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Abstract

While recent advancements in deep-learning point cloud upsampling meth-
ods have improved the input to intelligent transportation systems, they still
suffer from issues of domain dependency between synthetic and real-scanned
point clouds. This thesis addresses the above issues by proposing a new ray-
based upsampling approach with an arbitrary rate, where a depth prediction
is made for each query ray and its corresponding patch. Our novel method
simulates the sphere-tracing ray marching algorithm on the neural implicit sur-
face defined with an unsigned distance function (UDF) to achieve more pre-
cise and stable ray-depth predictions by training a point-transformer-based
network. The rule-based mid-point query sampling method generates more
evenly distributed points without requiring an end-to-end model trained us-
ing a nearest-neighbour-based reconstruction loss function, which may bias
towards the training dataset. Self-supervised learning becomes possible with
accurate ground truths within the input point cloud. The results demonstrate
the method’s versatility across domains and training scenarios with limited
computational resources and training data. Comprehensive analyses of syn-
thetic and real-scanned applications provide empirical evidence for the signifi-
cance of the upsampling task across the computer vision and graphics domains

to real-world applications of ITS.
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Chapter 1

Introduction

1.0.1 Backgrounds and Motivations

Point clouds are a data structure defined as a set of points. This has been
widely utilized in remote sensing to store points of a surface captured by a
Light Detection And Ranging (LiDAR) sensor in 3-dimensional (3D) coor-
dinates. Compared to the 2D counterpart of images, point clouds provide
more intuitive and accurate depth representations. The data provide an un-
derstanding of the surrounding environment’s surfaces and have been used
in many applications. More specifically, applications in the intelligent trans-
portation systems (ITS) domain range from tasks directly related to vehicle
controls, such as shape classification, object detection, and point cloud seg-
mentation [13], to 3D reconstruction-related tasks of mapping and surveying
[9], [21].

Point cloud upsampling aims to enhance a sparse point set by generating
dense points to the implicit surface of the object. It is an essential task in 3D
reconstruction for ITS, as it can lower the cost of memory storage and sensor
requirements while achieving high-quality remote sensing. For example, with
data enhancement, by upsampling the data from an HDL-64E sensor [47] can
potentially reach a similar or better quality than that of the state-of-the-art
Velodyne Alpha Prime VLS-128 sensor within the maximum operation range,
which shows significant performance improvements in autonomous driving [21].

A few studies have addressed the upsampling problem in the domain of

ITS [8], [22], [23], [29]. However, such enhancement solutions are restricted
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to specific problems or rely on additional sensors. Studies in range image
super-resolution [5], [20], [29], [45], LIDAR upsampling [44] and LiDAR com-
pletion [54] do not account for 3D densities. Concurrently, many computer
vision studies [10], [14], [16], [24], [25], [31], [40]-[42], [49], [56], [60], [61]
have focused on performance improvements to existing benchmarks. However,
the output point distribution is not continuous when the above upsampling
methods [10], [14], [16], [24], [25], [31], [40]-[42], [49], [56], [61] are applied
to real-scanned LiDAR data with many local density mismatches due to the
nearest-neighbour-based reconstruction loss functions, such as Chamfer Dis-
tance (CD). Also, encoding the entire object shape [24], [40], [56], [60], [61]
may create domain dependency when encountering an unseen object. Such
end-to-end behaviours could pose issues for 3D reconstruction for ITS because
real-scanned data include many different objects, and defining the bounding
space of the infrastructural environment is difficult. At the same time, the
upsampled points generated near the known input points are less important
for 3D reconstruction. Additionally, many methods [24], [25], [31], [40]-[42],
[56] upsample point clouds with a fixed scaling rate, r. Thus, a different model
has to be trained to upsample with a different scaling rate. Combined with
the issues of end-to-end strategies, the fixed rate causes inflexibility without
the freedom of ROI definition and output density. The observations above
motivate the proposed method to move away from end-to-end strategies with

CD-based loss functions and a fixed upsampling rate.

1.0.2 Research Goals and Scope

The main goal of this thesis work is to upsample point clouds independent
of point cloud domains to which the method is applied. In other words, the
proposed method should be able to train in one domain (e.g. synthetic data)
and transferred to another (e.g. real-scanned data) at the inference time.
Additionally, we aim to upsample with an arbitrary scaling rate, r, to achieve
flexibility. Our approach to accomplishing the goals is by generating rays
directed towards the regions of interest (ROIs) and predicting the depth of

the point where the ray and the implicit surface intersect. We define the
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Figure 1.1: Given the sparse input (left), through the ray marching algorithm
(middle), the final dense output (right) is achieved. Points on the implicit
surface are coloured to represent marching steps from the earlier (blue) to the
later (red) steps. The red dots on the left are the initial query ray origins.

Input Implicit points Qutput

Figure 1.2: Demonstration of PU-Ray through the input, implicit points, and
output on a KITTI-360 [26] snippet scene. The zoomed-in boxes show regions
with pedestrians (orange) and a car (yellow).

implicit surface of a point cloud patch with a neural network, and the precise
depth prediction is possible using a ray marching algorithm. In sum, we aim
to upsample in a non-end-to-end manner, which causes domain dependency.
The scope of the research is bounded by upsampling point clouds in the ROIs,
where there are observed points. Completion in the unseen or occluded regions

and object-based point cloud completions [9] are not in the scope.



1.0.3 Contributions

This thesis addresses the listed issues with ray-depth prediction via sphere
tracing [15] on the neural implicit surface, defined using a point-transformer-
based [59] network, for point cloud upsampling. Our method requires a 3D
implicit representation of a patch, and it cannot be applied directly to point
clouds, particularly with missing information between points. To overcome
this constraint, we propose a point-transformer-based ray marching module
that learns the neural implicit surface of a point cloud patch. This mod-
ule is iteratively called at each ray marching step to enhance the final depth
prediction. Ablation studies show performance gains using the proposed ray
marching method. Points on the implicit surface resulting from ray marching
steps also provide a visual understanding of the implicit surface of a point
cloud (Figures 1.1 and 1.2). Although similar ideas have been proposed by
Liu et al. [30], Chibane et al. [6], and Venkatesh et al. [48] after the deep
signed distance function (DeepSDF') [35] was first introduced, the implicit sur-
faces may have domain dependency due to the shape code corresponding to an
object, and the training is restricted to supervised learning requiring ground
truth distance from an arbitrary point to the surface. They also use sphere
tracing [15]| exclusively for rendering instead of point cloud upsampling.
Applying the proposed ray-based upsampling method has several advan-
tages over existing end-to-end models. First, the implicit surface of a patch
is domain-independent compared to object-based representations that may be
biased towards the dataset’s context. The implicit surface also efficiently com-
presses large 3D data into a small function with a few parameters. Moreover,
the upsampling rate is determined by the number of rays generated, enabling
upsampling with different rates. The direction of a query ray can be generated
in a rule-based system to focus on the ROIs. Lastly, unlike existing methods,
the training objective and ground truth are clearly stated. Inspired by LiDAR
range-image super-resolution [20], given a neighbourhood point set, the model
outputs the depth prediction of a query ray. This allows the retrieval of ground

truth in limited situations because the ray can be determined from an existing



point’s direction and depth from the query ray origin. Thus, such a method
makes self-supervised learning possible. Also, the more straightforward task

reduces the model size. Our contributions are as follows:

1. Our novel method adopts the sphere tracing [15] on the neural implicit
surface of point clouds, yielding precise depth predictions while allowing

supervised and self-supervised training.

2. The domain-independent ray-based upsampling is versatile across syn-
thetic to real-scanned and from object-level to infrastructure-level point
clouds. The proposed model is the smallest among all compared deep-
learning point cloud upsampling methods while showing competitive per-

formances.

3. The experimental results on novel datasets consisting of low-resolution
LiDAR inputs, super-resolution point clouds and 3D reconstruction ground
truths in urban and highway environments provide empirical support for

the potential of upsampling real-scanned point clouds.

1.0.4 Thesis Outline

The following chapters in this thesis consist of Literature Review, Methodol-
ogy, Experiments and Conclusion. The Literature Review includes a compre-
hensive survey of implicit surface representation, point cloud processing, and
point cloud upsampling. For the literature review, the first section covers the
definition of implicit surfaces, their advantages and the recent advancements
in neural implicit surfaces. Reviews on point cloud processing focus on the
physical and computational challenges with point cloud data and how deep
learning methods have been adapted to overcome the issues. A series of point
cloud upsampling methods are discussed based on characteristic classifications.
Brief introductions to related methods, such as LiDAR super-resolution and
point cloud completion, are also discussed. In the Methodology chapter, the
problem statement explicitly defines the objective in the mathematical for-

mulation. Network architecture and its associating loss functions for training
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neural-implicit representations are thoroughly described. Lastly, adaptations
of the upsampling strategy for synthetic and real-scanned data are also pro-
posed. In the Conclusion chapter, we discuss the overall evaluation and lim-
itations of our method along with potential future directions that could be

inspired by this study.



Chapter 2

Literature Review

2.1 Implicit Surface Representation

2.1.1 Implicit Surface and Ray Marching

In 3D computer graphics, discrete polygonization with vertices and faces is one
way to store 3D geometries [3], [34]. However, this introduces a discrepancy
in representing continuous real-world objects. On the other hand, an implicit
representation of a surface (i.e. f(z,y,2) = 0, where z, y and z are indepen-
dent variables of 3D coordinates) provides a continuous representation of the
surfaces in 3D space. For example, an implicit representation of a sphere is
z? + y? + 22 — R? = 0, where the only parameters are 3D coordinates (z,y, 2)
and the radius R. On the other hand, 1000 triangles are required to approx-
imate a “reasonable” sphere while discontinuity remains [4]. Therefore, ray
tracing is proposed for rendering from an implicit surface to mitigate memory
redundancy directly [4], which simulates how a light ray would interact with
the environment.

Hart [15] proposed sphere tracing to achieve a precise depth estimation
along a ray to its intersection with a surface. The method utilizes the continu-
ous signed distance function (SDF), which outputs the distance to the nearest
point on the surface given a location in the 3D space. The algorithm performs
multiple iterations to advance (or march) along the ray direction the distance
to the nearest point (intersection) on the surface, defined as the marching

step. This guarantees the marching point to approach infinitesimally to the



intersecting point of the ray and the surface and prevents it from penetrating.
The process halts when the marching step converges to a satisfying level. The
sum of all marching steps, £, is mapped to a ray function, r(¢), given the ray

origin, o and direction vector, d, to get the intersection point:
r(t)=o+t-d. (2.2)

Ray marching (e.g. sphere tracing [15]) has maintained its popularity as one
of the implicit surface rendering techniques thanks to its simplicity, efficiency
and accuracy. Such a method is flexible because of its applicability on com-
plex surfaces defined with implicit surfaces. In contrast, traditional ray in-
tersection tests, such as Bounding Volume Hierarchy [7] of ray tracing [51],
explicitly parametrize each shape defined in a discrete space. It is easier to
find intersecting points by plugging in the ray parametric equation to get the
closed-form solution of , but the explicit parametrization is limited to sim-
pler geometry and makes it difficult to represent complex shapes accurately.
The ray marching method can also be optimized to enhance the efficiency and
GPU utilization [30] by removing redundant marching steps. We accomplish
this in our study by patch-based ray marching and € estimation, which will
be discussed in the next chapter. Furthermore, ray marching yields more pre-
cise and accurate volume rendering as the algorithm prevents the ray from
penetrating the surface [15]. In summary, the combination of implicit surface
and ray marching is advantageous for practical applications compared to other

rendering methods, such as ray tracing [51].

2.1.2 Neural Implicit Surface

Deep neural networks (DNNs) became popular in the 2010s when the compu-
tation capabilities reached the level of fruition for implementing the concept.
DNNs have multiple layers of neurons consisting of a weight and a bias for
linear regression. This combination of multiple linear functions results in a
function that outputs a non-linear decision boundary, which suits the defini-
tion of implicit surface. In other words, a neural network is a distance function,

such as SDF, in the context of implicit surfaces; we name it a neural implicit
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surface. The DeepSDF [35] is a pioneering work in the field of the neural im-
plicit surface by representing continuous implicit surfaces with a DNN, fj(-),
that outputs the signed distance, s, of an arbitrary sample point, z, with

respect to the shape defined with a latent code, 2:
s = fo(z,z) =~ SDF(z). (2.1)

The method demonstrates the potential of neural implicit surfaces in the com-
pressed representation of complex shapes. However, the model requires the
ground truths signed distance of arbitrary sample points, and the inference
time is slow due to optimizing the random shape code vector. The work
inspired Liu et al. [30], Chibane et al. [6], and Venkatesh et al. [48] to uti-
lize DeepSDF [35] or similarly constructed SDF or unsigned distance function
(UDF) with sphere tracing [15] for 2D view rendering. The aforementioned
methods may fit towards the known objects as the shape encoding learns the
overall structure of the input, causing domain dependency and the inability
of self-supervised learning of the neural implicit surfaces. Thanks to the ca-
pabilities of neural implicit surfaces in compressing complex shapes, the idea
has also been adopted in point cloud upsampling [10], [16], [41], [60], which is
discussed in 2.3.1.

2.2 Point Cloud Processing

2.2.1 Properties of Point Clouds

Despite the advantages of point clouds in numerous applications, several at-
tributes hinder their utilization in computer vision. Point clouds inherit the
main property, permutation-invariance, of the superset data structure, set.
Unlike grid pixels in 2D images, points in a point cloud are unordered, and
the set size can vary, making computation difficult in discrete and ordered
manners. Also, a set of points is not a continuous surface representation.
Therefore, computer graphics techniques cannot directly be applied to the
data without generating the surface information, such as polygonization or

implicit parameterization [4]. Lastly, scanning a 3D object requires multiple
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captures from different observation locations. LiDAR sensors cannot detect
occluding surfaces, and a single scan only includes the visible points, which
can be represented as a range or a depth map, a 2D grid representation of
depths from the sensor to the target environment. Therefore, LiDAR point
clouds are often referred to as 2.5D data [55].

2.2.2 Deep Neural Networks for Point Clouds

One of the first and most intuitive approaches to extracting point cloud fea-
tures using deep learning is 3D convolutional neural networks (CNNs) [33], [38],
[53]. Voxelization is required to apply CNNs to point clouds, which generalizes
the data with occupancy or probabilistic distribution mapping to assign values
to grid cells. Such practice causes the tradeoff between the information loss
from using low-resolution voxel grids and computation cost due to too many
empty cells in the opposite case.

The problem of applying the orderliness nature of CNN on permutation-
invariant and unordered data has been addressed in PointNet [37], and it
became a pioneering work in point cloud processing for DNN adaptation by in-
putting point clouds directly to the network, without any pre-processing. The
features are extracted independently for each point, and the max-pooling of all
point features yields global features. PointNet++ [39] takes a step further to
capture local context by aggregating information in small point groups defined
with k-Nearest-Neighbours (KNN) or ball querying operations that guarantee
the number of points in a group or the fixed size of the local neighbourhood, re-
spectively. PointNet [37] and PointNet++ [39] inspired many studies to adopt
their methods in point cloud upsampling, such as PU-Net [56], MPU [49] and
PU-GAN [24]. However, the independent feature extraction on each point ne-
glects the geometric relationships in the local neighbourhood and global point
cloud.

Dynamic Graph CNN (DGCNN) [50] constructs graphs of local neighbour-
hoods by connecting a center point z; to its neighbouring points z;, and Edge-
Conv aggregates the features given the relative positions z; —z; in addition to

information given by z;. EdgeConv operation shows significant performance
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gain in learning the geometric relationships for point cloud classification and
segmentation tasks. PU-GCN [40] adopts the EdgeConv to enhance the point
cloud upsampling task.

The transformer architecture has been extensively applied to other fields
since the first method was proposed, showing impressive performance in natu-
ral language processing [46]. In particular, the transformer has been employed
in unorganized point cloud data with great potential, as shown in recent work
[11], [12], [59]. The main idea involves calculating point attention within a
small patch of neighbouring points to extract the relationships between sam-
pled points. The practice is advantageous because the 3D coordinates of points
naturally convey positional information without needing the positional encod-
ing step. Point cloud attention calculation has two major variants. Guo et al.

[12] employ the traditional transformer’s scalar attention using dot products.

yi= ) )" - P(z;)) - al), (2.3)

z;€X (1)

where y; is the transformed features of z;, X; is the local neighbourhood of
z;, &(+), ¥(-) and a(-) are the MLPs for the query, key and value, and p(-)
is the softmax function. The authors also claim that positional encoding is
not required as the 3D input coordinates intrinsically have such information,
unlike the original transformer. In contrast, Zhao et al. [59] preserve the

vector representation of attention through element-wise subtraction (Figure

2.1):

yi= Y p(r(d(z:) — ¥(z;) +0(zi — z5))) © (alzy) +8(zs — z5)),  (24)
z;EX (1)

where (z; — z;) is the relative positional encoding and ~(-) is an MLP. The
study has empirically demonstrated the superiority of vector representation
of self-attention and relative positional encoding in downstream tasks, such
as point cloud segmentation. Applying self-attention was first introduced to
point cloud upsampling by Li et al. [24]. One of the latest advancements in
point cloud upsampling, with state-of-the-art performance, also relies on the

transformer architecture [42)].
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Figure 2. Point transformer layer.

Figure 2.1: Point transformer layer proposed by Zhao et al. [59].

2.3 Point Cloud Upsampling

2.3.1 Deep-learning Methods

Before the advent of the deep-learning point cloud upsampling methods, edge-
aware resampling (EAR) [17] held state-of-the-art results by projecting points
to a latent surface. However, the method requires carefully tuned neighbour-
hood radius and angle parameters, which vary for different point clouds or
regions in a point cloud depending on the point density for accurate surface
normal estimation. Thus, its application to multiple point clouds or real-
scanned data is difficult, if not impossible, to automate. This inspired the first
deep-learning method, PU-Net [56], adopting the feature encoding method
of PointNet++ [39]. Many point cloud upsampling methods have a fixed
upsampling rate and use end-to-end training by encoding the object shape,
upsampling points with feature expansion (e.g. N x C — N x rC, where N is
the number of points, C' is the channel size and r is the upsampling rate) and
tensor reshaping (e.g. N x rC' — rN x C) to fit the ground truth upsampled
point clouds [14], [24], [25], [31], [40]-[42], [49], [56], [61] (Figure 2.2). How-
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ever, domain-dependent and object-based upsampling with a fixed rate causes

inflexibility, which motivates some studies to address the issues.

Feature Tensor

Expansion Reshaping%
I:I:I:I:I—)|||||||||||||||||—>I:I:D:I

[TT1T11
NxC NxrC rNxC

Figure 2.2: Visual illustration of feature expansion and tensor reshaping op-
erations for point cloud upsampling.

Methods with arbitrary upsampling rates generally have seed points, the
initial samples before refinement using an implicit surface [10], [16], [41], [60].
PUGeo-Net [41] upsamples points in a 2D domain, corresponding to the tan-
gent plane of a 3D patch, and the points are then projected to the implicit
surface with distances and normals calculated using a neural network. SAPCU
[60] voxelizes the 3D space uniformly and uses the center points of voxels as
seeds. Another drawback is the high computational cost of generating seed
points. Indeed, the farthest point sampling could be applied to improve per-
formance. Neural Points [10] represents an implicit surface using a bijective
mapping function between points on 3D surfaces and corresponding points on
a 2D discrete grid. Therefore, increasing seed points on the 2D points natu-
rally upsamples the 3D point cloud. However, one common potential problem
of the above methods is that the uniformity of seed points is not maintained
when 2D points are projected to the 3D surface. Grad-PU [16] adopts the
midpoint algorithm in local neighbourhoods and achieves state-of-the-art per-
formance by projecting the points onto the implicit surface by gradient descent
optimization. However, their implicit surface does not show continuity (Fig-
ure 2.3), which could be a problem, in particular, when the input point cloud
distribution is not uniform.

Unlike 2D image super-resolution, upsampling an unordered and unstruc-
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Figure 2.3: Ground truth UDF versus the implicit surface of Grad-PU [16].

(3

tured point cloud does not have a fixed ground truth for the corresponding
low-density input because the upsampled points do not have specified locations
in the 3D space. Therefore, many methods rely on nearest-neighbour-based

reconstruction loss functions, e.g. Chamfer distance (CD) and Hausdorff dis-

tance (HD) [2], [49], [58] or their modifications:
]_ . 2 ]- . 2
dep(Sh,82) = — - — - 2.5
op(S1,52) = 751 ;esi min llz = yll: + 75 yEES; min |y —zf,,  (25)

dyp(Si, S2) = max [sup inf d(z,y), sup inf d(a:,y)] ,

reS; YES2 yeS, TES:
where deop(Sh, S2) and dgp(Sh, S2) are the Chamfer and Hausdorff distances
between point sets S; and S,. sup and inf are the supremum and infimum oper-
ations [58]. Combined with end-to-end learning, the upsampling performance
relies on the input point distribution of training datasets with uniformly sam-
pled point clouds from 3D surfaces. Hence, many upsampling models, which
are trained on synthetic datasets, have the domain dependency issue. While
the Chamfer distance is a great evaluation metric that is sensitive to outliers,
Wu et al. [52], Lin et al. [27] and Lin et al. [28] argue the ambiguity of
the CD loss function for training a point generation model because it ignores
all other points but the nearest point in the target point cloud and every
nearest-neighbour pair is treated with equal weights. In ideal situations, more
weight should be given to sparser points so that the model does not cheat
by avoiding point generation in sparse areas than in dense areas [27], [28],
[52]. Such sensitivity to outliers often causes clustering behaviour when a gen-

eral encoder-decoder point cloud generation model is trained with supervised
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learning. Moreover, point matching rules of Chamfer losses are static, and the
optimization is likely to be stuck in local minimums [18], which also aggravates

the domain dependency issue.

2.3.2 Self-supervised Learning

Several studies have demonstrated the potential of self-supervised learning for
point cloud upsampling [31], [60], [61]. The first two methods, SSPU and SPU-
Net [31], [61], follow a similar point generation method with earlier models
using feature expansion and tensor reshaping. On the other hand, SAPCU [60]
allows for an arbitrary upsampling rate with seed point generation. Although
they have a similar problem statement to our study, the main difference is
that they must calculate the pseudo-ground-truth for point projection on the
implicit surface. In contrast, our method has accurate ground truths based on

existing points in the input point cloud.

2.3.3 Applications to LIDAR Scans

Datasets for point cloud upsampling are less standardized for applications us-
ing LiDAR scans than synthetic datasets used in conventional computer vision
studies. For example, Li et al. [23] propose a problem-specific interpolation-
based point cloud density enhancement method for long-range pedestrian de-
tection with a sparse point cloud [23]. Camera-LiDAR fusion methods [§],
[22], [29] are suggested to obtain denser outputs. As an alternative direction,
super-resolution on a 2D range image or depth map has been proposed [5], [20],
[29], [45]. Although the coarse-to-fine objective of super-resolution is similar
to that of point cloud upsampling, the resulting point distribution from super-
resolution may not be uniform in the 3D space, as the task focuses on obtaining
a high resolution in the 2D space. Point cloud upsampling generates a denser
point cloud but does not translate to a high-resolution point cloud. On the
other hand, LIDAR Upsampling by Savkin et al. [44] and LiDAR Completion
by Xiong et al. [54] have attempted to generate an output point cloud directly
from the input point cloud without an intermediate 2D representation. How-

ever, the objectives of both methods are similar to super-resolution methods,
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as the ground truths are high-resolution LiDAR scans due to the difficulty
in collecting dense point clouds. Our proposed method solves this issue with
ray-based upsampling.

Point cloud completion [9] is a closely related task of upsampling by com-
pleting the surface shape by generating points. The comprehensive review by
Fei et al. [9] on point cloud completion emphasizes the importance of the 3D
reconstruction task in the domain of ITS by lowering storage cost and sen-
sor requirements reduction. Most existing methods are primarily object-based
completion methods and cannot be applied to real scenes, which include many
different objects, and defining the bounding space of the environment for shape

completion is difficult. Similar emphases are found in other previous real scene

3D reconstruction studies for I'TS [5], [8], [20], [22], [23], [29], [44], [45], [54].
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Chapter 3
Methodology

Our proposed method, PU-Ray, performs the sphere tracing algorithm [15]
on the neural implicit surface defined with unsigned distance function (UDF).
With our novel loss functions, PU-Ray effectively trains a precise depth pre-
diction model through sphere-tracing [15] while using a small number of pa-
rameters. The trained UDF for precise depth prediction is combined with
our query ray generation algorithm for upsampling. In the following subsec-
tions, the problem statement explicitly explains how the implicit surface is
defined. The query ray generation algorithms and the network architecture

are discussed.

3.1 Problem statement

Following the original sphere tracing paper [15], we define our ray mapping

function, q : R — R?, as:
q(t) =0 +t-dY (3.1)

where 0% € R? is the origin and d? € R? is the unit vector that defines the
direction. The problem formulation of the method is similar to the work of

Kwon et al. [20]:
U=Su{q(t")|¥qeQ, t" = f(P,d}, (32)

where S C R? is the sparse point cloud, U C R?® the upsampled point cloud,
Q = {q | 09,d? € R®} the set of query rays, P4 € R*** the patch that
17
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Figure 3.1: Visual demonstration of the ray marching method on the implicit
surface. The origin, of}, is updated at every marching step, m, given the
nearest distance to the implicit surface, ¢1. The final query ray depth, %q,
is the sum of the cumulative depth, 7, and an offset, €3. The inset at the
top-right is a visual aid to the nearest point search of (zd, 6y, 23) on the
implicit surface. The purple plane is defined with ol and its implicit nearest
direction, n. The projection distances to the approximated tangent plane
(dotted straight line) are defined by |proj,; — ud|’s. The nearest implicit
distance, 3 is approximated by the projection distance of the nearest point

in the patch defined by proj; -

corresponds to ray q, and t* € R! the predicted depth that corresponds to
ray q. In our method, the number of query rays is set to |Q| = |S| - (r —
1), where r is the upsampling rate. The ray depth prediction network f(-)
takes in d* and P9, where the k-NN patch P4 = [p{...p{ ... p;] is sampled

from S, as described in Sect. 3.2, and translated for relative positioning so
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that o is centred at op,_; = (0,0,0), where m = 1 means the marching
step index initialized to 1 (Alg. 1). In other words, {py + 09}k, c S.
Relative positioning introduces simpler loss functions and prevents overfitting
by ignoring the ray origin information during training. The depth of a ray, ¢,
indicates the distance from the query ray origin to the crossing point to the

implicit surface (Fig. 3.1).

> It <
| { LRMSE
' Ray Marching Module
d
13 &
! 1x1
B3
init: m=1 : P
0o, 4 > 13 =80
L oaa BT
= At el
L ax 'm :
: [
(X) Etemantwise Multiplication Lam
oy
- Lms

Figure 3.2: Network overview of PU-Ray with a single query input defined
with d? and P4,

3.1.1 Neural implicit surface definition with M LP;

We define our implicit surface similar to that in SAPCU [60] with a UDF since
a signed distance function is impossible to define in a patch-based method. A
multi-layer perceptron (MLP), M LP; (Alg. 1; Fig. 3.2), following the feature
encoding of F9, outputs the nearest point, [z9 y2 29]7, from the implicit
surface to an arbitrary of. The implicit nearest point (middle of Figs. 1.1
and 1.2) is decomposed into meaningful information about the distance, t3 =
|[z% y& z3]||,, and direction, n% = [z y3 24]7 /t3, from o, to (z3,yd, z3).

Firstly, a unit vector, nf, combined with of defines a plane (The purple

line in the inset of Fig. 3.1), where each p; can be projected to with distance

denoted as proj :

a-b
S.e(a,b) = 2 3.3
(aB) = ol (33)

q S q O%P? q..q
PT0) i — Pcos nm;m '||0mp'i”2;
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Algorithm 1 Ray marching on point cloud

Require
Require
Require
Require
Require

: Query ray direction, d

: Patch, P9

: MLPgp(-), MLP;(-) and MLPA(-)
: Point Transformer Module, PT'(-)

: Cross Attention Module, C'A(+)

> Sect. 3.1 & 3.2
> Sect. 3.1 & 3.2
> Sect. 3.3

> Sect. 3.3.1

> Sect. 3.3.1

Ensure: Maximum number of marching steps, M > 0

m <+ 1

02 « [000]T

i1« 0

F% « PT(MLPp(P%))

while

Fa

[z,
tm < ll[z5

q
nq,

1 =

T =

q
Om

m < M do

< CA(MLPr(03), Fp)

ys, 28]7 « MLP;(Fg)
m y'r?q, z??z] ”2

 [od, y3 28]/t

i+t

m+1

—da.?

end while

q
Fl

CA(MLPr(o3), Fp)

€4 <~ M LP(concatenate(F},d?))
return f < & + ¢4

> Initialize marching step index
> Initialize origin

> Initialize cumulative depth

> Patch Encoding

> Cross Attention at o,

> Implicit nearest point

> Implicit nearest distance

> Implicit nearest direction

> Update cumulative depth

> Increment marching step index
> Update origin

> Cross Attention at o}l
> Epsilon estimation
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where S,.s(a, b) is the cosine similarity between two unit vectors. The cosine
similarity between n% and the unit vector of o2 py is multiplied by the mag-
nitude between the two points, |[o% p||,, to obtain the projection distance,
proj;‘z,i, defined above (Inset of Fig. 3.1). In the optimal situation, the plane
defined with n? and o2 would be parallel to the tangent plane that touches
the object surface at (z@,y%, 23) which makes nd, equivalent to the surface

normal, namely, the implicit nearest direction. We approximate the tangent

plane using the following loss function:

k
pd =" projd ./, (3.4)

i=1

2
S exp (_ o Pl )
’ 2 avg({|loh pj||, | VP§ € Pa})

k
> [(proghs — i) - i
i=

L?&n:%'z ’

=1

k
\ > w'r(rlz,i
i=1

where avg(-) is the mean value of a set, and M is the maximum number of
marching steps. Let ;%}'31 denote the projection distance between this proxy
tangent plane and the plane defined with nd, and o3, which are parallel to
each other (Inset of Fig. 3.1). Then the projection distances from p;'’s to the
proxy tangent plane is defined as | proj;‘z,@ - gﬁf}d. The motivation of L,
is to perform linear regression on the patch P9 with the root mean squared

projection error, where minimization of the term | proj;‘z,@ - p%}% is the opti-

mzation goal. In an optimal solution, pﬂf;‘_(;:fgl = pd.

Proof. We want to find projd, that minimizes L;!

can- 1O find such a value, we

need to minimize the squared differences. Taking the derivative of the sum

of squared differences with respect to projd and setting it to 0 gives us the
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minimum due to convexity:

9 k
8})‘7‘0_} Z[ pro.?mz pTO.?m) 7(711,3']2 =0 (35)
k
Z _2(w7(711,¢‘)2 : @Tojr?a,i —projp,) =0
i=1
k
> (proja,; —proji) =0
i=1
k
> projp, — k- projl, =
i=1

k
ot = § Y- o
L]

We restrict gﬁm || so that progq is non-negative even when n% is
directed against the patch P9 (i.e. nd is directed towards P9 in an optimal
solution). Therefore, the training objective for the optimal n? is by minimizing

the term |proj.: . i — pd|. This term is weighed differently with w? . which is

m, i)
dynamically assigned using Gaussian kernel depending on the [2 distance from
o2 to py. This allows the surface normal estimation to focus more on adjacent
points than far points to adapt to point clouds with local density imbalance.
The best approximation of the implicit nearest distance, t3, is the projec-

tion distance of the nearest point in P9 from o;}, due to limited information in

the point set:

Ly =+ M th“ —proj,.;l, (3.6)
m=1

where i = arg min |0, p;[|, is the index of the point p;' that minimizes the
Euclidean dist;nce from the origin of}. Cumulative query ray depth, T
Eﬂf 13, is the sum of all ¢34 through multiple marching steps (Alg.1 and Fig.
3.2). 04 is updated to d?- " at every step when #" is accumulated with 3 .
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3.1.2 Neural implicit surface definition with M LP.

The original sphere tracing [15] does not guarantee precise query ray depth
(t* £ fq) as illustrated in Fig. 3.1. Therefore, we have another distance func-
tion, MLP,, to add a small offset €9 to get " = ¢ + €% (Alg. 1; Fig. 3.2).
It also reduces computation redundancy by skipping infinitesimal marching
steps and allowing a fixed number of marching steps within a batch for GPU
utilization. The difference in the implicit surface definition is that the direc-
tional unit vector is given to M LFP: as an input, and the function outputs
the distance €9 only. It enables querying in an arbitrary direction d9 from
an arbitrary o2, which is essential for our user-controlled upsampling. Unlike
SDF, it is impossible to know if a ray has penetrated the surface using UDF.
Therefore, the € has a constraint to have a non-negative value following [15],

which is represented by the loss function:
L} = maz(0, —€?). (3.7)

Instead of L., one may suggest the ReLu activation, which outputs ReLu(e?) =
maz(0,€e?), at the last layer to obtain non-negative epsilon values naturally.
However, this may introduce the dying ReLu problem [32], where the network

does not update when the % =0, where a® = ReLu(e?). For example, given

that,
Yl — ]
LMAE = q—} (38)
Q|
SeE
Lpymse = AT

23



we have,

Q
OLyag 1 0 a4 g
da? Q| 2> gar |t 1 (39)
q
Q
1 0
=@ L aarl T
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1 ZQ:(Eq+aq_tq).qu’(gq_’_aq_ﬁ)
@l q [t 4 a9 — tq|
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Oa? 9 \/L S 9F — ta)2 Q| da ‘
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1 Q
_ - Z (11 4 a9 — t9)?
|Q| .9 \/Iéﬂ EqQ(tq_tq)2 a Jaq
pu— - a _ J—
1 NQea 2 Oa? 4
Q-2 /g1 22q( —19? "a
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— ; .Q(tq +a¥ —t7)a?.
Q12+ /& X3 — ta)?
Both partial derivatives are 0 if a9 = 0, and this causes the chain rule to

set all gradients of the parameters in M LF, as 0 for an arbitrary q’, and the
back-propagation is impossible. To avoid the dying ReLLU problem [32], this
loss function penalizes the depth overestimation of the last epsilon value in-
stead of placing the ReLU activation at the network’s end. An alternative to
the proposed loss function is L, = min(0, €?)?, which is differentiable for all
€. However, Equation 3.7 is chosen to penalize negative €9 values equally to

strictly follow the sphere tracing algorithm [15], where the ray cannot pen-

etrate the surface. Sub-gradients are used when €4 = 0, where %EE is not

differentiable.
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3.1.3 Training objective

Given the target depth t9 € R3 of a training query ray, q, the training objective
of f(-) is by minimizing the following:

Ltotal - LMAE + LRMSE + Wins - Lms + Wian - Ltan + LE}

where 0 < wpe < 1 and 0 < wye, < 1. The losses calculated per query ray,
L., L3, and L2 are averaged (e.g. Lin = EqQ L../|Q]) to obtain the final

loss.

3.2 Query ray and patch generation

The origin o € O of query rays is sampled using surface normal estimation
for each k nearest neighbourhood (k-NN; k = 16), N € R**3, of downsampled

points in the input point cloud:

r T
Y ¥e Y¥sy Y,
i € R = | & s s , 3.11
RS T 31

0= py £ ([Ae Ay MJT)°2,

_ T
SV £ N[VA: sy £INVA,  SNs, £ NV,
IN| IN| IN| ’

where iy € R? is the mean point of N € RF*3 and [\, Ay A.]7 is the vector of
eigenvalues of the covariance matrix (N — py - 1T)T - (N — py - 1T). Because
elements are squared or multiplied by each other for covariance calculations,
Hadamard square root, [-]0%, is applied to the eigenvalues to calculate the stan-
dard deviation calculation of each principal component. This scaling operation
places o at an adequate distance from the surface. The + sign is randomly
selected with a binomial distribution.

The generation of query rays and patches is based on arbitrary query
points, which can be known points in existing point clouds or a novel point
from rule-based methods explained in the following sections. The query ray
origin corresponding to each query point is determined by searching the near-

est o. The query ray direction d? is defined as the unit vector from a query
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ray origin to a query point. Given a query point, k-NN patches (k = 16),
P9 is sampled from S followed by relative positioning. Random rotations are
applied to patches to augment the data. Depths are normalized to the (0, 1]

range by scaling, where the maximum depth between o and P9 is set as 1.

3.2.1 Known query point sampling for supervised and
self-supervised learning

Since the target depths are required to train the proposed network, the known
query points and the corresponding depths in the dense ground truth are used
for supervised learning. Self-supervised learning is achieved by replacing the

query points of dense ground truth point clouds with sparse input point clouds.

3.2.2 Novel query point generation for upsampling

We propose a mid-point algorithm similar to that of Grad-PU [16]. In partic-
ular, for every point s € S, the method finds six nearest points, calculates the
midpoint from s to each of these neighbours and takes each as a query point.
We employ an additional constraint where the angles between the vectors from

s to two adjacent midpoints in the neighbourhood, N%,_ . should not be less

syn?
than 7/6 to maintain a hexagonal shape for uniformity, following the obser-
vation by Li et al. [24]. To accomplish this, we give indices to neighbouring
points of s from the nearest to the farthest, " = {s},...;s},...}, ssi. At each
iteration, the midpoint is dropped if any of {Zs]ss} | j < i} is smaller than
7/6. The loop halts until either six midpoints are found or all points in the

neighbourhood are checked:

J

" ! - - ! ’ m
Noyn = LSl Vi < i, Zsissy > 2}, (3.12)

i=1

s /
= s+ s ,
Qun =518 € N3}

where n is the smallest number that satisfies [N3,,,| = 6. Duplicate midpoints

are omitted, and Farthest Point Sampling (FPS) [39] is used to select query

points, Q,,, for a specific upsampling rate, 7.
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We adapt our rule-based query generation method to real-scanned point

clouds by altering the k-NN operations by selecting points, S” = {s/, ..., s/, ...;sll_c},

with the eight smallest angles, Zsas!, where a is the sensor location. We de-

fine the neighbourhood of s as
Nrea = {8"| V" € 5", dnear < ||ss”||§ < djar}, (3.13)

where dpeqr and dy,r are, respectively the second nearest and the second far-
thest distances from s to S” to reject outliers. This adaptation is more robust
to the real-scanned data since LiDAR point clouds are more uniformly dis-
tributed in spherical coordinates than in Cartesian coordinates. Additionally,
query points are generated on lines with a length greater than the median of
all magnitudes of qualifying vectors in S to upsample in regions with a lower

density. In particular,

S
V= Jss" | V" € Nub, (3.14)
V= {3V eV, [Vl > median({|[v]; | ¥v € V})},

N
Q="+ od' | W eV, & = oo ¥},

n=1

where Q is the set of query points, V is the set of vectors from s to s” € NS ears
and V is the set of vectors with the magnitude greater than the median mag-
nitude of vectors in V. Instead of selecting a single mid-point, NV interpolated
query points on 9 € V are generated, where N = [|V|/(|S| - r)]. Same as the
query point sampling for uniformly distributed synthetic point clouds, FPS
[39] is applied for a specific r. Outliers in query points and upsampled point
clouds concerning their local neighbourhoods in input point clouds are omit-
ted. More specifically, 10 nearest points, N9, of q € Q from S are selected.
is rejected if:
(@ > 255 V & < 251) V (dy > 105 V @y < %51) V (@& > 25 V & < 21),
(3.15)
where q,,q,,q, are 3D coordinates of G and (203, < z)3] is the 10% to 90%

inter-quantile range of x dimension in N9. The multivariate ranges define the
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ROI of our upsampling objective. Such a practice is more robust for outlier
detection than the multivariate location estimator based on the mean, which

is sensitive towards outliers [43].

3.3 Network architecture

Our architecture consists of feature encoding and ray marching modules (Fig-
ure 3.2). The feature encoding module transforms the 3D coordinates in a
patch, P9, into a higher dimension space that includes the neighbourhood in-
formation. The features from the feature encoding module are accumulated

in the ray marching module to define the UDF of P4,

3.3.1 Feature encoding module

We adopt the Point Transformer’s (PT) self-attention module [59] to encode
the points within patch P9. First, the points in P9 are fed into a multi-layer
perceptron, M LPr, shared throughout the entire network, to extract ¢ = 32
features from the (z,y, 2) coordinates of p;', which are inputs to three differ-
ent layers for key, query, and value in the Point Transformer. The relative
coordinates between points are used for positional encoding as in the Point
Transformer [59]. The output transformed features, Fa, have inter-point spa-
tial relationship information with other samples in the patch, making it ad-
vantageous for representation learning of neural implicit surfaces. To obtain
F3 in Alg. 1 and Fig. 3.2, the objective is to calculate the cross-attention
(CA) of 0%, from Fp using the ablated architecture of the Point Transformer’s
attention module [59]. F3 is fed into three different linear layers to obtain
the key and the value, while ol is directly used for the query. The relative
3D coordinates of the local neighbourhood, P9, centred at ol are input to a

separate linear layer for position encoding.

3.3.2 Ray marching module

The ray marching module contains M LP; and M LP, that define the neural
implicit surface. Depending on the MLP that follows the cross-attention mod-
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ule, two types of 3D coordinates are retrieved given the encoded features F}
(Fig. 3.2): 1) M LP; produces the approximate nearest point, (zf,y3,23), on
the implicit surface from of, or 2) M LP, produces the final €2 value from o2,
to the point where the query ray hits the surface. Both MLPs consist of three
fully connected layers with a size of 32, followed by the ReLLU activation. The
output layers are of size of 3 and 1 are added to the end of M LP; and MLPF,,

respectively.
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Chapter 4

Experiments

4.1 Experimentation setups

Following the benchmarks from existing studies, the PU-GAN [24] and PU1K
[40] datasets are used for quantitative and qualitative experimentations. The
PU-GAN [24] dataset has 120 and 27 training and testing mesh models, respec-
tively. Since no point clouds are provided, the Poisson disk sampling method
[57] is used to obtain the input point cloud and the ground truth samples using
the program provided by He et al. [16]. PU1K has a larger testing dataset
with 127 point clouds. We train our models only on the PU-GAN dataset for
all experiments to analyze the domain independence. The training dataset has
simple, medium and complex sub-datasets, each with 40 models.

Moreover, we evaluate our method on the 3D reconstruction task for ITS
[9], with a simulated real-scanned dataset using the Vista simulator’s [1] occlu-
sion removal on densely accumulated point clouds. KITTI-360 [26] (41 point
clouds) and private data collected on Alberta highways (233 point clouds) are
used for comprehensive assessments in different road environments. The input,
low-resolution real-scanned simulation data, follows the configuration settings
of the KITTI-360’s HDL-64E sensor [26], [47]. Experiments are in the far
range with sparse point density (> 15m and > 30m from the sensor for urban
and highway environments). Input far-range point clouds have 9741.80 and
15592.06 points on average for urban and highway environments, respectively.
We also simulate 2x super-resolution in the horizontal and vertical axes of
the range image, similar to that of the state-of-the-art Velodyne Alpha Prime
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VLS-128 sensor [21]. The reconstruction ground truths are defined by omit-
ting points in the accumulated point clouds outside of the ROI, as in 3.2.2,
followed by FPS for 4x upsampled points. Outliers in the super-resolution
point clouds are omitted to mitigate unfair over-penalization. Snippets of the
KITTI-360 [26] scenes are used to assess the application on real-scanned data
qualitatively. More visual results can be found in the Appendices.

Six models are trained: Supervised, Selfrest, Self Train, S€lf simpie, Self vedium
and Self compiez- Supervised is the only supervised model where the query
point set is extracted from the dense ground truth point clouds. Self .. and
Self rrqin are self-supervised models, with the input point clouds from the train-
ing and test datasets, respectively. Self simpie, Self medium and Self compiex are
self-supervised models like the previous two but use a single point cloud with
2,048 training points, randomly sampled from the single, medium and com-
plex training datasets, respectively. The weights of the loss functions are set as
Wns, Wian = 0.1 for supervised training, and wy,s, Wien, = 0.5 for self-supervised
learning. Self-supervised learning tends to overfit to the final depth by using
input points for both query and patch generation. Thus, the weights on the
arbitrary implicit surface learning using L., and L,,, compared to the precise
final depth estimation using Lysg, Lryse and L, are relatively higher for self-
supervised training than for supervised training. Different numbers of epochs
are also used because of the overfitting problem (Supervised: 100 / Selfres:,
Self rrain: 15 / Self simpie, Self medium: 30 and Self compiez: 30). The batch
size is set as [|Q|/64]. The initial learning rate is set as 0.005 and decayed
with a rate of 0.99 every epoch with the Adam optimizer [19]. The models
are implemented using the PyTorch framework [36] and run on an NVIDIA
RTX 3080 GPU Light Hash Rate (LHR) with 10GB of memory, except for the
supervised model, which was trained on the NVIDIA RTX A6000 GPU with
48GB to accommodate the larger dataset. The size of query ray origins per
sample is |O] = 128 to have diverse angles between the tangent plane and the
query vector. The choice of the inference |O| is reasoned by the k-NN size of
16 for the query ray origin generation (e.g. 128 = 2048/16). Thus, a query ray

origin covers a similar neighbourhood area generated in the inference stage.
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Table 4.1: Quantitative results on the PU-GAN test dataset. All metric units
are multiplied by a factor of 1073, TItalic labels indicate a self-supervised
method. The best three results are coloured red (first), orange (second) and
green (third).

r=4 r=16
Methods cCb] HDJ| P2F| | CDJ}] HDJ|] P2F|
PU-Net[56] 0493 4508 4.315 | 0.510 6.739 5.442
MPU[49] 0.305 4.463 2.882 | 0.187 6.243 3.183
PU-GAN[24] | 0.296 5.722 2812 | 0.229 7.653 3.304

PU-GCN[40] | 0.291 2.986 0.158 3.774
SAPCU[60] | 0.465 10.572 3.421 | 0.510 6.739 5.442
Grad-PU[16] | 0.268 2.601 1.990 | 0.126 2.628 2.233

Ours

Supervised 0.260 2.736  1.707 | 0.121 2.654 2.093
Self train 2.721 | 0.155 2970 3.384
Self et 0.293 2.864 2.756 3.355
Self simple 0.290 6.030 3.109 | 0.161 5.335 3.757
Self medium 0.301 3.260 3.093 | 0.160 3.200 3.680
Self compiex 0.325 3400 3.427 | 0.181 3.304 4.355

The number of marching steps is set to 6, determined based on an ablation

study.

4.2 Applications to Synthetic Datasets
4.2.1 Results on PU1K and PU-GAN datasets

Since PU1K’s point cloud inputs are fixed, all the results of the compared
methods are taken from the existing papers. Table 4.2 shows that our ap-
proach with supervised learning, even with training using the smaller PU-GAN
dataset, performs at the state-of-the-art level along with PU-Transformer [42]
and Grad-PU [16]. The Chamfer distance result, the best of all compared
methods and tied with Grad-PU, is achieved by training without any loss
functions for reducing the metric itself or its similarly designed alternatives.
Our Hausdorff and P2F distances are ranked in the third and second places,
respectively, with small margins compared to state-of-the-art methods. The
training objective is mainly on depth prediction, and the naive rule-based

query generation method determines the uniform distribution in the output.
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Input Ground Truth PU-Net MFPU PU-GAN PU-GCN Grad-PU PU-Ray

Figure 4.1: Qualitative comparisons between state-of-the-art methods and PU-
Ray for 4x upsampling. Point colours are scaled from smaller (blue) to greater
(red) P2F distances. The best three results are coloured red (first), orange
(second) and green (third).

This illustrates that uniform distribution in the output can be achieved using
a simple method instead of a model with a vast number of network parameters
to fit the ground truth. A similar trend of PU1K results is also observed in
the PU-GAN dataset results (Table 4.1). Our supervised method achieves the
lowest Chamfer and P2F distances and the second-best Hausdorff distances of
all compared methods in 4x and 16x upsampling. The significant margins
in the P2F differences between our method and the Grad-PU [16] illustrate
the importance of accurate depth prediction of a query ray. Other fixed-rate
methods [24], [40], [49], [56], and upsample 4x twice for 16 x upsampling, add
more noise to the output. On the other hand, PU-Ray introduces less noise
using an arbitrary scaling rate, r. The visual quality of our results is organized
in Fig. 4.1 compared to the existing methods. More specifically, we observe
that smaller P2F distances occur on complex surfaces. The current models fail
to determine whether the space in between (e.g., a triangle surrounded by a leg
in the top row of Fig. 4.1) should be an implicit surface or a void. On the con-

trary, our method’s query generation limits where the rays should be directed
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Table 4.2: Quantitative results on the PU1K test dataset. All metric units
are multiplied by a factor of 1073, TItalic labels indicate a self-supervised
method. The best three results are coloured red (first), orange (second) and
green (third).

Methods Cbl HDJ| P2F]|
PU-Net[56] 1.155 15.170 4.834
MPU[49] 0.935 13.327 3.511
PU-GACNet[14] 0.665 9.053 2.429
PU-GCN[40] 0.585 7.577  2.499
PU-Transformer[42] 0.451 3.343 1.277
Grad-PU[16] 0.404 3.732

Ours
Supervised 0.404 1.341
Self train 0.431 4.537 1.820
Self test 4705 1.857
Self simple 0.576 12.963 2.114
Self medium 0.444 5181 2.024
Self complex 0.452 5213 2.160

so that they will likely hit the surface. Our superior depth prediction gives
smaller numbers of P2F errors on a folded surface, as shown along the hair-
line of a statue in the bottom row of Fig. 4.1. The self-supervised models also
show promising results compared to some existing methods PU-Net [56], MPU
[49], PU-GACNet [14] and PUGCN [40]. Moreover, the models trained on a
single point-cloud input demonstrate that our method does not require a large
dataset to achieve a significant performance improvement, demonstrating its
potential for zero-shot learning. All of our five self-supervised models generally
outperform SAPCU [60]. Accurate ground-truth depths could provide better
guidance for training, while SAPCU has to rely on manually defined implicit
surface representations. Table 4.1 and Fig. 4.2 illustrate how SAPCU fails
with the PU-GAN test dataset, demonstrating the domain dependency issue.
At the same time, all of our self-supervised methods can produce upsampling

results with acceptable qualities.
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Table 4.3: Quantitative results on the noisy PU-GAN test dataset. All metric
units are multiplied by a factor of 1072, Italic labels indicate a self-supervised
method. The best three results are coloured red (first), orange (second) and

green (third).

v =0.01 v =0.02

Methods Ccb] HD| P2F]|CD] HD| P2F]|
PU-Net[56] 0.606 6.291 9.748 | 1.010 10.449 16.156
MPUJ[49] 0.460 8.692 7.262 | 0.782 10.264 13.589
PU-GANI[24] | 0.457 6.056 7.294 | 0.795 9.089 14.217
PU-GCN[40] | 0.436 5.596 0.784 8.687 13.583
SAPCUI[60] | 0.728 16.707 10.933 | 0.731 16.829 10.933
Grad-PU[16] | 0.448 4.474 6.447 | 0.767 7.194 11417

Ours

Supervised 4.745 6872 | 0.7149 7.185 11.897
Self train 0466 4.794 7.390 | 0.749 7.441 12.056
Self test 0471 4664 7221 | 0.735 7.353 11.700
Self simple 0.482 5815 7.190 | 0.785 10.830 11.270
Self medium 0.477 7.253
Self complex 0.488 4.761 7.466 | 0.745 T7.275 11.526

Table 4.4: Quantitative results of supervised methods on the PU-GAN test
dataset with smaller input sizes. All metric units are multiplied by a factor
of 1072. The best three results are coloured red (first), orange (second) and

green (third).

[S] = 256 S| =512 1S = 1024

Methods [CDJ| P2F] | CD| P2F ]| CDJ DP2F]
PU-Net[56] | 3.073 17.044 | 1.719 11.657 | 0.923 7.020
MPU[49] 0.466 | 1.186 7.432 | 0.610 4.604
PU-GAN[24] | 2.152 9.606 | 1.133 7.207 | 0.572 4.430
PU-GCN[40] | 2.222
Grad-PU[16] | 2.266 £.583 | 1.075  5.405 3.336
Ours 2203 8.281 | 1.105 4.847 | 0.574 2.841
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Figure 4.2: Qualitative comparisons between SAPCU [60] and our self-
supervised models for 4x upsampling. Point colours are scaled from smaller
(blue) to greater (red) P2F distances. The best three results are coloured red
(first), orange (second) and green (third).

4.2.2 Robustness to challenging inputs

PU-Ray’s robustness to noise was tested by applying the method to perturbed
input with Gaussian noise multiplied by two different factors, v = 0.01 and
v = 0.02 (Table 4.3, Fig. 4.3). While the three metric values are slightly
behind Grad-PU [16] for v = 0.01, the best performances are achieved by
several of our models learning at v = 0.02. An observation suggests that our
self-supervised model’s performance degradation is less sensitive to a higher
noise level than other methods. Our method preserves the details, such as

overhead power lines and tree branches, compared to the noisy output of MPU
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cD: 1.137 cD: 1060
HD: 10.895 HD: 20.070
Input Ground Truth P2F: 16.823 PU-Net P2F: 14,626 MPU

cD: 1.201 cD: 1.114 cD: 1005 CD: 0.920
HD: 10.510 HD: 10.460 HD: 2123 HD: 8.181
P2F: 15.464 PU-GAN P2F: 14.461 PU-GCN P2F: 11.470 Grad-PU P2F: 12.027 PU-Ray

Figure 4.3: Comparisons between upsampling results of existing methods and
PU-Ray on a noisy point cloud input with v = 0.02 for 4x upsampling. Our
method is trained with supervised learning. The best three results are coloured
red (first), orange (second) and green (third).

256 Points 512 Points 1024 Points

Input

Qurs

Figure 4.4: PU-Ray’s 4x upsampling outputs given different input sizes of
256, 512 and 1024.

[49] while having denser points than the super-resolution results (Fig. 4.3).
Evaluation with smaller input sizes shows how well the method adapts to

point clouds with a different point density from the training datasets. Fig.
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4.4 illustrates that the shape is preserved regardless of the input sizes ranging
from 4 to 2 times smaller than the training point clouds. Table 4.4 shows
that our method consistently performs the best in the P2F distance metric
and competitive results in the CD metric. It is noteworthy that CD is not
a good evaluation metric when the compared point clouds have sparse point
densities [52]. HD metric is disregarded for the same reason. The results show
the method’s potential in real-scanned applications where point densities vary
in different regions (i.e. decreasing density with the increasing distance to
the sensor [54]). It is noteworthy that CD is not a good evaluation metric
when the compared point clouds have sparse point densities [52]. HD metric

is disregarded for the same reason.

4.3 Applications to real-scanned data

KITTI-360

PU-Ray
CD: 438.05

PURay
- CD: 58242 i -

Figure 4.5: Visual comparisons between the input point clouds, super-
resolution [1], MPU [49]
and PU-Ray (Supervised) outputs of KITTI-360 [26] and highway datasets.

We demonstrate the effectiveness of our method in the 3D reconstruc-
tion task, which is an emphasized application of point cloud reinforcement
for intelligent transportation systems (I'TS) [9]. Quantitative (Table 4.5) and
qualitative results (Figure 4.5) show that the main strength of PU-Ray is
demonstrated when it is applied to real-world scenes in both urban (KITTI-
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Table 4.5: Reconstruction results on real-scanned data. The best three results
are coloured red (1%), orange (2"¢) and green (3").

KITTI-360 (> 15m) | Highway (> 30m)
Methods Avg. r CD | Avg.r CD |
Input (low-res) [1] - 725.68 - 1295.29
Super-res|[1] 3.25x 541.59 3.50x  897.97
PU-Net[56] 4x 807.99 4x 1156.78
MPU[49] 4x 729.01 4x 1146.67
PU-GAN|[24] 4x 776.20 4x 1180.13
PU-GCN[40] 4x 732.28 4x 1164.67
Grad-PU/[16] 4x 753.16 4x 1307.14
Ours
Supervised 4x 523.82 4x 788.99
Self train 4x 4x 822.78
Self est 4x 560.10 4x 826.58
Self simpie 4x 595.18 4x 838.91
Self medium 4x 558.65 4x
Self compiex 4x 567.13 4x 831.25

360 [26]) and highway environments. The consistently lower CDs suggest the
robustness of PU-Ray compared to range-image super-resolution results in
3D reconstruction (Table 4.5). The upsampling behaviour of super-resolution
in the 2D space fails to generate points with a uniform distribution in 3D,
resulting in clustering (e.g. ring artifacts) (Fig. 4.5). Occlusions by com-
plex surfaces (e.g., trees) may have affected super-resolution to have a lower
upsampling rate than r = 4 in the far range, and instead, more points are
added in the near range. Therefore, range-image super-resolution is not suit-
able for reconstruction, as it does not have the control of point generations in
ROL. Our observation suggests that previous upsampling methods [16], [24],
[40], [49], [56] do not overcome the domain dependency problem by generating
points coherently with the input points (Fig. 4.5). Compared to Grad-PU’s
[16] mid-point algorithm, our rule-based query generation allows points in
the ROIs where there are wide gaps between input points, which is better
suited for uneven distributions commonly observed in real-scanned data. Our
method outperforms in preserving details, such as overhead power lines and

tree branches, compared to the noisy output of MPU [49] while having denser
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Table 4.6: Comparison study of computation costs of upsampling on large-
scale real-scanned datasets. A superscript indicates the GPU device used
(1080: GeForce GTX 1080 Ti, 2080: GeForce RTX 2080 Ti and 3080LH R:
GeForce RTX 3080 LHR).

Size Train Inference (sec/sample |)
Methods  |(kb |)|(sec/epoch )| KITTI-360  Highway

Grad-PU'%®9(16]( 401.8 262.00 3.70 10.69

Ours!080 326.6 64.62 6.02 9.66

PU-Net?%9[56] |796.7 71.41 5.87 12.38

MPU2%9[49] 682.6 149.03 6.03 12.49

PU-GAN?%%9[24]1053.8 98.20 6.74 13.36

PU-GCN?%80[40]| 918.4 62.31 6.24 12.76

Ours?2080 326.6 58.15 5.33 8.22

Ours3080LHE 326.6 35.33 3.13 4.97
107 o 4 E o E "o E
Sl 1 F 1 F 1
Pros, 4 F 4k .
T £+ 1 F + el + E
!-U (- | (- | (- |
S 1 r 1 1
=10% ERNS ElS x E
F o | | |E i M | | | | j E° | | | ]

03 04 05 2 4 6 8 10 2 3 4
(a) CD (b) HD (c) P2F

‘ « PU-Net -« MPU + PU-GAN PU-GCN o SAPCU 11 Grad-PU ¢ Ours

Figure 4.6: Number of parameters versus upsampling performances of PU-Ray
and compared models.

points than that of the super-resolution results (Fig. 4.5). Even a patch-based
method, MPU [49], could not generate implicit surfaces when data from unseen
domains are provided. Illustrations in Fig. 1.2 and Appendices demonstrate
upsampling on smaller snippets of the KITTI-360 [26] dataset show that our
method can upsample not only at the infrastructure level but also at the object

level, such as pedestrians and cars.

4.4 Computation Efficiency Assessment

Our PU-Ray method achieves the smallest model size (3.9k parameters) among

all the compared point cloud upsampling methods, which is less than 60% of
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Figure 4.7: Learning curve graphs of the ray marching module on validation
depth MAE and RMSE with and without the sphere tracing algorithm.

Grad-PU (6.7k parameters) holding the title before this study. Fig. 4.6 shows
how our memory efficiency and performances stand compared to the compared
methods. Our method is consistently placed at the bottom left, indicating that
it achieves state-of-the-art performance without using up a substantial compu-
tational overhead. Considering the case of self-supervised learning, choosing
our method can significantly reduce the computation requirements as SAPCU
[60] requires 81.2k parameters to run its encoding and decoding processes
compared to 38,916 parameters in our method. We experiment with our su-
pervised model trained with a reduced batch size to adapt to a GPU for fair
comparisons of the training computation costs between different methods. Our
method generally shows faster training and inference speeds, except for the in-
ference speed of Grad-PU [16] on the urban (KITTI-360) dataset (Table 4.6).
Our method also shows the smallest gap between inference speeds in urban and
highway environments. Processing on large-scale point clouds is performed on

GPUs with memory sizes of 10 ~ 11 gigabytes.

4.5 Ablation studies

In ablation studies, we justify the choice of designs for our method. Fig. 4.7

shows the validation mean absolute errors (MAE) and root mean squared er-

rors (RMSE) of the depth predictions during training of the ray marching
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module with and without the spherical tracing algorithm [15]. The consistent
results of MAE and RMSE suggest that the ray marching positively affects rep-
resentation learning of the neural implicit surface through multiple iterations

of UDF definition.

B 1072
. +M:
4 M:
M p—
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= .
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2.8211 2;2 2|13 914

Number of training queries

Figure 4.8: The ablation study shows the effect of the number of ray marching
steps, M, on depth prediction performance. The depths are normalized.

The effect of the number of ray marching steps on the depth prediction
performance is summarized in Fig. 4.8 with M € {0,2,4,6,8}. The mean ab-
solute error (MAE) of the depth prediction is recorded for each model trained
with randomly selected query sets with sizes of 2,048, 4,096, 8,192 and 16,384.
The numbers are averaged from the results of 4 trials with different random
seeds for stability. As per the sphere tracing algorithm [15], the general trend
shows that more marching steps result in better performance until six itera-
tions throughout different training set sizes. However, the performance gain
is minimal to negative from 6 to 8 marching steps, leading to our method’s
design choice, which is M = 6.

Ablated loss functions show how each term plays a role in the depth predic-
tion (Table 4.7). Theoretically, the depth prediction should be consistent after
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Table 4.7: Ablation study on the loss functions. Depth MAEs are reported.
The best three results are coloured red (1), orange (2™) and green (37%).
# of Inference Macrhing Steps

Loss Functions 4 6 8
w/ Lysg & Lpysg only  0.18241  0.02101  0.08246
w/o L, 0.02705 0.02153  0.02345
w/o Ltan 0.02607
W/0 Lims 0.01970  0.02049
Ours 0.02526 0.01966 0.02025

Table 4.8: Ablation study on the query generation method.
CDh| HD|] P2F|
Query Point Generation Method 1072 102 1072
Simple mid-point 0.271 2.679 1.662
w/ hex-neighbourhood constraint 0.260 2.736 1.707

a few iterations following the sphere tracing algorithm [15]. Also, a better UDF
representation of the neural implicit surface is assumed to yield a precise depth
prediction regardless of the number of inference marching steps. Therefore,
a loss function should be rejected if the resulting model does not show such
behaviour. Our novel € estimation shows noticeable precision improvement to
the original algorithm. Although removing one of L., and L,,, may not show
significant degradation of the final performance, they are essential for following
the original algorithm and generating implicit surface representation, as the
results do not show consistency in different marching steps. The hexagonal
neighbourhood constraint for query generation affects the performance gain in
the Chamfer distance with the trade-offs in the Hausdorff and P2F distances
Fig. 4.8.
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Chapter 5

Conclusion

5.1 Limitations

PU-Ray utilizes the flexibility offered by the Regions of Interest (ROIs) defini-
tion to enhance the upsampling process. However, despite this advantage, the
quality of the upsampling results heavily depends on the effectiveness of query
ray and patch generation techniques. These techniques play a crucial role in
accurately capturing the details of the underlying surface geometry. While
PU-Ray’s mid-point algorithm has demonstrated success in certain scenarios,
there are instances where its performance is compromised, particularly when
dealing with surfaces of high complexity. In such cases, the algorithm may fail
to accurately represent the intricate features of the surface, highlighting the
need for further refinement and modifications to ensure consistent and reliable
upsampling results across different surface types.

While k-NN operations are commonly used in upsampling methods [10],
[14], [16], [25], [31], [40]-[42], [49], [56], [60], [61] due to their simplicity and
effectiveness, they have inherent limitations, especially when applied to com-
plex surfaces. The approximation provided by k-NN may not adequately cap-
ture the local surface characteristics, leading to inaccuracies in query ray and
patch generation. Additionally, the computational complexity associated with
k-NN operations makes them unsuitable for time-critical applications where
efficiency is paramount. Given the limitations identified with both the mid-
point algorithm and k-NN operations, future research efforts should priori-
tize the development of more precise and computationally efficient techniques
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for generating local patches. By addressing these challenges, researchers can
improve the overall performance and reliability of upsampling methods like
PU-Ray, making them more suitable for a wide range of applications across

various surface complexities.

5.2 Summary and Future Work

This paper introduces PU-Ray, a novel ray-based upsampling method designed
to address the domain dependency problem prevalent in existing end-to-end
point cloud upsampling techniques. PU-Ray leverages the sphere tracing al-
gorithm on a neural implicit surface, as described in [15], to accurately predict
query ray depths. Unlike previous methods, PU-Ray employs a rule-based
scheme to generate an arbitrary number of query rays, ensuring a more uni-
form distribution across the point cloud. Additionally, PU-Ray utilizes ac-
curate ground truth data for training query rays, enabling supervised and
self-supervised learning approaches applicable to real-world Intelligent Trans-
portation Systems (ITS) scenarios.

PU-Ray achieves state-of-the-art quantitative results on synthetic datasets
and noisy inputs while maintaining a minimal number of parameters. Further-
more, extensive experiments conducted on novel datasets for 3D reconstruction
demonstrate PU-Ray’s robustness in urban and highway environments com-
pared to alternative upsampling methods. The findings of this study suggest
that upsampling techniques such as PU-Ray should be preferred over range-
image super-resolution methods for accurate 3D reconstruction tasks.

Future research efforts could benefit from exploring the application of ray
marching on point clouds to achieve precise depth predictions on real-scanned
surfaces. However, it’s essential to note that despite the promising results
demonstrated by PU-Ray and similar methods, their inference speeds currently
align with laboratory experimentation rates due to limited computational re-
sources. Therefore, significant challenges remain in adapting these techniques
for practical use with real-scanned data in industrial settings. Future investi-

gations should focus on developing strategies to accelerate these processes and
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meet the computational demands of industrial standards in the field of I'TS.
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Appendix A

Qualitative Results on the
KITTI-360 Dataset

We present more of our qualitative results on snippets of the KITTI-360
dataset [26]. Points are generated in the unknown regions, illustrating the

importance of user-controlled upsampling.

Implicit points

Figure A.1: Qualitative result on a KITTI-360 snippet.
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Implicit points

Figure A.5: Qualitative result on a KITTI-360 snippet.
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Figure A.9: Qualitative result on a KITTI-360 snippet.
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