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Abstract

Static mixers are in-line motionless devices placed into a pipe to promote blending

of miscible fluids or dispersion of immiscible liquids. These inserts are characterized

by the mixing performance and the pressure drop they create. New designs of static

mixers are continuously proposed to meet certain requirements of the final product.

Instead of manufacturing prototypes of different designs and conducting costly ex-

periments to assess the characteristics of inserts, it is suggested to use computational

fluid dynamics (CFD) to visualize and quantify the performance of new insert designs.

In this study, we demonstrate how CFD can be efficiently used to assess mixing via

mean age theory for turbulent flow across a six element Kenics mixer.

In this study, the mixing assessment of the Kenics mixer was performed by eval-

uating the mean age distribution for a range of Reynolds numbers between 1 and

12 000 covering laminar, and turbulent flow regimes. Scalar plots of mean age were

analyzed for each Reynolds number. Special emphasis was placed on the analysis of

the turbulent flows. The frequency distribution of mean age was also evaluated at

various cross-sections within the mixer for different Reynolds numbers. The surface

average distribution of mean age revealed multi-modal distributions of the mean age

for turbulent flows. Different visualisation techniques and a machine learning model

(Gaussian Mixture Model) was used to find the Gaussian curves constituting the

multi-modal distribution. The visualisation techniques pertaining to the field of data

science were introduced into the field of CFD to allow for deeper insights.
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‘Measure what is measurable, and make measurable what is not so‘

-Galileo Galilei
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Chapter 1

Introduction

Static mixers are motionless in-line inserts widely used in continuous processes as

an alternative to mechanical agitators [1]. Compared to conventional agitators, they

allow achieving similar or better mixing performance within less time and at a lower

cost. Typically, several inserts are placed in-line and housed in a pipe. The geometries

of these inserts are designed to promote the radial redistribution of the passing fluids,

thereby enhancing mixing. Since the power requirement is limited to overcoming the

pressure drop across the mixer length, these mixers in certain cases require lower

energy consumption than, for instance, stirred tanks [2]. Also, the absence of moving

parts leads to lower or no maintenance costs. As a result, a wide variety of static

mixer designs have been proposed in order to meet certain mixing requirements in a

specific application. Guidelines on how to select a proper static mixer for a specific

process at given flow conditions can be found in Refs. [3], [4].

Regardless of a broad range of available static mixer designs, new designs are being

actively developed to ensure high levels of mixing in novel applications (Ref. [5] and

references within). Optimization of the proposed design is traditionally performed

experimentally by trial and error considering previous experience [1]. Experimental

investigation of each iteration of insert geometry can be time-consuming, expensive,

and environmentally unfriendly (disposal of fluids and material of mixer prototypes)

[3]. As an alternative and powerful addition to experimental investigation, numerical
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simulations using computational fluid dynamics (CFD) can be efficiently used to

assess and optimize the mixing performance of proposed designs of static mixers and

identify optimum operating conditions.

There are a number of studies on CFD simulations of static mixers that focus on

laminar flow regime [6]–[8]. However, open literature lacks publications presenting

CFD assessment of mixing effectiveness of static mixers in the turbulent regime. A

numerical study by Lang et al. [9] reported the analysis of mixing process in the SMV

static mixer at the Reynolds number of 426 000. This study is among the first that

demonstrates the power of numerical simulations to gain deeper insight into the flow

and mixing in static mixers. Van Wageningen et al. [8] assessed the capabilities of

various CFD methods to study the dynamic flow in a Kenics mixer. The authors

presented the results in terms of velocity profiles, power spectra, and flow structures

for a range of Reynolds numbers from 10 to 1000. A general correlation for pressure

drop across a Kenics mixer was proposed by Song and Han [10] using data generated

by CFD simulations. Numerical simulations of turbulent flow in an industrial heli-

cal static mixer was performed by Rahmani et al. [11]. This study primarily shows

how to extract information useful for mixing assessment. Flow patterns and mix-

ing behavior of Kenics mixer were studied numerically by Kumar et al. [12]. The

authors investigated the effect of the flow rate and the number of mixer elements

on the hydrodynamics and pressure drop predictions over Reynolds numbers ranging

from 1-25 000. Turbulent mixing and residence time distribution in high-efficiency

vortex (HEV) mixers were studied using CFD by Habchi et al. [13] for the Reynolds

numbers from 7500 to 15 000. Coroneo et al. [14] performed CFD simulations of

corrugated static mixers for turbulent applications. A vigorous assessment of the

adopted CFD approach was presented including analysis and validation of velocity

profiles, turbulent quantities, and mixing effectiveness. A series of publications re-

porting on experimental and CFD studies of the pressure drop [15], the residence

time distribution [16], and the mixing homogeneity [17] are available for selected
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static mixers operated in laminar and turbulent flow regimes. Based on the results

of CFD simulations, Medina et al. [18] proposed a novel parameter (the M-number)

to evaluate the performance of static mixers for turbulent applications.

The assessment of a mixer design typically involves characterization of the pres-

sure drop across the mixer, flow patterns and structures, turbulence characteristics

and evaluation of the temporal and spatial mixing effectiveness [3]. For the case

of miscible liquids, which is a focus of the present study, spatial mixing refers to

the homogeneity of the sample of fluid across a given cross-section and is often re-

ferred to as radial mixing [4]. The temporal mixing refers to the time spent by a

molecule within the system and determines the mixing of fluid in the axial direction

[19]. For closed systems (systems with singular inlet and outlet), spatial mixing can

be quantitatively determined by the striation thickness in laminar flows [7] and by

the coefficient of variation in turbulent flows [4]. When a novel insert design is being

developed, experimental assessment of mixing at the stage of prototype development

can be substantially improved by CFD simulations [11]. Building on these past works,

the major goal of this thesis is to show how mean age theory can be used to quantita-

tively and qualitatively assess mixing performance of novel mixer designs that should

operate in the turbulent regime.

1.1 Definition of Mixing

The first published quantitative assessment of mixing can be dated back to Danck-

werts [20]. Since then a lot has changed and over the years many new concepts and

parameters to assess mixing have been developed and validated. Though a recent

publication by Kukukova et al. [21] highlights that the field of industrial mixing lacks

a single rigorous definition of mixing which can be evaluated by experiments and

quantified by theories and equations. Kukukova et al. [21] establishes that mixing

can be appropriately assessed by determining three dimensions of mixing, namely

being intensity of segregation, scale of segregation and the rate of change of segrega-
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tion. The first dimension focuses on the instantaneous variation in the concentration.

The second dimension defines the instantaneous length scales of the mixing and the

third dimension defines the rate of reduction in segregation or increase in clustering

of minor species. Recently Montante et al. [22] performed a quantitative analysis of

mixing on SMV static mixer using CFD by assessing parameters that define mixing

in three dimensions.

In the current study we keep the recent definition in mind to develop better mixing

assessment tools that can more accurately and profoundly describe the performance

of mixing in a static mixer.

1.2 Ways to Assess Mixing

The increase in computational power and its ease of accessibility has given rise to

computational techniques to analyse mixing between two fluids. The most common

techniques used to determine the mixing efficiency of a mixer involve evaluation of

intensity of segregation using the Lagrangian particle tracking or injection of con-

taminant within the flow, which imitates the dispersed flow. The Lagrangian particle

tracking involves injection of massless particles within the computational domain from

a given point imitating the injection of dispersed phase within the continuous phase.

The trajectories of the injected particles are analysed to evaluate mixing efficiency

or zones of low and high mixing within the computational domain. Rahmani et al.

[23] injected around 1225 million particles into a turbulent flow to evaluate not just

the mixing efficiency but to also reveal the mixing patterns and their evolution with

time. The injection of a large number of particles and their tracking demands high

computational overhead and despite the significant computational demand they yet

fail to capture the diffusive ability of the fluids. Hobbs and Muzzio [24] also used La-

grangian tracking of particles in a flow passing through a six element Kenics mixer to

study mixing. They noticed the presence of small islands for the flows corresponding

to the Reynolds of 100. The presence of such islands was identified as barriers to the
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efficient mixing.

1.2.1 Residence Time Distribution

In the later techniques, i.e. the injection of contaminant in the flow, the concentration

of the injected species is measured at the outlet to obtain a distribution curve (also

known as the residence time distribution (RTD)). The moments of the distribution are

then analysed and compared to evaluate the efficiency of the mixer. The concentration

of the contaminant can also be used to deduce the spatial mixing within the mixer

by evaluating the coefficient of variance. The quantitative determination of temporal

mixing can be performed by numerically evaluating residence time distribution of the

system [4].

To estimate the RTD of a closed system (i.e with one inlet and one outlet), a small

amount of tracer is injected into the system. Then the exit concentration of the tracer

at the outlet, C(t), is measured until the injected tracer is completely washed out

from the system. The time during which it happens is denoted as t∞. The ”E-curve”,

or the distribution, is mathematically represented as follows:

E(t) =
C(t)

t∞∫︁
0

C(t)dt

(1.1)

The first moment of the distribution determines the average amount of time spent

by a fluid molecule within the system, i.e. the mean residence time τm:

τm =

∞∫︂
0

tE(t)dt (1.2)

The study carried out by Abou Hweij and Azizi [25] points out that RTD analy-

sis could help reveal the existence of dead volumes or occurrence of channeling or

bypassing within the device.

The second and the third moments of the curve determine the variance, γ2, and

the skewness, sk, of the distribution, respectively, and are calculated as follows:
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γ2 =

∞∫︂
0

(t− τm)
2E(t)dt (1.3)

sk =

∞∫︁
0

(t− τm)
3E(t)dt

τ 3m
(1.4)

Using these quantities, we can assess the mixing performance of the system, for

instance, by evaluating the coefficient of variance, CoV = γ/τm, of the distribution.

A CoV of zero indicates complete distributive mixing, whereas CoV of one indicates

total segregation.

Stec and Synowiec [16] evaluate and compare the RTD obtained by injecting the

contaminant within the Kenics and Koflo mixer over a range of Reynolds number.

Sheoran et al. [26] provides a detailed review on the experimental determination of

RTD using radio-tracers. The deviation of RTD from the desired ideals such as plug

flow indicates the presence of stagnation zones, fluid short circuiting and bypassing or

the re-circulation zones. These phenomena can adversely affect the quality of mixing,

which can result in poor yield in chemical reactors, inadequate mass or heat transfer

between the dispersed and continuous phase, fouling or degradation of polymers and

bio-materials and creation of unnecessary byproducts [7], [16], [27], [28].

Despite this useful information, RTD posses several shortcomings. First, the RTD

provides global information about the flow behaviour with no information about the

local flow. If we were to determine the local information of the flow by evaluating

RTD at every point in the mixer, it would require a large computational power on top

of necessary computationally expensive unsteady flow simulations [27]. The shape of

RTD may indicate the presence of back mixing, dead zones or fluid short circuiting,

however it fails to provide any information regarding the location of these zones or

regions. Second, RTD is not unique to reactor configuration i.e. two reactors/mixers

with similar RTD can still yield different products given the reaction follows non linear

kinetics [27]. More information on RTD and mixing assessment of Kenics mixer via
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RTD is given in Appendix A.

Despite the popularity of both these techniques, i.e. injection of mass less particles

or injection of contaminant within the flow, they fail to efficiently and accurately

evaluate mixing within the mixer at high Reynolds number. For the case of high

Reynolds number turbulent flows the Lagrangian particle tracking fails to capture

the effects of turbulent diffusion [27]. The evaluation of concentration of the injected

contaminant does seem like a more desirable option compared to the particle tracking

however, it posses an added problem of numerical diffusion [29]. Also both these

techniques require the use of time dependent solvers [27]. Hence, the size of time step

governs the accuracy of the results.

1.2.2 Mean Age

One alternative to both these techniques is the assessment of mixing via mean age.

The age of a fluid molecule is equal to time elapsed since the particle has entered

the system. The average time required by a group of molecules (control volume, in

case of continuum dynamics) to reach a certain location within the mixer is the mean

age corresponding to that location. The concept of “age” was initially described

by Danckwerts [30]. However, it was first used by Baléo and Le Cloirec [31] to

computationally determine the spatial distribution of mean age for a turbulent flow

across the channel containing a series of sudden expansions and contractions. Liu

and Tilton [27] showed the efficacy of mean age distribution in assessing mixing over

Lagrangian tracking and RTD.

Unlike RTD, spatial distribution of mean age can reveal the location of dead zones

and short circuiting paths inside the vessel. Obtaining the mean age distribution for

a given system is less computationally expensive than obtaining the RTD curve at

the outlet. Liu and Tilton [27] shows that it required less than a minute to obtain

mean age distribution on a computational domain with 6000 cells, whereas it required

8 hours to obtain RTD curves at a few spatial points in the domain.
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Liu [28] used the mean age theory to obtain the spatial distribution of mean age

across a six element Kenics mixer for a laminar flow. The study reveals how mean age

distribution across the domain of a static mixer can be used to reveal the deviation

of flow from the ideal flows, i.e a plug flow or an ideal mixing flow. The spatial distri-

bution of mean age also reveals the transition of lamellar structures into complicated

stretching and folding structures as the convection in the flow starts dominating.

Hence showing that mean age distribution can reveal both radial and axial mixing.

The mean age theory has been applied to continuous stirred tank [28], [32] and micro

channel mixers [33] to reveal the efficacy of the mean age theory in evaluating mixing

performance of the systems in axial and radial domains.

Since the extension of mean age theory by Liu and Tilton [27] it has been applied

to various situations. Immonen [34] used the mean age theory in conjunction with

CFD to measure the quality of air in car park, which was then used to optimize the

amount of ventilation system for the car park [35]. Tran et al. [35] determined spatial

homogeneity of materials in transport in a model stir casting system. The mean age

theory was recently modified to accommodate the multiphase flows [36]. Russ and

Berson [36] used the multiphase mean age theory to predict the just suspended speed

of particle in the mixing tanks. Despite the wide application and usage of mean

age theory, the studies involving assessment of static mixer via mean age theory in

turbulent flows are very limited.

1.3 Objective

The objective of this work is to demonstrate what information about mixing can be

obtained from the mean age analysis of turbulent flows. The mean age theory has

been used in the past to analyse mixing in laminar flows. However, it has not been

rarely used to analyse mixing in turbulent flows. In this thesis we show how mean age

theory can be used to assess mixing qualitatively and quantitatively within a static

mixer.
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The flow is simulated across a Kenics mixer using STAR-CCM+, Siemens PLM

[37], a commercial CFD package that is used to simulate physics of the flow. This

mixer design is chosen since there are several published numerical and experimental

studies of it that will be used for validation purposes [7], [11], [12], [38]. The peripheral

objectives of this study are:

1. To numerically evaluate and visualize the flow across static mixer in laminar,

transitional and turbulent flow regime.

2. Compare mixing phenomenon by analysing mean age distribution across the

mixer for flows in laminar, transitional and turbulent regime.

3. To visually assess if mean age theory can reveal flow features like re-circulation

zones, stagnation zones, etc.

4. To predict and locate zones of adverse mixing using mean age theory.

5. To demonstrate how machine learning tools can be used to better understand

the results obtained by mean age theory.

1.4 Thesis Organization

Chapter 2 describes the methodology that was used to obtain the simulation results

and the distribution of mean age. Chapter 3 provides the validation and verification

for the numerical simulation and an in depth analysis into the flow field obtained

via these numerical simulations. Once we have analysed the flow field and validated

the numerical results we dive into the analysis of mean age distribution, presented in

Chapter 4. The final Chapter 5 provides a brief summary of the work that has been

described in this thesis.

The thesis also contains two Appendices, Appendix A and B. The first Appendix

highlights how Residence time distribution can be used to assess the mixing effi-

9



ciency of the mixer used in this study. The second Appendix shows how a mean age

simulation can be setup using STAR-CCM+ [37].
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Chapter 2

Methodology

2.1 Overview

The current chapter provides insight into the computational modelling required to

develop a virtual functioning model of a six element Kenics mixer. The first section

describes in detail the modelling of the flow across the six element Kenics mixer

which is followed by a detailed description of the methodology used to generate the

computational grid. The final section provides the mathematics behind the mean age

theory and also explains it implementation in STAR-CCM+ [37].

2.2 Problem Statement

In this study, we simulate the flow of liquid through a static mixer containing six

Kenics elements placed consecutively in a pipe with an internal diameter D = 12.7

mm. The length of the element (Le) and thickness (w) of each element are 22.5 mm

and 2 mm, respectively. The inlet and outlet are extruded in the normal direction by

12D and 16D, respectively, to allow the flow to develop and avoid back-flow (Figure

2.1). The density and dynamic viscosity of the working liquid, which is water, are

998.2 kg/m3 and 10−3 Pa · s, respectively.

2.2.1 Governing Equations

The mass conservation equation for the steady, incompressible flow can be written as
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Figure 2.1: The computational domain on which laminar and turbulent flows were
simulated.

∇ · u⃗ = 0 (2.1)

The momentum conservation equation for an incompressible steady laminar flow

in absence of body force is given as follows

ρu⃗ · ∇u⃗ = −∇P + µ∇2u⃗ (2.2)

The turbulent flow regime is numerically evaluated by solving the Reynolds av-

eraged Navier Stokes (RANS) equations. The RANS approach involves dissociation

of instantaneous velocity, u⃗, into average and fluctuating components, thereby elim-

inating the need to fully resolve the flow [39]. The equations 2.3 and 2.4 represent

averaged mass and momentum equations for incompressible flow in vector notation.

The mean and fluctuating component of velocity is denoted by U⃗ and u
′⃗ , respectively.

∇ · (U⃗) = 0 (2.3)

ρ∇ · (U⃗ U⃗) = −∇p+ µ∇2U⃗ − ρ∇ · (u′⃗ u′⃗ ) (2.4)

2.2.2 Turbulence Modeling

To compute turbulent flows with the RANS equations it is necessary to employ tur-

bulence models to address the closure problem: additional equations are necessary
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to estimate the components of the Reynolds stress tensor [40]. Various turbulence

modelling techniques can be found in the literature [39]. In this study, three different

turbulent models have been used to evaluate the flow across the static mixer: Real-

izable k − ε [41], Elliptic-Blending (EB) k − ε [42] and Reynolds stress model [43].

The results obtained by different turbulence models on different grids are contrasted

with each other in Chapter 3.

The Realizable k − ε model and the EB k − ε model both resort to Boussinesq’s

hypothesis [44] to resolve the turbulence closure problem, i.e. approximation of

Reynolds’s stresses (u′⃗ u′⃗ ). Like the Realizable k − ε model the EB k − ε model

also solves two additional transport equations of turbulent kinetic energy and tur-

bulent dissipation rate for estimating turbulence parameters. However unlike the

Realizable k − ε model it solves two additional equation for estimating two non di-

mensional variables, ϕ and α. The variable ϕ represents the ratio of wall normal

Reynolds stress to turbulent kinetic energy (thus being a measure of the near-wall

turbulence anisotropy) and the, α, is a wall proximity sensitive quantity (i.e. it takes

the value 0 at a wall and 1 in the far field) [45].

The Reynolds stress model (RSM) follows an alternative approach. It solves six

additional transport equations, one for each term in the Reynolds stress tensor [41],

[46], [47] along with transport equation for another quantity that would provide ap-

proximation for the length-scale or time-scale of the turbulence. The RSM model

should be preferred when non isotropic effects are important. The turbulence en-

countered within the turbulent boundary layer is always non isotropic, the isotropic

eddy viscosity models such as k − ε and EB k − ε models handle such non isotropic

flow well in the near wall regions [23]. However k − ε models give a poor represen-

tation when strong curvature and swirling flows induce non isotropic effects within

the flow. Henceforth RSM has also been used to simulate turbulent flow across the

Kenics mixer.
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2.2.3 Solvers

A finite volume segregated flow solver was used. The pressure velocity coupling was

achieved by using the SIMPLE algorithm [48]. To achieve higher accuracy, third

order schemes were used for spatial discretisation of the convective term. The evalu-

ation and reconstruction of gradients at the faces and center of volume elements were

obtained using hybrid Gauss least squares method [49]. A gradient limiter Venkatkr-

ishnan [50] was used to assert confidence on the values of reconstructed gradients

by keeping a check on unrealistic gradient values. The turbulent parameters are

evaluated by solving the necessary transport equations depending on the choice of

turbulent models. The algebraic forms of discretised equations are evaluated by Al-

gebraic Multi Grid linear solver with a Gauss-Siedel relaxation scheme and a strict

convergence tolerance of 10−5 or lower.

2.2.4 Boundary Conditions

No-slip boundary condition is implemented at the walls and the solid surface of the

static mixer. A constant flow rate is specified at the inlet boundary with a fully

developed velocity profile. The fully developed profile of velocity, turbulent kinetic

energy and dissipation rate are evaluated by simulating a pipe flow with initial condi-

tions evaluated based on the Reynolds number of the flow. The turbulent boundary

conditions at the inlet are defined by specifying a profile of turbulent kinetic energy,

k, and turbulent dissipation rate, ε, corresponding to a the respective velocity profile.

The constant mass flow rate, ṁ for each simulated case alongside Reynolds number,

Re = ρUinD0

µ
is given in the Table 2.1.

2.2.5 Convergence Criteria

For all simulated cases, it was made sure that the absolute residuals of the continuity

and momentum equation dropped below 10−5. For the case of turbulent flows the

asymptotic values of averaged turbulent kinetic energy and dissipation rate were
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Table 2.1: Mass flow rates for simulated cases

Re ṁ [kg s] Uin [m s−1]

1 9.98× 10−6 7.89× 10−5

10 9.98× 10−5 7.89× 10−4

100 9.98× 10−4 7.89× 10−3

1000 9.98× 10−3 7.89× 10−2

5069 5.06× 10−2 4.00× 10−1

6843 6.83× 10−2 5.40× 10−1

9504 9.48× 10−2 7.45× 10−1

10391 1.04× 10−1 8.20× 10−1

12000 1.20× 10−1 9.47× 10−1

tracked along with the residuals of momentum and continuity equations. A strict

asymptotic criteria was followed to make sure that the values of turbulent kinetic

energy and turbulent dissipation energy have converged across the entire domain.

The asymptotic criteria was employed such that the difference between the maximum

and minimum value within the 10 consecutive iterations is less than 10−5.

2.3 Mesh

Mesh generation is the crucial step of any computational simulation as effective nu-

merical processes for CFD problems depend upon the grid quality [11]. To systemati-

cally assess the effect of mesh refinement in the core and near wall region four different

orthogonally structured grids are developed using mesh generation software, ICEM

Ansys Inc. [51]. The coarsest grid A contains 73 152 elements followed by grids B, C

and D containing 922 632, 8 969 904 and 16 013 004 elements respectively. Figure 2.2

shows a cross section of each grid perpendicular to axial flow. Though the four grids

are systematically refined by reducing the size of volume element, the topology of the

mesh is different in the wall region. A standard approach to measure the fineness
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of the mesh in near wall region is to monitor the normal distance between the solid

wall and the center of computational cell adjacent to the solid wall, y, in terms of

dimensionless distance, y+ = y
√
ρτw/µ. τw is the wall shear stress magnitude, ρ and

µ represent density and viscosity of the single phase flow.

Figure 2.2: Cross-sectional view of structured Grids.

The approximate initial values of y+ calculated using the inlet velocity, Uin Equa-

tion 2.5 for the above mentioned grids are shown in Table 2.2. The discrepancy in

wall refinement is maintained to assess the effect of wall treatment on mixing analysis.

Wall function are semi-empirical formulas used to bridge gap between the viscosity

affected region and the fully turbulent flow, obviating the need to resolve the viscosity

affected near wall region and to modify turbulence models to account for the presence

of wall [14].

y+ =
y
√︁
0.0296Re−1/5U2

in

ν
(2.5)

For the grids with y+ < 1 no wall function is used and the flow is resolved in the

boundary layer region as well as in the core region of the static mixer. For the rest of

the grids a two layer all y+ wall treatment is used, which is a combination of blended

wall function along with the two layer formulation of the underlying turbulence model.

The blended wall function or all y+ wall treatment uses a standard wall functions

proposed by Launder and Spalding [52] to impose algebraic values of turbulent kinetic

energy and dissipation rate in the cell centroids closest to the wall. The imposed

vales are a function of y+ and vary depending on the wall refinement. A two layer

16



Table 2.2: Mesh refinement parameters

grid Approximated y+ Elements

A ≈ 63.54 73 152

B ≈ 3.81 922 632

C ≈ 0.67 8 969 904

D ≥ 10 16 013 004

approach imposed on top of all y+ wall treatment however solves for the budget

of turbulent kinetic energy in the near wall region and imposes specific values of

turbulence dissipation rate at the centroids of the near-wall cells.

2.3.1 Mesh Generation

The mesh generation procedure for an orthogonal structured mesh involved the use of

out of the box technique. Each grid i.e A, B, C, D was generated in 8 different parts,

one each for six Kenics elements and 2 for the inlet and outlet extrusions. These

separate grids were then combined using interfaces to create a computational domain

for six element Kenics mixer. The tedious way of mesh generation provided more

control over refinement of grid and prevented occurrence of skewed elements within

the grid. It also allowed for refinement in specific regions to capture the necessary

flow phenomenon and mixing. However to make sure that the combination of grids

via interfaces is efficient, the grids had to be symmetric in x and y axis. To do so a

surface mesh with an O-grid shown in Figure 2.3 was first developed. The coloured

bold lines overlaying the mesh were segmented into the nodes. The length kn is equal

to the thickness of the Kenics element. The vertical and horizontal length of the

nodes in proximity to Kenics elements are controlled by segmentation of Vn and Hn.

The line, ln, is segmented accordingly to control the wall refinement in proximity to

pipe walls. The subscript n represents the number of segments for the respective line.

The inlet surface mesh can then be extruded to length Lie to form an inlet extrusion
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creating the first grid part shown in Figure 2.4. The end of the extrusion is then

carefully divided into three surface grids shown in Figure 2.5. The bottom and the

above surface grid marked in yellow colour was then twisted around a straight line

starting at the center of the ending surface of the inlet extrusion and extending a

normal distance L away from the ending surface grid. A standard Kenics element is

twisted by 180◦ around the axial axis. A twist per each extruded layer of mesh was

specified. For a layer with constant spacing twist angle per spacing required to achieve

a cumulative of 180◦ is equivalent to 180◦ divided by the number of mesh extrusion

layers, NKM . The thickness of each extrusion layer is estimated based on the element

size of the inlet surface. The central strip marked in green colour marks the surface

of leading edge of a Kenics element. A similar twisted extrusion is performed on the

strip to obtain a solid Kenics element which will act as a solid obstacle to the fluid

flow passing around it.

The mesh for the other five Kenics element is then created by translation and

rotation of part 2. The final grid part i.e outlet extrusion was also created by mirroring

the inlet extrusion about the center of the Kenics mixer. All the grids are then

connected via internal interfaces. A complete assembled grid with all the interfaces

is shown in Figure 2.6.

Figure 2.3: Butterfly mesh on inlet surface

Using the above mentioned grid generation procedure a total of four different grids
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Figure 2.4: Extruding surface mesh

Figure 2.5: extrusion of surface mesh to Kenics element

Figure 2.6: Assembled structured mesh

have been generated. The inlet surface mesh for each grid besides an x− normal grid

view is shown in Figure 2.7.

2.3.2 Grid Generation Challenges

The major hurdle in generating a mesh for Kenics element was its geometry. The wall

refinement along the helical wall of Kenics element and the trailing and leading edges

19



(a) Grid A

(b) Grid B

(c) Grid C

(d) Grid D

Figure 2.7: Structured grids

of these elements was particularly challenging to achieve. In the above section we

mentioned that we used an O-grid to allow for a symmetric mesh that can be twisted

along the wall of the Kenics element. In Figure 2.3 it can be seen that the grid has two
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regions. The square region at the center which contains hexahedral elements. The

region two contains elements with curved surfaces to emulate the surface of a circular

cylinder. The transition of elements from region one to region two results in skewed

elements. It is safe to assume that it will not cause a significant numerical error as

the dominant direction of the flow is perpendicular to these skewed transition. The

efforts were also made to mitigate skewness, i.e. maintaining growth rate and aspect

ratio of elements within the acceptable limits and size reduction of volume elements

to avoid skewed elements in general.

Another challenge was to achieve wall refinement along the leading and trailing

edge of the Kenics elements. To do so extrusion of surface mesh in the axial direction

must be non uniform. The thickness of elements in axial direction should gradually

increase, with layer close to the leading and trailing edges of Kenics elements having

thickness equal to 10−5 (y+ ≈ 1). A gradual increase is necessary to prevent a

large number of elements which would then make the simulations computationally

intensive. A closer look at Figure 2.2 reveals that out of the four grids only Grid C

was equipped with a wall refinement at the edges. A thick dense region before the

start of Kenics element in Figure 2.2c can be observed.

Grid C is equipped with wall refinement along all the solid surfaces. It was used

to simulate flow for all Reynolds number cases except for cases that involved laminar

flow.

2.4 Mathematical Representation of Mean Age

As Danckwerts [53] states that the Equation A.1, generally used for determining

residence time distribution at the outlet can also be applied to any spatial location

within the system to evaluate age of the particle. The Equation 2.6 mathematically

represents the evaluation of age at any given location within the system. Ẽ represents

the frequency distribution of the age of molecules at the local point of interest x̃. The

fraction of molecules having age between ã and ã+ dã is Ẽda.
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Ẽ =

∫︁∞
0
C(x̃, ã)dt∫︁∞

0
C(x̃, t)dt

(2.6)

The average of the frequency distribution given by, Ẽ, can be represented as the

mean age, a(x̃), at any local point x̃. The Equation 2.7 represents spatial mean age

distribution.

a(x̃) =

∫︁∞
0
tC(x̃, t)dt∫︁∞

0
C(x̃, t)dt

(2.7)

Determining frequency distribution of ages of particles at each specific location

either experimentally or numerically is resource intensive. The early literature by

Spalding [54] and Sandberg [55] provide a much easier way to compute spatial distri-

bution of mean age by employing a steady state transport equation. The computation

of a(x̃) using CFD in a turbulent channel was shown as an example by Baléo and Le

Cloirec [31]. However more recently, the expansion of the mean age theory and its

feasible application to complex incompressible flows across mixers has been shown by

Liu and Tilton [27].

Following the work of Liu and Tilton [27] a scalar transport equation for the con-

centration of dispersed phase, C, (given by Equation 2.8) can be manipulated to

obtain a differential equation for determining the spatial distribution of mean age.

∂C

∂t
+∇ · (U⃗C) = ∇ · (D∇C) (2.8)

Where diffusivity coefficient, D, is defined by the linear diffusivity model as given

by Equation 2.9.

D =
µ

σm
+
µt

σt
(2.9)

where σm is the molecular Schmidt number and σt is turbulent Schmidt number.

The molecular Schmidt number, σm, was fixed to a value of 1010 m2/s. It is not a

critical value, since the contribution of molecular diffusion i.e µ/σm, to the overall
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tracer dispersion process is expected to be small for turbulent flows [14]. Moreover

the purpose of the paper is to assess the effect of convection and turbulence rather

than mixing due to molecular diffusion. The commonly suggested value of 0.7 for the

turbulent Schmidt number is adopted in the present study [14], [56].

Multiplying Equation 2.8 by t and integrating over time yields Equation 2.10. As

time is independent of the spatial coordinate it’s derivative with respect to spatial

coordinate will be zero. Hence Equation 2.8 can be manipulated to obtain Equation

2.10.

∫︂ ∞

0

t
∂C

∂t
dt+

∫︂ ∞

0

∇ · (tU⃗C)dt =
∫︂ ∞

0

∇ · D∇(tC)dt (2.10)

The first term on the left hand side can be integrated by parts as given in Equation

2.11.

∫︂ ∞

0

t
∂C

∂t
dt = tC|∞0 −

∫︂ ∞

0

Cdt (2.11)

Spalding [54] mentions that for an incompressible flow across a closed system, the

amount of concentration added over any amount of time must be constant i.e spatially

invariant.

I =

∫︂ ∞

0

Cdt (2.12)

The first term on the right hand side of Equation 2.11 will be zero as t tends

to infinity [27]. With tC|∞0 = 0, substituting Equation 2.11 in Equation 2.10 and

dividing by I yields Equation 2.13.

− 1 +∇ · U⃗
[︃∫︁∞

0
tCdt∫︁∞

0
Cdt

]︃
= ∇ · D∇

[︃∫︁∞
0
tCdt∫︁∞

0
Cdt

]︃
(2.13)

To obtain the above equation, we have exploited the fact that U⃗ and D are invariant

with time along with the fact that I is spatially invariant. The quantity in square
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brackets can now be expressed as the mean age, a, giving the conservation equation

for mean age as Equation 2.14.

∇ · (Ũa) = ∇ · D∇a+ 1 (2.14)

The mean age, a(x) is the first moment of the distribution of the amount of time

taken by the particle to reach a local point. The higher moments of the distribution

can also be evaluated by deriving the steady state transport equations for the same

in a similar manner described above.

For the nth moment of the distribution t in Equation 2.10 can be replaced by tn

giving out Equation 2.15.

∫︂ ∞

0

tn
∂C

∂t
dt+

∫︂ ∞

0

∇ · (tnCU⃗)dt =
∫︂ ∞

0

∇ · D∇(tnC)dt (2.15)

Applying integration by parts on the first term yields

∫︂ ∞

0

tn
∂C

∂t
dt = tnC|∞0 −

∫︂ ∞

0

ntn−1Cdt (2.16)

The first term on the right hand side of Equation 2.16 has to be zero for the

mean age to exit locally [27]. Then substituting the first term in Equation 2.15 using

Equation 2.16 and dividing the equation by I we get Equation

−
[︃∫︁∞

0
ntn−1Cdt∫︁∞
0
Cdt

]︃
+∇ · U⃗

[︃∫︁∞
0
tnCdt∫︁∞

0
Cdt

]︃
= ∇ · D∇

[︃∫︁∞
0
tnCdt∫︁∞

0
Cdt

]︃
(2.17)

The nth moment of the mean age is equivalent to Mn =
∫︁∞
0 tnCdt∫︁∞
0 Cdt

. Therefore Equa-

tion 2.17 can be written as

∇ · (U⃗Mn) = ∇ · D∇Mn + nMn−1 (2.18)

By determining the second moment of the mean age distribution, i.e M2, the

variance σ2 can be determined using Equation 2.19.
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σ2 =

∫︁∞
0
(t2 − a2)Cdt∫︁∞

0
Cdt

=M2 − a2 (2.19)

The coefficient of variance, which estimates the mixing at any local point can be

determined by the ratio of square of variance to the mean age, i.e, CoV = σ/a.

Mean Age Frequency Distribution

Consider a differential volume dv(a) in the flow domain with mean age in the range

of a and a + da. The fraction of the volume with mean age in the range out of the

total volume of the flow domain is a function of a [32]. This function, g(a), can be

represented in Equation 2.20.

g(a)da =
dv(a)

V
(2.20)

In order to comprehend the mean age frequency distributions ability to characterize

mixing of the flow, we must look at the two ideal flows: the plug flow and the ideal

mixer flow. For a plug flow within a pipe of length L in absence of molecular diffusion

and complete segregation with a constant velocity U , the mean age at a distance z

from the inlet can be defined as a = z/U and similarly da = dz/U . The differential

volume with mean age between a and a+ da can also be written as dv = Adz where

A is the cross sectional area. We then obtain a frequency distribution function for

plug flow (Equation 2.21).

g(a) =
1

V

dv

da
=
U

L
=

1

τ
, a ∈ [0, τ ] (2.21)

g(a) = 0, a > τ (2.22)

For an ideal mixer, the molecular age t everywhere inside the reactor is the same

as that at the exit and has an exponential distribution as given in Equation 2.23.

ψ =
1

τ
exp(−t/τ) (2.23)
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The frequency distribution of mean age at any given cross section can be derived by

assuming that the axial length of the volume element, i.e dz is the same irrespective

of the x and y position of the volume elements. Therefore the differential volume

dv(a) can be written as dzds(a). Where ds(a) refers to the differential cross sectional

surface area of the elements with mean age between a and a+da. The total volume V

can also be written as Sdz, given all the volume elements have similar normal length

dz and S is the total surface area of the elements having mean age between a and

a+da. Hence a frequency distribution of mean age at any given surface as a function

of a, gs(a) is given by Equation 2.24.

gs(a)da =
ds(a)

S
(2.24)

The distribution of mean age at any given cross section or surface S at any axial

coordinate z, can be used to define the areas with younger and older age.

2.4.1 Relating Moments of Residence Time Distribution and
Age

Liu and Tilton [27] points out that the theoretical mean residence time (τ = V/Q) for

a closed system is equivalent to the flow averaged mean age on the exit surface (Se)

of the system, i.e ae. Infact the moments residence time are equivalent to moments

of age at the exit surface, i.e tn =Mn,e. Where n refers to the nth moment. Following

the work of Liu and Tilton [27], the amount of concentration leaving the outlet can

be given as

Cout(t) =

∫︁
Se
uC(x⃗, t)dA∫︁

Se
C(x⃗, t)dA

(2.25)

tn =

∫︂ ∞

0

tnE(t)dt =

∫︁∞
0
tnCout(t)∫︁ t∞

0
Cout(t)dt

(2.26)

Substituting the value of Cout from Equation 2.25 into Equation 2.26 yields,

tn =

∫︁∞
0
tn
∫︁
Se
uC(x⃗, t)dA∫︁ t∞

0

∫︁
Se
uC(x⃗, t)dAdt

(2.27)
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Using the property of spatial invariance Equation 2.27 can be written as

tn =

∫︁
Se
u[
∫︁∞
0
tnC(x⃗, t)dt/

∫︁∞
0
C(x⃗, t)dt]dA∫︁

Se
udA

(2.28)

Henceforth the above equation can be written as below to prove that the mixing cup

mean exit age is equivalent to τ .

tn =

∫︁
Se
uMndA∫︁
Se
udA

=Mn,e (2.29)

It must be noted that in the present study, injection of the scalar for obtaining the

residence time distribution was performed at a location closer to the leading edge of

the first element. A theoretical mean age for this scenario, τI can be defined as ratio

of fluid occupied between the point of injection till the outlet (VI) to the volume flow

rate of the fluid within the system (Q). It should also be kept in mind that the τm

is not equivalent to the mixing cup average of mean age nor is it equivalent to τ and

τI . The reason for τm in-equivalence to τ is due to the injection location of the scalar

being other than the inlet of the system. The reasons for τm in-equivalence to τI have

been interpreted by Abou Hweij and Azizi [25]. The results will further describe this

discrepancy in detail.

2.4.2 Variance of Age

The main purpose of the variance of age is to provide a measure that allows for

quantification of mixing. The mean age theory provides ways to evaluate variance of

residence time distribution and the variance of age.

Variance of Residence Time Distribution

One measure of mixing in the mixer is the measure of variance around the residence

time of the system at the exit. It can be mathematically quantified as given by

Equation 2.30 given below [57].

σ2
e =

1

τ 2

∫︂ ∞

0

(1− τ 2)2E(t)dt =
M2,e − τ 2

τ 2
=

2
(2.30)
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It must be noted that the variance of RTD curve obtained from a point source rep-

resented by γ2 is different from σ2
e . As σ

2
e represent the variance of distribution across

the theoretical mean time. σ2
e represents variance of distribution for an instance when

the tracer is injected at the inlet along with flow. E(t) in Equation 2.30 represents

the RTD curve obtained for the case when the tracer is injected along with the flow

at inlet.

Evaluating Variance of Age

The distribution of age at any given cross section can be assessed by evaluating the

variance of age. The variance of mean age can be defined as below.

σ2
a =

a2 − a2

a
(2.31)

The overline on a indicates mass flow averaging over surface. The definition is

similar to statistical variance of any scalar quantity.

2.4.3 Evaluating Mean Age Distribution

The mean age distribution in the domain was determined by the solving scalar trans-

port equation for a steady state with the source term equal to unity (see Equation

2.14). The following boundary conditions were used: a = 0 was set at the inlet since

it is assumed that the point of injection coincides with the inlet; no penetration and

zero gradient boundary conditions were set at the solid walls and the outlet, respec-

tively. The finest grids C and D were used to perform simulations for a range of

Reynolds number defined in Table 2.1. The steps for setting up the simulation to

evaluate the mean age are shown in Appendix B.

2.5 Summary

In this section we described in detail the methodology that was used to perform

numerical simulations along with the mathematical expressions and derivations for
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mean age. The incompressible steady flow field for laminar and turbulent flow was

evaluated using STAR-CCM+ [37] on a computational grid generated using ICEM

Ansys Pvt. Ltd. [51]. Four different type of grids were created with each grid being

more refined than the previous one. The topology of the grid in the near wall region

is different in all four grids to allow for analysis into the effect of wall refinement

on the evaluation of flow field using STAR-CCM+ [37]. A new way of analysing

mean age distribution via surface averaged distribution of mean age is mathematically

represented. A derivation for relating residence time distribution and mean age is also

presented to justify the capability of mean age for analysing mixing within the mixer.

Further we present derivation for evaluation of variance of age and explain how it can

help assess mixing within the mixer. We present the methodology that was used to

simulate the mean age distribution in STAR-CCM+ [37] in Appendix B.
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Chapter 3

Flow Analysis

3.1 Overview

The incompressible flow was simulated across a six element Kenics mixer. The sim-

ulated flow cases corresponded to the Reynolds of 1, 10, 100, 1000, 5069, 6843, 9504,

10391 and 12000. In the current chapter we start by validating the numerical results

and then qualitatively and quantitatively compare the velocity field obtained for the

various simulated cases.

3.2 Model Verification and Validation

To ensure that numerical simulations can produce accurate results to assess mixing

performance, it is necessary to verify and validate the numerical model with respect

to modelling and numerical settings. To assert confidence in to our results we start

by presenting the convergence of flow field parameters (i.e. velocity and turbulence

parameters). More confidence in the numerical results was obtained by simulating

several cases 1) to study the effect of mesh (mesh independence study) on prediction

of the pressure drop, flow resolution, and major quantities related to turbulence; 2)

to investigate the effect of the turbulence model choice on estimation of turbulence

quantities; 3) to validate pressure drop estimation by comparison to available reference

data.

30



3.2.1 Convergence

The convergence of numerical simulations was guaranteed by tracking the residuals

of momentum and continuity equations. For the cases pertaining to the turbulent

flow the convergence was asserted also by tracking the volume averaged quantities

(i.e. parameters averaged over the volume of the computational grid).

Residuals

The residual history for the numerical simulation performed using Reynolds Stress

Model for the flow corresponding to Reynolds of 12000 on four different grids discussed

in Chapter 2 are shown in Figure 3.1. The residuals are normalised with respect to

the maximum residual value over the respective iteration. The number of iteration

required to achieve convergence is the lowest for Grid A, approximately 500. The Grid

C requires a maximum number of iterations for the continuity and the momentum

equation to converge, approximately 5500 iterations. A more smoother convergence

was obtained on Grid C compared to other grids. This is due to the fact that the Grid

C is refined in the near wall region such that the value of y+ is below unity (Refer to

Section 2.3). Grid D with approximately twice the number of volume elements than

Grid C provides a quicker convergence at the expense of higher residual values.
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The residual history for the numerical simulations performed using Realizable k−ε

and EB k − ε model on Grid C to evaluate the turbulent flow corresponding to the

Reynolds of 12000 are shown in Figure 3.2. It can be observed that Realizable k − ε

model tends to converge faster than the EB k − ε model which evaluates erratic

residuals even after a staggering 6000 iterations. However, the residual values are

higher for the flow simulated via Realizable k−εmodel. In general both the turbulence

(a) Grid A

(b) Grid B
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(c) Grid C

(d) Grid D

Figure 3.1: The residual history for the numerical evaluation of flow via Reynolds
Stress model on Grids A, B, C and D are shown.
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models fail to provide a smoother convergence when compared to the flow simulated

using Reynolds Stress Model on Grid C (Figure 3.1c).

(a) Realizable k − ε

(b) EB k − ε

Figure 3.2: the residual history for the numerical evaluation of flow via two different
turbulent model, namely Realizable k − ε and EB k − ε are shown above

The residual history for the numerical simulations performed using the Reynolds

stress model on Grid C for various turbulent Reynolds number flows are shown in
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Figure 3.3. Flow field corresponding to the Reynolds of 6843 requires the highest

number of iterations to converge, approximately 8000 iterations, whereas the flow

field corresponding to the Reynolds of 9504 requires the least amount of iterations to

converge, approximately 3000 iterations.

A linear correlation between the number of iterations and the number of volume

elements or the Reynolds number of flow can not be observed. Henceforth we evaluate

(a) Re = 5069

(b) Re = 6843
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(c) Re = 9504

(d) Re = 10391

Figure 3.3: The residual history for the different Reynolds number flows in turbulent
regime are shown above. RSM model was used to simulate flows across the Kenics
mixer.

36



the volume average quantities across the computational domain in the upcoming

section to assert more confidence in to the numerical simulations.

Volume Average Quantities

For all the simulated cases volume averaged velocity, υ, turbulent dissipation rate, ε,

and turbulent kinetic energy, k, are evaluated at each iteration to track convergence.

The volume averaged quantities are measured over the volume occupied by liquid in

a computational domain starting at a normal distance of four diameters from the

leading edge of first element and ending at a normal distance of four diameters from

the leading edge of last element. The number of iteration for υ to reach an asymptotic

point is dependent upon the number of grid elements. A total of 200 iteration are

required on grid A for υ to become asymptotic for flow corresponding to Reynolds

number of 12000. Grids B requires almost four times as many iterations as Grid

A, while grid D requires approximately 4000 iterations for υ to become asymptotic,

this can be seen in Figure 3.4a. The convergence of flow velocity amongst different

turbulent modes is justified by Figure 3.4b. The EB k−ε requires the highest number

of iteration for υ to become asymptotic. The convergence of υ predicted by RSM at

different Reynolds number is also shown in Figure 3.4c. The number of iterations

required for volume average quantities to become asymptotic is positively correlated

with the magnitude of Reynolds number. This can be clearly observed from the

prediction of ε at different Reynolds number by Reynolds stress model depicted in

Figure 3.5c. However, a correct solution is not necessarily followed by a converged

numerical solution henceforth a grid sensitivity analysis using three different turbulent

models on four different grids is performed for flow across Kenics mixer.

A similar trend is observed in ε and k. Figure 3.5 shows the convergence of volume

averaged turbulent dissipation rate for different grid size (Figure 3.5a), turbulent

models (Figure 3.5b) and Reynolds number of the flow (Figure 3.5c).
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(a) Prediction of volume average velocity
across iterations for different grids

(b) Prediction of volume average veloc-
ity across iterations by different turbulent
models on Grid C.

(c) Prediction of volume average veloc-
ity across iterations for different Reynolds
number flow by RSM on Grid C.

Figure 3.4: Convergence of volume averaged velocity, υ.
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(a) Prediction of volume average dissi-
pation rate across iterations for different
grids.

(b) Prediction of volume average dissipa-
tion across iterations by different turbulent
models on Grid C.

(c) Prediction of volume average dissi-
pation rate across iterations for different
Reynolds number flow by RSM on Grid C.

Figure 3.5: Convergence of volume averaged velocity, ε.
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3.2.2 Mesh Independence

Grid sensitivity analysis was carried out by numerically simulating flow at the highest

Reynolds number of 12 000 on four grids A, B, C and D (see Figure 2) using the

realizable k − ε, the EB k − ε, and the RSM turbulence models. The pressure drop

across the mixer was evaluated as the difference between the average pressure at

two cross-sections in the mixer: the upstream cross-section was located at a distance

of D from the leading edge of the first element and the downstream cross-section

was at a distance D from the trailing edge of the last element. The pressure drops

as a function of the number of cells for different turbulence models are shown in

Figure 3.6. Pressure drop, ∆P , levels off with increase of the total number of cells

in each case which indicates that the numerical solution becomes mesh independent.

The realizable and EB k − ε models predict similar value of pressure drop equal to

4.6 · 103 Pa/m. The pressure drop predicted by the RSM model on grid D is ≈ 16%

greater than the one predicted by the other two models.

The radial velocity profiles along a vertical line placed at z/D ≈ 10.79 mm after

the edge of the sixth mixer element obtained on four grids are shown in Figure 3.7 (a).

The RSM turbulence model was used in each case. The velocity profile obtained on

grid A is not resolved. As mesh gets denser, the profiles follow similar trends. The

Grid B and C fail to resolve peaks of velocity around x/D ≈ ±0.2. This anomaly

can be attributed to poor mesh quality in the core regions for Grid B and C when

compared to Grid D.

The effect of the turbulence model on the radial velocity profile is shown in Fig-

ure 3.7 (b). Grid D was used for these cases. Overall, the trend is similar. The

maximum percent deviation between the values is 7 %. The velocity profiles cor-

responding to EB k − ε model and RSM reveals ups and downs in in the velocity

magnitude in the core region unlike the Realizable k − ε model. The presence of low

velocity region at the center is revealed more boldly by the Reynolds stress model.
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Figure 3.6: Pressure drop, ∆P , in kPa as a function of number of grid elements, N .
The pressure drop becomes asymptotic as the N increases, for all three turbulent
models.
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(a)

(b)

Figure 3.7: Velocity magnitude across the diameter of pipe passing through z =
10.79D for flow corresponding to a Re = 12000. (a) prediction of velocity magnitude
on different grids by Reynolds stress turbulence model. (b) Prediction of velocity
magnitude by different turbulence models.
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3.2.3 Estimation of Turbulence Quantities

The tracer concentration distribution is mainly determined by the local turbulent

viscosity ratio, µT/µ (the ratio between turbulent viscosity and molecular viscosity

of the fluid, Eq. (4), by turbulent kinetic energy, k, and by dissipation of turbulent

kinetic energy, ε [14]. For that reason, we studied the effect of the mesh resolution

and choice of the turbulence model on prediction of these turbulence quantities.

The numerical results for volume-averaged energy dissipation rate, ε, turbulent

kinetic energy, k, and turbulent viscosity ratio, µT/µ, obtained using four grids and

three turbulence models at Re=12 000 are shown in Table 3.1. The estimated ε

increases with the grid refinement for three turbulence models. The change in the

value of ε predicted by RSM levels off as the grid is refined. Coroneo et al. [14] outlines

that the magnitude of average turbulent kinetic energy predicted by realizable k − ε

model across a corrugated mixer is higher compared to other turbulent models. In the

present study we observe a similar trend. The magnitude of k predicted by realizable

k− ε is 3.3% and 14.1% greater than the one predicted by RSM and EB k− ε model

on grid D, respectively. The RSM model predicts results with a higher accuracy.

The predictions of maximum turbulent viscosity ratio, µmax
T /µ vary widely with

turbulence model. The realizable k−ε predicts almost twice the µmax
T /µ predicted by

other two turbulent models. A larger degree of fluctuations is observed with change

in grid refinement for realizable k − ε model when compared to other two turbulent

models.

Figure 3.8 shows color maps of turbulent kinetic energy on the cross-section located

at the middle of the fourth mixer element. A significant difference of k values in the

near wall region can be noticed in grid A and B. A thin layer of lower kinetic energy

around the wall develops as the mesh is refined. The difference between the maximum

and minimum turbulent kinetic energy tends to increase as the grid is refined. This

can be further seen by appearance of an oval shaped local zone of high turbulent
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Table 3.1: Dependence of turbulence parameters on spatial grid and RANS model for
the flow at Re = 12 000

Grid EB k − ε RSM Realizable k − ε

ε k µmax
T /µ ε k µmax

T /µ ε k µmax
T /µ

A 5.75 0.034 71.45 8.36 0.033 92.91 4.8 0.027 130.97

B 8.46 0.04 70.27 10.82 0.036 67.79 10.77 0.035 132.67

C 9.23 0.033 68.43 12.10 0.037 68.85 11.50 0.037 112.26

D 11.16 0.035 70.50 12.34 0.039 62.87 12.50 0.04 151.46

kinetic energy on either side of the Kenics mixer as we move from coarse to refined

grid. The local zones of lower turbulent kinetic energy depicted by dark blue regions

also become clearer as the grid is refined.

Figure 3.8: Contour plot of turbulent kinetic energy predicted by RSM on different
grids on an x − y plane located at z/D = 6.2. The Reynolds number of the flow is
12000.

Grid C and RSM turbulence model were used to perform simulations to assess

the prediction of the average energy dissipation rate. The magnitude of ε obtained

numerically is compared to the experimental value obtained by Forte et al. [38] for a

six element Kenics mixer with similar geometrical dimensions. The authors used the

equation suggested by Berkman and Calabrese [58] to estimate ε using the pressure

drop across the mixer that reads as follows:

ε =
Uin∆P

ρL
(3.1)
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where L is length of the static mixer containing inserts and ∆P is the pressure drop

measured across the length L.

The comparison of average energy dissipation rate (ε) obtained by simulating flow

using RSM is compared with experimental values obtained by Forte et al. [38] is

shown in Figure 3.9. The data by Forte et al. [38] was extrapolated to a Reynolds

of 12 000 (shown by a green dashed curve). The maximum deviation between the

numerical and experimental results is within 9%.

Figure 3.9: Average energy dissipation rate ε in m2/s3 as a function of the Reynolds
number.
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3.2.4 Pressure Drop

Pressure drop estimation is a crucial step for determining the pumping costs. It

depends on the design of the inserts and the flow parameters. Pressure drop correla-

tions for Kenics mixers with varied Le/D ratio over a range of Reynolds numbers are

available in References [10], [16], [59]–[64].

In this study, the pressure drop across the six element Kenics mixer is evaluated

to validate our numerical code for a flow corresponding to the Reynolds number of 1,

10, 100, 1000, 5069, 6843, 9504 and 10391.

For Kenics elements, the flow across the static mixer is laminar if Re < 50 and

turbulent if Re > 1000. In the intermediate range, 50 < Re < 1000, complex but

fairly reproducible behaviour can be expected [3]. The exact value of Re at which

the transition of flow regime occurs is dependent on the design of inserts. For the

Kenics mixers, the transition from laminar to turbulent flow begins at Re = 43 given

the ratio of Le/D is 0.8 and delays to Re ≈ 55 for Le/D = 1 [3]. The Kenics inserts

used in this study have an aspect ratio of 1.77, hence it is safe to assume laminar flow

below Re = 100 and a fully turbulent flow for Re ≥ 1000.

The pressure drop across the mixer obtained for laminar and turbulent flow is

shown in Figure 3.10a and 3.10b, respectively. The drop in pressure for Re = 1 is

≈ 0.17 Pa and ≈ 5300 Pa for the Reynolds number of 12 000.

At lower values of Reynolds number i.e. Re < 100, the pressure drop correlation

provided by Pahl and Muschelknautz [60] appropriately describes the CFD data ob-

tained in this study as the maximum deviation is within 2 %. At higher Reynolds

number flows within the laminar and transitional regime, the CFD data on pressure

drop is more appropriately described by Š́ır and Lecjaks [65]. The difference in the

existing experimental data on pressure drop by Š́ır and Lecjaks [65] and Pahl and

Muschelknautz can be explained by the variation in the geometry of the mixer. For

instance, the aspect ratio i.e AR = Le/D of mixer used for study by Š́ır and Lec-
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jaks [65]is larger than the one used in the study by Pahl and Muschelknautz [60]. A

more detailed investigation into existing pressure drop correlations and reasoning for

variation amongst them is provided by Kumar et al. [64].

For turbulent flow across the Kenics mixer the pressure drop correlations available

in the existing literature are relatively scarce. The pressure drop obtained using CFD

is compared to the reference data given in Refs. [16], [38], [64] on a logarithmic curve

in Figure 3.10b. The rate of increment in pressure drop with respect to Reynolds

number of the flow is similar to the one predicted experimentally by Stec and Synowiec

[16] and Forte et al. [38]. The maximum deviation between the slope of a straight

line on log-log plot for CFD data and the experimental data by Forte et al. [38] is less

than 2 %. The deviation of CFD data on pressure drop from the experimental results

of Stec and Synowiec [16] and Kumar et al. [64] can be attributed to the difference

in geometrical parameters of the Kenics elements.

As a summary, based on model validation we will use grid C and RSM turbulence

model to perform simulations of the flow in turbulent flow regime (Re ≥ 1000). To

resolve laminar flow, simulations are carried out on grid D to minimize the numerical

diffusion. The choice of grid for simulating turbulent flow is dictated by the necessity

to have wall refinement. For the case of laminar flows the grid with highest number

of elements is used to reduce false diffusion. RSM was preferred over the other two

models to simulate turbulent flow due to it more accurate prediction of pressure

drop and turbulent quantities compared to other two turbulent models. The error

in prediction of pressure drop, ∆P , by RSM is 38.67% whereas for the case of k − ε

based turbulence models it is ≈ 47%. The error can not be considered significant as

the experimental values of ∆P are subject to a 20 percent deviation due to presence

of syringe that was used to inject the dispersed phase in case of experiments. In case

of CFD we did not have such an obstacle and henceforth it is safe to assume that the

∆P predicted by the turbulence models is within acceptable limits.

The pressure drop across a homogeneous, isothermal, incompressible, Newtonian
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fluid flow in a circular tube can be given by Equation 3.2.

∆P =
2fρU2

in

D
L =

2fρU2
in

D
LeN (3.2)

Where, L is the length of the tube with diameter D. N refers to the number of

Kenics inserts and Le is the length of single Kenics element. Note that Uin = Reµ
ρD

.

The friction factor or f generally a function of Re is determined experimentally or

using CFD. For a laminar flow across smooth pipe f = Re/16, for turbulent flow

f = 0.079Re−0.25. Though for a pipe with obstruction or say Kenics inserts the

magnitude of f will be higher and the transition of flow from laminar to turbulent

will occur at lower Reynolds number. In general it has been observed that the flow

behaviour static mixer is laminar for Re < 50 and turbulent for Re > 1000. In the

intermediate range, 50 < Re < 1000, complex but fairly reproducible behaviour can

be expected [3]. Although exact value of Re at which transitions of flow regime occur

are dependent upon the design of inserts. For Kenics mixers the transition of laminar

to turbulent begins of 43 given the ratio of Le/D is 0.8 and delays to Re ≈ 55 for

Le/D = 1. The Kenics inserts used for analysis in this article have an aspect ration

of 1.77, hence it is safe to assume a laminar flow below Re = 100 and a turbulent

flow above Re = 1000.

Similar correlations for the pressure drop across the Kenics mixer in terms of

friction factor have been established for a range of Reynolds number. Table 3.2

presents an extensive list of pressure drop correlations for Kenics mixer. It must be

noted that the geometry of Kenics mixer in all the mentioned literature is not similar.

A comparison of friction factor predicted by the CFD and existing literature across

six element Kenics mixer subjected to laminar flow is shown in Figure 3.10a. The

literature available on the pressure drop correlations for turbulent flow is almost non

existent as the high dependency of pressure drop on the geometry mixers along with

a myriad number of other factors makes it impossible to predict a trend that fits all.

The work by Song and Han [10] to develop a general correlation for pressure drop
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across a Kenics mixer predicted a constant friction factor for flows corresponding to

a Reynolds’s number above 3,143, given aspect ratio of the mixer (AR = Le/D) is

1.77. However Song and Han [10] assume a zero thickness inserts and henceforth

fails to provide a realistic measure of pressure drop. Kumar et al. [64] also provides

a pressure drop correlation based on friction factor for a flow corresponding to a

Reynolds’s number between 1 and 25000. However, the experimental data is obtained

across a standard Kenics mixer (AR = 1.5) with either 3, 9 or 25 elements. Some

of the recent work by Stec and Synowiec [15] on comparison of performance by three

different types of static mixer and the study of Forte et al. [38] though focused on

oil-water dispersions, provide an estimate of pressure drop in a turbulent flow across

a six element Kenics mixer but both fail to establish a general correlation for pressure

drop. The pressure drop predicted using CFD across a six element Kenics mixer for a

turbulent flow is compared with the pressure drop predictions by the above mentioned

literature in Figure 3.10b.
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Table 3.2: Friction factor correlations for Kenics mixer

Correlation Reynolds
Number

Aspect Ratio Reference

f = 77.76
Re

+ 10.88
Re0.5

Re < 1000 1.5 Grace (1971)[59]

f = 85.5
Re

+ 0.34 Re < 2300 1.5 Sir and Lecjaks
(1982)[65]

f = (213.5 +
224/AR)/Re+
4.775/AR− 0.549

Re < 2300 2.0 - 5.0 Lecjaks et al.
(1987)

f = 115.2
Re

+ 0.5 Re ≤ 20 1.36 Cybulski and
Werner (1986)[61]

f = 6.592
Re0.5

100 ≤ Re ≤ 1000 1.36 Cybulski and
Werner(1986)[61]

f = 118.56/Re+
16.64Re−0.2/AR1.04

Re ≤ 700 1.5 - 2.5 Joshi et al.
(1995)[62]

f =
320Re−0.86AR3.889

Re ≤ 100AR2.15 1.5 - 2.5

f =
32Re−0.36AR2.814

100AR2.15 ≤ Re ≤
1000AR2.15

1.5 - 2.5 H.S. Song et al.
(2005)[10]

f = 2.449×
10−4Re0.75 +
1.16051Re−0.25

100 ≤ Re ≤ 104 1.5 V. Kumar et al.
(2008)[64]

50



(a) friction factor, Re ≤ 1000

(b) Pressure drop across a six element Kenics mixer, 5000 ≤
Re ≤ 12000

Figure 3.10: Comparison of pressure drop across the Kenics mixer for all simulated
cases.
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3.3 Visualisation of Flow in Static Mixer

Velocity vector plots in a cross section located in the middle of the fourth mixer

element (z = 78.75 mm) at different Reynolds numbers are shown in Figure 3.11.

An organized flow is seen in Figure 3.11(a) for Re = 1. The transition from laminar

to turbulent flow results in splitting of a single zone of strong cross sectional flow

into multiple zones of high and low velocity as seen in Figures 3.11 (b) and (c) for

Re = 1 000 and Re = 12 000, respectively. A strong cross sectional flow is also

observed in the corners of the mixer elements. This flow gets stronger with the

increase in axial flow velocity which is consistent with the observations reported by

Rahmani et al. [23].

The velocity profiles corresponding to the Reynolds number of 10, 100, 1 000 and

12 000 are plotted along different radial lines perpendicular to the surface of the

third mixer element in Figure 3.12. The axial velocity magnitude, Uz, at any given

location is normalized by the inlet velocity, Uin. The increase in velocity magnitude

as we move away from the leading edge towards the trailing edge of the element

can be observed for each Reynolds number. For Re = 10, the velocity profiles are

close to parabolic and become fully developed within a distance of 0.25Le from the

leading edge of the element. As the Reynolds number increases to 100, the profile

of velocity deviates from the parabolic shape, with its peak shifted away from the

wall of the mixer element. The variation in flow profile diminishes after a distance of

0.5Le from the leading edge of the mixer element. For turbulent flows at Re = 1 000

and Re = 12 000, the velocity profiles flatten out along with the reduction in the

thickness of the boundary layer profile closer to the walls.

The presence of stagnation zones or low velocity regions within the mixer are vi-

sually demonstrated in Figure 3.13 by plotting the scalar plots of velocity magnitude

along a normal plane passing through the center of the mixer. The plots are nor-

malized by Uin. The stagnation zones can be seen at the leading and trailing edges
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(a) Re = 1

(b) Re = 1000

(c) Re = 12000

Figure 3.11: Vector plots of the velocity magnitude on an x− y plane located at the
middle of the fourth element, z/D ≈ 6.2. Note the difference in the color bar scale.

of the elements (blue areas). There is a formation of a large stagnation zone at the

end of the sixth element (see red squared area in Figure 3.13). As the Reynolds
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number of the flow increases, the length of this stagnation zone also increases. This

effect is shown in Figure 3.14 (b) where a magnitude of negative axial velocity at

the center increases as the Reynolds number of the flow increases (see Figure insert).

The presence of negative axial velocity depicts flow in opposite direction indicating

development of a re-circulation zone behind the trailing edge of the sixth element.

(a) Re = 10 (b) Re = 100

(c) Re = 1000 (d) Re = 12000

Figure 3.12: Scaled axial velocity distribution, Uz/Uin, across the radial lines normal
to the surface of the third Kenics element. The Figure shows development of velocity
profile as we move away from the leading edge of the Kenics element for different
Reynolds number flows.

A strong cross sectional flow is demonstrated by red regions in a scalar plot cor-

responding to Re = 1 (see Figure 3.13). As the Reynolds number increases, the red
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regions fade. For the case of laminar flow regime, the strength of the cross sectional

flow increases with the increase in Reynolds number Liu. To quantify this effect, we

calculate the ratio of maximum value of axial velocity to the inlet velocity ( Uz/Uin).

It is 1.96 for Re = 1 and increases to 2.2 and 2.53 for flows Re = 10 and 100, re-

spectively. For Re = 1000 the ratio drops to 1.69 and reduces to 1.5 for flows in the

turbulent regime. Figure 3.14 shows Uz/Uin along a line at z/D = 10.79 mm for the

flow in the Kenics mixer and pipe flow. For the flow in the Kenics mixer at Re = 1 000

the axial strength of the flow reduces and the profile of velocity flattens as discussed

above. For the case of turbulent flow a flattened velocity profile across the pipe is

observed. The variation in the axial velocity profile at different Reynolds numbers is

almost none. A closer look however reveals that the increment in Reynolds number is

resulting in a more flatter curve as the slope of the profile closer to the walls becomes

steeper. This phenomenon can be seen more clearly in a small plot located at the

bottom right corner of the Figure 3.14b.

For the case of turbulent flow across the Kenics mixer the magnitude of Uz/Uin

is approximately 1.3 times higher than that of a pipe flow due to presence of Kenics

elements. For a laminar pipe flow the maximum value of Uz/Uin remains constant at

2 [39].

The Kenics mixer is designed to homogenize the fluid by redistributing it in radial

and tangential direction [3]. The mixing elements with clockwise and counter clock-

wise helical twists placed alternatively promote rotation of fluid such that it follows

the helical twist in the Kenics element and hence, increases the tangential component

of velocity, Utan. For convection dominated flows Utan will approach zero at some

distance after the mixer. The higher the Re, the longer this distance is. Figure 3.15

shows Utan/Uin on a line passing through x = D/4 and y = D/4, along the flow

direction for the flows corresponding to Reynolds numbers of 1, 100 and 12 000. At

Re = 1, the tangential velocity before and after the mixer approaches zero. For

Re = 100 and higher, a substantial amount of momentum is transferred into the
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Figure 3.13: Scalar plots of normalized velocity magnitude (U/Uin) on an x− z plane
passing through the center of the pipe. The plots reveal the variation in zones of
stagnant fluid as the flow regime changes from laminar to turbulent.

tangential direction, hence, promoting mixing even downstream the mixer.
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(a)

(b)

Figure 3.14: Profile of mean axial velocity, ux, across the diameter of pipe at z/D =
10.79. (a) shows velocity profiles of pipe and Kenics mixer flows corresponding to
Re ≤ 1000 and (b) shows the same for Re > 1000.
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Figure 3.15: Scaled tangential velocity (Utan/Uin) profiles as a function of normalized
axial coordinate (z/D). The presence of Kenics elements induce a periodic rise and
fall in the tangential velocity across the mixer. The variation in the behaviour of
tangential velocity after the Kenics mixer across different flow regimes can be noticed.
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3.4 Summary

In the current section we verified and analysed the flow field obtained via numerical

simulation performed using STAR-CCM+ [37]. A convergence of numerical simula-

tions was assured by tracking residuals and the volume averaged quantities, volume

average velocity, turbulent dissipation rate and turbulent kinetic energy.

The numerical simulations have been verified by performing a mesh independence

analysis and comparing the values of pressure drop and turbulent dissipation rate

with the experimental results. Turbulent dissipation rate, turbulent viscosity ratio

and turbulent kinetic energy were measured on four different grids for three different

turbulence models. The susceptibility of mesh and turbulence model on prediction of

these turbulent quantities is also identified. It is observed that the Reynolds stress

model provided more consistent results at the expense of higher computational re-

sources. The visualisation of velocity field using scalar plots reveals the presence of

regions with low velocity which could be potential zones for adverse mixing phenom-

ena. The tangential velocity imparted to the fluid due to the helical shape of the

Kenics element is also visualised via a line plots. The helical motion of fluid can be

identified as one potential reason for good radial mixing while creating small patches

of adverse mixing.
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Chapter 4

Mean Age Distribution

4.1 Overview

In the current chapter we touch base on the previous work of Liu [33] by visualising

mean age distribution on a range of Reynolds number within the laminar flow regime.

We also extend the analysis to turbulent flows by evaluating mean age distribution

over a range of Reynolds number within the turbulent flow regime (Refer to Table

2.1). The first section presents a visual comparison between the mean age distribution

obtained for a range of Reynolds number in Laminar and turbulent flow regime. This

is followed by the analysis of frequency distributions of mean age. The final section

presents data driven analysis with the use of machine learning algorithms, to deduce

zones of higher and lower mean age and find a correlation between the mean age

distribution and velocity magnitude.

4.2 Spatial Distribution of Mean Age

The spatial distribution of the mean age on a (x − z) plane passing through the

center line of the mixer (that is y = 0) is shown in Figure 4.1 for different Reynolds

numbers. The distribution is normalized by the average molecular age at the outlet.

For clear visualisation, the colorbar is cut at 0.5αe. At creeping (Re = 1) and laminar

(Re = 10) flows, there are distinct striations formed by older aged fluid (thick red

areas stretching in the direction of the flow) which is consistent with observations
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made by Liu [57]. The striations are carried forward in the axial direction with minor

or no distortion even downstream of the mixer. This indicates that the axial mixing is

negligible. As the Reynolds number increases to Re = 100, the striations get distorted

as seen in Figure 4.1 (c). Liu [57] attributes this disappearance of simple lamellar

structures and appearance of chaotic stretching and folding to the development of the

secondary flows. It is necessary to note that the distortion of striation at Re = 100

continues even after the sixth element.

At Re = 1000, the striations are no longer visible as they are instantly distorted by

the strong recirculating regions and secondary flows within the first mixer element.

The regions of older aged fluid become scarce.

As the Reynolds number of the flow is further increased, a strong separation be-

tween the younger and older aged fluid created by the presence of striations in the

laminar flows disappear. The disappearance of regions of older aged fluid from the

mean age distribution of turbulent flows indicates a higher degree of axial mixing.

This fact will be later quantified in the paper. Overall, just based on scalar plots

given in Figure 3.13, the distribution of the mean age does not change substantially

as the Reynolds number is above Re = 5069. However, there are important differences

occurring after the mixer and these are related to the development of the stagnation

zone.

The development of the stagnation region after the sixth element is shown by a

black box in Figure 4.1. An older aged fluid is seen within the stagnation zone for

each Reynolds number. At Re = 1 and Re = 10, a long streak of older fluid at

the center surrounded by fluid of younger age extends in the direction of the flow

without any radial or axial distortion. This happens because the viscosity of the fluid

dominates over convection and, hence, prevents the distribution of momentum within

the fluid molecules. At Re = 100, the distribution of the mean age in the stagnation

zone is distorted. The reason for this distortion can be attributed to convection [57].

At Re = 1000, there is a small pocket of the older fluid stretched in the direction

61



Figure 4.1: normalized mean age distribution, a/0.5αe, in the (x − z) plane passing
through the center line of the mixer.
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Figure 4.2: Magnitude of scaled mean age, a/αe, across the black dashed line shown in
Figure 4.1 is shown for different Reynolds number flows. The black dashed line runs
across the diameter of the pipe at a normalized axial coordinate equal to z/D = 10.79.

of the flow resembling a stagnation region behind a solid object. As the flow becomes

more turbulent (Re increases), the length of the stagnation region increases. There-

fore, for turbulent flows, we observe a long streak of older aged fluid starting at the

trailing edge of the sixth element. The mean age along the y−axis at z = 10.79D

which falls into stagnation zone is shown in Figure 4.2. The age distribution close to

the center of the pipe corresponding to Re = 5069 and Re = 12000 is different. For

the case of Re = 5069 the magnitude of a/αe at the center remains close to unity.

At Re = 12000 we observe peaks and valleys in the distribution of mean age. It is

important to reveal these regions of older aged fluid created due to stagnancy as they

can affect the quality of mixing [4].

To analyse the change of simple lamellar structures into chaotic folding structures,

evolution of the spatial distribution of the mean age within mixer elements is presented

in Figures 4.3 to 4.11 for all cases. The values of mean age were normalized by

the average molecular age of the fluid at the respective cross section. For better

visualisation of striations, the colorbar cut off is at a/αz = 2. The rows present

variation in mean age spatial distribution as the flow passes through each mixer

element. Each row contains eleven cross sections within a given element.

The first element of the mixer splits a single fluid stream into two as seen in the

first row of Figure 4.3 and 4.4. As these streams flow, a boundary layer develops along

the element’s walls and give rise to a layer of older fluid at the walls. As these two

63



streams approach the second element, the wall layer of older fluid remains and a new

wall layer close to walls of the second mixer element is created along with division of

existing region of younger fluid (see second row of the Figure 4.3 and 4.3).

As we move from left to right, four regions of younger fluid, two on either side of

the Kenics element, stretch and elongate. As we descend to the bottom, the number

of striation of younger fluid doubles (see Figure 4.3 and Figure 4.4). The doubling of

striations ceases as the fluid reaches the fifth element. In fact, the number of striations

across the fifth and the sixth elements are equal. Liu [57] has observed a similar

phenomenon and claims that the false diffusion is responsible for the broadening of

striations and the inhibition of the doubling of striations after the fourth element.

As the Reynolds number of the flow is increased to 100, the inertial forces appear

to dominate over the viscous forces. The distribution of the mean age across the first

element is similar to the one observed for the laminar flow. As we move from left to

right within the second element, it is noticeable that the striation not only stretch but

also bend inwards in the clockwise direction (refer to the second row of Figure 4.5).

The inward bending of striations in the counterclockwise direction can be seen in the

third row. The direction of bending of striation coincides with the rotational motion

of the fluid within the element. As we move from top to bottom, the striations fade

away due to false diffusion [57]. However, pockets of younger and older fluid can still

be seen. As the fluid advances further in the direction of the flow, the pockets of

older fluid disappear and larger region of cross section is filled with fluid having age

similar to molecular age at that cross section. At the end of the sixth element (the

image on the far right in the last row) two oval regions of younger fluid (dark blue

regions) diagonally opposite to each other can be seen.

At Re = 12 000, the flow becomes chaotic and the regions of older aged fluid

almost disappear. The mean age distribution of fluid in the first element shown at

the top row of Figure 4.11 denotes the evolution of inwardly folded circular structures

on either side of the element. Notice that these structures develop in the diagonally
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Figure 4.3: The evolution of spatial distribution of mean age distribution for flow
corresponding to Re = 1 across the Kenics mixer, ze represents the normal distance
of the x− y plane from the trailing edge of the respective element in mm.

opposite corners and then slowly migrate towards the center. As we move from left to

right across the second element, these structures fade although similar structures are

created at the center. As we move further in the direction of fluid flow more of these

folding structures develop on either side of the elements; the mean age distribution

becomes more uniform. This indicates strong radial mixing. A large area within any

cross section in the sixth element for turbulent flows has a/αz ≈ 0. This indicates

that occurrence of fluid bypassing and short circuiting is more probable in case of

turbulent flows compared to laminar flow for which a/αz ≈ 1.

The spatial distribution of mean age also reveals mixing in the region after the

mixer. Figure 4.12 shows mean age distribution at different cross sections located

after the trailing edge of the sixth element (z/D = 10.63). At Re = 1, the distortion

of striations is minimal and the stagnation region created due to the trailing edge of

the sixth element (Figure 4.1), represented by a thin tilted line of older aged fluid

passing through the center, remains unchanged until the outlet. Mixing of the fluid

after the end of the mixer will be minimal in viscosity-dominated flows. As inertia

starts to dominate (Re = 100), we observe bending of striations: the tilted line which
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Figure 4.4: The evolution of mean age distribution for Re = 10

Figure 4.5: The evolution of mean age distribution for Re = 100
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Figure 4.6: The evolution of mean age distribution for Re = 1000

Figure 4.7: The evolution of mean age distribution for Re = 5069
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Figure 4.8: The evolution of mean age distribution for Re = 6843

Figure 4.9: The evolution of mean age distribution for Re = 9504
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Figure 4.10: The evolution of mean age distribution for Re = 10391

Figure 4.11: The evolution of mean age distribution for Re = 12000
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Figure 4.12: Cross sectional view of the mean age distribution on various x−y planes
after the trailing edge of sixth element. The Figure shows the effect of tangential
velocity, Utan, on to the distribution of mean age.

was unaffected for the case of Re = 1 is now distorted.

The stagnation region at the end of the sixth element can also be seen at the top

row of Figure 4.12. At Re = 100 we observe a circular region of older aged fluid at

the center. For the cases of turbulent flow, we see two segregated regions of older

aged fluid at the center. The regions move apart as the Reynolds number of the flow

increases. Unlike for the case of Re = 1, the mean age distribution becomes more

uniform as we move from top to bottom. This gain in uniformity of the mean age

distribution even after the mixer can be attributed to the rotational motion of the

fluid.
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Figure 4.13: Mean age frequency distribution for flow corresponding to different
Reynolds number. The deviation from ideal and pipe flow can be seen.

4.3 Mean Age Frequency Distribution

A frequency distribution can be obtained from the complete three dimensional mean

age distribution obtained over the numerical grid. This spatial distribution can help

characterize the spatial non uniformity in the mixing such as by-passing, re-circulation

or short-circuiting of fluid [32].

4.3.1 Surface Averaged Mean Age Frequency Distributions

The effect of mixing elements on the mean age distribution can be observed by plotting

the surface based frequency distribution of mean age, gs, defined by Equation 2.24 at

different cross sections of the mixer. Figure 4.14 shows gs at different (x − y) cross-

sections at four of Reynolds numbers. The magnitude of the mean age is normalized

by the average molecular age of the fluid, αz, at the corresponding (x − y) plane.

The plug flow is shown by a black dashed vertical line, i.e a/α = 1. For laminar flow
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(Re = 1), the distribution of mean age is represented by a straight horizontal line

for the cross-sections near z/D = 0, indicating that the frequency of regions having

magnitude of mean age a/αz < 1 is approximately equivalent to that of regions having

normalized mean age above unity. For turbulent flows, the zones of higher and lower

mean age can be observed. The span of the distribution also gets narrower with

an increase in the height of peaks as the Reynolds number of the flow is increased,

indicating uniformity. Note that as the Reynolds number of the flow is increased

the peaks tend to approach a/α = 1. This indicates that the probability of mean

age being equal to molecular age at any given point in the respective cross-section

is higher for turbulent flows. It can also be stated that the flow has a tendency to

approach plug flow for higher Reynolds number flow. Note that at Re = 5069, the

peak is achieved at z/D = 12, and the frequency distribution of the mean age at this

location is bi-modal. The peak on the left corresponds to a value of mean age below

the average molecular age whereas the peak on the right indicates a value of mean

age above the molecular age. The value of gs on the right is higher than the one

on the left. The region of cross section having age higher than molecular age could

represent zones of stagnant or slow moving fluid.

At Re = 12 000, the maximum value of gs is achieved at z/D = 16 which is rel-

atively far from the end of the mixer. Irrespective of the Reynolds number of the

flow the peak in the surface based frequency distribution of mean age is achieved

after the sixth element. As the Reynolds number increases the axial location, z/D,

corresponding to the maximum uniformity, moves further away from the trailing edge

of the sixth element. The uniformity of mean age slowly wanes after the peak in uni-

formity has been achieved. The peaks start flattening and the mean age distribution

becomes segregated again. This can be observed in Figure 4.14.

The analysis of frequency distribution of mean age revealed the closeness of flow

to ideal flows at any given cross section of the flow. The distribution of mean age has

the potential to quantify zones of lower and higher mean age and their variation as
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Figure 4.14: Surface averaged frequency distribution in different cross-sections (x− y
planes) across the Kenics mixer for different flow regimes.

the flow passes through the mixer.

4.4 Variance of Mean Age

The variance of mean age on any given cross section as defined by Liu [57] is given

by Equation 2.31. The variances are often used to quantify the scalar mixing within

a continuous flow vessel. Figure 4.15 shows the variance of mean age at different

cross sections along the Kenics mixer. The difference in variance of age for the

fully developed flow before the leading edge of the first element is noticeable. This

difference in variance of age is the result of different velocity profiles corresponding

to different Reynolds number flows. For the case of turbulent flows the reduction in

variance of age is strongly correlated with increase in Reynolds number. For the case

of laminar flows, however the variance of age corresponding to the Re = 100 is greater

than the one observed for the case of Re = 10 and is almost equal to variance of age

for the case of Re = 1. A similar observation is also made by Liu [57] for laminar
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flow across the Kenics micromixer. Liu [57] attributes this anomaly to the difference

in the degree of inertia of the flow.

A reduction in variance of age is observed with the passage of each element irre-

spective of the Reynolds number of the flow. Although higher the Reynolds number

higher the reduction in variance of age in the axial flow direction. Liu [57] makes a

similar observation for laminar flows as well and in the present study we figured out

that a similar trend is observed for turbulent flows.

The interesting part revealed by the present study is the increment in variance of

age after a certain distance away from the Kenics mixer. For the flows in laminar

and transition regime a steady increase in variance of age is observed. For the case

of turbulent flow, a steady increment in variance of age is followed by a decrement.

As the Reynolds number of the flow increases these fluctuations become smoother.

The variance of age at the exit is approximately equal for the case of three largest

Reynolds number flows in the study. This trend in variance of age is also in coherence

with the behaviour of maximum value of gs across the Kenics mixer, shown in Figure

4.16.

4.5 Machine Learning to Analyse Mixing via Mean

Age

The above given visual analysis of mean age distribution provides a way to compare

the mixing phenomenon within the static mixer, however, it does not provide a quan-

titative assessment. The mean age distribution across the x − z plane (Figure 4.1 )

and the x− y cross sections (Figure 4.3 to 4.11) show the variation in regions of low

and high mean as the Reynolds number of the flow changes. However, these visual

comparison fails to draw a line between the regions associated with low or high mean

age, neither do they quantitatively predict the variation or mean of age distribution in

these regions. The surface average frequency distributions somewhat shows how these

regions change by demonstrating the type of distribution that overlays any given cross
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Figure 4.15: Variance of mean age on a cross section perpendicular to flow versus
axial direction i.e. z.

Figure 4.16: Peak value of gs in the axial flow direction.
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section. However they also fail to provide the quantitative parameters that define a

distribution i.e. the moments of a distribution.

If an underlying distribution is Gaussian, then the moments of the distribution can

be evaluated in a simplistic manner [66]. However, things become complicated when

the underlying distribution is random and does not necessarily follow any standard

distributions like Gaussian distributions. Looking at the surface average distribution

and histograms in the above section we can safely establish that the distribution

of mean age does not follow a Gaussian curve. In fact the mean age distribution

for higher Reynolds number flows (i.e. above Reynolds of 1000) can be seen as a

combination of many Gaussian curves with different mean and variance. Such a

distribution can also be coined as a multi-modal distribution.

If we can identify the distributions that form these multi-modal distributions then

we can evaluate mean and variance of mean age distribution specific to certain location

on any given cross section. This information can help exactly identify the regions

where adverse mixing conditions are being created and henceforth we can also deduce

the reasons behind this adverse mixing and take measures to prevent it.

There are various ways to identify the distributions that could possibly constitute

the multi-modal distributions [67]. A review onto such methods is out of the scope

of this literature. However as it has been established by the previous literature that

the distribution of the quantities (i.e disperse phase within the mixer) can gener-

ally be described by a normal distribution we assume that the current multi-modal

distribution would also be composed from multiple Gaussian curves.

Taking the following assumption in to account we used the Gaussian Mixture

Model (GMM) from the Python’s Sci-Kit Learn [68] library. The implementation

of the model by Sci-Kit Learn allows for the flexibility of automating the prediction

of Gaussian curves and is therefore a part of Machine Learning models.
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4.5.1 Histogram

Before we move forward to using machine learning to demarcate different Gaussian

clusters of mean age distribution that constitute the multi-modal distribution, it is

important that we observe the raw distribution with the help of histograms. This

will help visualise the data and know whether there is a need for using GMM. Also

the histograms will show us whether the the prior distribution is in coherence with

the surface averaged mean age distribution presented in Section 4.3.1.

The stacked histograms (i.e. different histograms stacked on top of each other [69])

for the distribution of mean age on a cross section normal to the direction of the flow

are shown in Figure 4.17, 4.18, 4.19 and 4.20. These histogram are normalised by

the area the curve. In all the four figures the tallest distribution is observed for the

Reynolds number of 12000. The height of peaks reduce as the Reynolds number of

the flow reduces. This observation is in coherence with the fact that as the Reynolds

number for the flow increases the mean age on any given cross section approaches

the molecular age, α. It can also be noticed that distribution also approaches the

molecular age as we move along the axial direction of the flow. These facts observed

are in coherence with the ones deduced by analysing the surface averaged frequency

distribution of mean age.

Figure 4.17 shows the distribution of mean age on section located mid-way along the

first element. The distribution is linear for the Reynolds number flows in the laminar

regions and becomes slightly peakier for the flow corresponding to the Reynolds of

12000. Figure 4.18 shows stacked histogram on a section located mid way along

the third Kenics element. As observed earlier the distribution gets even more peaky

however it still remains linear for the low Reynolds number flows in laminar region.

The Figure 4.19 and 4.20 show the distribution of mean age on a cross section 2 mm

and 15 mm away from the trailing edge of the sixth Kenics element respectively. As

mentioned above the distribution of mean age get peakier as we move along in the
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direction of Kenics mixer. It must also be observed that the peak is highest for the

flow corresponding to the Reynolds of 12000 and the height reduces as the Reynolds

number of the flow reduces.

Figure 4.17: Stacked histogram depicting the frequency distribution of mean age for
different Reynolds number flows on a cross section in x− y plane at z = 11.25mm

Figure 4.18: Stacked histogram depicting the frequency distribution of mean age for
different Reynolds number flows on a cross section in x− y plane at z = 56.25mm
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Figure 4.19: Stacked histogram depicting the frequency distribution of mean age for
different Reynolds number flows on a cross section in x− y plane at z = 137mm

Figure 4.20: Stacked histogram depicting the frequency distribution of mean age for
different Reynolds number flows on a cross section in x− y plane at z = 150mm
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4.5.2 Gaussian Mixture Model

A Gaussian mixture model (GMM) is a probabilistic model that assumes that the

given distribution is a mixture of a finite number of Gaussian curves with unknown

parameters [67]. A machine learning library Sci-Kit Learn [70] was used to implement

GMM on various cross sections of the Kenics mixer. It was assumed prior to the

application of GMM that the mean age distribution on any given cross section is a

sum of 10 different Gaussian curves.

Figure 4.21 shows the application of GMM to fit the mean age distribution obtained

on four different cross sections across the Kenics mixer for flow corresponding to the

Re = 1. The Figure 4.21a and Figure 4.21b corresponds to mean age distribution

mid-way along the first Kenics element and the third Kenics element, respectively.

The bottom two figures, Figure 4.21c and Figure 4.21d correspond to the mean age

distribution on a cross section 2 mm and 15 mm away from the trailing edge of the

sixth element. The contour plot of velocity and mean age are also shown on the

right hand side of each figure. The contour plot of velocity magnitude is normalised

by the inlet velocity, Uin. The contour plot of mean age shows the regions of a cross

section corresponding to the different Gaussian curves that were obtained using GMM

to fit the mean age distribution. The region on the cross section corresponding to

the Gaussian curve marked by dashed blue line is represented by the lowest level

of the mean age color-bar, the curve marked by dashed orange color is represented

by the second level of the color bar and the green dashed Gaussian curve represents

the third level of the color bar for the mean age distribution. The topmost level of

color-bar is reserved for the regions occupied by other seven Gaussian curves. All

the Gaussian curves and the histogram (the light grey region) are normalised by

area under the curve to obtain a probability distribution. Similar Figures for the

mean age distribution obtained via numerical simulations for the flow corresponding

to the Reynolds of 10, 100, 1000, 5069, 6843, 9504, 10391 and 12000 are shown in
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Figure 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 and 4.29, respectively.

One of the most interesting observation that can be made from these figures is that

how high velocity regions are associated with younger aged fluid. The figures also

show that a larger part of older aged fluid which forms the tail of the distribution

(shown by the green dashed curve for the case of laminar flows) is attached closely to

the walls. This observation was also made visually by looking at the evolution of mean

age in Figure 4.3 for the flow corresponding to the Reynolds of 1. However, with the

help of GMM we can quantify the observation. The Gaussian curves pertaining to the

older aged distribution (green dashed curve) has a large standard deviation along with

a large mean (shown in the top right corner of Figure 4.21). The striations observed

in Figure 4.3 can also be seen in Figure 4.21b. However with the help of GMM now we

can quantify this fact. The average mean age of fluid within the striations is around

0.674αe, whereas fluid surrounding the striations have a mean age of 1.058αe. The

ratio between the average mean age in the two regions is approximately 1.57. For the

case of Re = 10 this ratio between the same is 1.59 and for the flow corresponding

to Re = 100 it reduces to 1.53 and it further reduces to 1.23 for the transitional flow

(Re = 1000). This observation was visually recorded by noticing disappearance of

striations as the flow becomes chaotic. As the Reynolds number of the turbulent flow

increases the ratio between the mean of Gaussian curves approaches unity.

The disappearance of striations and the decrement in the ratio of the means of

the Gaussian curves is a direct causation of higher intermingling of particles due

to chaotic turbulence which results in an almost equal dissipation of kinetic energy

across the fluid domain which in turn forces the fluid volumes to have approximately

equal mean age irrespective of there location. It can also be assumed that the radial

mixing in case of turbulent flows will be higher compared to the laminar flows.

For the case of turbulent flows, the distribution of mean of age can longer be

represented by three Gaussian curves as can be seen in the Figure 4.25b, 4.26b, 4.27b,

4.28b and 4.29b. The shape of regions occupied by the mean age corresponding to
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.21: The GMMmodel is used to identify the distribution of mean age as a sum
of different Gaussian curves.The dominant blue curve alone is enough to represent the
distribution of mean age on any given cross section for the creeping flow (Re = 1).

these Gaussian curves is also different from what was observed for the case of laminar

flows. These changes in shapes can also be noticed from the evolution of mean age

shown in Figure 4.7, 4.8, 4.9, 4.10 and 4.11. However with the help of GMM we were

able to reveal the average mean age and standard deviation of fluid volumes that

comprise these different shapes.

Rahmani et al. [23] discovered that for the case of turbulent flows small islands of
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.22: The GMMmodel is used to identify the distribution of mean age as a sum
of different Gaussian curves.The dominant blue curve alone is enough to represent the
distribution of mean age on any given cross section for the laminar flow (Re = 10).

particles were observed. A similar observation can be made for turbulent flows by

looking at the contour plots of mean age distributions in the Figures 4.25b. A similar

conclusion was also made by looking at the vector plots of velocity in Figure 3.11.

However with the help of GMM now we can observe the mean and standard deviations

of mean age of fluid volumes in these regions.

The GMM was also used to fit Gaussian curves onto the distribution of mean
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.23: The GMMmodel is used to identify the distribution of mean age as a sum
of different Gaussian curves.The dominant blue curve alone is enough to represent the
distribution of mean age on any given cross section for the laminar flow (Re = 100).

age observed after the sixth element of Kenics mixer. The bottom two curves in

Figures 4.21 to 4.29, reveal how the rotational movement imparted to the fluid due

to helical surface of the Kenics mixer affects the mean age distribution. For the

case of creeping flow the region at the center is occupied by the younger aged fluid

represented by the blue curve whose mean approaches close to unity. As the Reynolds

number of the flow is increased to 10 (Figure 4.22). The region represented by the
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.24: The GMMmodel is used to identify the distribution of mean age as a sum
of different Gaussian curves.The dominant blue curve alone is enough to represent the
distribution of mean age on any given cross section for the transitional flow regime
(Re = 1000).

blue curve dissociates into four different regions surrounded by a slightly older fluid

(Figure 4.22c). The regions combine as we move further in the axial direction leaving

out only two separate islands of older fluid with a thin strip of slightly older fluid

between the two (Figure 4.22d). For the case of Reynolds number of 100 we observe

that unlike low Re flows the region at the center is occupied by subsequently older
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.25: The GMM model is used to identify the distribution of mean age as
a sum of different Gaussian curves.The dominant blue curve alone is not enough to
represent the distribution of mean age on any given cross section for the turbulent
flow regime (Re = 5069).

fluid (red region in contour plot of mean age in Figure 4.23c). This stark change in

the distribution of mean age for high Reynolds number flows can be attributed to the

presence of low velocity region entailing the end of the 2 mm thick Kenics element.

The region of older fluid fades as we move along in the axial direction (Figure 4.23d)

as the tangential motion of fluid imparted to it due to helical shape of the Kenics
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.26: The GMM model is used to identify the distribution of mean age as
a sum of different Gaussian curves.The dominant blue curve alone is not enough to
represent the distribution of mean age on any given cross section for the transitional
flow regime (Re = 6843).

element will force the radial intermingling of particles hence forcing them to achieve

similar velocity and henceforth similar mean age.

This region of older aged fluid entailing the sixth Kenics element is observed for

all the turbulent flow cases simulated (Figures 4.25 to 4.29). It is also interesting

to note that the region of low velocity coincides with the region of older aged fluid
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.27: The GMM model is used to identify the distribution of mean age as
a sum of different Gaussian curves.The dominant blue curve alone is not enough to
represent the distribution of mean age on any given cross section for the transitional
flow regime (Re = 9504).

observed at the center. As we move further in axial direction the region occupied by

older aged fluid disappears.
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.28: The GMM model is used to identify the distribution of mean age as
a sum of different Gaussian curves.The dominant blue curve alone is not enough to
represent the distribution of mean age on any given cross section for the transitional
flow regime (Re = 10391).
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(a) z = 0.89D (b) z = 4.43D

(c) z = 10.79D (d) z = 11.81D

Figure 4.29: The GMM model is used to identify the distribution of mean age as
a sum of different Gaussian curves.The dominant blue curve alone is not enough to
represent the distribution of mean age on any given cross section for the transitional
flow regime (Re = 12000).
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4.6 Summary

In this chapter we have shown how mean age distribution across the Kenics mixer

can be qualitatively and quantitatively visualised to assess mixing within the Kenics

mixer. The frequency distribution of mean age was evaluated across the volume of

mixer and on various cross sections to assess adverse mixing within the Kenics mixer.

The discovery of bi-modal surface averaged distribution of mean age on certain cross

sections for the case of turbulent flows paved way for a more deeper quantitative

analysis. For doing so, we resorted to machine learning and used the Gaussian mix-

ture models (GMM) to identify the various Gaussian curves that would constitute

a multi-modal distribution of mean age. An elegant use of the state of the art Ma-

chine learning models along with innovative visualisations to study the mean age

distribution through the Kenics mixer for various flow regimes is presented.
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Chapter 5

Conclusion

In this study, CFD was used to perform simulations of steady, incompressible and

isothermal flow through a six element Kenics mixer using a commercial software,

STAR-CCM+, on four different structured grids generated using Ansys ICEM. The

flow was simulated in laminar, turbulent and transitional flow regimes over four dif-

ferent grids.

Three different RANS models: Realizable k − ε, EB k − ε and Reynolds stress

model were used to simulate turbulence. The impact of different turbulent models

and the spatial grid on turbulent flow field predictions have also been identified. It

was observed that the Realizable k−ε predicts a higher magnitude of volume averaged

turbulent kinetic energy, ε and the Reynolds stress model predicts a larger magnitude

of pressure drop across the mixer when compared to other turbulent models. The

Reynolds stress model model performed better on the grid D when compared to other

turbulent models. When compared to existing literature the Reynolds stress model

predicted the pressure drop and turbulence parameters across the mixer with higher

accuracy.

The velocity and pressure field were evaluated on a range of Reynolds number

flows in the laminar and turbulent regime using the Reynolds stress model. The

pressure drop across the Kenics mixer in the laminar and turbulent flow regimes was

compared to the existing correlations. For laminar flow, the maximum deviation from
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the experimental values was less than 9%. For the case of turbulent flows, a larger

deviation from the experimental values was observed. The velocity fields at different

Reynolds numbers was evaluated and analysed to assess the effects of convection on

the mixing capability of the mixer in laminar and turbulent regime.

The spatial distributions of mean age reveal the generation, stretching, splitting

and recombination of the lamellar structures. The phenomena vary for laminar and

turbulent flows. For the case of creeping flow, lamellar structures are preserved due

to the domination of viscous forces over inertial forces. The systematic folding and

stretching of these structures is revealed as the flow velocity increases. Geometry

of the mixing inserts plays a major role in defining the way in which striations are

distorted. The clockwise and counterclockwise twist in the Kenics mixer influences

the direction of folding of lamellar structures. As the flow becomes turbulent the

striations disappear.

The spatial distribution of mean age also reveal the presence of dead zones within

the mixer. The mean age distribution provides location of regions with older aged

fluid, which can be associated with dead zones. The location of dead zones coincide

with the stagnation zones revealed by the contour plots of velocity magnitude. The

mean age distribution provides additional information on the nature of these stagna-

tion zones which can be helpful in revealing whether the mixing in these regions is

high or low.

The spatial distribution of mean age after the mixer was analysed to assess mixing

in the pipe after the mixer. The driving force for mixing in that region is the rota-

tional motion of the fluid imparted to it by the helical shape of the Kenics element.

For the case of creeping flow, the mean age distribution after the mixer remains un-

changed, whereas for the convection dominated flows the distribution of mean age

varies vigorously in the axial direction.

To quantify visual observations, the surface based frequency distribution of mean

age was evaluated at various cross sections at different Reynolds numbers. This

93



quantity can be used to estimate the deviation of the flow though the mixer from

the ideal plug flow. It also reveals the nature of the distribution: for turbulent flows,

we outlined multi-modal distributions of mean age, whereas it tends to be linear for

laminar flows. These multi modal distributions were further divided into multiple

Gaussian curves and regions pertaining to these distributions were also identified

using machine learning.

The presence of Kenics element increases the uniformity in mean age irrespective

of the Reynolds number. As Re increases, a larger degree of uniformity in the mean

age distribution is achieved. This phenomenon is visually depicted by scalar plots and

quantitatively by the surface based frequency distribution of mean age. The decay of

mean age reveals that the axial mixing is improved as the Reynolds number increases.

5.1 Future Work

Despite the innovative work presented in the current thesis, the definiteness of the

critical observations deduced by visualising mean age, yet rely on several assumptions.

In the current study we neglected diffusion by assigning a very high value to molecular

diffusivity and the turbulent Schmidt number. A detailed study into the effect of

diffusivity on the mean age distribution might paint a more accurate picture of mixing

analysis via mean age. We also restricted our study to one type of static mixer,

i.e. Kenics mixer, analysis of more mixers could reveal the efficacy of mean age

distribution in predicting mixing.

In this study we also discovered the occurrence of multi modal distribution for

various turbulent Reynolds number flows which contradicting to a well established

view that the concentration of a dispersed phase is most likely defined by a Gaussian

curve [19], [38], [71]. The reason behind the occurrence of these multi modal dis-

tribution can be attributed to the geometry of mixer and the chaotic turbulent flow

field. However a more deeper study might reveal interesting reasons behind these

multi modal distributions. A recent study by Forte et al. [38] reveals that a bi-modal
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distribution of liquid droplets was obtained when two immiscible liquids were mixed

using a six element Kenics mixer. The mean age distributions for flows corresponding

to Re = 5069 and Re = 6843 also presented with a bi modal distribution of mean

age at certain cross sections. It is possible that with the help of mean age theory we

might be able to predict the presence of multi modal distributions and could curb its

occurrence if needed for better mixing of two quantities.
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Appendix A: Residence Time
Distribution

A.1 Introduction

As defined by Danckwerts [30], residence time is the amount of time required by the
fluid molecule to traverse from the point of injection to the outlet of the system. A
distribution of these residence times also well known as the residence time distribution
(RTD) is commonly defined by an ”E-curve”. To estimate the RTD of a closed system
(i.e with one inlet and one outlet), a small amount of tracer is injected into the system.
Then the exit concentration of the tracer at the outlet, C(t), is measured until the
injected tracer is completely washed out from the system. The time during which
it happens is denoted as t∞. The ”E-curve”, or the distribution, is mathematically
represented as follows:

E(t) =
C(t)

t∞∫︁
0

C(t)dt

(A.1)

The first moment of the distribution determines the average amount of time spent
by a fluid molecule within the system, i.e. the mean residence time τm:

τm =

∞∫︂
0

tE(t)dt (A.2)

The second and the third moments of the curve determine the variance, γ2, and
the skewness, sk, of the distribution, respectively, and are calculated as follows:

γ2 =

∞∫︂
0

(t− τm)
2E(t)dt (A.3)

sk =

∞∫︁
0

(t− τm)
3E(t)dt

τ 3m
(A.4)

Using these quantities, we can assess the mixing performance of the system, for
instance, by evaluating the coefficient of variance, CoV = γ/τm, of the distribution.
A CoV of zero indicates complete distributive mixing, whereas CoV of one indicates
total segregation.
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A.2 Evaluating Residence Time Distribution

In this study, we used simulations of a passive scalar flow to determine the RTD
curve. The passive scalar behaves as a contaminant and does not affect the dynamics
of the flow. The transport of the passive scalar is governed by the following transient
convection-diffusion equation

∂C

∂t
+∇ · (UC) = ∇ · (D∇C) + SC (A.5)

where D is the diffusivity coefficient, and SC is the source term. The linear eddy
diffusivity model [37] is used to estimate the diffusivity coefficient:

D =
µ

σm
+
µt

σt
(A.6)

where σm is the molecular Schmidt number and σt is the turbulent Schmidt number.
Since the purpose of the study is to assess the effect of convection and turbulence
rather than mixing due to molecular diffusion, the molecular Schmidt number was
fixed to a value of 1010 m2/s meaning that molecular diffusion is negligibly small. The
contribution of molecular diffusion i.e µ/σ, to the overall tracer dispersion process is
expected to be small for turbulent flows [14]. The turbulent Schmidt number was set
to 0.7 which is commonly suggested in the literature [14], [56].

The flow fields obtained from the steady state simulations of the flow in the mixer
were used as initial conditions for the passive scalar simulations. The simulation was
switched to a transient mode. Then the passive scalar was injected at 2 mm before
the leading edge of the first Kenics element during ∆t = 0.01 seconds by maintaining
the value of the source term, SC , equal to unity. The initial concentration of the
scalar in the entire domain was set to zero. The amount of scalar concentration Cout
at the outlet was tracked as a function of time until it reached zero values at the
outlet of the domain.

The false diffusion arising from the numerical discretization of Equation (A.5)
was mitigated by using high-quality grid D and small time steps [72]. A second
order spatial discretization scheme and a second order implicit temporal discretization
scheme were used. The time step was set to 10−4 with 10 inner iterations per time
step. The solution convergence was ensured by achieving the residual level below
10−4.

A.3 Results and Discussion

The residence time distribution functions, E(t), obtained for the turbulent flows in
the Kenics mixer corresponding to the Reynolds number of 5069, 6843, 9504, 10 391
and 12 000 are shown in Figure A.1. With the increase in the Reynolds number of the
flow the RTD curves reach a higher maximum along with a reduced span along the
x−axis. Figure A.1 indicates that as the Reynolds number increases, the fluid spends
less time within the mixer. The second observation is that with the wider span of the
curve (lower Reynolds number) there is more deviation between the amount of time
fluid parcels spends within the device.

The span of the RTD curve can be quantified by evaluating variance, γ2, using
Equation A.4. The variance of the RTD curves are given in Table A.1 for the flow in
the mixer and empty pipe. These observations are consistent with the observations of:
the RTD is a strong function of the Reynolds number and flow in static mixers cannot
be considered as an ideal plug flow where the amount of time each fluid element stays
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inside the system remains identical [71] [15]. Increase in the Reynolds number leads
to decrease of the variance. The reason for this can be attributed to the flattening of
the velocity profile in the turbulent flow regime as shown in Figure 3.14 which results
in a parallel motion of particles across a larger fraction of the flow area.

Figure A.1: E-curves for Kenics mixer

Table A.1: Variance of RTD

Re 5069 6843 9504 10391 12000

Pipe 1.60×
10−2

9.78×
10−3

4.20×
10−3

3.24×
10−3

2.12×
10−3

Kenics
mixer

8.37×
10−3

4.30×
10−3

2.15×
10−3

1.79×
10−3

1.37×
10−3

The RTD curves for the flow through the mixer corresponding to the Reynolds
numbers of 5069 and 12 000 are plotted alongside with the RTD curves of a pipe
flow in Figure A.2a. The peak of the E-curve for a pipe flow is higher with a smaller
overall span at the bottom implying that the flow of particles is more streamlined i.e
parallel in case of turbulent pipe flow. This is expected as the absence of obstacles,
i.e. Kenics elements, will result in a less disturbed flow (refer to the velocity profile of
pipe flow in Figure 3.14). However, the tails of RTD curves for pipe flow extend longer
than those for Kenics mixer implying larger skewness, Sk, for RTD’s corresponding
to pipe flow [27]. The magnitudes of skewness for RTD’s curves is tabulated in Table
A.3 alongside CoV and mean residence time. A long tail also implies longer time for
the entire passive scalar to was out of the system. This can be further elaborated by
a cumulative residence time distribution (CRTD).
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A dimensionless form of the RTD function corresponding to the Reynolds numbers
of 5069 and 12 000 is presented in Figure A.2b. Time was dimensionalised with τm
(see Equation A.2) θ = t/τm. Abou Hweij and Azizi [25] states that a larger axial
dispersion at higher Reynolds number can be observed by an increased span and
smaller peak in a dimensionless RTD curve. A similar deduction can be made from
Figure A.2b. This diffusive effect in the scalar concentration can be marked as the
direct causation of increase in distribution of momentum across different directions in
turbulent flows (Shown by scalar plots in Figure 3.13). However such an observation
can not be made from the normalised RTD curves for pipe flow where a higher
Reynolds number flow is still accompanied by taller peaks and smaller span.

A CRTD curve also specifies the fraction of concentration within the device at any
moment in time and can be evaluated using Equation (A.7).

F (t) =

∫︂ t

0

E(t)dt (A.7)

The maximum and minimum amount of time spent by a molecule within the system
can also be revealed by evaluating cumulative residence time distribution (CRTD).
The CRTD curves for the pipe flow and flow through the mixer at different Reynolds
numbers are shown in Figure A.4. The passive scalar is completely washed out of the
system when F (t) = 1. The time at which F (t) approaches unity is given in Table
A.2. As can be seen from the results, this time is higher for the pipe flow compared
to the flow in the mixer. The presence of longer tail at the end of the RTD curve for
pipe flow results in a higher magnitude of time required by the last volume element to
was out of the system. The quantitative comparison the tail of an RTD curve can be
done by evaluating skewness, Sk of the curve. The skewness of RTD curves for flows
across two different systems at various Reynolds numbers are presented in Table A.3.

Table A.2: The amount of time required (in seconds) to wash out of the system

Re Pipe Kenics mixer

5069 1.83 1.57

6843 1.61 1.08

9504 1.06 7.33× 10−1

10391 9.25× 10−1 6.63× 10−1

12000 7.48× 10−1 5.67× 10−1

The reduction in mean residence time, τm, with the increase of the Reynolds num-
ber is shown in Figure A.6. The mean residence time for the pipe flow is consistently
lower than for the flow in the mixer for each Reynolds number. The ratio between
the mean residence time for pipe flow and the flow in the mixer ranges between 1.045
to 1.071. At higher Reynolds numbers it is expected that the ratio of mean residence
times across different flow systems will approach unity [16]. The study carried out
by Abou Hweij and Azizi [25] points out that RTD analysis could help reveal the
existence of dead volumes or occurrence of channeling or bypassing within the device.
For that the mean residence time obtained from ”E-curves” is compared with the the-
oretical one in Figure A.6. A theoretical residence time, τ , is the ratio of the volume
of the device to the volume flow rate of the system. The theoretical residence time
for both pipe and the Kenics mixer is approximately similar as the volume of inserts
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(a) Residence time distribution

(b) Normalised Residence time distribution

Figure A.2: RTD curves
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Figure A.3: Residence time distribution obtained on different grids and turbulent
models

is very small in magnitude compared to the volume of the domain extending from the
point of injection up till the outlet. The higher value of mean residence time for Ken-
ics mixer when compared to the theoretical residence time indicates absence of dead
zones, short circuiting, bypassing or channeling of flow [16]. The theoretical residence
time for pipe is approximately equal to that of obtained via CFD. The equality of the
two indicates that the flow passes undisturbed unlike the Kenics mixer. However, a
digression from theoretical residence time seems to be appearing as the flow becomes
more chaotic and turbulent.

Another important aspect revealed by the RTD analysis is the deviation from the
ideal flows. There are three ideal cases. The first one being the piston flow or ideal
plug flow. The second one being the laminar flow in an empty pipe and the third
one being the ideal mixing flow within a continuous stirred tank reactor (CSTR).
The plug flow and CSTR flows are the extreme for a well-designed reactor within
the turbulent flow. To reveal the deviation of the flow across the Kenics mixer and
pipe from the ideal behaviour we plot, F (θ) curves in Figure A.7. It can be observed
that niether of the systems follow idealised curves. It is also noticeable that the f(θ)
curves for pipe closely resemble to that of Kenics mixer.

The extent of radial mixing can be quantified by evaluating the magnitude of
CoV . Ther CoV for different RTD curves are given in Table A.3. For both pipe
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Figure A.4: Cumulative Residence time distribution for pipe and Kenics mixer

and mixer flows, the increase in axial velocity of the flow results in a decrement
in the value of CoV . Although the reduction is more prominent in case of a pipe
flow. As expected the CoV of RTD distribution obtained for Kenics mixer flows
is on an average approximately 45 percent smaller than that of pipe irrespective of
the Reynolds number of the flow. The presence of Kenics inserts certainly enhances
mixing characteristics of the system. However the rise in CoV with increase Reynolds
number of the flow is not substatial. The CoV of the flows corresponding to Reynolds
of 10 931 and 12 000 is approximately similar.

Table A.3: Features that extracted from the moments of the RTD curve.

Kenics mixer Pipe

Re τm CoV Sk τm CoV Sk

5069 8.25× 10−1 1.11× 10−1 1.64× 10−1 7.71× 10−1 1.64× 10−1 2.54× 10−1

6843 6.05× 10−1 1.08× 10−1 1.58× 10−1 5.78× 10−1 1.71× 10−1 2.94× 10−1

9054 4.42× 10−1 1.05× 10−1 1.43× 10−1 4.20× 10−1 1.54× 10−1 2.65× 10−1

10391 4.06× 10−1 1.04× 10−1 1.39× 10−1 3.85× 10−1 1.48× 10−1 2.50× 10−1

12000 3.53× 10−1 1.05× 10−1 1.38× 10−1 3.34× 10−1 1.38× 10−1 2.25× 10−1

The skewness and CoV of the curves in Figure A.1 alongside τm is shown in Table
A.4 for different turbulent models and grids. The mean, standard deviation and
skewness for the RTD curves at different Reynolds number is given in A.3 The RTD
curves for flows corresponding to different Reynolds numbers are shown in Figure
A.1. The same is shown on a normalised time scale in Figure A.5. It can be seen
that with increment in Reynolds number the curves become steeper with reduction in
deviation about the mean residence time. A reduction in mean residence time with
increment in RTD is shown in Figure A.6.
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Figure A.5: Normalised Residence time distribution obtained for different Reynolds
number flows

Table A.4: Moments of RTD curve predicted by simulating passive scalar on flow
fields obtained using various turbulence models.

Grid Turbulence model τm CoV sk

A RSM 3.57× 10−1 8.44× 10−2 8.40× 10−1

B RSM 3.49× 10−1 1.02× 10−1 1.06

C RSM 3.53× 10−1 1.05× 10−1 1.1

C Realizable k − ε 3.51× 10−1 1.37× 10−1 1.59

C EB k − ε 3.98× 10−1 1.21× 10−1 1.20
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Figure A.6: Variation in Mean residence time as Reynolds number is increased
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Figure A.7: Comparing Mixing
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A.3.1 Blending Time

The amount of time required by a fluid to blend within a confined space can be
predicted by evaluating change in volume uniformity of passive scalar. The volume
uniformity of any scalar describes the distribution of a certain quantity in a given
volume [73]. The volume uniformity of passive scalar is evaluated at each time step
using Equation A.8 over a volume domain extending from the end of sixth element
up till the outlet. The plots of same are presented in Figure A.8. A linear rise in
volume uniformity is observed in the case of all the simulated cases, the effect of grid
and turbulence model is shown more clearly by the gradient of volume uniformity in
Figure A.9. In an ideal case a well mixed region can be indicated by volume uniformity
equivalent to unity. The semi-log plots in Figure A.9 demonstrate a reduction in the
change of change of volume uniformity requiring an infinite amount of time for ω to
reach unity given the numerical errors are non existent. It is widely excepted that
a volume domain with ω greater than 0.95 can be considered well mixed. The time
required to achieve ω equal to 0.95 is represented as the blending time or ω0.95. The
ω0.95 for all the simulated cases are shown in Table A.5. A mesh Independence can be
observed as the difference between the ω0.95 of two systematically refined grid reduces.

The time required to achieve ω0.95 for various turbulent Reynolds number cases
is shown in Figure A.10. An inverse relation between the blending time and the
Reynolds number can be observed. The variation in volume uniformity with time for
different Reynolds number can be seen in Figure A.11.

ω = 1−
∑︁

j Vj|Φj − Φv|
2|Φv|

∑︁
j Vj

(A.8)

Table A.5: Blending time

Mesh Turbulence Model ω0.95 (s)

A EB k − ε 0.35

B EB k − ε 0.385

C EB k − ε 0.3865

D EB k − ε 0.3620

D Realizable k − ε 0.368

D RSM 0.3635
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Figure A.8: Volume uniformity of passive scalar
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Figure A.9: Change in gradient of volume uniformity with time
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Figure A.10: Blending time as a function of Reynolds number
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Figure A.11: Change in gradient of volume uniformity with time for different Reynolds
number flows
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Appendix B: Setting Up Mean Age
Simulations in STAR-CCM+

In this Appendix we step by step illustrate on how to obtain Mean Age Distribution
using Siemens PLM, STAR-CCM+, version 15 [37]

B.1 Step 1: Load Simulation With A Pre Deter-

mined Flow Field

The first step is to load an existing simulation. Make sure that you have already
simulated velocity and pressure field either using a steady or unsteady solver. As seen
in Figure B.1 We have already loaded an existing simulation. Just for the illustration
purposes we have used a coarse grid A to evaluate mean age distribution for a flow
corresponding to Reynolds of 12000. As you can see that the velocity and pressure
field were determined prior to the evaluation of mean age distribution.

Figure B.1: Showing residuals of the simulation that is loaded into Starccm+.
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B.2 Step 2: Setting Up Passive Scalar

The starccm+ provides an inbuilt physics model to simulate a passive scalar. Double
click on the model under the physics node as shown in Figure B.2. A box with a
list of different models will appear. From this box select the Passive Scalar model, if
previously not selected.

Figure B.2: Selecting a new Passive Scalar model.

Once selected close the pop up box. Once done, you will find a new Passive Scalar
node under the Models node in Physics 1. Right click on the Passive Scalar and
create a new passive scalar named Mean Age. See Figure B.3.

Once created the new Mean Age scalar node under the Passive Scalar node, set
the values of Molecular Diffusivity and the Turbulent Schmidt Number to 109.

B.3 Step 3: Setting Up Source Term For Passive

Scalar Equation

A closer look at the Equation 2.14 reveals that it differs from the convection-diffusion
equation only because of a constant source term value set to unity for the case of
Equation 2.14. To make passive scalar equation imitate the mean age equation (refer
to 2.14) we need to specify a constant source term equal to unity.

For doing so under the regions node, for all the fluid regions change the Passive
Scalar Source Option under the Physics Conditions from No source active to Scalar
flux with inferred density (see Figure B.4). Once the Source Definition is defined, set
the value of Passive Scalar Source Density Inferred under the Physics Values node
to unity, as shown in Figure B.5.

Make sure that you set the value of source for all the fluid regions in the compu-
tational domain.
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Figure B.3: Creating a new passive scalar for the simulation.
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Figure B.4: Changing source definition to mimic mean age equation.

B.4 Step 4: Evaluating Mean Age Distribution

Once everything is setup, click the green flag on the top center to run the simulation.
The Mean Age residual will show up in the viewer beside. As shown Figure B.6
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Figure B.5: Setting the value of source term to unity.
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Figure B.6: Residual of mean age equation.

122


	Introduction
	Definition of Mixing
	Ways to Assess Mixing
	Residence Time Distribution
	Mean Age

	Objective
	Thesis Organization

	Methodology
	Overview
	Problem Statement
	Governing Equations
	Turbulence Modeling
	Solvers
	Boundary Conditions
	Convergence Criteria

	Mesh
	Mesh Generation
	Grid Generation Challenges

	Mathematical Representation of Mean Age
	Relating Moments of Residence Time Distribution and Age
	Variance of Age
	Evaluating Mean Age Distribution

	Summary

	Flow Analysis
	Overview
	Model Verification and Validation
	Convergence
	Mesh Independence
	Estimation of Turbulence Quantities
	Pressure Drop

	Visualisation of Flow in Static Mixer
	Summary

	Mean Age Distribution
	Overview
	Spatial Distribution of Mean Age
	Mean Age Frequency Distribution
	Surface Averaged Mean Age Frequency Distributions

	Variance of Mean Age
	Machine Learning to Analyse Mixing via Mean Age
	Histogram
	Gaussian Mixture Model

	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix A: Residence Time Distribution
	Introduction
	Evaluating Residence Time Distribution
	Results and Discussion
	Blending Time


	Appendix B: Setting Up Mean Age Simulations in STAR-CCM+
	Step 1: Load Simulation With A Pre Determined Flow Field
	Step 2: Setting Up Passive Scalar
	Step 3: Setting Up Source Term For Passive Scalar Equation
	Step 4: Evaluating Mean Age Distribution


