INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the qQuality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearning
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

Sandwich: A Personal Web Assistant Framework

by

Wendy Liew @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree Master of Science.

Department of Computing Science
Edmonton, Alberta

Fall 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre référence

Our file Notre rétdrence

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-47057-1

University of Alberta

Library Release Form

Name of Author: Wendy Liew
Title of Thesis: Sandwich: A Personal Web Assistant Framework
Degree: Master of Science

Year this Degree Granted: 1999

Permission is hereby granted to the University of Alberta Library to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly, or scientific research purposes

only.

The Author reserves all other publication and other rights in association with the copyright in the
thesis. and except as hereinbefore provided. neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any form whatever without the author’s prior written

permission.
/
}MNM }\/

Wendy L&w ‘
9215-172 Ave
Edmonton, AB
TSZ 2M8

Date: &rﬂ l6, qull

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and
Research for acceptance, a thesis entitied Sandwich: A Personal Web Assistant Framework by Wendy
Liew in partial fulfillment of the requirements for the degree of-Master of Science.

1'/.‘
]
Dr. Padl Sorwervisor)

_D/l/,ﬂ Hoover (Cs-gxpcrv-gor)

Dr. Eleni Stroulia (Examiner)

Dr. Michael Barrett (External)

Date: S@? 8/ IQOI?

To my family.

they make nmy achievements worthwhile

Abstract

The plethora of information available on the Intemnet, coupled with its high degree of informal
interconnectedness, makes it difficult to perform advanced web browsing. Examples are the
relatively poor support for managing browsing history and the delegating of simple, reactive web-
processing tasks. This thesis explores ways to mitigate this problem through the use of a Java-
based personal web proxy server. This proxy server is granted the privilege to snoop into and
keep track of a user's daily web activities. Assuming this basic capability, an application
framework (Sandwich) is developed to operate as a rudimentary web proxy server that can be

enhanced to support advanced web activities for a user.

An application framework embodies a generic design for a family of applications in a given
domain. At present, there is much academic and industry interest in application frameworks
because of their high potential for software reuse. Sandwich, the application framework
developed in support of personal web assistants, provides basic functions and hooks for plugging
in assistants in support of advanced web browsing. In particular, based on the thesis research,
two categories of assistants are identified and supported: observing and delegating assistants. An
observing assistant monitors, measures, and reports on the user’s browsing activities. An
example is a advanced history assistant that tracks all sites a user has visited and the time these
sites were last visited, and then produces a statistical report of this history. A delegating assistant
monitors and acts on the user’s behalf. An example is an auto posting assistant that monitors

regular stock quote requests and acts on the user’s behalf upon next request.

The major contributions of this work are

the identification of the key (or basic) functionality that a personal web assistant should have,
the encapsulation of this functionality in an extendible framework known as Sandwich,

the demonstration of the power of this approach by implementing several personal assistants
based on the hooks for extending the Sandwich framework, and

the provision of hook documentation for the framework in order to enhance the usability and
evolution of Sandwich and to assist in exercising and further validating the hooks model as

developed by G. Froehlich in his Ph.D. thesis

Acknowledgments

The list of people I want to thank and acknowledge is a long one. and I would like to apologize to
those I have missed. First and foremost. I wish to thank Professors Jim Hoover and Paul
Sorenson as my supervisors. They inspired my interest and guided me through this dissertation,
even during their sabbatical period. I would also like to thank Eleni Stroulia. Michael Barrett,
and Ehab Elmallah for having served on my committee.

Next special thanks go to Garry Froehlich, whose Ph.D. thesis gave me a head start. I am grateful
to all other members of the Software Engineering Research Lab (SERL) for their interest in my
work, for their useful suggestions and for making the lab such a great place. In particular, thank
you to Professor Eleni Stroulia for her advice on the Artificial Intelligent area that I touched on.
Also, thank you to Tony Oleksky for taking time off his busy schedule to attend some of my

initial brainstorming meetings.

Thank you again to Professor Jim Hoover and Paul Sorenson for giving me the flexibility to
pursue my MSc studies while working part-time. I an: also very thankful to my managers and
colleagues at work. During the course of my MSc studies, I was working as a Java Consultant on
two projects. I would like to thank from the Reflective Systems Group Inc. (RSG) John deHaan.
who supervised me in the TELUS Multimedia project. and Terry Butt. who supervised me in the
IBM Global Scrvicés project. I especially appreciate RSG for the flexible work schedule. Both
of these projects have coincidentally strengthened my technical skills. which proved very helpful

during my research.

Lastly, I would also like to thank my boyfriend, Emest Siu, and all of my family members for
their constant support, endurance, and patience.

Table of Contents
1. INTRODUCTION 1
1.1. MOTIVATIONueurecvreeennnnne ceeeeteteieteiestoaeceernseranrranenseansennnnsarennereseesnarasnnn 1
1.2, THESIS ROADMARPceeeeeeeeeneeeececte e se e esees s sesesemnm s e senees 3
2. BACKGROUND, RELATED WORK AND THESIS APPROACH 4
2.1. SYSTEM WIDE ASSISTANTS .eceeereeeereecrveervresonaneees ...4
2.2, PERSONAL ASSISTANTS cciovresneiesserecccsnmntneeessssssesssssonesaseeessssesssanasessnesssnsesssssssessmmmensmeee e nes s 7
221 CUIENE SUE ..nneeneonnevenaeaaeemeeeeereeeeeseeeeeeeeeseeeeeeeeeesesiemsesaoeeseaessesessseasssssmsm s e e 7
2.2.2 Server Side...................... cettteeecuresnernreeeeerenrna—nneerareeaeerassarestenrrnnssreosarasseasnnnnses .7
223 IN-BEIWEENcuuaannnaeeeeeererreeeeesresesseeeamre e beraseeeeeenseeerrmtaseeaaesese e e e eesese 7
2.2 4 ADDIOOCH SUMMMALYuuonnoennnneereereerereessasressssssssssssssssssossasensmssasmessesssssessssssesessess e 8
2.3, AGENT SYSTEMS..cccrrcreencereessecssusstercrsinmsssesssessessessssssessessssnsesssssssssssssenatesaessssessesssssmsssmssesmesnemeso 9
2.3.1 Agent Definition........................ eeresreieseeesesssessssteetemneentennnttesntetntesisbtenteeanansnnaneesrarernn 9
232 Agem Categories....... Heetseeerareeerstrerteraeesasesasessan e snr s s rr et a et at et et ee st errseesnraasessenannnsons 10
23.3 Agem System Projects .. cereeretesteirteesersssaesas s e Rttt e s e aeae e s rssaraeeaaananeeeneans 11
23 ASSISIANL....oaaneeeeeeeeceeeeceereeeerreessteseeseeseeessessesssssmsessanesossoassses s seaasaseresaseesemesmeneensesmeessenees 13
2.4, HTTP......eeeeteeeeceeeecserensesesstesessestesae s e sssaseessassanssansanssessanssssen s amsses e sesnsesmsnsm e s s s 13
281 EXAMPIe......ne.aeeeeeeeeeeeeenetceeteteeteeeee e ssese s e e see s s s ae s e eneene e e et eee st seseseeee s 14
242 ADDIOGCR SUMUMATYcoueonneonanaenreereereereesvessessassssesnnssnsesssssssssssessssssosesssssssssssssssennees 15
3. HOOKING INTO APPLICATION FRAMEWORKS 16
3.1. OBIJECT TECHNOLOGY AND REUSE........uuueeieeiiceiieeeneeereessceensssuomeessossssmsesasessessssses 16
3.1.1 Types of Frameworks and EXGmples...................uuuueeeeoueeereeeeeeernereseseesssseesisssssssssssssssnes 17
3.1.2 Current State of REUSE PraACHCEou..eeeeeeeeeeeeeeeeeeesseenesseessessesresesesessssesessssessssanens 17
3.13 ApProach SUMM@ryeeuueeeeeeeeerererreeeressenssssnsesnsenesessanes .18
3.2, APPLICATION FRAMEWORKS ..cccevvvreerrersrveeenmnnn ceesteesestecacneneensnssrernarrierransensanenassanas 18
3.2.1 Application Frameworks Versus APPlICQLIONScoecereeereeererveersvesseeossssssssessssssssssessns 19
3.2.2 The Pros and Cons of Application Frameworks.............oueeeeeeeeesruveenns 20
323 Framework Documentation............ w21
3.3. THEHOOK MODEL....ccceeeuecerereeneeenn. 22
4. SANDWICH 2§
4.1, OVERVIEW.......ceciccereerecrssesssoccruresssserassmstossnssssssssessssonssonsnssnssssasssasssessssasssssssssensessaseennssnsns .25
B.2. SANDWICH ACTORS. ..cuveeeeeeereeeserreeesioseescseisssssssosasessasssssssssnsessssssssssensssssssssasassessssmsssssnssesssesssnesos 27

4.2.1 Framework DesignersiDevelopers.......................... 27

422 Framework Users (Assistant Developers) 27

4.2.3 Framework Mainiainers 27

4.24 End Users 27

4.3, USECASES ccoeieetieecetieeeetceccntnste e e s ste s ssssteesees e e ss s ssesssessssssessesnesssanessennesses ..28
43.1 Origin and the CUrTent SIQIE-Of-TRE-ATTeeeeeneeeeeeeeeeeereeieeeeeeeeeeeresessessesssessssseseens 28

B.3.2 INUTOAUCTIONconnnaenaeeeeeeeteeeeeeveeeenessseesssnsssnessssssssssnsssssesesenmeeessoes 28

433 ADDIYING USC CASES .uuunaaeonannneeeveeeeeeeeeeresrernvesssnresssessssssssoneessssessessesssssssssmsssssesssmsessas 29
43.4 Application Family Use Cases .30

435 Sandwich Use Cases..... 43

4.4. SANDWICH SUBSYSTEM. DESIGN. HOOKS AND RATIONALE 51
4.4.1 Sandwich Starrup Ceereeereeeretestsrsrnnsarabttbbsetes st cantaranassseserarananassanea e asatanesaas 54

4.4.2 HTTP Proxy.......eeeeeecenneccreeeeseeeessssessenns 57

443 Observing Assisiani.................... evrerernansensansanen .63

4.4.4 Delegating Assistani.............eeeeeeeeernenesesssessseens 75

445 Administrative Application (Sandwich Interface)... 94
F4.6 PEISISIETICE...........ec..aaeeeeeneareeeeereevrsesssvssssessseesssssssnssssnmmessesssesssensnns 102
G4 7 LOBRING.uaeaoneneeineciirtieecreiereeseesstesessisssssesessssssssssssnsesssnssnsessssnsessasserensasssssreenssnnseans 108

4.4.8 ReQUIAY EXPIESSIONc.ouenneeeeeeeeeveeeneneveseseereeesssossssssssssssssssssnssssesnns 110

4.4.9 HTTP Support.. etoeetenannattieeeseeesresas tcaebesses e st rnarestsesstt st esernsterensssrnssareensessannes 112

4.5. STEPS IN CREATING NEW SANDWICH ASSISTANT ...ccoueeeveerersenreessrssensesesesssesssssssessesssaseseessseses 114
4.6. OTHER CONSIDERATIONS ..coouverittirtiieeasiarcarerasseesssrasmnssesnsesserassessesssssssmsesssmmenesennessmsennaesn sommee 115
4.6.1 Assistant that is Observing and Del@gaLingeweeeeeeeereverreesvesrssereeeoeeeeessesssssssmsanae 115

4.6.2 Request and Response Delegares Pair.....................eeeeeereveereeeenrreeeesssesssssssssssssssssenssesns 116

5. EVALUATION 117
S.1. THE HOOK MODEL...uceiieeeneienirtcnistenesaeiesrasensssssasssseessanssesntassessassnenssssssasasssnmenssssesmsesnaeeemeen 117
5.2. AppLYING UML.... cretsesessersssnassassassaasstsanesans .. 122
5.3, SANDWICH VERSUS WEBBYoueeeiriiiitnecenareetecassansessasescssansosssossssssstssesessossasssssonsossasssasssesssns 124

6. CONCLUSIONS AND FUTURE WORK 134
7. REFERENCES 137
APPENDIX A : HTTP 141
APPENDIX B : META TAGS 147
APPENDIX C : TOOLS AND STANDARDS DEPLOYED 148

APPENDIX D : UML NOTATION 149

APPENDIX E : SANDWICH PROPERTIES FILES 152

List of Tables

Table 1: Proxy Categories and EXAMPIESc..oeemmeeiiniriiceeeeeeeeeeeeeee e e 6
Table 2: Agent Related Projects.........c.ceeeeceemeuieeieeeeeceee e e eeee e e e 12
Table 3: HOOK TEMPIALE...........ooiieieeeee e e e e e e e e e e 22

List of Figures
Figure 1: Before and After View of an End User Browsing the WWW with a Pool of Personal

ASSISTANLS.......ooeeeeeece ettt e e as e e eseesreesn s ee et sseseseses s e e e e eeeeseeseeesseen 2
Figure 2: A Primitive Web INfTastrUCUrLe...............oooeviieeiiieeeieeeiceeee e 5
Figure 3: Web Infrastructure That Deploys System Wide PTOXY..........coeoeemmmmmvomoeoeoeeooeoonn 5
Figure 4: Sandwich INfTaStTUCIUTE..................oveemiieeeeeeeeeeeeee e 9
Figure 5: HTTP Request and RESPONISE..............oo.eviiueeennoeeiieeeeeeeeeeeeeee e e oo 13
Figure 6: Reuse FOrms and Levels..............oooooooiimiiineeeeeeeeeeeeeeeee e 16
Figure 7: HOOKS and HOU SPOLScoouimminiitieeieieeeece ettt e ee e 19
Figure 8: Groups and Types Of ASSISTANISoccovemrenreeeeeeeeeeeeeeeeceeeeee oo eeeeens 26
Figure 9: Example of a Use Case DIaGranl............co.oo.eeeeeeeeeeeeeneeieeteeeeeeeeesenre oo 28
Figure 10: Sandwich USE CaSESouueuveeeeeeeeeeceeeieeeeeeeeeeessessseseseseeeeseeesesesreses e sees s essses s 43
Figure 11: Sandwich Subsystem ATCRItECIUreccocvvveeeemeeiieeeiieteeeeeeeeeeeeee e e e eeeeeeeoes 51
Figure 12: Sandwich Interface, the Administrative Application................cccoevemeemeeeeeeeeereeeenns 52
Figure 13: UML StereotyPes DEPIOYEd.............ocueeeueieeeeeeieeeeieeeeeeseeeeeeeeeeeresere e esesessesssas 54
Figure 14: Sandwich Startup DynamiC VIEW............cooevuvereeeeeeeeeineeeeeeeeeeeeeseeeeieeeeeee e eeeseosoans 55
Figure 15: Sandwich Startup StatiC VIEWooeueiimiieemiieeeeeeeeeeeeeeeeeeeeeeseeeee e osseoes 56
Figure 16: HttpProxy Startup Dynamic VIeW............c.ooooeeeeieeieeeiiieeeieeeeeee e eeeeseennes 59
Figure 17: HttpProxy Startup Static VIEWc.coouiiiiemieeeeieeieeecceeeeeeeee e 60
Figure 18: HttpProxy Servicing Request Dynamic VIeWc.coceeereerevueeereceineenereeseereasanns 62
Figure 19: HttpProxy Servicing Request SIatiC VIEWeeeeeeeieieoiiieeeeeeeeeeeeeeeeeeeeeeeoesenes 63
Figure 20: Data for Observing ASSISIANLS............c..cceeerereeeeeeiecereerieeeeeeeerteee e e e seesseessesesnn 64
Figure 21: Observing Assistant Initializationcceeveeeeeeiieneiieeeeeeeeceeee e eeeeeeeeeon 66
Figure 22: Observing Assistant Notification Dynamic VIiewccccoueeveeeiieoeereoeeeeeeeennn 68
Figure 23: Observing AssiStants StatiC VIEW............cc.covvieeeeiieereeeeeeeeeeeeteeesseeeeee e eeeseeeesenanee 71
Figure 24: Request Delegating ASSISTANL.................oooovvieeeeiernimeeeiereneeeseceeeeesenseeee e s esssesssnssenns 76
Figure 25: Response Delegating ASSiSIANLcoceveeeeemreereeerenereeeneeeeeesenseeeseessessessnsessnns 76
Figure 26: Request Delegate Initializationocoovemeeiieeiecieeeee e 77
Figure 27: Response Delegate Initialization..............cccocveeeoceeeeeeneeieeeeeeeeeeeeeeee e saeenaes 78
Figure 28: Default DirectHttpDelegate (High Level)..............eoueeeiieeeeeeeieeeereeeeeeeeeeeeeeeeeens 79
Figure 29: Default DirectHttpDelegate (Object Level)...........oouueueeevmuemeeeieeeeeeenaeaeeeeesesesseeeenns 81
Figure 30: Multiple Delegating ASSISIANLSccccooieeieeucirtrrcceneineeneeseereteie s seeeeesesaeeneees 82

Figure 31: Delegate Priority QUEUEScoeeeeummieeeeieeeeneerereeeeceereeeeeesseseeresassseesesessnneeanns 83

Figure 32: Multiple RequUest DEIERALESo.ooeeeeemmieeeieeeeeeeeeee e eeeeeeeeeeeeeeeseeeseessessnnns 84

Figure 33: Multiple Response Delegates...............cooooeeeemeeeeiieeieeeeeeeeeee oo eeee e eeeeanane 86
Figure 34: Delegating AsSiStant Static VIEWc...eeveemeeeeciecemeeeeeeeeeeeeeeeeeee e eeeeeesesessesennens 87
Figure 35: Administrative Application and HIPPIOXYcccoomomeeroeereeeeeeeeeeeeeeeeeeesseesenans 95
Figure 36: Administrative Application and ASSISTANLS..............c.eeemeeveceeeeeeeeeeeeeeeeeeeeeeeeeeseeenens 97
Figure 37: Administrative COmMPONent StAtIC VIEWooemiueieieeeeceeeeeeeeeeeeeoceeeeeesseessaeans 99
Figure 38: Enhanced History Assistant Result WindOWccooooomieomieieoeeeeeeeceeeeeeeeenenn. 102
Figure 39: PEISISIEIICE.ooviiiiieeee et eeeneese ettt eece et e e eeseses e sseesnsesenseeesesesaenns 103
Figui 2 40: LOZZINE SUPPOTL.........ooneeeeeeeeeeeteeeeeene e etessstssstesesesetesseese s e eeemmsemtesasemnn 108
Figure 41: Regular EXPIESSION..............oovivieeeieeeieeccieeeeeteeeteeeeeeeeeeeeee e eeaesesee e eessemseesasnenn 111
Figure 42: HTTP SUPPOTL.....coeonrinteeeieeeeeeeeeeeeees e eeese st eaeessesas s e e e eesesesesssmeeseemmesseasenn 112
Figure 43: Assistant that is both Observing and Delegating...................ovoueoeeeeeereeeecesesseenennns 115
Figure 44: Request and Response Delegates Pairc.ccooeeueemeueeeeieieeieeneeeneeeeee et eeneneenne 116

Figure 45: Hook Dependencies and Optional Paths...........cocoeovueueerercneneeninceieneei e seaeeseneanas 120

List of Hooks

Hook 1: New Observing AssiStant HOOKcceeeuiieuieeeieeieeecieeeeeeeeeeeeeeeeeeeoeeeeeeeeeeeeeesosseaeens 73
Hook 2: New Request Delegating Assistant HOOK..........c..oeuiuiueeeiieceineenceeeeeeeeeeeseneeeeoesseeenes 89
Hook 3: New Response Delegating Assistant HOOKccuoovieieceinieneiceeeeeeeeeeeeeeveeessonenens 93
Hook 4: New Administrative Application HOOK........c..ccomemeumimiemeuineineeeeecaeeeeeeeeeeearesaeeeseaeenes 100
Hook 5: New Assistant Result Window HOOK..........ocooumeemieeieeiieiieeeeeeeeeeeeeeeeeeaeaeeeseesesaeeeans 101
Hook 6: Reading Froperty FIIe HOOK...........ooueememieeeieeeeeeeieeeeeeeeeeeeeeeseeesssesssoesesnenesssssssasanans 106
Hook 7: New Line File Data HOOKccecceectiremmeteteeeeteeteeesc e eeeeeseeceenee o nesesasesesnsesasens 107
Hook 8: Reading Line File HOOKooiiiiiiiiiiiee et et eeeee e sneeenaes 108
HOOk 9: NeW LOZEEr HOOKcc..uoieiieee ettt e ee s s e maeesemsene 110
Hook 10: New Regular Expression Adapter HOOKcccccovemieimimicureiieiieeeeeeeemeeerraeeesneeseeens 112

HOOK 11: NeW HTTP Header HOOK ..o ooeeiooiteeeeeeeeeceeeeeeeeeteessessesmeeeeeeeeseses eessseemsmssnmmnsses 113

1. Introduction

1.1. Motivation
In the past five years, the Internet has gained tremendous popularity. and the volume of

information available on the web is now becoming overwhelming for an average person to make
optimal and effective use of. As the web continues to grow., there is a need to add advanced and
specialized capabilities to web browsing. Personal web assistants can help to track and manage
this vast store of information. The following describes two examples where personal web
assistantship can be useful.

Example 1:

On day one, Alice, an assistant epidemiologist. browses the web for health-related news. She
encounters a few sites that provide statistical information on the disease Hepatitis C and reads
them through briefly. On day two. coincidentally, Alice's boss asks her to give an updated report
on Hepatitis C. She recalls that she has read some useful information on day one, but.
unfortunately, she has forgotten to bookmark the sites. Because of insufficient information
tracking. Alice is unable to reca!l all the information that she read and the sites she visited.

If she had had an enhanced history assistant working with her on day one, she would have been
fine. This assistant observes all pages she has browsed, remembers the URLs and allows Alice

navigate to a visited URL.

Example 2:
Another commonly encountered frustration of web users is the process of filling out a form. For

example, Michael visits the Check Free Quote Server page at least once a day to get the final
quotes on the twenty stocks that he is interested in. Everyday, he routinely does the following:

1. Uses his bookmark to reach the Check Free Quote Server site.

2. Enters five stock symbols and then presses the "submit" button.

3. Gets the response back, e.g. closing prices and traded volume of the stocks.
Check Free restricts each request to five stock symbols; thus, to obtain the twenty stock quotes
Michael has to repeat the above steps 2 and 3 four times.

Having an auto post assistant can reduce this aggravation. Specifically. the assistant reduces the
above steps t0 a "select and go" delegation step. To elaborate, Michael will first be prompted by
an auto post assistant with a list of four entries, with each entry containing five stock quotes. He
confirms the delegation process by selecting one of the entries and then clicking the "confirm"

button.

The following figure illustrates a before and after view when personal web assistantship is in

place to control web browsing activities.

BN E

Web Server 1
www. ualberta.ca

End User

Web Server 2
Before java.sun.com

=
I | AI‘ .=
ﬂ/

End User
Web Server 2

java.sun.com

Web Server 1
www.ualberta.ca

Pool of Pefsonal Assistanis
A1: Assistant 1

After

Figure 1: Before and After View of an End User Browsing the WWW with a Pool of
Personal Assistants

This thesis explores the possibility of adding personal web assistantship capabilities embedded
into a rudimentary personal proxy server that has been granted the privilege to snoop into a

2

person’s browsing activity. There are many different personal assistants, such as those described
in the examples above, and while they all provide different services, they all share basic
functionality. This thesis introduces an application framework as a technical approach in building
and deploying these assistants. This application framework provides a generic and reusable
architecture, design. and implementation method for constructing personal assistants.

The thesis presents the requirements, design, and important elements of the implementation of
Sandwich - an application framework that contains a set of extensible classes that provide the
basic services used by these personal assistants. In demonstrating 5andwich, two personal
assistants are prototyped. The hook model is deployed in documenting how to use Sandwich.

1.2. Thesis Roadmap

We begin each chapter with an overview of the chapter’s focus, followed by an outline of the
chapter's sections. Chapter 2 covers background information, related work, and the current state
of the art in adding assistantship into today’'s World Wide Web (WWW) architecture. This
chapter provides the context for this thesis. Chapter 3 introduces and justifies the technical
solution explored by this thesis - object-oriented (OO) application frameworks and the hook
model. Chapter 4 discusses Sandwich. in the context of its underl;ing architecture. design.
design rationale, and extensibility through the use of the hook model. Chapter 5 evaluates on the
hook model and the Unified Modeling Language (UML) notation standard. Both of these are
used in documenting the framework. Chapter 5 also includes a detailed comparison between
Sandwich and a closely related work, Webby. Finally. Chapter 6 concludes and outlines future

directions.

2. Background, Related Work and Thesis Approach

When the WWW became generally known in 1994, the architecture deployed was relatively
simple: the Mosaic or Netscape web clients simply made a request for resources (e.g. text files,
GIF images and executables) to the desired web server. The web server then responded with the
resources, if available. This communication was carried out with the HTTP protocol, specified
by the World Wide Web Consortium [W3C]. As the Internet continued to grow, the number of
web servers and clients increased. The average number of pages visited by an active web surfer
increased dramatically. There has been on going effort to add application-specific capabilities
through some form of assistantship to the web architecture.

Section 2.1 and 2.2 discuss two categories of assistantship: system-wide versus personal. A
system-wide assistant focuses on a group of people. often belonging to the same Intranet; a
personal assistant focuses on helping an individual in a certain way. Section 2.3 described another
related domain area: agent systems. The similarities and differences between personal
assistantship and this area of study are reviewed. This section closes with an elaboration on why
the word “assistant” is used rather than “agent™ and a working definition for “assistant” used in
this thesis. The framework developed in this thesis relies on the HTTP protocol. Section 2.4 is
dedicated to providing some HTTP background.

2.1. System Wide Assistants

Figure 2 shows the current primitive web architecture, which is inadequate in many ways as the
web continues to grow. A common shortcoming is that a corporation is unable to restrict its
access availability to selected parties. Figure 3 shows an enhanced version. Here, system-wide
assistant is added through the use of a system-wide proxy. Specifically. the kind of assistantship
in this example is a proxy that plays the role of a firewall.

Web Server 1 Web Server 2

Client 3 Client 2

Figure 2: A Primitive Web Infrastructure

Web Server 1 Web Server 2

Chent { Client 2

Figure 3: Web Infrastructure That Deploys System Wide Proxy

There are many different forms of proxies, but usually they are categorized according to which
level they operate at [Luotonen98). Three levels of proxies are commonly identified and briefly
described below. Proxies from any of the three levels can be used to provide assistantship.
Currently. system-wide proxies are already widely deployed by major firms. Table 1 gives a
summary of these three levels along with some common examples that give system-wide
assistantship.

Three Levels Meaning Examples
Packet Level Makes use of TCP/IP packet Router
information.
Connection Makes use of connection Socks (firewall role)
(Circuit) Level establishment information, such as
port numbers.
Application Level | Makes use of application protocol Internet caching and load-
knowledge balancing software as well
as Sandwich.

l.

2'

3.

Table 1: Proxy Categories and Examples

Packet Level: Proxies at this level use packet information to perform their tasks. An
example is a router that performs simple packet filtering based on the TCP/IP header
data in the network packets.

Connection (Circuit) Level: Proxies belonging to this level are software programs
that act at the connection level, i.e. during connection establishment and are often
based on port numbers. A proxy operating at this level has no prior knowledge of the
communication protocol. It simply forwards data in both directions in the
connection. The most widely used example here is SOCKS [Socks]. SOCKS
enables hosts on one side of the SOCKS server to gain full access to hosts on the
other side of the SOCKS server without requiring direct IP reachability. Thus. a
SOCKS server is often used in supporting network firewalls, enabling hosts behind a
SOCKS server to gain full access to the Internet, while preventing unauthorized

access from the Internet to the internal hosts.

Application Level: A proxy at this level understands certain application protocols,
such as HTTP, NNTP and FTP and uses this knowledge to accomplish its tasks.
Every application proxy server has some embedded functionality. For example, a
load-balancing proxy dynamically allocates requests to different servers based on the
overall load of the system, ensuring that loads are distributed equally. A caching
proxy such as Squid Internet Object Cache [Squid] and CacheFlow [CacheFlow]

6

specializes in caching resources that it captures in order to reduce network congestion

or improve speed.

2.2. Personal Assistants

Personal assistants attempt to provide assistantship to an individual rather than a group as do
system-wide assistants. With respect to the widely deployed web architecture shown in Figure 2,
personal assistantship can be added on (a) the client side, with web browsers (b) the server side,
or (c) in-between. Each of these will be briefly described with respect to current state-of-the-art
technologies deployed in adding personal assistantship. We conclude by indicating that
Sandwich uses the in-between approach.

2.2.1 Client Side

On the client side, plug-in technology is the most mature method of implementing personal
assistants. Some examples of popular multimedia plug-ins are RealPlayer. QuickTime, and
Shockwave. Another emerging method is on Extensible Markup Language (XML); W3C is in
the process of defining this that can be presented with Extensible Style Language (XSL) and/or
Cascading Style Sheets (CSS).

2.2.2 Server Side

On the server side, many extensions to web servers are already in use in providing personalized
page that may assist the user. For example. most of today’s non-static pages or forms are
generated dynamically. The most popular and widely deployed web server extension on the web
server to allow such dynamic generation is the Common Gateway Interface (CGI) script. which
can be written in any language. Perl being the most popular. The main drawback of this
approach is that each time a request is made to a CGI script. a new process is started to interpret
the script that manipulates the request. Java Servlet [Sun. Hunter98] is the other more recently
supported web server extension that is gaining popularity. A servlet provides the same
capabilities as a CGI script without the aforementioned drawback. A servlet is initialized and
loaded to the Java Virtual Machine (JVM) only once. and thus the overhead of starting a new

process is eliminated.

2.2.3 In-Between
“In-between” proxies provide system-wide assistantship through firewalls, caching and traffic

monitoring. Because most of today's proxies are system-wide assistants that are designed to act

7

}

on behalf of the servers. they are often placed close to the server. i.e. the proxy server is installed
on the same machine as the server or another machine in the same Intranet as the server. There
has been a limited amount of research in using a personal proxy that acts on behalf of an
individual (i.e. proxies playing the role of a personal assistant).

2.2.4 Approach Summary
This thesis investigates the third or the in-between approach. i.e. the use of a proxy to provide

personal web assistantship. This approach has the advantage over the client side and server side
approaches because it is independent of both the browser and the web server. We consider the
simplest architecture as illustrated in Figure 4.

According to the proxy classification given previously, the proxy server developed in this thesis
is an application level one that understands the HTTP protocol used on the WWW. Other
protocol examples are FTP, Gopher and NNTP. Using this form of proxy as the basis, we
develop an application framework for personal web assistants - Sandwich. Sandwich provides
extensible areas that allow users to construct and attach their desired web assistants.

Web Serveri Web Server 2

System Wide Proxy: Firewali roie

.............

.....

-

e

........

Client 1 Personal Assistant Proxy

Client 2

Figure 4: Sandwich Infrastructure

23. Agent Systems
The word "agent" has come to mean many things in the area of information technology. We

include a discussion of agents in this thesis to address questions about the similarities and
differences of agents and assistants in this thesis. We first provide the background of related
work by (1) quoting from a commonly referred to paper on agent technology. (2) categorizing
agents based on their functions, and (3) summarizing several major projects on agent systems.
We conclude this section with the similarities and differences between different focuses of agents
and this work.

2.3.1 Agent Definition
Agent technology is becoming a popular and important research topic and is being applied in

diverse domains in different communities, such as artificial intelligence (Al), distributed
9

computing. networking and software engineering. Each community is interested in slightly
different aspects of agents and the word “agent” is being used widely in many articles without a
real definition. A commonly referenced paper entitled “Is it an Agent, or just a Program? A
Taxonomy for Autonomous Agents” [FG96] contains a widely accepted definition of an

autonomous agent:

“An autonomous agent is a system situated within and a part of an environment that
senses that environment and acts on it. over time. in pursuit of its own agenda and so as

to effect what it senses in the future.”

This paper also makes a distinction between software programs and agents. All software agents
are programs, but the converse is not true: an ordinary program that simply takes its input, acts on
it and gives an output is not an agent. The paper breaks down autonomous agents into different
types; a software agent is an immediate type of autonomous agent. The paper, unfortunately,
leaves as an open issue on further sub-classification of software agents.

2.3.2 Agent Categories
For simplicity, we have classified software agents by their functions. The following is a brief

description of popular agent types appearing in current agent-related literature.

¢ Intelligent agents are probably the most primitive type of agents on which Al communities
have conducted research. This type of agents contains Al algorithms for reasoning, planning,
and learning in order to adapt to an environment and solve a certain set of problems in a

changing environment.

¢ Internet agents are one of the most widely studied phenomena today due to the rapid growth
and interest in the Internet. Information filtering agents, search engines, and negotiating

agents are examples of this category.

e Communicative agents are software systems that are able to communicate with other agents,
whether they be a human or another software agent. There is still no agreement on a standard
protocol for agent-to-agent communication. Some of the existing communicative agents have

no support for standard protocol for agent-to-agent communication, they simply use direct

10

method calls as the technique. Other more sophisticated agents use Knowledge Query
Manipulating Language (KQML) as the Agent Communication Language (ACL).

* Mobile agents are able to transport themselves from one machine to another. This new type
of agent has arisen because of recent interest and emphasis on distributed technology such as
CORBA from OMG. DCOM from Microsoft and Java RMI from Sun.

2.3.3 Agent System Projects
Tabl. 2 summarizes major on-going agent-related projects. From the table, we see that most
focus on mobile and communicative agent technology. with only a few directed towards the

Internet or Intelligent agents.

Project Name | Institutions or Emphasis
Company

Ajanta University of Infrastructure for mobile agents: security and

[Ajanta] Minnesota robustness.

Aglets IBM Mobile and multi-agent framework, use of Agent

[Aglats] Transfer Protocol (ATP) for distributing and
transferring agents.

Concordia Mitsubishi Mobile agents for network management (reliability and

[Concordia} security)

D’Agent (Agent | Dartmouth Mobile agent systems for information retrieval.

TCL) College presentation, integration and distribution.

[DAgent]

InfoSleuth MCC A mixture of distributed mobile agents, KQML

{InfoSleuth] support, and knowledge-based management systems
(CLIPS).

JACK Agent Oriented Framework to create agent-to-agent systems using

Intelligent Software Pty. Ltd | component-based approach. Agents range from simple

Agents (Australia) data retrieval to those that understand Belief Desire

JACK] Intent (BDI).

JATLite University of Templates for creating agents. Agents communicate to

[JATLite) Stanford each other using KQML.

11

Java-To-Go UC Berkeley Itinerative computing (site-to-site computations
[JavaToGo] required by mobile agents).
Odyssey General Magic Transportable agents that can perform certain task at a
(Telescript) mobile host and return the results.
[Odyssey]
RESTINA CMU Goal-directed agents using a task-centered approach.
[Restina]
TACOMA Tormso. Comnell | Operating support for mobile agents, especially fault-
[Tacoma] and California tolerance aspects.

University
WebeW Authentech Inc. Helps users to effectively browse and search the web.
[WebeW]
WebMate CMU Provides personalized web system.
[WebMate)
Webby (WBI) IBM Provides a flexible API for programming intermediaries
[Webby] known as plug-in on the Web.

Table 2: Agent Related Projects

Although most of the projects in Table 2 focus on mobile and a multi-agent system, each has a
different emphasis on the software modalities (e.g. security, performance, fault tolerance. etc)
imposed by distributed technologies. and each focuses on a different domain. We also see that

only a few support intelligent agents.

The three most relevant projects to Sandwich are WebeW, WebMate and Webby, all of which are
personal agent systems. Their commonalties with Sandwich lie in the following factors:

e They are targeted towards internet agents, according to the above categories.

e They are written in Java, and

e They use an HTTP application level proxy

WebeW and WebMate are different from Sandwich in that they both have assistantship built into

their proxy already and their documentation does not indicate how the user can add in new
assistants or remove an existing one. WebeW and WebMate might have been constructed from

12

an application framework but the use of the framework is not visible to the user. Webby is closer
to Sandwich, and a detailed comparison with it is deferred to Section 5.3.

2.3.4 Assistant

The question why we have chosen to use the word “assistant” instead of “agent” needs to be
answered. As we see from the above, agents cover a broad area of studies and carry many
different definitions. One characteristic that people often associate with an “agent” is the ability
to learn and to act accordingly to the knowledge acquired. This is not true for assistant. In
addition, Sandwich's assistants are neither inherently intelligent nor mobile, and therefore the
word “agent” seems inappropriate. The following working definition clearly describes the type of
“assistant” that is used in this thesis.

An assistant is a software program that supports perscnal use of the

Internet via a browser. The two types of assistants that we focus in this
thesis are observing and delegating assistant. An observing assistant
monitors, measures, and reports on the user’s browsed content and a

delegating assistant monitors and acts on the user’s behalf for postable

pages.

2.4. HTTP

This thesis makes extensive use of the Hypertext Transfer Protocol (HTTP) application protocol
that is widely used on today's WWW. Even though HTTP is a well-known protocol. its internals
are not well understood by most people. The purpose of this section is to provide the necessary
background knowledge on this protocol to understand the design of Sandwich.

HTTP protocol is used as the communication protocol between web clients (i.e. browsers) and
web servers. See Figure 5. In short, when the user requests resources such as images. text or
applications, from a web server, the browser sends an HTTP request to the remote server or
intermediate proxy. if such a proxy exists. The answer to the request is referred as the HTTP

response.

Hitp Request————————

f}——————Http Response

Web Server

Figure 5: HTTP Request and Response

13

An HTTP request is comprised of several lines of string in the following order:

I

The first line gives the request method (GET. POST. etc). the Uniform Resource Locator
(URL), and the browser's supported HTTP version.

Several lines of headers and their values. each line containing of a particular HTTP
header name, followed by a colon and then the value,

An optional request body. This contains the name-value pairs for the POST method.’

An HTTP response is comprised of several Lnes of string or binary data in the following order:

1.

The first line gives the numeric response code, the string response message. and the web
server supported HTTP version.

Several lines of headers and their values, each line containing a particular HTTP header
name, followed by a colon and then the header value.

An optional response body that contains the HTTP content itself. This can be in ASCII
or binary data. For example, an HTML page would be in ASCII and a GIF file would be
in binary form.

Fcur identified types of HTTP headers are general. request, response and entity. General and
entity types of headers are meaningful in any HTTP request or HTTP response. Request type
headers are only meaningful in HTTP requests: response type headers are only meaningful in
HTTP responses. Given the structure of HTTP, we will now analyze an actual example.

2.4.1 Example

The following is a basic HTTP request and response example from a user who wants to go to the
home page of the University of Alberta. located at URL http://www.cs.ualberta.ca/. To initiate
this vequest, the following command is sent from the user's web browser to the university's web

server.

GET htip://www.ualberta.caszindex.htmi HTTP/l.i<Cr»<lf>

Proxy-Connection: Keep-Alive<cr><lf>

User-Agent: Mozilla/4.05 [en] (WinNT: I ;Nav)<cr><lf>

Host:

www.ualberta.ca<cr><it>

Accept: image/gif, image/x-xbitmap, image/jpeg. image/png, */*<cr><lf>

Accept-Language: en<cr><lf>

Accept-Charset: 1iso-8859-1,*,utf-8<cr><lf>

14

When the university's web server on www.ualberta.ca receives this command, it checks whether
the requested resource (i.e. index.html) exists or not. If it does, then the web server returns an
HTTP response with the OK status. such as the following.

200 OK HTTP/1.1 <cr><lf>
Date: wWed. 07 Apr 1999 21:32:04 GMT <cr><Llf>

Server: Apache/1.3.3 (CTnix) <cr><lf>

Last-Modif ied: Wed, 07 Apr 1999 21:22:36 GMT <cr><lf>

ETag: *14df9-102d-370bcc9c”® <cr><lf.-»

Accept -Ranges: bytes <cr><lf:»

Content-Length: 4141 <cr><lf>

Keep-Alive: timeout=15, max~100 <cr><lf>

Connection: Keep-Alive <cr><lf>

Content-Type: text/html <cr><lf>

<crr<lf>

(The content itself is here, i.e. the index.html of http://www.ualberta.ca/)

We will not explain each header in detail here. Appendix A lists alphabetically on all header
fields defined by the HTTP 1.1 specification (W3C]. Note that <cr> stands for carriage return
and <If> stands for linefeed.

2.4.2 Approach Summary

The underlying architecture of Sandwich is based on HTTP application-level proxy architecture.
Since over 80% of Internet communications are accomplished through HTTP. it makes perfect
sense to tackle the problem by having Sandwich understand the HTTP protocol. The other
protocols that occupy the rest of the Internet traffic include NNTP for newsgroup. SMTP for e-

mail, and FTP for file transfers.

1§

3. Hooking into Application Frameworks

In this chapter, we cover the background information on the technical approach used in this
thesis. Section 3.1 introduces and reviews the present research status of object technology.
different forms of reuse and frameworks in general. Section 3.2 elaborates on application
frameworks, the type of framework explored in this thesis. This section provides an overview on
application frameworks and hooks. the differences between application frameworks and
applications, the pros and cons of deploying application frameworks, and the documentation
techniques for frameworks that exist today. Section 3.3 provides backyround information on the
hook model proposed by Garry Froehlich [Froe96] and experimented with in this thesis.

3.1. Object Technology and Reuse

Software development approaches have changed significantly over the years. Their evolution has
been motivated by the need to produce high quality software that is easy to maintain and that can
evolve at a fast pace. Producing software that can easily be reused is a step towards this goal.
Currently, object technology is the most promising way of improving the software development
process and providing for software reuse that, in the long run. can reduce development time.

implementation - — design
highest level framewarks frameworks
speclfic impl. of a pattern design pattern
import of libraries, AP! Ag;’;:g::::m
lowest level

Figure 6: Reuse Forms and Levels

There are many ways to accomplish software reuse and Figure 6 illustrates the major forms of
software reuse and their levels of support. The evolution of software development has gradually
shifted from only reusing code through Application Programming Interfaces (APIs), design reuse
through patterns [GHJV95] to both design and code reuse through the use of frameworks. Before
we prbceed to the discussion on the current status of reuse practice using these major forms, we
provide an overview the different framework types that exist today.

16

3.1.1 Types of Frameworks and Examples
There is no one particular way to classify the “type” of a given framework. Two popular means
for classifying frameworks are summarized below.

1. Based on the nature of the domain of a framework, frameworks can be roughly classified in

to the following two types.

a)

b)

Foundation frameworks contain supports for functionality that can be applied in various
domains. They often have a very flexible, interconnection mechanism for hooking
application-specific code to the framework. Examples are the Graphical User Interface
(GUI) frameworks such as Microsoft Foundation Class (MFC). ([FS97] refers to this
group of frameworks as the middle-ware integration frameworks.

Application frameworks contain supports for a particular domain. They often have a
restricted number of hot spots and more constraints in using them. Examples are Speech
Recognition Framework [Srinivasan99], IBM San Francisco for the domain of E-
Commerce (http:/www.ibm.com/java‘Sanfrancisco/). and ET++ Swaps Manager in the
Financial Engineering Domain [EggGam92]. [FS97] refers to this group of frameworks
as the enterprise application frameworks.

2. Based on the techniques used to extend frameworks. i.e. their adaption mechanisms,
frameworks can be roughly categorized into the following two major (rather extreme) types.

a)

b)

White box frameworks are extended through object-oriented (OO) language features
such as inheritance and dynamic binding. [FS97] describe a white box framework as one
that can be extended either by (a) inheriting an abstract class and/or (b) overriding pre-
defined hook methods that are predefined by the framework when a pattern such as
template [GHJV9S] is deployed.

Black box frameworks are extended via the plug and play approach, specifically via
object composition or changing component properties. It resembles the notion of

components and beans development.

It is important to note that an application framework is often a mixture of these two extensions
rather than only one approach.

3.1.2 Current State of Reuse Practice
The current state of reuse practice lies mostly on the lowest level (APIs). with design patterns

[GHJV9S] gaining popularity in the past couple of years. The maturity of reuse in the form of

17

frameworks differs depending on the type of frameworks in discussion. Foundation frameworks
are reasonably mature; for instance MFC is extensively deployed in today’s on-going software
development effort. On the other hand, application frameworks are a less mature reuse practice
and are still emerging. There is a strong belief in the community that application frameworks are
promising in terms of delivering significant levels of reuse by leveraging the existing design and
implementation common to all application in the same domain. Thus. application frameworks
provide reuse in many facets, from system architecture, design. and implementation to conceptual
reuse that includes set of common terminology and view on the problem domain in discussion.
Nonetheless. several research problems remain to be solved in this area. Some examples are the
assessment or evaluation of frameworks. weak justification for using frameworks (due to steep
learning curve). process for developing frameworks. integration of multiple frameworks. and

documentation strategy for frameworks.

3.1.3 Apgproach Summary

Based on the nature of the domain. the framework proposed in this thesis work, Sandwich. is an
application framework that focuses on the domain of personal web assistants. It is important to
note that other sub-frameworks, such as the persistence framework, that are used in Sandwich
may still be considered as a foundation framewor.. Based on the adaption mechanism
classification scheme, Sandwich is mainly a white box framework that deploys several black box
components such as free third-party beans that are downloaded.

Among the listed outstanding research problems for frameworks at the end of Section 3.1.2, this
thesis provides a case study for using the hook model as the strategy in documenting frameworks.

3.2. Application Frameworks

An object-oriented application framework is a set of classes and their collaborations that provide
a generic and reusable architecture, design, and implementation method for a given family of
applications. An application framework consists of extensible area known as hot spots. To create
an application from a framework. one or more hooks are enacted to generate application code that
is attached to one or more hot spots of the framework. See Figure 7. From here onwards, the use
of the word “framework” implies application framework.

A framework sometimes comes with a set of default application code already generated by
enacting some of the hooks for some of the hot spots. Framework users can replace these default
18

features with their desired one easily. simply by re-enacting the set of hooks based on their needs.
Frozen spots of a framework are areas where framework implementations are already firmly in
place. Developers are strongly encouraged not to change these frozen spots. or otherwise, be

involved in the framework evolution.

application
code
N
enactment of hook(s) hook mto
Application
“°°" 2 Framework
el
IS a
hot spots
Figure 7: Hooks and Hot Spots

3.2.1 Application Frameworks versus Applications

An application framework is different from an application. An application framework can be
used to develop multiple applications belonging to the same domain. An application, on the other
hand, can be developed from scratch or from a framework. In the latter case. the application is
said to be an instance of the framework that it is constructed from. The two aspects of their
differences are [FHLS98b]:

(1) Level of abstraction. Frameworks are more abstract than applications. The design of a

framework must be flexible and abstract enough to support a family of applications, and

(2) Frameworks are, by their nature, incomplete; applications are typically self-contained and

thus complete by themselves.

A framework carries all the benefits of developing OO applications. In the context of reuse.
frameworks promise to deliver the benefits to a greater extent. A typical application reuse is
often in the form of implementation such as using some third party APIs. An application
framework provides for code reuse as well as design and domain-specific reuse such as common

terminology and view of the problem domain.

19

Due to the differences between frameworks and applications. the methodology in developing
frameworks is also different from that used in developing object-oriented applications. The most
important difference is the notion of inverted control. When developing an OO application.
developers have full control over the main control loop of the application. This is not true when
developing an application framework or creating an application from an application framework.
By its very nature, much of the design for an application is already completed before
development commences when using an application framework. Therefore a developer must be
willing to reuse someone else’s code and design. As an example. the developer may not be able
to alter the application’s main control because it is directed by the framework’s embedded flow of
control. This is also known as the “Hollywood Principle” or the “Don't call us. we’ll call you™
approach. A generally accepted principle in framework use is that a framework developer has to
make sure that the flow of control embedded in the framework can support the domain of
applications targeted by the framework.

3.2.2 The Pros and Cons of Application Frameworks

The decision to build any type of framework requires the consideration of many issues, most
importantly is whether or not a framework is needed. Although frameworks are promising in
terms of delivering a high degree of software reuse, there are also drawbacks in using it. In this
section, we summarize the pros and cons in building application frameworks.

Pros:

1. Reuse. As we have seen in Section 3.1, frameworks provide not only the code reuse but also
design and architecture.

2. Maintenance. All applications constructed from the framework share the common design
and code base and thus make the maintenance of these applications easier.

3. Quality. In addition to providing design reuse, the framework is also a tested design proven
to work and thus forming a quality base for developing new applications [FHLS99b]

Cons:

1. Steep learning curve. There is often a steep learning curve for developers who need to
familiarize themselves with the frameworks chosen for building applications from. Often,
some level of object knowledge is required for framework users who are not the original
framework developers to use a framework effectively.

20

2. Knowledge Transfer Challenges. Framework developers often face challenges when the
knowledge accrued in constructing the framework needs to be transferred to other developers
or maintainers.

3. Integration Challenges. Two main difficulties can be encountered when multiple
frameworks are involved in creating an application. [FHLS99c¢] describes these challenges
further from the hook perspective.

(a) A framework gap when services expected by a framework are not available from
any other frameworks deployed in the system, and

(b) A framework overlap when two or more frameworks provide the same service
through different means.

4. Scope. The breath of a framework is hard to determine when designing a framework. The
broader the area a framework covers, the less focus it has. On the other hand, if the
framework is too focused then its reuse may be limited.

5. Design Authority. To effectively use a framework, the application developers must yield
design authority. For example, their applications must conform to the overall architecture
and control loop of the framework chosen. Recall the “Hollywood Principle” described in
Section 3.2.1.

3.2.3 Framework Documentation
A good set of documentation is indispensable in order for frameworks to deliver their promises

and potential. Good documentation helps in various ways. For the framework users, good
documentation eases the process of hooking in new applications: for the framework developers.
documentation promotes communication, understanding of framework's dynamics and internal
design, and finally for framework maintainers, documentation helps them to comprehend objects.

modules, and subsystem dependencies.

But what constitutes a good set of documentation for frameworks is still an open issue. There
have been several framework documentation techniques proposed such as patterns from
[Johnson92], a cookbook from [KP88], formal specifications contract from [HHG90], exemplars
from [GM95]. motifs from [LK94] and hooks from [Froe96]. In this thesis, the hook model
proposed by [Froe96] is experimented with and used as the documentation technique for
Sandwich. Experience based on this method will be collected and summarized. The following

section reviews some background knowledge on the hook model.

21

3.3. The Hook Model

An important aspect of a framework’s classes is that they are adaptable; more specifically a
framework provides some mechanisms by which its classes can be extended. Sub-classing and
registering callbacks are examples of hooks. These extensions need to be well documented so
that developers who use the framework to develop an application know exactly where to look for
help. The hook model proposed by Garry Froehlich is a documentation technique that strives to
provide an answer to this. A typical hook for a framework is organized and written using the

following template [FHLS98a].

Name A unique name, within the context of the framework. that identifies the hook

Requirement A textual description of the problem the hook is intended to help solve. The
framework builder anticipates the requirements that an application will have
and describes hooks for those requirements

Type' An ordered pair consisting of the method of adaption and the amount of
support provided for the problem within the framework

Area The parts of the framework that are affected by the hook

Uses The other hooks required for using this hook. The use of a single hook may

not be enough to completely fulfill a requirement that has several aspects to
it, so this section states the other hooks that are needed to help fulfill the

requirement

Participants The components that participate in the hook. There are both existing and new

components

Preconditions® | Constraints that must be true before applying the hook.

Changes The main section of the hook that outlines the changes to the interfaces.
associations, and control flow amongst the components given in the

participants section

Post-conditions” | Constraints that must be true after applying the hook.

Comments Any additional description needed.

Table 3: Hook Template

! These ordered pairs are derived from the hook types that are elaborated in the following paragraphs.
* Older version of the hook model included a field known as "Constraints". This has been replaced by
"Preconditions” and "Post-conditions".

22

The type of hooks is determined using a two dimensional system: the method of adaption and the
level of support. The method of adaption dimension is based on how the framework is affected
(method of adapting) when the hook is applied; in particular whether the framework's features are
being enabled, disabled. replaced, augmented or added. The level of support dimension is the
opaqueness of the hooks.

Under the method of adaption dimension, we have five types of hooks:

(a) Enabling a Feature. When hooks of this type are used. a particular feature of the framework
(that is not on by default) is turned on, often through a black box approach.

(b) Disabling a Feature. This is similar to the above type, except here the feature of the
framework is turned off and may involve the disruption of other features.

(c) Replacing a Feature. When hooks of this type are used, a particular feature of the
framework is being replaced with a new feature that satisfies the same interface and
behavioral obligations as before.

(d) Augmenting a Feature. When hooks of this type are used, the existing flow of control of the
framework is intercepted with additional needed actions and then control is returned back to
the framework. Unlike replacing a feature, augmenting a feature adds to the behavior without
redefining the feature.

(e) Adding a Feature. When hooks of this type are used. a new capability that did not exist
before is added to the framework.

Under the level of support dimension. we have three types of hooks:

(a) Option. Hooks here are the easiest to use; pre-built components are often attached to the
framework using the plug and play approach. However, they are less flexible. Often, a black
box framework contains more hooks at this level than any other levels.

(b) Pattern. Hooks here are more flexible than those at the option level. Supplying parameters
to a class and sub-classing are the commonly used hook techniques. Steps required to enact
the hook(s) in fulfilling a requirement are outlined but details of the codes are deferred as
they depend on the application being developed. Often, a white box framework contains
more hooks at this level. When more than one class is involved in the hook. the level of
support is also known as collaboration pattern.

(c) Open-Ended. Hooks here are the most flexible ones and are more likely to be used by users
who are evolving and extending the framework itself. A deeper understanding of the
framework'’s internals is required.

The value of the*Type” field for a given hook is the method of adaption type followed by the
level of support type. Some examples are enabling patterns, adding options, and so on.

Sandwich will use the hook model as the technique to describe its extensions. This experience
will .urther evaluate the hook model developed by Garry Froehlich in his Ph.D. dissertation.

4. Sandwich

This chapter focuses on the architecture, design. prototypes and hooks of Sandwich. Section 4.1
gives an overview on Sandwich. Section 4.2 describes the actors involved in Sandwich. Section
4.3 discusses Sandwich requirements that have been captured with use cases. Section 4.4 details
Sandwich in terms of its subsystem architecture, design and its rationale, and hooks. Section 4.5
outlines the detail steps in creating new assistant in Sandwich and finally in Section 4.6 discusses
other considerations such as assistant that plays two roles and assistant-to-assistant collaboration.

4.1. Overview
The name Sandwich was chosen mainly because of the underlying architecture of the framework.

Sandwich is essentially built from the notion of a proxy server, an intermediary that lies between

a server and its clients. or is “sandwiched”.

As the WWW continues to grow, the question of what is the best strategy for an Internet user to
manage and control the pages that he or she has visited or wants to visit becomes more and more
important. Currently, there is no universal solution to this problem of data management.
Nonetheless, an a.tractive and viable answer would appear to involve personal assistantship add-
ins. We intend to explore this in this thesis.

Many assistant programs have been identified and built; however, almost all of them solve a
particular problem in a separate application domain. Also, each of these encompasses their own
architecture, design, and set of codes. However, because of their commonality, many of these
applications could share the same architecture and design in a proxy. For example, [SY97] also
tried to achieve additional or specific application functionality through the use of an intermediate
proxy. It is the goal of this thesis to identify these common services. and to design and develop
the corresponding building blocks. An application solves a particular problem; a framework
provides the solution basis to a set of common problems. Assistant programs are customized.
extended and built from the Sandwich from the documented hooks. Sandwich is intended to be
small and very focused.

Based on the techniques used by assistants to accomplish their objectives, we have identified two

groups of assistants. The first group is comprised of standalone assistants that are independent of

the user’s browsing activities. The second group is comprised of assistants that are dependent on
25

the user’s browsing activities and can be further broken down into two types: observing and
delegating assistants, based on their interactions with the end-users. The following figure depicts

this taxonomy.

Independent of
User's Browsing

Dependent on
User's Browsing

Activities Activities
Stand Alone Observing Delegating
Assistant Assistant Assistant
Request Response
Delegating Delegating
Assistant Assistant

Figure 8: Groups and Types of Assistants

This thesis explores a framework that supports the construction of the second group of assistants,
i.e. those that depend on the user's browsing activities. Thus, only observing and delegating

assistants are explored and elaborated on in this thesis.

Although observing and delegating assistants belong to the same group. they are slightly
different. The services provided by observing assistants can be accomplished by watching the
user's web activities and involve almost no dynamic user interaction during this observation
process. The output of this observation is often a meaningful output, in the form of a report. The
end user explicitly asks the assistant to present this meaningful output. The services provided by
delegating assistants are more dynamic and involve a lot more user interaction. A delegate
monitors and detects the right time for delegation. When an opportunity exists, it will prompt the
user for confirmation before proceeding with delegation. If the user agrees, then the delegation
process continues. Otherwise, the delegation is aborted.

26

4.2. Sandwich Actors

Actor is a term used in the UML [RGB99, Fowler97] requirement analysis phase for describing a
system’s end-user role. Like any other software system, Sandwich has many actors at different
levels of usage. [FHLS99b] describes three different roles (framework designers, framework
users. and framework maintainers) associated with the development and use of an application
framework. All these roles as well as an additional one. end-user role, apply to Sandwich. Each
is briefly described in this section.

Different individuals do not necessarily fill these different roles. For instance. the framework
designers may also play the role of framework maintainers. Also, the end-users may actually
download the Sandwich source code and start developing assistants (i.e. play dual roles of
assistant developer and end-user).

4.2.1 Framework Designers/Developers

These actors develop the original framework - Sandwich. They possess the broadest knowledge
of the internal structure and underlying architecture of Sandwich. They define and write the
hooks for extending the framework.

4.2.2 Framework Users (Assistant Developers)
These actors identify new assistant programs and develop them through the hooks defined and

documented by the framework designers. By doing so, large portions of the framework

architecture. design and implementation are being reused.

4.2.3 Framework Maintainers
These actors evolve and refine Sandwich. For example, they would ensure that Sandwich is

using the latest HTTP specification recognized by W3C.

4.2.4 EndUsers
These actors use Sandwich to facilitate and have more control over their daily web surfing

capabilities. When they first use Sandwich, they download, install and use Sandwich “as is”
(Sandwich packaging comes with a pool of personal assistants). Later. these end users may
purchase or even develop new personal assistants and add them into Sandwich. They may also
assist in defining new assistant programs together with assistant developers.

27

4.3. Use Cases

In this section, we will first provide an introduction to *use case.” including its origin. a
description of the current state-of-the-art and definitions of the terminology involved. We then
summarize how use cases are applied during the analysis phase of Sandwich. Use cases are used
to capture requirements for the family of applications that Sandwich targets (i.e. a few assistant
examples) and to generalize requirements for the framework itself.

4.3.1 Origin and the Current State-of-the-Art

Ivar Jacobson first introduced the concept of use cases in object-oriented software engineering
(OOSE) methodology. The basic idea is that the functionality of a software system can be
captured as a number of different use cases. Use case has gained popularity since then and has
become the standard in UML for capturing user requirements. There is common agreement
among software engineers that use cases are useful. However, people are still very confused
about the protocol in written use cases, in particular what to include and how to structure them.

4.3.2 Introduction
A use case, denoted as an oval, is a collection of possible sequences of interactions between the

system under discussion and its external actor(s). Figure 9 below is an example of a use case
diagram. An actor represents a role that entities (someone or something_) in the external
environment can play in relation to the system. An actor is denoted as a person. however, the
actor is not the actual person but rather the role the person or thing plays. The relationship

between an actor and a use case is denoted with an arrow.

uses —
X

Actor \

Use Case 2 Use Case 4

Figure 9: Example of a Use Case Diagram

28

In addition to the links between actors and use cases, there are two other types of links: uses and
extends. Both represent the relationship between two use cases and is denoted with an arrow and
a text label (uses or extend). They imply factoring out common behavior from multiple use cases
to a single use case: however, their intents are different. An extend relationship is used when one
use case is similar to another use case but does a little bit more. The rule of thumb to use extend
is to do so for cases which are variations on normal behavior. A uses relationship occurs when a
particular behavior is similar across more than one use case and thus can be factored out and be

reused by all the applicable use cases.

A scenario. sometimes referred to as a transaction, is a term commonly confused with use case
and is being used inconsistently. For instance, a scenario sometimes is used as a synonym for use
case. In UML and this thesis, a scenario refers to a single path through a use case, that is, like a
use case instance. Thus, a particular use case can be realized in one or more scenarios or has

many realizations.

4.3.3 Applying Use Cases

Applying use cases to frumework development is a little differsnt than for application
development. When use cases are applied to framework development, the use cases analysis
becomes complicated. because of the differences between a framework and an application as
discussed in Section 3.2.1. Recall that a framework is the skeleton that allows multiple
applications in a certain domain to be built from. Thus. the use cases of a framework are not
targeted towards one application but multiple related applications. often referred to as a family of
applications. In contrast, when use cases are applied to application development, the use cases

are simply the set of capabilities that the system needs to support to fulfill the one application’s

requirements.

We tackle this challenge by applying use cases to framework development in two stages:
1. Applying use cases to the ultimate family of applications that the framework is built for,

and
2. Applying use cases to the framework itself.

Although they can be conceptually viewed as two distinct steps, they are highly correlated. For
Sandwich. during the analysis of the use cases of the family of applications, we capture and

29

deduce the requirement patterns that would apply to group of personal assistants. These patterns

allow us to factor out the common, reusable and extensible use cases shared by one or more

assistants. These use cases are, in essence, the use cases of the framework. They are the basic
services that Sandwich should provide to support its targeted family of personal assistant
applications. This then leads to the reapplication of use case analysis. but this time to the
framework itself.

4.3.4 Application Family Use Cases
In this section, use cases is presented for a representative family of personal assistam application.

The following assistants were chosen for analysis purpose:
Auto POST Assistant
Search Summary Assistant
PICS Filtering Assistant
Simple Filtering Assistant
Change Mcnitor Assistant
Defer/Batch POST Assistant
Enhanced History Assistant
Time Keeper

RFA Mailto Assistant

Image Downloader

Each of the above assistants is described using the following template:

As necessary, a background section that provides the knowledge to understand the
assistant itself.

Actor(s) involved

Brief description of what the objectives and benefits of the assistant are
Pre-conditions of the assistant in accomplishing its objective

Main flow of the assistant in accomplishing its objective

Additional information

4.3.4.1 Auto POST Assistant
Actor: End user

Description: An auto POST assistant detects an opportunity to automatically perform an HTTP
POST using values that a user has posted before. This assistant can save a user significant time in
entering the same POST values over and over again. A specific example is the stock quote
obtainer example described in the introduction chapter.

Pre-conditions:
None

Main Flow:

1. The assistant remembers all POST requests: requested URLs and the posted name-value
pairs.

2. The assistant monitors and detects delegation oppcrtunity based on previously visited URLs,
i.e. remembered in the above step.

3. Assistant prompts the actor whether or not to proceed with the delegation and lets the actor
picks from a list containing previously posted name-value pairs. sorted according to the date
the requests were made.

4. If the actor decides to go with a previously posted set of name-value pairs, this assistant
generates 2 new request based on the one the user has picked from the list explicitly. The

actor may choose to ignore the list and create a new set of name-value pairs.

Additional Information: None

31

4.3.4.2 Search Summary Assistant
Actor: End user

Description:

When the actor performs a search on a search engine, say Yahoo, this assistant will ask the user
whether the same search is to be performed on the other popular search engines. If the actor
agrees, the assistant gives a summary of all the URLs returned on the first page of all the search
engines’ results. This assistant allows web searching on different search engines concurrently

and presents the search results in a consistent and perhaps personalized manner.

Pre-Conditions:
e The assistant contains a list of popular search engines URLs and allows the user to

add/remove them.

Main Flow:

1. The assistant monitors and detects the delegation opportunity, specifically when the actor-
requested URL is one of the above search-engine URLs that the assistant is aware of (see pre-
conditions).

2. The assistant asks the actor whether or not to proceed with the delegation and lets the actor
pick from the list of search-engine URLs.

3. If the actor decides to use the search summary assistant, this assistant will gather the search
results from all the selected search engines. The assistant will then integrate the information
and present it to the actor in a consistent manner. Even better, this assistant can allow the
actor to specify the template for constructing the summary of all the search results.

Additional Information: WebCrawler is an existing site that provides such functionality with the
exception that the user is not able to personalize the return pages.

32

4.3.4.3 PICS Filtering Assistant

Background:

PICS stands for Platform for Intermet Content Selection and is an Internet ratings standard
designed by W3C to allow Internet content selections. The idea is basically that PICS gives web
publishers a standard way to describe the content of web sites or web pages. In short.

e The web site will be registered with a labeling scheme, such as Recreational Software
Advisory Council on the Internet (RSACi at http://www.rsac.org/homepage.asp) and
SafeSurf at http://www.safesurf.com/classify/index.html.

e All web pages of the web site will be attached and associated with labels, and labels contain a

set of ratings.

e Labels can be generated either by the author of the web pages or through third party rating
systems.

e Labels can reside in the head section of the web pages using HTTP META tag (see Appendix

B)., or within a label database or bureau accessible through the Internet.

¢ In essence. the label notion introduced here classifies Internet information and thus provides a
scheme that allows content filtering/selection. Clearly, this infrastructure provides
capabilities that are far beyond and on a larger scale than simple filtering based on a list of
URLs. However, this system requires that all web pages be rated. [W3C] contains link to the
full IETF specification for PICS.

3

PICS Filtering Assistant (Con’t)
Actor: End user

Description:

This assistant allows the actor to perform content selection based on the ratings tagged to it using
the PICS infrastructure. With the labels and ratings notion, this assistant ensures that only
suitable material is presented to the actor. Inappropriate materials can be easily screened out for
children.

Pre-conditions:

e The actor has specified which ratings are not allowed.

® The assistant is interested in knowing the META headers of all pages requested as well as the
full requested URL.

Main Flow:

1. The assistant monitors and detects delegation. specifically if the response to the acto:’s
request contains ratings that are included in the actor’s disallowed ratings (see pre-
conditions).

2. If so (i.e. a response contains rating included in the actor’s disallowed ratings), then this
assistant responds that the content is inappropriate to be viewed. Otherwise, the request is

simply relayed.

Additional Information: [SY97] describes a technical solution (similar to Sandwich's approach)
that will support this particular assistant.

4.3.4.4 Simple Filtering Assistant
Actor: End user

Description:

This assistant is the same as the PICS filtering assistant with the exception that it does not use the
PICS infrastructure. This assistant allows the actor to perform content selection based on a list of
URLs or wildcard URLs such as http://*xxx.*. Like the PICS filtering assistant. this assistant
ensures that only suitable material is presented to the actor. Inappropriate materials can be easily

screened out for children.

Pre-conditions:
e The actor informs the assistant of the list of disallowed URLs.

Main Flow:
1. The assistant monitors and detects the delegation opportunity, specifically when an actor

requests a URL that is one of the disallowed URLSs (see pre-conditions).
2. When the opportunity exists, without prompting the actor. this assistant responds that the
content is inappropriate to be viewed. Otherwise, the request is simply relayed.

Additional Information: None

35

4.3.4.5 Change Monitor Assistant
Actor: End user

Description:

Upon visiting a page that has been visited before, this assistant compares the previous page with
the fresh pull page (from the remote web server). If the pages have changed. this assistant
responds with a different page that shows the differences between the previously visited and the
new page. This assistant can tell the actor right away whether or not a favorite page has changed
since the last visit. It can also show the differences to the actor.

Pre-conditions:

e The assistant saves all pages that the actor visits. In order to limit the volume, the user might
want to set a threshold on the number of pages or the amount of memory that can saved for
this purpose. Alternative, the user can indicate to the assistant that only the top 10 favorite
sites of his’her are to be saved for this purpose.

Main Flow:
1. When the actor revisits one of the pages that was saved according to the pre-condition, this

assistant would prompt the actor if the actor wants to view the differences report.

2. If the actor agrees. then this assistant will go and fetch the new page. compare them and
renders the difference report.

3. If the actor declines, then this assistant will simply relay the original request.

Additional Information: None

4.3.4.6 Defer/Batch POST Assistant
Actor: End user

Description:

This assistant allows an actor to defer a POST or batching up POST requests to remote web
server(s). This is accomplished by having the capability to let the actor performs POST to the
assistant only. This will defer the POST and thus batch POST becomes possible. Batch POST
allows an actor to perform POST to multiple sites concurrently and to manage transactions with
an all or nothing approach. For example, when making reservation for airline ticket and hotels,
an actor might want to hang on to the hotel reservation until an airline ticket for the trip is

confirmed. Currently. an actor has to open up multiple browsers to accomplish this.

Pre-conditions:
e The assistant monitors all POST requests by the actor.

Main Flow:
1. For each POST request, this assistant will ask the actor whether the POST should be deferred.

2. If the actor agrees. then the assistant saves the POST request parameters. The assistant then
informs the actor that the POST request has been saved as a deferred request.
. If the actor disapproves, this assistant simply relays the original request.
4. This assistant provides a separate interface that allows the actor to perform the batch POST

request.

Additional Information:

¢ Implementation of this assistant will require further in-depth investigation. For example,
current a web transaction cannot undo itself, what is the strategy of this assistant. The
implementation of this assistant will depend on how the server-side components manage end
user sessions. In addition, this assistant might only be feasible when all web transactions
conform to a standard.

37

4.3.4.7 Enhanced History Assistant
Actor: End user

Description:

This assistant saves all the URLs of pages (along with statistics such as how pages are obtained
and the number oi failed requests and so on) that the actor has visited and allows the actor to
navigate to them easily. This assistant gives an enhanced version of current browser’s history
list. It is an enhanced version since this assistant now remembers all URLs visited (on all
sessions) persistently, unlike a browser history list that remembers only a limited number of
URLs.

Pre-conditions:
o The assistant monitors all URLSs that a user has visited.

Main Flow:
1. The assistant provides an interface that presents to the actor URLs of all pages visited (along

with certain statistics) and allows the actor to go to the page again easily.

Additional Information: None

4.3.4.8 Time Keeper
Actor: End user

Description:

This assistant keeps track of the actor’s on-line elapsed time so that an alert is triggered when an
actor’s on-line (assuming the user only uses a browser when online) time has reached a certain
threshold. Some Internet service providers (ISPs) today still impose a limited amount of web-
time for a certain discount price. When this limited time is used up. the actor will be charged a
higher price. We see that a time keeper assistant behaves like a reminder and can be very handy
in this respect.

Pre-conditions:

¢ The assistant needs to know the start and end timestamp of the user being on-line and off-
line.

* The assistant allows the ac:or to set the threshold that triggers the alert. This threshold is the
limited minutes offered by the actor’s ISP.

Main Flow:

1. The assistant saves up and accumulates the elapsed time (the difference between end
timestamp and the start timestamp of the user’s being online).

2. The assistant pops up an alert message when the accumulated elapsed time is about to reach
the threshold that is set in the pre-condition.

Additional Information: This assistant use case assumes that the user’s online time involves

only the user’s web browsing activities, i.e. not including telnet and ftp.

39

4.3.4.9 RFA Mailto Assistant
Actor: End user

Description:

e This assistant allows the actor to specify a request for an answer (RFA) to all mailing
addresses found on web pages browsed oy the actor. If the actor is unable to find an answer
to a question after browsing all related sites, this assistant allows the user to send a (the same)
question to all of these related sites that contains a valid e-mail address that is not the

webmaster’s one.

Pre-conditions:
o This assistant needs to track all the contents of web pages.

Main Flow:
1. The assistant provides an interface that allows the actor to specify the RFA to be sent out.

2. The assistant informs the actor whether the action is successful or not.

Additional Information: None

4.3.4.10 Image Downloader
Actor: End user

Description:
This assistant automatically schedules itself to go to sites that the actor has browsed for the day
and downloads images onto the actor’s desktop. This assistant can save the actor time if the

image downloading activity is done regularly.

Pre-conditions:
e The assistant needs to know the sites visited by the user for the day. Alternatively, this

assistant can allow the actor to specify specific URLs.

Main Flow:

1. The assistant provides an interface that allows the actor to specify where to download the
images fro:m, whether a certain URLS or all sites browsed for a certain days.

2. The assistant schedules it-self to go to the designated URLs and download images.
The assistant notifies the actor when step 2 finishes.

41

Image Downloader (Cont' d)

Additional Information:
e The requirement of this assistant is derived from an actual question posted by Damon
damon my-dejanews.com on April 14, 1999 on the comp.lang.java.programmer

newsgroup.
“I find myself going to the same web sites everyday to down.oad images for work and I
would like to fully automate the task. and possibly use a timer so the images can be

waiting for me when I get to work.

Can Java read the URL locations of numerous GID/JPG images. retrieve them, and
write them to one directory. or does its security restrictions cause problems?”

42

4.3.5 Sandwich Use Cases
After going through the use cases of the application families, we now discuss the use cases of the

framework itself. Each of the use cases below is described in detail using a similar but simplified

template as above.

O
identifying an assistant \
%/——CD -y

End User adding a new assistant creating a new assistant
O uses S~
integrating an assistant with
setting an assitart activevinactive % a,:,gﬁch Interface

e
o

prioritizing an assistant \
customizing Sandwich with hooks \)Q\

Framework
Maintainer

Figure 10: Sandwich Use Cases

4.3.5.1 Identifying an Assistant
Actor: End user, Assistant Developer

Pre-conditions:

None

Main Flow:

1. The end user describes the desired assistantship to the assistant developer.

2. The assistant developer confirms the requirements by writing down the use case of this
desired assistant using the template used above.

3. The end user accepts or refines the use case.

4. The assistant developer decides whether the new desired assistant is a candidate for
Sandwich’s pool of assistants.

Post-conditions:
® A conclusion on whether a new kind of assistantship can be created by either using an

existing one or developing a new assistant for Sandwich.

4.3.5.2 Creating a New Assistant

Actor: Assistant Developer

Pre-conditions:

¢ The assistant is currently not in Sandwich’s assistant pool.

¢ The actor applied the use case Identifying an Assistant and the conclusion is true in that the
assistant is a candidate of Sandwich.

Main Flow:

1. The actor defines the functionality of this new assistant.

2. The actor creates the new assistant with the use case Customizing Sandwich with Hooks.

3. The actor documents the parameters to be configured for adding this new assistant to
Sandwich.

Post-conditions:
e The new assistant can be added to Sandwich's pool of assistants using the parameters

documented.

4.3.5.3 Adding a New Assistant
Actor: End user

Pre-conditions:
The actor applied the use case Creating a New Assistant.

Main Flow:

1. The actor edits the property file to include this new assistant, using parameters documented
down in the use case Creating a New Assistant.
The actor applies the use case Setting an Assistant to be Active/Inactive.
The actor restarts Sandwich and the new assistant will be initialized.

Post-conditions:
e Sandwich initializes this new assistant during start up.

4.3.5.4 Setting an Assistant to be Active/Inactive
Actor: End user

Pre-conditions:
e The assistant is currently registered with Sandwich.

Main Flow:
1. According to the need, the actor changes the flag that indicates whether an assistant is active

or not in a property file.
2. The actor restarts Sandwich to make the changes effective.

Post-conditions:
e The assistant becomes active or inactive depending on the new flag set.

47

4.3.5.5 Prioritizing An Assistant
Actor: End user
Pre-conditions:

e The assistant is currently registered with Sandwich.
e The assistant acts on behalf of the user. i.e. delegating the user. for “postable” pages.

Main Flow:
1. According to the requirement, the actor changes the priority value for the assistant in a
property file.

2. The actor restarts Sandwich to make the changes effective.

Post-conditions:
e Priorities of all active delegating assistants are unique.

4.3.5.6 Integrating an Assistant with Sandwich Interface (Admin Application)

Actor: Assistant Developer or Framework Maintainer

Pre-conditions:
e The assistant is added to Sandwich or is being created.

Main Flow:

1. The actor decides that the assistant has a GUI interface that can be integrated into the default
Sandwich interface, the administrative application.

2. The actor enacts hooks that allow this assistant to integrate with the default Sandwich

Interface.
3. The actor restarts Sandwich for testing and for changes to be effective.

Post-conditions:

e End user may now view the result of the assistant through this default Sandwich interface.
the administrative application.

49

4.3.5.7 Customizing Sandwich with Hooks
Actor: Framework Maintainer

Pre-conditions:
* Hot spots of Sandwich that can be customized are documented with hooks.

Main Flow:

1. The actor determines which hot spot of Sandwich needs to be customized.

2. The actor follows the hook in customizing the hot spot. i.e. adding/removing capabilities or
enabling/replacing default implementation.

3. The actor restarts Sandwich to test the new customization.

Post-conditions:
e Some capabilities are added/removed or default implementation is enabled/replaced.

50

4.4. Sandwich Subsystem, Design, Hooks and Rationale

Section 4.4 and its subsections describe the framework subsystem, design and its design rationale
as well as the hook documentation for using the framework. Each sub-section encapsulates a core
functionality of Sandwich. Appendix D contains a summary on the UML notation that is used in
this thesis, especially this section. We begin this section with an overview of the subsystem
architecture of Sandwich. as shown in Figure 11.

The two main components of Sandwich are the HTTP proxy and the pool of assistants. The
proxy is responsible for taking an end-user request and fulfilling it using the pool of active
assistants. The HTTP proxy initially loaded all registered assistant into memory by reading in the
assistant.properties file using the persistence framework. Note that an assistant can be registered
and not be active in Sandwich. The Sandwich interface. referred as the administrative
application, is secondary and provides an integrated GUI for interacting with the proxy (such as
notifying the HTTP proxy when user has indicate shut down on the Sandwich Interface) and
viewing any result of the assistants. The persistence framework is used in Sandwich for reading
and updating the persistent storage such as the following property files,

® sandwich.properties that contains all configurable property of Sandwich in general.

e assistant.properties that contains all assistants in the pool. and

e other assistant-specific property files that are used by the assistants
The content of the sandwich.properties and assistant.properties files is included in Appendix E.

Observing
Assistant 1

Request
Delegating
ssistant 1

Administrative
Application
(Sandwich
Iinterface)

lg———observes ——»1 HTTP Proxy (eg—_creates,
interacts ~—gm.

A P

uses uses

Persistence Framewo;_l
BN \

read read read

Figure 11: Sandwich Subsystem Architecture

51

Thus, the Sandwich environment is essentially comprised of
® a set of classes that made up the HTTP proxy, Sandwich interface (Admin Application),
persistent framework. registered and active assistants, and a set of property files, and

e the support to create new assistants

In order to deploy Sandwich, the end user first configures his’/her web browser such that all
browsing activities go through Sandwich’s HTTP proxy. For example, in Netscape this can be
easily accomplished through the Edit/Preference/Advanced/Proxy screen. The end user then
invokes the command to stan Samdwich, where the HTTP proxy starts as a daemon and the
administrative application starts as a GUI application. The latter will bring up a small window
that shows all registered assistants by their names, see Figure 12. The persistent framework is
loaded into memory and used by both the proxy and the administrative application to read any
property files. Registered assistants are instantiated; the HTTP proxy uses only assistants that are
set to be active when fulfilling the user’s HTTP requests.

Sandwic h Adoan tialive Applc shion

Enhanced History Assistant
CheckFree AutoPost Assistant
Direct Hitp Assistant

Figure 12: Sandwich Interface, the Administrative Application

Another important facet of Sandwich is the support for creating new assistants. Sandwich
contains a set of hooks in creating new personal web assistant. The initial step of this process
focuses on identifying the assistant and confirming whether or not Sandwich can support it.
During this step, Sandwich might be used (as is) to monitor the user’s browsing activities and to
provide an in-depth analysis on the data transmission that are happening for a particular site.
When this assistant’s requirement gathering and analysis phase is finished. a conclusion is made
as to whether or not Sandwich can support this new assistant. If so, the next step is to create the
new assistant using the documented hooks of Sandwich. First, determine the type of this new
assistant. The two types that are currently considered in Sandwich are observing and delegating

assistants. If the new assistant simply monitors and provides a specific output based on the user’s
§2

browsing activities. then the new assistant is an observing assistant. If the new assistant monitors
and delegates on the user’s behalf for “postable” pages (e.g. forms that have a “submit” button),
then the new assistant is a delegating assistant. Based on the type of this new assistant. one or
more documented hooks of Sandwich should be enacted to create this new assistant. After the
development of the assistant is finished. registered the new assistant with Sandwich by adding
new entries to the assistant.properties file. Finally, restart Sandwich such that this new assistant
is now a candidate in the pool of assistants. Section 4.5 includes the details on the steps in

creating new assistant.

Subsystem Keywords
From the subsystem architecture. we have chosen the following keywords to represent the main

components of Sandwich. These keywords will be used in the "Area" field of hook
documentation.

e keyword proxy covers the HT TP proxy component

e keyword personal assistant covers the pool of assistant component

e keyword administrative covers the administrative application component

e keyword utilities covers the persistence framework as well as other support of Sandwich

such as logging and the regular expression

UML Stereotypes
One of the features of UML is the ability to attach stereorype to classes. A stereotype is a type of
model element defined in the model itself. The basic information content and form of a

Stereotype are the same as an existing base model element but with an extended meaning and
different usage [RJB99]. We have included this brief section on stereotype because the
documentation of Sandwich has used the following three stereotypes. Figure 13 illustrated the

notation for these.

(1) The prototype stereotype is used through out this thesis to indicate classes that have been
created for prototypes of this thesis,

(2) The hook stercotype has been used to indicate the hot spot of the framework where there is a

hook documentation (see remarks below),
(3) The default stereotype has been used to indicate the default implementation of a certain hook

of the framework

53

<<h oglo> «<<prototyp e>> <<default>>
Class C Class D Clam E

Figure 13: UML Stereotypes Deployed

Remarks:

Luyuan Liu’s Master Thesis [Liu99] at SERL, which is currently in preparation, is investigate
using UML project notation to model hook. For simplicity. we have chosen to use UML
stereotype to diagrammatically show where the hooks are.

4.4.1 Sandwich Startup

When Sandwich first starts up, it creates and starts the proxy and the default administrative
application. Both of them are registered as observers of each other. This approach allows them
to communicate to each other via the observer pattern [GHJV95]. We describe the approach by
first giving a dynamic view of how Sandwich starts, followed by a static view of the major
classes involved and their relationships. We conclude this section with a discussion of the design

rationale.

4.4.1.1 Dynamic View
The program begins execution in the public static void main method of the class Sandwich

according to the following scenario. Please refer to Figure 14 and Figure 15 when going through

the following.

1. Load the main properties file: sandwich.properties into a SwProperties object using the

persistence framework.

2. Create the administrative application (a hot spot of Sandwich). This is accomplished by
invoking the createAdminAppin factory method of the class AdminAppinFactory. passing in
the administrative class name obtained from the SwProperties object created in step 1. This
administrative class name is a configurable parameter in the sandwich.properties file.

3. Using dynamic class loading and instantiation. AdminAppinFactory creates the appropriate
administrative application or object.

4. Invoke the srarts() method of the administrative application.

5. Create the HupProxy (a frozen spot of Sandwich), passing in the configurable port number
and the assistant properties file name, both of which are obtained from the SwProperties
object and thus are configurable parameters in the sandwich.properties file.

6. Get the SwAdmin model object from the administrative object created in step 3.

7. Register this SwAdmin object as an observer of the HrtpProxy object created in step 5.

8. Register the HrpProxy object created in step 5 as an observer of the SwAdmin object.

9. Invoke the srarts () method of the HrtpProxy.

Note: Step 1 will be elaborated in Section 4.4.6; steps 2, 3, 4 and 6 in the Section 4.4.5; steps 5
and 9 in Section 4.4.2.

Braosies AppinFactony Agpinif

| 1.0edsanawich.prop | I [
o

U l |

2. alF=cresteAdminAppin(p getiADM _CLASS_NAME))_ | 3. instantiste I
e -

i g |
4. starte () ;r {

| o
!

|
|
|
|
I
|
|
R l
 sagombrre 1 | |
B

[SR

4

6. megetSwAgmin(l

I

[~

l 8. addObserver(px) I r 7['

! l [g |

! 9..!-:1?0 ! ! - [“

| | I

l l
| I

Figure 14: Sandwich Startup Dynamic View

§§

4.4.1.2 Static View
Figure 15 shows a static view of the major classes that were involved during start up. Sandwich

is the class that contains the static public void main method where the program begins execution.
The HrtpProxy and SwAdmin classes implement the JDK Observer interface and extend the Java
Developer’s Kit (JDK) Observer class in order for them to be observer as well as observable
objects. Classes on the right hand side are part of the administrative component and will be
further elaborated in Section 4.4.5; classes on the left-hand side are part of the proxy component
and will be further elaborated in Section 4.4.2.

Sandwich

o Q@main() N
<<interface>>
Obssrvable Observer 7 -~ ~
J/ uses
QuddObs =~ ~
ove0 11 Qupdate 7 ~
4 we AdminAppinFactory
); s/
/ QcreateAdminAppin(
<<interface>>
HutpProxy Obssrver creates
@poerverSocket Obmervable
<<interface>>
Qupdate(
Qutart(™ -~ ~ ed QuddObserver) AdminApplnIF
‘observes A
~ ~ \ — QgetSwAdming
~ ~ —_ Quta 1)
- ~ __fetums
opsener. — — SwAdmin -
Qtinish()

Figure 15: Sandwich Startup Static View

4.4.1.3 Design Rationale

Why does the class Sandwich exist?

Recall that the class Sandwich consists of the static public void main(), where the program
execution begins. Initially, this main method existed in the class HitpProxy and there was no
Sandwich class. This approach has implied. however, that Sandwich is the proxy itself. To
reduce this misconception, the class Sandwich is introduced and in its main method a HupProxy
object is created and started. The administrative application is another object created and started
by Sandwich in its main method. This delivers the clear message that Sandwich is comprised of
the proxy and an administrative application. In addition, having adding this Sandwich class
facilitates the future need to add new proxies support for other protocols such as FTP, NNTP and
SMTP.

56

Why must the administrative application be registered as an observer of the proxy before the
proxy is started?
Recall step 7 of the scenario above that the administrative application is registered as an observer

of the proxy before the proxy is started in step 9. These steps must occur in this particular order
because the administrative application needs to be notified in order that its interface can be
updated when the proxy finishes loading all active assistants in its star?() method.

4.4.2 HTTP Proxy

This component of Sandwich is responsible for setting up the pool of assistants. In this section,
we will elaborate further on the dynamic and static view for two scenarios: one for starting up and
one for fulfilling an HTTP request.

4.4.2.1 HttpProxy Startup

HupProxy Startup Dynamic View

In conjunction with Figure 16 and Figure 17 the following section elaborates on the start up
scenario of HttpProxy by Sandwich.

1. The main program execution in class Sandwich creates (i.e. instantiates) the HrmpProxy
object. Recall that the port number and the assistants’ configuration file name are passed in
during this instantiation.

2. The main program execution then invokes the starr() method of the HttpProxy.

3. With the given assistants’ configuration file name, i.e. assistant.properties, HttpProxy loads
the content of this file into a SwProperties object using the persistence framework.

4. Using this SwProperties object. all assistants (i.e. those with class names indicated in the
assistant.properties file) will be instantiated using dynamic class loading.

5. For all active observing assistants, i.e. those that implement the ObservinglF, HttpProxy will
registers them to be observers of the HrtpHeader objects of interest. All the class names of
interested HTTP headers by each observing assistant can be obtained from the above

SwProperties object.

57

6. For all active delegating assistants, HrtpProxy creates them and then puts them into priority

queue.

7. Once loaded, HupProxy fires the ASSISTANTS_UPDATE event so that observer such as the
administrative application can refresh its interface to show all active assistants.

8. With the given port number. HrtpProxy creates a JDK ServerSocket object.

9. HnpProxy invokes the accept() method of the ServerSocket object and this will continuously

listen for incoming connections.

Note: Step 5 will be elaborated in Section 4.4.3; step 6 in Section 4.4.4.

58

Properties :f Assistanl

I I

1.creates(port,apFieNam e)
~ '

|
|
U I
|
I

2. start() ’

|
I
!
I
I
3. load (apFieNam e) I I
o I
4. creates assistants l
' Sy

S. registers obserung assistants

6. queue up delegating assistants

<]

7. firas ASSISTANTS_UPDATE event

I
I
I
|
S | I
!
I
4

I
I
I
I

8. croatoSemréocko(pon)

9. accep}()

T

|
I
|
I
|
|
I
!
!
>,
gt
I
I
!
|
I
I
|
I
|
|
!

Socket

|

I

I

I

I

I

I

I

I

I

[

I

l

!

I

I
—U
| I i
I I I

| I I I I
| I I

Figure 16: HttpProxy Startup Dynamic View

HupProxy Startup Static View

This section presents a static view of the above scenario. Each collaboration show in

Figure 17 will be briefly described below along with the step number of the above scenario where
the collaboration occurs.

e HupProxy and Assistant

HnpProxy is responsible to dynamically instantiate all registered assistants of Sandwich, i.e.
those whose class names appear in the assistant.properties file. (Step 4)

59

® HnpProxy and ObservinglF
HrnipProxy asks each assistant if it is an instance of ObservinglF. If so, then HrtpProxy asks
for its interested HTTP headers list and registers the assistant as an observer of each of these
headers. (Step 5)

e HupProxy and HttpHeader
When registering an observing assistant as an observer of the header it is interested in.
HnpProxy collaborates with each of the HrpHeader objects that are of interest to the
observing assistant. (Step 5)

® HnpProxy and Delegatingl F
HrtpProxy asks each assistant if it is an instance of DelegatinglF. If so, then the assistant
object is put into a queue, the order of which is based on the assistant’s priority set. (Step 6)

HitpProxy
@prerversocket | Aseistant
—‘do-:
Qutart(T creates. — ~ﬂ.tlFiI0
Qprame
/ AN Q<cabstract>> finish ()
uses Q<ccabstract>> [oad()
<<interface>> / N\ I
,. .
DelegatingiF register observing assstants <<intorface>s
/ ObservingIF
/ Qupdate(
v Qg etFilterByHeaderNam e(
HitpHeader QeetSpecification()
Q@eetObeerving Active(

Qg etObservers)
difyObservery)
QgetDataElement()
”notifyA-'Qantso
QragisterObserving Ass stant()
QderegisterObservingAsastant()

Figure 17: HttpProxy Startup Static View

4.4.2.2 HttpProxy Servicing a Request

HupProxy Servicing a Request Dynamic View
In conjunction with Figure 18 and Figure 19, the following section describes how the HrtpProxy

fulfills an HTTP request.

1. When an incoming HTTP request is made by the end user. a new socket connection to the
proxy is made. The proxy then instantiates a new HeupServiceThread object responsible for
fulfilling this request.

2. The HupServiceThread object constructs a HrtpRequest object from the socket connection.
3. The HnpServiceThread object traverses through the queue of request delegating assistants.

4. When the object returned from step 3 traversal is of type HmpResponse. then the
HrnpServiceThread object proceeds to step 5.

5. The HnpServiceThread object proceeds to traverse the HttpRequest object through the queue
of response delegating assistants.

6. The HnpServiceThread object fulfills the request by invoking the original HttpRequest
object’s receiveResponse method, passing in the final HipResponse object from the step 4 or

S.

Note: Step 3. 4, and S will be elaborated in Section 4.4.4. The scenario for which observing
assistants collaborates for each HTTP stream will be described in Section 4.4.3

61

ServiceThmad Besponse

I

I 2. constructs

1. instantiate

|
1

3. o=transverse request delégates

—

|

|
4. o==HttpResponse, rejsp:o

5. ol=HttpResponse, resp=transverse response delegates

6. mceive response (resp)

!
| |
| |
| |
| |

> |
l |
| |
| |
l l
| |

- — =
- — — —

Figure 18: HttpProxy Servicing Request Dynamic View

HupProxy Servicing a Request Static View
This section includes a static view of the above scenario. Each collaboration shown in Figure 19
is briefly described along with the step number of the above scenario where the collaboration

occurs.

e HupProxy and HupServiceThread
For each incoming HTTP request. the HrmpProxy creates a new thread, ie. a
HrtpServiceThread object, to handle it. (Step 1)

® HnpServiceThread and HttpRequest
Each HrtpServiceThread object has a handle to the socket connection that contains the end
user’s HTTP request. The HnpServiceThread object reads the content of the socket and
constructs a HrpRequest object from it (Step 2). Another collaboration occurs when the
HupServiceThread finishes the request by invoking the receiveResponse method of
HnpRegquest (Step 6).
62

e HnpServiceThread and DelegatinglF

When the HttpProxy creates a HutpServiceThread, object references to the queues of
delegating assistants, i.e. those that implemented the DelegatinglF. are passed in. The
HnpServiceThread object traverses through these queues of delegating assistants with its

constructed HttpRequest object. (Step 3. 4, and 5)

e HnpServiceThread and HripResponse

After the HnpServiceThread object traverses through the pool of delegating assistants, the
final HrtpResponse object is created and returned to the HrtpServiceThread. (Step S)

HttpProxy
MnorSocnt
Qstart()
starts
S -
HitpServiceThresd
"ocbt
P
ll’.l‘l‘v.f-!’ ‘Uﬂo
<<interface>> < — - >y <
Delegating!F 7 .
yd creates
X gets \\‘
crestes - HitpRegquest
7 -
q P oclet
HttpR on se ttpRequedURL
pree tipVersion
>—

QHtpR epon m()

QreceiveR esponee ()
QHtitpReguest()
Qin itReqPrope rties()

Figure 19: HttpProxy Servicing Request Static View

4.4.3 Observing Assistant

Observing assistant functions as an observer by recording required data from a user’s browsing
activities and producing specific output from it. The three main data elements that exist in an
HTTP request and response pair are (1) HTTP Headers, (2) HTTP Content (i.e. the resources
itself — gif and html pages) and (3) HTTP META Tags that appear in the head portion of the
HTML content itself. Both the content and META tags appear only in the HTTP response
stream; HTTP Headers appear in both the request and response stream. Appendix A contains a

list of all valid HTTP Headers, while Appendix B elaborates on HTTP META Tags.

63

notify

HTTP
Headers

register interest in

observing %
assistant %

register interest in

II notify

Figure 20: Data for Observing Assistants

In this section, we

(1) present a dynamic view of how HttpProxy creates and initializes observing assistants,

(2) present a dynamic view of how observing assistants get its event notification when one of its
registered headers contain interesting content appears in a HTTP stream,

(3) provide a staiic view of major classes that are involved here and their collaborations,

(4) outline the New Observing Assistant Hook,

(5) describe an implementation example of the New Observing Assistant Hook. the Enhanced
History Assistant prototype,

(6) discuss any relevant points of the design rationale

4.4.3.1 Observing Assistant Initialization

The following scenario, in conjunction with Figure 21, describes the dynamic view of how
observing assistants are initialized by HrpProxy during startup. Thus, it elaborates on step S of
Figure 16 where the proxy component of Sandwich registers observing assistants to be observers
of their interested HTTP headers. Given an observing assistant. its initialization is successful
when the registerObservingAssistant method of all the interested HTTP headers of the assistant
are invoked, i.e. the final step 6. However, in order to accomplish this, several steps (from 2 to 5)
are required to create JDK Class and Method objects using the JDK reflection API. Using this
approach makes the coding very generic and can handle the registration of all observing assistants
to their interested HTTP headers in only a few lines of code.

64

For each assistant created, the HipProxy checks if the assistant is an observing assistant by
asking if the assistant is an instance of Observing/F. If so. then the following steps proceed.
Otherwise, the HripProxy proceeds with the next assistant.

The HupProxy creates a JDK Class object for ObservinglF using the static forName method
of the class Class.

The HutpProxy creates a JDK Class object for each of the interested HTTP headers of the
assistant. The class names for these headers are obtained from the Assistant itself, through its

AssistantSpecification containment.

For each class object of the assistant’s interested HTTP headers created in step 3, get the JDK
Method object with the method name as registerObservingAssistant and argument type as
ObservinglF.

For each class object of the assistant’s interested HTTP headers. create a new instance.

For each interested HTTP header object. invokes the registerObservingAssistant method
dynamically. passing in the corresponding assistant object.

| I
[} 1.instanceoXObs ervingiF) |

I I

! I

2. cOtm=Class.lorNam ¢(Obs eninglF)
T

2.1 creates

I
I u
:l.cH.ldu-Chn.banmc(aHradorCl-uNamo) l
I
[i

4.MmegetM omod('rlogi.loroumngAuisunt'.cOb.)
L

3.1 creates

4.1 creates

I
|
+
I
I
I | I I
I
I
I
I
I
I
|

l s.h-nnhlincéo T 5.1creates l

!
H

I
S.inwke(h.a)

I

I

I
l |
I
Figure 21: Observing Assistant Initialization

4.4.3.2 Observing Assistant Notification

The following scenario, in conjunction with Figure 22, describes how an observing assistant is
notified when one of its interested HTTP headers, the HitpRequestURL, exists in an HTTP
request stream. The same scenario is applicable to all other supported headers as well as the
HTTP response stream. Both HrtpRequest and HitpResponse objects contain a set of HrtpHeader
objects.

1. Recall that the servicing thread for each incoming HTTP request stream creates and
constructs a HrtpRequest object from the socket connection.

2. During the construction of the HTTPRequest object, all headers (that appear in the request
stream) will have a corresponding object created.

3. A more specific example of step 2 is that a HTTPRequestURL object is created and set to

have the URL that the user has requested, e.g. http://www.cs.ualberta.ca/. Note that
66

HnupRequestURL object is also considered to be of type HTTPHeader because
HTTPRequestURL is a subclass of HTTPHeader.

4. The HTTPRequestURL object then go through its list of observing assistant. checking if its
current data element. i.e. http://www.cs.ualberta.ca in this example. matches the filter
expression of the assistant for the class name HTTPRequestURL. This latter is accomplished
through the regular expression API described in Section 4.4.8.

5. If so. then the assistant’s update() method is invoked. It is now up to the assistant to handle
this notification inside its updare() implementation. The data available to the assistant in this
update() method includes the thread number of the HrpServiceThread responsible for this
request and the HrtpHeader object.

So, generally speaking, each HrtpHeader object will go through its list of observing assistants
asking each assistant if the header’'s current data element is interested by the assistant (i.e.
matches the assistant’s regular expression). If so, then the assistant's update() method is invoked.
Thus, Sandwich pre-defines the flow of control for notifying observing assistants and the actual
implementatic in handling these notifications is defesred to the assistant developer. see the
template pattern by [GHJV95].

o HitpRegyest h: HttoHeader yri:Hitp a: ObseryvinglF

BegyestURL
I I I |
I | I I
1. ‘:_"ﬂ“_cg 2. create;L 3. creates % |
<— [_ 1 |
I 4.b=meetRegExpression(HttpReque{stURL)_
| g
| I
' 5.b==true,notifyObservers I
| — |
| <— 6. updatem
|
I
I
I
[

— — —=C

L] |

I I
I I
l I
I I
Figure 22: Observing Assistant Notification Dynamic View

4.4.3.3 Observing Assisant Static View
Figure 23 illustrates a static view of the major and stereotyped classes that are involved in

supporting observing assistants.

Stereotyped classes here can be broken down into the following two groups:
e Class NewObservingAssistant shows where the hooks are for the New Observing
Assistant Hook.
e Class EnhancedHistoryAssistant is a class created for the prototype of an observing

assistant.

Major classes and their collaboration are included in the following:
e HupProxy and HnpHeader
See Section 4.4.2.

HnpProxy and Assistant
Recall that HrtpProxy creates all assistant objects from the assistant.properties file during

startup.

HnpHeader and ObservinglF

Each HnpHeader contains a data element that represents the value of the header. e.g.
http://www.cs.ualberta.ca for the requested URL header. When the data element changes
state, the HrpHeader will traverse through its list of registered observing assistant (i.e. those
that implements the ObservinglF). The observing assistant will be notified when the new
state of the data element is of interested to the assistant, as determined by the regular

expression set for the header.

HnpRequest/HttpResponse and HnpHeader
Both HrtpRequest and HrtpResponse objects contain a set of HTTP headers that appear in the
request or response stream, respectively.

HnpHeader and HrtpRequestURL

An HnpRequestURL object reprcsents the requested URL of the request stream.
HrpRequestURL is a subclass of HripHeader since the requested URL is simply a header
(with value) that appears in the request stream. For other subclasses of HitpHeader that are
supported. see Section 4.4.9.

ObservinglF and AssistantSpecification

Each observing assistant has an AssistantSpecfication object that gives the list of headers by
their class names along with their regular expression set. Only headers that can potentially
become interesting to the observing assistant based on its content are included in this list. In
Java, an interface can only contain a final attribute; therefore, the containment of an
AssistantSpecification is implemented in the concrete class that implements the ObservinglF.

AssistantSpecification and Hashtable

Class Hashtable is a utility class from JDK. An AssistantSpecification object is simply a data

structure in the form of a hash table. The name column of this hash table contains a String

type object for the header class name: the value column contains a String type object for the

header’s regular expression. Thus, an AssistantSpecification object is able to return the
69

regular expression of a given header class name. The following figure is an example of an
AssistantSpecification object for an assistant that is interested in (a) all URL ever requested
by the user, (b) all requests with response codes equal to 200 for OK or 304 for Not
Modified. or 404 for Not Found.

name value

com.htip.HitpRequestURL

com.http.HitpResponseCode 20013041404

In the assistant.properties file. the following entry will be created for this assistant.

1_assistant_specl=com.http.HttpRequestURL. .
1_assistant_spec2=-com.http.HttpResponseCode, 200304404

NOTE:

(1) The regular expression API assumed in this example is the default implementation that
comes with Sandwich. Sece Section 4.4.8.

(2) This example is actually from one of the prototype assistants, Enhanced History
Assistant, described below.

70

HitpProxy
FnorSocnl :
Qetart)) N ~ HttpRequent
/ registers observing ssmsant Qpeocrer
creates ~
" ~ Hrpieader |~ QraceiveResponse(
Assietant QeI bservend
e ’uel'yomnono
etaFile QgetDstaEliementQ
ame ’\M"yA.Ilnnm
QregisterObeerving Amsistant \‘
Qc<apstract>> finish () *cnguu@bumngA-mnlo HutpResponse
Qccadstract>> load(y S
A naoufies QrittpResponse)
<<interfec e>>
Observing If
HitpRequestuRL
Qupdate)

QueFiiterByHeadeName(
QuetSpecitication()
QeetODservingAcave(

dA‘\
7

AaigantSpecificaton

/
/

|
I
/ | \
<<pO W type>> ’
EnnanceMistoryAmistant
l

< y>> headerName : String
| <velue>> flter : Stnng

<<cho o>
NewOQpservingAmistant

Figure 23: Observing Assistants Static View
After describing the static and dynamic view on the behavior of observing assistants, we now
look at the hook used to create a new observing assistant, New Observing Assistant Hook. We
first outline this hook using the hook template proposed by [Froe96] and reviewed in Section 3.3.
Then, we provide an example of how this hook is enacted by one of the prototype assistants,
Enhanced History Assistant. Other assistants that are included in the use case and are considered
as observing assistant include the Time Keeper, RFA Mailto Assistant and Image Downloader.

71

Name New Observing Assistant Hook

Requirement Add a new assistant that is interested in the user's browsing activities
Type Adding Pattern

Area Personal Assistants

Participants Abstract class Assistant, interface Observingl F

Uses None

Pre-conditions None

Changes

L.

new subclass NewObservingAssistant of Assistant
/ to perform any assistant-specific initialization
e NewObservingAssistant.load() overrides Assistant.load()
// to release any system-resources held
e NewObservingAssistant.finish() overrides Assistant.finish()
Note: Identify which HTTP headers (by their class names)
NewObservingAssistant is interested in
Note: for each HTTP headers, identify its regular expression filter
NewObservingAssistant implements ObservingIF interface
e new property NewObservingAssistant.assSpec of type
AssistantSpecification
e NewObservingAssistant.setSpecification(AssistantSpecification)
overrides ObservinglF.setSpecification(AssistantSpecificatior)
writes NewObservingAssistant.assSpec
e new property NewObservingAssistant.isActive of type boolean
o NewObservingAssistant.setActive(boolean) overrides
ObservinglF.setActive()
writes NewObservingAssistant.isActive
/ return the value object of the assistant specification object, given
headerName as the key
e NewObservingAssistant.getFilterByHeaderName(String) overrides
ObservinglF .getFilterByHeaderName(String)
// to save data of interest either persistently or in memory, this method is
/! invoked for each data change made to each of the HTTP Headers
e NewObservingAssistant.update() overrides ObservingIF.update()

72

5. Note: register this assistant with Sandwich by updating the

assistant.properties file with the following parameters

e increase the number of assistants field.

¢ indicate the fully qualified class name for NewObservingAssistant.

e indicate the alias name, description, properties file name of the
NewObservingAssistant, if any

e indicate whether the NewObservingAssistant is active or not

® indicate the number of HTTP headers that the
NewObservingAssistant is interested in

e indicate the specification of NewObservingAssistant (i.e. identified
HttpHeaders(s) with its regular filter expression)

Post-conditions | A new assistant is added to Sandwich’s pool of assistants

Comments e If the assistant would like to support GUI output under the default
administrative application, then apply the New Assistant Result
Window Hook.

e Step 5 can be optionally done through the administrative application. if
supported

Hook 1: New Observing Assistant Hook

4.4.3.4 Enhanced History Assistant

Enhanced History Assistant is an example as well as the product of enacting the New Observing
Assistant Hook. Using this hook. the following steps are followed during the creation of this
new assistant, Enhanced History Assistant. Note that the number matches those of the hook
“changes” section. This assistant also enacted the New Assistant Result Window Hook that will
be elaborated in Section 4.4.5.

1. A new class EnhancedHistoryAssistant subclass of Assistant is created.
e defined load() method to read any property file(s) of this specific assistant, e.g.
EnhHistory.prop
e defined finish() to close all files opened
Note that the NewObservingAssistant referred in the hook is the EnhancedHistoryAssistant

class when the hook is enacted.

73

2. Recall that this Enhanced History Assistant is interested to know all sites the user has ever
visited and the status of each visit such as whether the pages are fetched from the remote
server, from the browser cache or is not found in the remote server. Thus, the HTTP headers.
along with their regular expression, that this assistant is interested in are

e HtpRequestURL..
¢ HnpResponseCode, 20013041404

3. Class EnhancedHistoryAssistant implements the interface ObservinglF, as shown in Figure

23.

® A new AssistantSpecification instance variable is declared in class
EnhancedHistoryAssistant and defines the setSpecification(AssistantSpecifaction) be the
setter of this variable.

® A new boolean instance variable is declared in class EnhancedHistoryAssistant and
defined the serObservingActive(boolean) be the setter of this variable.

e Define the gerFilterByHeaderName(String headerName) to return the value object of the
AssistantSpecification object, e.g. spec.getFilterByHeaderName(headerName) where
spec is the variable name for the new AssistantSpecification instance variable.

e Define updare() to save all notification by the header into a raw data file
EnhHistoryRD.txt. For example, the first line of the following is saved when notification
by HipRequestURL is received. The parameters include the thread number. the time the
notification is received. and the requested URL. The second line is saved when
notification by HtpResponseCode is received. The parameters include the thread
number, the time the notification is received, and the response code 200 for successful

transmission from the remote web server.

Thread-0,Sun Jan 31 22:31:25 MST 1999, URL:http://java.sun.com/docs/books/tutorial/index.html
Thread-0,Sun Jan 31 22:31:27 MST 1999, RESPOND_CODE: 200

4. Update the assistant.properties file with the following parameters. Assuming this is the first
assistant of Sandwich. the number of assistant field is therefore 1 (prefix of all property
fields).

¢ the fully qualified class name (i.e. including
¢ package name) for the enhanced history assistant
l_assistant_classname=com.assistant.pool.enhancediistory.EnhancedHistoryAssistant

74

¢ the alias name given to this assistant
l_assistant_name=fnhanced History Assistant

t description of what service this assistant provides
l_assistant_description= This assistant (a.k.a enhanced history assistant) will monitor all sites
you have visited and produced a statistic report for your browsed history

s this assistant’s property file
l_assistant_propfilesame=gnhHistory.prop

2 indicates whether this assistant is active or not, as
2 an observing type
1_assistant_activeObserving=l

3 the number of HttpHeader classes this assistant is
¢ interested in

l_assistant_numSpecs2

¢ This means that all requested URLs are interested
l_sssistant_speclecom.http .HttpRequestURL, .

¢ This means that all responses with response code 1in
$ 200, 304 or 404 are interested
1_assistant_speci=com.http.HttpResponseCode, 200[304]404

4.4.3.5 Design Rationale
Why introduce a new interface ObservinglF instead of using the JDK Observer interface?

Using the JDK Observer interface will require all HiupHeader classes that are observable to
extend JDK Observable class. This will imply that the observer list (i.e. observing assistants) of
each HrtpHeader is per instance based rather than per class based. The former will then require
the registration of an observing assistant to every instance of HrtpHeader. This is redundant in
the context of Sandwich where all objects belonging to the same HripHeader class share a

common list of observers suffices.

4.4.4 Delegating Assistant
As the name implies, the role of this type of assistant is to delegate. There are two types of

delegating assistant: request delegate and response delegate. A request delegate takes an
HttpRequest object, acts on it. and outputs either (a) a modified HrtpRequest object indicated as
HnpRequest', or (b) an HupResponse object. A response delegate takes an HtpResponse
object, acts on it and outputs a modified response object as indicated with HttpResponse'.

78

HTTP
Request*

Respcnse

Figure 24: Request Delegating Assistant

HTTP
Response *

Figure 25: Response Delegating Assistant

Response P\
E

Delegating
Assi §j"

HTTP
Response

In this section, we

(1) elaborate on the dynamic view of initializing delegating assistants,

(2) discuss the default delegating assistant of Sandwich,

(3) describe how multiple response and request delegating assistants are handled by Sandwich.

(4) present the static view of all major classes that are involved,

(5) outline the New Request and Response Delegating Hook.

(6) provides an example of how the CheckFree Auto Post Assistant enacted the New Request
Delegating Hook. '

(7) discuss any relevant points of the design rationale

4.4.4.1 Delegating Assistant Initialization

The following scenario, in conjunction with Figure 26, describes on the dynamic view of how
request delegates are initialized during start up. Thus, it elaborates on step 6 of Figure 16 where
the proxy component queues up delegating assistants after creating them, in the context of request
delegates. The scenario below is also applicable to response delegates. the sequence diagram of
which is shown in Figure 27.

1. For each assistant created, the HrpProxy checks if the assistant is a request delegating
assistant by asking the assistant if it is an instance of interface RequestDelegatingIF.

76

Using the SwProperties object loaded for the assistant.properties file, the HupProxy gets the
request delegating active flag for this assistant. Recall that during the start up of the
HrpProxy object. the SwProperties is created for the assistant.properties already.

The HmnpProxy sets the active flag of the assistant to the value obtained from the

SwProperties object.

The HnpProxy gets the priority, an integer value. of this assistant as a request delegate from
the SwPropeties object.

The HnpProxy sets the priority of this assistant to the value obtained in previous step.

Based on the assistant’s priority. the HrtpProxy inserts this assistant into the request delegate
priority queue.

[1. bReg=instanceof(RequestDelegating|F) !
} >U
i
I
<5 1

2.a=getReqDelActiveFlag(a)

3.setReqDelActive(a)

4. pReg=getReqDelPriority(a)

§. setReqDelPriority(pReg)

6. insert to req delegates priority queue(a)

S A A

Figure 26: Request Delegate Initialization

77

I 1.bResp=instanceof(ResponseD e egatinglF)

\

L
2.a=getRespDelActiveFlag(a) | -~
l
3.setRespDelActive(a) - |
4. pResp=getRespDelPriority(a) ITJ ¥I
[L
5. setRespDelPriority(pResp) -] |
1}
Li l
6. insert to resp delegates priority queue(a) |]
- i | |
T | !
I I
! |

Figure 27: Response Delegate Initialization

4.4.4.2 Default Delegating Assistant
In this section, we will first give a high level view of where the default delegating assistant of

Sandwich fits and then a low level (object level) dynamic view of how this default delegating

assistant is active when no other request assistants are active within Sandwich.

Default Delegating Assistant High Level View

Sandwich contains a default delegate assistant referred to as the DirectHnpDelegate.
DirectHtpDelegate is an example of a request delegate. With no additional delegating assistants
that are active. Sandwich is a very rudimentary HTTP proxy server operating with just
DirectHnpDelegate. The framework constructs an HripRequest object as directed from the user
browser, and then sends this object to its delegating assistant pool that contains only the
DirectHntpDelegate assistant. The role of this assistant is to go and fetch the requested resource
(e.g. html and GIF file) from the remote web server and return the corresponding HrtpResponse
object. In the Figure 28 below, solid lines show that the framework is responsible for invoking
the call while dotted lines indicate that the delegating assistant is responsible.

78

User DirectHittp %

Browser

Remote Wed Server

Figure 28: Defauit DirectHttpDelegate (High Level)

The following entries appear in the assistant.properties file by default. These entries trigger the
creation of DirectHnpDelegate by HttpProxy during startup. Since DirectHttpDelegate is a type
of request delegating assistant, i.e. it implements the RequestDelegatinglF, this default assistant

will be put into the request delegate priority queue.

this gives the fully qualified class name (i.e. including package name) that
¢ implements the default assistant
n_assistant_classname~com.assistant.DirectHttpAssistant

¢ this gives the name of this default assistant
n_assistant_name=Direct Http Assistant

2 this indicates that the default assistant is active

n_ssistant_activeReqDelegating=1

this gives the priority of this default assistant

n_assistant ReqDelegatingPriority=l

Note: “"n” that begins each line is replaced by a number, determined by the number of
assistants in the assistant.properties file. Lines that begin with "#- are comments

only.

Default Delegating Assistant Object Level View
The following scenario describes the dynamics for the situation in which Sandwich traverses the

request delegates for each HTTP request. in the context that only the default delegating assistant
is active. Thus, step 3. 4, and 5 of HrpProxy servicing a request scenario are elaborated.

1. Recall that the proxy instantiates a new HrpServiceThread for each incoming request, i.e. a

socket connection.

2. The HnpServiceThread constructs a HitpRequest from the socket connection.

79

The HnpServiceThread gets the next assistant object from the request delegating priority
queue. This queue returns the next request delegate with the highest priority. In this
example, this queue returns the DirectHtpAssistant object because only the default assistant

is active.

The HrtpServiceThread asks the DirectHttpAssistant object whether a delegating opportunity
exists. The implementation of the reqDelOppExist() method for class DirectHttpAssistant
always returns true since Sandwich simply relays by default.

The HupServiceThread asks the DirectHttpAssistant to delegate this request. i.e. invoking
the service() method and passing in the HirpRequest object constructed.

DirectHnpAssistant.service() connects to the designated remote web server, gets the
requested content from it, returns the response as a type of Object. During run time, the
response object is a type of HrtpResponse.

The HnpServiceThread checks if the returned object is a type of HttpResponse. This is true

in this ca:e.

The HrnpServiceThread fulfills the request by invoking the receiveResponse method of the

original HrtpRequest object, passing it the returned HrtpResponse.

Teead Voctor || HupAssistat |
| . instartiate | I I I I
%l I | |
o T sstDa) I I |
1 1 —HJ , I
|] 5 |
4. bereaDelOppExisty) T >l I
5.bentrue.cuservica(r I :Lr |
| ' 51 gccorlcnf{cm remote weab server
i
I ! ,} 52" I
| | S
6 umtamed(ﬂmﬂspm;) : “l‘ >lw
7. rwa'M-I.(o) I I |
L I | I
T I I I I
1 I I I |
I I I |

Figurs 29: Default DirectHutpDelegate (Object Level)

4.4.4.3 Multiple Request and Response Delegates
Now that we have seen a simple scenario of how Sandwich takes care of one delegating assistant,

let us look at how multiple delegating assistants are handled by Sandwich conceptually. With
multiple delegating assistants, Sandwich will sequentially pass the HrtpRequest object to all
active request delegates assistants until the output is an instance of HttpResponse type. Because
of the default assistant. DirectHtipDelegate, all HttpRequest objects are guaranteed to be fulfilled
with their corresponding HrtpResponse objects.

81

=]
Sl
*mﬁ

aca-g.

OGO

User
Browser

Another
Browser
or
Display

Figure 30: Multiple Delegating Assistants

4.4.4.4 Delegate Prionty Queues
When multiple delegates are active, two queues are constructed by the proxy during start up, one

for request delegates and one for response delegates. Figure 31 contains two examples where (a)
is the request delegate priority queue. and (b) is the response delegate priority queue, both of
which are constructed from the assistant.properties file with the following entries:

¢t this assistant 1s an active request delegate with
¢ priority of 2 and an active response delegate with
¢ priority of 1
l_assistant_classname=com.assistant.RequestDelegateA
l_ssistant_activeReqDelegating=l
l_assistant_ReqDelegatingPriority=2
l_ssistant_activeRespDelegating=i
1l_assistant_RespDelegatingPriority=l

¢ this assistant is an active request delegate with

t priority of 1 and an active response delegate with a
¢ priority of 0
2_assistant_classname-com.assistant.RequestDelegated
2_ssistant_activeReqDelegating~l

2_assistant_ ReqDelegatingPrioritys=l
2_saistant_activeRespDelegating=l
2_assistant_RsspDelegatingPriority=o0

¢ this default delegating assistant is an active

¢ request delegate but with the lowest priority. i.e. a
8 priority of O.
3_assistant_classname=com.assistant.DirectNttpAssistant
J_ssistant_activeleqDelegating=l
3_assistant_ReqDelegatingPriority=o0

o
—
n
o
-

ajefieleq
isenbaydujoeng
ve|efepqesuodsey
gojebotegisenbey

——
[+

h
o
g

Figure 31: Delegate Priority Queues

An object level scenario of how multiple request delegates are handled in Sandwich is included
in the following, in conjunction with Figure 32.

1. Recall that the proxy instantiates a new HtpServiceThread for each incoming request, i.e. a

socket connection.

2. The HrnpServiceThread constructs a HrtpRequest from the socket connection.

3. The HnupServiceThread gets the next assistant with the highest priority from the request
delegating priority queue.

4. The HupServiceThread asks this delegate if an delegation opportunity exists by invoking the
public boolean reqDelOppExist(HttpRequest).

5. (a) If step 4 returns false, then HrtpServiceThread proceeds with the next request delegate in
the queue by repeating step 3. (b) If step 4 returns true, then HrtpServiceThread invokes the
service() method of the delegate, where the request delegate executes its delegation.

6. The HnupServiceThread asks the return object from step 5(b) whether it is an instance of the
HupResponse class.

7. (a) If step 6 is true, then the HmpServiceThread continues with the scenario on which
response delegates are traversed, and (b) If step 6 is false, the HnpServiceThread sets the
return object as the current HrtpRequest and continues with the next request delegate, i.c.

repeats step 3.

SenvceThread Yector

| 1. instantiate I |
2. constructs l

3. rquss-getNextRequest

|
I
>ll 3.1 gets '|

i

4. b‘!-rquoIOPp‘xm(n :
52 bla=faise, roqus-gelNoxtRocpostOdo
! |
Sb. bleatue,onservce(r) I
-~ 5.1 creates
| I >
8.b2einstanceocf(HiipResponse) ‘
f | }‘f

i t
7a.b2=elrue, transverse response delegates
>3 |

L.y

]
7b. b2eahrise, r-:':. reqAssegetNextRequestDei()
.

|
I
I
I
[L I
I
I
I
I

o I I
T | [|
I I I
| | |

Figure 32: Multiple Request Delegates

Similarly, once a response object is returned in the request delegates traversal, Sandwich uses this
response object as the input to the list of response delegates and traverses it. Having both of these
chaining capabilities, Sandwich allows more than one delegating assistant to be registered. The
following scenario, in conjunction with Figure 33, describes how multiple response delegates are
handled in Sandwich.

The HupServiceThread gets the final HrtpResponse object for a given HrtpRequest from the
above scenario, i.e. step 8 of Figure 32. This HnpResponse is set be the “current”
HupResponse object.

The HnpServiceThread gets the next assistant with the highest priority from the response
delegating priority queue.

The HnpServiceThread asks this delegate if a delegating opportunity exist by invoking its
public boolean respDelOppExist(HttpResponse) method.

If step 3 returns false. then the HrpServiceThread proceeds with the next response delegate
by repeating step 2. (b) If step 3 returns true, then HrtpServiceThread invokes the service()
method of the delegate. passing in the current HrtpResponse object. This is where the
response delegate executes its delegation, e.g. modifying the response content pages for the
Filtering Assistant example.

The return response object in step 4(b) is set to be the current HtpResponse object.

The HttpServiceThread repeats the above step 2-5 for all response delegates that are in the

queue.

The final HrtpResponse object is returned to its HrtpRequest object.

Thread Yector RaiegatinglF Beaponse
1 f | | I
1. riesp-retuned fromlI request delegate tran%versal - !
| | ;

2. respA ss=g etNextResponseDe)

}
!

3. bi=respDelOppExist(resp)

2.1 gets

|
!
>
Lr:

f
I

I
!

4a. bi==faise, re'spAss-getNexﬂie?ponseDeK)

t

4b.b 1--true,o-'servioe(tesp)

-

-y

(2

I
< is. resp-;o
I

e —

I

7. receiveResponse(resp)

3 I
I I
| I
[!

< | 6. repeat step 26 for all respose delegates

I
I
I
|
I
l

Y

———————— ==

Figure 33: Multiple Response Delegates

4.4.4.5 Delegating Assistant Static View

Figure 34 gives a static view of major and stereotyped classes that are involved in supporting
RequestDelegatinglF and

delegating assistants described

ResponseDelegatinglF are the only three major classes/interfaces that are required in supporting
request and response delegates. Sandwich predefines the flow of execution for a typical request

and response delegate.

above. Assistant,

e T e e e e e e

<<nterf ace>> Assis tant ontert ace>o
RegusstOveg @ingF Respons eDeleg atingF
Qmatasie
SreqDeCppExsm() :bodemn Qiame Sresc0eiOppExists() : bocesn
:::(Dr:d b\:?qu-n : Coject P We('-p:ﬂ.tbﬂ-mﬂ : HIpResponse
SyatRegDePriorty Sompstractc foad() SsetRenpDufiarty)
SN S 7a 7
\ . /
wdnterf ace>o / i
Ctmerving® | [|
SetFRe By Header Neme() [I
SaetSpec |
C v
e N /
\ \ I
\ / \ i /
<grototype>> \ <gefaul>> |
Checifr g AutoPostAes s tant \ Orect-iipDeiagate I
L I
achogioo P
Now RacuestDesisgatngAseistant New Ras pore eOulegeingAs sistant

Figure 34: Delegating Assistant Static View

The stereotyped classes here can be broken down into the following three groups:

Among the assistants described in the use case section, Auto POST Assistant, Search Summary
Assistant, Simple Filtering Assistants, Change Monitor Assistant and Defer/Batch Post Assistant
are examples of request delegates; PICS Filtering Assistant is an example of a response delegate.
In this section, we begin with the New Request Delegating Assistant Hook. followed by an

respectively.

Class DirectHttpDelegate is a default implementation of the New Request Delegating
Assistant Hook that is included in Sandwich.
Class CheckFreeAutoPostAssistant is a class created for the delegating prototype, i.e. one
implementation of the New Request Delegating Assistant Hook. Note that this class also
implements the ObsevinglF, i.e. enacted the New Observing Assistant Hook. because the
assistant needs to monitor user activities first before acting on behalf of the user for postable

pages of Check Free site.

87

Class NewRequestDelegatingAssistant and NewResponseDelegatingAssistant show where the
New Request Delegating Assistant and New Response Delegating Assistant Hook are,

example of how this hook is enacted by the CheckFree Auto Post Assistant prototype. Finally,
we outline the New Response Delegating Assistant Hook which is very similar to the New
Request Delegating Assistant Hook.

Name New Request Delegating Assistant Hook

Requirement An assistant object that acts as a delegate for a user in certain circumstances.
in particular, acting upon an upstream HTTP request

Type Adding Pattern
Area Personal Assistants
Participants Interface = RequestDelegatingiF, abstract class Assistanr and

assistant.properties file

Uses None

Pre-conditions None

Changes 1. new subclass NewRegDelAssistant of Assistant
// to perform any assistant-specific initialization
e NewRegDelAssistant overrides Assistant.load()
/1 to release any system-resources held
e NewRegDelAssistant overrides Assistant.finish()
2. NewReqgDelAssistant implements RequestDelegatingIF interface
/1 to include the business logic in determining whether a delegation
// opportunity exists: note that this is also where the assistant is
// responsible to prompt for user confirmation, if any
e NewRegDelAssistant.reqDelOppExists(HttpRequest) implements
RequestDelegatinglF.reqDelOppExists(HttpRequest)
/1 to perform the delegation; the framework invokes this callback if and
/1 only if the reqDelOppExists(HttpRequest) returns true
e NewReqDelAssistant.service(HttpRequest) implements
RequestDelegatinglF.service(HttpRequest)
3. Note: register this assistant with Sandwich by updating the
assistant.properties file with the following parameters:
e increase the number of assistant field,
¢ indicate the fully qualified class name for NewRegDelAssistant,
e indicate the alias name, description, property file name of

NewRegDelAssistant, if any
e indicate whether NewReqDelAssistant is active or not
e determine the priority of NewRegDelAssistant

Post-conditions | A new request delegating assistant is added to Sandwich's pool of assistants

Comments None

Hook 2: New Request Delegating Assistant Hook

4..:.4.6 CheckFree Auto Post Assistant

CheckFree Auto Post Assistant is an example and product of enacting the New Request
Delegating Assistant Hook. Since this assistant also needs to monitor the user posting name
value pairs for the Check Free site, this assistant is also an observing assistant and thus, also
enacts the New Observing Assistant Hook as well. We first provide the steps involved in
creating this new assistant as an observing assistant followed by the steps involved in creating
this assistant as a request delegate.

As an observing assistant, the following steps matching the steps in the “changes” section of the
New Observing Assistant Hook are followed:
1. A new class CheckFreeAuotPostAssistant subclass of Assistant is created.
e defined /oad() to read the property file of this assistant. e.g. AutoPost.properties, and the
raw data file, e.g. AutoPostRD.txt, that was saved by this assistant before, if any.
e defined finish() to close any files opened.
Note that the NewObservingAssistant used in the “changes’” section of the New Observing
Assistant Hook is the class CheckFreeAutoPostAssistant here.

2. This assistant is interested to know all name-value pairs posted by the user on the CheckFree
site to get real time quotes. Thus, the HTTP headers that this assistant is interested in are the
HTTP method, in particular the POST method, CheckFree URL(s), and the HTTP request
body where all the name-value pairs are transmitted. Thus, the header classes and their
regular expression filters are

o HupMethod POST

e HnpRequestURL http://qs.secapl.com/cgi-bin/gsihttp://qs-alt.secapl.com/cgi-
bin/qs

& HTTPRequestBody..

3. Class CheckFreeAutoPostAssistant implements the interface ObservinglF, as shown in

Figure 34.

Declared a new AssistantSpecification instance variable in class
CheckFreeAutoPostAssistant and defined the setSpecification method as the setter of this
variable.

Declared a new boolean instance variable in class CheckFreeAutoPostAssistant and
defined the setObservingActive method as the setter of this variable.

Defined the getFilterByHeaderName(String headerName) to return the value object of
the AssistantSpecification object, e.g. spec.getFilterByHeaderName(headerName) where
spec is the variable name for the new AssisstantSpecification instance variable.

Defined wupdare() to save all notification by the headers into a raw data file,
CheckFreeAutoPostRD.txt. Some examples of this are included in the following. For
each line, the thread number of the HTTP request, the date the notification is received,
and the name-value pairs of the HTTP Post are saved. In this particular example. 3 pairs

of name-value are used in CheckFree page where time, gif and tick are the names.
[Thread-9.Mcn May 24 11:16:34 MDT 1999,
{time=0000000927565940, gi1f=~2, tick=t.atp t.bmo t.td t.nt t.anc}
L] Thread-0,Mon May 24 11:27:35 MDT 1999,
(time=0000000927565940., gif=2, tick=t.v t.net.a t.oce.b t.lus.un t.brt]
] Thread-3,Mon May 24 11:28:35 MDT 1999,
{time-0000000927566286, gi1f-3, tick=t.chp t.skl t.cos t.dmc t.bcel}

4. Update the assistant.properties file, see Step 3 of the following steps when enacting the New
Request Delegating Assistant Hook.

As a request-delegating assistant, whenever the user attempts to post to the Check Free URL, this

assistant will pop up a dialog box, letting the user construct a new set of name-value pairs either
with previously posted name-value pairs or changing them. This saves the user a great deal of

time in any scenarios similar to the second scenario described in Chapter 1.

1. Same as step 1 of above when enacting the New Observing Assistant Hook.

2. Class CheckFreeAutoPostAssistant implements the RequestDelegatinglF interface.

define the reqDelOppExists(HttpRequest) method such that it will pop up a dialog box,
letting the user to pick from a set of name-value pairs posted before
9

|

e define the service(HttpRequest) method such that the original HrpRequest object is

modified to include the name-value pairs that user has selected above

Register this assistant with Sandwich by updating the assistant.properties file with the
following parameters. Assuming the assistant is created as the Enhanced History Assistant.
the number of assistant is then incremented to two. This will be used as the prefix to all

property fields applicable to this new assistant.

¢ the fully qualified class name (i.e. including
¢ package name) for the Checkfree AutoPost Assistant
2_assistant_classname=com.assistant.pool .autoPost.AutoPostAssistant

¢ the alias name given to this assistant

2_assistant_nams=Auto Post Assistant

8 description of what service this assistant provides
2_assistant_description=This auto post assistant will prompt user whether an auto
forms that have been previously filled out.

s this assistant’s property file
2_assistant_metaDatarileNams=AutoPost.properties

¢t indicates whether this assistant is active or not, as
¢ an observing type
2_assistant_activeobserving=l

¢ indicates whether this assistant is active or not, as
¢ a request delegating type
2_assistant_activeleqDelegating=l

¢ indicates the priority of this assistant, as a
¢ request delegating type
2_assistant_ReqDelegatingPriorityel

¢ the number of HttpHeader classes this assistant is
¢ 1nterested in as an observing type

2_assistant_numsSpece3

8 first header that this assistant is interested in as
$ an observing type - all POST HTTP POST methods
2_assistant_specl=com.http .HttpMethod, POST

8 second header that this assistant is interested 1in as
¢t an observing type- only URLsS of the CheckFree site

¢ that provide real-time quotes

2_assistant_spec2ecom.http.HttpRequestURL, http://qs.secapl.com/cgi-bin/qs|http://qs-

alt.secapl.com/cgi-bin/qs

¢t third header that this assistant is interested 1in as

¢ an observing type: all request body that contains the

91

post on

2 name-value pairs

2_assistant_spec3i=com.http.HttpRequestiody, .

Name New Response Delegating Assistant Hook

Requirement An assistant object that acts as a delegate for a user in certain circumstances.
in particular upon an downstream HTTP response

Type Adding Pattern

Area Personal Assistants

Participants Interface ResponseDelegatinglF. abstract class Assistant and
assistant.properties file

Uses None

Pre-conditions None

Changes

1. new subclass NewRespDelAssistant of Assistant
// 10 perform any assistant-specific initialization
e NewRespAssistant.load() overrides Assistant.load()
// to release any system-resources held
e NewRespAssistant.finish() overrides Assistant.finish()
2. NewRegDelAssistant implements ResponseDelegatinglF interface
// to include the business logic in determining whether a delegation
/! opportunity exists: note that this is also where the assistant would
/I prompt for user confirmation. if any
e NewReqDelAssistant.respDelOppExists(HttpResponse) overrides
ResponseDelegatingIF.respDelOppExists(HttpResponse)
// 1o perform the delegation; the framework invokes this callback if and
// only if the respDelOppExists(HttpResponse) returns true
e NewReqDelAssistant.service(HttpResponse) overrides
ResponseDelegatingIF.service(HttpResponse)
3. Note: register this assistant with Sandwich by updating the
assistant.properties file with the following parameters:
e increase the number of assistant field,
¢ indicate the fully qualified class name for NewRespDelAssistant,
e indicate the alias name, description. property file name of
NewRespDelAssistant, if any

92

¢ indicate whether NewRespDelAssistant is active or not

e determine the priority of NewRespDelAssistant

Post-conditions | A new response delegating assistant is added to Sandwich's pool of assistants

Comments None

Hook 3: New Response Delegating Assistant Hook

4.4.4.7 Design Rationale

Why do delegating assistants need to have a priority set?

Much of the rationale behind this priority flag lies in the way that the HTTP protocol works. In
short, an HTTP stream contains a pair of request and response objects. To support multiple
delegating assistants on the same stream, either the request or response stream, the framework
must have some scheme of determining which delegate to invoke if more than one assistant is

interested in delegating. There is various ways in doing this:

Alternative #1:
When a delegation opportunity by multiple delegates is detected. the framework can prompt the
user with the list of delegates that are of interest for this delegation.

Alternative #2:
Using a blackboard approach [SG96] where all delegates bid for the delegation opportunity. This
alternative is the same as a choosing the delegate on a first come first serve (FIFO) basis.

Alternative #3:

The user specifies the priority of a delegate when registering the assistant with the framework.
This priority. which is simply an integer value, allows Sandwich to determine the order of
delegating assistants to be invoked when a delegation opportunity exists. In Sandwich, a delegate
can be assigned with two different priorities when acting in both a request and response role.

We have chosen alternative #3 where the user decides ahead of time on which delegate has a
higher priority over another. Alternative #1 might be overwhelming or burdensome to the user as
he or she has to select a particular delegate whenever there is a delegation opportunity.
Alternative #2 is t00 uncertain in terms of which delegate will get the bid or which will come
first. If alternative #2 is implemented, the user must confirm with the approved delegate, like

93

alternative #1. Alternative #3 was chosen over the other two mainly because the user is likely to
want to have a particular delegate for a particular request. For example, it may be the case that a
particular set of delegates are interested in the delegation opportunity based on a request for a
particular URL and the highest priority should be set to the most preferred delegate.

4.4.5 Administrative Application (Sandwich Interface)

This component of Sandwich is simply an integrated GUI application that provides an interface

to the proxy component as well as the pool of assistants of Sandwich. At present, the two main

services provided by the administrative application are

(1) informing Sandwich’s proxy component when a particular event occurs, such as the
shutdown event triggered when user clicks on the exit button.,

(2) rendering of a selected assistant’s panel, such as the output panel of an observing assistant

By default, Sandwich creates a Web Application Management Tool (WAMT) implemented in the
class com.admin WAMT as the default administrative application, the Sandwich Interface.
Creation of this administrative component is a hot spot of Sandwich and thus framework users
can replace this default administrative application with a new one. The New Administrative
Application Hook describes the steps required in replacing this d:fault WAMT with a new

implementation.

In this section, we will

(1) present an overview of the major dynamic scenarios of this administrative component,

(2) provide a static view of major classes that shows the relationships of the major classes
involved as well as on the stereotyped classes that are used for
® hooking in a new administrative application.
e the default administrative implementation,

(3) outline the New Administrative Application Hook.

(4) claborate on the defauit administrative application. the Sandwich Interface

4.4.5.1 Dynamic View
The two main dynamic views of this administrative component will be described in this section.

The first scenario describes how the communication occurs between this administrative

component and the proxy component of Sandwich. and the second scenario describes how the

94

communication occurs between this administrative component and the pool of assistants of
Sandwich.

Communication with the Proxy

The communication between this administrative application and the proxy is through the observer

pattern approach [GHJV9S]. Basically,

a) As an object observable by the proxy, this default administrative application triggers events
when it wants to broadcast to all its observers that the user has requested a particular event or
its internal state has changed. For example, the following scenario shows WAMT firing the
SHUT_DOWN_EVENT when the user indicates that he/she has selected to exit Sandwich
through the interface. This then triggers a notification event to all registered observers of this
default administrative application, including the HttpProxy component of Sandwich. Recall
in step 8 of the starts up scenario that the HrpProxy is registered as an observer of the
administrative application. The HrpProxy object will then shut down cleanly, releasing all

system resources.

1.shut down
|)
2. notityObsarvers

—

3. update

4. shut down cleanly

Figure 35: Administrative Application and HitpProxy

b) As an observing object of the proxy, this default administrative application is interested in
the ASSISTANT_UPDATE_EVENT event that is triggered by the proxy when all
assistants are being loaded.

Communication with the Pool of Assistants

Sandwich uses the template [GHJV95] pattern in achieving the communication between the
administrative application and the pool of assistants. One of the services provided by the
administrative application is to be able to view the result panel of assistants, if any. The

following scenario in conjunction with Figure 36 elaborates on this.

1. User selects an assistant presented by the graphical interface of this administrative
application, see Figure 12.

2. User clicks on the “View Result” button.

3. This triggers the actionPerformed() callback method of the button's listener.

4. This listener or handler of the “View Result” button will then ask the WAMT for the
selected assistant,

5. This listener verifies if the selected assistant is an AssistantAdmin/F. i.e. implements the
AssistantAdminlF interface.
If step 5 is true, then the listener will ask the selected assistant for its result panel.

7. The listener renders the assistant’s result panel in a window. If step S is false, a dummy
message box saying that the assistant has not enacted the New Assistant Result Windc ¥

Hook is popped up.

wEGUL | | admiWAMT | | gAcfon | | gAssistant | | it Aseislant

1. select an assistant I
e

2. view resuit

3. actionPerformed
S

4. =getSelededAssistan(:()
5. bripstanceof AssistamAdn*ian

|
6. b==true, p=gotA$istantPand0
7. showPanel(p) ,U

Figure 36: Administrative Application and Assistants

4.4.5.2 Static View
Figure 37 gives a static view of the major and stereotyped classes involved in the administrative

component. Other classes that are shown in the figure (class JFrame and Observable and
interface Observer) are from JDK and are included in the figure for the purposes of completeness

only.

Stereotyped classes here can be broken down into the following two groups:

o Class NewAdminAppin and NewSwAdmin show where the hooks are for enacting the New
Administrative Application Hook.

e Class SwDefaultAdmin and WAMT are default classes created for the default administrative
application, which is one implementation of the New Administrative Application Hook.

Major classes and their collaboration are included in the following:
o Class AdminApplinFactory

This class dynamically creates an object that conforms to the AdminAppinlF interface based
on the class name passed in as an argument of the class’'s main factory method. In Java, this
is accomplished through the Class.forName and newinstance() methods of the JDK reflection
capability. This class implemented the abstract factory creational pattern documented in
[GHJV9S5]. The two recurring themes in applying this pattern are (a) they encapsulate
knowledge about which concrete class the system uses, and (b) they hide how instances of
these classes are created and put together. In short, they help to make a system independent

of how its objects are created.

e Interface AdminAppinilF
This interface declares all abstract methods that the framework expects from its

administrative component.

e Class SwAdmin
The class is the model of the administrative application expected by the framework. It is

expected to be an observer as well as an observable.

Sandwich is solely aware of the abstract level classes or interfaces including only the
AdminAppinlF interface and class SwAdmin. The latter is expected to implement the Observer
interface and extends Observable such that it can be registered as an observer of the proxy

component and be observed by the proxy, respectively.

AdminAppin

Factory

QcresteAdminApping

<<hoolc->
NewAdminAppin

~ -~ <<intertace>>
crenu\s ‘ Observer
N <<interface>>
AdminA ppinIF Qup date()
1 Observabte
QgetSwAdming \
7 Qutar() N QacdObeerver(
— ~ o \
- - <’ returns \
~
/ ~
~
/ A SwAdmin
/ JFrame
/ Qinir (
Vi /V
<<defaulit>>
WAMT
<<hgolo>

NewSwAdmin

<<detauit>>
SwDefsultAdmin

Figure 37: Administrative Component Static View

Name New Administrative Application Hook

Requirement An administrative tool or interface for Sandwich

Type Replacing Pattern

Area Administrative

Participants Interface AdminAppiniF, abstract class SwAdmin and the sandwich.properties
file

Uses None

Preconditions None

Changes 1. new class NewAdminApplication implements AdminApplnlF interface

2. new subclass NewSwAdmin of SwAdmin
/1 define with handlers to all events expected from the proxy
3. NewSwAdmin.update() overrides SwAdmin.update()
4. NewAdminApplication.getSwAdmin() overrides
AdminAppInIF . getSwAdmin()
returns NewSwAdmin

99

// to show the NewAdminApplication

5. NewAdminApplication.start() overrides AdminAppInIF .start()

6. Note: update a field in the sandwich.properties file:
admin_application_ classname=NewAdminApplication’s class name

Post-conditions | Default administrative application is replaced by NewAdminApplication

Comments None

Hook 4: New Administrative Application Hook

4.4.5.3 Default Administrative Application

Figure 37 shows the default administrative application of Sandwich, i.e. classes with the
<<default>> stereotype. Basically, this default implementation is an example of enacting the
New Administrative Application Hook. In summary, this is accomplished by the following:

Creates a new class WAMT that implements the AdminAppinlF interface. Note that
e WAMT is the NewAdminApplication used in the New Administrative Application

Hook, and
o WAMT extends JDK JFrame and thus is a GUI application by definition.

Creates a new class SwDefaultAdmin that subclasses the SwAdmin abstract class. Note that
SwDefaultAdmin is the NewSwAdmin used in the New Administrative Application Hook.

Define the SwDefaultAdmin.update() method to handle the anticipated event from the proxy
such as the ASSISTANT_UPDATE event

Define the WAMT.getSwAdmin() method to return SwDefaultAdmin.

Define the WAMT.start() to render the GUI of WAMT

Update a field in the sandwich.properties file:

admin_application_ classname=com.admin.default . WAMT

The following is a hook that is applicable only when Sandwich uses the default administrative
application. It basically allows an assistant to hook in a GUI that can be invoked through the

100

default Sandwich interface. This hook is enacted by one of the prototype assistants, Enhanced
History Assistant.

Name New Assistant Result Window Hook

Requirement An assistant wants to display a result panel through Sandwich administrative
component.

Type Adding Pattern

Area Administrative

Participants Interface AssistantAdminlF, anAssistant Assistant

Uses None

Preconditions e the default administrative application WAMT is used
® anAssistant is an existing Assistant object in Sandwich

Changes // anAssistant is currently an instance of Assistant class

1. anAssistant implements AssistantAdminIF interface
// return a JPanel that contains the assistant output panel. which gets
// rendered when user selects the “View Result™ button

2. anAssistant.getAssistantPanel() overrides
AssistantAdminIF.getAssistantPanel()

Post-conditions | When user selects anAssistant and click on the “View Result” button. then
the panel returned by the gerAssistantPanel() method will get rendered.

Comments None

Hook 5: New Assistant Result Window Hook

The Enhanced History Assistant enacted this hook such that its result window can be accessed
through the default Sandwich Interface, the administrative application. Basically,

1. The class EnhancedHistoryAssistans implements the interface AssistantAdminlF

2. Define the gerAssistantPanel() method to return a JDK JPane! object that contains the output

panel.

After the above creation is finished, restarts Sandwich, select “Enhanced History Assistant” in
the window of the default administrative application. as shown in Figure 12, and clicks on the
“View Result” button. A window (see Figure 38) appears. which contains the JPanel of the
Enhanced History Assistant.

101

hitpiava.sun.comfimagesspixel.gif
http Ljava sun.comiimagesfogos/javaloges 288.g0
hitp Mava sun.comfimagesiavbamuinay § gif
nitp fava.sun.comimagesMmanners/pageheader2 .2 gif
hitp/lava sun.comimagesbanners/inewsandfeatures divider g
PP LUjava.sun.comimagessspotight git
hitp Mfava.sun.com/share/classes/menuhorzMeny.class
hito Alava.sun.com/imagessprograms gif
hitpifava sun.comfimagesAogossjic gif
2L snp Mava sun.comiimagesdanners/products table top gif

A7 nip Mava. sun.comimagesanners/products tagle boftom gif

St
s

nttpijava. sun.comvimagessolioversini parners.cover.
nitp-Af Imagesmavbarsc gl

Figure 38: Enhanced History Assistant Result Window

4.4.6 Persistence

Persistence within Sandwich is considered to be a framework itself, pertaining to the common
service pool referred to in [FHLS99c]. This framework is from the Client Server Framework
(CSF) by Garry Froehlich [CSF]. Version 1.1.1 of CSF was investigated during the early stage of
this thesis and was adopted. Since then. updated versions of CSF have not been incorporated.

This framework transparently handles storing and loading of data objects within database, files,
or any other persistent storage mechanisms. At present, only file support is implemented. A
managerial design approach is taken such that all responsibilities to perform storing and loading
of persistent data lie within the singleton [GHJV95] object known as the PersistenceManager.
Like all other CSF core classes, PersistenceManager is a subclass of CSF's CommAwareObject.

This section elaborates on how this adopted framework has evolved and Figure 39 shows the
static class diagram of the evolved persistence framework. This persistence framework was

102

successfully deployed in Sandwich with minor code changes and additions. while maintaining the
fundamental design.

CommAwareODbject

I

PersistenceM anager

Q<<static>> getinsance(
Qtosd(c : Criteria) : PersistentData
Qutore(d : PersistentDate)

P \\

-,
instantiates \
4 uses

z
PersistentData P I

Criteria

Qc<abstract>> getCriteria()
Qc<abstract>> loadFromStorage() KO—

1
Qccabatract>> store T oStorage(S<cabwrac>>guCiamtiame

<a ct>> g etKe
Qc<abetract>> setCriterial Scaturs 3 r0
Qc<abetract>> parme()
PersistentlineFileData FiteCrterie
PersistentP raparties FileDets
4 1
<<prolalyp._>> <<prototype>> <<hgolo>
SwProperties EnhBoomarkerRDLineData NewLineFileOats

<<prototype>>
AutoPostRDFileData

Figure 39: Persistence

4.4.6.1 Evolved from CSF v1.1.1.
In CSF vi.1.1 [CSF]. the loading and storing of persistent data are based on the following two

methods of PersistenceManager.

Loading:

public Data read (String classname, Criteria c)

Storing:

public void write (String classname, Criteria c, Data d)

103

At the time of adopting this sub-framework. these methods simply delegate to a FileManager

object to read and write the object whenever necessary. However, the methods that FileManager

used were only declared and a full implementation was not available for the read and write

methods. The following is a summary of changes made to the original CSF v1.1.1 persistence

sub-framework with their rationale:

1.

A new package named csf.persistence is created, and all classes that pertained to the
persistence sub-framework are moved there. Originally. all classes of CSF pertained to one
big package known as thc csf. This new package explicitly shows what classes comprised the
persistence sub-framework and further enforces low coupling among independent classes
through Java packaging visibility rules. This includes the following set of rules:
(a) only public methods of public classes in package A are visible (i.e. accessible) to any
other classes of any other packages other than package A. and
(b) protected methods of a class are visible to other classes in the same package

The methods of PersistenceManager were modified to the following:

Loading:
public PersistentData load (Criteria c) throws DataReadException

Storing:
public void store (PersistentData d) throws DatawriteExceptiocn

We note the following changes. some of which are further elaborated on below with the indicated

item number.

e The method names are renamed from read to load and write to store (mainly due to object
naming or style preference),

e The original return type of the load method was Datra; this is now replaced with the
PersistentData type (#3),

o The use of class FileManager is removed (#4),

e The parameter type of the load method changes from taking a class name and Criteria
object to only a Criteria object (#5); the store method changes from taking a class name,
Criteria object and Data object to only a PersistentData object (#3,4),

e The load method was modified to throw DaraReadException; the store method was
modified to throw DaraWriteException (#6).

104

e The introduction of two new abstract subclasses of PersistentData known as the
PersistentPropertiesFileData and PersistentLineFileData (#7).

3. The previous class Data was renamed to PersistentData and was made an abstract class. The
word “Data” has broad meanings. For example transient data. network serializable data, and
persistent data are all considered as data. We felt that PersistentData was a better name for
representing data that were stored in persistent storage. By making PersistentData an
abstract class, we ensured that framework users had to provide an implementation for these
declared abstract methods.

4. The use of FileManager to do the actual reading from and writing to files was removed. This
change is mainly due to design style preference. Using the FileManager approach is a typical
“object manager” approach in accomplishing tasks. We felt that the PersistentData object
should be responsible for and know how to load and store itself. The latter approach

promotes object cohesion.

5. Previously. when a PersistenceManager needed to load data, a particular class name and a
criteria object must be provided. Thrcugh the reflection API of Java, the object for the given
class name is instantiated and then assigned the criteria. The evolved version moved this
class name value into the criteria object itself. This seems appropriate as a criterion often
applies a set of conditions. We felt that the class name was one of these conditions and thus
could be encapsulated in the Criteria object itself. Additionally, the class Criteria was now
abstract to further ensure that the framework user provided an implementation for its abstract
methods.

6. Exception handiing was added because there were obviously occasional times when
persistent data cannot be read or stored properly. This could be due to input/output error
while reading from or writing to file or invalid instantiation of PersistentData through the
reflection API.

7. Two new subclasses of PersistentData are added.

o Class PersistentPropertiesData defines the loadFromStorage () abstract method to read
the file content into a JDK Properties object. This is done to facilitate property files that
contain a set of lines in the form of key l=valuel.

105

e Class PersistentLineFileData defines the loadFromStorage () abstract method to read in a
file into a vector of lines as strings. Both of these new subclasses are abstract as thus
defers the implementation of the parse() method to its subclasses, see template method

[GHJV9S].
Name Reading Property File Hook
Requirement Read a property file into a SwProperties object.
Type Enabling Pattern
Area Utilities
Participants FileCriteria aFileCriteria, Swing aPropertyFileName. SwProperties
aSwProperties
Uses None
Pre-conditions None
Changes 1. code: aFileCriteria = new FileCriteria (‘“com.config.SwProperties™,
aPropertyFileName)

2. code: PersistentManager mgr = PersistentManager.getinstance():
3. code: aSwProperties = mgr.load(aFileCriteria):

Post-conditions

A new SwProperties object is initialized with the content of
aPropertyFileName. Thus. all property values can now be obtained using this

SwProperties object.

Comments

None

Hook 6: Reading Property File Hook

During the early stage of Sandwich construction, we had a New Properties File Data Hook.
However. during the final revisit, this hook was removed due to its redundancy. This is mainly
because properties files format is well defined, and there is no additional business logic to be
interpreted in the template (GHIV95] method parse(). In other words, the Reading Property
File Hook suffices in most cases for a given property file.

106

Following are two other hooks written for the extension added to the persistence framework,

specifically for supporting line file data as the persistent storage.

Name New Line File Data Hook

Requirement Encapsulating the content of a particular non-property file as a
PersistentLineFileData object.

Type Adding Pattern

Area Utilities

Participants Abstract class PersistentLineFileDara. String aLineFileName

Uses Reading Line File Hook

Pre-conditions

None

Changes

1. new subclass NewLineFileData of PersistentLineFileData
// construct the appropriate business objects from the file
/! aLineFileName
2. NewLineFileData.parse() overrides PersistentLineFileData.parse()

Post-conditions

A new subclass of PersistentLineFileData that knows how to parse the

content of aLineFileName is created.

Comments None
Hook 7: New Line File Data Hook
Name Reading Line File Hook
Requirement Read a file into a PersistentLineFileData object.
Type Enabling Pattern
Area Utilities
Participants FileCriteria aFileCriteria. String aLineFileName, aPersistentLineFileData
Uses None
Pre-conditions There is a concrete subclass of PersistentLineFileData.
Changes 1. Note: Declare a variable className of String type and assigned it the full

class name of a PersistentLineFileData subclass
2. Code: aFileCriteria = new FileCriteria (className, aLineFileName)
3. Code: PersistentManager mgr = PersistentManager.getInstance():
4. Code: className aPersistentLineFileData = mgr.load(aFileCriteria);

Post-conditions

A PersistentLineFileData object is initialized and loaded with the content of

107

aLineFileName. This object is an instance of a PersistentLineFileData

subclass mentioned in pre-conditions.

Comments To create a concrete subclass of PersistentLineFileData. see the New Line

File Data Hook.

Hook 8: Reading Line File Hook

4.4.7 Logging

Logging is an important aspect of all software systems. A typical logging system ~llows for more
effective trouble shooting by developers when the user encounters a problem at run time. At
present. the logging support of Sandwich is minimal but can be very easily extended.

Sandwich has declared an abstract class Log for logging different types of messages such as
debugging, informational. warning, and error messages, see Figure 40. This Log class has a
public static getLogger() method that creates and returns a singleton Log object. Thus, this class
plays the role of a singleton as well as a factory [GHJV95). Since Log is an abstract class, its
implementation must be provided by one of its subclasses. The chosen subclass or
implementation is plugged in as the Log object at run time using static initialization and the
prortected void setLogger method. Stereotyped classes included in Figure 40 include (a) default

logger, LoggerStdout, and (b) the hot spot of the new logger hook.

'_~S tlog : Log

<cabstract>>
Log

Qc<abstract>> loginfol()
Qccabstract>> logW arn ()
Q<cabstract>> logErr()
Q@ccabstract>> dedbug()
Qccabstract>> turnD edugOn ()
Qccabstract>> turnD edugOft ()
Q<cstatic>> getLogger()
”<<sutic>> setlogger()

<<hook>> <<def guit>>
NewLogger LoggerStdout
Figure 40: Logging Support

108

Different subclasses of Log provide different implementations of logging: the default
implementation is through the subclass LoggerStdout that simply prints messages to standard
output. The creation of the desired Log object or logger is a hot spot in Sandwich. Thus, another
logger can be easily hooked in by the user without any code change required in the framework.
The framework user may choose to implement new subclasses for more robust and sophisticated
implementation, such as one that logs messages to files or database tables, or one that supports
asynchronous logging. The New Logger Hook below describes how the steps in creating new
logger and replacing the default logger with the new one. All existing messages that are currently
logged in the framework will then be logged through this new logger without any additional coGe
change in the framework. This lies on the fact that the framework is always and only needed to
be aware of the abstract Log class.

Name New Logger Hook

Requirement A more robust logging mechanism is desired.
Type Replacing Pattern

Area Utilities

Participants Abstract class Log. the sandwich.properties file
Uses None

Pre-conditions None

Changes 1. new subclass NewLogger of Log

/1 define all the abstract methods of the Log
NewLogger.loginfo(String) overrides Log.logInfo(String)
NewLogger.logWarn(String) overrides Log.logWarn(String)
NewLogger.logErmr(String) overrides Log.logErr(String)
NewLogger.debug(String) overrides Log.debug(String)
NewLogger.turnDebugOn() overrides Log.tumDebugOn()
NewLogger.turnDebugOff() overrides Log.turnDebugOff()
note: includes the following static initialize code in NewLogger

® N swN

static {
setL.og(new NewLogger();

}
9. note: update the configurable parameter that tells the framework which

logger to use in the sandwich.properties file:

109

e logger_classname=NewLogger's className

Post-conditions

NewLogger will be used instead of the default logger

Comments

None.

Hook 9: New Logger Hook

4.4.8 Regular Expression
Recall that an observing assistant specifies which data element (in particular which HTTP

headers) it is interested in observing. Adding regular expressions to HTTP headers allows the
framework to send out notification only when interested data changes occur.
For example. with the default regular expression built in, the following is true.

Synopsis:

<header name>,<regular expression>

* E.g. Framework will notify observing assistants that are interested in response code

s that is one of 200, 304, or 404.

com.http.HttpResponseCode, 200|304 (404

Classes involved in supporting regular expression in Sandwich are shown in Figure 41. To

reduce coupling between Sandwich and any third party library that is used to support the regular

expression implementation, a factory class and an interface are created and these are the only
classes/interfaces that Sandwich is aware of. Optionally the adapter (wrapper) pattern [GHJV95]
is used. To elaborate,

(2) the RegExpFactory factory class is responsible to create the appropriate regular expression
implementation object,

(b) the RegularExpressionlF interface that declares the required methods by the framework.

(c) the adapter pattern allows incompatible interfaces to work together. thus this pattern can be
applied when third party classes that support regular expression are reused in Sandwich. In
other words, those third party classes are adapted to the RegularExpressiF expected by
Sandwich. The default FastMatcherAdapter class wraps the third party classes from a free

Java regular expression package (http://www.cs.umd.edwusers/dfs’/java/). This same

technique can be applied should a different regular expression library be picked over this

default one.

Stereotyped classes included in Figure 41 include
(a) class FastMatcherAdpater that is the present default regular expression support included in
Sandwich, and

110

(b) class NewRegExpressionAdapter shows where the new class will be added when enacting the
New Regular Expression Adapter Hook described below

RegExpFactory

QcreateRegExplF(classname : String)

\
\

instantiates
3

\
A |

RegularExpresaicniF

QeearchExpression()
QeetDatainput(
QuetE xpression()

//G b\
, \

<<hooio> \
NewRegExpressionAdapter \

\
\

<<t efault>>
FastMatcherAdapter

Figure 41: Regular Expression

Name New Regular Expression Adapter Hook

Requirement Required another set of regular expression. probably due to some deficiency
of the default regular expression hooked in

Type Replacing Pattern

Area Utilities

Participants RegularExpressionlF interface and the sandwich.properties file
Uses None

Pre-conditions None

Changes 1. new class NewRegExpressionAdapter implements RegularExpressionlF
2. note: update the sandwich.properties file:
regular_expression_classname=NewRegExpressionAdapter class name

Post-conditions | The next time Sandwich is started, the NewRegExpressionAdapter will be
used instead of the default FastMatcher Adapter

111

Comments e NewRegExpressionAdapter is likely to contain or inherit a third party
class that support the desirable regular expression

Hook 10: New Regular Expression Adapter Hook

4.4.9 HTTP Support
The HTTP protocol will continue to evolve over the next few years as the web develops. As the

specification changes. Sandwich implementation must be revisited. If new headers are added, the
following New HTTP Header Hook can be applied to evolve Sandwich such that this new
header is supported.

Currently. not all headers defined in HTTP 1.1 are implemented in Sandwich. Only those that

are directly used by one of the prototypes are coded and tested thoroughly. It is very easy to add

support for all other headers with the directions outlined in the New HTTP Header Hook.

Figure 42 shows the static relationships of all HrtpHeader related classes, in particular

e Stereotyped class NewHtipHeader shows where the new class will be added when enacting
the New HTTP Header Hook.

e Collaboration between HmupHeader and ObservinglF exist to support the notification to
observing assistants when the state of the data element of the HrtpHeader objects changes.

e All HipHeader classes are subclasses of the abstract HripHeader class.

HiDRoquest
[Y= 1
NitpHeader

Qrecer eResponse() I ——
QgetObeerv ers() - Vector
fOroutyOveerven(
QgetDataElement() . String <xinterface>>
*on'yunbunuo M motlie ObeervinglF

.// SregrterObeery ngAssetant(oa - Observ ng!F) -
HitpResponee QgeregmterOte ervingAssistent(oa ' Obeeryinglf) Qupdate()

Qg etF iterBy H eaderName()
Qu etSpecticaton()
Qu 01O be orv ingActiv e()
«<ahook>o>
HitpAeques tBody NewH ttpH sader
HtipReterer

HitoRequestURL HttpUserAgent

Figure 42: HTTP Support

112

Name New HTTP Header Hook

Requirement An additional HTTP Header needs to be supported and thus becomes
available for observing assistant to register against.

Type Adding Open-Ended

Area Utilities

Participants HnpHeader abstract class

Uses None

Pre-conditions

This new HTTP Header is not yet supported in Sandwich.

Changes

I

new subclass NewHttpHeader of HttpHeader
// declare new variable for keeping the data element of
/ NewHttpHeader type is typically String but depends on the header.
/1 for example, HttpDate might use type Date instead
property newDataElement
NewHttpHeader.getDataElement() overrides
HttpHeader.getDataElement()
returns newDataElement
// declare new static variable for a list or vector to store registered
/! observers
new class property NewHttpHeader list of type list
NewHttpHeader.getObservers() overrides HttpHeader.getObservers()
returns NewHttpHeader list
note: when the date element state changes or is set initially (usually
encapsulated in the setter method of the data element), this
NewHttpHeader object should invoke its superclass’s
notifyAssistants(Object) method

Post-conditions

This new HTTP Header is now available for registration by observing
assistants.

Comments

This hook can be applied when a new HTTP header is introduced as the
HTTP protocol evolves or as the framework evolves to support more
HTTP headers.

The data element of the HTTP header is often the value of the HTTP
header, recall that each header is a name-value pair.

Hook 11: New HTTP Header Hook

113

Why does the HripHeader's register and deregister observing assistant take a parameter type of

ObservinglF rather than Assistant?
The Law of Demeter says that if two classes have no reason to be directly aware of each other

then they should not directly collaborate [Grand99]. According to this rule of thumb and because
HnpHeader objects are only responsible to notify observing assistants, there is no reason for
HnpHeader to interact with Assistant directly but with ObservinglF instead. This is why the
registerObservingAssistant and deregisterObservingAssistant both take a parameter of type
ObservinglF rather than the type Assistant.

Why is the New Http Header Hook considered to have the open-ended level of support?

This hook provides directions to extend the framework itself. The user of this hook will have to
possess a deep knowledge of the framework design and the HTTP protocol in order for them to
determine when to notify its observers based on the state change of its data element. This maps
to having the highest level of support, open-ended, in the hook model.

4.5. Steps in Creating New Sandwich Assistant

This section summarizes the steps required in identifying and constructing a new assistant using

Sandwich:

1. There is a new requirement for a new assistant.

2. Use case Identify an Assistant must first be realized. i.e. an application use case for the new
assistant has been written and the developer has verified that the requirement of this new
assistant can be fulfilled in Sandwich.

3. Determine if the assistant needs to monitor the user browsing HTTP stream. If so, identify
which HTTP header(s) the assistant is interested in. If Sandwich does not yet support the
HTTP header that this assistant is interested in. enact the New HTTP Header Hook for the
new header.

4. Determine if the assistant delegates on behalf of the user. If so, determine whether the
assistant is a request or response delegate.

If the assistant meets the following criteria, then the assistant is likely to be a request
delegate:
e needs to modify the incoming request
e needs to create a new response for a particular request
If the assistant meets the following criteria, then the assistant is likely to be a response
delegate:
114

® needs to change the content of an existing response
® needs to create a new response for a particular response
If the assistant is a delegating type. then determine the priority of it.
6. Create the assistant using the corresponding hook, e.g. New Observing Assistant Hook for
step 3. and the New Request or Response Assistant Hook for step 4
7. Assuming the default administrative application is used, if the assistant requires some GUI to
the end user, then the New Assistant Result Window Hook might be applied.

4.6. Other Considerations

4.6.1 Assistant that is Observing and Delegating

Figure 43 shows an example where the assistant is both an observing and a delegating type. More
specifically, the assistant is a request delegate; as an observing assistant, all states of
HrtpHeaderA are interested. Due to the nature of asynchronous approach that is deployed in
supporting observing assistants, it is possible for this assistant to get notified by HrrpHeaderA of
service thread 2 when the assistant is servicing a HupRequest from service thread 1. Thus.
assistant that plays the role of observing and delegating will likely need to know which
notification of HupHeaderA corresponds to the current request or response object that it is
servicing. Using the thread number of HmpServiceThread that is responsible in fulfilling the
current HrtpRequest, this requirement can be easily fulfilled. The details of this, in terms of data
structures, were included in Section 4.4.3 in the discussion of AssistantSpecification containment

for Assistant.

HitpHeaderA
from service thread 1

HitpRequest from

service thread 1 TN

service

notifies

4

)] HttpHeaderA
nolifies from service thread 2

as an observing assistant
interested in
HttpHeaderA

as a request delegating

Figure 43: Assistant that is both Observing and Delegating
118

4.6.2 Request and Response Delegates Pair
There will be occasions that a request delegate needs to collaborate with a corresponding

response delegate and vice versa. More generally. as the scope of assistants that are to be
supported expands., there will likely be a need for an assistant-to-assistant collaboration.
Currently, we do not know the best approach to accomplish this goal. A study of protocols for
assistant-to-assistant communication is required. in conjunction with the development of

prototypical collaboration assistants.

In the current state of Sandwich. the collaboration among two or more assistants can be
accomplished through a simple mechanism such as direct methods invocation as described below
using an example, see Figure 44. Assumed that RequestDelegateA is interested

e to perform delegation when the requested URL is Fred URL,

e to use ResponseDelegateB for the response generated by its delegation

To accomplish this today with Sandwich, during the execution of the service() method of

RequestDelegateA for HrtpRequest with Fred URL. the following occurs:

1. RequestDelegateA performs its delegation as usual and produces a HttpResponse for Fred's
HrpRequest.

2. RequestDelegateA gets the object reference to ResponseDelegateB from the proxy.
RequestDelegareA invokes the service() method of ResponseDelegateB. giving it the
HnpResponse object from the above step.

4. ResponseDelegateB performs its delegation as usual and outputs a HrpResponse object.
which is returned to RequestDelegateA.

S. RequestDelegateA returns this HitpResponse as the result of its service() method

HitpRequest
with Fred URL -
T /{ final HttpResponse]

1 4
Request Delegate A
~a

5 L HitpResponse

Response Delegate B

final HitpResponse I

Figure 44: Request and Response Delegates Pair

116

5. Evaluation

During the first iteration of Sandwich’s construction, a quick prototype — a rudimentary Java-
based HTTP proxy server — was built. With the knowledge gained from this prototype, we
investigated what sort of assistantships are candidates of the frameworks, what are the common
services that can be shared by assistants and how this framework should support these common
services through its hot spots. The next or second iteration involved a rapid prototyping of an
observing assistant example, the Enhanced History Assistant. This provided a proof of concept
for the framework design to support observing assistants. The last or third iteration applied the
hook model. involved some class re-factoring and developed a delegating assistant known as the
Check Free Auto Post Assistant. Similar to the previous prototype. this assistant was another
proof of concept for the framework design. only this time it supported a delegating assistant.

In this chapter, we first evaluate the major techniques and tools that are used during the
framework construction and documentation. These include (1) the hook model used to document
the framework extension points, and (2) UML used as the notation standard in use cases and
object diagrams. We then provide a comparative analysis between Sandwick and Webby. as
promised in Section 2.3.3.

5.1. The Hook Model

The hook model is used to document the extensions of Sandwich. The hook model was
successfully applied during the last iteration of the framework construction. The reason for not
being able to use the hook model during the first two iterations was mainly due to the
unfamiliarity of the solution approach, e.g. frameworks in general. the Java programming
language. and the instability of the framework design. The last or third iteration provided the
most complete and stabilized design and therefore we felt that applying the hook model to this
last iteration was appropriate. The following summarized the lesson learned in applying the hook
model in this thesis.

IMPROVED FRAMEWORK USAGE
By using the hook model, the framework designers can identify where the hot spots of the
systems are and the steps on how to extend the framework in a more formalized manner. We
found that if the hook for a particular hot spot could not be easily written, then the soundness of
the design around the hot spot should be questioned.

117

AREA OF HOOKS

The current mechanism to group hooks together is through the “Area™ field of the hook template.
No clear guidelines are documented on how framework developers should define their "Areas.”
This can be further improved. At present, rather vague or intuitive guidelines are that the "Area"
field value is based on (a) the commonality of the services that the hook provides. or (b)
subsystem components of the whole system. Meanwhile. some areas can be predefined in the
hook definition, and framework developers can add more domain-specific areas as needed. An
unanswered question is what other gains a:e there in having the *“"Area” field in addition to simply
organizing hooks. A misconception that we had initially was that hooks with the same “Area”

values are to be enacted altogether.

SUPPORT FOR PROPERTY CHANGES

Based on the hook model, a property change that can turn on/off a feature is considered as an
optional level of hook. The hook language addressed well property changes that applied to
objects, however, lacked the syntax to illustrate how to make changes to a system property that is
stored in a property file. Maintaining persistent properties is an important aspect of all software
systems. and thus we feel that a more siringent syntax to support them in the hook model is

desirable in the future.

REQUIREMENT OF HOOKS

In the hook template. there is a field for “Requirement” as “a textual description of the problem
the hook is intended to help solve. The framework builder anticipates the requirements that an
application will have and describes hooks for those requirements™ [FHLS99a]. There are no strict
guidelines as to how the value of this field maps to the requirement specifications of the
framework. We feel that there is a close relationship between this “Requirement” field and
anticipated use cases that are typical in the application domain. Further analysis in determining
this relationship might be worthwhile.

HOOK TARGETED USERS

Depending on the skills of the framework developers and users, the hook model may appear to be
very easy or extremely sophisticated. It may be worthwhile to indicate the sort of user
experiences that the hook model is most suitable for. Initially, when we were first introduced to
the hook model, in order to understand it, we required real code examples that have enacted the

118

hooks. After a detail study of few hooks. the hook model appears to be much easier to
understand. Perhaps. the hook model can be constructed in different granularity. with each level
targeting different types of users. based on their knowledge of object technology.

EXAMPLES OF HOOKS

SEAF [FHLS99a] and CSF [CSF] are the other two projects that include hook documentation.
Most of these examples are enabling open hooks with a couple of adding open and one enabling
option hooks. Through our experience in this thesis, in the context of documenting the
framework with hooks. we got started by learning tu write hooks through the exjsting hook
examples. Improving the pool of hook examples. covering all possible hook types. will further

promote the use of hook model.

LANGUAGE DEPENDENCY
The current hook model has its own grammar definition [FHLS98a] and is programming-
language independent. This is a nice approach because

(1) It allows the building of a graphical hook tool to be language independent. Luyuan Liu,
another SERL graduate student, is currently investigated this tool for his Masters thesis
[Liu99].

(2) It facilitates the integration of muitiple frameworks built in different languages.
Assuming all framework extensions are specified with the hook model. the
communication gap among integrators will be minimized as they share the common
terminology of the hook model.

Nonetheless, there are a few drawbacks to being language independent. First, there is yet another
need for both framework developers and framework users to learn and understand another new
language. Also, amateur programmers who are not familiar to the hook model and the
framework's implementation language might not be able to quickly enact a hook. Translation
guidelines for each popular OO programming language (e.g. Java and C++) to reduce this

overhead are desirable.

DEPENDENCIES AND OPTIONAL PATHS
A simple scenario where hook dependencies occur is when a particular hook cannot be enacted
by itself but requires the use of some other additional hook(s). For example, in Figure 45 (a)
Hook A requires the use of Hook B. The “Uses” field of the current hook model addresses this
scenario sufficiently.

119

Optional paths occur when various combinations of hooks can fulfill a certain requirement. This
happens regularly in a framework where a hot spot can have various hooks. A generic example is
llustrated in Figure 45 (b) where a certain requirement can be fulfilled either with
e Hook A that uses Hook B, or
e Hook A that uses Hook C that in turn uses Hook D
The latest grammar of “Uses” is
<uses> ::= Uses: <hook name> [, ..., <hook name>]

There is the lack the capability to show this optional path scenario. Adding an “I” for “OR”
might be the easiest modification to address this scenario.

(a)

usesuses Hook _D
(b)

(c)

Figure 45: Hook Dependencies and Optional Paths

A more complex scenario occurs when both hook dependencies and optional paths exist together
for the same requirement. For instance, in Figure 45 (c). depending on which path of hook E we
choose we must use a particular corresponding hook A path. In particular, a certain requirement
can be fulfilled with either

¢ Hook E that uses F and Hook A that uses B, or

¢ Hook E that uses G and Hook A that uses Hook C and D
This scenario is tackled well in the improved version of the hook model that includes the “Pre-

Conditions™ and “Post-Conditions” fields. The grammar for these two fields is still in progress.
120

Looking back on this section and how a complicated situation can easily appear, we feel that
additional pictorial illustration. especially for complex hook dependencies and optional paths, to
the hook model is necessary.

HOOK ATOMICITY
A particular hook is considered as atomic if it can be used by itself. The notion of atomicity does
not yet exist in the proposed hook model. We feel that there is a need for it. For example. when
creating new assistant in Sandwich. the user must choose from the three hooks:

e New Observing Assistant Hook.

e New Request Delegate Assistant Hook. and

e New Response Delegate Assistant Hook
In theory. there can be a generic hook for creating new assistant without determining the type of
the assistant. This generic hook can have a name like the New Assistant Hook and can be used
by the above three hooks. However, this hook cannot be enacted by itself (non-atomic) because
Sandwich does not consider an assistant that does not observe or delegate as an assistant.

Based on the current hook model, the New Assistant Hook is not considered to be a hook and the
“changes” section of the hook is to be repeated for all the three above hooks. For this particular
example. the following lines that are anticipated to be in the “changes” instruction of New
Assistant Hook have been repeated in the ““changes” instruction of the above three hooks.

new class NewAssistant subclass Assistant
// to perform any assistant-specific
// initialization
o NewAssistant .load() overrides Assistant.load()

// to release any system-resources held

L] NewAssistant.finish() overrides Assistant.finish()

Thus, if the “changes” instructions of non-atomic hook are huge, repeating them to every hook
that uses it can potentially produce redundancy, unnecessary inconsistency, and mistakes. The
simplest approach to overcome this might be introducing a new field into hook template that
indicates whether a hook is atomic or not. This then allows non-atomic hooks to be extracted out.
Other hooks that use it can then indicate their dependencies on it using the “Uses” field.

121

COMPLEMENTS TO HOOK DOCUMENATION

At present, what constitutes good framework documentation is still an open research question.

Needless to say. the hook model will not be alone and thus will co-exist with some other sections

of framework documentation. To promote the integration of the hooks to other sections of the

document and improve better understanding of the hooks, we recommend the inclusion of the
following non-exhaustive list for the stated reasons:

1. Use cases. These can be directly referred to in the “Requirement” field of hook description.
This could further improve the context of the hook applicability.

2. Some sort of subsystem model that illustrates the major services offered by the framewori.
This can directly map to the ““Area” field of the hook description.

3. With option hooks. static class diagrams on the objects involved suffice. With pattern and
open-ended hooks, we feel the need to have dynamic models of the objects involved. This is
because for the latter types of hooks, users are expected to know more about the framework
dynamics, and having collaboration or sequence diagrams together with certainly help.

4. An on-line documentation system with the use of hypertext. This allows the linking together
of related hooks as well as their corresponding examples. From the experimental studies
conducted by Garry Froehlich with CMPUT 401, an undergraduate software-engineering
course at the University of Alberta. students were more comfortable when code examples

explaining how to use the hooks were also provided.

We conclude that the hook model is reasonably good at formalizing the documentation for how a
framework can be extended. It has the potential to show precisely where the hot spots are for the
given frameworks and what the hooks are for these hot spots. With the on-going work to add
diagrammatic notation to the hook model. the potential becomes more appealing. Nevertheless.
there is a cost to using the hook model. For both the framework developers and users, there is the
overhead of learning and adopting the hook model with its own set of grammar and templates.
Also, it is important to remember that the hook model is not the only form of framework
documentation. It is also recommended to complement hook documentation with easy-to-
understand examples constructed using the framework by enacting the hooks.

5.2. Applying UML
This section summarizes the experience gained when applying UML to the Object-Oriented

Analysis and Design (OOAD) phase of Sandwich construction. General observations and
particular features of UML that are deployed in this thesis will be commented on.
122

UML is perhaps the best notation standard available in documenting frameworks. UML is
becoming more widely accepted by a large user community. Using it will promote the

understanding of a framework to a greater audience.

UML should be used carefully. It is important for developers to be aware that UML is a
notation standard for a diagramming language. UML helps in the OOAD modeling phase of
software development by improving communication and understanding among modelers via
diagrams with standard notations. Often, there is a misconception that people with skills to
read and write UML can model. The latter is a much more important skill; one can be a good
modeler without knowing UML. Some background is desired when deploying UML to
ensure that developers use it correctly and efficiently and not have their models restricted by
any UML shortcomings.

Rational Rose 98 is a good tool that provides intuitive interface in drawing UML diagrams.
Rose is easy to learn and simple to use.

Static class diagrams are used to capture the objects of the system, in the form of
relationships, class hierarchies. and dependencies. We found that as the number of classes
grows, putting all classes together and showing their static relationship is impossible. Thus,
we took the approach of grouping classes based on their core services. For example, only
classes that are directly involved in logging will be shown on the logging static class diagram.
This improves readability and organization of classes that collaborate or are related.

Static class diagrams can also be tagged as stereotypes. This feature of UML allows us to
diagrammatically show three important concepts (prototype. hook and default) related to a
framework. As mentioned before, another active research [Liu$9] is currently undergoing in
SERL in modeling hooks using the UML's project notation.

Use cases are used to capture requirements of Sandwich. We found that use cases is very
useful when capturing the functional requirements of the targeted applications. The exercise
of writing the use cases for the set of representative applications has helped us to capture not
only the common functionality of the applications that the framework should support but also
the flow of control that should be embedded in the framework. On the other hand, we found

123

|
|

that deriving the use case for the framework by generalizing the applications’ use case was
not a very helpful exercise. We felt that framework use cases are too abstract to be
meaningful although. by nature. framework use cases are supposed to be generalization of the
applications’ use cases. More studies need to be conducted in this area of software
engineering in terms of the guidelines or protocol in writing use cases for frameworks and

determining their usefulness.

We conclude that some parts of UML are good enough to capture framework models; others are
not. The use case component of UML is very helpful in capturing the requirements of the
targeted applications. In particular. the set of use cases written for the chosen set of applications
have facilitated us in capturing the common functionality of the applications and the control flow
that the framework should support. However, due to the abstract nature of framework use cases.
we found that writing use cases for the framework has produces less benefit. Static class
diagrams are sufficient when applying them to the OOD (Object-Oriented Design) phase of
framework development. UML's stereotype provided additional flexibility that is useful in
capturing framework design concepts.

5.3. Sandwich versus Webby

During the initial startup period of Sandwich. a copy of Webby was downloaded and evaluated.
At that time. the download was not runnable, and there was only a limited amount of
documentation. In ‘ particular. there was no documentation for how to add new assistantship to
Webby. This copy of Webby. referred to as WBI Application, is similar to the applications
WebMate and WebeW (Section 2.3.3). The WBI Application provides personal web
assistantship on personal history and traffic lights. This copy of Webby is being referred to as the
WBI Application and was originally written in Perl (1996) and later ported to C++ and finally
Java in 1997. The Webby team is comprised of about 2-3 full-time IBM Almaden research staff.

During the wrap up phase of Sandwich. we revisited the IBM alphaWorks page and downloaded
the first official (June 1999) release of Webby. This time it was referred to as the WBI Developer
Kit and not the WBI Application. To our surprise, we found that its demo programs run, and
there is documentation for how to add new assistantship. Below, when the word “Webby” is
used, WBI Developer Kit is implied.

124

Like Sandwich. Webby's approach to provide a personal web assistant framework is also through
an intermediate HTTP proxy. Users of Webby can add more assistantship by writing and adding
new “plug-ins.” The documentation of Webby, however. does not claim it to be a framework but
“a programmable HTTP request and response processor.” Webby's initial installation came with
a pool of five plug-in: Personal History. Traffic Lights, PageFilter, Yahoo Subjects, and
XML/XSL. Another important similarity is that both Sandwich and Webby assumed that the end
user trusts the intermediate HTTP proxy fully.

In Webby, an HTTP stream passes through one or more registered plug-ins. each plug-in
consisting of one or more of the following. referred as MEG:
(1) A Request Editor (RE) that can optionally change the request.
(2) A Generator (G) that takes a request and outputs a response.
(3) A Document Editor (DE) that can optionally change the response. and
(4) A Monitor (M) that can be designated to receive a copy of request and response but
cannot otherwise intercept with the stream flow

Initially, a Webby's “plug-in” sounds like the counterpart of Sandwich’s “assistant.” After a
more thorough study on what comprises a Webby plug-in. we see that a Webby's MEG element
is the counterpart of a Sandwich’s assistant “role”. Thus. an assistant that plays two roles, such
as observing and request delegating. is the counterpart of a Webby plug-in that consists of two
MEGS. Monitor and Request Editor.

The following summarizes the counterparts of each of Sandwich’s major features. An asterisk in

column one indicates that a numbered comment on this feature follows Table 4.

Sandwich Webby
1 Overall control flow: Overall control flow:

e request delegates are traversed first | @ request editors are traversed first
followed by response delegates followed by generators and then

e observing assistants cannot intercept document editor
the control flow; they simply receive | © monitor cannot intercept the control
event notifications from interested flow, they receive the request and
HTTP headers that fulfill the regular response objects that they are

12§

expression set

interested based on the conditions set

2]

Use of intermediary proxy as the basis.

Use of intermediary proxy as the basis.

[3]* | Request Delegating “role™ a) Regquest Editor MEG. and
o Input. request e [Input: request
e QOutputr: request’, response ® Output: request’
b) Generator
e Input. request
® Output: document (response
equivalent)
(41 Response Delegating “role” Document Editor MEG
e Input. response o Input: document
e Ouitpur. response e Qutput. document
[5]* | Observing “role” Monitor MEG

o Inpur. HTTP headers notification
e Ourput. result panel upon request

e Inpur: request, document
e Outpur: HTML pages (often) upon

request

(6}

Assistant that plays multiple roles, such
as observing and request delegating

Plug-in that comprises of multiple MEGS
such as Monitor. Request Editor and

Generator

7]

Default request delegating assistant,
DirectHntpAssistant

Default Generator MEG

(8]

Delegating assistants have priorities set

e use of priority queues

Regquest Editor, Generator and Document
Editor MEGS all have priorities

e use of priority queues

(91

Support for regular expression for

observing assistant

e To change the regular expression of
an assistant, change the property file
and restarts Sandwich

Support for set conditions for each MEGs.

e To make a condition change for a
MEG. need to change the source code,
recompile and rerun.

[10]

Minimal administrative support but can
be easily built on top of current default
administrative application

Administrative support through the console
window where Webby was started.

[i1]

Registering new assistant involves

Registering new plug-in involves the use of

126

making new entries to the property file
and restarting Sandwich.

the keyword “register” in the command
prompt of the administrative console
window. Plug-in is registered without
restarting Webby.

[12)*

Documentation includes

s overview

e use cases for the applications

e use cases for the framework

e architecture

e design and its rationale using UML
static and sequence diagrams

e hooks

e assistant examples

Documentation includes
® overview
e architecture

e programming
e API
e FAQ

e plug-in examples

[3] Webby has broken down the role of request delegating into two MEGS based on the possible
return type. The input type to request delegate and the two MEGS (Monitor and Request Editor)
is the same, a request object. Sandwich’s request delegate outputs either a modified request or a
response: Webby's Request Editor MEG outputs a request” and Generator MEG outputs a
response. Thus. the role of a request delegating can be accomaplished with a Request Editor and

Table 4: Sandwich and Webby

Generator MEGS pair in Webby.

[S] The design of Webby's Monitor is slightly different from Sandwich’s observing assistant in

two perspectives: processing and presentation.

Processing Perspective: how the input of observing assistant or Monitor MEG is supported.

e In Sandwich, an observing assistant indicates which HTTP data elements that it is interested
in, along with a regular expression for each of these HTTP data elements. When such a data
element exists in an HTTP stream, the assistant is notified by an event. This event notification
approach is an asynchronous approach similar to those used in MVC [KP88] or Observer

pattern [GHJIV9S].

127

e In Webby. a Monitor MEG expresses its interest in an HTTP stream with a condition rule.
When this rule is true for an HTTP stream. all information in the stream is passed into the

monitor synchronously.

The two approaches are quite different in the following aspects:

® Sandwich supported an asynchronous way in informing observing assistants; Webby
supported a synchronous way in informing Monitor MEGS '

e Sandwich’s observing assistants expressed their interest on a per HTTP header basis:
Webby's Monitor MEGS expressed their interest on a per-request or per-response object
basis. Note that in the Sandwich model, a request and response object contains one or more
HTTP headers.

Based on the experience gained in the prototype. we feel that Sandwich is deficient in
circumstances when two conditions on two different data elements must be met before the HTTP
stream is considered to be interesting. For example, if we want to get hold of all HTML pages
from all requested URLs ending with ibm.com, we will have the following. Assumed that this
observing assistant is the 3™ registered assistant and we have the following entries in the

assistant.properties file:

3_assistant_numSpec=2
3_assistant_specl=com.http.HttpRequestURL,*. ibm.com

3_assistant_spec2=com.http . HttpContentType, *htme*

Here. for each HTTP stream. this observing assistant can potentially receive up to two events: one
for the requested URL (if the URL ends with ijbm.com). and the other for content type (if the
content is an HTML page). The assistant remains responsible for maintaining the state
information of the event and consolidating it based on the unique thread ID of the event. So, in
this example. the assistant might contains two hash tables. one for keeping track of the requested
URL and the other for the content type, as shown below. With this, the assistant can quickly
determine the content type (from hash table B) given a service thread with a particular requested
URL (of hash table A). However, the assistant has the overhead of additional processing in
maintaining all these state information.

128

hash key

Thread 1 url A Thread 1 htmi
Thread 2 url B Thread 2 gif
Thread 3 urt C Thread 3 ipeg

B) hash table to keep track
of content type of all HTTP
stream

A} hash table to keep track
of requested URLs

We see that when an observing assistant is interested in more than one data element of an HTTP
stream. the assistant requires some additional processing in maintaining all these state
information. After constructing an observing prototype in Sandwich and conducting a detailed
analysis with Webby, the lesson learned here is that the asynchronous way in notifying assistants
that simply observe is a less suitable approach than the synchronous way.

Presentation Perspective: how the output of an observing assistant or Monitor MEG is propagated

or displayed back to the end user.

e In Sandwich. this output is presented upon request by clicking on the “View Result” button
of WAMT or is pushed by the observing assistant. The presentation interface is a Java GUI
that can make use of various powerful APIs such as Swing.

e In Webby. the output is presented when the user requests a pre-defined HTTP URL for the
plug-in. This request will route to the appropriate Generator MEG that is responsible to
consolidate persistent data stored up by the corresponding Monitor MEG. The output is then
presented to the user in the form of HTML pages. These HTML pages may contain
JavaScript for any required programming logic.

The two approaches mentioned above are very similar. Using Webby's approach of a pre-defined

HTTP URL to get the interface of the Monitor MEG or observing assistants seems to be more

consistent with the rest of the architecture because the proxy already understands HTTP.

However, there are three major drawbacks to this approach:

e Use of HTML pages (optional with JavaScript) as the presentation style seems limiting; more
sophisticated interface can be built when more powerful and richer GUI APIs, such as Swing,

are used.

129

e When the amount of business logic that needs to be added increases, one is likely to end up
with HTML pages with convoluted JavaScript.
¢ Ability to perform “push” technology is limited as HTTP supports “pull” technology.

The ideal approach seems to be to use the HTTP request approach with a full-fledge GUI
application, such as applet or ActiveX component, as the front end. This removes the first two
drawbacks described above. The third drawback remains but becomes feasible under the
condition that the user explicitly loads the GUI application into memory the initially.

[12] The following table elaborates further on the documentation techniques used by Sandwich
and Webby.

Sandwich Webby
Overview e described as a framework e described as a flexible API for
that supports the programming intermediaries on the
construction of browsing web or a HTTP request and response
e included a couple stories on processor
the use of personal ¢ included an example of an
assistants. Enhanced History application that transformed XML to
and Check Free Auto Post HTML was given
Assistant
Requirements e included a set of use cases ® none
for a representative set of ¢ relied on the overview and examples
applications that the
framework support
® included a set of generalized
use cases for the framework
itself
Architecture and | e described as subsystem ¢ included a data model for the HTTP
design components protocol and input/output for each
e included the input/output for MEG
each type of assistants, ¢ included a processing model on the
dynamic and static view of overall flow of executions amongst

130

major objects of the different types of MEG
framework. group by their
services
e used the UML as the
notation standard
Usage e covered concise steps on e covered with long paragraphs in
how to use the framework describing how to use the API
using the hook model e referred as the programming section
e relied on examples
Examples/ e covered with concise steps e covered with long paragraphs in
Prototypes in implementing the describing how a plug-in does its job
assistant examples; these using MEGS
steps matched back to
“changes™ steps outlined in
the hook(s) enacted

Webby's documentation uses the word “API” and “processor” rather than “framework” and
follows the typical style in documenting APIs. Initially, this led us to a misconception that Webby
was simply a library and not a framework. It was not until that we dived into the detailed
documentation for how Webby operates that we realized Webby is a framework to some extent.
Like Sandwich. Webby does contain an inverted flow of control in invoking its plug-ins and the

support to create a new plug-in as a set of MEGS.

To summarize, we feel that Webby’s documentation can be further improved by

considering the use of the word *“framework™ over “API" or “processor™.

including use cases for a representative set of applications that can be instantiated from
Webby,

including some static and interaction diagrams on major classes involved,

including the hook model in documenting its usage,

including implementation examples with steps that match those in the “changes™ section of
the hook(s) enacted,

deploying UML as the notation standard

131

After documenting Sandwich and comparing Sandwich's documentation with Webby's. we feel
that typical frameworks documentation should include. at least, the following sections:
® An overview section that describes what the framework is for and a brief story for its use.
® A requirement section that captures what the framework supports, in particular applying
UML use cases to the set of representative applications of the framework. This helps to set
the context in using the framework and provide an overall picture on what the framework
supports.
e A section on architecture and design that presents
(a) all subsystem components of the framework based on their services,
(b) the object model of the framework covering the dynamics and static relationships among
classes using the UML notation,
(c) the data model in the form of input and output for a given component as well as persistent
storage involved, if any
e A section on framework usage (i.e. how to use the framework) using hooks.
e A section on application examples instantiated from the framework where their
implementation details should match the steps listed in the “changes” section of the hooks

involved.

It is actually very interesting and surprising to see that the end result of Webby and Sandwich are
so similar because they were totally independent efforts until the recent official release of Webby
Developer Kit. The first iteration of Sandwich started in the fall of 1998; Webby was evolved
from the WBI Applications (note that this is an application rather than a developer kit) that was
implemented in 1996 in Perl and migrated to Java in 1997. The Webby. as a developer kit. is
released to the public in June 1999. Sandwich contains a default pool of three assistants;
Webby's contains a default pool of five plug-in. In terms of these two aspects, Sandwich is
considered to be less mature than Webby.

Here, we summarize this detailed comparison section with the following points:

® The objective of both Sandwich and Webby is the same, i.e. to provide the support in
constructing personal web assistants.

¢ The architecture of both Sandwich and Webby relay on an intermediary personal proxy that

has been granted by the user to snoop into his or her browsing activities.
132

In terms of documentation, the framework-based approach taken by Sandwich has allowed it
to produce better and more concise documentation than Webby. In particular. Sandwich
documentation includes the use the hook model proposed by [Froe96). the application of
UML use cases to a representative set of applications, and the deployment UML notation
standards for static and dynamic class relationships, all of which are missing in Webby's

documentation.

In terms of design. based on the major services offered by both Sandwich and Webby, we
have the following points:

- The approach in supporting delegating assistant in Sandwich. such as the use of priority
queues, request and response type and default request delegate, is very similar to the
approach taken by Webby's Request Editor, Monitor and Document Editor MEGS, and
thus can remain intact

- The approach in supporting observing assistant in Sandwich is slightly different from the
approach taken by Webby's Monitor MEG. As mentioned t.efore, we have learned that
e synchronous notification to observing assistants is a better solution due to the
additional processing overhead imposed by the current asynchronous notification
scheme, and
e the use of HTTP as the communication protocol with a GUI application as the front
end (to get the output of observing assistants or Monitor MEG) to the proxy is a more

consistent design

- Although the administrative component of Sandwich is preliminary compared to
Webby's administrative console-based component, we feel that the best approach is to
deploy a web-based administrative interface to both Sandwich and Webby. Improving
this component of Sandwich should be very straightforward and only requires
implementation.

- The idea of registering and de-registering assistants is the same as in both Sandwich and
Webby. Sandwich can be further improved so that it does not need to be restarted for a
new assistant to be activated.

133

6. Conclusions and Future Work

The thesis shows that having an application framework that supports personal assistants is valid
and feasible. This framework encapsulates the common functionality of and is an integrated
architecture for personal web assistants that have been identified and analyzed. The development
of two prototyped assistants demonstrated this. New assistants are added to Sandwich by
enacting one or more of its identified and documented hooks. '

This thesis is also a case study on documenting application frameworks in general. By
documenting Sandwich and comparing it to Webby's documentation. the two sections that we
found especially useful are (a) use cases for the family of applications. and (b) framework usage
documented using the hook model. The conciseness of the hook model not only can help the
framework users to extend the framework but also the framework maintainers to evolve the
framework. Sandwich is still in a very early stage of development and most of its hook level
support are of type patterns or open-ended, and when applied, most framework features are added
or replaced. This observation is consistent with [Johnson92] in that an immature framework is
likely to be predominantly white-box in nature. As Sandwich continues to evolve, we foresee it
shifting to a more black box frameworx with a pool of assistants that can optionaliy be hooked in.
We also feel that the use of UML as the notation standard through out the documentation is also
useful as it promotes consistency and understanding to a greater audience.

Sandwich can be extended and reused in the context of browsing history-dependent assistants
programs. At times, we felt that this well-defined scope in targeting assistants that are based on
browsing history limits some other forms of assistantship such as batch assistantship that does not
require any browsing history. Nonetheless, we are grateful that this scope is enforced throughout
and has helped in the completion of the project on time. Analysis on the Internet domain can go
on indefinitely in this fast-changing environment as the WWW matures.

There are, of course, penalties that we pay when we deploy a proxy that does more than relays.
First, there is the overhead of additional processing and therefore performance impact. Another
caveat in deploying a proxy lies on the assumption made in this thesis: the end user trusts his or
her personal proxy. If this assumption no longer holds in the future, further studies will need to
be conducted in addressing it such as by adding some security support.

134

Based on the experience gained in this experiment in building Sandwich and comparing with
Webby, we summarized some near future in improving Sandwich and some potential new

requirements that Sandwich is anticipated to address:
e Support for synchronous notification to observing assistants

e Support for a web-based administrative interface to the framework as well as to assistants that

have result panels.

® Recall that the three data elements that an observing assistant can register interest in and be
notified of are HTTP headers, content, and META tags. At present. Sandwich contains
implementation support for the HTTP headers only and only those headers that are needed by
the two prototyped assistants have been thoroughly tested. Thus, a near term future work
involves adding support for the content and META tags data elements and all the other HTTP
headers using the documented New HTTP Header Hook.

¢ Support a more robust mechanism than the current rudimentary approach via direct method
calls (Section 4.6.2) for assistant-to-assistant coliaboration.

e At present, Sandwich does not cache or keep a copy of the HTTP content (e.g. HTML pages
and GIFs). This might become a requirement later to improve performance. Determining the
best approach in accomplishing this requires more in-depth evaluation, including further
investigation of another active area of research, web caching. When content caching is
supported. it is also expected that there is a demand for a search engine that acts upon the

content cache.

e When HTTP is used with secure sockets layer (SSL), it is also frequently referred to as
HTTPS. At present, Sandwich only supports HTTP and not HTTPS. More specifically,
when an HTTPS communication is established, Sandwich or any HTTP-based application
proxy server loses its capability to snoop on the stream. HTTPS is gaining popularity as the
web evolves into a place for electronic commerce. This capability is desirable for most e-
commerce web applications where confidential information such as credit cards numbers
needs to be transferred over the Internet. In this situation, we foresee the need for a

negotiating assistant that plays two roles. To the server. this assistant is the SSL client and to
13§

the end user’s browser, this assistant is the SSL server. Thus. two SSL sessions existed. one
between the browser to the assistant and the other from the assistant to the server. Further
studies need to be conducted in determining the best approach for Sandwich to handle this

emerging technology.

Support for independent assistants. As we have seen in Figure 8, Sandwich was originally
designed to support the group of assistants that depends on user browsing activities. Another
group of assistants acts independently of user browsing activities. As this thesis progressed.
we saw the need to support this group of assistants in Samdwich. This requirement expands
the scope of the framework and as a result will make the framework a more complete one for
providing personal assistantship. The following is an example, from Professor Eleni Stroulia.
where there is a need to support batch assistant in Sandwich.

Here is a question for you: I want to capture a set of examples of using easySABRE
http://www.easysabre.com. Basically I want to try out a set of approximately 200

combinations of cities and dates and times to travel. Could I “program” a delegate
in your framework to get these traces for me? Also if the answer is yes. would the

observer cache the different “screens” that come from the server locally the

client side?

There are many ways to fulfill the above requirement, including the following:

a)

b)

Use Sandwich to monitor the easySABRE sites that are of interest. Using the information
gathered. develop a batch program to perform the 200 combinations independent of
Sandwich. The Java Networking API would suffice and the program will have to cache all
the response or “screens” returned from the requested sites.

Evolve Sandwich to support external batch assistants and allowing external batch assistants
to interact with observing assistants. This approach will allow the use of an observing
assistant to perform all the caching of responses from easySABRE.

136

7. References

[Aglets]
[Ajanta]
[BMRSS96]

[CacheFlow]

{Concordia]

[CSF]

[DAgent]

[EggGam92]

IBM Aglets, http://www.trl.ibm.co.jp/aglets/index.html

Ajanta, http://www.cs.umn.edu’Ajanta’

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommeriad and
Michael Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, Inc. 1996.

CacheFlow, http://www.cacheflow.com/info/docs/wp/activecaching.html

Concorida,

Garry Froehlich. Common Services Framework (CSF).
http://www.cs.ualberta.ca/~garry/framework

D’Agent, http://www.cs.dartmouth.eduw/~agent/

T. Eggenshwiler and E. Gamma. ET++ SwapsManager: Using Object
Technology in the Financial Engineering Domain. In Proceedings of
OOPSLA 92, 1992, 166-177.

[FG96] Stan Franklin and Art Graesser. Is it an Agent or just a Program? A
Taxanomy for Autonomous Agents. Proceedings of the Third
International Workshop on Agent Theories, Architectures, and Languages.
Springer-Verlag, 1996.

http://www.msci.memphis.edu/~franklin/ A gentProg. html#agent

Garry Froehlich, H. James Hoover, Ling Liu. Paul G. Sorenson. Hooking
into Object-Oriented Application Frameworks. Proceedings of the
1997 International Conference on Software Engineering, Boston, Mass.,
May 17-23, 1997. pp. 491-501.

(FHLS97]

Garry Froehlich, H. James Hoover, Ling Liu, Paul G. Sorenson. Reusing
Application Frameworks Through Hooks. To appear in Object-Oriented
Application Frameworks, M. Fayad, R. Johnson editors

[FHLS99a]

137

[FHLS99b]

[FHLS99¢]

[Fowler97]

{Froe96]

(FS97]

[GHIV9S]

[GM9S5]

[Grand98]

[Grand99]

Garry Froehlich, H. James Hoover. Ling Liu, Paul G. Sorenson. Designing
Object-Oriented Frameworks. In the Handbook of Object-Oriented
Technology. S.Zamir editor. CRC Press. New York. 1999. pp. 25-1 to 25-
22.

Garry Froehlich, H. James Hoover, Wendy Liew. Paul G. Sorenson.
Application Framework Issues when Evolving Business Applications
for Electronic Commerce. Proceedings of the 32nd Hawai'i International
Conference on Systems Sciences (HICSS 32), January 5-8, 1999, Maui.
Hawaii. Software Technology Track. (CD-ROM), Copyright 1999 by the
Institute of Electrical and Electronics Engineers, Inc. (IEEE). 10 pages.

Martin Fowler. UML Distilled: Applying the Standard Object
Modeling Language. Addison-Wesley Longman, Inc. 1997.

Garry Froehlich. Hooks: an Approach to the Reuse of Object-Oriented
Application Frameworks, Ph.D. Candidacy Document, University of
Alberta, 1996.

Mohamed E. Fayad and Douglas C. Schmidt. Object-Oriented
Application Frameworks. Communication of ACM, Vol 40, No. 10,
October 1997.

Erich Gamma. Richard Helm, Ralph Johnson and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman, Inc. 1995.

Gangopadhyay, D. and Mitra. S. Understanding Frameworks by
Exploration of Exemplars. In Proceedings of 7" International Workshop
on computer Aided Software Engineering (CASE-95) Toronto, Canada.
1995, pp. 90-99.

Mark Grand. Patterns in Java, Volume 1. John Wiley & Sons, Inc.
1998.

Mark Grand. Patterns in Java. Volume 2. John Wiley & Sons, Inc.
1999.

138

[Harold97]

[HHG90]

[Hunter98]

[IBMEdu]

(InfoSleuth]

[JACK]
[JATLite]
[JavaToGo]

{Johnson92]

(KP88]

(Luotonen98]

[LK94]

[Liu99]

[Nem98]

Elliotte Rusty Harold. Java Networking Programming. O'Reilly &
Associates 1997.

Richard Helm, Ian M. Holland and Dipayan Gangopadbyay. Contracts:
Specifying Behavioral Compositions in Object-Oriented Systems.
Proceedings of OOPSLA October 1990, pp. 169-180.

Jason Hunter. Java Serlvets. OReilly & Associates 1998.

IBM Java Education. Leveraging Object-Oriented Frameworks.
Http://www.ibm.comv/ java/education/ooleveraing/index.html

InfoSleuth. http://www.mcc.com/projects’/ infosleuth/publications/intranet-
java.html

JACK, http://www.agent-software.com.aw/jack.html
JATLite, http://java.stanford.edw/
Java-To-Go., http://ptolemy.eecs.berkeley.edu/dgnvjavatools/java-to-go/

Ralph Johnson. Documenting Frameworks Using Patterns. Proceeding
of OOPSLA '92, Vancouver, BC, Canada.

Krasner, G. and S. Pope. A Cookbook for Using the Model View
Controller User Interface Paradigm in Smalitalk-80". Journal of
Object-Oriented Programming, August/September 1988. pp. 26-49

Ari Luotonen. Web Proxy Servers. Prentice Hall 1998.

Richard Lajoie and Rudolf K. Keller. Design and Reuse in Object-
Oriented Frameworks: Patterns, Contracts and Motifs in Concert.
Proceedings of the 62™ Congress of the Association Candienne Francaise
pour I' Avancement des Sciences (ACFAS), Montreal, Canada. May 1994.
Collogium on Object-Orientation in Databases and Software Engineering.

Luyuan Liu. A Tool Communicating with the Design of 0O
Frameworks and Hooks. In preparation, Aug 1999.

Adolfo M. Nemirovsky. Building Object-Oriented Frameworks.
Http://www7.software.ibm.com/vad.nsf/Data/Document 1569. 1998.

139

{Odessey]

[OROMatcher]
(Restina]

[RIB99]

[SG96]

[SOCKS]
[Squid]

[Srinivasan99]

{Sun]

[SY97]

[Tacoma]
(W3Cl]
[WebeW]
[Webby]
{WebMate]

Odessey.
ody.html

OROMatcher, http://'www.cs.umd.edwusers/dfs/java/

CMU’s Restina. http://www.cs.cmu.edu/~softagents/

James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified
Modeling Language Reference Manual. Addison Wesley Longman Inc.
1999.

Mary Shaw and David Garlan. Software Architecture. Prentice Hall Inc.
1996.

SOCKS. http://www.socks.nec.com’introduction.html

Squid. http://squid.nlanr.net

Savitha Srinivasan. Design Patterns in Object-Oriented Frameworks.
IEEE Computer, February 1999. pp. 24-32

Sun Microsystems, http://java.sun.com

Wayne B. Salamonsen and Roland Yeo. PICS-Aware Proxy System vs
Proxy Server Filters. Proceeding of INET'97. Kuala Lumpur, Malaysia.

Tacoma. http://www.tacoma.cs.uit.no’
W3C, http://www.w3.org/
WebeW, http://www.authentech-inc.com’/webew/help/introduction. htm]

Webby. http://www.alphaworks.ibm.com/tech/wbidk/

WebMate, http://www.cs.cmu.edu/~softagents/webmate/

140

Appendix A: HTTP

Following is a list of HTTP headers, their type and purposes sorted by the headers’ names.
[Luotonen98] provides a more detail description for each of these headers.

Notes:

® Header type: G for General, RQ for Request. RP for Response, E for Entity.

e The term “end client” used in the purpose description is essentially today’s web browser.

e At the end of this appendix. important changes between HTTP 1.0 and HTTP 1.1 will be

summarized.

Caveats:
e HTTP is still evolving, the latest specification is available from [W3C].
¢ Not all browsers and web servers follow the HTTP specification in their implementation.

Header Name Header Type Purpose and Example
G RQ [RP | E
_Accept X Specifies what media types are acceptable to

the requesting client. E.g. Accepr: text/html,
text/plain. image/gif

Accept-Charset X Specify acceptable character sets. By default.
all character sets are acceptable; specifying this
header will narrow down the acceptable charter

sets. E.g. Accept-Charset: iso-8899-5

Accept-Encoding X Specifies the acceptable encoding that the
server may use. E.g. Accepr-Encoding:
compress, gzip

Accept-Language X Specify language preferences of the user. E.g.
Accept-language: en. fr

Accept-Ranges X Indicates the web server is able to respond to
“Range” request, an HTTP header that can
appear in request headers. E.g. Accepr-
Ranges: bytes indicates the server support byte

141

range requests

Age

This header’s value specifies the age of the
response content since the time the response

was generated by the origin server.

Allow

The values of this header give the HTTP
methods that the web server of the requested
URL supports. E.g. Allow: GET. HEAD.
POST, PUT

Authorization

Used to pass user’s credentials to the origin

server.

Cache-Control

Can be used to control caching in proxy

servers and end clients. E.g. Cache-control:

no-cache. Cache-control: proxy-revalidate.

Cache-control: must-revalidate. Cache-

control: public

1. When used in request, it indicates special
request by client in guaranteeing an up-to-
date response.

2. When used in response, it indicates to the
origin server's instructions to proxy

servers and end clients.

Connection

Specify communication options for the
connection between the client and server. In
HTTP 1.1, persistent connections are the
default, i.e. connection remains open after the
response has been send. This allows the client
to reuse the connection. E.g. Connection:
close will override this default, Connection:
keep-alive (older way in doing persistent
connection in HTTP 1.0)

Content-Base

Defines the URL that the relative URLs within the
returned document are relative to. E.g. Content-

base: hitp://www.hello.com/index.himl

Content-Encoding

Indicates the encoding of the entity body of

142

the response. E.g. Content-encoding: gzip

Content-Language

Identifies the language of the returned
resource entity. E.g. Content-language: en

Content-Length

Specifies the length of the entity object in
bytes. E.g. Content-length: 3253

Content-Location

Specifies the URL or the accessed resource
and is useful when the requested URL points
to a resource with multiple representation
(different media type, for example).

Content-MDS5

Contains the MDS signature. E.g. Content-
MDS5: base-64 encoded MDS signature

Content-Range

Indicates the start and end range of a byte
range request together with the total number
of bytes available in the entire object. E.g.
Content-range: 0-300/1000 means the first
300 bytes of a 1000 bytes object is being
returned.

Content-Type

Specifies the media type of the object. E.g.
Content-type: text/html

Date

Indicates the date and time at which the

message was generated. E.g. Dare: Wed, 07

April 1999 19:40:17 GMT

1. When used in request, it's the time the
client generated the request. If proxy auto
generate a request, the proxy should set
this field.

When used in response. it’s the time the server

generated the response.

Etag

The value of this header specifies the entity
tag of the returned object. E.g. Etag: doc-id-
2441. This is used together with If-March and
If-None-Match for object validation. It can
also be used with the Vary header for object
comparison. Format of the E-Tag values are

143

vendor (web server) dependant.

Expires

Offers by HTTP 1.0 to limit caching.
E.g. Expires: -1

From

Contains the requesting user’s e-mail address.
For privacy reason, this header is rarely sent
in client request. E.g. From:

we s.ualberta.ca

Host

Specifies the hostname and port number
present in the URL being requested’. This
addresses the problem of virtual muiti-hosting
in HTTP 1.0.

If-Modified-Since

Used with cache up-to-date checks to perform
conditional GET.

If-Match

Used to perform condition request. an
alternative of If-Modified-Since header.

If-None-Match

Inverse of the If-Match header.

If-Range

This header is used with byte range request.

If-Unmodified-Since

Used to make the request conditional, i.e. the
operation (request) is carried out only if the
resource has not been modified since the
indicated date and time. E.g. If-Unmodified-
Since: Sun. 7 April 1999 09:30:37 GMT

Last-Modified This specifies the creation or last modification
time of the object on the origin server.
E.g. Last-modified: Sun, 11 May 1997
09:30:37 GMT

Location Indicates the redirection destination. used

when a 3XX redirection response status.

Max-Forwards

Used to limit the number of hops a request
can make, used together with the TRACE
method.

Pragma

Being phased out from HTTP 1.0 in favor of
Cache-Control header. The only valid value

144

in HTTP 1.1. is Pragma: no-cache. This
directive is linked to the “reload” button of a
browser.
- When used in request, fresh pull from
the server is required.
- When used in response, the response
should not be cached. e.g. Pragma:

no-cache

Proxy-
Authentication

Used with 407 proxy authentication required
response code. It specifies the authentication
parameters that the client should used in
constructing the authentication credentials to
the proxy server.

Proxy-Authorization

Used to pass user’s authentication credentials
to a proxy server. e.g. Proxy-authorization:
Basic eG1hczpjb29raWU=

Public

Indicates the methods supported by the web
server. E.g. Public: GET, HEAD, POST.
PUT. OPTIONS, TRACE

Range

Used to make a range retrieval request.

Referer

Contains the URL of the document that
contained the reference to the requested URL.

Retry-After

Used with the 503 service unavailable
response status to indicate the requesting
client may retry after the specified time. E.g.
Retry-after: 120 for a 2 minutes retry time.

Server

Identifies the server software that generated
the response, e.g. Server: Apache/l.2.

Transfer-Encoding

Indicates any transformations that have been
performed on the message. The only valid
value in HTTP 1.1. is Transfer-Encoding:
chunked

Upgrade

Intended for switching the protocol, or the

148

protocol version, on the fly. E.g. Upgrade:
HTTP/2.0

When used in request, client indicates the
protocol version it would prefer to switch to.
When used in response, server indicates the
protocol version it would like to switch to.

User-Agent

Gives the browser name and version of the
end user. E.g. User-Agent: Mozilla/4.0

Vary

Used to indicate that a document is available
in several languages, e.g. Vary: Accept-

language

Via

Indicates the proxy chain that a request was
passed through, separating by a comma. e.g.
Via: 1.1 firstProxyHost, 1.1 secondProxyHost

Warning

Allows the origin server or intermediate proxy
servers to attach warning messages indicating
additional status information of the resource
in 2 human-readable format.

WWW-Authenticate

Contains authentication parameters that client
should use when preparing the authentication

challenge response to an origin server.

146

Appendix B : META Tags

META Tags are used to embed meta information of a HTML pages. There are two main META
tags: MAIN and HTTP-EQUIV. Both of these tags will proceed with the META tag and reside
after the <HEAD> (or <TITLE> if present) and before the <BODY> tag. Thus, a typical HTML
page with META Tags would contain the following few lines at the beginning of the page:

<head>
<title></title>
(meta ao. >
</head>

An example of an HTTP-EQUIV META tag is the refresh tag used to reload or redirect a site.
For example, say http://www.hello.com/page 1.html contains the following META tag:

<META HTTP-EQUIV="refresh* CONTENT="2; URL=http://www.cs.ualberta.ca/page2.htmi”>
When user loads pagel.html, the page http://www.cs.ualberta.ca/page2 html will automatically be
redirected in 2 seconds.

An example of a NAME META tag is to include keywords for page indexing purpose. For

example, say pagel contains the following META tag:
<META NAME="keywords" CONTENT="object-oriented frameworks, personal assistants”>
Subsequently, when someone does a keyword search using search engine such as

www.yahoo.com, page 1 will appear on the searched list.

The attribute NAME (i.e. “keywords™) refers to user-selected names, while the value for HTTP-
EQUIV (i.e. refresh) means that the value has a real equivalent header in the HTTP protocol. It is
important to note that META tags are useful only when the tools deployed made use of them (e.g.

web browser, search engines and so on).

147

Appendix C: Tools and Standards Deployed

Standards Referred:
e HTTP 1.1 RFC 2068 specification

Software Tools Deployed:

e Netscape 4.x

e Java Web Server 1.1.3

e Visual Age for Java 2 as the Integrated Development Environment (IDE) and Source Code
Control

¢ OMG Rational Rose 98 for Java (UML)

148

Appendix D: UML Notation

Three major components of UML notation that are used through this thesis are summarized in
this appendix. For more in depth explanation, please see [RJB99].

a) Use Case Diagram
® used to capture user requirements, i.e. functionality that the system being build should

Actor \
e

Use Case 2 Use Case 4

provide

Use case A collection of possible interaction between the system under discussion and its

external actor(s).

Actor A role that external entities (someone or something) in the external environment can

play in relation to the system.

Uses A uses relationship occurs when a particular behavior is similar across more than one

use case and thus can be factored out and be reused by the applicable use cases.

Extends An extend relationship is used when one use case is similar to another use case but

does a little bit more.

149

b) Class Diagram
e used to describe static relationships among classes

<<stereoty pe>>
Cilass S
Class
Chase A aggregation Class B
Chmes A ompos ron Ciaes 8
Ciass A Cless B8
— —ussge —

<<interf sce>
Pasent Aninterfece

AN

rolllxo.lin: plements

J

inherits

Child Class A
Class A class represents a discrete concept within the application being
modeled.
Stereotype The basic information content and form of a stereotype are the same

as an existing base model but with an extended meaning.

Aggregation An association that represents the part-whole relationship. In the
above example, Class B is part of Class A.

Composition A stronger association than aggregation in which the composite has
the sole responsibility for managing its parts such as its allocation
and de-allocation.

Usage A situation where one element requires another for its correct
functioning.

150

Inheritance An association that represents the parent-child relationship. In the
above example, the class Child inherits all methods, i.e. behaviors,
and non-private variables of the class Parent.

Realize In UML, the relationship where a class realizes a specification is
referred as realization. The above notation applies in Java where
most specification is included in an (Java) interface and a class

realizes it by implementing this interface.

¢) Sequence Diagram

e use to describe the interaction (dynamic view) of collaborated objects in the system

2. doStuflA

I
I
l
|
I
I
I

e “a: ClassA™ means that “a” is an instance of “ClassA”

e “step 1 for doStuffB” means object “a” invoke the doStuffB() method of object “b”
e “step 2 for doStuffA” means object “a” invoked one of its own method doSruffA().
e vertical axis can be labeled as time; horizontal axis can be labeled as objects

151

Appendix E: Sandwich Properties Files

a) File: sandwich.properties

B

* All the configurable factory parameters that Sandwich uses
2

admin_application_classname=com.admin.WAMT
logger_classname=com.logging.LoggerStdout

regular_expression_classname-com.common.FastuatcherAdapter

B
* The file that contains which assistants are hooked in the fw
4

agssistant_filename=assistants.properties

8
¢ The port at which the proxy component will listen to
1

port_number=8082

c) File: assistant.properties

numAssistants=3

1_assistant_ciassname-com.assistant.pool.enhancedHistoryAssistant.EuhancedﬂistoryAssistan
t

1l_assistant_name=Enhanced History Assistant

1_assistant_activeObserving~1

1_assistant_description=This assistant will monitor all sites you have visited and
produced a statistic report out from it.

1_assistant_metaDataFileName=EnhHistory.prop

1_assistant_numSpec=2

1_zssistant_specl=com.http.HttpRequestURL, .
l_assistant_spec2=com.http.HttpResponseCode,200{304]404

2_assistant_classname~com.assistant.pool.autoPost.AutoPostAssistant
2_assistant_name~CheckFree AutoPost Assistant

2_assistant_activeObserving~1

2_assistant_activeRegDelegating=1

2_assistant_ReqDelegatingPriority=1

2_assistant_description=This auto post assistant will prompt user whether an auto post on
forms that have been previously filled out.

2_assistant_metaDataFileName=AutoPost.prop

152

2_assistant_numSpec=3
2_assistant_specl=com.http.HttpMethod, POST
2_assistant_spec2-com.http.HttpRequestURL,http://qs.3ecapl.com/cqi-bin/qslhttp://qs-
alt .secapl.com/cgi-bin/gs

2_assistant_spec3=com.http.HttpRequestBody, .

3_assistant_classname=com.assistant.DirectHttpAssistant
3_assistant_name=Direct Http Assistant
3_assistant_activeReqDelegating=1
3_assistant_RegDelegatingPriority=2
3_assistant_description=-Default delegate of Sandwich.
3_assistant_metaDataFileName=DirectHttpMD.txt

3_assistant_numSpec=0

153

