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Abstract

Fault detection methods have become an important tool in the prevention of safety and

reliability issues for industrial rotating machines. Faults in these machines often develop

progressively and are not easily observed under operating conditions until severe damage

has occurred and further damage during the shut-down process is unavoidable. This type

of fault is common in centrifugal separators, where nozzle plug imbalance faults occurring

at supercritical operating speeds can lead to catastrophic failure during coast-down after

the fault has progressed to the point that an alarm is triggered.

This thesis presents a vibration-based subspace fault detection method intended for de-

tecting rotor imbalance faults. This output-only method detects rotor imbalance faults using

an asymptotic local approach that is sensitive to small changes in modal structure. The

method was originally developed for stationary structures but is adapted here for constant-

speed rotating systems. The faults of interest are static and dynamic rotor imbalances

representative of the nozzle plug faults experienced by centrifugal separators.

Two physical models of an idealized centrifugal separator are also presented and used

to demonstrate the subspace fault detection method. The first is a mechanical simulation

based on rigid body and flexible rotor dynamics derived from finite element analysis of a

physical rotor. A physical laboratory bench model based on the simulated machine is also

presented that allows the detection method to be demonstrated on a realistically complex

system with limited instrumentation.

Subspace fault detection results are presented for both machines using a range of static

and dynamic imbalances of increasing severity. For comparison, results are also presented for

two alternative detection methods for vibration faults that have received recent attention:

sinusoidal synthesis and the Hilbert-Huang Transform. These results demonstrate that the

subspace method produces superior results for imbalance faults, particularly in the case of

dynamic imbalance.
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Chapter 1

Introduction

1.1 Problem Statement

Vibration faults are a major source of safety and reliability issues for industrial rotating

machines. Excessive vibration can manifest for a myriad of reasons, including imbalance;

shaft misalignment, warping, and cracking; gear cracking; and bearing failure. In addition,

many faults develop progressively with relatively subtle changes in observable vibration

magnitudes and spectrum until significant damage has occurred [2]. With modern machines

now often designed to operate above one or more critical speeds, a fault that has progressed

to the point where it is of sufficiently large magnitude to trigger a shutdown may result

in catastrophic damage as the machine coasts down through its critical speeds. Industrial

machines are also often poorly instrumented. Typically, vibration signals are obtained from

accelerometers mounted on the casing and bearing supports, and in some cases a limited

number of proximity sensors are available to measure rotor vibration directly. The challenge

is therefore to detect subtle imbalance faults despite limited insight into the physical system.

No single fault detection method can provide useful results for the full range of possible

machines, faults, and operating conditions. It is necessary to develop methods that are

productive for a limited set of potential faults and machine types. This thesis focuses

on a particular fault that occurs in large-scale conical plate centrifugal separators: rotor

imbalance caused by nozzle plug. Conical plate separators use centrifugal force produced

by rotation of the bowl to remove a suspended solid phase from a continuous flow of lighter

liquid phase. The centrifugal force draws the solid phase toward the edge of the bowl, where

it flows out through nozzles into an external collection system. A common problem with

separators occurs when these nozzles plug and the solid material builds up on the inside of

the bowl. This results in a rapidly increasing static or dynamic rotor imbalance, building

up to severe levels of vibration over a short period of time. Separators often operate above

1



their first critical speed, so once a nozzle plug fault results in easily observable vibration at

operating speed it tends to produce considerably more damaging vibration as the machine

coasts down through one or more critical speeds.

Applying fault detection methods to industrial machines is necessarily more difficult

than machines designed and operated in a controlled environment, like a laboratory bench

apparatus. Industrial machines are often poorly documented, or documentation is not

available to the operator. Abstract models of a machine are rarely available. In addition,

there can be considerable variation between individual instances of a single design, and

changes of behavior over time as a particular machine ages.

1.2 Scope of Research

Available methods for detecting vibration faults tend to fall into two broad categories: time-

and frequency-domain filtering methods that do not utilize a system model, and model-based

methods. The latter is distinguished by the use of a mathematical model representing the

no-fault system to generate a residual signal that quantifies the discrepancy between the

model and the actual system based on output measurements collected from the system

while in operation. Typically the model is predetermined using knowledge of the physical

system or through data-driven system identification techniques, but adaptive methods that

identify a system during operation are also possible.

Nozzle plug imbalance faults produce relatively low vibration levels during the initial

period of time when the fault is detectable, but severe damage has not yet occurred. They

are often difficult to detect during the initial phase using time- or frequency-domain filtering

approaches. However, they are characterized by small changes in the modal structure of

the rotating machine that may be detected before vibration becomes severe. This thesis

proposes a model-based fault detection method based on a modal model of the no-fault

machine to detect the small structural changes caused by nozzle plug faults. Static and

dynamic imbalance faults are considered, with particular focus on the harder-to-detect

dynamic imbalances.

1.3 Summary of Contributions

Two contributions to the field of model-based fault detection for rotating machines are

presented in this thesis.

Simulated and physical models of an idealized horizontal rotor machine are presented.
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These machines were designed to allow controlled rotor imbalances that simulate the effect

of a nozzle plug fault on a centrifugal separator. The simulation uses a combination of rigid

body and flexible rotor dynamics obtained from finite element analysis. It is parameterized

to allow the introduction of controlled static and dynamic imbalances at specific points in

time. The physical apparatus realizes the idealized machine in a laboratory environment.

The simulation and physical models are complementary in allowing the development of

realistic fault detection systems for known vibration fault types. The simulation allows

access to the internal measurements that are difficult to obtain from a physical machine,

while the physical model provides more realistic behaviour and instrumentation and provides

a means to verify the validity of the simulation results.

A vibration-based fault detection system is proposed based on the detection of small

changes in modal structure. This system is suitable for detecting suddenly-occurring static

and dynamic imbalance faults at supercritical speeds. It is based on an adaptation of

a subspace-based local approach method developed for stationary structures. The pro-

posed detection method is shown to improve detection performance over current time- and

frequency-domain fault detection methods, particularly in the case of dynamic imbalances.
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Chapter 2

Literature Review

This section presents an overview of existing literature related to rotating machine dynamics,

modeling, faults, and fault detection techniques, with a particular focus on rotor imbalance

faults.

2.1 Rotating Machine Faults

Rotating machines may experience a broad range of faults. These include static and dynamic

imbalances, rotor damage and misalignment, gear damage, bearing damage, and instability

caused by bearing or working fluid dynamics. By far the most common method for detecting

these faults is through analysis of the vibrations they produce [2, 3]. This thesis is focused

on lateral rotor vibration faults caused by imbalance. Rotor imbalance produces vibration

at frequencies corresponding to the shaft speed and its harmonics. (These frequencies are

often referred to as ‘1X’, ‘2X’, ‘3X’, and so on.) It is often difficult to distinguish vibration

produced by imbalance faults from other shaft speed faults, like shaft misalignment and

cracking. For the purposes of this thesis only imbalance faults are considered, as they

are the most relevant to the nozzle plug imbalance scenario encountered by centrifugal

separators that originally motivated this work.

Rotor imbalance is present whenever the principle axis of inertia for the rotor is not

coincident with the axis of rotation. Three types of imbalance are possible: static imbalance,

couple imbalance, and dynamic imbalance. Static imbalance occurs when the principle

axis of inertia is parallel to the axis of rotation, but not coincident. A rotor with static

imbalance experiences a centrifugal force perpendicular to the axis of rotation. A couple

imbalance occurs when the mass center lies on the axis of rotation and the principal axis

of inertia passes through the mass center, but the principal axis is not parallel with the

axis of rotation. Couple imbalance, as the name implies, produces a couple moment on the
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rotor. A combination of static and couple imbalances is known as a dynamic imbalance.

In engineering contexts the latter term is often used for couple imbalances regardless of

whether a static imbalance is also present. This is the convention followed in this thesis.

Methods for detecting vibration faults fall into three categories: time-domain filtering

methods, frequency-domain filtering methods, and model-based methods [4, 5]. Filtering

methods represent well-explored and commonly-applied fields of research [6, 7]. However,

the limitations to a purely filtering approach have led to an increased interest in model-based

approaches. Obtaining adequate system models for industrial machines is often challenging.

Models can be determined by reasoning from physical principles, through data-driven sys-

tem identification, or a combination of the two [8, 3, 9, 10]. In the simplest cases, models can

be derived from design documentation using physical modeling principles. This approach

is limited by the complexity of many machines and difficulties obtaining sufficient docu-

mentation from the manufacturer. In addition, there may be substantial variation between

machines, and over the lifetime of a single machine. Environmental interactions are also an

issue, as even when a model is known for the machine itself vibration characteristics may

be substantially modified by interaction with the foundation and inlet/outlet connections.

A purely theoretical derivation is often impossible in practice. To avoid the problems with

theoretical modeling, data-driven techniques may be used. When applied to vibrating sys-

tems this is also known as modal analysis. It presents particular challenges in the case of

rotating structures.

2.2 Rotordynamics and Modal Analysis

Vibrating systems can be characterized by their modal structure: natural frequencies, mode

shapes, and damping coefficients. In the absence of a fault, most stationary structures have

a modal structure that does not vary as a function of time or input. Rotating structures

are fundamentally different. In a rotating system, gyroscopic forces introduce a time depen-

dency into the equation of motion [11]. If, as is commonly the case, the rotor is isotropic

and measurements are taken in an inertial frame of reference, the differential equation of

motion is dependent not on time, but on rotational speed.

In a non-rotating system, the system matrices are typically constant in time and sym-

metric. Such systems are characterized as self-adjoint. For a rotating system the damping

and stiffness matrices are not symmetric and the system is described as non-self-adjoint.

(NSA) As the equation of motion for a NSA system is speed-dependent, the modal struc-

ture for an NSA system is also speed-dependent. At any given constant operating speed,
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the system has a unique set of natural frequencies, damping ratios, and mode shapes. In

normal operation, the machine must speed up and coast down through a speed range where

the instantaneous rotating speed is equal to one or more natural frequencies. Resonance is

often observed at these points, which are referred to as critical speeds. It is important to

distinguish between natural frequencies, which are a function of speed, and critical speeds,

which are a property of the machine as a whole.

If an isotropic NSA rotating system is maintained at a constant operating speed, the

equation of motion becomes LTI. As such, the vibrational characteristics of a constant-speed

machine can be treated similarly to a stationary structure in many ways. However, because

gyroscopic forces act to deform the rotor, natural frequencies and mode shapes of a rotating

system behave differently than in stationary systems. There are two main types of mode

observed in rotating systems: rigid body modes and whirling modes. Rigid body modes

are the result of motion within the bearings, and typically occur at low frequencies when

bearing stiffness is not significantly greater than rotor stiffness. They are weakly dependent

on rotational speed. Whirling modes occur when the rotor deflects into a plane formed by

the rotor and the bearing centreline. It is possible to have whirling modes in the direction of

rotation (forward whirling) and in the opposite direction as rotation (backward whirling).

Forward whirling increases with rotational speed, while backward whirling decreases. The

relevant critical speeds for a machine with a flexible rotor are typically the intersection

of operating speed with the first and second whirling modes. It is however possible that

backward whirling modes will not be observed if the rotor is axisymmetric and the bearings

are isotropic, as rotational energy cannot be fed into the backward modes [11].

Modal analysis of rotating structures is considerably more challenging than stationary

structures. In addition to the problem of speed dependence, a rotor is typically much more

difficult to instrument and excite than a non-rotating structure. In addition, the degree of

asymmetry observed in the rotor, bearings, and foundation determine the extent of excita-

tion and instrumentation required to analyze a particular system. While a simple system

with axisymmetric components may be analyzed with a single point of excitation and mea-

surement, asymmetrical systems may in theory require excitation and observation at all

points along the rotor [11]. The idealized machines considered in this thesis are axisym-

metric to constrain the amount of instrumentation required. Even under these conditions,

obtaining a model of the modal structure by analysis of the machine is highly involved. The

approach taken in this thesis is to derive the modal structure from simulation and finite

element analysis, and then confirm the models by comparison with the complete machines.
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2.3 Modal Structure Fault Detection

In response to issues with theoretical modeling, data-driven identification techniques have

become popular. One such method is subspace identification. Subspace methods use ge-

ometric operations and projections on the row spaces of measured data matrices to infer

the internal structure of a system [12]. They are particularly useful for estimating the

modal structure of a system, and can be applied to output-only systems with stochastic

inputs [13]. Subspace methods have been successfully applied to a range of structural and

mechanical applications [14, 15, 16, 17]. Subspace methods may also be adapted to detect

changes in modal structure when compared with a no-fault model [18]. This is useful for

fault detection because the modal structure of a vibrating system is a direct function of the

physical properties of that system. If the mass, damping, or stiffness of a system change,

the frequency, damping, or mode shapes of the vibration will also change. Vibration faults

can be identified by observing changes in the modal structure of a system [19].

Basseville et al proposed a fault detection technique based on subspace methods that

was shown to detect vibration faults in stochastic systems by generating a residual that

is sensitive to small changes in the modal structure [18]. This method is based on a local

asymptotic approach to the fault detection problem, which rephrases the problem in terms of

discriminating between two similar hypotheses by generating a residual whose distribution

is known and distinct in both cases [20, 21, 22]. The local approach allows the problem to

be transformed from one of identifying and comparing modal structures to the systematic

and well-understood statistical problem of monitoring the mean of a Gaussian-distributed

vector. The residual vector distribution has a non-zero mean if and only if a fault is present.

This method was developed for stationary structures, and has been profitably applied to

practical industrial [23] and aeronautical [16] structures. The Basseville subspace-based

method is adapted in this thesis for use in constant-speed rotating systems with gyroscopic

effects and flexible rotor dynamics.

2.4 Alternative Fault Detection Methods

Two alternative fault detection algorithms were selected for comparison with the subspace

method. The first was an autoregressive (AR) frequency estimator method known as sinu-

soidal synthesis. (SS) A vibration signal produced by a rotating machine can be considered

as the combination of a sinusoidal component, an impulsive component associated with cer-

tain fault conditions, and noise [24]. Rotating machine fault detection based on AR models
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is well-established [25], but a significant drawback is that the AR model must be predeter-

mined from no-fault data. Given the sinusoidal nature of rotating machine vibration, it is

possible to determine the model adaptively using a frequency estimator approach, known as

sinusoidal synthesis. The SS method implemented for this thesis used a time-domain linear

predictor to extract the sinusoidal frequency properties, and predicts future measurements

using a sum-of-sinusoids approach based on the estimated sinusoids [26]. The SS method

was developed to detect impulsive faults that deviated from the basic sinusoidal character

of rotating machine vibration, such as gear crack faults, and has been demonstrated to be

effective in this context.

The second alternative method was the Hilbert-Huang transform [27]. (HHT) This

method consists of an empirical mode decomposition (EMD) of the vibration signal into

near-orthogonal components known as intrinsic mode functions (IMFs), followed by Hilbert

transformation of the IMFs to obtain the instantaneous frequency as a function of time,

which is then visualized using a time-frequency plot. Each IMF represents a natural os-

cillatory mode of the signal, and expert analysis of the time-frequency plot often reveals

patterns characteristic of particular types of fault associated with particular IMFs. HHT

has become a popular alternative to traditional Fourier analysis as HHT may highlight

transient effects that are concealed by Fourier transform, particularly in cases where the

faults are non-stationary and transient [28, 29].
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Chapter 3

Rotating Machine Models

3.1 Simulated Machine Overview

A physical simulation of an idealized rotating machine was built in Simulink to serve as a

testbed for the fault detection system described in this paper. This machine was constructed

using a combination of rigid-body SimMechanics library blocks and custom Simulink sub-

systems to simulate bearing and flexible rotor dynamics. A 3D rendering of the machine

generated by the SimMechanics visualization package is provided in Figure 3.1

The machine used a 3⁄8-inch steel shaft two feet in length, driven by an DC motor via a

flexible coupling. The shaft was mounted on two oil-impregnated bronze journal bearings,

which were supported by aluminum bearing blocks bolted to a heavy aluminum baseplate.

Three aluminum flywheels were mounted to the shaft, at the center and at positions on the

left and right equidistant from the center flywheel and the bearings. Each flywheel had two

concentric rings of holes for the attachment of imbalance weights. Holes were drilled at 30◦

intervals for the inner ring 3 cm from the axis of rotation, and at 15◦ intervals for the outer

ring, at a distance of 6 cm. Weights could be attached through the holes to create a variety

of controlled imbalances. Static imbalances were created by placing a single weight at 0◦

on the center flywheel, (as pictured in Figure 3.1) while a dynamic imbalance was created

with weights at 0◦ and 180◦ on the right and left flywheels, respectively. As no practical

rotating machine can be perfectly balanced, the simulated machine was configured with a

residual 2 g static imbalance at 0◦ on the center flywheel.

The most common approach to modeling a rotating machine combines a finite element

analysis (FEA) model of the shaft as a flexible beam with a linearized bearing model [3,

Chapter 2]. The simulation incorporated these elements by embedding custom Simulink

subsystems for the rotor and bearing dynamics into a standard SimMechanics model of the

machine as a collection of rigid bodies and joints. Figure 3.2 illustrates the highest level

9



Figure 3.1: Simulated Rotor Imbalance Machine 3D Visualization

of the mechanical model implemented in Simulink. The model had one input, rotor speed

in RPM, and eight outputs: x- and y-axis rotor displacement from the axial centerline was

measured in mil (one thousandth of an inch) at each bearing and at two positions between

from the center flywheel and the outer flywheels.

A continuous-time solver was required to support the physical simulation, but all mea-

surements collected for fault detection were sampled at 1 kHz.

3.1.1 Bearing Model

A linearized two degrees-of-freedom (2DOF) bearing model was used to represent each

bearing in Simulink, as illustrated in Figure 3.3. The 2DOF model represents a bearing as

a prismatic joint in the X-Y plane with direct and cross-coupled linear spring-and-damper

systems for each axis [3, Chapter 5]. Spring and damper coefficients are typically obtained

by referencing tables of constants compiled in bearing databooks or identified from data

collected from operating machines. The degree of axial symmetry and cross-coupling has

10



Figure 3.2: Simulink Mechanical Subsystem Diagram

Figure 3.3: Simulink Linearized 2DOF Bearing Subsystem Diagram
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Figure 3.4: Simulink Flexible Rotor Subsystem Diagram

Figure 3.5: Simulink Flexibility Subsystem Diagram
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a significant influence on the modal structure of a rotordynamic system. The simulation

used simple sleeve bushings, which were modeled as stiff axisymmetric bearings with light

damping and no cross-coupling between the translational axes.

3.1.2 Flexible Rotor Model

The SimMechanics block library does not provide a built-in system for simulating flexible

bodies. Flexible dynamics can be incorporated into the model using a finite elements

approach, as described by Chudnovsky et. al. [1]. This technique encapsulates the flexible

body dynamics as a state-space subsystem whose inputs are loads on the body and whose

outputs are the flexible deflections relative to the rigid body at specific points of interest, as

illustrated schematically in Figure 3.6. A modal analysis of the flexible body is performed

in a FEA program to obtain the natural frequencies and mode shapes, which are then used

to construct the state-space system as a M-orthogonal modal decomposition of the system

as a set of harmonic oscillators. Modal analysis of the rotor was conducted in ANSYS to

obtain the first four mode shapes, as shown in Figure 3.7 once normalized to the mass

matrix. The nodal displacements at the points of measurement in the simulation for the

rigid-body mode and the first flexible mode are listed in Table 3.1, measured in meters and

also normalized to the mass matrix. MATLAB scripts based on the Chudnovsky method

were used to process the FEA results and obtain a five input, five output state-space system

relating loads on the rotor at the bearing and flywheel positions to flexible displacement of

the shaft at the three flywheel positions and two rotor position sensors.

Figure 3.4 shows the internal structure of the rotor subsystem in Simulink. Flexible

dynamics are integrated into a rigid-body model of the rotor by actuating massless bodies

in the X-Y plane at each interface between the rigid rotor and flywheels. Two identical

subsystems encapsulate the flexible dynamics separately for the x and y axes. The internal

structure of the flexible body subsystems is shown in Figure 3.5. The subsystem consists

of five reaction force inputs calculated in the parent subsystem from joint reactions at the

flexible interface positions and five absolute motion outputs calculated by the state-space

system. The absolute motion outputs are used to actuate massless bodies that represent

the position of the deformed body.

3.1.3 Noise

The simulated machine was configured so that additive white noise could be applied to all

output signals using Band-Limited White Noise Simulink blocks. A separate noise generator
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Figure 3.6: Chudnovsky Flexibility Subsystem [1, p. 9]
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Figure 3.7: First Four Flexible Rotor Mode Shapes Obtained From FEA

Table 3.1: Mode Shape Displacement Obtained From FEA (m)

Mode L Bearing L Rotor C Rotor R Rotor R Bearing

Rigid 1.720 1.720 1.720 1.720 1.720

Flex 0 -2.351 -2.609 -2.351 0
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was used for each output signal, with a unique random seed but identical power spectral

densities (PSD) for all signals of the same type. Position signals (measured in mils) were

assigned a PSD of 1×10−4 mil2/Hz. Rotor speed signals (measured in RPM) were assigned

a PSD of 1×10−6 RPM2/Hz.

3.1.4 Operating Speed

The simulation was designed to allow a variety of rotational speed input signals, including

constant speed and pseudo-random binary sequences (PRBS). As a typical centrifugal sep-

arator would normally maintain a constant speed except during startup and coast down,

rotor speed was held constant at 1000 RPM except when otherwise specified. This speed

was chosen to ensure that both the simulated and physical machines were operating com-

fortably above their first critical speeds. The simulation applied a first-order low-pass filter

to the set speed signal to simulate the effect of the speed controller used for the physical

system, which limits the rate at which the rotor can accelerate.

3.2 Simulated Machine Vibration Analysis

3.2.1 Vibration Signal Characteristics

Figures 3.8 and 3.9 show detailed selections of the rotor vibration waveforms captured dur-

ing no-fault simulations. Figure 3.8 contains a 0.2 s segment of the x- and y-axis left rotor

position measurements captured during constant-speed operation at 1000 RPM. Vibration

is the result of the residual 2 g static imbalance. These vibration signals are character-

ized by sinusoidal signals with a dominant 1X component. The effect of noise on position

measurements can also be observed.

Figure 3.9 demonstrates the effect of varying the speed of rotation using a PRBS speed

signal alternating between 975 RPM and 1025 RPM. Transient effects are observed as the

rotational speed changes, whereas during periods of constant-speed operation the vibration

is dominated by the 1X frequency component, with a magnitude that is determined by the

rotational speed.

Figures 3.10 and 3.11 show periodograms for the x-axis left rotor position signals for the

constant and PRBS speed inputs, respectively. Both periodograms illustrate the dominance

of the 1X frequency, as expected for a residual static imbalance. The pair of peak frequencies

in Figure 3.11 are the result of varying between two constant operating speeds when a PRBS

speed input is applied.
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Figure 3.8: Simulated No-Fault Left Rotor Vibration (Detailed View)
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Figure 3.10: Simulated Constant Speed No-Fault Left Rotor Vibration Periodogram
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Figure 3.11: Simulated Varying Speed No-Fault Left Rotor Vibration Periodogram
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Figure 3.12: Simulated Critical Speed Ramp-Up Test

Table 3.2: Simulated Machine Critical Speeds

Peak Frequency (RPM) Frequency (Hz)

1 715 11.92

3.2.2 Critical Speeds

Critical speeds were determined by conducting a ramp-up test on the simulated system.

Rotor speed was increased linearly from standstill to 1600 RPM over a period of 60 s, as

shown in Figure 3.12. One critical speed was identified within this operating range, which

is listed in Table 3.2.

Figure 3.13 plots the X-Y orbit diagrams for the bearings and rotor vibration signals

at the first critical speed. The dominance of a 1X component is illustrated by the circular

orbits. This critical speed is the product of rotor deflection due to flexibility. Little to

no interaction with bearing flexibility is observed, as this would normally manifest as an

observable 2X component.
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Figure 3.13: Simulated Rotor X-Y Orbit Diagrams (715 RPM)

3.2.3 Operational Deflection Shapes

The behavior of the bearing and flexible rotor simulation can be visualized by plotting the

operational deflection shapes (ODS) of the rotor. The simulation was parameterized so that

the flexibility subsystem could be selectively disabled. Figure 3.14 shows side and top views

of the rotor ODS at a constant 1000 RPM while the flexibility subsystem was disabled. The

z-axis position in ODS plots corresponds to shaft position relative to the right end of the

rotor, adjacent to the motor. Each line in the figure represents the shape of the rotor at

single step in the simulation. These plots show that in the absence of flexibility, the rigid

rotor traces a circular orbit around the axial centreline of the machine. The stiffness of the

bearings constrains this motion to very small magnitudes.

Figure 3.15 plots the side and top views for the rotor ODS under the same conditions,

but with flexibility enabled. The plots show that the ODS is a combination of the rigid-

body displacement due to the bearings and the rotor deflection imposed by the flexibility

subsystem derived from FEA.
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Figure 3.15: Simulated Operational Deflection Shape (Flexibility)
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Figure 3.16: Simulated Static Imbalance Left Rotor Vibration Periodogram

3.3 Simulated Machine Faults

Static and dynamic imbalances were induced on the simulated machine. The effect of these

faults in the frequency domain is difficult to observe since the spectrum of vibration signals

produced by imbalance is concentrated in the 1X frequency and its harmonics. This can

be observed in Figures 3.16 and 3.17, which plot periodograms for 6 g static and dynamic

imbalance faults induced during constant-speed operation at 1000 RPM. (16.67 Hz) There

is little visible difference between these periodograms and the no-fault case plotted in Figure

3.10. The vibration signal power is overwhelmingly concentrated in 1X frequency, and the

relative magnitude of that component is comparable across all three periodograms.

Figures 3.18 and 3.19 plots the rotor ODSs for constant-speed operation at 1000 RPM

for the 6 g static and dynamic imbalances, respectively. Unlike the periodograms, it is easy

to observe the physical effect of the faults on the system. The static imbalance pictured in

Figure 3.18 resulted in an increase of approximately four times in the peak ODS magnitude,

although the shape is similar to that created by the residual imbalance in the no-fault system

shown in Figure 3.15. The dynamic imbalance picture in Figure 3.19 creates a significant

change in the ODS, with greater deflection at the left bearing position than at the right
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Figure 3.17: Simulated Dynamic Imbalance Left Rotor Vibration Periodogram

bearing. The peak deflection is comparable to the no-fault case, however.

These figures illustrate the challenge in detecting imbalance faults. The physical influ-

ence of the faults is clear, but difficult to discern when restricted to observation of vibration

spectrum or magnitude. The goal of the subspace fault detection method presented in

subsequent sections is to take advantage of the physical effects of vibration illustrated by

Figures 3.18 and 3.19 to detect these faults.

3.4 Physical Machine Overview

A laboratory apparatus based on the simulated machine design previously described was

constructed using a combination of off-the-shelf and custom-machined parts. A photograph

of the physical machine is provided in Figure 3.20. The rotating components were based on a

steel shaft, coupled to a 24 V DC motor via a flexible coupling. The shaft is supported by two

sleeve bushings mounted on machined aluminum supports and bolted to a heavy aluminum

base atop a lab bench. Vibration was measured by two-axis accelerometers mounted on the

bearing supports, and by inductive proximity sensors mounted on aluminum brackets over

the shaft at points between the center and outer flywheels. The rotor speed is governed by an
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Figure 3.18: Simulated Static Imbalance Operational Deflection Shape
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Figure 3.19: Simulated Dynamic Imbalance Operational Deflection Shape
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Figure 3.20: Physical Machine

off-the-shelf DC speed controller and a magnetic speed sensor. Rotor speed was determined

using a Schmitt-trigger magnetic sensor to detect the alternating north and south poles of

neodymium magnets attached to the end of the shaft. The system was controlled by a PC

running MATLAB, using a National Instruments data acquisition card (DAQ) to interface

with the sensors and speed controller.

Each flywheel mounted on the physical machine had the same pattern of concentric

rings of holes drilled at intervals around the hub as on the simulated machine. Controlled

imbalances were created by attaching bolts through these holes and securing them with

nuts. Each nut and bolt assembly weighed 10 g, so this is the smallest imbalance possible.

To provide a reference point, the outer flywheel holes in line with the setscrews holding the

flywheel on the rotor were selected as the 0◦ position. Static imbalances were created by

attaching a bolt at this point on the center flywheel. Dynamic imbalances were created by

attaching one bolt at the 0◦ position on the right flywheel and 180◦ on the left flywheel.

Vibration was originally measured using only the accelerometers mounted on the bearing

supports, but these sensors were found to have limited sensitivity to rotor vibration and the

signal-to-noise ratio was very poor, as is often the case for machines with flexible rotors and a

heavy support structure. As a result, inductive proximity sensors were added and eventually

used as the sole source of vibration data. These inductive eddy probes, manufactured by

SKF to the API 670 standard, measured the distance of the surface of a conductive object

from the probe tip over a range of 80 mil. (2 mm) As per API 670, the output of the

sensor driver is a negative voltage proportional to the distance of the object from the tip,

decreasing from 0 to -24 V as the object becomes more distant. Signal conditioners were

used to convert the voltage range to the ±10 V range accepted by the DAQ. Analog signals
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Figure 3.21: Physical Machine Critical Speed Ramp-Up Test

measured by the DAQ were oversampled at a rate of 10 kHz, and then the measured signals

were reduced to 1 kHz in MATLAB using the built-in decimation function. This function

automatically applied a low-pass filter to the measured signal prior to decimation.

3.5 Physical Machine Vibration Analysis

3.5.1 Critical Speeds

Critical speeds were obtained for the physical machine by conducting a ramp-up test from

standstill to 1600 RPM over a period of 60 s, as shown in Figure 3.21. As can be observed

from this figure, the behavior of the physical machine was considerably more complicated

than the simulated machine. Four critical speeds were observed within the possible operat-

ing range, which are listed in Table 3.3.

Vibration magnitude was most pronounced at the third and fourth critical speeds. The

machine was normally operated at a constant speed of 1000 RPM, a supercritical speed

located at a vibrational minimum. The machine was never operated at or above the fourth

critical speed, as resonance became extremely severe and rotor displacement began to exceed

the sensor limits.
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Table 3.3: Physical Machine Critical Speeds

Peak Frequency (RPM) Frequency (Hz)

1 295 4.917

2 400 6.667

3 600 10.00

4 1265 21.08

3.5.2 Physical Machine Faults

Unlike the simulated machine, it was not possible to plot the rotor ODS for the physical

machine as the instrumentation was only capable of measuring rotor position for two degrees

of freedom, due to the expense of additional proximity sensors. Both proximity sensors could

be mounted at a single location, allowing simultaneous measurement in both axes so that

X-Y orbit diagrams could be plotted for the rotor at that point. Figure 3.22 shows the rotor

orbit diagram from the left sensor position for a 2.5 s selection of three constant-speed tests

at 1000 RPM. The orbits for a no-fault test, an inner 10 g static imbalance, and an outer

10 g dynamic imbalance were plotted on the same figure for comparison.

The orbit diagram illustrates the effect of faults on the physical machine. The no-fault

system traced an approximate circle, as the motion was dominated by deflection of the

rotor associated with the 1X component. The motion was not perfectly circular, indicating

the presence of harmonics or other factors that were not accounted for, such as bearing

nonlinearities. The introduction of a static imbalance increased the overall magnitude

of the orbit as expected, and the greater contribution of the 1X diminished the relative

importance of the unaccounted factors. In contrast, the dynamic imbalance reduced the

magnitude of vibration at the measurement point. Harmonics and other effects appeared

to play a larger role in this case.

Figure 3.23 provides another comparison of the no-fault system and the two faults in

the frequency domain. This figure superimposes the periodograms for each case into a

single plot. There was very little to distinguish the three cases by their spectral content.

The static imbalance was identified with a proportionally larger contribution from the 1X

component, but otherwise its higher-frequency spectrum was undifferentiated. The no-fault

and dynamic imbalance spectrums were nearly identical.

An unaccounted peak was observed near 20 Hz in each of the physical machine peri-

odograms. This peak was present in all three cases, with little difference in magnitude or

frequency regardless of the fault status. This effect was not present in the simulated ma-
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chine, and was not anticipated by any aspect of the design. This contribution may explain

the non-circularity of the rotor orbits in Figure 3.23. As Figure 3.21 also demonstrated, the

physical machine was not a perfect realization of the idealized machine that was used in

the simulations. These differences show the challenge posed by applying the subspace fault

detection method to a practical machine that is only approximated by the model obtained

from analysis and simulation.
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Figure 3.22: Physical Machine Left Rotor Orbit Diagrams
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Chapter 4

Subspace Imbalance Fault
Detection

4.1 Methodology

The vibration-based fault detection algorithm implemented for this thesis was derived from

the subspace method described by Basseville et al [18]. This method uses an asymptotic

local approach fault detection scheme by applying subspace methods to a no-fault modal

model and output data covariance matrices. A brief overview of the subspace method is

presented in this section, followed by sample calculations for the simulated machine.

The asymptotic local approach consists of transforming the fault detection problem

into a statistical test between two hypothesis: H0, the no-fault hypothesis, and H1, the

hypothesis that a fault has occurred. A local approach algorithm produces a residual whose

distribution is statistically Gaussian with constant covariance for faults that correspond to

small changes in system parameters. The residual has a zero-mean distribution when H0

holds, and a non-zero mean when H1 holds:

H0 : ζn(θ0)→ N (0,Σ(θ0))

H1 : ζn(θ0)→ N (M(θ0)Υ,Σ(θ0)) (4.1)

where ζn is the residual vector, θ0 is a parameter representing the no-fault system model,

M(θ0) is the mean residual sensitivity matrix, a Jacobian matrix derived from θ, and Σ(θ0)

is the residual covariance matrix. Υ is an unknown fault vector that corresponds to the

specific residual. The residual matrices are constant and may be precomputed from the

no-fault model or derived from sample data.

Evaluation of the residual then becomes a question of determining whether it is signifi-

cantly different from zero. This is usually accomplished with a χ2 test. The residual vector
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is first normalized to unit variance, then reduced to a scalar test statistic that has a χ2

distribution if no fault has occurred. The test statistic is compared with a threshold value

to determine if a fault has occurred. The threshold is chosen to give the desired level of

confidence that when the test statistic exceeds the threshold a fault is the cause, rather than

random variation. The core of the fault detection algorithm lies in generating the residual

vector from the no-fault model and measured output data.

The algorithm assumes that the machine can be accurately modeled using a linear,

time-invariant, stochastic, discrete-time state-space model with additive Gaussian state

and measurement noise:

Xk+1 = FXk + εk

Yk = HXk + υk (4.2)

This model is sufficient for capturing the vibration dynamics of a rotor operating at

a constant rotational speed. However, a full state-space realization is not required to im-

plement the algorithm. Instead, the system can be modeled entirely in terms of its modal

structure. For convenience of calculation, the eigenvalues and eigenvectors are grouped into

a column vector known as the system parameter θ:

θ =

[
Λ

vecΦ

]
(4.3)

where Λ is a vector of the system eigenvalues λ, Φ is a matrix of the observed eigenvectors,

(the product of the output matrix H and the eigenvector matrix) and vec is the vector

stacking operator whose output is a column vector consisting of the columns of Φ stacked

in order.

Small changes to the modal structure can be characterized as the addition of an un-

known, but fixed fault vector Υ to the system parameter θ. It is this representation of the

fault as a small change in the system parameter that is the essence of the local approach.

The hypotheses H0 and H1 are formally defined in terms of the system parameter as follows:

H0 : θ = θ0

H1 : θ = θ0 + Υ/
√
n (4.4)

where n is the number of data samples and Υ is the unknown fault vector.

The task of the algorithm is then to generate a residual with known statistical distribu-

tions that can be tested to distinguish between hypotheses H0 and H1. The residual can be
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generated from output data in real time, but the calculation requires several intermediate

results that must be computed ahead of time from the no-fault model.

An extended observability matrix using a modal coordinate basis can be defined in terms

of the eigenvalues and eigenvectors of the no-fault system model:

Op+1(θ) =


Φ

Φ∆
...

Φ∆p

 (4.5)

where ∆ is a diagonal matrix of the eigenvalues, Φ is the observed eigenvector matrix, and

p is an integer that is at least as large as the true system order. A larger value for p will

result in a longer residual vector and more calculations to generate each residual.

Measured output data is incorporated into the residual by calculating a block-Hankel

matrix of the output covariances:

Hp+1,q =


Rτ+1 Rτ+2 · · · Rτ+q
Rτ+2 Rτ+3 · · · Rτ+q+1

...
...

. . .
...

Rτ+p+1 · · · · · · Rτ+p+q

 (4.6)

where Rj = E(Yk+jY
T
k ) is the covariance of the measured output data at lag time j, τ is the

measurement noise correlation, taken as zero, and q ≥ p+ 1. Each Rj is an r× r submatrix

if the system is multi-output. The integer q is selected to ensure that the rank of H is not

constrained by column width. A larger value may be used, but it will increase the length

of the residual vector and the number of calculations required to generate it.

The justification for this fault detection algorithm is the observation that Op+1(θ0) and

Hp+1,q have the same left kernel space if the no-fault hypothesis H0 holds. If this is the case,

it is possible to generate a Gaussian residual vector that has a zero-mean distribution. The

residual calculation requires a matrix S of nullity m whose columns form an orthonormal

basis of the left kernel space of Op+1(θ0). The S matrix is obtained by a SVD of Op+1(θ0).

The following property holds for S andHp+1,q when calculated from the no-fault system:

ST (θ0)Hp+1,q = 0 (4.7)

The residual vector calculation follows an analogous formulation:

ζn(θ0) =
√
n vec(ST (θ0)Hp+1,q) (4.8)

where n is the number of data samples used in the calculation of H. In Equation 4.7 the

matrix H provides information on the state of the actual system, which may or may not
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be faulty, while S represents the no-fault system model. ζn(θ0) is a column vector whose

length is given by q[(p+ 1)r −m].

Once the evaluation problem has been reduced to determining whether the residual

represents a Gaussian distribution with non-zero mean, there is a wide array of standard

statistical tools that can be applied to create a decision function. Basseville suggests a form

of the χ2 test based on empirical residual sensitivity Jacobian and covariance matrices pre-

calculated from the no-fault system [21]. For the purposes of this thesis a simplified version

of the χ2 test based on a norm-squared test statistic was used to evaluate the residuals, as

described in the following section.

4.2 Residual Evaluation

The residual produced by the subspace fault detection method is a Gaussian-distributed

vector where the mean of the distribution is non-zero if and only if a fault has occurred.

The variance of the distribution is not affected by a fault. The evaluation of a single-valued

residual is a simple problem, typically performed by comparing the residual with a threshold

value obtained from a standardized χ2 distribution table after normalizing the residual to

unit variance. If the residual exceeds the threshold for a given confidence level, often 95%

or 99.5%, a fault has occurred.

Evaluating a vector-valued residual is somewhat more involved. There are several possi-

ble methods: testing each component of the vector individually, testing the joint probability

density function of the vector, or testing the norm-squared of the residual vector. This the-

sis applies the latter technique, as described by Chowdhury in [30]. It can be shown that

if the no-fault residual ζn(θ0) is Gaussian with zero mean and non-unit variance, a test

statistic rnorm can be derived that is χ2 distributed with k − 1 degrees of freedom, if k is

the length of the residual vector ζtn(θ0):

rnorm = ζtn(θ0)Q
−1ζn(θ0) (4.9)

where Q is the covariance matrix of the residual vector. Q is necessary to normalize the

variance of the residual vector. It was shown by Chowdhury that this norm-squared method

is theoretically equivalent to evaluation of the joint PDF, but more convenient to compute

in an online fault detection system. The test statistic rnorm may be computed in various

ways, depending on the choice of normalization technique for the residual vectors. If the

individual components of the residual are independent random variables, it is possible to

normalize each component individually by dividing it by the square root of the variance of

32



that component, rather than calculating Q−1. The residuals calculated for this thesis were

calculated by normalizing individual components. The variance vector was obtained by

simulating the no-fault system for five minutes, calculating residual vectors, and computing

the sample variance of each residual component across the entire simulation results.

rnorm is a scalar that can be compared with a threshold value Tr to determine if the

no-fault hypothesis H0 should be rejected. If rnorm exceeds Tr, a fault is judged to have

occurred. The specific value of Tr is selected from a table of χ2 values indexed by the

required degrees of freedom and confidence level. The test statistic for the second-order,

two-output fault detection system has 23 degrees of freedom. A confidence level of 95% was

used. For these choices the χ2 table provides a threshold Tr of 35.17.

4.3 Sample Calculations

This section demonstrates the calculations required to generate and evaluate a residual

vector based on the no-fault model established in the previous chapter and sample data

obtained from simulation. The first step was to establish a modal structure model for the

no-fault system. A second-order model was used, with two measured outputs: x-axis rotor

position at the left and right rotor position sensors.

The natural frequencies and mode shapes of the machine were derived in the machine

modeling chapter. The subspace method required eigenvalues in complex-conjugate pairs. A

pair of continuous-time eigenvalues were calculated from the natural frequency of 11.92 Hz

using a damping ratio of 0.05, then converted to discrete time to obtain the following

eigenvalue vector:

Λ =

[
0.9935 + 0.0745i
0.9935− 0.0745i

]
(4.10)

The corresponding observed eigenvector matrix was assembled from the mode shapes at

the rotor measurement points, listed in the left and right rotor columns in Table 3.1:

Φ =

[
−2.3513 −2.3513
−2.3513 −2.3513

]
(4.11)

The no-fault system parameter was assembled by stacking the eigenvalues and the prod-

uct of the output matrix and the eigenvector matrix according to Equation 4.3:

θ =

[
Λ

vecΦ

]
=



0.9935 + 0.0745i
0.9935− 0.0745i
−2.3513
−2.3513
−2.3513
−2.3513

 (4.12)

33



Equation 4.12 represents a complete model of the vibration dynamics of the no-fault

system. The next step was to obtain an extended observability matrix from the modal

model, as in Equation 4.5. The dimension of the observability matrix, p, is an integer that

must be at least as large as the true system order. A system order of p = 2 was used. This

gave the following result:

O3(θ) =

 Φ
Φ∆
Φ∆2

 =



−2.35 + 0.00i −2.35 + 0.00i
−2.35 + 0.00i −2.35 + 0.00i
−2.34− 0.18i −2.34 + 0.18i
−2.34− 0.18i −2.34 + 0.18i
−2.31− 0.35i −2.31 + 0.35i
−2.31− 0.35i −2.31 + 0.35i

 (4.13)

The subspace method requires a set of orthonormal basis vectors for the left kernel

space of the extended observability matrix in Equation 4.13. This is the key input that

encapsulates the no-fault model in the residual generation algorithm. This is known as the

S matrix, and it could be obtained in a straightforward fashion applying the built-in null

function in MATLAB to the transpose of the observability matrix:

S =



−0.35 + 0.09i −0.35 + 0.09i −0.20 + 0.35i −0.20 + 0.35i
−0.03− 0.10i −0.03− 0.10i 0.34− 0.41i 0.34− 0.41i

0.88 + 0.01i −0.12 + 0.01i −0.14 + 0.06i −0.14 + 0.06i
−0.12 + 0.01i 0.88 + 0.01i −0.14 + 0.06i −0.14 + 0.06i
−0.19− 0.01i −0.19− 0.01i 0.57− 0.03i −0.43− 0.03i
−0.19− 0.01i −0.19− 0.01i −0.43− 0.03i 0.57− 0.03i

 (4.14)

The matrix given in Equation 4.14 must be calculated before the fault detection algo-

rithm is applied online. When the method is applied online, measurement data is collected

from the sensors and stored in the measured data matrix Y , where each row is a sample

and each column represents a sensor. A residual vector can be generated for the entire data

matrix, but in practice it is applied to a selection of samples from a smaller window. All

results quoted in this thesis used a 1 s window.

Using the selection of rows from the data matrix corresponding to the current window,

the next step was to assemble the block-Hankel matrix from Equation 4.6. First, the

covariance matrices Rj were calculated for each of the required time lag values j from 1

to p + q. The block-Hankel matrix was assembled from these covariance matrices. This

matrix depends on the particular sample data used in its construction, but for illustration

the block-Hankel matrix assembled for the 30 s window of a no-fault simulation is included
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below:

H30s =



13.50 13.40 13.27 13.17 12.91 12.80
13.41 13.31 13.20 13.10 12.85 12.74
13.27 13.17 12.91 12.80 12.40 12.29
13.20 13.10 12.85 12.74 12.35 12.24
12.91 12.80 12.40 12.29 11.76 11.64
12.85 12.74 12.35 12.24 11.72 11.60

 (4.15)

The residual vector for this window was calculated by taking the product of S and

H30s, according to the formula provided in Equation 4.8. The result was a complex-valued

24-element residual vector, where each element was a random variable with Gaussian dis-

tribution:

ζn(θ0) =



1.50− 0.29i
−0.63− 0.29i
−0.10− 1.17i
−2.03− 1.17i

1.49− 0.30i
−0.79− 0.30i
−0.12− 1.20i
−2.02− 1.20i

1.49− 0.23i
−0.44− 0.23i
−0.10− 0.94i
−1.70− 0.94i

...





...
1.54− 0.25i
−0.37− 0.25i
−0.17− 1.01i
−1.77− 1.01i

1.35− 0.21i
−0.26− 0.21i
−0.27− 0.86i
−1.41− 0.86i

1.37− 0.21i
−0.23− 0.21i
−0.25− 0.85i
−1.44− 0.85i



(4.16)

The final step was to reduce the residual vector to a scalar test statistic. First, the vector

was normalized to unit variance by dividing each element by the square root of the variance

for that element. The latter was a vector of variances for each element, precalculated from

no-fault data as described in the previous section. The norm-square of the normalized

vector was calculated as follows, giving the test statistic for the 30 s window. As expected,

the test statistic was below the detection threshold.

rnorm = ζtn(θ0)ζn(θ0) = 5.63 < Tr = 35.17 (4.17)
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Chapter 5

Experimental Results

5.1 Overview

This chapter presents results for the subspace fault detection method previously described,

and for comparison two alternative schemes that have received attention in recent years:

sinusoidal synthesis (SS) and the Hilbert-Huang Transform. (HHT) Each method represents

a distinct approach to the same problem of detection rotating machine faults.

The subspace method is a model-based time-domain algorithm that detects small changes

in the modal structure of a vibrating system. It requires no manual intervention beyond the

initial setup of determining the no-fault system model and choosing a detection threshold.

It is well-suited to implementation as an automatic real-time condition monitoring system.

It is deliberately insensitive to transient effects like noise or impulsive faults, such as those

caused by gear or rotor cracking.

SS is a time-series method that is similar to the AR matched-model prediction er-

ror signal method. The particular version used for this thesis eliminates the need for a

predetermined model by using frequency estimators to adapt a sum-of-sinusoids model to

the vibration signal during operation. This algorithm is particularly effective at detecting

transient impulsive faults, such as those produced by gear cracks, and is well-suited to im-

plementation as an automatic condition monitoring system. However, it is less effective at

detecting non-transient faults as it tends to adapt to slower-scale changes in the underlying

system.

Unlike the other two methods, the HHT operates in the frequency domain and requires

subjective human interpretation of the results. It is not suitable for automatic condition

monitoring, but it is still useful for demonstrating the difficulty of detecting imbalance faults

with even the most modern frequency-domain techniques. The HHT consists of an empirical

mode decomposition (EMD) of the vibration signal into a set of intrinsic mode functions,
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(IMFs) followed by Hilbert transformation of the IMFs. The results can be plotted to

illustrate the spectral content of the vibration signal as a function of time. It is often

possible to infer the presence of a fault from characteristic patterns in the time-frequency

plot.

5.2 Simulated Machine Fault Detection

5.2.1 Signal Characteristics

The three fault detection algorithms were applied to data collected from the simulated rotor

imbalance machine for static and dynamic imbalance faults of 2 g, 4 g, 6 g, and 8 g. The

machine was operated at a constant 1000 RPM for all tests, and configured with a residual

2 g imbalance on the center flywheel. The simulation was parameterized so that controlled

static and dynamic imbalances could be induced at any time during the simulation through

a Variable Mass SimMechanics block. Imbalances were created at the 30 s point in each

60 s simulation.

Figure 5.1 shows several periods of the four vibration signals, x- and y-axis rotor position

signals from both left and right sensor positions, starting at the 10 s mark for a no-fault

simulation. While four signals were available, fewer were actually used in any given algo-

rithm. The subspace method made use of the x-axis position signal at both sensor locations,

while the SS and HHT methods used only the x-axis left rotor position signal.

Figures 5.2 and 5.3 illustrate the effect of a pronounced fault on the four vibration

signals. Figure 5.2 shows the effect of a 6 g static imbalance introduced at the 30 s mark. An

immediate and significant increase in magnitude was observed in all four signals. Transient

effects were also noted immediately after the fault is introduced. Figure 5.3 shows the same

measurements taken for a 6 g dynamic imbalance introduced at the 30 s mark. In contrast

to the previous example, it was difficult to observe any effect on the vibration signals even

though this fault represents a severe imbalance. In addition, no transient effects were

discernible near the fault. While many techniques may be appropriate to detect a static

imbalances given the obvious nature of their effect on vibration signals, detecting a fault

that is not apparent to human analysis presents a greater challenge.

5.2.2 Subspace Method

Using the machine model and the intermediate calculations described in the previous chap-

ter, residual vectors were calculated for 1 s windows at corresponding intervals throughout

each simulation using the x-axis rotor position signals at the left and right sensor positions.
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Figure 5.1: Simulated No-Fault Left and Right Rotor Vibration (Detailed View)
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Figure 5.2: Simulated 6 g Static Imbalance Left and Right Rotor Vibration
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Figure 5.3: Simulated 6 g Dynamic Imbalance Left and Right Rotor Vibration

A five minute simulation for the no-fault system was performed before simulating any faults,

to obtain the no-fault residuals necessary to calculate the variance vector. A plot of the no-

fault simulation test statistics from this simulation after variance normalization is provided

in Figure 5.4.

The residuals were normalized to unit variance using the variance vector calculated from

no-fault data, and then a norm-squared test statistic was calculated for each normalized

vector. The test statistic was then compared with the threshold value Tr of 35.17 obtained

in the previous section. A fault was judged to have occurred whenever the test statistic

exceeded the threshold. Results for the simulations are plotted in Figures 5.5 to 5.12. The

threshold is superimposed as a dashed horizontal line in each figure.

The fault occurs at 30 s in each simulation. In each case, there is an immediate and

observable increase in the magnitude of the test statistic. However, for the faults of smaller

magnitude the increase did not necessarily exceed the detection threshold. These results

demonstrated the lower limit of detectability for the subspace method.

Figure 5.5 shows the test statistic sequence for a 2 g static imbalance. Although the

fault was apparent by subjective analysis, the test statistics were well below the detection

threshold. In the subsequent 4 g static imbalance shown in Figure 5.6, the average test
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Figure 5.4: Simulated Machine No-Fault Test Statistic Sequence

statistic was slightly above the detection threshold, although there was little margin for

many windows. Finally, Figures 5.7 and 5.8 show the sequences for 6 g and 8 g static imbal-

ances, respectively. The post-fault test statistics were all comfortably above the threshold.

Taken together, these results demonstrate a 4 g imbalance was the threshold of detectability

for a static imbalance.

No false positives were detected during any of the simulations, due to the conservative

threshold choice. A more generous threshold would decrease the detectable imbalance mass,

but as Figure 5.5 demonstrated, a threshold sufficiently low to detect a 2 g static imbalance

would raise the possibility of false positives.

Figures 5.9 and 5.10 show the test statistic sequence for 2 g and 4 g dynamic imbalances,

respectively. The 2 g imbalance test statistics were below the detection threshold for the

most part, but several windows produced a detectable statistic. The 4 g imbalance produced

test statistics that were comfortably above the threshold. This pattern carried forward in

the sequences plotted for the 6 g and 8 g imbalances in Figures 5.11 and 5.12. The subspace

method was better able to detect dynamic imbalances because as Figures 3.18 and 3.19

illustrated, static imbalances had the effect of altering the magnitude of mode shapes while

dynamic imbalances alter their form.
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Figure 5.5: Simulated Machine Static Imbalance 2g Test Statistic Sequence
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Figure 5.6: Simulated Machine Static Imbalance 4g Test Statistic Sequence
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Figure 5.7: Simulated Machine Static Imbalance 6g Test Statistic Sequence
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Figure 5.8: Simulated Machine Static Imbalance 8g Test Statistic Sequence

42



0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45
Test Statistic Sequence

Time (t)

N
or

m
−s

qu
ar

ed
 R

es
id

ua
l V

ec
to

r

 

 
Test Statistic
Threshold

Figure 5.9: Simulated Machine Dynamic Imbalance 2g Test Statistic Sequence
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Figure 5.10: Simulated Machine Dynamic Imbalance 4g Test Statistic Sequence
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Figure 5.11: Simulated Machine Dynamic Imbalance 6g Test Statistic Sequence
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Figure 5.12: Simulated Machine Dynamic Imbalance 8g Test Statistic Sequence
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5.2.3 Sinusoidal Synthesis Method

Unlike the subspace method, SS generates a straightforward scalar output residual by sub-

tracting the predicted output from the measured signal. Faults are detected when the

magnitude of the residual exceeds a predetermined threshold value. Therefore, unlike the

test statistics produced by the subspace method for discrete time windows, SS produces

a sequence of residual values for every step in the simulation. Also unlike the subspace

method, SS is fundamentally a single-output algorithm and must be applied individually to

each output for multiple-output systems.

Simulations were performed for 6 g static and dynamic imbalances, and SS was applied

to the x-axis position signal at the left rotor position to generate residual sequences for each

simulation. The 6 g faults were selected under the assumption that if SS cannot detect a

severe fault, it is unlikely to be effective for more subtle faults.

A design element of the algorithm is the selection of s-plane pole locations for the

lambda polynomial. Three pairs of complex conjugate poles were selected to be sufficiently

far from the y-axis as to obtain 95% matching of the actual output signal under steady-state

conditions.

A drawback of the SS method is that it does not perform well when applied to noisy

signals. When significant noise is present, the adaptive procedure will tend to minimize

the contribution of the adaptive model and the beta values will quickly converge to zero.

Therefore, it was necessary to apply a low-pass filter to the measured signals before applying

the algorithm. A low-pass filter with a cutoff frequency of 50 Hz was applied to the measured

output signals before application of SS.

Figures 5.13 and 5.14 show comparison plots of the measured output signals for the

simulated systems against the corresponding predicted outputs for the 0.5 s preceding and

1.5 s following the introduction of a fault. If the SS residual was going to increase in response

to a fault, it would most likely do so within this window. It can be observed from these

figures that SS closely tracks the measured signal, even at the moment the fault occurs and

significant transient effects are present. Imbalance faults do not alter the fundamentally

sinusoidal nature of the vibration signals, unlike the impulsive faults associated with gear

and rotor cracking that motivated the development of SS.

5.2.4 Hilbert-Huang Transform Method

The HHT differs from the previous two methods in that it is not an automatic fault detection

algorithm, but a series of transformations of the measured output that enables expert
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Figure 5.13: Simulated Machine Static Imbalance Sinusoidal Synthesis Tracking
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Figure 5.14: Simulated Machine Dynamic Imbalance Sinusoidal Synthesis Tracking
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interpretation of the frequency content of the vibration signal as a function of time. For

certain types of fault this is a more productive approach than traditional Fourier analysis.

The process begins by applying empirical mode decomposition (EMD) to the measured

signal, obtaining a set of intrinsic mode functions. (IMFs) This is similar to the Fourier

decomposition of a periodic signal into harmonic sinusoidal components, but the IMFs

may be more general functions. Most importantly, they are guaranteed to have well-defined

Hilbert transformations. Once the IMFs are available, the Hilbert transformation is applied

individually to obtain the instantaneous frequency for each IMF, and the results for all IMFs

are plotted together as a function of time. Faults are determined by expert analysis of the

time-frequency plot. Like SS, this method may only be applied to a single output signal at

a time.

Prior to application of the HHT, the vibration signals were filtered using a low-pass

filter with a 50 Hz cutoff frequency. This reduced the effect of noise on the HHT results, as

physical vibration is largely confined within this frequency range.

Figure 5.15 plots the left rotor x-axis vibration signal, its IMFs, and residue for the

10 s window surrounding the introduction of a 6 g static imbalance. The fault was readily

visible as a substantial increase in vibration magnitude starting at 30 s. The majority of

the signal energy was contained within the first IMF, whereas the subsequent IMFs appear

to represent transient effects occurring at the moment the fault is introduced. Figure 5.16

shows the time-frequency plot obtained by Hilbert transformation of the IMFs. In this

figure, the energy content of the signal at a particular time and frequency is represented by

color, with low magnitudes at the blue end of the spectrum and high magnitudes at the red

end. The fault was also apparent in this figure, as the higher vibration magnitude is clearly

visible in yellow-red intensity following the 30 s mark. However, the HHT does not provide

any particular insight into the fault other than to provide an alternative representation of

increased vibration magnitude.

Figure 5.17 shows the left rotor x-axis vibration signal, IMFs, and residue for the 10 s

window surrounding introduction of a 6 g dynamic imbalance. Compared with the previous

example, it was difficult to observe that any fault has occurred. The first IMF contained

the majority of the signal energy, and no transient effects were observed in subsequent IMFs

corresponding to the fault occurrence. Figure 5.18 contains the time-frequency plot for the

HHT of these IMFs. Again, there was little observable difference between the no-fault half

of the simulation and the time-frequency plot following the fault.

HHT does not appear to provide any advantage for imbalance fault detection.

47



25 26 27 28 29 30 31 32 33 34 35
−50

0

50
Measured Signal

25 26 27 28 29 30 31 32 33 34 35
−50

0

50
IMF Waveform 1

25 26 27 28 29 30 31 32 33 34 35
−1

0

1
IMF Waveform 2

25 26 27 28 29 30 31 32 33 34 35
−1

0

1
IMF Waveform 3

25 26 27 28 29 30 31 32 33 34 35
−0.5

0

0.5
IMF Residue

Figure 5.15: Simulated Machine Static Imbalance Left Rotor Vibration IMFs

Figure 5.16: Simulated Machine Static Imbalance Left Rotor Vibration HHT
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Figure 5.17: Simulated Machine Dynamic Imbalance Left Rotor Vibration IMFs

Figure 5.18: Simulated Machine Dynamic Imbalance Left Rotor Vibration HHT

49



5.3 Physical Machine Fault Detection

The physical machine provided an opportunity to test the subspace fault detection method

on a system with more complex dynamics and limited instrumentation. Although the sim-

ulation and physical machine were designed to be as similar as possible, comparison of the

ramp-up tests in Figures 3.12 and 3.12 demonstrates that the simulation could only approx-

imate the physical machine. Unlike the simulation, only two position sensors were available

for the physical machine. The simulation also benefited from the ability to introduce faults

of any size or location at any time during a test run, whereas tests conducted on the physical

machine necessarily had a fault present or absent for the entire run as it was impossible to

attach weights while the machine was in operation.

Each test on the physical machine was conducted at a constant operating speed of

1000 RPM. Static imbalances were created by attaching a 10 g weight to the center flywheel

at 0◦ on the inner or outer attachment rings. The 0◦ position was defined as the position of

the setscrew holding the flywheel on the rotor, as these were aligned to the same position

on the shaft for all three flywheels. Dynamic imbalances were created by attaching weights

at 0◦ and 180◦ on the right and left flywheels, respectively, with both weights placed either

on the inner or outer attachment rings.

5.3.1 Subspace Method

Using the machine model and the intermediate calculations described earlier, residual vec-

tors were calculated for 1 s windows at corresponding intervals throughout each test run

using the x-axis position signals at the left and right rotor positions. A five minute test

run for the no-fault system was performed first, to obtain the no-fault residuals necessary

to calculate the variance vector. A plot of the no-fault test statistics from this run is in-

cluded in Figure 5.19. As was obvious through comparison of the critical speeds in Figures

3.12 and 3.21, the simulated and physical machines were not identical. The no-fault ma-

chine model was calculated to precisely match the simulation, and so the small discrepancy

with the physical machine explains the decrease in effectiveness shown by the subsequent

physical subspace method results. The subspace fault detection method does not require

a perfect no-fault model, but its effectiveness decreases as the discrepancy between model

and machines grows.

The residuals were normalized to unit variance using the variance vector calculated from

no-fault data, and then a norm-squared test statistic was calculated for each normalized
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vector. The test statistic was then compared with the threshold value Tr of 35.17 obtained

earlier. When the test statistic exceeded the threshold, a fault has judged to have oc-

curred. Results for the simulations are plotted in Figures 5.20 to 5.23. The threshold is

superimposed as a dashed horizontal line in each figure.

Unlike the simulation, the physical machine was not capable of introducing a fault

during the middle of a test run. As a result, in all four test runs that were conducted with

a fault present there was an immediate rise in the test statistic above the threshold as the

machine ramped up to operating speed. It can be see in Figure 5.19 that a single false

positive was observed during startup in the no-fault test, and that each of the fault cases

had inconsistent behavior during startup. The machine experienced a significant amount of

transient behavior and traversed critical speeds during ramp-up, so results prior to steady-

state operation should be disregarded. All four test runs with fault conditions produced

unambiguous results, with the test statistic well above the detection threshold after the

initial ramp-up period.

Figures 5.20 and 5.21 show the test statistic sequences for static imbalances created

by attaching 10 g weights to the inner and outer attachment rings on the center flywheel,

respectively. Both positions produced significant vibration, and the test statistics were well

above the detection threshold. The physical machine was not capable of producing static

imbalances small enough to determine the minimum detectable fault for this setup.

Figures 5.22 and 5.23 show test statistic sequences for dynamic imbalances created by

attaching 10 g weights to the inner and outer attachment rings on the outer flywheels,

respectively. The effect was more subtle than the static imbalances cases, although both

faults were easily detected. It was not possible to create a smaller dynamic imbalance, but

the results for the inner attachment ring suggested that a 10 g inner imbalance was close

to the minimum detectable fault for this setup.

Despite the model-machine discrepancy, the subspace fault detection method was ca-

pable of detecting physical machine faults of both types and severities, and did not return

false positives when applied to the no-fault machine. These results confirm the validity of

the simulation and the potential for applying this algorithm to practical machines.

5.3.2 Sinusoidal Synthesis Method

The SS method was applied to the experimental data collected from the physical machine

for the static and dynamic imbalances with 10 g weights on the outer attachment rings.

Unlike the simulated results, the faults could not be introduced in the middle of a test run,
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Figure 5.19: Physical Machine No-Fault Test Statistic Sequence
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Figure 5.20: Physical Machine Inner Static Imbalance Test Statistic Sequence
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Figure 5.21: Physical Machine Outer Static Imbalance Test Statistic Sequence
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Figure 5.22: Physical Machine Inner Dynamic Imbalance Test Statistic Sequence
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Figure 5.23: Physical Machine Outer Dynamic Imbalance Test Statistic Sequence

so faults were present for the entire test. The pole locations selected for the simulation data

were used to generate these results. A low-pass filter application was not necessary in this

case, as a low-pass filter was applied as part of the decimation process to reduce the 10 kHz

laboratory data to 1 kHz for analysis.

Figures 5.24 and 5.25 contain comparison plots of the measured output signals for the

physical system against the corresponding predicted outputs, in close-up. Detection of an

error is possible when the measured output is significantly different from the SS prediction.

It can be observed in these figures that SS closely tracks the measured signal at all times.

Imbalance faults do not alter the fundamentally sinusoidal nature of the vibration signals,

and without being able to observe the moment of fault introduction the SS method is even

less effective when applied to the physical machine.

5.3.3 HHT Method

The HHT was applied to the vibration data collected for the 10 g outer static and dynamic

imbalances. The results, along with an HHT of a 60 s no-fault test run, are provided in

Figures 5.26 to 5.31. As it was impossible to introduce a fault while the machine was in

operation, the best way to illustrate the difference between the three cases was to plot the

54



29.5 30 30.5 31 31.5
−30

−20

−10

0

10

20

30
Vibration Signal Tracking

Time (s)

D
is

pl
ac

em
en

t (
m

il)

 

 
Measured
Tracking

Figure 5.24: Physical Machine Static Imbalance Sinusoidal Synthesis Tracking
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Figure 5.25: Physical Machine Dynamic Imbalance Sinusoidal Synthesis Tracking
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IMFs and a representative selection of the HHT. If the HHT was effective at discriminating

between no-fault and fault cases, it would be apparent from comparison of the no-fault and

fault figures.

Figures 5.26, 5.28, and 5.30 plot the IMFs for the no-fault, static imbalance, and dynamic

imbalance cases, respectively. It can be observed from these figures that in each case the

original vibration signal is approximately sinusoidal due to the dominant 1X component,

so that the EMD produced a single dominant IMF followed by a collection of insignificant

transient IMFs. There was no obvious distinction between the no-fault and fault cases.

Figures 5.27, 5.29, and 5.31 show the HHT plots for each of the previous cases. Without

the transient effects present in the simulation HHT results, determining the presence of a

fault was even more difficult. The only distinguishing feature between the no-fault case and

the static imbalance was the greater intensity of vibration, as reflected in the magnitude

of the first IMF in Figure 5.28 and the red shift in Figure 5.29. There was no observable

difference between the no-fault and dynamic imbalance cases.

These results showed the HHT to be an even less effective fault detection tool for the

physical machine than it was for simulation. At best, as with the static imbalance, they

illustrated an obvious difference in vibration magnitude by another means. The subspace

fault detection method was far more effective, particularly for dynamic imbalances.
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Figure 5.26: Physical Machine No Fault Left Rotor Vibration IMFs

Figure 5.27: Physical Machine No Fault Left Rotor Vibration HHT
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Figure 5.28: Physical Machine Static Imbalance Left Rotor Vibration IMFs

Figure 5.29: Physical Machine Static Imbalance Left Rotor Vibration HHT
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Figure 5.30: Physical Machine Dynamic Imbalance Left Rotor Vibration IMFs

Figure 5.31: Physical Machine Dynamic Imbalance Left Rotor Vibration HHT
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Chapter 6

Summary and Future Directions

6.1 Summary

Much attention has been paid to the detection of rotating machine faults in general, but

little has concerned quickly-developing imbalance faults like those experienced by centrifugal

separators. This is a relatively uncommon type of fault in comparison with gear and rotor

cracking, or bearing failure, which together represent a significant proportion of all rotating

machine failures. Static imbalances are often simple to detect as they tend to manifest as

significantly elevated vibration levels, lending themselves to diagnosis by expert analysis

or any number of filtering-based methods. The static imbalance results generated using

the HHT method for this thesis demonstrated how easily a significant magnitude change

could be detected. Dynamic imbalances are more challenging. As has been demonstrated,

dynamic imbalances may have little effect on observable vibration magnitude even though

they may have a pronounced effect on the physical deflection of a flexible rotor.

This thesis presented a subspace-based fault detection method that was suitable for

detecting both static and dynamic imbalance faults for rotating machines. This method

was applied to simulated and physical idealized test machines, and found to be effective

for both fault types on scales comparable to the residual rotor imbalance. The subspace

method was contrasted with a time-domain sinusoidal synthesis algorithm, and a method

based on human interpretation of the time-frequency content of the vibration signals, the

Hilbert-Huang transform. The subspace method was at least as effective at detecting static

imbalances, and substantially superior when applied to dynamic imbalances. In the latter

case, even expert human interpretation of the vibration signals in the time and frequency

domains did not easily reveal a fault, whereas the subspace method readily succeeded.
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6.2 Major Thesis Contributions

Chapter 3 presented the design and vibration analysis of two idealized rotating machine

models intended for the production of controlled static and dynamic imbalances. The first

was a simulated physical model implemented in Simulink and SimMechanics, incorporating

both linearized bearing simulation and flexible rotor dynamics derived from FEA of the

rotor. A physical apparatus based on the simulated machine was constructed in the lab and

shown to provide a more realistic environment for testing the subsequent fault detection

algorithms.

Chapter 4 presented a version of the Basseville subspace fault detection algorithm ap-

plied to constant-speed rotating machines, and demonstrated the calculation of prerequisite

computations for the no-fault system model and test statistics from measured data.

Chapter 5 presented a comprehensive set of simulated and physical results for the sub-

space method and comparison algorithms for a range of static and dynamic imbalance

faults. The challenge of detecting dynamic imbalances in particular was illustrated, as was

the particular effectiveness of the subspace method for detecting this type of fault.

6.3 Directions for Future Research Studies

The results presented in this thesis involve two main contributions: the idealized rotating

machine models and the subspace fault detection method that used them. Each aspect

could benefit from future development.

The results of the critical speed tests demonstrated that the simulated machine was

a only simplified approximation of the physical apparatus. Despite the idealized nature

of both machines, the physical machine was subject to far more complex nonlinearities,

noise sources and unmodeled behaviours that could be incorporated into future refinements

of the simulation. In addition, the inductive proximity sensors were a luxury that most

practical machines lack. In most cases, industrial machines are limited to a small number

of accelerometers with poor sensitivity to rotor vibration. Both the machine models and

the fault detection algorithm could benefit from further development with more realistic

instrumentation.

Modal analysis of real-world machines presents the largest practical challenge to appli-

cation of the subspace method, and in fact all model-based methods that require a pre-

determined no-fault model. Even in the case of the idealized models used for this thesis,

it was not practical to obtain the model without intimate foreknowledge of the machine

61



design. Further work toward techniques for matching the identified model to a particular

physical machine will be necessary before the subspace method can be applied to real-world

problems.

The idealized machines also represent significantly less complex machines than the cen-

trifugal separators that originally motivated this thesis. Practical separators are much more

complex, contain a liquid working phase with fluid dynamics, and often use a vertical rotor

configuration that substantially alters the flexible rotor and bearing models. The idealized

machines represent an excellent starting point, but significant changes may be required to

address the challenges of vertical-rotor machines.
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