
Supporting Information
Low-Cost and High-Speed Fabrication of Camouflage-Enabling Microfluidic

Devices using Ultra High Molecular Weight Polyethylene

Xiaoruo Sun1, Asad Asad1*, Mehnab Ali1, Luka Morita1, Patricia I. Dolez2, James D. Hogan1, Dan
Sameoto1*

1 Department of Mechanical Engineering, University of Alberta, Edmonton, Canada

2 Department of Human Ecology, University of Alberta, Edmonton, Canada

* Corresponding authors: Dan Sameoto (sameoto@ualberta.ca) & Asad Asad (aaasad@uaberta.ca)

Keywords: Microfluidic devices, Adaptive visible camouflage, Adaptive Infrared camouflage,
Polyethylene, Flexible microfluidic devices.

mailto:sameoto@ualberta.ca
mailto:aaasad@uaberta.ca

Table S1. Summarizes the cutting settings of the Silhouette Cameo 4 craft cutter software for different
channel configurations. These settings include blade number, force, speed, and pass. The blade determines
the depth of the blade's cut, ranging from 1-10, with 10 being the deepest. The force setting controls the
amount of pressure the blade applies vertically, while the speed setting controls how quickly the machine
operates. The pass setting represents the number of times the machine cuts the pattern.

W1, W2, and W3

Channel
H2 and H3

Channel
Channel with Metal layer

Blade Number 3 9 3
Force 20 30 20
Speed 4 4 4
Passes 1 1 1

Figure S1. (a) early attempts at bonding UHMWPE without polyester resulted in buckling and wrinkling
of the sheet, which often led to damage or blockage of the microfluidic channel. Furthermore, the early
macro-to-micro interface tubing technique depicted in (a) and (b) was complex and unreliable, frequently
resulting in permanent sealing of the inlet and outlet or significant leakage. However, significant progress
has been made in the design of the interface, as demonstrated in (c). The current design features a robust
PE tube thermally bonded to the UHMWPE microfluidic device with no leakage, thanks to the use of a
polyester sheet that distributes force and eliminates buckling and wrinkling during the bonding process.
This significant improvement in the design of the microfluidic device underscores the importance of
continued optimization and refinement of fabrication processes in order to achieve reliable and durable
microfluidic devices for a wide range of applications.

(a) (b) (c)

Figure S2. Shows a microfluidic device microfluidic device with an incorporated metalized sheet

Figure S3. demonstrates the results of different surface treatment temperatures by heat-pressing a 100 μm
UHMWPE sheet on a smooth surface such as Kapton tape or polyester sheet. The treatment reduces surface
roughness and eliminates internal gaps in the UHMWPE. The treated and untreated UHMWPE sheets are
then bonded using an impulse sealer, with the upper piece being the treated sheet and the lower piece being
the original untreated sheet. The specimens were labeled with temperatures of 360℉ and 400℉. The results
show that there is no significant difference in transparency between the treated sheets at these two
temperatures. However, there is a significant difference in transparency between the treated and untreated
sheets. When placed directly on the University of Alberta logo, both the treated and untreated UHMWPE
sheets allow the logo to be seen through them (as demonstrated in (a), (b), and (c)). However, when placed
roughly 100 mm vertically away from the logo, the treated UHMWPE sheets still allow the logo to be
visible (as shown in (d) and (e)), while the untreated UHMWPE sheet becomes opaque and the logo is no
longer visible (as shown in (f)).

(a) (b) (c)

(d) (e) (f)

Figure S4. demonstrates the transparency comparison between treated and untreated UHMWPE sheets,
confirming that the treated sheet has higher transparency. Panels (a) and (c) show the far building through
the treated sheet, while panels (b) and (d) focus on the sheet itself. The untreated sheet is opaque, while the
scenes outside the University of Alberta window are visible only through the treated UHMWPE sheet.

(a) (b)

(c) (d)

Figure S5. Shows the Canny edge-finding algorithm analysis results for the brick and leaf backgrounds.
The results for these two backgrounds were not significant since the canny edge finding algorithm was only
suitable for some certain environments. With these two backgrounds, only the major edges were detected,
the microfluidic device demonstrated no major improvements in terms of edge hiding. However, this result
still demonstrated the microfluidic device cannot be detect by edge finding algorithm since the filled and
unfilled device has very similar results, there is no detected edges within both the filled and unfilled device
areas.

Figure S6. Shows the raw images directly captured from the FLIR IR camera, the first row is the W3, the
second row is W2, and the third row is W1 configuration. The first column is the unfilled channels, the
second and third columns are the images with the measured data, and the fourth column is the filled channel
IR appearance. The temperature bar is configured as 25-50℃ to present better contrast.

Figure S7. Shows the detailed RGB value in the third column.

Code for canny edge finding:

% Read an image and convert it to grayscale
img = imread('green0.png');
gray = rgb2gray(img);

% Apply a Gaussian filter to the image
gauss = imgaussfilt(gray, 3);

% Compute the gradient magnitude and direction using Sobel operators
[Gx, Gy] = imgradientxy(gauss);

% Compute the gradient magnitude and direction
gradient = sqrt(Gx.^2 + Gy.^2);
direction = atan2(Gy, Gx);

% Non-maximum suppression
suppressed = nlfilter(gradient, [3 3], @(x) max(x(:)));

% Double thresholding
high_threshold = 0.25 * max(suppressed(:));
low_threshold = 0.05 * high_threshold;
potential_edges = zeros(size(gradient));
potential_edges(suppressed > high_threshold) = 1;

% Edge tracking by hysteresis
final_edges = zeros(size(gradient));
while any(potential_edges(:))
 [r, c] = find(potential_edges, 1);
 final_edges(r, c) = 1;
 potential_edges(r, c) = 0;
 for rr = -1:1
 for cc = -1:1
 if r+rr > 0 && r+rr <= size(gradient, 1) && c+cc > 0 && c+cc <=
size(gradient, 2) && final_edges(r+rr, c+cc) ~= 1 && suppressed(r+rr, c+cc) >
low_threshold
 final_edges(r+rr, c+cc) = 1;
 potential_edges(r+rr, c+cc) = 0;
 end
 end
 end
end

% Show the edges
figure;
imshow(final_edges);

Code for color matching:
clc;
clear;
% Read in the image file
img = imread('red0.png');

% Define the size and location of the two regions
size_region = [100,100];
location1 = [580,330];
location2 = [580,510];

% Crop the regions from the image
region1 = img(location1(1):location1(1)+size_region(1)-1,
location1(2):location1(2)+size_region(2)-1, :);
region2 = img(location2(1):location2(1)+size_region(1)-1,
location2(2):location2(2)+size_region(2)-1, :);

% Calculate the mean color difference between the two regions
%diffR = mean((mean(region1(:,:,1)) - mean(region2(:,:,1)))*10/255);
%diffG = mean((mean(region1(:,:,2)) - mean(region2(:,:,2)))*10/255);
%diffB = mean((mean(region1(:,:,3)) - mean(region2(:,:,3)))*10/255);
%diff = (abs(diffR) + abs(diffG) + abs(diffB))/3;
% Plot the image
imshow(img);
hold on;

% Plot the first region
rectangle('Position', [location1(2), location1(1), size_region(2), size_region(1)],
'EdgeColor', 'r','LineWidth', 10);
%text(location1(2)+size_region(2)/2, location1(1)+size_region(1)/2, 'Region 1',
'Color',
'white','HorizontalAlignment','center','VerticalAlignment','middle','fontsize',14,'fo
ntweight','bold');

% Plot the second region
rectangle('Position', [location2(2), location2(1), size_region(2), size_region(1)],
'EdgeColor', 'g','LineWidth', 10);
%text(location2(2)+size_region(2)/2, location2(1)+size_region(1)/2, 'Region 2',
'Color',
'white','HorizontalAlignment','center','VerticalAlignment','middle','fontsize',14,'fo
ntweight','bold');

% Print the color difference value
region1R = mean((mean(region1(:,:,1))));
region1G = mean((mean(region1(:,:,2))));
region1B = mean((mean(region1(:,:,3))));
region2R = mean((mean(region2(:,:,1))));
region2G = mean((mean(region2(:,:,2))));
region2B = mean((mean(region2(:,:,3))));
disp(region1R);
disp(region1G);
disp(region1B);
disp(region2R);
disp(region2G);
disp(region2B);

