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WHAT IS NEOLOGICISM?

BERNARD LINSKY AND EDWARD N. ZALTA

§1. Introduction. Logicism is a thesis about the foundations ofmathemat-
ics, roughly, that mathematics is derivable from logic alone. It is now widely
accepted that the thesis is false and that the logicist program of the early 20th
century was unsuccessful. Frege’s [1893/1903] system was inconsistent and
the Whitehead and Russell [1910–1913] system was not thought to be logic,
given its axioms of infinity, reducibility, and choice. Moreover, both forms
of logicism are in some sense non-starters, since each asserts the existence of
objects (courses of values, propositional functions, etc.), something which
many philosophers think logic is not supposed to do. Indeed, the tension in
the idea underlying logicism, that the axioms and theorems of mathematics
can be derived as theorems of logic, is obvious: on the one hand, there
are numerous existence claims among the theorems of mathematics, while
on the other, it is thought to be impossible to prove the existence of any-
thing from logic alone. According to one well-received view, logicism was
replaced by a very different account of the foundations of mathematics, in
which mathematics was seen as the study of axioms and their consequences
in models consisting of the sets described by Zermelo-Fraenkel set theory
(ZF). Mathematics, on this view, is just applied set theory.
Recently, ‘neologicism’ has emerged, claiming to be a successor to the
original project. It was shown to be (relatively) consistent this time and is
claimed to be based on logic, or at least logic with analytic truths added.
However, we argue that there are a variety of positions thatmight properly be
called ‘neologicism’, all of which are in the vicinity of logicism. Our project
in this paper is to chart this terrain and judge which forms of neologicism
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WHAT IS NEOLOGICISM? 61

succeed and which come closest to the original logicist goals. As we look
back at logicism, we shall see that its failure is no longer such a clear-cut
matter, nor is it clear-cut that the view which replaced it (that mathematics
is applied set theory) is the proper way to conceive of mathematics. We shall
be arguing for a new version of neologicism, which is embodied by what we
call third-order non-modal object theory. We hope to show that this theory
offers a version of neologicism thatmost closely approximates themain goals
of the original logicist program.
In the positive view we put forward in what follows, we adopt the dis-
tinctions drawn in Shapiro [2004], between metaphysical foundations for
mathematics ([2004, p. 17ff]), epistemic foundations for mathematics ([2004,
p. 21ff]), and mathematical foundationalism ([2004, p. 27ff]). We shall be
concerned primarily with the first two and plan to remain neutral on the last.
The version of neologicism we defend will be a metaphysical foundation for
mathematics, in the sense that it (a) provides an ontology of mathematical
objects and relations, and (b) identifies not only the denotations of mathe-
matical terms and predicates, but also the truth conditions of mathematical
statements, in terms of that ontology, and (c) does so without appealing to
any mathematical notions. Moreover, our version of neologicism will con-
stitute an epistemic foundation, in the sense that it shows how we can have
knowledge of mathematical claims. These positions will be consistent with
whatever position a mathematician might take with respect to mathematical
foundationalism (i.e., with respect to any attempt to distinguish some math-
ematical theory, such as set theory or category theory, as one in which all
other mathematical theories should be constructed).

§2. From logicism to neologicism. Before we start our investigation, we
should examine in more detail why it appears to be so widely accepted today
that logicism was not successful. On the one hand, logicism was rejected by
Hilbert in the 1920s, while on the other, Hempelmaintained that logicismwas
vindicated as late as 1945.1 Hilbert and others abandoned the search for an

1For Hilbert, see Sieg [1999]. For Hempel, see below. Clearly Gödel’s Incompleteness
Theorem was not a factor in Hilbert’s decision to reject logicism nor did it affect Hempel’s
conclusion that it was successful. Hilbert’s decision to abandon logicism was based on his
view that Principia Mathematica was not logic, and Hempel’s conclusion that logicism was
successful was based on the view that logicism is a thesis about the derivability of all the
axioms and theorems of mathematics as theorems of logic. See our discussion below.
By contrast, some early logicists took the thesis to be the broader claim that all the truths

of mathematics are derivable as theorems of logic. This explains Kneale and Kneale’s 1962
assessment of logicism’s failure, for they see Gödel’s Theorem as showing that mathematical
theories involve “a notion or notions which cannot be characterized exhaustively by the
laying down of rules of inference; and this seems to be a very good reason for excluding them
from the scope of logic” (p. 724).
We note that even if one takes the broader view of logicism as a thesis about the derivability

of the truths ofmathematics as theorems of logic, there is still a question as towhetherGödel’s
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62 BERNARD LINSKY AND EDWARD N. ZALTA

external foundation, and looked instead to mathematics itself to provide its
own foundation, using metamathematics, formalism, and finitism. Others,
however, looked to set theory as the only foundation mathematics needed.
While it is clear that the Hilbert program is not a form of neologicism, one
might wonder, why does Zermelo-Fraenkel (ZF) set theory not count as a
successful form of logicism? It offers a notion of reducibility by which all of
mathematics is reducible. Though there is no proof of its consistency, it is
still the standard by which the consistency of other theories is measured.
Indeed, a long time after logicism’s heyday, Hempel declared that mem-
bership and class talk are logical notions and that the truth of logicism had
been established ([1945, p. 378]):

. . . , the following conclusion has been obtained, which is also
known as the thesis of logicism concerning the nature of mathematics:
Mathematics is a branch of logic. It can be derived from logic in
the following sense:
a. All the concepts of mathematics, i.e., of arithmetic, algebra, and
analysis, can be defined in terms of four concepts of pure logic.

b. All the theorems of mathematics can be deduced from those
definitions by means of the principles of logic (including the
axioms of infinity and choice).

So as recently as 1945, some philosophers took set theory to be a part of
logic and thought logicism had been vindicated.
Why does this sound so alien to our ears? In part under Quine’s influence,
a picture emerged which made it natural to think that set theory is not a
part of logic. On that view, the existential commitments of logic are kept
to a minimum and the membership relation is conceived as a distinguished
two-place non-logical relation within the first-order predicate calculus. So
how did this change come about?
To begin with, our understanding of which concepts are logical changed.
The four concepts of pure logic Hempel refers to are: neither-nor, every, x is
an element of class C , and the class of all things x such that . . . . Why would
Hempel think that ‘element’ and ‘the class of . . . ’ are logical notions? Based
on the suppressed footnote from the above quotation from Hempel (which
concerns the principles of logic used in Quine’s work), we conjecture that
Hempel was impressed by Tarski [1935] and Quine ([1937a], [1937b]), in
which ‘x ∈ y’ is the basic statement form in a fundamental system of logic.
Hempel may have seen Quine’s NF (Quine [1937b]) as a kind of logicism

Theorem counts against that thesis, since one might just as well conclude from this theorem
that the system of logic needed for the reduction is not recursively axiomatizable. See Hale
and Wright [2001, p. 4, fn. 5], for a similar point. However, in what follows, we bypass this
issue entirely, for we take logicism in its narrower sense as a thesis about the derivability of the
axioms and theorems of mathematics as theorems of logic. This is a significant and worthy
thesis in its own right.
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WHAT IS NEOLOGICISM? 63

because set comprehension is subject only to a logical restriction (stratified
formulas). Indeed, Hempel agrees with Quine, who said ([1937b, p. 81]):

Subsequent investigations have shown that the array of logical
notions required is far more meager than was supposed even in
Principia. We need only these three: membership, expressed by
interposing the sign ‘∈’ and enclosing the whole in parentheses; al-
ternative denial, expressed by interposing the sign ‘|’ and enclosing
the whole in parentheses; and universal quantification, expressed
by prefixing a variable enclosed in parentheses. All logic in the
sense of Principia, and hence all mathematics as well, can be trans-
lated into a language which consists only of an infinity of variables
. . . and these three modes of notational composition.

Amore recent version of this reason for thinking that membership is a logical
notion is that in an extensional second-order logic, ‘∈’ could be conceived
as a ‘logical particle’ expressing predication (e.g., Quine [1970, p. 65]) so
that Fx and x ∈ F are synonymous. All of this stands in contrast to the
view prevalent today, namely, that membership is a distinguished two-place
(non-logical) relation symbol added to first-order logic.
A second change in the conception of logicism from that expressed by
Hempel concerns which principles are logical. It was supposed that the
basic principles governing these three modes of notational composition were
logical principles, including the principle (Quine [1937b, p. 92]):

If φ is stratified and does not contain ‘x’, ∃x ∀y (y ∈ x ≡ φ) is a
theorem.

The view was that although unrestricted set comprehension in naı̈ve set
theory had the character of a logical principle, it unfortunately led to con-
tradiction. This led Quine to suppose that his [1937b] restricted set compre-
hension axiom (restricting the existence of sets to stratified formulas) was
part of logic.
Nowadays, however, the axioms of ZF, NF, NBG, and other set theories
are considered non-logical principles. This change was ushered in by Tarski,
whose model-theoretic semantics for the predicate calculus required logical
truths to be true in all models. Models are set-theoretic structures in which
the domain of objects need contain nothing more than a single object. Con-
sequently, there are interpretations of the language of set theory under which
existence assertions for sets are false. Thus, none of the existence axioms of
ZF and other set theories were considered true in all models, and as such,
were re-conceptualized as non-logical principles.
In light of these changes as to which concepts and which principles are
logical, it is no wonder that ZF is not today considered a form of logicism.
What replaced the earlier picture of logic was Quine’s later view that the
concepts and principles of the first-order predicate calculus (possibly with
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64 BERNARD LINSKY AND EDWARD N. ZALTA

identity) are all there is to logic. Thus, the prospects for logicism vaporized.
On this picture, the foundations of mathematics becomes centralized in the
proper theory of sets, and the reduction of mathematics consists of relative
interpretation of other mathematical theories in set theory. On this view
some parts of mathematics, such as group theory, for example, consist of the
study of the logical consequences of axioms, within set theory, i.e., applied set
theory. Clearly, this picture gives up the idea that mathematics is reducible
to logic.
Our analysis suggests that to understand the idea of neologicism, we have
to return to the original conception of logicism. Historically, logicism has
been spelled out as follows:

1. mathematical concepts can be defined in terms of logical ones (no
mathematical primitives are used), and

2. mathematical principles can be derived from logical axioms, given the
definitions of mathematical concepts.

However, let us focus on the intuitive understanding of logicism, namely, the
idea that:

L: Mathematics is reducible to logic alone

Given this idea, the goal of bringing mathematics within the fold of logic
might still be achieved by holding mathematics fixed and reconceiving the
three other concepts in L. A view which might be called ‘neologicism’ can
be produced by (any combination of) the following three strategies.

1. Expand the conception of what counts as ‘logic’
2. Allow more resources than ‘logic alone’
3. Reconceive the notion of ‘reducible’

The idea would be to relax L in at least one of these dimensions so as to
yield a system that is in the spirit of the original logicist program. Thus, an
expanded conception of logic must be close to current conceptions of logic;
the added resources should be in the form of analytic truths; and any new
concept of reduction must provide some kind of analysis. We will chart the
terrain along these three dimensions and then assess the resulting forms of
neologicism, in part, by examining how much of mathematics they capture.
Our view is that some revised, modest form of logicism is worth pursuing,
if only to help make the ontological presuppositions of logic more precise.
Logic seems committed to the existence of something—it must have some
ontological commitments—if only to truth-values, the consequence relation,
sentence-types, propositions, or possible worlds. The current conception
of logic has yet to come to grips with its own existential presuppositions.
The move to study these commitments with more model theory involves
endless ontological relativity and avoids accounting for the foundations of
mathematics, for the set theory used in model theory is part of mathematics.
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WHAT IS NEOLOGICISM? 65

Therefore, the study of neologicismmayhelp to fill in the gaps in the standard
picture of logic.
Here, then, is how we categorize and discuss the forms of neologicism in
the remainder of this paper. In Section 3, we examine those forms which
arise primarily as a result of pursuing strategy (1) above (i.e., expanding
the conception of logic). In Section 4, we examine those forms which
arise primarily as a result pursuing strategy (2) above (i.e., adding analytic
truths to logic). This section includes a discussion of second-order modal
object theory. Its interest lies in the fact that, unlike the other forms of
neologicism, it uses no mathematical primitives in the analytic truths it adds
to logic, yet has some limited mathematical power. However, in all the cases
discussed in this section, the resulting theories only recapture some portion
of mathematics and run into “limits of abstraction”. Finally, in Section 5, we
examine our preferred form of neologicism, namely, third-order non-modal
object theory, which arises primarily as a result of pursuing strategy (3) above
(i.e., reconceiving the notion of ‘reduction’). Its distinguishing feature is that
it does not restrict the amount of mathematics that can be reduced. We shall
then conclude with some observations about how our preferred version of
neologicism best captures the goals of the original logicist program.

§3. Expand the conception of what counts as logic. A natural way of ex-
panding the conception of logic is to accept second-order logic as part of
logic. Many of the systems discussed in this section and the next assume this
extension of logic is legitimate. Indeed, some of the systems to be discussed
assume full second-order logic; they depend on the fact that the domain of
the properties contains at least as many properties as there are members of
the power set of the set of individuals. Though we are in sympathy with
Shapiro’s [1991] reasons for thinking that full second-order logic is a part
of logic, this view about second-order logic is not required by the forms of
neologicism we defend later in the paper.2 As we shall see, one can get by
just fine without full second-order logic or the view that it is a part of logic.3

2Indeed, we do not adopt all of Shapiro’s conclusions in [1991]. For example, we believe
that aphilosophical foundation formathematics canbedevelopedwhich leaves it openwhether
the mathematicians should or should not accept any particularmathematical foundations for
mathematics (in the sense of preferring one mathematical theory as the one in which all of
mathematics can and should be cast). So, if Shapiro is anti-foundational in the latter sense,
we would agree with him, but not if he is anti-foundational in the former sense. We believe
that nomatter how themathematicians decide the question of whether there is a distinguished
mathematical theory at the foundations ofmathematics, philosophers can and should offer an
interpretation of the language of mathematics which shows how that language is meaningful,
and which answers metaphysical and epistemological questions about the truth conditions
of that language.
3Indeed, the version of neologicism we discuss in Section 4.2 is incompatible with full

second-order logic. Our ‘second-order modal object theory’ will require only second-order
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66 BERNARD LINSKY AND EDWARD N. ZALTA

But some of the systems studied in what follows do require full second-order
logic.
We think quantification over properties (or concepts) is justified on the
grounds that such entities are required for any realistic understanding of
predication. Logic should be committed to any entities needed for a robust
understanding of predication, and so should be committed to properties. But
this does not commit us to much, since minimal models of the second-order
comprehension principle (without any further axioms about properties) re-
quire only two properties in the domain.
Can any second-order or higher-order logic alone serve as a neologicist
foundation for mathematics? Most philosophers agree that none can. The
first consistent attempt, Whitehead and Russell’s ‘no-classes’ theory from
∗20 of Principia Mathematica, only goes so far. To see why, let us briefly
review the ‘no-classes’ theory, in which talk about classes starts with the
contextual definition:

φ({y | Fy}) =df ∃G [∀x (Fx ≡ Gx) & φ(G)]
This shows how to eliminate {y | Fy} from contexts in which it appears.
Note that in the type theory of Principia, the class {y | Fy} has the same
logical type as the function G , and so it makes sense to substitute the latter
for the former in φ.4 The no-classes theory then continues with a defini-
tion which substitutes talk about membership in a property with having a
property (Principia Mathematica, ∗20·02):

x ∈ F ≡ Fx
Note that membership in a class now becomes defined in context.5 The
no-classes theory concludes with definitions allowing for the elimination of
the remaining class expressions, including quantification over classes.
Now to see why this theory only gets us so far towards a neologicist
foundation, note that Whitehead and Russell famously defined the natural
numbers, for example, as classes of equinumerous classes. But to define
expressions for classes of classes, third-order logic is needed, and so on
through the full theory of types, for each increase in the ‘rank’ of classes. To
getmore complexnumber theories (such as rational and real number theory),
one needs classes of natural numbers, and that’s why the hierarchy of the
simple theory of types must be invoked in the formulation of a ‘Russellian’
neologicism. Moreover, the neologicism from the no-classes theory and

syntax (with names and variables for properties and relations), the logic of the second-
order quantifiers, and the comprehension principle for properties and relations. Similarly,
in Section 5, our third-order, non-modal object theory has only general models, and is
incompatible with full third-order logic. We discuss this further in Sections 4.2 and 5.
4G must be a ‘predicative’ property, and is guaranteed to exist by theAxiomofReducibility.

This existence claim is required by the Whitehead and Russell form of logicism.
5In other words, x ∈ {y | Fy}) =df ∃G [∀x (Fx ≡ Gx) & x ∈ G ].
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WHAT IS NEOLOGICISM? 67

theory of types is not complete until one combines classes of classes with an
axiom of infinity, to ensure that every number has a successor.
Many have thought that this does not succeed as version of neologicism
because the axiom of infinity exceeds the bounds of logic, even when we
consider the expanded conception of logic which includes simple type theory
and the no-classes theory. Whitehead and Russell directly postulate the
individuals needed for the construction of the natural numbers with the
notorious axiom of infinity ([1910–1913, ∗120·03]).6 Most philosophers
have concluded that the axiom of infinity is obviously not a principle of logic,
given its strong existential commitments. However, is it so obvious?
For one thing, it is weaker than the set-theoretic axiom of infinity in ZF,
which directly asserts the existence of an infinite set, since theWhitehead and
Russell axiom only asserts the existence of finitely many objects, for each
finite number. As many have pointed out (e.g., Boolos [1994]), there are
two notions of infinite: the weaker notion of a set not being equinumerous
with any initial segment of the natural numbers and the stronger notion
(Dedekind infinite) of a set being equinumerous with a proper subset of
itself. ZF’s axiom of infinity directly postulates a Dedekind infinite set,
whereas the Whitehead and Russell axiom is not that strong; one needs
notions from the no-classes theory to construct even the smallest Dedekind
infinite class of all the ‘inductive’ classes postulated by the Whitehead and
Russell axiom of infinity.
Moreover, two things should be noted about this axiom which brings it
closer to logic. First, it can be stated solely in terms of logical notions.
Assuming that the notions of type theory are logical notions, and assuming
that the no-classes theory successfully reduces talk of membership in a class
in terms of the logical notion of predication, then the notion of an inductive
class, which is crucial to the statement of the Whitehead and Russell axiom
of infinity, can be defined in purely logical terms. Thus, the axiom of infinity
itself is expressible solely in terms of logical notions.
Second, a modal version of the axiom of infinity is philosophically justifi-
able, even if a particular non-modal version is not, on the grounds that the

6By contrast, Frege stays within the confines of second-order logic to define the natural
numbers, but at the cost of adding his fatal theory of extensions. To prove that every number
has a successor Frege relies on the fact that a number n will have n predecessors (starting
with 0) and so to find a class with n+1members (to represent a class of equinumerous classes
each with n+1members), one only needs to gather n with its predecessors into one class. For
Russell the class containing the predecessors of a given number will be one type higher than
any of those predecessors, and so each successor would move up one type. Consequently
there would be no class of all numbers. Frege, however, treats extensions as of the same
type as individuals, and so is able to treat all classes of numbers as further individuals. Of
course this is what leads directly to the contradiction for his system. Somehow a consistent
‘neo’ Fregean system must indicate which extensions there are and so it must be involved in
a seemingly extra-logical consideration of objects.
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68 BERNARD LINSKY AND EDWARD N. ZALTA

modal version is a presupposition of logic. Russell himself told us that logic
should not tell us howmany objects there are, and his grounds for saying this
were that there might have been any number of objects. This intuition, that
there might have been any number of objects, has been accepted by countless
logicians as a presupposition of (our conception of) logic. It may therefore
be argued that a modal version of the axiom of infinity should be accepted
as part of a properly expanded conception of logic. Thus, the Whitehead
and Russell version of neologicism does not stray too far from the bounds of
logic.7 And if one remains firm in the belief that the axiom of infinity is not
a logical principle, then Whitehead and Russell’s neologicism should simply
be recategorized as of the kind to be discussed in the next section, where we
investigate the version of neologicism in which one eliminates the appeal to
logic alone.
Before we turn to the next section, however, it is worthwhile mentioning
three other examples of neologicism based on an expanded conception of
logic: Hodes [1984] and [1991], Tennant [2004] and Martin-Löf [1984]. We
discuss only the first two here, since they have been explicitly positioned as
a kind of neologicism.
Hodes [1984] holds that the mathematics of numbers can be derived from
third-order logic. He claims [1984]:

In making what appears to be a statement about numbers, one
is really making a statement primarily about cardinality object-
quantifiers; what appears to be a first-order theory about objects
of a distinctive sort really is an encoding of a fragment of third-order
logic. (p. 143)

From the start, the ur-mathematician is beholden to a body of
truths, e.g., truths of third-order logic. (p. 145)

Though this form of neologicism extends only to arithmetic, Hodes later
extends it to some, but not all, principles of set theory. He says [1991]:

. . . fundamental set-theoretic principles are encodings of validities
in an appropriate second-order logic. (p. 151)

The Alternative theory construes mathematical principles as va-
lidities in appropriate logics. (p. 161)

I regard the Alternative theory as partly in the spirit of logicism.
(p. 163)

However, Hodes acknowledges that his Alternative theory not only pre-
supposes the existence of infinitely many objects, but also two principles
which are neither logical nor analytic. The two principles are that there

7For a discussion of whether the axiom of reducibility is part of logic, see Linsky [1990].
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WHAT IS NEOLOGICISM? 69

are ‘acceptably’ many objects and that the universe has ‘strong limit size’.8

Though Hodes says that his theory can construe set-theoretic principles as
logical truths ‘modulo’ these assumptions, what does this mean? If a prin-
ciple A can be regarded as logical only if one assumes a principle B which
is neither logical nor analytic, then is not A both non-logical and synthetic?
Hodes’ system does show how some mathematical truths can be reduced
to truths containing only logical vocabulary (at least after they have been
revealed to be encodings of higher-order logical forms), but the reducing
theory involves non-logical, synthetic truths. Moreover, the non-logical as-
sumptions Hodes adds to higher-order logic force the domain to be infinite
in various ways. By contrast, the version of neologicism we defend in this
paper will be based on assumptions that place minimal conditions on the
domain and have a certain claim to analyticity (and, indeed, maybe even
some claim to being logical). In addition, our theory preserves Hodes’ idea
that mathematical statements are in some way ‘encodings’ of higher-order
statements, and indeed, on our view, these are encodings in a technical sense
(Zalta [1999, p. 643]).
Tennant’s system is neologicist in the sense discussed in this section since
it ‘expands the conception of logic’ and attempts to derive a philosophically
interesting portion of mathematics. Tennant expands the conception of
what counts as logic by allowing that introduction and elimination rules
governing abstracts for mathematical objects are part of logic. Tennant’s
general method is to find rules for statements of the form ‘t = αxΦ(x)’,
where t is any singular term that is presumed to be understood, α is an
abstraction operator and Φ is a concept. His method assumes that there
is some appropriate binary relation R that holds between t and the objects
categorized by Φ ([2004, p. 115]). The introduction and elimination rules
appeal to such an R. For example, with respect to number abstracts of

8Hodes uses branching quantifiers to formulate the first as ([1991, p. 163]):

(∀X )(∃x)
(∀Y )(∃y)[x = y ≡ ∀z (X (z) ≡ Y (z))]

(The branching quantifiers here are not to be evaluated in the same way as the linear string
of quantifiers (∀X )(∃x)(∀Y )(∃y). With linear quantifiers, the value of the variable y in
∃y is dependent on the value of the variable X in ∀X , but with branching quantifiers, the
value of the variable y in ∃y is dependent only on the value of the variable Y in ∀Y . As
an example of branching first-order quantifiers, consider “Most cousins of each villager and
most cousins of each townsman hate each other.” Here the values of ‘townsman’s cousin’ are
relative only to ‘each townsman’ and are independent of ‘each villager’. See Henkin [1961]
and Barwise [1979].)
Hodes then formulates the second as ([1991, p. 163]):

(∀X )(∃Y )(∀U )(∃u)
(∀V )(∃v)((∀x)(Ux ⊃ Xx) ⊃ [Yu & ((∀x)(Ux ≡ Vx) ⊃ u = v)])

Given that these principles have factual content about the actual cardinality of the universe,
we can not see how either can be construed as logical or analytic truths.
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the form #xΦ(x), the relevant R is the relation that obtains between the
number of Φs and the individuals falling under Φ. In the case of definition
descriptions of the form ‘�xΦ(x)’, the R in question is that of identity. In
the case of set abstracts of the form {x | Φ(x)}, the R in question is the set
membership relation ([2004, pp. 115–119]).
How much mathematics does this method of abstraction buy us? Very
little, it seems, without a lot of extra work. For example, formulating the
introduction and elimination rules for successor (‘s ’) and number of (‘#’) so
that the same numbers apply to equinumerous classes requires all of the work
of constructing the sequence of integers with the successor relation ([2004,
p. 113]). The successor of the number of F s has to be specially introduced so
that it is the number of things which are F or equal to some given object r,
and so on. Rather than simply abstracting objects to represent equivalence
classes of objects falling under concepts, we are allowed to abstract with
respect to any concept Φ (to produce αRxΦ(x)), but then we must add new
rules governing the objects which all bear the relation R to that abstract (see
the α-introduction and elimination rules in [2004, p. 116]).
Moreover, Tennant freely admits that his theory of numbers presupposes
the existence of an infinite progression (pp. 124–125). The presupposition is
implicit in the introduction and eliminations rules for a numerical abstraction
operator α which has been introduced with respect to a relation < that
meets a complex conditions Γ for being a progression.9 The non-analytic
conditions in Γ guarantee that that every number abstract will have a unique
successor. Tennant says:

This account of numerical abstraction, to be sure, involves quite
a heavy presuppositional burden: a presupposition to the effect that
there are indeed progressions—that is, domains orderable by rela-
tions < satisfying the condition Γ. . . .
I am happy to premise my logicist thinking about number on the
logically possible existence of at least one progression (a domain
with an ordering < satisfying condition Γ).

To us, these passages sound like an apology for an axiom of infinity, for
despite the language in the previous quotation, Tennant premises his logicism
on the assumption that there actually exists at least one progression of the
kind in question, not the mere logical possibility that there is one such
progression.
Tennant’s method does yield some weak set theory ([2004, pp. 118–120]),
and some real number theory, though it is not clear to us what existence
claims are required for his theory of the real numbers. These facts stand in
contrast to some of the systems discussed below.

9The complex condition Γ is a conjunction of the conditions: existence of an initial
element, irreflexivity, connectedness, transitivity, unique left- and right-immediacy, and finite
connectivity. See Tennant [2004, p. 121].
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We conclude with one worry and one observation about Tennant’s ap-
proach. The worry is whether all mathematical theories can be captured in
the way Tennant suggests, namely, in terms of a special relation R by which
abstracts are to be introduced. It is not clear that Tennant’s model of abstrac-
tion operators is general enough for the representation of all mathematical
theories in terms of introduction and elimination rules, since it is not clear
whether the appropriate R will be available for each mathematical theory.
Finally, there is an important observation to make about this approach to
neologicism, namely, that for each newmathematical object to be reduced, a
new logic is needed. That is, new abstraction operators, and the introduction
and elimination rules governing them, must be added. Indeed, these new
rules do not all have the same form; the forms vary according to the kind of
object that is to be reduced. This strikes us as a piecemeal approach to the
method of ‘expanding the logic’ so as to produce a form of neologicism. In
contrast to the system we defend in Section 5 of the paper, Tennant’s system
does not yet offer a uniform analysis of all of mathematics.

§4. Allow more resources than logic alone.
4.1. Neologicism based on new abstraction principles. In this section, we
consider those forms of neologicism which result by accepting non-logical
resources such as certain kinds of analytic truths or other justifiable axioms.
We allow that second-order logic is a natural background for such an enter-
prise, since it allows one to quantify over objects and concepts (properties)
and thereby treats both of the elements involved in predication.
One might think that a place to look for this kind of neologicism is to
consider those systems which preserve Frege’s Basic Law V but which place
constraints on second-order comprehension for concepts (where ‘εF ’ denotes
the extension of F ):
Basic Law V: εF = εG ≡ ∀x (Fx ≡ Gx)
Comprehension for Concepts: ∃F ∀x (Fx ≡ φ)
The constraints on comprehension for concepts typically restrict the kinds of
formulas that can be substituted for φ. These are clearly systems which use
more resources than logic alone, if we acknowledge that Frege’s Basic Law V
is not, strictly speaking, a logical truth but rather is an analytic-sounding
abstraction principle.10 However, the systems of this kind, investigated by
Heck [1996], Wehmeier [1999], and Ferreira and Wehmeier [2002], will not
be considered here because they are too weak for the reconstruction of
much mathematics.11 The main problem is that if one limits second-order

10Thus, it is our position that even if Frege’s Basic Law V had been consistent, his system
would not have constituted a pure form of logicism! Basic Law V goes beyond the resources
of logic alone, and indeed, Frege seems to have suspected as much.
11A fortiori, those systems that investigate Basic Law V and its extensions in first-order

logic will not be considered here, for the same reason. See the work of Parsons [1987],
Burgess [1998], Bell [1994], and Goldfarb [2001a].
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comprehension by elminating impredicative formulas from comprehension,
then one cannot define the notion of successor or the notion of membership.
Thus, we think of these systems as ‘neo-Fregean’ without being ‘neologicist’.
In this section, however, we will examine the kind of neologicism defended
by Wright and Hale and also look at similar forms of neologicism, such as
those suggested by Boolos, Cook, and Fine (none of whom considered
themselves a ‘neologicist’ but who have all tried in some way to extend the
ideas of Wright and Hale to their limit). We will contrast these forms of
neologicism with that of second-order modal object theory, which can also
be conceived as a logic supplemented by an analytic-sounding abstraction
principle.
The form of neologicism studied by Wright and Hale starts with the idea
of replacing Basic Law Vwith ‘Hume’s Principle’ for the purpose of defining
mathematical concepts and deriving principles of mathematics:

Hume’s Principle: #F = #G ≡ F ≈ G ,
where ‘#F ’ denotes the number of F s and where F ≈ G asserts in purely
logical (second-order definable) terms that F and G are equinumerous (i.e.,
that there is a relation R which witnesses the one-to-one correspondence
of the F s and the Gs). Wright’s [1983] was a study of the consequences
of adding this principle to second-order logic—he sketched how the basic
axioms of arithmetic could be derived from Hume’s Principle in second-
order logic, and Heck [1993] confirmed that even in Frege’s own system, the
derivations of the basic principles of arithmetic all went by way of Hume’s
Principle without making any essential appeal to Basic Law V (other than
to ‘establish’ Hume’s Principle). Hale’s [2000] was a study of adding other
‘abstraction’ principles, and in 2000, he proposed a reconstruction of the
real numbers using such abstraction principles.12

Most of the discussions of neologicism in the literature have focused on
these theories. As a result, their virtues and limitations are rather well-
known. In addition to the worry over whether Hume’s Principle is analytic
Boolos [1997], this form of neologicism is subject to the infamous Julius
Caesar problem, the ‘bad company’ objection13 and the ‘embarrassment of
riches’ objection.14 We shall not rehearse these here, other than to make
three observations about this form of neologicism.
The first is that without a solution to the Julius Caesar problem, Hume’s
Principle may be no better off than the Whitehead and Russell axiom of

12See Cook [2001], Batitsky [2001] for a discussion of the problems with this approach,
and Hale [2002] for a reply.
13Noted by Boolos [1990, p. 214], Field [1989, p. 158], and Dummett [1991, pp. 188–189].
14This was put in its strongest form byWeir [2003, p. 16], who notes: “there are indefinitely

many consistent but pairwise inconsistent abstraction principles. If all consistent abstraction
principles are analytic, then both of two such principles are analytic and presumably true
which is absurd.” Weir was relying on the results in Heck [1992].
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infinity. The Julius Caesar problem presents itself for any system consisting
of second-order logic supplemented by Fregean biconditionals having the
form of Hume’s Principle. The problem is, Hume’s Principle does not tell us
how to prove whether or not #F = x for arbitrary x. If Hume’s Principle
is taken as a contextual definition, then the system as a whole leaves it
indeterminate how to prove that #F (for some given F ) is not identical to,
say, Julius Caesar (‘j’). Now one might claim that given Hume’s Principle,
we know that to prove #F = j, we have to prove ‘∃G (j = #G & F ≈ G)’.
But, then, the system is still indeterminate, since we still do not know what
we have to prove in order to prove that Julius Caesar is or is not identical
to the number of some concept.15 Thus, given the Caesar problem, it is
not clear how to prove that Hume’s Principle does not introduce an infinite
number of concrete objects, since one can not rule out that numbers are
concrete objects.
Now to complete our first observation, if one can not prove that Hume’s
Principle isn’t a principle that postulates an infinity of ordinary individuals,
then this would seem to put Hume’s Principle on a par with the Whitehead
and Russell axiom of infinity, which implies an infinite number of ‘individ-
uals’. In the system of Principia Mathematica, one can not prove that such
individuals are not concrete things like Julius Caesar. Since logic should not
dictate the size of the domain of concrete objects, the axiom of infinity was
criticized as being a non-logical addition to the system in Principia Math-
ematica, as we’ve mentioned. Indeed, one might say that any successful
version of neologicism should be able to prove that it does not dictate the
size of the domain of concrete objects. The axiom of infinity in Principia
Mathematica offers no such guarantee, and given the Julius Caesar problem,
neither does neologicism based on Hume’s Principle.
Second, the ‘bad company’ and the ‘embarrassment of riches’ objections
both point to the underlying piecemeal nature of this form of neologicism.
This form of neologicism requires one to add abstraction principles to the
background logic whenever suitable ones are discovered. There is no formal
criterion for rejecting the inconsistent principles and selecting among the
various, and competing, consistent alternatives. As we shall see, Fine’s work
attempts to address the problem underlying this observation.
A third observation is that this form of neologicism is based not only
on the addition of an analytic-sounding principle (Hume’s Principle) to

15InHale andWright [2001, Chapter 14], there is a machinery involving sortals, categories,
and criteria of identity for objects of different sorts. Wright and Hale use this machinery to
conclude that Caesar is not a number, since numbers are the kind of thing whose identity
is governed by equivalence relations and abstraction principles whereas Caesar is not. In
response to this, we make only two points: (1) it remains unclear how a proof that Julius
Caesar is not a number would go in the system of second-order logic and Hume’s Principle,
and (2) our system of neologicism, which we describe in Section 4.2, makes it clear how such
a proof would go.
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second-order logic, but also on the fact that the principle in question is
formulated in terms of a primitivemathematical notion, namely, ‘the number
of’. Although one might accept that there is a kind of analyticity to Hume’s
Principle on the grounds that it appropriately captures the concept of ‘the
number of F s’, the fact remains that the concept in question is a distinctively
mathematical concept. Nor is it eliminable, since Hume’s Principle allows
the elimination of that term only from certain contexts. So, there is an
additional step here, in going from the formulation of a neologicism which
adds principles expressible solely in terms of logical notions and identity
(such as the claim ‘there are exactly n things’, when this is defined solely in
logical terms) to the formulation of a neologicism which adds principles that
are expressed in terms of mathematically primitive notions.16

We turn next to a second form of neologicism, which reconstructs the
set-theoretic universe by developing restricted versions of Frege’s Law V
while asserting unrestricted comprehension over concepts in second-order
logic. Though Boolos did not consider himself to be defending neologicism,
he did investigate systems which should be considered neologicist given the
definition explored in this paper. Boolos [1986] considered replacing Basic
Law V with ‘New V’, so as to yield a consistent theory of extensions. Call a
concept F small if it is not in 1–1 correspondence with a universal concept,
and callF andG similar concepts (‘F ∼ G ’) iff eitherF andG both fail to be
small or F and G are coextensive. Boolos then examines the consequences
of adding the following principle to second-order logic to systematize the
concept of the extension of F (‘ext(F )’):

New V: ext(F ) = ext(G) ≡ F ∼ G ,
(Boolos also proposed a variant of this in [1993], based on a idea of Terence
Parsons.) Boolos himself shows how a version of arithmetic can be captured
using New V (p. 179), in terms of the hereditarily finite sets. Shapiro and
Weir point out ([1999, p. 301]), however, that New V can not be used to
reconstruct Frege Arithmetic, since the finite cardinals would be identified
as the extensions of concepts that are not small (so by New V and the defi-
nition of similarity, such cardinals would be identified). They also note that
the axioms of infinity and power set are not derivable (p. 301). Cook [2003],
however, develops a system which extends New V and which addresses the
problems raised by Shapiro and Weir. He adds two other abstraction prin-
ciples and an axiom asserting an infinity of urelements (InfNonSets). One
abstraction principle, SOAP, introduces the restricted-size ordinal abstract
for relationR (ord(R)), and the other, NewerV, extends the characterization

16In this respect, the Whitehead and Russell view counts as closer to logicism than the
Wright and Hale view, since the former does not use any primitive mathematical notions.
As noted above, Whitehead and Russell could state the axiom of infinity using only logical
concepts (cf. Boolos [1994, p. 271]. By contrast, Hume’s Principle employs the primitive
concept ‘the number of F s’, as we just noted.
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of ext(F ).17 Cook then claims that “SOAP+NewerV+NewV+InfNonSets
provides the neologicist with a set theory that is (roughly) as strong as full
second-order ZFC” (Cook [2003, p. 86]).
We believe that many of the problems that arose for the Wright and
Hale versions of neologicism apply to the Boolos and Cook approaches:
(a) New V, SOAP, and Newer V have far less claim to analyticity than
Hume’s Principle; (b) the Julius Caesar problem still applies to New V,
SOAP, and Newer V; (c) the procedure for adding abstraction principles to
neologicism still seems to be somewhat piecemeal; and (d) these systems use
primitive mathematical concepts in the basic abstraction principles.
But instead of considering these problems in more detail, let us focus
on some issues that will serve as points of contrast with the version of
neologicism we defend in the next subsection and in Section 5 of the paper.
Notice first that Cook [2003] uses a simple and direct assertion of the infinite
size of the domain of urelements. This axiom of infinity opens the system to
the same objection that plaguedWhitehead andRussell. Second, in addition
to the worry about whether New V, SOAP, and Newer V are analytic, there

17Cook’s principles are as follows. First, SOAP is the Size-Restricted Ordinal Abstraction
Principle, and it introduces ‘the size-restricted order-type of relation R’ (‘ord(R)’) as follows
([2003, p. 67]):

Size-Restricted Ordinal Abstraction Principle (= SOAP):
ord(R) = ord(S)↔

[(¬WO(R) ∨ Big(R)) & (¬WO(S) ∨ Big(S))] ∨
WO(R) & WO(S) & Isomorphic(R,S) & ¬Big(R) & ¬Big(S).

Here, WO(R) abbreviates the claim that R is a well-ordering ([2003, p. 89]), i.e.,
WO(R)↔

∀x (¬R(x, x)) & ∀x ∀y ∀z ((R(x, y) & R(y, z))→ R(x, z)) &
∀P [(∃x (Px) & ∀x (Px → AR(x)))→ ∃y (Py & ∀z (Pz → (z = y ∨R(y, z))))],

and AR(x) (‘x is in the domain or range of R’) in this latter definition abbreviates
∃y (R(x, y) ∨ R(y, x)) ([2003, p. 88]). In addition, the notion Big(R) used in SOAP is
an abbreviation for Big(AR), where Big(F ), for arbitrary F , is defined in terms of the
second-order formula asserting that the F s are equinumerous with the entire domain, i.e.,

∃f ∀x ∃y (Fy & f(y) = x).
The above understanding fills a minor gap in Cook [2003, pp. 66–7, and 88, note 5], where
Big(R) (i.e., the notion of bigness for relations R, as opposed to properties F ) used in SOAP
is not strictly speaking defined.
Second, the principle Newer V ([2003, p. 69]) governs ext(F ):
Newer V:
ext(F ) = ext(G)↔ [∀x (Fx ↔ Gx) ∨ (Bad(F ) & Bad(G))],

where Bad(F ) asserts that there is no ordinal α such that all the members of F are elements
of α’s stage ([2003, p. 69]), i.e.,

Bad(F )↔ ¬∃α (ON(α) & ∀x (Fx ↔ x ∈S Stg(α))).
Cook’s recent unpublished work suggests that New V+Newer V+Hume’s Principle+Fine’s
principle of abstract identity (i.e., that ‘abstracts’ which correspond to the same equivalence
class of concepts are identical) constitute the most promising technical strategy for a neo-
Fregean set theory.
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is a worry about whether Cook can offer a single abstraction principle which
states the identity conditions for extensions and which thereby provides
the epistemological benefits that are supposed to attach to this form of
neologicism. For the conclusion, at the end of Cook [2003], is with respect
to a system in which there is no single abstraction principle that governs
ext(F ). Cook is aware of the problem and makes a few remarks intended to
address the worry (Cook [2003, p. 79]):

The reader should keep in mind that this conjunction of ‘defini-
tions’ of the extension operator ‘ext’ can be replaced by a richer
(but formally less tractable) account of identity conditions across
distinct abstraction principles.

But it is unclear to uswhether one can claim that logic has been extendedwith
analytic abstraction principles if no one single principle governs ext(F ).18

Finally, we have two global concerns regarding Cook’s system. The first
arises from the combination of facts that the system (1) takes the mathemat-
ical notions of ‘extension’ and ‘ordinal’ as primitive,19 (2) includes several
non-analytic axioms governing these mathematical notions, (3) has an ax-
iom of infinity, and (4) includes as many principles as are needed to secure
the strength of second-order ZFC. This combination has the following ef-
fect, namely, that the system comes across more as an alternative method of
axiomatizing the mathematical theory of sets (and ordinals) with something
like abstraction axioms, rather than a way of demonstrating the truth be-
hind the slogan “mathematics is reducible to logic supplemented by analytic
truths”. Cook’s system, therefore, no longer seems to count as a form of
neologicism. The second concern is that the system as a whole is subject to
the form of the Julius Caesar problem that Cook and Ebert [2005] call the
‘C-R’ problem. The C-R problem is that when more than one abstraction
principle is added to second-order logic, it is not clear how to prove that the
abstractions introduced by one principle are identical with those of another.
Thus, in Cook [2003], it is not clear how to prove that ord(R) = ext(F ),
for any R and F .
Recently, Fine [2002] studied the question of just how far one can go
with the method of abstraction, i.e., the method of introducing ‘abstracts’
corresponding to the cells of an equivalence relation on concepts by means
of abstraction principles. He addressed the question, how do we deter-
mine which of the many possible abstraction principles can be added to our

18How can New V (something of the form: ext(F ) = ext(G) ≡ φ) be analytic and
Newer V (something of the form: ext(F ) = ext(G) ≡ �) be analytic if ‘φ ≡ �’ is not
analytic? Given the particular φ and � used in New V and Newer V, it does not seem
reasonable to claim that ‘φ ≡ �’ is analytic—New V and Newer V have different content
and are logically independent.
19The axioms New V and Newer V both take ‘ext’ (‘extension’) as primitive and the axiom

SOAP takes the mathematical notion ‘ord(R)’ as primitive.
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background logic to produce a neologicism? To answer this question, he
developed a more general theory of abstraction principles, using complex
criteria to identify all and only the acceptable ones. To a first approximation,
Fine counts an abstraction principle based on an equivalence relation R as
acceptable only when R is a second-level equivalence relation on first-level
concepts that is both (1) invariant with respect to permutations of the do-
main of individuals, and (2) ‘non-inflationary’ in the sense that there are no
more equivalence classes of concepts under R than there are individuals in
the domain (Fine [2002]). One constraint on the theory is that the totality of
acceptable abstraction principles must not jointly be inflationary (this avoids
the problem of hyper-inflation).
In a recent review of Fine’s work [2003], and in a forthcoming monograph
[2005], Burgess notes that the limits of abstraction on Fine’s approach “turn
out to be those of third-order Peano arithmetic . . . so that Fine’s approach
can be said to get us all of mathematics except higher set theory” ([2005,
p. 129]). This fact serves as the most remarkable point of contrast with
the neologicism offered by third-order object theory, which we investigate in
Section 5 of the paper. For now, we offer a few other observations that will
prove to be interesting points of comparison in the remainder of the paper.
First, there is an explicit non-analytic assumption that there are at least
two individual objects in the domain of individuals (Fine [2002, p. 189]).
Fine justifies this on the grounds that it is akin to Frege’s assumption that
there are two truth values, and so something that might even be considered a
logical truth (though he admits that a more orthodox understanding would
take this to be a non-logical principle). This will be contrasted with object
theory, in which (a) no (concrete) individuals are assumed to exist, (b) truth
values are explicitly defined as abstract objects of a certain kind, and (c) the
existence of exactly two truth values is a theorem (Anderson and Zalta [2004,
Section 3.4]).
Second, Fine admits ([2002, p. 192]) that his theory of abstraction is in-
complete in the sense that it offers no account of abstraction with respect to
equivalence relations on individuals as opposed to equivalence relations on
concepts; i.e., there is no mechanism for identifying acceptable abstraction
principles of the form: the direction of line a = the direction of line b iff
a ‖ b. Moreover, his theory applies only to second-order equivalence con-
ditions on first-order, monadic concepts, since the Burali-Forti paradox
prevents one from supposing that there are abstracts corresponding to iso-
morphic first-order relations. These two limitations can be contrasted with
object theory, in which the existence of directions (and other abstract in-
dividuals corresponding to the cells of arbitrary equivalence relations on
individuals) can be derived, and one can define abstracts corresponding to
relations that are isomorphic with respect to ordinary objects.20 Finally, it

20For the former, see Anderson and Zalta [2004, Section 3.3], and for the latter, see
footnote 27.
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has been noted by Burgess and others that Fine’s system still does not offer
straightforward solutions to the Julius Caesar problem, or to the problem of
how we have knowledge of numbers. In object theory, by contrast, there are
solutions to both problems, as we explain in the next section.21

4.2. Neologicism based on object theory. In this subsection we investigate
how second-order modal object theory, as a form of neologicism, fits into
the above picture, and we identify both its virtues and its limitations of
abstraction. In Section 5, we then show how the limitations can be overcome
in third-order non-modal object theory. Much of the discussion that follows
in this subsection is grounded in Anderson and Zalta [2004], and Zalta
[1999], and we shall assume some familiarity with these. In the former, it
was shown that second-order non-modal object theory yields amodest theory
of extensions (with a version of Basic Law V falling out as a theorem), as
well as a theory of various other logical objects such as directions, shapes,
and truth-values (with their governing abstraction principles also derivable).
In the latter, a derivation of the Dedekind/Peano axioms for number theory
was accomplished in second-order modal object theory, together with some
natural additional assumptions.
Second-order modal object theory is couched in a second-order modal
logic having a second kind of atomic formula, namely, ‘encoding’ formulas
of the form xF (read: x encodes F ). Two kinds of complex terms are used:
�-expressions of the form [�x1 . . . xn φ] and definite descriptions of the form
ıxφ, the latter being interpreted rigidly. The system assumes the axioms and
rules of classical S5 second-order quantified modal logic, modified only to
accomodate the facts that the descriptions are rigid and that (complex terms
containing) descriptions may fail to denote. The underlying second-order
logic includes the following abstraction principle for relations:

[�x1 . . . xn φ]y1 . . . yn ≡ φy1,...,ynx1,...,xn , where φ has no encoding subformulas
and no descriptions

From this �-conversion principle, comprehension for relations is derivable as
a simple consequence.22 Object theory then becomes a form of neologicism
as soon as one replaces its fundamental comprehension principle for abstract
objects (‘A!x’):
(A) ∃x (A!x & ∀F (xF ≡ φ)),
with the following abstraction principles for abstract objects and relations:
(B) ıx(A!x & ∀F (xF ≡ φ))G ≡ φGF .
21See Cook and Ebert [2004] for other criticisms of Fine’s view.
22That is, the following claim,

∃F ∀x1 . . .∀xn (Fx1 . . . xn ≡ φ)),
where φ has no encoding subformulas and no descriptions,

can be derived from �-abstraction.
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In standard second-order object theory, (A) is an axiomand (B) is a theorem.
Note here that encoding formulas in object theory have some similarities with
the � formulas that Boolos uses in the Numbers axiom of Frege Arithmetic
Boolos [1987]: ∀G ∃x ∀F (F�x ≡ F ≈ G). Whereas Frege Arithmetic
employs an unrestricted comprehension principle for properties and a com-
prehension principle for numbers restricted to equinumerosity conditions,
object theory employs an unrestricted comprehension principle for abstract
objects and combines it with a comprehension principle for relations that
bars only encoding subformulas.
A version of neologicism arises when we reformulate object theory by
taking (B) as an axiom instead of (A). Metatheoretically, these are two
equivalent ways of formulating object theory, since anything provable in
one formulation of the system is provable in the other and vice versa. The
reformulation replaces the ‘synthetic’ existence principlewhich comprehends
the domain of abstract objects with a principle having more of the character
of an analytic abstraction principle. The reformulated system also speaks to
the interests of the neologicists who look back to Frege’s Context Principle
for insight, since it introduces singular terms for abstract objects in the
context of a larger sentence.
UnlikeHume’s Principle and other Fregean biconditionals, the abstraction
principle for abstract objects (B) does not introduce objects with a bicondi-
tional having an identity between two abstracts (singular terms) on one side
and a ‘recognition statement’ on the other. Instead, each instance of ab-
straction introduces a single abstract object by a canonical description, and
it leaves the question of the identity of abstracts to a separate definition of
identity.23 Where ‘x is ordinary’ (‘O!x’) is defined as ‘x is possibly concrete’
(‘�E!x’), and ‘x is abstract’ (‘A!x’) is defined as ‘x could not be concrete’
(‘¬�E!x’), the following biconditionals may be construed as definitions:

x =E y ≡ O!x & O!y & �∀F (Fx ≡ Fy)
x = y ≡ x =E y ∨ (A!x & A!y & �∀F (xF ≡ yF )

The first principle defines a notion of identity on ‘ordinary’ objects, while
the second defines a general notion of identity which relies on the fact that
the domain is partitioned into twomutually exclusive subdomains: ordinary
and abstract objects.
The first observation tomake about this reformulation of the theory is that
no primitivemathematical notions are used. Second-ordermodal object the-
ory just uses second-order modal logic and the notion of encoding, along
with descriptions and �-expressions. Other than encoding, the primitive no-
tions of this system are: exemplifies (F nx1 . . . xn), not (¬), if-then (→), every
(∀), necessarily (�), being such that (�) and the (ı). We shall assume that
23This is in fact a more standard use of the term ‘abstraction principle’. (B) is more similar

in form to the set-theoretic abstraction principle (y ∈ {x | Fx} ≡ Fy) and �-abstraction
than to Hume’s Principle.
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80 BERNARD LINSKY AND EDWARD N. ZALTA

these are notmathematical notions. But what about encoding (xF )? Encod-
ing is no more mathematical than exemplification, and exemplification can
be viewed as mathematical only if the second-order variables are interpreted
as ranging over the full power set of the domain of the individual variables.
In such an interpretation, one might argue that exemplification is really the
mathematical notion of set membership. However, note that one can not
interpret the predicate variables of (modal) object theory as ranging over the
full power set of the domain of the individual variables, as can be seen from
the restrictions on �-formation and the derived comprehension principle for
relations.24 Since the intended interpretation of object theory is that the
predicate variables range over properties (intensionally conceived), we think
a strong case can bemade for thinking that exemplification and encoding are
both logical notions, rather than mathematical. Thus, second-order modal
object theory contains no mathematical primitives and this stands in con-
trast with all the previous forms of neologicism (with the possible exception
of Hodes), which either use mathematical primitives in the formation rules
of the logic (e.g., Tennant), or in the formulation of the relevant abstraction
principles.25

The second observation to make about this formulation of second-order
object theory concerns the analyticity of the abstraction principle (B). We
would argue that object abstraction has at least as much claim to being ana-
lytic asHume’s Principle, if notmore. Consider howonewould read (B): the-
abstract-object-that-encodes-exactly-the-properties-satisfying-φ encodes G
iffG satisfies φ. This certainly sounds like an analytic truth about the nature
of abstract objects. Of course, one might argue that since it is equivalent
to the comprehension principle (A) and that (A) is clearly synthetic, (B)
must be synthetic as well. But this just shows that the question of analyticity
is now revealed simply as a decision about whether one can accept that an
existence claim can be analytic. Note that (B)’s analyticity is not subject to
Boolos’s objection to the analyticity of Hume’s Principle ([1997, pp. 304–
305]). Boolos objected that no principle implying an infinity of objects can

24Restrictions on �-formation prohibit [�y1 . . . yn φ] from including encoding subformulas
in φ. Thus, the version of comprehension over relations derived in footnote 22 explicitly
includes the restriction thatφ not contain encoding subformulas. Hence, inmodels of second-
order modal object theory, the second-order quantifiers do not range over the full power set
of the domain of ordinary and abstract objects, but only of the domain of ‘individuals’. This
can be seen by inspecting the Aczel-models of the theory described in Zalta [1999, pp. 626–
628], where abstract objects are represented at the third level (i.e., as sets of properties) but
are combined with first-level individuals to form the domain D of quantification for the
individual variables. The domain of properties is only as large as the power set of the set of
first-level individuals, and can not be as large as the power set of D.
25Hume’s Principle uses ‘the number of’ as primitive, and the various implementations

of Boolos’s and Cook’s theory use ‘the extension of’ and other mathematical primitives.
Those who add biconditionals such as those for directions and shapes import primitive
mathematical notions like ‘the direction of’ and ‘the shape of’, etc.
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be analytic. By contrast, the simplest models of second-order object theory
do not require an infinity of objects; indeed, in these minimal models, there
are no ordinary objects, two properties, and four abstract objects. At the
very least, this fact gives (B) a stronger claim to being analytic than Hume’s
Principle. But, still, we hope to leave it an open question as to whether (B)
is indeed analytic. The important question is whether (B) in combination
with second-order modal logic constitutes a form of neologicism. And given
what have been accepted as forms of neologicism in the literature, we think
there is little room to object on this score.
A thirdobservation about second-order object theory based on abstraction
is that there is no Julius Caesar problem. The Julius Caesar problem for the
system of second-order logic and Hume’s Principle does not arise in object
theory, for several reasons. (1) Once ‘#F ’ is explicitly defined as the abstract
object that encodes all and only the properties G equinumerous with F on
the ordinary objects (Zalta [1999]), the formula ‘#F = x’ has well-defined
truth conditions: you simply plug in ‘#F ’ into the object-theoretic definition
of identity to get:

#F = x ≡ [#F =E x ∨ (A!#F & A!x & �∀G (#FG ≡ xG))]
In other words, #F = x iff either #F and x are both ordinary objects that
necessarily exemplify the same properties or they are both abstract objects
that necessarily encode the same properties. So the system is explicit about
what has to be proved if we are to prove whether #F is identical to Julius
Caesar. (2) Since #F is defined as an abstract object, the first disjunct never
obtains when x is an ordinary object. For by definition, ordinary objects
(O!x) are possibly concrete (�E!x) and abstract objects (A!x) necessarily
fail to be concrete (¬�E!x). Thus, it follows that #F is identical to x iff
both #F and x are abstract objects that encode the same properties. So the
theory decides the question “Is #F identical to Julius Caesar?” (for any F )
in the negative as soon as (a) #F is defined as above and (b) Julius Caesar is
asserted to be an ordinary object (O!j).26

Note the contrast between object theory and the system of second-order
logic with Hume’s Principle. In the latter, the definition of ‘x is a number’
as ‘∃F (x = #F )’ is not perfectly general, since ‘#F ’ has been defined via
Hume’s Principle only for certain contexts. In object theory, however, the
definition of ‘x is a number’ as ‘∃F (x = #F )’ is perfectly general; the notion
26As we saw earlier, the distinction between abstract and ordinary objects partitions the

domain of objects. The abstraction principle (B) discussed above only comprehends the
domain of abstract objects and does not attempt to partially define identity conditions for
abstract objects. Identity conditions are provided by the separate identity principles outlined
above.
Note also that in object theory, the claim that Julius Caesar is an ordinary object, is a

necessary truth if true (since ��E!x follows from �E!x in S5), and moreover, one that is
discovered a posteriori. It is thus similar in kind to identity statements, which are necessary
if true, though discovered a posteriori.
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82 BERNARD LINSKY AND EDWARD N. ZALTA

‘#F ’ is explicitly defined independently of Hume’s Principle, as described in
the previous paragraph. This directly engages Frege’s point in §66 of the
Grundlagen, where he says, in connection with the principle “the direction
of line a is identical with the direction of line b iff a is parallel to b”:

It will not, for instance, decide for us whether England is the same
as the direction of the Earth’s axis. . . . our definition . . . says
nothing as to whether the proposition,

“the direction of a is identical with q”

should be affirmed or denied, except for the one case where q is
given in the form of “the direction of b”. What we lack is the
concept of direction; for if we had that, then we could lay it down
that, if q is not a direction, our proposition is to be denied, while
if it is a direction, our original definition will decide whether it
is to be denied or affirmed. So the temptation is to give as our
definition,

q is a direction, if there is a line b whose direction is q.

But then we have obviously come around in a circle. For in order
to make use of this definition, we should have to know already in
every case whether the proposition,

“q is identical with the direction of b”

was to be affirmed or denied.

Object theory breaks out of Frege’s circle because it provides a completely
general definition of the concept of ‘number’ which makes no use of any
notions contextually defined by Hume’s Principle. That stops the Julius
Caesar problem. Indeed, the theory answers Cook and Ebert’s C-R problem
as well (Cook and Ebert [2005]), since there are determinate conditions
under which #F is identical to x even when x is some other kind of abstract
object that can be defined in object theory (such as those definable on the
basis of an abstraction over an equivalence relation).
It is instructive here to compare second-order object theory’s simple state-
ment of comprehension with Fine’s theory of abstraction. Whereas Fine
limits abstraction principles to those which are non-inflationary (and jointly
non-hyperinflationary), object theory does not. Indeed, models of object
comprehension show that there can be as many or more individuals as there
are properties or sets of properties, as long as the objects are built in terms
of a second mode of predication. This shields their defining properties from
the conditions that lead to paradox. The Aczel-models of second-order ob-
ject theory (Zalta [1999, pp. 626–8]) show that the sets representing abstract
objects are clearly more numerous than the domain of ordinary individu-
als in the model. But in these models, first-order quantifier ranges over
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a domain which includes both the ordinary individuals and the sets repre-
senting abstracta! These models demonstrate that one can have a domain
of individuals (consisting of both ordinary objects and abstracts) that is
inflationary as long as there is (1) a new mode of predication and (2) no
means of constructing arbitrary new properties in terms of that new mode
of predication.
Another observation relevant to the comparison concerns the generality of
the theory. Recall Fine admits that his theory of abstraction is incomplete in
two ways: (a) there are no abstracts corresponding to the cells of equivalence
relations on individuals and (b) there are no abstracts corresponding to the
cells of equivalence relations on relations. However, there are both kinds of
abstracta in object theory. For (a), see Anderson and Zalta [2004], which
describes the method for deriving the Fregean biconditionals for directions
and shapes once directions and shapes are identified as abstract objects.
For (b), consider that abstraction can take place over relations, either by
projecting the relations into properties or by using equivalence relations on
relations themselves, without paradox.27

Though we have focused on formulating object theory in terms of the
abstraction principle (B) instead of the comprehension principle (A), there
are reasons for preferring (A) in the formulation. The latter shows how
object theory responds to the paradox that defeated Frege’s original logicist
program. One open question left by the logicists is, exactly when can one
introduce objects corresponding to sets of concepts? A proper new form of
logicism ought to be explicit about how it avoids the paradoxes. Similarly,
Fine’s investigations of the limits of abstraction return to the issue of inflation
raised by the original, inconsistent Fregean set theory, so as to reconcile its
jointly inconsistent constraints (a) that the domain of individuals be at least
as large as the domain of properties, and (b) that the latter must be strictly

27For example, here is how to define abstracts for isomorphism types, without paradox.
We use the following notions: x =E y (defined above), F ≈E G (defined in Zalta [1999]),
and F ≡ G (i.e., F and G are materially equivalent). For arbitrary relation R, we want to
define an abstract object that encodes the (properties whose extensions are the domains of)
relations isomorphic toR with respect to the ordinary objects. First we require 3 preliminary
definitions:

DR (‘being in the domain of R’) =df [�x ∃y Rxy]
RS (‘being in the range of S’) =df [�x ∃y Syx]
IsomorphicE(R, S) =df (a) DR ≈E DS , and (b) there exists a relation T such that:
(a) DT ≡ DR and RT ≡ DS ,
(b) T is one-one and onto (relative to =E), and
(c) ∀x, y [R(x, y) ≡ S(ızTxz, ızTyz)]

Finally, we define the isomorphism type of R (with respect to ordinary objects):

≡R = ıx(A!x & ∀F (xF ≡ ∃S (F = DS & IsomorphicE(S, R))))
It now follows that ≡R = ≡S iff IsomorphicE (S,R).
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84 BERNARD LINSKY AND EDWARD N. ZALTA

larger than the former. It is only by using an explicit comprehension principle
that a theory directly reveals its solution to the paradoxes.
A second reason for formulating object theory with comprehension rather
than abstraction is that it provides answers to questions Boolos raises in
connection with the analyticity of Hume’s Principle. In [1997], Boolos asks
(p. 306), “Why believe there is a function that maps concepts to objects
like octothorpe?”, and asks (p. 307), “How do we know that for every
concept there is such a thing as a number of that concept?”.28 The answer
to these questions, in object theory, traces back to comprehension; we know
there is such a function as octothorpe and that every concept has a number
because the relevant existence claims are theorems directly provable from the
comprehension principle. We have attempted to justify the comprehension
principle elsewhere.29 Indeed, how could one know the answer to such
questions unless they were implied by a more general theory? Of course, a
neologicist could point out that Boolos’s questions nevertheless still apply
to the reformulation of object theory that uses abstraction (B) instead of
comprehension (A). Theymight argue that one could answer these questions
as applied to Hume’s Principle by pointing to Boolos’s reformulation (using
the � relation) of Hume’s Principle as the comprehension principle Numbers
(in his development of Frege Arithmetic); since Numbers is similarly a
comprehension principle, the answers we just gave to Boolos’s questions are
available to a defender of Hume’s Principle. But here, a difference emerges
because comprehension over objects as in (A) is much more general than
the Numbers principle underlying Frege Arithmetic, which simply asserts
the existence of numbers. It is easier to answer the question, “How do we
know that comprehension principle for abstract objects is true?” than it is to
answer the question “How do we know that the principle underlying Frege
Arithmetic is true?” The former question concerns a general principle of
abstract objects which reflects their very nature and which may be part of
the metaphysical foundations of logic itself, whereas the latter is simply a
piecemeal, non-logical theory of one kind of abstract object, namely, the
Frege numbers.
Despite these reasons for employing (A), the formulation of object theory
using the abstraction principle (B) has the following virtue: since minimal
models of second-order object theory show that it has no greater ontological
commitment than that of pure third-order logic (which commits us to at least
one individual, two first-level properties, and four second-level properties),
we might conceive of the abstraction principle (B) not just as an analytic

28He asks the question again ([1997, p. 308]), “What guarantee have we that every concept
has a number?”
29See Linsky and Zalta [1995], where we attempt to show that the comprehension principle

is justiable on naturalist grounds because it is (a) simple, (b) non-arbitrary, (c) parsimonious,
and (d) required for our understanding of any possible scientific theory.
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truth, but as a logical truth as well. This would cast second-order object
theory as a kind of logic.30 Indeed, what (non-question-begging) reason is
there to think that such an unrestricted, general abstraction principle is not
part of logic?31,32

The view that second-order object theory with abstraction is a logic applies
even when that theory is extended with the modal axiom needed to derive
the infinity of natural numbers. The modal axiom used in Zalta [1999] to
prove that every number has a successor was presented after the definition
of octothorpe, predecessor, and natural number. This modal axiom asserts
(where ‘A’ in the formal version represents the actuality operator used in the
informal version):

If natural number n numbers the F s, then there might have been a
concrete object distinct from all the actual F s.

∃x (NaturalNumber(x) & x = #F )→
�∃y (E!y & ∀u (AFu → u �=E y))

This principle can be used to prove that every number n has a successor,
by identifying the number which is the successor of n as the number of the
concept [�z Fz ∨ z=E a], where a is some (possibly concrete) object which
might have been distinct from all the actual F s.

30One can even justify the modal axiom used in the proof of the infinity of numbers
(Zalta [1999]) as part of logic, since it simply tells us that the domain might be of any size,
not what its size is. But we shall discuss this idea in more detail in the next paragraph.
31Boolos has formulated an objection to thinking that logic commits us to objects. He

says ([1997, p. 502]): “No conception of logic commits us to the existence of two distinct
objects (on any understanding of logic now available to us)”. Our reply is that there is an
understanding of logic now available which does commit us to the existence of two distinct
objects (where ‘object’ is construed broadly here). Second-order logic under general models
commits one to at least one individual and two properties. We think this is justified as part of
logic because you need at least this much for an understanding of predication. Boolos here
seems to be thinking here that the only conception of logic that is available to us is first-order
logic.
32It is also worth replying here to another argument one might have for thinking that

object abstraction is not part of logic, namely, that there is an interpretation of the language
of object theory under which it is false. We actually mentioned this earlier, as a reason
many logicians now use for thinking that the axioms of set theory are not logical axioms.
However, we did not offer that reason as a conclusive argument for thinking that the axioms
of set theory are non-logical. For indeed, one could just as easily claim that the ‘p ∨ ¬p’
is not a logical truth because there are non-standard (e.g., many-valued, intuitionistic, etc.)
interpretations of the language of the propositional calculus on which this formula turns
out to be false and so fails to be a logical theorem. Thus, the fact that you can investigate
principles from a model-theoretic point of view and see what consequences they have (e.g.,
some are true in empty domains, some in non-empty domains, some in domains with more
than one object, etc.), does not show whether something is or is not a logical truth, since the
relevance logicians or intuitionists can study the properties of classical logical principles in a
similar way.
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It is important here tomake a series of observations about thismodal claim
and its relationship to logic. First, it should be noted that this principle only
commits one to the possible existence of certain concrete objects, not to the
existence of an infinite number of concrete objects. So, it is not on a par with
‘axioms of infinity’, which assert that there is an infinite number of objects
by asserting either the existence of an infinite set or the unboundedness of
some domain of objects. The above modal axiom does not do either of these
things. Rather, the fact that every number has a successor can be proved only
once the above axiom is located within a fixed domain modal logic, for then
the Barcan formula becomes the essential additional element for requiring
that the possible existence of certain concrete objects implies the existence
of possibly concrete (i.e., ordinary) objects. Thus, the above modal axiom is
rather weak, and postulates not an actual infinity of objects but a potential
infinity, in the sense that no matter how many concrete objects there are,
there might have been more.
Second, we think this modal axiom is not just consistent with the elements
of the traditional conception of logic, but also grounds one of those elements.
One traditional (semantic) conception of logic is that logic is a topic-neutral
account of the consequence relation, and so it is (1) consistent with any
possible domain, and (2) concerned with concepts that remain invariant
under any permutation of the domain. Given that all the terms in our modal
axiom were defined solely in terms of the modal logic of encoding (i.e.,
second-order modal logic and the encoding mode of predication), we would
argue that it is not only consistent with this understanding of logic, but also
that it captures the idea that the domain could be of any size, and thereby
expresses one of the intuitions that grounds the above conception of logic.
If we are right, then logic is committed to an infinite number of contingently
nonconcrete objects; they are ordinary but they are not concrete.33 We
therefore take it that there is a modal component to logic which has not been
made explicit, though logicians often implicitly express it when they say
things like “The domain might be of any size.” At present, we are committed
only to the modal component described above, namely, that logic should be
consistent with any possible domain of concrete objects.34

33Aswe shall see, there is a numberwhich numbers the contingently concrete (i.e., ordinary)
objects but it is not a finite number. See the theorem displayed below. Moreover, we should
note here that modal considerations have played a role in recent discussions of what logic is.
See Etchemendy [1990].
34Boolos does restrict the argument mentioned in footnote 31 to conceptions of logic

‘currently available’, but presumably the force of the argument comes from the likelihood
that there is not a better account on offer. We suspect that the intuition that logic should be
consistent with a domain of any size is also part of the formal or ‘schematic’ view of logic
as identifying those uninterpreted schemata which come out true on all interpretations (see
Goldfarb [2001b]), as well as part of the normative conception of logic as defining what is
constitutive of correct inference (see MacFarlane [2002]).
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We agree that there is a difficult line to draw between the bounds of
logic and metaphysics, but our broader conception of logic is one which
admits that logic must be committed to the existence of something, whether
it is propositions, truth-values, sentence-types, a consequence relation, or
possible worlds, etc. Thus logic has some metaphysical presuppositions
implicit in the tools used by logicians, and these should be explicitly identified
in the form of existence principles or abstraction principles which are part
of logic as well as being metaphysical in character. We’ve seen that the line is
not always sharp. For example, we’ve noted the fact that object abstraction
((B) above) looks more like a logical principle than the equivalent principle
of object comprehension ((A) above), which seems clearly non-logical. Still,
both object abstraction and the above modal axiom might be part of the
metaphysical presuppositions underlying logic. The resulting metaphysical
theory is applicable no matter which concrete objects there are. It is topic
neutral with respect to the things there actually are—abstract objects are
correlated with arbitrary conditions on properties. And it has some modal
force—it acknowledges that there might be concrete domains of any size.
There is one technical result which shows that the statement of object
theory which comes closest to being an axiom of infinity turns out to be a
theorem and not an axiom! Note that Frege defines a ‘finite number’ (i.e.,
natural number) to be any individual to which 0 bears the weak ancestral
of the Predecessor relation. Thus, the statement of object theory which
corresponds to the Russellian axiom of infinity is: the number of ordinary
individuals is not a finite number.
In object theory (where the definition ofNaturalNumber(x) is just Frege’s
definition of FiniteNumber(x)), we can prove this corresponding statement
as a theorem:35

35Here is a proof, which uses the numbering scheme in Zalta [1999]. (Although not strictly
necessary, note that the fact that #O! is well-defined is established by Theorem 9 and by
Definition 10 in Zalta [1999].) (continued)
Now suppose, for reductio, that NaturalNumber(#O!). Call this number n. Then since

n = #O!, it will followby theModalAxiom(p. 39), that�∃y (E!y & ∀u (AO!u → u �=E y)).
(In other words, where A is the actuality operator, the Modal Axiom will imply (under our
reductio hypothesis): there might be a concrete object distinct from all the actual ordinary
objects.) By the Barcan Formula, ∃y �(E!y & ∀u (AO!u → u �=E y)). Call an arbitrary
such ordinary object b. Then we know �(E!b & ∀u (AO!u → u �=E b)). By the laws of
possibility, it follows that:

�E!b & �∀u (AO!u → u �=E b). (�)

From the first conjunct of (�), it follows by definition that O!b, and by the laws of actuality,
that AO!b.
From the second conjunct of (�), it follows by Modal Lemma (p. 40) Zalta [1999] that

∀u (AO!u → u �=E b). (If it is possible that b is distinctE from all the actual ordinary
objects, it is distinctE from all the actual ordinary objects. This Lemma was proved by the
necessity of identityE .) So, instantiating to b, we have AO!b → b �=E b). But, since O!b, it
is a theorem (3) that b =E b. So, ¬AO!b. Contradiction.
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Theorem. ¬Natural Number(#O!)
From the theorem that #O! is not a finite (natural) number, it follows that
there is a natural cardinal which is not a finite number:

∃x (NaturalCardinal(x) & ¬Natural Number(x))
Thus, the closest statement in object theory to Russell’s axiom of infinity is
a theorem. This theorem guarantees that the domain of possibly concrete
objects is infinite, not that the domain of concrete objects is infinite.
Having now described the virtues of second-order modal object theory, we
conclude this subsection by comparing its limits of abstraction with those of
the other forms of neologicism discussed previously. We shall argue in the
next section, however, that our preferred form of neologicism, third-order
non-modal object theory, is not subject to these limitations.
Though second-order modal object theory has numerous philosophical
applications (not discussed here), and offers a very general theory of ab-
straction that reifies any condition on properties into abstract individuals,
its limitation as a form of neologicism concerns the fact that the recon-
struction of interesting mathematical notions in object theory requires that
encoding formulas be used in definitions. For example, the predecessor
relation is defined as:

Precedes(x, y) =df ∃F ∃u (Fu & y = #F & x = #[�z Fz & z �=Eu])
Note that when ‘=’ (in the second conjunct of the quantified claim in the
definiens) is replaced by primitive notation, the resulting formula contains
encoding subformulas. As such, there is no guarantee that a predecessor
relation exists, since the defining formula is not allowed in relation compre-
hension. The existence of such a relation has to be asserted as an axiom
and the resulting theory proved to be consistent (as in Zalta [1999]). So
whereas the forms of neologicism in Section 4.1 use unrestricted property
comprehension and must add various new abstraction principles to get to
new kinds of mathematical objects, second-order modal object theory has
an unrestricted abstraction principle for objects but has to add existence
assertions for properties to get new kinds of mathematical objects.
Thus, all of the forms of neologicism described thus far give up generality
in some important way—none of them can capture the full range of math-
ematics. Each version of neologicism runs into some limit of abstraction.
Only a new approach can get past these limits, as we now show.

§5. Reconceivewhat counts as a reduction. Having compared second-order
modal object theory with other forms of neologicism, we now argue that
third-order (nonmodal) object theory is the best way to reconstruct logi-
cism. Second-order modal object theory was of interest precisely because it
involved nomathematical primitives and yet had some limited mathematical
power. Some of the other systems we discussed had more mathematical
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power, though the more mathematical power they had the less they seemed
like a form of neologicism. There is, however, a rather different way to ap-
proach mathematics and address the problems that motivated logicism and
neologicism, namely, by adding the (expressive) power of third-order (non-
modal) object theory. The goal here is to find a neologicism that overcomes
the limitations of abstraction by being so general as to be applicable to all
of mathematics rather than just to some part of it. Instead of concluding
that some parts of mathematics can not be epistemically justified, we plan
to show that all of mathematics (no matter how it turns out) can be justified
in a uniform way.
If it is legitimate to find a form of neologicism by weakening the claim
“mathematics is reducible to logic alone” in the ways explored in previous
sections, then it is certainly also legimitate to find a form that weakens the
claim by reconceiving the notion of ‘reduction’. Our view is that philos-
ophy itself should not be concerned with ‘mathematical’ foundations for
mathematics. We should let the mathematicians decide which mathematical
theories and tools are best suited for the pursuit of mathematics and the in-
vestigation of its power and resources. So we have nothing to offer by way of
mathematical reductions and foundations. But philosophers should be con-
cerned with metaphysical and epistemological foundations for mathematics,
and we therefore plan to offer a notion of reduction that provides answers
to the metaphysical question, “What is mathematics about?”, and to the
epistemological question, “How do we know its claims are true?” Indeed,
a unique feature of our program is that it yields no proper mathematics on
its own, and so makes no judgments about which parts of mathematics are
philosophically justified! Instead, it takes as data any arbitrary mathemati-
cal theory that mathematicians may formulate, and provides a more general
explanation and analysis of the subject as a whole. This analysis encounters
no limits of abstraction.
The theory of mathematical theories, objects, and relations formulated in
Linsky and Zalta [1995], and developed in Zalta [2000], identifies a mathe-
matical theory t as an abstract object that encodes the propositions p that
are true in t, where ‘p is true in t’ is defined as ‘t encodes the property being
such that p’ (i.e., t[�y p]). We hereafter write t |= p to more vividly indicate
that p is true in t. A special Rule of Closure guarantees that t |= p is closed
under proof-theoretic consequence (i.e., we may infer t |= q whenever q
is syntactically derivable from propositions p1, . . . , pn all of which are true
in t). Then, each axiom φ of t is imported into object theory by adding
to object theory analytic truths of the form: t |= φ∗, where φ∗ is the result
of indexing all the well-defined terms and predicates of t with the symbol
that names the theory t. For example, the axiom of Peano Arithmetic which
asserts that 0 is a number gets imported into object theory as: PA |= NPA0PA.
And the ZF axiom that asserts that there is a null set would be imported
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90 BERNARD LINSKY AND EDWARD N. ZALTA

into object theory as: ZF |= ∃x ¬∃y (y ∈ZF x). Then, for any well-defined
object term κ in t, object theory uses the following principle:

κt = ıx(A!x & ∀F (xF ≡ t |= Fκt))
This principle guarantees that within object theory, the object κ of theory
t is the abstract individual x which encodes all and only the properties that
κ has in theory t. This is not a definition which introduces an object using
an instance of abstraction, but is rather a theoretical claim which tells us, in
principle, how to identify κt in terms of the role it plays in t.
Whereas this principle for identifying the mathematical objects of theory t
employs only second-order object theory, we need third-order object theory
to similarly identify the properties and relations of t. So, to make the
adjustments necessary, consider an n-place predicate ‘Π’ in theory t. Let
‘A!’ be the second-level property of being abstract that applies to first-level
n-place relations such as Π. And let F be a variable ranging over (second-
level) properties of n-place relations such as Π. Then, where ‘R’ is a variable
ranging over first-order n-place relations, third-order object theory specifies,
for any t:

Πt = ıR(A!R & ∀F (RF ≡ t |= FΠt))
In other words, the property Π of theory t is the abstract relation R which
encodes all and only those second-level properties F such that in theory t,
Π exemplifies F. Again, this does not introduce the relation Π but rather is a
principle that identifies Π in terms of its role in t.
So, although third-order object theory imports primitive mathematical
notions and indexes them to their respective theories, it characterizes these
notions by analytic claims of the form ‘In theory t, p’, and then proceeds to
identify the primitive objects and relations as abstract objects and relations,
respectively. So to each primitive mathematical notion there corresponds
a principle that identifies the object or relation it denotes. Moreover, as
sketched in Linsky and Zalta [1995] and developed in detail in Zalta [2000],
object theory offers an analysis of the truth conditions of ordinary mathe-
matical claims. Wewill not go into detail here how this is to be done, but only
note that each ordinary mathematical claim (i.e., unprefaced by the theory
operator) will get a reading on which it is true. The truth of ordinary math-
ematical statements is captured using the encoding mode of predication.36

It is important to observe here that this offers a new notion of ‘reduction’.
This notion, that of ‘metaphysical’ or ‘ontological’ reduction, was discussed
in detail in Zalta [2000], but the main idea is that an ontological reduction
of mathematics within third-order object theory gives us a general treat-
ment of mathematics which offers an analysis of both the denotation of the

36It will also get a reading on which it is false. Thus ‘2 is algebraic’ is true if analyzed as
‘2A’ and false if analyzed as ‘A2’. However, ‘In real number theory, 2 is algebraic’ is true
simpliciter when ‘is’ is read as ‘exemplifies’, and is represented as ‘RNT |= A2’.
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terms of mathematics and the truth conditions of mathematical statements.
Whereas the traditional notions of ‘reducibility’ (such as proof-theoretic,
interpretability, model-theoretic, etc.) are needed when one is trying to find
a mathematical foundation for mathematics, they need not be in play for
giving metaphysical or epistemological reductions of mathematics. Indeed
the set theory used in model theory will be just one more mathematical
theory and so have no particular foundational significance. Thus, in the
classification that Burgess uses in [2005], set theory serves as mathematical
foundations and a linear hierarchy of systems can be arranged in terms of
interpretability power. We are here suggesting that a different notion of
reducibility is needed for metaphysical and epistemological foundations, as
opposed to mathematical foundations.
To see how third-order object theory constitutes a form of neologicism,
we need to show how it is related to the principle of logicism, namely, that
‘mathematics is reducible to logic alone’. Previously we have discussed ways
in which our conceptions of ‘logic’ and ‘logic alone’ could be relaxed so as
to form a neologicism. Our claim is:

Third-order object theory is a neologicism because it reduces (in the
sense just described) all of mathematics to ‘third-order’ logic and some
analytic truths.

By quoting the phrase ‘third-order’, we are calling attention to the fact
that the theory is weaker than full third-order logic. Though our theory is
most naturally formulated using third-order syntax, its logical strength is no
greater than multi-sorted first-order logic. [It is important to mention here
that in previous work (Linsky and Zalta [1995], Zalta [2000]), the object
theory used to analyze mathematics was formulated in the framework of
simple type theory. We typed the language and axioms of object theory, as
well as its comprehension principles, using a standard simple type theory.
Then we asserted the existence of abstract objects at each type t. However,
in the interests of finding the weakest theory needed to do the job, we are
now using only the third-order formulation of object theory.]
Now, to establish the above claim, we note that third-order object the-
ory consists of third-order logic with (a) (arguably analytic) abstraction
principles for abstract individuals and for first-level abstract properties and
relations, and (b) analytic truths about what’s true in mathematical theories.
First, we formulate the abstraction principles for abstract individuals and
for abstract properties and relations as follows. Let ‘R’ be a variable ranging
over the domain of first-level properties and relations, ‘F’ and ‘G’ be vari-
ables ranging over properties of first-level properties and relations, and ‘A!’
be the second-level property of being abstract. Then we have:

ıx(A!x & ∀F (xF ≡ φ))G ≡ φGF , where φ has no free xs.
ıR(A!R & ∀F (RF ≡ φ))G ≡ φGF , where φ has no free Rs
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92 BERNARD LINSKY AND EDWARD N. ZALTA

The first implies the existence of abstract individuals in terms of the first-
level properties they encode, and the second implies the existence of abstract
first-level properties and relations in terms of the second-level properties they
encode. So, far then, our third-order logic plus abstraction principles is free
of primitive mathematical notions and axioms.
Second, we add analytic truths of the form ‘In theory t, p’, for arbitrary
mathematical theories t. As noted above, these axioms are added by im-
porting the constants and predicates of each mathematical theory t into the
language of third-order object theory, indexing them to their respective the-
ories. Then, each of these constants and predicates will be subject to their
respective identification principle, as described above. Note that by adding
the primitive analytic truths of this form, we are not adding mathematical
axioms such as New V or Hume’s Principle. We distinguish primitive math-
ematical axioms, such as ‘0 is a number’, ‘there is a set having no members’,
Hume’s Principle, New V, etc., from analytic truths of the form ‘In mathe-
matical theory t, p’. A case can be made for thinking that the latter are not
mathematical principles, at least not in the same sense as the former, though
we shall not pursue the point here. (Intuitively, our view is that the former
are about mathematical objects and their properties whereas the latter are
about mathematical theories.)
So we have a form of neologicism; the original logicist claim “mathematics
is reducible to logic alone” is reconstructed as: all of mathematics is onto-
logically reducible to (syntactically) third-order object theory (which has no
greater logical power than multi-sorted, first-order object theory with two
atomic forms of predication), analytic abstraction principles, and analytic
truths about the content of mathematical theories. This reconstruction does
not restrict the amount of mathematics to which it is applicable. It applies
to all mathematical theories, with no limits of abstraction.
Note that our neologicismdoes not suffer fromabad companyobjectionor
an embarrassment of riches objection. There is a single abstraction principle
for each domain of quantification, rather than many. There are no other
abstraction principles with the same form but which lead to contradiction,
nor are there too many individually consistent, but jointly incompatible,
alternative abstraction principles. The theory is therefore not piecemeal in its
approach to abstract objects. Moreover, we are not just finding alternative
axiomatizations of mathematical theories, but rather exhibiting a way in
which mathematics is reducible to logic plus analytic truths.
It is important to recognize that we now have an answer to the first of
the questions posed earlier, namely, “What is mathematics about?” Our
answer is that mathematics is about abstract objects (indeed, objects that
bear some resemblance to the ‘indeterminate elements’ (Benacerraf [1965])
required by structuralist analyses of mathematics) and the properties that
they encode. If the mathematicians come along and decide that ZF is the
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WHAT IS NEOLOGICISM? 93

proper mathematical foundations for the rest of mathematics, then we are
prepared to agree with them that mathematical objects are ZF sets. But we
would go one step further and give a philosophical answer to the question,
“What is ZF about?”, namely, that it is about abstract objects that ‘are’ ZF
sets in the sense that they encode the abstract property being a setZF (where
the abstract property of being a setZF is itself a property that encodes all and
only the higher-order properties F such that, in the theory ZF, the property
being a setZF exemplifies F).
Moreover, third-order object theory provides the epistemological foun-
dations for pure mathematics that the logicists sought. Recall Benacerraf’s
description of this epistemological goal in ([1981, pp. 42–43]):

But in reply to Kant, logicists claimed that these propositions are
a priori because they are analytic—because they are true (false)
merely “in virtue of” the meanings of the terms in which they
are cast. Thus to know their meanings is to know all that is
required for a knowledge of their truth. No empirical investigation
is needed. The philosophical point of establishing the view was
nakedly epistemological: logicism, if it could be established, would
show that our knowledge of mathematics could be accounted for
by whatever would account for our knowledge of language. And,
of course, it was assumed that knowledge of language could itself
be accounted for in ways consistent with empiricist principles,
that language was itself entirely learned. Thus, following Hume,
all our knowledge could once more be seen as concerning either
“relations of ideas” (analytic and a priori) or “matters of fact”.37

If we are right, then our answer to the question “How do we know that the
claims of mathematics are true?” depends on whether we are considering an
axiom or a theorem. If the claim in question is an axiom of some theory,
say t, then we know that it is true in virtue of our knowledge of language
(and we therefore account for that knowledge in terms of whatever faculty
accounts for our knowledge of language). So, no special faculty of intuition
is needed. If the claim in question is a theorem of t, then we know that it is
true in virtue of our ability to derive claims about analytic truths from more
basic analytic truths. Again, no special faculty of intuition is needed for this.
Whereas Benacerraf thought that mathematical knowledge had to be an-
alytic, we think the operative point in the above passage is this: to know
that a mathematical claim is true is know that it is an axiom or theorem of
some theory of mathematics. Thus, our knowledge of what mathematical
claims mean is grounded or systematized by our abstraction principle. Given
such a principle, then, we only need to understand analytic claims of the
form ‘In the theory t, p’ in order to formulate theoretical descriptions of

37We recognize that this passage comes in the context where Benacerraf is presenting the
“myth he learned as a youth”, but this bit is not the mythical part!
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94 BERNARD LINSKY AND EDWARD N. ZALTA

mathematical objects and relations. This allows us to have knowledge of all
the axioms and theorems of mathematical theories, including for example
the truths of ZF and those of alternatives to ZF such as Aczel’s nonwell-
founded set theory. (The fact that these latter two theories are inconsistent
with one another does not mean that we can not have knowledge of their
claims. In each case, the inconsistency is undermined by the fact that both
get imported into object theory under the scope of the theory operator: ZF
sets will encode the property of being well-founded, while some Aczel-sets
will encode the property of being nonwellfounded.) Thus, unlike other ne-
ologicist schools, we are not in the business of saying which mathematical
theories can be epistemically justified and which are not; we think they are
all epistemically justified in the appropriate way.38

We conclude this section with a brief discussion of how this view squares
with the Platonized naturalism defended in Linsky and Zalta [1995]. We
recognized there that knowledge of abstract objects (and thus, mathematics)
was knowledge involving (canonical) descriptions of the form
ıx(A!x & ∀F (xF ≡ φ)), where these canonical descriptions were grounded
in the comprehension principle for abstract objects. We argued that no
special faculty of intuition was needed for our knowledge of mathematics,
and that since each well-defined mathematical term could be identified with
a description, knowledge by acquaintance with mathematical objects and
relations collapses to knowledge by description. But, in the present piece,
we are recognizing that the main principle of the theory can be reformulated
as an abstraction principle rather than a comprehension principle. This
lends itself to the suggestion that the abstraction principle is analytic, given
the present climate in which principles like Hume’s Principle have been la-
beled as such. If object abstraction were analytic, it would need a different
justification than that of a synthetic a priori comprehension principle.
But we have tried to avoid drawing a final conclusion about the status of
object abstraction as an analytic, or even logical, truth. We are not sure it
really matters whether one takes it to be analytic, or logical or simply a refor-
mulation of a synthetic a priori comprehension principle. For the important
questions are whether the addition of object abstraction to logic constitutes
a neologicism, and whether this version of neologicism is consistent with the
kind of naturalism we have defended earlier. We think that the answer to

38We even think we can give an appropriate justification for our knowledge that certain
mathematical theories and objects are inconsistent. We know, for example, that in naı̈ve set
theory, one can prove that there exists a Russell set (i.e., a set which has as members all and
only those sets which are not members of themselves) and prove that it is a member of itself
iff not. So, on our view, the expression for the Russell set will denote an object that encodes
the property of being a set which is a member of itself iff it is not. (Of course, it will be
a somewhat uninteresting object, since all properties definable in naı̈ve set theory will also
be encoded by this object.) So, we can account for our knowledge of the facts concerning
inconsistent mathematical theories.
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both questions is ‘Yes’. Adding object abstraction to logic produces a form
of neologicism if adding Hume’s Principle to logic does. Moreover, no one
has yet explained how a version of logicism that implies and acknowledges
existential claims might be consistent with naturalism. But, if Linsky and
Zalta [1995] is right, the current version of neologicism is consistent with
naturalism, on the grounds outlined in that paper. We see the result as
a naturalist account of the existence claims that form an essential part of
mathematics and our neologicism.

Conclusion. Our answer to the question, ‘What is neologicism?’, has been
to map out the ways that one can carry out the program of ‘reducing math-
ematics to logic alone’ by reconceptualizing the notions involved in this
seminal logicist claim. By comparing the various ways of reconstructing the
logicist program, we have been led to defend one particular version of neo-
logicism, on the grounds that it best addresses the underlying motives of the
early neologicists. If epistemological concerns about howwe can have knowl-
edge of mathematics were the principal driving force of the early logicists,
then the version of neologicism defended here is the only one that addresses
those concerns for the entire range of (possible) mathematical theories. For
we have shown how one can (a) start with a classical notion of logic, (b) add
some fundamental truths (i.e., the instances of object abstraction) which
sound analytic and which may be analytic in some important sense even if
they are not analytic in the classical sense, (c) add other genuinely analytic
truths of the form ‘In theory t, p’, (d) give a ‘reductive’ analysis of arbitrary
mathematical theories that accounts for the denotations and truth conditions
of their terms and sentences, respectively, and finally, (e) account for our
knowledge of mathematics in terms of our knowledge of object abstraction.
Our knowledge of mathematics is to be explained in terms of the faculty
we use to understand language, since that is the only faculty we need to
understand object abstraction. None of the other forms of neologicism offer
this level of generality in their explanation of mathematical knowledge.
From the point of view of object theory there are two ways of approaching
mathematics. One is to view mathematical objects as arising from equiv-
alence relations on concepts and individuals, by introducing an individual
corresponding to each cell of the equivalence relation. This is captured in
‘second-order’ object theory as a special case of comprehension or abstrac-
tion, for these latter principles introduce a new individual corresponding to
each expressible property of properties, and not just a new individual for
each equivalence relation. The other approach is to view mathematical ob-
jects as creatures of mathematical theories, and to view both those theories
and their objects, as abstract objects. This second approach is captured
in third-order object theory, by abstracting over the role each well-defined
mathematical term and predicate plays in its respective theory. We have
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96 BERNARD LINSKY AND EDWARD N. ZALTA

compared object theory with those other forms of neologicism which take
the first approach to mathematics, hoping to cast new light on such theo-
ries. The second approach, however, is what is needed to have a completely
general account, one that goes beyond the inevitable ‘limits of abstraction’
of the current neologicist views.
To confirm this, note how our view falls outside the categorization offered
by Burgess in [2005]. Though Burgess was attempting to classify all the
theories in the business of ‘fixing Frege’, the above work shows that his
classification is incomplete. Here is how. At the beginning of Chapter 3,
Burgess reviews his classification of systems as follows:

Predicative theories: extensions for every concept, but formulas with
quantifiers over all concepts do not determine concepts.

Impredicative theories: accept full second-order logic with quantification
over all concepts freely admitted in formulas, and with all formulas
assumed to determine concepts, but that restrict the assumption of the
existence of extensions, or replace it by the assumption of the existence
of abstracts for some equivalence other than coextensiveness.

But consider the ways in which our neologicism, which in some sense fixes
Frege’s attempt to reduce mathematics to logic, fails to be covered by this
classification scheme. (1) Models of ‘second-order’ object theory show that
the theory does not allow full second-order logic, nor do models of third-
order object theory allow full third-order logic. Thus, the theory falls outside
the second classification for impredicative theories, since it does not accept
full second-order logic. But (2), the theory does not fall under the first clas-
sification above, since formulas with quantifiers do determine concepts. In
addition, there are other ways that our theory fails this classification scheme:
(a) The abstract objects postulated in object theory are not extensions—they
correspond to groups of properties and not just to single properties. If any-
thing, they can be represented as extensions of higher-order properties. But
in either case, the Burgess classification seems to imply that the abstracts are
extensions of concepts or, at least, must correspond to equivalence relations
on concepts. And (b) though object theory is impredicative (properties can
be formed which quantify over relations), not all open conditions on in-
dividuals in object theory are assumed to determine concepts—those with
encoding subformulas do not. So object theory does not fall within Burgess’s
second categorization of impredicative theories.
We believe that the scheme for classifying the forms of neologicism in-
troduced here offers a wider perspective on the problem of reconstructing
logicism or ‘fixing Frege’. We have tried to focus on the philosophical (i.e.,
metaphysical and epistemological) power of theories, and not just on their
mathematical power. Though logicians are often interested in interpretabil-
ity relations among theories, the more mathematical power a theory has,
the more likely it is to be a piece of mathematics rather than a new form of
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logicism. By contrast, we believe that logicism is more closely approximated
by theories that have little mathematical power while having serious philo-
sophical power, and we believe that the approach followed here should be of
interest primarily because of this point.
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