
The Effects of User Competition in Air Traffic 
Management Initiatives 

 

Amy Kim 
Civil and Environmental Engineering 

University of Alberta 
Edmonton, AB, Canada 
amy.kim@ualberta.ca 

Mark Hansen 
Civil and Environmental Engineering 

University of California, Berkeley 
Berkeley, CA 

mhansen@ce.berkeley.edu
 
 

Abstract—The classic Air Traffic Flow Management literature 
has focused on the development of programs that typically aim to 
optimize total system-wide metrics in their resource allocation 
solutions. These system-optimal solutions are thought to be 
achievable because the airspace system is a highly controlled 
environment where aircraft ultimately cannot fly a given route 
without approval from the Air Navigation Service Provider 
(ANSP). We use a simple, classic traffic assignment principle to 
illustrate that if flight operators are asked to provide preference 
inputs that are used directly in a system-optimal resource 
allocation, a truly system-optimal solution may not be achievable. 
Because flight operators act in a way that is analogous to 
autonomous drivers attempting to minimize their individual 
expected travel costs, the actual solution may be closer to that of 
a user equilibrium. This finding has two major implications. 
Firstly, in ATFM programs such as CTOP where user 
preferences are considered, system-optimal solutions may be an 
unrealistic goal that cannot be attained. Secondly, resource 
allocation schemes that aim to provide greater equity by 
sacrificing efficiency may not be as inefficient as they first 
appear, when compared against schemes that aim to provide 
system-optimality. 

Keywords- Air traffic flow management (ATFM); Collaborative 
Trajectory Options Program (CTOP); en route resource allocation; 
strategic planning; Wardrop’s principles; competitive behavior. 

I.  INTRODUCTION 
The classic Air Traffic Flow Management (ATFM) 

literature has focused on the development of programs that 
have typically aimed to optimize system-wide metrics in their 
resource allocation solutions. These system-optimal (SO) 
solutions are thought to be achievable because of the fact that 
airspace is a highly controlled environment where aircraft 
ultimately cannot fly a given route without approval from the 
Air Navigation Service Provider (or ANSP, such as the FAA or 
EUROCONTROL). Flight operators cannot make autonomous 
routing decisions to minimize their travel costs, with respect to 
the time of travel and route taken, particularly under ATFM 
programs initiated to mitigate delays during times of heavy 
congestion. From this standpoint, the aviation environment is 
significantly different from road traffic operations, in that 
drivers are usually free to make autonomous travel choices in 
order to minimize their own individual travel costs. Under 
these conditions, Wardrop’s first equilibrium condition – the 
user equilibrium (UE) – is shown to prevail, at which point no 

driver can reduce their travel costs by switching routes. 
System-optimal conditions can only exist through tolling and 
other similar controls on the roadway network. Flight operators 
are not always able to freely make routing decisions to 
minimize their travel costs, but desire to do so when possible 
and/or convenient. 

The Collaborative Trajectory Options Program, or CTOP, 
is an ATFM initiative that is proposed to handle future 
projected demands. CTOP is similar to currently existing 
programs in that it aims to safely and efficiently meter aircraft 
flow through capacity constrained airspace regions. However, 
CTOP differs from current programs (such as the Airspace 
Flow Program, or AFP) in that it allocates alternate routes in 
addition to departure times. Most importantly, in exchange for 
this higher level of control, CTOP considers flight operators’ 
preferences regarding the available resources in its resource 
allocation scheme. In this paper, we use a simple, classic traffic 
assignment principle to illustrate that if flight operators are 
asked to provide preference inputs that are used directly in a 
system-optimal resource allocation, a truly system-optimal 
solution may not be achievable; in fact, the actual solution may 
be closer to a user equilibrium solution. If flight operators are 
able to influence their resource allocations through their 
preference inputs, they will submit inputs that reflect their 
desire to minimize their expected travel costs, much like 
drivers on a roadway network make route choices to minimize 
their individual expected travel costs. This finding has two 
major implications. Firstly, in ATFM programs such as CTOP 
where user preferences are considered, a system-optimal 
solution may be an unrealistic goal that cannot be attained. 
Secondly, resource allocation schemes that aim to provide 
greater equity by sacrificing efficiency may not be as 
inefficient as they first appear, when compared against 
allocation schemes that aim to provide system-optimality.  

In this paper, “operator” or “user” refers to ANSP 
customers such as commercial airlines and general aviation 
aircraft. “Traffic manager” refers to the agent responsible for 
allocating resources at the ANSP. 

II. BACKGROUND 
There are several programs that are used to meter traffic 

flow into constrained en route areas, including the Airspace 
Flow Program (AFP). In the AFP, the constrained airspace 
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region and the flights filed into this region during the time of 
reduced capacity are first identified. The reduced capacity is 
then allocated by assigning each impacted flight a delayed 
departure time on the original filed route. A flight can either 
accept the assigned departure time, or reject it and reroute 
around the constrained airspace (subject to traffic managers’ 
approval). Slots to fly through the constrained region are 
vacated as flights are canceled or routed out, and the schedule 
is compressed such that remaining flights are moved up into 
earlier slots as available. The Collaborative Trajectory Options 
Program (CTOP) is a proposed concept that builds on the AFP 
to better coordinate rerouting under the anticipation of growing 
demands; it is designed to offer flight operators resources that 
consist of reroute options combined with delayed departure 
slots, while allowing operators to communicate their 
preferences regarding the offered resources. There is no 
program currently in place that applies reroutes and ground 
delays simultaneously – existing reroute programs cannot 
assign delays, and vice versa [1]. Optimization models that 
consider both rerouting and delay (on the ground and en route) 
decisions for constrained resource allocation have, however, 
been studied in the literature. One of the most well-known 
ATFM models [2] considers ground holding, air holding, and 
rerouting decisions in a static deterministic setting. It also 
requires the input of flight-specific air and ground-hold cost 
ratios. Hoffman, Burke, Lewis, Futer & Ball [3] develop an 
algorithm that allows for simultaneous rationing of ground and 
en route resources, as an alternative to using GDPs to handle en 
route constraints. Jakobovits, Krozel, & Penny [4] formulated 
an algorithm to schedule, reroute and airhold flights flying into 
and around constrained airspace. Mukherjee & Hansen [5] 
consider a variant of the single airport ground hold problem 
that considers reroutes for terminal airspace using a dynamic 
stochastic approach. The objective of many ATFM models is to 
minimize the system-wide cost of delay, i.e. maximize 
efficiency; however, providing equity between flights and/or 
flight operators is another important objective [6] [7].  

For traffic managers to make resource assignment decisions 
that are of good value to flight operators, they should consider 
flight operators’ resource preferences.  Existing resource 
allocation programs such as GDPs and AFPs benefit from 
Collaborative Decision Making (CDM) [8], a joint government 
and industry initiative that aims to improve air traffic 
management by encouraging the exchange of up-to-date 
information between traffic managers and flight operators. 
Prior to the use of CDM for GDPs, airlines had little incentive 
to inform the FAA of their schedule updates, and in fact could 
inadvertently be penalized with higher delays by doing so. As a 
result, operators were reluctant to provide information updates 
and desirable slots would often go unused [9]. CDM provides 
operational incentives for airlines to keep their schedule 
changes up-to-date in the system. In addition, the system is 
transparent insofar as all flight operators can see what others 
are doing, thereby promoting a culture of accountability and 
self-regulation. The above features of CDM have greatly 
improved the efficiency of ATFM programs in which CDM is 
applied. However, operators’ preferences are not explicitly 
communicated through CDM. ATFM concepts in which 
airlines do explicitly provide preference information to the 
FAA’s resource allocation process have been studied [10] [11] 

but have yet to be implemented. CTOP is one of these 
concepts. 

The literature on traffic assignment is extensive and well 
established. A user equilibrium results when drivers have the 
freedom to make their own personal travel choices to minimize 
their travel costs. Under congested conditions, a unique user 
equilibrium condition exists when drivers are homogeneous 
and (stochastic) errors in their travel time perceptions are 
accounted for. It has also been shown that for certain cases, the 
stochastic user equilibrium solution exists and is unique for 
heterogeneous driver classes [12] [13]. Konishi [14] extends 
Daganzo’s work [12] to heterogeneous drivers with different 
utility functions. Konishi shows that an equilibrium solution is 
unique for a general class of utility functions on a simple 
network. There are many issues that arise in surface traffic 
assignment problems due to the nature of driver behavior, 
traffic controls and physical infrastructure characteristics on 
road networks. Many of these do not apply in ATFM due to 
fundamental differences in “driver” behavior, the physical 
organization of airspace, weather and operational conditions 
that shape aircraft flight patterns, and traffic management 
activities. However, from a traffic assignment perspective, the 
most significant difference is that aircraft cannot be in the 
airspace without permission from air traffic managers, and are 
always under their control. As a result, traditional ATFM 
models have focused on system-optimal traffic assignment 
solutions as mentioned above. 

Resource allocation in general transportation networks has 
also been studied from a game-theoretic and/or market-based 
perspective. The one-player case corresponds to a classic 
system-optimal solution, while a many-player case yields the 
user equilibrium solution. Haurie & Marcotte [15] formulate a 
non-cooperative game where players, defined by their origin-
destination pairs, must send flows along a congested network 
to serve demand at their destination node. The cost of sending 
flow along a given link is a function of the flow on that link 
(congestion effect). They show that the Nash-Cournot 
equilibrium corresponds to the user equilibrium. Wie [16] 
studies a dynamic extension of [15] where each player must 
make decisions (to minimize their cost) about sending a fixed 
volume of traffic from a single origin to a single destination 
over a network of routes. Players make simultaneous decisions 
over time, which is modeled using differential game theory, 
and Wie establishes a dynamic game theoretic interpretation of 
the user equilibrium condition. The author extends his work to 
account for two types of players – a user equilibrium player 
and a Cournot-Nash player [17]. The latter behaves to establish 
a system-optimal cost outcome for its set of network flow 
requirements. 

This section has very briefly touched on the extensive body 
of research on ATFM models and transportation network 
analysis. This paper focuses on how the behaviors of flight 
operators in collaborative, user input-driven en route resource 
allocation programs like the CTOP might affect the results of 
these programs. We gain some insight into how system-optimal 
program designs may not align the objectives of the ANSP and 
flight operators, and with constrained user input based resource 
allocation, these program designs may result in more 
inefficient outcomes than aimed for or anticipated. This paper 



 

addresses the topic by using classic traffic assignment concepts 
not generally applied to ATFM problems. 

III. MODEL FRAMEWORK 

A. Flight Cost Model 
We use a simple modeling framework to illustrate our flight 

cost model. Say two fixes in en route airspace are connected by 
a nominal route, designated as such because it is the lowest 
cost path between the two points. Flights enter the nominal 
route at entry fix “A” and leave at exit fix “B”. Under good 
conditions, all aircraft that are scheduled to use the nominal 
route can do so at their scheduled time without experiencing 
delay, meaning that the nominal route has sufficient capacity to 
serve the pre-constraint scheduled flight demand 𝐷! 𝑡 , in 
units of flights per hour. Suppose that a constraint develops 
along the nominal route, reducing its capacity such that the 
flight demand for this route cannot be accommodated without 
some queuing delay. The 𝑁 flights originally scheduled to use 
this route (at a demand rate 𝐷!) during the constrained period 
must either be rescheduled or re-routed to observe the reduced 
capacity. Flights are either given delayed departure times on 
the nominal route, or rerouted to one of 𝑅 − 1 alternate routes 
and possibly assigned a delayed departure time on that route. 
Each alternate route 𝑟 is characterized by its capacity and travel 
time. The nominal route is assumed to have the lowest travel 
time, and therefore the lowest cost of travel. We assume that 
fixes A and B are not bottlenecks, and for the purpose of this 
analysis they can be thought of as the flights’ origin and 
destination. Flight trajectories upstream of Fix A and 
downstream of Fix B are not considered in this analysis. 

Figure 1.  Model airspace geometry and select parameters 

This research focuses on evaluating the added costs 
associated with greater en route time and ground delay due to 
the en route constraint. The flight cost function, 𝑐!,!, represents 
the added cost of flight 𝑛 taking departure slot 𝑗 belonging to 
route 𝑟, due to constrained operating conditions. Over all the 
available routes 𝑟 = 1,2,… ,𝑅, there are a total of 𝐽 departure 
slots, where 𝑟(𝑗) indicates the route that slot 𝑗 belongs to. 𝑐!,! 
is a function of the additional travel time of route 𝑟 compared 
to the nominal route, time spent waiting on the ground for their 
assigned slot 𝑗 on route 𝑟, and other factors. We assume it is 
the sum of the above components, and quantified in units of 
ground delay minutes. 

𝑐!,! = 𝛼!𝜌!(!) + 𝑑! − 𝑔!,! + 𝜀!,! !  (1) 

Where: 

• 𝑐!,! represents the added cost of flight 𝑛 taking 
departure slot 𝑗 (which belongs  to route 𝑟); 

• 𝛼! is the ratio of flight 𝑛’s unit airborne time and 
ground delay costs; 

• 𝜌! !  is the additional en route time on route 𝑟 compared 
to the nominal route 𝜌! ! ≥ 0 ; 

• 𝑑! is the departure time on slot 𝑗 at fix A;   

• 𝑔!,! is flight 𝑛’s original pre-CTOP scheduled departure 
time at fix A, and  

• 𝜀!,! !  is an independently and identically distributed 
random term, assumed to be normally distributed such 
that 𝜀!,! ! ~𝑁 0,𝜎! . 

The random term 𝜀!,! !  is meant to capture flight 𝑛’s route 
(𝑟) and situation-specific cost factors that are not accounted for 
in the deterministic part of the model. It therefore represents 
the difference between the total cost 𝑐!,! and the deterministic 
cost. 𝜀!,! !  may be positive or negative; in the latter case it 
represents unknown cost-mitigating factors. 𝑐!,! accounts for 
direct costs including additional fuel, crew time, and equipment 
maintenance, and indirect costs such as passenger satisfaction, 
gate time, flight coordination, costs related to other airline 
internal business objectives, and others. We assume that there 
is no air holding, such that all anticipated delay is taken on the 
ground. 

The unit cost of airborne delay exceeds that of ground delay 
such that  𝛼! ≥ 1. If 𝛼! = 2, every one minute flight 𝑛 spends 
in the air is equivalent in cost to 𝑛 spending two minutes on the 
ground. 𝜌! !  is non-negative, assuming the nominal route has 
the shortest flying time. Ground delay, or 𝑑! − 𝑔!,! , is non-
negative as well because aircraft cannot depart before their 
original scheduled time.  

As noted above, the random term in (1) represents the part 
of airlines’ route-specific flight costs about which traffic 
managers have little to no information. The specification of the 
random term, and its role in the allocation process, are key 
determinants of the performance of each allocation scheme. As 
elaborated further below, in some schemes the preference 
inputs provided to the traffic manager includes the information 
contained in the random term, while in others it does not. 
Clearly this will determine whether the objective function used 
by the traffic manager fully reflects flight operator costs, or 
does so only partially. The assumption of iid normality for the 
random term is made primarily for modeling convenience. 
Although the (deterministic and stochastic) costs of flights 
operated by the same airline may be correlated, we assume 
here that intra-airline flight differences are so pronounced that 
this correlation can be ignored. 



 

B. System-Optimal Resource Allocation 
The resource allocation scheme presented here incorporates 

flight operators’ preference information in system-optimal 
allocations of reroutes and/or delayed departure times. It gives 
the operators flexibility in expressing their flights’ route 
cost/preference information to traffic managers. The allocation 
cost calculation is best shown graphically as done in Hoffman, 
Lewis, & Jakobovits [11]. An illustration is shown in Figure 2. 
Suppose a flight 𝑛 has three route options (𝑅 = 3), and the 
operator of flight 𝑛 submits their inputs about the available 
options to traffic managers. The information contained in these 
inputs may differ from one resource allocation scheme to 
another. The inputs are used to construct 𝛥!,!, which is the cost 
of flight 𝑛 traveling on route 𝑟 before the ground delay cost is 
added, measured in units of ground delay minutes. Thus, if 
𝛥!,! = 𝛥!,! + 𝑘, the operator of flight 𝑛 would be indifferent 
to having 𝑛 assigned to route 1 with no ground delay or route 2 
with a ground delay of 𝑘 minutes. 𝛥!,! values contain all the 
operators’ flight cost information available to the traffic 
managers; the traffic managers use this information to assign 
constrained resources to flights through the adopted allocation 
mechanism. The 𝛥!,!   values ensure that with any route and 
ground delay slot assigned to a flight, traffic managers have 
received some indication regarding the relative value of that 
route/slot combination to the flight operator. The total cost (as 
perceived by traffic managers) for flight 𝑛 on route 𝑟 is a 
function of the departure slot, and resulting ground delay, 
assigned to 𝑛 on 𝑟. Suppose that, based on flight availability, 
the ground delay flight 𝑛 must take is 𝑑! ! − 𝑔!,!  on route 1, 
𝑑! ! − 𝑔!,!  on route 2, and 𝑑! ! − 𝑔!,!  on route 3. The 

traffic managers would then determine that it would cost 
𝑐!,!(!), 𝑐!,!(!), and 𝑐!,!(!) for flight 𝑛 to take each of these 
routes. The resource that flight 𝑛 ultimately receives will 
depend on the mechanism used to assign resources to flights 
participating in the CTOP. 

Figure 2.  Illustrating the use of inputs Δ!,!  to determine flight costs. 

When the CTOP is announced, traffic managers provide all 
operators of impacted flights with information about the 
constrained airspace (start time, duration, location, etc.) and the 
reroute options available. Operators are then asked to submit 
the requested route preference inputs to traffic managers by 

some pre-specified deadline: the operator of flight 𝑛 submits 
𝛥!,! for each route 𝑟 available in the CTOP. Traffic managers 
allocate all resources simultaneously using the submitted 
information, with the objective of minimizing the total (known) 
operator cost of the program, without explicit consideration for 
equity between flights and/or operators. This allocation scheme 
does not have any mechanism to reward or penalize flight 
operators for submitting their inputs. Operators do not know 
which route and slot the traffic managers will assign their 
flight(s); although operators do know what routes are available, 
they have no information about the ground delay that will be 
assigned to their flight on a given route. We assume that each 
operator would calculate the additional cost of a flight 
reassignment option assuming the flight cost model of (1). In 
one version of the system-optimal models, the Full 
Information, System-Optimal (FISO), flight operators submit 
complete information about their flights; they submit 𝛥!,!∀𝑟 
which consist of the following parts of the flight cost model: 

𝛥!,! = 𝛼! ∙ 𝜌! + 𝜀!,! , 𝜀!,! ∼ 𝑁(0,𝜎!)  (2) 

Based on the illustration of Figure 2, flight 𝑛 could be 
assigned any one of the three routes. Traffic managers will 
identify the minimum cost assignment based on all 𝛥!,! 
submitted by all the flights for all routes, plus the ground delay 
associated with departure time slots. Due to the fact that the 
flight operators’ complete route preference information is 
available for decision making through the information they 
offer to traffic managers, the random term of the flight cost 
model (representing other proprietary airline route preferences 
not accounted for in the deterministic part of the cost function) 
is available to the resource allocation process, and is therefore 
included within the objective function that traffic managers 
optimize. FISO is highly idealized, in that flight operators may 
not necessarily know or be able to provide this highly detailed 
and specific information in a convenient or timely manner, 
particularly in the absence of incentives (resource or equity 
guarantees). However unrealistic it is, in principal the FISO 
model yields the most efficient system performance that can be 
achieved from any CTOP allocation scheme. FISO can be 
solved numerically as an assignment problem. 

In another version of the system-optimal models, or the 
Parametric System-Optimal (PASO) scheme, we envision that 
flight operators provide flight cost parameter inputs to a 
centrally-managed FAA database. Operators would be 
encouraged to update their parameters as necessary, and at any 
time. However, at the time a CTOP is announced, typically 
several hours prior to its actual start time [11], strategic 
resource allocation decisions must be made. The parameter 
values contained in the database at that time will be used to 
determine route and ground delay assignments for all impacted 
flights. If we assume that traffic managers have adopted the 
flight cost model of (1), the parameter requested of flight 
operators would be the air-to-ground cost ratio 𝛼. Therefore 
traffic managers do not receive complete information (as per 
(1)) about the operators’ flight costs in PASO, but rather, 
𝛥!,! = 𝛼!𝜌!. These inputs are used to perform a system-
optimal resource allocation, albeit one based on incomplete 
information because the random term is not included in the 



input (recall that in FISO, the private route preference 
information represented by the random term is provided 
through  𝛥!,!). 

PASO has two main features of interest. Firstly, the 
parametric input is very flexible in that it can be used to 
estimate the cost of any routing option. In FISO, 𝛥!,! are 
submitted specifically for the available route alternatives in a 
particular CTOP, because they contain the random term and 
therefore the additional information it contains about route 
preferences. The advantage of PASO is that even if a flight 
operator does not have complete information about all the 
routes available in CTOP, traffic managers can still use the 
operator’s parametric input to identify a desirable option that 
may not originally have been available or they might not have 
been aware was available. Secondly, in traffic management 
programs like the AFP and CTOP, decisions must be made 
quickly, and operators may not have the resources to provide 
highly detailed information about their flights (as represented 
by the random term) in a convenient or timely manner. By 
providing 𝛼 values to the database, operators are ensured that 
the ANSP has at least some generic information – not 
necessarily particular to a specific capacity constraint situation 
– about their flights and cost structure.  

If the random term in (1) and (2) has a small variance (i.e. 
𝜎! is small), the PASO resource allocation will be efficient, 
because the deterministic portion of the flight cost model is a 
good reflection of actual costs. If, however, the random term 
has a large variance, PASO resource allocations will be less 
efficient. We would like to ascertain how PASO performs as 
the variance of the random term – and hence the inability of the 
cost function to capture information about flight operators’ 
route preferences – increases. 

PASO is formulated as an assignment problem like FISO, 
but with the objective function consisting only of the 
deterministic part of the flight cost function. Both FISO and 
PASO, in addition to several other schemes that assign en route 
resources within the CTOP paradigm using different allocation 
rules, are further described and investigated in [18]. 

IV. IMPLICATIONS OF COMPETITIVE BEHAVIOR IN SYSTEM-
OPTIMAL RESOURCE ALLOCATION SCHEMES 

The commercial airline industry is a highly competitive 
environment, and flight operators are often competing for 
resources that are constrained due to weather and other 
operational limitations. Flight operators will do what they can 
to ensure they are treated equitably, and obtain the resources 
they require to best fulfill their business objectives. This has 
sometimes resulted in a lack of updated information provision 
to the ANSP, as well as gaming behaviors, which are both of 
concern with respect to the efficiency of collaborative ATFM 
programs [19]. As a result, we must understand how these 
types of behaviors might arise, and be encouraged, in particular 
designs of user input-driven resource allocation mechanisms 
where the objectives of the ANSP and the flight operators 
could be misaligned. We must also understand the resulting 
performance of each allocation mechanism with respect to 
efficiency and equity objectives. In this section we present an 
analysis of the potential implications of competitive behaviors 

within the system-optimal resource allocation schemes 
presented in Section 3.2. 

A. Original versus Revised Parameter Inputs 
In both system-optimal resource allocation schemes, traffic 

managers minimize the total flight costs that have been 
communicated to them by the flight operators. In a system-
optimal assignment, the resources allocated to flights typically 
vary in cost, such that some flights end up with more desirable 
resources than others. As a result, over time and many repeated 
manifestations of similar constraint situations and resource 
allocation outcomes, rational flight operators are likely to 
minimize the expected cost of their allocations through their 
preference communications. We anticipate that this behavior 
will be exhibited by all (rational) flight operators, and thus lead 
to equilibrium conditions where no flight can expect to lower 
their expected assignment cost by changing their strategy. 

According to the flight cost model and the resource allocation 
schemes presented previously, flight operators can exercise 
some control over their expected resource assignment costs 
through the information they provide to traffic managers. We 
want to know what flight operators might do when faced with 
this decision, and we start by exploiting the properties of a 
basic traffic assignment analysis [13]. We present a highly 
simplified setup where each flight in a set of 𝑁 flights must be 
assigned to one of two available routes (𝑅 = 2). Each route has 
slots spaced at identical headways (𝑔), and route 1’s en route 
time is greater than that of route 2 (such that 𝜌! > 𝜌!). All 𝑁 
flights have identical original scheduled departure times 
𝑔! ≈ 0 , air-to-ground cost ratios 𝛼 , and no additional 

unknown route preferences (such that 𝜀!,! = 0  ∀𝑛, 𝑟). The 
results of applying the PASO and FISO schemes are therefore 
identical; the system-optimal allocation will result in an 
assignment of 𝑋!∗ flights to route 1, and 𝑋!∗ = 𝑁 − 𝑋!∗ flights to 
route 2. Equation (3) gives us the values of 𝑋!∗ and 𝑋!∗: 

𝑋!∗ =
!⋅ !!!!! !!"

!!
;    𝑋!∗ = 𝑁 − 𝑋!∗ =

!⋅ !!!!! !!"
!!

 (3) 

where 𝛼 is the ratio of air-to-ground cost for all flights, and 
all other parameters are as described previously. 

Figure 3 is a graphical representation of the 𝑁 flights’ 
expected route assignment costs. The lightweight dotted lines 
represent the average cost that flights would expect to incur by 
being assigned to a route, as a function of 𝛼 and the total 
number of flights assigned to that route. Although in theory 
each flight is assigned to a distinct slot, after a flight is assigned 
to a given route, in this case slot assignments on that route are 
completely arbitrary. As a result, a flight can only know the 
expected cost of being assigned to a certain route as a function 
of the total flights assigned to that route and their original 𝛼 
value. Similarly, the light solid lines represent each route’s 
expected marginal cost curves with 𝛼. The system-optimal 
assignment with 𝛼 (3) is found from the point where the 
expected marginal cost curves of routes 1 and 2 are identical, 
represented by point A in Figure 3. Since 𝜌! > 𝜌!, it follows 
that 𝑋!∗ < 𝑋!∗. 

 



 

Figure 3.  Original versus revised system-optimal solutions 

Also, if one draws a vertical line at point A, one can 
observe that the expected cost of being on route 1 (point A.1 in 
the figure) is higher than the expected cost of being on route 2 
at the system-optimal assignment (A.2). As a result, flight 
operators will want to maximize the probability of being 
assigned to route 2 instead of route 1 using whatever strategic 
handle is available to them, which in this case are the air-to-
ground cost ratios they submit to traffic managers. If a flight 
operator should submit an air-to-ground cost ratio value 
reflecting the original, non-competitive situation 𝛼 , the 
probability of their flight being assigned to the lower cost route 
(route 2) is 𝑋!∗/𝑁. Instead, imagine they submit a revised cost 
ratio 𝛼! > 𝛼, because it is inherently more beneficial for them 
to be on the lower cost route (route 2) rather than route 1. By 
submitting 𝛼!, their flight will be assigned to route 2 with 
probability 1 if all others were to submit as if they were not in 
this competitive situation. However, it is unlikely that a 
submission scenario like this would occur: all flight operators 
are aware of the capacity constraint, and all would benefit from 
having their flight assigned to the second route. The question 
is, is there a unique air-to-ground cost ratio that is eventually 
submitted by flight operators in order to maximize their 
probability of assignment to route 2, and what is its value at 
equilibrium? 

Given that all flights are identical and their operators aim to 
minimize their expected costs, we imagine that this goal is 
reflected in their submitted cost ratio values, which in turn will 
push the assignment towards a user equilibrium (UE) based on 
their original, non-competitive cost ratios 𝛼. At this UE 
assignment with 𝛼, the original expected cost of a flight being 
assigned to either route are equal, or 𝐸 𝑐! = 𝐸 𝑐! . At this 
assignment, flights have no incentive to change their inputs as 
they cannot lower their original expected assignment costs by 
doing so. The expected cost at the user equilibrium is 
represented by the following expression:  

𝐸 𝑐! = 𝐸[𝑐!]   ⇒ 𝛼𝜌! + 0.5𝑔𝑋!∗∗ = 𝛼𝜌! + 0.5𝑔𝑋!∗∗ (4) 

𝑋!∗∗ and 𝑋!∗∗ are the user equilibrium flight assignments to 
routes 1 and 2, respectively, with 𝛼 (Point B in Figure 3). We 
can imagine that over many repeated occurrences of this 
CTOP, flights will submit 𝛼! values that yield a system-optimal 
assignment with 𝑋!∗∗ and 𝑋!∗∗ – the assignment at the non-
competitive (with 𝛼) user equilibrium of (4). This system-
optimal assignment is found when: 

𝐸 𝑀𝐶!! = 𝐸 𝑀𝐶!! ⇒   𝛼!𝜌! + 𝑔𝑋!∗∗ = α!𝜌! + 𝑔𝑋!∗∗ (5) 

The value of 𝛼! can be determined by drawing a vertical 
line through point B, and then finding the point along this 
vertical line where the marginal cost curves of (5) intersect. It 
is identified as point C in Figure 3. We can now find an 
expression for 𝛼!, the revised (due to competition) air-to-
ground cost ratio submitted by flights to obtain the original 
user equilibrium solution, by solving (4) and (5): 

𝛼! = 2𝛼  (6) 

The equilibrium (where all flights have identical expected 
assignment costs) is reached when all flights submit 𝛼! that is 
twice that of their original non-competitive cost ratio 𝛼. Given 
the assumption that all flight operators are rational – they make 
choices to minimize their expected costs – we see that under a 
system-optimal allocation scheme, flights will need to adjust 
their inputs to reflect the competitive nature of the allocation in 
their flight cost structures. The revised inputs submitted to 
traffic managers are twice the original values in cases with two 
and three routes. The calculation is contained in the Appendix. 

In the classic traffic assignment literature, travel time 
perception errors are accounted for in a stochastic formulation 
of the above. Each route (or link) has an actual cost of travel, 
but drivers may perceive this actual cost erroneously. Their 
choices may be affected by this error, which is represented by a 
random term 𝜀. Therefore, at the SUE, no driver can reduce his 
perceived travel time by changing routes. All route choice 
decisions are made based on this “erroneous” perception of 
link cost. In our flight cost model, the random term does not 
represent perception error but rather, the airlines’ true 
preferences for routes. As a result, at the user equilibrium, no 
flight operator can reduce his true travel cost by changing 
routes. If we assume that the random term is Gumbel 
distributed with scale parameter  𝜈, the expression for 𝛼! – the 
revised competitive air-to-ground cost ratio submitted by 
flights to obtain a non-competitive user equilibrium – becomes: 

𝑒𝑥𝑝 !
!!

2𝛼! − 𝛼! 𝜌! − 𝜌! = !!!!!! !!!!!
!!!!!! !!!!!

 (7) 

When 𝛼 = 2, preliminary numerical investigations show 
that as 𝜈 → 0,𝛼′ → 4. As 𝜈 grows larger, 𝛼! is asymptotic to a 
value that can be smaller or larger than 𝛼!→!! . In fact, in some 
cases, as 𝜈 grows large, 𝛼! < 𝛼. The behavior of 𝛼! is to be 
further investigated in future work. A closed form solution like 
(7) cannot be obtained for a normally distributed random term; 
in the following section, to find the total cost solutions for both 
FISO under a non-competitive user equilibrium, we use the 
method of successive averages.  



 

This simple analysis suggests that traffic managers may not 
be able to sustain a system-optimal allocation when aiming for 
one based on inputs that reflect a non-competitive situation; 
rather, flight operators will create a user equilibrium by virtue 
of the fact that they are trying to operate their flights in a 
competitive situation. A similar result may be true in the case 
of heterogeneous flights. It has been shown in past research 
that unique user equilibriums do exist under certain conditions 
for heterogeneous commuters in both network and single 
bottleneck models [20] [12] [14]. However, there may be 
instabilities due to other gaming behaviors and flight 
characteristics, and further analysis must be pursued in future 
research. 

B. Comparison to other Resource Allocation Algorithms 
In [18], numerical examples are used to illustrate and 

compare the total cost results of several different possible 
resource allocation schemes within a highly idealized CTOP 
framework, where preference inputs are incorporated into the 
resource allocation decision process. In particular, the results of 
the system-optimal schemes are compared against the First-
Submitted, First-Assigned (FSFA) algorithm. In FSFA, we 
assume that a flight is assigned the best resource available at 
the time of their input submission, which would consist of (2) 
like FISO. Therefore, we conjecture that flight operators have 
no incentive to submit inputs that are implicitly competitive in 
value, as the competition for resources is embodied in the 
submission time rather than the submission itself. We also 
assume that this submission order is random and independent 
of other flight and flight operator characteristics (this 
assumption was further explored in [18] under a game theoretic 
setup). The total cost results of all allocation schemes are 
represented as a ratio of the FISO results; FISO always yields 
the most efficient solution in any situation and therefore can be 
used as a benchmark. However, given that FISO may not be 
achievable and rather, the user equilibrium equivalent is more 
likely, we investigate how it compares against FSFA. 

We consider an application of the FISO scheme that results 
in a non-competitive user equilibrium and corresponding 
revised competitive system-optimum, in a highly simplified 
illustrative example. Suppose 50 flights are to be reassigned 
routes and departure times due to an en route constraint. The 
nominal route remains open, but at a greatly reduced capacity. 
In this illustration, the CTOP will have a total of four route 
options, one of which includes the nominal route under a 
decreased capacity (route 4). For routes 𝑟 = 1,… ,4, the 
constant departure headways (𝑔, minutes) at Fix A and 
additional en route time (𝜌, in minutes) are 𝑔, 𝜌 ! =
{ 3,30 !, 6,20 !, 5,15 !, 8,0 !}. 

Now we introduce the flight demand characteristics. We 
continue with the assumption that all flights are identical in 
their air-to-ground cost ratios, such that 𝛼! = 𝛼  ∀𝑛. We use a 
value of 2 for this ratio, as it has been cited in the literature that 
one unit of en route delay is equal in cost to roughly two units 
of ground delay [5]. We retain the assumption that the 𝛥!,! 
submission order in FSFA is random and independent. 

Figure 4 presents the results. The x-axis represents 
increasing values of the standard deviation of the random term 
in the flight cost model. Specifically, each point on the x-axis 

represents the value of 𝜎 as a proportion of the average flight 
cost in FISO under perfect information conditions, 𝑐!"#$. For 
instance, the point “0.10” means that 𝜎 is 10% of 𝑐!"#$. The y-
axis represents the total cost result of each scheme’s results as a 
ratio of the full information system-optimal (FISO) total cost, 
or 𝑦 = 𝐶!/𝐶!"#$ = 𝐶!!;   𝑠 ∈ {FSFA,  FISOSUE}. We compare the 
performances of FSFA and FISOSUE against the non-
competitive system-optimal FISO solution (𝐶!"#$) because it 
represents the most efficient solution possible in any situation. 
Each point represents 500 simulation runs of FISO and FSFA 
and 30 of the FISOSUE results (which were obtained using the 
method of successive averages).  

Figure 4.  Example total cost results 

As all flights are homogeneous in their deterministic costs 
(i.e. 𝛼! = 𝛼  ∀𝑛), when 𝜎 = 0, FSFA=FISO. The main feature 
of Figure 4 is the fact that the FISOSUE solutions are inferior to 
FSFA for all values of 𝜎 shown. If application of FISO in fact 
yields a non-competitive user equilibrium while appearing to 
be system-optimum with the submitted values, FISO is always 
more inefficient than FSFA, in the example of Figure 4. 

V. CONCLUDING REMARKS 
The purpose of this paper is to gain some insight into how 

system-optimal goals in collaborative, user input-driven en 
route resource allocation programs like the CTOP may not 
align the objectives of the ANSP and flight operators, and 
therefore may result in more inefficient outcomes than aimed 
for or anticipated. We have used simple, classic traffic 
assignment principles to illustrate that if flight operators are 
able to provide preference inputs that are used directly in a 
system-optimal resource allocation, they will communicate 
their desire to minimize their own travel costs much like 
drivers on a roadway. Analogously, a system-optimal solution 
may not be achievable and in fact the solution may be closer to 
a user equilibrium. We show that in a simple two-route case 
with homogeneous flight costs, a user equilibrium is achieved 
when operators submit revised flight cost parameters (air-to-
ground ratios) that are twice the value of their cost parameters 
in the originally non-competitive situation. This finding has 
two major implications. Firstly, in ATFM programs such as 
CTOP where user preferences are considered, system-optimal 
solutions may be an unrealistic goal that cannot be attained due 
to competition for constrained resources. Secondly, resource 
allocation schemes like First-Submitted, First-Assigned 



(FSFA) that aim to provide greater equity by sacrificing 
efficiency may not be as inefficient as they first appear, when 
compared against schemes that aim to provide system-
optimality. The results of this paper are a step towards better 
understanding the implications of information exchange 
between flight operators and an ANSP. There are many ways 
to extend our analyses of operator/ANSP interactions in user 
input-based system-optimal resource allocation schemes. It 
would be beneficial to consider heterogeneity in the parameters 
of the flight cost model 𝛼, 𝜀!  in the competitive analysis of 
the FISO and PASO inputs schemes; the results of [12] and 
[14] would help in doing so. Also we can assess other 
allocation schemes [18] against a user equilibrium solution to 
the FISO allocation scheme. 
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APPENDIX 
The total cost of a system-optimal allocation in a 3-route 

case with competitive air-to-ground cost ratio 𝛼! is: 

𝐶 = 𝛼! 𝑋!𝜌! + 𝑋!𝜌! + 𝑋!𝜌! + 0.5𝑔 𝑋!! + 𝑋!! + 𝑋!!  

where 𝑋! = 𝑁 − 𝑋! − 𝑋!. 
!"
!!!

= 𝛼! ⋅ 𝜌! − 𝜌! + 2𝑔𝑋! + 𝑔𝑋! − 𝑔𝑁 = 0  
!"
!!!

= 𝛼! ⋅ 𝜌! − 𝜌! + 𝑔𝑋! + 2𝑔𝑋! − 𝑔𝑁 = 0  

We solve the above to find:  

𝑋! =
!
!
+ !!

!!
⋅ 𝜌! + 𝜌! − 2𝜌!   

𝑋! =
!
!
+ !!

!!
⋅ 𝜌! − 2𝜌! + 𝜌!     

𝑋! =
!
!
+ !!

!!
⋅ −2𝜌! + 𝜌! + 𝜌!   

The expected cost of flying any route is equal at the non-
competitive UE with 𝛼. The following must be satisfied: 

𝐸 𝑐! = 𝐸 𝑐! = 𝐸 𝑐! ⟹ 𝛼𝜌! +
!!!
!
= 𝛼𝜌! +

!!!
!
=

𝛼𝜌! +
!!!
!

   

And we find that at UE: 𝑋! =
!!⋅ !!!!!!!!! !!"

!!
  

We solve the two expressions for 𝑋! shown above and find 
that 𝛼! = 2𝛼, which is identical to the two-route case.  □ 

In a two-route case with slots spaced at 𝑔! and 𝑔! on routes 
1 and 2 respectively: 

𝑋! =
!!!!!!⋅ !!!!!

!!!!!
  

Say 𝜀~Gumbel   𝑎, 𝜈 , 𝜈 > 0; the probability of traffic 
managers assigning a flight to route 1 when they have 
incomplete information about flights (i.e. do not have 𝜀) is 

𝑃! =
!!
!
= 1 + 𝑒𝑥𝑝 ! !! !! !!

!

!!
  

It follows that 

𝑒𝑥𝑝 ! !! !! !!
!

= !
!!
= !!!!!!⋅(!!!!!)

!!!!!!⋅ !!!!!
  and 

𝑒𝑥𝑝 ! !! !! !!
!

= 𝑒𝑥𝑝 !
!!

2𝛼 − 𝛼! 𝜌! − 𝜌!   

Such that 𝑒𝑥𝑝 !
!!

2𝛼 − 𝛼! 𝜌! − 𝜌! = !!!!!!⋅ !!!!!
!!!!!!⋅ !!!!!

 □

 


