Defining roles for SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like (SAL) genes in the activity-dormancy transitions of white spruce (Picea glauca) terminal buds By

Amanda Gregoris

A thesis submitted in partial fulfillment of the requirements for the degree of
Masters of Science
in
Plant Biology

Department of Biological Sciences
University of Alberta
© Amanda Gregoris, 2018

Abstract

An important part of the annual growth cycle of white spruce (Picea glauca [Moench.] Voss; $P g$) trees is the transition from active growth to dormancy, which confers protection against the potentially destructive environmental elements of winter. Terminal bud formation and cessation of meristemic growth is a precursor to dormancy induction. Environmental cues, such as photoperiod, temperature, water stress and phytohormones influence the progression of bud development and growth cessation. In angiosperms, SHORT VEGETATIVE PHASE (SVP) genes have been implicated in the control of bud formation, growth cessation and dormancy induction. However, the roles of $S V P$-like genes in white spruce and other conifers have yet to be investigated in this context.

We identified a suite of white spruce genes with sequence similarity to $S V P$ genes and explored whether these genes have a role in bud formation. To determine the white spruce genes that are mostly closely related to angiosperm $S V P$ and $S V P$-like genes, we constructed a phylogenetic tree using nucleotide and deduced amino acid sequences from a range of land plants. This analysis showed that seven white spruce genes form a sister clade with both SVPlike sequences and the closely related AGAMOUS-LIKE 24-like (AGL24-like) sequences from angiosperm species. Based on this evolutionary relationship, we have called these white spruce genes PgSVP/AGL24-like (PgSAL). Transcriptional profiling revealed that the seven PgSAL genes plus the more distantly related GQ03118_H14 exhibited three major expression patterns, with five of the seven $P g S A L$ genes showing declining expression at later time points. Based on transcriptional data, the genes that are most likely to be involved in regulating bud formation and/or growth cessation are $P g S A L 1, P g S A L 2, P g S A L 3, P g S A L 4$, and $P g S A L 5$.

Based on these expression profiles, we selected two PgSAL genes for further functional characterization through identifying factors that regulate their expression. We targeted the promoter sequences of PgSAL1 and PgSAL5 to identify potential upstream regulators. In silico characterization revealed potential transcription factor binding sites in the PgSAL1 and putative PgSAL5 promoters that may be regulated by environmental cues associated with bud formation and growth cessation, such as low temperatures, light, water stress and hormones (abscisic acid, ethylene, cytokinin, gibberellins and auxin). DNA-protein interactions as determined by yeast one-hybrid revealed that the promoter of $\mathrm{PgSAL1}$ gene showed interactions consistent with a function in the bud formation pathways conserved with the angiosperm photoperiodic pathway. The putative $P g$ SAL5 promoter is regulated by factors that suggest a role outside of bud formation, based on the angiosperm model. Both the PgSAL1 and putative PgSAL5 promoters were regulated by transcription factors that participate in regulatory networks of low temperature, the abscisic acid response, plant defense and/or secondary growth. A subset of transcription factor binding sites suggest that $P g S A L 1$ and $P g S A L 5$ could be regulated by the defense pathway, which may indicate novel roles for these genes outside of the phase transition from active growth to dormancy.

We demonstrate that white spruce $S A L$ genes are homologous to angiosperm $S V P$ and $A G L 24$ genes, and propose that a subset of these genes have roles in the bud formation processes that precede winter dormancy based on expression patterns and associated upstream regulatory pathways, in addition to possible functions outside of bud formation.

Preface

The experimental design for white spruce seedlings was designed and grown by Ms. Carmen Gibbs-Allen and Dr. Eri Adams (Chapter 2) and Dr. Jill Hamilton (Chapter 3). The statistical analyses (Chapter 2) were carried out in consultation with Mr. Dean Koch and Ms. Melodie Kunegal-Lyon. I was responsible for conducting the molecular biology experiments and analyses described in this thesis.

Acknowledgements

I would like to thank Dr. Nathalie Isabel and Ms. Marie-Claude Gros-Louis (Natural Resources Canada - Canadian Forest Service, Québec) for providing the white spruce seedlings used for Chapters 2 and 3, and Ms. Carmen Gibbs-Allen and Dr. Eri Adams (Chapter 2) and Dr. Jill Hamilton (Chapter 3) for conducting the plant experiments used to generate experimental materials. The trees used in the Chapter 3 analysis were donated by Coast to Coast Reforestation. I am thankful to Dr. Walid El Kayal for his assistance with the gene expression studies in Chapter 2. I would like to thank Mr. André Gagné and Dr. John MacKay (formerly of Université Laval) for providing cDNAs used in Chapter 2 from the Arborea cDNA collection maintained at Université Laval. I would like to acknowledge Dr. Amy Brunner and Mr. Earl Petzold for training on the yeast one-hybrid assays, and Mr. Steven Rigoulot for suggestions on cDNA library construction in Chapter 3. I would like to thank Mr. Dean Koch and Ms. Mélodie Kunegel-Lion for assistance and recommendations with the multivariate analysis of variance (MANOVA) in Chapter 2. I would like to thank Dr. Rhiannon Peery for creating the alignments for the $S A L 5$ promoter and $S A L 5$ cDNA sequence against the white spruce genome assembly contigs in Chapter 3, which I used to create my final alignment figures. I am thankful to my committee member Dr. Enrico Scarpella for help with the promoter database search in Chapter 3, and his continuous advice throughout my research. I would most of all like to thank my supervisors Dr. Janice Cooke and Dr. Jocelyn Hall for their experimental advice and comments on my writing.

Table of Contents

1.0 Chapter 1: Introduction and Background 1
1.1 Importance of white spruce in Canadian forests 1
1.2 Dormancy 2
1.2.1 Endodormancy, ecodormancy, paradormancy 2
1.2.2 Dormancy depth 4
1.2.3 Dormancy establishment 5
1.3 Molecular regulation of bud formation and dormancy acquisition 7
1.3.1 MADS-box genes 7
1.3.2 The photoperiodic flowering pathway 9
1.3.3 Conceptual model of bud formation and dormancy acquisition in angiosperms and conifers 10
1.3.4 SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like genes 14
1.4 The current study 16
Chapter 1 Figures 19
2.0 Chapter 2: Roles for SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like genes in distinct phases of white spruce apical bud formation 22
2.1 Introduction 22
2.2 Materials and Methods 25
2.2.1 Plant material 25
2.2.2 Phylogenetic analyses 25
2.2.3 qRT-PCR. 28
2.2.4 Statistical analyses 29
2.3 Results 29
2.3.1 A clade of white spruce genes is sister to the angiosperm clade containing Arabidopsis thaliana SVP and AGL24 29
2.3.2 White spruce $S A L$ genes show distinct transcript abundance profiles during terminal bud development. 31
2.4 Discussion 33
2.4.1 A clade of white spruce $S A L$ genes is sister to functionally characterized angiosperm $S A$ genes 33
2.4.2 A subset of PgSALs may share conserved role in bud formation and/or growth cessation. 36
2.4.3 A PgSAL may have acquired novel functions. 38
2.5 Conclusion 38
Chapter 2 Figures 40
Chapter 2 Tables 45
Chapter 2 Supplementary Data 49
3.0 Chapter 3: Picea glauca SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like 1 regulation may have evolved from a common angiosperm pathway, while SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like 5 may be regulated by novel pathways. 70
3.1 Introduction 70
3.2 Materials and Methods 75
3.2.1 Plant Material 75
3.2.2 PgSAL1 and putative $P g$ SAL5 promoter isolation 75
3.2.3 Yeast One-Hybrid (Y1H) Assay 76
3.2.4 In silico promoter analysis 82
3.3 Results 83
3.3.1 Isolation and in silico analysis of two $S A L$ promoters 83
3.3.2 TFBS search suggests $P g S A L$ promoters are regulated by similar networks 85
3.3.3 Six putative regulators bind $P g S A L$ promoters in weak and strong interactions 87
3.4 Discussion 90
3.4.1 $\operatorname{PgSAL1}$ and putative $P g S A L 5$ promoters are regulated by external stimuli and hormones 92
3.4.2 Yeast One-Hybrid Assay identified six proteins that may regulate $P g S A L$ genes 94
3.4.2.1 Transcription factors that interact with the putative $P g S A L 5$ promoter suggest roles in development and beyond bud formation. 94
3.4.2.2 Transcription factors that interact with the PgSAL1 promoter suggest role in bud formation 98
3.4.3 Conceptual models of $P g S A L 1$ and putative $P g S A L 5$ regulatory networks 101
Chapter 3 Figures 104
Chapter 3 Tables 115
Chapter 3 Supplemental Data 146
4.0 Conclusions 201
Chapter 4 Figures 210
References 211
5.0 Appendices 227
Appendix 1. Picea glauca SHORT VEGETATIVE PHASE/AGAMOUSLIKE 24-like (SAL) promoter sequences generated from Genome Walker ${ }^{\text {TM }}$ cloning, and extended using gDNA sequences from the Norway spruce genome 227
Appendix 2. Transcription factor nucleotide sequences identified from yeast one-hybrid search 228
Appendix 3. Cloning Promoter Baits into Destination Vector. 232
Appendix 4. Yeast Transformation Protocol. 235
Appendix 5. Yeast Replica Plating Protocol. 241
Appendix 6. Additional sequences obtained from the yeast one-hybrid screen 244
Appendix 7. Multivariate anlysis of variance (MANOVA) R script for transcript abundance 263
List of Tables
Table 2.1 Shimodaira-Hasegawa (SH) Test of alternative topologies 45
Table 2.2 Gene specific primers used for qRT-PCR analysis 46
Table 2.3 p-values from multivariate analysis of variance (MANOVA) performed quantitative reverse transcriptase PCR (qRT-PCR) values of white spruce terminal buds. 47
Table S2.1 List of nucleotide and amino acid sequences of 88 MIKC sequences from 14 different species used for phylogenetic trees 65
Table 3.1 Primers used for promoter cloning and insert verification. 113
Table 3.2 PgSAL1 promoter rVista search 114
Table 3.3 PgSAL5 promoter rVista search. 126
Table 3.4 Yeast one-hybrid interaction strength table 142
Table 3.5 Yeast one-hybrid (Y1H) identified transcription factors sequence similarity to other plant species 143
Table S3.1 Similarity of white spruce contigs promoters and coding sequences of PgSAL1 andPgSAL5.183
Table S3.2 Query contigs and cloned portions of genomic DNA to BLAST 189
Table S3.3 Sequence similarity of yeast one-hybrid $P g M Y B 1$ to previously identified $P g M Y B$genes.200

List of Figures

Figure 1.1 Distribution of white spruce trees across Canada 19
Figure 1.2 Summary of phenotypic stages of bud formation across long day and short day conditions 20
Figure 1.3. A simplified summary of a subset of transcription factors involved in the flowering pathway in Arabidopsis under long photoperiods 21
Figure 2.1 Amino acid alignment of MIKC sequences, with the individual "M" and "K" domains labeled 40
Figure 2.2 Maximum likelihood (ML) tree constructed from MIKC nucleotide partition 42
Figure 2.3 Transcript abundance profiles 44
Figure S2.1 Maximum parsimony tree constructed from nucleotide partition. 50
Figure S2.2 Weighted maximum parsimony tree 51
Figure S2.3 Maximum parsimony tree from amino acid partition 53
Figure S2.4 Maximum likelihood tree from amino acid partition 55
Figure S2.5 Maximum likelihood tree without bootstrap 57
Figure S2.6 AGAMOUS-LIKE 15 (AGL15) maximum likelihood constraint 59
Figure S2.7 ARABIDOPSIS NITRATE REGULATED 1 (ANR1) maximum likelihood constraint 60
Figure S2.8 FLOWERING LOCUS C (FLC) maximum likelihood constraint 61
Figure S2.9 SEPELLATA (SEP) maximum likelihood constraint 62
Figure S2.10 SHATTERPROOF (SHP) maximum likelihood constraint 63
Figure S2.11 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) maximumlikelihood constraint64
Figure 3.1 $P g S A L 1$ and putative $P g S A L 5$ promoter alignment 105Figure 3.2 Transcription factor binding sites identified by rVista that are shared and distinctbetween $P g$ SAL1 and putative $P g$ SAL5 promoters106
Figure 3.3 Frequency of functional category association with putative transcription factorbinding sites identified in the PgSAL1 and putative PgSAL5 promoters.107

Figure 3.4 Pie charts depicting proportions of transcription factor gene families associated with putative transcription factor binding sites in the PgSAL1 and putative PgSAL5 promoters identified by rVista.

Figure 3.5 Yeast one-hybrid growth on selective 3-amino-1,2,4-triazole (3-AT) plates.......... 109
Figure 3.6 Summary figure of the PgSAL1 and putative PgSAL5 regulatory pathways.......... 112
Figure S3.1 Alignment of PG29 Pg-01r1412s213727 contig, promoter cDNA alignments for SAL1 were conducted in MAFFT (mafft.cbrc.jp/alignment/server/) using default parameters.. 147

Figure S3.2 Alignment of WS Pg-02r141203s0882372 contig, promoter cDNA alignments for SAL1 were conducted in MAFFT (mafft.cbrc.jp/alignment/server/) using default parameters.. 152

Figure S3.3 Alignment of Pg-01r141201s0119707, Pg-01r141201s2356730, Pg01 r 141201 s2765746 contigs, promoter cDNA alignments for putative SAL5 were conducted in Geneious using the Mauve plugin.

Figure S3.4 Alignment of Pg-02r141203s0882372 contig, promoter cDNA alignments for
putative SAL5 were conducted in Geneious using the Mauve plugin.............................. 163
Figure S3.5 Alignment of PgNBS-LRR/WRKY and Arabidopsis WRKY16 conducted in EMBOSS Needle nucleotide alignment (ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html).

Figure S3.6 Alignment of PgNBS-LRR/WRKY and Arabidopsis WRKY19 conducted in EMBOSS Needle nucleotide alignment (ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html)172

Figure S3.7 Overview of LRR and WRKY domains in PgNBS-LRR/WRKY, Arabidopsis WRKY16 and Arabidopsis WRKY19181

Figure 4.1 Proposed model of white spruce SHORT VEGETATIVE PHASE/AGAMOUS-LIKE
24-like (SAL) genes in molecular regulatory pathways. 210

List of Abbreviations

3-AT	3-amino-1,2,4-triazole
AC	Actinidia chinensis
AG	AGAMOUS
AGL	AGAMOUS-LIKE
AIC	Akaike Information Criterion
ANR1	ARABIDOPSIS NITRATE REGULATED 1
AP1	APETELA1
AP2	APETELA2
ASR	ABSCISIC ACID STRESS RIPENING
AT	Arabidopsis thaliana
ATHB9	ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 9
AUX	auxin
bp	base pairs
BIC	Bayesian Information Criterion
β-gal	β-galactosidase
BS	bootstrap
CPC	CAPRICE
cfu	colony forming units
CK	cytokinin
cm	centimeters
CO	CONSTANS
ct	cycle threshold
CT	Citrus trifoliata
CTAB	cetyltrimethylammonium bromide
DAM	DORMANCY ASSOCIATED MADS-BOX
DIW	deionized water
EDTA	ethylenediaminetetraacetic acid
EG	Eucalyptus grandis
EE	Euphorbia esula

EIL	ethylene insensitive-like
ERF	ethylene response factor
ETC	ENHANCER OF TRYPTYCHON AND CAPRICE
EVG	EVERGROWING
FLC	FLOWERING LOCUS C
FLM	FLOWERING LOCUS M
FLX	FLOWERING C EXPRESSOR
FRI	FRIGIDA
FT	FLOWERING LOCUS T
FTL1	FT/TERMINAL FLOWER1-like
FTL2	FT/TERMINAL FLOWER2-like
HV	Hordeum vulgare
His	histidine
HSD	honest significant difference
g	grams
GA	gibberellins
GTR	general time reversible
IAA	indole-3-acetic acid
JTT	Jones-Taylor-Thornton
L	litres
LB	Lennox broth
LD	long day
LFY	LEAFY
LiAc	lithium acetate
M	molal
mm	millimeters
MADS	MCM1, Antirrhinum, DEFICIENS, SRF
MCM1	MNICHROMOSOME MAINTENANCE1
MEF2	MYOCYTE ENHANCER FACTOR2A
MFT	MOTHER OF FT AND TFL1
MIKC	MADS, intervening, keratin, C-terminal

mL	milliliters
ML	maximum likelihood
MP	maximum parsimony
NBS-LRR	nucleotide-binding site/leucine-rich repeat
OD	optical density
O / N	overnight
PCR	polymerase chain reaction
PEBP	phosphatidylethanolamine-binding protein
PEG	polyethylene glycol
PG	Picea glauca
PIF3	POLYCHROME INTERACTING FACTOR 3
PhP	Phsycometrella patens
PHYA	PHYTOCHROME A
PA	Prunus avium
PG	Picea glauca
PM	Prunus mume
PP	Prunus persica
qRT-PCR	quantitative reverse transcriptase PCR
RAV1	RELATED TO ABI1/VP1
RELL	resampling estimated log-likelihoods
SAL	SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like
SAM	shoot apical meristem
SC	synthetic complete
SD	short day
SEP	SEPELLATA
SH	Shimodaira-Hasegawa
SHP	SHATTERPROOF
SOC1	SUPPRESSOR OF OVEREXPRESSOR OF CONSTANS 1
SRF	SERUM RESPONSE FACTOR
ST	Solanum tuberosum
SVP	SHORT VEGETATIVE PHASE

TBR	terminal branch rearrangement
TE	TRIS base EDTA
TF	transcription factor
TFBS	transcription factor binding sites
TIF5a	TRANSLATION INITIATION FACTOR 5a
Tm	melting temperature
Trp	tryptophan
$\mu \mathrm{g}$	microgram
$\mu 1$	microlitre
Ura	uracil
VV	Vitis vinifera
YNB	yeast nitrogen base
YPDA	yeast, peptone, dextrose, adenine sulfate
ZAP1	ZINC-DEPENDENT ACTIVATOR PROTEIN-1

1.0 Chapter 1: Introduction and Background

1.1 Importance of white spruce in Canadian forests

Canada has 348 million hectares of forest, which is 9% of the global forest cover, ranking Canada in third place, behind Russia and Brazil, in forested areas (Natural Resources Canada 2014a). The five species of spruce native to Canada, white spruce (Picea glauca (Moench) Voss), red spruce (Picea rubens Sarg.), black spruce (Picea mariana (Mill.) Britton, Sterns \& Poggenb), Engelmann spruce (Picea engelmannii Parry ex Engelm.), Sitka spruce (Picea sitchensis (Bong.) Carrière), make up a large proportion of Canadian forests (Natural Resources Canada 2015a, Canadian Wildlife Federation 2017). A distinct feature of spruce trees that differentiate them from other conifers is their four-sided needles, with the exception of the twosided needles of Sitka spruce.

White spruce trees and their hybrids are found in almost all forests within Canada except for northern regions of Nunavut and the Pacific Coast, and comprise 20\% of Canada's forests (Government of Alberta 2006, Natural Resources Canada 2015, Canadian Wildlife Federation 2017). White spruce trees have a transcontinental distribution across Canada (Nienstaedt and Zasada 1990, Figure. 1.1). In Alberta, Picea make up approximately 45\% of forested areas, with white spruce comprising 30% (Government of Alberta 2013). Natural hybrid zones of white x Engelmann spruce (Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm.) occur where the distributions of these trees overlap in Alberta (Government of Alberta 2016). Other trees commonly found growing in forests containing white spruce include Sitka spruce, balsam poplar, aspen and birch (Government of Alberta 2003).

Spruce trees play an important role in contributing to the maintenance of forest ecology. Forests containing spruce trees provide habitats for many species of the Cervidae family, including deer, moose, caribou and elk, as well as sheep, goats and bears. In addition, many Indigenous communities ($\sim 70 \%$) are located in Canadian forests (Natural Resources Canada 2014a). Continued attention is being placed towards conservation and regeneration of Canadian forests with caribou being declared a species at risk by the Canadian federal government (Government of Canada 2017). This is an effort to preserve caribou habitats, which have a preference for forests containing white spruce, among other tree species (Government of Canada 2017).

Canada's softwood lumber exports comprise mainly of spruce, pine and fir, and generate a GDP of $\$ 22$ billion annually (Natural Resources Canada 2014b). Over 200,000 Canadians are employed by the forestry industry in Canada (Natural Resources Canada 2017). Spruce trees are harvested for use in solid wood and paper products, and grown commercially for the Christmas tree industry. Some of the products manufactured from white spruce include newsprint, construction materials, plywood, paddles, musical instruments and packing cases (Government of Alberta 2006, Government of Alberta 2003). Trees are generally harvested when trees have reached 80 to 120 years of age (Government of Alberta 2003).

1.2 Dormancy

1.2.1 Endodormancy, ecodormancy, paradormancy

Entrance into a dormant state is a key component of the perennial lifestyle in northern temperate climates. Dormancy aids to protect trees from the unfavourable conditions of winter so that they may go on to resume growth and thrive the following spring. There are multiple descriptions that have employed the word dormancy to describe the cessation of growth. In Lang
(1987) and Lang et al. (1987) three states of dormancy were described: (1) endodormancy, (2) paradormancy and (3) ecodormancy. Endodormancy is also described as innate or seasonal dormancy. Endodormancy is a state in which the cessation of a structure is imposed by the tissue itself, and regrowth of this structure will not occur even when placed under growth permissive conditions. Paradormancy is a state in which the inhibitory cues preventing regrowth at a structure is imposed by the plant, but this inhibitory signal originates from a different structure. Paradormancy is also referred to as correlative inhibition, and is commonly displayed through apical dominance, especially in conifers. Apical dominance is the circumstance that attribute the characteristic conical shape of conifers trees, in which auxin released from the apical bud inhibits the growth of lateral buds. Inhibitory effects of apical dominance can be removed by damage to the apical bud or decapitation, thereby removing the inhibitory auxin signal (Gocal et al. 1991) and allowing cytokinin originating from the roots to stimulate axillary bud growth (Bangerth 1994). Ecodormancy is when cessation of growth of a structure is external to the plant, and imposed by the environment. In ecodormancy growth permissive conditions such as warm temperatures, nutrient and water availability are absent and as a result growth of the structure does not occur.

Lang's (1987) definitions of dormancy are limited since they rely on the overall appearance of growth on a physiological level, and focus on the source of the dormancy imposing cues. This characterization is problematic because the dormancy status of a structure is based on whether the structure has the ability to resume growth, not if growth actually occurs (Rohde and Bhalerao 2007). Rohde and Bhalerao (2007) propose an alternative definition of dormancy which implicates the meristem as the main determinant of dormancy status. Rohde and Bhalerao (2007) define bud dormancy as the absence of growth in meristematic tissues even
when permissive growth conditions are present. This definition is similar to the description of endodormancy proposed by Lang (1987) but makes the clear distinction that once dormant, growth may still not occur as a result of environmental factors preventing resumption of growth, also referred to as ecodormancy. This description is also inclusive towards structures which may not resume growth as a result of inhibition being imposed by another plant structure. Here thereafter the term dormancy will refer to the simple and inclusive definition proposed by Rohde and Bhalerao (2007).

1.2.2 Dormancy depth

Despite improvements researchers have made in defining the state of dormancy, the current definition implies that dormancy is either present or absent in a structure. This definition does not take into account that dormancy is not a strict qualitative trait, and instead the ability of dormancy to inhibit regrowth exists on a continuum. Dormancy is now recognized as a quantitative trait, and the scale of dormancy establishment is referred to as "depth". This depth can be quantified either by the number of days of chilling or the temperature at the time of chilling and may be supplemented with photoperiod input (Worral and Mergen 1967, Sarvas 1974, Leinonen 1996). Dormancy depth can be influenced by the temperature during dormancy establishment. Intermediate temperatures can induce deeper dormancy in birch (Junttila et al. 2003), apple and pear (Jonkers 1979). Environmental factors influencing dormancy will be discussed further in Chapter 3.

Cooke et al. (2012) propose that the definition of dormancy should be expanded to incorporate the depth of dormancy of a particular structure like buds, similar to that of seed dormancy, using the terms deep, intermediate, or non-deep (Baskin and Baskin 2004, Graeber et al. 2012). This categorization of dormancy takes into account that dormancy is a quantitative
trait as opposed to a qualitative trait, integrating internal as well as external signals to modulate and regulate depth (Cooke et al. 2012).

1.2.3 Dormancy establishment

Dormancy can be induced by environmental or endogenous factors, with the importance and strength of each factor tending to be species specific (Singh et al. 2017, Hänninen and Tanino 2011). Following bud burst in the spring, preformed needle primordia and stem units contained within the bud will elongate. Preformed growth occurs in the previous growth season, whereas neoformed growth occurs in the same growth season. Indeterminate growth refers to a plant, e.g. poplar, which produces neoformed stem units and elongates internodes in the same growing season (Kozlowski and Pallardy 19977, Rohde et al. 2000). While determinate growth (e.g. white spruce), refers to the majority or all of the season's current growth to be predetermined by the number of preformed stem units from the previous growing season (Kozlowski and Pallardy 19977, Rohde et al. 2000). After the summer equinox, the days begin to shorten, which is perceived by plants as short days (SDs). SDs are recognized by the plant when the period of light falls below the critical day length (Taiz and Zeiger 2010). Perception of these changing photoperiods are believed to be perceived in the needles and leaves (Eagles and Wareing 1964, Wareing 1970, Singh et al. 2017). SDs have been shown to trigger bud set and cessation of growth in some species, such as Populus species including hybrid aspen (Populus tremula L. x Populus tremuloides Michx; Olsen et al. 1997b), bay willow (Salix pentandra L.; Junttila 1980), and downy birch (Betula pubescens Ehrh.; Junttila 1980). SD signals developmental changes in buds, causing a subset of primordia to differentiate into bud scales instead of needles or leaves (Okuba 2000). Terminal bud set is a prerequisite to dormancy
induction, and is followed by cessation of cell division at meristems (Rohde and Bhalerao 2007). Evidence has shown that the cell-to-cell communication networks, plasmodesmata, become blocked with callose prevents signaling molecules, such as transcription factors and hormones, from reaching the shoot apical meristem (SAM; Rinne and van der Schoot 1998, Rinne et al. 2005, Levy et al. 2007, Rinne et al. 2011). This model proposes that bud dormancy is the result of the symplasm of the bud becoming physically isolated from the rest of the plant. The establishment and removal of these plasmodesmata plugs are associated with dormancy establishment and release in birch and poplar (Jian et al. 1997, Rinne and van der Schoot 1998, Rinne et al. 2011). It is believed that plasmodesmata plugs must be removed in order for the bud to regain communication with the rest of the plant and to subsequently receive the necessary signals to resume growth, which is associated with dormancy release (Rinne et al. 2011). However, at this time, no genetic or molecular biology has confirmed this hypothesis on bud dormancy (Singh et al. 2017).

In white spruce, SDs are not necessary for the formation of terminal buds (El Kayal et al. 2011, Hamilton et al. 2016). However, SDs have been found to accelerate the development of terminal buds and suppress the same-season expansion of needle primordia in partially formed buds (El Kayal et al. 2011, Hamilton et al. 2016), otherwise known as second flush or lammas growth (Figure 2). Younger white spruce trees are more susceptible to growth cessation and terminal bud set under SDs, however this trait declines as the tree matures and likely becomes regulated by endogenous signals (Cooke et al. 2012, Singh et al. 2017).

Photoperiod is not a ubiquitous stimulus for the induction of bud set and growth cessation, as some species' growth cycle is driven by temperature. Species from the Rosaceae family, including apple (Malus pumila Mill.) and pear (Pyrus communis L.), use low
temperatures as an indication to commence the processes associated with bud set and growth cessation (Heide and Prestrud 2005). Unlike day length, temperature can have great variation year-to-year. Although dormancy is induced by photoperiod in most species, some species use both temperature and photoperiod cues in regulating their annual growth cycles. For instance, high day temperatures and low night temperatures can serve to replace the photoperiod requirement for dormancy induction in Norway spruce, bay willow and hybrid aspen (Heide 1974, Junttila 1980, Mølmann et al. 2005). Fall temperatures can also affect growth cessation, rate of dormancy acquisition and depth of dormancy in poplar (Kalcsits et al. 2009, Tanino et al. 2010). Low temperatures are not a requirement for bud formation in white spruce (El Kayal et al. 2010), however low temperatures delay bud formation and do not prevent second flush in trees grown under long day (LD) conditions (Hamilton et al. 2016). The delay in bud formation caused by low temperatures in LD condition is in agreement with evidence in poplar that suggests temperature alters the tree's responsiveness to photoperiod (Rohde et al. 2011).

1.3 Molecular regulation of bud formation and dormancy acquisition

1.3.1 MADS-box genes

Since many genes that have been implicated in bud formation belong to the MADS-box gene family, here I have included an overview of the structure of these genes. The MADS-box gene family is a family of transcription factors (TFs) that has roles in development and differentiation in plant, fungi and animal species. The designation "MADS" is derived from the earliest described members of this family: the " M " stands for MINICHROMOSOME MAINTENANCE1 (MCM1) in yeast (Saccharomyces cerevisiae Meyen Ex. Hansen) (Passmore et al. 1988), the "A" stands for AGAMOUS, discovered in Arabidopsis thaliana (L.) Heynh
(hereafter referred to as Arabidopsis, Yanofsky et al. 1990), the "D" stands for or DEFICIENS from snapdragon (Antirrhinum majus L.) (Sommer et al. 1990, Schwarz-Sommer et al. 1992) and the "S" stands for SERUM RESPONSE FACTOR (SRF) from humans (Homo sapiens L.) (Norman et al. 1988). Members in this family are categorized as Type I and Type II MADS-box genes based on conserved domains, and are believed to have undergone a duplication event preceding the divergence between plant and animals (Alvarez-Buylla et al. 2000). Type I MADSbox genes contain the SRF-like domain, whereas Type II genes encode a MYOCYTE ENHANCER FACTOR2-like (MEF2-like) domain and are exclusively found in plants (De Bodt et al. 2003, Alvarez Buylla et al. 2000).

Type II MADS-box genes are also referred to as MIKC genes due to the characteristic four domain structure: "M" (MADS), " $\mathrm{I} "$ (intervening), "K" (keratin-like) and "C" (C-terminal) (Theissen et al. 1996). The "M" and "K" domains are well conserved and participate in DNA binding and protein-protein interactions, respectively (Davies et al. 1996, Fan et al. 1997). The "I" domain is comparatively less conserved, and is believed to contribute to dimerization specificity (Parĕnicová et al. 2003). The "C" domain is the most divergent domain, and is involved in multimeric protein complex formation, as well as transcriptional activation (EgeaCortines et al. 1999, Honma and Goto 2001). Type II MADS-box genes are further subdivided into MIKC* and MIKC ${ }^{\mathrm{c}}$. The additional " ${ }^{\mathrm{C}}$ " in MIKC ${ }^{\mathrm{c}}$ refers to "classic", since MIKC ${ }^{\mathrm{C}}$ genes possess the classic MIKC-type domains found in this family (Becker and Theissen 2003). The asterisk, "*", in MIKC* denotes that this group of MADS-box genes deviate from the classic MIKC domains via an elongated " I " domain, in addition to the divergence in the " K " domain (Becker and Theissen 2003). There is also documentation of a less well conserved " N " domain, which proceeds the "M" domain, but it is only found in minority species (Henschel et al.
2002). MIKC proteins bind to promoter regions as homo-dimers, hetero-dimers, or higher order protein complexes to regulate transcription (Egea-Corines et al. 1999, Honma and Goto 2001).

1.3.2 The photoperiodic flowering pathway

Considerable research has been put forth to characterize the function of MIKC genes in Arabidopsis and other angiosperm species. This work has demonstrated MIKC genes have roles in floral organ and meristem identity determination (Kaufmann et al. 2005, Gramzow and Theissen 2010), in addition to the regulation of flowering time, also referred to as the phase transition from vegetative to reproductive growth. The pivotal research by Böhlenius et al. (2006) showed that a poplar flowering gene, FLOWERING LOCUS $T(F T)$, also regulates the activity-dormancy transition, demonstrating that the transition to dormancy is regulated by a signaling network analogous to the photoperiodic pathway that regulates the transition from vegetative to reproductive growth. Given the importance surrounding the regulation of these processes, many researchers use the flowering pathway as a guide to understand the transition from vegetative growth to dormancy. Both flowering and dormancy represent transitions in developmental stages, which may employ a similar pathway. Endogenous and environmental signals are integrated at the SAM to regulate this phase transition in Arabidopsis (Hartmann et al. 2000, Tao et al. 2012), including light, temperature and endogenous signals (reviewed in Amasino 2010). Several transcription factors within and outside the MADS-box family participate in the photoperiodic transition to flowering which include, but are not limited to the following gene: CONSTANS (CO), FT, APETELA1 (AP1), LEAFY (LFY), and the MADS-box genes FLOWERING LOCUS C (FLC), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE STAGE (SVP) (reviewed in Amasino 2010 and Irish 2010).

Figure 1.3 is a simplified overview of the photoperiodic flowering pathway in Arabidopsis. Under LDs in Arabidopsis, the expression of $C O$ peaks at the end of the day allowing the CO protein to remain stable to transcribe $F T$ (Suarez-López et al. 2001). In the absence of the LDs the transcription of $C O$ peaks in the dark and the protein is degraded, thereby it is unable to transcribe $F T$ (Suárez-López et al. 2001). $F T$ is transcribed in the leaf and is believed to translocate to the SAM to induce the expression of $A P 1$ and $S O C 1$, which leads to the meristem transitioning from vegetative to reproductive growth (Abe et al. 2005, Yoo et al. 2005, Nakamura et al. 2013). SOC1 and AGL24 upregulate each other's expression (Michaels et al. 2003). SOC1 is proposed to complex with AGL24 to transcribe LFY (Lee et al. 2008), and LFY goes on to upregulate $A P 1$ to induce flowering (Liu et al. 2009). SVP directly binds to the SOC1 promoter to inhibit the transcription of SOC1 in the SAM and leaf (Li et al. 2008), thereby inhibiting the transition to flowering. SOC1 is believed to play a part in the inhibition of the transcription of $S V P$ through its ability to bind an intron within the $S V P$ gene (Immink et al. 2012). When the plant is exposed to ambient temperatures $\left(16^{\circ} \mathrm{C}\right) S V P$ complexes with FLC to repress the transcription of $F T$ in the leaf, and block the transition to flowering until a chilling requirement is met (Lee et al. 2007, Li et al. 2008). The mechanism behind the increase of AGL24 expression in response to vernalization is not clear, although it is believed this regulation occurs independent of FLC (Michaels et al. 2003).

1.3.3 Conceptual model of bud formation and dormancy acquisition in angiosperms and conifers

Many genes have been implicated in the regulation of dormancy induction based on key players in the controlling the flowering pathway which are highlighted here. The most widely
accepted theory of flowering is the external coincidence model (Bünning 1936), of which I will give a very brief overview. The external coincidence model assumes the plant has an internal circadian oscillation of gene expression that is reset daily based on photoperiod, which must coincide with an external cue, such as light, to bring about flowering. In the LD plant Arabidopsis, PHYTOCHROME A (PHYA) perceives light and prevents degradation of the CO protein during LDs (Valverde et al. 2004, Langercrantz 2009). CO will now remain stable for an extended time during periods of light to promote transcription of the flowering inducer, $F T$ (Suárez-López et al. 2001). PHYA may further function to regulate growth cessation as demonstrated in Arabidopsis. In phya mutants, the transcript levels of genes associated with flowering, $C O$ and $F T$, are reduced as a consequence of the absence of a functional PHYA (Yanovsky and Kay 2002). A pivotal study determined that overexpression of the oat (Avena sativa L.) PHYA gene in hybrid aspen (Populus tremula x tremuloides) renders the tree unresponsive to changes in day length when maintained at constant temperatures (Olsen et al. 1997b). This result supported the proposition that phytochromes, particularly PHYA, are involved in sensing and signaling SD induced growth cessation, bud set, cold acclimation and induction of dormancy. It has also been confirmed that orthologs of Arabidopsis FT and $C O$ did not display a reduced transcription in the hybrid aspen overexpressing oat $P H Y A$ (Böhlenius et al. 2006). This lack of reduction suggests the Arabidopsis regulatory mechanism of PHYA over $F T$ and $C O$ is similar in hybrid aspen, and regulation of $F T$ and $C O$ are important for SD induced growth cessation and bud set.

A key flowering time regulator $F T$ promotes the transition to flowering in monocot and eudicot species (Pin and Nilsson 2012). It has been demonstrated that $F T$ orthologs can have roles outside of the flowering pathway. In experiments conducted in Populus tremula x
tremuloides, a FT ortholog from Populus trichocarpa Torr. \& A. Gray has been shown to be involved in this early response to SD induced growth cessation and bud set genes (Böhlenius et al. 2006). FT orthologs also participate in bud set and growth cessation in Norway spruce (Gyllenstrand et al. 2007, Karlgren et al. 2011), as well as growth termination in tomato (Solanum lycopersicum L.; Lifschitz et al. 2006) and tuberization in potato (Solanum tuberosum L.; Navarro et al. 2011). Research in white spruce has identified that genes with similarity to angiosperm genes that participate in the initiation of floral buds, such as MOTHER OF FT AND TFL1 (MFT) and AP1, are also differentially expressed during white spruce bud formation (El Kayal et al. 2011). Karlgren et al. (2011) found that FT genes sister to FT/TERMINAL FLOWER1 (TFL1) were implicated in bud formation and growth cessation in Norway spruce, and these orthologs were able to affect flowering time and one also altered flower morphology in wildtype Arabidopsis plants. This accumulation of research demonstrates that the transition from vegetative growth to reproductive growth in conifers shares similarities with the molecular pathway involved in the transition between active growth to dormancy in angiosperms.

However, due to the evolutionary distance between angiosperms and conifers it is quite possible that are divergent functions of the orthologous genes involved in these pathways. Even though conifers and flowering plants shared a common ancestor approximately 310 million years ago (Schneider et al. 2004), it is possible there is conserved regulatory mechanism associated with bud formation and/or phase transitions. Furthermore, it is possible for these genes to function outside of the traditional roles that have been functionally characterized in Arabidopsis.

In addition to transcription factors, phytohormones play a role in the developmental processes leading to dormancy, although further evidence is necessary to establish direct roles in dormancy establishment. Ethylene and abscisic acid (ABA) may function cooperatively in bud
formation (Rohde et al. 2002, Ruttink et al. 2007). One of the roles of ABA is preventing the growth of shoots (Davies 2010). However, there is evidence that ABA participates in bud development and maturation (Rohde et al. 2002, Ruttink et al. 2007). In hybrid aspen, the rate of bud maturation is slowed in the presence of decreased ABA sensitivity (Petterle et al. 2011). Two weeks of SD treatment upregulated genes involved in the transcription in ethylene biosynthesis and signaling in Populus tremula L. x Populus alba L. (Ruttink et al. 2007). Ethylene insensitive in birch (ETHYLENE RESPONSE1 [etrl] Ruonala et al. 2006) and ABSCISIC ACID-INSENSITIVE3 (ABI3) in poplar result in similar altered bud morphology (Rohde et al. 2002, Ruttink et al. 2007). However, the expression of $A B I 3$ is not affected by ABA levels in poplar, and therefore the link between $A B A$ and bud maturation is unclear (Maurya and Bhalerao 2017). Fewer studies have been conducted on the effect of indole-3-acetic acid/auxin (IAA/AUX) and cytokinins in SD-induced growth cessation and apical bud formation.

The family of phytohormone that has been most well studied in SD-induced growth cessation are the gibberellins (GA). GA play a key role in cell division and elongation in plants, and it is believed decreasing GA levels contribute to growth cessation. Arabidopsis SVP inhibits transcription of a key GA biosynthesis gene (Andrés et al. 2014), which prevents the transcription of key flowering genes, thereby delaying the transition to flowering (Blázquez et al. 1998, Moon et al. 2003). In Salix, phytochromes recognize the photoperiod shift to SD, which diminishes the GA and IAA/AUX content (Olsen et al. 1995a, b, Olsen et al. 1997a). In addition to decreased amounts of GA, continued exposure to SD also causes the tree to become insensitive to GA in Salix (Juntilla and Jensen 1988). In controlled growth chamber conditions photoperiod-induced transcriptional changes can be detected as early as two weeks following the switch from LD to SD conditions in Populus, and bud formation is seen as early as three weeks
of SD treatment (Ruttink et al. 2007). Work performed in hybrid aspen suggests PHYA may control GA levels during SD induction. Overexpression of oat $P H Y A$ resulted in no reductions in GA content nor decreased activity of GA 20-oxidase, a rate limiting enzyme in GA biosynthesis (Olsen et al. 1997a, Mølmann et al. 2003). Further evidence of GA's role in growth cessation is demonstrated with a delay in growth cessation in the presence of overexpression of GA 20oxidase in hybrid aspen (Eriksson and Moritz 2002). However, most evidence of GA's role in growth cessation has been demonstrated in the bud and this mechanism is yet to be supported in dormancy at the cambium (Druart et al. 2007).

1.3.4 SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like genes

$S V P$ is a member of the MADS-box gene family, and has been extensively examined in Arabidopsis in relation to flowering (Blázquez et al. 1998, Hartmann et al. 2000, Moon et al. 2003, Gregis et al. 2006, Lee et al. 2007, Li et al. 2008, Li et al. 2008, 2006, Gregis et al. 2009, Liu et al. 2009, Andrés et al. 2014). Arabidopsis possesses one $S V P$ gene and another sequence with high similarity to $S V P$, AGAMOUS-LIKE 24 (AGL24). SVP is a negative regulator of flowering, demonstrated by the knock-out phenotype that displays an early flowering phenotype, while overexpression induces the formation of leaf-like sepals and flowers later than wildtype (Hartmann et al. 2000, Masiero et al. 2004). Despite the high sequence similarity and close evolutionary history between $A G L 24$ and SVP (Parěnicová et al. 2003), AGL24 plays an antagonistic function by promoting the transition from vegetative to reproductive phase (Michaels et al. 2003). AGL24 loss of function mutants flower later, while overexpression results in early flowering (Michaels et al. 2003). During vegetative growth SVP is expressed in leaves and the SAM to maintain the vegetative state (Hartmann et al. 2000), while AGL24 is
primarily expressed in the infloresence meristem and promotes the development of the floral meristem (Michaels et al. 2003, Yu et al. 2004).

Arabidopsis AGL24 and SVP have roles that extend beyond regulating the timing of flowering. AGL24 and SVP participate in the regulation of $A G A M O U S(A G)$ in a transcription factor complex to affect normal flower development (Gregis et al. 2006). Overexpression of AGL24 and SVP independently cause similar floral abnormalities, such as the development of structures resembling leaves where one would expect petals and sepals (Michaels et al. 2003, Masiero et al. 2004). Barley (Hordeum vulgare L.) SVP-like genes are also believed to control meristem identity as demonstrated by the floral reversion phenotypes observed in mutant barley and Arabidopsis (Trevaskis et al. 2007). At early stages of floral development SVP and AGL24 both inhibit transcription of SOC1, a MADS-box gene which promotes the floral transition (Gregis et al. 2006). SVP and AGL24 also hetero-dimerize with AP1 to repress expression of floral meristem identity genes (Gregis et al. 2006, Gregis et al. 2009, Liu et al. 2009). Arabidopsis mutant and phenotyping experiments have demonstrated that $S V P$ is epistatic to AGL24 in the flowering pathway (Gregis et al. 2006).

DORMANCY ASSOCIATED MADS-BOX (DAM) genes are a group of SVP-like genes that have been associated with roles in bud formation, flowering and/or dormancy acquisition (Bielenberg et al. 2004, Li et al. 2009, Jiménez et al. 2009, Yamane et al. 2011). DAM genes have been identified in peach (Prunus Persica (L.) Batsch, Pp; Bielenberg et al. 2004, Jiménez et al. 2009), Japanese apricot (Prunus mume (Siebold) Siebold \& Zucc.; Saski et al. 2011), leafy spurge (Euphorbia esula L.; Horvath et al. 2010), raspberry (Rubus idaeus L.; Mazzitelli et al. 2007), potato (Solanum tuberosum L.; Campbell et al. 2008), trifoliate orange (Poncirus trifoliata (L.) Raf.; Li et al. 2010), kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang \& A.R.

Ferguson; Wu et al. 2011), apple (Malus domestica Borkh.; Mimida et al. 2015) and Asian pear (Pyrus pyrifolia (Burm. F.) Nakai; Liu et al. 2012). Initial evidence that the DAM genes play a role in dormancy arose from the naturally occurring peach EVERGROWING (EVG) mutant (Rodriguez et al. 1994). The EVG mutant does not form terminal vegetative buds in response to dormancy-inducing conditions such as shortened photoperiod and low temperatures, does not cease growth at terminal meristem, and does not enter an endodormant state (Rodriguez et al. 1994). This phenotype is attributed to the deletion of six tandemly arranged Pp DAM genes (Bielenberg et al. 2004) which demonstrate seasonal expression patterns (Jiménez et al. 2009). Based on expression profiling, these genes are hypothesized to have non-redundant roles in growth cessation and/or terminal bud formation, and may have undergone sub- or neofunctionalization (Jiménez et al. 2009). It should be noted that $E V G$ also has a reduced level of cold hardiness in comparison to wildtype peach trees (Rodriguez et al. 1994, Arora et al. 1996), however it has not yet been investigated if the $P p D A M$ genes have direct or indirect roles in this pathway.

Research from angiosperm $S V P$ - and $D A M$-like genes across a range of angiosperms provide strong evidence that that these genes have roles in cessation of growth at meristem and terminal bud formation, and possibly other functional roles as well. Horvath (2009) proposes that dormancy may be partially regulated by $D A M$ genes regulating $F T$ homologs, considering the recent evolutionary divergence between $D A M$ and $S V P$ genes. Based on these studies and the observation that a sequence showing similarity to $S V P$ was differentially regulated during white spruce bud formation (El Kayal et al. 2011), we chose to investigate the role of $S V P$-like genes in white spruce terminal bud formation.

1.4 The current study

While $S V P$-like genes have been well characterized in angiosperms species, prior to this research, little if anything was known about $S V P$-like genes, their function and regulation in conifers. The long-term goal of this research is to determine if MADS-box genes related to $S V P$ regulate bud formation and/or transition to dormancy in white spruce.

The following are the specific objectives of my thesis research:
(1) identify the white spruce genes most closely related to functionally characterized $S V P$ genes of angiosperm species, and determine their evolutionary relationship;
(2) establish if the expression profiles of candidate white spruce $S V P$-like genes correlate with the developmental events of bud formation; and
(3) discover upstream regulators of white spruce $S V P$-like genes using yeast one-hybrid and in silico promoter motif identification.

Through addressing these objectives, I tested the following hypotheses: (1) white spruce $S V \mathrm{P}$-like genes share a common ancestor with angiosperm $S V P$-like genes; (2) white spruce $S V \mathrm{P}$ like genes are involved in bud formation and possibly dormancy establishment; and (3) white spruce $S V$ P-like genes are regulated by transcription factors which have also been found to regulate bud formation or dormancy acquisition in other species.

This thesis is composed of four chapters. Chapter 1 contains an overview of the photoperiodic flowering pathway and a summary of background material related to the molecular and developmental processes involved in growth cessation and bud formation. Chapter 2 presents a phylogenetic analysis of the white spruce genes related to $S V P$, and hypothesized functions of these genes based on qRT-PCR transcript profiling data obtained from developing white spruce buds. Chapter 3 is an investigation of the promoters for two of these white spruce
genes, identifying transcription factors and other regulatory molecules that may regulate their expression. Chapter 4 presents a synthesis of these results and conclusions, and proposes future directions.

Chapter 1 Figures

Figure 1.1 Distribution of white spruce trees across Canada (Natural Resource Canada, Canadian Forest Services, 2015b). This figure is a copy of an official work that is published by the Government of Canada and the reproduction has not been produced in affiliation with, or with the endorsement of the Government of Canada.

Figure 1.2 Summary of phenotypic stages of bud formation across long day and short day conditions from Hamilton et al. (2016). Under long day conditions stage of bud formation shifts back to an average of stage 0 at four weeks because of the occurrence of second flush. This observation is not seen in the short day conditions because second flush is repressed. Modified from Hamilton et al. (2016).

Figure 1.3. A simplified summary of a subset of transcription factors involved in the flowering pathway in Arabidopsis under long photoperiods (modified from Amasino 2010 and Andrés et al. 2014). Under long days in the leaf the CONSTANS (CO) protein is stabilized in the light to induce transcription of FLOWERING LOCUS $T(F T)$. FT is translocated to the shoot apical meristem to upregulate APETELA1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). SOC1 and SHORT VEGETATIVE PHASE (SVP) act to inhibit each other's expression. SOC1 and AGAMOUS-like 24 (AGL24) upregulate one another, and dimerize to increase transcription of $L E A F Y$ (LFY). LFY transcribes AP1, and LFY and AP1 will go on to induce transcription of downstream genes involved in inducing flowering.

2.0 Chapter 2: Roles for SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like genes in distinct phases of white spruce apical bud formation

2.1 Introduction

Successful timing of the transition from active growth to dormancy is critical to the survival of perennial species in Northern temperate forests. Endodormancy (hereafter referred to as dormancy) is the cessation of growth in meristematic tissue, in which growth will not resume even under permissive conditions (Rohde and Bhalerao 2007). Processes leading to dormancy acquisition are interconnected, since bud formation (Ruttink et al. 2007) and growth cessation (Weiser 1970, Kalcsits et al. 2009) are important for cold acclimation, and apical bud formation is a prerequisite for dormancy induction (Rohde and Bhalerao 2007). Vegetative bud formation is the process by which bud scales form to protect and enclose the shoot apical meristem, and leaf primordia and subtending stem units for the next growing season are created. While photoperiod is the primary environmental cue to induce bud initiation in many tree species (Ingvarsson et al. 2006, Luquez et al. 2007, Cooke et al. 2012, Ding and Nilsson 2016), we have demonstrated that white spruce (Picea glauca (Moench) Voss) is able to complete bud formation in the absence of dormancy inducing cues such as shortening photoperiod and low temperatures, although short days (SDs) accelerate bud formation by suppressing the occurrence of lammas growth (El Kayal et al. 2011, Hamilton et al. 2016).

To prevent damage to the shoot apical meristem (SAM), perennials integrate endogenous and environmental signals to promote correct timing of bud formation during the autumnal transition from active growth. The SAM contains densely packed cells and maintains the population of undifferentiated cells, some of which go on to differentiate into leaf or
reproductive primordia (Rohde et al. 2000). As with the activity-dormancy transition, the SAM also integrates various endogenous and environmental cues to regulate the transition from vegetation to reproductive growth (Hartmann et al. 2000, Tao et al. 2012). An accumulating body of research suggests that regulatory components of the network signaling the transition from vegetative to reproductive growth and the transition from active growth to dormancy are evolutionarily conserved (reviewed in Petterle et al. 2013 and Singh et al. 2017). For example, the phosphatidylethanolamine-binding protein (PEBP) family member FLOWERING LOCUS T (FT) acts as a floral promoter (reviewed in Pin and Nilsson 2012). FT orthologs have been shown to regulate bud set and growth cessation in angiosperm perennial species such as poplar (Böhlenius et al. 2006, Hsu et al. 2011), while a related set of PEBP genes named FT/TERMINAL FLOWER1-like (FTL1) have been implicated in bud formation and growth cessation in the conifer species Norway spruce (Picea abies (L.) H. Karst., Gyllenstrand et al. 2007, Karlgren et al. 2011, Klintenäs et al. 2012). Following the seminal finding that $F T$ orthologs regulate bud set and growth cessation, other orthologs of regulators downstream of the $C O / F T$ module have been identified that govern aspects of the activity-dormancy transition in apical buds, including FLOWERING LOCUS D-like 1 (FDL1, Tylewicz et al. 2015), Like APETELA1 (LAP1, Azeez et al. 2014), and AINTEGUMENTALIKE1 (AIL1, Karlberg et al. 2011). Taken together, these studies suggest that these and other putative orthologs in the regulatory network that control time to flowering may function as regulators of bud formation in conifers such as white spruce.

Several of the aforementioned genes belong to the MADS-box family of transcription factors (Tao et al. 2012, Hartmann et al. 2000). Within the large and diverse MADS-box family is a subgroup of genes referred to as MIKC-type genes based on their four conserved domains.

The MIKC gene SHORT VEGETATIVE PHASE (SVP) is widely known as an important negative regulator of flowering, and the Arabidopsis SVP knockout mutant svp-41 causes an early flowering phenotype (Hartmann et al. 2000). SVP-like genes, also called DORMANCYASSOCIATED MADS-BOX (DAM) genes, have been implicated in regulation of bud formation in peach (Prunus persica (L.) Batsch, Jiménez et al. 2009, Yamane et al. 2011), as well the acquisition and/or release of dormancy in peach (Jiménez et al. 2009), raspberry (Rubus idaeus L.; Mazzitelli et al. 2007), Japanese apricot (Prunus mume (Siebold) Siebold \& Zucc.; Sasaki et al. 2011), leafy spurge (Euphorbia esula L.; Horvath et al. 2010) and kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang \& A.R. Ferguson; Wu et al. 2011). Despite the high sequence similarity between $A G A M O U S$-LIKE 24 (AGL24) and $S V P$, these genes have opposing role with AGL24 being a positive regulator of flowering (Parěnicová et al. 2003, Michaels et al. 2003). To our knowledge there have been no studies that have looked into the role of $A G L 24$-like genes in the activity-dormancy transition. The phase change between vegetative and reproductive growth at the SAM is regulated by genes that include $A G L 24$ and SVP (Becker and Theissen 2003).

Previously, we conducted a microarray transcriptomic analysis that identified genes with sequence similarity to Arabidopsis. CO/FT network regulators of flowering, including $S V P$, that are differentially expressed during white spruce bud formation (El Kayal et al. 2011). Based on this finding, in this study, we explored the hypothesis that a lineage of white spruce genes with sequence similarities to angiosperm SVP genes may play a role in regulating developmental events associated with the activity-dormancy transition in apical buds of white spruce. We first identified candidate genes to study by generating phylogenies of a broad sampling of MIKC genes across multiple species. We also investigated patterns of expression during bud
development using quantitative reverse transcriptase PCR (qRT-PCR), and used the resulting transcript profiles to speculate on roles of these genes.

2.2 Materials and Methods

2.2.1 Plant material

White spruce seedlings originating from Québec provenances obtained from the Canadian Forestry Service (Québec, Canada) were used to generate materials for qRT-PCR experiments. Seedlings represented the same population used in El Kayal et al. (2011), GalindoGonzalez et al. (2012) and Galindo-Gonzalez et al. (2015). Trees in their second growth cycle were grown under long day conditions (LD; 16 h days $/ 8 \mathrm{~h}$ nights) at $20^{\circ} \mathrm{C}$ with 50% relative humidity for approximately eight weeks of active growth. At Day 0 , half of the plants were switched to short day conditions (SD; 8 h days $/ 16 \mathrm{~h}$ nights) at $20^{\circ} \mathrm{C}$ with 50% relative humidity. A complete randomized design was used for the experiment, with plant materials within each photoperiod condition arranged within randomized blocks. Apical shoot tips/developing buds from four to five plants were harvested from the leader at five time points (Day 0, 7, 14, 28 and 70) following transfer to SD or LD conditions. Following harvest, tissues were immediately frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.

2.2.2 Phylogenetic analyses

Nucleotide and amino acid sequences of 88 MIKC sequences (32 from white spruce, three from Physcometrella patens, 28 from Arabidopsis, 25 from range of angiosperm species) sampled from 14 different species were obtained from GenBank and GenPept, respectively (Table S 1). Arabidopsis sequences were used as a backbone to resolve major topologies, and additional characterized $S V P / A G L 24(S A)$ genes from various angiosperm species were added to
diversify the $S A$ clade. White spruce sequences were identified by submitting Arabidopsis MIKC coding sequences, from Pařenicová et al. (2003), to BLASTx of the GCAT database (Rigault et al. 2011). This white spruce expressed gene resource represents 27,720 unique, mostly full-length cDNA sequences, developed from sequencing of 42 different libraries (Rigault et al. 2011). The top ten white spruce hits from each query were pared down to a non-redundant list of representative unigenes after constructing a tentative Neighbour Joining phylogenetic tree. Sequences were deemed redundant is they had a $>95 \%$ similarity. If the contig comprised multiple ESTs (sequences representing physical cDNA clones), the longest clone that had been sequenced from both the 5^{\prime} and 3^{\prime} ends were used. If these were not available, clones that had been sequenced from the 5^{\prime} end was used. Three MADS-box genes from the moss species Physcomitrella patens, a representative of an early diverging lineage of land plants, were selected as outgroups. Nucleotide sequences were derived from the open reading frame (ORF) of the cDNA sequences using NCBI's ORF Finder (ncbi.nlm.nih.gov/orffinder/). White spruce amino acid sequences were not available on GenPept and were predicted by translating the cDNA ORF into amino acids.

Amino acid alignments (Figure 1) were generated in MAFFT v7 (Katoh and Standley 2013), using amino acid partition by L-INS-i (single domain alignment) parameters. Nucleotide sequences were then forced to appropriate codon triplet to their respective amino acid sequence in Mesquite v2.75 (Maddison and Maddison 2011).

Phylogenetic relationships of the amino acid and nucleotide partitions were inferred using maximum parsimony (MP) and maximum likelihood (ML). MP searches were conducted in PAUP* 4.0b10 (Swofford 2002) with the following parameters: 300 random addition replicates, terminal branch rearrangement (TBR), 50 trees held in the construction of the initial starting tree,

1000 bootstrap (BS), 1000 trees with a length greater than or equal to 1 held during 1000 times BS.

We conducted both unweighted (e.g., Fitch 1971) and weighted searches under parameters above to test if the topology of the major clades would be altered by a greater importance assigned to the more highly conserved gene regions. Weighted searches incorporated variable weighting schemes according to MIKC domain conservation: (1) the "M" (MADS-box) domain, which recognizes and binds to the MADS-box domain on downstream target genes and facilitates dimerization, (2) the "I" (intervening) domain that specifies the formation of DNA dimers (Theissen et al. 1996); (3) the "K" (keratin-like) domain participates in protein-protein interactions and is well conserved (Kaufman et al. 2005), (4) the "C" (Cterminal) domain that has roles in transcriptional activation and higher order complex formation (Kaufmann et al. 2005, Cseke and Podila 2004); (5)"N" (N-terminal) domain precedes the "M" domain, however it is only found in a minority of genes. As the " M " and " K " domain are highly conserved, and the "I" and "C" domains are less well conserved across land plants (Davies et al. 1996, Fan et al. 1997, Parěnicová et al. 2003, Egea-Cortines et al. 1999), we ran weighted analyses following a weighting scheme. Domains were weighted according to the defined " N ", "M", "I", "K", "C" regions outline in Henschel et al. (2002): "N" domain weight of 0.5, "M" domain weight of 3 , "I" domain weight of 2 , " K " domain weight of 3 , " C " domain weight of 1 .

Maximum likelihood (ML) analyses were conducted with nucleotide and amino acid partitions using GARLI 2.0 (molecularevolution.org/software/phylogenetics/garli/, Zwicki 2006, Bazinet and Cummings 2008, Sukumaran and Holder 2010). Models of molecular evolution for the nucleotide and amino acid data were determined using the AIC (Akaike Information Criterion) and BIC (Baysian Information Criterion) as implemented in jModelTest2 (Darriba et
al. 2012, Guidon and Gascuel 2003) and ProtTest (Abascal et al. 2005), respectively. The GTR $+\mathrm{I}+\Gamma$ (general time reversible + invariable + gamma) substitution model was selected for nucleotide data. The JTT $+\mathrm{I}+\Gamma$ (Jones-Taylor-Thornton + invariable + gamma) model was selected for amino acid data. All tree searches were conducted with estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories, 100 times bootstrap.

Alternative topologies of constraint trees were tested against the original unconstrained ML tree in PAUP* using the Shimodaira-Hasegawa (SH) test (Shimodaira and Hasegawa 1999). Likelihood settings in PAUP* were adjusted to meet the optimality parameters of the original GARLI analysis of the unconstrained tree that correspond to the GTR $+\mathrm{I}+\Gamma$ model. Likelihood scores were estimated in PAUP* using the Roger-Swofford approximation method (Rogers and Swofford 1998) branch-length optimization with the one-dimensional Newton-Raphson with pass limit $=20$ and delta $=1 \mathrm{e}-06$. The SH test with the following parameters 1000 RELL (Resampling Estimated Log-Likelihoods) bootstrap one-tailed test, assuming $\mathrm{p}<0.05$ was significant.

2.2.3 qRT-PCR

RNA extractions were performed as described by Pavy et al. (2008). Quantity and quality was assessed with an Infinite ${ }^{\circledR} 200$ NanoQuant (Tecan Group Ltd., Männedorf, Switzerland) and gel electrophoresis, as well as 2100 Bioanalyzer (Agilent, Mississauga, ON, Canada) for a subset of samples. Primer design was carried out using Primer Express ${ }^{\circledR}$ v3.0 (Applied Biosystems, Carlsbad, CA, USA; Table 2.2). cDNA synthesis and qRT-PCR using a SYBR Green assay was carried out according to El Kayal et al. (2011). Three to four biological replicates and two technical replicates were used for each time point. Reactions were performed using an Applied Biosystems® ${ }^{\circledR} 500$ Fast Real-Time PCR System (Applied Biosystems, Foster

City, CA, USA) or an Applied Biosystems ${ }^{\circledR}$ Quant Studio ${ }^{\text {TM }} 6$ Flex Real Time PCR System (Applied Biosystems, Carlsbad, CA, USA). Standard curves were used to quantify transcript abundance of the reference gene TRANSLATION INITIATION FACTOR5A (TIF5A, GQ00410_I10, GenBank DR448953). Due to pipetting error TIF5A values from the qRT-PCR plate run for GQ03707_I04 was substituted for the TIF5A values from another plate, after being normalized to the calibrators present on the plates.

2.2.4 Statistical analyses

Statistical analyses to detect significant differences of transcript abundance was carried out in RStudio v3.4.1 (R Core Team 2017), the FDR (false discovery rate) test for the MANOVA, the Levene test for homogeneity of variance using the "car" package v2.1-5 (Fox and Weisberg 2011), and the "lsmeans" package (Lenth 2016). A split-plot two-way ANOVA was used for analysis of the reference gene expression. Transcript quantities \log transformed to fulfill normality and heterogeneity of variance assumptions, and a MANOVA (multivariate analysis of variance) was run. Shapiro-Wilk test for normality and histograms were used to assess normality. We were unable to acquire a p value >0.05 for homogeneity of variance photoperiod for GQ03118_H14 $(\mathrm{p}=0.385)$. A FDR test $($ alpha $=0.05)$ was used to determine significant differences.

2.3 Results

2.3.1 A clade of white spruce genes is sister to the angiosperm clade containing Arabidopsis thaliana SVP and AGL24

A total of 32 MIKC-like cDNA sequences were identified in the white spruce expressed gene catalogue representing 27,720 unique cDNA sequences derived from 42 different libraries
(Rigault et al. 2011). We found all four MIKC domains were present and conserved in our alignment (Figure 2.1). We identified six major clades consistent with gene families (Figure 2.2, the following ML and MP BS support are listed): ARABIDOPSIS NITRATE REGULATED 1 (ANR1; 95, 76), FLOWERING LOCUS C (FLC; 100, 100), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1; 98, 69), SEPELLATA (SEP; 75, 54), SHATTERPROOF (SHP; 66, 62) and SVP/AGAMOUS-LIKE $24(S A ; 85,99)$. The topology of the six major clades were consistent across phylogenetic analyses (Figure 2.2, Supplemental Figure S2.1, S2.2, S2.3 and S2.4). For each of these major clades, white spruce genes form sister clades to the angiosperm clades. Consistent with this pattern, seven white spruce sequences form a sister clade (ML and MP BS support: 100, 100) to the $S A$ clade (Figure 2.1). An eighth gene, PgGQ03118_H14, was not a part of the PgSAL clade, but resolved as ancestral to the $P g S A L$ clade in the nucleotide ML before BS (Supplemental Figure S2.6), nucleotide weighted MP (Supplemental Figure S2.3) and the nucleotide MP (Supplemental Figure S2.2) analyses.

To confirm the robustness of the sister relationship between $S A$ and $P g S A L$ genes, we performed an SH test (Shimodaira and Hasegawa 1999). Six alternative topologies were created to constrain the seven white spruce genes that are sister to the $S A$ clade, the $S O C 1$ clade (Supplemental Figure S2.11), the SEP clade (Supplemental Figure S2.9), the SHP clade (Supplemental Figure S2.10), ANR1 (Supplemental Figure S2.7), FLC (Supplemental Figure S2.8) and the AGL15 clade (AGAMOUS-LIKE15, AtAGL15, AtAGL18, PgGQ03118_H14; Supplemental Figure S2.6). The SH test indicated that the ML score of the constraint trees were significantly different from the ML score of the unconstrained tree (Table 2.1), thus the topology in Figure 2.2 is the best explanation of the data.

2.3.2 White spruce $S A L$ genes show distinct transcript abundance profiles during terminal bud development

Based on their phylogenetic relationship with the $S A$ clade and presence of MIKC motifs (Figure 2.1), the seven white spruce sequences sister to the $S A$ clade were named $P g S A$-likel (PgSAL1, GQ03605_C12), PgSA-like2 (PgSAL2, GQ03707_I04), PgSA-like3 (PgSAL3, GQ02822_N14), PgSA-like4 (PgSAL4, GQ03702_K12), PgSA-like5 (PgSAL5, GQ03806_I20), PgSA-like6 (PgSAL6, GQ04010_J13) and PgSA-like7 (PgSAL7, GQ03232_K15). Since these seven PgSAL sequences and the $S A$ angiosperm sequences are inferred to have had a common ancestor, we hypothesized that at least some of the $P g S A L$ genes might play roles during the activity-dormancy transition in white spruce. As the first exploration of this hypothesis, qRTPCR transcript profiling was carried out over the course of apical bud development under both short days and long days for each of these seven genes plus the more distantly related GQ03118_H14 (Figure 2.3). Bud formation followed the same developmental progression as reported in El Kayal et al. (2011). Developing buds were first visible between 7 and 14 days. At 70 days, SD buds had completed development but were not dormant, while LD buds were still under development. While lammas growth (second flush) can occur in white spruce under LD conditions (El Kayal et al. 2011, Hamilton et al. 2016), buds were not sampled from any trees that showed indications of lammas growth.

All seven PgSAL genes and $P g G Q 03118 _H 14$ displayed significant differences in transcript abundance across time during the course of SD or LD bud formation (Figure 2.3). A split-plot two-way ANOVA using Ct's demonstrated TIF5A transcript abundance was significantly different across "photoperiod" nested in "day" $(\mathrm{p}=0.015)$, with a significant difference in short-day Day 0 versus Day $70(p=0.048)$. As a result, we will not compare
directly between photoperiods, and make conservative statements about any significant differences for short Day 0 versus Day 70 for our genes of interest. Relative transcript abundance and transcript profiles over bud development differed markedly between genes. Five of the eight genes - PgSAL1 (GQ03605_C12), PgSAL2 (GQ03707_I04), PgSAL3 (GQ02822_N14), PgSAL4 (GQ03702_K12), and PgSAL5 (GQ03806_I20) - exhibited significantly greater transcript abundance during the first two weeks of bud formation than at later time points. PgSAL1 and PgSAL5 expression is reduced in SD at Day 28, whereas LD expression did not decline until Day 70. PgSAL3 expression began to decline in LD at Day 28, and was followed by a further decline in expression at Day 70 in both SD and LD conditions (Table 2.3, Figure 2.3). PgSAL6 (GQ04010_J13) exhibited significantly greater transcript abundance only at later time points, with an increase seen in SD at Day 28 and Day 70, and in LD at Day 70 (Table 2.3, Figure 2.3). PgSAL7 (GQ03232_K15) expression significantly decreased at SD Day 28, whereas no significant change in expression was found in the LD treatment (Table 2.3, Figure 2.3). GQ03118_H14 expression fluctuated during bud formation. In SD, GQ03118_H14 declined at Day 14 and reached a maximum at Day 70. Peak expression of GQ03118_H14 during SD contrasted with the significant increase in expression during midphase development observed in LD, at Day 14 (Table 2.3, Figure 2.3).

Given the known roles of $A t S V P$ and $A t A G L 24$ in the photoperiodic flowering pathway, we further tested whether photoperiod affected transcript profiles for any of these genes during bud development. PgSAL3 showed a significant difference in response to overall SD and LD photoperiod treatments (Table 2.3, Figure 2.3). PgSAL3 SD expression declined sooner in SD versus LD, with SD expression beginning to decrease at Day 28.

We observed that the four genes that share the most closely related evolutionary relationship, $S A L 1, S A L 2, S A L 4$ and $S A L 5$, also have a similar expression profile across bud formation in SD and LD conditions (Figure 2.1, 2.2). These $S A L$ genes have a greater transcript abundance at earlier time points in bud development, in comparison to later later time points in bud development.

2.4 Discussion

2.4.1 A clade of white spruce $S A L$ genes is sister to functionally characterized angiosperm

$S A$ genes

Studies over the last decade have identified orthologs of photoperiodic flowering pathway genes, including multiple MIKC MADS-box genes such as SVP that regulate events during the activity-dormancy transition in perennial species (reviewed in Singh et al. 2017). However, most studies from which the current conceptual model of this regulatory network have been carried out in angiosperms. El Kayal et al. (2011) found that genes showing sequence similarity to MIKC MADS-box floral regulators, such as SVP, MOTHER OF FT AND TFL1 (MFT) and APETELA2 (AP2), are also differentially expressed during white spruce bud formation, suggesting that orthologs of MADS-box genes of the photoperiodic flowering pathway may function in regulation of bud formation in conifers. Thus, we addressed the hypothesis that white spruce genes with sequence similarity to $S V P$ and $S V P$'s closest relative in Arabidopsis, $A G L 24$, are involved in regulating processes associated with bud set in the coniferous species, white spruce.

As the first step, we demonstrated using multiple phylogenetic methods that seven MIKC white spruce sequences, denoted $\operatorname{PgSAL1}$ to $\operatorname{PgSAL} 7$, form a sister clade to the angiosperm clade
containing $S V P$ from Arabidopsis and other species (Figure 2.2). AtAGL24, which is closely related to AtSVP but exhibits contrasting function (Hartmann et al. 2000, Yu et al. 2002), also fell within the angiosperm $S A$ clade, as previously shown (Pařenicová et al. 2003). Other phylogenetic analyses carried out on $S A$ genes from the angiosperm perennials - such as the DORMANCY-ASSOCIATED MADS-BOX (DAM) genes - identified $S A$ orthologs within the same clade (Jiménez et al. 2009, Yamane et al. 2011, Mazzitelli et al. 2007, Sasaki et al. 2011, Horvath et al. 2010, Wu et al. 2011). Since angiosperms and gymnosperms are widely agreed to be sister clades (Qiu et al. 2010, Soltis et al. 2011, Wickett et al. 2014), conifer genes resolving as a sister clade with their most closely related angiosperm genes is consistent with their evolutionary history. The relationship of conifer genes resolving as sister to their angiosperm homologs is consistent with the topology of the other major clades in our phylogenetic trees. The sister relationship between the conifer $P g S A L$ and angiosperm $S A$ genes is reflective of the relationship between conifer and angiosperm genes described for other gene families. A sister relationship has been reported, for example, between conifer FTL1-like genes that are implicated in bud formation and angiosperm FT and TERMINAL FLOWER1 (TFL1) genes implicated in time of flowering by Karlgren et al. (2011) and Klintenäs et al. (2012), as well as for conifer and angiosperm MYBs implicated in regulation of secondary metabolism pathways (Bedon et al. 2010). We provided additional evidence of the robustness of our topology by performing a constraint analysis using an SH test. This test indicated that the topology of $P g S A L$ and angiosperm $S A$ as sister clades is a significantly better explanation of the data than alternative topologies. An eighth sequence, $\operatorname{PgGQ} 03118$ _H14 resolves near the $P g S A L$ clade, but cannot conclusively labeled a member of a gene-specific clade in the nucleotide MP unweighted and weighted trees. We hypothesize that PgGQ03118_H14, which showed weak association with
the $A G L 15$ clade, may have some conserved functions with the $A G L 15$ clade. Other weighting schemes were also tested ("N" $=0.5, " M "=4, " I "=2, " K "=3, " C "=1$), but were not found to significantly differ from the topology of the original weighted tree (data not shown). It is possible that PgGQ03118_H14 may have developmental roles at the meristem. Arabidopsis AGL15 and AGL18 are expressed in the embryo and developing endosperm (Lehti-Shiu et al. 2005), and more recent evidence suggests $A G L 15$ may suppress $F T$ expression (Fernandez et al. 2014). It is important to acknowledge that the accuracy of the SH test is dependent on the number of trees included in the analysis (Buckley et al. 2001).

The number of $S A L$ genes differs between species. White spruce appears to have at least seven $S A L$ genes based on an extensive expressed gene catalogue (Rigault et al. 2011), although we cannot discount that additional genes may be identified as the white spruce draft genome sequence matures to a reference quality genome assembly (Birol et al. 2013). Arabidopsis has two $S A$ genes (SVP and AGL24; Yu et al. 2002), while peach has a minimum of six (DAM1-6; Li et al. 2009, Jiménez et al. 2009), kiwi has a minimum of four (SVP1-4; Wu et al. 2011) and Japanese apricot has a minimum of six (DAM1-6; Sasaki et al. 2011). Within the small subset of species that we considered, perennials appear to possess a greater number of $S A L$ genes than annuals. As has been proposed for other conifer gene families (e.g. Bedon et al. 2010), the expansion of the $S V P$ subfamily in perennials, and the maintenance of these duplicated genes, may reflect functional redundancy and/or regulation of additional processes associated with the perennial lifestyle by signaling networks analogous to the photoperiodic signaling network. The seven PgSAL genes plus the AGL15-like PgGQ03118_H14 showed both distinct and overlapping expression profiles over the course of bud formation under LD and SD, as was found for DAM genes in peach (Li et al. 2009), supporting the notion that $P g S A L$ genes perform both redundant
and non-redundant roles in regulating gene expression during early, mid, and late bud formation in white spruce. Perennials may require more genes in order to tightly regulate processes of vegetative and reproductive bud formation, initiation of bud set, bud burst, dormancy initiation and dormancy release. Annuals, such as Arabidopsis, simply need to regulate processes involved in reproductive bud formation. Therefore, it is reasonable to expect perennials would have a larger, more diversified group of $S V P$-like genes in order to tightly regulate these processes.

2.4.2 A subset of PgSALs may share conserved role in bud formation and/or growth

 cessationExpression of $\operatorname{PgSAL1}, \mathrm{PgSAL2}, \mathrm{PgSAL3}, \operatorname{PgSAL4}$, and $\operatorname{PgSAL5}$ were significantly higher during the first two week of bud formation than at later stages of bud formation, suggesting that these transcription factors are positive regulators of bud development processes. Given the function of $S V P$ and $A G L 24$ genes in angiosperm flowering time and development, we believe that $P g S A L$ genes may also participate in cone development (Mouradov et al. 1998, Sundström et al. 1999). If the putative roles of PgSAL1-5 hold true, they would contrast with the repressive role of $A t S V P$ in floral transition (Hartmann et al., 2000), and make their function more similar to that of AtAGL24 (Michaels et al. 2003) in promoting flowering. Interestingly, this predicted function is analogous to the picture emerging for the Norway spruce FT/TFL1-like gene FTL2 - a regulator of bud formation and growth cessation (Karlgren et al. 2011) - which has a biochemical function more similar to the flowering repressor $T F L 1$ than to the flowering activator $F T$ (Klintenäs et al. 2012).

MADS-box genes are widely known for functioning as dimers and quaternary complexes (Riechmann 1996, Egea-Cortines et al. 1999, Honma and Goto 2001). It may also be possible
that the function of $S A L$ genes is dependent on expression of their hetero-dimer partner. This possibility would add another layer of fine regulation for a process as complex as bud formation, which is reliant on multiple environmental cues as well endogenous signals.

The $P g S A L$ genes did not show strong transcript abundance responses to photoperiod, a pattern consistent with our previous findings that SD is not required to initiate bud formation in white spruce (Hamilton et al. 2016). SD accelerates the completion of bud formation while suppressing lammas growth (Hamilton et al. 2016), consistent with our postulated roles for these genes in regulating early- and mid-stage bud formation processes.

Taken together, our results suggest that PgSAL1, PgSAL2, PgSAL3, PgSAL4, and PgSAL5 are the most likely candidates to function as transcription factors in regulating bud formation and/or growth cessation, analogous to roles postulated for $S A L$ genes in woody angiosperm species such as peach (Jiménez et al. 2009, Yamane et al. 2011), raspberry (Mazzitelli et al. 2007), Japanese apricot (Sasaki et al. 2011), leafy spurge (Horvath et al. 2010) and kiwifruit (Wu et al. 2011). Of these five genes, $P g S A L 1$ and $P g S A L 4$ are the most closely related genes based on phylogenetic analyses, and show similar patterns of expression. On the other hand, PgSAL5 and PgSAL6 are also closely related, but show opposite patterns of expression. The most divergent expression pattern is observed in PgGQ03118_H14, which is not a bona fide SAL gene. These findings demonstrate that topology is not strong predictor of gene expression.

A limitation in our qRT-PCR analysis is that the amplicons were not subjected to sequencing to confirm target identity. Sequencing the amplicon would have confirmed that the desired amplicon has been transcribed, and that the desired amplicon was the only reaction product.

2.4.3 A PgSAL may have acquired novel functions

Further evidence for non-redundant functions comes from the distinct expression profiles exhibited by PgSAL6. PgSAL6 showed significant upregulation only at later stages of bud formation, leading us to speculate that this transcription factor regulates processes associated with completion of bud formation and possibly transition to dormancy. At this time point, SD trees have largely completed bud formation and are transitioning to dormancy, while LD trees are still undergoing active bud development (El Kayal et al. 2010, Hamilton et al. 2016). Future experiments should focus on functional characterization of this $P g S A L$.

2.5 Conclusion

In this study, we have shown that conifer $S A L$ genes likely share a common ancestor with angiosperm $S A$ and $S A L$ genes. Gene expression profiling suggests that the $P g S A L$ genes may have acquired diverse regulatory roles during the course of bud formation. PgSAL1, PgSAL2, $P g S A L 3, P g S A L 4$, and $P g S A L 5$ exhibited gene expression that are consistent with overlapping but perhaps non-redundant $S A$ roles in regulating early and/or mid stages of bud formation in white spruce. PgSAL6 may regulate processes associated with later stages of bud formation and possibly dormancy transition, and thus may participate in a different signaling network. Further functional characterization of these $P g S A L$ genes is warranted, given that these MIKC MADSbox genes potentially play novel roles that have yet to be described in angiosperms.

Given the well-documented role for angiosperm $S A s$ in the seasonal response network regulating the transition to flowering, and evidence for the involvement of angiosperm $S A$ genes in regulating bud formation, we hypothesize that $\operatorname{PgSAL1,~PgSAL2,~PgSAL3,~PgSAL4,~and/or~}$ PgSAL5 function as part of a conifer signaling network that shares an evolutionary history with the angiosperm $C O / F T$ signaling network regulating bud formation (Singh et al. 2017) and
flowering transition (Andrés and Coupland 2012). Similar to SVP and AGL24 in Arabidopsis, PgSAL1, PgSAL2, PgSAL3, PgSAL4, and PgSAL5 may also have roles outside of timing of bud formation (Gregis et al. 2006, Gregis et al. 2009, Liu et al. 2009). At the same time, this study and others (e.g. Gyllenstrand et al. 2007, Karlgren et al. 2011, Klintenäs et al. 2012, Karlgren et al. 2013) suggest that the long period of evolutionary divergence between these taxonomic groups has also given rise to substantive differences between angiosperm and conifer activitydormancy signaling networks. Consequently, care must be taken when applying the angiosperm model of signaling networks regulating bud formation, growth cessation and dormancy entrance to conifer species.

Chapter 2 Figures

	M Domain
AT_AGL15	MGRGKIEIKRIENANSRQVTFSKRRSGLLKKARELSVLCDAEVAVTVFSKSGKLFEYSS--T-G-MKQTLSRYGNHOS---SS--------ASKAE--------
AT_AGL18	MGRGRIEIKKIENINSRQVTFSKRRNGLIKKAKELSILCDAEVALIIFSSTGKIYDFSS--V-C-MEQILSRYGYTTA---STEHK-QQR-EHQLLICASHGNE
AT_SVP	MAREKIOIRKIDNATARQVTFSKRRRGLFKKAEELSVLCDADVALIIFSSTGKLFEFCS--S-S-MKEVLERHNLQSK---NLEKL-DQP-SLELQ------L
AT_AGL24	MAREKIRIKKIDNITARQVTFSKRRRGIFKKADELSVLCDADVALIIFSATGKLFEFSS--S-R-MRDILGRYSLHAS---NINKLMDPP-STHLR--------
PG_G002822_N14	MAREKIEIKRIANASARRVTFSKRRRGLFKKAQELSILCEADVALWFSSTGKLYOYSS--S-S-MKMLDRYILYPS---SNRKD-GQP-NLE----------
PG_G003118_H14	MGRVKREIKKIMNATRROATFSKRRNGLFKKANELSVLCDADVGLIVYNTAGKLFEFSSS-S-S-MKMLINKYLKHRDCGESNFSC-GGESNFSCQM---HAC
PG_G003702_K12	--MIFSPRGKLHEFAR--P-SMHKMLERYH---------DTN-GTSKEQONE------------
PG_G003232_K15	---MKMLDHYNLYSSTIQKDGPP--------NPELE--------
PG_G093605_C12	MAREKIKIKRIANASARQYTFSKRRRGLFKKAQELSILCEADVALWFSSTGKLYDYSS--S-SVEVILDKYVLYPS---TIQKD-GQQ-ILE-----------
PG_GQ03707_I04	MAREKIEIKRRANTSTRQVTFSKRRKGLFKKARELSILCEADVALWFSSTGKLYOYSS--S-SMKVILDKYILYHS---TIQND-GQP--TTLE--------
PG_G033806_I20	MAREKIEMKRIANASARQMTFSKRRRGLFKKAEELSILCAADVALWFSSTGKLYNYSS--S-SMEVILDKYVLYPS---TIQKD-GQQ-ILE-----------
PG_GQ04010_J13	
PhP _PPM1	MGRGKIEIKKIENTTSRQVTFSKRRGGLLKKAHELAVLCDAEVALVIFSSTGKLFEYAS--SGSVRDIIERYKKSPN---GAMKS----GASTD---------
PhP_PPM2	MGRGKIEIKKIENTTSRQVTFSKRRGGLLKKAHELAVLCDAEVALVIFSSTGKLFEYAS--SGSIRDIIDRYKKGSD---GQQN-----GARND---------
PhP_PPMADS1	MGRGKIEIKKIENTTSRQVTFSKRRGGLLKKAHELAVLCDAEVALVIFSSTGKHFEFAS--SGSMRDIIERYRKSSD---GAVKR-----GTNTD---------
ST_MADS11	MRQKIQIKKIDNLTARQVTFSKRRRGLFKKAQELSTLCDADIGLIVFSATGKLFEYSS--S-SMMQLIEKHKVQSER-DSMONP-EQLHSSNLL---------
ST_MADS16	MAREKIKIKKIDNITARQVTFSKRRRGLFKKAEELSVLCDADVALIIFSSTGKLFDFAS--T-SkKDILGKYKLQSA---SLEKV-DEP-SLDLQ--------
	K Domain
AT_AGL15	EDCAEVDILKDQLSKLQEKHL-QLQGKGLNPLTFKELQSLEQQLYHALITVRERK-ERLLTNQLEESRLK--E-QRAELENET---LRRQV-QELRSFLPSF-
AT_AGL18	AVLRNDDSMKGELERLQLAIE-RLKGKELEGSFPPDLISLENQLNESLHSVKDOK-TQILLNQIERSRIQ--E-KKALEENQI---LRKQV-EMLGRGSGPK-
AT_SVP	VENSDHARMSKEIADKSHRLR-QMRGEELQGLDIEELQQLEKALETGLTRVIETK-SOKIMSEISELQKK--G-MQLMDENKR---LRQQG-TQLTEENERL-
AT_AGL24	LENCNLSRLSKEVEDKTKQLR-KLRGEDLOGLILEELQRLEKLLESGLSRVSEKK-GECVMSQIFSLEKR--G-SELVDENKR---LRDKL-ETLERAKLTT-
PG_G002822_N14	IESHDLKRIKQQIEDISQTLR-NIHGEELEKLSLKDLQQLEEQLEAGLNKVRSQK-GENILKEINELQOK--G-IRIIEENSK---LRREI-KEAERGHVEN-
PG_GO03118_H14	DDEMEVEKLKEDINNLSR----FCRGDEVEGISLKMFEDLEQTLEMAVKCVQSRQ-REIFTKQWILQNQ--E-DKALKERGE---LRNQI-EEIYRHTTPT-
PG_GQ03702_K12	DLNRQIANMKDRIRILESTQR-KMSGEGLGTCSLEELTELEVQVEQRLNHIREQK-IEMLMAQVQLKTKVIR-GMLKTPPMWLPNLSDLF------------
PG_G003232_K15	--SPDMKKRKQQIEDISQTLR-NMHGELEGLSLNDLQQLEEQLTMGLNCVRLQK-DEYMIKEINELQOKIREGYGLHLENND---ADESF------------
PG_G003605_C12	FESQDPKRIIQHFEDASQDLR-----EELELLTLKDLEKLEEQFEMELSCIRSQK-VEHLVKKINELQOK--V-IQMIEENTK---LRGQL-N-EGDGE----
PG_G003707_104	FKSKDLKRIKQQFEDTSRNLR-KMHGKELEGLSLKDLQQLEEELEMGLTSIRSQK-VEHHVEIKELQOK--G-IQMIEDNTK---LRGQL-S-EGYGSLVEN
PG_G003806_I20	FESQDPKRIKQQFEDASQDLR-----EELELLTLKDLEKLEEQFEMELSCIRSQK-VEHLSKKINELQOK--V-IQMIEENTK---LRGQL-N-EGDGSLVEN
PG_GQ04010_J13	
PhP _PPM1	FLGREWKLQEQVERLKSSQR-RMLGEDLSALKVPDLLQLEQQLDLGASRVRARK-NQLILEEIEGLQKK--E-QELMVANED---LRKKI-A-DAEAVARAN
PhP_PPM2	FMGCEWKLREQLEQLKASHR-HMLGEDLSLLKVPDLLQLEQQLDLGASRVRARK-NQLILEEVESLRRK--E-HELLIANED---LRQKL-A-DAQGIADAV
PhP_PpMADS1	LLGREVIKLKQQVERLESSQR-HMLGEDLSALKVSDLLELEQQLDOGASRVRARK-NQLILEEIEDLRRK--E-HELMIANEA---LRKKI-A-DAEGAAEAA
ST_MADS11	SEKKTHAMLSRDFVEKNRELR-QLHGEELQGLGLDDLMKLEKLVEGGISRVLRIK-GDKFMKEISSLKKK--E-AQLQEENSQ---LKQQS-Q-ARLNEEGQN
ST_MADS16	LENSLMMRLSKQVADKTRELR-QMRGEELEGLSLEELQQIEKRLEAGFNRVLEIK-GTRIMDEITNLQRK--G-AELMEENKQ---LKHKM---EIMKGKLPL
AT_AGL15	THYYPSYKKC-AIDPKNALIN---H---------------DSK-------------------CSLQNTDS-----------TTLQ-LGLPGEADRRTNEGERES
AT_AGL18	VNER---------PPD--------SSPEADPESSSEEDE----------------------NDNEEHHS-----------TSLQ-LGLSSTGYCT-----KRKK
AT_SVP	GMQICNWHAHGGAESENAAV---------YEEGQSSESI--TNA ---GN------------STGAPVDSESS------D---TSLR-LGL-
AT_AGL24	-------------------------LKEALTETEST-TNV---SSY-----------DSGTPLEDD-S-----------TSLK-LGL-
PG_G002822_N14	-----------NDTEES-FF-----TEPSENQDPQSSESI--TNA---FTF---------KLHKSAIKOYEDS------D---TSLQ-LGL-
PG_G003232_K15	------------------FI-----GQSENKDPQSSASV--TTSA ----F--NF----------RLHKSPNKY---YEDSD-----TSLQ-LGLSSOSKI-
PG_CQQ3605-C12	
PG_GQ03707_I04	-----------NDCCES-LF-----IEPLENQDPQSSESI--NTY---AFN--------FKLHNSPKDPEDS-----------TSLQ-LCL-
PG_GOO3806_I20 -----------NDCC	
PG_CQQ4010_J13	
PhP _PPM1	LSEAR------PESPRH-------LARTLSRDVSASSHPA-ATV---------------YPHPNLRDVQRS----------TSLQ-LQMFSSESYP------
PhP_PPM2	TARAN------SESPRP-------LTSALTRDIWSSQQQEVTV---------------HPHPNLRDAQRS----------TSLQ-LGMFSSESYL -------
PhP_PPMAOS1	A-RANFPDAR--LESPKP-------FASDFSRDUSVSSQLA-ASV---------------YPHPNLLLAQRS-----------TSLQ-LCWLSEQQ
ST_MADS11	
ST_MADS16	LTD----MN---------MEEGQSSESI--ITT---NNPDODOSSNASLKLGGTTAVEDDCS-----------TSL

Figure 2.1 Amino acid alignment of MIKC sequences, with the individual " M " and " K "
domains labeled. A subset of taxa was included for purpose of demonstrating conservation of
the MIKC domains. The defined domains are based on Physcomitrella patens (PhP) from

Henschel et al. (2002). Here we also display seven Picea glauca (PG) SAL genes with their unique identifier from the GCAT assembly (Rigault et al. 2011) that is included in each sequence's NCBI flat file, Arabidopsis thaliana (AT) SA genes, and Solanum tuberosum (ST) genes. AtAGL15, AtAGL16 and PgGQ03118_H15 were also included based on their placement as closely related to the $P g S A L$ clade based on the ML prior to BS.

Figure 2.2 Maximum likelihood (ML) tree constructed from MIKC nucleotide partition (-ln= 42000.21361). Branches with less than 50% bootstrap support have been collapsed. Values
above nodes represent bootstrap values (maximum likelihood/maximum parsimony). Clade names, based on gene function, are indicated in boxes. The following abbreviations accompanying gene names refers to species of origin: $\mathrm{AC}=$ Actinidia chinensis, $\mathrm{AT}=$ Arabidopsis thaliana, $\mathrm{CT}=$ Citrus trifoliata, $\mathrm{EG}=$ Eucalyptus grandis, $\mathrm{EE}=$ Euphorbia esula, $\mathrm{HV}=$ Hordeum vulgare, $\mathrm{PhP}=$ Physcomitrella patens, $\mathrm{PG}=$ Picea glauca, $\mathrm{PA}=$ Prunus avium, $\mathrm{PM}=$ Prunus mume, $\mathrm{PP}=$ Prunus persica, $\mathrm{ST}=$ Solanum tuberosum, $\mathrm{VV}=$ Vitis vinifera. The white spruce genes in the SAL clade were later named SAL1 (GQ03605_C12), SAL2 (GQ03707_I04), SAL3 (GQ02822_N14), SAL4 (GQ03702_K12), SAL5 (GQ03806_I20), SAL6 (GQ04010_J13) and SAL7 (GQ03232_K15).

Figure 2.3 Transcript abundance profiles. Expression data corresponds to eight white spruce MIKC genes quantified in terminal shoot apices undergoing bud development under either SD or LD conditions. Transcript abundance was quantified by qRT-PCR using a standard curve method. TIF5A was used as a reference. Standard error bars represent three to four biological replicates. Letters above bars represent FDR grouping as determined by a MANOVA. Upper case letters represent significant differences $(\mathrm{p}<0.05)$ across time points within short days, and lower-case letters represent significant differences across time points within long days.

Statistical comparisons are not made between photoperiod within days.

Chapter 2 Tables

Table 2.1 Shimodaira-Hasegawa (SH) test of alternative topologies. SH test was performed on constrained maximum likelihood (ML) trees. Log-likelihood score of the original ML tree is significantly greater than the alternative constraint trees (see Supplementary Figures S6-11)

Tree	Log-likelihood score (-ln)	p-value
Unconstrained	4200.21	-
SEP constraint	42619.76	<0.001
SHP constraint	42499.24	<0.001
SOC1 constraint	42143.22	0.002
FLC constraint	42228.67	<0.001
ANR1 constraint	42145.91	0.004
AGL15 constraint	42086.43	0.031

Table 2.2 Gene specific primers used for qRT-PCR analysis. Primers were designed with Primer Express ${ }^{\circledR}$ v3.0.

Gene	Primer Name	Primer Sequence (5' to 3')
GQ02822_N14	GQ02822_N14 FW	CAGATGTAGCCCTCGTCGTTTT
	GQ02822_N14 RV	ATGCTGGAGCTCGAGTAGTCGTA
GQ003702_K12	GQ03702_K12 FW	CGGGAGCTATCGATTCTATGTGA
	GQ03702_K12 RV	TAGTCGTACAGCTTCCCAGTTGAA
GQ03605_C12	GQ03605_C12 FW	GGCCCGCGAGAAAATAAAAA
	GQ03605_C12 RV	CCTGCGCCTCTTCGAGAAC
GQ03707_I04	GQ03707_I04 FW	CACAAGACTGCCATATCCTTCACT
	GQ03707_I04 RV	GGGAATACAAATGATAGAGGACAATACA
GQ03232_K15	GQ03232_K15 FW	CGCTTTCGAAGTACGGTGTTG
GQ03806_I20	GQ03232_K15 RV	GGCCTGTGGAGAATAACCCTAA
	GQ03806_I20 FW	ACCCCCCGTCATCTGAATCTAT
GQ04010_J13	GQ04010_J13 FW	TAGCTGCAAGGAAGTAACATAATCATC
	GQ04010_J13 RV	TTTGTCGTTTGATTTTAGGGTTCTC
GQ03118_H14	GQ03118_H14 FW	CCGAAGGCCTACACCAAGATT
GQ03118_H14 RV	GGAGGGTAGGCTTTGCTTTGT	
TRANSLATION	GQ00410_I10 FW	TGCCAATTCCCCACAGACA
$I N I T I A T I O N ~$	GQ00410_I10 RV	TCCCCACAACTACGAAATCTCA
FACTOR5A		
$(T I F 5 A)$		

Table 2.3 p-values from a multivariate analysis of variance (MANOVA) performed on quantitative reverse transcriptase PCR (qRT-PCR) values of white spruce terminal buds. MANOVA's were performed across photoperiod and across time (i.e. day) nested in each photoperiod. Pillai test was used to calculate approximate F-value for the overall MANOVA, and sum of squares was used to calculate the F-value for the ANOVAs applied to the individual genes. Shapiro-Wilk test for normality and histograms were used to assess normality, and the Levene test was used to assess for homogeneity of variance. Statistics were conducted in RStudio, with an alpha value of 0.05 .
p-value

MANOVA across all genes	Photoperiod	Photperiod/Day
Degrees of freedom	1	8
Pillai	0.585	2.958
Approx. F-value	4.404	2.347
p-value	0.002	<0.001
Gene	Photoperiod	Photperiod/Day
GQ02822_N14/SAL3		
Degrees of freedom	1	8
Sum of squares	3.078	30.471
F-value	13.205	16.354
p-value	<0.001	<0.001
GQ03702_K12/SAL4		
Degrees offreedom	1	8
Sum of squares	0.297	24.075
F-value	0.571	5.791
p-value	0.455	<0.001
GQ03605_C12/SAL1		
Degrees of freedom	1	8
Sum of squares	0.030	1.351
F-value	1.655	18.726
p-value	0.207	<0.001

GQ03707_I04/SAL2		
Degrees of freedom	1	8
Sum of squares	0.201	29.203
F-value	0.554	10.073
p-value	0.462	
GQ03232_K15/SAL7		8
Degrees of freedom	1	11.612
Sum of squares	1.311	1.654
F-value	1.494	0.149
p-value	0.231	
GQ03806_I20/SAL5		8
Degrees offreedom	1	24.861
Sum of squares	0.703	6.442
F-value	1.457	<0.001
p-value	0.236	8
GQ04010_J13/SAL6		31.280
Degrees of freedom	1	13.466
Sum of squares	0.428	<0.001
F-value	1.475	8
p-value	0.2334	20.982
GQ03118_H14		4.512
Degrees of freedom	1	<0.001
Sum of squares	1.417	
F F-value	2.438	
p-value	0.128	

Chapter 2 Supplementary Data

Figure S2.1 Maximum parsimony tree constructed from nucleotide partition.
Figure S2.2 Weighted maximum parsimony tree. MP tree constructed from nucleotide partition in PAUP*.

Figure S2.3 Maximum parsimony tree from amino acid partition. MP tree constructed from amino acid partition in PAUP*.

Figure S2.4 Maximum likelihood tree from amino acid partition.
Figure S2.5 Maximum likelihood tree without bootstrap.
Figure S2.6 AGL15 maximum likelihood constraint.
Figure S2.7 ANR1 maximum likelihood constraint.
Figure S2.8 FLC maximum likelihood constraint.
Figure S2.9 SEP maximum likelihood constraint.
Figure S2.10 SHP maximum likelihood constraint.
Figure S2.11 SOC1 maximum likelihood constraint.
Table S2.1 List of nucleotide and amino acid sequences of 88 MIKC sequences from 14 different species used for phylogenetic trees.

Figure S2.1 Maximum parsimony tree constructed from nucleotide partition. Branches with less than 50% BS support have been collapsed. Values above nodes represent BS values. Values above nodes represent bootstrap values. Clade names, based on gene function, are indicated in boxes. The following abbreviations accompanying gene names refers to species of origin: $\mathrm{AC}=$ Actinidia chinensis, $\mathrm{AT}=$ Arabidopsis thaliana, $\mathrm{CT}=$ Citrus trifoliata, $\mathrm{EG}=$ Eucalyptus grandis, $\mathrm{EE}=$ Euphorbia esula, $\mathrm{HV}=$ Hordeum vulgare, $\mathrm{PhP}=$ Physcomitrella patens, $\mathrm{PG}=$ Picea glauca, $\mathrm{PA}=$ Prunus avium, $\mathrm{PM}=$ Prunus mume, $\mathrm{PP}=$ Prunus persica, $\mathrm{ST}=$ Solanum tuberosum, VV $=$ Vitis vinifera.

Figure S2.2 Weighted maximum parsimony tree. MP tree constructed from nucleotide partition in PAUP*. Tree search was conducted with 300 random addition replicates, TBR, 50 trees held in the construction of the initial starting tree, $1000 \mathrm{BS}, 1000$ nchuck with a chuckscore of greater than or equal to 1 , majority rule 50% consensus tree. Weighting imposed across domains: " N " $=$ $0.5, " \mathrm{M} "=3, " I "=2, " K "=3, " C "=1$. Branches with less than 50% BS support have been collapsed. Values above nodes represent bootstrap values. Clade names, based on gene
function, are indicated in boxes. The following abbreviations accompanying gene names refers to species of origin: $\mathrm{AC}=$ Actinidia chinensis, $\mathrm{AT}=$ Arabidopsis thaliana, $\mathrm{CT}=$ Citrus trifoliata, $\mathrm{EG}=$ Eucalyptus grandis, $\mathrm{EE}=$ Euphorbia esula, $\mathrm{HV}=$ Hordeum vulgare, $\mathrm{PhP}=$ Physcomitrella patens, $\mathrm{PG}=$ Picea glauca, $\mathrm{PA}=$ Prunus avium, $\mathrm{PM}=$ Prunus mume, $\mathrm{PP}=$ Prunus persica, ST $=$ Solanum tuberosum, $\mathrm{VV}=$ Vitis vinifera .

Figure S2.3 Maximum parsimony tree from amino acid partition. MP tree constructed from amino acid partition in PAUP*. Tree search was conducted with 300 random addition replicates, TBR, 50 trees held in the construction of the initial starting tree, 1000 bootstrap, 1000 nchuck with a chuckscore of greater than or equal to 1 , majority rule 50% consensus tree. Branches with less than 50% BS support have been collapsed. Values above nodes represent bootstrap values. Clade names, based on gene function, are indicated in boxes. The following abbreviations accompanying gene names refers to species of origin: $\mathrm{AC}=$ Actinidia chinensis, $\mathrm{AT}=$ Arabidopsis thaliana, $\mathrm{CT}=$ Citrus trifoliata, $\mathrm{EG}=$ Eucalyptus grandis, $\mathrm{EE}=$ Euphorbia esula, $\mathrm{HV}=$ Hordeum vulgare, $\mathrm{PhP}=$ Physcomitrella patens, $\mathrm{PG}=$ Picea glauca, $\mathrm{PA}=$ Prunus avium, $\mathrm{PM}=$ Prunus mume, $\mathrm{PP}=$ Prunus persica, $\mathrm{ST}=$ Solanum tuberosum, $\mathrm{VV}=$ Vitis vinifera.

Figure S2.4 Maximum likelihood tree from amino acid partition. ML tree constructed from nucleotide data with GARLI 2.0 under the JTT $+\mathrm{I}+\mathrm{G}$ model. Tree search was conducted with estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories, 1000 times BS. Branches with less than 50% BS support have been collapsed. Values above nodes represent bootstrap values. Clade names, based on gene function, are indicated in boxes. The following abbreviations accompanying gene names refers to species of origin: $\mathrm{AC}=$ Actinidia chinensis, $\mathrm{AT}=$ Arabidopsis thaliana, $\mathrm{CT}=$ Citrus trifoliata, $\mathrm{EG}=$ Eucalyptus grandis, $\mathrm{EE}=$ Euphorbia esula, $\mathrm{HV}=$ Hordeum vulgare, $\mathrm{PhP}=$ Physcomitrella patens, $\mathrm{PG}=$ Picea glauca, PA
$=$ Prunus avium, $\mathrm{PM}=$ Prunus mume, $\mathrm{PP}=$ Prunus persica, $\mathrm{ST}=$ Solanum tuberosum, $\mathrm{VV}=$ Vitis vinifera.

Figure S2.5 Maximum likelihood tree without bootstrap. The best ML tree constructed from nucleotide data $(-\ln =42000.21361)$ with GARLI 2.0. Tree search was conducted with GTR $+\mathrm{I}+\Gamma$ substitution model, estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories. Clade names, based on gene function, are indicated in boxes. The following abbreviations accompanying gene names refers to species of origin: $\mathrm{AC}=$ Actinidia chinensis, $\mathrm{AT}=$ Arabidopsis thaliana, $\mathrm{CT}=$ Citrus trifoliata, $\mathrm{EG}=$ Eucalyptus grandis, $\mathrm{EE}=$ Euphorbia esula, $\mathrm{HV}=$ Hordeum vulgare, $\mathrm{PhP}=$ Physcomitrella patens, $\mathrm{PG}=$ Picea glauca, PA
$=$ Prunus avium, $\mathrm{PM}=$ Prunus mume, $\mathrm{PP}=$ Prunus persica, $\mathrm{ST}=$ Solanum tuberosum, $\mathrm{VV}=$ Vitis vinifera.

Figure S2.6 AGAMOUS-LIKE 15 (AGL15) maximum likelihood constraint. The best ML tree constructed from nucleotide data $(-\ln =42086.43568)$ with GARLI 2.0. Spruce $S A L$ clade constrained with the $A G L 15$ clade. Tree search was conducted with $\mathrm{GTR}+\mathrm{I}+\Gamma$ substitution model, proportion of invariant sites was estimated, 4 rate categories.

Figure S2.7 ARABIDOPSIS NITRATE REGULATED 1 (ANR1) maximum likelihood constraint. The best ML tree constructed from nucleotide data $(-\ln =-42024.59)$ with GARLI 2.0. Spruce $S A L$ clade constrained with the $A N R 1$ clade. Tree search was conducted with $\mathrm{GTR}+\mathrm{I}+\Gamma$ substitution model, proportion of invariant sites was estimated, 4 rate categories.

Figure S2.8 FLOWERING LOCUS C (FLC) maximum likelihood constraint. The best ML tree constructed from nucleotide data $(-\ln =42228.67448)$ with GARLI 2.0. Spruce $S A L$ clade constrained with the $F L C$ clade. Tree search was conducted with $\mathrm{GTR}+\mathrm{I}+\Gamma$ substitution model, estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories.

Figure S2.9 SEPELLATA (SEP) maximum likelihood constraint. The best ML tree constructed from nucleotide data $(-\ln =42619.76438)$ with GARLI 2.0. Spruce $S A L$ clade constrained with the $S E P$ clade. Tree search was conducted with $\mathrm{GTR}+\mathrm{I}+\Gamma$ substitution model, estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories.

Figure S2.10 SHATTERPROOF (SHP) maximum likelihood constraint. The best ML tree constructed from nucleotide data $(-\ln =42499.24251)$ with GARLI 2.0. Spruce $S A L$ clade constrained with the $S H P$ clade. Tree search was conducted with $\mathrm{GTR}+\mathrm{I}+\Gamma$ substitution model, estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories.

Figure S2.11 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) maximum
likelihood constraint. The best ML tree constructed from nucleotide data $(-\ln =42143.22345)$
with GARLI 2.0. Spruce $S A L$ clade constrained with the $S O C 1$ clade. Tree search was conducted with GTR $+\mathrm{I}+\Gamma$ substitution model, estimated state frequencies, proportion of invariant sites was estimated, 4 rate categories.

Table S2.1 List of nucleotide and amino acid sequences of 88 MIKC sequences from 14 different species used for phylogenetic trees. GenBank and GenPept accession numbers obtained from NCBI. Locus identity included in parenthese for Arabidopsis sequences.

Authorities found from tropicos.org. Lineages are listed as $\mathrm{A}=$ angiosperm, $\mathrm{B}=$ bryophyte, $\mathrm{C}=$ conifer.

Species	Lineage	Initials	Genes	GenBank accession no.	GenPept accession no.
Actinidia chinensis Planch.	A	AC	SVP1	JF838216.1	AFA37967.1
Actinidia chinensis Planch.	A	AC	SVP2	JF838217.1	AFA37968.1
Actinidia chinensis Planch.	A	AC	SVP3	JF838218.1	AFA37969.1
Actinidia chinensis Planch.	A	AC	SVP4	JF838219.1	AFA37970.1
Arabidopsis thaliana (L.) Heynh.		AT	$\begin{gathered} \text { SEP3 } \\ \text { (AT1G24260) } \end{gathered}$	NM_102272.3	AEE30503.1
Arabidopsis thaliana (L.) Heynh.	A	AT	$\begin{gathered} \text { AP1 } \\ \text { (AT1G69120) } \end{gathered}$	NM_105581.2	AEE34887.1
Arabidopsis thaliana (L.) Heynh.	A	AT	$\begin{gathered} \text { XAL1 } \\ \text { (AT1G71692) } \end{gathered}$	NM_105825.2	AEE35216.1
Arabidopsis thaliana (L.) Heynh.	A	AT	$\begin{gathered} \text { MAF1 } \\ \text { (AT1G77090) } \end{gathered}$	NM_180648.3	AEE35931.1
Arabidopsis thaliana (L.) Heynh.	A	AT	$\begin{gathered} \text { SEP4 } \\ \text { (AT2G03710) } \end{gathered}$	NM_126418.2	AEC05738.1
Arabidopsis thaliana (L.) Heynh.	A	AT	ANR1 (AT1G08090)	NM_126990.3	AEC06290.1
Arabidopsis thaliana (L.) Heynh.	A	AT	$\begin{gathered} \text { SVP } \\ \text { (AT2G22540) } \end{gathered}$	NM_127820.3	AEC07320.1
Arabidopsis thaliana (L.) Heynh.	A	AT	$\begin{gathered} \text { AGL17 } \\ \text { (AT2G22630) } \end{gathered}$	NM_127828.2	AEC07331.1

Arabidopsis thaliana	A	AT	SHP2 (AT2G42830)	NM_180046.2	AEC10175.1
(L.) Heynh.					
Arabidopsis thaliana (L.)	A	AT	$\begin{gathered} \text { AGL6 } \\ \text { (AT2G45650) } \end{gathered}$	NM_130127.1	AEC10582.1
Heynh.					
Arabidopsis thaliana (L.)	A	AT	$\begin{gathered} \text { SOC1 } \\ \text { (AT2G45660) } \end{gathered}$	NM_130128.3	AEC10583.1
Heynh.					
Arabidopsis	A	AT	SEP2	NM_111098.3	AEE73791.1
thaliana (L.)			(AT3G02310)		
Heynh.					
Arabidopsis	A.	AT	AGL16	NM_115583.5	AEE79629.1
thaliana (L.)			(AT3G57230)		
Heynh.					
Arabidopsis	A	AT	AGL18	NM_115599.3	AEE79650.1
thaliana (L.)			(AT3G57390)		
Heynh.					
Arabidopsis	A	AT	SHP1	NM_001203201.1	AEE79831.1
thaliana (L.)			(AT3G58780)		
Heynh.					
Arabidopsis	A	AT	AGL13	NM_115976.1	AEE80158.1
thaliana (L.)			(AT3G61120)		
Heynh.					
Arabidopsis	A	AT	STK	NM_001084895.1	AEE82817.1
thaliana (L.)			(AT4G09960)		
Heynh.					
Arabidopsis	A	AT	AGL14	NM_117258.5	AEE83062.1
thaliana (L.)			(AT4G11880)		
Heynh.					
Arabidopsis	A	AT	AG	NM_118013.2	AEE841121.1
thaliana (L.)			(AT4G18960)		
Heynh.					
Arabidopsis	A	AT	GL19	NM_118424.2	AEE84684.1
thaliana (L.)			(AT4G22950)		
Heynh.					
Arabidopsis	A	AT	AGL24	NM_118587.5	AEE84922.1
thaliana (L.)			(AT4G24540)		
Heynh.					
Arabidopsis	A	AT	AGL21	NM_119955.2	AEE86856.1
thaliana (L.)			(AT3G37940)		
Heynh.					
Arabidopsis	A	AT	FLC	NM_121052.2	AED91498.1
thaliana (L.)			(AT5G10140)		
Heynh.					
Arabidopsis	A	AT	AGL15	NM_121382.3	AED91941.1

thaliana (L.)
Heynh.
Arabidopsis
thaliana (L.)
Heynh.
Arabidopsis
thaliana (L.)
Heynh.
Arabidopsis thaliana (L.) Heynh. Arabidopsis thaliana (L.) Heynh.
Citrus trifoliate L.
Eucalyptus grandis W. Hill
Euphorbia esula L.

Hordeum vulgare L.

Physcomitrella patens (Hedw.) Bruch \& Schimp
Physcomitrella patens (Hedw.) Bruch \& Schimp Physcomitrella patens (Hedw.) Bruch \& Schimp
Picea glauca
C PG
(Moench) Voss
Picea glauca
C PG
(Moench) Voss
Picea glauca
C PG
(Moench) Voss
Picea glauca
C PG
C PG
(Moench) Voss
Picea glauca
C $\quad \mathrm{PG}$
(Moench) Voss
Picea glauca
C \quad PG
(Moench) Voss
Picea glauca
C PG
A AT

A AT

A AT

A CT
A
A EE
A HV
B

B

B
(Moench) Voss
Picea glauca
A AT
(AT5G13790)
SEP1
(AT1G34360)
(Moench) Voss
MAF2 (AT5G65050)

SVP

BM1
PPM1

PPM2

PPMADS1

GQ02822 K07

GQ01311_E19

FJ373210.1
ACJ09169.1
AY263809.1
EU339320.1
ABY60423.1
AJ249142.1
CAB97350.1
XM_001769810.1
AAG09136.2

AF150933.1
EDQ72735.1

XM_001779819.1 EDQ55286.1

BT105450.1
GQ03806_I20 BT116779.1
GQ0164_P01 BT102045.1
GQ03235_L08 BT111301.1
GQ03105_H22 BT107302.1
GQ0012_K17 BT100378.1
GQ0067_D06 BT101090.1
EX309542.1

Picea glauca (Moench) Voss	C	PG	GQ0198_E13	BT102624.1
Picea glauca (Moench) Voss Picea glauca (Moench) Voss	C	PG	PG	GQ02802_O10_E19

Picea glauca (Moench) Voss	C	PG	GQ03702_K12	BT115613.1	-
Prunus avium (L.) L.	A	PA	MADS1	EU196362.1	ABW82562.1
Prunus mume (Siebold) Siebold \& Zucc.	A	PM	DAM1	AB576350.1	BAK78921.1
Prunus mume (Siebold) Siebold \& Zucc.	A	PM	DAM2	AB576351.1	BAK78922.1
Prunus mume (Siebold) Siebold \& Zucc.	A	PM	DAM3	AB576352.1	BAK78923.1
Prunus тите (Siebold) Siebold \& Zucc.	A	PM	DAM4	AB576353.1	BAK78924.1
Prunus mume (Siebold) Siebold \& Zucc.	A	PM	DAM5	AB576349.1	BAK78920.1
Prunus mume (Siebold) Siebold \& Zucc.	A	PM	DAM6	AB437345.1	BAH22477.1
Prunus persica (L.) Batsch	A	PP	DAM1	DQ863253.2	ABJ96361.2
Prunus persica (L.) Batsch	A	PP	DAM2	DQ863257.1	ABJ96370.1
Prunus persica (L.) Batsch	A	PP	DAM3	DQ863256.1	ABJ96370.1
Prunus persica (L.) Batsch	A	PP	DAM4	DQ863257.1	ABJ96365.1
Prunus persica (L.) Batsch	A	PP	DAM5	DQ863251.1	ABJ96366.1
Prunus persica (L.) Batsch	A	PP	DAM6	DG863252.1	ABJ96367.1
Solanum tuberosum L.	A	ST	MADS11	AF008652.1	AAB94006.1
Solanum tuberosum L.	A	ST	MADS 16	AF008651.1	AAV65504.1
Vitis vinifera L.	A	VV	SVP1	JQ387569.1	AFC96914.1
Vitis vinifera L.	A	VV	SVP2	XM_002285651.2	XP 002285687.1

3.0 Chapter 3: Picea glauca SHORT VEGETATIVE PHASE/AGAMOUSLIKE 24-like 1 regulation may have evolved from a common angiosperm pathway, while SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like 5 may be regulated by novel pathways

3.1 Introduction

Perennial trees of the boreal forest undergo seasonal changes in growth and development to protect against the harsh environmental conditions of winter. In preparation for the phase transition from active growth to dormancy, white spruce (Picea glauca (Moench) Voss, Pg), trees form a terminal bud and meristematic growth ceases (Rohde and Bhalerao 2007). The transition from active growth to dormancy is regulated by environmental cues such as photoperiod (Garner and Allard 1923, Nitsch 1957, Garris et al. 2009) and temperature (Kalcsits et al. 2009, Tanino et al. 2010, Rohde et al. 2011). Photoperiod has a more pronounced influence than temperature in the regulation of growth cessation and terminal bud formation in trees displaying indeterminate growth such as poplar (Nitsch 1957, Heide 1974). Low temperature delays the rate of bud set in white spruce trees in both long day (LD) and short day (SD) treatments (Hamilton et al. 2016), however the combinatorial effect between temperature and photoperiod is species dependent (Heide and Prestrud 2005, Junttila 1980). White spruce trees are able to form terminal buds in the absence of both SD and low temperatures, although both of these environmental cues affect the rate of bud formation (El Kayal et al. 2011, Hamilton et al. 2016). In white spruce, a determinate species, SD in combination with warm temperatures accelerates terminal bud formation and growth cessation in above ground tissue (Hamilton et al. 2016). Terminal bud formation and growth cessation proceed more slowly in LD and/or low
temperatures conditions, with the combination of SD and low temperatures displaying the slowest rate of progression (Hamilton et al. 2016).

In addition to environmental cues, a number of hormones are implicated in regulating the events that make up the activity to dormancy transition in angiosperms (Eriksson and Moritz 2002, Ruonala et al. 2006, Ruttink et al. 2007, Baba et al. 2011). Abscisic acid (ABA) content increases in response to SDs in poplar (Rohde et al. 2002) to cease growth, and may be involved in dormancy establishment in hybrid aspen (Tylewicz et al. 2015). During white spruce bud formation ABA content is low during bud development, which suggests ABA may have a role in growth cessation in conifers (El Kayal et al. 2011). ABA is also involved in the abiotic stress response to salinity, drought and cold. Low temperatures may contribute to ABA accumulation, growth cessation (Welling and Palva 2006) and the circadian clock during dormancy (Ramos et al. 2005). Decreased accumulation of gibberellins (GA) contributes to cessation of growth leading up to dormancy establishment in hybrid aspen (Populus tremula L. x Populus tremuloides Michx.; Eriksson et al. 2000, Eriksson and Moritz 2002). Timing of dormancy induction is shown to be linked to ethylene in birch and poplar (Ruonala et al. 2006, Ruttink et al. 2007). In birch trees, ethylene is not a requirement for the transition to endodormancy, but it can affect the timing of transition (Ruonala et al. 2006). Furthermore, ethylene may play a role in mediating correct developmental processes at the shoot apical meristem (SAM) since ethylene insensitive birch trees displayed altered bud structures (Ruonala et al. 2006). Auxin participates in a wide variety of plant development pathways, and is known to inhibit lateral bud outgrowth apical dominance in trees. Auxin sensitivity is also involved in halting cell division of cambial cells of hybrid aspen, and thereby participates in growth cessation and dormancy (Resman et al. 2010, Baba et al. 2011). Auxin levels in white sprue apical buds were found to decrease in
response to SD (El Kayal et al. 2011). A clear role for cytokinin (CK) in seasonal growth regulation have yet to be well established, however CKs are well established in the regulation of cell division and in stimulating the outgrowth of angiosperm lateral buds (Cline and Dong-Il 2002, Ferguson and Beveridge 2009). Increased CK levels were also found to correlate with Norway spruce bud size (Chen et al. 1996).

Despite the evolutionary divergence between conifers and angiosperms, angiosperms serve as a reasonable model to base our assumptions of developmental processes involved in white spruce dormancy. There is an accumulating body of evidence, mainly from angiosperms, that there is a conserved network involved in regulating the transition from vegetative to reproductive growth and the transition from active growth to dormancy (Böhlenius et al. 2006, Gyllenstrand et al. 2007, Mohamed et al. 2010, Karlgren et al. 2011). For example, genes orthologous to flowering time regulators, such as Populus trichocarpa Torr. \& A. Gray CONSTANS 2 and FLOWERING LOCUS T 1 and Populus tremuloides Michx.

CENTRORADIALIS 1 and CENTRORADIALIS 2, have been shown to regulate bud formation in forest trees (Böhlenius et al. 2006, Hsu et al. 2006, Mohamed et al. 2010). Building on the findings of Böhlenius et al. (2006), PaFTL2, a gene sister to FLOWERING LOCUS T and TERMINAL FLOWER 1 (TFL1) in Arabidopsis thaliana (L.) Heynh. (At), has been implicated in bud formation and growth cessation of Norway spruce (Picea abies (L.) H. Karst.; Gyllenstrand et al. 2007, Karlgren et al. 2011, Klintenäs et al. 2012). Expression of PaFTL2 is upregulated after treatment with reduced day length, which contrasts expression of Arabidopsis $F T$, which is downregulated in response to SD (Gyllenstrand et al. 2007, Suárez-López et al. 2001). This difference in pattern suggests the role of PaFTL2 may be suppression of growth, a function more similar to Arabidopsis TFL1 (Karlgren et al. 2011).

Several studies have focused on the functional roles of MADS-box genes in bud formation and dormancy acquisition (Mazzitelli et al. 2007, Jiménez et al. 2009, Horvath et al. 2010, Sasaki et al. 2011, Wu et al. 2011). An important paper on bud development and dormancy induction investigated a natural occurring knock-out mutant of Prunus persica (L.) Batsch DORMANCY ASSOCIATED MADS-BOX (DAM) genes, an SVP-like gene, which resulted in the EVERGROWING mutant (Bielenberg et al. 2004, Jiménez et al. 2009). The EVERGROWING mutant does not produce terminals buds or enter a dormant state (Bielenberg et al. 2004, Jiménez et al. 2009), suggesting genes with functions of similar importance may exist in other species. In contrast, expression of Arabidopsis $S V P$ is unaffected by changes in temperature and photoperiod (Hartmann et al. 2000). However, there is evidence that environmental conditions, such as warmer temperatures, result in the degradation of the SVP protein, thereby reducing function and impacting flowering time (Lee et al. 2007, Lee et al. 2013, Lee et al. 2014, Fernández et al. 2016). AtSVP is stable at low temperatures and acts to inhibit the transition to flowering by dimerizing with FLOWERING LOCUS M (FLM) (Lee et al. 2013). AtSVP additionally forms a repressive complex with FLOWERING LOCUS C (FLC) to prevent the transcription of key flowering genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) (Li et al. 2008, Jang et al. 2009, Searle et al. 2006). Expression of $A t F L C$ is mediated by the vernalization pathway through activation by FRIGIDA (FRI) complexing with FLOWERING C EXPRESSOR (FLX) genes (Ding et al. 2013). $A t$ SOC1 an $A t$ SVP act to mutually inhibit one another's transcription in the transition to flowering (Li et al. 2008, Immink et al. 2012). There is also evidence that suggests components of the circadian clock, CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and LATE ELONGATED

HYPOCOTYL (LHY), may downregulate $S V P$ expression in the morning to alleviate SVP repression of $F T$ (Fujiwara et al. 2008).

As demonstrated in Chapter 2, we identified a set of white spruce genes that are sister to Arabidopsis SVP, the closely related AGL24 and the Prunus persica DAM. Based on the homology of PgSVP-like genes with Arabidopsis SVP and AGL24, we named these white spruce genes SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like (PgSAL). Transcript profiling data support that $P g S A L 1, P g S A L 2, P g S A L 3, P g S A L 4$, and $P g S A L 5$ may be involved in the early staged of bud development. To test the hypothesis that $P g S A L$ genes are involved in bud formation and potentially other events that take place during the transition from active growth to dormancy, we investigated the upstream pathways regulating the activation of $\mathrm{PgSAL1}$ and PgSAL5. PgSAL1 and PgSAL5 were chosen to explore further based on their expression profiles and our ability to clone large regions of these promoters for further analyses. We wished to investigate the functional roles and upstream regulators of PgSAL1 and $\operatorname{PgSAL5}$ related to bud development in white spruce, since few studies have looked into this topic in conifers.

To perform these analyses, we cloned the putative promoters for these two genes, and used available sequence data from draft assemblies of the white spruce genome (Birol et al. 2013, Warren et al. 2015) to further characterize the cloned sequences. Based on these analyses, they were designated as PgSAL1 and putative PgSAL5 promoters. We used these promoter sequences in two experimental approaches. In the first approach, we identified transcription factor binding sites (TFBS) in the $\operatorname{PgSAL1}$ and putative $P g S A L 5$ promoters with purpose of cataloguing the breadth of the possible interactions involved. In the second approach, we identified transcription factors (TF) that bind the $\operatorname{PgSAL1} 1$ and putative $\operatorname{PgSAL5}$ promoters. Together, these two approaches allowed us to identify components of upstream regulatory
networks involved in regulating PgSAL1 and PgSAL5, which in turn reveal new insight about the functional roles of these genes.

3.2 Materials and Methods

3.2.1 Plant Material

White spruce terminal bud mRNA from two experiments were pooled to construct the cDNA library used for yeast one-hybrid screening. Combined, these two experiments cover the development of terminal buds from initiation to dormancy. Prior to exposure to treatments trees were grown under LD conditions for active growth. In the short-term time course trees experienced three weeks of active growth, whereas trees used in extended time course had approximately eight weeks of active growth. The short-term time course used two-year-old white spruce seedlings were grown under $\mathrm{SD}\left(8 \mathrm{~h}\right.$ days $/ 16 \mathrm{~h}$ nights) at $20^{\circ} \mathrm{C}$. Terminal buds were harvested at five time points (Day $0,7,14,28,70$). Trees in the extended time course experiment were two-year-old white spruce trees obtained from the experiment conducted in Hamilton et al. (2016). Trees were grown under SD at $22^{\circ} \mathrm{C}$ day, and $16^{\circ} \mathrm{C}$ night temperatures. Terminal buds harvested at three later time points (Day 92, 106, 126) were used for cDNA library construction. All terminal buds from both experiments were immediately frozen in liquid nitrogen upon harvest and stored at $-80^{\circ} \mathrm{C}$.

3.2.2 PgSAL1 and putative $\operatorname{PgSAL5}$ promoter isolation

PgSAL1 (GQ03605_C12, BT114920.1) and putative PgSAL5 (GQ03806_I20,
BT116779.1) promoters were isolated using the GenomeWalker ${ }^{\text {TM }}$ Universal Kit (Clontech, Mountain View CA, USA) from a single white spruce sample. White spruce gDNA was extracted from white spruce needles using a modified cetyltrimethylammonium bromide (CTAB)
protocol (Chang et al. 1993, Roe et al. 2010). We used the fragments obtained using GenomeWalker ${ }^{\mathrm{TM}}, 426$ bp for PgSAL1 and 862 bp for putative PgSAL5, to identify the corresponding genomic scaffolds in v1.0 of the Norway spruce genome sequence (Nystedt et al. 2013), the most complete genome assembly at the time, using the BLASTn function in ConGenie (congenie.org, Sundell et al. 2015). Primers were designed against the upstream region of the Norway spruce sequences and used to obtain final promoter sequences from white spruce (Table 3.1). Complete promoter sequences are given in Appendix 1 (A1).

Primers for Genome Walker ${ }^{\text {TM }}$ cloning, and cloning using the Norway spruce gDNA as a guide, were generated using Integrated DNA Technologies (IDT) PrimerQuest Tool (idtdna.com/Primerquest/Home/Index), primers (Table 3.1). To adhere to the Genome Walker ${ }^{\text {TM }}$ recommendations, all primers were designed to be $26-30 \mathrm{bp}$ in length with a GC content between $40-58 \%$, with a maximum of three G's and C's in the primer's 3' end to prevent self-annealing. Primers were also designed to limit self-dimers and hetero-dimers, and hairpin strength.

Promoter fragments were cloned into the pGEM ${ }^{\circledR}$-T Easy vector (Promega, Madison, USA) and sequenced with the T7 and SP6 universal primers.

3.2.3 Yeast One-Hybrid (Y1H) Assay

Terminal bud mRNA was pooled to generate one cDNA library. Total RNA was extracted from two to four white spruce terminal buds per time point using the small scale CTAB protocol described in Pavy et al. (2008). RNA quality and quantity was assessed with an Infinite® M200 NanoQuant (Tecan, Männerdorf, Switzerland) and gel electrophoresis. mRNA was isolated from total RNA using NEBNext ${ }^{\circledR} \operatorname{Poly}(\mathrm{A})$ mRNA Magnetic Isolation Module (New England Biolabs, Ipswich, MA, USA). A subset of four mRNA samples were run on an

Agilent 2100 Bioanalyzer (Aglient, Waldbronn, Germany) to ensure purification and sample integrity.

The terminal bud cDNA library was created with the CloneMiner ${ }^{\mathrm{TM}} \mathrm{II}$ cDNA Library Construction Kit (Life Technologies, Carlsbad, CA, USA) according to the manufacturer instructions. Approximately 390 to 1174 ng of mRNA was used from each of the eight time points to create a total of 5720 ng of pooled enriched mRNA from which to create the cDNA library. A sample of $2 \mu \mathrm{~g}$ control mRNA provided by the kit was used as a positive control for all steps of the cDNA library construction to ensure the procedure had been carried out correctly. White spruce mRNA was split into two reaction tubes so that 2860 ng of enriched mRNA was used as a starting material for the cDNA synthesis, adaptor ligation steps and column chromatography. For cDNA synthesis, we were concerned that the oligo dT primers provided in the kit would not perform as well as the anchored oligo $\mathrm{dT}_{(18)} \mathrm{N}$, and therefore performed one cDNA synthesis reaction with the oligo dT primers in the kit, and the other with our own anchored oligo $\mathrm{dT}_{(18)} \mathrm{N}$. A first priming step was carried out over 18.5 min , over which the temperature declined from $70^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ at approximately $1^{\circ} \mathrm{C} / 45 \mathrm{sec}$. The protocol for first stand synthesis was as follows: $45^{\circ} \mathrm{C}$ for $20 \mathrm{sec}, 50^{\circ} \mathrm{C}$ for $20 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 20 sec , then immediate removal of tubes from the machine onto ice to prevent temperature from increasing past $16^{\circ} \mathrm{C}$. Second strand synthesis protocol was as follows: $16^{\circ} \mathrm{C}$ for 2 hours, addition of $2 \mu \mathrm{l}$ T4 DNA polymerase to create blunt ends, $16^{\circ} \mathrm{C} 5 \mathrm{~min}$, add $10 \mu 10.5 \mathrm{M}$ EDTA (pH 8) to stop reaction.

Following cDNA synthesis, samples were purified using phenol:choloroform:isoamyl alcohol (in proportions of 25:24:1). Following column cleanup, yields were quantified on an Infinite ${ }^{\circledR} 200$ NanoQuant (Tecan Group Ltd., Männedorf, Switzerland) to ensure product
recovery. Yield was very low (18.2 ng for the oligo dT reaction and 120 ng anchored oligo $\mathrm{dT}_{(18)} \mathrm{N}, 196.56 \mathrm{ng}$ for the control) so the two white spruce reactions were pooled for a total of 138.84 ng to use for the remainder of the protocol. Library quality was assessed by checking 30 randomly sampled plasmids, and analyzing cDNA fragments by agarose gel electrophoresis. The cDNA library had a 100% recombinants (i.e. 100% of cDNA fragments recombined into the destination vector) with cDNA fragment sizes ranging from about 650 bp to 2.25 kb , with an average cDNA fragment size of approximately 1.68 kb . According the manufacturer's instructions, a standard cDNA library should have a minimum of 95% recombinants and the average insert size should be greater than or equal to 1.5 kb . As a further assessment of library quality, a titer of the number of colony forming units (cfu) per mL was also performed with the Escherichia coli (E. coli) colonies transformed with the cDNA fragments (see calculation in Appendix 3, A3) and was above the minimum of $5 \times 10^{6} \mathrm{cfu} / \mathrm{mL}$ recommended by the manufacturer.

A subsample of the cDNA library culture was grown in 50 mL culture of LB media to an OD600 of approximately 1, and plasmids extracted using a Qiagen Midiprep Kit (Qiagen, Hilden, Germany). Extracted plasmids (50 ng) were then cloned into the $\mathrm{pDEST}^{\mathrm{TM}} 22$ plasmids (450 ng) using Gateway ${ }^{\circledR}$ LR recombination. Reactions were carried out at $25^{\circ} \mathrm{C}$ for $16-20$ hours, inactivated with $2 \mu 1$ of Proteinase K at $37^{\circ} \mathrm{C}$ for 15 min and then a final step of $75^{\circ} \mathrm{C}$ for 10 min . In this method, the cDNA sequence in the donor plasmid ($\mathrm{pDONR}{ }^{\mathrm{TM} 222 \text {) are flanked }}$ by sites known as "attL1 and attL2", and the lethal ccdB gene in the destination vector (pDEST ${ }^{T M 22}$) is flanked by "attR1 and attR2" sites. The LR Clones ${ }^{T M}$ recognizes the "L" and " R " sites and will transfer the lethal ccdB gene into the donor vector, resulting in the cDNA
sequences residing in the destination vector. The $\mathrm{pDEST}^{\mathrm{TM}} 22$ plasmid contains the GAL4 activation domain, which is necessary for promoter activation in yeast one-hybrid interactions.

Cloning of bait constructs was carried out according to Deplancke et al. (2006). Based on SAL1 and putative SAL5 upstream sequences cloned from Genome Walker ${ }^{\text {TM }}$ we trimmed the cDNA portion of the sequence, leaving the untranslated region as part of the promoter sequence. $P g S A L 1$ and putative $\operatorname{PgSAL5}$ promoters were first cloned into the 476 p5E-mcs Gateway vector (purchased from addgene.org) using KpnI, SAlI and/or SmaI restriction enzymes and promoterspecific primers. PgSAL1 and putative PgSAL5 promoters were then LR cloned into the pMW\#2 vector containing the histidine reporter gene (Deplancke et al. 2006, purchased from addgene.org) to generate promoter baits. To generate baits, promoters were cloned from the 476 p5E-mcs Gateway vector into pMW\#2 using Gateway LR Clonase II enzyme mix (Invitrogen, Carlsbad, USA). Cloning reactions were incubated at $25^{\circ} \mathrm{C}$ for one hour, followed by addition of $1 \mu \mathrm{l}$ of Proteinase K incubated at $37^{\circ} \mathrm{C}$ for 10 minutes to inactivate the Clonase enzyme. After each round of cloning, inserts were verified by PCR. pMW\#2 vectors containing PgSAL1 or putative $P g S A L 5$ promoters were linearized in order to be integrated into the yeast genome. See Appendix 3 (A3) for a detailed cloning protocol.

Saccharomyces cerevisiae YM4271 strain (Cerdarlane, Burlington, CA) cells were grown and transformed based on a protocol from Matchmaker Gold Yeast One-Hybrid Library Screening System (Clontech, Mountain View CA, USA). Linearized plasmids were transformed into the yeast genome using freshly prepared yeast cultures that had reached a minimum optical density (OD600) of 0.4-0.5. Yeast cultures were harvested by centrifugation. Prior to transformation yeast cells were incubated at $30^{\circ} \mathrm{C}$ for $30-45$ minutes. Yeast cells were transformed at $42^{\circ} \mathrm{C}$ for 15-20 minutes. Following transformation, yeast cells were incubated at
$30^{\circ} \mathrm{C}$ for 1.5 hours at 200 rpm of shaking. Yeast samples were harvested by centrifugation, diluted and plated onto selective media. Plates were incubated at $30^{\circ} \mathrm{C}$ for three to five days. See Appendix 4 (A4) for detailed protocols on cloning and yeast transformations.

For PCR screening, DNA was extraction from each selected yeast colony using Zylomase (Clontech, Mountain View, USA). PCR was conducted with $\mathrm{pDEST}^{\text {TM }} 22$-specific primers. PCR products were run on agarose gels to determine if single or multiple transformations occurred, and to determine relative cDNA size. DNA from yeast colonies yielding a single band were then extracted using the Qiagen PCR Purification Kit (Qiagen, Hilden, Germany) and the insert sequenced using $\mathrm{pDEST}^{\text {TM }} 22$-specific or oligo dT primers. In instances where nucleotide bases could not be called by the sequencing threshold, the corresponding bases were obtained by examining the raw sequencing data (characters in bold in appendix sequences A1). If the raw sequencing data were ambiguous, the sequences substituted by comparison to the white spruce cDNA sequence in NCBI with the highest sequence similarity (underlined characters in the sequence of Appendix 1, A1).

A subset of positive Y1H colonies subjected to sequencing were then used for a BLASTn search to confirm sequence identity. A subset of six sequences were selected for additional analyses. A more robust search was conducted by translating the six nucleotide sequences obtained from NCBI into the longest open reading frame (ORF) amino acid sequence. Longest ORF was determined by ORF Finder (ncbi.nlm.nih.gov/orffinder/). ORF start codons were identified as an "ATG" codon or alternative initiation codons. Sequences were then resubmitted to BLASTn to find similar sequences to determine identities. TFs identified from Y1H were determined to be full length or partials based on an alignment of their longest amino acid ORF with the highest similarity full-length spruce clone.

To provide additional evidence of sequence identity, a subset of Y1H TFs were submitted to a motif search or pairwise sequence comparisons with close relatives. To ensure the correct $P g M Y B$ were identified, sequence similarities for the $P g M Y B$ sequence similarity table (Supplemental Table 3.1) were restricted to the PgMYB1-13 genes identified by Bedon et al. (2007). Sequence similarities are based on pairwise comparisons from sequence similarity determined with EMBOSS NEEDLE global amino acid alignment
(ebi.ac.uk/Tools/services/web_emboss_needle/toolform.ebi). To confirm the presence of NBSLRR (nucleotide-binding site/leucine-rich repeat) and WRKY domains, we performed additional motif analysis for this sequence. The NBS-LRR and WRKY domains were identified using TF domain database searches with Plant TFDB (planttfdb.cbi.pku.edu.cn/blast.php). Nucleotide sequences identified by Y1H can be found in Appendix 2 (A2).

A 3-amino-1,2,4-triazole (3-AT) screen was performed to assess the strength of the promoter-TF interaction of six Y1H TFs that we decided to pursue further based on identities obtained from the BLASTn search, using a protocol similar to the manufacturers protocol from the ProQuest ${ }^{\mathrm{TM}}$ Two-Hybrid System (Invitrogen, Carlsbad, CA, USA). The chemical 3-AT inhibits the transcription of histidine, therefore colonies that continue to grow on higher concentrations of 3-AT represent a stronger DNA-protein interaction. The six Y1H TFs were extracted from yeast and transformed again into yeast using the above described methodology, to confirm this was a true interaction. Yeast was grown on plates lacking histidine and tryptophan to confirm the presence of the promoter and TF in the yeast cells. The histidine reporter gene is adjacent to the promoter sequences integrated into the yeast genome, whereas the tryptophan reporter gene is encoded within the vector containing the TF cDNA. The negative control yeast
lines contain the promoter being screened as well as the corresponding empty vector ($\mathrm{pDEST}^{\mathrm{TM}} 22$), which was used for cDNA library construction.

A detailed description of replica plating is found in Appendix 5 (A5). Colonies were grown for two to three days at $28^{\circ} \mathrm{C}$ on non-selective YPDA media and then replica plated with sterile velvets onto amino acid drop-out media (containing: yeast nitrogen base without amino acids, amino acid media of choice, agar, glucose) with increasing concentrations of 3-AT on separate plates (See Appendix A3 for media recipes). One velvet was used for up to five replica plates. Each replica plate was cleaned with a minimum of five fresh velvets, and grown for two to three days at $28^{\circ} \mathrm{C}$. Plates were photographed and visually observed for signs of yeast growth.

3.2.4 In silico promoter analysis

To identify TFBS present in promoter sequences of $P g S A L 1$ and putative $P g S A L 5$ promoters, sequences were submitted promoter sequences to rVista through the zPicture alignment tool (rvista.dcode.org, Loots et al. 2002, Loots and Ovcharenko 2004). rVista uses a comparative sequence analysis approach to identify putative plant TFBS based on sequences of previously described TFBS (Loots et al. 2002). We used the TRANSFAC V10.2 plant library and imposed a 0.75 matrix cut off, which has been shown to be a sufficient and acceptable cutoff to detect similarities while balancing the possibility of false positives (Loots et al. 2002, Loots and Ovcharenko 2004, Donner and Scarpella 2013).

To further confirm the cloned promoters belonged to the corresponding $S A L$ gene, we performed an in silico BLASTN search using default parameters of the cloned promoters, and known cDNA sequences against the PG29 v.4.0 (Birol et al. 2013) and WS77111 v1.0 (Warren et al. 2015) white spruce genome assemblies on ConGenie (congenie.org/). Default parameters of the ConGenie search included: BLOSUM62 scoring matrix, e-value cutoff of 1e-3, standard
query genetic code, standard database genetic code, and 10 results returned. Higher e-value cutoffs were imposed for cDNA sequences of SAL1 (90\%) because contigs of higher e-values had good alignments. We submitted the entire cloned portion of the promoter, including the UTR and the cloned portion of the coding region (regions distinguished in Appendix A1). The known cDNA sequences of SAL1 and SAL5 also contained a UTR region. Preliminary alignments against queries were conducted using EMBOSS Needle nucleotide alignment (ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html). Contigs determined to be the most likely to be representative of the query sequences based on preliminary alignments. The final alignment figure of SAL1 containing the most representative contig, cDNA sequence and cloned promoter containing a cloned portion of the coding sequence were aligned using MAFFT (mafft.cbrc.jp/alignment/server/). MAFFT parameters were as follows: auto alignment method, unalign level 0 , gap open penalty 1.53 , offset value 0 , score of 0 assigned to " N " regions, and the default guide tree. The putative SAL5 final alignment figure consisting of the most representative contigs, cDNA sequence and cloned promoter containing a cloned portion of the coding sequence were less conserved and contained large insertions, and thereby the alignment was conducted using Geneious v10.2.3 (geneious.com, Kearse et al. 2012) with the Mauve plugin.

3.3 Results

3.3.1 Isolation and in silico analyses of two $S A L$ promoters

We were able to clone 923 and 1798 bp upstream of the PgSAL1 and PgSAL5
transcriptional start sites, respectively, combining GenomeWalker ${ }^{\mathrm{TM}}$ and mining of v1.0 of the white spruce draft genome (Sundell et al. 2015, see promoter sequences in Appendix A1). Both sequences were cloned as single fragments, verifying the integrity of the sequence. The SAL1
and SAL5 promoters shared a 30% sequence identity (Figure 3.1). In both cases, the cloned sequences contained a portion of the coding sequence, allowing us to verify that both sequences are upstream of MIKC sequences. In both cases, this cloned region of the coding sequence only contained a portion of the M domain, which is highly conserved between MIKC genes and therefore did not allow us to verify that the promoter fragments were upstream of the targeted $S A L$ genes. To investigate if the cloned sequences were upstream of the $S A L 1$ and SAL5 genes, we used both the cloned promoter fragments and the cDNAs to query the PG29 v4 and WS77111 v1 white spruce genome assemblies using the ConGenie BLASTn function (www.congenie.org, last accessed January 8 2018). We used the highest hit contigs from these queries to construct preliminary alignments in order to determine which contigs produced a comparatively long and relatively continuous alignment (Table S3.1). Contigs determined to most likely represent the genomic portions of the $S A L 1$ or SAL5 promoter and/or cDNA (i.e. the "best contigs") were submitted to a reciprocal BLASTn search as a method of confirmation if this contig would result in SAL1 or SAL5 as the highest BLASTn hit (Table S3.2). The best contig or contigs were aligned to the SAL1 or SAL5 promoter containing the cloned cDNA and SAL1 (Figure S3.1) or SAL5 cDNA (Figure S3.2, Figure 3.3).

From this analysis, the best contigs aligning to both the SAL1 promoter and SAL1 cDNA were determined to be Pg-01r141201s2137277 from the PG29 v4 assembly, and Pg02 r 141203 s 0882372 from the WS77111 v1 assembly (Table S3.1). This determination was based on the degree of alignment between the sequences, and that in the reciprocal BLAST using the contigs as the query, GQ03605_C12 (SAL1) was returned as the highest hit. This analysis lends confidence that the cloned SAL1 promoter is indeed upstream of the SAL1 coding sequence.

Using both the putative $S A L 5$ promoter and $S A L 5$ cDNA as queries produced less certain results. The best contigs for the SAL5 promoter and SAL5 cDNA were determined to be Pg01r141201s0119707, Pg01r141201s23567302, and Pg-01r141201s2765746 from the PG29 v4 assembly, and Pg-01r141201s0119707 from the WS77111 v1 assembly (Table S3.1). However, the alignments for these contigs contained fewer stretches of continuous nucleotide alignments in comparison to to the SAL1 alignment, which gives us less confidence that the contigs retrieved with the SAL5 cDNA are not bona fide SAL5 sequences. Furthermore, when the best contigs for SAL5 are used as the BLAST query, the SAL5 cDNA is not returned as the highest hit. This was true even for the contigs found by the SAL5 cDNA best contig. Therefore, the current genome assemblies were not sufficient for us to determine whether the cloned SAL5 promoter is in fact upstream of the SAL5 coding region. For this reason, we refer to this promoter as the putative SAL5 promoter.

3.3.2 TFBS search suggests PgSAL promoters are regulated by similar networks

The PgSAL1 and putative PgSAL5 promoter sequences were submitted to rVista v2.0 to identify putative TFBS within each of these promoters. The rVista search identified 64 TFBS for the $\operatorname{PgSAL1} 1$ promoter, and 66 for the putative $\operatorname{PgSAL5}$ promoter (Figure 3.2). Of these, 44 (69\%) PgSAL1 and 46 (69\%) PgSAL5 TFBS were found to be legitimate, nucleus-based TFs that had a defined function according to TAIR or UniProt (Tables 3.2 and 3.3, Figure 3.2). 42 of these motifs were shared between PgSAL5 and PgSAL1 promoters (Figure 3.2). TFBS were categorized as legitimate if literature searches revealed TFBS were valid, if the TF associated with the binding site was located in the nucleus, and in the TF associated with the binding site was found to have a function that was not limited to having a general role in transcription and extended for example to development or environmental responses. Some of the identified TFBS
were general motifs, and did not implicate a specific gene. In these instances, only one gene in that family of motifs was selected to be represented in Tables 3.1 and 3.2. After applying the above criteria, we determined that the $P g S A L 1$ and putative $\operatorname{PgSAL5}$ promoters each possessed TFBS associated with response to hormones (GA, ethylene, ABA, auxin, cytokinin), defense/wounding response, abiotic factors (such as cold temperatures, light and water stress), root development, development of reproductive structures, meristem development, cell division, cell differentiation, pigment biosynthesis and cell wall biosynthesis (Figure 3.3). These identified TFBS were not necessarily the same motif. Some differences in TFBS identified between the two promoters was the presences of MYB80, PIF3 (POLYCHROME INTERACTING FACTOR 3) and ZAP1/WRKY1 (ZINC-DEPENDENT ACTIVATOR PROTEIN-1) in putative PgSAL5, and ATHB9 (ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 9) and NAC (NAM, ATAF1/2, CUC2) in PgSAL1 (Figure 3.3). The putative PgSAL5 promoter had a greater number of motifs associated with the response to GA (PIF3), abiotic stress (PIF3) and defense/wounding (ZAP1/WRKY1, Figure 3.3). The PgSAL1 promoter was found to have a greater number of motifs associated with the develop of seeds (NAC), meristems (ATHB9), leaves (ATHB9), as well as cell differentiation (ATHB9) and cell wall biosynthesis (NAC, Figure 3.3). The PgSAL1 and putative PgSAL5 promoters had 11 motifs associated with reproductive structure development, 10 of these motifs shared between the two promoters. Additional reproductive structure motifs included ATBH9 for PgSAL 1 and MYB80 for putative PgSAL5.

We further looked at the distribution of motifs within promoter sequences by visualizing the type and number of motifs with pie graphs (Figure 3.4). Both the PgSAL1 and putative PgSAL5 promoters contains the following motifs: AP2/B3, AP2/ERF, ARF, ARR, BHLH,

BZIP, DOF, E2F, EIL, GATA, HD-ZIP, MADS, MYB, PHD, RITA, TALE/KNOX, TCP, TRIHELIX, and ZNF. For the PgSAL1 promoter, the most abundant motifs were BZIP (16\%), MYB (16%), and MADS (11%, Figure 3.4A). For the putative PgSAL5 promoter, the most abundant motifs were BZIP (18\%), MYB (18\%), MADS (11\%, Figure 3.4B). The unique motifs for the PgSAL1 promoter were ATBH9 (50\%) and ABI4 (50\%, Figure 3.4C), and for the putative PgSAL5 promoter were MYB (33\%), ZAP1/WRKY1 (33\%) and PIF (33\%, Figure 3.4D).

3.3.3 Six putative regulators bind $\operatorname{PgSAL1}$ and putative $\operatorname{PgSAL5}$ promoters in weak and strong interactions

Y1H assays were conducted to identify white spruce proteins interacting with the cloned PgSAL1 and putative $\operatorname{PgSAL5}$ promoters. Approximately 800 yeast colonies were screened for PgSAL1 and putative PgSAL5 promoter interactions (refer to A3 for a detailed protocol). Approximately 317 yeast colonies screened by PCR possessed a single band, and as a result these PCR products were chosen for sequencing. Sequencing results were used to query the NCBI database using BLASTn, and pared down to six Y1H TFs for further analysis based on BLASTn identities which represented plausible TFs (Table 3.5). A list of other putative TFs that were identified in the Y 1 H screen but were not used for further analysis are listed in Appendix 5. Most of these did not produce a significant alignment when used to query the NCBI database.

From this full set of interacting proteins, we focused on a subset of interacting TFs whose putative functions shed some light on the signaling networks regulating PgSAL1 and PgSAL5, and therefore offer clues as to the functions of $P g S A L 1$ and $P g S A L 5$ (Table 3.4). From the PgSAL1 promoter-interacting proteins, we selected SUPPRESSOR OF OVEREXPRESSION OF CONSTANS-like (SOC1-like), FLC EXPRESSOR-like (FLX-like), and ABSCISIC ACID STRESS RIPENING-like (ASR-like) for the Y1H interaction strength assay. PgSOCl-like and
$P g A S R$-like cDNAs were full-length, while $P g F L X$-like was a partial cDNA, with approximately 500 nucleotides truncated from the 3 ' end. PgSOCl -like sequences shared 64.8% sequence similarity with SOC1/PTM5 from Populus tremuloides, a characterized SOC1-like gene from a perennial species (Cseke et al. 2003). PgSOCl-like has 100% sequence similarity to PgGQ023235_L08, a spruce cDNA included in our phylogenetic analysis (Chapter 2). The phylogenetic analysis showed that $\operatorname{PgSOC1/PgGQ} 02335 _$L08 is sister to the clade containing Arabidopsis SOC1. PgFLX-like had a 29.8% sequence similarity to $F L X$-like 3 gene in Cicer arietinum L. PgASR-like had a 22.7% similarity to Solanum lycopersicon L. ASR4 and 33.3\% similarity to Solanum lycopersicon ASR1.

From the putative $P g S A L 5$ promoter-interacting proteins, we screened CAPRICE/ENHANCER OF TRYPTYCHON AND CAPRICE-like (CPC/ETC-like), an R2R3 MYB, PgMYB1, and nucleotide binding site-leucine rich repeat NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAR/WRKY (NBS-LRR/WRKY) for the Y1H interaction strength assay (Table 3.4). $P g M Y B 1$ was a full-length sequence, $P g C P C / E T C$-like was a partial sequence with 46 amino acids absent from the 5^{\prime} end. The $P g N B S-L R R / W R K Y$-like sequence was a partial sequence based on its shorter length (560 bp nucleotide, 147 amino acid) relative to its corresponding full length white spruce cDNA sequence $\operatorname{PgGQ} 0033$ E20 (710 bp nucleotide, 171 amino acid), and relative to the Arabidopsis full length sequences showing the highest sequence similarity, AT1G69550.1 (5244 bp, 1400 amino acids). The $P g N B S-L R R / W R K Y$-like partial cDNA also appeared to contain deletions and insertions. The Y1H PgMYB1 TF was of interest to us because of the phylogenetic and functional characterization that has been carried out for this gene (Bedon et al. 2007, Bomal et al. 2008, Bomal et al. 2014). PgMYB1 identity was validated by sequence comparison to $\operatorname{PgMYB1-PgMYB13,~a~subset~of~the~} P g M Y B$ TFs identified
by phylogenetic analysis as belonging to the same clade (Bedon et al. 2007). Whereas the $P g$ SAL1 promoter-interacting $P g M Y B$ had a 98.5% amino acid sequence similarity to $P g M Y B 1$, the sequence similarities of PgSAL1 promoter-interacting PgMYB to $P g M Y B 2-13$ ranged from 27.2% to 37.6%. This level of sequence similarly indicates that the $P g M Y B$ sequence identified by Y1H is PgMYB1.

The Plant TFDB domain search identified the PgNBS - $L R R / W R K Y$-like TF sequences to have a WRKY domain (e-value 1e-09). The NBS-LRR domain was also identified by the Plant TFDB domain search (e-value 1e-06 to 6e-04). A globally optimized alignment of $P g N B S$ -LRR/WRKY-like and Arabidopsis WRKY19 yielded a low sequence similarity of 3.5\%, and 4.6\% with Arabidopsis WRKY16 (Table 3.4). The truncated PgNBS-LRR-like likely contributed to the low sequence similarity, as the $A t W R K Y 16$ and $A t W R K Y 19$ amino acids sequences were approximately 1200 to 1750 bp longer than PgNBS-LRR-like. Using alignment (Supplemental Figure A3.6, Figure S3.7) and conserved domain identification (ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, Supplemental Figure S3.8), we identified that the PgNBS-LRR/WRKY domain aligned to separate LRR domains in the AtWRKY16 and AtWRKY19 sequence. I believe $\operatorname{PgNBS-LRR} / W R K Y$-like may be a truncated version of the spruce clone PgGQ0033_E20. PgNBS-LRR/WRKY-like appeared to be a hybrid of NBS-LRR and WRKY, since both domains are present and share sequence similarity with previously identified Arabidopsis NBS-LRR and WRKY hybrids (Rinerson et al. 2015). Despite the low sequence similarity of $P g N B S$ - $L R R$-like to $A t W R K Y 19$ and $A t W R K Y 16$, the identified WRKY domain appeared to be conserved even in this truncated sequence.

All six of the above proteins were determined to interact with the PgSAL1 or putative PgSAL5 promoter to a greater degree than the negative controls (Figure 3.5). Interactions were
identified as "strong" or "weak" based on the amount of visible yeast growth on increasing concentrations of 3-AT. The PgSAL1 promoter was identified to have a weak interaction with PgSOC1-like, and strong interactions with PgFLX-like and PgASR-like (Table 3.4). The PgSAL1 promoter negative control exhibited almost no growth at $5 \mathrm{mM} 3-\mathrm{AT}$. At 5 mM 3 -AT, PgSOC1-like showed weak growth, while PgFLX-like and PgASR-like had more pronounced growth. PgFLX-like and PgASR-like colonies also exhibited some weak growth on 10 mM 3-AT plates, while $\mathrm{PgSOC} 1-$ like and the negative control had no growth. Growth of the putative PgSAL5 promoter negative control was dramatically reduced at 10 mM 3 -AT and absent at 20 mM 3-AT. PgMYB1 appeared to have a weak interaction, since its growth at 10 mM was only slightly better than that of the negative control. PgMYB1 also appeared to have very small amounts of growth at 20 mM 3-AT. PgCPC/ETC-like and PgNBS-LRR/WRKY-like had strong interactions because they grew well on 10 mM 3 -AT, and formed visible colonies on $20 \mathrm{mM} 3-$ AT.

The putative PgSAL5 promoter yeast line appeared to have a higher baseline activation of the histidine reporter gene compared to the PgSAL1 promoter line. Promoters are integrated into the yeast genome independently, and therefore can have different baseline levels of expression based on their location in the genome. Different genomic integration sites may explain why the putative PgSAL5 promoter yeast line was able to grow on higher levels of 3-AT than the PgSAL1 promoter yeast line.

3.4 Discussion

We demonstrated in Chapter 2 that white spruce SAL1 and SAL5 genes are homologous to both angiosperm SVP and AGL24 genes. PgSAL1 and PgSAL5 showed similar but not identical patterns of expression (Chapter 2), peaking within the first two weeks of bud formation
and declines at later time points. Here, we investigated the possible regulatory networks that SAL1 and SAL5 function in, using both in silico identification of TFBS and in vivo identication of promoter-interacting protens via Y1H. These approaches are useful for identifying possible functions for these genes. These complementary approaches allowed us to examine whether the identified putative TFs regulating $\operatorname{PgSAL1} 1$ and $\operatorname{PgSAL5}$ are the same or different, as well as provide evidence to support a role for either or both PgSAL1 and PgSAL5 in processes associated with bud formation.

In the absence of a quality reference white spruce genome assembly at the time that this research was conducted, I cloned the promoters for $\operatorname{PgSAL1}$ and $P g S A L 5$ using Genome Walker. I used the two cloned promoters and the $S A L 1$ and $S A L 5$ cDNA sequences to query the PG29 v4 and WS77111 v1 white spruce draft assemblies to ascertain whether the cloned promoter sequences and targeted cDNA sequences could be aligned with confidence to the same genomic contig, thereby providing evidence that the cloned promoters are upstream of the targeted $S A L$ coding sequences. From these analyses, we have confidence that the $S A L 1$ promoter is upstream of the SAL1 coding sequence, and is therefore a bona fide SAL1 promoter (Supplemental Figure 3.1, Supplemental Table 3.1, 3.2). In contrast, our analyses suggested that neither the SAL5 promoter nor SAL5 cDNA sequence are not represented in the current PG29 or WS77111 draft assemblies, since the alignment of the contigs with the $S A L 5$ promoter or cDNA sequences had large gaps and large regions of mismatches. The finding that the SAL5 locus is not represented in these draft assemblies is not surprising, given that very few contigs contain a fully assembled locus, and only a small number of contigs contain multiple loci (Pavy et al. 2017). We have some evidence that the cloned promoter is mostly likely $S A L 5$ based on the high sequence similarity and low e-value to GQ03806_I20 (SAL5) when we use the cloned portion of the SAL5

UTR and coding sequence as BLAST queries. However, this region of the coding sequence contains the conserved M domain, and thus does not have unique SAL5 signatures. For this reason, we have less evidence that the cloned SAL5 promoter is upstream of the SAL5 coding sequence and therefore have referred to this promoter as the "putative SAL5 promoter". The inability to identify a high confidence contig from the SAL5 cDNA demonstrates the limitations of the current white spruce genome assemblies. Considerable improvements to the assembly by additional sequencing and improved assembly methods are required in order for the white spruce genome to reach reference status.

The majority of putative TFBS identified by rVista were shared between PgSAL1 and putative PgSAL5 promoters. The Y1H identified six promising TFs for future investigations. Many of the putative TFBS and Y1H TFs suggested functions related to growth and development. In addition, many TFBS related to hormone regulation were identified.

3.4.1 PgSAL1 and putative $\operatorname{PgSAL5}$ promoters are regulated by external stimuli and hormones

Pathways that may be involved in regulating the promoter activity of both PgSAL1 and putatively PgSAL5 include response to water stress, cold temperatures, light quality, biotic and abiotic stress, ethylene, GA, ABA, auxin, and CK. Both promoters also contained TFBS associated with cell division, cell differentiation, the development of reproductive structures, and seed development. Even though the promoters only shared ca. 30% sequence identity, almost all of the TFBS with defined functions were identified in both the PgSAL1 and putative PgSAL5 promoters, suggesting that the genes may be regulated by similar signaling pathways. The TFBS database searched demonstrated that the putative $P g S A L 5$ promoter had additional TFBS associated with the response to ABA, light, GA, and defense. In contrast, the PgSAL1 promoter
was regulated by two additional TFs linked to development of the leaf, the seed, the meristem, cell wall biogenesis and cell differentiation. Based on these differences, the putative PgSAL5 promoter may be associated with more regulatory responses related to hormonal control and external stimuli, while the PgSAL1 promoter had some TFs linked to cell cycle control and structure development.

Potential roles development and phase transitions at the meristem are demonstrated by the presence of GAMYB and WRKY TFBSs in both the $P g S A L 1$ and putative $P g S A L 5$ promoters. GAMYB has been shown to be involved in the response to GA and ABA, as well as seed storage, floral initiation, stem elongation, anther development and seed development (Washio 2003, Woodger et al. 2003). The WRKY TF family has a variety of roles in plant development and biotic and abiotic stress (Ciolkowski et al. 2008). This is in agreement with our Y 1 H , which also suggested that the putative $P g S A L 5$ promoter interacted with a defense-related WRKY TF. Altered flowering time in Arabidopsis plants by soybean WRKYs further demonstrates that transition from flowering is affected by regulatory networks involved in the stress response, and appears to be mediated by WRKYs (Yang et al. 2016).

Multiple DNA binding motifs involved in light perception were identified in the PgSAL1 and putative $P g S A L 5$ promoters, indicating that $P g S A L$ genes are a downstream target of light perception and/or light quality. The PgSAL1 and putative $P g S A L 5$ promoter possess four TFBS for the light response: CPRF2, CPRF3, RAV1 and TAV1 (Table 3.2, 3.3). This finding is in agreement with the knowledge that bud formation is accelerated under SD in white spruce (Hamilton et al. 2016) and that growth cessation and bud formation in other species such as Populus spp. is influenced by light signals and day length (Olsen 2010).

A greater number of TFBS were identified in the putative PgSAL5 promoter, likely because the putative PgSAL5 promoter sequence submitted for the motif search was about 800 bp longer than the promoter sequence submitted for $\operatorname{PgSAL1}$. Larger fragments of promoter sequence are naturally more likely to increase the number of TFBS identified. We must acknowledge that TFBS need to further be validated and we predict that based on the nature of the search and conservation of functional TFBS that the number of true TFBS will likely be fewer than the number originally identified. Also, in order to confirm that the cloned promoters are upstream of the $S A L 1$ or $S A L 5$ gene, the promoter and the entire respective $S A L$ coding sequence should be cloned from white spruce gDNA.

3.4.2 Yeast One-Hybrid Assay identified six proteins that may regulate PgSAL genes

Based on the Y1H assay, we have at least four putative TFs that appear to be good candidates to interact physically with PgSAL promoters (Figure 3.5, Table 3.4): PgASR-like,
 roles of these strong and weak ($\mathrm{PgSOC} 1-\mathrm{like}, \mathrm{PgMYB} 1$), interactions with $P g S A L 1$ or putative PgSAL5. Interactions could have been more accurately characterized as "strong" and "weak" if we possessed a positive Y1H control to compared our interactions. However, due to the resources available in the white spruce system, a positive Y1H control was not available. Further experimental validation of these interactions could be carried out with targeted deletions of portions of the promoter sequences to determine the area the TFs bind.

3.4.2.1 Transcription factors that interact with the putative $\operatorname{PgSAL5}$ promoter suggest roles in development and beyond bud formation

Since $P g$ NBS-LRR/WRKY-like protein possesses similarities to both LRR and WRKY domains, we speculate that this protein may help facilitate different protein interactions and binding partners related to transcription. $W R K Y s$ have several roles in response to stress pathways, including plant defense, MAP kinase signaling, activation of ABA signaling and promotion of salt and drought tolerance (Phukan et al. 2016, Rushton et al. 2010). WRKYs also have several developmental roles, and may act to inhibit GA signaling during seed dormancy (Phukan et al. 2016, Rushton et al. 2010). For example, soybean (Glycine max L.) defenserelated WRKYs (GmWRKY58 and GmWRKY76) accelerate time to flowering when overexpressed in Arabidopsis (Yang et al. 2016). These results demonstrate that TFs related to defense can influence other developmental pathways, such as the transition from vegetative to reproductive growth. Furthermore, it was demonstrated through ChIP-seq that these soybean WRKYs bound to the promoter region of multiple Arabidopsis flowering time genes, including AtSVP (Yang et al. 2016). This range of results leads us to believe that WRKYs may function outside of their traditional roles in plant defense, and participate in the regulation of flowering, which is intriguing because of the link between flowering time and bud formation.

WRKY TFs bind the W-box, (T)(T)TGAC(C/T), in promoters. The putative PgSAL5 promoter does possess a traditional WRKY motif (TTGACT, +1769), but the PgSAL1 promoter does not. The presence of a WRKY motif in the putative PgSAL5 promoter is supported by the rVista database search which identified W-boxes from WRKY TFs in the promoters of both PgSAL1 and putative PgSAL5 (Table 3.2, 3.3). The pattern of both analyses suggests the presence of a potentially functional WRKY motif provides further evidence that there is a true interaction between putative and the WRKY TF.
$P g N B S-L R R / W R K Y$-like may be a chimeric NBS-LRR/WRKY TF, demonstrated by the identified domains and high DNA binding affinity, and may have regulatory functions. Chimeric proteins containing both the NBS-LRR and WRKY domains have been identified in flowering plants (Rinerson et al. 2015, Rushton et al. 2010). In Arabidopsis, three NBS-LRR/WRKY genes have been identified: AtWRKY16, AtWRKY19 and AtWRKY52 (Rinerson et al. 2015). The AtWRKY16 and AtWRKY19 genes have DNA-binding capabilities, in addition to roles in signaling in the innate immune response (Rinerson et al. 2015, Rushton et al. 2010). Since our PgNBS-LRR/WRKY-like gene has a strong interaction strength on 3-AT plates, it seems unlikely its only purpose is in intracellular signaling. If $P g N B S-L R R / W R K Y$-like only possessed a role in intracellular signaling and its interaction with the putative $P g S A L 5$ promoter is non-specific, we would predict would be more likely to have a weak interaction. In angiosperms, there have been at least eight types of $N B S-L R R / W R K Y$ genes identified, which possess unique combinations of NBS-LRR domains, WRKY domains and additional protein domains (Rinerson et al. 2015). Since our $P g N B S$ - $L R R$-like sequence appears to be a partial sequence, in combination with the fact it appears to be similar to the relatively newly characterized $N B S-L R R / W R K Y$ gene hybrid, it is difficult to classify this protein with absolute certainty.

Despite well characterized NBS-LRR roles in disease resistance, members of this family have also been shown through yeast-two hybrid assays to interact with MADS-box genes (Cseke et al. 2007, Acevedo et al. 2004, Gamboa et al. 2001). In poplar, the PTM5 and PtLRR proteinprotein interaction was proposed to represent a novel $L R R$-type gene to mediate protein-protein interactions (Cseke et al. 2007). Furthermore, other LRR proteins in Arabidopsis, such as CLAVATA1 and ERECTA, have demonstrated developmental roles through protein-protein interactions and intercellular signaling (Clark et al. 1997, Torii et al. 1996).

Similar to most of the other interacting proteins that we identified with Y 1 H , functional characterization of the R3 MYB CPC/ETC genes in other species revealed possible roles in development. I could not find a direct link between $C P C / E T C$ genes and $S V P$-like genes in the current literature. Arabidopsis CPC and ETC have contrasting roles in root development. CPC acts as a positive regulator of hair-cell differentiation and is involved in cell fate determination in epidermal cells (Wada et al. 1997). ETC1 genes are believed to act as negative regulators of trichome differentiation, and a positive regulator of the development of root hairs (Kirik et al. 2003). Interestingly, single loss of function ETC3/CAPRICE-LIKE MYB3 (CPL3) mutants exhibit delays in flowering, which suggests ETC 3 has a role in the transition from vegetative to reproductive growth at the meristem (Tominaga-Wada et al. 2013). These findings lead us to propose that putative PgSAL5 plays a role in cell fate determination and development. Additional in vivo or in vitro analysis is necessary to confirm the interaction of the $S V P$-like promoters and their proposed interaction partners.

PgMYB1, found to interact with the putative $P g S A L 5$ promoter, is perhaps the best characterized of all conifer transcription factors (Bedon et al. 2007, Bomal et al. 2008, Bomal et al. 2014). The presence of the MYB recognition sequence (TAACTG) in putative PgSAL5 (+235 to 240) and PgSAL1 (+209 to 212) is in agreement with the MYB TFBS identified by the database search. PgMYB1 is hypothesized to be involved in lignin biosynthesis by regulating phenylpropanoid metabolism (Bedon et al. 2007). PgMYB1 also has a high sequence similarity to MYB1 in loblolly pine (Pinus taeda L.), which is suggested to be a positive regulator of ligninsynthesizing enzymes (Patzlaff et al. 2003). Bedon et al. (2007) found PgMYB1 to be homologous to Arabidopsis MYB20, which is involved in cell differentiation and regulating fiber development (Ehlting et al. 2005). Our finding that PgMYB1 interacts with the putative PgSAL5
promoter suggests that PgSAL5 may possess roles outside of vegetative or reproductive bud formation, possibly in regulation of secondary cell wall formation. If true, it would suggest that PgSAL5 has acquired functions distinct from PgSAL1, which seems more likely to regulate events associated with bud formation.

3.4.2.2 Transcription factors that interact with the $\operatorname{PgSAL1}$ promoter suggest role in bud formation

$F L X$ is a component of the flowering pathway. It has been demonstrated in yeast and transient in planta assays that $A t$ FLX complexes with FRIGIDA (FRI) in order to promote the baseline expression of FLC (Choi et al. 2011, Ding et al. 2013). FLC in turn inhibits the expression of genes such as SOC1, FT, and TWIN SISTER OF FT (TSF), which repress flowering (Borner et al. 2000, Lee et al. 2000, Samach et al. 2000, Hepworth et al. 2002, Michaels et al. 2005). Vernalization, an extended period of cold temperatures required to initiate flowering in some species, alleviates the repression of $F L C$ to promoter flowering (Michaels and Amasino 1999, Sheldon et al. 1999). The interaction of the PgSAL1 promoter with FLX suggests that PgSAL1 could be regulated by cold temperatures, and that TFBSs involved in the cold response are conserved within the promoter. This evidence that PgSAL1 may be cold regulated is in agreement with our database search, which identified TFBS regulated by cold temperatures, including RELATED TO ABI1/VP1 (RAV1). AtRAV1 is under circadian clock regulation (Fowler et al. 2005), is upregulated by low temperatures (Fowler and Thomashow 2002), and may negatively regulate growth (Hu et al. 2004). In Arabidopsis, RAV1 also positively regulates leaf senescence and may act as an integrator of environmental cues with leaf maturity (Woo et al. 2010). Overall these results show evidence that PgSAL1 may be involved in $C O / F T$ regulatory network and may have a role in the control of bud formation.

Additional evidence linking PgSAL1 to regulating developmental events at the SAM is the interaction of $P g S O C 1$-like with the PgSAL1 promoter. SOC1 is a MADS-box protein that, in Arabidopsis has been found to bind the $A t S V P$ promoter to allow flowering to proceed (Li et al. 2008, Immink et al. 2012). SOC1 binds to the CArG-box motif (CC[A/T]6GG). No motifs with 100% similarity to CArG-box motifs were identified by our promoter motif search in the either promoter. However, several MADS-box TFBSs were identified by the rVista search in both the $P g S A L 1$ and putative $P g S A L 5$ promoters, which include AGAMOUS (AG), AGAMOUS-LIKE 1, i.e., SHATTERPROOF1 (AGL1), AGAMOUS-like 15 (AGL15), AGAMOUS-LIKE 2, i.e. SEPALLATA1 (AGL2), and AGAMOUS-LIKE 3, i.e. SEPALLATA4 (AGL3). Kaufmann et al. (2009) identified through ChIP-seq in Arabidopsis that CArG-box-like motifs can be sufficient for interacting with MADS-box TFs. We propose that although angiosperm motifs can be useful tools when searching conifer promoters, it is possible these motifs may not be fully conserved in conifers. Lack of motif conservation in conifers increases the likelihood that conifer promoters have diverged and may only possess partially conserved angiosperm motifs. Additionally, MADS-box TFs bind as hetero- or homo-dimers in order to form TF complexes (Egea-Corines et al. 1999, Honma and Goto 2001). We speculate that SOC1 may have had a stronger interaction with the PgSAL1 promoter in the 3-AT screen if the necessary accompanying TFs were also present to facilitate this interaction.

We propose SOC1-like genes regulate $S V P$-like genes not just in the annual Arabidopsis, but also in white spruce. Poplar SOC1/PTM5 has not been identified as a target or regulator of poplar SVP-like genes. PTM5 demonstrates a seasonal variation in expression, and is believed to have a role in both xylem and phloem differentiation, and in the vascular cambium (Cseke et al. 2003). $A t$ SOC1 has been shown to be a regulator of $S V P$ expression (Immink et al. 2012). In the
perennial woody species kiwifruit (Actinidia chinensis (A. Chev.) C.F. Liang \& A.R. Ferguson) AcSOCl -like gene is proposed to function in partnership with $A c S V P$-like to impart transcriptional regulation (Voogd et al. 2015). This proposed function is supported the overlapping location and timing of expression of $A c S O C 1$-like and $A c S V P$-like genes in kiwifruit (Wu et al. 2012). Voogd et al. (2015) proposes that $A c S V P$-like genes may also regulate transcription of SOC1-like genes, which would complement the Arabidopsis model (Immink et al. 2012, Tao et al. 2012, Gregis et al. 2013). SOC1 is a part of the photoperiodic regulation of flowering time in Arabidopsis, and is under the regulation of the circadian rhythm. If PgSOCl like is also under the control of the circadian clock, then the interaction with the PgSAL1 promoter suggest that $\operatorname{PgSAL1} 1$ may be regulated light and circadian rhythm.

ABA has been shown to have a role in bud formation and maturation, as well as the onset of ecodormancy and growth cessation, making this hormone and related TFs interesting candidates for regulators of PgSAL1 (Rohde et al. 2002, Horvath et al. 2003, Ruttink et al. 2007). The observations that ABA content increased in white spruce buds under shortened photoperiods (El Kayal et al. 2011) and that shortened photoperiods increased ABA in poplar apical buds (Rohde et al. 2002), suggest that ABA may function in a similar manner in angiosperm and conifer bud development and growth cessation. Potato (Solanum tuberosum L.) $A S R$ regulates tuber development, which is triggered by external stimuli similar to dormancy inducing conditions, such as shortened day length, cool temperatures, and increased ABA levels (Xu et al. 1998, Rodríguez-Falcón et al. 2006). ASR orthologs regulate the abiotic stress response (e.g. drought and salinity) in addition to fruit ripening and tuber development in potato (Golan et al. 2014, Frankel et al. 2004). Environmental conditions such as drought, salinity induce expression of Ginkgo biloba L. Asr and Asr orthologs (Shen et al. 2005). Overexpression
of $A S R$ in tomato caused an increased tolerance to abiotic stress, including salinity, drought and cold (Golan et al. 2014). ABA content showed a slight increase in white spruce buds near the finalization of bud formation, which may be associated with drought tolerance (El Kayal et al. 2011). Regulation of PgSAL1 by ASR suggests PgSAL1 is regulated by ABA, which could be linked to the perception of dormancy-inducing desiccation conditions. Our speculation that ASR is involved in the ABA response is further supported by the identification of motifs from our promoter databased search that are regulated by the ABA response, including ABA INSENSITIVE 4 (ABI4), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 5 (ATBH5), and EARLY METHIONINE BINDING PROTEIN-1(EmBP1).

3.4.3 Conceptual models of $\operatorname{PgSAL1}$ and putative $\operatorname{PgSAL5}$ regulatory networks

Based on our findings in this paper and previous research we inferred upstream pathways regulating PgSAL1 and putative $\operatorname{PgSAL5}$ (Figure 3.6). Specifically, we propose that genetic interactions as well as ethylene, light, auxin, GA, ABA, CK, defense and abiotic factors play an important role in regulation of both genes.

The TFBS search yielded very similar TFs involved in activating both PgSAL1 and putative $\operatorname{PgSAL5}$ promoters, suggesting that they are predominantly regulated by the same pathways. The TFBS identified from the database search were identified to be involved in the hormone response (ethylene, auxin, $\mathrm{GA}, \mathrm{CK}, \mathrm{ABA}$), the response to light, as well as the defense response and the abiotic (water stress, cold) response. However, these hormones and environmental cues also induce transcriptional changes in the regulation of pathways outside of bud formation and dormancy induction, including senescence, dormancy maintenance, dormancy release, and bud burst.

We hypothesized that PgSALI was involved in processes in the early stages of bud formation and/or growth cessation based on expression data (Chapter 2). These findings are further supported here based on the DNA interacting partners that were identified through Y 1 H : PgSOC1-like, $P g A S R$-like and PgFLX-like. $A S R$-like genes are believed to be ABA-responsive (Shen et al. 2005), while FLX-like genes may be regulated by cold temperatures (Ding et al. 2013). PgSOC1-like has not been functionally characterized in spruce; however, in poplar, SOC1/PTM5 has been suggested to regulate the formation of wood tissues (Cseke et al. 2007).

Like PgSAL1, PgSAL5 showed an expression pattern consistent with roles in early bud development and/or growth cessation (Chapter 2). However, interacting TFs identified by Y1H in vivo interactions and through TFBS in silico analyses suggest that PgSAL5 has a role distinct from PgSAL1, and perhaps different from SVP/AGL24-like genes characterized from other species to date. The known functions of PgMYB1 in regulating phenylpropanoid biosynthesis and the hypothesized functions of $P g N B S-L R R$-like allow us to hypothesize that $P g S A L 5$ could participate in roles outside of bud initiation, and regulate development of wood tissue/secondary growth.

Our work has demonstrated that conifers may have a conserved regulatory pathway for bud formation that is similar to angiosperms. We also observed that PgSALs may have acquired or maintained roles that extend beyond bud formation into other areas of development not previously anticipated based on angiosperm models. An alternative theory is that angiosperms have lost part of the ancestral repertoire, since $P g S A L$ are sister to angiosperm $S A$. These previously unanticipated functions may be a reflection of the evolutionary divergence between conifers and angiosperms, and our results required further experimentation to be conclusive. Additional experiments include electrophoretic mobility shift assay, tobacco co-infiltrations, or

ChIP, in order to validate the TF-promoter interactions identified by Y1H. Further work is required to verify proposed functions include RNA interference experiments in spruce for $P g S A L$ genes and select TFs that regulate $P g S A L s$. Transgenics are needed to uncover the regulators and moderators of these pathways in relation to different aspects of seasonal growth. Additional experiments are also required to unequivocally link the PgSAL1 and PgSAL5 promoters upstream to their respective coding sequences. This can be done by cloning the entire promoter region and cDNA sequence as one piece, to confirm these promoters are upstream of the intended $S A L$ genes. Through these experiments we hope to uncover if $P g S A L$ genes share similar functions to their $D A M$ homologs, and furthermore that these genes are non-functionally redundant/demonstrate functional divergence.

Chapter 3 Figures
SAL5 151 CCAACAACAATGAAATTAGGAATATAATCACAAGTGACTTAGGATATAAC 200
SAL1 1 0
SAL5 201 AATTTTCTACTAAGTTTGGCAAAGAGATTAAGGATGTTATAACTGCATAT 250
SAL1 1 0
SAL5 251 TATCGAACAAATACAAATATTTTATTTACAACTTCAAAGTCCATCCAAAA 300
SAL1 1 0
SAL5 301 ATATTTTTCAAAGAAAATGGTGACTATAGACTGAATATTGGGAATATTAG 350
SAL1 1 0SAL5SAL1
SAL5
SAL1
SAL5SAL1SAL5SAL1
SAL1
SAL5
SAL1SAL5SAL1SAL5SAL 1SAL5
SAL1SAL5SAL1
SAL5
SAL1
SAL5SAL1
SAL5351 GTCAATTGACTTGATTTTGATAGTGAGATGTCGAAGCTCGGGGCTCAAAC4000
401 ATATATTGTGATTATTAGGGACCCATTTTCTCACAACGGCTTGAGAGGTT 450
 0
451 TGCACCAGCCAATTATGAATTTAAAATTATTGCAGTCCATCAACCTAAGA 500
1 0
501 TTTTGCTCATAGCAATCCCAGTGACGAAGGGCACAACTACAAATCAATTC 550
1 ACTA ATAAGGGTTGGGACTATA 22
551 CCCTAATCAATTGAAATACAACACAGAGAGATATAA--GTTGTGGGTAAA 598
23 --GAAA-----------------TAATAATATTAAT------GTAAT-AA 46
 599 AGGAAAATAACGCTAACCATGTTAAAAAATATTAATCAAAGAGAAATCAA 648
47 TTATTTTATGCA TCTAAAAA--------------------------66
|.| | | | | | || | | $\cdot|||\mid$
649 TGAGTT--TGCAAGAAATCGGTTCAAAAAAAGCGGAAGAAAAAAAAAAGT696
67 TT 68697 CCGTTCAAAACTCCGCAAAAAAAAAAGCAAAAAAAAACAAGTGTGGCTTI746
69 TGATTTCATTAATTAAAAACTAT AACCACAATTGGA 105
 |||. ||||.|| |
747 AGATAT-ATTAAATAAAAAAAATTAAATAAAAAGGAAAAGTACAAAT--A793
106 CAAAATTCAAAATTATCTCATCTCAATT--CAATTCTAGTGATTATTGCT 153
. ||||. ||||| |||||| || |||.|.|..
794 AAAAAGACAAAA----------TCAATTAACA---------GATGACTCAC 825
 186
 | | | |
826 ATGAAAGGAGCTCCAAATCATATTTGAGAAGAGAGGAGAGGAGCTTC--- 872
187 TATATCGAGTGG TGTGACATC CACGTAACTG--T218
914
873 - - - - AATGGAGAATATTTCACAACACTTTACCATCACAT-ACTGCCT245
219 T---ATTGT------GGATTGAGATGGATTT------------------CTGAC$||||||\quad| \cdot| \cdot||| .|\ldots| \cdot||\quad||||\mid$915 TAACATTGTTCCGAAGCACTGAAAGAAAATTGCACATAGAATAACCTGAC964
SAL1 277 CAG-CTTTTGCTCTTATCGGCGGAATCGCGGCCCTTCGAGAGAAT--TCG 323
SALS 1008 AAGACATT--------------GAA----------------ATAGAATAAAAA 1030SAL5
SAL1SAL5
SAL1SAL5
SAL1SAL5
SAL1SAL5
SAL1
SAL5
SAL1SAL5
SAL1
SAL5SAL1
SAL5
SAL1SAL5
SAL1
SAL5SAL1
SAL5
SAL1SAL5SAL1SAL5
SAL1
SAL5
SAL1
324 AGTCAGCCTAG--------------------ACAGCTTTGGTTTTATCGGC
324 AGTCAGCCTAG--------------------ACAGCTTTGGTTTTATCGGC
||| | | | | . | || ||1031 AGTACGCCTAGGGTTATCAATTTCCAAGCAACAAC--TAGTATTATC---355 GGAAT----CGCGGCCCTT------CGAGA---------------------- GATT.||| ||..|.|.|| |.||| |.||1076 -AAATATTACGTAGTCATTTTCCCACAAGAAGAAACAAGAAACCTGGCTT1124
 403
TCA | ||||| || |||| ||| |||
1125 T---GTCAC---AGGTCGAT-CAAATGTATTTAATTCTTTCAAACTCTTA 1167
404 TGAAAGGGGGGGAAGGCCCAAC----GACTACGCTA 435
 12121168 ATATTCCCTCTCATTGCAACAGGGATA-----CAACCATTTACCATCCCA
436 TT-TGCTTTTCATTATT-----AAGGCCCGCTGTACTGCACTG--CAAA- 476

1213 TTATGC----CAAAATTCAAGAAAG------TGT----CACTGTTCAAAT 1248
477 ------AAACTTATGTCTA--GCCAAA- 495
||||.|||| ||| | | | | |
1249 TTGAGCAAACATATG-CTAATGACAAAGTTAAATTGTTGTAATATCACAA 1297
496 ----CTTATTAGGGCCCGCTGCACTGCAAA AT 529
||| | | |||| || | | | | | | | | | | |1298 GTTGCTCATTA-_-_---TGC-CAGCAAAAGTAATCAAACTTGAATGCT 1338
530 GTTTAGCCAAACTTATTAGGGCCCGCTGTACTGTGCTGTAG 570
|||||| - |||.|.|| |||| ||||||1339 GTTTAG--GAACGTTTT-----------TACTATG-TGTAGTGCCCATAT1374
571 570
1375 TTAACCATTAATATATTACAGTTAAAATAATAATAAAAAAATAAATAACA 1424
571 ACCAAAGTT 579
|. ||||||
1425 AAATAATAAAAAAAAATAACAAAGTTAATCGTGAAATACTATACGCATAA 1474
580 TCCTCG-ATGAGCTGTCAGAAGCCGAAGT 6071475 GAATTGGCATCGTGGGTCCTCGCATGAG----------GCCCATGTGCCCG1515
608 -TGTGCCCTCGATTGCT-----CGGGAGGAT 633
1516 GTCTCTG-GCCCTCGATAGCTAACACC-----TATCTCTGCCAACCTTAA 1559
634 ACGCTTCCGAAGTTCGGTGTTGG TTTTTGTCGCTTG---- 669
|||| | ||| |||||| | . | . | . | | . | . | |1560 ACGCGTCC----TTCGGT-----ACCTAACACCTCTCTCTCCCATGAGGA1600
670 ATTTTAGGGTTTTC 686
|||||| . ||||| |||
1601 AATCCGCATTTTA--TTTTTCATGAGGCACTTATATTATATCAGAAAATT1648
687 CAATC CGATTTTCCACCCTTTTAAT7131649 CAGTCTGGCATGTTCTTATACGTACGATTTTC--TCCTGGTGATACCAGT1696

SAL 1	714		752																				
SAL5	1697	TAGAAACCAAAGTTGT--GCCCTCCATTGTTGGGGAGGATAACGCTTTCG	1744																				
SAL1	753	AAAGTTCGGTGTTGGAATT-TGTCGCTTGATTTTAGGGTTCTCCACAAAC \|	l	.		l									.								801
SAL5	1745		1772																				
SAL 1	802	CTGATTTTCCAGCCTTTTAATCTTGGTGTAGGCCTTCGGATTTGTTGGAA $\|\|\|\|\|\|\cdot\|\|\|\| . .\|\cdot\|\|\|\|\|\|l\| l\|$	851																				
SAL5	1773		1798																				
SALI	852	AAAATTTCCTTTCCCTTTGTATGCTAATCGAGAGAGATCTTGCCTGTTGT	901																				
SAL5	1799	--	1798																				
SAL 1	902	TGTAATCTCAGATTGGAATGAC 923																					
SAL5	1799	------------ 1798																					

Figure 3.1 PgSAL1 and putative $\operatorname{PgSAL5}$ promoter alignment. Promoters share an overall 30\% sequence identity. Pairwise alignment was performed with EMBOSS Needle nucleotide alignment.

Figure 3.2 Transcription factor binding sites (TFBS) identified by rVista that are shared and distinct between the PgSAL1 and putative PgSAL5 promoters. The intersection of the Venn diagram contains both motifs that are identical between the two promoters (42 motifs), with unique TFBS for each promoter indicated in the non-intersecting portion. Identities of shared and distinct promoter motifs are given in Table 3.2 and Table 3.3

Figure 3.3 Frequency of functional category association with putative transcription factor binding sites TFBS) identified in the PgSAL1 and putative PgSAL5 promoters. (A) Total number of TFBS related to a hormone, abiotic or defense/wounding response pathway, identified for the PgSAL1 or putative PgSAL5 promoter. (B) Total number of TFBS related to a cell of structure development, identified for the PgSAL1 or putative PgSAL5 promoter. Most TFBS were annotated with more than one functional category, and thus multiple functional categories could be counted per TFBS.

Figure 3.4 Pie charts depicting proportions of transcription factor (TF) gene families associated with putative transcription factor binding sites in the $\operatorname{PgSAL1}$ and putative $\operatorname{PgSAL5}$ promoters identified by rVista. (A) TF families putatively interacting with the PgSAL1 promoter. (B) TF families putatively interacting with the putative $\operatorname{PgSAL5}$ promoter. (C) The set of identified TF families putatively interacting uniquely with the PgSAL1 promoter. (D) The set of identified TF families putatively interacting uniquely with the putative $P g S A L 5$ promoter.

Figure 3.5 Yeast one-hybrid growth on selective 3-amino-1,2,4-triazole (3-AT) plates. (A) Whole plate photos of yeast growth on selective media with increasing concentrations of transcriptional inhibitor 3-AT. The vectors containing the promoter sequences possess the histidine reporter gene, whereas the transcription factor (TF) cDNA containing pDEST ${ }^{\text {TM }} 22$ vector possess the tryptophan reporter gene. The negative control yeast line contains the promoter being screened as well as the corresponding empty vector ($\mathrm{pDEST}^{\mathrm{TM}} 22$), which was used for cDNA library construction. TF cDNAs chosen for 3-AT screen are white spruce:

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 -like (SOC1-like), FLOWERING LOCUS C OVEREXPRESSOR-like (FLX-like), ASCISIC ACID STRESS RIPENING-like (ASR-
like), CAPRICE/ENHANCER OF TRYPTYCHON AND CAPRICE-like (CPC/ETC-like), MYB1, NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT/WRKY (NBS-LRR/WRKY-like). The TFs were selected based on their sequence similarity to genes that likely have a promising role in the processes that may involve PgSAL1 and putative PgSAL5. (B) Colony growth of corresponding colonies from whole plate under a dissecting microscope.

B

Figure 3.6 Summary figure of the $\operatorname{PgSAL1}$ and putative $P g S A L 5$ regulatory pathways. Based on previous transcriptional data and transcription factors identified from the yeast one-hybrid screen PgSALI (A) may have roles in phase change transition, abiotic response, and/or secondary
growth, while putative $\operatorname{PgSAL5}$ (B) may have roles in phase change transition, defense, secondary growth and/or cell fate determination. Black arrows represent interactions we know exist based on rVista search and Y1H experiments identified in this paper. Grey arrows represent interactions we propose, but have not yet proven. Thin arrows represent direct interactions with PgSAL promoters. Thick arrows represent interactions which may be direct or indirect. Dashed lines represent interactions demonstrated in other organisms, see text for references.

Chapter 3 Tables

Table 3.1 Primers used for promoter cloning and insert verification. Promoters listed here were used for cloning promoter fragments using Genome Walker ${ }^{\text {TM }}$ and the Norway spruce genome. Vector-specific primers listed here were used to confirm insert sequences by PCR and sequencing. Primer sequences are listed in the 5 ' to 3^{\prime} orientation.

Genome Walker ${ }^{\text {TM }}$		
Promoter	Primer Name	Primer Sequence
SAL1	GSP1	CTCGAGTAGTCGTACAGCTTCCCAGT
SAL1	GSP2	CGAGGGCTACATCTGCTTCACATAGA
SAL5	GSP1	AGGGCTACATCTGCTGCACATAGAAT
SAL5	GSP2	CTCCGCCTCTTCGAGAACGTCATCTG
Norway Spruce		
Promoter	Primer Name	Primer Sequence
SAL1	Fw border GSP1	AGATCATCTCAATACACCCATTTGACT
SAL1	Fw border GSP2	ACTAATAAGGGTGGGACTATAGAAA
SAL5	Fw border GSP1	ACTATCACCATTCCTTCAAAGTCCAGGAT
SAL5	Fw border GSP2	AGGCATCCAAATAATGATAGCCATAGAA
VectorSpecific		
Vector	Primer Name	Primer Sequence
$\begin{gathered} 476 \mathrm{p} 5 \mathrm{E} \\ \mathrm{MCS} \end{gathered}$	SAL1 Fw	GGGACCACCCTTTAAAGAGA
	SAL1 Rv	GGGACCACCCTTTAAAGAGA
	SAL5 Fw	GTCGACAGGCATCCAAATAATGATAGC
	SAL5 Rv	CCCGGGTGGTTTCTAACTGGTATCACC
pMW\#2	M13Fw	GTAAAACGACGGCCAGT
	HIS293Rv	GGGACCACCCTTTAAAGAGA

Table 3.2 PgSAL1 promoter rVista search. 923 bp of the SAL1 promoter sequence was analyzed for potential DNA binding motifs using rVista. TAIR ID (arabidopsis.org) or Uniprot entry ID (uniprot.org) is listed. Binding site name outputs from rVista are listed, with full length gene names or alternative gene names given in parentheses. Each binding has the corresponding gene family listed, along with the possible functional role of each associated transcription factor based on the description on TAIR or Uniprot. Upper case letters represent the conserved letters in the motif found in the PgSAL1 promoter, while the lowercase letters are variable.

Binding site	Gene Family	Function	Motifs	Positions	Reference
ABI4 (ABA INSENSITIVE 4)	AP2/ERF	ABA response, defense response, ethylene response, root development	gttcGGTGTtg	645,756	TAIR
					AT2G40220

$\begin{gathered} \text { AG } \\ \text { (AGAMOUS) } \end{gathered}$	MADS	Reproductive structure development, leaf development, cell differentiation	ctatCTATATACGGATTt, tAAACCACAATTGGacaa, ctagACAGCTTTGGTTTt, cttgCCTGTTGTTGTAAt, TTTCATTAATTAAAAA, TATCTATATACGGATT, TTGCTCTTATCGGCGG, TTGCCTGTTGTTGTAA	$\begin{gathered} 72,91,249, \\ 250,283,331, \\ 890,891, \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT4G18960 } \end{gathered}$
AGL1 (AGAMOUSLIKE 1, SHP1, SHATTERPROO F1)	MADS	Reproductive structure development	atTTCATTAATTAAAAac, taAACCACAATTGGACa, ctATCTATATACGGATtt, ctTGCCTGTTGTTGTAat	$\begin{gathered} 71,91,249 \\ 890 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT3G58780 } \end{gathered}$
$\begin{gathered} \text { AGL15 } \\ \text { (AGAMOUS-like } \\ \text { 15) } \end{gathered}$	MADS	Auxin response, GA response, seed development, reproductive structure development, light response	tTTCATTAATTAAAAA, aAACCACAATTGGACa, cTCCCAATCTTAGTTa, tATCTATATACGGATt, tTGCCTGTTGTTGTAa	$\begin{gathered} 72,92,161, \\ 250,891 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT5G13790 } \end{gathered}$
AGL2 (AGAMOUS- LIKE 2, SEP1, SEPALLATA1)	MADS	Reproductive structure development, cell differentiation	taaaCCACAATTGGacaa, actcCCAATCTTAGttat, ctatCTATATACGGattt, cttgCCTGTTGTTGTAat attCATTAATTAAaaac, taaaCCACAATTGGacaa,	$\begin{gathered} 91,160,249, \\ 890 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT5G15800 } \end{gathered}$
AGL3 (AGAMOUS- LIKE 3, SEP4, SEPALLATA 4)	MADS	Cell differentiation, reproductive structure development	caatTCAATTCTAGtgat, actcCCAATCTTAGttat, ctatCTATATACGGattt, ctagCCAAACTTATtagg, taatCTCAGATTGGaatg, aataATATTAATGTaata, cttgCCTGTTGTTGtaat,	$\begin{gathered} 28,71,91, \\ 129,160,211, \\ 249,487,890, \\ 904 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT2G03710 } \end{gathered}$

			gtaaCTGTTATTGTggat		
AGP1 (ARABINOGAL ACTAN PROTEIN 1)	GATA	Cell differentiation, cell-cell recognition, seed development, programmed cell death	aTGCATCTaa, aTGGATTTct, tg ACATCCAc, aGAGATCTtg	$\begin{gathered} 54,201,233 \\ 884 \end{gathered}$	UNIPROT Q8LCN5
ALFIN-like 1 (AL1)	PHD	Chromatin modification	ataaggGTTGGGact, tgaaagGGGGGGaag, AttTTCCACcctttt	$\begin{gathered} 5,404,405 \\ 694 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT5G05610 } \end{gathered}$
ANT (AINTEGUMEN TA)	$\begin{gathered} \mathrm{AP} 2 / \mathrm{ER} \\ \mathrm{~F} \end{gathered}$	Cell differentiation, cell proliferation, meristem development, reproductive structure development, defense response	ccttCGGATTTGTT	843	$\begin{gathered} \text { TAIR } \\ \text { AT4G37750 } \end{gathered}$
ARF	ARF	Auxin response	TGGACAAa, aTTATCTC, GAGAGAAt, GATACAAt, tTTGTCGC	$\begin{aligned} & 102,117,313, \\ & 394,659,770 \end{aligned}$	TAIR AT1G19220 (many ARFs, one selected)
ARR10 (ARABIDOPSIS RESPONSE REGULATOR 10)	ARR, MYBrelated	Cytokinin response, meristem development, root development, pigment biosynthesis, water stress	$\operatorname{tg} \mathrm{ATCT}$, aaaATTT, aaaAACT, caaTTCT, attATCT, AGTTatg, cgtAACT, ATATacg, AGCTttt, AGCTttg, AGAGatt, TGATttt, CGATttt, AGATtgt, TGATtt, caaACCT, cggATTT, gagATCT, AGATtgg	$\begin{gathered} 55,62,83, \\ 117,122,134, \\ 164,72,210, \\ 255,260,278, \\ 337,372,475, \\ 520,668,692, \\ 727,779,797, \\ 803,838,852, \\ 885,911 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT4G31920 } \end{gathered}$

ATMYB77 (ARABIDOPSIS THALIANA MYB DOMAIN PROTEIN 77)	MYB	Cell differentiation, root development, ethylene response, defense response	taatAAGGGTTgg, aaacCACAATTgg, acgtAACTGTTat, gtAACTGTTattg	3, 92, 209	$\begin{gathered} \text { TAIR } \\ \text { AT3G50060 } \end{gathered}$
BHLH66 (BASIC HELIX LOOP HELIX 66)	BHLH	Root development	CCACGTAA	207	$\begin{aligned} & \text { UNIPROT } \\ & \text { Q9ZUG9 } \end{aligned}$
C1 (COLOURLESS 1)	MYB	Pigment biosynthesis	ataaggGTTgg, taAACcacaat, aaAACtcccaa, ccAACgactac, gccgaaGTTgt, cgggagGATaa, tccgaaGTTcg, gtgttgGTTtt, ccACCaatccg, tagattGTTcg, tcgaaaGTTcg, ttcggtGTTgg,	$\begin{aligned} & 91,157,421, \\ & 600,624,639, \\ & 650,683,726, \\ & 750,839,894 \end{aligned}$	$\begin{aligned} & \text { UniPROT } \\ & \text { P10290 } \end{aligned}$
CDC5 (CELL DIVISION CYCLE 5) CPRF2	MYB	Cell differentiation, defense response	ggattGTTgg, cctgttGTTgt ccCGCTGTAct, ccCGCTGCAct, ctCGATGAGct	$\begin{gathered} 456,506,551 \\ 582 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT1G09770 } \end{gathered}$
(COMMON PLANT RGULATOR	BZIP	Light response, defense response, pigment	tcCACGTAac	206	UniPROT
$\begin{gathered} \text { FACTOR 2, } \\ \text { BZIP17) } \\ \text { CPRF3 } \end{gathered}$		biosynthesis			
(COMMON PLANT RGULATOR FACTOR 3)	BZIP	Light response, defense response	atGACTTCtt, tcCACGTAac	176,206	$\begin{aligned} & \text { UniPROT } \\ & \text { Q99091 } \end{aligned}$
DOF1 (DOF	ZNF	Defense response	atGACTTCtt, tcCACGTAac	176, 206	TAIR

EmBP1 (EARLY					
METHIONINE BINDING	BZIP	ABA response	tcCACGTAAC	206	$\begin{aligned} & \text { UniPROT } \\ & \text { P25032 } \end{aligned}$
PROTEIN-1)					
ERF2 (ETHYLENE RESPONSE FACTOR- 2)	$\begin{gathered} \text { AP2/ER } \\ \mathrm{F} \end{gathered}$	Ethylene response, cell division, defense response	ATCGGCG, GGCGGAA, CGCGGCC	$\begin{aligned} & 291,294, \\ & 302,349, \\ & 352,360 \end{aligned}$	$\begin{gathered} \text { TAIR } \\ \text { AT5G47220 } \end{gathered}$
GAMYB	MYB	Cell differentiation, reproductive structure development, GA response, amylase metabolism	aaggGTTg, tAAAccac, cttaGTTa, gtggATTg, tgccGTTt, tttgGTTt, cAACgact, ctcgATTg, gttcGGTg, gttgGTTt, gtcgCTTg, tcttGTTg, gttcGGTg, gtcgCTTg, atttGTTg, gcctGTTg	$\begin{aligned} & 7,91,169, \\ & 223,268, \\ & 340,422, \\ & 645,652, \\ & 662,711, \\ & 756,773, \\ & 841,893, \end{aligned}$	UniPROT Q0JIC2

GT1 (GRASSY	TRIHEL	structure
TILLERS 1)	IX	development,
		meristem
development		

HBP1a
(HISTONE
BINDING
PROTEIN 1a)
BZIP Histone modification

Reproductive structure
development, development

Reproductive structure development, meristem development	CTAATAA, TAATAAG, ATAGAAA, GAAATAA, TATTAAT, GTAATAA, ATAATTA, TAATTAT, TTTATGC, CTAAAAA, TTAATTA, TAATTAA, ATTAAAA, TTAAAAA, TAAAAAC, CTATAAA, TATAAAC, TTATCTC, GTGATTA, TTATTGC, GTTATGA, TTATGAC, TTTATAT, CATCCAC, GTTATTG, GTGGATT, TTCTGAC, TATCTAT, CTATATA, TATATAC, TTTCTGC, GTTTACA, TTTACAG, TTTTATC, TTTTGAG, TATTTGC, TTTTCAT, TTATTAA, TATTAAG, GCAAAAA, CTTATTA, TTATTAG, GCAAAAA, CTTATTA, TTTCCTC, GTCAGAA, GAGGATA, TTTCCAC, TTTAAT, TCTCCAC, TTTCCAG, TTTTAAT, TTGGAAA, GGAAAAA, GAAAAAA, GTTGTAA, TAATCTC	$\begin{gathered} \text { 2, 3, 20, 23, } \\ 26,33,40, \\ 43,44,51, \\ 60,77,78, \\ 80,81,82, \\ 88,89,118, \\ 142,146, \\ 173,174, \\ 185,204, \\ 217,223, \\ 239,250, \\ 253,254, \\ 264,272, \\ 273,345, \\ 377,434, \\ 441,447, \\ 448,472, \\ 496,497, \\ 517,541, \\ 578,593, \\ 627,680, \\ 696,705, \\ 791,807, \\ 816,846, \\ 848,849 \\ 900,904 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { G1AQA5 } \end{aligned}$
Histone modification	TCCACGTAac	206	$\begin{aligned} & \text { UniPROT } \\ & \text { P23922 } \end{aligned}$

ATAGAAA, GAAATAA TATTAAT, GTAATAA, ATAATTA, TAATTAT, TTTATGC, CTAAAAA, ATTAAAA, TTAAAAA, TAAAAAC, CTATAAA, TATAAAC, TTATCTC, GTGATTA, TTATTGC, TTTATAT, CATCCAC, TTCTGAC, TATCTAT, CTATATA, TATATAC, TTTCTGC, GTTTACA, , TTTTCAT, TTATTAA, TATTAAG, GCAAAAA, CTTATTA, TTATTAG, TTTCCTC, GTCAGAA, GAGGATA, TTTCCAC, TTTAAT, TCTCCAC, TITCCAG, TITTAAT, GAAAAAA, GTTGTAA, TAATCTC

HBP1B (HISTONE BINDING PROTEIN 1B)	BZIP	Histone modification, auxin response, defense response	tcCACGTAAC, gTGGTGTGACatcc	195, 631	$\begin{aligned} & \text { UniPROT } \\ & \text { P23923 } \end{aligned}$
KNOX3 (KNOTTED-1- LIKE 3)	$\begin{gathered} \text { TALE/K } \\ \text { NOX } \end{gathered}$	Meristem development	tggtGTGAcatc, cacgTAACtgtt, tttcTGACactc, tcgaGTCAgcct, gcctAGACagct, ttgaGTCAccet, agctGTCAgaag, tttGTCGcttg	$\begin{gathered} 196,208, \\ 238,321, \\ 329,379, \\ 589,658,769 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { Q43484 } \end{aligned}$
MYBAS1	MYB	Cell differentiation	ggaaAACtccc, acgtAACtgtt, aactGTTattg, cgttTACagct, agctTTTgctc, gcccAACgact, gccaAACttat, gccaAACttat, cgaaGTTgtgc, ggatAACgctt, cgaaGTTcggt, cggtGTTggtt, gattGTTcggg, ggagAACgctt, gaaaGTTcggt, ggaaTTTgtcg, attGTTTggaa, gcctGTTgttg	$\begin{aligned} & 155,209, \\ & 213,271, \\ & 278,419, \\ & 490,535, \\ & 602,629, \\ & 641,648, \\ & 728,740, \\ & 752,766, \\ & 841,893 \end{aligned}$	$\begin{aligned} & \text { UniPROT } \\ & \text { Q53NK6 } \end{aligned}$
NAC (NAM, ATAF1/2, CUC2)	NAC	Cell wall biogenesis, seed development	aGTGGTGTGACATCCACGT AACt	194	TAIR AT1G12260 (many NACs, one selected)
O2 (OPAQUE 2)	BZIP	Seed development	tcCACGTaac, tTATCTCATC, GATGAGCTGt, aATTTGATTTCAt, tTTATATCGAGTg, cTGTTGTTGTAAt	$\begin{gathered} 206,118, \\ 585,65,185, \\ 895 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { P12959 } \end{aligned}$
P	MYB	Pigment biosynthesis	ggTGTTGGt, ggTGTTGGt, aCCAATCcg, gtTGTAGGc, ggTGTTGGa, ggTGTAGGc	$\begin{gathered} 8,649,685, \\ 715,760 \\ 796,826 \end{gathered}$	$\begin{gathered} \text { UniPROT } \\ \text { P27898 } \end{gathered}$

PBF (PYRIMIDINE- BOX BINDING FACTOR)	DOF	Seed development	tattAATGtaa, ttcATTaatt, attaAAAActa, tgaCTTCtttt, cttCTTTtata, taaCTGTtatt, cagCTTTtget, $\operatorname{ttgCTCTtatc}$, cagCTTTggtt, ttgGTTTtatc, catgAAAGggg, ttgCTTTtcat, tattAAGGcce, ccgCTGTactg, ttgGTTTttgt, tggTTTTtgtc, tcgCTTGattt, accCTTTtaat, tcgCTTGattt, agcCTTTtaat, tccCTTTgtat	$\begin{gathered} 33,72,80 \\ 177,180 \\ 212,277, \\ 283,341, \\ 402,437 \\ 448,457 \\ 552,654 \\ 663,701, \\ 774,812,863 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { O24463 } \end{aligned}$
```PCF2 (PROLIFERATI NG CELL FACTOR 2)```	TCP	Meristem development	aaGGCCCAAC,   taAGGCCCGC, ttGTGCCCTC, GTAGGCCCta	$\begin{aligned} & 416,451, \\ & 501,546, \\ & 607,718 \end{aligned}$	UniPROT   Q6ZBH6
RAV1 (RELATED TO ABI1/VP1)	AP2/B3	Cold response, ethylene response, brassinosteroid response, light response, root development, leaf development, reproductive structure development	aaACCACAATtg, taACTGTTATtg, ttATTGTGGAtt, ttTCTGCCGTtt, tcGGTGTTGGtt, ttTTTGTCGCtt, ttAATCTTGTtg, atCTTGTTGTag, tcGGTGTTGGaa, aaTTTGTCGCtt, ttAATCTTGGtg, gaTTTGTTGGaa, tgCCTGTTGTtg, ctGTTGTTGTaa, caAACCTGattt, atctCAGATTgg	$\begin{aligned} & 92,212,218, \\ & 264,657, \\ & 707,710 \\ & 758,768 \\ & 818,840 \\ & 892,895 \\ & 797,906 \end{aligned}$	$\begin{gathered} \text { TAIR } \\ \text { AT1G13260 } \end{gathered}$
RITA1	RITA	Seed development	$\operatorname{tg} A C A T c, ~ c c A C G T a, ~ t A T G T c t ~$	$\begin{aligned} & 177,201, \\ & 207,482 \end{aligned}$	UniPROT   Q6ETX0


ASSOCIATED					
FACTOR 1, HAF2, HISTONE ACETYLTRANS FERASE OF	BZIP	Histone modification, light response	tcCACGTaac	206	$\begin{gathered} \text { TAIR } \\ \text { AT3G19040 } \end{gathered}$
THE TAF11250					
FAMILY 2)					
$\begin{gathered} \text { TEIL } \\ \text { (TOBACCO } \\ \text { ETHYLENE- } \\ \text { INSENSITIVE 3) } \end{gathered}$	EIL	Ethylene response	ATTAATGT, ATGCATCT, AAATTCAA, ACGTAACT, AGATGGAT, ATGGATTT, ACGGATTT, CGATACAA, ACAATCAT, AAGTTCGG, ACAAACCT	$\begin{gathered} 34,108,209 \\ 231,233 \\ 259,393 \\ 397,643, \\ 754,796 \end{gathered}$	UniPROT Q9ZWK1
TGA1A	BZIP	Auxin response, defense response, histone modification	tccACGTaac	206	$\begin{aligned} & \text { UniPROT } \\ & \text { P14232 } \end{aligned}$
WRKY	WRKY	Defense response, ethylene response	ATTTTGAGTCA,   ATGTTTAGCCA	376, 528	TAIR   AT1G13960 (many WRKYs, one selected)

Table 3.3 Putative PgSAL5 promoter rVista search. 1798 bp of the putative SAL5 promoter sequence was analyzed for potential DNA binding motifs using rVista. TAIR ID (arabidopsis.org) or Uniprot entry ID (uniprot.org) is listed.

Binding site name output from rV ista listed, with full length gene names or alternative gene names in parentheses. Each binding has the corresponding gene family listed, along with the possible functional role of each associated transcription factor based on the description on TAIR or Uniprot. Upper case letters represent the conserved letters in the motif found in the putative $P g S A L 5$ promoter, while the lowercase letters are variable.

Binding site	Gene   Family	Function	Motifs	Positions	Reference
ABI4 (ABA INSENSITIVE   4)	ERF/AP2	ABA response, defense response, ethylene response, root development	ttGCACCagcc, gtacGGTGTtg	450, 1747	$\begin{gathered} \text { TAIR } \\ \text { AT2G40220 } \end{gathered}$
$\begin{gathered} \text { AG } \\ \text { (AGAMOUS) } \end{gathered}$	MADS	Reproductive structure development, leaf development, cell differentiation	gcatCCAAATAATGATAg, agtcCCTGTAATAGAAAa, aattCCAAATATTGCCAg, tctaCTAAGTTTGGCAAa, cTAACCATGTTAAAaaat, attaAATAAAAAGGAAAa, tCTTCCAATGAAAGaaaa, tTTCCCACAAGAAGaaac, ccatCCCATTATGCCAAa, aATAACAAAATAATaaaa, tctcTCCCATGAGGAAAt	$\begin{gathered} 5,38,58,73, \\ 206,611,767, \\ 972,1093, \\ 1205,1241, \\ 1299,1308 \\ 1418,1586 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT4G18960 } \end{gathered}$



```
tatgCCAGCAAAAGtaat,
 ttaaCCATTAATATatta,
 tgttCAAATTTGAGCAaa
```

AGL3 (AGAMOUSLIKE 3, SEP4, SEPALLATA   4)	MADS	Cell differentiation, reproductive structure development	agtcCCTGTAATAGaaaa, aattCCAAATATTGccag, tttaATATATTTAAttag, atatATTTAATTAGactc, tctaCTAAGTTTGGcaaa, ccatCCAAAAATATttt, ccagCCAATTATGAattt, ctaaCCATGTTAAAaaat, caaaTCATATTTGAgaag, tcttCCAATGAAAGaaaa, tttcCCACAAGAAGaaac, $\operatorname{tgttCAAATTTGAGcaaa}$, tatgCCAGCAAAAGtaat, tttaCTATGTGTAGtgcc, ttaaCCATTAATATatta, ccctCCATTGTTGGggag, tgaaACATTTTAGGatgg	$\begin{gathered} 5,38,73,94,206, \\ 291,395,455 \\ 611,839,972 \\ 1093,1240,1307, \\ 1352,1375,1418 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT2G03710 } \end{gathered}$
AGP1   (ARABINOGA LACTAN PROTEIN 1)	GATA	Cell differentiation, cell-cell recognition, seed development, programmed cell death	tcAAATCCAa, agAGATATAa, tTAGATATat	145, 577, 745	UniPROT   Q8LCN5
ALFIN-like 1 (AL1)	PHD	Chromatin modification	aaacaaGTGTGGctt, agaggaGAGGAGctt, aagaaaGTGTCActg, agcTAACACctatct,	$\begin{gathered} 731,857,1227 \\ 1532,1574 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT5G05610 } \end{gathered}$


$\begin{gathered} \text { ANT } \\ \text { (AINTEGUME } \\ \text { NTA) } \end{gathered}$	AP2/ERF	Cell differentiation, cell proliferation, meristem development, reproductive structure development, defense response	CACCTCTTCCaatg	968	$\begin{gathered} \text { TAIR } \\ \text { AT4G37750 } \end{gathered}$
ARF	ARF	Auxin response	aTTTTCTC, , TTCTCAC, GTGACGAa, AAGACAAa, GAAACAAg, tTTGTCAC, GATACAAc, aGTGTCAC, ATGACAAa, aTTTTCTC	$\begin{gathered} 425,427,521, \\ 797,1106,1123, \\ 1191,1232,1267, \\ 1675 \end{gathered}$	TAIR   AT1G19220   (many ARFs, one selected)
ARR10   (ARABIDOPSI S RESPONSE REGULATOR 10)	ARR, MYBrelated	Cytokinin response, meristem development, root development, pigment biosynthesis, water stress	AAATatt, AGACatt, aatATAT, TGATtcg, caaATCC, aggATAT, AGAGatt, aggATGT caaATAT, aatATTT, TGATttt, cgaAGCT, ATATatt, AGGTttg, aagATTT, caaATCA, AGATata, aaaATAT, caaAACT, AGATata, ATATatt, aaaATCA, aggAGCT, caaATCA, catATTT, aggAGCT, agaATAT,   ACATact, agaATTT, AGACatt, caaATAT, caaATGT,   caaATTT, ACATatg, aatATCA, catATTT, aatATAT, AAATact, AGAAttg, cctATCT, AAATccg, CGATttt	$\begin{gathered} 79,89,97,129, \\ 146,191,223, \\ 231,264,267, \\ 298,300,162, \\ 182,401,446, \\ 497,540,579 \\ 624,702,747, \\ 749,802,831, \\ 839,844,864 \\ 878,904,1000 \\ 1009,1075,1139 \\ 1244,1288,1370, \\ 1384,1458,1474, \\ 1540,1600,1673 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT4G31920 } \end{gathered}$


ATHB1	HD-ZIP	Leaf development, light response, water stress	ttcCAAATATTGcc,	$75,235,261,406$	TAIR
(ARABIDOPSI			tgTTATAACTGcat,	471, 1072, 1146,	AT3G01470
S THAIANA			ataCAAATATTTta,	1275	
HOMEOBOX			ttgTGATTATTAgg,		
1)			ttaAAATTATTGca,		
			tatCAAATATTAcg,		
			attTAATTCTTTca, gttAAATTGTTGta		
ATHB5	HD-ZIP	ABA response	CAAATAATg, TAATGATAg,	10, 14, 52, 78,	TAIR
(ARABIDOPSI			aAAAAATTA, cAAATATTG,	264, 298, 333,	AT5G65310
S THALIANA			AAAATATTt, gAATATTGG,	400, 460, 474,	
HOMEOBOX			CATATATTg, cAATTATGA,	642, 646, 762,	
PROTEIN 5)			aAATTATTG, aAATCAATG,	879, 1075,1149,	
			CAATGAGTt, aAAAAATTA,	1195, 1210, 1278,	
			gAATATTTC, cAATGAAAG,	1379, 1399, 1413,	
			cAAATATTA, TAATTCTTt,	1425, 1472	
			CAACCATTt, CCATTATGc, aAATTGTTG, CCATTAATa, aAATAATAA, tAAGAATTG		
ATMYB15	MYB	Cell differentiation,auxin response,cadmium response,defense response,cold response,ethylene response,water stress	CCATTTACCATCC,	1198, 1537	TAIR
(ARABIDOPSI			ACACCTATCTCTG		AT3G23250
S THALIANA					
MYB DOMAIN					
PROTEIN 15)					
ATMYB77	MYB	Cell differentiation, root development, ethylene response, defense response	ctAGCAGTCcctg,	33, 239, 1229,	TAIR
(ARABIDOPSI			atAACTGCAtatt,	1387, 1687	AT3G50060
S THALIANA			gaAAGTGTCactg,		
MYB DOMAIN			atatTACAGTTaa,		
PROTEIN 77)			tgatACCAGTTag		


$\begin{gathered} \text { BHLH66 } \\ \text { (BASIC HELIX } \end{gathered}$	BHLH	Root development	cCATTTACCATCc, gTACCTAACACCt	1198, 172	UniPROT   Q9ZUG9
$\begin{aligned} & \text { LOOP HELIX } \\ & 66) \end{aligned}$					
C1 (COLOURLESS 1)	MYB	Pigment biosynthesis	aaAACtagcag, ccAACaacaat, cgAACaaatac, ttgataGTGag, tgagagGTTtg, acAACtacaaa, ctAACcatgtt, caatgaGTTtg, tcAATtaacag, ccAAGcaacaa, gcAACaactag, caAACtcttaa, gacaaaGTTaa, ttAACcattaa, ccAACcttaaa	$\begin{gathered} 29,151,254,367, \\ 442,533,611, \\ 646,806,1054, \\ 1058,1158,1269 \\ 1375,1550 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { P10290 } \end{aligned}$
CDC5 (CELL DIVISION CYCLE 5)	MYB	Cell differentiation, defense response	agCTCGGGGct, tgCTCATAGca, aaCGCTAACca	385, 504, 607	$\begin{gathered} \text { TAIR } \\ \text { AT1G09770 } \end{gathered}$
CPRF2   (COMMON PLANT RGULATOR FACTOR 2, BZIP17)	BZIP	Light response, defense response	atTACATGga, gtCACTTGat, gaTTCGTGtt, caCAAGTGac, ttGACTTGat, gaGATGTCga, aaCAAGTGtg, ctCACATGaa, ttCACCTCtt, atTACGTAgt, caCAGGTCga, acTATGTGta, ccCATGTGcc, aaCACCTAtc, aaCACCTCtc, gtGACATGgc, ggCCCGTGag	$\begin{gathered} 57,123,130,179 \\ 356,375,732, \\ 821,966,1080 \\ 1128,1355,1504 \\ 1536,1578 \end{gathered}$	UniPROT Q99090
CPRF3   (COMMON PLANT RGULATOR FACTOR 3)	BZIP	Light response, defense response	atTACATGga, gtCACTTGat, caCAAGTGac, ttGACTTGat, gaGATGTCga, aaCAAGTGtg, ctCACATGaa, ttCACCTCtt, caCAGGTCga, aaCACCTCtc, gtGACATGgc	$\begin{gathered} 57,123,130,179 \\ 356,375,732 \\ 821,966,1080 \\ 1128,1355,1504, \\ 1536,1578 \end{gathered}$	UniPROT Q99091


DOF1 (DOF ZINC FINGER PROTEIN 1)	ZNF	Defense response	aaatAATGata, tggaAAAGtaa, aagtAAATtcc, tatATTTaatt, aatATTTtatt, tgaCTTGattt, ttgATTTtgat, ggtaAAAGgaa, aaatAACGcta, aatcAAAGaga, aaaaAAAGcgg, aagaAAAAaaa, aaaaAAAGtcc, aaaaAAAAagc, agcaAAAAaaa, tggCTTTagat, tattAAATaaa, aattAAATaaa, ataaAAAGgaa, aaatAAAAaag, gacaAAATcaa, gagCTTCaatg, actgAAAGaaa, actgAAAGaaa, aatgAAAGaaa, aagaAAAGtat, gtatAAAGata, atttAAAGaca, aataAAAAagt, tgtATTTaatt, aattCAAGaaa, agcaAAAGtaa, agttAAAAtaa, gcaCTTAtatt, aataAAAAaat, aaatAAATaac	$\begin{aligned} & 11,63,68,99, \\ & 266,357,361, \\ & 593,603,632, \\ & 671,682,688 \\ & 714,722,740, \\ & 752,766,772, \\ & 789,799,866, \\ & 891,931,978, \\ & 983,990,1003, \\ & 1023,1143,1222, \\ & 1313,1394,1406, \\ & 1413,1421,1429, \\ & 1434,1606,1625 \end{aligned}$	TAIR AT1G51700
DOF2 (DOF ZINC FINGER PROTEIN 2)	ZNF	Seed development	tggaAAAGtaa, tggcAAAGaga, cttcAAAGtcc, tttcAAAGaaa, tgaCTTGattt, ggtaAAAGgaa, aaatAACGcta, aatcAAAGaga, aaaaAAAGcgg, aaaaAAAGtcc, caaaAAAAaaa, aaaaAAAAcaa, $\operatorname{tgg}$ CTTTagat, tattAAATaaa, aattAAATaaa, ataaAAAGgaa, aaatAAAAaag, catgAAAGgag, gagCTTCaatg, acaCTTTacca, actgAAAGaaa, aatgAAAGaaa, aagaAAAGtat, gtatAAAGata, atttAAAGaca, taaaAAAGtac, $\operatorname{tgg}$ CTTTgtca, attCTTTcaaa, aattCAAGaaa, agcaAAAGtaa,	$\begin{gathered} 63,217,282,306, \\ 357,361,593, \\ 603,632,671, \\ 682,688,712, \\ 726,740,752, \\ 766,772,789 \\ 792,825,866, \\ 891,909,932, \\ 978,983,990 \\ 1003,1025,119, \\ 1151,1222,1268, \\ 1313,1334,1394, \\ 1405,1409,1413, \\ 1429,1433,1441, \\ 1606,1625 \end{gathered}$	UniPROT B9F1L8




HBP1a	BZIP	Histone   modification
(HISTONE		
BINDING		
PROTEIN 1a)	BZIP	Histone   HBP1B
(HISTONE		modification, auxin   response, defense   BINDING
response		

Histone modification

Histone modification, auxin
response

GTTCAAA, GAAGAAA,	$791,808,877,$	
GTTCAAA, GCAAAAA,	883, 964, 990,	
TTAGATA, ATAAAAA,	1004, 1022, 1043,	
TTAAATA, GTACAAA,	1051, 1069, 1071,	
AATTAAC, GAGAATA,	1078, 1085, 1092,	
TTTAAAG, GAATAAA,	1103, 1124, 1144,	
GTTATCA, TATTATC,	1164, 1199, 1241,	
ATATTAC, TTTTCCC,	1265, 1275, 1283,	
GAAGAAA, TTGTCAC,	1289, 1302, 1320,	
GTATTTA, CTTAATA,	1337, 1349, 1372,	
CATTTAC, TAATGAC,	1381, 1395, 1401,	
GTTAAAT, ATATCAC,	1407, 1415, 1527,	
CTCATTA, GTAATCA,	1430, 1448, 1455,	
CTGTTTA, GTTTTTA,	1464, 1555, 1596,	
TATTTAA, ATTAATA,	1615, 1660, 1663,	
ATATTAC, ATAAAAA,	1676, 1677, 1686,	
ATAATAA, GTTAATC,	1695	
GTGAAAT, TATACGC,		
CTTAAAC, GAGGAAA,		
TTTTCAT, GTTCTTA,		
TTTTCTC, GTGATAC		
GTCACTTGat,	123, 179, 1113,	UniPROT
gaAACCTGGC,	1504	P23922
caCAAGTGAC,   CCCATGTGcc		
gTGACTTAGGatat	184	
gTGACTAGGatat		P23923


KNOX3 (KNOTTED-1- LIKE 3)	$\begin{gathered} \text { TALE/KNO } \\ \mathrm{X} \end{gathered}$	Meristem development	ccctGTAAtaga, tgccAGACattt, ctaaGTCActtg, caagTGACttag, gataTAACaatt, ttagGTCAattg, agatGTCGaage, ggctTGAGaggt, ccagTGACgaag,   caatTAACagat, tgacTCACatga, atatTTCAcaac, taccATCAcata, gcacTGAAagaa, aaccTGACattc, ctttGTCAcagg, aagtGTCActgt, ctaaTGACaaag, tataTTACagtt	$\begin{gathered} 41,85,119,181, \\ 193,347,353, \\ 376,438,518, \\ 807,818,823, \\ 881,897,930, \\ 957,1122,1231, \\ 1264,1386,1506, \\ 1512,1531,1573 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { Q43484 } \end{aligned}$
MYB80	MYB	Reproductive structure development	aGTAAATTCca, agGAATATAAt, aGGATATAAca, tGCATATTAtc, ggGAATATTAg, gaGAATATTTc, taGAATAACCt, gTCATTTTCcc, tTAATATTCcc, aGGAAATCCgc, gGCATGTTCtt	$\begin{gathered} 69,168,191,244, \\ 340,877,951, \\ 1088,1165,1597, \\ 1655 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT5G56110 } \end{gathered}$
MYBAS1	MYB	Cell differentiation	atccAACaaca, atatAACaatt, ggatGTTataa, ttacAACttca, tcacAACggct, agagGTTtgca, catcAACctaa, gcacAACtaca, ataaGTTgtgg, aaatAACgcta, aattAACagat, tcacAACactt, gaatAACctga, taggGTTatca, aagcAACaact, atacAACcatt, aattGTTgtaa, acaaGTTgctc, taggAACgttt, atttAACcatt,	149, 194, 232, 276, 431, 444, 488, 531, 583, 603, 808, 886, 953, 1039, 1056, 1192, 1279, 1294, 1342, 1373, 1391, 1532, 1548, 1574, 1624, 1691	UniPROT Q53NK6


			tacaGTTaaaa, agctAACacct, $\operatorname{tgccAACctta}$, acctAACacct, ggcaCTTatat, accaGTTagaa		
O2 (OPAQUE   2)	BZIP	Seed development	attACATGga, tctAAGTCac, gtcACTTGat, attAGGTCaa, ttgACTTGat, gagATGTCga, ctcACATGaa, tgCACATaga, ttCACCTctt, attACGTAgt, caCAGGTcga, actATGTGta, gtgACATGgc, tctATGTGca, AATTACATGg, gCATATTATC, cCAAATCATA, AGTGACATGg, cAGTCCCTGTAAt, cATTTAATATATt, aTCAATTGAAATa, tGACTCACATGAa, aCCATGTTAAAAa, aTTATGCCAAAAt, aAATTGTTGTAAt, aCTATGTGTAGTg, cAGTTAAAATAAt, aTTATATCAGAAa	$\begin{gathered} 57,118,123,346, \\ 356,375,821, \\ 945,966,1080, \\ 1128,1355,1794, \\ 1911,56,245, \\ 838,1793,37,92, \\ 556,614,818, \\ 1212,1278,1355, \\ 1393,1633 \end{gathered}$	$\begin{aligned} & \text { UniPROT } \\ & \text { P12959 } \end{aligned}$
P	MYB	Pigment biosynthesis	tCCAACAac, aCCAGCCaa, aTCAACCta, gCTAACCat, aATAACCtg, aACAACTag, caGGTCGAt, tACAACCat, aTTTACCat, caAGTTGCt, aCCTATCtc, aCCTAACac, gCCAACCtt	$\begin{gathered} 150,454,489 \\ \text { 610, } 954,1060, \\ 1130,1193,1200, \\ 1295,1539,1549, \\ 1574 \end{gathered}$	$\begin{gathered} \text { UniPROT } \\ \text { P27898 } \end{gathered}$


PBF	DOF	Seed development	tccCTGTaata, tggaAAAGtaa,	$40,63,68,124,$	UniPROT
(PYRIMIDINEBOX BINDING			tcaCTTGattc, atcaCAAGtga,	$177,217,282,$	
BOX BINDING			tggcAAAGaga, cttcAAAGtcc,	306, 357, 361,	
FACTOR)			tttcAAAGaaa, tgaCTTGattt,	466, 591, 603,	
			tgaATTTaaaa, ggtaAAAGgaa,	$632,671,682,$	
			aaatAACGcta, aatcAAAGaga,	688, 712, 725,	
			aaaaAAAGcgg, aaaaAAAAagt,	730, 740, 752,	
			caaaAAAAaaa, aaaaAAAAaca,	760, 770, 778,	
			tggCTTTagat, tattAAATaaa,	790, 799, 826,	
			aattAAATaaa, aggaAAAGtac,	849, 891, 932,	
			gacaAAATcaa, atgaAAGGagc,	978, 983, 990,	
			ttgaGAAGaga, acaCTTTacca,	1003, 1023, 1119,	
			actgAAAGaaa, aatgAAAGaaa,	1143, 1222, 1236,	
			gtatAAAGata, atttAAAGaca,	1313, 1408, 1413,	
			aataAAAAagt, tggCTTTgtca,	1429, 1434, 1555,	
			tgtATTTaatt, aattCAAGaaa,	1604, 161, 1625,	
			agcaAAAGtaa, taaaAAAAtaa,	1640	
			aaatAAATaac, aataAAAAaaa,		
			taacAAAGtta, cttaAACGcgt,		
			ccgCATTttat, ttaTTTTtcat,		
	TCP	Meristem	gcaCTTAtatt, cagaAAATtca agGGACCCAT,		UniPROT
(PROLIFERATI		development	GTGGGTAAaa,	$1486,1498,1519$	Q6ZBH6
NG CELL			taGTGCCCAT, GTGGGTCCtc,		
FACTOR 2)			ATGAGGCCca, tcTGGCCCTC		
PIF3	PIF	GA response, light	attggCATCGTGGgtce,	1477, 1500, 1588	TAIR
(POLYCHROM		response	gaggcCCATGTGCccgg,		AT1G09530
E			tctcCCATGAGGaaatc		


$\begin{gathered} \text { RAV1 } \\ \text { (RELATED TO } \\ \text { ABI1/VP1) } \end{gathered}$	AP2/B3	Cold response, ethylene response, brassinosteroid response, light response, root development, leaf development, reproductive structure development	taGCCATAGAaa, atCGAACAAAta, atCCAACAACaa, ctCAAACATAta, aaATTATTGCag, atACAACACAga, taTAAGTTGTgg, ccGCAAAAAAaa, aaGCAAAAAAaa, caAGTGTGGCtt, tcACAACACTtt, aaGCAACAACta, ttCCCACAAGaa, ttGCAACAGGga, agCAAACATAtg, aaATTGTTGTaa, tgCCAGCAAAag, tgAATGCTGTtt, tgCCAACCTTaa, ccATTGTTGGgg, atTATCTCGCtt, ctGAAACATTtt, ttCCAAAAAAaa, gtGCAGCAGAtg, gtCACTTGattc, ttaaCAGATGac, atAACCTGacat, ttCACCTCttcc, gaAACCTGgctt, ctCGCATGaggc, ggccCATGTGcc, ttCTCCTGgtga, cggcCAGGAAgg	$\begin{gathered} 20,149,252,394, \\ 474,566,582, \\ 709,721,734, \\ 886,1056,1094, \\ 1181,1252,1278, \\ 1309,1331,1417, \\ 1548,1718,1759, \\ 1773,1882,1916, \\ 123,810,955, \\ 966,1113,1126, \\ 1293,1502,1678 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT1G13260 } \end{gathered}$



TGA1A	BZIP	Auxin response, defense response, histone modification	cacAAGTgac, gtcACTTgat, aacAAGTgtg, ctcACATgaa, attACGTagt, gtgACATggc, ggcCCGTgag, gtcACGTtct, aAGAGATTAAGGATGTTAT aac, aATATTTTATTTACAACTTca a, tggAGAATATTTCACAACAC Tt, ctaATGACAAAGTTAAATTG T	$\begin{gathered} 123,179,732, \\ 821,1080,1794, \\ 1801,1853,222, \\ 266,875,1264 \end{gathered}$	UniPROT
WRKY	WRKY	Defense response, ethylene response	ATTCTAAGTCA, AGACTGAATAT, ATATTAGGTCA, AGACAAAATCA, TTACGTAGTCA, TGGCTTTGTCA, TGACAAAGTTA, TAACAAAATAA	$\begin{gathered} 116,328,344 \\ 798,1081,1119 \\ 1268,1420 \end{gathered}$	TAIR   AT1G13960   (many   WRKYs, one selected)
ZAP1/WRKY1   (ZINC-   DEPENDENT   ACTIVATOR   PROTEIN-1)	WRKY	Defense response	aTTAGGTCAA, gTCCGTTCAA, gGTCGATCAA, TTAAACGCGt	$\begin{gathered} 346,695,1132, \\ 1556 \end{gathered}$	$\begin{gathered} \text { TAIR } \\ \text { AT2G04880 } \end{gathered}$

Table 3.4 Yeast one-hybrid interaction strength table. Promoter-protein interactions are categorized as "weak" or "strong" based on yeast colony growth on increasing concentrations of 3-AT (Figure 3.5).

Promoter	Interacting Transcription Factor	Strength of Interaction
PgSAL1	PgSOCl-like	+, weak
PgSAL1	PgFLX-like	++, strong
PgSAL1	PgASR-like	++, strong
Putative PgSAL5	PgCPC/ETC-like	++, strong
Putative PgSAL5	PgMYB1	+, weak
Putative PgSAL5	PgNBS-LRR/WRKY-like	++, strong

Table 3.5 Yeast one-hybrid (Y1H) identified transcription factors sequence similarity to other plant species. Sequences obtained from the yeast one-hybrid search are indicated in parentheses " $(\mathrm{Y} 1 \mathrm{H})$ ". Interacting promoter column is based on the transcription factors that interacted with a PgSAL promoter in the yeast one-hybrid analysis. The transcription factor sequence obtained from the yeast one-hybrid screen was submitted to BLAST to assist in sequence identification. Selected BLAST hits are listed with the corresponding species, gene, and/or NCBI accession number. Pairwise amino acid sequence similarity of BLAST hit sequence and transcription factor obtain from the Y1H screen is shown below. Pairwise alignment performed with EMBOSS Needle amino acid alignment.

Interacting Promoter	BLAST Hit	NCBI Accession \#	Amino   Acid   Length   (bp)	Sequence similarity to Y1H identified sequence (\%)
PgSAL1	PgSOC1-like (Y1H)	-	218	-
-	Picea glauca GQ03235 L08	BT111301.1	218	100
-	Picea abies SOC1	KM516089.1	218	99.5
-	Populus tremuloides SOC1/PTM5   (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS   1/POPULUS   TREMULOIDES MADSbox 5)	AF377868.1	220	64.8
PgSAL1	$P g F L X$-like (Y1H)	-	151	-
-	Picea glauca GQ04104_P24	BT119390.1	288	39.8
-	Cicer arietinum FLX-   Like 3 (FLOWERING LOCUS C EXPRESSORLIKE3)	XR_001144004.1	284	29.8

# Arabidopsis thaliana 

NM 125585.2
23.8
PgSAL1 PgASR-like (Y1H)
BT119966.1 ..... 240
GQ04113_F22
Solanum lycopersicon NM_001247208.2 ..... 297 ..... 22.7
ABSCISIC ACID
STRESS RIPENING 1 (ASR1)
Solanum lycopersicon NM 001282319.1 ..... 113 ..... 33.3 ABSCISIC ACID
STRESS RIPENING 4 (ASR4)
Putative $\quad P g C P C / E T C$-like $(\mathrm{Y} 1 \mathrm{H})$ ..... 73
PgSAL5Picea glaucaBT109362.111113.4
GQ03207_J20
Amborella trichopoda R3 XM_006842642.2 ..... 78 ..... 29.6MYB-like ETC1(ENHANCER OF TRYAND CPC 1)
Camelina sativa R3 XM_010429541.2 ..... 78 ..... 33.7
MYB-like ETC3
Arabidopsis thaliana ..... NM_116336.4 ..... 77 ..... 38.9
ETC3/CPL3 (CAPRICE- LIKE MYB3)
Morus notabilis CPC XM_010111223.1 ..... 73 ..... 28.3
(CAPRICE)
Arabidopsis thaliana NM 130205.2 ..... 117 ..... 25 CPC
Arabidopsis thaliana NM 100020.4 ..... 115 ..... 24 ETC1

Putative	PgMYB1 (Y1H)	-	385	-
PgSAL5				
-	Picea glauca MYB1	EF601064.1	398	98.5
-	Arabidopsis thaliana MYB20	NM_105294.3	282	44.9
$\begin{aligned} & \text { Putative } \\ & P g S A L 5 \end{aligned}$	PgNBS-LRR/WRKY-like   (Y1H)	-	147	-
-	Picea glauca GQ0033_E20	BT100632.1	171	46.4
-	Arabidopsis thaliana WRKY19	NM_001125496.2	1895	3.5
-	Arabidopsis thaliana WRKY16	NM_180802.2	1372	4.6

Chapter 3 Supplemental Data

1	11	21	31	41		
I	I	I	I	1		
tgaattaaca	ctaatattaa	acctccetct	aattacttag	gtattcccat	$\begin{array}{r} 0 \\ 50 \\ 0 \end{array}$	PgSAL1   Pg-01r141201s2137277   SAL1
tctcoctctt	agagagtatg	ctagtttaat	gtattatgtt	ttatggacat	$\begin{array}{r} 0 \\ 100 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
ctccotttaa	taaaatataa	gaatatatag	aactaatat	attaatgtaa	$\begin{array}{r} 0 \\ 150 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
taatttttt	------act	$\begin{aligned} & \text { aat------ } \\ & \text { aattaattta } \end{aligned}$	tgcatctaaa	aatttgattt	$\begin{array}{r} 6 \\ 200 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
cattaataaa	aaactataaa	ctacaattgg	acaatattca	aaattatata	$\begin{array}{r} 6 \\ 250 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
gctcatctca	attcaattct	agtgattatt	gctaggaaaa	ctcccaatct	$\begin{array}{r} 6 \\ 300 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
tagttttac	ttctttata	tcgagtggtg	tgacatccac	gtaactgtaa	$\begin{array}{r} 6 \\ 350 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
ttgtggattt	aaatggattt	ctgacactgt	atctatatac	ggatttctgc	$\begin{array}{r} 6 \\ 400 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
cgtttacagc	tttggtctta	tcggcggaat	cgcggcoctt	c----------	$\begin{array}{r} 6 \\ 450 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
cgagtcagcc	tagaaagctt	tggttttatt	ggcggaatcg	cggccottcg	$\begin{array}{r} 6 \\ 500 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
agagatttcg	agtcacccta	gtgatacaat	catgaaaggg	agggaaggcc	$\begin{array}{r} 6 \\ 550 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
caacgaccac	actatttgct	tttcattatt	aaggcccgct	gtactgcact	$\begin{array}{r} 6 \\ 600 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$
gcaaaaaat	ttagacaaac	ttattagggc	ccgetgcact	gcaaaaaact	$\begin{array}{r} 6 \\ 650 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-01r141201s2137277 } \\ & \text { SAL1 } \end{aligned}$



gttgttgtaa tctcagattg gaatgacatg gcccgagaga aaatagagat
gttgttgtaa tctcagattg gaatgacatg gcccgagaga aaatagagaa gttgttgtaa tctcagattg gagtgacatg gccogcgaga aaataaaaat

946 PgSAL1
1975 Pg-01r141201s2137277 217 SAL1
gaagagaata gctaacgctt cggcgaggca gatggcgttc tcgaagaggc
gaagagaata gctaacgctt cggcgaggca gatgacgttc tcgaagaggc
taagagaata gctaacgctt cggctaggca ggtcacgttc tcgaagaggc
ggagggggtt gttcaaaaaa gctgaggagc tatcgattct atgtgcagca
ggagggggtt gttcaaaaaa gctgaggagc tatcgattct atgtgcagca
gcagggggtt gttcaaaaaa gctcaagagt tatcgattct atgtgaagca

996 PgSAL1
2025 Pg-01r141201s2137277 267 SAL1
gatgtagccc tcgtcgtttt ttcttccact gggaagctgt acgactactc gatgtagccc tcgtcgtttt ttcttccact gggaagctgt acaactactc gatgtagccc tcgtcgtttt ttcttccact gggaagctgt acgactactc
1096 PgSAL1
2125 Pg-01r141201s2137277 367 SAL1
1099 PgSAL1
2134 Pg-01r141201s2137277 417 SAL1

## 1099 PgSAL1

2134 Pg-01r141201s2137277 467 SAL1

1099	PgSAL1
2134	$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2137277$
517	SAL 1


1099	PgSAL1
2134	Pg-01r141201s2137277
567	SAL1

1099 PgSAL1
2134 Pg-01r141201s2137277
617 SAL1
1099 PgSAL1
2134 Pg-01r141201s2137277
667 SAL1

1099	PgSAL1
2134	Pg-01r141201s2137277
717	SAL1

717 SAL1
1099 PgSAL1
2157 Pg-01r141201s2137277
767 SAL1

```
ctgaggattc tgttacttcc ttgcagttag ggtatgcaat tatacttatc
```




Figure S3.1 Alignment of PG29 Pg-01r1412s213727 contig, promoter cDNA alignments for PgSAL1 were conducted in MAFFT (mafft.cbrc.jp/alignment/server/) using default parameters.


gcctagacag gcctagacag	ctttggttt ctttggttt	atcggcggaa atcggcggaa	tcgcggcoct   tcgcggccct	tcgagagatt   tcgagagatt	$\begin{array}{r} 378 \\ 699 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttgagtcacc   ttgagtcacc	ctagcgatac   ctagcgatac	aatcatgaaa aatcatgaaa	gggggggaag gggggggaag	gcccaacgac gcccaacgac	$\begin{array}{r} 428 \\ 749 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
tacgctattt tacgctatt	gcttttcatt gcttttcatt	attaaggccc attaaggccc	gctgtactgc gctgtactgc	actgcaaaaa actgcaaaaa	$\begin{array}{r} 478 \\ 799 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
acttatgtct acttatgtct	agccaaactt agccaaactt	attagggccc attagggccc	gctgcactgc gctgcactgc	aaaaaactta aaaaaactta	$\begin{array}{r} 528 \\ 849 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
tgtttagcca tgtttagcca	aacttattag aacttattag	ggccogctgt   ggcccgctgt	actgtgctgt actgtgctgt	agaccaaagt agaccaaagt	$\begin{array}{r} 578 \\ 899 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttcctcgatg   ttcctcgatg	agctgtcaga agctgtcaga	agccgaagtt agccgaagtt	gtgccotcga gtgccotcga	ttgctcggga   ttgctcggga	$\begin{array}{r} 628 \\ 949 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ggataacgct ggagaacgct	tccgaagttc tccgaagttc	$\begin{aligned} & \text { ggtgttggtt } \\ & \text { ggtgttggtt } \end{aligned}$	tttgtcgctt   tttgtcgctt	gattttaggg gattttaggg	$\begin{array}{r} 678 \\ 999 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttttccacia	atccgattt ------ ttt	ccaccottt   ccaccottt	aatcttgttg aatcttgttg	taggccctag   taggccctag	$\begin{array}{r} 728 \\ 1033 \\ 0 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
attgttcggg attgttcggg	aggagaacgc aggagaacgc aggagaacgc	ttcgaaagtt   ttcgaaagtt   ttcgaaagtt	cggtgttgga cggtgttgga cggtgttgga	atttgtcgct atttgtcgct ttttgtcgct	$\begin{array}{r} 778 \\ 1083 \\ 40 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
tgattttagg tgattttagg tgatcttagg	gttctccaca gttctccaca gttctccaca	aacctgattt aacctgattt aacccgattt	tccagcctt tccagccttt tccagccttt	taatcttggt taatcttggt taatcttggt	$\begin{array}{r} 828 \\ 1133 \\ 90 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
gtaggccttc gtaggccttc gtaggecttc	ggatttgttg ggatttgttg ggatttgttg	gaaaaaattt   gaaaaaattt   gaaaatttt	cotttccc--cotttccc-cctttccotg	$\begin{aligned} & ------t t t \\ & \text { tgtatgattt } \end{aligned}$	$\begin{array}{r} 869 \\ 1174 \\ 140 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
gtatgctaat gtatgctaat gtatgctaat	cgagagagat cgagagagat cgagagagat	cttgcctgtt cttgcctgtt cttgcatgtt	gttgtaatct gttgtaatct gttgtaatct	cagattggaa cagattggaa cagattggag	$\begin{array}{r} 919 \\ 1224 \\ 190 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
tgacatggcc   tgacatggcc   tgacatggcc	cgagagaaaa cgagagaaaa cgcgagaaaa	tagagatgaa tagagatgaa taaaaattaa	gagaatagct gagaatagct gagaatagct	aacgcttcgg aacgcttcgg aacgcttcgg	$\begin{array}{r} 969 \\ 1274 \\ 240 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
cgaggcagat cgaggcagat ctaggcaggt	ggegttctcg gacgttctcg cacgttctcg	aagaggcgga aagaggcgga aagaggcgca	gggggttgtt gggggttgtt gggggttgtt	caaaaaagct caaaaaagct caaaaaagct	$\begin{array}{r} 1019 \\ 1324 \\ 290 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$



atttaataa	ataattatta aagctgctcg	atatattctg ttcogtattc	$\begin{array}{r} 1099 \\ 2074 \\ 477 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
ataatgaatg	acatcttgct aaataattat --------t acaacattt	taaaataata ttgttaaggc gaagatgcta --gtcaagat	$\begin{array}{r} 1099 \\ 2124 \\ 506 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttaatagtat   ttga------	gtgcgatgaa acaatagcgc	tgggagtaac ctcagttctc   -gggaggaac tt---------	$\begin{array}{r} 1099 \\ 2174 \\ 521 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
cacattcatc	tgatatcocg gcacagaagg   ---------- -----gaagg	actacgttga ggatctttat attaacttta aaagattta-	$\begin{array}{r} 1099 \\ 2224 \\ 545 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
tctgatttat	actgggtaat ctcttcgtag	tacttatgca tctgaattga	$\begin{array}{r} 1099 \\ 2274 \\ 545 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttcaaggact   --gaaaaact	aagaccaagg aaaatcttga ag----aaga acaatttgaa	atagaaattg atcgtaccoa atggagttga gttgtattc-	$\begin{array}{r} 1099 \\ 2324 \\ 588 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
taaatccaat	tttaatatag aatcggtggc	tacgtttta aagatcttt	$\begin{array}{r} 1099 \\ 2374 \\ 588 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
gaatctttgc	agagataaaa gcaagatgat	tctttattct gatttatact	$\begin{array}{r} 1099 \\ 2424 \\ 588 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
gggtaatctc	ttggcagtac ttacgcatct	gagttgattc actaagacca	$\begin{array}{r} 1099 \\ 2474 \\ 593 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
agaaaaatat caaaaggt--	ttaacagaaa tttatcatac	ccataaatcc aattttaaca	$\begin{array}{r} 1099 \\ 2524 \\ 602 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
tagaatcttt gaacatcttg	gctgagagaa aaacaaggtg ttaagaagat aaatgagct-	atatagtcat gggtttgata	$\begin{array}{r} 1099 \\ 2574 \\ 631 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttgtccatta ---tcaacaa	aaaataactt taacagtgca aaggtaatac aaatgataga	$\begin{aligned} & \text { gtatcaaatg caatatatta } \\ & \text { ggaa } \end{aligned}$	$\begin{array}{r} 1099 \\ 2624 \\ 661 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
atatacgact ------gaat	ccaaaattca gtatatattg acaaaactcc gtggaca---	agtgtaatga gtttaatgtt	$\begin{array}{r} 1099 \\ 2674 \\ 682 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
gtatattgag	tttatttta ttaataaaat   ---------g ctaaatgaag	aaaataaaaa atcatgtggg gagatggaga atgatggatg	$\begin{array}{r} 1099 \\ 2724 \\ 713 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1


cgagcatttt cgaatcttc	atagatctct gcatttata  	gtttataata agaaaattat	$\begin{array}{r} 1099 \\ 2774 \\ 725 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
aaaacttaca	tttataatt cgatgatatc	tttaccaccg ctcaataata	$\begin{array}{r} 1099 \\ 2824 \\ 725 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
agagcatttt	atagatctat gcattttgtg	gtttatgata aaaaaytat	$\begin{array}{r} 1099 \\ 2874 \\ 725 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
aaaacttaca	tttataaatt tgatgatatc	tttatcacat atagtaatta -------cat tcagtcattg	$\begin{array}{r} 1099 \\ 2924 \\ 738 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
ggcagaaaga gaaaatcaga	cttataccta ttggagatgg ccccocgtca tctgaatcta	gcacaattaa tgatcttta taactactta tg--cttta	$\begin{array}{r} 1099 \\ 2974 \\ 786 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
atcttaaatt aattcaaatt	--ataatttg atggctacac acataaattg cctatcaaag	attgaagatg tcggtatatt actgaggat- ----------	1099 3022 825	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
cttagtcatc	ctctaaatc aatgatttag	atttattgtt gataacttcc	$\begin{array}{r} 1099 \\ 3072 \\ 837 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ttgcatttat   ttgcagtta-	gaatgcatca cttaacctgt	ttattttta acatttacct	$\begin{array}{r} 1099 \\ 3122 \\ 846 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
aatcatatta	agaaattatt gtaacatcat	atgattgca conta	$\begin{array}{r} 1099 \\ 3172 \\ 846 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
attaaccttt	gagattacca tgtttagcag	attagcaaac actccttcaa	$\begin{array}{r} 1099 \\ 3222 \\ 846 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
cttcattctt	ggaaattaca cgtattacac	aagccacgtt tctatgctat	$\begin{array}{r} 1099 \\ 3272 \\ 846 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
cacagattta	atcaattgtc cgcgcgtttc	ctctacctcg aatttcctca	$\begin{array}{r} 1099 \\ 3322 \\ 846 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
gatttcttca	actgtaaacc tttcaatgtt	caccaacccc gagttagcgg	$\begin{array}{r} 1099 \\ 3372 \\ 848 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
ctgtgctagt gtatgcaatt	atatgtattt tgataatatt   atacttat-- -----------	ataaaacata tttaatataa	$\begin{array}{r} 1099 \\ 3422 \\ 866 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$


ttattatcat	ttatttagt	ggttttcgat	ttacttaata	aataatgtat	$\begin{array}{r} 3472 \\ 866 \end{array}$	Pg-02r141203s0882372   SAL1
gtatgagtgt	atgcacctca	ttcttgattc	atccttgatt	catcgttgtt	$\begin{array}{r} 1099 \\ 3522 \\ 866 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
ttattgtttt	taaatacta	tatgtatgag	tgcatgcact	tcattcttga	$\begin{array}{r} 1099 \\ 3572 \\ 866 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
tccatgattc	atcattgttt	tcaaaataag	tatatgcact	tcattcttga	$\begin{array}{r} 1099 \\ 3622 \\ 866 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
tccatgattc	atcattgttt	tcaaaataag	$\begin{aligned} & \text { tatatggatg } \\ & -\quad \text { caaat } \end{aligned}$	ctgtttttt   ctgttttta	$\begin{array}{r} 1099 \\ 3672 \\ 882 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
tttttctct   tttattt--	aggttatta	gttaattgat   -ttaacgggg	aaagtaaagt   gttgtaacat	$\begin{aligned} & \text { tttttaatg } \\ & \text { ttt---atg } \end{aligned}$	$\begin{array}{r} 1099 \\ 3722 \\ 914 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
tatagagatt   ttagggtatt	tttttggagg   tttttg----	tactattgtt	ctaactaaat	aatagttgag	$\begin{array}{r} 1099 \\ 3772 \\ 930 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
ttgatctcoa	attgatagaa	tgtcatttt	tattgagctt	tttcacatat	$\begin{array}{r} 1099 \\ 3822 \\ 930 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
tttctatgtt	cagaattgag	tacaatgaga	cgaaacaaa	tatgacaaá	$\begin{array}{r} 1099 \\ 3872 \\ 930 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
aaaaaaatt	gatgcacatt	gtattgatat	gaatttatag	catgcacatt	$\begin{array}{r} 1099 \\ 3922 \\ 930 \end{array}$	PgSAL1   Pg-02r141203s0882372   SAL1
gtattgatat	gaatttatag	cacatggatt	aacgagatct	aagtctagat aaatttgga-	$\begin{array}{r} 1099 \\ 3972 \\ 942 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
attatgatgg	ggacctacta	ggtccaaatc	ccagagacaa	agttataata	$\begin{array}{r} 1099 \\ 4022 \\ 942 \end{array}$	$\begin{aligned} & \text { PgSAL1 } \\ & \text { Pg-02r141203s0882372 } \\ & \text { SAL1 } \end{aligned}$
actttgtagt	cgactccaac	actccagcca	tctaaaattc	ttcaattggg	$\begin{array}{r} 1099 \\ 4072 \\ 942 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```
$\begin{aligned} & \text { cccaaagtca } \\ & - \text { cgaaattt } \end{aligned}$	tgtcttaata   ttttttaaaa	gagtgattaa	ctctctgtta	cgcaccagtc	$\begin{array}{r} 1099 \\ 4122 \\ 962 \end{array}$	```PgSAL1 Pg-02r141203s0882372 SAL1```



Figure S3.2 Alignment of WS Pg-02r141203s0882372 contig, promoter cDNA alignments for
SAL1 were conducted in MAFFT (mafft.cbrc.jp/alignment/server/) using default parameters.

Pg-01r141201s0119707	
Pg-01r141201s23567302	ATTTGTTCCTTATCGATTTTGTATGATTAAATCAACTCTTTCTTGACCCAAAGCAAAGGGTATCCTCTCATACCAGGACAATCTGCCGACCTGTAGCAAA
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746$	
SAL5promoter	CATTTTCTCACAACGGCTTGAGAGGTTTGCACCAGCCAATTATGAATTTAAAATTAT-TGCAGTCCATCAACCTAAGATTTTGCTCATAGCAATCCCAGT
Pg-01r141201s0119707	
Pg -01r141201s23567302	CACAGAGGCCAACACGACAACACCCAGCCTCAGACTGTAAAACATTACTCATGGCCCATTGACGTTGATGCCCTTTGTGGTGGCATTATTCCCATATGTT
Pg-01r141201s2765746	
SAL5cDNA   SAL5promoter	
Pg-01r141201s0119707	
Pg-01r141201s23567302	GTTGAACAGATAGTGGAAACAAGACGAACTCCATCCCAGAAGGGAGCAGGATGAGTGGCTACACGATTGGAAATCTGTCTTGCAGAGCCAATGGAGGTTC
Pg-01r141201s2765746	
SAL5promoter	
Pg-01r141201s0119707	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	GCCCATACCTTTTGCCTCTGCAGTGGTCGCTTCTGTTCAGCGGTATAGATGCTATAGATGTTTTATACAAAACTGGATTTGTTTTTTATTGGTGGACCAT
Pg-01r141201s2765746 SAL5cDNA	
SAL5promoter	
Pg-01r141201s0119707	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	TTTGGATAGGATCCATAAGTTATCTTTAATGTCATCCGTTGATTTTGACATTGATCCAAGAAATACAATACGCATTGGCCTTTGATGCAAGTAGATATGA
Pg-01r141201s2765746 SAL5cDNA	
SAL5promoter	-------------
Pg-01r141201s0119707	----------CCACATATGGTATGGGTTCCCTAGCCTACCTTTTAACAATTGATGGATGCCATGATATGGAAGAGCCCCGATAATCATACAT--------
Pg-01r141201s23567302	TACGCCATGGCTACATATGGTATGGGTTCCCTAGCCTACATTCTTACAATTGATGGATGTCATGATATGGAAGAGCCCGGATAATCATACATGATATATC
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746$	
SAL5cDNA	
Pg-01r141201s0119707	-----GATATAATCATATACATAATATAATCAT-------------------------ACATGATGTATACATAAATGGAAACGACCCTCCCGGCACTGGAGGG
Pg-01r141201s23567302	CGCATGATATAATCATATACATAATATAATCATACATGATATGTCATACATGATACATGATATATACATAAATGATAACGACCCTCCCGGCACTGGAGGG
Pg-01r141201s2765746	
SAL5CDNA	
Pg-01r141201s0119707	CGGTGGTCGCTTAACTGAGCGCGGACGTCGAGGATGGCGGCGTGATGGTCATGCTCCATGACAATATGGATGGGCAGCCTGCTGACAGAGTCTTAAATAC
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	CGGTGGTCGCTTTCGGGATCGCGGACGTCGAGGATGGCGGCGTGATGGTCATGCTCCATGACAATATGGATGGGCAGCCTGCTGACAGAGTCTTAAATAC
Pg-01r141201s2765746	
SAL5cDNA	
SAL5promoter	
Pg-01r141201s0119707	TCTGCAGCAGACTGGATATTGCTAGCCCCAAGGGAGGCCCGCTGTACTGGCCTGCAAAATACTTATC
Pg-01r141201s23567302	TCTGCAGCAGGCTGGATATTGCTCACCCCAAGGGAGGCCCGCTGTACTGGCCTGCAAAATACTTATC
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746$	
SAL5cDNA	
SAL5promoter	-ATCAATTGAAATACAACACAGAGAGATATAAGT
Pg-01r141201s0119707	
Pg-01r141201s23567302	
Pg-01r141201s2765746	
SAL5promoter	TGTGGGTAAAAGGAAAATAACGCTAACCATGTTAAAAAATATTAATCAAAGAGAAATCAATGAGTTTGCAAGAAATCGGTTCAAAAAAAGCGGAAGAAAA
Pg-01r141201s0119707	
Pg-01r141201s23567302	
Pg-01r141201s2765746	-------
SAL5cDNA	
SAL5promoter	AAAAAAGTCCGTTCAAAACTCCGCAAAAAAAAAAGCAAAAAAAAACAAGTGTGGCTTTAGATATATTAAATAAAAAAAATTAAATAAAAAGGAAAAGTAC


$\begin{aligned} & \text { Pg-01r141201s0119707 } \\ & \text { Pg-01r141201s23567302 } \\ & \text { Pg-01r141201s2765746 } \\ & \text { SAL5cDNA } \\ & \text { SAL5promoter } \end{aligned}$	
	AAATAAAAAAGACAAAATCAATTAACAGATGACTCACATGAAAGGAGCTCCAAATCATATTTGAGAAGAGAGGAGAGGAGCTTCAATGGAGAATATTTCA
Pg-01r141201s0119707	
Pg-01r141201s23567302	
Pg-01r141201s2765746	
SAL5cDNA	
SAL5promoter	CAACACTTTACCATCACATACTGCCTTAACATTGTTCCGAAGCACTGAAAGAAAATTGCACATAGAATAACCTGACATTCACCTCTTCCAATGAAAGAAA
Pg-01r141201s0119707	
Pg -01r141201s23567302	
Pg-01r141201s2765746	
SAL5promoter	AGTATAAAGATAGAATTTAAAGACATTGAAATAGAATAAAAAAGTACGCCTAGGGTTATCAATTTCCAAGCAACAACTAGTATTATCAAATATTACGTAG
Pg-01r141201s0119707	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	
Pg-01r141201s2765746	
SAL5CDNA	
SAL5promoter	TCATTTTCCCACAAGAAGAAACAAGAAACCTGGCTTTGTCACAGGTCGATCAAATGTATTTAATTCTTTCAAACTCTTAATATTCCCTCTCATTGCAACA
Pg-01r141201s0119707	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	
Pg-01r141201s2765746	
SAL5cDNA	
SAL5promoter	GGGATACAACCATTTACCATCCCATTATGCCAAAATTCAAGAAAGTGTCACTGTTCAAATTTGAGCAAACATATGCTAATGACAAAGTTAAATTGTTGTA
Pg-01r141201s0119707	
Pg-01r141201s23567302	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746$	
SAL5cDNA	
SAL5promoter	ATATCACAAGTTGCTCATTATGCCAGCAAAAGTAATCAAACTTGAATGCTGTTTAGGAACGTTTTTACTATGTGTAGTGCCCATATTTAACCATTAATAT
Pg-01r141201s0119707	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	
SAL5cDNA	
SAL5promoter	ATTACAGTTAAAATAATAATAAAAAAATAAATAACAAAATAATAAAAAAAAATAACAAAGTTAATCGTGAAATACTATACGCATAAGAATTGGCATCGTG
Pg-01r141201s0119707	
Pg-01r141201s2765746	GGTCCTCGCATGAGGCCCACGTGCCCGGCCTCCGGCCCTCGGTATCTAACACCTATCTCTGCCAACCTTAAATGCGTCCTTCGGTACCTAACACCTCTCT
SAL5promoter GGTCCTCGCATGAGGCCCATGTGCCCGGTCTCTGGCCCTCGATAGCTAACACCTATCTCTGCCAACCTTAAACGCGTCCTTCGGTACCTAACACCTCTCT	
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746 \\ & \text { SAL5cDNA } \\ & \text { SAL5promoter } \end{aligned}$	--------TCCAGCATGTGC---GGTAGACCAATTTCCCTCGATG
	CTCCCATGAGGAAATCCGCGTTTTATTTTTCGTGAGGCGCTTATATTATATCAGAAAATTTAGTCTGGCATGTTCTTATACGTACGATTTTCTCCCGGTG
	CTCCCATGAGGAAATCCGCATTTTATTTTTCATGAGGCACTTATATTATATCAGAAAATTCAGTCTGGCATGTTCTTATACGTACGATTTTCTCCTGGTG
Pg-01r141201s0119707	TT--CTGTCAGAAACCTAAGGTGTGCCCTCGATTGTTCGGGAGGATAACGCTTCCTAAGTTTGGTGTTCGATTCTCTCGCTCGGTA-----TTAGGGTTC
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	TT--CTGTCAGAAACCTAAGGTGTGCCCTCGGTTGTTCGGGAGGAAAACGCTTCCTAAGTTCGGTGTTGGATTCTCTCGCTCGGTA-----TTAGGGTTC
Pg-01r141201s2765746	ATACCAATTAGAAACCGAAGTTGTGCCCTCCATTGTTGGGGAAGATAACGCTTTCGAAGTACGGTGTTGAATTATCTCGCTTGACTGAAAC---------
SAL5cDNA	----------------------TTAGTTGTGCCCTCGATTGCTCGGGAGGAGAACGCTTCCGAAGTTCGGTGTTGGTTTTTGTCGCTTGATT---
SAL5promoter	ATACCAGTTAGAAACCAAAGTTGTGCCCTCCATTGTTGGGGAGGATAACGCTTTCGAAGTACGGTGTTGAATTATCTCGCTTGACTGAAAC---------
Pg-01r141201s0119707	TCCACAAACCCGGTTTTCCTGCCGTTTGATCTTGTTGTGGGCCTTCGGATTTGATGGAAAATTTGCCCTTTCCGTGTGTATGATTTGTATGCTAATCG--
Pg-01r141201s23567302	TCCACAAACCCGGTTTTCCTGCCGTTTGATCTTGTTGTAGGCCTTCGGATTTGATGGAAAATTTGCCCTTTCCCGCTGTATGATTTGTATGCTAATCG--
Pg-01r141201s2765746	
SAL5cDNA	
SAL5promoter	

Pg-01r141201s0119707 Pg-01r141201s23567302 Pg-01r141201s2765746 SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5CDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter

Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter
---------CGAGAGATTAATCTCAGATTTGCCTATTGTTGTAATCTCAGATTTGAACGACATGACCCGAGAGAAAATAGAGATTAAGAGAATAGCTAAC ---------CGAGAGATTAATCTCAGATTTGCCTATTGTTGTAATCTCAGATTTGAATGACATGGCCCGAGAGAAAATAGAGATTAAGAGAATAGCTAAC ----------------------------------------1TTTTAGGATGGGAGTGACATGGCCCGCGAGAAAATAGAGATGAAGAGAATAGCTAAC AGAACGCTTCGAAAGTTCGGTGTTGGAATT---TGTCGCTTGATTTTAGGATTGGAATGACATGGCCCGAGAGAAAATAGAGATGAAGAGAATAGCTAAC --ATTTTAGGATGGGAGTGACATGGCCCGTGAGAAAATAGAGATGAAGAGAATAGCTAAC

GCTTCGGCCAGGCAGGTCGCATTCACGAAGAGGCGTAGGAGGCTGTTC---AGAAAAGCTCGTGAGCTGTCGATTCTCTGTGAAGCTGATGTAGCTCTCG GCTTCGGCCAGGCAGGTCGCATTCACGAAGAGGCGTAGGAGGCTGTTC---AGAAAAGCTTGGGAGCTATCGATTCTCTGTGAAGCTGATGTAGCTCTCG GCTTCGGCCAGGCAGGTCATGTTCTCAAAGAGGCGAAAGGGGTTGTT-CAAAAAAAAACCGAGGAGCTATCGATTCTACATGCATAAGATGTAGCCTTCG GCTTCGGCGAGGCAGATGACGTTCTCGAAGAGGCGGAGGGGGTTGTTC---AAAAAAGCTGAGGAGCTATCGATTCTATGTGCAGCAGATGTAGCCCTCG ACTTCGGCCAGGAAGGTCACGTTCTC-GAGAGGCAAAAGGGGTTGTTCCAAAAAAAAACTGAGGAGCTATCGATTCTATGTGCAGCAGATGTAGCC----

## TCGTT--------TCTTCTTCCACTGGGAAGCTG

TCGTT--------TCTTCTTCCACTGGGAAGCTGTACGACTACTCCAGCTCCAGATACTC-
TTGTTTTGTTTTGTTTTCTTTCACTGGGAAGCTGCATGACTACTCCAGCTCCAGGTACTCTTTCTTCTTCTGATTCTAATTCACAGTCTCTACAAAGAAT

$\qquad$

AAAGACACACGGATAAGCTACAAGGAAGGTGTATTTCCTTATTTTGTTAATCGAAGTATAACATACTCTAATAGAAACACTAGTTTAGGTTTAATAGGGC



GTGCGAAAGTAGCGTGGAAAGAGTAAAAGTCAATAGTCTTCCATCATTTGGAAACGGGAATCGGTCGATGTCTCTCTGACCTGCCATTGTGTGCCTGGTG

$\qquad$
TGCCATGCATTACGAAGATCTACAGAGGATTATAAATGGTGTTGGGTATGGATCTTTTAGAATATAATTTGTGTGAGACTTTTCAAATGTTCCCCACATT






CTCCTTGGTCTTCT



GCAAATTCACAATAGCCCCATTACCTTCTCCAGAGATTGCATAGCAGCCCAATGGTCTCTTAGCCGAATAAGCTGGAATTGGGTA
TATGGAGGTGATATT



GGACAAGTACGTTTTGTATCCGAGCACAATTCAAAAGGATGGACAACAAATTCTCGAGTTCGAGAGTCAAGATCCCAAAAGGATAAAACAACAATTTGAA GATGCCAGTCAAGATTTGAGGGAGGAACTTGAAGGATTAACTTTAAAAGATTTAGAAAAACTAGAAGAACAATTTGAAATGGAGTTGAGTTGTATTCGAT

```
Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
SAL5promoter
Pg-01r141201s0119707
Pg-01r141201s23567302
Pg-01r141201s2765746
SAL5cDNA
GTGAGTTGAAGGAGGGCACTAGAGCTGGGAAGAGTGGCTGAGTTTTGCAACTGAGCAAGTGCAGAA-CAGAGCATCCATCTTCAG
SAL5promoter
```

Figure S3.3 Alignment of PG29 Pg-01r141201s0119707, Pg-01r141201s2356730, Pg-
01 r 141201 s 2765746 contigs, promoter cDNA alignments for putative $S A L 5$ were conducted in Geneious using the Mauve plugin. Coordinates for alignments are the following: Pg-

01r141201s0119707 1010-1771, Pg-01r141201s2356730 7931-9262, Pg-01r141201s2765746
3375-4660, SAL5 cDNA 1-762, and putative SAL5 promoter 424-1932.

$\begin{aligned} & \text { Pg-01r141201s0119707 } \\ & \text { Pg-01r141201s23567302 } \end{aligned}$	
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746$	
SAL5cDNA	
SAL5promoter	AAATAAAAAAGACAAAATCAATTAACAGATGACTCACATGAAAGGAGCTCCAAATCATATTTGAGAAGAGAGGAGAGGAGCTTCAATGGAGAATATTTCA
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \text { Pg-01r141201s2765746 } \\ & \text { SAL5cDNA } \\ & \text { SAL5promoter } \end{aligned}$	
	CAACACTTTACCATCACATACTGCCTTAACATTGTTCCGAAGCACTGAAAGAAAATTGCACATAGAATAACCTGACATTCACCTCTTCCAATGAAAGAAA
$\begin{aligned} & \text { Pg-01r141201s0119707 } \\ & \text { Pg-01r141201s23567302 } \\ & \text { Pg-01r141201s2765746 } \end{aligned}$   SAL5cDNA   SAL5promoter	
	AGTATAAAGATAGAATTTAAAGACATTGAAATAGAATAAAAAAGTACGCCTAGGGTTATCAATTTCCAAGCAACAACTAGTATTATCAAATATTACGTAG
$\begin{aligned} & \text { Pg-01r141201s0119707 } \\ & \text { Pg-01r141201s23567302 } \\ & \text { Pg-01r141201s2765746 } \end{aligned}$   SAL5cDNA   SAL5promoter	
	TCATTTTCCCACAAGAAGAAACAAGAAACCTGGCTTTGTCACAGGTCGATCAAATGTATTTAATTCTTTCAAACTCTTAATATTCCCTCTCATTGCAACA
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746 \end{aligned}$   SAL5cDNA   SAL5promoter	
	GGGATACAACCATTTACCATCCCATTATGCCAAAATTCAAGAAAGTGTCACTGTTCAAATTTGAGCAAACATATGCTAATGACAAAGTTAAATTGTTGTA
$\begin{aligned} & \text { Pg-01r141201s0119707 } \\ & \text { Pg-01r141201s23567302 } \\ & \text { Pg-01r141201s2765746 } \end{aligned}$   SAL5cDNA   SAL5promoter	
	ATATCACAAGTTGCTCATTATGCCAGCAAAAGTAATCAAACTTGAATGCTGTTTAGGAACGTTTTTACTATGTGTAGTGCCCATATTTAACCATTAATAT
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \text { Pg-01r141201s2765746 } \\ & \text { SAL5cDNA } \\ & \text { SAL5promoter } \end{aligned}$	
	-----------------
	--TAAGAATTGGCATCATG
	ATTACAGTTAAAATAATAATAAAAAAATAAATAACAAAATAATAAAAAAAAATAACAAAGTTAATCGTGAAATACTATACGCATAAGAATTGGCATCGTG
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \text { Pg-01r141201s2765746 } \\ & \text { SAL5cDNA } \\ & \text { SAL5promoter } \end{aligned}$	
	GGTCCTCGCATGAGGCCCACGTGCCCGGCCTCCGGCCCTCGGTATCTAACACCTATCTCTGCCAACCTTAAATGCGTCCTTCGGTACCTAACACCTCTCT
	GGTCCTCGCATGAGGCCCATGTGCCCGGTCTCTGGCCCTCGATAGCTAACACCTATCTCTGCCAACCTTAAACGCGTCCTTCGGTACCTAACACCTCTCT
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 2765746 \end{aligned}$   SAL5cDNA   SAL5promoter	---TCCAGCATGTGC---GGTAGACCAATTTCCCTCGATG
	---TCCAGCATGTGC---GGTAGACCAATTTCCCTCGATG
	CTCCCATGAGGAAATCCGCGTTTTATTTTTCGTGAGGCGCTTATATTATATCAGAAAATTTAGTCTGGCATGTTCTTATACGTACGATTTTCTCCCGGTG
	CTCCCATGAGGAAATCCGCATTTTATTTTTCATGAGGCACTTATATTATATCAGAAAATTCAGTCTGGCATGTTCTTATACGTACGATTTTCTCCTGGTG
Pg-01r141201s0119707	TT--CTGTCAGAAACCTAAGGTGTGCCCTCGATTGTTCGGGAGGATAACGCTTCCTAAGTTTGGTGTTCGATTCTCTCGCTCGGTA-----TTAGGGTTC
$\mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302$	TT--CTGTCAGAAACCTAAGGTGTGCCCTCGGTTGTTCGGGAGGAAAACGCTTCCTAAGTTCGGTGTTGGATTCTCTCGCTCGGTA-----TTAGGGTTC
Pg-01r141201s2765746	ATACCAATTAGAAACCGAAGTTGTGCCCTCCATTGTTGGGGAAGATAACGCTTTCGAAGTACGGTGTTGAATTATCTCGCTTGACTGAAAC--------
SAL5CDNA	--------------------TAGTTGTGCCCTCGATTGCTCGGGAGGAGAACGCTTCCGAAGTTCGGTGTTGGTTTTTGTCGCTTGATT--
SAL5promoter	ATACCAGTTAGAAACCAAAGTTGTGCCCTCCATTGTTGGGGAGGATAACGCTTTCGAAGTACGGTGTTGAATTATCTCGCTTGACTGAAAC--------
$\begin{aligned} & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 0119707 \\ & \mathrm{Pg}-01 \mathrm{r} 141201 \mathrm{~s} 23567302 \\ & \text { Pg-01r141201s2765746 } \\ & \text { SAL5cDNA } \\ & \text { SAL5promoter } \end{aligned}$	TCCACAAACCCGGTTTTCCTGCCGTTTGATCTTGTTGTGGGCCTTCGGATTTGATGGAAAATTTGCCCTTTCCGTGTGTATGATTTGTATGCTAATCG--
	TCCACAAACCCGGTTTTCCTGCCGTTTGATCTTGTTGTAGGCCTTCGGATTTGATGGAAAATTTGCCCTTTCCCGCTGTATGATTTGTATGCTAATCG--



Figure S3.4 Alignment of WS77111 Pg-02r141203s0882372 contig, promoter cDNA
alignments for putative $S A L 5$ were conducted in Geneious using the Mauve plugin. Coordinates
for alignments are the following: Pg-02r141203s0882372 925-3036, SAL5 cDNA 1-362, and putative SAL5 promoter 1420-1588PgNBS-LRR_WRKAtWRKY16_cDNAPgNBS-LRR_WRKAtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNAPgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRKAtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNAPgNBS-LRR_WRKAtWRKY16_cDNAPgNBS-LRR_WRKAtWRKY16_cDNA
10
1 GTTTTTAGCTAGGAATTGAGTGGTTCTCCTTCTCCCTCAACAACTGTTTG ..... 50
1 ..... 0
51 AGAATGGTTGACTTGAGAATGGAGTGCGACTACCATTGGCCAACTTCAGT ..... 100
1 ..... 0
101 GCTTAGGGACCACAATCGTTTTAGAGAGTTGGTTTCGGGTGCGACCCAGA ..... 150
1 ..... 0
151 CGCACAGTTTCTAAAATAATGACCGAGAGTGAGCAAATCGTCTACATCAG ..... 200
1 ..... 0
201 CTGCATAGAGGAGGTACGATACTCCTTCGTCAGCCACCTCTCCAAAGCTC ..... 250
1 ..... 0
251 TCCAGCGAAAAGGTGTAAACGATGTCTTCATCGATAGCGATGATTCGCTT ..... 300
0
301 TCCAACGAGTCTCAATCAATGGTCGAGAGAGCTAGGGTTTCTGTTATGAT ..... 350
351 TTTACCAGGAAACCGTACGGTATCTCTTGACAAGCTCGTGAAGGTTCTCG ..... 400
1 ..... 0
401 ATTGCCAGAAGAACAAAGATCAAGTGGTGGTTCCGGTGTTGTACGGTGTC ..... 450
1 ..... 0
451 AGATCATCAGAGACCGAATGGCTTAGCGCGCTGGATTCGAAAGGATTCTC ..... 500
1 ..... 0
501 ATCAGTACACCATTCCAGGAAAGAATGTAGTGACTCCCAGCTTGTAAAAG ..... 550
1 ..... 0
551 AGACTGTTAGAGATGTGTATGAGAAGCTCTTTTATATGGAACGAATTGGA ..... 6000
601 ATATATTCGAAGCTGCTGGAGATTGAGAAAATGATTAACAAGCAACCGTT ..... 650
1 ..... 0
651 GGACATCCGTTGTGTTGGAATTTGGGGTATGCCTGGCATAGGCAAGACTA ..... 700
1 ..... 0
701 CACTTGCTAAAGCAGTCTTTGACCAAATGTCTGGTGAGTTTGATGCTCAT ..... 750
PgNBS-LRR_WRK10
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA951 AGGGTTTGACTGGTTTGGTCCCAAAAGTCTAATCATCATAACCTCCAAAG1000
0
PgNBS-LRR_WRK
AtWRKY16_cDNA1001 ATAAATCGGTGTTTCGCCTTTGTCGAGTCAATCAAATATACGAGGTTCAG1050
1 ..... 0
1051 GGTTTAAATGAGAAAGAGGCTCTTCAACTCTTCTCTTTGTGTGCGTCTAT ..... 1100
1 ..... 0
1101 AGACGATATGGCAGAGCAGAATCTCCACGAGGTGTCAATGAAAGTTATTA ..... 1150
1 ..... 0
1151 AATATGCTAATGGCCATCCATTAGCTCTCAATCTCTATGGCAGAGAACTG ..... 1200
1 ..... 0
1201 ATGGGGAAGAAAAGACCACCAGAAATGGAGATAGCATTCCTCAAACTCAA ..... 1250
1 ..... 0
1251 GGAATGTCCTCCAGCTATTTTTGTTGATGCAATCAAGAGCTCGTATGACA ..... 1300
0
1301 CACTCAATGACAGGGAAAAAAACATTTTTTTGGACATAGCTTGTTTCTTC ..... 1350
1 ..... 0
1351 CAGGGAGAAAATGTTGACTACGTGATGCAACTGCTTGAGGGTTGTGGTTT ..... 1400
1 ..... 0
1401 CTTTCCACATGTTGGAATTGATGTTCTTGTGGAGAAGAGTCTGGTGACTA ..... 1450
1 ..... 01500
PgNBS-LRR_WRK10
AtWRKY16_cDNA1501 CAAATAATAAATAGAGAAACAAGACAGACTAAGAGGCGCAGCAGACTGTG1550
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRK
AtWRKY16_cDNA
PgNBS-LRR_WRKAtWRKY16_cDNAPgNBS-LRR_WRKAtWRKY16_cDNAPgNBS-LRR_WRKAtWRKY16_cDNA1801 CTTCCTAATGTGCTAAGACTCCTGCATTGGGAGAACTATCCTCTGCAGTT18500
PgNBS-LRR_WRKAtWRKY16_cDNAPgNBS-LRR_WRK1851 TCTGCCTCAAAATTTTGATCCTATACACCTTGTTGAAATCAACATGCCGT1900
1 ..... 0
1901 ACAGCCAACTTAAGAAACTTTGGGGTGGAACCAAGGACCTGGAGATGTTG ..... 1950
11951 AAGACAATCAGGCTTTGTCATTCCCAACAACTAGTTGATATTGACGATCT2000
1 ..... 0
2001 TTTAAAAGCTCAAAATCTTGAGGTAGTTGATCTCCAAGGCTGTACAAGAC ..... 2050
0
PgNBS-LRR_WRKAtWRKY16_cDNA2051 TGCAGAGTTTCCCAGCCACCGGTCAATTGCTACATTTACGAGTTGTAAATPgNBS-LRR_WRK1
2101 CTCTCAGGTTGCACAGAGATCAAAAGTTTCCCAGAAATTCCCCCAAATAT ..... 2150
12151 TGAGACACTGAATCTACAGGGGACTGGTATAATAGAATTACCACTTTCCA2200
0
PgNBS-LRR_WRK 12201 TTGTTAAGCCAAACTACAGAGAGCTTTTGAATCTTCTAGCTGAAATCCCG2250

PgNBS-LRR_WRK	1		0	
AtWRKY16_cDNA	2251	GGTCTTTCAGGTGTCTCAAACCTTGAGCAAAGTGATCTCAAACCTTTAAC	2300	
PgNBS-LRR_WRK			0	
AtWRKY16_cDNA	2301	AAGCCTGATGAAAATTAGCACATCTTACCAAAATCCTGGCAAGCTTAGTT	2350	
PgNBS-LRR_WRK	1	--------GCAGACG-CTCCCAGACTCGG- 1111.1 11.111.11..11	20	
AtWRKY16_cDNA	2351	GCTTGGAGCTGAATGATTGTTCTCGTTTGC-GAAGTCTGCCAAACATGGT	2399	
PgNBS-LRR_WRK	21	---TTGGGAACCTGACGGGCCTCCAAACGCTTGA-CTTGACCAGG-TGCT	65	
		11..1111.1 111.11.1.11111111 .1.11 1111		
AtWRKY16_cDNA	2400	TAATTTAGAACTT-------CTCAAAGCCCTTGATCTT--TCTGGTTGCT	2440	
PgNBS-LRR_WRK	66	CCACTCTGCAGAGGCTCCCAGACT-----CGGTT-----GGGAACCTGAC	105	
		1111 111 1.11111 . ا111 .111111111		
AtWRKY16_cDNA	2441	--CAGA-GCT-CGAGACTATCCAGGGTTTCCCACGGAACCTGA-	2479	
PgNBS-LRR_WRK	106	GGGCCTCCGAAG-------TCTTTACTTGG----GCAG--------GTGC	136	
AtWRKY16_cDNA	2480	-AAGAGTTATATCTT--GTTGGCACTGCAGTAAGACAAGTGC	2518	
PgNBS-LRR_WRK	137	-TCC----ACTCTGCAGA----------------------------------	151	
		111 I.III 111 1.		
AtWRKY16_cDNA	2519	CACAACTTCCTCAAAGTCT--AGAATTCTTTAATGCCCATGGTTGTGTCT	2566	
PgNBS-LRR_WRK	152	CTCCCA----GACTCGGTTGG-------GAACCTGAC-GGGC---------	181	
		111.11 .l.111.1111 111.11..1 1.11		
AtWRKY16_cDNA	2567	CTCTCAAATCAATTCGTTTGGACTTCAAGAAGCTTCCTGTGCATTACACA	2616	
PgNBS-LRR_WRK	182	-CTCCA---------AACGCTTGACTTGA	200	
		11111 1111.11...1.1.		
AtWRKY16_cDNA	2617	TTTAGTAATTGTTTCGATCTATCTCCACAAGTGGTCAACGATTTTTTAGT	2666	
PgNBS-LRR_WRK	201	GCGGGTGTT--CCAATTT---------ACATATGCTGACCAATATTGAG-	238	
		II.11.1.1 1.111.1 111.11 11111.1 111		
AtWRKY16_cDNA	2667	GCAGGCGATGGCTAATGTGATTGCAAAACACAT----ACCAAGA--GAGC	2710	
PgNBS-LRR_WRK	239	--CATTTGA---GCT--------------------CGTTGGAG--------	256	
		111.1.1 111 1111.111		
AtWRKY16_cDNA	2711	GTCATGTCACAGGCTTTTCTCAAAAGACTGTGCAGCGTTCGAGTCGTGAC	2760	
PgNBS-LRR_WRK	257	AATCT	263	
		11.1111		
AtWRKY16_cDNA	2761	AGTCAGCAGGAACTCAACAAAACTTTGGCTTTCAGCTTCTGTGCGCCCTC	2810	
PgNBS-LRR_WRK	264	--ATGTGCAGCAATGTCCCAAA------CTGCAATGGGGTTCGGAAGTAA	305	
		111.1.1.111..1.11111 111111		
AtWRKY16_cDNA	2811	ACATGCGAATCAAAATTCCAAACTTGATCTGCAA---------------------	2844	
PgNBS-LRR_WRK	306	TCGAGCAGCTGCGCCA-----ACGACTGGGAGAAGGCTTCATGGAAGCAT	350	
		1.11 .1 .11 .1 .11 l11111.1 1..1111.1111.1.1.		
AtWRKY16_cDNA	2845	-CCAGGATCTTCTTCAATGACACGACTAG----ATCCTTCTTGGAGGAAC	2889	
PgNBS-LRR_WRK	351	ACTCCAG---------------TGATGAAAG----------CGAGTTGG-	374	
		11.1 .1 \\|1.11.111 111111		
AtWRKY16_cDNA	2890	T	2937	

PgNBS-LRR_WRK 375 -ACTCCAGTGATGAAAGCGA-------------------------- ..... 403
\|।। \|।।।।।I.|...। III.I. I।।।2938 TACT---GTGATGATACTGATTTTGGCATTAGTTGTGTTTGCAAATGGAA2984
404 ATACAAATGGAAG---------CATACTCCGGTGATGAAA--------GCGA ..... 438
2985 AAACAA--GGAAGGCCACTCTCATA----GGAGA-GAAATAAATTTGC-A 3026
439 --GTTGGAAAATATACAAA-----TGGAAGCGA ..... 464
\| I \| \| \| . . . . I\| .... \| \| I II.III.II
3076
3027 TTGTTGGGCTTTAGGGAAAGCTGTTGAAAGGGATCATACGTTTGTCTTCT486
1.1।1.1।ATATACTCCATGAA
3125
3077 TTGATGTCAACATGCGTCCAGATAC-CGATGAAGGAAATGACCCCGATAT
487I.. 1 I I II. 1
3126 CTGGGCTGATTTAGTTGTTTTTGAGTTCTTTCCTGTCAATAAACAGAGAA ..... 3175
505 ---CTC----------------CAGTGATGAAAG-----CGAGT---TGTAA3176 AGCCTCTAAATGATAGTTGCACAGTGA--CAAGATGTGGAGTCCGTTTAA3223
530 -AATGGGAGTAGACTTC-ATGGAAGCAT AC-------- ..... 557
II..I..III.III.I II..III.II I I
3224 TAACTGCTGTAAACTGCAATACAAGTATCGAGAATATATCACCAGTTTTG ..... 3273
558 TCC ..... 560
| \| \|
3274 TCCTTGGATCCGATGGAGGTTTCTGGTAATGAAGATGAAGAAGTATTGAG ..... 3323
561 ..... 560
3324 AGTCAGATATGCTGGTTTACAGGAGATATATAAAGCTTTGTTTCTTTACA ..... 3373
561 ..... 560
3374 TAGCGGGTTTGTTCAATGACGAGGATGTTGGTTTGGTAGCACCACTTATT ..... 3423
561 ..... 560
3424 GCTAACATTATTGACATGGACGTTAGTTATGGGCTCAAGGTCTTAGCCTA ..... 3473
561 ..... 560
3474 TAGGTCTCTCATACGTGTATCTTCCAATGGGGAAATAGTGATGCACTATT ..... 3523
PgNBS-LRR_WRK ..... 560
AtWRKY16_cDNA 3524 TGCTACGACAAATGGGTAAAGAAATCCTCCATACAGAATCAAAGAAGACT ..... 3573
561 ..... 560
PgNBS-LRR_WRK3574 GACAAATTAGTCGACAATATTCAGAGTTCCATGATCGCAACAAAGGAAAT3623
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3624 CGAGATCACTCGTTCAAAGAGTCGCCGAAAGAACAACAAGGAAAAGAGAG ..... 3673
PgNBS-LRR_WRK ..... 561 ..... 560
AtWRKY16_cDNA 3674 TGGTTTGCGTAGTGGATCGAGGCAGCCGGTCCAGTGACCTATGGGTTTGG ..... 3723
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3724 CGAAAGTATGGTCAAAAACCCATCAAAAGTTCTCCTTATCCAAGGAGTTA ..... 3773
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3774 CTATAGATGTGCCAGCTCGAAAGGTTGTTTTGCTAGGAAACAAGTCGAAC ..... 3823
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3824 GTAGCCGCACTGATCCAAATGTTTCAGTAATTACTTACATCTCTGAGCAT ..... 3873
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3874 AACCATCCATTCCCCACTCTACGCAATACTCTTGCCGGCTCCACTCGTTC ..... 3923
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3924 CTCTTCCTCCAAATGCTCAGATGTAACTACTTCTGCCTCATCGACAGTCT ..... 3973
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 3974 CCCAAGACAAAGAAGGACCGGATAAATCCCATTTGCCTTCCTCCCCTGCT ..... 4023
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4024 TCTCCTCCTTATGCGGCCATGGTGGTTAAGGAGGAGGACATGGAGCAATG ..... 4073
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4074 GGACAATATGGAGTTCGATGTTGACGTTGAAGAAGATACTTTCATACCCG ..... 4123
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4124 AATTATTTCCAGAGGATACCTTCGCTGATATGGACAAGCTTGAGGAAAAT ..... 4173
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4174 TCTCAGACTATGTTTCTCTCTCGCAGAAGCAGCGGAGGCAACATGGAAGC ..... 4223
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4224 CCAAGGGAAGAACTCTAGTGATGATAGGGAGGTCAATTTACCTAGTAAAA ..... 4273
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4274 TTCTGAATAGATAGTTACTATTATGCAATGTTAATAATAATCTGTTTGAT ..... 4323
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4324 TTTTTAACATTTGTTCGGACATCCAAACCTGTGGGACACAATTTATTACT ..... 4373
PgNBS-LRR_WRK 561 ..... 560
AtWRKY16_cDNA 4374 TTAAAGATAATATATC ..... 4389

Figure S3.5 Alignment of PgNBS-LRR/WRKY and Arabidopsis WRKY16 conducted in
EMBOSS Needle nucleotide alignment (ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html).
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA1 ATGTCGGAGAAGGAAGAACTTCCGTTGACATTGACGTCCATCGGAGCGGC50
PgNBS-LRR_WRK
AtWRKY19_cDNA
PgNBS-LRR_WRK
AtWRKY19_cDNA
PgNBS-LRR_WRK
AtWRKY19_cDNA
PgNBS-LRR_WRKAtWRKY19_cDNA
PgNBS-LRR_WRK
AtWRKY19_cDNA
PgNBS-LRR_WRK
AtWRKY19_cDNA301 GGAGCAAGAGATGCATCTGGTCGTTGCATTTCCCATGGCGGTGGACGTAG350
PgNBS-LRR_WRK 1 ..... 0AtWRKY19_cDNA
351 ATGCCAGAAACCTGATTGCCAGAAGGGAGCTGAAGGTAAAACAGTGTACT ..... 400
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19 cDNA 401 GTAAAGCCCACGGAGGTGGTCGCAGATGTGAATATCTTGGATGCACCAAA ..... 450
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 451 GGCGCAGAAGGCAGTACTGATTTTTGTATAGCTCATGGAGGTGGTCGAAG ..... 500
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA
PgNBS-LRR_WRK
AtWRKY19_cDNA
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 601 AGCGCTAGTGGTCCTTTGCCATTCTGCCGAGCCCATGGTGGTGGTAAAAA ..... 650
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 651 ATGCAGCCATGAAGATTGCACAGGATTTGCTAGGGGAAGATCAGGACTCT ..... 700
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 701 GTCTCATGCACGGTGGGGGAAAGAGATGCCAAAGAGAGAACTGCACTAAA

501 ATGCAACCATGAAGATTGCACACGATCTGCTTGGGGAAGAACAGAATTCT
1 ..... 0
551 GTGTCAAGCACGGTGGAGGAGCGAGATGCAAAACATACGGCTGCGGAAAA ..... 600
PgNBS-LRR_WRK10AtWRKY19_cDNA751 AGCGCTGAAGGTCTTTCGGGACTCTGCATATCCCATGGTGGTGGTCGGCG800
1 ..... 0
801 ATGTCAATCTATTGGATGCACAAAAGGAGCGAAAGGGAGCAAAATGTTCT ..... 850
1 ..... 0
PgNBS-LRR_WRK
900
851 GCAAAGCATGCATAACTAAAAGGCCTCTAACGATTGATGGAGGAGGAAAT0
901 ATGGGAGGGGTAACAACAGGTGATGCCTTGAACTATCTCAAAGCTGTGAA ..... 950
AtWRKY19_cDNA
PgNBS-LRR_WRK
AtWRKY19_cDNA951 GGACAAGTTTGAAGACAGTGAGAAATATGACACTTTCCTTGAAGTCTTGA1000
PgNBS-LRR_WRKAtWRKY19_cDNA1001 ATGACTGTAAACATCAGGGAGTTGACACTAGTGGCGTCATAGCCAGATTA1050
PgNBS-LRR_WRK
AtWRKY19_cDNA1051 AAAGATTTGTTCAAGGGCCATGACGACTTACTTTTGGGTTTTAATACCTA1100
1 ..... 0
1101 CTTGTCAAAGGAGTACCAAATAACCATTCTGCCCGAGGATGATTTCCCTA ..... 1150
AtWRKY19_cDNAPgNBS-LRR_WRKAtWRKY19_cDNA1151 TCGATTTTCTTGACAAGGTTGAGGGACCTTATGAAATGACATATCAGCAA1200
PgNBS-LRR_WRKAtWRKY19_cDNAPgNBS-LRR_WRKAtWRKY19_cDNA1251 TTCTTCCTCTGCGGTTCAATCATTTTCATCGGGTCAACCTCAGATCCCCA1300
PgNBS-LRR_WRKAtWRKY19_cDNA1301 CCTCAGCTCCGGATTCTTCACTACTAGCTAAAAGTAATACCTCAGGTATA1350
PgNBS-LRR_WRK
AtWRKY19_cDNA1351 ACTATCATCGAGCACATGTCACAACAGCCTCTAAATGTTGACAAACAAGT1400
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 1401 TAATGATGGCTATAACTGGCAAAAGTATGGGCAAAAGAAAGTTAAAGGCA ..... 1450
1 ..... 0
1451 GCAAGTTTCCTCTAAGCTATTACAAGTGCACATATCTAGGATGTCCTTCC ..... 1500
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 1501 AAGAGGAAGGTTGAGAGATCTCTTGATGGACAAGTAGCAGAAATCGTCTA ..... 1550
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA1551 CAAAGATCGACACAATCACGAACCTCCTAACCAAGGAAAAGATGGTAGCA1600
1PgNBS-LRR_WRK1601 CCACATATCTAAGTGGGAGTTCGACACACATCAATTGCATGAGCTCTGAA 1650
PgNBS-LRR_WRK11651 TTGACAGCATCACAGTTTAGCTCCAACAAGACTAAGATAGAGCAACAGGA1700
1
1701 AGCAGCAAGTCTAGCTACGACAATAGAGTACATGTCTGAGGCAAGTGACA ..... 1750
1 ..... 0
1751 ATGAAGAAGACAGTAATGGAGAAACTAGTGAGGGAGAGAAAGATGAAGAC ..... 1800
1 ..... 0
1801 GAGCCTGAACCAAAGAGAAGAATTACAGAAGTTCAGGTTTCGGAACTAGC ..... 1850
0
1851 TGATGCTTCAGATAGAACCGTGAGAGAGCCTAGGGTTATTTTCCAAACAA ..... 1900
1 ..... 0
1901 CGAGTGAAGTTGATAATTTAGATGATGGATATAGGTGGCGGAAATATGGA ..... 1950
1 ..... 0
1951 CAGAAAGTTGTTAAAGGGAATCCTTATCCAAGGTTTTCCTCCTCTAAAGA ..... 2000
1 ..... 0
2001 TTATGATGTCGTAATCAGATACGGAAGAGCAGATATAAGCAATGAGGATT ..... 2050
1 ..... 0
2051 TCATTAGCCATCTTCGTGCTTCCCTCTGCCGGAGAGGGATTTCTGTCTAT ..... 2100
1 ..... 0
AtWRKY19_cDNA 2101 GAAAAATTTAATGAAGTGGATGCACTTCCAAAATGTAGGGTTTTGATTAT ..... 2150
022000
PgNBS-LRR_WRK12201 ACCAACATACAGAGGATCGAGTGGTTTATCCAATTTTCTACAGACTATCA2250
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA
2251 CCATATGATTTTGTCTGTAACAGCAAGAATTATGAGAGATTTTATCTCCA2300
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA2301 AGATGAGCCAAAAAAATGGCAAGCTGCTTTGAAGGAAATAACTCAGATGC2350
PgNBS-LRR_WRK10
AtWRKY19_cDNA 2351 CTGGCTACACATTGACAGATAAGTCTGAATCTGAACTTATAGATGAGATT2400
PgNBS-LRR_WRKAtWRKY19_cDNA2401 GTAAGAGATGCTTTAAAGGTGCTATGTTCTGCTGATAAGGTGAACATGAT2450
PgNBS-LRR_WRKAtWRKY19_cDNA2451 TGGGATGGATATGCAAGTAGAGGAGATTTTGTCACTGCTATGCATTGAGT2500
PgNBS-LRR_WRKAtWRKY19_cDNA2501 CCCTTGATGTTCGCAGCATTGGTATATGGGGTACAGTTGGTATAGGAAAA2550
PgNBS-LRR_WRK10
AtWRKY19_cDNAPgNBS-LRR_WRK2551 ACAACCATTGCTGAAGAGATCTTTCGCAAAATCTCTGTCCAATATGAGAC2600
1 ..... 0
AtWRKY19_cDNA2601 CTGTGTCGTCCTTAAGGACCTCCACAAAGAAGTTGAGGTAAAAGGTCACG2650
PgNBS-LRR_WRKAtWRKY19_cDNA2651 ATGCTGTGAGAGAGAATTTTCTGTCTGAAGTTTTAGAGGTAGAACCTCAT2700
PgNBS-LRR_WRKAtWRKY19_cDNA2701 GTTATCCGGATATCTGACATTAAAACAAGCTTCTTGAGAAGTCGGCTTCA2750
PgNBS-LRR_WRK 1 ..... 0
2751 GCGTAAAAGGATCCTTGTTATTCTTGACGATGTGAATGATTACAGAGATG ..... 2800
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19_cDNA 2801 TTGACACCTTTTTGGGGACGCTTAACTATTTTGGTCCAGGAAGCAGAATA2850
1 ..... 0
2851 ATCATGACCTCTAGAAATAGACGTGTTTTCGTACTATGTAAAATCGATCA ..... 2900
PgNBS-LRR_WRKAtWRKY19_cDNA2901 TGTCTATGAGGTTAAGCCATTAGATATTCCTAAGTCTCTACTACTTCTTG2950
PgNBS-LRR_WRK10
AtWRKY19_cDNA
PgNBS-LRR_WRK 1 ..... 0
AtWRKY19 cDNA
3001 TCACTTGAGCTGGTCAAATTTTCAAATGGAAATCCCCAGGTTCTTCAGTT3050
1 ..... 0
PgNBS-LRR_WRK3051 CTTGAGCAGTATTGACAGAGAATGGAATAAGTTATCACAAGAAGTTAAGA3100
PgNBS-LRR_WRK
AtWRKY19_cDNA3101 CAACATCTCCCATTTACATCCCAGGTATATTTGAAAAGAGCTGTTGTGGG3150
PgNBS-LRR_WRKAtWRKY19_cDNA3151 CTTGATGACAACGAGAGGGGTATATTTTTGGACATTGCATGTTTCTTTAA3200
PgNBS-LRR_WRKAtWRKY19_cDNA3201 TAGGATTGATAAAGACAATGTCGCAATGTTGCTGGATGGTTGTGGTTTCT3250
1 ..... 0
PgNBS-LRR_WRKAtWRKY19_cDNA3251 CTGCACATGTCGGATTTAGAGGCCTTGTTGACAAATCACTGTTGACAATA3300
1 ..... 0
3301 TCACAACACAACTTGGTGGACATGCTCAGTTTTATCCAGGCAACTGGTCG ..... 3350
0
13400
034500
3451 TCAGCTATTGAGGGCATTTTCCTAGACATGTTGAATCTTAAATTTGATGC ..... 3500
1 ..... 0
3501 AAATCCCAACGTGTTCGAGAAAATGTGTAACCTTAGACTGTTGAAATTGT ..... 3550
0
3600273645PgNBS-LRR WRK
28 CCTGACGG------GCC| \| \|.... I || ||||| |||48PgNBS-LRR_WRKAtWRKY19_cDNA
AtWRKY19_cDNA 3646 CCTCTAAGTTCTTTGCCGAAAAGTTTTAATCCAGAGAACCTTGTCGAGCT49 TGACTTGACCAGGTGCTCCA-CTCTGCAGAGGCTCCCAGACTCGGTTGGG3696 TAACTTG-CCAAGT-----AGCTGTGCAAAG-------AAACT---TTGGA

PgNBS-LRR_WRK	98	AACCTGACGGG-----------------------CC---TCCGAAGTCT-	120
AtWRKY19_cDNA	3731	AA-------GGAAAAAAGGCAAGGTTTTGTACAACCAATTC--AAGTCTG	3771
PgNBS-LRR_WRK	121	-ACTTGGGCAGGTGCTCC-ACTCTGCAG-	148
AtWRKY19_cDNA	3772	GAAAAGCTTAAAAAGATGAGACTT----AGCTACTCCGAC----CAGTTA	3813
PgNBS-LRR_WRK	149	-ACGCTCCC-AGACT------CG--------GTTG-------GGAACC	173
		1...1111 1111 .l। .lı.1.	
AtWRKY19_cDNA	3814	ACTAAAATCCCAAGACTTTCAAGCGCAACAAATCTTGAGCATATTGATCT	3863
PgNBS-LRR_WRK	174	TGACGG-----------------GGCT---CCA----AACGCTTGACTT-	198
AtWRKY19_cDNA	3864	TGAAGGTTGCAACAGTTTGTTGAGCCTTAGCCAGTCCATTTCTTATCTTA	3913
PgNBS-LRR_WRK	199	--GAGCGGGTGTTCC--AATTTACA---------TATGCTGACCAATATT	235
AtWRKY19_cDNA	3914	AGAAGCTTGTTTTTCTGAATTTAAAGGGCTGCTCGAAGCTGGAGAATATT	3963
PgNBS-LRR_WRK	236	GAGCAT------TTGA-----GCTCGTTGGAG------AATCTTT----A	264
		.111 1111 ..111.1.।11 111111	
AtWRKY19_cDNA	3964	--CCATCTATGGTTGATTTAGAATCGCTTGAGGTTCTAAATCTTTCGGGT	4011
PgNBS-LRR_WRK	265	TGTGCA-------GCAATGTCCC-----------------------AAACT	285
		111.11 1.11..1111 .1111	
AtWRKY19_cDNA	4012	TGTTCAAAGCTAGGGAACTTCCCGGAGATCTCACCAAATGTGAAAGAACT	4061
PgNBS-LRR_WRK	286	GCA-ATGGGGTTCGG----------AAGTAAT	307
		1.111111 1.11 111.1111	
AtWRKY19_cDNA	4062	GTACATGGG--TGGGACTATGATACAAGAAATCCCGTCATCGATTAAGAA	4109
PgNBS-LRR_WRK	308	-GAGCAGCTGCGCC-----AAC----GAC	326
		111.1.111..11 111 111	
AtWRKY19_cDNA	4110	CTTGGTATTGCTTGAGAAACTGGACCTGGAAAACAGTAGACATCTCAAGA	4159
PgNBS-LRR_WRK	327	--TGGGAGAAG--GCTTCA--TGGAAGCAT------ACTC	354
		I...1.111 .11.11 1.1111111 1111	
AtWRKY19_cDNA	4160	ATCTTCCAACAAGCATCTACAAGTTGAAGCATCTTGAAACTCTAAATCTT	4209
PgNBS-LRR_WRK	355	-CAGTGATGAA---------AGCGAGTT--GGACTCCAGT-------GAT	385
		1111.11 .1 l1111.11 .11111 111	
AtWRKY19_cDNA	4210	TCAG-GCTGCATAAGCCTGGAGCGATTTCCAGACTC--GTCGAGAAGGAT	4256
PgNBS-LRR_WRK	386	GAAA-GC--GAG----TTGGA-------------------AAATA-	404
		1111 11 .11 11111 11.1	
AtWRKY19_cDNA	4257	GAAATGCTTAAGGTTTTTGGATTTAAGCAGGACAGACATTAAAGAGCTGC	4306
PgNBS-LRR_WRK	405		421
		1.11.11.1.1 1.1.1।	
AtWRKY19_cDNA	4307	CCTCTTCCATATCGTATCTGACTGCTCTTGACGAACTATTATTCGTAGAC	4356
PgNBS-LRR_WRK	422	TCCGGTGATGAAA---GCGAGTTGGAA--AAT----ATACAAATGGAAGC	462
		111.1 11 1111 11.11111.11 111 11.1.111..11..	
AtWRKY19_cDNA	4357	TCCAG-GA-GAAACTCGCCAGTTGTAACCAATCCCAATGCCAATTCAACT	4404
PgNBS-LRR_WRK	463	GAGTT------------GTTAAATA----------------TACTCC--	481
		11111 11.11.11 11111	
AtWRKY19_cDNA	4405	GAGTTGATGCCTTCTGAGTCAAGTAAGCTTGAGATCTTAGGTACTCCGGC	445

PgNBS-LRR_WRK 482 ATGAAATCGAGTTGT 信 ..... 503
11
I.I।।.I IIII।। |।1।।
AtWRKY19_cDNA 4455 AGATAACGAAGT--AGTTGTTGGTGGTACGGTAGAGAAAACCCGTGGTAT4502
PgNBS-LRR_WRK 504 ACTCCAG--------TGATGAA----AGCGAGT-TGTAA ..... 529
AtWRKY19_cDNA 4503 TGAACGAACGCC-GACTATTTTGGTGAAGTCGAGAGAGTATCTAATTCCC4551
PgNBS-LRR_WRK 530 AATGGG ..... 538
AtWRKY19_cDNA 4552 GATGATGTTGTGGCGGTTGGTGGTGATATTAAGGGGCTAAGACCACCAGT ..... 4601
PgNBS-LRR_WRK 539 AGACTTC
11.11 . I।II. III ..... 560
AtWRKY19_cDNA 4602 --ACTTCAGCTCCAACCAGCAATGAAACTATCTCATATTCCTCGAGGATC ..... 4649
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4650 AACTTGGGATTTCGTTACGCATTTCGCTCCACCTGAAACAGTTGCGCCGC ..... 4699
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4700 CGAGTTCCTCTTCAGAAGCCAGGGAAGAGGAAGTGGAAACGGAAGAGACG ..... 4749
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4750 GGAGCTATGTTTATCCCATTGGGGGATAAGGAGACATGCTCATTCACTGT ..... 4799
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4800 AAACAAGGGTGACTCCTCAAGGACAATATCTAATACGTCGCCGATTTATG ..... 4849
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4850 CCTCCGAAGGATCTTTCATCACGTGTTGGCAGAAGGGTCAACTTCTGGGA ..... 4899
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4900 CGAGGATCATTAGGGTCCGTATATGAAGGCATTTCAGCAGACGGGGACTT ..... 4949
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 4950 CTTTGCTTTCAAGGAAGTTTCACTACTTGATCAGGGAAGTCAGGCACATG ..... 4999
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5000 AATGGATACAACAAGTCGAGGGGGGGATTGCGCTACTTAGTCAGCTTCAG ..... 5049
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5050 CATCAGAATATCGTGCGATATCGTGGCACAACTAAGGACGAGTCGAATTT ..... 5099
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5100 GTACATTTTTCTTGAACTTGTAACCCAAGGGTCCCTTCGAAAACTCTACC ..... 5149
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5150 AAAGAAACCAGCTTGGGGACTCTGTAGTCTCCTTATACACAAGACAGATT ..... 5199
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5200 CTTGATGGATTGAAATATCTCCACGATAAAGGTTTTATACACAGGAACAT ..... 5249
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5250 TAAATGTGCAAATGTATTGGTGGACGCTAATGGAACAGTTAAACTTGCAG ..... 5299
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5300 ATTTTGGATTGGCTAAGGTAATGTCCCTCTGGCGAACTCCGTATTGGAAT ..... 5349
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5350 TGGATGGCTCCAGAGGTTATTCTTAACCCGAAGGATTATGATGGTTATGG ..... 5399
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5400 AACTCCAGCTGATATATGGAGCCTTGGGTGTACTGTGCTAGAAATGTTGA ..... 5449
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5450 CTGGTCAGATTCCCTACTCCGATCTGGAAATCGGTACAGCCTTGTATAAC ..... 5499
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5500 ATTGGAACGGGTAAGCTTCCGAAAATACCTGATATTCTATCGCTAGACGC ..... 5549
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5550 CCGGGATTTCATACTTACGTGTCTCAAAGTGAACCCGGAAGAGCGGCCAA ..... 5599
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5600 CTGCAGCTGAGCTGCTTAACCATCCATTTGTGAATATGCCATTACCATCC ..... 5649
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5650 TCGGGCTCAGGTTCAGTATCTTCGCTCCTCCGTGGATGAGGCTAATTTTA ..... 5699
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5700 GAAGATTGCCTTCGATAGGTGAAACTTTGGGCTTTGTTGTCATGAGAATA ..... 5749
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5750 TATTAGAATCAAAAGTTGTATATATATTCTAACATATGCCCTAATATGCT ..... 5799
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5800 TTGCACTAAAATCGTTTGAATCTTCTGTTCCATACTTCACGTTGACAAAT ..... 5849
PgNBS-LRR_WRK 561 ..... 560
AtWRKY19_cDNA 5850 CACAATTTTTTTTATGTCTTTTGTTTCTTTTTTTTTGCTGAA ..... 5891

Figure S3.6 Alignment of PgNBS-LRR/WRKY and Arabidopsis WRKY19 conducted in
EMBOSS Needle nucleotide alignment (ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html).


Figure S3.7 Overview of LRR and WRKY domains in PgNBS-LRR/WRKY, Arabidopsis WRKY16 and Arabidopsis WRKY19. Domains were determined using NCBI domain finder (ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

Table S3.1 Similarity of white spruce contigs promoters and coding sequences of $\operatorname{PgSAL1}$ and $P g S A L 5$. Queries were submitted to PG29 v4.0 and WS77111 v1.0 assemblies through ConGenie (congenie.org) BLASTN. Number of overlapping nucleotides and percent identity determined by EMBOSS Needle nucleotide alignment (ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html).

Top contigs were selected based on preliminary alignments performed in EMBOSS.

Query	PG29 Assembly				
	Contig	Average e-value from ConGenie BLAST (lowest)	Average identity (average similarity) from ConGenie BLAST	\# of overlapping nucleotides (bp), out of total nucleotides (bp)	$\begin{gathered} \% \\ \text { identity } \end{gathered}$
SAL1cDNA 962bp	$\underset{\text { Pg- }}{\text { 01r141201s2137277 }}$	$5.49 \mathrm{e}-9$ (7.84e-147)	92.91 \% (92.91 \%)	699/2292	30.5
	$\begin{gathered} \text { Pg- } \\ 01 \mathrm{r} 141201 \mathrm{~s} 2554914 \end{gathered}$	$\begin{gathered} 1.27 \mathrm{e}-111(7.84 \mathrm{e}- \\ 147) \end{gathered}$	91.61 \% (91.61 \%)	767/3173	24.2
	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2305140 \end{gathered}$	$\begin{gathered} 6.98 \mathrm{e}-101(7.84 \mathrm{e}- \\ 147) \end{gathered}$	90.94 \% (90.94\%)	719/35701	2


SAL1 promoter	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2137277 \end{gathered}$	$0.00 \mathrm{e}+0(0.00 \mathrm{e}+0)$	94.47 \% (94.47 \%)	1048/2184	48
(containing cloned	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2137278 \end{gathered}$	$9.81 \mathrm{e}-45(0.00 \mathrm{e}+0)$	93.16 \% (93.16 \%)	941/1524	61.7
region of UTR and	$\begin{gathered} \text { Pg- } \\ 01 \mathrm{r} 141201 \mathrm{~s} 2498919 \end{gathered}$	$1.71 \mathrm{e}-11(0.00 \mathrm{e}+0)$	94.26 \% (94.26 \%)	686/3018	22.7
$\begin{aligned} & \text { cDNA) } \\ & 1099 \mathrm{bp} \end{aligned}$	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2356730 \end{gathered}$	$8.98 \mathrm{e}-19(0.00 \mathrm{e}+0)$		787/13508	5.8
$\begin{gathered} \text { SAL5 } \\ \text { cDNA } \\ 1005 \mathrm{bp} \end{gathered}$	$\underset{\text { Pg- }}{01 \mathrm{r} 141201 \mathrm{~s} 2137278}$	7.70e-14 (7.30e-101)	95.54 \% (95.54 \%)	549/1745	31.5
	$\begin{gathered} \text { Pg- } \\ 01 \mathrm{r} 141201 \mathrm{~s} 2554914 \end{gathered}$	$7.84 \mathrm{e}-70$ (7.30e-101)	92.78 \% (92.78 \%)	722/3216	22.5
	$\begin{gathered} \text { Pg- } \\ 01 \mathrm{r} 141201 \mathrm{~s} 2356730 \end{gathered}$	$1.14 \mathrm{e}-8$ (7.30e-101)	87.63 \% (87.63 \%)	363/13935	2.6
	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2305140 \end{gathered}$	$4.52 \mathrm{e}-8$ (7.30e-101)	87.44 \% (87.44 \%)	718/35695	2
	$\begin{gathered} \text { Pg- } \\ 01 \mathrm{r} 141201 \mathrm{~s} 2880671 \end{gathered}$	$4.35 \mathrm{e}-5$ (7.30e-101)	87.16 \% (87.16 \%)	691/3750	18.4
	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2577914 \end{gathered}$	$1.36 \mathrm{e}-40$ (7.30e-101)	88.55 \% (88.55 \%)	639/117492	0.5
	$\begin{gathered} \mathrm{Pg}- \\ 01 \mathrm{r} 141201 \mathrm{~s} 2613660 \end{gathered}$	$3.32 \mathrm{e}-38$ (7.30e-101)	$\begin{gathered} 100.00 \%(100.00 \\ \%) \end{gathered}$	673/10911	6.2
	$\begin{gathered} \text { Pg- } \\ 01 \mathrm{r} 141201 \mathrm{~s} 0119707 \end{gathered}$	$2.79 \mathrm{e}-6$ (7.30e-101)	89.14 \% (89.14 \%)	287/2452	11.7
	Pg-	8.10e-36 (7.30e-101)	87.80 \% (87.80 \%)	681/5196	13.1


|  | 01 r 141201 s 2765746 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


	Contig	Average e-value   from ConGenie   BLAST (lowest)	Average identity   (average   similarity) from   ConGenie BLAST	\# of   overlapping   nucleotides   (bp), out of   total	
identity					


SAL5	02r141203s2780164		\%)		
$1005 \text { bp }$	$\underset{\text { Pg- }}{02 \mathrm{r} 141203 \mathrm{~s} 2391889}$	$5.81 \mathrm{e}-77$ (3.21e-103)	$94.33 \%(94.33 \%)$	731/16958	4.3
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 0871761 \end{gathered}$	$3.45 \mathrm{e}-72$ (3.21e-103)	93.30 \% (93.30 \%)	545/1350	40.4
	$\underset{\text { Pg- }}{02 \mathrm{r} 141203 \mathrm{~s} 2614426}$	$2.23 \mathrm{e}-15$ (3.21e-103)	91.13 \% (91.13 \%)	677/3812	17.8
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2388593 \end{gathered}$	$8.41 \mathrm{e}-70$ (3.21e-103)	92.78 \% (92.78 \%)	684/16816	4.1
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2747360 \end{gathered}$	$1.99 \mathrm{e}-10$ (3.21e-103)	88.24 \% (88.24 \%)	738/72353	1
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2902978 \end{gathered}$	$2.34 \mathrm{e}-5$ (3.21e-103)	89.29 \% (89.29 \%)	712/383863	0.2
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 3008384 \end{gathered}$	$2.56 \mathrm{e}-48$ (3.21e-103)	88.14 \% (88.14 \%)	744/2836	26.2
	$\begin{gathered} \mathrm{Pg}- \\ 02 \mathrm{r} 141203 \mathrm{~s} 2920848 \\ \hline \end{gathered}$	$1.85 \mathrm{e}-4$ (3.21e-103)	87.39 \% (87.39 \%)	772/79115	1
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2464582 \end{gathered}$	$0.00 \mathrm{e}+0(0.00 \mathrm{e}+0)$	93.96 \% (93.96 \%)	1390/208246	0.7
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2713577 \end{gathered}$	$0.00 \mathrm{e}+0(0.00 \mathrm{e}+0)$	94.11 \% (94.11 \%)	1416/32715	4.3
Putative SAL5 promoter (containing cloned region of UTR and cDNA) 1932 bp	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2958320 \end{gathered}$	$3.79 \mathrm{e}-151(0.00 \mathrm{e}+0)$	94.21 \% (94.21 \%)	1225/5389	22.7
	$\begin{gathered} \text { Pg- } \\ 02 \mathrm{r} 141203 \mathrm{~s} 2699671 \end{gathered}$	$0.00 \mathrm{e}+0(0.00 \mathrm{e}+0)$	93.40 \% (93.40 \%)	1260/3592	35.1


Pg-	$2.61 \mathrm{e}-162(0.00 \mathrm{e}+0)$	94.90 \% (94.90 \%)	1297/3804	34.1
02r141203s1417763				
Pg-	$6.36 \mathrm{e}-160(0.00 \mathrm{e}+0)$	94.77 \% (94.77 \%)	880/2242	39.3
02r141203s1829115				
Pg-	$1.51 \mathrm{e}-137(0.00 \mathrm{e}+0)$	93.27 \% (93.27 \% )	1641/15863	10.3
02r141203s2913339				
Pg-	$4.23 \mathrm{e}-164(0.00 \mathrm{e}+0)$	95.18 \% (95.18 \%)	1064/2159	49.3
02r141203s3274604				
Pg-	$6.36 \mathrm{e}-160(0.00 \mathrm{e}+0)$	94.58 \% (94.58 \%)	1065/2163	49.2
02r141203s0593557				
Pg-	$3.78 \mathrm{e}-155(0.00 \mathrm{e}+0)$	93.26 \% (93.26 \% )	1333/5085	26.2
02r141203s2554061				

Table S3.2 Query contigs and cloned portions of genomic DNA to BLAST. Contigs denoted by "PG-\#\#\#\#" were submitted to a
MEGABLASTn discontiguous search. Cloned portions of the SAL5 cDNA and /or cloned portion of UTR submitted to
MEGABLASTn discontiguous BLAST only against Picea glauca sequences. Output of the BLAST searches are listed below.

Original query used to search ConGenie against the PG29 of WS77111 assembly (If applicable)	Query					
SAL1 cDNA query PG29	Pg-01r141201s2137277					
Description	Max score	Total score	Query cover	E value	Ident	Accession
Picea glauca clone GQ03605_C12 mRNA sequence	547	1211	37\%	$\begin{gathered} 8.00 \mathrm{E}- \\ 154 \end{gathered}$	92\%	BT114920.1
Picea glauca clone GQ03232_K15 mRNA sequence	399	704	30\%	$\begin{gathered} 3.00 \mathrm{E}- \\ 109 \end{gathered}$	83\%	BT111101.1
Picea glauca clone GQ03806_I20 mRNA sequence	390	1369	41\%	$\begin{gathered} 1.00 \mathrm{E}- \\ 106 \end{gathered}$	82\%	BT116779.1
Picea glauca clone GQ02822_N14 mRNA sequence	279	784	30\%	$6.00 \mathrm{E}-73$	92\%	BT105463.1
Picea glauca clone GQ03707_I04 mRNA sequence	257	399	13\%	$2.00 \mathrm{E}-66$	89\%	BT115854.1
Picea glauca clone	192	192	6\%	7.00E-47	92\%	BT115613.1


GQ03702_K12 mRNA   sequence   Picea glauca clone	132	441	$20 \%$	$6.00 \mathrm{E}-29$	$86 \%$	BT118602.1
GQ04008_C02 mRNA   sequence	57.2	57.2	$6 \%$	$4.00 \mathrm{E}-06$	$70 \%$	BT100378.1
Picea glauca clone   GQ0012_K17 mRNA   sequence	53.6	53.6	$5 \%$	$4.00 \mathrm{E}-05$	$70 \%$	BT105004.1
Picea glauca clone   GQ02817_J10 mRNA   sequence	53.6	53.6	$7 \%$	$4.00 \mathrm{E}-05$	$70 \%$	BT102975.1
Picea glauca clone   GQ0204_E19 mRNA   sequence	44.6	44.6	$6 \%$	0.022	$67 \%$	BT104415.1
Picea glauca clone   GQ02810_C03 mRNA   sequence	42.8	42.8	$5 \%$	0.078	$68 \%$	BT101011.1
Picea glauca clone   GQ0063_K04 mRNA   sequence						


| SAL1 cDNA query |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WS77111 assembly |
| Description |$\quad$ Max score | Total | Query cover | E value | Ident | Accession |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Picea glauca clone | 551 | 637 | $10 \%$ | $1.00 \mathrm{E}-154$ | $92 \%$ | BT114920.1 |
| GQ0365_C12 mRNA <br> sequence | 405 | 405 | $8 \%$ | $1.00 \mathrm{E}-110$ | $83 \%$ | BT1111101.1 |
| Picea glauca clone <br> GQ03232_K15 mRNA <br> sequence |  |  |  |  |  |  |
| Picea glauca clone <br> GQ03806_I20 mRNA | 396 | 799 | $11 \%$ | $6.00 \mathrm{E}-108$ | $82 \%$ | BT116779.1 |


sequence   Picea glauca clone   GQ0322_F06 mRNA   sequence	333	333	$6 \%$	$6.00 \mathrm{E}-89$	$88 \%$	BT110609.1
Picea glauca cultivar PG29   clone BAC PGB02 3-   carene synthase gene,   complete cds, complete   sequence	284	284	$5 \%$	$3.00 \mathrm{E}-74$	$84 \%$	FJ60917
SAL5 cDNA query, PG29   assembly						
Description	Max score	Total	Query cover	E value	Ident	Accession
Picea glauca clone   GQ03619_H08 mRNA   sequence	462	841	$6 \%$	$2.00 \mathrm{E}-128$	$80 \%$	BT115517.1
Picea glauca clone   GQ03605_C12 mRNA   sequence	457	457	$2 \%$	$7.00 \mathrm{E}-127$	$86 \%$	BT114920.1
Picea glauca clone   GQ03232_K15 mRNA   sequence	383	383	$2 \%$	$1.00 \mathrm{E}-104$	$81 \%$	BT111101.1
Picea glauca clone   GQ03806_I20 mRNA   sequence	259	259	$3 \%$	$3.00 \mathrm{E}-67$	$73 \%$	BT116779.1
Picea glauca clone   GQ03707_I04 mRNA   sequence	253	253	$1 \%$	$1.00 \mathrm{E}-65$	$89 \%$	BT115854.1
Picea glauca clone   GQ02822_N14 mRNA   sequence   Picea glauca clone	251	251	$1 \%$	$5.00 \mathrm{E}-65$	$89 \%$	BT105463.1



sequence						
Picea glauca clone	210	210	9\%	$2.00 \mathrm{E}-$	87\%	BT105463.1
GQ02822_N14 mRNA sequence				52		
Picea glauca clone	208	208	9\%	$7.00 \mathrm{E}-$	86\%	BT115854.1
$\begin{aligned} & \text { GQ03707_I04 mRNA } \\ & \text { sequence } \end{aligned}$				52		
Picea glauca clone	150	150	8\%	$2.00 \mathrm{E}-$	83\%	BT118602.1
$\begin{gathered} \text { GQ04008_C02 mRNA } \\ \text { sequence } \end{gathered}$				34		
Picea glauca cultivar PG29 clone BAC PGB02 3-	150	150	7\%	$\begin{gathered} 2.00 \mathrm{E}- \\ 34 \end{gathered}$	87\%	FJ609174.2

carene synthase gene, complete cds, complete sequence

SAL5 cDNA query WS77111 assembly Description	Pg-02r141203s2780164					
	Max score	Total score	Query cover	E value	Ident	Accession
Picea glauca clone GQ03605_C12 mRNA sequence	551	637	10\%	$\begin{gathered} 1.00 \mathrm{E}- \\ 154 \end{gathered}$	92\%	BT114920.1
Picea glauca clone GQ03232_K15 mRNA sequence	405	405	8\%	$\begin{aligned} & 1.00 \mathrm{E}- \\ & 110 \end{aligned}$	83\%	BT111101.1
Picea glauca clone GQ03806_I20 mRNA sequence	396	799	11\%	$\begin{gathered} 6.00 \mathrm{E}- \\ 108 \end{gathered}$	82\%	BT116779.1
Picea glauca clone GQ03224_F06 mRNA sequence	333	333	6\%	$\begin{aligned} & 6.00 \mathrm{E}- \\ & 89 \end{aligned}$	88\%	BT110609.1
Picea glauca cultivar PG29	284	284	5\%	$3.00 \mathrm{E}-$	84\%	FJ609174.2


clone BAC PGB02 3carene synthase gene, complete cds, complete sequence				74		
Picea glauca clone GQ02822_N14 mRNA sequence	282	443	8\%	$\begin{gathered} 1.00 \mathrm{E}- \\ 73 \end{gathered}$	92\%	BT105463.1
Picea glauca clone GQ0204_I03 mRNA sequence	280	280	6\%	$\begin{aligned} & 3.00 \mathrm{E}- \\ & 73 \end{aligned}$	83\%	BT102990.1
Picea glauca clone GQ03707_I04 mRNA sequence	262	262	4\%	$\begin{gathered} 9.00 \mathrm{E}- \\ 68 \end{gathered}$	90\%	BT115854.1
Picea glauca 2 S albumin (pgi2S) pseudogene	210	210	5\%	$\begin{gathered} 5.00 \mathrm{E}- \\ 52 \end{gathered}$	81\%	U92078.1
SAL5 cDNA query			Pg-02r141203			
Description	Max score	Total score	Query cover	E value	Ident	Accession
Picea glauca clone GQ03605_C12 mRNA sequence	426	426	14\%	$\begin{gathered} 2.00 \mathrm{E}- \\ 117 \end{gathered}$	84\%	BT114920.1
Picea glauca clone GQ03232_K15 mRNA sequence	347	347	14\%	$\begin{aligned} & 2.00 \mathrm{E}- \\ & 93 \end{aligned}$	80\%	BT111101.1
$\begin{gathered} \text { Picea glauca clone } \\ \text { GQ03806_I20 mRNA } \\ \text { sequence } \end{gathered}$	246	246	7\%	$\begin{aligned} & 4.00 \mathrm{E}- \\ & 63 \end{aligned}$	88\%	BT116779.1
Picea glauca clone GQ02822_N14 mRNA sequence	242	242	7\%	$\begin{gathered} 5.00 \mathrm{E}- \\ 62 \end{gathered}$	88\%	BT105463.1



sequence						
Picea glauca clone	259	259	$6 \%$	$1.00 \mathrm{E}-$	$78 \%$	BT105463.1
GQ02822_N14 mRNA						
sequence						


	Putative SAL5 promoter containing cloned cDNA portion					
Description	Max score	Total score	Query cover	Evalue	Ident	Accession
Picea glauca clone GQ03806_I20 mRNA sequence	235	235	11\%	$\begin{gathered} 6.00 \mathrm{E}- \\ 60 \end{gathered}$	83\%	BT116779.1
Picea glauca clone GQ02822_N14 mRNA sequence	219	219	13\%	$\begin{gathered} 4.00 \mathrm{E}- \\ 55 \end{gathered}$	79\%	BT105463.1
Picea glauca clone GQ03232_K15 mRNA sequence	210	316	10\%	$\begin{aligned} & 2.00 \mathrm{E}- \\ & 52 \end{aligned}$	93\%	BT111101.1
Picea glauca clone GQ03605_C12 mRNA sequence	170	170	7\%	$\begin{gathered} 2.00 \mathrm{E}- \\ 40 \end{gathered}$	86\%	BT114920.1
Picea glauca clone GQ03707_I04 mRNA sequence	165	165	7\%	$\begin{gathered} 8.00 \mathrm{E}- \\ 39 \end{gathered}$	86\%	BT115854.1
$\begin{gathered} \text { Picea glauca clone } \\ \text { GQ04008_C02 mRNA } \end{gathered}$	82.4	82.4	3\%	$\begin{gathered} 8.00 \mathrm{E}- \\ 14 \end{gathered}$	85\%	BT118602.1

Putative SAL5 only cloned UTR portion and cloned cdna

Description	Max score	Total   score	Query cover	E value	Ident	Accession
Picea glauca clone   GQ03806_I20 mRNA   sequence	235	309	$100 \%$	$6.00 \mathrm{E}-$	$83 \%$	BT116779.1
Picea glauca clone   GQ0282__N14 mRNA   sequence	212	212	$83 \%$	$7.00 \mathrm{E}-$	$86 \%$	BT105463.1
Picea glauca clone   GQ03232_K15 mRNA   sequence	210	316	$90 \%$	$2.00 \mathrm{E}-$	$93 \%$	BT111101.1
Picea glauca clone   GQ03605_C12 mRNA   sequence	170	170	$64 \%$	$2.00 \mathrm{E}-$	$86 \%$	BT114920.1
Picea glauca clone   GQ03707_I04 mRNA   sequence	165	165	$64 \%$	41		
Picea glauca clone   GQ03702_K12 mRNA   sequence	80.6	80.6	$38 \%$	$3.00 \mathrm{E}-$	$86 \%$	BT115854.1
Picea glauca clone   GQ04008_C02 mRNA   sequence	69.8	69.8	$28 \%$	14	$82 \%$	BT115613.1
Picea glauca clone   GQ0292_K19 mRNA   sequence	39.2	39.2	$10 \%$	$5.00 \mathrm{E}-$	$86 \%$	BT118602.1
Picea glauca clone   GQ0205_L18 mRNA   sequence	35.6	35.6	$8 \%$	11		


Description	Max score	Total   score	Query cover	E value	Ident	Accession
Picea glauca clone   GQ03232_K15 mRNA   sequence	105	105	$63 \%$	$2.00 \mathrm{E}-$	$100 \%$	BT111101.1
Picea glauca clone   GQ03806_I20 mRNA   sequence	73.4	73.4	$71 \%$	$1.00 \mathrm{E}-$	$85 \%$	BT116779.1
Picea glauca clone   GQ04008_C02 mRNA   sequence	69.8	69.8	$69 \%$	$2.00 \mathrm{E}-$	$86 \%$	BT118602.1
Picea glauca clone   GQ02822_N14 mRNA   sequence	55.4	55.4	$59 \%$	$4.00 \mathrm{E}-$	$84 \%$	BT105463.1
Picea glauca clone   GQ0205_L18 mRNA   sequence	35.6	35.6	$20 \%$	07		
Picea glauca clone   GQ02816_C17 mRNA   sequence	31.9	31.9	$24 \%$	0.35	$100 \%$	BT103051.1


	Putative SAL5 cloned cDNA portion only					
Description	Max score	Total score	Query cover	Evalue	Ident	Accession
Picea glauca clone GQ03232_K15 mRNA sequence	192	192	100\%	$\begin{gathered} 3.00 \mathrm{E}- \\ 48 \end{gathered}$	93\%	BT111101.1
Picea glauca clone GQ03806_I20 mRNA sequence	176	176	100\%	$\begin{gathered} 3.00 \mathrm{E}- \\ 43 \end{gathered}$	90\%	BT116779.1
Picea glauca clone GQ02822_N14 mRNA	158	158	100\%	$\begin{gathered} 7.00 \mathrm{E}- \\ 38 \end{gathered}$	87\%	BT105463.1


sequence						
Picea glauca clone   GQ03605_C12 mRNA   sequence	152	152	$100 \%$	$3.00 \mathrm{E}-$	$86 \%$	BT114920.1
Picea glauca clone	149	149	$100 \%$	$4.00 \mathrm{E}-$	$85 \%$	BT115854.1
GQ03707_I04 mRNA   sequence	80.6	80.6	$64 \%$	25		
Picea glauca clone   GQ03702_K12 mRNA   sequence	39.2	39.2	$17 \%$	$0.0 \mathrm{E}-$	$82 \%$	BT115613.1
Picea glauca clone   GQ02902_K19 mRNA   sequence	31.9	31.9	$12 \%$	7.1	$100 \%$	BT114832.1
Picea glauca clone   GQ03603_F04 mRNA   sequence						

Table S3.3 Sequence similarity of yeast one-hybrid PgMYB1 to previously identified PgMYB genes. MYB sequences were obtained from Bedon et al. (2007), and alignments and sequence similarities were conducted in EMBOSS Needle nucleotide alignment.

MYB Gene	NCBI Accession \#	Amino Acid Sequence Similarity   to Y1H PgMYB (\%)
PgMYB1	EF601064.1	98.5
PgMYB2	EF601065.1	30.8
PgMYB3	EF601066.1	31.9
PgMYB4	EF601067.1	37.6
PgMYB5	EF601068.1	36.3
PgMYB6	EF601069.1	29.4
PgMYB7	EF601070.1	29.6
PgMYB8	EF601071.1	30.4
PgMYB9	EF601072.1	24.4
PgMYB10	EF601073.1	32.9
PgMYB11	EF601074.1	27.2
PgMYB12	EF601075.1	35.6
PgMYB13	EF601076.1	27.9

### 4.0 Conclusions

Dormancy related research to date has predominantly focused on angiosperm species, with some progress in Norway spruce (Picea abies (L.) H. Karst, Pa) and white spruce (Picea glauca (Moench.) Voss, Pg; Gyllenstrand et al. 2007, Holefors et al. 2009, Karlgren et al. 2011, Asante et al. 2011, El Kayal et al. 2011, Karlgren et al. 2013, Galindo-Gonzalez et al. 2012, Galindo-Gonzalez et al. 2015, Hamilton et al. 2016, Opseth et al. 2016). Our experiments aimed to elucidate the regulatory elements that play a role in the processes involved in the transition from active growth to dormancy. We used the well-established

CONSTANS/FLOWERING LOCUS T (CO/FT) regulatory module (Koorneef et al. 1991, Böhlenius et al. 2006) to frame our initial hypotheses that $P g S V P$-like genes may play a similar role to the angiosperm orthologs of SHORT VEGETATIVE PHASE (SVP) that have been shown to participate in the initiation of bud formation, growth cessation, and/or dormancy induction ( Li et al. 2009, Jiménez et al. 2009, Wu et al. 2011). Our objectives in this study were to (1) identify white spruce genes that may share functional conservation with angiosperm $S V P$ genes through phylogenetic analysis, (2) to determine if these white spruce $S V P$-like genes displayed distinct or similar transcriptional profiles across the stages of bud development, and (3) investigate the upstream regulatory pathways that may control white spruce $S V P$-like genes by employing yeast one-hybrid and identifying conserved promoter motifs.

To investigate possible functions, we identified candidate $P g S V P$-like genes through a robust phylogenetic analysis of angiosperm and gymnosperm MADS-box genes. We determined $P g S V P$-like genes share a common ancestor with angiosperm SVP/AGAMOUS-LIKE 24 (AGL24) genes, and thereby white spruce genes have been named SVP/AGL24 (SAL). Transcript profiles of the seven $P g S A L$ genes identified to be sister to angiosperm $S V P / A G L 24$ were
examined across developmental stages of bud formation in terminal buds under short day (SD) and long day (LD) conditions to hypothesize potential functions of these genes in white spruce. Transcriptional evidence suggests $\operatorname{PgSAL}$ genes may have roles across the different stages of bud development, including early (PgSAL1-4, 5) to mid (PgSAL3, 7) and late-phase development (PgSAL6), indicating a divergence in function from one another.

To provide additional evidence for possible functional roles of $P g S A L$, we investigated the upstream regulatory pathway by analysing the promoter sequences cloned from two $P g S A L$ genes, $P g S A L 1$ and $P g S A L 5$. These genes were chosen because they were shown to be homologous to the angiosperm $S V P / A G L 24$ clade, and transcriptional data suggested PgSAL1 and PgSAL5 may function in the early stages of bud development. Furthermore, we were able to clone substantial fragments (920 bp or greater) of the upstream regulatory regions of PgSAL1 and PgSAL5. Based on in silco analysis of the cloned regions of promoters against the SAL1 and SAL5 cDNA sequences, it was determined the SAL1 promoter is most likely upstream of the SAL1 gene, whereas were cannot conclusively demonstrate with currently available genomic resources that the $S A L 5$ promoter is upstream the $S A L 5$ gene. For this reason, have named this promoter the "putative SAL5 promoter", until further experimentation or resources are available to establish this relationship between promoter and coding sequence. Although we cannot conclusively confirm the identity of the putative SAL5 promoter, we can be certain that this putative $S A L 5$ promoter is not the promoter of $S A L 1$, because the two promoters share little sequence identity, and the TFBS and Y1H analyses demonstrate that the SAL1 promoter and putative $S A L 5$ promoter have different binding partners. This putative $S A L 5$ promoter may be upstream of $S A L 5$, or this promoter may be upstream of a different $S A L$ gene.

A transcription factor binding sites (TFBS) database search of PgSAL1 and putative PgSAL5 promoters revealed that these genes may be regulated by hormones and environmental cues, some of which have been linked to short day-induced growth cessation and/or bud development in angiosperms (Juntilla and Jensen 1988, Olsen et al. 1995a, b, Olsen et al. 1997a, Rohde et al. 2002, Ruonala et al. 2006, Ruttink et al. 2007, Kalcits et al. 2009, Davies 2010, Tanino et al. 2010). DNA-protein interactions identified from yeast-one hybrid experiments reinforce some of the regulatory pathways established by the TFBS search. The established TFBS [ABA INSENSITIVE 4 (ABI4), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 5 (ATHB5), EARLY METHIONINE BINDING PROTEIN-1 (EmBP1), ARABIDOPSIS THAIANA HOMEOBOX 1 (ATHB1), COMMON PLANT RGULATOR FACTOR 2 (CPRF2), COMMON PLANT RGULATOR FACTOR 3 (CPRF3), RELATED TO ABI1/VP1 (RAV1), TBP-ASSOCIATED FACTOR 1 (TAF1), ARABIDOPSIS THALIANA MYB DOMAIN PROTEIN 15 (ATMYB15)] paired with the interaction of PgASR1-like, PgSOC1-like and PgFLX-like proteins with the PgSAL1 promoter suggest that $P g S A L 1$ expression is linked to the ABA, light and low temperatures pathways. The PgSOC1-like and PgFLX-like interactions demonstrate a possible link between $P g S A L 1$ and the $F T / C O$ regulatory pathway. The interaction of PgNBS-LRR/WRKY-like, PgMYB1, PgCPC/ETC-like in addition to the determined TFBS [ABA INSENSITIVE 4 (ABI4), AGAMOUS (AG), AGAMOUS-LIKE 1 (AGL1), AGAMOUSLIKE 15 (AGL15), AGAMOUS-LIKE 2 (AGL2), ARABINOGALACTAN PROTEIN 1 (AGP1), AINTEGUMENTA (ANT), ARABIDOPSIS RESPONSE REGULATOR 10 (ARR10), ARABIDOPSIS THALIANA MYB DOMAIN PROTEIN 77 (ATMYB77), BASIC HELIX LOOP HELIX 66 (BHLH66), DOF ZINC FINGER PROTEIN 2 (DOF2), DOF ZINC FINGER PROTEIN 3 (DOF3), E2F, GAMYB, GRASSY TILLERS 1 (GT1), KNOTTED-1-LIKE 3
(KNOX3), MYB80, OPAQUE 2 (O2), PYRIMIDINE-BOX BINDING FACTOR (PBF), PROLIFERATING CELL FACTOR 2 (PCF2), RELATED TO ABI1/VP1 (RAV1), RICE TRANSCRIPTION ACTIVATOR -1 (RITA1)] provide evidence that PgSAL5 may be involved in the developmental regulatory pathway.

Novel regulatory pathways suggested by the promoter analyses has led us to further expand on the possible functions of PgSALI 1 and $\mathrm{PgSAL5} 5$ beyond the model of activitydormancy regulation proposed by Singh et al. (2017). The interaction of PgMYB1 with the putative PgSAL5 promoter indicates a possible link to the regulation of cell development and cell wall biosynthesis during growth cessation. As photoperiods shorten, the tree's active growth cycle terminates, which results in the cessation of growth at meristems (Rohde and Bhalerao 2007), including secondary growth at the vascular cambium (Little and Bonga 1974, EspinosaRuiz et al. 2004). Potential functions of PgSAL5 extend to cell fate determination and defensive roles, as determined by promoter analyses. Cell fate determination could be broadly interpreted to mean that $\operatorname{PgSAL5}$ may have a role in cell development in the terminal bud. $P g S A L 5$ 's role in plant defense may function independently of $P g S A L 5$ 's role in bud formation and/or growth cessation. Evidence of the involvement of PgSAL5 in the defense pathway appear in both the TFBS search and the Y1H analysis, which leads us to believe this may be a genuine role of this gene. If this finding is valid then this function would be a departure from the roles $\operatorname{PgSAL}$ genes are traditionally assumed to participate in, based on the angiosperm model. Furthermore, PgSAL1 appears to be a component of the abiotic response, specifically the response to low temperatures and ABA . Low temperatures are an environmental cue commonly correlated with reduced day length, which can influence bud set (Mølmann et al. 2005). The ability of Arabidopsis thaliana (L.) Heynh. (At) SVP to inhibit transcription of $F T$ by complexing with

FLC is greater at lower temperatures $\left(16^{\circ} \mathrm{C}\right)$, demonstrating the involvement of $S V P$ in the thermosensory pathway (Lee et al. 2007, Li et al. 2008). Increased ABA content has been linked to bud development and maturation in poplar and birch (Rohde et al. 2002, Ruttink et al. 2007, Ruonala et al. 2006, Maurya and Bhalerao 2017). ABA levels can increase as a result of water stress, and limited access to water is an additional external cue that precedes dormancy and can result in growth cessation (Horvath et al. 2003). These findings suggest the influence ABA plays in signalling bud development/maturation, which could be a consequence of the water limiting conditions of the environment.

The results of the promoter analyses and expression profiles suggest that the roles of $P g S A L 1$ and putative PgSAL5 are some overlapping functions, but other roles are non-redundant. The potential conserved functions of PgSAL1 and novel functions of PgSAL5 are consistent with another gene pair in Picea abies L. (Pa): FTL1 and FTL2, with the former potentially functioning to regulate timing of the transition to reproductive growth through inhibition (Karlgren et al. 2011, Klintenäs et al. 2012), and the latter functioning in SD-induced growth cessation (Gyllenstrand et al. 2007, Asante et al. 2011, Karlgren et al. 2011, Klinetäs et al. 2012). Differences in homolog functions in $S V P$-like and $D A M$-like genes in raspberry (Mazzitelli et al. 2007), peach (Li et al. 2009, Yamane et al. 2011), kiwifruit (Wu et al. 2012), potato (Carmona et al. 1998) and trifoliate orange (Li et al. 2010) also demonstrate the functional diversification within this gene group.

Based on the findings presented in this thesis, I constructed a figure to demonstrate how PgSAL1 and PgSAL5 may function in molecular regulatory pathways (Figure 4.1). Since PgSAL1 may be linked to the CO/FT pathway, I based this model on evidence from PaFTL2 (Gyllenstrand et al. 2007, Karlgren et al. 2011) and the current poplar model of photoperiod
growth presented in Singh et al. (2017). In the poplar model FT2 is downregulated in response to SD (Hsu et al. 2011), a contrasting effect of SD on PaFTL2 (Gyllenstrand et al. 2007, Karlgren et al. 2011), to upregulate LIKE-APETELA 1 (LAP1) (Azeez et al. 2014) and eventually lead to continued growth (Randall et al. 2015). Similar to the Norway spruce PaFTL2 (Gyllenstrand et al. 2007, Asante et al. 2011, Karlgren et al. 2011, Klinetäs et al. 2012), I predict that there is a white spruce FTL2 gene which is upregulated under short days. PgFTL2 would go on to upregulate $P g A P 1$-like, similar to the poplar model. SD treatment in white spruce accelerates bud set (El Kayal et al. 2011, Hamilton et al. 2016), which we predict is positively regulated by $\operatorname{PgSAL1}$; therefore, this may indicate an undiscovered $\operatorname{PgAP1}$-like gene regulates $\operatorname{PgSAL1}$ to initiate bud set and/or growth cessation. I hypothesize that $P g A P 1$-like would function in a similar manner to AtAP1 by inhibiting the expression of $A t S O C 1$ upregulation (Liu et al. 2007), and therefore PgAP1-like would inhibit PgSOC1-like. I believe the inhibitory role of AtSOCl on AtSVP (Immink et al. 2012) is conserved in white spruce, indicating PgSOCl -like would function to prevent the transcription of PgSAL 1 and the transition to bud set and/or growth cessation. Low temperatures may influence the PgSAL1 and rate of bud set and/or growth cessation through interaction with PgASR-like and PgFLX-like. PgFLX-like may interact with a yet to be classified $P g F L C$-like gene; however, since less evidence exists in conifers that this pathway is conserved, I have limited the linkage of PgSAL1 in this pathway. The proposed molecular regulatory pathway for $P g S A L 5$ is less complex since no connections that we know of have been made between the transcription factors (TFs) identified by yeast onehybrid (Y1H) and a SVP/AGL24-like genes. DNA motifs identified by in silico techniques suggest $\operatorname{PgSAL5}$ may be regulated by photoperiod and low temperatures, although it is unknown if this regulation is directly or indirectly linked to the Y1H TFs. All TFs identified in the Y1H
screen however appear to participate in development, making PgSAL5 a candidate for a more general role in shoot tip development.

Growth cessation and bud formation are complex traits, similar to the flowering pathway in angiosperms. The complexity of these traits is a result of the function of several TFs and multiple converging pathways being imparted on phase transitions. Consequently, a one-size fits all model of bud formation and growth cessation does not appear to hold true for angiosperm and conifer perennials. This lack of a single model can be due to differences in growth patterns, with angiosperms demonstrating indeterminate growth and conifers exhibiting determinate growth. Bud set induction in angiosperms is regulated by environmental cues such as photoperiod or temperature, while conifer bud initiation is influenced by photoperiod or temperature, and endogenous signals play an increasingly important role as the tree matures (Cooke et al. 2012). These endogenous cues are demonstrated by the ability of white spruce to form terminal buds in the absence of shortened photoperiods and low temperatures (El Kayal et al. 2011, Hamilton et al. 2016). These differences in growth and the varying strength of environmental cues between conifers and angiosperms likely result in differential molecular regulation of growth and development of structures such as buds. The lack of conservation is demonstrated by the fact PaFTL2 is believed to control bud set and growth cessation (Gyllenstrand et al. 2007, Karlgren et al. 2011), whereas the poplar PtFT2 is a positive regulator of growth (Hsu et al. 2011).

To investigate the hypothesized roles of $P g S A L s$, further additional functional analyses are required. An approach may include creating transgenic white spruce over- and underexpressing $\operatorname{PgSAL}$ genes to understand their function in the activity-dormancy cycle and/or bud formation. Due to the difficulty associated with silencing of transgenics in white spruce, an alternative would be to perform overexpressing experiments into a species more amenable to this
experimentation, such as poplar. It is possible the experiments performed in poplar may not be a definitive examination of the function of $P g S A L s$, as it is possible that the function of a white spruce gene in poplar may not be identical to its role in white spruce. An alternative or accompanying experiment would be the creation of $P g S A L$ RNA interference (RNAi) lines to knock down gene expression in white spruce to elucidate the role of these genes in the species of origin. Knock-down experiments are more suited to experiments involved white spruce, since knock-out experiments would be difficult and time consuming to create in a perennial like white spruce. Additional experiments may also focus on confirming the DNA-protein interactions identified in the Chapter 3 Y 1 H screen. These DNA-protein interactions may be validated through electrophoretic mobility shift assay (EMSA) or tobacco co-infiltrations, the latter being more desirable since this would demonstrate an in planta interaction. Once these interactions have been confirmed, targeted deletions can be carried out to determined which nucleotides are essential for promoters to complex with specific TFs. Potential roles of PgSALs can be expanded on by further analyses of the upstream regulators using chromatin immunohistochemical precipitation (ChIP). Since ChIP is an in planta experiment, this approach would uncover actual physical protein-DNA interactions that occur in white spruce and therefore have greater functional implications. Additional experiemnts should be carried out to confirm the linkage of the SAL promoters to their respective genes. For this linkage to be confirmed future experiments should be designed to cloned the promoter and coding sequence as one fragment.

Future studies should be focused on investigating the roles of all $P g S A L$ in processes surrounding dormancy and reproductive bud formation. Terminal bud formation and growth cessation are precursors for the entrance into dormancy (Rohde and Bhalerao 2007). Following dormancy release, preformed needle primordia elongate to push apart the previously formed bud
scales. Accordingly, it seems logical that $P g S A L$ genes may also play a role in the entrance, maintenance and/or release of dormancy, and possibly bud burst. Although the research in this thesis focuses on the role of $P g S A L$ genes in vegetative bud formation, we must consider that PgSAL genes may have a role in the formation of reproductive buds. PaFTL1 and PaFTL2 expression suggests these genes have a role in reproductive buds (Karlgren et al. 2011), so it seems possible that genes within the vegetative bud regulatory pathways would also play a role in the formation of male and female cone development.

Based on findings from experiments in this thesis, I would recommend that researchers keep an open mind when investigating these gene roles, as it is likely they may have undergone sub- or neo-functionalization, which may give rise to unexpected roles that may not appear cohesive with preconceived angiosperm models. Although angiosperm models are a valuable tool to guide initial hypotheses, they are incapable of providing an accurate explanation of the endogenous function of the corresponding conifer ortholog. A revised version of the molecular regulatory network involved in conifer growth cessation and bud development will inevitably have to be synthesized once this field has a greater understanding and breadth of the key components of this pathway.

## Chapter 4 Figures

A



Bud formation and/or growth cessation


Development

Figure 4.1 Proposed model of white spruce SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like (SAL) genes in molecular regulatory pathways. (A) There is evidence to support white spruce $S A L 1$ is directly or indirectly regulated by photoperiod, low temperatures and drought. SOC1-like, ASR-like and FLX-like white spruce proteins have been shown to physically interact with SAL1. Based on transcriptional data SAL1 appears to participate in the regulation of bud formation and possibly growth cessation. (B) White spruce putative SAL5 is bound by NBS-LRR/WRKY-like, MYB1, and CPC/ETC1-like TFs, all of which are linked to roles in development. We identified photoperiod and low temperature associated DNA motifs in the putative SAL5 promoter, which may influence the transcription or function of NBS-LRR/WRKYlike, $M Y B 1$, and $C P C / E T C 1$-like function and/or regulation in a direct or indirect manner.

## References

Abascal F, Zardoya R, Posada D. (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics, 21(9):2104-05.
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309(5737):1052-6.
Acevedo FG, Gamboa A, Paez-Valencia J, Jimenez-Garia LF, Izaguirre-Sierra M, AlvarezBuylla ER. (2004) FLOR 1, a putative interaction partner of the floral homeotic protein AGAMOUS, is a plant-specific intracellular LRR. Plant Science, 167:225-31. doi:10/1016/j.lantsci.2004.03.009.
Ali Z, Sarwat SS, Karim I, Faridi R, Jaskani MJ, Khan AA. (2016) Functions of plant’s bZIP transcription factors. Pakistan Journal of Agricultural Sciences, 53(2):303-14.
Alvarez-Buylla, ER Pelaz, S, Liljergren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky MF. (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the Natural Academy of Sciences USA, 97(10):5328-33.
Amasino R. (2010) Seasonal and developmental timing of flowering. The Plant Journal, 61(6):1001-13.
Andrés F, Porri A, Torti S, Mateos J, Romera-Branchat M, García- Martínez JL, Fornara F, Gregis V, Kater MM, Coupland G. (2014) SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proceeding of the National Academy of Sciences of the USA, 111(26):E2760-E2769. doi: 10.1073/pnas. 1409567111.
Armstrong GA, Weisshar B, Hahlbrock K. (1992) Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. The Plant Cell, 4:525-37.
Arora R, Wisinewski M, Rowland LJ. (1996) Cold acclimation and alterations in dehydrin-like and bark storage proteins in the leaves of sibling deciduous and Evergreen peach. Journal of the American Society of Horticultural Science, 121(5):915-9.
Asante SKA, Yakovlev IA, Fossdal CG, Holefors A, Opseth L, Olsen JE, Junttila O, Johsen Ø. (2011) Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant, Cell \& Environment, 34(2):332-46.
Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP. (2014) A tree orthologs of APETALA1 mediates photoperiodic control of seasonal growth. Current Biology, 24(7):717-24.
Baba K, Karlberg A, Schmidt J, SchraderJ, Hvidsten TR, Bako L, Bhalerao RP. (2011) Activitydormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proceedings of the National Academy of Sciences USA, 108(8):3418-23.
Bangerth F. (1994) Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta, 194(3):439-42.
Baskin JM, Baskin CC. (2004) A classification system for seed dormancy. Seed Science Research, 14(1):1-16.
Bazinet AL, Cummings MP. (2011) Computing the Tree of Life - Leveraging the Power of

Desktop and Service Grids. In Proceedings of the Fifth Workshop on Desktop Grids and Volunteer Computing Systems (PCGrid 2011).
Becker A, Theissen G. (2003) The major clades of MADS-box genes and their role in the developmental and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3):464-89.
Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Séguin A, MacKay J. (2010) Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. Journal of Experimental Botany, 61(14):3847-64.
Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG. (2004) A deletion affecting several gene candidates is present in the Evergrowing peach mutant. Journal of Heredity, 95(5):436-44.
Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk Y, Ritland C, Boyle B, Bousquet J, Ritland K, MacKay J, Bohlmann J, Jones SJM. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, 29(12):1492-1497.
Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell, 10(5):791800.

Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O. (2006) $C O / F T$ regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 312(5776): 1040-3.
Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JE, Blais S, Temblay L, Morency MJ, Pavy N, Grima-Pattenati J, Séguin A, MacKay J. (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenypropanoid metabolism and secondary cell wall biogenesis: a coaprative in planta analysis. Jounral of Experimental Botany, 59(14):392539.

Bomal C, Duval I, Giguère I, Fortin E, Caron S, Stewart D, Boyle B, Séguin A, MacKay JJ. (2014) Opposite action of R2R3-MYBs from different subgroups on key genes of the shikimate and monolignol pathways in spruce. Journal of Experimental, Botany 65: 495508
Borner R, Kapmann G, CHandler J, Gleissner R, Wisman E, Apel K, Melzer S. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. The Plant Journal, 24:591-9.
Bünning E. (1936) Die endogene tagesperiodik als grundlage der photoperiodischen reaktion. Berichte der Dutschen Botanischen Gesellschaft, 54:590-608.
Bünning E. (1960) Circadian rhythms and the time measurement in photoperiodism. Cold Spring Harbour Symposia on Quantitative Biology, 25:249-56.
Buckley TR, Simon C, Shimodaira H, Chambers GK. (2001) Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiplecomparisons tests of tree topology. Molecular Biology and Evolution, 18(2):223-34.
Campbell M, Segear E, Beers L, Knauber D, Suttle J. (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Functional and Integrative Genomics, 8(4):317-28.

Canadian Wildlife Federation (2017) Spruce trees of Canada. Date accessed: 2017/08-04. http://cwf-fcf.org/en/resources/encyclopedias/flora/spruce-trees-of-canada.html.
Carmona MJ, Ortega N, Garcia-Maroto F. (1998) Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L. Planta, 207(2):181-8.
Chen HJ, Bollmark M, Eliasson L. (1996) Evidence that cytokinin controls bud size and branch form in Norway spruce. Physiologia Planatarum, 98:612-8.
Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I. (2011) The FRIGIDA complex activates transcription of FLC $<$ a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell, 23:289-303.
Ciolkowski I, Wanke D, Birkenbihl RP, Stomssich IE. (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 68:81-92.
Clark SE, Williams RW, Meyerowitz EM. (1997) The Clavata 1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89:57585.

Cline MG, Dong-Il K. (2002) A preliminary investigation of the role of auxin and cytokinin in sylleptic branching of three hybrid poplar clones exhibiting contrasting degrees of sylleptic branching. Annals of Botany, 90:417-21.
Coenen C, Lomax TL. (1997) Auxin-cytokinin interactions in higher plants: old problems and tools. Trends in Plant Science, 2(9):351-6.
Collier SM, Moffett P. (2009) NB-LRRs work a "bait and switch" on pathogens. Trends in Plant Science, 14:521-9.
Cooke JEK, Eriksson ME, Junttila O. (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell \& Environment, 35(10):1707-28.
Cseke LJ, Zheng J, Podilla GK. (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody/vascular development. Gene, 218, 55-67.
Cseke LJ, Podila GK. (2004) MADS-box genes in dioecious aspen II: A review of MADS-box genes from trees and their potential in forest biotechnology. Physiology and Molecular Biology of Plants, 10(1):7-28.
Cseke LJ, Ravinder N, Pandey AK, Podila GK. (2007) Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Gene, 391(1-2):209-22.
Darriba D, Taboada GL, Doallo R, Posada D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, $9(8), 772$. doi: 10.1038/nmeth. 2109.
Davies PJ. (2010) Plant hormones: biosynthesis, signal transduction, action! Rev. 3rd ed. Springer, Dordrecht Heidelberg, London, New York. 1-15pp.
Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H. (1996) Multiple interactions amongst floral homeotic MADS box proteins. European Molecular Biology Organization Journal, 15(16):4330-43.
De Bodt S, Raes J, Van de Peer Y, Theissen G. (2003) And then there were many: MADS goes genomic. Trends in Plant Science, 8(10):475-83.
De Mendiburu F. (2014) agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-1. http://CRAN.R-project.org/package=agricolae.
Ding J, Nilsson O. (2016) Molecular regulation of phenology in trees - because the seasons they are a-changin'. Current Opinion in Plant Biology, 29:73-9.

Donner TJ, Scarpella E. (2013) Transcriptional control of early vein expression of CYCA2;1 and CYCA2;4 in Arabidopsis leaves. Mechanisms of Development, 130:14-24.
Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP. (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. The Plant Journal, 50(4):557-73.
Eagles CF, Wareing PF. (1964). The role of growth substances in the regulation of bud dormancy. Physiologia Planatarum, 17:697-709.
Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ. (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. The Plant Journal, 42:618-40.
Egea-Cortines M, Saedler H, Sommer H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. European Molecular Biology Organization Journal, 18(19):5370-9.
El Kayal W, Allen CCG, Ju CJ, Adams E, King-Jones S, Zaharia LI, Abrams SR, Cooke JEK. (2011) Molecular events of apical bud formation in white spruce, Picea glauca. Plant, Cell \& Environment, 34(3):480-500.
Ellis JG, Lawrence GJ, Dodds PN. (2007) Further analysis of gene-for-gene disease resistance specificity in flac. Molecular Plant Pathology, 8:103-9.
Eriksson ME, Israelsson M, Olsson O, Moritz T. (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18:784-8.
Eriksson ME, Moritz T. (2002) Daylength and spatial expression of a gibberllin 20-oxidase isolated from hybrid aspen (Populus tremula x tremuloides Michx). Planta, 214()6:920-30.
Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi M, Bakó L, Bhalerao RP. (2004) Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. The Plant Journal, 38(4):603-15.
Fan H, Hu Y, Tudor M, Ma H. (1997) Specific interactions between the K domains of AG and AGLs, members of the MADs domain family of DNA binding proteins. The Plant Journal, 12(5):999-1019.
Ferguson BJ, Beveridge CA. (2009) Role for auxin, cytokinin, and stigolactone in regulating shoot branching. Plant Physiology, 149:1929-44.
Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC. (2000) The embryo MADS domain factor AGL15 act postembryonically: inhibition of perianth senescence and abscission via constitutive expression. The Plant Cell, 12(2):183-97.
Fernandez DE, Want C-T, Zheng Y, Adamczyk BJ, Singhal R, Hall PK, Perry SE. (2014) AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUSLIKE24, are necessary to block floral gene expression during the vegetative phase. Plant Physiology, 165(4):1591-1603.
Fitch WM. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology, 20(4):406-16.
Frankel N, Carrari F, Hasson E, Iusem ND. (2006) Evolutionary history of ASR gene family. Genes, 378:74-83.

Fowler S, Thomashow MF. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell, 14:1675-90.
Fowler SD, Cook D, Thomashow MF. (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiology, 137:961-8.
Fox J, Weisberg S. (2011). An $\{R\}$ companion to applied regression, second edition. Thousant Oaks CA: Sage. http://socserv.socsci.memaster.ca/jfox/Books/Companion.
Gamboa A, Paez-Valencia J, Acevedo GF, Vazquez-Moreno L, Alvarez-Buylla RE. Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex.
Galindo-González LM, El Kayal W, Ju CJT, Allen CCG, King-Jones S, Cooke JEK. (2012) Integrated transcriptomic and protemomic profiling of white spruce stems during the transition from active growth to dormancy. Plant, Cell \& Environment, 35:682-701.
Galindo-González LM, El Kayal W, Morris JS, Cooke JEK. (2015) Diverse chitinases are invoked during the activity-dormancy transition in spruce. Tree Genetics \& Genomes, doi:10.1007/s11295-015-0871-0.
Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D. (2014) Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited. PLoS One:9(10): e107117. doi:10.1371/journal.pone. 010711 .
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ. (2012) Molecular mechanisms of seed dormancy. Plant, Cell \& Environment, 35(10):1769-86.
Grandi V, Gregis V, Kater MM. (2012) Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana. The Plant Journal, 69(5):881-93.
Gregis V, Sessa A, Colombo L, Kater MM. (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control $A G A M O U S$ during early stages of flower development in Arabidopsis. The Plant Cell, 18(6):1373-82.
Gregis V, Sessa A, Colombo L, Kater MM. (2008) AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. The Plant Journal, 56(6), 891-902.
Gregis V, Sessa A, Dorca-Fornell C, Kater MM. (2009) The Arabidopsis floral meristem identity genes $A P 1, A G L 24$ and $S V P$ directly repress class B and C floral homeotic genes. The Plant Journal, 60(4):626-37.
Gregis V, Andres F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biology, 14:R56.
Gocal GF, Pharis RP, Yeung EC, Pearce D. (1991) Changes after decapitation in concentrations of indole-3-acetic acid and abscisic acid in the larger axillary bud of Phaseolus vulgaris L. cv Tender Green. Plant Physiology, 95(2):344-50.
Government of Alberta. (2003) Management of white spruce. Last modified: 201706-19. Date accessed: 2017-08-04.
http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/apa6261.
Government of Alberta. (2006) Facts on wood. Date accessed: 2017-08-04. https://www.albertacanada.com/files/albertacanada/AIS-BP_WhiteSpruce.pdf.

Government of Alberta. (2013) Facts of Alberta wood species. Date modified: 2013-01-14. Date accessed: 2017-08-04. http://www.albertacanada.com/business/industries/bp-woodspecies.aspx.
Government of Alberta. (2016) Trees - White spruce (Picea glauca). Date modified: 2016-0330. Date accessed: 2017-11-23. https://www.agric.gov.ab.ca/app21/forestrypage?cat1=Trees\&cat2=White\ Spruce.
Government of Canada. (2017) Species at Risk Public Registry: caribou boreal population. Date modified: 2017/07/28. Date accessed: 2017-08-04. http://www.registrelepsararegistry.gc.ca/species/speciesDetails_e.cfm?sid=636.
Guindon S, Gascuel O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52(5): 696-704.
Gramzow L, Theissen G. (2010) A hitchiker's guide to the MADS world of plants. Genome Biology, 11:214.
Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. (2007) A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiology, 144(1):248-57.
Hajdukiewcz P, Svab Z, Maglia P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biolog, 25(6):989.
Hamilton JA, El Kayal W, Hart AT, Runcie D, Arango-Velez A, Cooke JEK. (2016) The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiology 36(11):1432-48.
Hänninen H, Tanino K. (2011) Tree seasonality in a warming climate. Trends in Plant Science, 16(8):412-6.
Hartmann U, Hohmann S, Nettesheim K, Wiseman E, Saedler H, Huijser P. (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal, 21(4):351-60.
Heide OM. (1974) Growth and dormancy in Norway spruce (Picea abies). I. Interaction of photoperiod and temperature. Physiologia Plantarum, 30(1):1-12.
Heide OM, Prestrud AK. (2005) Low temperature but not photoperiod controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25(1):109-14.
Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G. (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO Journal, 21:4327-37.
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen. (2002) Two ancient classes of MIKC-type MADS-box genes are present in the Moss Physcomitrella patens. Molecular Biology and Evolution, 19(6):801-14.
Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, Fossdal CG, Olsen JE. (2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce.
Honma T, Goto K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409(6819):525-9.
Horvath DP, Anderson JV, Chao WS, Foley ME. (2003) Knowing when to grow: signals regulating bud dormancy. TRENDS in Plant Science, 8(11):534-40.
Horvath D. (2009) Common mechanisms regulate flowering and dormancy. Plant Science, 177:523-31.

Horvath DP, Sung S, Kim D, Chao W, Anderson J. (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology, 73(1-2):169-79.
Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH. (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany, 81(22):1247-66.
Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Dmevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, DePamphilis CW, Luthe DS, Yuceer C. (2011) FLOWER LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the USA, 108(26):10756-61.
Hu YX, Wang YX, Liu XF, Li JY. (2004) Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research, 14:8-15.
Immink RGH, Posé D, Ferrario S, Ott F, Kaufmann K, Valentim FL, de Folter S, van der Wal F, van Dijk ADJ, Schmid M, Angenent GC. (2012) Characterization of SOCl's central role in flowering by the identification of its upstream and downstream regulators. Plant Physiology, 160(1):433-49.
Ingvarsson PK, García MV, Hall D, Luquez V, Jansson S. (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics, 172(3):1845-53.
Irish VF. (2010) The flowering of Arabidopsis flower development. The Plant Journal, 61(6):1014-28.
Jang S, Torti S, Coupland G. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. (2009) The Plant Journal, 60:614-25.
Jian LC, Li PH, Sun LH, Chen THH. (1997) Alterations in ultrastructure and subcellular localization of $\mathrm{Ca} 2+$ in poplar apical bud cells during the induction of dormancy. Journal of Experimental Botany, 48(311):1195-1207.
Jiménez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DC. (2009) Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biology, 9(81). doi:10.1186/1471-2229-9-81.
Jonkers H. (1979) Bud dormancy of apple and pear in relation to the temperature during the growth period. Scientia Horticulturae, 10(2):149-154.
Junttila O. (1980) Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiologia Plantarum, 48(3):347-52.
Junttila O, Jensen E. (1988) Gibberellins and photoperiodic control of shoot elongation in Salix. Physiologia Plantarum, 74(2):371-76.
Junttila O, Nilsen J, Igeland B. (2003) Effect of temperature on the induction of bud dormancy in ecotypes of Betula pubescens and Betula pendula. Scandinavian Journal of Forest Research, 18(3):208-217.
Kalcsits LA, Silim S, Tanino K. (2009) Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus x spp.). Trees, 23(5):971-9.
Karlberg A, Bako L, Bhalerao RP. (2011) Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen. PLoS Genetics, 7(11): e1002361.

Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiology 156(4): 1967-1977.
Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. (2013) FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce. Plant Physiology, 162(2):792-803.
Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4):77280.

Kaufmann K, Melzer R, Theissen G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347(2):18398.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-9.
Kirik V, Simon M, Huelskamp M, Schiefelbein J. (2003) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Developmental Biology, 268:506-13.
Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O (2012). Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytologist, 196(4): 1260-73.
Koomneef M, Hanhart CJ, van der Veen JH. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular Genetics and Genomics, 229(1):5766.

Kozlowski TT, Pallardy SG. (1997) Physiology of Woody Plants, $2^{\text {nd }}$ edition, Academic Press, New York, USA.
Langercrantz U. (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? Journal of Experimental Botany, 60:2501-15.
Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes and Development, 14(18):2366-67. doi:10.1101/gad.813600.
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes and Development, 21(4):397-402.
Lee J, Oh M, Park H, Lee I. (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates $L E A F Y$. The Plant Journal 55(5), 832-843.
Lee JH, Ryu H, Chung KS, Posé D, Kim S, Schmid M, Ahn JH. (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science, 342:10.1126/science. 1241097.
Lee JH, Chung KS, Kim S, Ahn JH. (2014) Post-translational regulation of SHORT VEGETATIVE PHASE as a major mechanism for thermoregulation of flowering. Plant Signaling \& Behaviour, e28193.

Leinonen I. (1996) Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scandinavian Journal of Forest Research, 11(1-4):122-8.

Lehti-Shiu MD, Adamczyk BJ, Fernandez DE. (2005) Expression of MADS-box genes during embryonic phase in Arabidopsis. Plant Molecular Biology, 58(1):89-107.
Levy A, Guenoune-Gelbart D, Epel BL. (2007) b-1,3-glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signaling \& Behavior, 2(5):404-7.
Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H. (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell, 15(1):110-20.
Li Z, Reighard GL, Abbott AG, Bielenberg DG. (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. Journal of Experimental Botany, 60(12):3521-30.
Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL. (2010) PtSVP, a SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.) shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Molecular Biology, 74(1-2):129-42.
Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y. (2006) The tomato FT ortholog triggers systemic signals that regulate growth and lowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the USA, 103(16): 6398-6403.
Liu C, Zhou J, Brach-Drori K, Yalovsky S, Ito T, Yu H. (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development, 134(10):1901-10.
Liu C, Xi W, Shen L, Tan C, Yu H. (2009) Regulation of floral patterning by flowering time genes. Developmental Cell, 16(5):711-22.
Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y. (2012) Transcriptomic analysis of 'Suli' pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics, 13:700.
Little CHA, Bonga JM. (1974) Rest in the cambium of Abies balsamea. Canadian Journal of Botany, 52(7):1723-30.
Loots GG, Ovcharenko I, Pachter L, Dubchak I, Tubin EM. (2002) rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Research, 12:832-39.
Loots GG, Ovcharenko I. (2004) Nucleic Acid Research, 32:W217-W221. DOI: 10/1093/nar/gkh383.
Luquez V, Hall D, Albrectsen BR, Karlsson J, Ingvarsson P, Jansson S. (2008) Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genetics \& Genomes, 4(2):279-92.
Masiero S, Li M, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H. (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development, 131(23):5981-90.
Maurya JP, Bhalerao RP. (2017) Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. Annals of Botany, 120(3):35160.

Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SD, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA. (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. Journal of Experimental Botany, 58(5):1035-45.
Michaels SD, Amasino RM. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11:949-56.
Michaels, SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM. (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulation by vernalization. The Plant Journal, 33(5):867-73.
Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM. (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiology, 137, 149-56.
Mimida N, Saito T, Moriguchi T, Suzuki A, Komori S, Wada M. (2015) Expression of DORMANCY-ASSOCIATED MADS-BOX (DAM)-like genes in apple. Biologia Plantarum, 59(2):237-244.
Mohamed R, Wang C-T, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM. (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. The Plant Journal, 62(4):674-88.
Mølmann JA, Berhanu AT, Stormo SK, Ernstsen A, Junttila O, Olsen JE. (2003) Metabolism of gibberellin $\mathrm{A}_{19}$ is under photoperiodic control in Populus, Salix and Betula, but not in daylength-insensitive Populus overexpressing phytochrome A. Physiologia Plantarum, 119(2):278-86.
Mølmann JA, Asante DKA, Jensen JB, Krane MN, Ernstsen A, Junttila O, Olsen JE. (2005) Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation but not dormancy in PHYA overexpressors and wild-type of hybrid aspen. Plant, Cell \& Environment, 28(12): 1579-88.
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I. (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal, 35(5):613-23.
Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, Yang Y, Teasdale RD. (1998) Family of MADS-box gene expressed early in male and female reproductive structures of Monterey pine. Plany Physiology, 117:55-61.
Nakamura Y, Andrés F, Kanehara K, Liu Y-C, Dörmann P, Coupland George. (2013) Arabidopsis florgen $F T$ binds to diurnally oscillating phospholipids that accelerate flowering. Nature Communications, 5:3553.
Natural Resources Canada, Canadian Forest Services. (2014a) The State of Canada's Forests Annual Report 2014. Ottawa, ON, 6-8 pp. http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/35713.pdf.
Natural Resources Canada, Canadian Forest Services. (2014b) Softwood Lumber - Background. http://www.nrcan.gc.ca/19603. Date modified: 2014/04/26. Date accessed: 2017/08/04.
Natural Resources Canada, Canadian Forest Services. (2015a) The State of Canada’s Forests 2015-25th anniversary edition. Ottawa, ON. http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/36553.pdf.
Natural Resources Canada, Canadian Forest Services (2015b) White spruce. Date modified: 2015-08-04. Date accessed: 2017-08-04. https://tidcf.nrcan.gc.ca/en/trees/factsheet/38.

Natural Resources Canada, Canadian Forest Services. (2017) Softwood Lumber Fact Sheet. Date modified: 2017-04-25. Date accessed: 2017-08-04. http://www.nrcan.gc.ca/19605.
Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S. (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478:119-122.
Nienstaedt H, Zasada JC. (1990) Picea glauca (Moench) Voss. 1 Conifers. USDA Forest Service Agriculture Handbook. 654, USDA Forest Service, Washington, DC. 204-26 pp in R. M. Burns and B. H. Honkala, eds. Silvics of North America.
Nitsch JP. (1957) Photoperiodism in woody plants. Proceedings of the American Society of Horticultural Sciences, 70: 526-44.
Norman C, Runswick M, Pollock R, Treisman R. (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-Fos serum response element. Cell, 55(6):989-1003
Okuba H. (2000) Growth cycle and dormancy in plants. In dormancy in plants - from whole plant behavior to cellular control. (Viemont JD, Crabbe J, eds), pp. 1-22, CABI.
Olsen JE, Jensen E, Junttila O, Moritz T. (1995a) Photoperiodic control of endogenous gibberellins in seedlings of Salix pentandra. Physiologia Plantarum, 93, 639-44.
Olsen JE, Junttila O, Moritz T. (1995b) A localised decrease of GA1, in shoot tips of Salix pentandra seedlings precedes cessation of shoot elongation under short photoperiod. Physiologia Plantarum, 93(4):627-32.
Olsen JE, Junttila O, Moritz T. (1997a) Long-day induced bud break in Salix pentandra is associated with transiently elevated levels of GA1, and gradual increase in Indole-3-acetic acid. Plant and Cell Physiology, 38(5):536-40.
Olsen JE, Junttila O, Nilsen J, Eriksson M, Martinussen I, Olsson O, Sandberg G, Moritz T. (1997b) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimation. The Plant Journal, 12(6):1339-50.
Olsen JE. (2010) Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Molecular Biology, 73:37-47.
Opseth L, Holefors A, Ree Rosnes A, Lee Y, Olsen JE. (2016) FTL2 expression preceding bud set corresponds with timing of bud set in Norway spruce under different light quality treatments. Environmental and Experimental Botany, 121:121-31.
Pařenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. The Plant Cell, 15(7):1538-51.
Passmore S, Maine GT, Elble R, Christ C, Tye BK. (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT cells. Journal of Molecular Biology, 204(3):593-606
Patzlaff A, Newman LJ, Ross, CD, Whetten RW, Smith C, McInnis S, Bevan MW, Sederoff RR, Campbell MM. (2003) Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology 53:597-608.
Pavy N, Boyle B, Nelson C, Paule C, Giguere I, Caron S, Parsons LS, Dallaire N, Bedon F, Bérubé H, Cooke J, Mackay J. (2008) Identification of conserved core xylem sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytologist, 180(4):766-86.
Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J
(2017) A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. The Plant Journal, 90:189-203.
Petterle A, Resman L, Bhalerao RP. (2011) ABA and chromatin remodeling regulate the activity-dormancy cycle in hybrid aspen. Doctoral Thesis, No. 2011:17, Swedish University of Agricultural Sciences, Umeå.
Phukan UJ, Jeena GS, Shukla R. (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science, 7:760, doi: 10.3389/fpls.2016.00760.
Pin PA, Nilsson O. (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell \& Environment, 35:1742-55.
R Core Team (2017). R: A language and environment for statistical computing R. Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Qiu Y, Li L, Wang B, Xue J, Hendry TA, Li R, Brown JW, Chen Z. (2010) Angiosperm phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution, 48(6):391-425.
Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I. (2005) Winter disruption of the circadian clock in chestnut. Proceedings of the National Academy of Science USA, 102(19):7037-42.
Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T, Blajecka K, Melnyk CW, Alcasabas A, Forzani C, MatsumotoKitano M, Mähönen AP, Bhalerao R, Dewitte W, Helariuta Y, Murray JAH. (2015) AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins.
Riechmann JL, Krizek BA, Meyerowitz EM. (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the USA, 93(10):47938.

Rigault P, Boyle, B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ. (2011) A white spruce gene catalogue resource for conifer genome analyses. Plant Physiology, 157(1):14-28.
Rinne PLH, van der Schoot C. (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development, 125(8):1477-85.
Rinne PLH, van den Boogaard R, Mensink MGJ, Kopperud C, Kormelink R, Goldbach R, van der Schoot C. (2005) Tobacco plants respond to the constitutive expression of the tospovirus movement protein NS(M) with a heat- reversible sealing of plasmodesmata that impairs development. The Plant Journal, 43(5):688-707.
Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C. (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and receruit GAinducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. The Plant Cell, 23(1):130-146.
Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ. (2015) The evolution of WRKY transcription factors. BMC Plant Biology, 15(66). doi: 10.1186/s12870-015-0456-y
Rohde A, Howe GT, Olsen JE, Moritz T, Van Montagu, Junttila O, Boerjan W. (2000) Molecular aspects of bud dormancy in trees. Molecular Biology of Woody Plants, 1:89134.

Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W. (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. The Plant Cell, 14(8):1885-1901.
Rohde A, Bhalerao RP. (2007) Plant dormancy in the perennial context. Trends in Plant Science, 12(5):217-23.
Rohde A, Bastien C, Boerjan W. (2011) Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiology, 31: 472-82.
Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR. (1994) Evergreen peach, its inheritance and dormant behavior. Journal of the American Society for Horticultural Science, 119(4):789-792.
Rogers JS, Swofford DL. (1998) A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Systematic Biology, 47(1):77-89.
Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J. (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. The Plant Journal, 46(4):628-40.
Rushton PJ, Somssich IE, Ringler P, Shen QJ. (2010) WRKY transcription factors. Cell Press, 15(5):247-58. doi: 10.1016/j.tplants.2010.02.006.
Lenth RV. (2016) Least-squares means: The R Package 1smeans. Journal of Statistical Software, 69(1), 1-33. http://CRAN.R-project.org/package=lsmeans.
Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A. (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell, 19(8):2370-90.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 288:1613-16.
Sarvas R. (1974) Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fenniae, 84:1-101.
Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R. (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot (Prunus тите). Plant Physiology, 157(1):485-97.
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R, (2004) Ferns diversified in the shadow of angiosperms. Nature, 428:553-7.
Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO Journal, 11(1):251-63.
Shimodaira H, Hasegawa M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16(8):1114-6.
Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G. (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes \& Development, 20:898-912.
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11(3):445-58.

Shen G, Pang Y, Wu W, Deng Z, Liu X, Lin J, Zhao L, Sun X, Tang K. (2005) Molecular cloning, characterization and expression of a novel Asr gene from Ginko biloba. Plant Physiology and Biochemistry, 43(9):836-43.
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. (2017) Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective. New Phytologist, 213:511-24.
Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refuli-Rodriquez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS. (2011) Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany, 98(4):704-30.
Sommer H, Beltrán JP, Huijser P, Page H, Lönnig WE, Saedler H, Schwarz-Sommer Z. (1990) DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO Journal, 9(3):605-13.
Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832):1116-20.
Sukumaran J, Holder MT. (2010) DendroPy: A Python library for phylogenetic computing. Bioinformatics 26:1569-71.
Sundell D, Mannaperuma C, Netotea S, Delhomm N, Lin Y, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street N. (2015) The plant genome integrative explorer resource: PlantGenIE.org. New Phytologist, 208:1149-56. sdoi:10.1111/nph. 13557.
Sundström J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theißen G, Engström. (1999) MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Developmental Genetics, 25:253-66.
Swofford DL. (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Taiz L, Zeiger E. (2010) Plant Physiology $5^{\text {th }}$ edition. Sinaur Associated, Inc. Sunderland, MA, USA. Pp 732-4.
Tao Z, Shen L, Liu C, Yan Y, Yu H. (2012) Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant Journal, 70(4):549-61.
Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GG. (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology, 73(1-2):49-65.
Theissen G, Kim JT, Saedler H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution, 43(5):484-516.
Tominaga-Wada R, Nukumizu Y, Wada T. (2013) Flowering is delayed by mutations in homologous genes CARPICE and TRYPTICHON in early flowering Arabidopsis cpl3 mutant. Journal of Plant Physiology, 170:1466-8.
Torii KU, Mitsukawa N, oosumi T, Mitsuura Y, Yokoyama R, Whitier R, Komeda Y. (1996) The arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant cell, 8:735-46.

Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C. (2007) Short Vegetative Phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiology, 143(1):225-35.
Tylewicz S, Petterle A, Englund M, Resman L, Bhalerao RP. (2015) Molecular analysis of growth cessation in hybrid aspen. Ph.D. thesis, Swedish University of Agricultural Sciences Umeå.
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. (2004) Photoreceptor regulation of COSTANS protein in photoperiod flowering. Science, 303(5660):1003-6.
Voogd C, Wang T, Varkonyi-Gasic E. (2015) Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to owering but may affect the duration of dormancy. Journal of Experimental Botany, 66(15):4699-710.
Wada T, Tachibana T, Shimura Y, Okada K. (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science, 277:1113-6.
Wareing P. (1970) Cold resistance and injury in woody plants. Science, 169:1269-78.
Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol, Bohlmann J. (2015) Improved white spruce (Picea glauca) genome assembliesand annotation of large gene families of conifer terpenoidand phenolic defense metabolism. The Plant Journal, 83:189-212
Washio K. (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmylA gene in the rice aleurone. Plant Physiology, 133:850-63.
Weiser CJ. (1970) Cold Resistance and Injury in Woody Plants. Science, 169(3959):1270-8. Welling A, Palva ET. (2006) Molecular control of cold acclimation in trees. Physiologia Planatarum, 127:167-81.
Wickett NJ, Mirarab S, Nguyen, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfei BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pkorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Caucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GK-S, Leebens-Mack J. (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 111(45):R4859-68.
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. (2007) An "Electronic Fluorescence Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One, 2(8): e719.
Woo HR, Kim JH, Kim J, Kim J, Lee U, Song I, Kim J, Lee H, Nam HG, Lim PO. (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany, 61(14):3947-57. doi:10/1093/jxb/erq206.
Woodger FJ, Millar A, Murray F, Jacobsen JV, Gubler F. (2003) The role of GAMYB transcription factors in GA-regulated gene expression. Journal of Plant Growth Regulation, 22:176-84.
Worral J, Mergen F. (1967) Environmental and genetic control of dormancy in Picea abies. Physiologia Planatarum, 20(3):733-45. doi:10.1111/j.1399-3054.1967.tb07217.x.

Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E. (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany, 63(2):797-807.
Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D. (1998) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 117:575-84.
Yamane H, Tomomi O, Jotatsu H, Sasaki R, Tao R. (2011) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Scientia Horticulturae, 129(4):844-8.
Yang Y, Chi Y, Wang Z, Zhou Y, Fan B, Chen Z. (2016) Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. Journal of Experimental Botany, 67(15):4227-42.
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature, 346:35-9.
Yanovsky MJ, Kay SA. (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature, 419:308-12
Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH. (2005) CONSTANS activates SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology, 139(2):770-8.
Yu H, Xu Y, Tan EL, Kumar PP. (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the USA, 99(25):16336-41.
Yu H, Ito T, Wellmer F, Meyerowitz EM. (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genetics, 36(2):157-61.
Zwicki D J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.

### 5.0 Appendices

Appendix 1. Picea glauca SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24-like (SAL)
promoter sequences generated from Genome Walker ${ }^{\text {TM }}$ cloning, and extended using gDNA
sequences from the Norway spruce genome. Cloned portion of the coding sequence is
highlighted in blue.
>PgSAL1 promoter
ACTAATAAGGGTTGGGACTATAGAAATAATAATATTAATGTAATAATTATTTTATGC
ATCTAAAAATTTGATTTCATTAATTAAAAACTATAAACCACAATTGGACAAAATTCA
AAATTATCTCATCTCAATTCAATTCTAGTGATTATTGCTAGGAAAACTCCCAATCTTA
GTTATGACTTCTTTTATATCGAGTGGTGTGACATCCACGTAACTGTTATTGTGGATTG
AGATGGATTTCTGACACTCTATCTATATACGGATTTCTGCCGTTTACAGCTTTTGCTC
TTATCGGCGGAATCGCGGCCCTTCGAGAGAATTCGAGTCAGCCTAGACAGCTTTGGT
TTTATCGGCGGAATCGCGGCCCTTCGAGAGATTTTGAGTCACCCTAGCGATACAATC
ATGAAAGGGGGGGAAGGCCCAACGACTACGCTATTTGCTTTTCATTATTAAGGCCCG
CTGTACTGCACTGCAAAAAACTTATGTCTAGCCAAACTTATTAGGGCCCGCTGCACT
GCAAAAAACTTATGTTTAGCCAAACTTATTAGGGCCCGCTGTACTGTGCTGTAGACC
AAAGTTTCCTCGATGAGCTGTCAGAAGCCGAAGTTGTGCCCTCGATTGCTCGGGAGG
ATAACGCTTCCGAAGTTCGGTGTTGGTTTTTGTCGCTTGATTTTAGGGTTTTCCACCA
ATCCGATTTTCCACCCTTTTAATCTTGTTGTAGGCCCTAGATTGTTCGGGAGGAGAAC
GCTTCGAAAGTTCGGTGTTGGAATTTGTCGCTTGATTTTAGGGTTCTCCACAAACCTG
ATTTTCCAGCCTTTTAATCTTGGTGTAGGCCTTCGGATTTGTTGGAAAAAATTTCCTT
TCCCTTTGTATGCTAATCGAGAGAGATCTTGCCTGTTGTTGTAATCTCAGATTGGAAT
GACATGGCCCGAGAGAAAATAGAGATGAAGAGAATAGCTAACGCTTCGGCGAGGC
AGATGGCGTTCTCGAAGAGGCGGAGGGGGTTGTTCAAAAAAGCTGAGGAGCTATCG
ATTCTATGTGCAGCAGATGTAGCCCTCGTCGTTTTTTCTTCCACTGGGAAGCTGTACG
ACTACTCGAGAATCGAATTCCCGCGGCCGCC
$>P g S A L 5$ promoter
TTAGGCATCCAAATAATGATAGCCATAGAAAACTAGCAGTCCCTGTAATAGAAAAA ATTACATGGAAAAGTAAATTCCAAATATTGCCAGACATTTAATATATTTAATTAGAC TCATTCTAAGTCACTTGATTCGTGTTTGTATTCAAATCCAACAACAATGAAATTAGG AATATAATCACAAGTGACTTAGGATATAACAATTTTCTACTAAGTTTGGCAAAGAGA TTAAGGATGTTATAACTGCATATTATCGAACAAATACAAATATTTTATTTACAACTTC AAAGTCCATCCAAAAATATTTTTCAAAGAAAATGGTGACTATAGACTGAATATTGGG AATATTAGGTCAATTGACTTGATTTTGATAGTGAGATGTCGAAGCTCGGGGCTCAAA CATATATTGTGATTATTAGGGACCCATTTTCTCACAACGGCTTGAGAGGTTTGCACC AGCCAATTATGAATTTAAAATTATTGCAGTCCATCAACCTAAGATTTTGCTCATAGC AATCCCAGTGACGAAGGGCACAACTACAAATCAATTCCCCTAATCAATTGAAATAC AACACAGAGAGATATAAGTTGTGGGTAAAAGGAAAATAACGCTAACCATGTTAAAA AATATTAATCAAAGAGAAATCAATGAGTTTGCAAGAAATCGGTTCAAAAAAAGCGG

AAGAAAAAAAAAAGTCCGTTCAAAACTCCGCAAAAAAAAAAGCAAAAAAAAACAA GTGTGGCTTTAGATATATTAAATAAAAAAAATTAAATAAAAAGGAAAAGTACAAAT AAAAAAGACAAAATCAATTAACAGATGACTCACATGAAAGGAGCTCCAAATCATAT TTGAGAAGAGAGGAGAGGAGCTTCAATGGAGAATATTTCACAACACTTTACCATCA CATACTGCCTTAACATTGTTCCGAAGCACTGAAAGAAAATTGCACATAGAATAACCT GACATTCACCTCTTCCAATGAAAGAAAAGTATAAAGATAGAATTTAAAGACATTGA AATAGAATAAAAAAGTACGCCTAGGGTTATCAATTTCCAAGCAACAACTAGTATTAT CAAATATTACGTAGTCATTTTCCCACAAGAAGAAACAAGAAACCTGGCTTTGTCACA GGTCGATCAAATGTATTTAATTCTTTCAAACTCTTAATATTCCCTCTCATTGCAACAG GGATACAACCATTTACCATCCCATTATGCCAAAATTCAAGAAAGTGTCACTGTTCAA ATTTGAGCAAACATATGCTAATGACAAAGTTAAATTGTTGTAATATCACAAGTTGCT CATTATGCCAGCAAAAGTAATCAAACTTGAATGCTGTTTAGGAACGTTTTTACTATG TGTAGTGCCCATATTTAACCATTAATATATTACAGTTAAAATAATAATAAAAAAATA AATAACAAAATAATAAAAAAAAATAACAAAGTTAATCGTGAAATACTATACGCATA AGAATTGGCATCGTGGGTCCTCGCATGAGGCCCATGTGCCCGGTCTCTGGCCCTCGA TAGCTAACACCTATCTCTGCCAACCTTAAACGCGTCCTTCGGTACCTAACACCTCTCT CTCCCATGAGGAAATCCGCATTTTATTTTTCATGAGGCACTTATATTATATCAGAAA ATTCAGTCTGGCATGTTCTTATACGTACGATTTTCTCCTGGTGATACCAGTTAGAAAC CAAAGTTGTGCCCTCCATTGTTGGGGAGGATAACGCTTTCGAAGTACGGTGTTGAAT TATCTCGCTTGACTGAAACATTTTAGGATGGGAGTGAC


Appendix 2. Transcription factor nucleotide sequences identified from yeast one-hybrid search.
Sequences were obtained by sequencing the cDNA library pDEST22 vector insert. Character in
bold are from raw sequencing data. Underlined characters were substituted from the closest
spruce clone with the highest sequences identity.

[^0]GTAAATAATTCCTATTGAGATTGTTGTTTCAAAATTCAGACATTATTAATTCATTATG AATGTTTTCATATGATCAGAAATGGTAGGCCAAGGAACTTTTCCAGTACAGCCTCAT TATTTGGCGAAATTCAAAAGAACAGTCGTCGCTGAATATGGAATTTGAACCAAAAG CAGTACAAGAAGTCTTTTCTTTCATTTTCGTTTCAAAATCTGTAAAATAAACTTGTCA CTTCGTTATATAAATAA


#### Abstract

>Picea glauca FLX-like CTGAAAAACCㄷTACTCCATACATATTTTAAATCCTCAGGATCCATATGGCGGGAAGA AATCGTCTACCACGCCATGCTCTGAATGGTGGTCCACGTGGCTTCCCTTCCTGGTCCTG GTCCAATCCGCGATGGTCCCTACAGGCCAGGACCTCTGCCTCATCCAGCTCGTTTAG AGGAAGAGCTAGAATTACAGTATGAAGAAATCCAAAGGCTTCTTGCAGAAAACAGG CGACTTGCTGCGACACATGTGGATTTGCGCCGAGAACTTGCTGGTGCTCAGGATGAA TTACACCGCCTCAATCAAATTGTGGGCAATGTAAAAGTTGACAAAGAACGGCAAGC AAGGGATCTGGTCCATATGCAGAGGCCTATGGCTTACATCTGTCCCAAGGTGGTGTG GAAAAAGGCTCTCAGTATGGGTCTGGATCTGATCCCTGGGGATCCTTTGAAAAGCAA CGATCCCATGCTCGCAGATAAACAGAAGGGCATAATACCATCTTAGCAATGCAGTCT TGCTTGCTACTTTTTAAATTTTAATCGGTTATCTTGTGCTGAGAGCTTCCAGTGTCAA AAGGATTGATGTACTTTGTAGAGATCATGGAGTGCTTAACTCGTCGAAGCTTTTTTA CATCTGACATTTGAATTTGAAGGAGAGGCTTGTTCTTTGTAATAGGTTTTGTCTTGTT ATCTCTTTGACTTGATACTTATTTTAAGTAGAAAATTGTGAAACTCA


>Picea glauca ASR-like
TATCTGCTCTGCGTCGCTCTCGCGTTTGTGATTA $\underline{A} \mathbf{C T C T C T C T G T G T G T T G G G T T C \underline { G } A}$ ATCCAGTCGCCGCGTATAATCTCTGTCTTTCTCTGTGTGTCCTAATGACTGACGG AAGTGCCACCACCTCTTCCGCCACCGAGAGGAGGACGAATACCATTGCGTCAAC TCGGGCTATGCTACTCTGGGACCCTATGGGTCCTCTGAGTACCCCACTGGATCTGG GTATCCTTCCCGGACTGTTCACCATACTGCCTCTCCTTATAATTTCCCGCGCGAC TTATCATACTGGCTCTGGCTATAACGCCGGCAGTGATTATCCTACTGGTTCTGGC TATAGTGCCGGAGATGATTACCAGACTGGCTCTGATTATCACAGCGGCTCTCGTT ATAATGCCGATTCGGGCTATAACGCCAACACTGGTTATCAGCAAGACCAATCAGAT GATTATGACAGAGCTCGACAGGAGGTTAAAAGCGACAAGCGTAAGGAGCACGTCG GGGAGCTCGGAGCCATGGCTGCCGGAGGCTATGCACTGTATGAGAAGCATGAGTCA CATAAGGATCCTGAGAATGCTCGGAGGCACAGGATAGAGGAGGAAGTCGCTGCGA CGCTGCTGTTGGCAGCGGTGGGTATGCATTCCACGAGCGCCACGAGAAGAAACAAG ACGAGGAAGAAGCCGAGGAAGCTGAGGGTGGCCGCAAGCACCGCCACCATCTCTTC TAAGCTTGGCCCATGCCTCTCCAATGGCGGGCATTTGGTGCAGTAGCCGTAGCAGAG GGCTATTGCTCTGTGGGTGTCAAACAAATAAATGGAGGGCTATTATCTCCATATGTA ATTGTTTCCAGTGGAGTTGTAGAGTGTGTATTAGGGTTTGTTATTACTTGAGTTAGAG TTGAATGGAATTAAGCTAGGGTGTGTGTCTTTGCTTCAATAAATATTCCAGAGCCAT GTATAGCTAGCAGCAGATATGTCTATGTATTTTGCCAAATCTATTTCCTGTGGTATTT ATCTCATCTCTCATGAATGATGTGCAGGCCAACCTGGTTGTTGTAAAAGGGTTATTT GCATATAGAAGGAAAATGGCAATCATTTGTTGGATAAAAAA
$>$ Picea glauca CPC/ETC-like
GATCATACTCATTCATATATATCTGTCCNTGGAGGATAGCAAGCAACACTTCTCACC GCCAAAAGCAGAGGGAGACTGCAACGTTACCCCGGGAGGAGGACTAATATCTTTAT

GTGGGAGCAGCGTGGAATATTGCCAGAAGAGTGCTTGTGCTGCTCATGATATCTCTG CTGATGAACAAGATTTGATAAATAGACTTCACAATCTTCTGGGTGACAGGGCGCCTT CCATGGAGAAGAGTTGAGGAAATTGAGAATTACTGTAAAATGAGATACACGCCCAG TACCTCTTCTTCACGCTCTTGAATCTCCCTTCTCTGGCCAGGTCATGGAGTGAGCACC AATGGTTTTGGAGGATGCGATCGTAATCAGAATATGTGTGGATTTTTTTTTTGTTTTG TCAATTGAGCATATGTGTGGATGAAACAAAATTGCGGCCGTTTTATCTATTATTTAT GATATTTCACCATGGAGACAGTTCAATATATACTCNCAGTATATATGAGTGTATACT CTATTTATTTGTGATATTTCAACTCATACAGTACAGTATGAGTATATAACAGCGTTGG TTCTATCTTTTAGTTTTTTTTTGGTTGTAAAAGATGTAAATTTGGATAAAAATTATAT TTTCTGTTGTTTAAAAAAAAAAAAAAAAAAAACCCAA
$>$ Picea glauca MYB1
CAACACACTTTCAAGGTACACAGATTATAAATTATATACAGAGGAGATTGATCCACT GAGAGGCAACTTCCTTCCTCTTTCCCGGCCGGCCGGCCCTTATTCTATCTCTGCCGGA ATCTTCTCCACACAGAGGCCAGCCCTTGAGCCTTTAGAACGATCCCCGAATGTGGAA AAATCGACGATTCTAAAGCGCGATTCCTGTCTCTTCTCAGATCCTCTCGGCAAAATG GGAAGGCAGCCTTGCTGTGACAAAGTGGGATTGAAGAAGGGTCCATGGACGGCTGA GGAAGACAGAAAACTGGTGAATTTTATCACCATGCACGGCCATGGATGCTGGCGTG AAGTACCCAAGCTTGCCGGTCTGCTGAGATGCGGAAAAAGCTGTAGATTGCGTTGG ACAAATTACTTACGGCCAGATTTGAAGCGTGGATTATTGTCTGAATCAGAAGAAAA ACTCATCATCGATCTACATGCTGCCATAGGGAATAGGTGGTCACGAATCGCTGCACA GTTGCCAGGGAGAACGGATAACGAGATCAAGAATTACTGGAACACGAGGATTAAGA AGAAACTCCGCCAGATGGGAATCGATCCCGTGACCCACAAGCCTCTCANCCAAATG CAAATGCAGAGCTCCCCGACCCAGANTCTGCTGCTGCAAGAAAATGATGAACAGCA GCAGCAGCAGAATGAGCCTGATCAGAATCATAGTAATGGCTCTGCGGAGACATTGG TGTTGACGGCGAGAGAACCAAACGACGATATAGAGCCTCTCGAGAATTTTAACATG GAGGATTCCATGCAATTGTTCAATGTCTGCTCGCCCACCAGCGTAATAAGCCTGTCG GGGAGAACCGAGGAAGTTGACTCGGATGACTCTGACCAGGTCTCCAAGAGCTTCGG CAATGGCGGCCATGCTCAGTACATTGGCCGAGAAAGCTCTGGTGTGAAGGCCGAAT GTGGTTTGTCTGTGTGGGATCAGATGGGTGGCGTTTTGGGTGATCCGCTCTCCGATT ACAATTCGCAGTGGAATGTCGATTTGGAATCGTGGACGGCTGGATTGGACGCTCATG CGGCTTCTGCTTCTGCGTGGATTCAGCAGCTTCCTGACTGCCAATGGAACGACTTCC AAGGCGATTTTGAGATCTGCAGCAAGTCATGTCCGGAGACTCTGCAGAGACTGGGG CCCTTCCTGGATGACGATGAAATGTGAAAAAAGGAGATCCCAACAATATCTCATAA AGAGATTGTACATTAACCCAGTAAATATGGAGGAGGAGGATGAGATATATAGAATA TATACATATAAGTTAATATGAATGAAGTTGTGTGTATCTAATTCATTCATTCATTCAT CCTACGATGTTTTCATGTAACAGATACCACATGGTTTAAACTTTGCCATCTTCATAAA ATCCNACTCTTAGTTTGTCA

[^1]TGGAAGCATACTCCAGTGATGAAAGCGAGTTGGACTCCAGTGATGAAAGCGAGTTG GAAAATATACAAATGGAAGCATACTCCGGTGATGAAAGCGAGTTGGAAAATATACA AATGGAAGCGAGTTGTTAAATATACTCCATGAAATCGAGTTGTAAAACATACTCCAG TGATGAAAGCGAGTTGTAAAATGGGAGTAGACTTCATGGAAGCATACTCC

## Appendix 3. Cloning Promoter Baits into Destination Vector.

## Materials:

E. coli DH5 $\alpha$ cells

LB ampicillin plates
Gateway LR clonase II enzyme mix
$\mathrm{pMW} \# 2$ and $\mathrm{pMW} \# 3$ vectors containing promoters
TE buffer ( pH 8.0 )
AflII or XhoI
$\beta$-mercaptoethanol
X-gal
NcoI or ApaI
Whatman filters
$15-\mathrm{cm}$ Petri dish
Tweezers
Liquid nitrogen

## Z-buffer

$60 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (anhydrous)
$60 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
10 mM KCl
$1 \mathrm{mM} \mathrm{MgSO}_{4}$
Adjust the pH to 7.0 with NaOH .

1. Clone promoter sequences into the $476 \mathrm{p} 5 \mathrm{E}-\mathrm{mcs}$ Gateway vector.
2. Take the Gateway LR clonase II enzyme mix from the $-80^{\circ} \mathrm{C}$ freezer and place it on ice. Compose all reactions on ice.
3. Combine in sterile tubes: $\sim 200$ ng of pMW\#2 to generate DNA bait::HIS3 constructs or $\sim 200$ ng of pMW\#3 to generate DNA bait::lacZ constructs (should be $\leq 1 \mu \mathrm{l}$ ), $1 \mu \mathrm{l}$ of Gateway LR clonase II enzyme mix, and enough DNA bait Entry clone miniprep to obtain a final volume of $5 \mu \mathrm{l}$. As a negative control, prepare an identical LR mix without Entry clone but with TE buffer instead of DNA.
4. Incubate overnight at $25^{\circ} \mathrm{C}$.
5. Transform the entire reaction mix into $50 \mu \mathrm{l}$ of E. coli DH5 $\alpha$ cells plate onto LB-ampicillin plates $(100 \mu \mathrm{~g} / \mathrm{ml})$, and incubate them overnight at $37^{\circ} \mathrm{C}$. The negative control should give rise to no or only a few colonies (less than five).
6. Verify the insert size of the sequences in the Destination vector by PCR of at least two colonies per construct using vector-specific primers.
7. Purify the Destination clone DNA by miniprep for subsequent integration into the yeast genome.
8. Digest approximately $1 \mu \mathrm{~g}$ of DNA bait::HIS3 constructs with either AflII or XhoI, and bait::lacZ constructs with NcoI or ApaI in a $20 \mu 1$ reaction volume. Make sure that the restriction enzyme of choice does not cut within the DNA bait sequence.
9. Verify linearization of constructs by running 1-2 $\mu \mathrm{l}$ of the restriction digest reaction mixture on an agarose gel.
10. Transform linearized DNA into YM4271 yeast and PCR confirm using the procedure below in section A2.

Promoter Self Activation Test:

1. Pick 12-24 individual colonies containing both $\mathrm{pMW} \# 2$ and $\mathrm{pMW} \# 3$ integrations, and spot them onto an Sc-His-Ura plate. Incubate them for $1-2$ days at $30^{\circ} \mathrm{C}$.
2. Replica-plate the spots (A4.) onto the following plates: a fresh Sc -His-Ura plate, $\mathrm{Sc}-\mathrm{His}-\mathrm{Ura}+$ $3 A T$ plates (containing 20, 40, 60, 80 , and 100 mM 3 AT ). Grow 3-10 days at $30^{\circ} \mathrm{C}$ and monitor the colony growth. Dense colony formation indicates there is a high level of selfactivation. We want to select the colony with the least amount of self-activation.
3. To perform $\beta$-Gal assays, replica-plate the spots onto a nitrocellulose filter that has been placed on top of a YEPD plate. This ensures growth of the respective yeast colonies on the nitrocellulose filter. Incubate overnight at $30^{\circ} \mathrm{C}$.
4. B-gal Assay: Incubate the 3AT-containing plates for 3-10 days at $30^{\circ} \mathrm{C}$. Monitor colony growth: Strong growth is an indication of self-activation.
i.Place two Whatman filters in an empty $15-\mathrm{cm}$ Petri dish for each plate to be assayed. ii.Make a mix of 6 ml of Z-buffer, $11 \mu \mathrm{l}$ of $\beta$-mercaptoethanol, and $100 \mu \mathrm{l}$ of $4 \% \mathrm{X}$-Gal per plate. IMPORTANT: Make sure to do this in a hood.
iii.Pour $\sim 200 \mathrm{ml}$ of liquid nitrogen into an ice bucket, cover the bucket, and place it in the hood.
iv.Transfer 6 ml of the Z-buffer mixture onto each plate containing Whatman filters. Make sure the entire paper is soaked with buffer, and remove air bubbles using tweezers.
v.Take the nitrocellulose filter containing the yeast using the tweezers and place it in liquid nitrogen for 10 seconds.
vi.Thaw the filter at room temperature by holding it in the air using tweezers. Place the filter with the yeast facing up onto the Whatman filter, and remove air bubbles.
vii.Incubate at $37^{\circ} \mathrm{C}$. Check for blue-white coloring regularly every hour during the first 4 hours, and take pictures. Continue the incubation overnight at $37^{\circ} \mathrm{C}$, and check again
for blue-white coloring the next day.

## Appendix 4. Yeast Transformation Protocol.

Materials:
10X TE (50 mL)
10 mL 1 M Tris- HCl pH 8
2 mL 0.5 M EDTA pH 8
Solutions should already be autoclaved, therefore no need to sterilize
1 M Tris-HCl pH8 ( 100 mL )
12.11 g Tris- HCl
90 mL water
pH to 8
Top to 100 mL
0.5 M EDTA pH $8(50 \mathrm{~mL})$
9.3 g EDTA
40 mL water
pH to 8
top to 50 mL
1 M Lithium Acetate (LiAc, 50 mL )
5.1 g
50 mL water
pH to 7.5
Autoclave or filter sterilize
50\% (w/v) PEG (poly ethylene glycol 3350, 50 mL )
25 g PEG
50 mL water
Autoclave, seal bottle with Parafilm around the lid to prevent evaporation (PEG is veryvolatile when dissolved in liquid)
$\underline{1.1 \mathrm{X} \mathrm{Te} / \mathrm{LiAc}(f r e s h, ~} 10 \mathrm{~mL}$ )
1.1 mL 10X TE
1.1 mL 1M LiAc (10X)
7.8 mL DIW
TE/LiAC/PEG (1X/1X/40\% final conc., 10 mL )
1 mL 10X TE1 mL 1 MLiAc$8 \mathrm{~mL} 50 \%$ PEG
$\underline{0.9 \%}(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}(50 \mathrm{~mL})$
0.45 g in 50 mL -> filter sterilize
YPDA agar plates (1L, scale appropriately)
10 g yeast extract
20 g Difco bacto-peptone
0.5 g adenine hemisulfate
Top to 950 mL water (when adjusting for scale, adjust this volume but keep glucose at 50mL )
pH to 5.8-5.9
20 g agar*glucose needs to be autoclaved separately or else it will caramelize in the solution.
After autoclaving the 2 solutions can be combined, and then poured into plates
40\% (w/v) Dextrose/glucose ( 50 mL )
20 g glucose in 50 mL water autoclave separately from rest of YPDA solution

* After pouring plates, leave dry them at RT for 2-3 days (i.e. leave plates unsealed in a bag) before storing at $4^{\circ} \mathrm{C}$ for several months. Alternatively, plates can be dried under a flow hood for approximately 2 hours.
YPDA liquid medium (will need $3-12 \mathrm{~mL}$ for start cultures, 150 mL for larger cultures) *use same recipe as YPDA plate but omit the agar
Appropriate $\underline{\text { SC (synthetic complete) selective medium (1L) }}$
6.7 g Difco YNB (yeast nitrogen base) w/o amino acids, with adenine hemisulfate
2 g amino acid drop out media (e.g. -His, -His-Ura, or -His-Ura-Trp)
20 g agar if making plates (if making liquid media omit)
40\% (w/v) Dextrose/glucose (50 mL)
20 g glucose in 50 mL water
autoclave separately from rest of SC solution
*combine glucose and rest of SC media after autoclaving, pour plates, allow to dry for 2- 3 days at RT, store at $4^{\circ} \mathrm{C}$
- Frozen stock of yeast cells
- Sterile, DIW
- 1 Oakridge tubes for every 50 mL yeast culture
- 1-4 culture tubes
- 1250 mL flask (sterilized)
- 1500 mL flask (sterilized)
- Heat block $\left(100^{\circ} \mathrm{C}\right)$
- Water bath $\left(42^{\circ} \mathrm{C}\right)$
- Incubator $\left(30^{\circ} \mathrm{C}\right)$
- Parafilm

1. Streak yeast strain (from glycerol stock) you wish to transform on YPDA agar plate. Incubate upside down at $30^{\circ} \mathrm{C}$ until colonies appear ( $\sim 3$ days).
2. You may break here by sealing the plate with Parafilm and storing it at $4^{\circ} \mathrm{C}$ (dark) for up to 4 weeks. If you wish to proceed (start early in the morning!), inoculate 1 colony (2-3 mm diameter $<4$ weeks old) in 3 mL YPDA medium in a culture tube. (If you wish, you can set up 3 separate 3 mL cultures from 4 separate colonies and choose the culture that grows the fastest to proceed with for the transformation. The faster growing cultures tend to result in higher transformation efficiency).
3. Incubate at $30^{\circ} \mathrm{C} 250 \mathrm{rpm}$ for $8-12 \mathrm{hr}$.
4. Transfer $20 \mu 1$ of the culture to 50 mL of YPDA in a 250 mL flask. Incubate at $30^{\circ} \mathrm{C} 250$ rpm until OD600 reaches $0.15-0.3$ (16-20 hr). Do not over grow! If culture is not at 0.15 by 20 hours, just continue growing until it reaches the minimum OD600.
5. Centrifuge cells at 700 xg for 5 min RT in Oakridge tube. Discard the supernatant and resuspended the pellet in 100 mL of fresh YPDA in a 500 mL flask. (Discarding supernatant also discards yeast waster. Using fresh media will help the yeast grow faster and they will be healthier).
6. Incubate at $30^{\circ} \mathrm{C}$ until OD600 reaches 0.4-0.5 (3-5 hr). *Turn heat block on to $100^{\circ} \mathrm{C}$, water bath to $42^{\circ} \mathrm{C}$.
7. Harvest cells by centrifuging at 700 xg for 5 min RT. Can reuse corresponding Oakridge tube from previous step. *During this step remove tube of herring/salmon sperm DNA from freezer and put in heat block at $100^{\circ} \mathrm{C}$ for 5 min to boil. Afterwards, move tube to ice to cool. Right before transformation return tube to heat block to boil for 5 min .
8. Discard supernatant and resuspended pellet in 30 mL of sterile water.
9. Centrifuge at 700 xg for 5 min RT. Discard the supernatant and resuspend in 1.5 mL of 1.1XTE/LiAC.
10. Transfer cells to microcentrifuge tubes and centrifuge on high for 15 sec RT.
11. Discard supernatant and resuspend each pellet a volume of 1.1X TE/LiAc that corresponds to the original culture volume, multiplied by the final OD600, divided by 100.
e.g. 50 mL culture * OD600 of $0.5=0.25 \mathrm{~mL}$ (i.e. $250 \mu \mathrm{l}$ ) $1.1 \mathrm{XTE} / \mathrm{LiAc}$

100

The cells are now ready to be transformed. For best result, transform immediately, although they can be stored on ice for a few hours without significant loss in efficiency.
12. In the following steps parenthesis are used to indicate differences to be performed in transformation steps whether you are doing the transformation of a linearized plasmid for yeast integration, versus when you are transforming your cDNA library into yeast.
In a prechilled tube ( 1.5 mL tube for small scale $\underline{\text { OR }} 15 \mathrm{~mL}$ tube for library-scale) combine in the following order:

- 100 ng to $1 \mu \mathrm{~g}$ of linearized plasmid for small-scale $\underline{\text { OR }} 15$ to $25 \mu \mathrm{~g}$ of cDNA library for library-scale.
- Herring sperm DNA (carrier DNA $10 \mu \mathrm{~g} / \mu \mathrm{l}$ ) - $25 \mu \mathrm{l}$ for small-scale $\underline{\text { OR }} 100 \mu \mathrm{l}$ for library-scale
- Competent cells - $50 \mu 1$ for small-scale $\underline{\text { OR }} 600 \mu 1$ for library-scale; gently mix
- TE/LiAC/PEG - $500 \mu \mathrm{l}$ for small-scale $\underline{\text { OR }} 2.5 \mathrm{~mL}$ for library-scale; gently mix

12. Incubate at $30^{\circ} \mathrm{C}-30 \mathrm{~min}$ for small-scale (mix by tapping or gently vortexing every 10 $\mathrm{min})$ OR 45 min for library-scale (mix every 15 min ).
13. Add DMSO and mix - $20 \mu \mathrm{l}$ for small-scale $\underline{\text { OR }} 160 \mu \mathrm{l}$ for library-scale
14. Incubate at $42^{\circ} \mathrm{C}$ in water bath - 15 min for small-scale $\underline{\mathrm{OR}} 20 \mathrm{~min}$ for library-scale.
15. Centrifuge to pellet east cells - high speed for 15 sec for small-scale OR 700 x g for 5 min for library-scale.
16. Remove the supernatant and resuspend in YPD Plus Medium -1 mL for small-scale $\underline{O R}$ 3 mL for library-scale. YPD Medium Plus sold separately by Clonetech, but can purchase from Zymo Research cat\# Y1003-50 for 50 mL and Y1003-100 for 100 mL . This is a specialized medium to increase east transformation efficiency y $>50 \%$ compared to YPD medium alone.
17. Incubate at $30^{\circ} \mathrm{C}$ with shaking for 1.5 hr .
18. Centrifuge to pellet cells - high speed 15 sec for small-scale $\underline{\mathrm{OR}} 700 \mathrm{xg}$ for 5 min library-scale
19. Discard the supernatant and resuspend in $0.9 \% \mathrm{NaCl}-1 \mathrm{~mL}$ for small-scale $\underline{\text { OR }} 15 \mathrm{~mL}$ for library-scale.
20. Spread $100 \mu$ l of $1 / 10$ and $1 / 1000$ dilution onto 100 mm plate containing the appropriate SD selection medium (e.g. SD-HIS for $\mathrm{pMW} \# 2$ vectors). Do not plate undiluted transformed cells, colonies will be too dense.
21. Incubate plates upside down at $30^{\circ} \mathrm{C}$ until colonies appear (3-5 days).
22. Calculate transformation efficiency
transformation $=$ colony forming units (cfu) $*$ suspension volume $(\mathrm{mL}) *$ dilution factor efficiency volume plate $(\mathrm{mL}) *$ amount of DNA $(\mu \mathrm{g})$
example:
Transformation efficiency $=\underline{300 \mathrm{cfu} * 1 \mathrm{~mL} * 10}=3 \times 10^{\wedge} 5 \mathrm{cfu} / \mu \mathrm{g}$
$0.1 \mathrm{~mL}^{*} 0.1 \mu \mathrm{~g}$
Yeast PCR Screen:
23. Aliquot $14 \mu \mathrm{l}$ of Z-Buffer and $1 \mu \mathrm{l}$ of resuspended Zylomase enzyme (diluted according to manufacturer's recommendation, Zymo Research cat \# E1005) into 0.2 mL tube for each colony being screened. The buffer Zylomase enzyme is resuspended in contains $\beta$-mercaptoethanol, so perform this step in a fume hood. The enzyme has a low solubility so I usually quick vortex it 3 x in the resuspension buffer before aliquoting it into tubes.
24. Use sterile pipette tips to carefully and gently remove a large chunk of the colony (I remove $\sim 3 / 4$ of the colony). As long as there is a tiny bit of the colony left on the original plate, you can regrow more of the colony to use for other purposes.

- I found yeast colonies do not readily dissolve in this buffer so you must pipette the colony off your pipette tip several times

3. Incubate tubes (ZYLOMASE program):
$37^{\circ} \mathrm{C}-30 \mathrm{~min}$
$95^{\circ} \mathrm{C}-10 \mathrm{~min}$ (heat inactivate enzyme)
$4^{\circ} \mathrm{C}$ - Hold
4. Pellet debris by centrifugation at 700 xg for 5 min (since the centrifuge that will hold 0.2 mL tubes is in the MBSU I usually just centrifuge tubes in out 0.2 mL bench top quick spin for $\sim 3-5$ min . The result is not as quite good as the machine, but it works).
5. Remove supernatant and transfer to a new tube.
6. Add $85 \mu \mathrm{l}$ of sterile water to dilute template.
7. The lysate can be stored at $-20^{\circ} \mathrm{C}$ for subsequent PCR reactions.
8. Set up $50 \mu \mathrm{l}$ PCR reaction according to Neb taq polymerase protocol, with $5 \mu 1$ of yeast lysate as template. Use primers specific to your promoter to confirm presence (e.g. same primers used for previous cloning techniques). Run PCR with the following program (note this is the program used by Deplanke et al. 2006. They did not explain their logic so some steps may be able to be shortened, but I did not spend time testing this):
i. $94^{\circ} \mathrm{C}-5 \mathrm{~min}$
ii. $94^{\circ} \mathrm{C}-1 \mathrm{~min}$
iii. $55^{\circ} \mathrm{C}-1.5 \mathrm{~min}$ (they did $56^{\circ} \mathrm{C}$, but my primers had low Tm's)
iv. $68^{\circ} \mathrm{C}-3.5 \mathrm{~min}$ (could probably shorten this step based on your promoter length)
$\rightarrow$ Repeat from step ii. for 29X
v. $68^{\circ} \mathrm{C}-5 \mathrm{~min}$
vi. $4^{\circ} \mathrm{C}-$ hold
9. Run $10 \mu \mathrm{l}$ of PCR reaction on $1 \%$ agarose gel to confirm insert.

Note: Deplanke et al. 2006 stated that they had trouble with PCR efficiency from colonies grown on selective media, therefore they restreak colonies they wish to test on YPDA, grow for 2-3 days and then PCR screen. I found my PCR's were successful with colonies grown on selective media, but if you are having problems you can try restreaking, it will just take longer to screen.
10. Once confirmed, restreak colony you wish to make a glycerol stock from, restreak remaining part of colony on a YPDA plate and allow to grow for 2-3 days at $30^{\circ} \mathrm{C}$.
11. Inoculate 3 mL of YPDA with colony and grow overnight at $30^{\circ} \mathrm{C}$ at $200-250 \mathrm{rpm}$.
12. Add $900 \mu \mathrm{l}$ of yeast colony to $90030 \%$ glycerol and store at $-80^{\circ} \mathrm{C}$.

Appendix 5. Yeast Replica Plating Protocol.

## Materials:

296 well plates
Selective media or YPDA media
Selective plates
YPDA plate for B-gal screen
Note: I did not find the B-gal reporter gene to be very informative, so this step is optional.
Selective plates +3 -AT (low to high concentration depending on needs)
Replica plating tool
Sterilized velvets
Procedure:
***This technique should be performed after yeast has been screened against the cDNA library. Positive colonies will grow on the selective media. You will PCR screen these colonies until you have found enough unique/diverse sequences. After which you can purify the PCR reaction for sequencing. Part of remaining yeast colony can be used to make a culture for a glycerol stock (plate or tube type). The replica plating can then be performed. After which you can recover the transformed plasmid with the Zymo Research Plasmid Extraction Kit. This step is done last because you will want to thoroughly screen your positive colonies first before you deem them worthy of extraction. Meaning:

- you will want a unique sequence (we don't need 10 plasmids of the same sequence to be 3-AT screened),
- you will probably want interesting transcription factors (housekeeping transcription factors may be of less interest to you), and
- you will want true positive interactions/strong interactions (the 3-AT screen will reveal if there are any false or weak positive interactions).

1. Using a 96 well plate, pipette $160 \mu 1$ of media (selective or YPDA, depending on purposes) into each well. With a pipette tip inoculate each well with your desired colony.
2. Grow the plate $\mathrm{O} / \mathrm{N}$ at $28-30^{\circ} \mathrm{C}$ with $200-250 \mathrm{rpm}$. (Some protocols say you can grow the culture up to 72 hours). Make a glycerol stock plate: add $80 \mu \mathrm{l}$ of $30-40 \%$ glycerol to each well, combine with $80 \mu \mathrm{l}$ of the respective well in the culture plate. e.g. $80 \mu \mathrm{l} 30-40 \%$ glycerol $+80 \mu \mathrm{l}$ culture $=160 \mu \mathrm{l}$ total in each well
3. The remaining volume of the cultures $(\sim 85 \mu \mathrm{l})$ can be used to create a plate that will be used for replica plating. Pipette $3-5 \mu 1$ of the culture onto the selective (SC) plate (here after referred to as the "culture spot") of choice to later replica plate onto the 3-AT plates and the YPDA plate for the B-gal screen.
4. Allow to grow for 2-3 days. When ready, replica plate the colonies growth on the selective original plate. You may have to do more than one 3-AT screen in order to narrow down the range of 3-AT concentrations you should be using to discriminate against strong and weak DNAprotein interactions.
E.g. $\quad \mathrm{SC} 0 \mathrm{mM} 3$-AT (control)

SC $5 \mathrm{mM} 3-\mathrm{AT}$
SC 10 mM
SC 20 mM
Optional: YPDA (for $\beta$-gal screen)

* the 3-AT plates can be grown 3-5 days (Deplanke et al. 2016 says 3-10 days, but I found this causes the spotted colonies to become overgrown and begin to merge with adjacent spotted colonies)
(* $\beta$-gal plate should be grown overnight for 1 day)

5. To replica plate, place the sterilized velvets over the base of the plating tool. Apply the ring over the velvet to keep it in place. Ensure the ring is far enough down the plating took that it will not touch the plate when it is applied to the velvet (i.e. don't place the ring too high or else it will contaminate your plate).
6. Make a mark on the velvet/ring so that you can have a marker to late identify each colony (a simple line on the top of the plate will do). Make this mark on each plate and align the line on the plate, with the line on the metal ring so that each plate will be identical in orientation.
7. Place the original plate on the velvet face down. Pat gently with your fingertips. About 10 gentle pats in the middle of the plate (approximately one pat for each row of colonies), followed by 10 gentle pats along the edge of the plate. Repeat this action so in total the middle of the plate will have approximately 20 gentle fingertip pats, and the edge will have approximately 20 gentle fingertip pats.
8. Remove the original plate and place the lined-up replica plate on the velvet. Press down gently approximately 10 pats along the middle of the plate. Remove the replica plate. You can use one velvet to replica plate 5-6 plates.
9. Clean the replica plates with a fresh velvet. You will need to press down much harder to clean the plate. Ensure there is at most a haze of cells on the plates. Too many cells will create a boundary layer so yeast cells will grow on top of the primary yeast layer and lead to false positives. I used a minimum of 5 clean velvets to clean my replica plates, but the number of required velvets will vary based on your colony density and how hard you press down on your replica plates and the cleaning velvets. Continue to clean plates with a fresh velvet until not colonies are visible, or only a slight haze of colony spots is visible.
10. Allow plates to grow at $28-30^{\circ} \mathrm{C}$ for 3-5 days. Take photographs of plates using a hand-held camera for larger shots to display the difference in colony growth within a plate. Photos of
specific colony spots can be taken with a dissecting scope camera in order to have a more accurate picture of the growth of each colony spot for figure photos and comparisons.
11. Cleaning the velvets:
i. Use a bristle brush, with water or water and soap, to scrape away any colony residue.
ii. Autoclave the velvets in a large container (e.g. 2 L beaker) filled with water.
iii. Dry velvets.
iv. Stack velvets in a pile and wrap in aluminum foil. Autoclave velvets (include a dry time). You may wish to leave these autoclaved packaged velvets in an incubator over night to ensure all residual moisture evaporates.

Appendix 6. Additional sequences obtained from the yeast one-hybrid screen. Seqeunces were obtained by sequencing
pDest22 Fw and Rv PCR products with pDEST22 Fw, pDEST22 Rv or oligo dTs. Well i.d. refers to the corresponding frozen glycerol stock identity for identification and use in future experiments.

| Promoter | Well i.d. <br> (Promoter <br> - Plate - <br> Well) |  | Sequence | Length (bp) |
| :---: | :---: | :---: | :---: | :---: | | BlastN |
| :---: |
| Search |


| SAL1 | C12-P1- <br> C3 | TGCCTTCTGCTTCCTGCAGTTGTGAGCTTTGAGACAAGTC <br> AACTCTTGGCCATTTTCGCCTTCTGTTCGGAGGGTTTTTC | unknown |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | CAGGGTTTAAGGCGTTTTTTGTCAAGTTCAGAGGGGCTG |  |  |
|  | CTACAACCGGTTTGTGTTAAATTATCATGGCAAGAGCTA |  |  |


		TATCAGAGCCGGCTTGATCCAAGCATTGAATCTTTATAT		
		CGTCAAAGGTTGGATGTGGATTATCGAAAGCCGATAGTG		
		GATGTTGCAACTGAAAGCTACTATGCAGACCCTCTCCTG		
		CAAAGGGATTTACGCCGACCTGAGTTGGGANCTTCTGTT		
		GCTGGGNCNCCTCCTGCATATCTTGNAGCATCTTCACTG		
		NATCGGTAGTTNTATAANCTGCTGAATTTTGAATCCNNN		
		NTTACTATCCCNTCGNNCTATACTTGTTAGTTGTGAATCA		
		NNCTGAANAANTGANTTNNNTGGTACGGTGCTGGACTAT		
		TTT		
SAL1	C12-P1-	ATATAACTATCTATTCGATGATGAAGATACCCCACCAAA	342	unknown
	F9	CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT		
		ACAAAAAAGTTGGAGCTTCATATAAACGCAGCAATAAG		
		CGATGGGATGCGATCCGGTTACATAAGCTTCTCTCGGCT		
		ATCTGATCTCCGGTACAAGGATCTTAATTTCAGGTTTTCT		
		ACATTTCAGATTTGTGAAGTGTATTGGGTGTATTTCTGGT		
		CTCCAATGCTGTTCTGCTTCTAAGAGTTGCATCTGGATAT		
		ATTGTTGCCTTGCATANCTGCNGTGTATACTAATTTCAAC		
		ATTTCTTCNNAANACTGNNAANAANGGG		
SAL1	C12-P1-	GGAAACCCAGAGACCCAATAGCAAAACGGCAGGGAAGC	772	unknown
	E11	AAAGAAAAATCGTCGATGGCGGAGGTTATGGGATCAAT		
		TCTCCCTCGTACCTCСTTCCTTTCACACAAGGCATTTAAA		
		GGCAAAGCAGCAACACCATACAGAGTGCCTTATACAAG		
		ATCAATGCCGCAGATTACCATGCAAGCAGAGAGAACTG		
		TCAGCTTCTCATCCGAACTTAGCACCGATCTTCCTCTTTA		
		TGAGCCTTCTGAGGTTCCCTTTGAGCAATATTTAAGTGA		
		CAGGGAAAGAATATTTCAAGCAATATTCCCAGACAAAA		
		GGAGGAGCGAGAAACTAAATGATGAAGAATGGCGAATT		
		CATATGTTGCCTATTGAGTTCCTTTTCTTGACTGCATTTC		
		CAGTCATTGATATGAGTATTATAGTGAAAGCACCGGGGC		
		AAGGATATCCCCCGGGTATTTCAAAAAATGTTAAAAAAG		
		TGCTAACCTTGGAAGCTACAAGATGGGAGCTTCGAGGCT		
		TAGACTATGTTTTGCAGCCATCAGACTTTGTACTCGGAG		
		TTCGTGNAGCTCTTTACTCANAAAATAATGGGGGNNANN		


SAL1	$\begin{gathered} \text { C12-P2- } \\ \text { B7 } \end{gathered}$	NCNAGANNAAAGGNANTGATGGANANGANTGTTANCTT TGNATTANCTCCAGCACTTGCTGNTATTCCTGAANANNT TNTNNNAAGCATTGGACACGCNNTTNNGATTNAANTGNT GGAGANCATGNNGGNANNANTCNATANNAAACTTCNTG NCNATTACNNAGATTANTCNNNNNNNCNNAAATTGC		
		NAGACTACNNANNANCCATGTTTNNNATCACCNNNTAG	741	unknown
		GGNNNGNNAATTATTATTCANCCNCNTACATAAACGTCA		
		NTTGNTNTCTNNNNNNANTNNCGGANTGANCCTCNNAA		
		TGTGGCTTCCAAATGCAGGACTAAGAGAGTTCCACTTGA		
		ATTCNAANTNNNNGGAGAGCCATTAGCCCTCACCTAATT		
		TAATANNTCTACTACTAACATCAGCTTCTCTCTCNAACCT		
		ACAGCTCNNNGCCTCCGGTGTANNCNNNTCATGGAGAT		
		GCCAGGAACCAGAANANNAGGAGACGCACACAAACTGN		
		NNNAGCTTAATTGNNTTCGGGCTTGTGNACGATGAANGA		
		NATGCNCTGGACTTGGCGGACGNTGTCGAANCCNANGA		
		CGCGAATGANNGCTTTCNGNNATGCCTTCNNNCNNTCNN		
		TCACCNNNNNCAACACCNGNNANGNCTCTGTGCANNCG		
		AACATTGNCAATTTCCNCNTNACCNANAATCTNNNNNNN		
		NNNTGCCCAGGGNNNNTTCCNNACTTCCNCNTNANGAT		
		NCCNCCCNCGTGNANTTCCAGGCNAGGNANCCATTTGTN		
		CCTCANCNNGNANNCNNNCTCCNNNNNNANNTGNTCTT		
		NANNGANCCNNNNGANANNCGNNNGANTNTNNNNNNN		
		TGNNNNGNNNNANGNAGNCCACANNAGNNNGCNTCGN		
		NNNNNCNCCNCCNNNGCTNGNANNCNNNTNTCTCCCAT		
		NANGNGNCNACC		

$\left.\begin{array}{lccccc}\text { SAL1 } & \begin{array}{c}\text { C12-P2- } \\ \text { C10 }\end{array} & \begin{array}{c}\text { GCAATATTTCNNNNNGNACCCNTCTAACATCATACTCNA } \\ \text { ACAAAATTGATTTCNCAACTGTACATCATTTATCCNCGTT }\end{array} & & \text { unknown } \\ & & \text { GCTCTCATGATATACNGNGNNNNNANNTCCNAGATTCCA }\end{array}\right]$

ACGACTCCAGTGCTCCTCCTGCGCTCTGCGGCCACTGCG ANGCCGAAAGCAATGANNNCGAAGATGAAGATGACGCA GATAACCNCCTTTGACGCCNTTGCTTTTTGCTTGTTAGCA GAAACTGNNATGAANANGGATGGACAGATACCCCACNT TTTTTGNACAAACTTGNNNGATTCNACCCNCCCTNNTTTT TTTGGNTTTGNNGGGNNATCNNCATCATCGAANAGATAG NNNNANACNTCATCC
$\left.\begin{array}{ccccc}\text { SAL1 } & \begin{array}{c}\text { C12-P2- } \\ \text { G10 }\end{array} & \begin{array}{c}\text { GTATATAACTATCTATTCGATGATGAAGATACCCCACCA }\end{array} & 882 & \text { unknown } \\ & \text { AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT }\end{array}\right]$

SAL1	C12-P3-   C6	GTATATAACTATCTATTCGATGATGAAGATACCCCACCA   AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT
	GTACAAAAAAGTTGGTGAAAATCCAGAAGATTCAGCCG	
	TGCCCAAGAAAGACGTTGTCAATGAAAAACTGTCATCCG	
	TGACTCTGGATCAAGAGCAGGGTGTTGTGGATATTGAGA	
	ATGAAAAGTTATTAGATTTAGCCTTGCCTAAGGAAGAAG	
	ATGTTGTCAATAAAAGACTGTCATCGGTAGCTCTGGAGC	
	AAGAGCAGACTATTGAAGATATGGAGAATGTAAATGCC	
	TCCGAGAAATCTGCCATAGTGGGGGAAGACAATTCAATT	
	ATTACTGCACCTGAGGGTGAGAATGATCAGGAAAAAAT	
	TGTTGAGATATGTACAGACCCTGTTTCTGATAGGAATGA	
	AGCTGAAAGAGACATAATCCATGCTTTAACAGAGGAGA	
	CAGAGGAGTGTCATGACAATGACGAGATGGAGTTNNCT	
	GTGGAGGTTCCTTCATTGACGATATCTAATGTCATAGAA	
	GAAAACAATTTGGTGAGAATGGAGGAGACTATACCTTC	
	AAATGAGAATGCGGATGGGAAAGAACCTCCAGCAGCTG	
	CTGAAACCCAGAGCATAGGNNNCCGGTGCAAACTGNTA	
	ACTCTCTANAANCTGCTCTTAGATTCCAAAATGAGGACG	
	ANCTTGNTGCTNAANAGGAANTATTGNTTCCANCNCTCG	
	AACAGCCNGTTGAAGGNAAANAATCGACNCTCANANGT	
	GGTGAAATTTTNCAGGAACANAGTTGANCATNGNNANN	
	TGGANANAACGCANCATTGACTCGANNNNCTTGNANNA	
	NNNNCNAGNNNNAACTTTNNANANNATGATCNNACNNN	

$\left.\begin{array}{lcccc}\text { SAL1 } & \begin{array}{c}\text { C12-P3- } \\ \text { G7 }\end{array} & \begin{array}{c}\text { ATATAACTATCTATTCGATGATGAAGATACCCCACCAAA } \\ \text { CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT }\end{array} & 898 & \text { dehydrin } \\ & & \text { ACAAAAAAGTTGGCCAACTTTTTTGTACAAAGTTGTCCC }\end{array}\right]$

		GCCCTCCCCACATTCCGCCCGACGCCCCCCAAGAGACGC		
		AGAAATCGCTGCTGCCTCTGCTTCCTCTGCCTCGTCGCGT		
		TCCTCCTCGTCCTGATTTTGCTGGCGGGAATCGCTGCGCT		
		GGTTATATGGGTCATCTACAGGNCTCNNCANCCCAGTTT		
		CACACTGAATTCAGTGCAGATCCCCAAGTTCAATGTCAC		
		CNTNNATTCNCATCTCANCTACNANNTCNANNTGCAAAT		
		GGATGCCNNNAATCCCNNCNAGAANGNNANCTTT		
SAL5	I20-P1-G6	GTNTATAACTATCTATTCGATGATGAAGATACCCCACCA	852	unknown
		AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT		
		GTACAAAAAAGTTGGAGATTTTTCGCTGTTTACCCACTT		
		GTAGGTCTGAATTTCTGCATTCACTCTGTTGTGGGTCTGT		
		TCAGGGTTTTGGATTCTTCTCTTTAGAACTAACGCAATAA		
		ACTGTAAGGGTGTAAGCGAATTGAAGACTAATTGTAGA		
		AGGGAGGAAGGGAACACATCAAAAGGGTGATAAATTTT		
		GTCACTTTCAATGGCCAGTGCAGTGGCAGGACAATGTGA		
		TTCAACCCTAATAAGCAGGAGAGGGGGACTGCTCTTATC		
		TTCTTCAAGCTCCACTTACAACAATGGAGGCATGAAACT		
		TGATTTGCGGGTTCCTCTGCCAATGCAAGGTTCTGCTATG		
		GTGAGAGCGCCTCTACTAATTCTGGCCATGGCACCCAAA		
		AAGAAGGTGAATAAATACGATGACAATTGGAAGAAACA		
		GTGGTTCGGGGCCGGGATCTTTCTCGAAGGTGATGAAGA		
		TGTGGATGTGGATATTGTCAAAAAGTTGGANANNNNGA		
		AGGTTCTAAGTGGAGTGGAGAANGCTGGATTGCTTTCNA		
		AGGCTGATGAATTANGCCTTTCTCTCTCATCTATTGAAA		
		AAATGGGCCTCCTCTCAAAAGCANAANANTTGGGCCTGC		
		TAAGCCTTGCANAGAAAGTCGCTTCCATATCACCTGCGG		
		CAATGGCATCTGTGTCANTGCCATTAGTTGNGGCCGCTA		
		TTGCCACTANTGNACTCATTCCANANGANNCCNCTGGAC		
		TGNNNNNNNNTCNGAANTTTCTGNNAACCATTTTT		


SAL5	I20-P2-H2	TATAACTATCTATTCNATGATGAAGATACCCCACCAAAC	871	unknown
		CCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGTA		
		CAAAAAAGTTGGTTCAGAAGGCATAGCAGAGGATCGAG		
		GTTTTGCAGTACGAGTCTCCNAGCCAAAATCNNTGGCGG		
		CCGTCACTCCTGTATTGATCANTGGTGCTTCTACTAGTAA		
		ATCTTTTGAATATGGTGTGGTAAAACTCACTCCATCAAG		
		ATACTCCTTGTCTAACTTAGTGTGGCAGAACAACCGTAA		
		GCCATATGGACACANGNNNTGCAAAAGGCACATTTCNN		
		GTGCAGAATACGACAGTGGCAGAGGGAGAGGAAGTAAT		
		GGAGGTGATTTTCTTGCTGGGTTCTTTTTAGGAGGAGCT		
		GTGTTTGGAGCTCTCGGCTACTTGTTTGCACCACAGATC		
		AGCAGAGCTTTGTGGACTGGATATGAAGATGGCCTGTGG		
		AAGAAGTTGCCCAAACGTATGGACGATGATGCAAGCAT		
		GGAGAAGACCAGGAAGACTTTGAATGAAAAAATAGCTC		
		AACTAAATGCTGCAATTGATGAGGTTTCTTCCCAACTGA		
		GAGCAGAGGANGATGCCAGTGAACCAGCAGTCACTGCT		
		TCTGAAGGAGAACCTGCTACATAAATACCATTCAAGATT		
		CTGACTGTCTGGGAGATGGTGTAATGTTAGCCTATGGTC		
		CAGTCATGCANACCANAGGACTCCTAAATTGGGAATAC		
		GCTATGTTATTGGNATTANTGTGCCATTTATGTGCTTCTT		
		GAAATGTATGGTAAGTTNNAANTTNGAACTATGCAANTG		
		TTTGNTNNNTCNCNTGCAACNAGCCNTTTTCCNTCACAN		
SAL5	I20-P2-A6	ATATAACTATCTATTCGATGATGAAGATACCCCACCAAA	793	unknown
		CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT		
		ACAAAAAAGTTGGATGTTTANTAGGCTAGTTTCCCAACT		
		CGTTGATCACGGTTTGTTCCATATATTTTCCGCCGTGTAG		
		GAATGGTCATGGCTTCTGGTTGCATTCTTCCAATTGCATT		
		TCCATCCTCCAACACGATTAAAGGGCCACATTCATGGCT		
		ACCAATTTACAAAAACTTTTCGAAGGGAAGAATATCAGA		
		GAGGCATCGGCGCTTGAAAATGGTGGTCCTTGCAGAGA		
		GCAGTGGAGGTGGCTGCTGTGGGGGCAGCAGCAGTAGT		
		AGCAGCAGTGGAGGAAGCTGCANCAGCCATGGAAAATC		


		TTCAGTTCCTGATCTTTCCAAAATTGGAAAAGAGTTTGA		
		AACCATGGTTGCCAGAGCCACTTTGAGTGAACGTGAGAA		
		GGAATATAATACTGTGGAGATGAAGGGGAACATTACTC		
		GGGATGACTTTAAAGAAGTTATGAACATTGNGCCTTCAA		
		GATTTGCTGAAGAAGGAAAAGGGGAAACAGTCATTGAT		
		CTACAAGCGATGCTAAATGAATTAAAAAATGACAACTTT		
		GCATTTGACAATCCCGAGGATGTGTTTATCTAAGTGACA		
		ACTATAGTAANGGGGAAGTGAGTTCACTGAGATCACTAC		
		AAGAGATTGTTCAATCCATACNTGTAAAAGANTTGATTT		
		TGANACTGCNGTTTTCNCCCTTTANCAAGNAGTTTCTCA		
		ACTCNATGTGAAGATAC		
SAL5	I20-P2-	ATATAACTATCTATTCGATGANGAAGATACCCCACCAAA	290	unknown
	A11	CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT		
		ACAAAAAAGTTGGCCAACTTTTTTGTACAAAGTTGTCCC		
		CCTATAGTCTTCACTGGCTATCTCAAATTCCCTCCGAAGT		
		TTTAGAAAAGAATTCAGTGACATGGAACAAAGGCAAAA		
		TCTCCGCGGGAGGATCTCCCCTTGTTGGAGAAGCTTATT		
		TCCGTCNNTATCNNANNGATTTCAACGGGTTTCTGANNG		
		CCCGGGCACNGGANCTGG		
SAL5	I20-P2-B6	ATATAACTATCTATTCGATGATGAAGATACCCCACCAAA	729	unknown
		CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT		
		ACAAAAAAGTTGGGGGTAATCGCGACTACAATGGCGGC		
		ACAGCAAGCTCGATCCCTTGCCCAGATTCTCCGCCTTTC		
		ATCATCACATACACAATGTGTATCCTCCCGGGCTTCTCA		
		GCTGCAGCCAAGTCGCAGATTTTCAGCAGAACATCATGG		
		CCCAGCAAAGGTTAACTTTTGGGAAGATCCAATGAGCCC		
		TTCGAAATGGAAAGATGAGCATTTTGTACTCTGGTCGCT		
		CTCTGGCTGGGGTGTACTCATTTATAGTGGCTATAAATTT		
		TTCACCGGTGGGAAAAAGGATGCAACTGCTGAGGTTGGT		
		GCATAATCTTAATTTAGTTCTAGACATGCACACTGAAAA		
		AGCTTGTGGTTAATTGTAAACTAAGATACATATCTTTCTT		
		TCATTTGGCCATTCTTTAATTTCGTTTTCATAAATGCAAT		
		TTAATCATTGTGATATTTAATAAATATTCATTCTTGCTAC		


		ATGATCATCGTGTGTTCTTGCAACATCTTTAGTGGGATCC		
		TTCGTATTTTTCCCTATTCTATTTTAAATTAGTAATTACTG		
		AAGTTCTATTGTCAGCATAAATGGTTGTGTGATAAACAT		
		GNNTAGTTCTGTACAACCTTATGCATACGAACAACATTT		
		TTAGTTCTTCTATAGATATTGG		
SAL5	I20-P2-C3	ATATAACTATCTATTCGATGANGAAGANACCCCACCAAA	512	unknown
		CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT		
		ACAAAAAAGTTGGAATTCNNGGGCGTTATTTCAGGTTTT		
		GTGTTTCCTTCCNAACAAANTANNNGTCNTGNAAATGAG		
		AAAGGCNNCNCNACTTTNGTGTTTATATACCGATATTTG		
		TCTTTCATATATTTGANNAACAGGCATCTTCAATCATGTG		
		TACTTATGGATATTGTGTTTCGGTTTGTCAAGTTTTTTCA		
		ATCAATAAACTGCAATGATNATGAAACATGGCTTTGATA		
		ATCAAAATTTTCTAACCTANNGGTACAGGCGAGTTTCTT		
		GCAGTATATGGTTGTANTATGGGCGAGTTTCTTGCANNA		
		TANGGTTGTANTATGGGCGAGTTTCTTGNATANANCTCT		
		ATGGCATGAATTTNACTCTANTCATTGNGCTACCTCATA		
		ANTGGTGCNNTCANAGTAGTGNCATATAATGTATGANGC		
		ACGA		
SAL5	I20-P2-C8	GTATATAACTATCTATTCGATGATGAAGATACCCCACCA	813	unknown
		AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT		
		GTACAAAAAAGTTGGGAGATGGCATCATTACTTAAGAGT		
		GGCTCCTTTACCTTCTAACCCGGGTCTTCCATGTTTTAAC		
		ACTTGTGACCAGAGCCTTCTATGTGGTAGCAGCTGGTAC		
		ATCATAATGTCTTCCTCGCCCTTTTTGTAATGCCTTCTAG		
		GGCAGTGTGTTTTTTATCTCACTTCCTCGCCCTTTTTGTA		
		ATGCTGTAGGGCAGTGTTTTTATCCCACTTCTCTCGTGGC		
		GTCGGCCATGGATTTAGTATTCCTGGAAATGGCTCCTCG		
		TTGTCAAGTCTTGTGTTTCTTGAAGATGGGCTTTTTCATC		
		TTGTGATCCGTTTTGTTATTCCGTTCAAGCGAGCGTGTTT		
		GTTCTACCGGGTTTTCCCTTCAAGCGAGCGTGTTTGTTTT		
		TATCATATCTTACTCCAGGCGAGCGTGAGAACAGTAAGC		
		TGATATTGNAGGTACATTGCTATCAAGATCAGAAGAGAG		


		CAGTAAGATCAGATTAGAGAGCAGTAACGCCAGAAATG		
		CTTCTACTTCATTCATATTTCAACCNGNNGTCACTAATGG		
		TAGCAGTAATTTTCATCACCCTTAGNNTTAATCGTCACTG		
		GCATTCTGTCNTCTCTAGCGCCTTTCTGGGCATTGNCCCN		
		ATCCTCCATATTTCTATTGATTTGTCCNTGGNNATCGGGA		
		GGTCTCTTTANNNCGTGGCTTGNTTTTTTNCTCTACAGNA		
		NNNGNCTTNNTCTNCNTNNCTAC		
SAL5	I20-P2-D1	GTATATAACTATCTATTCGATGATGAAGATACCCCACCA	645	unkown
		AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT		
		GTACAAAAAAGTTGGGTTTCGAGAGAAAATTTGGGAATT		
		TGATGACGGAATTTTGTCCGTCATTTGACGTGAAGTATTT		
		CTGTCGCGCAAAGGGTTCGTATATGGCAAATGTTGAAGC		
		GGACGCTGCGGGTTTCGATTCCGAGACCTCCAGACTGGC		
		GATGGATAACAGCTCGGTTCAGAAGCCCAAGCCTCTGGT		
		GAAAATGAGCGTCAATATTTCCGGTCCTGACGATGGCGG		
		ATTCACTGTCAATAGACAGGGGGAGATTTCTGTCAAGAA		
		GGCCCGTGCTGTGCACATCCAGGTAATGAGAATTCAAGA		
		AGAAGATGAGCATCTGGGCGAGGATTTAAGGGAGGGCG		
		TGAATCCGAAAGACAGATTTGTGTTTTTCCCAATCGCGT		
		CNCANATGAAGGACATGTTCTTTGACTATTCNAGGCCCA		
		CGNTTCCGTCGCCGCTCGGCATGANCGCTGNAGTTCNCT		
		CNCTCTGANAAGATTCCAACATGCNNCCNAGTTNTGAGA		
		AGGNNNTGTGTGTANATATNNNNCTNNGAGNNNTGNNG		
		NANNNGANGNCNTNTGTNAATTA		
SAL5	I20-P2-F4	TATAACTATCTATTCGATGATGAAGATACCCCACCAAAC	553	unknown
		CCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGTA		
		CAAAAAAGTTGGGTANGGGTTCGANANNGANGGNAAGA		
		GTCTCTCACAGTCTGTCCCCATATACACAGCGACCATGT		
		CGAGCAAGCAAGGTGGAAAGGCTAAGCCCCTCAAGCAG		
		CCAAAGAAGGATAAGGCCGAGTATGACGAGGCTGATCT		
		AGCTCACATTCAGAAGAAGAAGGACGAGGAGAAGGCTT		
		TGAAGGAGTTAAAAGCTAAGGCATCACAGAAGGGTAGT		
		TTTGGTGGAACAGGGTTGAAGAAAAGTGGCAAAAAGTA		


		GTTTGCCATTGACTGCTTTCTCTACATCATGCCACTAAAA TTATACTTATGGGGACTGGTTAGGAGAGTGTTTACTCAA TTACAAAGTATGTGATTACGGTTAAGAATGGACCTTCTG AATCACACACTTGCTGTTTTAATGTGAATGGATATTTAAT GTTGAAATTACAATGTGATATAGGTTTTAATTTTTTTTAC NAAAANNAAAA		
SAL5	I20-P3-C9	CCCACCAAACCCAAAAAAAGAGGGTGGGTCGAATCAAA	754	KHdomain-containingprotein/zincfinger(CCCH-type)familyprotein
		CAAGTNNNGTACAAAAANNNNGGGGCGGATCCTCATTT		
		GGGTATCAACCATNNCCAAATCTCTGCAGACCAAGTTCG		
		GCTGAAATTTCTTTCTCCAATGGCAGCTACTGCGTGCAC		
		ATGGGTACCCACAGGCTTCACAGCCCCAAGAAGGCACC		
		GTAAGCCCATTACTGCGTCTCAATCTCGGGCTTCATTTAT		
		AGGACTAAGGCTTGGAAACACACTGGATTCAAAGGCCC		
		AAAACAGCTTTCAGAGCCAAACAGCCGTTTGCAGATCAT		
		TCTCTCGCATCACCTGTGCGCTGAATCCTTCACTGGTGAT		
		CAGTCTGAGCACAGGGGCTTCACTGTTCCTTGGAAGGTT		
		CGTGTTCTTGTCATTTCAGAGGGACAATGTGGCGAAACA		
		AGGCCTGCCTTCGCAGAATGNACAGACCCACTTCGAGGC		
		AGGAGACACCAGAGCCACCGAGTACGTGAATCTTCTCA		
		AGAGCAATGACCCAGCTGGGTTTAACATTGTTGATGTGC		
		TTGCATGGGGTTCAANTTGGCCACATTTGTGGCTTACTTC		
		ATCTTGGNNACTTCAAGCAACGGANACNNNCCTANTTTC		
		TTTNNAANTCTCTTCTGNCNNNANAAAAATNNTTGTTNA		
		NGNNTGGACTTTTNNAAAGGNCAANANACTGNATCTTTC		
		TGTANTCTTATATATGTTTNNNATTGAATTTTAACCNNGT		
		TAAATTTNCNANCT		
SAL5	$\begin{gathered} \text { I20-P3- } \\ \text { D12 } \end{gathered}$	GTATATAACTATCTATTCGATGATGAAGATACCCCACCA	964	unknown
		AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT		
		GTACAAAAAAGTTGGATGATTTCCACATCTTTCTTCAGG		
		TTATTGCATTGACCAATGCCCTCAACTGTCTTCCAAATTT		
		CTCATAGTCGTGTACTATGACTTCCACATTTGCCTCCATT		
		TCATTGCATTGGCCACCGATAGTCTTCCAATCTCTCCCGA		
		GTCTTCTGGCTCTACGGCATGGGTTTCTTTTCTGATTCCT		

[^2]| SAL5 | I20-P3- | GTATATAACTATCTATTCGATGATGAAGATACCCCACCA | 774 | unknown |
| :---: | :---: | :---: | :---: | :---: |
|  | G10 | AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT |  |  |
|  |  | GTACAAAAAAGTTGGGTGTGCCTGATGGAACTAAGCTTG |  |  |
|  |  | CCTACTATGTAAAAGGACAGCGATTACTAGATGGATATA |  |  |
|  |  | AACTGGGATCTGGTATATGCTGCAGTTGCTGCGATACTG |  |  |
|  |  | AGATTAGCTGTTCTCAGTTTGAAGCACATGCTGGACGAT |  |  |
|  |  | CCTCAAGGCGGAATCCTTACAATAGTATCTATCTTCCGG |  |  |
|  |  | ATGGGCAGTCCCTGCATGAAGTGGCACTTTCCCTGACAA |  |  |
|  |  | GCCAAAGAAGTTTGAAGGCAAAATCATGTGATGAGAAT |  |  |
|  |  | GAAGATATTTGTACAGAATGTGGAGATGGAGGTGATCTG |  |  |
|  |  | CTTCTTTGTGATGGCTGTCCAAGGGCCTTCCACACAGATT |  |  |
|  |  | GTGCTGGAGAGCAACGTATTCCGGTGGGTGATTGGTATT |  |  |
|  |  | GCTTAAATTGNCAGCATCATTCGAGAACAAGAAGAAAG |  |  |
|  |  | NTGTCTGCTAGAAAANAGCCAAAACTTTTTGGAAAGGCA |  |  |
|  |  | GCATCACTTGGGTATCAGGAAAANCCTTCCAATCGCTGT |  |  |
|  |  | ACACGTGNTGNCAATGNCCCANAGAAAACAGNTGGTGG |  |  |
|  |  | ANGNGTACTATGCAGNNTTCATGANTTTGATAAATGGGC |  |  |
|  |  | ATTTGGGGATCGCACTGNTATGCTCTGNGACCAATNNGA |  |  |
|  |  | NAAGNANTTCCACGTTGGCTGNTTAANANACCGGGGCA |  |  |
|  |  | TGACNNANTTAAANANTGCCNNAGGGTNANTGGNTCT |  |  |
| SAL5 | I20-P3-H1 | GTATATAACTATCTATTCGATGATGAAGATACCCCACCA | 810 | unknown |
|  |  | AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT |  |  |
|  |  | GTACAAAAAAGTTGGAATATGCCAACGCTTTCACTGCGG |  |  |
|  |  | GCATCCGCTTCATAACTCCATGGCTCCATAACGGTTTGA |  |  |
|  |  | ACCTGGGACTATCGAGATCCAGTTGGTGGGGGCAAAAA |  |  |
|  |  | TGTTGAAAAACGGTGCTGTACAGGGCTGTCTGGACTATC |  |  |
|  |  | TGTATGGAATGGGTAGAATTGGAAAGAAAGATAAGACT |  |  |
|  |  | GCAAGGAACCGGTATGAGGGTTAACATCAACTTTTGAAA |  |  |
|  |  | ATCATGGCGCCATGCAAAGCAGGAAATAAACAAGATTC |  |  |
|  |  | ATTGACTGAGGAATCAAACCCAAATGCAAATATACTTTC |  |  |
|  |  | AGATACTACTGCTCGATTGACAAACATCATCAAATGTTG |  |  |
|  |  | GAACATTAATGGAACTACATTTACAATTTAAGGATCAGA |  |  |
|  |  | AAAAACCAAGTACATCTACAAGCAAATAGAGGGCAAGT |  |  |

GAAGTGCCAGCAAGTAAAAGAAATCTCAACAAATCCAA AAATATCGTCATTGTATTTTTTAGTTTTGATTTATTCTATT TTGAGAACGAAGAATGTGGAATATCTAACTACTTTTGGT TAAGACATTTTTGTATAAATAAACAAATCAAAGATCTAT TCCTGGATTCAATCTCAACAAATCCNAAAATATCGTCAT TGTATTTTTTAGTTTTGATTTATTCTATTTTGANAACGAA NAATGTGGNATATCTAACTACTTTTGGTTAAGACATTTTT

GTATAAATAAACAAATCANNATCTATTCCTGG
SAL5 I20-P4-C1
GTATATAACTATCTATTCGATGANGAAGANACCCCACCA AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT GTACAAAAAAGTTGGATAACTGTGGGGTTCAATTTAACA AGATCAATGATGCCTATGAGACTGTAATGTCCAGTTTGG AAAAGGCTAAACATCAAAACTGTTCTGCCGATTACCATG TGGAGGACCTTATGGAAGTCGGGGACGATTCATGGGAA GAATGGATGGGATGGGAAGGAGCTGGAACCCTTGATTA TTCCTCCCATATTAACATTTATGCCTGATAAGATCTTCAT CATAAACTCTGTATCCATGTCTTTTTTGCCTTGTAAACAG TTATTGCTTCTCCATGACCCATCCCCGTTTATGGGCTACC TATGAAACTCTTGCTTTTGACACTATAACCCTTAGAAAG CCCATAGCGCTGCTTCATTCATCTCTTGTACATACGATAT ATTCTTCTATTTGTATAGCTAATTTTATCTCTTACATTAA CTCCCAGTGCACAAAGGACTTCTCGACCCAGTTGATGCA ACAGCTTGTTGAGATCTTATTAAGTCATTTGCTTTGCTCC TGAGTTTTGATTATTAGATTACTTGTACATATGCTCTGTT TANTTGCATATCAACTACCAGTACACTTTTTTGAGATCTT TTTCTTTCGGGACAGTGTGAANATNATGGGGANTTGCTC TGAAAATGAANAGCTCCTAACCATATTTGTTGNAATTAC AGTGNTACTCAATTTATGGAAACCATCATTTTGANTAC

SAL5	I20-P4-	GTATATAACTATCTATTCGATGATGAAGATACCCCACCA	973
	G12	AACCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTT	
		GTACAAAAAAGTTGGGCGATATAAACAAAAGGGCAAAG	
		ACTGAGCGCATCGATCAATCCAGCAAGGAAGCCATGAA	
		CGGCCTAGCATCAGACGGGCCCCGGGTCCAGGGATCGA	
		ATCGCAGAGTGAAGCTCGATGTCGGAGGCAAGATCTTCG	
		AAACCACGACTTCGACCCTCCAATCCGCAGGGAAAACCT	
		CCCTCCTCGCCCGTTCGGCTTTGTCGACAGACTCCGCTGA	
		AATCTTCTTCGACAGAGACCCGCATCTGTTCGCGCTCCT	
		ACTCGGCGTTCTCCGGACGGGAAAGCTCTCAGCGTCGAC	
		ATGGGAAAAATTCGACATCGAAGCCCTTATAGACGAAG	
		CCTCCTATTACGGAATACTGGAGCCCGTCAAGAAAGCCA	
		TGGCTCCGGAAGCCCTAGACGGAATCGATGTCGAAAGA	
		GTCTCAATGGTCGTTCCCAATGGCCGGGATTACCCTTTG	
		GCCATCTGTTCTTCACACGACGGTTCCGTCTGGGTCGGC	
		CATGGCAGCAAAATCACGCCATACGACTGGGCGCTCCG	
		GAAGCAGACCACGACGTTGACGGATCTTCACAGTGTCGA	
		CACCATGAACAGGATCTCAGAAACCCTAGCGGCCGTTGG	
		CGCAGAGGANTTTCCGGGGTTGCACATATACGACACCAA	
		GAACGCGGCGCATGTGAAGAGCCTGACTTGGTCGGACA	
		AATCCGACACGCGCGTCTACAAACCCTGCGTTCGAGCCC	
		TCGCCTCGTCGNATTCTTCAATCTTCGCGAGCTTCGAGA	
		ACGGGCAGCGAACAGAGAANACGATCCTCGTTGTCGAC	
		AAGGANAGGNTCGAGGTTTNTCGAGAGANCNGCCGGCN	
		ANGCGGTAACTCTGCGCACTCNAANNTTCGACGANTTTN	
		CAGNTNG	


SAL5	I20-P4-	ATATAACTATCTATTCGATGATGAAGATACCCCACCAAA	496	unknown
	H12	CCCAAAAAAAGAGGGTGGGTCGAATCAAACAAGTTTGT		
	ACAAAAAAGTTGGTTCAACAGAGGCATCGCANTTATGC			
	GAGACTTGCCAACAAGTACGGGCCGGTGATGCATTTCTG			
	CATTGAGAATGCAAATGTTATCGTGGTTGGAAGTCCAGA			
	GGTTGCCTTGGAAGTCCTCAAAACGAAGGACGCCGAGT			
	GGGCATCCAGGCCACCTACGCTTTCGGGGAAGTACATTG			
	GGGTTGATTTCCACGCCCTTGATTTCGCACCCAATGGCC			
	CTCACTGGCGCCACCTGCGGAAGATATNNNNNACCCAC			
	ATATTCTCTCNNGNANGATTANNGNNGNAGTCTTATATC			
	CGANNANNGNNNNNNCTCCNCNTTGTGGACNNNATCTT			
	CNCCCNNCNCNNANANGNNNNNNNNNNNNNTTAANTTT			
	NNNNNNCNGNGANNCCTNNNNNNTNNGAANCGTG			

Appendix 7. Multivariate anlysis of variance (MANOVA) R script for transcript abundance.

```
> src_files = c('C12', 'H14', 'I04', 'I20', 'J13', 'K12', 'K15', 'N14')
>n_genes = length(src_files)
> data_list = vector(mode='list', length=n_genes)
> src = "/Users/amandagregoris/Documents/Phd/PgqPCR/Stats/"
> for(i in 1:n_genes)
+{
+ x_filename = paste0(src, '/', src_files[i], '.csv')
+ x = read.csv(file=x_filename, fileEncoding='UTF-8-BOM', na.strings = ' ')[,1:5]
+
+ empty_rows = which(is.na(x$qty))
+ if(length(empty_rows)>0) x = x[-empty_rows,]
+
+ names(x)[which(names(x)=='qty')] = as.character(x$gene[1])
+
+ data_list[[i]] = x
+ }
> data_full = do.call('cbind', data_list)
> View(data_full)
> data_full[,names(data_full)=='photo']
 photo photo. }1\mathrm{ photo. }2\mathrm{ photo. }3\mathrm{ photo. }4\mathrm{ photo. }5\mathrm{ photo. }6\mathrm{ photo. }
\begin{tabular}{lllllllll}
1 & long \\
2 & long \\
3 & long \\
4 & long \\
5 & long \\
6 & long \\
7 & long \\
8 & long \\
9 & long \\
10 long & long \\
11 & long \\
12 long & long \\
13 & long \\
14 long & long \\
15 long & long \\
16 long & long \\
17 long & long \\
18 & long \\
19 & long \\
20 & long \\
21 & long & short \\
22 short & short \\
23 short & short \\
24 short & short
\end{tabular}
```

25 short short short short short short short short 26 short short short short short short short short 27 short short short short short short short short 28 short short short short short short short short 29 short short short short short short short short 30 short short short short short short short short 31 short short short short short short short short 32 short short short short short short short short 33 short short short short short short short short 34 short short short short short short short short 35 short short short short short short short short 36 short short short short short short short short 37 short short short short short short short short 38 short short short short short short short short 39 short short short short short short short short 40 short short short short short short short short 41 short short short short short short short short 42 short short short short short short short short

$>$ data_full[,names(data_full)=='day']														
day									day.	day. 2	day. 3	day. 4	day. 5	day. 6
1	zero													
2	zero													
3	zero													
4	seven													
5	seven													
6	seven													
7	seven													
8	fourteen													
9	fourteen													
10	fourteen													
11	fourteen													
12	fourteen													

13 twnetyeight twnetyeight twnetyeight twnetyeight twnetyeight twentyeight twnetyeight 14 twnetyeight twnetyeight twnetyeight twnetyeight twnetyeight twentyeight twnetyeight 15 twnetyeight twnetyeight twnetyeight twnetyeight twnetyeight twentyeight twnetyeight 16 twnetyeight twnetyeight twnetyeight twnetyeight twnetyeight twentyeight twnetyeight 17 twnetyeight twnetyeight twnetyeight twnetyeight twnetyeight twentyeight twnetyeight

| 18 | seventy |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | seventy |
| 20 | seventy |
| 21 | seventy |
| 22 | zero |
| 23 | zero |
| 24 | zero |
| 25 | zero |
| 26 | seven |


| 27 | seven |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | seven |
| 29 | seven |
| 30 | fourteen |
| 31 | fourteen |
| 32 | fourteen |
| 33 | fourteen |
| 34 | fourteen | 35 twnetyeight twnetyeight twnetyeight twnetyeight twnetyeight twentyeight twnetyeight

```
30 fourteen
31 fourteen
32 fourteen
33 fourteen
34 fourteen
35 twnetyeight
36 twnetyeight
37 twnetyeight
38 twnetyeight
39 seventy
40 seventy
4 1 ~ s e v e n t y
4 2 ~ s e v e n t y
> View(data_full)
> data_full = data_full[, c(5,10,15,20,25,30,35,40,1,2,4)]
> levels(data_full$photo)
[1] "long" "short"
>View(data full)
> View(data_full)
> gene_idx = 1:8
> gene_names = names(data_full)[gene_idx]
> data_full_trans = data_full
>data_full_trans[,gene_idx] = log(data_full_trans[, gene_idx])
> data_full_trans[, gene_idx] = scale(data_full_trans[, gene_idx])
> y_range = range(data_full_trans[, gene_idx])
> par(mfrow=c(2,3))
> par(mfrow=c(2,4))
> for(i in gene_idx) hist(data_full_trans[, i], breaks=10, xlim=y_range, main=gene_names[i])
> par(mfrow=c(1,1))
> res_form = as.formula(paste(gene_names[i], '~ day'))
> res_day = lm(res_form, data=data_full_trans)$residuals
>i=1
> res_form = as.formula(paste(gene_names[i], ' ~ day'))
> res_day = lm(res_form, data=data_full_trans)$residuals
> print(paste('testing day effect residuals in ',}\mathrm{ gene_names[i], '...'))
[1] "testing day effect residuals in C12 ..."
> res_form = as.formula(paste(gene_names[i], '~ photo'))
>i=1
> res_form = as.formula(paste(gene_names[i], '~ photo'))
> res_photo = lm(res_form, data=data_full_trans)$residuals
> i=7
> y_form = as.formula(paste('cbind(', paste(gene_names, collapse=', '), ')', '~ photo/day'))
> for(i in gene_idx)
+{
+ res_form = as.formula(paste(gene_names[i], '~ photo'))
+ res_photo = lm(res_form, data=data_full_trans)$residuals
```

```
+ print(paste('testing photoperiod residuals in ', gene_names[i], '...'))
+ print(levene.test(res_photo~data_full_trans$photo))
+ }
[1] "testing photoperiod residuals in C12 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 1.434 0.2382
 40
[1] "testing photoperiod residuals in h14 ..."
Levene's Test for Homogeneity of Variance (center = median)
 DfF value Pr(>F)
group 1 4.5826 0.03845*
 40
Signif. codes: 0 '***` 0.001 '**' 0.01 '*` 0.05 '.' 0.1 '' 1
[1] "testing photoperiod residuals in i04 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 0.2384 0.628
 40
[1] "testing photoperiod residuals in i20 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 1.9492 0.1704
 40
[1] "testing photoperiod residuals in j13 ..."
Levene's Test for Homogeneity of Variance (center = median)
 DfF value Pr(>F)
group 1 3.5554 0.06663.
 40
```



```
[1] "testing photoperiod residuals in k12 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 1.0441 0.313
 4 0
[1] "testing photoperiod residuals in k15 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 0.676 0.4158
 4 0
[1] "testing photoperiod residuals in n14 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 0.4323 0.5146
```


## 40

> shapiro.test(residuals(yman)[,"C12"])
Shapiro-Wilk normality test
data: residuals(yman)[, "C12"]
$\mathrm{W}=0.9675, \mathrm{p}$-value $=0.2715$
> shapiro.test(residuals(yman)[,"h14"])
Shapiro-Wilk normality test
data: residuals(yman)[, "h14"]
$\mathrm{W}=0.98416$, p -value $=0.8184$
> shapiro.test(residuals(yman)[,"i04"])
Shapiro-Wilk normality test
data: residuals(yman)[, "i04"]
$\mathrm{W}=0.97613, \mathrm{p}$-value $=0.5171$
> shapiro.test(residuals(yman)[,"i20"])
Shapiro-Wilk normality test
data: residuals(yman)[, "i20"]
$\mathrm{W}=0.96652$, p -value $=0.2512$
> shapiro.test(residuals(yman)[,"j13"])
Shapiro-Wilk normality test
data: residuals(yman)[, "j13"]
$\mathrm{W}=0.98427, \mathrm{p}$-value $=0.822$
> shapiro.test(residuals(yman)[,"k12"])
Shapiro-Wilk normality test
data: residuals(yman)[, "k12"]
$\mathrm{W}=0.96885, \mathrm{p}$-value $=0.302$
> shapiro.test(residuals(yman)[,"k15"])
Shapiro-Wilk normality test

```
data: residuals(yman)[, "k15"]
W}=0.9543,p-value =0.0921
> shapiro.test(residuals(yman)[,"n14"])
 Shapiro-Wilk normality test
data: residuals(yman)[, "n14"]
W}=0.96382,p-value = 0.202
> for(i in gene_idx)
+{
+ res_form = as.formula(paste(gene_names[i], '~ day'))
+ res_day = lm(res_form, data=data_full_trans)$residuals
+ print(paste('testing day effect residuals in ',}\mathrm{ ,gene_names[i], '...'))
+ print(leveneTest(res_day~data_full_trans$day))
+ }
[1] "testing day effect residuals in C12 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 4 1.4218 0.246
 37
[1] "testing day effect residuals in h14 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 4 1.08970.3758
 37
[1] "testing day effect residuals in i04 ..."
Levene's Test for Homogeneity of Variance (center = median)
 DfF value Pr(>F)
group 4 2.1731 0.09114.
 3 7
Signif. codes:0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] "testing day effect residuals in i20 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value }\operatorname{Pr}(>F
group 4 0.5803 0.6788
 37
[1] "testing day effect residuals in j13 ..."
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 4 1.3585 0.267
 37
[1] "testing day effect residuals in k12 ..."
```

Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>F)$
group 42.3430 .07272 .
37
---
Signif. codes: 0 '***’ $0.001^{\text {‘**’ }} 0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
[1] "testing day effect residuals in k15 ..."
Levene's Test for Homogeneity of Variance $($ center $=$ median $)$
Df F value $\operatorname{Pr}(>\mathrm{F})$
group 40.38570 .8174
37
[1] "testing day effect residuals in n14 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>F)$
group 40.27690 .891
37
$>$ for(i in gene_idx)
$+\{$

+ res_form $=$ as.formula(paste(gene_names[i], ' $\sim$ photo'))
+ res_photo $=1 m($ res_form, data=data_full_trans)\$residuals
$+\quad \operatorname{print}($ paste('testing photoperiod residuals in ', gene_names[i], '...'))
+ print(leveneTest(res_photo~data_full_trans\$photo))
+ \}
[1] "testing photoperiod residuals in C12 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>F)$
group 11.4340 .2382
40
[1] "testing photoperiod residuals in h14 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>F)$
group 14.58260 .03845 *
40
---

[1] "testing photoperiod residuals in i04 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>F)$
group 10.23840 .628
40
[1] "testing photoperiod residuals in i20 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\mathrm{Pr}(>\mathrm{F})$
group 11.94920 .1704
40
[1] "testing photoperiod residuals in j13 ..."
Levene's Test for Homogeneity of Variance (center = median)
DfF value $\operatorname{Pr}(>F)$
group 13.55540 .06663.
40
---
Signif. codes: 0 '***’ $0.001^{\text {'**' } 0.01 ~ ' * ’ ~} 0.05^{\text {'.' } 0.1 \times ' 1}$
[1] "testing photoperiod residuals in k12 ..."
Levene's Test for Homogeneity of Variance $($ center $=$ median $)$
Df F value $\operatorname{Pr}(>F)$
group 11.04410 .313
40
[1] "testing photoperiod residuals in k15 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>\mathrm{F})$
group 10.6760 .4158
40
[1] "testing photoperiod residuals in n14 ..."
Levene's Test for Homogeneity of Variance (center = median)
Df F value $\operatorname{Pr}(>F)$
group 10.43230 .5146
40
$>$ yman $=$ manova(y_form, data=data_full_trans)
> summary(yman)
Df Pillai approx F num Df den $\operatorname{Df} \operatorname{Pr}(>F)$
photo $10.584924 .4037 \quad 8 \quad 250.002002$ **
photo:day $82.957832 .346564 \quad 2561.36 \mathrm{e}-06$ ***
Residuals 32

Signif. codes: 0 '***’ 0.001 ‘**’ $0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
$>$ summary.aov(yman)
Response C12 :
Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>\mathrm{F})$
photo $\quad \begin{array}{llllll}1 & 0.4147 & 0.4147 & 1.4282 & 0.2408\end{array}$
photo:day $\quad 831.29473 .911813 .47372 .663 \mathrm{e}-08$ ***
Residuals $\quad 329.29060 .2903$
---
Signif. codes: $0{ }^{\prime * * * ’} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Response h14:
Df Sum Sq Mean $\mathrm{Sq} F$ value $\operatorname{Pr}(>F)$
photo $\quad 11.41691 .416902 .43750 .1283011$
photo:day 820.98182 .622724 .51190 .0009572 ***
Residuals 3218.60130 .58129
Signif. codes: 0 '***’ 0.001 '**’ $0.01^{\prime * ’} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$

```
Response i04 :
 Df Sum Sq Mean Sq F value Pr(>F)
photo 1 0.2006 0.2006 0.5537 0.4623
photo:day 8 29.2026 3.6503 10.0727 6.923e-07 ***
Residuals }3211.59680.362
Signif. codes: 0 '***` 0.001 '**' 0.01 '*` 0.05 `.' 0.1 '` 1
Response i20 :
 Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
photo 1 0.7028 0.70283 1.4570 0.2363
photo:day 8 24.8611 3.10764 6.4424 5.463e-05 ***
Residuals }3215.43600.4823
Signif. codes: 0 '***` 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Response j13:
 Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
photo 1 0.4283 0.4283 1.4752 0.2334
photo:day 8 31.2801 3.9100 13.4660 2.681e-08 ***
Residuals 32 9.2916 0.2904
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Response k12 :
 Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
photo 1 0.2968 0.29684 0.5712 0.4552907
photo:day 8 24.0748 3.00935 5.7913 0.0001366***
Residuals 32 16.62840.51964
Signif. codes: 0 '***` 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Response k15 :
 Df Sum Sq Mean Sq F value Pr(>F)
photo 1 1.3111 1.31112 1.4943 0.2305
photo:day 811.61161.45145 1.6542 0.1486
Residuals }3228.07730.8774
```

Response n14:
Df Sum Sq Mean SqF value $\operatorname{Pr}(>\mathrm{F})$
photo 13.07553 .075513 .2050 .0009676 ***
photo:day $830.47143 .808916 .3542 .598 \mathrm{e}-09$ ***
Residuals 327.45300 .2329
Signif. codes: 0 '***’ 0.001 '**’ $0.01^{\prime * ’} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$

```
> lsm_man <- lsmeans(yman, "day")
> pairwisecomp <- test(contrast(lsm_man, "pairwise"), side="=",adjust="fdr")
> View(pairwisecomp)
>View(pairwisecomp)
> residuals(yman)
 C12 h14 i04 i20 j13 k12 k15
1 -0.540451275-0.89944003-0.227676273-0.01251174 0.581768766-0.09500930-
1.86514568
2 0.703584475 0.46468195 0.764254381 0.41342674-0.452208136-0.30685465
1.33284921
3-0.163133200 0.43475808-0.536578108-0.40091501-0.129560630 0.40186395
0.53229646
4 0.123553870-1.01953283 0.545061485 0.28445134-0.141870309 0.38114517
1.33922535
5 0.031773912 0.19234838 0.252614259 0.11441171 -0.168205469 0.31936440-
0.20973403
6 -0.304798613 0.59219662-0.400666301-0.79557232 0.123707452 0.59462219-
0.26224379
7 0.149470832 0.23498783-0.397009443 0.39670926 0.186368326-1.29513177-
0.86724753
8-0.574544484 0.35546844-0.170610895-0.61368781 0.094943540 0.31230401
0.52101669
9 0.129198601 -0.35790055-0.116016368-0.31261878 0.254612321-0.65101287
0.68743805
10-0.330583864-0.65454834 0.759080931 0.31753535-0.751952841 0.40639807
0.68522411
11 0.990658880 0.71231047-1.541958326 0.02985017 0.659533741 0.06259301-
2.31923607
12-0.214729134-0.05533003 1.069504659 0.57892107-0.257136761-0.13028222
0.42555721
13-0.599186134-0.76923625-0.233482516-0.12768112 -0.235263814-0.32519368-
1.22549627
14-0.312242689 0.54009667-0.145568924-0.05667938-0.034747888-0.72072874-
0.49716431
15 0.600926385-0.66179051 0.545531729 -0.37322817-0.169846768 1.15037062
0.91634084
16 0.106786680-0.23685199 0.516993369 0.24221875 0.362675491-0.34095327
1.11943860
17 0.203715757 1.12778209-0.683473658 0.31536993 0.077182980 0.23650507-
0.31311887
18-0.223958308 0.53939685 0.103564357-0.65758628 0.504865386-0.499222232-
0.53957139
19 0.032709592 -0.21572820-0.146849779 -0.53141828 0.348512420-0.06174115
0.32108123
20 0.119571031-0.45981507 0.112856944 0.25842712 0.101668291-0.33572703
0.30372676
```

$210.0716776840 .13614643-0.0695715220 .93057744-0.955046097$ 0.896690490.08523659
$220.7828681180 .130810581 .0362682040 .92713105-0.632753103-0.28197864$ 0.65692049
$230.391726902-0.655863280 .1610832791 .107999420 .016389681-1.47399275$ 0.30987190
$24-1.491428517$ 0.20727260-0.639064128 -0.10203430-0.624440166 1.231592170.86216848
$250.3168334960 .31778010-0.558287355-1.933096171 .2408035880 .52437922-$ 0.10462391
$26-0.287329307-0.37482542-0.2303368000 .074178390 .116615175-0.39676445-$ 0.38099496
$270.0998767741 .06651464-0.5601328410 .125443440 .0767170280 .56348887$ 1.19582391
$28 \quad 0.190913228-0.507196720 .2641351490 .42112365-0.062484253-0.22764517-$ 0.46889172
$29-0.003460695-0.184492500 .526334491-0.62074548-0.1308479500 .06092075-$ 0.34593723
$30-0.9709961230 .02138205-0.712197781-1.068862910 .990631025-0.13938412$ 0.72661865
$31-0.0813414020 .399480290 .054571016-0.141639580 .007857128-0.10097971-$ 0.06361785
$320.519083586-0.450045440 .7321026500 .54360821-0.3735455240 .23538286$ 0.14162048
$330.502678287-0.397449370 .041799640-0.05872827-0.359767697-0.09915016$ 0.50835030
$340.0305756520 .42663247-0.1162755250 .72562254-0.2651749320 .10413112$ 0.14026571
$35-0.2707609501 .405642600 .6003907260 .23324110-0.225091254-0.34309884$ 0.73850113
$36 \quad 0.085339529-1.689364050 .1177151250 .356626600 .4896713680 .18967137$ 0.42349664
$37-0.2969333351 .08382753-0.821430461-1.170817410 .1990282010 .91434125$ 0.53274338
$380.482354756-0.800106080 .1033246100 .58094970-0.463608315-0.76091378$ 1.69474115
$39-0.215706673-0.19733685-0.114332234-0.178597090 .7924634110 .35109206-$ 0.67565710
$40 \quad 0.6037741851 .13846746-0.003559054-0.46182337-0.9797427951 .08206234$ 0.29250045
$41-0.606445089-0.794057010 .1622110440 .86682645-0.160822844-1.58767141$ 0.46568568
$420.218377577-0.14707360-0.044319756-0.226405980 .3481022280 .15451701-$ 0.08252903
n14
$1-0.80476894$

```
20.76194327
3 0.04282567
40.43937612
5 0.13944352
6-0.26999058
7-0.30882905
80.21176816
9 0.09778827
10 0.26341140
11-1.11971124
120.54674340
130.05264853
14-0.28193043
150.81183507
16-0.24379706
17-0.33875611
18-1.00174151
190.03030705
20 0.50282203
21 0.46861242
22 0.38043449
23-0.09695937
24-0.67550934
25 0.39203422
26-0.29618572
27 0.09282627
28 0.09155487
290.11180458
30-0.54226143
310.18073182
320.21405783
330.33496337
34-0.18749159
35-0.19600770
360.01481720
37 0.35758288
38-0.17639238
390.13544329
40 0.14969718
41-0.35835212
42 0.07321165
```


[^0]:    > Picea glauca SOC1-like
    TGACGGTTTTGAGGGCAAAAAAGAGAGGGGAGGAGAATGGTGAGGGGAAAGACTC AGATGAAAAGGATCGAGAACGCCACGAGCAGGCAGGTTACGTTTTCTAAGCGCAGG AATGGGCTGCTGAAGAAAGCTTACGAGCTCTCGGTGCTCTGCGATGCCGAAGTGGG GCTTATAGTTTTTTCTCCAAGAGGGAAGCTCTATGAATTCGCCAGTCCCAGCATGCA GGAAATTTTGGAAAAGTATCAAGACCGGTCGCAAGAAAGTGACATATCTGTTAGAA CGAAAGAGCAAGATACTCAGTGTTTGAGACGAGAACTTGCAAATATGGAGGAAAAG ATCAGGATTCTTGATTCAACACAAAGAAAAATGTTGGGGGAAGGGTTGACATCGTG TTCAATGGCAGAATTAAATAAGTTAGAGAGCCAAGCTGAACGAGGATTGAGCCATA TACGGGCTCGAAAGACTGAAATATTGATGGACCAAATAGAATGTCTGAAAAGGAAG GAACTGTTCTTAAGCGAGGAGAATGCCTTCCTCAGTAAAAAGTATGTTGATCGTCAA TCCATGGACGGTTCAGTTTCAACATCACCTTCAATTGGATTGGGAAGCATTGACAAC ATTGAAGTTGAAACTCAATTGGTTATAAGACCTCCAACCGCACAAGATCACTTTTCT

[^1]:    >Picea glauca NBS-LRR/WRKY-like
    GCAGACGCTCCCAGACTCGGTTGGGAACCTGACGGGCCTCCAAACGCTTGACTTGAC CAGGTGCTCCACTCTGCAGAGGCTCCCAGACTCGGTTGGGAACCTGACGGGCCTCCG AAGTCTTTACTTGGGCAGGTGCTCCACTCTGCAGACGCTCCCAGACTCGGTTGGGAA CCTGACGGGCCTCCAAACGCTTGACTTGAGCGGGTGTTCCAATTTACATATGCTGAC CAATATTGAGCATTTGAGCTCGTTGGAGAATCTTTATGTGCAGCAATGTCCCAAACT GCAATGGGGTTCGGAAGTAATCGAGCAGCTGCGCCAACGACTGGGAGAAGGCTTCA

[^2]:    TCTAACAACGGCCTGTGTTCACAGATATATCAGAATGTC TTCCTCACCCTTTTTGTGATGAAAAGATTAAGTTGGAGG TCTTTGTGTTTTATCTCTGGCTTCCCTTTATGGTGACCAT GGTTTCCGAATCTTTCAACATGGCCTCAATACTAAAGAG AGGTTTCTTCATCTTCTACCCAGGGCCTTCAATGTGTTCG CAGATATGTCCAATTGTCCTCCTCACCCTTTCTGTAATGA AATGAATAAGTGGACATGTGGGCAGTATGATTCTATGTC TGGTTTCCTCTTCTGACGACCGTGGTATCAGTATCTCGAG ATGGCATCATTACTTTAGAGTGGCTCCTTTACCTTCTAAC CCGGGTCTTCTATGTTTTAACACTTGTGACCAGAGCCTTC TATGTGGTAGCAGCTGGTACATCATAATGTCTTCCTCGC CCTTTTTGTAATGNCTTCTAGGGCAGTGATTTTTTTATCT CACTTCCTCGCCCTTTTTGTAATGNTGNAGGGCAGNGNT TTTATCTCACTTCTCTCGTNNNTCNGCCATGNNTTTANTA NTCCTGGANATGGCTNCTCGTTGTCNANCCTTTNNNGAN ANGGGCTTTTTCATCTNGNGATCCGTTNNNNNNTNCGNN NNCGANCGNGTNAAGCNANCGNGNTNNTNTACCGGNNT

    NNCNNNANCNANCGTGTT
    SAL5 I20-P3-G3 ATATAACTATCTATTCGATGATGAAGATACCCCACCAAA ACAAAAAAGTTGGCTTAAAAAAGGAACAGATGCAGTGA GGAAGCTTGTTAATGAAGGAGAGTCTGGCCACTTTACTC AGGGGTGTCCAACCACACTAGGAGGCAATCGAACTAGG GAGTTCATTGAGAAAATCCCTGTGAAGGATAAGCATCTA AAATCTCGTATTATTGGATCTGGTGGATCAGTTATTCNG AAGANTGNNAAAGANACANGNNGNANNATTANGNTNG NNNATAATG

