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Abstract

The numerical evaluation of challenging integrals is a topic of interest in ap-

plied mathematics. We investigate molecular integrals in the B function basis,

an exponentially decaying basis with a compact analytical Fourier transform.

The Fourier property allows analytical expressions for molecular integrals to

be formulated in terms of semi-infinite highly oscillatory integrals with lim-

ited exponential decay. The semi-infinite integral representations in terms of

nonphysical variables stand as the bottleneck in the calculation.

To begin our numerical experiments, we conduct a comparative study of

the most popular numerical steepest descent methods, extrapolation methods

and sequence transformations for computing semi-infinite integrals. It con-

cludes that having asymptotic series representations for integrals and applying

sequence transformations leads to the most efficient algorithms.

For three-center nuclear attraction integrals, we find an analytical expres-

sion for the semi-infinite integrals. Numerical experiments show the resulting

algorithm is approximately 102.5 times more efficient than the state-of-the-art.

For the four-center two-electron Coulomb integrals, we take a different ap-

proach. The integrand has singularities in the complex plane that can be near

the path of integration, making standard quadrature routines unreliable. The

trapezoidal rule with double exponential variable transformations has been

shown to have very promising properties as a general-purpose integrator. We

investigate the use of conformal maps to maximize the convergence rate, re-

sulting in a nonlinear program for the optimized variable transformation.
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Chapter 1

Introduction

The numerical evaluation of challenging integrals is a topic of interest in ap-

plied mathematics. In this work, we present mathematical solutions to some

outstanding issues in the numerical evaluation of molecular integrals in an

exponential basis. The Fourier transform representation of the Coulomb oper-

ators allows for the expectations to be calculated with a complex linear oscil-

lator instead. Then, using a generalized convolution property, it is equivalent

to consider the expectations of the Fourier transforms of the basis elements.

When using the Fourier transform representation of Coulomb operators, the

B functions are the ideal exponential basis, as they have a compact analyti-

cal Fourier transform. The B functions are introduced in the Ph D thesis of

Filter [Fil78] and their analytical and numerical properties are the subject of

the Ph D theses of Weniger [Wen82], Grotendorst [Gro85], Homeier [Hom90].

Reducing the dimensionality of multidimensional integrals is of utmost im-

portance for obtaining an efficient numerical program. If we naïvely consider

the integration in each variable as a quadrature with N points, then an m-

dimensional integral requires O(Nm) function evaluations, reaching the limits
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of modern computational power quite quickly. Therefore, if the reduction in

dimension comes at a sub-exponential cost, such as a polynomial cost, then

this will undoubtedly lead to a more promising numerical program. From

a computational perspective, this was the main outcome of the B function

approach.

The Fourier transform method for molecular integrals over B functions

allows for compact analytical expressions for overlap integrals, and reduces

the dimension of three-center nuclear integrals from three to two. The Fourier

transform method for molecular integrals over B functions leads to even more

savings when considering the four-center two-electron Coulomb integrals. In

this setting, the Fourier decomposition of the Coulomb operator separates the

integral over R
6 into an integral over R

3 over the product of two separated

integrals over R
3. While in the former case the integrand is a function of all

six variables, in the latter case the integrands are separated, and separation

ultimately reduces the dimensionality from six to three.

The major bottleneck in the B function approach occurs when evaluat-

ing highly oscillatory semi-infinite integrals with limited exponential decay

in terms of non-physical variables. These semi-infinite integrals are studied

scrupulously in the Ph D thesis of Safouhi [Saf99], where extrapolation meth-

ods are applied and derived to accelerate their convergence. In the three-center

nuclear attraction integrals, the semi-infinite integrals contain one oscillatory

Bessel function and one exponentially decaying Bessel function. In the four-

center two-electron Coulomb integrals, the semi-infinite integrals contain one

oscillatory Bessel function and two exponentially decaying modified Bessel

functions.

To begin our numerical experiments, we conduct a comparative study of
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the most popular numerical steepest descent methods, extrapolation meth-

ods and sequence transformations for computing semi-infinite integrals. It

concludes that having asymptotic series representations for integrals and ap-

plying sequence transformations to accelerate their convergence or to sum their

divergence leads to the most efficient algorithms for computing the integrals.

While all three methods are capable of attaining a predetermined accuracy,

the sequence transformations attain the same predetermined accuracy approx-

imately 103 times faster than the other methods. The comparative study gives

us a clear direction to find, whenever possible, analytical expressions for semi-

infinite integrals.

Our numerical experiments continue when we find an analytical expression

for the semi-infinite integral over non-physical variables for the three-center

nuclear attraction integrals. The resulting algorithm is approximately 102.5

times more efficient than the state-of-the-art. This expression allows for the

dimensionality of the three-center nuclear attraction integrals to be ultimately

reduced from three to one.

When, to the best of our abilities, the same analytical techniques are fruit-

less for obtaining an analytical expression for the semi-infinite integrals over

non-physical variables for the four-center two-electron Coulomb integrals, we

focus our efforts on specifically tailoring a quadrature rule to the integrals. The

integrand has singularities in the complex plane that can be very near the path

of integration, thereby reducing the largest region of analyticity containing the

path of integration. This reduction makes standard quadrature routines unre-

liable, and the number of function evaluations for a predetermined accuracy

can blow up. Therefore, in the case where an analytical expression is not

found, an improvement to the numerical evaluation can then be considered as

3



a reduction in the maximal number of function evaluations required for some

predetermined accuracy.

From Liouville’s theorem in complex analysis, we know that every bounded

entire function is constant. Heuristically speaking, then, studying a nontrivial

function is somehow equivalent to studying its singular behaviour, because un-

less it is constant, it will be singular somewhere in the extended complex plane.

For most special functions, the usual singular points are 0 and ∞, and their

study is often carried out at either of these points using Frobenius series, WKB

methods, or otherwise. In the case of the four-center’s semi-infinite integral

over non-physical variables, as a function in the complex plane, the integrand

has two pairs of complex conjugate poles on the imaginary axis. Therefore,

we recognized that in order to construct a suitable quadrature method, it had

to revolve around these singularities.

We naturally started by investigating the Gaussian quadratures. Beyond

the classical rules with known three-term recurrence relations used for con-

structing weights and abscissas, more general weights and abscissas are either

constructed by modifying the classical ones by incorporating some prescribed

singular nature [Gau13], or some other integration method is used to com-

pute the recurrence coefficients. This led us to study such other methods as

they may be just as capable in singular situations in the first place. Numerical

Recipes [PTVF07] contains a section on quadrature by variable transformation

as their recommended solution for obtaining the coefficients of the associated

recurrence relation for orthogonal polynomials. After investigating this work,

we studied the works of Takahasi and Mori [TM74] on the double exponential

transformation. Our initial impression was very positive because the weights

and abscissas are generated in as little as O(n) operations.
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By studying Sugihara’s functional analysis approach on the optimality of

the double exponential transformation for the trapezoidal rule [Sug97], we rec-

ognized the tremendous potential in applying it to the four-center two-electron

Coulomb’s semi-infinite integrals. However, we noticed nearby singularities

had a similar effect on the trapezoidal rule as it had on the Gaussian quadra-

ture rules. The problem of maximizing the convergence rate of the double

exponential transformation despite arbitrary singularities near the contour of

integration was initially solved theoretically, but the numerical experiments

were less than promising. With a theoretical result in hand, I packed my bags

and headed south for Australia.

At The University of Sydney, Sheehan Olver introduced me to the works of

Tee and Trefethen [TT06], Hale and Trefethen [HT08], Hale and Tee [HT09],

and Hale’s Ph D thesis [Hal09] “On The Use of Conformal Maps to Speed Up

Numerical Computations.” Inspired by this work, we are able to use conformal

maps to maximize the convergence rate of the trapezoidal rule. The main idea

is that from Sugihara’s functional analysis [Sug97], there is an upper bound

on the maximal strip width for the analyticity of the dominating function.

Therefore, by locating the pre-images of the function’s singularities on the top

and bottom boundaries of the strip, it is possible to attain the upper bound

exactly. For the canonical finite, infinite, and semi-infinite domains, there are

double exponential variable transformations which consist of an outer trans-

formation composed with the sinh function. So, to obtain a general framework

for considering singularities, we studied the sinh conformal map. This map

is actually the simplest case of the Schwarz-Christoffel map from the strip to

the entire complex plane with branches emanating upward and downard at ±i,

respectively. While the Schwarz-Christoffel map is a very challenging object to
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compute, we could emulate most of the properties of the Schwarz-Christoffel

map with a much simpler solution strategy. Since a polynomial adjustment to

the sinh map still grows at a single exponential rate, such an adjustment fits

naturally in the double exponential framework, and allows for the use of the

additional parameters to locate pre-images of singularities as far from the inte-

gration axis as necessary to maximize the convergence rate. It turns out that

the same conformal maps maximize the convergence rate of Sinc numerical

methods, and are therefore amenable to solving a variety of different problems

in applied mathematics.
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Chapter 2

The Molecular Integrals Problem

2.A The molecular Schrödinger equation

Consider the Schrödinger equation [Sch26] for an n-electron, N -nucleus molecule:

HΨ = EΨ. (2.1)

The Hamiltonian of the system consists of five components of kinetic and

potential energies:

H = Te + TN + Vee + VeN + VNN . (2.2)

The kinetic energies are:

Te = −1

2

n∑

i=1

∆i

me

, (2.3)

TN = −1

2

N∑

K=1

∆K

MK

, (2.4)
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where ∆i and ∆K are the Laplacian operators on the R
3 coordinate system of

the ith electron and Kth nucleus, me is the mass of an electron, and MK is the

mass of the Kth nucleus. The potential energies are:

Vee =
n∑

i=1

n∑

j>i

1

rij
, (2.5)

VeN = −
n∑

i=1

N∑

K=1

ZK

riK
, (2.6)

VNN =
N∑

K=1

N∑

L>K

ZKZL

rKL

, (2.7)

where rAB is the Euclidean distance between object A and object B, electrons

or nuclei, and ZK is the atomic number of the Kth nucleus. Then, due to

the significant weight of the nuclei versus the electrons, the Hamiltonian may

be separated between the electronic and the nuclear parts according to the

Born-Oppenheimer approximation [BO27]:

H = He +HN , Ψ = ΨeΨN , E = Ee + EN . (2.8)

Since electrons satisfy the Pauli-exclusion principle, the Slater determinant

may be used to represent the electronic wavefunction in terms of the mono-

electronic wave functions with no spin:

Ψe =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ψ1(~r1) Ψ2(~r1) · · · Ψn(~r1)

Ψ1(~r2) Ψ2(~r2) · · · Ψn(~r2)

...
...

. . .
...

Ψ1(~rn) Ψ2(~rn) · · · Ψn(~rn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ |Ψ1 Ψ2 · · · Ψn| . (2.9)
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The electronic Hamiltonian then separates to:

HeΨi = EiΨi, i = 1, 2, . . . , n. (2.10)

To represent each of the molecular orbitals, the Linear Combination of Atomic

Orbitals (LCAO) approach may be used to further decompose:

Ψi =
K∑

k=1

ckiϕk, i = 1, 2, . . . , n, (2.11)

where K is usually a small integer. The ith electron energies are found by

inserting such a representation into its separated Schrödinger equation, mul-

tiplying by another atomic orbital, and integrating. We obtain an infinite

system of linear equations, whose generalized eigenvalues are the eigenvalues

of the ith electron:









〈ϕ1|He|ϕ1〉 〈ϕ1|He|ϕ2〉 · · ·

〈ϕ2|He|ϕ1〉 〈ϕ2|He|ϕ2〉 · · ·
...

...
. . .

















c1i

c2i
...









= Ei









〈ϕ1|ϕ1〉 〈ϕ1|ϕ2〉 · · ·

〈ϕ2|ϕ1〉 〈ϕ2|ϕ2〉 · · ·
...

...
. . .









. (2.12)

With the condition
∑∞

k=1 cki = 1 and the normalization of the wavefunctions,

then the energies can be represented as expected values of the Hamiltonian:

Ei = 〈Ψi|He|Ψi〉. (2.13)

This infinite system of equations is solved by truncation, and better approxi-

mations are obtained with more terms. Therefore, the total electronic energy
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may be obtained by summation:

Ee = −1

2

n∑

i=1

〈Ψi|∆i|Ψi〉 Kinetic

−
n∑

i=1

N∑

K=1

〈

Ψi

∣
∣
∣
∣

ZK

riK

∣
∣
∣
∣
Ψi

〉

Nuclear Attraction

+
n∑

i=1

n∑

j>i

〈

ΨiΨj

∣
∣
∣
∣

1

rij

∣
∣
∣
∣
ΨiΨj

〉

Electron Repulsion

−
n∑

i=1

n∑

j>i

〈

ΨiΨj

∣
∣
∣
∣

1

rij

∣
∣
∣
∣
ΨjΨi

〉

Exchange.

(2.14)

A question that has been pursued in depth has been: which basis ϕ to use for

the atomic orbitals? Before we introduce some of the historical choices, we

require some general definitions and properties of special functions.

2.B General definitions and properties

2.B.1 Factorials

The factorial function is defined for all n ∈ N0 as [AS65]:

n! = n× (n− 1)× · · · × 1, 0! = 1. (2.15)

Several generalizations of this simple concept exist. One such generalization

is the double factorial function, defined for all n ∈ N0 as [AS65]:

n!! = n× (n− 2)× · · · × 1, 0!! = 1. (2.16)
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Another such generalization is the Gamma function which is defined for all

z ∈ C as [AS65]:

Γ(z) =

∫ ∞

0

xz−1e−x dx, (2.17)

and satisfies the property Γ(z + 1) = zΓ(z). The Pochhammer symbol is then

defined by [AS65]:

(x)n =
Γ(x+ n)

Γ(x)
. (2.18)

2.B.2 Spherical harmonics

Consider the Laplacian ∆θ,ϕ on the surface of the unit sphere:

∆θ,ϕ =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2
. (2.19)

For l ∈ N and |m| ≤ l, the surface spherical harmonics are the eigenfunctions

of the differential equation:

∆θ,ϕY
m
l (θ, ϕ) + l(l + 1)Y m

l (θ, ϕ) = 0. (2.20)

With the Condon-Shortley phase convention [CS51], they have the form:

Y m
l (θ, ϕ) = im+|m|

√

(2l + 1)

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimϕ, (2.21)

where the associated Legendre polynomials are:

Pm
l (x) =

(−1)m

2ll!

(
1− x2

)m/2 dl+m

dxl+m

(
x2 − 1

)l
. (2.22)
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The spherical harmonics are the orthonormal basis over the unit sphere as

well:
∫ 2π

ϕ=0

∫ π

θ=0

[Y m′

l′ (θ, ϕ)]∗Y m
l (θ, ϕ) sin θ dθ dϕ = δl′lδm′m, (2.23)

where δij is the Kronecker delta function and the ∗ denotes complex conjuga-

tion. The Gaunt coefficients are defined as [Gau29,WS82,Xu96]:

〈l1m1|l2m2|l3m3〉 =
∫ 2π

ϕ=0

∫ π

θ=0

[Y m1
l1

(θ, ϕ)]∗Y m2
l2

(θ, ϕ)Y m3
l3

(θ, ϕ) sin θ dθ dϕ.

(2.24)

These coefficients linearize the product of two spherical harmonics:

[Y m1
l1

(θ, ϕ)]∗Y m2
l2

(θ, ϕ) =

l1+l2∑

l=lmin,2

〈l2m2|l1m1|lm2 −m1〉Y m2−m1
l (θ, ϕ), (2.25)

where the subscript l = lmin, 2 in the summation implies that the summation

index l runs in steps of 2 from lmin to l1+ l2, and the constant lmin is given by:

lmin =







max(|l1 − l2|, |m2 −m1|), if l1 + l2 +max(|l1 − l2|, |m2 −m1|) is even

max(|l1 − l2|, |m2 −m1|) + 1, if l1 + l2 +max(|l1 − l2|, |m2 −m1|) is odd.
(2.26)

The Rayleigh expansion of the plane wavefunctions is given by [Wei78]:

e±i~p·~r =
∞∑

l=0

l∑

m=−l

4π(±i)ljl(p r)[Y
m
l (θ~p, φ~p)]

∗Y m
l (θ~r, φ~r), (2.27)

Solid harmonics are given by:

Ym
l (~r) = rlY m

l (θ~r, ϕ~r). (2.28)

12



The addition theorem of solid harmonics states that:

Ym
l (~r + ~r ′) = 4π(2l + 1)!!

l∑

l′=0

l′∑

m′=−l′

〈lm|l′m′|l − l′m−m′〉Ym′

l′ (~r)Ym−m′

l−l′ (~r ′)

(2l′ + 1)!![2(l − l′) + 1]!!
.

(2.29)

2.B.3 Bessel functions

Bessel functions of the first kind are solutions of the differential equation [Wat66]:

z2
d2

dz2
Jν(z) + z

d

dz
Jν(z) + (z2 − ν2)Jν(z) = 0, (2.30)

where z ∈ C is the argument and ν ∈ C is the order. Bessel functions satisfy

the following properties:

Jν(z) =
∞∑

k=0

(−1)k

k! Γ(k + ν + 1)

(z

2

)2k+ν

, (2.31)

Jν+1(z) =
2ν

z
Jν(z)− Jν−1(z), (2.32)

Jν−m(z) = zm−ν

(
d

z dz

)m

(zνJν(z)) , (2.33)

for some m ∈ N0. Spherical Bessel functions of the first kind of order n ∈ N0

are defined as [Wat66]:

jn(z) =

√
π

2 z
Jn+1/2(z). (2.34)
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They satisfy the following properties:

jn(z) = (−z)n
(

d

z dz

)n(
sin(z)

z

)

, (2.35)

jn+1(z) =
2n+ 1

z
jn(z)− jn−1(z). (2.36)

Bessel functions of the second kind are the second linearly independent solution

to the differential equation (2.30). For ν ∈ C \ Z:

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
, (2.37)

and for n ∈ Z, they are defined by the limit:

Yn(z) = lim
ν→n

Yν(z). (2.38)

Together, they allow for a second formulation of two linearly independent

solutions to the differential equation (2.30), known as Hankel functions:

H(1)
ν (z) = Jν(z) + iYν(z), (2.39)

H(2)
ν (z) = Jν(z)− iYν(z). (2.40)

Modified Bessel functions of the second kind are solutions of the differential

equation [Wat66]:

z2
d2

dz2
Kν(z) + z

d

dz
Kν(z)− (z2 + ν2)Kν(z) = 0, (2.41)

where z ∈ C is the argument and ν ∈ C is the order. Modified Bessel functions
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satisfy the following properties:

Kν(xz)

zν
=

1

2

∫ ∞

0

e−
x
2
(t+ z2

t
)

tν+1
dt, (2.42)

Kν+1(z) =
2ν

z
Kν(z) +Kν−1(z), (2.43)

Kν∓m(z) = (−1)mzm∓ν

(
d

z dz

)m
(
z±νKν(z)

)
, (2.44)

for some m ∈ N0. Reduced Bessel functions of order ν ∈ C are defined

as [SF75,FS78]:

k̂ν(z) =

√

2

π
zνKν(z). (2.45)

For half-integral orders, the reduced Bessel functions can be represented by an

exponential multiplied by a terminating confluent hypergeometric function:

k̂n+ 1
2
(z) = 2n(1/2)ne

−z
1F1(−n;−2n; 2z). (2.46)

They also satisfy the three-term recurrence relation:

k̂ν+1(z) = 2νk̂ν(z) + z2k̂ν−1(z). (2.47)

2.B.4 The Fourier transform

For Lebesgue integrable functions f : R3 → C, the symmetric Fourier trans-

form pair is given by [AW95]:

f(~p) =
1

(2π)3/2

∫

~r

e−i~p·~rf(~r) d3~r, (2.48)

f(~r) =
1

(2π)3/2

∫

~p

ei~r·~pf(~p) d3~p. (2.49)
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The Fourier integral representation of the Coulomb operator is given by [GS64]:

1

|~r − ~s| =
1

2π2

∫

~p

e−i~p·(~r−~s)

p2
d3~p, (2.50)

and is interpreted as the limit of the Yukawa potential
e−ǫr

r
with vanishing

screen ǫ → 0. Using the expression (2.50), the expectation of a Coulomb

operator can then be expressed as:

〈

f(~r)

∣
∣
∣
∣

1

|~r − ~s|

∣
∣
∣
∣
g(~r − ~R)

〉

~r

=
1

2π2

〈

f(~r)

∣
∣
∣
∣

∫

~x

e−i~x·(~r−~s)

x2
d3~x

∣
∣
∣
∣
g(~r − ~R)

〉

~r

, (2.51)

=
1

2π2

∫

~x

ei~x·~s

x2

〈

f(~r)
∣
∣
∣e−i~x·~r

∣
∣
∣g(~r − ~R)

〉

~r
d3~x. (2.52)

The Fourier transform allows for the expression:

∫

f ∗(~r)e−i~x·~rg(~r − ~R) d3~r,

=
1

(2π)3/2

∫ ∫

f ∗(~p)e−i~p·~r−i~x·~rg(~r − ~R) d3~p d3~r, (2.53)

= e−i~x·~R
∫

f ∗(~p)e−i~p·~R
[

1

(2π)3/2

∫

e−i(~p+~x)·(~r−~R)g(~r − ~R) d3~r

]

d3~p, (2.54)

= e−i~x·~R
∫

f ∗(~p)e−i~p·~Rg(~p+ ~x) d3~p, (2.55)

leading to the identity:

〈

f(~r)
∣
∣
∣e−i~x·~r

∣
∣
∣g(~r − ~R)

〉

~r
= e−i~x·~R

〈

f(~p)
∣
∣
∣e−i~p·~R

∣
∣
∣g(~p+ ~x)

〉

~p
. (2.56)
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2.C Choosing a basis

2.C.1 Slater-type functions

The first basis functions that are used are the Slater-type functions [Sla30,

Sla32]:

χm
n,l(ζ, ~r) = ζ−n+1[(2ζ)2n+1/(2n)!]1/2rn−1e−ζrY m

l (θ~r, φ~r), (2.57)

where n, l, and m are the quantum numbers such that n = 1, 2, . . . , l =

0, 1, . . . , n − 1, and m = −l,−l + 1, . . . l − 1, l and ζ is the effective charge of

the nucleus after electron screening. The case of non-integral principle quan-

tum number has also been considered. The orbitals satisfy the Kato [Kat57]

conditions of 1) having a cusp at the coordinate centre and 2) exponential

decay at infinity.

2.C.2 Gaussian functions

As a computational simplification, the second basis functions that are used

are the spherical Gaussian-type functions introduced by [Boy50]:

Gm
n,l(ζ, ~r) = Nn,l(ζ)Rn,l(ζ, r)e

−ζ r2Y m
l (θ~r, ϕ~r), (2.58)

where n, l, and m are the quantum numbers, ζ is the effective charge of the nu-

cleus after electron screening, Nn,l(ζ) is a normalization constant, and Rn,l(ζ, r)

is a radial polynomial. While violating the Kato conditions, these functions

have still provided for a very fast way to calculate the electronic energies be-

cause the integration of Gaussian orbitals is very fast. Cartesian Gaussian-type
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functions have also been explored.

2.C.3 B functions

The B functions of Filter and Steinborn [SF75, FS78] are introduced as an

alternative to Gaussian-type functions that satisfy the Kato conditions. They

are defined as:

Bm
n,l(ζ, ~r) =

(ζr)l

2n+l(n+ l)!
k̂n− 1

2
(ζr)Y m

l (θ~r, φ~r), (2.59)

where n, l, and m are the quantum numbers and ζ is the effective charge of

the nucleus after electron screening.

Given the terminating confluent hypergeometric series representation of

the reduced Bessel function, these functions are simply linear combinations of

Slater-type functions, with the inverse relationship defined by [FS78]:

χm
n,l(ζ, ~r) =

n−l∑

p=⌈n−l
2

⌉

(−1)n−l−p(n− l)!2l+p(l + p)!

(2p− n− l)!(2n− 2l − 2p)!!
Bm

p,l(ζ, ~r). (2.60)

The B functions have a relatively compact Fourier transform [Wen82,

WS83]:

Bm
n,l(ζ, ~p) =

√

2

π

ζ2n+l−1

(ζ2 + p2)n+l+1
Ym

l (−i~p). (2.61)

Using this compact Fourier transform, the Fourier transform of a two-center

density also has a compact analytical expression. From (2.56) and (2.61), we
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may derive:

〈

Bm1
n1,l1

(ζ1, ~r)
∣
∣
∣e−i~x·~r

∣
∣
∣Bm2

n2,l2
(ζ2, ~r − ~R)

〉

~r

= e−i~x·~R
〈

Bm1
n1,l1

(ζ1, ~p)
∣
∣
∣e−i~p·~R

∣
∣
∣Bm2

n2,l2
(ζ2, ~p+ ~x)

〉

~p
(2.62)

=
2

π
ζ2n1+l1−1
1 ζ2n2+l2−1

2 e−i~x·~R
∫ [

Ym1
l1

(−i~p)
]∗
e−i~p·~RYm2

l2
(−i(~p+ ~x))

(ζ21 + p2)
n1+l1+1

(ζ22 + |~p+ ~x|2)n2+l2+1
d3~p.

(2.63)

Using the addition theorem for the solid harmonics (2.29) and the Feynman

identity [Fey49]:

1

a b
=

∫ 1

0

ds

(a+ (b− a)s)2
, (2.64)

the expression (2.63) can be expanded as follows, which is fundamental in the

B function approach and appears in every subsequent derivation. Letting:

γ(s, x)2 = (1− s)ζ21 + sζ22 + s(1− s)x2, (2.65)

∆l = (l′1 + l′2 − l)/2, (2.66)
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then we obtain:

〈

Bm1
n1,l1

(ζ1, ~r)
∣
∣
∣e−i~x·~r

∣
∣
∣Bm2

n2,l2
(ζ2, ~r − ~R)

〉

~r

= (−1)l2(4π)3(2l1 + 1)!!(2l2 + 1)!!

× (n1 + l1 + n2 + l2 + 1)!

(n1 + l1)!(n2 + l2)!
ζ2n1+l1−1
1 ζ2n2+l2−1

2

×
l1∑

l′1=0

l′1∑

m=−l′1

〈l1m1|l′1m′
1|l1 − l′1m1 −m′

1〉
(2l′1 + 1)!![2(l1 − l′1) + 1]!!

[Ym1−m′

1

l1−l′1
(~x)]∗(−1)l1−l′1

×
l2∑

l′2=0

l′2∑

m=−l′2

〈l2m2|l′2m′
2|l2 − l′2m2 −m′

2〉
(2l′2 + 1)!![2(l2 − l′2) + 1]!!

Ym2−m′

2

l2−l′2
(~x)

×
l′1+l′2∑

l=l′min,2

il+l1+l2(−1)(l
′

1+l′2+l)/2〈l′2m′
2|l′1m′

1|lm′
2 −m′

1〉

×
∫ 1

0

e−i(1−s)~x·~R sn2+l2+l1−l′1(1− s)n1+l1+l2−l′2

[γ(s, x)]2(n1+l1+n2+l2)−(l′1+l′2)+1

×
[

∆l∑

j=0

(−1)j
(
∆l

j

)

B
m′

2−m′

1
n1+l1+n2+l2−l−j+1,l(γ(s, x),

~R)

]

ds. (2.67)

2.D The molecular integrals

Consider the picture in figure 2.1 describing the arrangement of two electrons

and four atomic centres. In evaluating the integrals of above, they appear

in three general forms: overlap integrals, nuclear attraction integrals, and

repulsion integrals.
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Figure 2.1: The configuration of four atoms located at A, B, C, and D, and
two electrons located at R and R′.

2.D.1 Overlap integrals

Overlap integrals, which are building blocks in the expectation of the kinetic

energy, take the form:

Sn2l2m2
n1l1m1

=
〈

Bm1
n1,l1

(ζ1, ~R− ~OA)
∣
∣
∣Bm2

n2,l2
(ζ2, ~R− ~OB)

〉

(2.68)

=

∫
[
Bm1

n1,l1
(ζ1, ~r)

]∗
Bm2

n2,l2
(ζ2, ~r − ~R2) d

3~r, (2.69)

after the substitutions ~r = ~R − ~OA and ~R2 = ~AB. This integral can be

obtained by formally letting ~x → ~0 in (2.67). An intermediate expression

is then obtained and the integral over s can be expanded for an analytical
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expression as follows. Letting ∆l = (l1 + l2 − l)/2, we obtain:

Sn2l2m2
n1l1m1

= (−1)l24πζ2n1+l1−1
1 ζ2n2+l2−1

2

l1+l2∑

l=lmin,2

〈l2m2|l1m1|lm2 −m1〉

∆l∑

j=0

(−1)j
(
∆l

j

){
(−1)n2+l2+1

(n2 + l2)!

ζ l1+l2+1
1

(ζ21 − ζ22 )
n1+l1+n2+l2+1

n1+l1∑

i=0

(n1 + l1 + n2 + l2 − i)!

(n1 + l1 − i)!

(
ζ21 − ζ22
ζ21

)i

Bm2−m1
i−j,l (ζ1, ~R2)

+
(−1)n1+l1+1

(n1 + l1)!

ζ l1+l2+1
2

(ζ22 − ζ21 )
n1+l1+n2+l2+1

n2+l2∑

i=0

(n1 + l1 + n2 + l2 − i)!

(n2 + l2 − i)!

(
ζ22 − ζ21
ζ22

)i

Bm2−m1
i−j−l,l (ζ2,

~R2)

}

. (2.70)

2.D.2 Nuclear attraction integrals

Three-center nuclear attraction integrals take the form:

In2l2m2
n1l1m1

=

〈

Bm1
n1,l1

(ζ1, ~R− ~OA)

∣
∣
∣
∣
∣

1

|~R− ~OC|

∣
∣
∣
∣
∣
Bm2

n2,l2
(ζ2, ~R− ~OB)

〉

(2.71)

=

∫
[
Bm1

n1,l1
(ζ1, ~r)

]∗ 1

|~r − ~R1|
Bm2

n2,l2
(ζ2, ~r − ~R2) d

3~r, (2.72)

after the substitutions ~r = ~R − ~OA, ~R1 = ~AC, and ~R2 = ~AB. By using the

Fourier Coulomb representation (2.50), we obtain:

In2l2m2
n1l1m1

=
1

2π2

∫
ei~x·

~R1

x2

〈

Bm1
n1,l1

(ζ1, ~r)
∣
∣
∣e−i~x·~r

∣
∣
∣Bm2

n2,l2
(ζ2, ~r − ~R2)

〉

~r
d3~x. (2.73)
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Then, upon inserting the result (2.67) and upon using the Rayleigh plane

wavefunction expansion (2.27), we obtain:

In2l2m2
n1l1m1

=
8 (4 π)2 (−1)l1+l2 (2l1 + 1)!! (2l2 + 1)!! (n1 + l1 + n2 + l2 + 1)! ζ2n1+l1−1

1 ζ2n2+l2−1
2

(n1 + l1)!(n2 + l2)!

×
l1∑

l′1=0

l′1∑

m′

1=−l′1

il1+l′1
〈l1m1|l′1m′

1|l1 − l′1m1 −m′
1〉

(2 l′1 + 1)!! [2 (l1 − l′1) + 1]!!

×
l2∑

l′2=0

l′2∑

m′

2=−l′2

il2+l′2 (−1)l
′

2
〈l2m2|l′2m′

2|l2 − l′2m2 −m′
2〉

(2 l′2 + 1)!! [2 (l2 − l′2) + 1]!!

×
l′2+l′1∑

l=l′min,2

〈l′2m′
2|l′1m′

1|lm′
2 −m′

1〉Rl
2 Y

m′

2−m′

1
l (θ~R2

, ϕ~R2
)

×
l2−l′2+l1−l′1∑

λ=l′′min,2

(−i)λ〈l2 − l′2m2 −m′
2|l1 − l′1m1 −m′

1|λµ〉

×
∆l∑

j=0

(
∆l

j

)
(−1)j

2n1+n2+l1+l2−j+1 (n1 + n2 + l1 + l2 − j + 1)!

×
∫ 1

s=0

sn2+l2+l1−l′1 (1− s)n1+l1+l2−l′2 Y µ
λ (θ~v, ϕ~v)

×
[
∫ +∞

x=0

xnx
k̂ν [R2γ12(s, x)]

[γ12(s, x)]nγ
jλ(v x) dx

]

ds, (2.74)

where:

~v = (1− s)~R2 − ~R1

nγ = 2(n1 + l1 + n2 + l2)− (l′1 + l′2)− l + 1

[γ12(s, x)]
2 = (1− s)ζ21 + sζ22 + s(1− s)x2

ν = n1 + n2 + l1 + l2 − l − j +
1

2

µ = (m2 −m′
2)− (m1 −m′

1)

nx = l1 − l′1 + l2 − l′2

∆l = (l′1 + l′2 − l)/2.
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2.D.3 Four-center two-electron integrals

Four-center two-electron integrals take the form:

J n2l2m2,n4l4m4

n1l1m1,n3l3m3
=

〈

Bm1
n1,l1

(ζ1, ~R− ~OA)Bm3
n3,l3

(ζ3, ~R
′ − ~OC)

∣
∣
∣
∣
∣

1

|~R− ~R′|

∣
∣
∣
∣
∣

Bm2
n2,l2

(ζ2, ~R− ~OB)Bm4
n4,l4

(ζ4, ~R
′ − ~OD)

〉

(2.75)

=

∫∫ [

Bm1
n1,l1

(ζ1, ~r − ~R1)
]∗ [

Bm3
n3,l3

(ζ1, ~r
′ − ~R3)

]∗ 1

|~r − ~r ′|

Bm2
n2,l2

(ζ2, ~r − ~R2)B
m4
n4,l4

(ζ4, ~r
′ − ~R4) d

3~r d3~r ′, (2.76)

after letting ~r = ~R, ~r ′ = ~R′, ~R1 = ~OA, ~R2 = ~OB, ~R3 = ~OC, and ~R4 = ~OD.

By using the Fourier Coulomb representation (2.50), we obtain:

J n2l2m2,n4l4m4

n1l1m1,n3l3m3
=

1

2π2

∫
e−i~x·(~R1−~R4)

x2
d3~x

×
〈

Bm1
n1,l1

(ζ1, ~r − ~R1)
∣
∣
∣e−i~x·(~r−~R1)

∣
∣
∣Bm2

n2,l2
(ζ2, ~r − ~R2)

〉

~r

×
〈

Bm4
n4,l4

(ζ4, ~r
′ − ~R4)

∣
∣
∣e−i~x·(~r ′−~R4)

∣
∣
∣Bm3

n3,l3
(ζ3, ~r

′ − ~R3)
〉∗

~r ′

,

(2.77)

=
1

2π2

∫
e−i~x·~R14

x2

〈

Bm1
n1,l1

(ζ1, ~r)
∣
∣
∣e−i~x·~r

∣
∣
∣Bm2

n2,l2
(ζ2, ~r − ~R21)

〉

~r

×
〈

Bm4
n4,l4

(ζ4, ~r
′)
∣
∣
∣e−i~x·~r ′

∣
∣
∣Bm3

n3,l3
(ζ3, ~r

′ − ~R34)
〉∗

~r ′

d3~x, (2.78)

where ~Rij = ~Ri− ~Rj. Then, upon using the result (2.67) twice and upon using

the Rayleigh plane wavefunction expansion (2.27), we obtain:
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J n2l2m2,n4l4m4

n1l1m1,n3l3m3
=

8 (4π)5 (2l1 + 1)!! (2l2 + 1)!! (n1 + l1 + n2 + l2 + 1)! ζ2n1+l1−1
1 ζ2n2+l2−1

2

(n1 + l1)! (n2 + l2)!

× (−1)l1+l2 (2l3 + 1)!! (2l4 + 1)!! (n3 + l3 + n4 + l4 + 1)! ζ2n3+l3−1
3 ζ2n4+l4−1

4

(n3 + l3)! (n4 + l4)!

×
l1∑

l′1=0

µ12∑

m′

1=µ11

il1+l′1
〈l1m1|l′1m′

1|l1 − l′1m1 −m′
1〉

(2l′1 + 1)!! [2(l1 − l′1) + 1]!!

×
l2∑

l′2=0

µ22∑

m′

2=µ21

il2+l′2 (−1)l
′

2
〈l2m2|l′2m′

2|l2 − l′2m2 −m′
2〉

(2l′2 + 1)!! [2(l2 − l′2) + 1]!!

×
l3∑

l′3=0

µ32∑

m′

1=µ31

il3+l′3
〈l3m3|l′3m′

3|l3 − l′3m3 −m′
3〉

(2l′3 + 1)!! [2(l3 − l′3) + 1]!!

×
l4∑

l′4=0

µ42∑

m′

4=µ41

il4+l′4(−1)l
′

4
〈l4m4|l′4m′

4|l4 − l′4m4 −m′
4〉

(2l′4 + 1)!! [2(l4 − l′4) + 1]!!

×
l′1+l′2∑

l=l1,min,2

〈l′2m′
2|l′1m′

1|lm′2−m′
1〉Rl

21 Y
m′

2−m′

1
l

(
θ~R21

, ϕ~R21

)

×
l1−l′1+l2−l′2∑

l12=l′1,min,2

〈l2 − l′2m2 −m′
2|l1 − l′1m1 −m′

1|l12m21〉

×
l′3+l′4∑

l′=l2,min,2

〈l′4m′
4|l′3m′

3|l′m′4−m′
3〉Rl′

34 Y
m′

4−m′

3

l′

(
θ~R34

, ϕ~R34

)

×
l3−l′3+l4−l′4∑

l34=l′2,min,2

〈l4 − l′4m4 −m′
4|l3 − l′3m3 −m′

3|l34m43〉

×
l12+l34∑

λ=l′′min,2

(−i)λ 〈l12m21|l34m43|λµ〉

×
∆l12∑

j12=0

∆l34∑

j34=0

(
∆l12
j12

) (
∆l34
j34

)
(−1)j12+j34

2ν1+ν2+l+l′+1 (ν1 +
1
2
+ l)! (ν2 +

1
2
+ l′)!

×
∫ 1

s=0

sn2+l2+l1 (1− s)n1+l1+l2

sl
′

1 (1− s)l
′

2

∫ 1

t=0

tn4+l4+l3 (1− t)n3+l3+l4

tl
′

3 (1− t)l
′

4
Y m2−µ
λ (θ~v, ϕ~v)

×
[
∫ +∞

x=0

xnx
k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34
jλ(v x) dx

]

dt ds,

(2.79)25



where:

µ1i = max(−l′i,mi − li + l′i)

µ2i = min(li,mi + li − l′i)

µ = (m2 −m′
2)− (m1 −m′

1) + (m4 −m′
4)− (m3 −m′

3)

nγ12 = 2(n1 + l1 + n2 + l2)− (l′1 + l′2)− l + 1

nγ34 = 2(n3 + l3 + n4 + l4)− (l′3 + l′4)− l′ + 1

[γij(α, x)]
2 = (1− α)ζ2i + α ζ2j + α (1− α) x2

nx = l1 − l′1 + l2 − l′2 + l3 − l′3 + l4 − l′4

ν1 = n1 + n2 + l1 + l2 − l − j12 +
1

2

ν2 = n3 + n4 + l3 + l4 − l′ − j34 +
1

2

~v = (1− s)~R21 + (1− t)~R43 − ~R41

∆l12 =
l′1 + l′2 − l

2
, ∆l34 =

l′3 + l′4 − l′

2

mij = mi −m′
i − (mj −m′

j).

Several different simplifications of this expression exist when some of the cen-

tres are equal: when A = B, they are called three-center repulsion integrals;

when A = B = C, they are called two-center hybrid integrals; when A = C,

they are called three-center exchange integrals; and when A = C and B = D

they are called two-center exchange integrals.
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Chapter 3

A Comparative Study of

Numerical Steepest Descent,

Extrapolation, and Sequence

Transformation Methods in

Computing Semi-Infinite Integrals

3.A Introduction

Semi-infinite integrals play a major role in science and engineering problems

and their accurate, efficient and reliable numerical evaluation is a topic of in-

terest in applied mathematics. Through iterative, Fourier, discretization or

expansion methods, semi-infinite integrals may arise when solving the sim-

plest to the most complicated problems. Some of the most famous examples

in the extant literature are: the Twisted Tail, proposed first among ten chal-
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lenging projects in numerical computation in the book The SIAM 100-digit

Challenge [BLWW04]; Sommerfeld-type integrals [Som49,MM97], which arise

in problems involving antennas or scatterers embedded in planar multilayered

media; and, molecular integrals [Dal54,HM67,Huz67,GWS86,HS93,SHE+00],

whose computation involves millions of semi-infinite integrals with spheri-

cal Bessel kernels and highly pathological envelope functions. From a nu-

merical perspective, this challenging problem has also been pursued exten-

sively [Saf01,Saf02,BS03a,BS03b].

Traditional numerical methods have failed to provide accurate approxima-

tions to highly pathological semi-infinite integrals, and consequently more pow-

erful techniques have been developed. In the steepest descent methods [Deb09,

Erd56, BH75, BO78, Zwi92], a deformation of the path of integration is used

to transform oscillations or irregular exponential behaviour into linear expo-

nential decay. In the numerical steepest descent, on the deformed contour,

a Gauss-Laguerre-type quadrature is used to approximate the integral. The

Levin- and Filon-type [Lev82, Fil28] methods construct quadrature rules for

oscillatory integrals. Specifically for highly oscillatory integrals, the steepest

descent methods have seen a revival in recent years [IN04, IN05,Olv06,HV06,

CHN09,HO09]. In extrapolation methods [LS81,GA67,BRZ91,GW92,Sid03],

through numerical quadrature or otherwise, one computes a sequence of ap-

proximations to the infinite-range integral and uses analytical properties of

the integrand to then extrapolate on this sequence to obtain an approxima-

tion for the integral. In sequence transformations [Sha55,Wyn56,Lev73,Bre78,

Wen89,Sid03], one derives the asymptotic series expansion of the integral and,

whether convergent or divergent, one applies transformations to the asymp-

totic series hoping to approximate the limit or antilimit of the series with a
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relatively small number of terms.

Numerical comparisons of sequence transformations [SF79, SF82, Mic98,

PNM10] have been performed several times by just as many researchers. The

context of the summation of a series by sequence transformation is different

than the context of the evaluation of semi-infinite integrals by series repre-

sentation. Therefore, in the comparisons, the most often used examples are

convergent or divergent Taylor series, power series, perturbation series, Fourier

series, or others. In the context of semi-infinite integrals, their series repre-

sentations are found first, through integration by parts, Laplace’s method or

otherwise, and then the sequence transformations are applied to these series.

In this work: we present the three most prominent general methods for

computing semi-infinite integrals; we apply these methods to four semi-infinite

integrals with multiple parameters; and, we compare and contrast their per-

formance on the bases of accuracy, reliability, and efficiency. This study is

motivated by the three-way divergence we perceive in the scientific commu-

nity regarding the numerical evaluation of semi-infinite integrals using the

three aforementioned methods. This comparison should serve to challenge the

scientific community to consider all of the aforementioned methods (and oth-

ers) in the numerical evaluation of semi-infinite integrals before jumping to

premature conclusions.
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3.B Description of the methods

3.B.1 Steepest descent methods

We begin by describing the method of numerical steepest descent for the ideal

case of an analytic integrand with no stationary points, as is used in the numer-

ical examples in this work. To be consistent, we follow closely the developments

in [IN04, IN05,Olv06,HV06,CHN09,HO09].

Let:

I(ω) =

∫ b

a

f(x)eiωg(x) dx, (3.1)

where ω > 0 and f(x) and g(x) are smooth functions. We note that eiωg(x)

does not oscillate along a path in the complex plane where the real part of

g(x) is fixed. Therefore, by deforming the integration contour such that paths

leaving the endpoints a and b are non-oscillatory, these paths may lead to

a better starting point for a numerical quadrature of the integral (3.1). In

general, there may be many paths leaving the endpoints which are steepest,

but for an integrand with no stationary points, there is usually only one such

path. Naturally, then, the path of steepest descent is of interest. Let ha(p)

and hb(p), where p ∈ [0, P ], be parameterizations for the paths of steepest

descent leaving the endpoints a and b, respectively. Then, the path ha(p), is

found as the solution to:

g(ha(p)) = g(a) + ip, (3.2)

and the path hb(p) is found similarly. If the inverse of g exists, then ha(p) =

g−1(g(a) + ip), p ∈ [0, P ]. With these paths of steepest descent, we have an
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approximation for (3.1):

∫ b

a

f(x)eiωg(x) dx

≈ eiωg(a)
∫ P

0

f(ha(p))h
′
a(p)e

−ωp dp

− eiωg(b)
∫ P

0

f(hb(p))h
′
b(p)e

−ωp dp, as ω → ∞. (3.3)

It is important to note that the integrands on the right-hand side do not

oscillate and actually decay exponentially as p or ω tend to infinity. In the

following theorem, the parameterization is extended to p ∈ [0,∞) and, with a

few additional conditions on f(x) and g(x), is able to provide an asymptotic

bound on the parameterized integrands.

Theorem 3.1 (Huybrechs and Vandewalle [HV06]): Assume that the functions

f and g are analytic in a simply connected and sufficiently (infinitely) large

complex region D containing the interval [a, b], and that the inverse of g

exists on D. If the following conditions hold in D:

∃m ∈ N : |f(z)| = O (|z|m) , (3.4)

∃ω0 ∈ R : |g−1(z)| = O
(
eω0|z|) , as |z| → ∞, (3.5)

then there exists a function F such that:

∫ b

a

f(x)eiωg(x) dx = F (a)− F (b), ∀ω > (m+ 1)ω0, (3.6)
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where F is of the form:

F (a) :=

∫

Γa

f(x)eiωg(x) dx, (3.7)

with Γa a path that starts at a. A parameterization ha(p), p ∈ [0,∞), for

Γa exists such that the integrand of (3.7) is O(e−ω p) as p→ ∞.

Remark: In the numerical examples of this work, the integrals are semi-

infinite such that b = ∞. In these cases, F (b) = 0, and there is only one

integral with path of steepest descent in the transformation.

In the cases where b = ∞ and F (b) = 0, the parameterization gives:

I(ω) = eiωg(a)
∫ ∞

0

f(ha(p))h
′
a(p)e

−ωp dp, (3.8)

From equation (3.8) and from Theorem 3.1 it is evident that the most no-

ticeable characteristic is that the integrand decays exponentially in the limit

as p→ ∞. Indeed, from the theory of orthogonal polynomials, Laguerre poly-

nomials provide the ideal nodes for integration by Gaussian quadrature. The

method of directly coupling Gaussian quadrature with transformed integrals

along paths of steepest descent is known as the method of numerical steepest

descent [HV06].

Let λnν and τnν be the weights and nodes of the n-point Gauss-Laguerre

quadrature rule [Gau04]. Let also P be the space of real polynomials and

Pd ⊂ P the space of polynomials of degree ≤ d. The n-point Gauss-Laguerre

quadrature rule can be written in the form:

∫ ∞

0

f(x)e−x dx =
n∑

ν=1

λnν f(τ
n
ν ) +Rn[f ], Rn[P2n−1] = 0, (3.9)
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Furthermore, if f ∈ C2n[0,∞), then the remainder Rn[f ] can be expressed as:

Rn[f ] =
(n!)2

(2n)!
f (2n)(τ), τ ∈ (0,∞). (3.10)

Indeed, fundamentally based on this error bound, the following theorem de-

scribes the asymptotics of a quadrature rule for the integral I(ω).

Theorem 3.2 (Huybrechs and Vandewalle [HV06]): Assume functions f and

g satisfy the conditions of Theorem 3.1. Let I(ω) in (3.8) be approximated by

the n-point Gauss-Laguerre quadrature rule as in (3.9). Then, the quadra-

ture error Rn[f ] behaves asymptotically as O(ω−2n−1) as ω → ∞.

This result demonstrates that with high oscillations, the quadrature error

decays, which is in complete opposition to the straightforward application of a

quadrature rule to an oscillatory integral. In some of the numerical examples

in this work, where there are no oscillations and only exponential decay, the

parameterization before the application of Gauss-Laguerre quadrature is not

necessary.

We denote by GLn the n-point Gauss-Laguerre quadrature rule computed

by the sum on the right-hand side in (3.9).

3.B.2 Extrapolation methods

Consider the semi-infinite integral:

I[f ] =

∫ ∞

0

f(x) dx, (3.11)

and the monotonically increasing sequence of points {xl}∞l=0 where x−1 = 0 and

xl−1 < xl ∀l ∈ N0. Then the integration then summation technique of [Lon56]
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gives:

In[f ] =
n∑

l=0

∫ xl

xl−1

f(x) dx, and lim
n→∞

In[f ] = I[f ]. (3.12)

Any series derived from the sequence {xl}∞l=0 described above has an equiv-

alence with any other such series in that they all lead to a similar linear system

of equations; however, this is certainly not so numerically. Now if the intervals

[xl−1, xl] are sufficiently small, a Gauss-Legendre quadrature routine may be

used to obtain approximations to the sub-integrals.

Supposing that a sufficiently high order quadrature is employed to achieve

machine precision evaluation of the sub-integrals, then an extrapolation method

ideally uses a small number of the terms In[f ] to obtain numerical approxi-

mations to I[f ]. This approximation requires knowledge of the form of the

difference between I[f ] and In[f ]:

I[f ]− In[f ] ∼ Rn[f ], as n→ ∞. (3.13)

The ultimate goal of any extrapolation method, then, is to have the best

possible understanding of the remainder Rn[f ] because with this known, the

sum In[f ]+Rn[f ] serves as an extrapolated approximation to the semi-infinite

integral I[f ]. Below, we present the most comprehensive investigation into the

remainder Rn[f ]. Figure 3.1 shows a graphical depiction of this extrapolation

process.

We begin by defining the class of functions we denote A
(γ) by

Definition (Levin and Sidi [LS81]): A function α(x) defined for all large x > 0
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Figure 3.1: (a) shows the portion evaluated by quadrature and (b) shows the
portion evaluated by extrapolation.

is in the set A(γ) if it has a Poincaré-type asymptotic expansion of the form:

α(x) ∼
∞∑

i=0

αix
γ−i, as x→ ∞. (3.14)

If, in addition, α0 6= 0 in (3.14), then α(x) is said to belong to A
(γ) strictly.

Here γ is complex in general.

Building on this class of functions, we also have the

Definition (Levin and Sidi [LS81]): A function f(x) belongs to the set B
(m)

if it satisfies a linear homogeneous differential equation of order m of the

form:

f(x) =
m∑

k=1

pk(x)f
(k)(x), (3.15)

where pk ∈ A
(k), k = 1, . . . ,m, such that pk ∈ A

(ik) strictly for some integer

ik ≤ k.

Let F (x) =
∫ x

0
f(t) dt and let I[f ] be the semi-infinite integral. Now, for

35



functions in B
(m), we can construct the asymptotic remainder of the difference

between I[f ] and F (x). We have the

Theorem 3.3 (Levin and Sidi [LS81]): Let f(x) ∈ B
(m) and let f(x) be inte-

grable on [0,∞) (i.e.
∫∞
0
f(t) dt < ∞). If for 1 ≤ i ≤ m and i ≤ k ≤ m,

we have lim
x→∞

p
(i−1)
k (x) f (k−i)(x) = 0 and for every integer l ≥ −1, we have

m∑

k=1

l(l− 1) · · · (l− k+1)pk,0 6= 1 where pk,0 = lim
x→∞

x−k pk(x) for 1 ≤ k ≤ m,

then we have:

I[f ]− F (x) ∼
m−1∑

k=0

xσk f (k)(x)gk(x), as x→ ∞, (3.16)

for some integers σk ≤ k + 1, and for some functions gk ∈ A
(0), k =

0, . . . ,m− 1.

We let the functions gk(x) in (3.16) be given by their most general form:

gk(x) =
∞∑

i=0

βk,i
xi
, (3.17)

with the unknowns βk,i. To solve for the unknowns βk,i, we must set up and

solve a system of linear equations. To produce this system of linear equations,

few methods have been conceived. The first is called the D
(m)
n transformation.

For this transformation, the asymptotic expansions gk(x) are truncated after

n terms and a set of interpolating points xj, xj+1, . . . , xj+mn is used to solve

for the unknowns. The approximation D
(m)
n to I[f ] is given as the solution of

the system of mn+ 1 linear equations [Sid03]:

D(m,j)
n = F (xl) +

m−1∑

k=0

xσk
l f

(k)(xl)
n−1∑

i=0

βk,i

xil
, j ≤ l ≤ j +mn. (3.18)
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In the above system (3.18), σk = min(sk, k + 1) where sk is the largest of

the integers s such that lim
x→∞

xsf (k)(x) = 0 holds, k = 0, 1, . . . ,m − 1. Also,

D
(m,j)
n and βk,i are the respective set of mn+1 unknowns. The monotonically

increasing sequence {xl} satisfies 0 < x0 < x1 < . . . and lim
l→∞

xl = ∞.

For the illustrated examples in this work, the integrands are either in B
(1)

or in B
(2). When the integrand is in B

(1), we apply the D(1) transformation;

however, when the integrand is in B
(2), there is often a choice of the sequence

{xl} such that f(xl) = 0 ∀l ∈ N0. As an example, the function f(x) =
sin(x)

x
∈

B
(2) and for the sequence xl = (l+1)π, f(xl) = 0. This choice for the sequence

{xl}∞l=0 serves to reduce the effective asymptotic remainder by eliminating the

block associated with xσ0f(x). The approximation D
(m)
n to I[f ] is given as the

solution of the system of (m− 1)n+ 1 linear equations [Sid80a]:

D(m,j)
n = F (xl) +

m−1∑

k=1

xσk
l f

(k)(xl)
n−1∑

i=0

βk,i

xil
, j ≤ l ≤ j + (m− 1)n. (3.19)

To solve the system of linear equations (3.18) for D(1) or (3.19) for D(2)

iteratively, we employ the W -algorithm, whose rules are [Sid82]:

1. For j = 0, 1, . . . , set:

M
(j)
0 =

F (xj)

ϕ(xj)
, and N

(j)
0 =

1

ϕ(xj)
. (3.20)

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute M
(j)
n and N

(j)
n recursively

from:

Q(j)
n =

Q
(j+1)
n−1 −Q

(j)
n−1

x−1
j+n − x−1

j

, (3.21)

where the Q
(j)
n stand for either M

(j)
n or N

(j)
n .
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3. For all j and n, set:

W (j)
n =

M
(j)
n

N
(j)
n

. (3.22)

For the D(1) transformation, ϕ(xj) = xσ0
j f(xj), whereas for the D(2) transfor-

mation, ϕ(xj) = xσ1
j f

′(xj).

It has been shown that limited power stems from fixing n while increasing

j [Wen89, Wen01, Sid03], whereas substantial extrapolation can be achieved

by fixing j while increasing n. In this work, we will only be considering the

approximations D
(1,0)
n or D

(2,0)
n for n = 0, 1, 2, . . . , as this sequence seems to

have the best balance between accuracy and efficiency. We denote by WD
(0)
n

the D
(1,0)
n transformation computed by the algorithm (3.20)–(3.22), and we

denote by WD
(0)
n the D

(2,0)
n transformation computed by the algorithm (3.20)–

(3.22).

3.B.3 Sequence transformations

Suppose a parameter is identified in the integrand and through integration

by parts, Laplace’s method, by identification with a special function, or oth-

erwise [BH75, BO78] an asymptotic expansion in terms of functions of this

parameter can be constructed:

I(λ) =

∫ ∞

0

f(x;λ) dx (3.23)

∼
∞∑

k=0

ak(λ) where ak(λ) = o(ak−1(λ)) as λ→ ∞. (3.24)

Quite often, though asymptotic, the above series diverges. However, often the

information contained in a few of the leading terms ak(λ) may be extracted

in such a way to provide approximations to the value of the function corre-
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sponding to the general asymptotic series (3.24). Consider, more generally,

the sequence {ak}∞k=0 and the partial sums Sn[a] =
∑n

k=0 ak. Then, with the

limit (antilimit when the sum diverges) S[a], there is a remainder:

S[a]− Sn[a] ∼ Rn[a], as n→ ∞. (3.25)

As with extrapolation methods, the ultimate goal is to have the best possi-

ble understanding of the remainder Rn[a], because with this known, the sum

Sn[a] +Rn[a] serves as an approximation to the limit (antilimit) S[a]. Below,

we present the most comprehensive investigation into the remainder Rn[a].

We begin by recalling the class of functions A(γ) by definition 3.B.2. Build-

ing on this class of functions, we also have the

Definition (Levin and Sidi [LS81]): A sequence {an} belongs to the set b(m) if

it satisfies a linear homogeneous difference equation of order m of the form:

an =
m∑

k=1

pk(n)∆
kan, (3.26)

where pk ∈ A
(k), k = 1, . . . ,m, such that pk ∈ A

(ik) strictly for some integer

ik ≤ k. Here ∆0an = an, ∆
1an = an+1 − an, and ∆kan = ∆(∆k−1an) =

k∑

i=0

(−1)k−i

(
k

i

)

an+i.

For a convergent (divergent) series, let Sn[a] =
∑n

k=0 ak, be the partial

sum of the series and let S[a] be the limit (antilimit) of the series. Now, for

sequences in b
(m), we can construct the asymptotic remainder of the difference

between S[a] and Sn[a]. We have the

Theorem 3.4 (Levin and Sidi [LS81]): Let {an} ∈ b
(m) and let

∞∑

k=0

ak be a
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convergent (divergent) series. If for 1 ≤ i ≤ m and i ≤ k ≤ m, we have

lim
n→∞

(∆i−1pk(n))(∆
k−ian) = 0 for convergent series only and for every inte-

ger l ≥ −1, we have
m∑

k=1

l(l−1) · · · (l−k+1)pk 6= 1 where pk = lim
n→∞

n−kpk(n)

for 1 ≤ k ≤ m, then we have:

S[a]− Sn[a] ∼
m−1∑

k=0

nρk(∆kan)gk(n), as n→ ∞, (3.27)

for some integers ρk ≤ k + 1, and for some functions gk ∈ A
(0)
0 , k =

0, . . . ,m− 1.

We let the functions gk(n) in (3.27) be given by their most general form:

gk(n) =
∞∑

i=0

βk,i
ni
, (3.28)

with the unknowns βk,i. To solve for the unknowns βk,i, we must set up and

solve a system of linear equations. This system is called the d
(m)
n transforma-

tion. For this transformation, the asymptotic expansions gk(r) are truncated

after n terms and a set of interpolating points R0, R1, . . . , Rmn is used to solve

for the unknowns. The approximation d
(m)
n to S[a] is given as the solution of

the system of mn+ 1 linear equations [Sid03]:

d(m,j)
n = SRl

[a] +
m−1∑

k=0

Rρk
l ∆kaRl

n−1∑

i=0

βk,i

Ri
l

, j ≤ l ≤ j +mn. (3.29)

In the above system (3.29), ρk = min(sk, k + 1) where sk is the largest of the

integers s such that lim
n→∞

ns∆kan = 0 holds, k = 0, 1, . . . ,m− 1, when the sum

is convergent. When it is divergent, ρk = k + 1. Also, d
(m,j)
n and βk,i are the

respective set of mn + 1 unknowns. The monotonically increasing sequence
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{Rl} satisfies 0 < R0 < R1 < . . . and lim
l→∞

Rl = ∞.

In the asymptotic series representations in the illustrated examples of this

work, all sequence elements ak ∈ b
(1). In this case, we employ the d(1) trans-

formation. For linearly and logarithmically convergent series, both arithmetic

progressive sampling (APS) and geometric progressive sampling (GPS) for the

Rl have been used and are successful [Sid03]. However, for divergent series,

the slowest possible sampling typically yields the best result. This corresponds

to Rl = l + 1.

The d(1) transformation with the choice of Rl = l+1 also corresponds to a

different conception of a sequence transformation, one based more closely on

numerical evidence for accelerated convergence of a model sequence [Lev73].

It serves our purpose to introduce this and other sequence transformations

from this framework. Consider the case where the remainder in (3.25) is given

more precisely by:

S[a]− Sn[a] ∼ ωn

∞∑

j=0

cj/(n+ β)j, as n→ ∞. (3.30)

A Levin transformation is designed to be exact for model sequences such that:

L
(n)
k (β)− Sn[a] = ωn

k−1∑

j=0

cj/(n+ β)j. (3.31)

Isolating the sum on the right-hand side, we may annihilate the unknowns cj

one by one because:

(n+ β)k−1L
(n)
k (β)− Sn[a]

ωn

=
k−1∑

j=0

cj(n+ β)k−j−1, (3.32)

41



and a kth finite difference on n would eliminate the sum on the right-hand

side. Isolating for the approximation to the series:

L
(n)
k (β) =

∆k
(
(n+ β)k−1Sn[a]/ωn

)

∆k ((n+ β)k−1/ωn)
. (3.33)

Expanding the finite differences, the Levin transformation is given as the ratio

of two sums:

L
(n)
k (β) =

k∑

j=0

(−1)j
(
k

j

)
(n+ β + j)k−1

(n+ β + k)k−1

Sn+j[a]

ωn+j

k∑

j=0

(−1)j
(
k

j

)
(n+ β + j)k−1

(n+ β + k)k−1

1

ωn+j

, (3.34)

where the common factor (n + β + k)k−1 is added to improve stability in the

computation by regulating the magnitude of each of the terms.

A recursive algorithm introduced in [FFS83] is able to compute the Levin

transformation (3.34) and is summarized by:

1. For n = 0, 1, . . ., set:

P
(n)
0 =

Sn[a]

ωn

and Q
(n)
0 =

1

ωn

. (3.35)

2. For n = 0, 1, . . ., and k = 1, 2, . . . , compute P
(n)
k and Q

(n)
k recursively

from:

U
(n)
k = U

(n+1)
k−1 − β + n

β + n+ k

(
β + n+ k − 1

β + n+ k

)k−2

U
(n)
k−1, (3.36)

where the U
(n)
k stand for either P

(n)
k or Q

(n)
k .

42



3. For all n and k, set:

L
(n)
k =

P
(n)
k

Q
(n)
k

. (3.37)

For the different cases of linear convergence, logarithmic convergence, series

with alternating terms and divergence, specific remainder estimates have been

suggested. For brevity, the remainder estimate we choose is ωn = an, which

gives rise to the t
(n)
k (β) transformation1. It has been shown that limited power

stems from fixing k while increasing n [Wen89,Wen01,Sid03], whereas substan-

tial extrapolation can be achieved by fixing n while increasing k. In this work,

we will only be considering the approximations t
(0)
n (β) for n = 0, 1, 2, . . . , as

this sequence seems to have the best balance between accuracy and efficiency.

In all cases, the numerical parameter β = 1. We denote by LT
(0)
n the t

(0)
n (1)

transformation computed by the algorithm (3.35)–(3.37).

3.C The integrals

In this section, we detail the four integrals we study to compare and contrast

the three general methods above. We begin by giving the integral and its

representation as a special function. Then, we transform the integral to an

integral with exponential decay for the method of steepest descent, if necessary.

For the extrapolation method, we discuss the order of the differential equation

satisfied by the integrand, and we give the sequence of extrapolation points

{xl}∞l=0 to be used. For the sequence transformation, we give the asymptotic

1Actually, it was shown in [Wen04] that the t
(n)
k (β, Sn[a]) variants of the Levin-type

processes are equivalent to the d
(n−1)
k (β+1, Sn−1[a]) transformation. We refer the interested

reader to [Wen89,HW95,Sid03] for more detail on the remainder estimates and their uses;
however, as we are comparing significantly different methods (steepest descent, extrapolation
and sequence transformations), the choice of remainder estimate does not significantly alter
the results.
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series of the integral with respect to one or more integral parameters in a

limiting direction (i.e. we give the asymptotic series of I1(β) as β → ∞, for

example).

3.C.1 The first integral

The first integral is [GR07, §3.352]:

I1(β) =

∫ ∞

0

e−x

x+ β
dx = −eβ Ei(−β). (3.38)

In the form (3.38), no substitution is required to apply Gauss-Laguerre quadra-

ture.

The integrand f1(x) of (3.38) satisfies a first order homogeneous linear

differential equation:

f1(x) = − x+ β

x+ β + 1
f ′
1(x), (3.39)

and therefore f1(x) ∈ B
(1). The extrapolation points we use are xl = (l +

1)(β + 1/2).

The integral has the asymptotic expansion [GR07, §8.215]:

I1(β) ∼
1

β

∞∑

k=0

k!

(−β)k as β → ∞, (3.40)

and the sequence {an} satisfies a first order homogeneous linear difference

equation:

an = − β

β + n+ 1
∆an, (3.41)

and therefore {an} ∈ b
(1).
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3.C.2 The second integral

The second integral is [GR07, §3.697]:

I2(a, b) =

∫ ∞

0

sin
(a

x

)

sin(b x) dx =
π

2

√
a

b
J1(2

√
a b). (3.42)

By splitting the integration interval with respect to x0 =

√
a

b
, the point at

which both oscillation frequencies are the same, we obtain the two integrals:

I2(a, b) =

∫ x0

0

sin
(a

x

)

sin(b x) dx+

∫ ∞

x0

sin
(a

x

)

sin(b x) dx (3.43)

=

∫ ∞

x−1
0

sin

(
b

x

)
sin(a x)

x2
dx+

∫ ∞

x0

sin
(a

x

)

sin(b x) dx. (3.44)

To obtain the path of steepest descent, these integrals can be written after the

substitutions y = ia(x−1
0 − x) and y = ib(x0 − x) respectively, as:

I2(a, b) = Im

{
∫ ∞

x−1
0

sin

(
b

y

)
eia y

y2
dy

}

+ Im

{∫ ∞

x0

sin

(
a

y

)

eib y dy

}

(3.45)

= Im

{

i

a

∫ ∞

0

sin

(
b

x−1
0 + iy/a

)
eia x

−1
0 e−y

(x−1
0 + iy/a)2

dy

}

+ Im

{
i

b

∫ ∞

0

sin

(
a

x0 + iy/b

)

eib x0e−y dy

}

. (3.46)

The integrand f2(x) of (3.42) satisfies a third order homogeneous linear

differential equation f2(x) ∈ B
(3). However, by considering the two integrals

in (3.44) instead, one may treat one of the oscillatory sine functions as a

function in A
(−1). For the first integral in (3.44), the extrapolation points

we use are xl =
π

a

(⌊
x−1
0

π

⌋

+ l + 1

)

. For the second integral in (3.44), the

extrapolation points we use are xl =
π

b

(⌊x0
π

⌋

+ l + 1
)

. The use of the floor
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function ⌊·⌋ guarantees that the process begins at the next zero of the integrand

greater than x−1
0 /a or x0/b, respectively.

The integral has the asymptotic expansion [GR07, §8.451]:

I2(a, b) ∼
√
π a

2 b

1
√

2
√
a b

{

cos(2
√
a b− 3π/4)

∞∑

k=0

(−1)k

(16 a b)k
Γ(3/2 + 2k)

(2k)! Γ(3/2− 2k)

−sin(2
√
a b− 3π/4)

4
√
a b

∞∑

k=0

(−1)k

(16 a b)k
Γ(5/2 + 2k)

(2k + 1)! Γ(1/2− 2k)

}

as a b→ ∞.

(3.47)

The sequences of both series in (3.47) satisfy {an} ∈ b
(1).

3.C.3 The third integral

The third integral is [GR07, §6.631]:

I3(µ, α, β) =

∫ ∞

0

xµe−αx2

K0(β x) dx =

{
Γ(µ+1

2
)
}2

2αµ/2β
exp

(
β2

8α

)

W−µ
2
,0

(
β2

4α

)

.

(3.48)

To obtain the path of steepest descent, this integral can be written after the

substitution y = αx2 + β x as:

I3(µ, α, β) =

∫ ∞

0

(

−β +
√

β2 + 4α y

2α

)µ

exp

(

−β2 + β
√

β2 + 4α y

2α

)

× K0

(

−β2 + β
√

β2 + 4α y

2α

)

e−y dy
√

β2 + 4α y
. (3.49)

The integrand f3(x) of (3.48) satisfies a second order homogeneous linear

differential equation f3(x) ∈ B
(2) given that the Bessel function K0(x) ∈ B

(2).

However, by considering the asymptotic form of the Bessel function [AS65,

46



§9.7.2]:

K0(x) ∼
√

π

2 x
e−x as x→ ∞, (3.50)

the asymptotic form of the integrand f3(x) ∈ B
(1). We use xl =

−β+
√

β2+4α (l+1)

2α

as the extrapolation points.

The integral has the asymptotic expansion [GR07, §9.227]:

I3(µ, α, β) ∼
{
Γ(µ+1

2
)
}2

21−µβµ+1

∞∑

k=0

{
(µ+1

2
)k
}2

k!

(

−4α

β2

)k

as
β2

4α
→ ∞. (3.51)

The sequence of the series in (3.51) satisfies {an} ∈ b
(1).

3.C.4 The fourth integral

The fourth integral is [GR07, §6.596 7.]:

I4(µ, ν, α, β, ζ) =

∫ ∞

0

Jν(β x)
Kµ(α

√

x2 + ζ2)
√

(x2 + ζ2)µ
xν+1 dx, (3.52)

=
βν

αµ

(√

α2 + β2

ζ

)µ−ν−1

Kµ−ν−1(ζ
√

α2 + β2). (3.53)
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To obtain an approximate path of steepest descent, this integral can be written

as:

I4(µ, ν, α, β, ζ) = Re

{
∫ ∞

0

H(1)
ν (β x)

Kµ(α
√

x2 + ζ2)
√

(x2 + ζ2)µ
xν+1 dx

}

, (3.54)

= Re

{(
α + iβ

α2 + β2

)ν+2 ∫ ∞

0

exH(1)
ν

(
αβ + iβ2

α2 + β2
x

)

×
Kµ

(

α

√
(

α+iβ
α2+β2

)2

x2 + ζ2

)

√
((

α+iβ
α2+β2

)2

x2 + ζ2
)µ

xν+1e−x dx







, (3.55)

after the substitution y = (α − iβ)x. This is the case because with the cor-

rect but more complicated parameterization, z ∼ (α − iβ)x and so the above

parameterization is asymptotic to the path of steepest descent.

The integrand f4(x) of (3.52) satisfies a fourth order homogeneous linear

differential equation f4(x) ∈ B
(4) given that the Bessel functions Jν(x) ∈

B
(2) and Kµ(x) ∈ B

(2) and their product Jν(x)Kµ(x) ∈ B
(4). However, by

considering the asymptotic form of the Bessel functions as in the case for

I3(µ, α, β), the asymptotic form of the integrand f4(x) ∈ B
(2). Let xν,l denote

the lth zero of the function Jν(x), such that xν,0 = 0, Jν(xν,l) = 0 and xν,l−1 <

xν,l ∀l ∈ N. The extrapolation points we use are xl = xν,l+1/β.

The integral has the asymptotic expansion [GR07, 8.451 6.]:

I4(µ, ν, α, β, ζ) ∼
√

π

2 ζ
√

α2 + β2

(√

α2 + β2

ζ

)µ−ν−1
βνe−ζ

√
α2+β2

αµ
(3.56)

×
∞∑

k=0

1

(2 ζ
√

α2 + β2)k
Γ(µ− ν + k − 1/2)

k! Γ(µ− ν − k − 1/2)
, as ζ

√

α2 + β2 → ∞.

(3.57)

48



The sequence elements of the series satisfy {an} ∈ b
(1).

3.D Numerical discussion

In performing the numerical tests of three methods, the computations are

performed in complex double precision arithmetic. The FORTRAN codes are

compiled with Lahey/Fujitsu LF095 compiler, and the codes are run with an

Intel Core 2 Duo 2.0GHz processor.

In comparing and contrasting the three methods, we attempt to simulate

such a computational environment in order to ensure a fair comparison is

had. In a large program, for example, the computation of weights and nodes

of a Gaussian quadrature are computed once and stored. This is replicated

in our test program, as the Gauss-Legendre and the Gauss-Laguerre weights

and nodes are not computed every time the steepest descent or extrapolation

methods are called.

Tables 3.1, 3.2, 3.3, and 3.4 each show 10 test values of the integrals

I1(β), I2(a, b), I3(µ, α, β), and I4(µ, ν, α, β, ζ), respectively. In these tables,

GLn denotes the approximation obtained by using the n-point Gauss-Laguerre

quadrature rule on the integral along the contour of steepest descent; WD
(1)
n

denotes the approximation obtained by using the W algorithm for the D
(1)
n

transformation on the integral; WD
(2)
n denotes the approximation obtained by

using the W algorithm for the D
(2)
n transformation on the integral; and, LT

(0)
n

denotes the approximation obtained by using the algorithm (3.35)–(3.37) for

the t
(0)
n (1) transformation on the asymptotic series representation of the inte-

gral.

For the computation of the sub-integrals in the D and D transformations,
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a 32-point Gauss-Legendre quadrature rule is used. The order 32 ensures that

for the great majority of the sub-integrals, the computed approximations are

accurate to 16 significant digits. A more sophisticated approach where one

loops through order-for-order approximations to the sub-integrals or even a

Gauss-Kronrod rule [Kro65] would certainly yield the best order n to be used

to achieve 16 significant digits; however, this is seldom the approach chosen

in the context of large programs, because these loops significantly increase

calculation times.

In tables 3.1–3.4, all the parameters of the integrals are given in the first

columns, and the order n and the relative error of the three methods are listed

in the subsequent columns. In the tables:

ErrorMethodn =

∣
∣
∣
∣

Methodn − I
I

∣
∣
∣
∣
, (3.58)

represents the relative error of the value obtained from the given Method

of order n with respect to a highly accurate value of the integral I. These

highly accurate values are computed by using the analytical expressions for

the integrals and Maple’s arbitrarily high accuracy to a sufficiently high degree

of precision to ensure the accuracy of the integral to 16 significant digits.

An indication of the relative computation time is given directly below each

of tables 3.1–3.4. On the timing of the calculations, each integral is computed

1000 times for each method, so that the ratios below the tables are averaged

over 1000 calculations. This helps ensure the accuracy of these ratios even

when some of the methods are computed very rapidly compared with the

CPU’s internal clock.

The three algorithms are stopped when the best approximation is obtained.
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For the n-point Gauss-Laguerre quadrature rule, this stopping criterion is the

simplest. If:
∣
∣
∣
∣

GLn −GLn−1

GLn−1

∣
∣
∣
∣
< ǫ, (3.59)

then the algorithm returns the value GLn as a value which has approximately

at least − log10(ǫ) correct digits. The FORTRAN code we used to compute the

weights and nodes was accurate to the maximal order n = 124, and so if the

condition (3.59) was not met by the maximal order, then the approximation

GL124 was taken as the best one.

For the extrapolation methods WD
(1)
n and WD

(2)
n and the sequence trans-

formation LT
(0)
n , an inherent instability in the algorithms exists, described

in [Sid10], in finite-precision arithmetic which limits the maximal accuracy

obtainable by the methods. To extract the best approximation, heuristic stop-

ping criteria for related extrapolation processes have been proposed in [DS07]

and extended in [GSS12]. If:

∣
∣
∣
∣

Methodn −Methodn−1

Methodn−1

∣
∣
∣
∣
< ǫ and if

∣
∣
∣
∣

Methodn−1 −Methodn−2

Methodn−2

∣
∣
∣
∣
< 100 ǫ,

(3.60)

or if:

ρi =

∣
∣
∣
∣

Methodn−i −Methodn−i−1

Methodn−i−1 −Methodn−i−2

∣
∣
∣
∣
> 1, for i = 0, 1, . . . , k, (3.61)

then the algorithm returns the value Methodn as a value which has approx-

imately at least − log10(ǫ) correct digits or the best approximation obtained

before the algorithmic instability sets in. For the algorithms WD
(1)
n , WD

(2)
n

and LT
(0)
n , k = 1 and therefore two values ρ0 and ρ1 are used in the stopping

criteria. In all algorithms, ǫ = 10−15.
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Tables 3.1–3.4 demonstrate that all three methods are successful in obtain-

ing 15 significant digits for some of the test values. However, it is evident that

all of the algorithms have a preferred parameter range or direction. For exam-

ple, in table 3.1, it is evident that all three methods perform best as β → ∞,

while in table 3.2 the steepest descent and sequence transformation methods

perform best as a b → ∞, while the extrapolation method performs best as

a b→ 0. There is no doubt, however, on which algorithm is the most efficient:

in comparing the calculation times listed at the bottom of each table for all

40 test values, there is strong evidence to suggest that the algorithm for LT
(0)
n

is the most efficient.

β n ErrorGLn n ErrorWD
(1)
n n ErrorLT

(0)
n

0.03 124 0.87D-03 17 0.22D-12 16 0.32D-01
0.10 124 0.25D-05 17 0.84D-12 17 0.11D-02
0.30 124 0.16D-09 17 0.71D-14 17 0.14D-05
1.00 124 0.13D-13 12 0.56D-15 21 0.18D-07
3.00 34 0.36D-14 8 0.13D-14 20 0.21D-12
4.00 34 0.40D-14 7 0.22D-14 19 0.40D-15
5.00 22 0.65D-15 6 0.31D-14 18 0.16D-15

10.00 15 0.61D-15 3 0.30D-14 16 0.30D-15
30.00 9 0.17D-14 3 0.47D-14 13 0.00D+00

100.00 6 0.18D-15 2 0.21D-14 9 0.18D-15

Calculation time using WD
(1)
n

Calculation time using GLn

= 0.49 and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.075.

Table 3.1: Numerical evaluation of I1(β).

3.E Refinements of the algorithms

In this section, we describe the best general ways to refine the methods of

steepest descent, extrapolation, and sequence transformation for semi-infinite
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a b n ErrorGLn n ErrorWD
(2)
n n ErrorLT

(0)
n

1.00 1.00 124 0.19D-09 16 0.86D-15 23 0.29D-08
2.00 1.00 124 0.60D-11 17 0.12D-14 24 0.34D-10
2.00 2.00 124 0.72D-12 17 0.17D-14 24 0.33D-12
3.00 1.00 124 0.12D-11 18 0.27D-15 23 0.10D-11
3.00 2.00 124 0.75D-14 17 0.55D-15 25 0.17D-14
3.00 3.00 117 0.68D-14 17 0.51D-15 18 0.13D-15

10.00 1.00 124 0.29D-14 19 0.16D-14 20 0.44D-15
100.00 1.00 124 0.76D-14 10 0.91D-01 8 0.21D-14
10.00 10.00 124 0.59D-14 7 0.79D-02 8 0.20D-14

100.00 10.00 69 0.20D-14 8 0.26D+01 5 0.16D-14

Calculation time using WD
(2)
n

Calculation time using GLn

= 0.096 and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.011.

Table 3.2: Numerical evaluation of I2(a, b).

µ α β n ErrorGLn n ErrorWD
(1)
n n ErrorLT

(0)
n

0 3.00 1.00 124 0.59D-02 16 0.30D-03 18 0.57D-03
0 1.00 1.00 124 0.46D-02 15 0.33D-03 18 0.80D-06
0 3.00 3.00 124 0.39D-02 20 0.36D-03 19 0.25D-08
0 1.00 3.00 124 0.35D-02 19 0.38D-03 21 0.11D-12
1 4.00 1.00 124 0.13D-03 17 0.23D-06 17 0.11D-01
1 1.00 4.00 124 0.20D-04 17 0.24D-06 19 0.40D-15
1 1.00 8.00 124 0.17D-04 18 0.23D-06 15 0.12D-15
2 5.00 1.00 124 0.90D-05 18 0.32D-09 16 0.41D-01
2 1.00 5.00 124 0.15D-06 17 0.21D-09 19 0.73D-15
2 1.00 10.00 124 0.12D-06 19 0.19D-09 15 0.15D-15

Calculation time using WD
(1)
n

Calculation time using GLn

= 0.089 and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.000 22.

Table 3.3: Numerical evaluation of I3(µ, α, β).
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µ ν α β ζ n ErrorGLn n ErrorWD
(0)
n n ErrorLT

(0)
n

0 0 1.00 0.50 0.50 124 0.95D-05 6 0.11D-13 19 0.45D-10
0 0 0.50 1.00 0.50 124 0.23D-05 13 0.54D-14 19 0.45D-10
0 1 0.50 0.50 1.00 124 0.28D-07 10 0.14D-13 2 0.20D+00
1 0 0.50 0.50 0.50 124 0.12D-03 8 0.29D-12 19 0.17D-08
1 1 1.00 2.00 2.00 124 0.40D-09 13 0.31D-14 15 0.40D-15
1 1 2.00 1.00 2.00 124 0.87D-10 6 0.80D-15 15 0.53D-15
2 3 2.00 2.00 1.00 124 0.19D-09 9 0.36D-15 16 0.18D-15
3 1 5.00 5.00 2.00 124 0.13D-03 11 0.19D-15 12 0.11D-14
4 3 5.00 5.00 2.00 124 0.31D-02 11 0.33D-14 12 0.15D-14
5 4 2.00 2.00 5.00 124 0.34D-01 12 0.39D-14 12 0.14D-14

Calculation time using WD
(0)
n

Calculation time using GLn

= 0.032, and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.000 032.

Table 3.4: Numerical evaluation of I4(µ, ν, α, β, ζ).

integrals.

3.E.1 Steepest descent methods

In some cases, the integral transformations leading to the semi-infinite inte-

gral (3.8) may compress many of the defining characteristics of f(τ) near the

origin, such that f(τ) may be approximated very well by a polynomial of de-

gree 2n − 1 only for very large n. As τ → ∞, however, the function f(τ)

becomes less complicated and thus the weight w(τ) = e−τ is legitimate. In

order to remove the complications from f(τ) at the origin, we begin by inte-

grating via a 32-point Gauss-Legendre quadrature rule for small sub-intervals

beginning from the origin until the exponential weight begins to dominate.

Algorithmically:

1. For n = 1, 2, . . . , compute using Gauss-Legendre quadrature rule:

∫ τn

τn−1

f(τ) e−τ dτ. (3.62)
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2. If for some n = 2, 3 . . .:

∣
∣
∣
∣
∣
∣
∣
∣

∫ τn

τn−1

f(τ)e−τ dτ

∫ τn−1

τn−2

f(τ)e−τ dτ

∣
∣
∣
∣
∣
∣
∣
∣

< α, (3.63)

where α ∈ (0, 1] is a numerical parameter (which is set to α = 1/2 for

these examples) then compute via a Gauss-Laguerre quadrature rule:

e−τn

∫ ∞

0

f(τ + τn)e
−τ dτ. (3.64)

The approximation of the semi-infinite integral is then given by:

∫ τn

0

f(τ)e−τ dτ + e−τn

∫ ∞

0

f(τ + τn)e
−τ dτ. (3.65)

We denote by GLn the approximations computed in this way where n

is the larger of the number of sub-intervals computed and the order of the

Gauss-Laguerre quadrature rule. On a numerical basis, we find the sequences

xn = n(β + 0.5) for I1(β), xn = n for I2(a, b), xn = n/(5µ+ 5) for I3(µ, α, β)

and xn = n/(ζ
√

α2 + β2) for I4(µ, ν, α, β, ζ) work well in this algorithm. It

is worth mentioning that the condition in (3.63) only works when f(τ) does

not change sign on the interval τ ∈ [τn−1, τn], because otherwise cancellation

might make the integral
∫ τn
τn−1

f(τ) e−τ dτ uncharacteristically small.

This algorithm fails to improve the accuracy for the integral I3(µ, α, β)

because the integrand f3(x) of (3.48) contains the function K0(β x), which
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has a logarithmic singularity at the origin [AS65, §9.6.54], such that:

f3(x) ∼ −xµ [γ + ln(β x/2)] as x→ 0+, (3.66)

where γ is the Euler-Mascheroni constant [AS65, §1]: γ ≈ 0.57721 56649 01532.

As can be seen in table 3.3, the trouble from the logarithmic singularity

is most pronounced when µ = 0, and becomes less so as µ increases. The

logarithmic singularity at the origin present in (3.48) poses a problem that

requires a more sophisticated quadrature rule for I3(µ, α, β). For weak singu-

larities on an integration contour, there exist a variety of different methods

that can help increase the accuracy. For example: in [Sid80b], quadrature

rules are constructed with the singularities taken into account; in [PTVF07,

§4.5], the tanh-sinh substitution transforms any finite integral into an infinite

one with double-exponential decay at both extremities; or, it is mentioned

in [SB02, §3.4] that a sequence of sub-integrals approaching the singularity

could be extrapolated to the limit. Any of these or other techniques could

possibly provide a better computation. We demonstrate the improvement in

accuracy by using the tanh-sinh substitution. Let:

I3(µ, α, β) =

∫ ∞

0

f3(x) dx =

∫ xs

0

f3(x) dx+

∫ ∞

xs

f3(x) dx, (3.67)

for some xs ∈ (0,∞). Then, by using the substitution x(t) =
xs
2
(1 + tanh(sinh t))

on the first integral in (3.67), and the substitution y = x − xs in the second
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integral in (3.67), we obtain:

I3(µ, α, β) =

∫ ∞

−∞
f3

(xs
2
(1 + tanh(sinh t))

)

x′(t) dt+

∫ ∞

0

f3(y + xs) dy.

(3.68)

The second integral in (3.68) can easily be approximated by Gauss-Laguerre

quadrature provided xs is large enough. And, the first integral in (3.68) can

be approximated by the trapezoidal rule as:

∫ ∞

−∞
f3

(xs
2
(1 + tanh(sinh t))

)

x′(t) dt

≈ h

N∑

j=−N

f3

(xs
2
(1 + tanh(sinh(jh)))

)

x′(jh). (3.69)

It is shown in [PTVF07, §4.5] that the trapezoidal rule converges exponentially

fast while decreasing step size h. Due to the term x′(t), which decays as

exp(− exp |t|), as t → ±∞, the infinite integral may be approximated by a

finite one around the origin. For the integral I3(µ, α, β), the values xs =
√

β2/α2 + 2(µ+ 1)/α and h = 1/26 work well on the finite integral from

[−3.575, 4].

3.E.2 Extrapolation methods

There are several ways to improve an extrapolation method when it origi-

nally fails. We believe that the best way to describe these improvements is by

considering the examples individually. Comparatively speaking, the extrapo-

lation methods work better on I1(β) and I4(µ, ν, α, β, ζ) than on I2(a, b) and

I3(µ, α, β). So, we only detail refinements to the extrapolation methods for

the integrals I2(a, b) and I3(µ, α, β).
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When a b → ∞ in I2(a, b), the assumption that one of the sine functions

is non-oscillatory past the point x0, resp. x−1
0 , is no longer valid. This causes

two problems. For high-frequency interfering oscillations, the 32-point Gauss-

Legendre quadrature rule is unable to provide approximations accurate to 16

significant digits. The simplest way to remedy this loss of accuracy is to further

subdivide each sub-integral into ⌊a b⌋+1 sub-integrals and to compute each of

these with a 32-point Gauss-Legendre quadrature rule. Additionally, when the

high-frequency interference is pronounced, the assumption that f2(x) ∈ B
(2)

is still valid, but the remainder estimates ϕ(x) = sin

(
b

x

)

for the first integral

in (3.44) or ϕ(x) = x2 sin
(a

x

)

for the second need to be simplified to reflect

this assumption. They are simplified by taking on their asymptotic forms:

ϕ(x) =
b

x
for the first integral or ϕ(x) = a x for the second. (3.70)

As for integral I3(µ, α, β), the same tanh-sinh substitution described in (3.67)–

(3.69) is used to remove the numerical difficulties stemming from the logarith-

mic singularity. Then, the second integral in (3.67) is extrapolated as usual.

Remark: In the integral I2(a, b), the oscillations are uncoupled, in that both

parameters a and b create oscillations separately. By writing the sines as

complex exponentials, a quick study reveals that I2(a, b) can be written as:

I2(a, b) = Re

∫

C

e−i(a/z+bz)

2
dz, (3.71)

where C is any contour connecting the points z1 = −i
√

a/b and z2 = i
√

a/b

not passing through the origin. As an example, consider the circular contour
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z(θ) =
√

a/b eiθ, −π/2 < θ < π/2. Then:

I2(a, b) = Re

(

i

2

√
a

b

∫ π/2

−π/2

e−i2
√
a b cos(θ)eiθ dθ

)

. (3.72)

This comes as no surprise as (3.72) is another integral representation for the

Bessel function J1(2
√
a b) [AS65, §9.1.21]. In (3.72), the parameters a and b

contribute to the oscillations equally, and this might lead one to suspect that

this contour integral would be a better starting point for the extrapolation

methods. After substitutions:

I2(a, b) = Re

(√
a

b

iπ

4

∫ ∞

0

e−i2
√
a b cos( π t

2(t+1))+i π t
2(t+1)

dt

(t+ 1)2

)

,

+ Re

(√
a

b

iπ

4

∫ ∞

0

e−i2
√
a b cos( π t

2(t+1))−i π t
2(t+1)

dt

(t+ 1)2

)

. (3.73)

Either of these semi-infinite integrals, depicted in figure 3.2, would be un-

usual applications of extrapolation methods because they are oscillatory,

but have a finite number of zeros. Normally, one would expect an infinite

number of zeros when integrating semi-infinite oscillatory integrals. One

may very well have to integrate beyond all the oscillations before any ex-

trapolation is achieved. In addition, one would have to investigate the order

of the differential equation satisfied by the integrand to see which order m

of the D(m) transformation to apply. However, the cosine in the exponential

makes things difficult. And, there may not be any systematic way to re-

duce the system of the D(m) transformation (like choosing consecutive zeros

in D(m)). So, there are real difficulties with this approach and while on a

deformed contour the complete oscillatory behaviour of the integral can be

treated at once, we believe that it does not render an integral that is any
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less challenging.
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Figure 3.2: (a) shows the integrand in (3.72) and (b) shows the integrand
in (3.73). In both cases, a = 100 and b = 10.

3.E.3 Sequence transformations

In all four integrals, the sequence transformations are based on an asymptotic

expansion as some governing parameter(s) tend to infinity. For I1(β), the

asymptotic expansion is valid as β → ∞; for I2(a, b), the asymptotic expansion

is valid as a b→ ∞; for I3(µ, α, β), the asymptotic expansion is valid as
β2

4α
→

∞; and, for I4(µ, ν, α, β, ζ), the asymptotic expansion is valid as ζ
√

α2 + β2 →

∞. As the values of the governing parameter(s) tend to 0+, the sequence

transformations do their best to approximate the antilimits of the divergent

series. However, past a certain point, the stopping criteria of (3.61) return the

best approximation which does not attain full precision. In this case, we resort

to using a (convergent) series representation of the integrals as the governing

parameter(s) in question tend to 0+.
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The integral I1(β) also has the series representation [GR07, §8.214]:

I1(β) = −eβ
(

γ + ln β +
∞∑

k=1

(−β)k
k · k!

)

as β → 0+. (3.74)

The integral I2(a, b) also has the series representation [GR07, §8.440]:

I2(a, b) =
π a

2

∞∑

k=0

(−a b)k
k! (k + 1)!

as a b→ 0+. (3.75)

The integral I3(µ, α, β) also has the series representation [GR07, §9.237]:

I3(µ, α, β) =
1

4α
µ+1
2

∞∑

k=0

Γ(k + µ+1
2
)

(k!)2

(
β2

4α

)k

×
[

2ψ(k + 1)− ψ

(

k +
µ+ 1

2

)

− ln

(
β2

4α

)]

as
β2

4α
→ 0+, (3.76)

where ψ stands for the digamma function [AS65, §6.1.3].

The integral I4(µ, ν, α, β, ζ) also has the series representation [GR07, §8.446]:

I4(µ, ν, α, β, ζ) =
βν

2αµ

(√

α2 + β2

ζ

)µ−ν−1

×







λ−1∑

k=0

(−1)k(λ− 1− k)!

k!

(

ζ
√

α2 + β2

2

)2k−λ

+ (−1)λ
∞∑

k=0

1

k! (λ+ k)!

(

ζ
√

α2 + β2

2

)2k+λ

×
[

ψ(k + 1) + ψ(k + λ+ 1)− 2 ln

(

ζ
√

α2 + β2

2

)]}

, (3.77)

as ζ
√

α2 + β2 → 0+, where λ = |µ− ν − 1|.

A simple refinement, these convergent series representations are used to

approximate the integrals as the parameter(s) tend to 0+. On a numerical
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basis, we find the separation points β = 4.0 for I1(β), a b = 5.0 for I2(a, b),

β2

4α
= 4.0 for I3(µ, α, β), and ζ

√

α2 + β2 = 2.0 for I4(µ, ν, α, β, ζ) work well

in determining whether the convergent series or the sequence transformation

on the divergent series is used.

3.E.4 Numerical Discussion

The performance of the three methods in tables 3.1–3.4 may not be readily

impressive because each method tends to favour one direction of parameter

values over another, and this would be undesirable for the computation of a

semi-infinite integral with parameters not in the favourable region.

Tables 3.5, 3.6, 3.7, and 3.8 each show the same 10 test values of the

integrals I1(β), I2(a, b), I3(µ, α, β), and I4(µ, ν, α, β, ζ), respectively, as ta-

bles 3.1, 3.2, 3.3, and 3.4 with the algorithmic refinements taken into consider-

ation. In tables 3.5–3.8, the notation is identical to that used in tables 3.1–3.4.

Tables 3.5–3.8 demonstrate that all three methods are successful in obtain-

ing 15 significant digits for most of the test values. The least successful region

is the WD
(0)
n method for high values of a and b in table 3.6. The integral I1(β)

has a pole at x = −β, and this aversely affects the quadrature-dependent algo-

rithms as β → 0+. There is no doubt that for extremely high values of a and b,

the extrapolation method will require an unbearable calculation for I2(a, b), as

the accurate calculation of the sub-integrals requires an asymptotically infinite

amount of subdivision, due to the infinite oscillations at 0 and ∞.

In contrast, the logarithmic singularity at the origin present in (3.48) poses

a problem that requires a more sophisticated quadrature rule for I3(µ, α, β).

Using the tanh-sinh substitution, the numerical problems posed by the loga-
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rithmic singularity are removed, and high accuracy is achieved. However, the

efficiency of the quadrature-based algorithms is not change substantially.

As with tables 3.1–3.4, in comparing the calculation times listed at the

bottom of each of tables 3.5–3.8 for all 40 test values, there is strong evidence

to suggest that the algorithm for LT
(0)
n is the most efficient.

With these test examples, the authors opine that the most promising

method for obtaining 15 significant digits in double precision for a semi-infinite

integral consistently and efficiently, is to use a sequence transformation on the

divergent series representation of the integral and to sum a (convergent) series

representation where the former fails.

β n ErrorGLn n ErrorWD
(1)
n n ErrorLT

(0)
n

0.03 70 0.10D-12 17 0.22D-12 7 0.15D-15
0.10 53 0.18D-14 17 0.84D-12 9 0.00D+00
0.30 41 0.13D-14 17 0.71D-14 12 0.18D-15
1.00 22 0.13D-14 12 0.56D-15 17 0.00D+00
3.00 12 0.17D-14 8 0.13D-14 28 0.47D-14
4.00 12 0.17D-14 7 0.22D-14 19 0.40D-15
5.00 12 0.28D-14 6 0.31D-14 18 0.16D-15

10.00 8 0.33D-14 3 0.30D-14 16 0.30D-15
30.00 6 0.47D-14 3 0.47D-14 13 0.00D+00

100.00 5 0.19D-14 2 0.21D-14 9 0.18D-15

Calculation time using WD
(1)
n

Calculation time using GLn

= 2.2 and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.27.

Table 3.5: Numerical evaluation of I1(β) with the refinements.

3.F Conclusion

In this work, one of the numerical steepest descent methods, one of the ex-

trapolation methods, and one of the sequence transformations were used in the
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a b n ErrorGLn n ErrorWD
(2)
n n ErrorLT

(0)
n

1.00 1.00 53 0.86D-15 16 0.16D-14 10 0.37D-15
2.00 1.00 53 0.75D-15 18 0.12D-14 12 0.12D-15
2.00 2.00 53 0.24D-14 18 0.36D-14 15 0.15D-14
3.00 1.00 53 0.13D-14 18 0.54D-15 14 0.00D+00
3.00 2.00 70 0.92D-15 17 0.15D-14 25 0.17D-14
3.00 3.00 53 0.77D-15 17 0.64D-15 18 0.13D-15

10.00 1.00 56 0.11D-14 19 0.44D-14 20 0.44D-15
100.00 1.00 34 0.38D-14 26 0.12D-12 8 0.21D-14
10.00 10.00 56 0.12D-14 29 0.98D-13 8 0.20D-14

100.00 10.00 53 0.39D-14 35 0.17D-11 5 0.16D-14

Calculation time using WD
(2)
n

Calculation time using GLn

= 100.0 and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.022.

Table 3.6: Numerical evaluation of I2(a, b) with the refinements.

µ α β n ErrorGLn n ErrorWD
(1)
n n ErrorLT

(0)
n

0 3.00 1.00 116 0.52D-14 14 0.78D-14 9 0.38D-15
0 1.00 1.00 44 0.12D-13 14 0.72D-14 12 0.00D+00
0 3.00 3.00 60 0.33D-14 15 0.19D-13 16 0.51D-15
0 1.00 3.00 34 0.14D-13 17 0.27D-13 24 0.12D-14
1 4.00 1.00 70 0.28D-14 12 0.22D-14 9 0.00D+00
1 1.00 4.00 20 0.89D-14 12 0.81D-14 19 0.40D-15
1 1.00 8.00 13 0.93D-14 14 0.75D-14 15 0.12D-15
2 5.00 1.00 47 0.17D-13 11 0.38D-14 9 0.00D+00
2 1.00 5.00 16 0.11D-13 14 0.10D-13 19 0.73D-15
2 1.00 10.00 14 0.89D-14 17 0.83D-14 15 0.15D-15

Calculation time using WD
(1)
n

Calculation time using GLn

= 0.43 and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.000 73.

Table 3.7: Numerical evaluation of I3(µ, α, β) with the refinements.
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µ ν α β ζ n ErrorGLn n ErrorWD
(0)
n n ErrorLT

(0)
n

0 0 1.00 0.50 0.50 25 0.42D-06 6 0.11D-13 7 0.00D+00
0 0 0.50 1.00 0.50 19 0.71D-06 13 0.54D-14 7 0.00D+00
0 1 0.50 0.50 1.00 26 0.45D-14 10 0.14D-13 7 0.50D-15
1 0 0.50 0.50 0.50 16 0.70D-05 8 0.29D-12 7 0.18D-15
1 1 1.00 2.00 2.00 123 0.80D-14 13 0.31D-14 15 0.40D-15
1 1 2.00 1.00 2.00 123 0.11D-14 6 0.80D-15 15 0.53D-15
2 3 2.00 2.00 1.00 107 0.36D-15 9 0.36D-15 16 0.18D-15
3 1 5.00 5.00 2.00 124 0.10D-03 11 0.19D-15 12 0.11D-14
4 3 5.00 5.00 2.00 124 0.21D-02 11 0.33D-14 12 0.15D-14
5 4 2.00 2.00 5.00 124 0.33D-01 12 0.39D-14 12 0.14D-14

Calculation time using WD
(0)
n

Calculation time using GLn

= 0.048, and
Calculation time using LT

(0)
n

Calculation time using GLn

= 0.000 052.

Table 3.8: Numerical evaluation of I4(µ, ν, α, β, ζ) with the refinements.

numerical evaluation of four semi-infinite integrals. We found that all three

methods were capable of attaining 15 significant digits for some of the test

values. By supplementing each of the methods with an algorithmic refine-

ment, all three methods were very successful in attaining this high precision.

We consider that the three methods can all be considered highly accurate in

evaluating semi-infinite integrals.

However, the efficiency of the algorithms tells a different story. The algo-

rithms based on numerical quadrature routines–the numerical steepest descent

and the extrapolation methods–were markedly less efficient than the algorithm

not based on numerical quadrature–the sequence transformations. For the first

two test integrals, where the integrands are not so complicated, this difference

in efficiency is noticeable. For the second two test integral, where the compu-

tation of the integrands necessarily involves subroutines for Bessel functions,

this difference in efficiency, which is approximately between 103 and 104 times,

is significant. In the construct of a large program evaluating millions of in-
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tegrals, the gain in efficiency obtained by summing the series representations

of semi-infinite integrals would most likely render feasible a program which

would have been originally considered unfeasible.

The marked gain in efficiency and consequently the potential feasibility

of the computation of challenging problems should provide the motivation to

seek these series representations wherever possible. However, it is not for

every integral that such convergent or divergent series representations exist.

Unfortunately, for many integrals of practical interest, the integrand itself is

the result of a computation and evaluating derivatives required for forming the

terms of a series representation is infeasible. Similarly, evaluating the integrand

in the complex plane (for steepest descent) might be difficult. Extrapolation

methods seem to be the most robust, and the requirements for applicability

are easily met.

There seems to be a paradox in that for the most complicated integrals

these series representations are the most elusive, yet the gain in efficiency would

be the greatest. In the cases where the series representations are unknown or

do not lead to accurate algorithms, we suggest that both steepest descent

and extrapolation methods be applied on a case-by-case approach, as neither

algorithm is markedly more accurate and reliable than the other in any of the

test cases above.

We hope this work opens a discussion on the comparison of these general

methods and others for the numerical evaluation of semi-infinite integrals. The

numerical evaluation of many challenging problems in applied mathematics is

often based on one’s ability to evaluate semi-infinite integrals. To seek the

most accurate, reliable, and efficient method(s) for their numerical evaluation

will help advance scientific research in the most complicated settings.
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Chapter 4

An Analytical Expression for the

Rapid Evaluation of Three-Center

Nuclear Attraction Integrals over

B Functions

4.A Introduction

The pursuit of accurate and efficient algorithms for the numerical evaluation of

molecular integrals for the purpose of electronic structure calculations has led

to a substantial body of work. While molecular integrals with Gaussian-type

orbitals as a basis have been for a long time the most easily calculated, their

theoretical deficiency both in the long range and in the short range has led

to a renewed interest in an exponential-type function (ETF) basis. Examples

of such a basis include the Slater-type functions, the Laguerre-type functions,

and the B functions.
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TheB function basis has been at the forefront of recent developments [SW77,

SW78,WS83,WGS86,GWS86,WS88], as their simple Fourier transform leads

to compact analytical expressions for the integrals. Through the expansions,

some of the resulting semi-infinite integrals have integrands composed of the

Bessel functions. As the most complicated part of the analytical expressions,

the semi-infinite integrals have become the bottleneck of the calculations in the

B function approach. Since the identification of this computational problem, a

large body of work is devoted to dealing with this bottleneck. The most com-

mon element to most algorithms [Saf01,BS03a,Saf04,SB06,SB07,DS07,SS09,

Saf10] involves an intense integration-then-extrapolation approach, which is

usually characterized by subdividing the integral between the oscillatory Bessel

function’s zeros, by integrating by a quadrature, and by using the resulting

sequence to estimate the remainder of the integral. Many improvements to the

general extrapolation procedure are documented and indeed some of the most

recent of these improvements are considered state-of-the-art for multi-center

integrals. While these methods and their refinements are generally highly ac-

curate and efficient, there are some ranges of parameters where either failure

is inevitable or the computation becomes extremely heavy.

In the comparative study [SS12] of the most popular extrapolation meth-

ods and sequence transformations for computing semi-infinite integrals, the

authors conclude that having asymptotic series representations for integrals

and applying sequence transformations to accelerate their convergence or to

sum their divergence leads to the most efficient algorithms for computing the

integrals. However, when such asymptotic series representations do not exist,

refinements to either the numerical steepest descent method or the extrapo-

lation methods must be made to obtain a desirable outcome. This conclu-
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sion does not particularly challenge any preconceived notions. However, it

does emphasize that the ultimate goal in computing semi-infinite integrals is

to find analytical expressions. Several examples of this approach have been

documented in the literature on molecular integrals in the B function ba-

sis [WS83,STMS10]. The expressions that are obtained have greatly simplified

the calculation of one- and two-center integrals. The pursuit of such analyti-

cal expressions stopped at the three-center integrals because of the increased

complexity of the integrands.

The bottleneck in the numerical evaluation of the expression (2.74) is the

semi-infinite integral:

I(s) =
∫ +∞

x=0

xnx
k̂ν [R2γ12(s, x)]

[γ12(s, x)]nγ
jλ(v x) dx, (4.1)

where [γ12(s, x)]
2 = (1 − s)ζ21 + sζ22 + s(1 − s)x2, which has varying de-

grees of oscillation and attenuation depending upon the values of the param-

eters. Originally, Gauss-Laguerre quadrature is used [TS83, GS88], ignoring

the possible effects of the oscillations. Then, extrapolation methods are im-

plemented [Saf01,BS03a, Saf04, SB06, SB07,DS07, SS09, Saf10], which use nu-

merical integration of successive intervals, usually the Bessel function’s zeros,

to construct approximations the semi-infinite integral.

In this work, we report an analytical expression for the semi-infinite inte-
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grals in the three-center nuclear attraction integrals. Briefly, our result is:

∫ ∞

0

xλ+2r+2 k̂ν
[
α
√
x2 + z2

]

(x2 + z2)ν−µ
jλ(β x) dx

= (−2)r2µzλ+r+µ−ν+3/2βλ

r∑

s=0

(
r

s

)(
β2z

2

)s

(−λ− r − 1/2)r−s

×
µ
∑

m=0

(
µ

m

)(
α2z

2

)m

(ν − µ)µ−m

Kλ+r+µ−ν+3/2+s+m(z
√

α2 + β2)

(α2 + β2)(λ+r+µ−ν+3/2+s+m)/2
. (4.2)

and it can be seen from equation (2.74) that such a formula will greatly speed

up the numerical calculations. In section 4.B, we prove this result, and in

section 4.C, we hold a numerical discussion on its performance and compare it

to the SD
(2,j)
n of [Saf01]. Our comparison leads us to believe that the analytical

expression is useful in a numerical setting and performs very well. Indeed, the

decrease in calculation time is on the order of 102.5 compared with the SD
(2,j)
n

of [Saf01].

4.B The Development

To arrive at the formula (4.2), we begin by considering Hankel transforms of

the form:
∫ ∞

0

Jν(β x)
Kµ

(
α
√
x2 + z2

)

√

(x2 + z2)µ
xν+1 dx, (4.3)

where µ ∈ R, Re ν > −1, α > 0, β > 0, and | arg z| < π
2
. In relation to

the semi-infinite integrals of (2.74), in these integrals, some of the parameters

are related to one another, and cylindrical Bessel functions are used instead

of spherical Bessel functions. These integrals have an analytical expression

in [Wat66, §13.47] that can be proved easily. We begin by inserting the integral

representation of the modified Bessel function (2.42) into the expression and
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we reverse the order of integration:

∫ ∞

0

Jν(β x)
Kµ

(
α
√
x2 + z2

)

√

(x2 + z2)µ
xν+1 dx

=
1

2

∫ ∞

0

∫ ∞

0

Jν(β x)x
ν+1 e

−α
2
(t+x2+z2

t
)

tµ+1
dt dx, (4.4)

=
1

2

∫ ∞

0

e−
α
2
(t+ z2

t
)

tµ+1

∫ ∞

0

e−
αx2

2t Jν(β x)x
ν+1 dx dt, (4.5)

By using the convergent series for the Bessel function (2.31), the inner integral

is readily obtained [Wat66, §6.22]:

∫ ∞

0

e−
αx2

2t Jν(β x)x
ν+1 dx

=

∫ ∞

0

e−
αx2

2t

∞∑

k=0

(−1)k

k! Γ(k + ν + 1)

(
β

2

)2k+ν

x2k+2ν+1 dx, (4.6)

=
∞∑

k=0

(−1)k

k! Γ(k + ν + 1)

(
β

2

)2k+ν ∫ ∞

0

e−
αx2

2t x2k+2ν+1 dx, (4.7)

=
∞∑

k=0

(−1)k

k! Γ(k + ν + 1)

(
β

2

)2k+ν
Γ(k + ν + 1)

2

(
2t

α

)k+ν+1

, (4.8)

=
βνtν+1

αν+1

∞∑

k=0

(−1)k

k!

(
β2t

2α

)k

, (4.9)

=
βνtν+1

αν+1
exp

(

−β
2t

2α

)

. (4.10)
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Then, the outer integral is evaluated by recognizing it as the integral repre-

sentation of the modified Bessel function (2.42), and we obtain:

∫ ∞

0

Jν(β x)
Kµ

(
α
√
x2 + z2

)

√

(x2 + z2)µ
xν+1 dx

=
βν

2αν+1

∫ ∞

0

e−
α
2
(t+ z2

t
)−β2t

2α

tµ−ν
dt, (4.11)

=
βν

αµ

(√

α2 + β2

z

)µ−ν−1

Kµ−ν−1

(

z
√

α2 + β2
)

. (4.12)

The semi-infinite integrals in the expression for the three-center nuclear attrac-

tion integrals are formulated using the spherical and reduced Bessel functions.

In a simplified notation, they are given by:

Iν,µ
λ,r (α, β, z) =

∫ ∞

0

xλ+2r+2 k̂ν
[
α
√
x2 + z2

]

(x2 + z2)ν−µ
jλ(β x) dx, (4.13)

and the simpler case:

Iν,0
λ,0(α, β, z) =

∫ ∞

0

xλ+2 k̂ν
[
α
√
x2 + z2

]

(x2 + z2)ν
jλ(β x) dx. (4.14)

This simpler case is the essential starting point because identities can be used

to increase the r and µ parameters to obtain an expression for Iν,µ
λ,r (α, β, z).

Applying the identities (c.f. (2.33) and (2.34)):

1

βλ+1

(
∂

β∂β

)r
(
βλ+r+1jλ+r(β x)

)
= xrjλ(β x), (4.15)

and (c.f. (2.44) and (2.45)):

(−1)µα2ν

(
∂

α∂α

)µ (

α2µ−2ν k̂ν−µ

[

α
√
x2 + z2

])

= k̂ν

[

α
√
x2 + z2

]

, (4.16)
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to the integral:

Iν−µ,0
λ+r,0 (α, β, z) =

∫ ∞

0

xλ+r+2 k̂ν−µ

[
α
√
x2 + z2

]

(x2 + z2)ν−µ
jλ+r(β x) dx, (4.17)

we obtain:

Iν,µ
λ,r (α, β, z) =

(−1)µα2ν

βλ+1

(
∂

α∂α

)µ(
∂

β∂β

)r
(
α2µ−2νβλ+r+1Iν−µ,0

λ+r,0 (α, β, z)
)
.

(4.18)

Upon changing the Bessel functions to their spherical and reduced coun-

terparts in (4.11), we obtain:

Iν,0
λ,0(α, β, z) =

βλ(α2 + β2)
ν−λ−3/2

2

zν−λ−3/2
Kν−λ−3/2

(

z
√

α2 + β2
)

, (4.19)

and:

Iν−µ,0
λ+r,0 (α, β, z) =

βλ+r(α2 + β2)
ν−µ−λ−r−3/2

2

zν−µ−λ−r−3/2
Kν−µ−λ−r−3/2

(

z
√

α2 + β2
)

.

(4.20)

Upon inserting the expression for Iν−µ,0
λ+r,0 (α, β, z) into (4.18), we obtain:

Iν,µ
λ,r (α, β, z) =

(−1)µα2νzγ

βλ+1

(
∂

α∂α

)µ(
∂

β∂β

)r
(

α2µ−2νβ2λ+2r+1Kγ(z
√

α2 + β2)

(α2 + β2)γ/2

)

,

(4.21)

where γ = λ + r + µ − ν + 3/2. All that remains to do is to expand the

derivations in (4.21), and the expression (4.2) will be obtained. We start with
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the derivations with respect to β. Using the identities:

(
∂

β∂β

)r−s
(
β2λ+2r+1

)
= (−2)r−s(−λ− r − 1/2)r−sβ

2λ+2s+1, (4.22)

(
∂

β∂β

)s
(

Kγ(z
√

α2 + β2)

(α2 + β2)γ/2

)

= (−z)sKγ+s(z
√

α2 + β2)

(α2 + β2)(γ+s)/2
, (4.23)

for some s ∈ N0, the product rule yields:

(
∂

β∂β

)r
(

β2λ+2r+1Kγ(z
√

α2 + β2)

(α2 + β2)γ/2

)

=
r∑

s=0

(
r

s

)(
∂

β∂β

)r−s
(
β2λ+2r+1

)
(

∂

β∂β

)s
(

Kγ(z
√

α2 + β2)

(α2 + β2)γ/2

)

, (4.24)

=
r∑

s=0

(
r

s

)

(−2)r−s(−λ− r − 1/2)r−sβ
2λ+2s+1(−z)sKγ+s(z

√

α2 + β2)

(α2 + β2)(γ+s)/2
,

= (−2)rβ2λ+1

r∑

s=0

(
r

s

)(
β2z

2

)s

(−λ− r − 1/2)r−s
Kγ+s(z

√

α2 + β2)

(α2 + β2)(γ+s)/2
. (4.25)

We continue with the derivations with respect to α. Using the identities:

(
∂

α∂α

)µ−m
(
α2µ−2ν

)
= (−2)µ−m(ν − µ)µ−mα

2m−2ν , (4.26)

(
∂

α∂α

)m
(

Kγ+s(z
√

α2 + β2)

(α2 + β2)(γ+s)/2

)

= (−z)mKγ+s+m(z
√

α2 + β2)

(α2 + β2)(γ+s+m)/2
, (4.27)
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for some m ∈ N0, the product rule yields:

(
∂

α∂α

)µ
(

α2µ−2νKγ+s(z
√

α2 + β2)

(α2 + β2)(γ+s)/2

)

=

µ
∑

m=0

(
µ

m

)(
∂

α∂α

)µ−m
(
α2µ−2ν

)
(

∂

α∂α

)m
(

Kγ+s(z
√

α2 + β2)

(α2 + β2)(γ+s)/2

)

, (4.28)

=

µ
∑

m=0

(
µ

m

)

(−2)µ−m(ν − µ)µ−mα
2m−2ν(−z)mKγ+s+m(z

√

α2 + β2)

(α2 + β2)(γ+s+m)/2
, (4.29)

= (−2)µα−2ν

µ
∑

m=0

(
µ

m

)(
α2z

2

)m

(ν − µ)µ−m
Kγ+s+m(z

√

α2 + β2)

(α2 + β2)(γ+s+m)/2
. (4.30)

Then, combining these results and inserting them in (4.21), we obtain:

Iν,µ
λ,r(α, β, z) = (−2)r2µzγβλ

r∑

s=0

(
r

s

)(
β2z

2

)s

(−λ− r − 1/2)r−s

×
µ
∑

m=0

(
µ

m

)(
α2z

2

)m

(ν − µ)µ−m
Kγ+s+m(z

√

α2 + β2)

(α2 + β2)(γ+s+m)/2
. (4.31)

Finally, replacing γ by its original value, we obtain:

Iν,µ
λ,r(α, β, z) = (−2)r2µzλ+r+µ−ν+3/2βλ

r∑

s=0

(
r

s

)(
β2z

2

)s

(−λ− r − 1/2)r−s

×
µ
∑

m=0

(
µ

m

)(
α2z

2

)m

(ν − µ)µ−m

Kλ+r+µ−ν+3/2+s+m(z
√

α2 + β2)

(α2 + β2)(λ+r+µ−ν+3/2+s+m)/2
. (4.32)

The case r = −1 is also required for some values of the parameters in (2.74).

In this case, we use the identity:

(1/2− λ)−s−1 =
(−1)s+1

(λ+ 1/2)s+1

, (4.33)
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to obtain infinite series:

Iν,µ
λ,−1(α, β, z) = 2µ−1zλ+µ−ν+1/2βλ

∞∑

s=0

(
β2z

2

)s
1

(λ+ 1/2)s+1

×
µ
∑

m=0

(
µ

m

)(
α2z

2

)m

(ν − µ)µ−m

Kλ+µ−ν+1/2+s+m(z
√

α2 + β2)

(α2 + β2)(λ+µ−ν+1/2+s+m)/2
. (4.34)

Using the asymptotics of the modified Bessel function [GR07, §8.446]:

Kn(z) ∼
1

2

n!

(z/2)n
, as n→ ∞, (4.35)

then if as is the sth term in the infinite series (4.34), it satisfies:

as = O
{

sµ−ν+m

(
β2

α2 + β2

)s}

, as s→ ∞. (4.36)

If β <
√

α2 + β2, then the series is convergent. Since α = 0 corresponds with

s = 0, 1 in (2.74), the convergence will be the fastest at the midpoint s = 0.5 of

the integration over s. To accelerate the convergence of the series, we employ

the Levin transformation t
(0)
n (1) computed by the algorithm (3.35)–(3.37).

4.C Numerical Discussion

In contrast to most other algorithms for three-center nuclear attraction inte-

grals, the numerical discussion for the algorithm based on the formula (4.32) is

brief. Since the order of the Bessel function in (4.32) is always an integer, the

accuracy and efficiency of this formula is directly related to that of the algo-

rithm for the calculation of a sequence of Bessel functions {Kℓ(·)}ℓ∈N0 . Given

that the recurrence relation (2.43) is stable in the upward direction, and given
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the reflection formula Kν(z) = K−ν(z) an efficient algorithm would provide the

seed values K0(z) and K1(z) and compute the remaining values by recurrence.

In [PTVF07, §6.5], a fast algorithm for these seed values is derived based on

the use of rational minimax approximants. These approximants are rational

functions with unknowns that are designed to minimize the maximum error on

an interval. The algorithm achieves double precision accuracy by expressing

K0(z) and K1(z) as:

K0(z) ≈
p
(0)
4 (z2)

q
(0)
2 (1− z2)

− log(z)
r
(0)
4 (z2)

s
(0)
2 (1− z2)

, (4.37)

K1(z) ≈ z

(

p
(1)
4 (z2)

q
(1)
2 (1− z2)

+ log(z)
r
(1)
4 (z2)

s
(1)
2 (1− z2)

)

+
1

z
, (4.38)

for z ≤ 1, and:

K0(z) ≈
exp(−z)√

z

u
(0)
7 (z−1)

v
(0)
7 (z−1)

, (4.39)

K1(z) ≈
exp(−z)√

z

u
(1)
7 (z−1)

v
(1)
7 (z−1)

, (4.40)

for z > 1, where p
(m)
n (z) stands for a polynomial of degree n in z and where

m = 0, 1 distinguishes between the polynomial for K0(z) and that for K1(z).

The coefficients of these approximants are given in the web note [Sof07].

As can be seen in tables 4.1 and 4.2, the calculation time is on the micro

second scale. For the first and last two lines of both tables, the parameters

require the summation of the infinite series, while for the remaining lines of

both tables, the finite summation is required. While still significantly faster

than the previous state-of-the-art, the infinite series is approximately 10 times

slower than the finite summation. Only values of s reasonably far from the
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endpoints s = 0, 1 are shown. Our numerical experiments suggest that while

the finite summation is a generally applicable solution, even with the Levin

sequence transformation, the infinite series is not a stable representation for

values of s near the endpoints. It is unclear to the authors exactly how the

infinite series representation can be used in large scale computations.

ν − 1
2

nγ nx λ R1 ζ1 R2 ζ2 v Error Time µs
2 1 0 0 1.00 1.50 1.50 0.50 0.125 0.10D-14 4.199
2 1 1 1 1.00 1.50 1.50 0.50 0.125 0.10D-14 4.240
3 5 4 0 2.00 1.50 2.50 0.50 0.125 0.53D-15 0.374
3 5 5 1 2.00 1.50 2.50 0.50 0.125 0.12D-15 0.428
5 3 2 0 3.00 0.50 2.50 0.50 1.125 0.11D-14 0.457
5 7 5 1 1.00 1.50 3.00 0.50 1.250 0.28D-15 0.511
7 3 3 1 2.00 0.50 3.50 0.50 0.625 0.87D-15 0.670
7 5 4 2 4.00 0.10 3.00 0.50 1.750 0.99D-15 0.590
8 11 3 3 3.00 1.00 3.50 0.50 0.375 0.89D-15 4.912
8 13 4 4 4.00 1.00 6.50 0.50 0.875 0.17D-14 4.215

Average time using SD
(2,j)
n of [Saf01]. = 0.502ms. Average time using (4.32) = 2.06µs.

Ratio = 0.00410.

Table 4.1: Numerical evaluation of the integral I(s) for s = 0.25.

4.D Conclusion

In this work, we report the analytical expression (4.2) for the semi-infinite

integral bottleneck occurring in the three-center nuclear attraction integrals

over B functions. We describe how to compute the formula to obtain an

efficient evaluation in double precision arithmetic. This requires the rational

minimax approximants that minimize the maximum error on the interval of

evaluation. The numerical tests show the gain in efficiency of approximately

102.5 over the SD
(2,j)
n of [Saf01].
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ν − 1
2

nγ nx λ R1 ζ1 R2 ζ2 v Error Time µs
2 1 0 0 1.00 1.50 1.50 0.50 0.625 0.66D-14 8.553
2 1 1 1 1.00 1.50 1.50 0.50 0.625 0.90D-14 6.545
3 5 4 0 2.00 1.50 2.50 0.50 1.375 0.63D-14 0.368
3 5 5 1 2.00 1.50 2.50 0.50 1.375 0.41D-15 0.425
5 3 2 0 3.00 0.50 2.50 0.50 2.375 0.00D+00 0.457
5 7 5 1 1.00 1.50 3.00 0.50 0.250 0.17D-15 0.514
7 3 3 1 2.00 0.50 3.50 0.50 1.125 0.88D-15 0.665
7 5 4 2 4.00 0.10 3.00 0.50 3.250 0.68D-15 0.587
8 11 3 3 3.00 1.00 3.50 0.50 2.125 0.94D-11 6.832
8 13 4 4 4.00 1.00 6.50 0.50 2.375 0.57D-13 5.329

Average time using SD
(2,j)
n of [Saf01]. = 0.278ms. Average time using (4.32) = 3.03µs.

Ratio = 0.0109.

Table 4.2: Numerical evaluation of the integral I(s) for s = 0.75.
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Chapter 5

On the Use of Conformal Maps for

the Acceleration of Convergence of

the Trapezoidal Rule and Sinc

Numerical Methods

5.A Introduction

The trapezoidal rule is one of the most well-known methods in numerical inte-

gration. While the composite rule has geometric convergence for periodic func-

tions, in other cases it has been used as the starting point of effective methods,

such as Richardson extrapolation [Ric11] and Romberg integration [Rom55].

The geometric convergence breaks down with endpoint singularities, and this

issue inspired a different approach to improve on the composite rule. From the

Euler-Maclaurin summation formula, it was noted that some form of exponen-

tial convergence can be obtained for integrands which vanish at the endpoints,

80



suggesting that undergoing a variable transformation may well induce this con-

vergence [Sch69,TM71,Ste73]. After this observation, the race was on to deter-

mine exactly which variable transformation, and therefore which decay rate,

is optimal. Numerical experiments showed the exceptional promise of rules

such as the tanh substitution [EFH84], the erf substitution [TM73], the IMT

rule [IMT87], and the tanh-sinh substitution [TM74], among others [Mor78].

But exactly which one is optimal, and in which setting?

Using a functional analysis approach, this question was beautifully an-

swered by establishing the optimality of a double exponential endpoint decay

rate for the trapezoidal rule on the real line for approximating analytic inte-

grands [Sug97]. The domain of analyticity is described in terms of a strip of

maximal width π centred on the real axis in the complex plane. This opti-

mality also prescribed the optimal step size and a near-linear convergence rate

O(e−kN/ logN), where N is the number of sample points and k is a constant

proportional to the strip width.

The results allowed for displays of strong performance for integrals with

integrable endpoint singularities without changing the rule in any way [Mor85,

Mor05,MS01,SM04]. The double exponential transformation was also adapted

to Fourier and general oscillatory integrals in [OM91, OM99]. Recognizing

the trapezoidal rule as the integration of a Sinc expansion of the integrand,

the double exponential advocates adapted their analysis to Sinc approxima-

tions [Sug03], and also to all the numerical methods therewith derived, such

as Sinc-Galerkin and Sinc-collocation methods [HS99,Sug02,NMMS05] for ini-

tial and boundary value problems, Sinc indefinite integration [TSM04], iter-

ated integration [MS05], and Sinc-collocation for integral equations [MNMS05,

OMS10], all obtaining the near-linear convergence rate O(e−kN/ logN). More
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recently, the researchers then focused on improving the original convergence

results by developing more precise upper estimates on the error given bounds

on the function [TSMM09,TSM09,OMS13,OTMS13,TOMS13].

In this work, we report an improvement of the trapezoidal rule in the con-

text of a finite number of singularities – of any kind – near the contour of

integration. This problem has been considered before, in Gaussian quadra-

ture and in Sinc quadrature [Mon86,Bia89,Gau13]. The prevailing philosophy

seems to be to characterize singularities as specifically as possible, then ac-

count for them by either adding terms from Cauchy’s residue theorem to the

approximation or by modifying the weights and abscissas. While the exam-

ples and applications show exceptional performance of the algorithms, the case

of general singularities is still untreated. In the optimal double exponential

framework, singularities near the integration contour may reduce the width of

the strip of analyticity about the real axis. As the double exponential decay

rate is typically induced by a variable transformation, we seek to find variable

transformations which place the threatening singularities on the upper and

lower edges of the maximal strip of width π. In this work, such variable trans-

formations are conformal maps which maximize the convergence rate despite

the presence of the singularities.

The idea of using conformal maps to speed up numerical computations is

not new. In fact, it was recently pioneered by Tee and Trefethen [TT06], Hale

and Trefethen [HT08], Hale and Tee [HT09], and Hale’s so-titled Ph. D. the-

sis [Hal09]. Inspired by this work, we investigate the use of the Schwarz-

Christoffel map from the strip of width π to a polygonally bounded region,

with the possibility of some sides being infinite. In this way, the edges of the

strip of width π contain the pre-images of the function’s singularities, their
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possible branches, and other objects limiting analyticity. In the case dealt

with in [HT09], an algorithm is constructed to solve the Schwarz-Christoffel

parameter problem, and the integral definition of the Schwarz-Christoffel map

is simplified by partial fraction decomposition.

For the strip map variation of the Schwarz-Christoffel map, the explicit

integration of the Schwarz-Christoffel map could not be done [HT09], so in this

work, an approximate map is constructed based on polynomial adjustments

to the sinh map. We choose the sinh map because it appears in every double

exponential map of the canonical finite, infinite, and semi-infinite domains.

The polynomial adjustments add exactly enough parameters to locate a finite

number of pre-images of singularities on the edges of the maximal strip of

width π, and the parameter problem – the determination of such polynomials

adjustments – is in complete analogy with the Schwarz-Christoffel parameter

problem. However, the approximate map is significantly less expensive to

evaluate, and therefore well-paired with the double exponential transformation

for high precision numerical experiments.

The problem of poles limiting analyticity has been noted in [SM04], where

Sugihara and Matsuo show the double exponential Sinc expansion of the func-

tion:

f(x) =
x (1− x) e−x

(1/2)2 + (x− 1/2)2
, x ∈ [0, 1], (5.1)

is not as efficient as methods of polynomial interpolation. To demonstrate how

simple our nonlinear program can be, we note that while the original double

exponential transformation for the problem is φ(t) = 1
2
tanh(π

2
sinh t) + 1

2
, the

optimized map is φ(t) = 1
2
tanh(π

4
sinh t) + 1

2
, and the convergence rate is

approximately tripled.

83



We demonstrate the merits of our algorithm on four integrals, each with

its own combination of singularities. In these cases, the algorithm obtains

approximately 2.5–4 times as many correct digits as a naïve double exponential

transformation for the same number of function evaluations. The algorithm

is applied to optimize the solution of a second order linear boundary value

problem with endpoint singularities as well as two poles very near the solution

interval. After this, the algorithm also shows its merit in the evaluation of an

m-dimensional expectation and in the evaluation of highly oscillatory integrals.

Remark: The Julia code used for the numerical results is available from [Sle].

5.B Quadrature and Sinc methods by variable

transformation

Using a variable transformation to induce exponential decay at the endpoints

is first performed in [TM73] and it is extended to double exponential de-

cay in [TM74]. They find that variable transformations that induce double

exponential decay at the endpoints perform better than single exponential

transformations.

For infinite and semi-infinite integrals with or without pre-existing expo-

nential decay, various other transformations have been proposed to induce

double exponential decay. Examples from [TSMM09] are included in table 5.1.

We follow closely the rigorous derivations in [Sug97,Sug03] of the optimality

of the trapezoidal rule and Sinc numerical methods for functions with double

exponential decay as x→ ±∞. Let d be a positive number and let Dd denote
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Interval Single Exponential Double Exponential

[−1, 1] tanh(t/2) tanh(π
2
sinh t)

(−∞,+∞) sinh(t) sinh(π
2
sinh t)

[0,+∞) log(exp(t) + 1) log(exp(π
2
sinh t) + 1)

[0,+∞) exp(t) exp(π
2
sinh t)

Table 5.1: Variable transformations φ(t) for endpoint decay.

the strip region of width 2d about the real axis:

Dd = {z ∈ C : |Im z| < d}. (5.2)

Let ω(z) be a non-vanishing function defined on the region Dd, and define the

Hardy space H∞(Dd, ω) by [Har15]:

H∞(Dd, ω) = {f : Dd → C| f(z) is analytic in Dd, and ||f || < +∞}, (5.3)

where the norm of f is given by:

||f || = sup
z∈Dd

∣
∣
∣
∣

f(z)

ω(z)

∣
∣
∣
∣
. (5.4)

Consequentially, for ω(z) that decays double exponentially, the functions in

H∞(Dd, ω) decay double exponentially as well. Let us consider the N(= 2n+

1)-point trapezoidal rule for the interval (−∞,+∞):

∫ +∞

−∞
f(x) dx ≈ h

+n∑

k=−n

f(k h), (5.5)

where the mesh size h is suitably chosen for a given positive integer n. For the
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trapezoidal rule, let E T
N,h(H

∞(Dd, ω)) denote the error norm in H∞(Dd, ω):

E
T
N,h(H

∞(Dd, ω)) = sup
||f ||≤1

∣
∣
∣
∣
∣

∫ +∞

−∞
f(x) dx− h

+n∑

k=−n

f(k h)

∣
∣
∣
∣
∣
. (5.6)

Let B(Dd), originally introduced in [Ste73], denote the family of all functions

f analytic in Dd such that:

N1(f,Dd) =

∫

∂Dd

|f(z)| dz < +∞. (5.7)

Theorem 5.1 (Sugihara [Sug97]): Suppose that the function ω(z) satisfies the

following three conditions:

1. ω(z) ∈ B(Dd);

2. ω(z) does not vanish at any point in Dd and takes real values on the real

axis;

3. the decay rate of ω(z) on the real axis is specified by:

α1 exp (−(β|x|ρ)) ≤ |ω(x)| ≤ α2 exp (−(β|x|ρ)) , x ∈ R, (5.8)

where α1, α2, β > 0 and ρ ≥ 1.

Then:

E
T
N,h(H

∞(Dd, ω)) ≤ Cd,ω exp
(

−(πdβN)
ρ

ρ+1

)

, (5.9)

where N = 2n+ 1, the mesh size h is chosen optimally as:

h = (2πd)
1

ρ+1 (βn)−
ρ

ρ+1 , (5.10)
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and Cd,ω is a constant depending on d and ω.

Theorem 5.2 (Sugihara [Sug97]): Suppose that the function ω(z) satisfies the

following three conditions:

1. ω(z) ∈ B(Dd);

2. ω(z) does not vanish at any point in Dd and takes real values on the real

axis;

3. the decay rate of ω(z) on the real axis is specified by:

α1 exp(−β1eγ|x|) ≤ |ω(x)| ≤ α2 exp(−β2eγ|x|), x ∈ R, (5.11)

where α1, α2, β1, β2, γ > 0.

Then:

E
T
N,h(H

∞(Dd, ω)) ≤ Cd,ω exp

(

− πdγN

log(πdγN/β2)

)

, (5.12)

where N = 2n+ 1, the mesh size h is chosen optimally as:

h =
log(2πdγn/β2)

γn
, (5.13)

and Cd,ω is a constant depending on d and ω.

Since the trapezoidal rule is equivalent to the integration of the Sinc ex-

pansion of a function [Ste81], the entire process of analyzing the convergence

rates with different endpoint decay can also be useful for the Sinc expansion of

a function, with subtle differences that arise in the mesh size and convergence

rates. Let us consider the N(= 2n+1)-point Sinc approximation of a function
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on the real line:

f(x) ≈
+n∑

j=−n

f(j h)S(j, h)(x), (5.14)

where S(j, h)(x) is the so-called Sinc function:

S(j, h)(x) =
sin[π(x/h− j)]

π(x/h− j)
, (5.15)

and where the step size h is suitably chosen for a given positive integer n.

From l’Hôpital’s rule, it can easily be seen that the Sinc functions are mutually

orthogonal at the so-called Sinc points xk = k h:

S(j, h)(k h) = δk,j, (5.16)

where δk,j is the Kronecker delta [AS65].

For the Sinc approximation, let E Sinc
N,h (H∞(Dd, ω)) denote the error norm

in H∞(Dd, ω):

E
Sinc
N,h (H∞(Dd, ω)) = sup

||f ||≤1

{

sup
x∈R

∣
∣
∣
∣
∣
f(x)−

+n∑

j=−n

f(j h)S(j, h)(x)

∣
∣
∣
∣
∣

}

. (5.17)

Theorem 5.3 (Sugihara [Sug03]): Suppose that the function ω(z) satisfies the

following three conditions:

1. ω(z) ∈ B(Dd);

2. ω(z) does not vanish at any point in Dd and takes real values on the real

axis;
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3. the decay rate of ω(z) on the real axis is specified by:

α1 exp (−(β|x|ρ)) ≤ |ω(x)| ≤ α2 exp (−(β|x|ρ)) , x ∈ R, (5.18)

where α1, α2, β > 0 and ρ ≥ 1.

Then:

E
Sinc
N,h (H∞(Dd, ω)) ≤ Cd,ωN

1
ρ+1 exp

(

−
(
πdβN

2

) ρ
ρ+1

)

, (5.19)

where N = 2n+ 1, the mesh size h is chosen optimally as:

h = (πd)
1

ρ+1 (βn)−
ρ

ρ+1 , (5.20)

and Cd,ω is a constant depending on d and ω.

Theorem 5.4 (Sugihara [Sug03]): Suppose that the function ω(z) satisfies the

following three conditions:

1. ω(z) ∈ B(Dd);

2. ω(z) does not vanish at any point in Dd and takes real values on the real

axis;

3. the decay rate of ω(z) on the real axis is specified by:

α1 exp(−β1eγ|x|) ≤ |ω(x)| ≤ α2 exp(−β2eγ|x|), x ∈ R, (5.21)

where α1, α2, β1, β2, γ > 0.
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Then:

E
Sinc
N,h (H∞(Dd, ω)) ≤ Cd,ω exp

(

− πdγN

2 log(πdγN/(2β2))

)

, (5.22)

where N = 2n+ 1, the mesh size h is chosen optimally as:

h =
log(πdγn/β2)

γn
, (5.23)

and Cd,ω is a constant depending on d and ω.

Last but not least, there is the nonexistence theorem, which provides a

fundamental bound for the proposed optimization approach.

Theorem 5.5 (Sugihara [Sug97]): There exists no function ω(z) that satisfies

the following three conditions:

1. ω(z) ∈ B(Dd);

2. ω(z) does not vanish at any point in Dd and takes real values on the real

axis;

3. the decay rate on the real axis of ω(z) is specified as:

ω(x) = O
(
exp(−βeγ|x|)

)
, as |x| → ∞, (5.24)

where β > 0, and dγ > π/2.

5.C Maximizing the convergence rates

From the previous theorems 5.2 and 5.4 on the convergence rates of the trape-

zoidal rule with a prescribed decay at the endpoints and the nonexistence
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theorem 5.5 of analytic functions with double exponential decay in too wide a

strip, we may ask the following question. How can we use a conformal map φ

to maximize the convergence rate of the trapezoidal rule:

∫ ∞

−∞
f(φ(t))φ′(t) dt ≈ h

+n∑

k=−n

f(φ(k h))φ′(k h), (5.25)

or the Sinc approximation:

f(x) ≈
+n∑

j=−n

f(φ(j h))S(j, h)(φ−1(x)), (5.26)

despite the singularities of f ∈ C which limit its domain of analyticity? To

formulate this problem mathematically, let Φad be the admissible space of all

functions φ satisfying the conditions of theorems 5.2 and 5.4:

Φad =







φ : f(φ(·))φ′(·) ∈ H∞(Dd, ω) for some d > 0,

and for some ω such that:

1. ω(z) ∈ B(Dd);

2. ω(z) does not vanish at any point in Dd

and takes real values on the real axis;

3. α1 exp
(
−β1eγ|x|

)
≤ |ω(x)| ≤ α2 exp

(
−β2eγ|x|

)
,

x ∈ R, where α1, α2, β1, β2, γ > 0.
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We wish to find the φ ∈ Φad so that the convergence rates are maximized:

argmax
φ∈Φad

(
πdγN

log(πdγN/β2)

)

︸ ︷︷ ︸

Convergence Theorem 5.2

subject to dγ ≤ π

2
︸ ︷︷ ︸

Nonexistence Theorem 5.5

argmax
φ∈Φad

(
πdγN

2 log(πdγN/(2β2))

)

︸ ︷︷ ︸

Convergence Theorem 5.4

subject to dγ ≤ π

2
︸ ︷︷ ︸

Nonexistence Theorem 5.5

As infinite-dimensional optimization problems for φ, these are challenging

problems. However, the convergence rates of theorems 5.2 and 5.4 are asymp-

totic ones and therefore it is of equivalent interest to investigate the asymptotic

solutions to the problem. Consider the asymptotic problems:

πdγN

log(πdγN/β2)
=

πdγN

logN + log(πdγ/β2)
,

∼ πdγN

logN
, as N → ∞, (5.27)

πdγN

2 log(πdγN/(2β2))
=

πdγN

2 logN + 2 log(πdγ/(2β2))
,

∼ πdγN

2 logN
, as N → ∞. (5.28)

Then, the linear appearance of dγ leads directly to the following result.

Theorem 5.6: Let Φas,ad = {Φad : dγ = π/2} be the asymptotically admissible

subspace of the admissible space Φad. Then ∃ φas ∈ Φas,ad such that:

E
T
N,h(H

∞(Dd, ω)) ≤ Cd,ω exp

(

− π2N

2 log(π2N/2β2)

)

, (5.29)
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where N = 2n+ 1, the mesh size h is chosen optimally as:

h =
log(π2n/β2)

γn
, (5.30)

and Cd,ω is a constant depending on d and ω. This same φas ensures that:

E
Sinc
N,h (H∞(Dd, ω)) ≤ Cd,ω exp

(

− π2N

4 log(π2N/4β2)

)

, (5.31)

where N = 2n+ 1, the mesh size h is chosen optimally as:

h =
log(π2n/2β2)

γn
, (5.32)

and Cd,ω is a constant depending on d and ω.

The implication of such a theorem is that suitable mappings φ can be

found which maximize the convergence rates by neutering the terrible effects

of singularities near the approximation interval. In this section, we find such

mappings by starting with the observation that in all of the maps in table 5.1

for the finite, semi-infinite, and infinite canonical domains, an elementary map

is composed with the sinh map. Therefore, it seems as though studying the

sinh map, or some modification thereof, will be the best place to start.

Let f have a finite number of singularities located at the points {δk±iǫk}nk=1.
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The four maps in table 5.1 can be written as the composition of:

ψ(z) = tanh(z), ψ−1(z) = tanh−1(z), (5.33)

ψ(z) = sinh(z), ψ−1(z) = sinh−1(z), (5.34)

ψ(z) = log(ez + 1), ψ−1(z) = log(ez − 1), (5.35)

ψ(z) = exp(z), ψ−1(z) = log(z). (5.36)

with the π
2
sinh function. In any of these cases, let a finite number of singulari-

ties of f be transformed as {δ̃k±iǫ̃k}nk=1 as the ordered set of {ψ−1(δk±iǫk)}nk=1,

where δ̃1 < δ̃2 < · · · < δ̃n.

The sinh function is a conformal map from the strip Dπ
2

to the entire

complex plane with two branch cuts emanating outward from the points ±i.

It is actually the most rudimentary Schwarz-Christoffel formula mapping from

the strip Dπ
2

to the entire complex plane [HT90] with those two aforementioned

branches. Let g map the strip Dπ
2

to the polygonally bounded region P having

vertices {wk}nk=1 = {δ̃1 + iǫ̃1, . . . , δ̃n + iǫ̃n} and interior angles {παk}nk=1. Let

also π
2
α± be the divergence angles at the left and right ends of the strip Dπ

2
.

Then the function [HT90]:

g(z) = A+ C

∫ z

e(α−−α+)ζ

n∏

k=1

[sinh(ζ − zk)]
αk−1 dζ, (5.37)

where zk = g(wk) and for some A and C maps the interior of the top half of

the strip Dπ
2

to the interior of the polygon P . The solution of the constants

A, C, and {zk}nk=1 is known as the Schwarz-Christoffel parameter problem.

Figure 5.1 shows an example of the Schwarz-Christoffel map for the polyg-

onal restrictions on C due to the possible singularities of f . The Schwarz-
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Christoffel map is actually the exact solution of the problem of maximizing

the convergence rates, as it maps points on the top and bottom of the strip Dπ
2

to the singularities. However, the entire process is computationally intensive.

Firstly, the nonlinear system of equations of the Schwarz-Christoffel parameter

problem needs to be solved, and secondly, the map is defined as an integral.

The parameter problem can be prohibitive to solve, requiring thousands of

integrations of the map function. Also, the integral only has an analytical ex-

pression for a polygon with one finite vertex, and this gives the sinh map. The

Schwarz-Christoffel Toolbox in MATLAB [Tre80,TD98,DT02] is used to solve

for the maps in figure 5.1, and provides a precision of approximately 10−8 for

a computation time on the order of one minute. In figure 5.1 and subsequent

figures, the plots show the mapping of lines with constant imaginary values

between −iπ/2 and +iπ/2 via the conformal map from the strip, then the com-

position of this conformal map with one of the maps ψ(z) of (5.33)–(5.36).

Were it only for the difficulties posed by the Schwarz-Christoffel parameter

problem, this approach may have some promise. However, the major problem

is that even after the parameter problem is solved, the map itself is defined as

an integral and requires a large computational effort compared to the following

proposed approach.

Fortunately, due to the framework of the double exponential transforma-

tion, we can make a polynomial adjustment to the sinh map while still retaining

a variable transformation φ which induces double exponential decay. For any

real values of the n+ 1 parameters {uk}nk=0, the function:

h(t) = u0 sinh(t) +
n∑

j=1

ujt
j−1, u0 > 0, (5.38)
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(a) (b) (c)

Figure 5.1: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the resulting Schwarz-Christoffel map, and in (c) a tanh
map of the Schwarz-Christoffel map. In all three cases, the crosses track the
singularities δ1 ± iǫ1 = −1/2 ± i and δ2 ± iǫ2 = 1/2 ± i/2. For the sake of
comparison, an integral with these singularities is treated in example 5.D.1.

still grows single exponentially. Therefore, the composition ψ(h(t)) for any ψ

in (5.33)–(5.36) still induces a double exponential variable transformation. The

benefit of choosing such functions is that we now have sufficient parameters

which we can use to ensure the pre-images of the singularities {δ̃k ± iǫ̃k}nk=1

reside on the top and bottom edges of the strip Dπ
2
, respectively. This is done

by solving the system of equations:

h(xk + iπ/2) = δ̃k + iǫ̃k, for k = 1, . . . , n. (5.39)

This is a system of n complex equations for the 2n+1 unknowns {uk}nk=0 and

the x-coordinates of the pre-images of the singularities {xk}nk=1. Since there is

one more unknown than equations, we are able to maximize the value of u0,

which is proportional to β2 in every case. Summing all n equations of (5.39)
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leads to the nonlinear program:

maximize u0










=

n∑

k=1

{

ǫ̃k − Im
n∑

j=1

uj(xk + iπ/2)j−1

}

n∑

k=1

cosh(xk)










,

subject to h(xk + iπ/2) = δ̃k + iǫ̃k, for k = 1, . . . , n.

(5.40)

Because the maximization condition is obtained by summing the constraint

equations, we have one additional degree of freedom in the program (5.40). In

order to save from premature convergence, we impose ad hoc the condition:







x1 = 0, for n = 1,

|x1 + xn| ≤ x, for n ≥ 2,
(5.41)

where x is a parameter which ensures the singularities stay reasonably close to

the origin. In all our examples, we set x = 20 which is sufficient. This nonlin-

ear program is in close analogy to the Schwarz-Christoffel parameter problem.

However, this method has many advantages over the Schwarz-Christoffel for-

mula. Firstly, the map h(t) is defined in terms of elementary functions and

not as an integral. Secondly, the accuracy of the values of {uk}nk=0 does not

need to equal the accuracy required of the map, allowing the map (5.38) to

be evaluated in arbitrary precision. One disadvantage of this method is that

the map is an approximate solution to the original problem. Therefore, while

the strip width will indeed be 2 d = π, we can expect a smaller than optimal

β2. Nevertheless, given that β2 only has a secondary effect on the convergence

rates, according to theorem 5.6, this is a small price to pay to obtain a solution

method that emulates the Schwarz-Christoffel formula while being amenable
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to arbitrary precision calculations.

A nonlinear program without any a priori information on the solution

requires an iterative method for solving the parameter problem (5.40). An

iterative method also requires a close initial guess to converge to the solution.

To obtain an initial guess, we let ǫ be the smallest of {ǫ̃k}nk=1 and δ be the δ̃k

of the same index. Then the nonlinear program with singularities {δ+ iǫ̃k}nk=1

is exactly solved by:

h(t) = ǫ sinh t+ δ. (5.42)

A homotopy H (t) is then constructed between the solution with singularities

{δ+ iǫ̃k}nk=1 at t = 0 and the solution with singularities {δ̃k + iǫ̃k}nk=1 at t = 1.

The interval t ∈ [0, 1] is discretized, and the nonlinear program is solved with

singularities that vary linearly between the two problems and initial guesses

from the solution of the previous iterate. Figure 5.2 shows this solution process.
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Figure 5.2: In (a) the exact solution H (0), in (b) the solution H (1/2), and in
(c) the desired solution H (1). An integral with these singularities is treated
in example 5.D.2.

In practice, the locations of a function’s singularities may not be known in

advance. This can result from either incomplete theoretical information, or a

non-local nature of singularities, such as branch cuts or “numerically singular”
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terms such as the error function, which while entire, is unbounded off the real

axis [HT09]. In [TT06], an adaptive approach is taken to approximating the

nearby singularities, whereby the interpolatory Chebyshev-Padé approximants

are constructed, and approximants’ poles are taken as the loci of the singu-

larities of the underlying function. The map is then modified to exclude these

points, and the iteration of this process is the adaptive algorithm.

Because we are working with Sinc approximations, and Sinc points, we

modify their algorithm to make efficient use of the information we have at

hand, i.e. the Sinc sampling of the function.

Definition: Let xk = k h be the Sinc points and let f(xk) be the N(= 2n+1)

Sinc sampling of f . Then for r + s ≤ 2n, the Sinc-Padé approximants

{r/s}f (x) are given by:

{r/s}f (x) =

r∑

i=0

pi x
i

1 +
s∑

j=1

qj x
j

, (5.43)

where the r + s+ 1 coefficients solve the system:

r∑

i=0

pi x
i
k − f(xk)

s∑

j=1

qj x
j
k = f(xk), (5.44)

for k = −⌊ r+s
2
⌋, . . . , ⌈ r+s

2
⌉.

For the Chebyshev-Padé approximants, the inverse cosine distribution of

sample points leads to a stable linear system and the degrees of the numerator

and denominator can add to equate the number of collocation points. For

the Sinc-Padé approximants, double exponential growth of the sample points
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renders the system highly ill-conditioned. Therefore, these indices must be

decoupled from n and the function must only be sampled near the centre. Our

adaptive algorithm is based on the following principles:

1. Sinc-Padé approximants are useful only when the Sinc approximation

obtains some degree of accuracy,

2. Sinc-Padé approximants are useful for r, s = O(log n) as n→ ∞.

The first principle follows from observations of our numerical experiments, and

we found that a relative error of approximately 10−3 in the Sinc approximation

allows for a useful Sinc-Padé approximant. The second principle follows from

the observation that we need not identify many singularities to remove, and

that even at a logarithmic increase, the sample points tend to infinity at a

single exponential rate, implying that they will ultimately cover the real line.

These principles form the basis of the following algorithm.

Algorithm 5.6.1:

Set n = 1;

while |Relative Error| ≥ 10−3 do

Double n and naïvely compute the nth double exponential approxima-

tion;

end;

while |Relative Error| ≥ ǫ do

Compute the poles of the Sinc-Padé approximant;

Solve the nonlinear program (5.40) for h(t);

Double n and compute the nth adapted optimized approximation;

end.
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5.D Examples

In this section, we will use the proposed nonlinear program (5.40) to maximize

the convergence rate of the double exponential transformation. We compare

the results of the trapezoidal rule with single, double, and optimized double

exponential variable transformations on three integrals using arbitrary preci-

sion arithmetic. On a fourth integral, we use the adaptive algorithm 5.6.1 to

approximate nearby singularities.

5.D.1 Example: endpoint and complex singularities

We wish to evaluate the integral:

∫ 1

−1

exp ((ǫ21 + (x− δ1)
2)−1) log(1− x)

(ǫ22 + (x− δ2)2)
√
1 + x

dx = −2.04645 . . . , (5.45)

for the values δ1+iǫ1 = −1/2+i and δ2+iǫ2 = 1/2+i/2. This integral has two

different endpoint singularities and two pairs of complex conjugate singularities

of different types near the integration axis. Table 5.2 summarizes the variable

transformations used and the parameters in the theorems 5.1 and 5.2.

Single Double Optimized Double
φ(t) tanh(t/2) tanh

(
π
2
sinh(t)

)
tanh(h(t))

ρ or γ 1 1 1
β or β2 1/2 π/4 0.06956

d 1.10715 0.34695 π/2

Table 5.2: Transformations and parameters for (5.45).

In addition, the optimized transformation is given by:

h(t) ≈ 0.13912 sinh(t) + 0.19081 + 0.21938 t. (5.46)
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Figure 5.3 shows the three stages of the optimized double exponential map.
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Figure 5.3: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the optimized map h(·), and in (c) the optimized DE map.
In all three cases, the crosses track the singularities.

In figure 5.4 (a), the integrand of (5.45) is shown, and in figure 5.4 (b), the

logarithm of the relative errors of the trapezoidal rule of order n with single,

double, and optimized double exponential variable transformations are plotted.

The increase in convergence rate using the optimized variable transformation is

a significant increase in efficiency over the double exponential transformation.

5.D.2 Example: eight different complex conjugate singu-

larities

We wish to evaluate the integral:

∫ +∞

−∞

exp (10(ǫ21 + (x− δ1)
2)−1) cos (10(ǫ22 + (x− δ2)

2)−1)

(ǫ23 + (x− δ3)2)
√

ǫ24 + (x− δ4)2
dx = 15.01336 . . . ,

(5.47)

for the values δ1 + iǫ1 = −2 + i, δ2 + iǫ2 = −1 + i/2, δ3 + iǫ3 = 1 + i/4, and

δ4 + iǫ4 = 2 + i. Table 5.3 summarizes the variable transformations used and

the parameters in the theorems 5.1 and 5.2.
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Figure 5.4: In (a) the plot of the integrand of (5.45) and in (b) the performance
of the trapezoidal rule with single, double, and optimized double exponential
variable transformations.

Single Double Optimized Double
φ(t) sinh(t) sinh

(
π
2
sinh(t)

)
sinh(h(t))

ρ or γ 1 1 1
β or β2 2 π/2 5.7715× 10−6

d 0.35260 0.22640 π/2

Table 5.3: Transformations and parameters for (5.47).
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In addition, the optimized transformation is given by:

h(t) ≈ 5.7715× 10−6 sinh(t) + 0.25431 + 0.14936 t

− 4.5433× 10−3 t2 + 9.9880× 10−5 t3. (5.48)

Figure 5.5 shows the three stages of the optimized double exponential map.
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Figure 5.5: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the optimized map h(·), and in (c) the optimized DE map.
In all three cases, the crosses track the singularities.

In figure 5.6 (a), the integrand of (5.47) is shown, and in figure 5.6 (b), the

logarithm of the relative errors of the trapezoidal rule of order n with single,

double, and optimized double exponential variable transformations are plotted.

The increase in convergence rate using the optimized variable transformation is

a significant increase in efficiency over the double exponential transformation.

5.D.3 Example: for Goursat’s infinite integral

We wish to evaluate the integral:

∫ +∞

0

x dx

1 + x6 sinh2 x
= 0.50368 . . . , (5.49)
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Figure 5.6: In (a) the plot of the integrand of (5.47) and in (b) the performance
of the trapezoidal rule with single, double, and optimized double exponential
variable transformations.

which is evaluated in [HNSH09,Oou13] as part of a high precision numerical

evaluation of Goursat’s infinite integral. While there are an infinite number

of poles in the complex plane due to the sinh function, a four-parameter solu-

tion h(t) can be found using the nearest poles, while excluding the remainder.

This shows the incredible versatility of the proposed optimization approach,

because the same optimal asymptotic convergence rate is obtained in the com-

plicated situation of an infinite number of singularities while not leading to a

more complicated solution process. Table 5.4 summarizes the variable trans-

formations used and the parameters in the theorems 5.1 and 5.2. For the

sake of comparison, we use the same double exponential transformation used

in [HNSH09].

In addition, the optimized transformation is given by:

h(t) ≈ 0.26725 sinh(t) + 0.30707 + 0.20337 t− 0.031966 t2. (5.50)
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Single Double Optimized Double

φ(t) log(et + 1) exp(0.22t− 0.017e−t) log(eh(t) + 1)
ρ or γ 1 0.22 1
β or β2 2 2 0.26725

d 1.13615 1.58223 π/2

Table 5.4: Transformations and parameters for (5.49).

Figure 5.7 shows the three stages of the optimized double exponential map.
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Figure 5.7: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the optimized map h(·), and in (c) the optimized DE map.
In all three cases, the crosses track the singularities.

In figure 5.8 (a), the integrand of (5.49) is shown, and in figure 5.8 (b), the

logarithm of the relative errors of the trapezoidal rule of order n with single,

double, and optimized double exponential variable transformations are plotted.

The increase in convergence rate using the optimized variable transformation is

a significant increase in efficiency over the double exponential transformation.

In [HNSH09], the authors obtained the relative error of 10−72 with 480

function evaluations, and claim this to be a nearly minimal number. However,

as can be seen in figure 5.8 (b), the optimized double exponential transforma-

tion can obtain the same relative error with only approximately 140 function

evaluations. Neither of these results, however, compares to the million-digit
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Figure 5.8: In (a) the plot of the integrand of (5.49) and in (b) the performance
of the trapezoidal rule with single, double, and optimized double exponential
variable transformations.

algorithm of [Oou13] using the Hilbert transform to construct a conjugate

function, thereby removing all the singularities.

5.D.4 Example: adaptive optimization via Sinc-Padé ap-

proximants

In this example, we will show the performance of the adaptive optimized

method using the Sinc-Padé approximants to approximately locate the sin-

gularities. We wish to evaluate the integral:

∫ ∞

0

x dx
√

ǫ21 + (x− δ1)2(ǫ22 + (x− δ2)2)(ǫ23 + (x− δ3)2)
= 12.55613 . . . , (5.51)

for the values δ1 + iǫ1 = 1 + i, δ2 + iǫ2 = 2 + i/2, and δ3 + iǫ3 = 3 + i/3.

Table 5.5 summarizes the variable transformations used and the parameters

in the theorems 5.1 and 5.2.
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Single Double Optimized Double
φ(t) exp(t) exp

(
π
2
sinh(t)

)
exp(h(t))

ρ or γ 1 1 1
β or β2 2 π/2 9.4353× 10−3

d 0.11066 0.05762 π/2

Table 5.5: Transformations and parameters for (5.51).

Table 5.6 shows the evolution of the six nearest roots of the Sinc-Padé

approximants to the integration contour. The degrees of the Sinc-Padé ap-

proximants increase as r = log2(n)− 2 and s = log2(n) + 2.

n δ1 ± iǫ1 δ2 ± iǫ2 δ3 ± iǫ3

25 −0.58097± 1.2106i 2.0717± 0.28089i 3.0298± 0.45170i
26 −0.18822± 1.3571i 2.0008± 0.49777i 3.0004± 0.33311i
27 0.14091± 1.3982i 1.9963± 0.48734i 3.0009± 0.33279i
28 0.41762± 1.3767i 2.0498± 0.39481i 3.0022± 0.35279i

Exact 1.0000± 1.0000i 2.0000± 0.50000i 3.0000± 0.33333i

Table 5.6: Evolution of the six nearest roots of the Sinc-Padé approximants.

Table 5.7 shows the evolution of the adaptive map. The coefficients of the

optimized map are also shown for comparison.

n u0 u1 u2 u3

25 3.1344× 10−3 0.88233 0.072018 −1.6222× 10−3

26 9.1841× 10−3 0.95544 0.073207 −7.1021× 10−3

27 8.6135× 10−3 0.95359 0.072918 −6.7917× 10−3

28 6.1605× 10−3 0.93730 0.071916 −4.7927× 10−3

Optimized 9.4353× 10−3 0.93351 0.084087 −9.9846× 10−3

Table 5.7: Evolution of the coefficients of the adaptive map.

Figure 5.9 shows the three stages of the adaptive double exponential map.
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Figure 5.9: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the adaptive map h(·), and in (c) the optimized DE map.
In all three cases, the crosses track the singularities and the squares track the
roots of the Sinc-Padé approximant for n = 28.

In figure 5.10 (a), the integrand of (5.51) is shown, and in figure 5.10 (b),

the logarithm of the relative errors of the trapezoidal rule of order n with single,

double, and optimized double exponential variable transformations are plotted.

The increase in convergence rate using the optimized variable transformation is

a significant increase in efficiency over the double exponential transformation.

5.E Applications

5.E.1 Boundary value problems

After the Sinc expansion of functions came the Sinc expansion of integral

and differential equations [Sug02]. For the two-point boundary value problem

(BVP):

Lf(x) = f ′′(x) + µ(x)f ′(x) + ν(x)f(x) = σ(x),

x ∈ (a, b), f(a) = f(b) = 0,
(5.52)
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Figure 5.10: In (a) the plot of the integrand of (5.51) and the Sinc-Padé
approximant for n = 28 and in (b) the performance of the trapezoidal rule with
single, double, optimized double, and adaptive optimized double exponential
variable transformations.

the variable transformation x = φ(t) : (−∞,+∞) → (a, b), lim
t→−∞

φ(t) = a and

lim
t→+∞

φ(t) = b, gives:

L̃f̃ = f̃ ′′(t) + µ̃(t)f̃ ′(t) + ν̃(t)f̃(t) = σ̃(t),

t ∈ (−∞,+∞), lim
t→±∞

f̃(t) = 0,
(5.53)

where:

f̃(t) = f(φ(t)), µ̃(t) = φ′(t)µ(φ(t))− φ′′(t)/φ′(t),

ν̃(t) = (φ′(t))2ν(φ(t)), σ̃(t) = (φ′(t))2σ(φ(t)).
(5.54)
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which, for suitable variable transformations, will allow good approximations

to the function f(x). Very briefly, we let:

f̃n(t;φ) =
+n∑

j=−n

f̃n S(j, h)(t), (5.55)

then using the Sinc collocation points xk = k h, we solve the linear system:

L̃f̃n(k h;φ) = σ̃(k h), k = −n,−n+ 1, . . . , n− 1, n, (5.56)

for the 2n + 1 unknowns f̃n. The approximation to the original function is

then:

fn(x;φ) =
+n∑

j=−n

f̃n S(j, h)(φ
−1(x)). (5.57)

Again, we show that using optimized double exponential maps can also be

useful in the setting of two-point BVPs when singularities are near the solution

interval. The problem (5.52) for a = −1, b = 1, and:

µ(x) = − 4 x

(x2 + ǫ2)2
tan

(
1

x2 + ǫ2

)

, (5.58)

ν(x) =
4 x2

(x2 + ǫ2)4

(

1 + 2 tan2

(
1

x2 + ǫ2

))

+

(
6 x2 − 2 ǫ2

(x2 + ǫ2)3

)

tan

(
1

x2 + ǫ2

)

, (5.59)

σ(x) = −(1− x2)3/2 cos

(
1

x2 + ǫ2

)

, (5.60)

with solution:

f(x) =
√
1− x2 cos

(
1

x2 + ǫ2

)

, (5.61)

has branches emanating from the endpoints as well as terrible essential singu-
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larities at ±iǫ. In addition, at every zero of the solution, the coefficients µ(x)

and ν(x) are singular. We use Sinc approximations with single, double, and

optimized double exponential decay at the endpoints to solve the linear sys-

tem. Table 5.8 summarizes the variable transformations and the parameters

used.

Single Double Optimized Double
φ(t) tanh(t/2) tanh(π/2 sinh(t)) tanh(tan−1(ǫ) sinh(t))
ρ or γ 1 1 1
β or β2 1/2 π/4 tan−1(ǫ)/2

d 2 tan−1(ǫ) sin−1(2 tan−1(ǫ)/π) π/2

Table 5.8: Transformations and parameters for (5.52).

In figures 5.11 and 5.12 (a), the function of (5.52) is shown along with

the three Sinc approximations at a high order, showing good visual agreement

of the optimized Sinc approximation, and in figures 5.11 and 5.12 (b), the

logarithm of the relative errors of the Sinc approximations of order n with

single, double, and optimized double exponential variable transformations are

plotted.

In both figures, we approximate the relative error:

sup
x∈[0,1]

∣
∣
∣
∣

f(x)− fn(x;φ)

f(x)

∣
∣
∣
∣
, (5.62)

by computing the maximum of the difference and quotient at 101 equally

spaced points in the interval. The increase in convergence rate using the

optimized variable transformation is a significant increase in efficiency over

the double exponential transformation.
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Figure 5.11: In (a) the solution of (5.52) along with the three Sinc approxima-
tions for n = 210 and in (b) the performance of the Sinc approximation with
single, double, and optimized double exponential variable transformations. In
both cases ǫ = 0.2.
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Figure 5.12: In (a) the solution of (5.52) along with the three Sinc approxima-
tions for n = 210 and in (b) the performance of the Sinc approximation with
single, double, and optimized double exponential variable transformations. In
both cases ǫ = 0.1.
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5.E.2 Nonlinear waves

For internal waves in stratified fluids of great depth, the Benjamin-Ono equa-

tion [Ben67,Ono75] is a nonlinear partial integro-differential equation involving

the Hilbert transform. While the KdV equation has soliton solutions that de-

cay exponentially on the real line, the soliton solutions to the homogeneous

Benjamin-Ono equation decay algebraically. The Hilbert transform on the real

line is defined as [Kin09]:

Hy(x) = 1

π
−
∫ +∞

−∞

y(s)

s− x
ds, (5.63)

where the dash in the integral sign denotes the Cauchy principal value. The

forced Benjamin-Ono equation can then be written as:

yt + yyx +Hyxx = g(x− c t), x ∈ R, t ≥ 0, lim
x→±∞

y(x, t) = 0. (5.64)

for some g with wave speed c ∈ R. If we let y(x, t) = y(x− c t), then we may

consider the traveling wave solutions. Inserting such a substitution into (5.64)

and integrating, we obtain:

−c y′ + yy′ +Hy′′ = g(x− c t), (5.65)

−c y + y2

2
+Hy′ = f(x− c t) =

∫ x−c t

−∞
g(s) ds. (5.66)

The traveling wave is then obtained by solving this equation for t = 0.

The forced solutions to this equation have many properties that can be

deduced from f . For example, if f decays algebraically on the real line, the
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method of dominant balance shows that:

y(x) ∼ −c−1f(x), as x→ ±∞, (5.67)

and will therefore behave similarly. As well, complex singularities in f can

potentially be found in y.

To continue, it is clear we require an approximation for the Hilbert trans-

form. In [Ste93, Ste00], Stenger derives a Sinc-based approximation for the

Hilbert transform. We closely follow his development which is for a general

variable transformation, and show how the optimized conformal map improves

the convergence rate.

By making the invertible variable transformation s = φ(t) : R → R

in (5.63), we obtain:

Hy(x) = 1

π
−
∫ +∞

−∞

y(φ(t))φ′(t)

φ(t)− x
dt. (5.68)

The integrand multiplied by t − φ−1(x) has but a removable singularity at

t = φ−1(x). Therefore, we may approximate with a Sinc basis:

y(φ(t))φ′(t)

φ(t)− x
(t−φ−1(x)) ≈

+n∑

j=−n

y(φ(jh))φ′(jh)

φ(jh)− x
(jh−φ−1(x))S(j, h)(t). (5.69)

Using the Hilbert transform [Kin09]:

Hsin x

x
=

1

π
−
∫ +∞

−∞

sin s

s(s− x)
ds =

cos x− 1

x
, (5.70)

and dividing by the linear factor t−φ−1(x) and integrating each basis function,
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the approximation (5.69) leads directly to:

Hy(x) ≈ h

π

+n∑

j=−n

y(φ(jh))φ′(jh)
cos
(

π(φ
−1(x)
h

− j)
)

− 1

x− φ(jh)
. (5.71)

Using the Sinc-based approximation for the Hilbert transform, the solution

of the forced Benjamin-Ono equation can be obtained by approximating the

solution y(x) in a Sinc basis:

y(x) ≈ yn(x;φ) =
+n∑

j=−n

yjS(j, h)(φ
−1(x)), (5.72)

and solving the system of nonlinear equations obtained by collocating at the

Sinc points xk = φ(kh):

−c yn(k h;φ) + y2n(k h, φ) +Hy′n(k h, φ) = f(k h), k = −n, . . . , n, (5.73)

for the 2n+ 1 unknowns {yj}|j|≤n by Newton iteration.

For the purposes of illustration, we consider the functions f(x) which yield

the solutions:

y(x) =
m∑

i=1

ǫ2i
((x− δi)2 + ǫ2i )

, (5.74)

for the values m = 3, δ1 + iǫ1 = −1 + 0.3i, δ2 + iǫ2 = 0 + 0.1i, and δ3 + iǫ3 =

1 + 0.2i. This allows for an exact comparison with an analytic expression. In

addition, the wave speed c = 1 is used. Table 5.9 summarizes the variable

transformations and the parameters used.

In addition, the optimized transformation is given by:

h(t) ≈ 1.1451× 10−7 sinh(t) + 0.04531 + 0.06359 t− 1.2134× 10−4t2. (5.75)
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Single Double Optimized Double
φ(t) sinh(t) sinh(π/2 sinh(t)) sinh(h(t))
ρ or γ 1 1 1
β or β2 1/2 π/4 5.7257× 10−8

d 0.10017 0.06381 π/2

Table 5.9: Transformations and parameters for (5.64).
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Figure 5.13: In (a) the solution of (5.64) along with the three Sinc approxima-
tions for n = 25 and the scaled forcing function and in (b) the performance of
the Sinc approximation with single, double, and optimized double exponential
variable transformations.

In Figure 5.13, we approximate the relative error:

sup
x∈R

∣
∣
∣
∣

y(x)− yn(x;φ)

y(x)

∣
∣
∣
∣
, (5.76)

by computing the maximum of the difference and quotient at 101 equally

spaced points in the interval [−5, 5]. The inverse optimized map φ−1 is con-

veniently computed via Newton iteration, as the map and its first derivative

are already required in the system of collocated equations. The increase in
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convergence rate using the optimized variable transformation is a significant

increase in efficiency over the double exponential transformation.

5.E.3 Multi-dimensional integrals

There are many applications in physics that warrant the evaluation of m-

dimensional integrals. Examples we are interested in include: magnetic suscep-

tibility integrals in the Ising theory of solid-state physics [BBC06], which form

terms in a series that represents the dependence of magnetic susceptibility on

temperature; and, box integrals [BBC07], which are essentially m-dimensional

expectations of the sth power of the distance in a unit hypercube 〈|~r|s〉~r∈[0,1]m .

Such integrals have applications in probability theory, and in potential theory

such as “jellium” potentials. After making substantial analytic advances in

the theory of box integrals in [BBC10], the authors acknowledge that some of

the analytical techniques they used would not apply to other m-dimensional

expectations, and posit that 〈e−κ|~r|〉~r∈[0,1]m should remain extremely difficult

to evaluate in any general way. In this section, we construct such a general

way to calculate these integrals. Explicitly:

〈e−κ|~r|〉~r∈[0,1]m =

∫

[0,1]m
e−κ(r21+···+r2m)1/2 dr1 · · · drm. (5.77)

Using the same dimensional-reduction technique in [BBC07], and the incom-

plete gamma function [GR07, §8.350 1.]:

γ(m, a) = am
∫ 1

0

xm−1e−a x dx = (m− 1)!− e−a

m−1∑

j=0

(
m− 1

j

)
j!

aj−m+1
, (5.78)
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we obtain:

〈e−κ|~r|〉~r∈[0,1]m =
m

2m−1

∫

[−1,1]m−1

dx1 · · · dxm−1

(
(m− 1)!

κm(x21 + · · ·+ x2m−1 + 1)m/2

−
m−1∑

j=0

(
m− 1

j

)
j!e−κ(x2

1+···+x2
m−1+1)1/2

κj+1(x21 + · · ·+ x2m−1 + 1)(j+1)/2

)

.

(5.79)

Multi-dimensional integrals are a challenge for univariate numerical integra-

tion methods because of the curse of dimensionality, whereby the dimension m

increases the number of sample points of the one-dimensional case N = 2n+1

geometrically as O(Nm), reaching the limits of modern computational power

quite quickly. Nevertheless, positive results may be obtained for lower di-

mensions, especially for extremely high accuracy, for which even tens of dig-

its qualifies in this setting. We compare and contrast the trapezoidal rule

on (5.77) for the single, double, and optimized double exponential transforma-

tions. These transformations are summarized in table 5.10. Of course, m− 1

transformations {φℓ(t1, . . . , tm−1)}m−1
ℓ=1 will be required to induce decay at all

the boundaries of the hypercube in (5.77).

Single Double Optimized Double

φℓ(t1, . . . , tm−1) tanh(tℓ/2) tanh(π/2 sinh(tℓ)) tanh

(

tan−1

(√
∑ℓ−1

j=1 φ
2
j + 1

)

sinh(tℓ)

)

ρ or γ 1 1 1
β or β2 1 π/2 π/4

d π/2 π/6 π/2

Table 5.10: Transformations and parameters for (5.79).

Note that while the ℓth optimized double exponential transformation calls

all previous ones through the term
√
∑ℓ−1

j=1 φ
2
j + 1, this comes at no extra cost
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because it is extracted during the construction of the term x21+ · · ·+x2m−1+1,

which occurs in (5.79).

In figure 5.14, the logarithm of the relative errors of the trapezoidal rule of

order n with single, double, and optimized double exponential variable trans-

formations are plotted. The increase in convergence rate using the optimized

variable transformation is a significant increase in efficiency over the double

exponential transformation.
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Figure 5.14: The performance of the trapezoidal rule with single, double, and
optimized double exponential variable transformations. In all figures, κ = 1,
and in (a) m = 2, in (b) m = 3, and in (c) m = 4.

The dimension of the so-called box integrals of [BBC07] was reduced com-

pletely to one in every case by using an integral representation of the integrand

|~r|s, which allowed the integrals over r1, r2, etc. . . to be separated and written

as the mth power of the error function. The authors postulated the expo-

nential expectation to be a challenge because of an inability to reduce the

dimension of the problem. Using the Bessel representation for K−1/2(κ|~r|)

from [GR07, §8.432 7.]:

e−κ|~r| =

√

2κ|~r|
π

K−1/2(κ|~r|) =
√

κ

2π

∫ ∞

0

e−
κ
2
(t+ r2

t
)

t1/2
dt, (5.80)
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and the error function representation [GR07, §3.321 1.]:

erf(u) =
2 u√
π

∫ 1

0

e−u2x2

dx, (5.81)

we are able to obtain the formula:

〈e−κ|~r|〉~r∈[0,1]m =
1

2

( π

2κ

)m−1
2

∫ ∞

0

t
m−1

2 e−κ t/2erfm
(√

κ

2 t

)

dt. (5.82)

Because these are such challenging integrals, we include rounded approximate

values in table 5.11 for the sake of reproducibility. The one-dimensional in-

tegral (5.82) allows for the calculation of the high precision results, and it is

also used for the calculation of the relative error in figure 5.14.

m κ 〈e−κ|~r|〉~r∈[0,1]m
2 1.0 0.48499 93872 72994 84128 76561 86058 31858 19718
3 1.0 0.39822 04526 88323 04659 07885 63033 98432 76981
4 1.0 0.33843 80876 94843 90404 45300 56568 55958 16022
5 1.0 0.29379 80818 76007 61424 12657 48176 65958 00955

Table 5.11: Numerical Evaluation of (5.77) using (5.82).

5.E.4 Molecular integrals with exponential basis func-

tions

To compute eigenstates of the molecular Schrödinger equation [Sch26], one

solution strategy is to represent molecular orbitals as a linear combination of

atomic orbitals (LCAO-MO). This approach greatly simplifies the calculations

by decoupling the individual particles’ Hamiltonians. Evaluating the Hamil-

tonian elements corresponding to four-center two-electron repulsion integrals
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with exponential basis functions using the Fourier transform method [WGS86,

GS88], we encounter one-dimensional integrals of the form:

∫ +∞

−∞

ei b z−a1
√

z2+c21−a2
√

z2+c22

(z2 + c21)
µ1(z2 + c22)

µ2
dz, (5.83)

for positive real parameter values. To remove oscillations, we deform the

integration contour to a path of steepest descent. While the exact path of

steepest descent would require some root-finding algorithm for every evaluation

point, we use an asymptotic path of steepest descent passing through the

saddle point iy ∈ i(0, c1), which is the solution of:

g(y) = −b(c21 − y2) + a1y
√

c21 − y2 +
a2y(c

2
1 − y2)

√

c22 − y2
+ 2µ1y + 2µ2y

c21 − y2

c22 − y2
= 0,

(5.84)

and tending asymptotically in the direction ±(a1 + a2) + ib, + in the positive

direction and − in the negative direction. To find the saddle point, we use

Ridders’ method [Rid79] for its quadratic convergence in the bracketed inter-

val. An asymptotic path of steepest descent can be found with the hyperbolic

substitution:

ζ(x) = λ1x+ i

(√

λ22x
2 + λ23 + λ4

)

, (5.85)

for some values of the parameters λ. To ensure the asymptotic direction:

λ1 =
a1 + a2

(a1 + a2)2 + b2
, and λ2 =

b

(a1 + a2)2 + b2
. (5.86)

Then, this leaves λ3 and λ4 to determine the locations of pre-images of the

singularities ±ic1 and ±ic2 in relation to the saddle point iy. Due to symmetry,
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we will want the saddle point to have a pre-image of 0:

ζ(0) = iy = i(|λ3|+ λ4), (5.87)

which readily gives us an equation relating λ3 and λ4. Due to horizontal and

vertical symmetries in the singularities ±ic1 and ±ic2, we can consider the

two-parameter map:

h(t) = u0 sinh(t) + u2 t. (5.88)

Then, to ensure the solution of u0 and u2 is well-posed, we use:

λ3 =
b(c1 − y)

(
√

(a1 + a2)2 + b2 − b)
, and λ4 = y − |λ3|. (5.89)

Table 5.12 summarizes the variable transformations after the substitution ζ(x)

is used and the static parameters in the theorems 5.1 and 5.2. The dash

indicates that parameters change from one integral to the next.

Single Double Optimized Double
φ(t) t π

2
sinh(t) h(t)

ρ or γ 1 1 1
β or β2 1 π/2 −

d − − π/2

Table 5.12: Transformations and static parameters for (5.83).

Figure 5.15 shows plots of the three stages of the optimized double expo-

nential map when the optimal value of β2 is reached. Figure 5.16 shows plots

of the three stages of the optimized double exponential map when the optimal

value of β2 is not reached and is additionally constrained by the singularity

−ic1.
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Figure 5.15: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the optimized map h(·), and in (c) the composition ζ(h(·)).
In all three cases, the crosses track the singularities and the circle marks the
saddle point.
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Figure 5.16: In (a) the plot of the strip Dπ
2

with singularities located on the
boundary, in (b) the optimized map h(·), and in (c) the composition ζ(h(·)).
In all three cases, the crosses track the singularities and the circle marks the
saddle point.
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In order to show the performance of the three algorithms, 20 runs are

performed with randomized values for the parameters in (5.83). They are

distributed uniformly according to:

a1 ∼ U(0, 1), a2 ∼ U(0, 1), b ∼ U(0, 20),

c1 ∼ U(0, 1), c2 ∼ U(0, 2), µ1 ∼ U(0, 1), µ2 ∼ U(0, 1).
(5.90)

The results of the 20 runs are depicted in figure 5.17. In addition, we keep

track of the relative performance of the three transformations because this

may not be clear from the image. In every run, the optimized transformation

outperforms the single and double exponential transformations, while in 16

runs, the double exponential transformation outperforms the single exponen-

tial transformation.
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Figure 5.17: The performance of the trapezoidal rule with (a) single, (b) dou-
ble, and (c) optimized double exponential variable transformations.

5.F Numerical Discussion

The numerical experiments are all programmed in Julia [BKSE12], calling at

times GNU’s MPFR library for arbitrary precision arithmetic, OpenBLAS for
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solving the linear systems and Ipopt [WB06] for solving the nonlinear pro-

gram (5.40). As can be seen in the figures showing the relative errors, the

maximization of the convergence rates provides a significant improvement for

the double exponential variable transformations. With an equal number of

function evaluations, the optimized double exponential formulas provide ap-

proximately 2.5–4 times as many correct digits. The conformal maps achieve

this by locating singularity pre-images on the boundary of the strip ∂Dπ
2
. A

degree of caution should be used when calculating the nodes and weights of

the double exponential quadrature, as they reach the solution intervals’ end-

points extremely rapidly. We worked around this issue by using high precision

arithmetic.

In examples 5.D.1–5.D.4, one integral is treated on each of the canonical

domains: in example 5.D.1, two different endpoint and two pairs of different

near-contour singularities are treated; in example 5.D.2, four pairs of different

near-contour singularities are treated; in example 5.D.3, an infinite array of

singularities is treated; and, in example 5.D.4, the adaptive optimized method

is shown to successfully approximate the loci of the three pairs of near-contour

singularities.

In every case, the nonlinear program (5.40) still does not ensure analyticity

in the strip Dπ
2
. In examples 5.D.1, 5.D.2 and 5.D.4, the compositions ψ(h(t))

actually cross the branches of the square root functions, and in example 5.D.3,

there are even more poles than are shown in figure 5.7. Yet still, a significant

increase in convergence is observed. It is quite clear that some singular effects

are numerically more damaging than others.

Example 5.D.4 shows the use of the Sinc-Padé approximants for the adap-

tive optimized algorithm 5.6.1. While in figure 5.10, the Sinc-Padé approxi-
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mants serve as relatively poor approximations of the integrand, their ability to

approximate singular points is acceptable. In table 5.6, the Sinc-Padé approx-

imants obtain 2-3 correct digits for the first order poles δ2± iǫ2 and δ3± iǫ3, but

struggle to obtaining an accurate location of the branch points δ1 ± iǫ1. This

is entirely related to the rational limitations of the Sinc-Padé approximants,

and suggests that approximating essential singularities, for example, surpasses

the capabilities of the Padé methods.

While the nonlinear program (5.40) is successful in the current endeavours,

further research in other conformal maps would be fruitful. For example, it

is still unclear how to maximize the convergence rate in cases of countably

infinite singularities, such as:

∫ +∞

−∞

tanh x

x(1 + x2)
dx. (5.91)

A single exponential transformation such as π
2
sinh creates an array of singu-

larities along ± iπ
2
. Therefore, any further composition will inevitably cause

the limits of this array to approach the real axis without bound. The problem

has been discussed in [OTMS13,TOMS13], and the result is almost the same

convergence property as a single exponential transformation.

Nevertheless, the applications show how the conformal maps can be used

to obtain substantial increases in accuracy. In the boundary value problem,

only the optimized double exponential transformation is able to provide any

accuracy that resembles the solution. For the multi-dimensional integrals, the

gain in accuracy is also significant. And for the highly oscillatory integrals,

the deformation to the contour of steepest descent, coupled with the conformal

map provides an algorithm that is insensitive to the many parameters in the
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integral.

5.G Conclusion

In this work, we investigate the use of conformal maps for the acceleration of

convergence of the trapezoidal rule and Sinc numerical methods. The confor-

mal map is a polynomial adjustment to the sinh map, and allows the treatment

of a finite number of singularities in the complex plane. In the case where loca-

tions are unknown, the so-called Sinc-Padé approximants are used to provide

approximate results. This adaptive method is shown to have almost the same

convergence properties. We use the conformal maps to generate high accuracy

solutions to challenging boundary value problems, multi-dimensional integrals,

and highly oscillatory integrals.
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Chapter 6

Conclusion

To the best of my abilities, I am pleased to have provided what can be consid-

ered as optimal solutions to the numerical evaluation of semi-infinite integrals

arising in molecular integrals over B functions, and in the process, solutions

to other problems as well. I am grateful to Hassan Safouhi for suggesting this

problem as my Ph D thesis. I am confident this thesis can be used as the start-

ing point for future work. Firstly, the large scale calculations of the molecular

integrals over B functions could greatly benefit from using the analytical ex-

pression (4.32) and the algorithm for (5.83). Secondly, the trapezoidal rule and

Sinc numerical methods have received a significant improvement. The main

advantage of the trapezoidal rule and Sinc numerical methods over polynomial

interpolation methods is the ability to succeed despite endpoint singularities.

With the use of specific conformal maps, it can succeed with other types of

singularities as well. There is no doubt that very challenging problems in ap-

plied mathematics can be solved with accelerated convergence from the use of

conformal maps for the trapezoidal rule and Sinc numerical methods.
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