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Abstract

In data-driven modelling, model accuracy relies heavily on the data set collected from tar-

get process. However, various types of measurement noise exist extensively in industrial

processes and the data obtained are usually contaminated. If the influence of measurement

noise is neglected, both the quality of models trained from data and performance of further

operations, such as control and optimization of objective variables, will be affected signif-

icantly. A good output noise model is essential in data-driven modelling if one wishes to

attain a process model with satisfactory performance.

Instead of the regular Gaussian distribution assumption for the noise, a novel type of

the noise distribution is proposed and corresponding solutions to the process identification

problems are established accordingly in this thesis. Specifically, a flat-topped Gaussian

distribution, which combines the Gaussian and uniform distribution, is formulated to model

a class of disturbances that often occur in practice. Moment fitting strategy is proposed as

a general approach to approximating the distribution function of summed random variables

with different distributions. The Flat-topped Gaussian distribution is then applied for

identification of linear processes.

As for more complicated nonlinear models, Flat-topped Gaussian distribution is consid-

ered for Gaussian Process modelling. Gibbs Sampling is incorporated and combined with

the posterior distribution obtained from Gaussian Process in order to reconstruct the origi-

nal output. Mixture Gaussian approximation is also used as an alternative of approximating

the Flat-topped Gaussian distribution.

The proposed algorithms are validated by numerical simulations and industrial applica-

tions. Soft sensors for estimation of emulsion flow rate in Steam Assisted Gravity Drainage

(SAGD) process based on data-driven modelling are developed and relevant practical issues

are discussed.
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Chapter 1

Introduction

1.1 Motivation

Data-driven modelling approach has enjoyed a vigorous development in recent years as the

statistical modelling and machine learning methods advance. Commonly in this procedure,

the measured data are contaminated by measurement noises of various kinds. To formulate

the data-driven modelling problem from statistical perspective, it is necessary to acquire

the noise distribution a priori.

It is essential to obtain a good measurement noise distribution model in order to improve

the accuracy of data-driven modelling. The most widely used noise assumption is white

Gaussian noise which yields Ordinary Least Square based methods. However, when the

regular Gaussian noise assumption mismatches with true measurement noise, it can be

anticipated that model identified accordingly will deviate from the real one and prediction

performance based on the inaccurate model will also be poor. In this case, other more

appropriate distributions, such as Student-t distribution, Mixture Gaussian distribution and

Mixture t distribution, are incorporated as noise distributions to deal with more complicated

measurement noise issues such as outliers and/or multi-modal behaviours [1, 2, 3].

Uniformly distributed noise, as a certain type of uncertainty, exists extensively in d-

ifferent measurement approaches. For instance, measurements obtained from lab analysis

usually possess an error interval indicating its reliability. Due to the randomness in instru-

mentation and operations, it is not necessary to assign the highest weight of trust to the

measured value as the Gaussian noise assumption does. Instead, all the values within the

error interval are considered to be equally probable which actually corresponds to a uniform

noise assumption. Quantization error, which is caused by the analog-to-digital conversion,

is another example of the existence of uniform uncertainty. Unlike other noise distribu-

tions from the exponential family, uniform noise is simple in expression but will result in a
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truncated likelihood function that is difficult to handle in mathematics. Therefore, the for-

mulation of noise distribution and corresponding identification algorithm deserves a special

consideration in presence of uniform noise.

This work focuses on dealing with uniformly distributed noise combined with the tra-

ditional Gaussian noise, known as Flat-topped Gaussian distribution. For a parametric

model, a novel type of flat-topped distributions is proposed as an alternative to regular

Gaussian noise. For nonlinear Gaussian Process model with Flat-topped Gaussian noise,

an iterative de-noising algorithm is developed based on Gibbs Sampling method. In addi-

tion, the proposed algorithms are validated in soft sensor development for emulsion flow

estimation in SAGD process.

1.2 Thesis Contributions

This thesis contributes mainly on the identification of processes with Flat-topped Gaussian

distributed noises. Under different assumptions of model structure, corresponding solutions

are proposed to improve identification performance. Detailed contributions of this work are

listed as follows:

1. Established the Flat-topped Gaussian distribution, which is an approximation of the

distribution function of the summation of a uniform and a Gaussian distributed ran-

dom variable, as an alternative to Gaussian distribution for process identification.

Derived its functional structure and parameter estimation.

2. Proposed moment fitting strategy for the approximation of flat-topped distributions.

This strategy is capable of approximating the combinations of random variables with

arbitrary distributions.

3. Developed an iterative data de-noising algorithm for Gaussian Process models with

Flat-topped Gaussian noise based on Gibbs Sampling method and Mixture Gaussian

approximation.

4. Designed a soft sensor for emulsion flow estimation in SAGD process. An extra

robust layer and bias correction with data reconciliation were included for better on-

line implementation. Evaluated the integrated sensor performance on industrial data

sets obtained from real SAGD process.

2



1.3 Thesis Outline

Figure 1.1: Layout of Problems and Proposed Solutions

Fig 1.1 outlines the problems and corresponding solutions of the thesis. Contributions of

this work will be presented in three chapters and the layout of this thesis is as follows:

Chapter 2 proposes a novel type of flat-topped distributions to model a class of mea-

surement noises. To analytically approximate noise distribution function, moment fitting

strategy is established in order to be applied to approximate the distribution function of

summed random variables.

In Chapter 3, similar output noise model under Gaussian Process framework is consid-

ered. In order to achieve a more accurate hyperparameter estimation and better prediction

performance accordingly, Gibbs Sampling approach is incorporated to reconstruct the orig-

inal measurements from contaminated ones.

Chapter 4 presents a procedure of industrial soft sensor development for emulsion flow in

SAGD process. In off-line modelling part, efficiency of proposed Flat-topped Gaussian dis-

tribution and Gaussian Process approach is tested. Several issues in on-line implementation

are discussed.

Chapter 5 draws a conclusion of the thesis.

3



Chapter 2

Linear Model Identification with

Flat-topped Gaussian Uncertainty

In this chapter, a novel category of flat-topped distributions is proposed as a noise distribu-

tion in process identification as an alternative to Gaussian noise distribution. To begin with,

Flat-topped Gaussian distribution which is capable of handling convoluted Gaussian and

uniform noise in measurements is introduced and investigated. Moment fitting strategy, as

a by-product, is formulated for estimating parameters in Flat-topped Gaussian distribution

functions. Afterwards the Flat-topped t distribution is proposed by analogy. In addition

to handling uniform noise, algorithm robustness is enhanced by incorporating t distribu-

tion. Two numerical examples are presented to demonstrate the feasibility of the proposed

moment fitting strategy in estimating parameters of Flat-topped Gaussian distributions.

Furthermore,a numerical example is studied to demonstrate the advantage of Flat-topped

Gaussian distribution as noise assumption in identification of linear processes in presence

of additional uniform measurement uncertainty such as quantization error.

2.1 Introduction

Measurement uncertainty is common in industrial practice. In reality, uncertainty is origi-

nated from different sources and varies in characteristics. In data-driven system identifica-

tion, it is necessary to reduce measurement uncertainty in order to achieve good identifica-

tion results and a specified noise assumption is required in identification algorithms. Two

types of possible uncertainty and corresponding regression results are illustrated in Fig 2.1.

The measurement uncertainty is mostly assumed to be normally distributed with its mode

at the measured value as shown in Fig 2.1(a); nevertheless, when it comes to the situation

where the measurement is inaccurate or less trustworthy, it is not necessary to assign the

4





J(θ) =

n∑

i=1

(yi − xiθ)2 (2.3)

The well-known explicit form of optimal solution is shown in Eqn 2.4:

θ̂ =
(
XTX

)−1
XTY (2.4)

Other identification algorithms of Least Square kin evolve by incorporation of different

techniques. Weighted Least Square method is developed for varying variance of noise in

which the homoskedasticity no longer holds [5]. Ridge regression can be applied to deal with

the case that input data matrix is ill-conditioned or nonorthogonal [6]. For identification

problem with constraints, Lagrange Multiplier is adopted to formulate objective function

[7]. By employing multivariate statistics, Principle Component Regression (PCR) [8] and

Partial Least Square (PLS) [9] methods are developed for dimension reduction when the

number of input variables is large. Recently PCR and PLS are extensively adopted in soft

sensor development which considerably facilitates the prediction and control of important

process variables [10, 11, 12, 13]. To summarize, by different definitions of prediction error

and assignment of corresponding penalty, the loss function approach is an intuitive way to

attain the estimation of model parameters. However, Least Square based methods are all

aimed at solving the normally distributed uncertainty problem since the loss function always

reaches its minimum at zero prediction error hence the tight tracking of measurements is

preferred.

However, in practice, there exist noise distributions that are different from the normal

distribution. As an example of uniformly distributed uncertainty, quantization procedure,

which maps a continuous measurement into a smaller discrete-value set [14], exists widely in

industrial practice due to essential digitalization of control and measurement signals. Intu-

itively, aforementioned quantization procedure will introduce error to the quantized output

in addition to measurement noise brought by instrumentation. It has been established in

[15] that quantization error can be modelled as an additive noise to the continuous signal.

Furthermore, it is zero-mean and uniformly distributed under ideal A/D converter circum-

stance. A comparison of continuous signal and its quantized result by an ideal mid-riser

A/D converter is presented in Fig 2.2.

Accordingly, Fig 2.3 describes a typical measurement and quantization procedure. Ana-

logue instrument is adopted to measure the objective variable and results in additional white

Gaussian measurement noise. Quantization is conducted successively and based on the ad-

6
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Figure 2.2: Continuous and Quantized Signals

ditive and uniform error property mentioned above, independent uniform quantization error

is added to the original measurement.

Figure 2.3: Process Diagram with Instrumentation Noise and Quantization Error

Hence entire output noise model can be formulated in Eqn 2.5. Fig 2.4 show histograms

of simulated quantization error and summation of quantization error and white Gaussian

noise.

ymeasure = f(x; θ) + v1 + v2 (2.5)

where v1 ∼ N(0, σ2) is white Gaussian noise and v2 ∼ U [−∆
2 ,

∆
2 ] is uniform quantization

error.

In order to handle uniform uncertainty, various methods have been developed previously.

In presence of bounded error, Support Vector Regression (SVR) [16, 17], Least Square SVR

(LSSVR) [18] and related machine learning methods have been developed and applied.

Similar to Least Square and other loss function methods, conceptually the objective of SVR

is to minimize prediction error. However any error within the range [−ε, ε] is neglected

7



(a) Quantization (b) Quantization Error and White Noise

Figure 2.4: Quantization Error vs Summation of Quantization Error and White Noise

and exempt from penalty. Advanced “kernel trick” [19] allows aforementioned PCA, PLS

and SVM algorithms to be extended to nonlinear functional spaces. On the other hand,

from noise distribution aspect, Wübbeler, Krystek and Elster proposes a numerical way of

calculating the Probability Density Function (PDF) of uniform uncertainty by Monte Carlo

method [20]. As an extension, this study mathematically extends the calculation of PDF

and focuses on the development of analytical approximation of the noise distribution and

its parameter estimation with uniform component. A flat-topped Gaussian distribution is

proposed and utilized to facilitate the identification of process with uniform measurement

uncertainty in this work.

The rest of this chapter is organized as follow. A revisit on existing noise distributions

and Flat Gaussian profile is given in Section 2.2. Section 2.3 discusses the formulation of

Flat-topped Gaussian distribution and its parameter estimation, in which moment fitting

is proposed as a general strategy for density function approximation. As a robust extension

of the proposed Flat-topped Gaussian distribution, Section 2.4 introduces some findings on

Flat-topped t distribution. Moreover, considering practical issues, Section 2.5 introduces

an iterative procedure to isolate uniform error and estimate the variance of Gaussian noise.

To manifest the efficiency of proposed distribution in identification of linear processes,

numerical examples are presented in Section 2.6. Key findings and of this chapter and

potential future works are summarized in Section 2.7.

2.2 Revisit of Noise Distributions & Flat Gaussian Profile

2.2.1 Noise Distributions

From probability distribution point of view, measurement uncertainty is considered as an

contaminating random variable added to the deterministic process output. With certain
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noise distribution, objective functions and corresponding optimization problems for param-

eter estimation are formulated under Maximum Likelihood framework [21, 22]. Therefore,

adoption of different noise distributions will lead to different objective functions and change

the performance of identification algorithms. Hence intermediate objective of identification

procedure is to specify the noise distribution and obtain corresponding Maximum Likeli-

hood Estimation (MLE) in order to eliminate the influence of measurement noise on “true”

output statistically.

Under noise contamination assumption, model structure is defined as Eqn 2.6:

ymeasure = f(x; θ) + v (2.6)

where ymeasure is measured output and f(x; θ) is deterministic process output. In identifi-

cation procedure, x is defined as regressor and θ is model parameter to be identified. v is

the additional noise term with unspecified distribution.

The objective function of the parameter estimation problem is the likelihood function

of output Y given input X and parameters θ. Assume noise distribution PV (v) is known

and independent at each sample point, the likelihood function can be expressed as:

 L(θ) = P (Y |X, θ) =
n∏

i=1

P (yi|xi, θ)

=
n∏

i=1

PV (yi − f(xi; θ))

(2.7)

For instance, white Gaussian noise is the most widely used assumption that yields an

objective function similar to the aforementioned Ordinary Least Square solution. Following

derivation illustrates the equivalence of the MLE estimation under white Gaussian noise

assumption with variance σ2 and OLS solution of model parameters.

PV (v) =
1√
2πσ

exp(− v2

2σ2
)

θ̂ = arg max
θ

[L(θ)]

= arg max
θ

n∏

i=1

PV (yi − f(xi; θ))

= arg max
θ

n∏

i=1

1√
2πσ

exp(−(yi − f(xi; θ))2

2σ2
)

= arg min
θ

n∑

i=1

(yi − f(xi; θ))2

(2.8)
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Other noise assumptions, such as Mixture Gaussian distribution [2], student-t distri-

bution and its mixture [3], are also adopted to develop algorithms which are capable of

handling specific noise issues arising in certain model identification procedure. As the noise

assumption gets more sophisticated, more advanced probabilistic and statistical tools like

Bayesian Inference method are applied to facilitate the Maximum Likelihood Estimation

procedure. For example, a process identification approach is established by incorporating

Mixture Student t distribution and Expectation Maximization (EM) algorithm in [23] in

order to deal with outlier issue and and parameter varying property simultaneously. In

addition to the Flat-topped Gaussian distribution which is going to be considered, Mixture

Gaussian approximation is also utilized in order to deal with the uniform measurement

uncertainty in this chapter.

2.2.2 Flat Gaussian Profile

The Flat Gaussian profile was originated from optical research for description of featured

light beams. Shealy and Hoffnagle [24] introduce several possible approximated expressions

of this profile. Li [25] proposes a sufficient condition that approximated expression should

satisfy so as to generate a flat-topped Gaussian profile with certain degree of flatness.

A variety of approximating expressions and corresponding profiles [24] with different

parameter selections are shown as follow:

- Super-Gaussian Function:

SG(v) = exp(−|v|γ)

where γ ≥ 2 is even integer;

- Super-Loretzian Profile:

SL(v) =
1

1 + |v|M

where M is positive integer;

- Flat-Gaussian Function:

FG(v) = exp(−
m∑

i=1

αiv
2i)

where m is positive integer. For example, when m = 2, FG(v) = exp(−av2 − bv4).

10
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Figure 2.5: Examples of Approximated Flat Gaussian Profile

Afterwards explanation from statistical perspective is entitled to this Flat Gaussian pro-

file [26]. It indicates that Flat Gaussian profile can be interpreted as the PDF of summation

of a Gaussian distributed random variable and a uniform distributed random variable which

are independent of each other. Coverage factor and other properties of this innovative distri-

bution function are studied sequentially. As an extension, detailed reasoning and derivation

of parameter estimation for the Flat-topped Gaussian distribution and its application as

noise distribution will be presented later on.

2.3 Flat-topped Gaussian Distribution

Based on the Guide to the Expression of Uncertainty in Measurement [27], the probability

density function of a summation of two random variables can be approximated by moment

fitting strategy. This section combines the moment fitting strategy with approximated Flat

Gaussian profile and proposes the functional structure of Flat-topped Gaussian distribution

function as well as approaches to estimate its parameters.

2.3.1 Problem Statement

Flat Gaussian profile is used to describe a random variable that is formulated as the summa-

tion of a Gaussian random variable and a uniform distributed random variable independent

of each other.

V = V1 + V2, V1 ∼ N(0, σ2), V2 ∼ U [−r, r]. (2.9)

For simplicity, assume E(V ) = E(V1) = E(V2) = 0.

Different selections of Gaussian and uniform distribution parameters will result in di-

verse distribution profiles. The histograms shown in Fig 2.6 of the new random variable
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illustrate the influence of parameter selection. PDFs under different parameters all have a

top with different degrees of flatness in centre area while the tail demonstrates a Gaussian

profile, which leads to a designation as “Flat-topped Gaussian” distribution. In order to de-

scribe properties of this new random variable and formulate objective function in Maximum

Likelihood Estimation procedure correspondingly, it is necessary to obtain an expression of

PDF of this random variable.
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Figure 2.6: Histogram of Flat-topped Gaussian Random Variable with Different Uniform
Width

Traditional approach to calculate PDF of summation of two variables such as 2.9 is

convolution over two PDFs which can be justified by marginalization of joint distribution:

PV (v) =

∫ ∞

−∞
P (v2, v)dv2

=

∫ ∞

−∞
PV (v|v2)PV2

(v2)dv2

=

∫ ∞

−∞
PV1

(v − v2)PV2
(v2)dv2

= PV1
(v1) ∗ PV2

(v2)

(2.10)

However, it is not always tractable to calculate the convolution of two arbitrarily selected

PDFs; hence approximation approach is of necessity in order to obtain the PDF of summed

random variables.
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2.3.2 Moment Fitting Method

One widely used approach for approximation of composed PDF is the moment fitting s-

trategy [26]. With all information of the two component random variables available, this

strategy will come up with an approximation function of the composed PDF with maximum

entropy among all. There are two basic steps in moment fitting method:

1. Uncertainty propagation: with all parameters of component distributions known, ex-

tract different orders of moment information of the composed variable;

2. Maximum entropy distribution [28]: find the Maximum Entropy Distribution subject

to moment constraints obtained in Step 1.

Uncertainty Propagation

Lemma 1. If this relationship V = f(V1, V2) exists, where V1 and V2 are two independent

random variables with second order moment M2(V1) and M2(V2), then the variance of V

can be calculated as:

M2(V ) =
∂2f

∂V 2
1

M2(V2) +
∂2f

∂V 2
2

M2(V2) (2.11)

Hence if V = V1 + V2, the second order moment of V can be calculated as:

M2(V ) = M2(V1) + M2(V2) (2.12)

Lemma 1 points out that moment information of the composed random variable is able

to be extracted from moment information of component random variables. Moreover, higher

order moments can be calculated with respect to moments of component variables when

the relationship between V and component variables {V1, V2, ..., Vn} is linear, that is to say,

if the following relationship holds:

V = A · [V1, V2, ..., Vn]T

then arbitrary p-th order of moment can be calculated by Eqn 2.13 [27]:

Mp(V ) = A(p) · [Mp(V1),Mp(V2), ...,Mp(Vn)] (2.13)

where A(p) is defined as the p-fold Kronecker product of A:
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A(p) = A⊗A⊗ ...⊗A
︸ ︷︷ ︸

p times

(2.14)

Moment generating function can be used as an alternative to aforementioned uncertainty

propagation approach for moment information extraction. In practice, application of uncer-

tainty propagation is not limited to the summation of two random variables. However,its

computational efficiency suffers dramatically from increasing number of component random

variables as well as moment orders due to the Kronecker product calculations. Incorporat-

ing moment generating function makes it possible to avoid explosion in matrix dimension

and therefore sets the stage for moment extraction for a number of random variables.

Moment generating function of a random variable V is defined as [29]:

MV (t) = E[etV ], t ∈ R (2.15)

When this function is available, p-th order of central moment of V can be obtained:

µp =
d(p)MV

dtp
(0). (2.16)

Lemma 2. If V1,V2, ..., Vk are a set of independent random variables and V =
∑k

i=1 akVk

is defined as their summation, then moment generating function of V is:

MV (t) = MV1
(a1t)MV2

(a2t)...MVk
(akt) (2.17)

However, the ascendancy between two moment extraction methods is not definitive since

uncertainty propagation is also applicable in nonlinear combination of random variables

while Lemma 2 is valid for linear combination only.

Maximum Entropy Distribution

The entropy of a distribution PX(x) of a random variable X, denoted as H, is a measurement

of information contained in its distribution function [30].

H = E[lnPX(x)] = −
∫

PX(x) lnPX(x) dx. (2.18)

Based on first to m-th order of moment informations of PY (y) obtained previously by

uncertainty propagation, the following constrained optimization problem can be formulated

and solved to obtain an approximation for the original distribution.
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PX(x) = max
P

H

s.t.

∫

xiPX(x) dx = µi; i = 1, ...,m
∫

PX(x) dx = 1.

(2.19)

Fig 2.7 shows the general flow chart of moment fitting strategy. Moment information

based on component variables is extracted through uncertainty propagation or moment

generating function. Maximum Entropy Distribution (MED) is obtained by maximizing

distribution entropy under moment constraints. It is obvious that the optimization problem

mentioned above is a functional optimization problem, which cannot be solved solely by

ordinary optimization approaches. The analytical representation of the optimal function

should be determined antecedently to parameter estimation. The approximated expression

of Flat Gaussian profile [26] is the MED under second and fourth order moment constraints

[31]. Hence this moment fitting procedure is applicable for attaining an approximation of

the Flat-topped Gaussian distribution.

Figure 2.7: Flow Chart of Moment Fitting Strategy

2.3.3 Parameter Estimation

The Flat Gaussian profile can be approximated by the following function [26]:

PV (v) = Aexp(−av2 − bv4) (2.20)

where A, a and b are parameters to be determined.

To estimate parameters of this approximated distribution with known parameters of the

component random variables, aforementioned moment fitting strategy provides a formula-

tion of an optimization problem.

Uncertainty Propagation

The Flat-topped Gaussian distributed random variable V is defined as:
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V = V1 + V2 = A · [V1 V2]
T ,

where V1 ∼ N(0, σ2)

V2 ∼ U [−r, r]

A = [1, 1]

(2.21)

Since the approximated function is the Maximum Entropy Distribution under moment

constraints of second and fourth order, these two moments of V should be obtained by

uncertainty propagation in advance:

µ2 = M2(V ) = M2(V1) + M2(V2) = σ2 +
r2

3
(2.22)

µ4 = M4(V ) = (A⊗A⊗A⊗A) · [M4(V1) M4(V2)]
T (2.23)

= M4(V1) + 18M2(V1)M2(V2) + M4(V2)

= 3σ4 + 6σ2r2 +
1

5
r4

Maximum Entropy Distribution

Denote φ = {A, a, b} as the parameter set, the maximum entropy problem with moment

constraints can be formulated in Eqn 2.24.

φ̂ = arg max
φ

H

= arg max
φ

[

−
∫

PV (v) lnPV (v) dv

]

= arg max
φ

[

−
∫

Aexp(−av2 − bv4) ln{Aexp(−av2 − bv4)} dv
]

= arg max
φ

[

−A

∫

(lnA− av2 − bv4)exp(−av2 − bv4) dv

]

s.t.

∫

v2Aexp(−av2 − bv4) dv = µ2;
∫

v4Aexp(−av2 − bv4) dv = µ4;
∫

Aexp(−av2 − bv4) dv = 1.

(2.24)

Lagrangian multiplier approach is applied to solve this constrained nonlinear optimiza-
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tion problem with integrations. Dual problem can be formulated as follow:

L(φ, λ1, λ2, λ3) =A

∫

(lnA− av2 − bv4)exp(−av2 − bv4) dv +

λ1(

∫

v2Aexp(−av2 − bv4) dv − µ2)+

λ2(

∫

v4Aexp(−av2 − bv4) dv − µ4)+

λ3(

∫

Aexp(−av2 − bv4) dv − 1)

(2.25)

To optimize this dual function, following partial derivative equations should be satisfied:

∂L

∂λ1
= 0;

∂L

∂λ2
= 0;

∂L

∂λ3
= 0.







∫

v2Aexp(−av2 − bv4) dv = µ2

∫

v4Aexp(−av2 − bv4) dv = µ4

∫

Aexp(−av2 − bv4) dv = 1

(2.26)

General solution of this exponential integration can be expressed with confluent hyper-

geometric function [32] shown in Eqn 2.27:
∫ ∞

0
v2kAexp(−αv2 − bv4) dv

=
1

4
[Γ(

2k + 1

4
)1F1(

2k + 1

4
;

1

2
;
α2

4
) − αΓ(

2k + 3

4
)1F1(

2k + 1

3
;

3

2
;
α2

4
)]

(2.27)

where α = ab−
1

2 is the intermediate parameter, 1F1(
2k+1
4 ; 1

2 ; α2

4 ) is the first order confluent

hypergeometric function and Γ(2k+1
4 ) is Gamma function.

Previous system of nonlinear equations with integration can be further simplified as:







A =
2b

1

4

t11 − αt33

µ2 =
t31 − αt53

b
1

2 t11 − αt33

µ4 =
t51 − αt73
bt11 − αt33

(2.28)

where tij = Γ( i
4)1F1(

i
4 ; j

2 ; α2

4 ).

Due to nature of confluent hypergeometric function and Gamma function, there is no

close form of solution of this system of nonlinear equations. Instead, It can be formulated

in MATLAB with packaged functions for confluent hypergeometric and Gamma function,

and corresponding solutions are obtained as parameter estimation by fsolve function in

MATLAB, too. Approximated PDF function is formulated consequently.
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As it is discussed in section 2.1, different parameter combinations of component PDFs

will yield different degrees of flatness of the Flat-topped Gaussian distribution. If variance

of uniform part is negligible, flatness of composed distribution will vanish and the PDF will

degenerate to Gaussian distribution. The other extreme case is when a2

4b � 1, indicating the

uniform distribution is dominant in composed distribution, and the PDF can be simplified

as Eqn 2.29:

PV (v) ≈ 2b−
1

4 exp(−bv4)

Γ(14)
(2.29)

In this case, Eqn 2.30 suggested by [26] provides an approximated solution to b, which

makes the maximum entropy procedure and consequential system of nonlinear equations

2.28 simpler.

b = (3µ2)
−2 (2.30)

Maximum Likelihood Estimation

In section 2.3, an approximation of Flat-topped Gaussian noise distribution function is

obtained, which makes it possible for Maximum Likelihood Estimation of model parameters

under Flat-topped Gaussian noise assumption.

A typical output noise model can be formulated as:

y = f(x; θ) + v (2.31)

where noise is assumed to be v ∼ FG(A, a, b). FG denotes the aforementioned Flat-topped

Gaussian distribution function with parameters A, a and b. Furthermore, independent and

zero-mean conditions are applied. The PDF of noise v is:

PV (v) = Aexp(−av2 − bv4) (2.32)

Let X,Y = (x1, y1); (x2, y2); ...; (xn, yn) denote the input-output pairs of measurement.

With independent noise condition, likelihood function of observations can be written as Eqn

2.33:
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P (Y |X) =
n∏

i=1

P (yi|xi) =
n∏

i=1

PV (yi − f(xi; θ))

=
n∏

i=1

Aexp(−a(yi − f(xi; θ))2 − b(yi − f(xi; θ))4)

(2.33)

To obtain maximum likelihood estimation of model parameter θ, the optimization prob-

lem can be formulated as:

θ̂ = arg max
θ

P (Y |X)

= arg max
θ

n∏

i=1

Aexp(−a(yi − f(xi; θ))2 − b(yi − f(xi; θ))4)

= arg max
θ

Anexp(−a
n∑

i=1

(yi − f(xi; θ))2 − b
n∑

i=1

(yi − f(xi; θ))4)

= arg min
θ

n∑

i=1

(a(yi − f(xi; θ))2 + b(yi − f(xi; θ))4)

(2.34)

When comparing with the Least Square loss function:

θ̂ = arg min
θ

n∑

i=1

(yi − f(xi; θ))2 (2.35)

one can see that Flat-topped Gaussian noise distribution will yield a Least Square type of

loss function with higher ordered error terms which can provide a certain range of toler-

ance for prediction error in identification. Similarly, coefficients and orders of error terms

determine the flatness of the tolerance range of error in the loss function.

2.3.4 Mixture Gaussian approximation

In this section, we consider another approach to approximate Flat-topped Gaussian distri-

bution. Gaussian Mixture Model is a probabilistic model which assumes that all samples

are drawn from a mixture of Gaussian distributions with different parameters. Eqn 2.36

shows an example of a random variable X with Mixture Gaussian distribution. Eqn 2.37 is

the corresponding PDF of X:

X ∼ N
(
µi, σ

2
i

)
with probability αi, i = 1, 2, ...,M (2.36)

PX(x) =
M∑

i=1

αiN
(
µi, σ

2
i

)
(2.37)
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Based on the nature of convolution, following derivation reveals the feasibility of Mixture

Gaussian approximation for Flat-topped Gaussian distribution.

Given v = v1 + v2, where v1 ∼ N
(
0, σ2

)
and v2 ∼ U [−r, r], PV (v) can be calculated by

convolution:

PV (v) = PV1
(v1) ∗ PV2

(v2)

=

∫ r

−r

1

2r
× 1√

2πσ
exp[−(v − v2)

2

2σ2
]dv2

≈ 1

2r

r∑

i=−r

1√
2πσ

exp[−(v − v2)
2

2σ2
]

=
1

2r

r∑

i=−r

N(i, σ2)

(2.38)

Flat-topped Gaussian distribution, therefore, is essentially the average of infinite number

of equally weighted Gaussian distributions with same variance and mean varying in the

range [−r, r]. Intuitively, approximation accuracy of the Mixture Gaussian distributions

depends on the number of component distributions. The following formulation describes the

approximated Flat-topped Gaussian random variable under Mixture Gaussian distribution

framework.

V ∼







N(−r, σ2) w.p.
1

m

N

(

−r +
2r

m− 1
, σ2

)

w.p.
1

m

...

N(r, σ2) w.p.
1

m

(2.39)

Parameter m in this formulation represents the number of Gaussian mixture components.

Here the original Flat-topped Gaussian distributed random variable is assumed to be drawn

from m Gaussian distributions whose means are equally distributed in the range [−r, r] with

the same probability 1
m

and same variance σ2. This formulation in Eqn 2.39 is equivalent

to the result obtained by convolution, shown in Eqn 2.38, when the number of components

is set to be m.

Fig 2.8 demonstrates different degrees of accuracy of Mixture Gaussian approximation

with original variables to be v1 ∼ N(0, 22) and v2 ∼ U [−4, 4]. As the number of component

Gaussian distributions increases, corresponding approximation will become more precise.
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Figure 2.8: Performance of Mixture Gaussian Approximation with Differnet m

2.4 Flat-topped t Distribution

2.4.1 Robustness Issue in Flat-topped Gaussian Distribution

Recall the comparison of loss functions formulated by Flat-topped Gaussian and ordinary

Gaussian noise distributions in Eqn 2.34 and 2.35. Flat-topped Gaussian distribution will

yield higher order loss functions and therefore reduce algorithm robustness to outliers. Fig

2.9 is an illustration of the sensitivity to prediction error of different objective functions. For

an error value v1 which lies in the error band [−δ, δ], Flat-topped Gaussian loss function has

a better tolerance and punishes less comparing with the original Gaussian one. However, for

a potential outlier v2 outside the error band, Flat-topped Gaussian loss function increases

rapidly and penalize significantly on the outliers.

Hence in order to enhance robustness, t distribution is considered as an alternative

to the Gaussian distribution component since the longer tail in its distribution function

provides better tolerance for outliers. Flat-topped t distribution, formed by summation of

two random variables that follows t distribution and uniform distribution respectively, is

proposed and will be studied in this section.
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θ̂ = arg max
θ

P (Y |X)

= arg max
θ

n∏

i=1

Γ(ν+1
2 )√

νφΓ(ν2 )σ

(

1 +
1

ν

(
yi − f(xi; θ)

σ

)2
)− ν+1

2

= arg max
θ

nlog

(

Γ(ν+1
2 )√

νφΓ(ν2 )σ

)

− ν + 1

2

n∑

i=1

log

(

1 +
1

ν

(
yi − f(xi; θ)

σ

)2
)

= arg min
θ

n∑

i=1

log

(

1 +
1

ν

(
yi − f(xi; θ)

σ

)2
)

(2.41)

Since the natural logarithm function is monotonically increasing with respect to its

argument, this loss function is magnified as squared prediction error increases. As it is

proposed in Section 2.3, higher ordered error terms will result in a relatively “flat” top in

neighbourhood of mean. Therefore an analogy is made to increase the order of error term

in t distribution function to provide a new distribution with a tolerance range of prediction

error.

Flat-topped t Distributed Random Variable

By analogy to the formulation of Flat-topped Gaussian distribution, the summation of a t

distributed random variable and a uniform random variable can be defined as Flat-topped

t distributed random variable:

V = V1 + V2, V1 ∼ tp(0, σ
2, ν), V2 ∼ U [−r, r]. (2.42)

For simplicity, assume E(V ) = E(V1) = E(V2) = 0.

Following histograms of this new random variable suggest that similar to Flat-topped

Gaussian distribution, it also has a flat top and t distributed tail. Feasibility of moment

fitting strategy for approximating Flat-topped t distribution function is open to discussion,

since maximum entropy constraints and corresponding MED structure are yet to be estab-

lished for proposed Flat-topped t random variable. However, compromised structure can

be generated by analogy to Flat-topped Gaussian distribution. Similar to formulation of

Flat-topped Gaussian distribution, the squared error term is substituted by a summation

of second and fourth power error terms in order to yield a flat top in the area around zero;

coefficients of two terms can be adjusted to accommodate different degrees of flatness.

PV (v) = A

(

1 +
a

ν

( v

σ

)2
+

b

ν

( v

σ

)4
)− ν+1

2

(2.43)
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According to the comparison result of histogram of V = V1 + V2 generated above, it is

reasonable to claim that when coefficients are selected properly, this structure is capable of

approximating the Flat t profile.
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Figure 2.10: Comparison of True Histogram and Approximated Function

In Fig 2.10, the sample histogram is generated from a random variable V = V1 + V2,

where V1 ∼ tp(0, 2
2, 10) and V2 ∼ U [−4, 4]. Red curve is the graph of following function:

P (v) = 0.1211

(

1 +
( v

11.4960

)2
+
( v

10.2490

)4
)−

10+1
2

2

(2.44)

This simulation case demonstrates that if function parameters are properly selected,

revised structure of t distribution with higher order terms is eligible for approximating

Flat-topped t distributed random variables. However, parameter selection still remains for

further investigation.

2.4.3 Potential Advantages of Flat-topped t Distribution

Fig 2.9 demonstrates that Flat-topped Gaussian noise distribution suffers severely from

outliers in samples due to increased order or error term in its loss function at the cost of

enhancing its tolerance of errors within the error band. Meanwhile, t distribution possesses

good robustness comparing with original Gaussian distribution. Therefore Flat-topped t

distribution will effectively improve robustness of the loss function comparing with Flat-

topped Gaussian distribution without loss of tolerance of errors within the error band. Fig

2.11 demonstrates the potential advantage of the loss function generated based on Flat-

topped t distribution in robustness in comparison to the regular Gaussian and Flat-topped

Gaussian loss functions.

The Flat-topped t distribution may also outperform piecewise linear objective functions

generated by algorithms in SVR class since objective function is continuous under Flat-

topped t assumption, which can facilitate subsequent optimization procedure.
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Figure 2.11: Comparison of Gaussian, Flat-topped Gaussian and Flat-topped t Loss Func-
tions

2.5 Estimation of Noise Parameters

An additional demand of the proposed moment fitting strategy for PDF approximation is

that it requires all parameters of component variables to be known a priori, while in practice

noise level is not easy to quantify. Hence it is necessary to estimate noise level from data

beforehand. To start, we would need to have the range of the uniform component. This

information is normally available such as the lab analysis accuracy range is often known.

In quantization procedure the resolution of quantizer is normally assumed to be fixed and

known in advance as well, which can be utilized to solve this problem. The following section

will give a brief discussion on estimation of measurement noise with known range of uniform

distribution.

2.5.1 Noise Estimation for Flat-topped Gaussian Distribution

The fundamental idea of this error separation procedure is to use sample moments to ap-

proximate population moments. If instrumentation noise follows Gaussian distribution,
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then the following relationship in Eqn 2.45 holds:

M2(V ) = M2(V1) + M2(V2) = σ2 +
r2

3

=
1

n− 1

n∑

i=1

(yi − f(xi; θ))2
(2.45)

where 2r is the the range of uniform distribution. M2(V ) is the variance of output uncer-

tainty and estimated by a consistent estimator using sample variance.

Solve this equation and estimation of instrumentation noise is obtained:

σ̂2 =
1

n− 1

n∑

i=1

(yi − f(xi; θ))2 − r2

3
(2.46)

2.5.2 Noise Estimation for Flat-topped t Distribution

For Flat-topped t distributed uncertainty, the degree of freedom of t distribution is to

be estimated simultaneously with its variance. Since the number of unknown variables

increases, fourth order sample moment M4(V ) is involved to establish a system of nonlinear

equations with σ and ν as variables:







M2(V ) = M2(V1) + M2(V2) =
ν

ν − 2
σ2 +

r2

3

=
1

n− 1

n∑

i=1

(yi − f(xi; θ))2

M4(V ) =
3ν2

ν2 − 6ν + 8
σ4 + 6

ν

ν − 2
σ2r2 +

1

5
r4

=
1

n

n∑

i=1

(yi − f(xi; θ))4

(2.47)

Solution of this system of equations shown in Eqn 2.48 is the parameter estimation of t

distribution:







ν̂ =
4M4(V ) − 4r2M2(V ) − 6 (M2(V ))2 + 6

5r
4

M4(V ) − 3r2M2(V ) + 6
15r

4

σ̂2 =

(

M2(V ) − r2

3

)
ν − 2

ν

(2.48)

It must be pointed out that the sample moments adopted here are different from mo-

ments of output measurement Y . In fact it is estimated from model residuals and highly

dependent on model parameter θ. Hence θ should be obtained beforehand in order to

calculate sample moments. Dilemma occurs that the objective of noise estimation is to
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reach a better approximation of output uncertainty and better model parameter estima-

tion θ̂ afterwards, however the noise estimation procedure itself requires model parameter

θ to generate prediction error. An iterative approach which optimizes noise estimation and

parameter estimation alternately is therefore needed for solving this problem.

2.5.3 Iterative Procedure of Noise Parameter Estimation

Given training data set D = {X,Y } where Y is contaminated by additive instrumentation

noise and uniform error respectively and they are independent, instrumentation noise level

can be separated from additional uniform error and estimated through following iterative

procedure:

1. Initialization of model parameter θ. Least Square solution θ(0) = θLS may be applied;

2. Given i-th estimation θ(i), obtain the error vector e(i) = Y − f(X; θ(i));

3. Based on error vector e(i), calculate standard derivation σ(i) of Gaussian measurement

noise; for t distributed noise case, calculate σ(i) and degree of freedom ν(i) simultane-

ously;

4. Apply moment fitting strategy to attain updated approximation of PDF of measure-

ment noise and additional uniform error;

5. Adopt the approximated PDF obtained in Step 4 to build updated objective function

J (i)(θ) and find θ(i+1) = arg minθ J
(i)(θ);

6. Repeat Step 2 to 5 till converges.

2.6 Simulations & Results

In this section, qualified performance of proposed moment fitting strategy in approximation

of PDF of Flat-topped Gaussian distribution will be verified by simulations. The results

from white Gaussian noise assumption and Flat-topped Gaussian noise distribution are

compared through estimation of a linear and an ARX model with quantization error in

their output.

2.6.1 Parameter Estimation of Flat-topped Gaussian Distribution

As it is discussed in section 2.3, parameters of Flat-topped Gaussian distribution can be

estimated by moment fitting strategy. Hence in this section, two numerical examples are
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presented to qualitatively demonstrate the efficiency of proposed approximation of Flat-

topped Gaussian distribution function by comparing the sample distribution histogram and

PDF plot with parameters solved through moment fitting strategy.

Component variables: V1 ∼ N(0, 22); V2 ∼ U
[
−2

√
2, 2

√
2
]

In this case,

M2(V1) = 4; M2(V2) =
8

3
.

which indicates that variances of V1 and V2 are similar in magnitude. Therefore the ap-

proximation PDF of V = V1 + V2 maintains the form:

PV (v) = Aexp(−av2 − bv4)

Parameters of approximated PDF can be estimated by solving the nonlinear system

of equations, namely Eqn 2.28, proposed in Section 2.3. Following the moment fitting

procedure, parameters of approximated PV (v) can be solved as follow:

1. Uncertainty propagation: given component distribution as V1 ∼ N(0, 22) and V2 ∼
U
[
−2

√
2, 2

√
2
]
, corresponding moment information is extracted as Eqn 2.49.

M2(V ) = M2(V1) + M2(V2) = 22 +

(
2
√

2
)2

3
=

20

3

M4(V ) = M4(V1) + 18M2(V1)M2(V2) + M4(V2)

= 24 + 6 ∗ 22(2
√

2)2 +
(2
√

2)4

5
= 124.8

(2.49)

2. Maximum entropy distribution: solve the system of nonlinear equations in Eqn 2.28

to get the maximum entropy parameter estimation.






A =
2b

1

4

t11 − αt33
20

3
=

t31 − αt53

b
1

2 t11 − αt33

124.8 =
t51 − αt73
t11 − αt33

(2.50)

where α = ab−
1

2 is the intermediate variable. The solution to Eqn 2.50 is:






A = 0.15012

a = 0.06608

b = 2.38 × 10−3

(2.51)
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And corresponding approximated PDF of V is:

PV (v) = 0.15012exp
(
−0.06608v2 − 2.38 × 10−3v4

)

To qualitatively evaluate the degree of precision of the approximated PDF, 2 × 106

random samples of V1 and V2 are generated respectively and use the histogram of their

summation as sample distribution of V .
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Figure 2.12: Comparison of Approximated PDF and Sample Histogram

Fig 2.12 demonstrates the comparison of sample histogram and approximated PV (v).

It can be concluded that parameters of PV (v) solved by moment fitting strategy provides a

relatively good approximation of its real distribution function.

Component variables: V1 ∼ N(0, 22); V2 ∼ U [−6, 6]

In this case,

M2(V1) = 4; M2(V2) = 12. (2.52)

which indicates that variances of V2 is dominant and approximation PDF of V = V1 + V2

degenerates to:

PV (v) =
2b−

1

4 exp(−bv4)

Γ(14)
(2.53)

With the simplified form in Eqn 2.30 in effect and no need of the maximum entropy

procedure, Eqn 2.54 provides the estimation of parameter b.

M2(V ) = M2(V1) + M2(V2) = 22 +
62

3
= 16

b = (3M2(V ))−2 = 4.3403 × 10−4

(2.54)
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And corresponding approximated PDF of V is:

PV (v) = 0.07962exp
(
−4.3403 × 10−4v4

)

Similarly, to qualitatively evaluate the degree of precision of the approximated PDF,

2 × 106 random samples of V1 and V2 are generated respectively and use the histogram of

their summation as sample distribution of V .
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Figure 2.13: Comparison of Approximated PDF and Sample Histogram

Fig 2.13 demonstrates the comparison of sample histogram and approximated PV (v).

It can be concluded that in addition to the situation when variance of component random

variables V1 and V2 are similar in magnitude, the approximated equation is also expedient

when uniform distribution is dominant, i.e. the flatness is the primary component in the

composed distribution.

2.6.2 Simulation with Quantization Error

In this section, a numerical example on data generated by an ARX model simplified from

[38] with additional quantization module is presented to validate the Maximum Likelihood

Estimation based on the proposed Flat-topped Gaussian noise distribution. Eqn 2.55 is the

transfer function of a first order continuous process.

G(s) =
K

τs + 1
(2.55)

where

K = 1.6, τ = 3.5. (2.56)
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Figure 2.15: Influneces on Different Quantization Resolutions

trends of relative error of model parameters trained under two noise assumptions from data

as the ∆ value increases and amount of information carried by the output data diminishes.

It can be seen that in the sense of learning model parameters, influence of quantization error

becomes increasingly significant as step size amplifies when Gaussian noise assumption is

applied. Meanwhile for the proposed Flat-topped Gaussian noise assumption, though large

step size also impacts its parameter learning performance, this algorithm is relatively in-

sensitive to quantization and consequential loss of information, and can still maintain a fair

level of precision even if the quantization error is severe. On the other hand, when there is

no quantization error, i.e. ∆ = 0, the proposed noise distribution is capable of resulting in

an equivalent solution as the ordinary Gaussian one which is optimal in this situation. As

an instance of model accuracy comparison, Fig 2.17 is the infinite step prediction comparing

to the original output with no measurement noise or quantization error on cross-validation

data set of the original ARX model with parameters trained when ∆ = 4.
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Figure 2.16: Comparison of Relative Error by Two Approaches
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Table 2.1: Model Parameters Trained with Different ∆
Ordinary Gaussian Flat-topped Gaussian

∆ = 0
θ1 0.7492 0.7491
θ2 0.3984 0.3986

Relative Error (%) 0.17 0.20

∆ = 2
θ1 0.7495 0.7512
θ2 0.3958 0.3951

Relative Error 0.38 0.38

∆ = 3
θ1 0.7488 0.7516
θ2 0.3966 0.3969

Relative Error 0.32 0.18

∆ = 4
θ1 0.7447 0.7559
θ2 0.3927 0.3697

Relative Error 1.09 0.49

∆ = 5
θ1 0.7306 0.7536
θ2 0.3879 0.4042

Relative Error 2.63 0.95

∆ = 6
θ1 0.7228 0.7471
θ2 0.3761 0.3983

Relative Error 4.63 0.30

∆ = 7
θ1 0.6802 0.7632
θ2 0.3822 0.3988

Relative Error 6.70 0.91

∆ = 8
θ1 0.6601 0.7255
θ2 0.3574 0.3971

Relative Error 11.15 1.81

2.7 Conclusion and Future Work

Key findings of this study are listed here:

- A novel Flat-topped Gaussian distribution is considered to model the output uncer-

tainty when independent quantization error and instrumentation noise exist simulta-

neously.

- Moment fitting strategy is proposed as a general approach to approximate distribution

functions when a close-form solution is intractable.

- The proposed approximation for Flat-topped Gaussian distribution is extended to

that of t-distribution.

- An iterative procedure to extract instrumentation noise parameter is proposed in

order to form a better approximation of output uncertainty and therefore improve

identification accuracy when instrumentation noise level is not available in advance.
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Figure 2.17: Comparison of Inifinite Step Prediction by Two Approaches when ∆ = 6

Several topics in this study are to be further explored. From statistical prospective,

modifications of moment fitting strategy are necessary when approximating Flat-topped t

distribution and generalized combination of arbitrarily distributed random variables. As

for process identification, existence of quantization error or measurement inaccuracy should

not be limited to output noise model. Structural change of processes, such as state space

model and Gaussian Process model, brings extra difficulties to problem formulation and

demands more sophisticated identification algorithms.
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Chapter 3

Nonlinear Identification of

Gaussian Process with Flat-topped

Gaussian Uncertainty

In this chapter, flat-topped uncertainty is considered for identification of nonlinear model

under Gaussian Process framework. The main difference between the Gaussian Process

modelling and regular linear modelling approaches is that the former assumes that the

output follows a multivariate Gaussian distribution rather than noise following a Gaussian

distribution. When output itself is considered to be stochastic and follows a multivariate

distribution, it is not applicable to formulate the likelihood function directly based on the

flat-topped noise distribution as proposed previously. Due to the nature of Gaussian Process

that its output is assumed to be multivariate distributed and the posterior distribution is

attainable, Gibbs Sampling is utilized to mitigate the influence of additional uncertainty.

A hybrid modelling approach which combines Gaussian Process and Gibbs Sampling is

established in this chapter. To verify the efficiency of proposed approach, a numerical

example on nonlinear system is presented.

3.1 Introduction

In Chapter 2, to deal with additional uniformly distributed measurement uncertainty in

linear output noise model, a novel flat-topped distribution is proposed as modified noise

distribution and objective function for parameter estimation is established accordingly. As

it is mentioned in Section 1.6, one of the potential extensions of problem formulation is

to switch model structure from linear parametric structures such as ARX models to more

sophisticated non-parametric models like Gaussian Process to model nonlinear processes.

Gaussian Process is a non-parametric modelling approach which is easily implementable,
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flexible in handling different types of nonlinearity and capable of providing additional un-

certainty and distribution information of predictions. It has been profoundly studied by

multidisciplinary researchers [39, 40, 41, 42] and intensively applied to various real-world

problems such as soft sensor development for chemical plant [43], surrogate modelling op-

timizations [44], electrical load forecasting [45] and model predictive control [46]. From

regression perspective, infinite mixture of Gaussian Process model is considered to deal

with discontinuity, multimodality and other peculiarities [47]; warped Gaussian Process is

proposed for non-Gaussian output and non-Gaussian noise [48]; Bayesian tree is incorpo-

rated to attain a non-stationary Gaussian Process modelling [49]. Meanwhile, it is also

widely applied to solve outstanding issues in classification such as semi-supervised data set

[50] and achieving better distribution-free error bounds [51]. Owing to its infrastructural

flexibility, kernels and parameters of Gaussian Process can be learned and formulated by

Bayesian Inference [52], spectral analysis [53] and non-stationary covariance functions can

also be included [54]. However, due to its nature as a multivariate Gaussian distribution,

Gaussian Process is computationally heavy which will be revealed later on. To reduce its

high demand in computation and memory, sparse approximation of Gaussian Process is

proposed by Quiñonero-Candela and Rasmussen [55]. Gaussian Process Latent Variable

Model (GP-LVM) is also proposed for high dimensional dataset by Lawrence [56].

The very foundation of Gaussian Process modelling approach is the multivariate Gaus-

sian distribution. However, additional uniform noise is non-Gaussian and will yield discon-

tinuous contaminated output. Therefore, Gibbs Sampling, a Markov Chain Monte Carlo

sampling approach, is incorporated to solve Gaussian Process model with additional Flat-

topped Gaussian distributed noise. This approach was originated from Geman and Geman

[57] and enjoyed a prosperous development afterwards. Rejection sampling in Gibbs Sam-

pling is established by Devroye [58] and Ripley [59]. To move one step further, Gilks and

Wild proposed adaptive rejection sampling in [60]. Blocked Gibbs Sampling is developed

for graphical modelling by Jensen, et al [61]. Liu proposed a collapsed Gibbs Sampler with

the ability of sampling from different variables simultaneously [62]. Specifically, Gibbs Sam-

pling approach has been successfully applied previously to Gaussian Process in the sense

of infinite mixtures of Gaussian Processes [63, 64], which enhances its feasibility in solving

this Gaussian Process with non-Gaussian noise problem.

In the rest of this chapter, Section 3.2 presents a detailed review of methodologies

involved in this problem, namely Gaussian Process and Gibbs Sampling. Section 3.3 for-

mulates the problem to be solved and specifies the dissimilarity between aforementioned
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linear processes modelling with flat-topped noise distribution and Gaussian Process mod-

elling with additional uniform noise. A de-noising algorithm based on Gibbs Sampling is

proposed in Section 3.4 and mathematical justification is provided. A numerical example

is given to validate the efficiency of proposed solution in Section 3.5. Section 3.6 concludes

this chapter and remarks on some future extensions of this work.

3.2 Review of Methodologies

3.2.1 Gaussian Process Modelling

Formulation and Structure

Gaussian Process is a non-parametric modelling and prediction approach which is based on

the correlation between input measurements. Typically the relationship between input and

output of a Gaussian Process is shown in Eqn 3.1. The function gp consists of two parts.

Similar to the deterministic model, f(x) is a deterministic function of x; meanwhile ε(x)

is considered to be a Gaussian distributed random variable with zero mean and variances

related to x which is correlated between different samples.

y = gp(x) = f(x) + ε(x) (3.1)

Because of the correlation in output variables, there is no explicit model structure of gp

function at each sample point and a multivariate Gaussian distribution is formed instead.

Denote the observed data set as D = {X,Y } in which X = {x1, x2, ..., xn} is n × m

deterministic input and Y = {y1, y2, ..., yn} is n× 1 output measurement. The distribution

of Y is assumed to be multivariate Gaussian with mean function f(X) and covariance matrix

Σ accordingly.

Y ∼ N (f(X),Σ)

where Σij = cov(ε(xi), ε(xj))
(3.2)

For a better understanding, the covariance matrix Σ can be decomposed as Σ = σ2C.

In this decomposed formulation, σ2 is the variance of marginalized distribution of each yi,

i.e. Eqn 3.3 holds:

P (yi) =

∫ ∫

...

∫

P (y1, ..., yn|X, f, k)dy1...dyi−1ddyi+1...dyn

=
1√
2πσ

exp

(

−(yi − f(xi))
2

2σ2

) (3.3)

37



In this formulation, marginal distribution of yi is determined by f and σ2. C is the

correlation matrix reflecting interactions of output variables with value of each element

restrained between 0 ∼ 1.

Y ∼ N
(
f(X), σ2C

)

where Cij = corr(ε(xi), ε(xj))

= k(xi, xj)

s.t. Cij ∈ [0, 1]

(3.4)

Obviously, the structure of f and k function are the two key factors in Gaussian Process.

Hence the gp function can be described as:

gp ∼ GP (f, k) (3.5)

which means that function gp is distributed as a Gaussian Process with mean function f

and covariance function k [65]. Selections of f and k characterizes the property of Gaussian

Process. Possible selections of mean and covariance functions are listed but not limited to

the content in Table 3.1. Modelling flexibility is significantly enhanced based on combination

of different structures which enable Gaussian Process assumption to handle processes with

various nonlinear features.

Table 3.1: Examples of Mean & Covariance Functions in Gaussian Process
Mean Function

Name Structure

Constant f(x) = c, c ∈ R

Linear f(x) = βTx, β ∈ R
m

Polynomial f(x) =
∑

d β
T
d x

d, β ∈ R
m×d

Covariance Function

Name Structure

Squared Exponential k(xi, xj) = exp
(
−1

θ
(xi − xj)

T (xi − xj)
)

Periodic k(xi, xj) = exp
(
− 2

l2
sin2 [π‖xi − xj‖/p]

)

Training a Gaussian Process

After selection of the structures of mean and covariance functions, to train a Gaussian

Process model is to obtain parameter estimation of its hyperparameters appearing in mean

and covariance functions. Commonly in training regular parametric models, when no prior

knowledge of parameters is available, Maximum Likelihood Estimation is obtained by Eqn

3.6:
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θ̂ = arg max
θ

P (Y |X, θ) (3.6)

Likely in Gaussian Process, MLE of hyperparameters can be calculated by Eqn 3.7:

Φ̂ = arg max
Φ

P (Y |X,Φ, f, k) (3.7)

where Φ denotes all the hyperparameters involved in f and k.

Due to different mathematical properties of f and k functions, this optimization problem

can be solved by either analytical or numerical approaches. Take the constant mean function

f(x) = µ and squared exponential function k(xi, xj) = exp
(
−1

θ
(xi − xj)

T (xi − xj)
)

which

are the most widely used selections in practice, for instance. The distribution of Y given

X, f and k is shown in Eqn 3.8.

Y ∼ N
(
µ, σ2C

)

where Cij = exp

(

−1

θ
(xi − xj)

T (xi − xj)

)
(3.8)

Hyperparameters to be trained are defined as Φ = {µ, σ, θ}. To get the MLE of Φ,

optimization problem in Eqn 3.9 is established:

Φ̂ = arg max
Φ

P (Y |X,Φ, f, k)

= arg max
Φ

L(Φ)

= arg max
Φ

logL(Φ)

= arg max
Φ

log

[

1

(2πσ2)
n

2

√

|C|
exp

(

−(Y − µ)TC−1(Y − µ)

2σ2

)]

= arg min
Φ

[
n

2
log(2πσ2) +

1

2
log(|C|) +

(Y − µ)TC−1(Y − µ)

2σ2

]

(3.9)

Notice that hyperparameter µ and σ appear explicitly in the objective function while θ

lies implicitly in matrix C, taking the first order derivative of the objective function over µ

and σ and set them to be zero, the following MLE solutions can be obtained as:

µ̂ =
1TC−1Y

1TC−11

σ̂2 =
(Y − µ̂)TC−1(Y − µ̂)

n

(3.10)

By substituting Eqn 3.10 into the original objective function, θ̂ can also be solved

numerically or by optimization packages.
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Prediction with Gaussian Process

Aforementioned formulation is Gaussian Process Regression. When it comes to the predic-

tion part, conditional distribution function is obtained given a query input x∗ and training

data set {X,Y } with parameter Φ by Bayes’ Rule:

P (y∗|x∗, X, Y,Φ) =
P (Y, y∗|X,x∗,Φ)

P (Y |X,x∗,Φ)
(3.11)

Based on Gaussian Process assumption, joint distribution of [Y, y∗] is (n + 1)× 1 multi-

variate Gaussian as the output vector is augmented. Also, Given X and Φ, Y is independent

of x∗. Then the conditional distribution function can be expanded:

P (y∗|x∗, X, Y,Φ) =
1

(2πσ2)
n+1

2

√

|Λ|P (Y |X,Φ)
exp



−1

2

(
y∗ − µ

Y − µ

)T

Λ−1

(
y∗ − µ

Y − µ

)



(3.12)

P (Y |X,Φ) =
1

(2πσ2)
n

2

√

|C|
exp

[

−(Y − µ)TC−1(Y − µ)

2σ2

]

(3.13)

Hence the conditional distribution of y∗ is:

P (y∗|x∗, X, Y,Φ) = (2π)−
1

2σn

( |C|
|Λ|

)− 1

2

exp




(Y − µ)TC−1(Y − µ)

2σ2
− 1

2

(
y∗ − µ

Y − µ

)T

Λ−1

(
y∗ − µ

Y − µ

)



(3.14)

Λ is the covariance matrix of [Y, y∗] calculated with respect to θ and Eqn 3.15 holds:

Λ = σ2

[
C rT

r 1

]

where r = σ2[k(x1, x
∗), k(x2, x

∗), ..., k(xn, x
∗)]

(3.15)

By applying partitioned matrix inversion method, Λ−1 can be obtained. Notice that

since both joint distribution of [Y, y∗] and prior distribution of Y are Gaussian, conditional

distribution of y∗ is also Gaussian. Hence it is possible for Eqn 3.14 to be written in a

univariate Gaussian distribution function form after proper transformation.

P (y∗|x∗, X, Y,Φ) = c0exp

[

−(y∗ − µ− rTC−1(Y − µ))2

σ2(1 − rTC−1r)

]

(3.16)

where c0 is the normalization constant of a distribution function. Usually the posterior

mean p̂ is considered to be the point prediction value of y∗ given training set {X,Y } and
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query point x∗. However, this procedure can also indicate the uncertainty of prediction by

predicted variance ŝ2.

p̂ = µ + rTC−1(Y − µ) (3.17)

ŝ2 = σ2(1 − rTC−1r) (3.18)

3.2.2 Gibbs Sampling

Gibbs Sampling is a Markov Chain Monte Carlo approach of sampling from multivariate

distributions. Generally speaking, it is not always easy to sample directly from a multi-

variate distribution especially when the dimension is large and/or distribution function is

complicated and alternative sampling methods are necessary. For example, suppose there

are n random variables x1, x2, ..., xn with joint distribution function P (x1, x2, ..., xn). When

it is expensive or intractable to sample directly from this joint distribution function, Gibbs

Sampling is considered as an alternative when the conditional distribution P (xi|x\i) can be

easily obtained and sampled in which x\i denotes all variables excluding xi for arbitrary

i ∈ {1, ..., n}. It consists of two parts including sampling and updating, and is conducted

iteratively with respect to the conditional distributions of all xi.

Basic Gibbs Sampling procedure can be described as follows:

1. Initialization: assign initial values to X(0) = {x(0)1 , x
(0)
2 , ..., x

(0)
n };

2. For the first iteration:

- Sample x
(1)
1 from its conditional distribution P (x1|x(0)2 , x

(0)
3 , ..., x

(0)
n );

- Update current data set to be {x(1)1 , x
(0)
2 , ..., x

(0)
n };

- Sample x
(1)
2 from its conditional distribution with updated value P (x2|x(1)1 , x

(0)
3 ,

..., x
(0)
n );

- Update current data set: {x(1)1 , x
(1)
2 , ..., x

(0)
n };

...

- Sample x
(1)
i from its conditional distribution with updated value P (xi|x(1)1 , x

(1)
2 ,

..., x
(1)
i−1, x

(0)
i+1, ..., x

(0)
n );

- Update current data set: {x(1)1 , x
(1)
2 , ..., x

(1)
i , x

(0)
i+1, ..., x

(0)
n };

...
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In this formulation, Y1 = {y1(1), y1(2), ..., y1(n)} in Eqn 3.19 denotes the output of Gaus-

sian Process which is n dimensional Gaussian distributed. The mean function is assumed

to be constant and correlation function is Squared Exponential. Corresponding parameters

of this distribution are determined by input X and hyperparameters Φ1 = {µ, σ2, θ}. As

it is introduced in Section 3.1, the objective of training Gaussian Process is to obtain the

Maximum Likelihood Estimation of its hyperparameters Φ1.

Y1 ∼ N(µ, σ2C), (3.19)

where C(i, j) = exp(−1

θ
(xi − xj)

2).

However, direct measurement of Y1 is unavailable due to process mechanism and Y2 is

attained instead with additional independently distributed uniform noise. Eqn 3.20 shows

the expression of each Y2 measurement at i-th sample point.

y2(i) = y1(i) + v (3.20)

where v ∼ U [−δ, δ]

Recall the description of quantization procedure in Section 2.1, it will provide discretized

output and result in a conflict with the fundamental assumption of Gaussian Process that

similar inputs yield similar but different outputs. Fig 3.3 shows the Squared Exponential

correlation between two input variables xi and xj . It can be inferred that outputs with

respect to different input variables are supposed to be different regardless of the selection

of θ. Therefore, the accuracy of hyperparameter learning deteriorates as the resolution of

quantization decreases when quantized data is involved indifferently in training a Gaussian

Process model. Intrinsic inferiority of contaminated data with additional uniform noise in

training and prediction of Gaussian Process will be demonstrated by numerical examples

afterwards.
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Figure 3.3: Descending Trend of Correlation between xi and xj

More rigorous way to calculate the MLE of Φ1 is shown in Eqn 3.21 given all the infor-

mation available (X and Y2) instead of training Gaussian Process directly with inaccurate

measurement:

Φ̂1 = arg max
Φ1

P (Y2|X,Φ1)

= arg max
Φ

∫

P (Y2, Y1|X,Φ1)dY1

= arg max
Φ

∫

P (Y2|Y1, X,Φ1)P (Y1|X,Φ1)dY1

= arg max
Φ

∫ n∏

i=1

[P (y2(i)|y1(i))]P (Y1|X,Φ1)dY1

(3.21)

Unlike the independent output model assumption under which P (Y1|X,Φ1) can also be

separated into multiplication of individual samples, here the likelihood of Y1 is inseparable

since all the outputs are considered correlated with each other. So the additional uniform

noise cannot be consolidated with original distribution function of y1(i) to make it Flat-

topped Gaussian distributed. Influenced by uniform distribution, Eqn 3.21 becomes an

n dimensional integration of truncated Gaussian distribution which is intractable. As a

consequence, Y1 should be recovered as intermediate information before training Gaussian

Process and prediction with it. From informatics point of view, it is a de-noising procedure

that can reconstruct the original output signal Y1 of Gaussian Process from measurements
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is superior to the analytical approximation when to sample from. Eqn 3.23 presents the

Mixture Gaussian approximation of noise distribution v which facilitates the upcoming

sampling procedure. Fig 3.5 is an illustrative example of approximating uniform noise by

Mixture Gaussian distribution.

v ∼







N(−δ, σ2) w.p.
1

m

N

(

−δ +
2δ

m− 1
, σ2

)

w.p.
1

m

...

N(δ, σ2) w.p.
1

m

(3.23)
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Figure 3.5: Comparison of v ∼ U [−20, 20] and Corresponding Gaussian Mixture with σ2 =
4,m = 20

Therefore, the original uniform uncertainty is approximated by proposed Flat-topped

Gaussian uncertainty, which is easier to be handle mathematically. If assuming the quan-

tization resolution or the trust range of measurement δ and number of Gaussian Mixture

components m are both known, then the only extra parameter introduced to be estimated

is the variance σ2 of each Gaussian component. It is obvious that as σ2 decreases, the

Flat-topped Gaussian noise will approach a uniform one. Hence the trick in obtaining a

relatively small estimation of σ2 will be covered afterwards since the estimation accuracy

of σ2 is insignificant.
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3.4.2 Posterior Distribution

Here to distinguish the “real” output and reconstructed ones, sampled value of y1(i) is

denoted as Y
(i)
1 . In each and every iteration of Gibbs Sampling, the intermediate objec-

tive before sampling is to obtain the posterior distribution of Y
(i)
1 in Y1 given all the rest

Y
(\i)
1 = {Y (1)

1 , ..., Y
(i−1)
1 , Y

(i+1)
1 , ..., Y

(n)
1 }. Under Gaussian Process assumption, posterior

distribution of Y
(i)
1 can be derived with respect to Bayes’ Rule. Moreover, the denominator

P (Y2|Y (\i)
1 , X) is an normalization constant which can be omitted since in each sampling

step, Y
(\i)
1 is sampled in previous steps and assumed to be known.

P (Y
(i)
1 |Y (\i)

1 , X, Y2) =
P (Y2|Y (i)

1 , Y
(\i)
1 , X)P (Y

(i)
1 |Y (\i)

1 , X)

P (Y2|Y (\i)
1 , X)

∝ P (Y2|Y (i)
1 , Y

(\i)
1 , X)P (Y

(i)
1 |Y (\i)

1 , X)

(3.24)

Notice that the likelihood function of Y2 can be decomposed by chain rule, then Eqn

3.25 holds that:

P (Y
(i)
1 |Y (\i)

1 , X, Y2) ∝ P (Y
(i)
1 |Y (\i)

1 , X)P (Y
(i)
2 |Y (\i)

2 , Y
(i)
1 , Y

(\i)
1 , X)P (Y

(\i)
2 |Y (i)

1 , Y
(\i)
1 , X)

(3.25)

where Y
(i)
2 |Y (\i)

2 , Y
(i)
1 , Y

(\i)
1 is independent of X and Y

(\i)
2 |Y (\i)

1 is independent of X and

Y
(i)
1 . Therefore Eqn 3.25 can be further simplified:

P (Y
(i)
1 |Y (\i)

1 , X, Y2) ∝ P (Y
(i)
1 |Y (\i)

1 , X)P (Y
(i)
2 |Y (i)

1 , {Y (\i)
2 , Y

(\i)
1 }) (3.26)

In this formulation, P (Y
(i)
1 |Y (\i)

1 , X) is the predicted distribution obtained from Gaus-

sian Process. Hyperparameter estimation Φ̂1 = {µ̂0, σ̂
2
0, θ̂} in Gaussian Process is obtained

by MLE with {X,Y
(\i)
1 } as training set:

µ̂ =
1T Ĉ−1Y

(\i)
1

1T Ĉ−11

σ̂2
0 =

(

Y
(\i)
1 − µ̂

)T

Ĉ−1
(

Y
(\i)
1 − µ̂

)

n− 1

where Ĉ(k, l) = c(xk, xl) = exp

(‖xk − xl‖2
θ̂

)

(3.27)

And corresponding posterior distribution of Y
(i)
1 given Y

(\i)
1 and X is also Gaussian

distributed with mean and variance:
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p̂ = µ̂ + rTi Ĉ
−1
(

Y
(\i)
1 − µ̂

)

ŝ2 = σ̂2
0

(

1 − rTi Ĉ
−1ri

) (3.28)

where ri = [c(x1, xi), ..., c(xi−1, xi), c(xi+1, xi), ..., c(xn, xi)].

One of the shortcomings of aforementioned parameters of posterior distribution in Gibbs

Sampling is that the predicted variance ŝ2 according to Eqn 3.28 will not approach zero

as the number of iterations increases and corresponding sampled value Y(i) will remain

strongly stochastic. As long as the sampling procedure is efficient, the improvement of

reconstructed Y
(\i)
1 can be anticipated so that the predicted mean value Y

(i)
1 becomes more

trustworthy. Therefore an exponential decay factor is introduced in order to compel the

predicted variance to decrease to a preset small value as the number of iterations increases.

ŝ2up = exp

(

− t

b

)

ŝ2 +

(

1 − exp

(

− t

b

))

ε (3.29)

where t is the number of iteration, b is a tuning parameter which controls the decay rate

and ε is a small positive value comparing with the magnitude of ŝ2. With incorporating this

exponential decayed variance ŝ2up, the convergence rate of Gibbs Sampling can be improved.

As for Y
(i)
2 , when the Mixture Gaussian approximation of v holds, it is also considered

to be Gaussian Mixture distributed given Y
(i)
1 and distribution parameters of v shown in

Eqn 3.30:

P (Y
(i)
2 |Y (i)

1 , σ2) =
1

m

m∑

j=1

1√
2πσ

exp

(

−(Y
(i)
2 − Y

(i)
1 − µj)

2

2σ2

)

(3.30)

The only parameter to be estimated of v is its variance σ2 of each Gaussian component.

It can be obtained by calculating the sample variance of data set {Y (\i)
1 , Y

(\i)
2 }:

σ̂2 =
1

n− 1

∑

k 6=i

(Y
(k)
1 − Y

(k)
2 − µ(k))2 (3.31)

where µ(k) ∈ {µ1, µ2, ..., µm} is considered to be the “true” mean value of v at k-th sample.

Since the accuracy of σ2 is insignificant, the following trick in Eqn 3.32 is applied in order

to reduce the magnitude of σ̂2.

µ(k) = arg min
µ

(Y
(k)
1 − Y

(k)
2 − µ)2

where µ ∈ {µ1, µ2, ..., µm}
(3.32)

Hence posterior distribution of Y
(i)
1 can be further reformed as:
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P (Y
(i)
1 |Y (\i)

1 , X, Y2) ∝ N(f̂ , ŝ2up) ×
1

m

m∑

j=1

1√
2πσ̂

exp

(

−(Y
(i)
2 − Y

(i)
1 − µj)

2

2σ̂2

)

∝ N(f̂ , ŝ2up)

m∑

j=1

1√
2πσ̂

exp

(

−(Y
(i)
2 − Y

(i)
1 − µj)

2

2σ̂2

) (3.33)

To sample from this distribution, notice this original distribution of Y
(i)
1 can be taken as

a weighted Gaussian Mixture if the predicted continuous distribution N(f̂ , ŝ2up) is simplified

to be a series of Dirac Delta function with a weighted value at Y
(i)
2 −µj shown in Eqn 3.34:

P (Y
(i)
1 |Y (\i)

1 , X, Y2) ≈ αδ(Y
(i)
1 − Y

(i)
2 + µj)N(f̂ , ŝ2up)

m∑

j=1

1√
2πσ̂

exp

(

−(Y
(i)
1 − Y

(i)
2 + µj)

2

2σ̂2

)

(3.34)

Y
(i)
1 |Y (\i)

1 , X, Y2 ∼







N(Y
(i)
2 − δ, σ̂2) w.p. p1

N

(

Y
(i)
2 − δ +

2δ

m− 1
, σ̂2

)

w.p. p2

...

N(Y
(i)
2 + δ, σ̂2) w.p. pm

(3.35)

And the weight pj of each model j is assumed to be the probability of its centre Y
(i)
2 −µj

with respect to the predicted distribution of P (Y
(i)
1 |Y (\i)

1 , X):

pj =
P (Y

(i)
1 = µj |Y (\i)

1 , X)
∑m

j=1 P (Y
(i)
1 = µj |Y (\i)

1 , X)
∝ 1√

2πŝ
exp

(

−(µj − f̂)2

2ŝ2up

)

(3.36)

Fig 3.6 sketches the relationship of posterior distribution of Y
(i)
1 given Y

(\i)
1 , X and the

distribution of Y
(i)
1 given Y

(i)
2 under Mixture Gaussian assumption (magnitude of probability

may be inconsistent). When sampling from the distribution of Y
(i)
1 |Y (\i)

1 , X, Y2, both of them

should be taken into consideration.
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Figure 3.6: Illustration of Sampling from Distributions of Y
(i)
1

Detailed sampling procedure is established as follow:

1. Obtain prior MLE of hyperparameters in Gaussian Process with respect to input X(\i)

and Y
(\i)
1 .

2. Calculate predicted distribution of Y
(i)
1 given X and Y

(\i)
1 based on Gaussian Process

prediction step.

3. Get the potential modes of Y
(i)
1 with respect to Y

(i)
2 and calculate their weight from

predicted distribution P (Y
(i)
1 |Y (\i)

1 , X) respectively.

4. First, sample from a uniform distribution and combine the weights of each identity to

determine which mode identity j that Y
(i)
1 belongs to.

5. Second, sample from the distribution N(µj , σ
2) to get y∗1 as a sample of Y

(i)
1 and use

it to update Y1.

The efficiency of this Gibbs Sampling procedure has been tested the data set generated

from a nonlinear model structure.

3.4.3 Summary of Algorithm

To conclude, the whole iterative procedure of proposed algorithm is presented in Fig 3.7.

To obtain an improved Gaussian Process output Y1 from available measurements X and Y2,

Gibbs Sampling is applied in each and every iteration. In a certain iteration, i-th sample is
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the following nonlinear model in Eqn 3.37 is adopted. Fig 3.8 shows the function value of

this nonlinear model and it is of significant nonlinearity.

y = sinx + 2 sin2(x− 5) + sin
(x

2
− 10

)

+ 2 sin
x

2
(3.37)
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Figure 3.8: Trend Plot of Nonlinear Model Used

Similar to the numerical example as in Chapter 2, different step sizes of quantization

module ∆ are added to the output of this nonlinear process. The input is designed to

be white Gaussian noise. For efficiency, the training data set is generated through Latin

Hypercube Sampling in order to obtain a comprehensive description of process character-

istic. After obtaining the original output from this model, a quantization module is added.

The proposed Gibbs Sampling method is conducted on the quantized data in order to re-

construct the original output. The maximum number of iterations is set to be 100 which

is sufficiently large with acceptable computational time. When the maximum number is

reached, the mean value of last 50 iterations of each sample is taken as the reconstructed

output.

To evaluate the proposed algorithm, performances of original quantized data and recon-

structed data by proposed algorithm in training the Gaussian Process model are compared.

Since Gaussian Process is a non-parametric and surrogate modelling approach, the perfor-

mance of identification is validated by prediction on cross-validation data instead of directly

comparing model parameters with the “real” one. Root Mean Square Error (RMSE) and

Correlation Coefficient (CorrCoef) which are widely applied in evaluation of soft sensor

performance, are selected as two evaluation criteria for comparing the predicted and real

output. These two indicators are defined as Eqn 3.38. Also, to ensure fair and valid com-

parisons, the same optimization function from Matlab with default settings is used to train
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the hyperparameters of Gaussian Process model in both cases.

RMSE =

√
√
√
√ 1

N

N∑

i=1

(y(i) − ŷ(i))2

CorrCoef =

∑N
i=1 (y(i) − ȳ)

(
ŷ(i) − ¯̂y

)

√
∑N

i=1 (y(i) − ȳ)2
√
∑N

i=1

(
ŷ(i) − ¯̂y

)2

(3.38)

where y is the reference and ŷ is the predicted value.

Table 3.2 shows the prediction performance on the cross-validation dataset of two Gaus-

sian Process models trained from quantized data and reconstructed data respectively with

step size ∆ = {0.5, 1, 1.5, 2, 2.5, 3}. Similar to the performance of Flat-topped Gaussian

noise distribution in Chapter 2, as the quantization step size increases (resolution decreases),

the prediction performance of Gaussian Process model trained from quantized data decays

significantly. Meanwhile the reconstructed training set can still provide a Gaussian Process

model with relatively satisfactory prediction performance. In addition, as an illustration

of the efficiency in reconstruction of proposed algorithm, Fig 3.9 shows the comparison of

quantized output data, reconstructed data and original output data before quantization

from training set when the step size is set as ∆ = 2. It can be seen that in training set, even

if the quantization procedure has eliminated some of the local trends in the original out-

put, the proposed de-noising algorithm is capable of reconstructing this information from

quantized data and provides a better knowledge of model output. Moreover, Fig 3.10 shows

that when quantization effect is not significant (∆ = 0.5), reconstructed data stays close

to the original one and corresponding prediction performances of two data sets are similar.

Therefore, it can be claimed that when the influence of uniform uncertainty is significant,

the true characteristic of this nonlinear model can be better learned by Gaussian Process

with the reconstructed data which will yield more accurate prediction performances. In

addition, when the influence of uniform uncertainty is not obvious, the proposed de-noising

algorithm can also maintain a good prediction performance without introducing extra error

to the training data set.
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Table 3.2: Prediction Performance of Gaussian Process Trained by Quantized and Recon-
structed Data

Contaminated Data Reconstructed Data

RMSE CorrCoef RMSE CorrCoef

∆ = 0.5 0.6823 0.8759 0.6760 0.8678

∆ = 1 0.7058 0.8647 0.6916 0.8699

∆ = 1.5 1.2398 0.6453 0.9436 0.7970

∆ = 2 1.1843 0.6956 0.7679 0.8499

∆ = 2.5 1.7446 0.4102 0.9015 0.7842

∆ = 3 1.6100 0.5503 1.0944 0.7561

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Samples

O
u
tp

u
t

 

 

Reconstructed Data

Quantized Data

Original Data

Figure 3.9: Reconstruction Performance in Training Set (∆ = 2)
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Figure 3.10: Reconstruction Performance in Training Set (∆ = 0.5)
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3.6 Discussion & Future Work

The key finding of this chapter is the establishment of a de-noising algorithm for Gaussian

process modelling with Gibbs Sampling in order to achieve better modelling accuracy in

data set with additional Flat-topped Gaussian distributed noise. Unlike the revised noise

distribution function proposed in Chapter 2, Gibbs Sampling approach is incorporated to

sample from the posterior distribution of every output measurement modelled as Gaussian

Process. After maximum number of iterations is reached, use the average of last few sam-

ples to reconstruct the original output of Gaussian Process and train its hyperparameters

correspondingly.

One of the potential limitations in the proposed approach is that it is computationally

expensive. In order to attain a relatively accurate reconstruction of the original output, it is

necessary to undergo a large number of iterations while Gaussian Process is trained in every

iteration which calls for solving a nonlinear optimization problem. Hence the computational

load increases significantly and such deficiency will prevent it from on-line implementation.

Moreover, there is still much space of improvement for the proposed algorithm. A few

potential improvements are listed as follows. Both mathematical rigorousness and scope of

applicability of the proposed algorithm can be improved.

1. Development of multivariate Flat-topped Gaussian distribution: if similar marginal

and conditional distribution properties can be proved for Flat-topped Gaussian distri-

bution, then it is possible to formulate multivariate Flat-topped Gaussian distribution

imitating multivariate Gaussian distribution and allows so-called “Flat-topped Gaus-

sian Process” to be applied in process modelling.

2. Arbitrary form of additional noise distribution: since Gaussian Mixture model is

capable of approximating arbitrary distributions, an enlarged set of additional noise

distributions can be handled by revision of the Mixture Gaussian approximation part

in the proposed algorithm.

3. Analytical formulation of de-noising step: Gibbs Sampling is usually considered to

be a randomized alternative to the deterministic inferential algorithms such as Ex-

pectation Maximization (EM) and Variational Bayes (VB). These approaches can be

considered in the de-noising step so as to obtain analytical reconstruction of proposed

distribution.
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Chapter 4

Design of Emulsion Flow Soft

Sensor for SAGD Process

An accurate and granular measurement of key process variable is vital in monitoring and

subsequent advanced control of industrial processes. However, when it is difficult or impos-

sible to measure the key variable directly, an inferential model based on relevant measure-

ments can be established as an alternative. As an example of statistical modelling method

applied in industrial problems, development of emulsion flow soft sensor in Steam Assisted

Gravity Drainage (SAGD) process is introduced in this chapter. Details of both off-line

modelling approaches and practical issues in on-line implementation are covered in order to

attain a representative coverage of industrial applications.

4.1 Introduction

In the last one and half decade, Steam-assisted Gravity Drainage (SAGD) which is an

enhanced in-situ oil recovery technique, has grown to be one of the primary thermal recovery

methods in extraction of Athabasca Oils Sands located in northern Alberta [67]. It has been

determined based on the geological and physical features of Athabasca Oils Sands that only

10% of it is located at the surface and can be extracted by surface mining method in [68].

Therefore, SAGD process combines the advances in well drilling and steam injection to

enhance the extraction ability and improve its efficiency [69]. It has been claimed to be

twice as thermally efficient as the Cyclic Steam Stimulation (CSS) method [70]. The primary

production performance parameter in SAGD process is the rate of heavy oil produced which

is of profound interest. Tracing back to 1980s, Dr. Butler pioneered in exploration of SAGD

process and proposed equations for predicting the maximum oil recovery rate [71]. In

practice, real-time flow rate measurement of produced fluids from wells is directly related
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to the amount of oil extracted and vital to achievement of production objectives, while

sometimes it is expensive or even impossible to attain this measurement by hardware sensors

due to the multiphase mixture nature of the fluid that consists of various components.

On the other hand, soft sensor incorporates mathematical modelling technology to make

it possible to infer the value of interested variables based on information about other relevant

variables as well as process dynamics. As an economical alternative to hardware sensors, it

is widely applied in industrial practice such as in steel industries [72], machining processes

[73], and chemical plants [74]. Soft sensors have enjoyed rapid development during last

few decades. Recently, as statistical modelling and data analysis techniques developed

more sophisticated approaches, such as Bayesian Inference [12], Just-in-Time methods [75],

Expectation Maximization [76] and Variational Bayesian algorithms [23] are incorporated

in soft sensor development. Specifically in oil sands industry, soft sensor projects also have

been conducted including SAGD process [77, 78, 79, 76]. The soft sensor development

procedure can be described by Fig 4.1. In addition to testing better advanced statistical

modelling approaches proposed in previous chapters, a number of practical issues that arise

in different stages of soft sensor development are introduced and corresponding solutions are

proposed by either referring to previous work or utilizing other techniques. Owing to the

collaboration with industrial partners in oil sands industry, detailed P&ID diagrams and

process descriptions as well as first hand on-site data are available for model establishment

and validation throughout this work and its on-line implementation is in progress.
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Figure 4.1: Flowchart of Soft Sensor Development Procedure

The remainder of this chapter is organized as follows: Section 4.2 gives a brief description

of SAGD process. Section 4.3 is mainly concerned about the model identification procedure

and accompanying practical issues. An additional robust layer is developed in Section

4.4. Data reconciliation and bias correction techniques are introduced and incorporated

for on-line implementation in Section 4.5. Performances of each approach is considered in

corresponding section. Section 4.6 draws a conclusion of present work and suggests potential

improvements for the future. Section 4.7 concludes this chapter.

4.2 Process Description

Fig 4.2 is an illustrative figure of a typical well pair infrastructure in SAGD process. A

well pair is composed of two horizontal wells drilled underground in parallel, of which one

is injection well and the other is producer well. Steam generated from upstream steam

generator is injected into the underground oil-sand layer through injection well in order

to create a steam chamber. Due to the high temperature and pressure of steam injected,

viscosity of bitumen is reduced, which makes it possible for bitumen to detach from sands

and get carried away by water flow. A fluid mixture composed of bitumen, water and gas, is
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pumped out by mechanical lifting pump through producer well to central well pad. A well

pad is a collection of well pairs close to each other. Emulsion flow streams from these well

pairs converge to the central well pad. The cumulative flow is further transported to a group

separator that separates components of emulsion for further treatment. An accurate and

granular measurement of the emulsion flow is essential to realization of control objectives

as well as process reliability.

Figure 4.2: Well Pair in SAGD Process. Source: JAPEX

At present, for some well pads, a Vx meter has been installed after producer well of

each and every well pair which provides a continuous and fast-rate individual emulsion flow

rate measurement. However, on some other pads, well pairs have no access to this hardware

sensor and their emulsion flow rate is measured through a test separator with flow meter

before converging to well pad once every two weeks. This measurement procedure rotates

between well pairs and only one well pair flow measurement can be obtained each time.

A fast-rate overall emulsion flow measurement from a well pad is however always available

regardless of hard sensor availability in individual well pairs, which provides indirect infor-

mation about individual flows. Since fast rate measurements of other relevant variables such

as pressure, temperature and pump frequency are always available, the objective of this soft

sensor project is to establish an inferential model of emulsion flow rate as an alternative to

hardware sensors.

4.3 Model Identification

4.3.1 Data Preprocessing

Generally speaking, the three fundamental steps in data-driven modelling framework are

data collection, data preprocessing and model identification. Importance of data prepro-
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cessing has been emphasized by Sharmin [80] since it plays a key role in off-line modelling

and successive on-line application. Several data preprocessing strategies listed here are

applied to raw industrial data set collected from on-site DCS in order to filter disruptive

information and achieve better modelling performance.

Outlier Detection & Replacement

In raw data collected directly from industrial site, there exist possible outliers and unreliable

measurements caused by extrinsic disturbances, instrumentation failures and/or process

fluctuations. The points circled in Fig 4.3 are a few examples of potential outliers in one

variable measurement. The genuine trend of this variable is concealed in comparison to

these extreme value. Reliable data should be guaranteed in advance in order to establish a

good model and obtain accurate predictions. Here a 3σ rule is applied to detect and replace

potential outliers shown in Eqn 4.1. 3σ is a rule of thumb in data analysis in different areas

from epidemiology [81] to chemical reactions [82]. Assuming that the data measurements of

xk are samples drawn from a Gaussian distribution and denote µk and σk as sample mean

and variance estimated, then |xk(t)−µk

3σk
| ≤ 3 will have approximately 99.7% probability. Any

measurement outside this empirical boundary is considered as outliers and replaced with

the measurements in front of them. Fig 4.4 is the same variable measurement as 4.3 after

outlier detection & replacement procedure. Though it is still noisy, influence of extreme

points is eliminated and the real trend can be seen.

0 1 2 3 4 5 6

x 10
4

 

 

Noisy Input with Outliers

Figure 4.3: Example of Noisy Input Data with Outliers

x
(update)
k (t) =

{
xk(t) if |xk(t) − µk| ≤ 3σk

x
(update)
k (t− 1) otherwise

(4.1)

(4.2)

60



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

 

 

Input: Outlier Replaced

Figure 4.4: Example of Noisy Input Data with Outlier Replaced

Smoothing

Smoothing is a specific approach that “massages” the original measurement to make it

smoother so as to avoid abrupt changes in both input and output of soft sensor. This

strategy is employed here because it is observed that in fast-rate 10-min data set, there are

severe peaks appearing frequently, especially in pressure measurement, which by nature does

not reflect the genuine change in process variables. For simplicity, a smoothing equation

is defined in Eqn 4.3. For a fixed small time window v, starting at time t, all samples

within the window are replaced by the median of v + 1 values. Particularly for this peak

phenomenon, median is superior to mean since it is less influenced by extreme observations.

Fig 4.5 displays the effect of smoothing procedure on noisy pressure measurement.

However, this procedure is not required, if the measurement is averaged over a longer

period of time, say 5 hours, in which case peaks will be eliminated automatically. To

conclude, smoothing is only necessary when the sample rate is fast enough.

x(t, t + 1, ..., t + v) = median (x(t), x(t + 1), ..., x(t + v)) (4.3)

After conducting aforementioned preprocessing approaches, data is ready for identifica-

tion.

Model Structure & Variable Selection

Unlike first principle models which are based on complex process mechanisms, model struc-

ture in data-driven models is relatively simple and effective for most industrial applications.

After interpreting the process and performing correlation analysis between available input
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Figure 4.5: Comparison of Pressure Measurement Before/After Smoothing

variables and the target emulsion flow rate variable, the most relevant input variables were

selected for model building. These are listed in Table 4.1. A model structure in Eqn 4.4 was

chosen. Fig 4.6 is an illustration of the process diagram in this project with labels depicting

target and input variables.

Table 4.1: Process Variables in Model Building

Notation Variable Type Description

y Output Emulsion Flow Rate (sm3/hr)
x1 Input Mechanical Lift Pump Frequency PV (Hz)
x2 Input Produce Well Casing Discharge (kPa)
x3 Input Produce Well Down Hole N2 HDR (kPa)
x4 Input Produce Well Down Hole (Maximum Temperature) (◦C)

y(t) = θ1x1(t) + θ2x2(t) + θ3x3(t) + θ4x4(t) + θ0 (4.4)

4.3.2 Training Parameters

In addition to Ordinary Least Square method for parameter identification, a variety of

other data-driven model identification algorithms were applied and evaluated and are dis-

cussed. Efficiency and advantages of these advanced identification algorithms are reflected

by comparison with OLS methods. However, it is necessary to point out that in terms of

applicability there are some limitations of the advanced identification algorithms, such as,

1) Flat-topped Gaussian Noise distribution is only applied in off-line training procedure

to obtain model parameters; 2) Due to the non-parametric nature and matrix inversion

requirements of Gaussian Process, it is not recommended in real-time prediction especially

when the data set is large.
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Table 4.2: Data Description in Model Building

Sample time 5-hr average, once every 2 weeks
Sample size Around 60
Time range Apr 2014 ∼ Apr 2015
Partition 1

3 training and 2
3 cross-validation

e(i) =

{
0 if |y(i) − ŷ(i)| ≤ d

(|y(i) − ŷ(i)| − d)2 otherwise

MSE =
1

N

N∑

i=1

e(i) (4.5)
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Figure 4.7: Model Performances on Well Pair 1
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Figure 4.8: Model Performances on Well Pair 2

It can be seen from the comparison results that for both two well pairs, the model trained

based on Flat-topped Gaussian noise assumption outperforms the Gaussian one. In other

word, if the reference itself has mild inaccuracy issue that reduces its reliability, proposed
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Table 4.3: Quantitative Model Performance

Well Pair 1 Well Pair 2

Gaussian Flat-topped Gaussian Gaussian Flat-topped Gaussian

MSE 2.8611 0.6230 1.6302 0.5567
Performance Index 25/45 29/45 24/56 37/56

Flat-topped Gaussian noise assumption can provide more reasonable parameter estima-

tion with a certain degree of tolerance to reference error and therefore improve regression

performance.

Gaussian Process Modelling

As discussed it is introduced in Chapter 3, Gaussian Process modelling is a typical non-

parametric modelling approach which basically relies on a distance based similarity measure

between values of input variables to make predictions. Owing to its property that the cor-

relation between input variables determines the corresponding prediction, Gaussian Process

is applied to model the residual caused by deviated input variable measurements.

The data set tested is similar to that used in previous subsection of Flat-topped Gaussian

noise distribution. The most outstanding feature of the well pair tested here is that there is a

relatively long abnormal period during which variable measurements except pump frequency

behave oddly and should not be considered in model prediction. Here the prediction of

Gaussian Process, can be more accurate since it reduces to the prior mean value if input

variables deviate significantly from the reliable range defined by the training set. Eqn 4.6

is the prior distribution of model structure and Eqn 4.7 is the posterior/prediction stage.

In formulation of Eqn 4.7, output is composed of two parts. ŷ1(t) is obtained by pump

frequency, which is assumed to be normal in the whole time range. f̂(t) and ŝ2(t) are

posterior distribution parameters of ŷ2(t) calculated from Gaussian Process model, which

is considered to be the residual between ŷ1(t) and y(t). r(t) is the correlation vector of x(t)

with respect to the Euclidean distance.

y − y1 ∼ GP (µ, σ2C)

where C(i, j) = exp

(

−1

θ
‖xi − xj‖2

)
(4.6)
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ŷ(t) = ŷ1(t) + ŷ2(t)

where ŷ1(t) = θ1x1(t) + θ0

ŷ2(t) ∼ N(f̂(t), ŝ2(t))

f̂(t) = µ̂ + rT (t)C−1r(t)

(4.7)

The efficiency of Gaussian Process in residual prediction of a certain well pair with

deviated measurements in comparison to Ordinary Least Square method is presented in Fig

4.9 and corresponding quantified result in Table 4.4. Evaluation criterion is defined the

same as Eqn 4.8 in next subsection. It can be inferred that Gaussian Process works well

in this situation. However, Gaussian Process modelling method is not suitable for on-line

implementation of soft sensor especially when data set is huge since it requires complicated

matrix manipulations like matrix inverse and determinant calculation. In order to handle

this deviated measurement issue in input variables more efficiently, back-up model approach

is proposed in Section 4.2 as part of robust layer of soft sensor.
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Figure 4.9: Performance of Gaussian Process on Well Pair 1

Table 4.4: Quantitative Gaussian Process Performance

Gaussian Process Ordinary Least Square

RMSE 0.9521 0.0700
CorrCoef 0.9766 13.7378

4.3.3 OLS Performance Evaluation

Off-line testing results for soft sensors developed for individual well pairs are presented in

this section. The tested sensor model is built under linear black-box model assumption

with variable selection explained in Section 4.2 and its parameters are trained by Ordinary
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Least Square method. To attain a more comprehensive evaluation of variable selection,

model structure and regression method, it is first tested on individual well pairs with fast-

rate reference, then applied to a number of well pairs for which only slow-rate reference is

available, and finally on all well pairs from a certain well pad with no fast-rate individual

reference.

Well Pairs with Fast-rate Reference

Soft sensor model is first trained and validated on two well pairs from Pad 1, in which all

individual well pairs have the access to fast-rate granular flow rate measurement. Hence

both training and validation procedure are accomplished on fast-rate 10-min average data

set. Table 4.5 shows detailed data description for this off-line test.

Table 4.5: Data Description in Fast-rate Off-line Test

Well Pair 1 Well Pair 2

Sample time 10-min average
Sample size 49290 43266

Identification Set May ∼ July 2014
Cross-validation Set Jan ∼ Apr; Aug ∼ Dec 2014

Quantified cross-validation results are presented in Table 4.6. Root Mean Square Error

(RMSE) and Correlation Coefficient (CorrCoef) criteria defined in Eqn 4.8, were used for

evaluating the soft sensor performance. Trend comparisons shown in Fig 4.10 and 4.11 can

be used to visualize the sensor performance. In the case of fast-rate reference, prediction of

developed sensor is of satisfactory accuracy on cross-validation sets and matches the trend

well, though there exists a possibility of constant bias that can be easily handled by bias

correction step in on-line implementation.

RMSE =

√
√
√
√ 1

N

N∑

i=1

(y(i) − ŷ(i))2

CorrCoef =

∑N
i=1 (y(i) − ȳ)

(
ŷ(i) − ¯̂y

)

√
∑N

i=1 (y(i) − ȳ)2
√
∑N

i=1

(
ŷ(i) − ¯̂y

)2

(4.8)

Well Pad with Slow-rate Reference

After the developed soft sensors are validated by fast-rate well pair data, their performance

on all 14 well pairs from Pad 2 is tested and detailed data description is given in Table

4.7. Table 4.8 gives a quantitative description of sensor performance based on correlation
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Figure 4.10: Cross-validation Performance of Pad 1 Well Pair 1
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Figure 4.11: Cross-validation Performance of Pad 1 Well Pair 2
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Table 4.6: Quantitative Model Performance in Fast-rate Off-line Test

Well Pair 1 Well Pair 2

CorrCoef RMSE CorrCoef RMSE

Auto-validation 0.9878 0.5695 0.9789 0.6014
Cross-validation 1 0.9726 0.6057 0.9770 1.1665
Cross-validation 2 0.8749 5.0901 0.9685 0.7345

and RMSE. Obviously, sensor performance differs from well pair to well pair. In “good”

well pairs (coloured in red), the sensor performance is almost as good as the fast rate ones;

while in “less satisfactory” well pairs (coloured in blue) sensor performance is relatively poor

and thus it is not very reliable. In Section 4.5, these poor well pairs will be corrected and

improved through data reconciliation and bias correction strategy in order to simultaneously

achieve good individual and global prediction performance.

Table 4.7: Data Description in Pad 2

Input Variables Flow Rate Reference

Sample time 5-hr average, continuous Once every 2 weeks, 1 well pair each time
Sample size More than 1,000 Around 60
Time range Jan 2014 ∼ June 2015
Partition 1

3 training and 2
3 cross-validation

Table 4.8: Quantitative Model Performance of Pad 2

CorrCoef RMSE

Overall 0.7042 89.8191
WP1 0.3301 11.9376
WP2 0.1840 19.370
WP3 0.4467 14.3449
WP4 0.4464 9.2376
WP5 0.8334 7.5466
WP6 0.9267 2.2470
WP7 0.2888 5.5988
WP8 0.8357 2.9589
WP9 0.9851 0.8842
WP10 0.8571 4.5152
WP11 0.4225 9.8918
WP12 0.6887 9.0595
WP13 0.3544 15.4104
WP14 0.3814 11.0190

69



4.4 Robust Layer Development

4.4.1 Sensor Robustness

In on-line implementation of soft sensor, the counterpart of data preprocessing in off-line

modelling is the construction of robust layer, as both of them aim at eliminating or miti-

gating the influence of outliers in measurement on sensor prediction. Sensor robustness is

vital. The most straightforward approach to building a robust layer involves employing a

3σ criterion for the input measurements to generate a reliability indicator for soft sensor

prediction [78, 83]. Student t distribution is often used to describe measurement noise owing

to its nature of long tails and subsequent robustness to outliers [23, 11]. Advanced statisti-

cal approaches based on PCA and PLS are employed to enhance model robustness [84, 85].

Application of Just-in-Time and other locally-weighted or iterative weighted methods [86]

has also been proposed.

There is a trade-off between sensor robustness and number of warnings or alarms. As the

robust layer of soft sensor becomes more conservative, reliability of prediction it provides will

be enhanced; nevertheless, number of warnings and other unreliability indicators increases

significantly in the meantime. In this section, a 1-variable model based solely on mechanical

lifting pump frequency measurement is proposed as a backup for the original 4-variable

model so as to maintain a fair prediction performance even if process variables excluding

pump frequency behave abnormally. As an alternative to the original sensor, this back-

up model can give fair predictions when temperature and/or pressure measurements are

abnormal without affecting its reliability.

4.4.2 Back-up Model Development

In Section 4.3.2, dominance of pump frequency as the most influential process variable in the

sense of flow rate has been demonstrated primarily according to the correlation coefficients

between flow rate reference and pump frequency measurement. On the other hand, data

analysis in Section 4.3.1 points out that the other three process variable measurements,

namely two pressure measurements and one temperature measurement, are more prone to

be contaminated by outliers and severely fluctuating abnormal samples, while the pump

frequency measurement is supposed to be the most stable and reliable one. Consequently, a

simplified model with pump frequency measurement as the only input variable is a practical

choice for a back-up in case severe input failure affects any of the other three process

variables. Another advantage of back-up model is that its structure is even simpler than
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the 4-variable linear model shown in Eqn 4.9:

y = θ1x1 + θ0 (4.9)

The dominance of pump frequency can be further verified based on slow-rate reference.

Fig 4.13 displays the trends predicted by 4-variable model and back-up model in compar-

ison to the slow-rate emulsion flow reference of Well Pair 7 on Pad 2. By examining the

standardized trends of all four input variables as well as the output shown in Fig 4.12, it

can be concluded that due to potential fluctuations or abnormalities in process variables,

4-variable model gives a deviated prediction. Meanwhile, since there is no obvious jump in

pump frequency, a fair prediction is given by back-up model.
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Figure 4.12: Input and Output Trends of Well Pair 7
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Figure 4.13: Input and Output Trends of Well Pair 7

However, it is not practical to simply remove the other three input variables if we are

aiming at a good fast-rate prediction. In other words, pump frequency, which is piece-wise
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constant, can give only a rough prediction of slow-rate emulsion flow, but cannot predict

rapid changes in flow rate that may be triggered by other process variables. In Fig 4.14 and

4.15, segments of trend plots enclosed within green circles represent the situations where

pump frequency measurement remains constant but the 4-variable soft sensor can catch the

trend of flow rate measurement. The red curve is reference obtained by hard sensor, blue

one is the 4-variable model prediction and black one is the back-up pump frequency model.
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Figure 4.14: Example 1 of Limitation of Back-up Model
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Figure 4.15: Example 2 of Limitation of Back-up Model

To make a short conclusion of this study on feasibility and limitation of the simplified

model, different features of flow rate can be roughly categorized with respect to its speed

of variance.

1. Slow-rate trend which is mainly introduced by adjustments in pump frequency. The

dominance of pump frequency in flow rate is proved by analysing data from a couple

of different well pairs. As a consequence, pump frequency model is guaranteed to give
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a fair prediction of emulsion flow, regardless of abnormality in other variables, as long

as the pump is working properly.

2. Moderate-rate variation caused probably by changes in other process variables such as

casing pressure and downhole temperature. These variations are reflected in the trend

of emulsion flow rate in addition to the basic slow-rate trend which usually last for

several days. However, the test separator is not able to record this type of variation

due to the infrequent sampling procedure. As a frequent estimation of emulsion flow,

the developed soft sensor is required to capture these moderate-rate variations as well.

3. Fast-rate fluctuation which is considered as instrumentation noise and neglected. This

fluctuation can be filtered by averaging over time and soft sensor is not designed to

catch it.

4.4.3 Performance Evaluation

The soft sensor output performance is tested on two well pairs from Pad 2 shown in Table

4.9. To integrate the back-up model in the soft sensor, it is trained and executed in parallel

with the original 4-variable model. For now, a criterion mentioned in Eqn 4.10 is used

to determine model switch in on-line sensor testing. Performance comparison shown in

Fig 4.16 demonstrates that after applying back-up model, the number of unreliable sensor

predictions reduces considerably and prediction performance in comparison to the slow-rate

reference is improved significantly.

Table 4.9: Data Description in Back-up Model Testing

Sample time 5-hr average
Sample size Around 1500

Number of reference Around 60
Time range Apr 2014 ∼ Apr 2015

ŷ(t) = ŷback(t)

if ŷoriginal(t) < 0.
(4.10)
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Figure 4.16: Performance Comparison of Orignal Model and Orignal Model w/ Back-up

4.5 Data Reconciliation in Bias Correction

4.5.1 Data Reconciliation & Bias Correction Approaches in Soft Sensor

Development

In on-line implementation of a soft sensor, bias correction is a simple and widely used ap-

proach which can incorporate additional information regarding objective variable obtained

from existing hard sensor and/or lab analysis and improve the soft sensor performance.

Bias Correction

Bias correction, also known as bias update, is the most widely used strategy in on-line

correction stage of soft sensor due to its nature of simplicity and ease of implementation

[80, 87, 17]. A typical bias correction equation is formulated as Eqn 4.11, which is based

on the reference y(t) at time t and utilizes bias term to correct the original sensor output

ŷo(t + 1) at next time point.

b(t) = b(t− 1) + α (y(t) − ŷu(t))

ŷu(t + 1) = ŷo(t + 1) + b(t)
(4.11)

where α is a coefficient that balances the weight of historical bias b(t− 1) and current bias

y(t) − ŷu(t). It is employed in order to avoid jumps and fluctuations in corrected output

and provide a smoother result.

In this project, the most challenging issue with bias correction is that individual sensor

performance differs from well pair to well pair. As it is shown in Table 4.8, “good” well pairs

require little correction such as Well Pair 8 and 9, while prediction of “less satisfactory”

ones like Well Pair 4 deviate significantly from reference. Intuitively, it is not reasonable

74



to equally correct different well pairs regardless of their original performance. Moreover,

although the fast-rate flow measurement of individual well pairs is unavailable, overall

emulsion flow from all well pairs in a well pad is granularly measured by a hard sensor

and qualifies as a supplementary of slow-rate references. Therefore, data reconciliation is

introduced to reinforce the bias correction approach in presence of measurement redundancy.

Data Reconciliation

Widely applied in industrial practice, data reconciliation is a technology that incorporates

process mechanisms and mathematical techniques in order to automatically correct raw

measurements associated with measurement noise. Measurement noise is handled from

both optimization and probability perspectives as mentioned in Chapter 2, whereas data

reconciliation approach is preferable when additional process knowledge and redundant

measurements are available. The objective of data reconciliation is to harmonize original

measurements with physical constraints, say mass or energy balance, in a process. Primitive

concept and solution of data reconciliation is introduced in a variety of literatures [88,

89]. Yu [90], Chen [91] and Llanos [92] also indicate that more powerful ways of data

reconciliation can be developed under advanced statistical frameworks such as Bayesian

Inference, Principle Component Analysis and objective functions with enhanced robustness.

Fundamental data reconciliation strategy can be mathematically formulated as an op-

timization problem, presented in Eqn 4.12, which serves as the foundation for more sophis-

ticated strategies.

min
y∗

n∑

i=1

(
yi − y∗i

σi

)2

(4.12)

s.t. F (y∗) = 0 (4.13)

where y = {y1, y2, ..., yn} are raw measurements while y∗ = {y∗1, y∗2, ..., y∗n} are reconciled

ones. σi is standard deviation of individual measurement noise which reflects measurement

accuracy and reliability. F (y∗) = 0 represents additional constraints implanted to ensure

that process mechanisms are satisfied.

4.5.2 Problem Formulation

As introduced in Section 4.2, due to the following features of available on-line measurements,

additional data reconciliation approach should be applied when performing a bias correction

step in emulsion flow soft sensor development.
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- Measurement redundancy: both fast-rate overall and slow-rate individual emulsion

flow measurements can be obtained, which results in a situation of information re-

dundancy;

- Desynchronized individual sampling: measurements of individual emulsion flow are

not obtained simultaneously and

- Sparse objective variable measurement: ultimate goal of this project is to develop a

soft sensor for estimation of individual emulsion flows; however, individual reference

is obtained only once every two weeks.

Two constraints can be formulated according to available measurements in bias correc-

tion step:

Fast-rate:

p
∑

i=1

(ŷi(t) + bi(t)) = y(t) (4.14)

Slow-rate: ŷi(Ti) + bi(Ti) = yi(Ti) (4.15)

Notations are declared as follow:

ŷi(t): individual flow estimation of i-th well pair at time t;

bi(t): corresponding bias;

y(t): fast-rate overall flow measurement;

Ti: time point at which output flow from i-th well pair is measured through test

separator;

yi(Ti): flow rate measurement of i-th well pair at time Ti;

p: number of well pairs in a certain well pad.

Objective variables to be reconciled are fast-rate individual bias terms bi(t) which are

going to be utilized to correct original sensor outputs. Strictly following the typical for-

mulation of data reconciliation, an optimization problem should be established to minimize

the weighted summation of difference between original measurement and reconciled output

with hard constraints such as mass balance. According to process configuration in Section

4.1, all individual measurements are obtained by the same test separator. Therefore mea-

surement noise levels of individual well pairs are supposed to be identical and reconciliation
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deviation should hence be equivalently weighted. However, process mass balance equation

cannot be attained due to desynchronized sampling and therefore as an alternative, other

constraints should be formulated with respect to process knowledge. Since it is suggested by

process engineers that overall flow measurement is considered to be more accurate than the

individual one, overall fast-rate bias was adopted as the hard constraint whereas slow-rate

individual bias was included in objective function. Modified data reconciliation formulation

is shown in Eqn 4.16:

min
bi(Ti)

p
∑

i=1

(bi(Ti) − (yi(Ti) − ŷi(Ti)))
2

s.t.

p
∑

i=1

bi(t) = b(t)

(4.16)

It is obvious that this formulation is still affected by mis-synchronization issue, therefore

additional approximation should be considered in order to simplify this problem. Since the

prediction duration is over one year while individual samples are obtained once every two

weeks, individual bias term bi(t) of well pair i can be kept the same during the sample

interval between T
(k)
i and T

(k+1)
i , in other words Eqn 4.17 holds:

bi(t) = bi(Ti), when t ∈
[

T
(k)
i , T

(k+1)
i

]

(4.17)

Simplified problem statement is shown in Eqn 4.18, in which the only manipulated

variables at time t are the individual bias bi(t).

min
bi(t)

p
∑

i=1

(bi(t) − (yi(Ti) − ŷi(Ti)))
2

s.t.

p
∑

i=1

bi(t) = b(t)

(4.18)

Lagrange Multiplier [93] is included to solve this constrained optimization problem.

After introducing a Lagrange Multiplier, the dual problem is generated as:

min
bi(t)

p
∑

i=1

(bi(t) − (yi(Ti) − ŷi(Ti)))
2 + λ

(
p
∑

i=1

bi(t) − b(t)

)

(4.19)

After taking first order derivative over every bi(t) and λ then setting them to be zero,

the symbolic solution of this problem is as follows:
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bi(t) = bi(Ti) −
1

p

(
p
∑

i=1

bi(Ti) − b(t)

)

where bi(Ti) = yi(Ti) − ŷi(Ti)

b(t) = b(t− 1) + α

(

y(t) −
p
∑

i=1

ŷi(t)

)
(4.20)

As the dual problem shown in Eqn 4.19 is solved whenever there is fast-rate overall

measurement y(t) available, Eqn 4.20 will provide real-time fast-rate individual bias terms

that can be utilized to correct original sensor output. To summarize, bias correction works

simultaneously with data reconciliation approach in order to allow both individual and

overall predictions to be corrected as frequently as overall measurement is collected.

4.5.3 Performance Evaluation

In Section 4.3, individual well pair models were established and corresponding sensor esti-

mations can be obtained. Fast-rate real-time reconciled bias terms obtained by solving the

optimization problem defined in Eqn 4.18 are combined with original sensor output. Per-

formance of sensor output corrected with data-reconciled bias is presented and compared

with the one with blind correction.

The underlying assumption in data reconciliation is that all measurement noise are

zero-mean [94]. Thus as a preceding step, various approaches of gross error detection and

management are developed in order to eliminate potential impact of gross error in data

reconciliation. Fig 4.17 demonstrates potential existence of gross error between overall and

individual measurement instruments. A constant gross error egross is roughly estimated by

the difference between the mean of overall prediction and summation of original individual

predictions in Eqn 4.21.
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Figure 4.17: Existence of Gross Error between Overall Reference and Prediction

egross =
1

N

N∑

t=1

y(t) − 1

N

N∑

t=1

p
∑

i=1

ŷi(t) (4.21)

where N is the number of samples and p = 14 is the number of well pairs on Pad 2.

Table 4.10 shows the performance comparison of original soft sensor output, blind cor-

rection result and data reconciled correction with gross error removed when the weight of

current bias term is set to be α = 0.2. It is obvious that the performance of data reconcil-

iation bias correction strategy is superior both in the sense of correlation as well as mean

square error in comparison to slow-rate reference.

Trend plots of all 14 well pairs along with overall flow rate are also presented to prove

the efficiency of bias correction. It can be inferred from the results that for individual

well pairs, the proposed bias correction method with data reconciliation will maintain good

prediction performance for “good” well pairs such as Well Pair 9 and improve significantly

for “less satisfactory” ones like Well Pair 4.

4.6 Discussion & Future Work

A few points are proposed here regarding future work that can further improve the soft

sensor performance.

- The linear black-box model structure is validated in off-line testing procedure so far.

However, further literature review indicates the existence of a nonlinear relationship

between viscosity of bitumen, which is the most important objective component in
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Table 4.10: Sensor Performance Evaluation Before/After Bias Correction

Blind Correction Correction w/ DataRec

CorrCoef RMSE CorrCoef RMSE
Overall 0.8889 32.9932 0.8817 33.9909
WP1 0.3099 11.7908 0.7109 9.3359
WP2 0.2369 20.4643 0.7543 9.7723
WP3 0.5110 14.8324 0.8418 6.0244
WP4 0.4227 9.6382 0.6283 8.6695
WP5 0.8351 7.3922 0.9176 5.3936
WP6 0.8732 4.1366 0.8386 3.5873
WP7 0.4985 5.3870 0.8010 4.2897
WP8 0.7970 4.2693 0.8300 3.5259
WP9 0.8983 3.4288 0.8389 2.9935
WP10 0.7731 6.5466 0.8509 4.6129
WP11 0.5254 10.3475 0.9145 4.5869
WP12 0.7065 7.9238 0.8312 4.5290
WP13 0.4249 15.2720 0.6987 9.7499
WP14 0.4202 10.0941 0.8344 6.1980

emulsion flow, and the fluid temperature [95]. A nonlinear model structure may be

utilized to improve soft sensor performance.

- More sophisticated and rigorous algorithms such as dynamic modelling and Bayesian

inference [96], can be considered so as to solidify the reasoning of data reconciliation

and bias correction. Also, a smoothing coefficient should be included in order to

prevent the sensor from making noisy predictions.

- To avoid unnecessary or blind correction, reliability indicator of measurements will

be incorporated in future and influence of outliers and/or failures in reference can be

prevented.

- At present, on-line testing of soft sensor developed is ongoing. Aforementioned s-

trategies should be integrated and transformed into easily implementable modules for

real-time prediction and correction.

- To further make this soft sensor an eligible alternative to hardware sensors, additional

practical situations require to be taken into consideration. For instance, abnormality

in process variable measurements lasting for a while is usually observed when me-

chanical pump fails. Subsequent pump change will result in well pair shut down and

influence emulsion flow severely. This pattern of behaviour is observed in different well

pairs. Hence it is necessary for soft sensor to either recognize pump failure/change
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Figure 4.18: Overall Sensor Performance

behaviour automatically or read manual signals indicating the pump failure situation

from operators. Therefore, fault detection and diagnosis approaches are promising to

be an extension of current soft sensor.

4.7 Conclusion

In this work, an industrial application case study is presented as an example of methodolo-

gies in statistical modelling, process integration and industrial implementation. By synthesis

of theory and hands-on experiences of engineers, an emulsion flow soft sensor is developed

with embedded robust layer and bias correction stage. Off-line test of this prototype soft

sensor has been successfully completed and on-line testing is in progress.
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Figure 4.19: Individual Sensor Performance Before/After Bias Update: WP1-6
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Figure 4.20: Individual Sensor Performance Before/After Bias Update: WP7-12
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Figure 4.21: Individual Sensor Performance Before/After Bias Update: WP13-14
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Chapter 5

Conclusions

5.1 Summary of This Thesis

Data-driven identification of output noise model with Flat-topped Gaussian uncertainty was

investigated in this thesis. This Flat-topped Gaussian uncertainty in both linear models and

nonlinear models with output which follows multivariate Gaussian distribution was studied

and corresponding solutions were proposed respectively.

In the sense of parametric linear output noise model with independent Gaussian and

additive uniform noise, Flat-topped Gaussian distribution was proposed in Chapter 2 as the

noise distribution as an alternative to the regular Gaussian assumption. It is considered to

be the distribution of the summed random variable of a Gaussian and a uniformly distribut-

ed random variable. Both functional structure and parameter estimation were discussed in

this chapter. Moment fitting strategy can be applied to approximate the distribution of

the summation of random variables with other distributions. Robustness of Flat-topped

Gaussian distribution was studied and Flat-topped t distribution was investigated.

Chapter 3 introduced a de-noising algorithm with Gibbs Sampling method in order

to solve Gaussian Process model with additive uniform noise. Mixture Gaussian approx-

imation inherited from Chapter 2 was applied to facilitate the reconstruction of original

output from Gaussian Process. Since the posterior distribution of each individual sample

given the rest is available based on Gaussian Process assumption, an iterative procedure

of Gibbs Sampling was formulated to sequentially reconstruct the original output from the

measurement with extra uniform noise. This sampling method was further used to obtain

an accurate estimation of hyperparameters in Gaussian Process.

A case study of emulsion flow soft sensor was discussed in Chapter 4 as a synthesised ex-

ample of application of advanced statistical modelling approaches in real industrial objects.

In the off-line modelling step, datasets collected on-site were utilized to test the effectiveness
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of Flat-topped Gaussian distribution and Gaussian Process modelling approach introduced

in previous chapters. In addition, various practical issues which exist both in off-line model

identification and on-line implementation were considered in this work.

5.2 Directions for Future Work

Throughout this thesis, statistical modelling and parameter estimation strategies are pro-

posed and discussed in presence of additional uniformly distributed uncertainty in output

noise model. For deterministic model structure with white Gaussian and additional uniform

noise, Flat-topped Gaussian noise distribution is established by moment fitting strategy. To

move one step further, Gibbs Sampling method is incorporated to solve nonlinear and corre-

lated output model with additional uniform uncertainty under Gaussian Process framework.

There are a few points which are still open for investigation in the sense of both theoretical

and practical perspectives.

From statistical aspect, in order to enhance the robustness of the identification algo-

rithm, functional structure and parameter estimation of Flat-topped t distribution can be

obtained by rigorously following the moment fitting strategy. Another possible statistical

extension is the formulation of multivariate Flat-topped Gaussian distribution in case of

correlated output with additional uniform noise. In this case, the “Flat-topped Gaussian”

Process may emerge as an alternative to the Gaussian Process as the Flat-topped Gaussian

distribution replaces the Gaussian distribution.

Meanwhile, due to the flexibility of Mixture Gaussian assumption, non-Gaussian noise

distributions other than uniform one can be handled similarly in Gaussian Process modelling

by going through Gibbs Sampling procedure. Furthermore, better statistical inferential ap-

proaches regarding posterior distributions, such as Expectation Maximization and Varia-

tional Bayes, can be utilized to substitute Gibbs Sampling method and provide analytical

solutions instead of sampling so as to improve the computational efficiency.

Efficiency of proposed statistical modelling approaches should be improved for practical

applications. For Flat-topped Gaussian noise distribution, if the analytical solution of

Maximum Likelihood Estimation can be obtained, then a recursive parameter estimation

algorithm may be achieved similarly as Recursive Least Square method. For Gaussian

Process modelling with Gibbs Sampling, if potential sparseness of the correlation matrix

is taken into consideration, the optimization step within each iteration will be simplified;

therefore the computational complexity of this reconstruction algorithm can be reduced,

which makes it on-line implementable.
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Additional practical issues in Emulsion Flow soft Sensor project should also be consid-

ered. Before on-line implementation, it is necessary to convert the off-line data preprocessing

techniques into real-time implementable procedure. More sophisticated approaches in data

reconciliation, (e.g., estimating the noise covariance matrix in the objective function) may

contribute to the performance improvement of bias corrected soft sensor especially when

the original one is unsatisfactory.
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