theoretical method for investigating this question (Maynard 
Smith and Harper 2003; Hurd and Enquist 2005). Possibly the most 
frequently cited paper on the evolutionary stability of deceptive signalling is 
that presented by Johnstone and Grafen (1993). This model is a modified 
version of the Sir Philip Sidney game (Maynard Smith 1991), in which a 
donor (the receiver) decides whether to contribute a resource to a beneficiary 
(the signaller). In Maynard Smith’s version, the resource is Philip Sidney’s 
water bottle, but the usual biological interpretation is parental provisioning, 
or some other investment in kin.

In the Johnstone and Grafen version, the beneficiary is either more, or 
less, needy of the resource, and either a closer, or more distant, relative. The 
donor does not know the beneficiary’s levels of need or relatedness, only 
whether or not the beneficiary has signalled a request for the resource be 
donated. The evolutionary stable strategy (ESS) identified by Johnstone and 
Grafen has the donor give the resource to signallers who signal for it, while 
beneficiaries of one relatedness class signal for donation only when needy, but 
members of the second class always signal for donation regardless of their 
need. Johnstone and Grafen’s ESS is a semi-separating equilibrium 
(Fudenberg and Tirole 1991). Beneficiaries may be in one of four relatedness 
class by need state combinations (closely related and needy, closely related 
and not needy, distantly related and needy, distantly related and not needy) 
but must signal with one of two signals (request donation, do not request 
donation). Figure 3.1 depicts the signal and state combinations present in 
this game.

A perfectly informative, “separating” , equilibrium would require a 
minimum of four signals, one per class-by-state combination (Note: see Hurd 
& Enquist, 2005 for a criticism of the use of the terms “honesty” and 
“dishonesty” to describe semi-pooling equilibria in this game). Since the 
signal space is not large enough to be separating, any signalling equilibrium 
must be semi-separating, since signallers in some class-by-state combinations 
will have to pool on the same signal. Lachmann and Bergstrom (1998) have 
investigated pooling equilibria in other forms of the Philip Sidney Game, 
notably those in which both the donor and recipient have varying need 
states, or both beneficiary and donor signal. They show that, even for a 
continuous gradient of beneficiary need, that signal pooling will only ever be 
between neighbouring categories /  contiguous value ranges. This is 
ambiguous, but arguably not “dishonest” . The same sort of result, discrete 
signals shared by continuous ranges of subjective resource values exists in the 
conventional threat display game of resource value (Model II in Enquist 1985;
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Figure 3.1: Signalling in the Johnstone and Grafen SPS game. Column one 
depicts the identified ESS to the game, the second column gives an example of 
another signalling strategy, and the third column is a non-signalling strategy.
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Enquist, Ghirlanda & Hurd, 1998). Contrast this with the much more 
deceptive bluffing threat display model of Adams and Mesterton-Gibbons 
(1995) in which the higest and lowest RHP signallers pool on one discrete 
threat display, while signallers of the intermediate RHP range use a different 
display. W hat is unique to the Johnstone and Grafen game we investigate 
here is that, within any play of the game, the signaller may vary in two 
dimensions simultaneously: relatedness and need.

Within classical game theory, solutions to game theoretic problems 
typically take the form of Nash equilibria. Under some conditions, Nash 
equilibria may owe their stability to the application of rational foresight. 
Such rational foresight has a teleological nature which cannot be reconciled 
with biological evolution. John Maynard Smith (Maynard Smith and Price 
1973; Maynard Smith 1982) defined a refined Nash equilibrium, the ESS, 
which excludes those cases where rational foresight is required to maintain 
stability. There is nothing in the definition of an ESS which requires that 
selection take the ESS to fixation in a population if it is not already very 
widespread. Therefore, while an ESS is stable once reached, there is no 
guarantee that populations will evolve towards them (Nowak 1990). An 
alternative solution methodology, known as evolutionary game theory, 
analyses exactly this question (Hofbauer & Sigmund 1988; Hammerstein 
1998). Positing a reasonable method of strategy replication and population 
dynamics such as Taylor & Jonker’s (1978) replicator dynamics, the space of 
all possible population compositions can be mapped analytically to show the 
path along which evolution will take the population of strategies. Since each 
pure strategy represents an entire dimension of the population’s state space, 
evolutionary game theory analysis is tractable only when there are few pure 
strategies. Games such as the present form of the Philip Sidney game, where 
there are four pure strategies for each signaller class and another four for the 
receiver, result in an unmanageable 64 dimensional space in which to map 
strategy flow.

We have demonstrated (Hamblin and Hurd 2007) that genetic algorithms 
may be used to find alternative solutions to signalling games. In this paper, 
we apply a genetic algorithm to the Johnstone and Grafen Sir Philip Sidney 
game to test the robustness of the dishonest signalling ESS.

3.2 M ethods

3.2.1 Johnstone & Grafen’s Sir Philip Sidney game
Johnstone and Grafen’s Sir Philip Sidney game has two players, a donor and 
a beneficiary The donor has an indivisible resource, which they may choose 
to give to the beneficiary or retain for their own use. The beneficiary is in 
the “thirsty” state of greater need with probability p, and “not thirsty” with 
probability 1 — p. A move-by-nature assigns the beneficiary to one of two
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classes, class 1 or class 2 with probability q and (1 — q). The players are 
related by a coefficient of relatedness r*, 0 <  jy < 1 with the subscript * =  1,2 
indicating which class the beneficiary has been assigned to. Thus, a player’s 
fitness consists not only of their own payoff, but also inclusive fitness benefits 
of the other player’s fitness multiplied by the coefficient of relatedness. If the 
beneficiary keeps the resource, they ensure survival and receive a payoff of 1, 
and if they give the resource they receive a payoff o fS 1#, 0 < S b < 1 .  If the 
donor is not thirsty and the beneficiary keeps the resource they receive a 
payoff of So, 0 <  S# < 1, while if they are thirsty and the beneficiary keeps 
the resource the donor dies and receives a payoff of 0. If the beneficiary gives 
the resource the donor’s survival is ensured and the donor receives a payoff of 
1. Finally, the beneficiary may choose to give a costly signal. Signalling 
reduces their fitness by a multiplicative factor of (1 — U), 0 <  U < 1 with the 
subscript i once again indicating the class of the beneficiary. The game is 
shown in its entire extensive form in Fig. 8 of Hurd & Enquist (2005).

Thus, with two classes of beneficiary there are eight parameters to the 
model: the two coefficients of relatedness rq and 7*2, two signal costs t\ and 
t2, two survival probabilities Sd  and S b , the probability of being thirsty p 
and the probability of being a class 1 beneficiary q. To generate payoffs 
where donors give when they receive a signal, class 1 beneficiaries signal 
when thirsty and class 2 beneficiaries always signal, Johnstone and Grafen 
gave parameter values of rq — 0.5,r2 =  0.2,S d  = S b  — 0.8,ti  = 0.4, and 
t2 — 0.3. However, analysis of the game with these values indicated that their 
semi-separating equilibrium was not an ESS under these payoffs. Thus, we 
reformulated the payoffs with t2 — 0.1, which gave the semi-separating 
equilibrium as an ESS solution to the game.

There are 64 pure strategy profiles in the Johnstone and Grafen SPS 
game. The donor has four: always give the resource, give the resource only 
when a signal is received, give the resource only if no signal is received, and 
never give the resource. Both classes of beneficiary also have four: always 
signal, signal when thirsty, signal when not thirsty, and never signal. 
Johnstone and Grafen gave a full formulation of the game in their paper and 
included payoffs for strategies at the equilibrium, (but did not provide a 
complete payoff matrix for the game). We provide the reconstructed 
algebraic payoffs in Table 3.1, while numerical payoffs for the parameter 
values above can be found in Table 3.2.
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T ,S T ,N S N T ,S N T ,N S
Give S D + ri( 1 -  tj), 1 - t i  + SDn S d + r i , l  + S o n Sd + n { l  -  U), 1 — U + SDri S D +  n ,  1 +  S o n

Don’t 1 , n 1 +  riSB( 1 -  U), n  +  SB( 1 -  U) 1 +  riSB, S B + n

Table 3.1: Algebraic form of the payoff m atrix for the SPS game, r* is the relatedness coefficient for the beneficiary of class i, 
Sd is the survival chance for the donor, S B is the survival chance for the beneficiary, U is the signalling cost for the beneficiary 
of class i.

CnO



T,S T ,N S N T ,S N T ,N S
Class 1 Give 1.1, 1 1.3 ,1.4 1.1, 1 1.3, 1.4

Don’t 1, 0.5 1, 0.5 1.24, 0.98 1.4, 1.3
Class 2 Give 0.98, 1.06 1, 1.16 0.98, 1.06 1, 1.16

Don’t 1, 0.2 1, 0.2 1.144, 0.92 1.16, 1

Table 3.2: Numerical payoff matrix for the SPS game. T  is Thirsty, N T  is 
Not Thirsty, S is Signal, N S is No Signal.

3.2.2 The G enetic Algorithm
Strategies in the genetic algorithm were represented by a ’’chromosome” 
consisting of six binary loci. Each of these loci specified the pure local 
strategy (sensu Selten 1983) for a different information set. All information 
sets in the game had a corresponding locus, so that the entire chromosome 
coded for a pure behaviour strategy (sensu Selten 1983). The first two loci 
represented the donor strategy portion of the chromosome, with the first 
locus for give /  don’t  give when a signal is received (coded as 0 or 1) and the 
second locus for give /  don’t  give when a signal was not received. The third 
and fourth loci similarly represented strategy choices for class 1 beneficiaries, 
with the third locus for signal /  don’t  signal when thirsty and the fourth 
locus for signal /  don’t  signal when not thirsty. The fifth and six loci coded 
the same strategy choices as the third and fourth loci, this time for class 2 
beneficiaries. Figure 3.2 graphically depicts the relationship between the 
game’s extensive form and the chromosome.

As an example, the chromosome representing Johnstone & Grafen’s 
semi-separating equilibrium of Give when signal /  Signal when thirsty /  
Always signal under this scheme is {1,0,1,0,1,1}. The strategy Always give /  
Signal when not thirsty /  Never signal is {1,1,0,1,0,0} while Never give /  
Never signal /  Always signal would be {0,0,0,0,1,1}.

Simulations of the Sir Philip Sidney game with the genetic algorithm were 
done under conditions similar to those outlined in Hamblin and Hurd (2007): 
all simulations were done with a population of n = 100 for 500 generations, 
and fitness was calculated in each generation as the mean of 5 plays of the 
game against other randomly chosen individuals from the population. After 
fitness was calculated, 5% of the population was killed, with the probability 
of death inversely proportional to their share of the total fitness of the 
population. Each death was replaced with a strategy chosen from the top 
20% of the population, as ranked by fitness. After reproduction, each locus of 
every member of the new population was mutated with a probability set by a 
mutation rate parameter. If a locus was selected to be mutated, the current 
value was replaced equiprobably with either of the allowable values ({0,1}) 
for that locus.

The programming code for the genetic algorithm was based directly on the
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Donor strategy: Beneficiary strategy:
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type 2type 1
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Figure 3.2: Mapping the Sir Philip Sydney game tree to the genetic algo
rithm’s chromosome. Game tree reproduced from Figure 8 of Hurd and En
quist (2005),. Note that N  denotes a move by nature, q is the probability of 
being class 1 or class 2, P  is the probability of being thirsty, S denotes the 
signaller (beneficiary), R  is the receiver (donor), and T  and T  are thirsty and 
not thirsty respectively.
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code for the genetic algorithm used in Hamblin and Hurd (2007). Extensive 
testing of the genetic algorithm’s performance on simple problems was 
completed in that paper to provide proof-of-concept of the suitability of this 
method for finding solutions to game theory models; interested readers are 
referred to that paper for further details.

To investigate the effects of genetic algorithm parameters on the outcome 
of this model, we simulated 100 replications at each of several combinations 
of mutation rate and ” seed” (percentage of the population initialized to the 
semi-separating equilibrium ESS). Mutation rates ranged from 0.001 to 0.01 
while seed ranged from 0 to 100% in 5% increments. This results in a total of 
21,000 distinct simulations.

3.2.3 Characterizing Outcomes
Each run of the genetic algorithm was classified according to the strategy 
that was fixated upon, or if no strategy predominated, this was also recorded. 
A strategy was considered to have gone to fixation if had achieved 80% 
representation in the population for the last 50 generations (10% of the 
simulation).

3.2.4 Param eter randomization
To explore the behaviour of the solution set to this game when the 
parameters of the model were modified, we used Maynard Smith’s (1982) 
stability conditions for ESSs and Thomas’s (1985) conditions for the stability 
of ES Sets under different values of the model’s parameters

and q). We randomized the parameters subject to the 
constraints which guaranteed the existence of the semi-separating ESS 
(Johnstone and Grafen 1993):

1 — £1 + r i S o > r 1 (3.1)
Sb +  T\ > 1 -  £1 + r i S D (3.2)

1 — £2 +  t<iS d > Sb  + 1~2 (3.3)
1 + T\Sb > SD +  n (3.4)

qA +  (1 -  q)B > 0 (3.5)

with A — P[Sd — 1 + n(l — £1)] and B  = Sd  — 1 + 2̂(1 — £2)[<S’s(1 - P ) -  1].
(Note that Johnstone and Grafen’s original parameter values with £2 =  0.3 
don’t  satisfy inequality 3, which is why the semi-separating ESS was not a 
solution of the game with those values; setting £2 =  0.1 solves this problem 
and restores the semi-separating ESS as a solution to the game). We 
performed one million randomizations of the parameters under these 
constraints by generating sets of eight uniformly distributed random numbers
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between 0 and 1 and determining whether they met the conditions given 
above. The proportion of rejected parameter sets was high: generating a 
million valid parameter sets required generating over 1.6 billion random 
combinations, a rejection rate of over 99.9%. Parameter sets that met the 
constraints were then used to generate the payoff matrix that corresponded 
to those parameters, and computer analysis listed the solutions to the model 
under each set of parameters by checking Maynard Smith’s and Thomas’s 
conditions for each strategy.

3.3 Results

3.3.1 G enetic algorithm simulations
The outcomes for the simulations are presented in Figure 3.3. Only runs 
which were performed at mutation rates at or below 0.007 are shown (above 
this, no appreciable number of strategies reached fixation due to mutation 
pressure). The ESS went to fixation in nearly 100% of the simulations if the 
mutation rate was lower than 0.004 and the initial population was comprised 
of at least 40% ESS players, but unless the semi-separating ESS was seeded 
into the population, another solution was vastly preferred. This solution, an 
Evolutionarily Stable Set (ES Set), consists of two strategies: {0,1,0,0,0,0}, 
or {Give when no signal /  Never Signal /  Never Signal}, and {1,1,0,0,0,0} or 
{Always give /  Never Signal /  Never Signal}. This solution was the only 
other stable solution identified with these parameter values, and was never 
identified by Johnstone and Grafen in their original publication of this model.

We can see in Figure 3.3 that there is a distinct trend to the results. At 
low values of seed (0-15%) the ES Set solution dominates the adaptive 
landscape, and between seeds of 20-40% the ESS’s basin of attraction grows 
until at seeds of 45% or higher it becomes the only stable solution. The 
results make it clear that unless the population is heavily loaded in favour of 
the semi-separating ESS, the probability of fixation on the original solution is 
approximately zero.

3.3.2 Payoff analysis
We can compare the payoffs to the semi-separating ESS at fixation to the 
payoffs to the ES Set at fixation to determine which is a global optimum. 
Using Johnstone and Grafen’s payoffs the ESS receives the following payoff 
at fixation:

Donor: W  = q[(l -  P ) ( l  +  n S B) + P[SD + n ( l  -  h)}} +  (1 -  q)[SD + r 2(l -(30]
Class 1 Beneficiary: W  = (1 — P )(S b +  n )  +  P(1 — h  + riSo)  (3.7)
Class 2 Beneficiary: W  = (1 — P ) ( l  — + ^ S p )  + P(1 — ^  +  ^ S d ) (3.8)
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MutationRate

Figure 3.3: Outcomes of the genetic algorithm simulations for various com
binations of mutation rate and initial seed. Runs in which the ESS (labeled 
’E’ on the graph) reached fixation are shown in black, ES Set (’ES’) runs are 
shown in grey, and all other results (’O’) are shown in white.
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while the ES Set receives:

Class 1 Beneficiary: 
Class 2 Beneficiary:

Donor: W  = q[( 1 -  P )(Sd +  fi) 4- P{Sd +  ^i)] (3-9)
+(1 -  q)[( 1 -  P )(SD +  r2) +  P (S D +  r 2)l3.10) 
= q(SD + n )  + ( l - q ) ( S D + r2) (3.11)

W  = (I -  P)[i + SDn \ + P[i + SDn]  (3.12)
W  = (1 -  P)[l + SDr2] + P[1 + SDr2] (3.13)

The payoffs to donors who give when no signal is received and donors who 
always give (the members of the ES Set) are identical at equilibrium since 
beneficiaries never signal. The payoffs for
r \ =  0.5,r2 =  0.2,Sjr> =  S b  =  0.8,£i =  0.4, and t2 =  0.1, are shown in Table 
3.3.

ESS ES Set
Donor
Class 1 Beneficiary 
Class 2 Beneficiary

1.196
1.12
1.06

1.27
1.4

1.16
Total expected payoff 1.155 1.323

Table 3.3: Numerical payoffs to the semi-separating ESS and the ES Set at 
equilibrium. Total expected payoffs were calculated using the probability q of 
being class 1 or class 2 beneficiaries and under the assumption that individuals 
would be donors in half of the encounters and beneficiaries in the other half.

These payoff calculations show that the ES Set is actually a global optimum.

3.3.3 Re-param eterization of the model
Given the constraints used to select the parameters, it was no surprise to find 
that every randomization contained the semi-separating ESS as a solution to 
the game. However, we identified a total of five possible regions in the 
parameter space, each of which contained additional solutions beyond the 
semi-separating ESS. Table 3.4 lists the solutions for each region. The 
identified solutions are of two kinds. The first is a variation on the ES Set 
solution identified by the genetic algorithm, such as the first strategy in 
region 2 which signals when not thirsty as opposed to never signalling. The 
second kind is an ES Set (regions 3 and 4) or ESS (region 5) in which donors 
never give the resource. We attempted to find an intuitive pattern underlying 
the parameter values for each of the five regions, but were unable to find a 
simple way to reduce the dimensionality of the parameter set to clarify the 
relationship between specific parameters and the five regions.
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Region % of outcomes Chromosome Strategy - donor - class 1 beneficiary - class 2 beneficiary Solution Type
1 12% 010100 Give when no signal Signal when not thirsty Never signal. ESS

110000 Always give Never signal Never signal. ESS
101011 Give when signal Signal when thirsty Always signal. ESS

2 79% 010000 Give when no signal Never signal Never signal. ES Set
110000 Always give Never signal Never signal. ES Set
101011 Give when signal Signal when thirsty Always signal. ESS

3 4% 000000 Never give Never signal Never signal. ES Set
000010 Never give Never signal Signal when thirsty. ES Set
101011 Give when signal Signal when thirsty Always signal. ESS

4 3% 000000 Never give Never signal Never signal. ES Set
000010 Never give Never signal Signal when thirsty. ES Set
010100 Give when no signal Signal when not thirsty Never signal. ESS
101011 Give when signal Signal when thirsty Always signal. ESS

5 2% 000000 Never give Never signal Never signal. ESS
101011 Give when signal Signal when thirsty Always signal. ESS

Table 3.4: Regions in the parameter space. Percentage of outcomes refers to the proportion of parameter randomizations which 
led to the solution set of that region as an outcome. Italicized solutions within a region are members of an ES Set in that 
region. The semi-separating ESS is a solution in every region, but every region also has an additional ESS or ES Set.



I

3.4 Discussion
The non-communicating, always-give ES Set was heavily preferred by the 
genetic algorithm when evolving from a random population. This is in 
agreement with the results of other models (Rodriguez-Gorones et al. 1996; 
Lachmann and Bergstrom 1998), suggesting that communication is of 
dubious value in begging games, and it undermines the original purpose of 
the model, which was to demonstrate biologically plausible “cheating” in a 
handicapped signalling situation. Further, random exploration of the 
parameter space reveals 5 distinct regions in parameter space which all 
contain the semi-separating ESS along with variations on the first ES Set or 
variations on a second ES Set solution. This second ES Set solution also 
undermines the spirit of Sir Philip Sidney games by never giving the resource 
regardless of the state of the beneficiary. That this strategy set is 
evolutionarily stable is made even more bizarre by the presence of the 
original semi-separating ESS in the solution set for these regions of parameter 
space. Each region contains at least two ESSs (the original semi-separating 
ESS and a pooling ESS) and one region holds two ESSs and an ES Set which 
are a mixture of pooling and semi-separating strategies. The dynamics of 
these other regions in parameter space are likely to be complicated and it is 
not clear when the “cheating” ESS would be favoured, if ever.

These results demonstrate that even seemingly simple game theoretical 
models of biological situations may contain dynamics which defy intuition.
Sir Philip Sidney games are among the simplest class of signalling models, 
but the addition of a distinction as simple as the presence of two different 
classes of beneficiary generates solutions which are contrary to the purpose of 
the model and result in a sensitivity to starting parameter values that might 
be termed “chaotic” . Evolutionary dynamics, like those mimicked by genetic 
algorithms, may prefer these alternative outcomes to the exclusion of the 
ESS solutions. If models as straightforward as these are subject to such 
problems, the informal practice of focusing on ESS solutions as the crux of 
evolutionary stability is severely compromised (see also Hamblin and Hurd 
2007). More attention must be paid to evolutionary dynamics, either by 
simulation or by analytical approaches like evolutionary game theory 
(Cressman 2003; Hammerstein 1998; Hofbauer and Sigmund 1998; Nowak 
2006; Taylor and Jonker 1978) that focus explicitly on population dynamics.

These evolutionary dynamics hint at a larger concern in regards to game 
theory models in biology. Models are often constructed by conceptualizing a 
solution to an identified problem and designing a game to produce this 
solution; in demonstrating that the solution is evolutionarily stable, the 
identified problem is assumed to have been addressed. This is a sensible 
method to follow; however, there is no guarantee that any ESSs found will be 
the only solutions to the game. In simple games, it is easy to specify the 
entire solution set to the game, but in more complex games with many 
strategies this can be difficult if not impossible. There is also no guarantee
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that these solutions will be preferred as an equilibrium endpoint to the 
population dynamics; any such arguments must be based on the biological 
insight into the evolutionary starting points of strategy evolution. Specifying 
the population dynamics analytically can be done with evolutionary game 
theory but, as discussed in the introduction, this can be an intractable 
problem when the number of strategies grows large. As ever, the modeller’s 
most important task is to decide what the essence of the biological problem 
is before the model is analyzed.
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Conclusion
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The results I present here demonstrate a method for the modelling of 
biological problems using game theory. In applying genetic algorithms to 
these two well known game theory models, I have shown that genetic 
algorithms can provide solutions for models that are too complex to solve 
analytically. Furthermore, the use of genetic algorithms has helped to 
highlight three distinct, but related, problems with the way that game 
theoretical models are currently used in biology. First, game theory models 
with an intuitive ESS solution may be obscuring population dynamics which 
make the ESS is unreachable. Second, as game complexity increases, the 
number of potential solutions to the model increases as well, and these 
alternative solutions may be preferred by the population dynamics. This 
possibility has been largely ignored by biologists who have focused on 
creating models which contain the desired solution without fully exploring the 
resulting dynamics of the model. Finally, game theory models currently used 
in the study of animal communication (and in behavioural biology in general) 
are impossibly unrealistic from a biological standpoint. Any effort to increase 
their biological realism will inevitably lead to analytically intractable models, 
but if we are to use game theory to adequately model biological questions, an 
increase in realism is necessary. It is the argument of this thesis that the use 
of genetic algorithms provide a reasonable solution to these problems.

My results suggest that the population dynamics of many game theory 
models will be unlikely to ever evolve to the ESS (Nowak 1990). These 
dynamics come from alternative solutions which naturally arise when the 
complexity of these games rises above that of the simplest models, such as 
Hawk-Dove (Maynard Smith and Price 1973; Maynard Smith 1982). In 
games such as those in chapters 2 and 3, the authors have solved the model 
with the sole aim of finding an ESS which supports the theoretical goal of the 
model. This practice is common (examples include Grafen 1990; Maynard 
Smith 1991; Adams and Mesterton-Gibbons 1995; Cushing 1995; Kim 1995; 
Maynard Smith and Harper 1998; Szamado 2000; 2003; Dubois et al. 2004), 
and it has the virtue of showing whether a particular strategy can resist 
invasion once established in a population. Yet if the authors of game theory 
models wish to claim that their model solutions represent strategies which 
are attracting as well as evolutionarily stable, then I suggest that this way of 
solving models must be re-evaluated in favor of a procedure which shows that 
the population dynamics will justify the dynamic attractiveness of a solution. 
Genetic algorithms provide an easily-implemented way of providing evidence 
of this, should the model be too complex to map the dynamics analytically.

The results in Chapter 2 highlight the second problem in biological game 
theory models, an issue that I explore further in Chapter 3. As game 
complexity grows, the formal conditions for an ESS become harder and 
harder to meet, and the potential for multiple solutions to the game grows. 
Games of anything resembling plausible complexity will either not have an 
ESS, or will have multiple solutions (e.g. Cressman 1992; 2003). It was this 
latter problem which the genetic algorithm brought to my attention when I
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analyzed the E85 model: the genetic algorithm discovered an entirely new 
solution which was not published in the original analysis of the game, a 
solution which had a much greater attractive power in the state space. In 
other words, populations which did not start off composed entirely (or 
mostly) of ESS players would not evolve to the ESS but would instead 
preferentially evolve to the alternative solution. This solution is an 
Evolutionarily Stable Set (Thomas 1985; Cressman 1992; Balkenborg and 
Schlag 2001; Cressman 2003), which can be thought of as a set of strategies 
which would be ESSs if all the other members of the set were removed. This 
ES Set challenges the original intention of the model, as it is an entirely 
non-communicating strategy; the original ESS of the E85 game was meant to 
demonstrate stable conventional signalling, and my work demonstrated that 
although conventional signalling is stable in this game, it will not be 
preferred by the population dynamics.

The eventual goal of mathematical models must be to obtain as realistic a 
depiction of the essence of a problem as is possible while still maintaining an 
appropriate level of abstraction. Current game theory models in biology are 
still too simplistic and unrealistic. As Maynard Smith noted twenty-five 
years ago Maynard Smith (1982), too much attention has been paid to 
modifications of models like Hawk-Dove when such games contain strategy 
sets (i.e. sets of possible phenotypes) which are hopelessly naive. 
Communication games, such as those analyzed in this thesis, exemplify the 
direction that game theory models must take to approach a reasonable level 
of realism. To begin, there are some features of communication that must be 
added if we are to produce models which model communication correctly. All 
current models depict each player producing a single signal in succession, or 
all players signalling simultaneously, and this must be broadened to include 
the opportunity for multiple signalling opportunities, simultaneously or 
successively. In addition, simultaneous moves by all players is a nearly 
universal assumption in biological games; this is a product of the matrix 
formulation of most games, and it is also completely unrealistic. Aside from 
those things which I feel must be included to allow communication games to 
depict real communication situations, there are a host of other features which 
communications games have included at some time. Among these are:

• Signals which may or may not affect payoffs. These may be 
handicapped (Grafen 1990) versus conventional (Enquist 1985) signals, 
cheap-talk models (e.g. Silk et al. 2000), and so on.

• Strength states, often referred to as RHP or Resource Holding 
Potential (Hurd 2006).

•  Role asymmetries (Maynard Smith and Parker 1976; Hammerstein 
1981). For example, a strategy choice in a communication game might 
require specifying the choice of action when the player is the ’’owner” of
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a territory or an ’’intruder” . These are often correlated with payoffs (i.e. 
the role that a player is placed in has an effect on the payoff received).

• Uncorrelated asymmetries. These are asymmetries which are not 
relevant to the issue modelled by the game and have no effect on the 
payoffs, but which can be used to settle a conflict (Maynard Smith and 
Parker 1976). Examples might include owner-intruder (if the 
asymmetry has no effect on payoffs, i.e. if the owner has no advantage 
because of ownership), which animal arrived first, the position of each 
animal with respect to the sun, and so on.

This is by no means an exhaustive list, but adding in even a small subset 
of the necessary and possible features to a game theory model can lead to a 
combinatorial explosion in the number of possible strategies. For example, by 
adding another state variable or signal choice to the E85 game (Chapter 2), 
we can easily end up with over ten million strategies. A game with a strategy 
set of this size is unlikely to be easily analyzed with pencil and paper, but it 
is likely tha t we must face up to games of this complexity in order to create 
game theory models which properly capture the realities of the problem 
being modelled.

When solving games of reasonable complexity is too difficult to do 
analytically, we must turn  to another method, and I suggest that the results 
presented in this thesis provide further evidence in support of our previous 
call for the use of genetic algorithms to solve game theory models (Hamblin 
and Hurd 2007). Future research in this area is required to further prove the 
applicability of genetic algorithms to game theory models of all levels of 
complexity. For example, the genetic algorithm approach is as yet untested 
on game theory models with continuous strategy spaces (both the E85 and 
Sir Philip Sydney games analyzed here have discrete strategy spaces). The 
genetic algorithm approach also holds promise for modeling extensions to 
traditional game theory models, such as the effect of population structure 
and the dynamics of sub-populations. This work establishes the suitability of 
genetic algorithms as a solution technique for complex game theory models, 
and next it will be time to apply them to biological models of greater 
complexity.
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