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Abstract

Recently, numerous connections between the categories of modules Rep , M(r) for the singlet
vertex operator algebra M(r) and Repthf (sly) for the unrolled restricted quantum group
Uf (sly) at 2r-th root of unity have been established. This has led to the conjecture that these
categories are ribbon equivalent. In this thesis, we focus on extending the known connections
between the singlet vertex algebra and unrolled quantum groups to the B, vertex algebra,
and developing unrolled quantum groups in higher rank. In the first portion of this thesis,
we use the conjectural ribbon equivalence between Repwtﬁf (sl2) and Rep ;M (r) to identify

algebra objects A, associated to the B, vertex operator algebra and show that the properties

of its category of local modules, Rep’A,, compare nicely to that of Rep (s) Br-

For the second portion of this thesis, we begin by showing that the category of weight modules
Repwtﬁf(g) for the unrolled restricted quantum group Uf(g) associated to a simple Lie
algebra g is generically semisimple and ribbon with trivial Miiger center. We then construct
families of commutative (super) algebra objects in Repthf(g) and study their categories of
local modules. Their irreducible modules are determined and conditions for these categories
being finite, non-degenerate, and ribbon are derived. Among these commutative algebra
objects are examples whose categories of local modules are expected to compare nicely to
module categories of the higher rank triplet Wy (r) and Bg(r) vertex algebras. Lastly, we

restrict to the case of Uf(slg). The structure and characters of irreducible modules are

determined, and Loewy diagrams for all Verma and projective modules are found.
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Preface

The content of Chapters 2, 3, and 4 are based on three articles

[ACKR] - J. Auger, T. Creutzig, S. Kanade, M. Rupert, Braided Tensor Categories related
to Bp Vertex Algebras, Commun. Math. Phys. (2020).

[CRu] - T. Creutzig and M. Rupert, Uprolling Unrolled Quantum Groups, [arXiv:1910.05922].

[R] - M. Rupert, Categories of Weight Modules for Unrolled Restricted Quantum Groups at
Roots of Unity, [arXiv:1910.05922].

Although the first two articles are coauthored, I was responsible for the majority of manuscript
and proof writing. The content of Chapter 5 will appear in an article coauthored with
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Chapter 1
Introduction

The unrolled quantum groups Uf (g) associated to a finite dimensional simple complex Lie
algebra g were initially introduced and studied, primarily at odd roots of unity, as examples
for producing link invariants through their categories of weight modules (see [GP1, GP2,
GPT1]). Further connections between the unrolled quantum groups, knot invariants, and
topological quantum field theories have been explored in [BCGP, D, DGP]. The study
of these quantum groups has favored odd roots of unity in part due to the belief that
topological applications won’t differ much from those at even roots of unity. Recently,
however, interest in unrolled quantum groups at even roots of unity has grown due to their

potential connections to vertex operator algebras.

Relationships between module categories of vertex operator algebras and quantum groups
have been studied since the early 1990’s, starting with the pioneering work of Kazhdan-
Lusztig [KL1, KL2, KL.3, KL4]. They gave a braided equivalence between module categories
for affine Lie algebras and corresponding quantum groups. These module categories for
affine Lie algebras were later realized as module categories over certain affine vertex operator
algebras [F1, Zha, H5]. Motivated by logarithmic conformal field theory, the Kazhdan-Lusztig
correspondence was explored in the context of the triplet vertex algebra W(r) (r € Z>2) and
the restricted quantum group Uq (sly) of sly at 2r-th root of unity through the work of Feigin,
Gainutdinov, Semikhatov and Tipunin [FGST1, FGST2, FGST3, FGST4]. Stated therein
was the conjecture that certain module categories over the triplet and restricted quantum
group Uq(ﬁlg) are ribbon equivalent, and an abelian equivalence for these categories was

later proven by Nagatomo and Tsuchiya for arbitrary » [NT]. It turns out, however, that



the category of modules for the restricted quantum group Uq (sly) is not braidable for r > 2
[KS], while the triplet’s module category is braided, so there cannot be a ribbon equivalence
between these categories. Progress on this problem was made by Creutzig, Gainutdinov,
and Runkel in [CGR] via the construction of a factorizable quasi-Hopf modification Uf (sly)
of U,(sly). This quasi-Hopf algebra was reconstructed as the quantum group realizing the
category of local modules of some algebra object in the category C of weight modules for
the unrolled restricted quantum group Uf (sly). This approach was motivated by recently
established connections between Uf(ﬁ[g) and the singlet vertex algebra M(r) [CMR]. In
fact, it follows from the results of [CGR] that if the module categories of M(r) and U;{ (sly)
are ribbon equivalent, then the module categories for W(r) and U ,(sl;) are ribbon equivalent

as well.

The singlet vertex operator algebras M(r) (r € Zss) are a very prominent family of VOAs
studied by many authors [A1, AM1, AM2, AM4, CM2, CMW]. The fusion rules for M(r)
are known only for r = 2, but there is a conjecture for r > 2 [CM1]. It has been shown (see

[CMR]) that if the fusion rules are as conjectured, then there exists an identification

o Irr(Repth;{(g)) — Irr(Rep 5 M(r) (1.0.1)
between sets of irreducible modules in Repthf(slg) and the category Rep M (r) of mod-
ules generated by irreducible M(r) modules, which induces an isomorphism of Grothendieck
rings. This map can be extended to indecomposables in a way which preserves Loewy dia-
grams [CGR] (see Definition 5.1.3). We also know [CMR, Theorem 1] that the regularized
asymptotic dimensions of irreducible M (r)-modules coincide exactly with normalized mod-
ified traces of open hopf links for the corresponding (under ¢) Uf (sly)-module. The map ¢
was the key ingredient in the construction of the quasi-Hopf algebra U;b (sly) of [CGR]. There
are a number of very interesting vertex algebras which can be constructed from the singlet,
among them are the triplet W(r) and B, (r € Zss) vertex algebras. The techniques in
[CGR] demonstrated that the relationship between the triplet and singlet could be exploited
together with the map ¢ to construct braided tensor categories which compare nicely to the
representation category Rep,W(r) generated by irreducible W(r)-modules. Naturally, we
expect the same to be true for the B, vertex algebra, which is the subject of Chapter 2.
Constructing the quasi-Hopf algebra which serves as a candidate for the Kazhdan-Lusztig

dual of B, is an interesting problem for future study.

The higher rank analogues of the singlet M(r), triplet W(r), and B, vertex algebras were



introduced in [FT, C3, CM2] (see also [BM, Mi]) and are denoted by W§(r), We(r), and
Bg(r) respectively where ) is the root lattice of a simple finite dimensional complex Lie
algebra g of ADE type and r € Z>,. Vertex algebras in higher rank are notoriously diffi-
cult. Recently, however, some of the Feigin-Tipunin conjectures have been solved by Shoma
Sugimoto for the higher rank triplet algebra Wy (r) [Su], and some connections to quantum
groups have been explored by Lentner and Flandoli [Le, FL]. As in the rank one cases,
their representation categories are expected to coincide with categories constructed from the
category of weight modules of the corresponding unrolled restricted quantum group Uf(g)
at 2r-th root of unity. Understanding this category is therefore prerequisite to many inter-
esting problems relating to the Wg(r), Wq(r), and Bg(r) vertex operator algebras, and is
the subject of Chapters 3, 4, and 5. We now briefly describe the contents of the thesis before

stating results explicity.

Argyres-Douglas theories are 4-dimensional supersymmetric field theories associated to pairs
of Dynkin diagrams. The B, vertex operator algebras appear as chiral (vertex) algebras for
Argyres-Douglas theories of type (Aj, Aa.—3) [C3]. In Chapter 2 we construct and study a
family of braided tensor categories associated to the B, vertex algebras from the category
of local modules of some corresponding algebra object. The categories constructed allow us
to further probe the relationship between non-rational vertex algebras and quantum groups,
and we test a conjectural Verlinde formula for the B, algebras. Further, we show that the
character of the B, vertex operator algebra coincides with that of a Quantum-Hamiltonian
reduction, as stated in [C2, Remark 5.6]. It has since been proven [ACGY, Theorem 12] that
the B, algebra is indeed a Quantum-Hamiltonian reduction, and the proof uses our result
and additional results from [CHJRY].

The expected Kazhdan-Lusztig correspondence between vertex algebras and quantum groups
occurs at even roots of unity, but most of the work done on unrolled quantum groups has
been at odd roots of unity. It was shown in [GP1, GP2] that the category C := Rep,,, U/ (g)
(see Definition 3.3.1) of finite dimensional weight modules for Uf (g) at odd roots is ribbon
and generically semi-simple (see Definition 3.1.1). In Chapter 3, we study the category of
weight modules C for the unrolled restricted quantum group Uf (g) at arbitrary roots of unity
and show that this category remains ribbon and generically semi-simple. We also establish
certain self-duality properties of projective modules in C with respect to an appropriate
duality functor (see Subsection 3.3.2). These properties are used extensively in Chapter 5 to

determine the structure of projective modules in the category of weight modules for Uf (sl3).



The braided tensor categories corresponding to the rank one triplet M(r) and B, vertex
operator algebras are realized as categories of local modules for particular commutative al-
gebra objects. In Chapter 4, we classify commutative algebra objects and supercommutative
superalgebra objects built from simple currents (see subsection 2.1.1) in Repwtﬁf(g) and
study their categories of local modules. This yields a wealth of examples of non-degenerate
ribbon categories of both finite and non-finite type. We take particular care with the exam-
ples which we expect to correspond to the higher rank vertex algebras Wg(r) and Bg(r).
We also expect that some of the categories constructed in this way should be closely related

to the representation categories of quantum groups constructed in [N, GLO].

In Chapter 5 we specialize to the case of UiH (sl3) to study properties of projective covers of
irreducible modules in RepthZ-H (sl3). We determine the structure of all irreducible modules
and Loewy diagrams (see Definition 5.1.3) of Verma modules. The main result of this Chapter
is a proof determining Loewy diagrams of all projective covers in RepthfI (sl3). This result is
then used to determine tensor decompositions for all tensor products of irreducibles involving

a projective irreducible module.

1.1 Results

We now present our results and then discuss further connections to vertex algebras in the
following section. Readers unfamiliar with vertex algebras, quantum groups, or algebra
objects in braided tensor categories may find it helpful to first read the background material
in Subsection 2.1 of Chapter 2.

1.1.1 Chapter 2 - Braided tensor categories for B, vertex algebras

In this subsection, we summarise the results of Chapter 2 concerning the construction of
braided tensor categories related to the B, vertex operator algebra. These results are pub-
lished in [ACKR]. Let r be a positive integer at least 2 and let ¢ = e~™/". Define the
category C := Hp X Repthf (sly) to be the Deligne product of a category HSy of iR-graded
complex vector spaces (see Subsection 2.1.1 for details) and the weight category of the quan-
tum group Uf (sly). C contains simple currents Fy, X CH where ), satsifies A2 = —r/2 and

it is shown in Section 2.2 that the object in C corresponding to B, under the identification



¢ of equation (1.0.1) is

A, = P (Fi, RCp) € C® (1.1.1)

kEZ

where C® denotes an appropriate direct sum completion of C (see [AR]). A, is a commutative
algebra object with unique (up to isomorphism) algebraic structure (see Proposition 2.2.2).
Hence, one can define the corresponding representation categories of modules and local
modules Rep(A,) and Rep®(A,) respectively (see Subsection 2.1.1). Since A, is a direct sum
of simple currents, we can determine all simple local modules using the induction functor
Z : C — RepA, of Definition 2.1.14. The categorical structure of Rep’(A,) is determined
in Proposition 2.2.6 and is completely inherited from C. The following theorem lists simple
and projective objects in C, where we remark that V,, denotes the Verma modules of highest
weight a +r — 1 and S; ® C are the non-projective irreducible modules for Uf (sly) with

highest weight ¢ + ¢r and dimension i + 1 (see Subsection 2.1 for details).

Theorem 1.1.1. The simple modules in Rep®(A4,) are (with A2 := —r/2 and C := (C\ Z)U

A
B, =7 (F,KV,) with o € C and ’y)\T—i—T €z, (1.1.2)
 + 1l
ES.,=F(F,R(S;®Ch) withie{0,...,r—2},0 € Z and 7\, + H‘; cZ.
(1.1.3)
We have families of indecomposable modules:
Vo= F(F, )Y, itha ¢ Candh+ 2 "Leg 1.1.4
va=F (F,KV,) with a ¢ C an ’yr—i—Te , (1.1.4)
P, =7 (F,R(PeCH ith i € {0 o) teZand a4+ ey
'y,i,é_J(W (’L® ZT)) wit ZE{,...,’F }7 € an 77"—’_ 9 € 4,
(1.1.5)
with Qf; ;¢ being projective, and the above modules satisfy
E"y/:oz = E')‘//—&—k)\,«,a—&-rkv Efii,f = Ef—o—k)\r,i,é—i-m (116>
ﬂ‘;a = q‘f—&—k)\r,a—&-rk’ Q’ij,i,é = Qf—&—k)\r,i,g—i-k? (117)

for all k € Z. Given a ¢ C, we can write o =i+ fr for some i = 1,....,r — 1 and £ € Z. The



indecomposable modules admit the following Loewy diagrams (recall Definition 2.1.15):

S \%4
E’y, (r—1)—1,¢ E’y,i—l—l—r-{—ér
v P
v, i+4r vy, r—1,¢
S 1%
E’y,i—l,é—i—l E’y,rflfiJrér
S
E%M

/

S . S P S
Fori=1,...,r=2: Ej g 01 Quie Egoo-im

~

v, 1,4

\

I

The category Rep®(A,) is a rigid monoidal category with tensor product .7 (U) ®@ .Z (V)
F (U ®V). Rep”(A,) is also braided with braiding ¢ .7 (v defined by

(U b
A =Idy, ®c (1.1.8)
Z(U),F(V) Ay UV, 1.
(1.1.9)
—H

where cy,y is the braiding on C® given by the product of the braidings on #; and Rep,,,U,, (sls),
where we have implicitly assumed the isomorphism .#(U) ® . (V) = .Z(U® V). If r is odd,
then Rep’(A,) has twist 64 and Hopf links SZw.7(v) given by

ey(v) =1Idy, ® 6Oy (1.1.10)
SZw).zv) = Suv (1.1.11)

where 6y and Sp7,, are the twist and Hopf links respectively on C®, and we are viewing the

Hopf links as the scalars by which they act.

The examples of the vy vertex operator algebra and L_,/;3(sl;)

The B,-algebra for r = 2 and r = 3 are the vy vertex operator algebra and the affine
vertex operator algebra L_y/3(sly) of sly at level —4/3, respectively. These vertex operator
algebras have been studied in [A2, CR1, CR2, CR4, CRW, Ri, Ri2, Ri3, RW2]. We use

the notation of [CRW]. These cases are of course the easiest, but also the most important



for applications. We list their representation-theoretic data explicitly, including irreducibles,

projectives, tensor product decompositions and braidings.

The By vertex operator algebra

The (Bv vertex operator algebra has modules E3,L§ with s € Z and A € R/Z. The Sy
vertex operator algebra itself is L) and this is the only highest-weight module. The E{ are
the relaxed-highest weight modules. That is, their conformal weight is bounded below but
the top level is infinite-dimensional. The supersript s denotes the twists of these modules
by an automorphism called the spectral flow. Comparing with our notation we first set
Ao = i = /—1 and then under the conjectural quantum group to singlet vertex operator

algebra equivalence one has

2s—1
Es <—>E2312>\2>\

and ]L23 o B,
2v/—1 V-1

(1.1.12)

We now list the data of RepO(Ag) explicitly including tensor product decompositions and
braidings. We have the set C = (C\ Z) U 2Z. Hence, the simple modules in Rep’(A4;) are

" 1
Exa:ﬂ(FW&Va) with o €C, and%—i—i’yEZ,

Ey,=F (F,RCy) with iy, 0 € Z .

We have families of indecomposable modules:

1
Xa:ﬁ(FW&Va) Withan—ZZand%-kmeZ’
Pou=7 (Fy R (P ®Cy)) with iy, ¢ € Z,

where Q1 , is projective, and the above modules satisfy Y, = EY, o, B0 = ES 0 0vns

o = Qb aror, and Q7 00 = @ tirostr for all k € Z. The indecomposable modules sat-

isfy the short exact sequences:

S 14 P 1%
0= EJq, — Q7 1420 = ES Soe1 — 0 and 0= E 1400 = Qo0 = B 14000-1) = 0.

The tensor decompositions for C can be found in [CGP1, Section 8] and it then follows that

and E,,®E ,~E

V2,0 Y1+72,0+2¢

s ~ S
E 71,0,41 ® E72,0752 - E71+7270741+f2



with a € C. For o, 8 € C with o+ 8 & Z, we have

1% V o~V v
Em,a ® EWQ, = E’y1+vz,a+571 ® E’yl+'yz,a+ﬁ+1'
When a+p =n € Z, set n = j+2k with j = 0,1 and k € Z. The tensor decompositions for
these cases do not appear in [CGP1], but are easily computed from characters for p = 2, 3.

If o € C, n = 2¢, we have
1% V o~ AP
E ® Ewﬁ = QWH—W,O!

71,

and if n =14 2/, we have

1% Vo o~V 1%
Eﬁ’l,a ® Ewﬁ - E'71+72,25 ® E’71+'Y272(5+1)

Let cxy denote the braiding. We have

_ — STI1Y2
CF, RX Fy,8Y = CF,, Fqy X Cxy =€ Id X CXy.

The braiding restricted to a simple summand is a scalar which can be computed by acting

with the braiding on a highest (or lowest) weight vector in the summand and we get

CES ES - q2(£1£2+7172)IdES and CES EV == qz(a+1)+27172IdEV .
¥1,0,£1° 7 v9,0,£9 ¥1+72,0,81+£o v1,0,£7 72, y1+72,42£

For o, B € C with o + 3 & Z, we have

1
5 (a+1)(B+1)+27172 Id v
71 +r2,atB+1

D q%(afl)(5*1)+27172IdEv

& Vo= .
BN B q Y1 t+7r2,a+8-1

V1.2 9,8

If o+ 8 =20, we have

1
— 3@t (B+1)+27172
C v = 2 (o Id,r b nyp
E"Y/lvo‘®E’YQﬁ 4 v1+72,0,£ Q71+72,0,l

for some nilpotent endomorphism n,r e OO Qi im0 ot B =142, we have
Y1 1t72,0, [

1 Lia—1)(8—
cpv v = q2@tDEF)nnelg @ g2 DB-D+2mn]q
V1@ 2,8 Y1+72,2(¢+1) Y1+72,2¢

The affine vertex operator algebra LL_,/;3(sl) of sl, at level —4/3

L_43(sl2) has modules E3,Lg, L, ; with s € Z and A € R/2Z. As before s indicates



the spectral flow twists of modules. The E} are the relaxed-highest weight modules and
the affine vertex operator algebra itself is . There are two more highest and lowest weight
modules, namely L°, /3 and LL§ are of highest-weight —2/3 and —4/3 while L._} o3 and Ly are
of lowest-weight 2/3 and 4/3 (here the highest and lowest weights refer to the sly-weights.).
The identification with our modules is with A3 = \/T/Z given by

s s S
E <_> E 2s 3)\/ )\ and L <_) E 3/2 070 al’ld IL{ 2/3 <_> E 252}2 1 0 (1.1.13)

We have C = (C\ Z) U 3Z. The simple modules in Rep®(A;) are

EY =7 (F,®V,) with a € C and o + 2 + V6iy € 27,
ES.,=7 (F,K(S;®C)) with j € {0,1},¢ € Z and j + 3¢ + V/6ivy € 27 |

We have families of indecomposable modules:

V.=Z(F,KV,) with o € Z \ 3Z and a + 2 + V6ivy € 27 ,
P =7 (F,R(PaCh) with j € {0,1},¢ € Z and j + 3¢ + V6iy € 2Z,

v, 3,¢

with Qf;j , being projective and the above modules satisfy E;/a = EV+~ 372kt 3’ Ef?jg =
1 J bl ’Y 1 ,a 2y

s v P
E’H—i 3/2k.jb+k’ ’Ya Q 3/2k,a+3k’ and QV gt sz 3/2k,j+k for all & € Z. The

reducible indecomposables satlsfy the following short exact sequences:
0= EYy iy Qs — Eyjoienn— 0  and 0= EY, 0= QY = E 1yj30-1) = 0.

The tensor decompositions are as follows:

147

S S 14 ~ 1%
E 1,841 ® E 2.9:02 @ 71+W27k l1+Lo and EWLO ¢ ® E’Y2 @ E’71+V2,a+3f'

k=li—j|
by 2

. ~ Vv
Note that when 7 = j = 1 above, we have E71+72 201ty = B s 301400

)- When v € C\ Z or

a = 3y, we get

S Vo~ Vv S ~ NP
E%l ¢ ® Ew a E Y1+72,0+143¢ D E71+72,a 14-3¢ and E’ynl 4 ® Ew 3l T Wyr4y2,1,01 44



respectively. For o, 8 € C with o + ¢ 7, we have

E, €B
V1,0 7275 Y1+7y2,0+B8+k"

k=-2

by 2

Fora € C, o+ 8 =n with n = 3¢, 1+ 3¢, and 2 + 3¢, we get

1% ~ P 1%
E ®E’725 Y1+72,0 EGBE

V1,0 Y1+72,3¢
1% ~ 1%

E71 a® E72 8 — Q’71+’Y2717€ & E71+727 3(6+1)
1% P

E% a® Evz /3 Y14+72,1,4+1 & E71+72 3¢

respectively. We immediately obtain the following braidings:

Cgs s = q23€1(3€2+l)+37”21d s
E’Yl 0 fl’E’YQ i,09 Y1+72,8:01+02
1 1 _ _
Crs BS :q2(3€1+1)(3€2+1)+371"121d v @qz(Bh 1)(3¢2 1)+3’yl'ygld g
71,1817 2,18 v1+72,3(£1+£2) Y1+72,0,£1+£2
Cgs vV o = q%(a+2)+37”21d %
E’yl,O,Z’E’Yg,& 71+72 a+3¢
c s _ q%(1+3é)(a+2)+3’yl'\/21d v @qé( 1430) (a— 2)+37”21d v
E ,1 1’® 2, 'y1+'72 a+1+3¢ "/1—4—72 a—143¢
1
= 1+3€1)(2+3£2)+371V2
Cps v = ¢3! Id D npp
E’yl 1,01 ®E72,3e2 q v1+v2,1,41 L2 Qv1+72,111+52
with NQP e, @ nilpotent endomorphism on C)AYler’ulJrg2 For o, f € C with a+ 3 € Z,
we have
Cpv q%(a+2)(f3+2)+372721d v @q%(a—Z)(ﬂ—QHi’med v
1 al 72 B W1+W2aa+ﬁ+2 v1+v2,a+B8-2
< 3+2)(3-2) | o308 4 g3(a- 2)(,8+2)> F21d v
v1+v2,a+8

10



Fora € C, o+ f =n with n = 30,1 + 3¢, and 2 + 3¢, we get

— (3(at+2)8 loz(ﬁ+2)> 3772 3 (a42)(B+2)+37172

CE“‘Y/l'O‘@)E"Y;ﬁ <q2 + ¢ q IdQ'IY)1+'Y2’07€ b nQ'}Y)1+72’0’3 @ a Id "Y/1+7213f
_ [ 3(at2)8 l0!(54-2)) 37172 L(a+2)(B+2)+37172

CE¥1»0‘®E}Y/2,B (q2 T ¢ q Iinﬁrvzvlvé @ nQ51+72,1l N a Id “‘Y/1+7273(/5+1)
_ (A et2)(6-2) | L(aB l(oc—2><ﬁ+2>) 37172

CEY, o®EY, 5 = <q2 T2 g ¢ Pldgy

1
@ ¢zl TAEFDTINeLg ,p D ngr
Y¥1+71,1,4+1 Yy1+71,1,4+1

for some nilpotent endomorphisms on the projective modules QF .

Modularity and Verlinde’s formula

We call the modules EX o typical and E;q ;¢ atypical. Modules of the B,-algebra are bigraded
by conformal weight and also by the weight of the Heisenberg vertex operator algebra. The
graded trace of the corresponding B, modules turns out to only make sense as a formal
power series in the case of typical module characters as formal delta distributions appear.
Using the ideas of [CR2, CR3| we can compute a modular S-transformation giving a certain

function on the set of typical modules that we call S-kernel SX.

The Verlinde algebra of characters generated by characters of atypical modules is shown
to have a particular generating set which is closed under modular S-transformations. This
generating set can be related to the semi-simplification of Rep®(A,). For this, we recall
that the semi-simplification of a category is the category obtained by quotienting negligible

morphisms.

Definition 1.1.2. Let C be a rigid braided tensor category. Let M, N be objects, then a
morphism f : M — N is negligible if for every morphism g : N — M the trace of fog
vanishes. The semisimplification C** of C is the category whose objects are those of C but all
negligible morphism are identified with the zero morphism. An object M is called negligible
if the identity on M is a negligible morphism and in a rigid tensor category the subcategory

N whose objects are all negligible objects forms a tensor ideal.

Let G(C) be the Grothendieck ring (see Definition 4.5.2 [EGNO]) of C and let G(N') be the
Grothendieck ring of the ideal of negligible objects then we define the ring

g=(C) :=G(C)/GN)
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and we note that in general G*(C) is a homomorphic image of G(C%).

The modular properties of characters of the B,-algebra and Hopf links of C are studied and
compared in Sections 2.3 and 2.4. In Section 2.3, the modular S-matrix SX coming from
the modular action on characters for typical modules is computed and shown to agree with
the S-matrix S® coming from closed Hopf-links associated to typical modules in C up to
normalization in Proposition 2.3.2. To compare the atypical modules, the ring G*(C°) of the
category of local modules (those which are induced to Rep®A, by the induction functor) is
derived in Proposition 2.4.1. The corresponding matrix S® is derived and shown to agree
up to normalization with the matrix SX determined by the modular action on the Verlinde
algebra of characters generated by atypical B,-modules when r is odd (see Proposition 2.4.2).
From this, the Verlinde formula immediately follows in Corollary 2.4.3. When r is even, B,
is half-integer graded and we instead compare modular properties associated to its integer

part B? , showing again that the statement analagous to the following Theorem 1.1.3 holds.

Theorem 1.1.3. (Verlinde’s formula) For the parametrization of atypical simples, refer to
the discussion around (2.4.16).

1. (Proposition 2.3.2) The normalized modular S-matrix S¥ and Hopf links S® of typical

modules coincide:
SX ! pr SGD ! pr
(v,0),(v' ") (v,0),(v' ") ‘

S>1§,(z/,£’) S?f,(u’,f’)

2. (Proposition 2.4.2) Let r be odd. The normalized modular S-matrix S and Hopf links

S® of atypical modules coincide:

X ®
S(s,s’),(n,n’) _ (s,8"),(n,n’) '

X ®
S]l,(n,n’) S]l,(n,n’)

3. (Corollary 2.4.3) Let r be odd and let A, be a Z-basis of G*(Rep®A,) with structure

(k") )
constants N(&S,)’(t’t,). That is

kK
(kK) x (5,8) = 3 NERD (8
(n,n’)eA,
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for (k, k') and (s, s’) in A,. Then the Verlinde formula holds

Z (s,8"),(n,n’) SG; ), (SCD) n'),(kk") N(k,k’)
S T (s,8), (L)
(n,n/)EA, 1,(n,n’)

It was conjectured in [C2, Remark 5.6] that the B, vertex operator algebra is a quantum
Hamiltonian reduction of Vi (sl,_1) at level k +r — 1 = ’"T;l Quantum Hamiltonian re-
ductions are associated to nilpotent elements and the relevant nilpotent element f for us
corresponds to the partion (r — 2,1) of r — 1. We denote the corresponding simple W-
algebra by Wi(sl._1, f) and in Section 2.5, we show that the characters of these algebras

coincide. That is, (Theorem 2.5.1):

Theorem 1.1.4. The characters of the B,-algebra and of Wy(sl._q, f) coincide for k =
—r+1+ ’”T;l

The problem of realizing B, as a quantum Hamiltonian reduction has since been solved
[ACGY, Theorem 12], and the above result is a necessary component of the proof, so we
briefly outline the argument here. Since the Virasoro modules appearing in the decomposition
of the B,-algebra are uniquely determined by their character this Theorem actually says
that the B,-algebra and Wj(sl,_1, f) are isomorphic as modules for the tensor product of
the Heisenberg and Virasoro vertex operator algebras. This means both are extensions of
the same subalgebra and they coincide as modules for the subalgebra. We can therefore
ask if such extensions are unique. Recent progress in [CHJRY] shows that the category
of C'j-cofinite modules of the Virasoro algebra at any central charge has a vertex tensor
category structure. Vertex tensor category structure on the Heisenberg vertex operator
algebra is known [CKLR] and since vertex operator algebra extensions in a vertex tensor
category are in one-to-one correspondence to commutative and associative algebra objects
in the category by [HKL] the uniqueness question of vertex operator algebra extensions is
equivalent to uniqueness of these algebra objects. This last point is proven in [ACGY], and
as a consequence they obtain a proof that the B, = Wy(sl,_y, f) [ACGY, Theorem 12].

1.1.2 Chapter 3 - The category of weight modules for Uf(g)

The correspondence between unrolled quantum groups and singlet vertex operator algebras
occurs at even roots of unity, but the higher rank unrolled quantum groups have previously

been studied only at odd roots of unity. In Chapter 3 we establish results necessary for
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the construction of the braided tensor categories which we expect to compare nicely to the
higher rank vertex algebras W (r), Wq(r), and Bg(r). Let g be a finite dimensional complex
simple Lie algebra. Let ¢ be a primitive /-th root of unity, r = #f and C the category
of finite dimensional weight modules for the unrolled restricted quantum group Uf(g) (see
Definition 3.2.5 and the opening comments of Section 3.3). We describe in Section 3.2 how
to construct the unrolled quantum groups as a semi-direct product UJ (g) := U,(g) % U(h)
of the Drinfeld-Jimbo algebra U,(g) and the universal enveloping algebra of the Cartan
subalgebra of g. We also show that the action of the braid group By (see Definition 3.2.3)
extends naturally from U,(g) to U/ (g) (Proposition 3.2.2):

Proposition 1.1.5. The action of the braid group By on U,(g) can be extended naturally

to the unrolled quantum group U;{ (9)-

This statement is known to some, but hasn’t appeared in the literature to the author’s
knowledge. It has been shown previously (see [CGP2]) that there is a generically semi-simple
structure (see Definition 3.1.1) on the category of weight modules over the restricted unrolled
quantum group at odd roots of unity where ¢ ¢ 3Z if g = (G5. The purpose of this restriction
on the G case is to guarantee that ged(d;,r) = 1 for alli = 1,...,n where d; = %(ai, a;). This
condition fails at odd roots only for G5, but for even roots all non ADE-type Lie algebras fail
this condition for some choice of . We show that when gcd(d;, r) # 1, generic semi-simplicity
can be retained if one quotients by a larger Hopf ideal (see Definition 3.2.5). In Subsection
3.3.1, we observe that C being ribbon follows easily from the techniques developed in [GP2]
as in the case for odd roots, and we show that C has trivial Miiger center (see Definition
3.1.2). We therefore have the following (Propositions 3.3.8, 3.3.10, and Corollary 3.3.9):

Theorem 1.1.6. C is a generically semi-simple ribbon category with trivial Miiger center.

Uf(ﬁ[g) was studied at even roots of unity in [CGP1]. Stated therein ([CGP1, Proposition
6.1]) is a generator and relations description of the projective covers of irreducible modules.
One apparent property of these projective covers is that their top and socle coincide. Showing
that this is a general feature of projective covers in C is the topic of Subsection 3.3.2. Let
P* denote the projective cover of the irreducible module S* € C. We introduce a character
preserving contravariant functor M — M, analagous to the duality functor for Lie algebras

([Hu, Subsection 3.2]). We are then able to prove the following theorem:

Theorem 1.1.7. The projective covers P* are self-dual under the duality functor. That is,
Pr= P,
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This theorem has the following corollaries (Corollary 3.3.15 and 3.3.16):

Corollary 1.1.8. e Socle(P?) = S*.
e P is the injective Hull of S*.
e C is unimodular.

e C admits a unique (up to scalar) two-sided trace on its ideal of projective modules.

These results will be used extensively in Chapter 5 to determine the Loewy diagrams of

projective covers for Uf] (sl3).

1.1.3 Chapter 4 - Algebra objects and simple currents in Repthf(g)

As described in the introduction and Chapter 2, we can construct braided tensor categories
which compare nicely to categories of modules for vertex operator algebras by studying
appropriately chosen commutative algebra objects. In Chapter 4, we study families of com-
mutative algebra and supercommutative superalgebra objects which are direct sums of simple
currents. These families contain the algebra objects corresponding to the higher rank vertex
algebras Wy(r) and Bg(r), allowing us to make conjectures about their representation the-
ory. Let B be a braided tensor category. A simple object in B is called a simple current if it
is invertible with respect to the tensor product. The tensor product of two simple currents is
a simple current, so the Grothendieck ring of the pointed subcategory of simple currents of
B is the group algebra of an abelian group. We assume this group is free and associate to it
a lattice £ with quadratic form (—, =) : £ x L — Q/¢Z for some fixed integer ¢. The simple
current associated to A in L is denoted by C, and we assume this quadratic form determines
the braiding of simple currents, e.g. cc, c, (VA ® v,) = q¢MMv, @ vy for a primitive (-th root

of unity q. For any lattice L C L, define the object

Ap = @CA € BY.

AeL
Then we have the following classification result:

Theorem 1.1.9. A, is an associative algebra object for all L C L. Aj is commutative if
and only if 1/2/¢ L is an even lattice, that is if and only if (A, \) € ¢Z and 2(\, u) € (Z for

15



all \, i € L.

Let L* C L be the lattice obtained by adding a generator u € L to a lattice L C £. We
can then define the associated algebra object Azu := @,.;. Cx, and we have the following

proposition (Proposition 4.2.3 and Corollary 4.2.5):

Proposition 1.1.10. Let L C £ such that A, is commutative and p € £ such that p ¢ L

and 2u € L, then Apu is a superalgebra. Ajp. is supercommutative if and only if
2(u, py € U7\ 207 and 2(u, \) € UZ

for all A € L, and all supercommutative superalgebras A = A% @ A! which are direct sums
of simple currents such that A° = A, for some lattice L C £ and A' is a non-trivial simple
object in RepA° take this form.

Given an additional assumption, which holds in the examples we consider, irreducible objects
in RepAp. are given by the action of the induction functor .% : B — RepAp. (Definition
2.1.14) on irreducibles in B (Proposition 4.2.4):

Proposition 1.1.11. Suppose every indecomposable object in B has a simple subobject.
Then N € Rep Ay is simple if and only if N = .% (M) for a simple object M € B.

The primary example we consider is the category of weight modules C over the unrolled
restricted quantum groups (see Definitions 3.2.1, 3.2.5 and 3.3.1) at root of unity ¢ of order
¢ > 3. The simple objects in C are denoted by S* with A € h* where h = Span{H,, ..., H,} C
Uf(g). This category admits projective covers for each irreducible module, which we denote
by P, and we have the following results for induction of projective and irreducible modules
(Theorem 4.3.2):

Theorem 1.1.12.
o F(P*) € Rep’(Apx) if and only if A € £(L#)".

e Let X € C and let Py € C be the projective cover of X. Then .#(X) € Rep®(Ap.) if
and only if .#(Px) € Rep’ Ap..

e F(P*) is the projective cover of .Z(S*) in Rep’Apx.

e The distinct irreducible objects in Rep’ Ar. are {7 (S*)| A € A(L*)}, where A(LV) :=
L(Lry*/E(Lm)* N L. Rep’ Apw is finite if and only if rank(L*) = rank(P).
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Further, we can determine when the category of local modules is ribbon and has trivial

Miiger center (see Definition 3.1.2, Proposition 4.3.4):
Proposition 1.1.13. Let Ay, be a supercommutative superalgebra, then
o Rep’ Ay is ribbon if 2(1 — r)(X, p) € (Z for all A € L and 2(1 — r)(u, p) € :Z.

o Let r = 20/(3+ (—1)). If r { 2d;, for all 4, then Rep’ Az« has non-trivial Miiger center
if and only if there exists a A € A(L") such that (\,7) € £Z for all v € A(L").

Note that the analogous results for commutative algebra objects are given by setting p = 0.
In Subsections 4.3.1 and 4.3.2 of Chapter 3, we identify algebra objects A, € C® and B, €
(CXH)® where H is an appropriate category of modules over the Heisenberg vertex algebra
(see Subsection 4.1), which correspond to the Wq(r) and Bg(r) vertex operator algebras
respectively. Their categories of local modules satisfy the following properties (Proposition
4.3.5 and 4.3.7):

Proposition 1.1.14. . RepOArQ is a finite non-degenerate ribbon category (i.e. Log-
Modular) with det(A) - r*2) distinct irreducible modules, where A is the Cartan

matrix of g.

. Repo%ﬁ]z is non-degenerate, ribbon if r is odd or p € (), and the irreducible modules

are
(Z(S*®F,) 1,7 € b, and i+ ra,y € Q }

with relations .# (S* X F,) & Z(SHAKF, ) for all A € rP, where a, = \/—1/r.

1.1.4 Chapter 5 - Projective modules for Uf(ﬁ[g)

In Chapter 5 we specialize to the case Uf (sl3). Our main focus is to understand the structure
of projective modules and tensor decompositions for tensor products involving projective
Verma modules. To determine the Loewy diagrams of projectives (see Definition 5.1.3),
we need to know the structure of the irreducible and Verma modules, which are denoted
S* and M? respectively, where A € h* is the highest weight. It follows from Propositions
3.3.4 and 3.3.6 that the irreducibility of M?* is determined by the “typicality” of the scalars
A = (A +p,ax) (K =1,2) and A3 = A\ + Ay where ay, ay are the simple roots for sl3, and
we call \; typical if \; € C \ Z U 2Z. We call a weight A\ € h* typical if all \; are typical,
and atypical otherwise. Atypical weights with at least one typical scalar will sometimes be

called semi-typical. It is easy to check that there are five distinct cases:
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1. X typical (all A; are typical),

2. My A €142Z,

3. M1 €2Z and Ay € 1 +2Z or Ay € 27 and A\, € 1 + 27,

4. My €C\Zand \y € 1 +2Z or \y € Z\Z and A\ € 1 + 27,
5. A, Ao € C\Z and \; + Xy € 1 + 2Z.

Each case yields a different structure for the irreducible modules S*. In fact, the Loewy
diagrams of Verma modules and projective covers are also determined by the above cases.

The structure of irreducible modules are as follows (Proposition 5.1.2):
Proposition 1.1.15. e If A\, \y € 1 + 2Z, then dim(S*) = 1 and ch[S?] = 2*.

o If \j,\y € C\ Z with A\; + Xy € 1 + 27, then dim(S*) = 4 with

Ch[SA] — Z)\ 4 Z)\foq 4 Z)\fozg =+ Z)\foqfag

e If \ is semi-typical with atypical index \; (i € {1,2}), then if j # i € {1,2},

3 ch[SY = A 4 227 4 A (eater) if \; € 2Z
dim(S*) =4 ch[SY) = 2} 4 227 g pA(eate2) 4 prmeim2ayf )\ e C\ Z

e If )\ is typical, then dim(S*) = 8 and

ch[$Y] = ch[M*) = 2* [] (Z,Za—_11>

aEA~

From this, we can prove the following result (Proposition 5.1.4):

Proposition 1.1.16. The Loewy diagrams for Verma modules are as follows:
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(3>S)\ (3>S,\

N <N

(1)5)\—041 M)\ (I)SA—Oq—QOcQ (1>S/\—2a1 -2 M

>~ >~

(3)5)\—041—(12 (3)8)\—a1—a2

(1) S/\—a2

Loewy Diagram for \; € 1 + 27, A\, € 27Z. Loewy Diagram for A\; € 2Z, Ay € 1 + 2Z.

(4)5)\ (4)5)\
M \[ M \[
(4)5)\7042 (4>S)\7a1

Loewy Diagram for \; € C\ Z, Loewy Diagram for \; € 1+ 27Z,

Ay €1+ 27. Ay € C\ Z.
g / M g \
e l ® gr—a > ® gA—as
© ghomran e
Loewy Diagram for A, A\ € C\ Z Loewy Diagram for A, Ay € 1 + 27Z.

A+ A €14 27

where left superscripts indicate the dimension of S*.

To determine the Loewy diagrams of projective modules P*, we must first determine the
Verma modules which appear in its standard filtration (a standard filtration is one for which
successive quotients are Verma modules). This is done using Proposition 1.1.16 to determine
the multiplicity [M* : L] of L* in the composition series of M* for every u € h*, and then
applying BGG reciprocity (Proposition 3.3.12) to determine the multiplicity (P* : M*) of

each M* in the standard filtration for P*. Since we know the irreducible factors of each

Verma module, we then know the irreducible factors which appear in the Loewy diagram of

P*. One then exploits the self-duality of projective covers (Theorem 1.1.7) via Lemma 5.2.2
along with the Loewy diagrams of Verma modules to determine which row each irreducible
factor appears in, and many of the arrows for the diagram. One then completes the diagram

by computing extension groups to determine missing arrows, which yields the following:
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Theorem 1.1.17. The Loewy diagrams for the projective covers are as follows:

(4)5)\ (4)8)\

(4) SA—a1 P> (4)5)\4-(11 (4>S)\—a2 P (4) GA+az
\ /

(4)8)\ (4) S)\
Loewy Diagram for \; € 1 +2Z, )y € C\Z Loewy Diagram for \; € C\ Z, s € 1 + 27
Verma factors: M?*, Mt Verma factors: M?, Moz
(4)5)\
@ gA—a1—az P> ) gAtart+az
(4>S,\

Loewy Diagram for A\j,\s € C\Z, \; + Ay € 1 +27Z
Verma factors: M?*, MAToitaoz

(3>S)\

Loewy diagram for \; € 27, Ay € 1 + 27
Verma factors: M, MATez pfAtertaz

The diagram for \; € 1 4+ 2Z, \y € 27 can be obtained by swapping a; <> a» in the simple

factors.
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(3)SA+a1+2a2 (3) S)\+2a1+a2 (3) S}\—l-ag (3) S}H—al (3)5')\—011 (3)5)\—6!2

0= c N

(I)S)\+2(a1+o¢2) (I)SA-&-QO[Q (1)S)\+2a1 (I)S)\EB4 (I)SA—QOQ (I)S)\—Qozz (1)SA—2(a1+a2)

N AT e 2/

(3)Sz\+a1+2a2 3) SA+2a1+as (3>Sz\+o¢2 3) SAtar (3)5)\—041 (3>SA—a2

\\//

(1) S)\
Loewy diagram for A\, Ay € 1+ 27
Verma factors: M*», MAter Jfrtes JpAt2ea+tas Jritait2es ) rat+2(aitas)

Applying this theorem together with the fact that projective modules with coinciding char-
acters are isomorphic (Proposition 3.3.13), we can compute the tensor decompositions of the
form S* ® M* where M* is projective.

Proposition 1.1.18. Let 4,j € {1,2} with i # j. If \; € 1 4+ 2Z and \; € 27Z, then

S* @ MH = MA@ pAHmai—ar when y; € 2Z, p; € C\ Z
Sr @ MH =2 MAtr-or—az gy pAtu—a; when p; € C\ Z, p; € 2Z
S* @ MH =2 pru-or—a when py, o € 27

For \; € 1 +2Z and \; € C\ Z, we get

SA@ MH* = MA@ MM @ MATRT o2 @ VAR 29 when y; € C\ Z, iy € 27

SA @ MH* = MATE @ MATHTeiT295 @y pAtpmai—a when 1y, j2 € 27
S* @ MH = MAHRes e gy phtirea e when p1; € 27, \j + p; € 27
S* @ MF = MM gy prrm2es e when j; € 27, \j + p; € 1+ 27

S} @ M* = MA@ MATETY @ Mmoo @ VM2 when € 27, A+ € 7
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For Aj, Ao € C\ Z, A3 = A1 + Xy € 1 + 27Z, we have

S @ MH =2 MATh—a1 g pfAtr—az g pAtp—ai—a: If f11, po € 27
St @ Mt = MA@ MA@ MR @ p e e Otherwise

1.1.5 Connections to vertex operator algebras

Extending the connections between Uf (sly) and the rank one singlet, triplet, and B, vertex
operator algebras to the higher rank cases Wg(r), Wo(r), and Bg(r) is our primary moti-
vation. As described in Subsections 4.3.1 and 4.3.2, the vertex operator algebras Wy(r)
and Bg(r) can be identified with commutative algebra objects in (Repthf(slg))® and
(Repwtﬁf(ﬁlg) XIH)® respectively where H is the category of modules over the Heisenberg
vertex operator algebra on which Lg acts semisimply (see Subsection 4.1), and C® denotes the
direct sum completion of C (see [AR]). We expect that the module categories Rep g, Wq(r)
and Rep ) Bg(r) generated by irreducible Wg(r) and Bg(r) modules respectively to be rib-
bon equivalent to the categories of local modules over their corresponding algebra objects
A, and B, and the structure of their categories of local modules are given in Propoisition

1.1.14. We therefore make the following conjectures for the corresponding VOA categories:
Conjecture 1.1.19.

1. Rep(y Wq(r) is a finite non-degenerate ribbon category with det(A) - rrank(@) distinct

irreducible modules, where A is the Cartan matrix of g.

2. Repy Bg(r) is non-degenerate, ribbon if r is odd or p € @, and the irreducible modules

can be indexed as
{188 [,y € 9™, and (A, + ra,y) € Z for all A € P}

with relations S% = SHPA for all A € rP, where a, = \/—1/r.

YtarA

We remark that the number of irreducibles in the conjecture for Wy, (2) agrees with obser-

vations of Shoma Sugimoto that he presented in a seminar talk at the University of Alberta.

The Ba,(2)-algebra is particularly interesting, as it is isomorphic to the simple affine vertex
algebra of sly at level —3/2, L_%(E[g) [A3], which is the easiest case beyond rank one.
The associated algebra object lives in the category (Repwtﬁf (sl3) X H)®, so the results of
Chapter 5 on the category of weight modules for Repthf (sl3) will be useful for studying this
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category. The results of Chapter 5 will appear along with the construction of the category
of local modules corresponding to By,(2) and a comparison to L_ %(5[3) in a future paper

coauthored with Thomas Creutzig and David Ridout.

Verlinde’s formula

We call a vertex operator algebra strongly rational if it is rational, Cs-cofinite, simple, and
self-contragredient. Let My = V., My, ..., M,, denote the inequivalent simple modules of a
strongly rational vertex operator algebra V' (recall that rational vertex algebras have finitely

many simples). Then the torus one-point functions are the graded trace
ch[M;)(v, 7) = trar, (o(v)g™021) q=e""r (1.1.14)

with o(v) € End(M;) the zero-mode corresponding to v € V' and ¢ the central charge of the
vertex operator algebra. They carry an action of the modular group [Zhu] and the modular

S-transformation defines the modular S-matrix, SX by

ch[M;] (v ——> = TkZSX ch[M;](v, 7) (1.1.15)
with £ the modified degree of v [Zhu]. Denote by Ni’} the fusion rules, i.e.

M; Ry M; = @ (1.1.16)

Then, Verlinde’s formula says that

52538k
N =Y Jsf (1.1.17)
=0 0,0
It was long expected from physics considerations that Verlinde’s formula should hold for
strongly rational vertex operator algebras [V, MS]. It can be shown that Verlinde’s formula
follows directly from the formula
St _ Sig

aF ] (1.1.18)
S()’.7 Sg’]
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with the Hopf links S = tras,my, a; (¢j © ¢i;) where the ¢;; : M; Ry M; = M; Xy M; are the

braiding isomorphisms, since in any finite rigid braided tensor category Hopf links satisfy

2] SGD n ®

wl “jl kkAt
So o ii So (1.1.19)
0,4 ~0,0 k=0 0,4

where ¢ labels a simple object. Indeed, (1.1.17) follows directly from (1.1.18), (1.1.19), and
invertibility of the Hopf link S®-matrix in modular tensor categories. The famous Theorem

of Yi-Zhi Huang says that (1.1.18) is true in any strongly rational vertex operator algebra
[H1, H2, H3].

It is natural to ask for a variant of Verlinde’s formula for vertex operator algebras with
non semi-simple finite representation categories. The picture promoted in [CG1] is that
there should still be a relation similar to equation (1.1.18) with some modifications: since
traces on negligible objects vanish one then needs to replace Hopf links by modified Hopf
links. That is, modified traces of double braidings. Similarly one also needs to take into
account so-called pseudo trace functions of modules [Miy|. This picture is verified in examples
based on conjectural correspondences to restricted quantum groups [CG1, CMR], see also
[GR1, FGR] for further work on the Verlinde formula in this context, and [S2] for the

categorical perspective.

In practice, most interesting vertex operator algebras (such as the affine vertex operator
algebras at admissible level) have representation categories that are not even finite, they
have uncountably many inequivalent simple objects. There exists a conjecture relating to
Verlinde’s formula for affine vertex operator algebras of sly at admissible level by treating
characters as formal distributions [CR2, CR3], see [RW1] for a review. This conjecture is
open, except for some encouraging computations of fusion rules [Ga, Ri, AP] and a recent
proof of a formula of type (1.1.18) for the finite subcategory of ordinary modules for all affine
vertex operator algebras of simply-laced Lie algebras at admissible level [CHY, C1].

The conjectural Verlinde formula for the B,-algebras is of the same type as admissible level
affine sly and actually Bj is isomorphic to the affine vertex operator algebra of sly at level
—4/3. Assuming the quantum group correspondence between M(p) and Uf (g) to be correct,
the results of Sections 2.3 and 2.4 in Chapter 2 verify that normalized Hopf links coincide up
to complex conjugation with normalized modular SX-coefficients, i.e. verify the appropriate

analogue of equation (1.1.18) in this context.
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Chapter 2

Braided Tensor Categories for B,

Vertex Operator Algebras

The B,-algebras are a family of vertex operator algebras parameterized by r € Z>,. They are
important examples of logarithmic conformal field theories and appear as chiral algebras in
Argyres-Douglas theories of type (A, Ag,—3). The first member of this series, the By-algebra,
is the well-known symplectic bosons also often called the v vertex operator algebra. We
study categories related to the B, vertex operator algebras using their conjectural relation to
unrolled restricted quantum groups of sly. These categories are braided, rigid and non semi-
simple tensor categories. We list their simple and projective objects, their tensor products
and their Hopf links. The latter are succesfully compared to modular data of characters
for the B, vertex algebras. Assuming the categories we construct and Rep, B, are indeed
ribbon equivalent, this confirms a proposed Verlinde formula of Thomas Creutzig and David
Ridout.

2.1 Preliminaries

The B,-algebra can be realized as a direct sum of simple currents in the Deligne prod-

uct of representation categories of the singlet and Heisenberg vertex operator algebras (see
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[C2],[CRW]). It was shown in [CMR] that there exists a bijection between a particular
category of modules for the singlet and the category of weight modules for the unrolled
restricted quantum group of sls, UqH (sly). Further structures as tensor products and open
Hopf links were succesfully matched with conjectural fusion products on the singlet algebra
and asymptotic dimensions of characters, which led to the conjecture that these categories

are equivalent as ribbon categories. Further evidence for this conjecture has been given in

[CGR].

In this section we recall the definition of Uf (sly) and the structure of its category of weight
modules, as seen in [CGP1]. We will also recall the definition of the Heisenberg vertex oper-
ator algebra and the category of modules we are interested in, as well as some preliminaries

of algebra objects and simple currents.

The unrolled restricted quantum group of sl; and its weight modules

Let » > 2 be a positive integer and
q=e ™" (2.1.1)
a 2r-th root of unity. For any x € C we choose the notation

{z} =q¢" —q % [z] = %, and for any n € Z, {n}! = {n}{n — 1}..{1}. (2.1.2)
The Drinfeld-Jimbo algebra associated to sly, U,(sly) is the associative algebra over C with

generators F, F, K, K~! and relations
~1 1 2 2 K- K
KK =K 'K=1, KE=¢°FK, KF=q “FK, [E,F]:—l.
qa—q

This algebra has a Hopf algebra structure given by a counit € : U,(sly) — C, a coproduct
A U,y (sly) = Uy(sly) ® U,(sly), and an antipode S : U,(sly) — U,(slz) defined by

A(K) =K®K, e(K) =1, S(K) =K,
AE)=10E+E®K, e(F) =0, S(E)=—-EK™",
AF)=K'@F+F®]l, e(F) =0, S(F)=—-KF



The unrolled quantum group of sls, U;I (sl), is defined by extending U,(sly) through the
addition of a fifth generator H with relations

HK* = K*'H, [H,E] = 2E, [H, F] = —2F.
The counit, coproduct, and antipode can be extended to U, f (sly) by defining

AH)=H®1+1®H, €H)=0  S(H)=—H.

The unrolled restricted quantum group of sls, Uf (sly), is then obtained taking the quotient
of Ul!(sly) by the relations E" = F" = 0.

A finite dimensional Uf(slg)—module V is called a weight module if it is a direct sum of its
H-eigenspaces (H acts semisimply) and K = ¢ as an operator on V. Let Repwtﬁf(ﬁlg)
denote the category of weight modules for Uf (sly). A classification of simple and projective

modules was given in [CGP1] as follows:

Given any n € {0,...,r — 1}, let S,, be the simple highest weight module of weight n and

dimension n + 1 with basis {sy, ..., s,} and action

Fs;i=si11, FEs;=[in+1—i]si.1, Hs;=(n—2i)s;, Esy=Fs,=0.

For any o € C, define V,, to be the p-dimensional highest weight module of highest weight

a+r — 1, whose action is defined on a basis {vy, ...,v,_1} as

Fvi =vi1, FEuv;=[i|[i —alv,y, Hv;=(a+r—1-2i)v;, Evg= Fuv,_1=0.
V, is called typical if & € C := (C\ Z) UrZ and atypical otherwise. The typical V,, are
simple since any basis vector v; can generate a scalar multiple of every other basis vector

through the action of E and F'. If V,, is atypical, then we have a = rm + k for some m € 7Z
and 1 < k <r — 1. Hence,

Ev, = —[k|[k — (rm + k)]vg—1 = [k][rm]v_1 = 0,
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since {rm} = ¢™ — ¢ = (=1)™ — (=1)"™ = 0. So, when V,, is atypical, it contains a

simple submodule generated by the basis elements {vk, ki1, ..., Vp_1}.

For any ¢ € 7Z, let C{! denote the one dimensional module on which E and F act as zero

and H acts as scalar multiplication by ¢r. Then the following holds
Proposition 2.1.1. [CGP1, Theorem 5.2 and Lemma 5.3]

1. The typical V, (o € C = C \ Z U rZ) are projective.
2. Every simple module in Repthf (sly) is isomorphic to S, @ CH for some n € {0, ...,r —
2} and ¢ € Z or V,, for some a € C.

A weight vector v is called dominant if (FE)?v = 0. If v is a dominant weight vector of
weight ¢, then we denote by P; the module generated by v with no additional relations. This
module’s structure is given explicitly in [CGP1, Section 6], and the following proposition

was proven therein:

Proposition 2.1.2. The module F; is projective and indecomposable with dimension 27.
Any projective indecomposable module with integer highest weight (¢ 4+ 1)r — i — 2 is iso-
morphic to P; @ CI.

If V is an object in Repthf (sly) with basis {v1,...,v,}, then V has the obvious dual vector
space V* = Homc(V,C) with dual basis {v],...,v}} and action af(v) = f(S(a)v) for f €
V* ae Uf(ﬁ[g) and S the antipode. The left duality morphisms are given by

oety :C—>VeV* and by : VeV = C,
where coev(1) = Y v; ® v, and &¥(f ® w) = f(w). Ohtsuki defined in [O] the R-matrix

operator on Repthf (sly) by

r—1 omn
__ _HQ®H/2 {1} n(n—1)/2 n n
R=gq g —{n}' q E"® F", (2.1.3)

n=0
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where ¢"®H/2(y @ w) = ¢**/?v ® w for weight vectors v, w with weights A, and \,. The
braiding on Repthf (sly) is then given by the family of maps cyw : VW — W ®V where

cyw(v@w) = 7(R(v®w)) where 7 is the flip map w ® v — v ® w. Ohtsuki also defined an
operator By : V — V on each V € Repwtﬁf(ﬁlg) by

- p—1 2n
0= K1t Z { } qn(nfl)/Zs(Fn)q7H2/2En. (214>

The twist 0y : V' — V is then given by the operator v — 0. Repthf(slg) also admits
compatible right duality morphisms

&Sy VeV, Sv(ve f) = fF(K'7 o),
(oevy :C =V @V, oev(l) = > K" 'Vi@uy}.

The following Lemma was proved in [Ru, Proposition 6] using [CGP1] and will be used in

multiple results:

Lemma 2.1.3. For any k € {1, ..., — 1} there are short exact sequences of modules

0= S 1k R@ClL =Viter = Sp1 ® Cféﬂy — 0,

H
0= Viciiver > B®Cy = Vigipior — 0.
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2.1.1 Vertex Operator Algebras

Given a ring R, we denote by R[z], R[[z]], and R((2)) the space of formal R-valued polyno-

mials, Taylor series, and Laurent series respectively. That is,

R[z] = {Z ri2'|ri € Ryn € Z+}

R[[z]] = {Z ridi|r; € R}
R((z2)) = {Z riZ'lr; € Rym € Z+}

Let V be a complex vector space, and End(V') the collection of linear operators f : V — V.

The formal power series

A(z) = Z Az

nel

with coefficients A,, € End(V) is called a field if for all v € V', A(z)v is a Laurent series, so

A(z)o =Y A (v)z " € V((2)).

This is equivalent to stating that for all v € V', A,v = 0 for sufficiently large n(v). A Z-

graded vector space is a vector space V such that V' = @ V,, where each V,, is itself a vector
nez
space. A linear operator f € End(V') on a graded vector space V' is said to be homogeneous

of degree m if f(V},) C Vi4, for all n € Z, and we denote the degree by deg f. A field A(z) is
then said to be homogeneous of conformal dimension m if each operator A,, is homogeneous

of degree m — n.

Definition 2.1.4. Two fields A(z) and B(w) are said to be local iff there exists an N € Z,.
such that
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Definition 2.1.5. A vertex algebra is a vector space V' equipped with the following objects:
e A distinguished vector |0) called the vacuum vector.
e A linear operator T: V — V.

e A linear operator Y (—,z) : V — EndV[[z*!]] which sends each element v € V to a
field Y(v,2) = > vmyz "

nez

These objects are subject to the following constraints:

e For any v € V, we have Y (v, 2)|0) € V[[z]] where Y (v, 2)|0)|.—o = v and Y (|0), z) =
Idy.

e Foranyv eV, [T,Y(v,2)] = 0,Y (v, z) and T|0) = 0.
e All fields Y (v, z) are local with respect to each other.

A vertex algebra is called Z-graded if V= @ V,, with |0) € Vi, T is a linear operator of
nez
degree 1, and for any v € V,,,, Y (v, 2) has conformal dimension m i.e. degvg,) = —n+m—1.

Definition 2.1.6. A vertex operator algebra, or conformal vertex algebra, of central charge

¢ € C is a Z-graded vertex algebra V = @ V,, with a non-zero “conformal vector” w € V,
nel
such that the coefficients L,,, n € Z of the associated field:

Y(w,z2):= Zan’”’Q
nez
satisfy T' = L_1, Lo|ly, = nld, and the defining relations of the Virasoro Lie algebra with

central charge c. That is,

3

[Ls Lol = (1 — m) Ly + = 1; i

Op,—mC.
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Heisenberg vertex operator algebra and its Fock modules

The rank-1 Heisenberg Lie algebra, denoted by H, has vector space basis given by {c, b,|n €
Z} and bracket

[c,b,] = 0 and [by,, by] = ndptm ocC.

Let by = Spang{b, | £n > 0}. Let U(g) denote the universal enveloping algebra of any Lie
algebra g. Denote by Fg the usual Fock space of charge 8 € C with vector space basis U (H_)

and /h\—action on an arbitrary element b € Fz given by

c-b=0,
by - b= b,
b, -b="b,b foralln <0,

b, -b=n b for alln > 0.

0b_,,

Definition 2.1.7. The Heisenberg vertex operator algebra H = (Fy,1,Y,T,w) is given by
the following data (see [FB, Chapter 2|):

e a Z.-gradation deg(b;, ---b;,) = — Zle Jis
e a vacuum vector |0) = 1,
e a translation operator T defined by T'(1)=0, [T, b;] = —ib;_1,

e vertex operators Y (—, z) defined by

DO T(2) - 07D (2)

where : X(2)Y(2) : denotes the normally ordered product.
e a conformal vector w = b*, of central charge 1.

If ¥ € Hand b € Fg then H acts on Fg as V/(b) = Y(V/, 2)b as an extension of the action of b.

We can therefore consider the representation category H-Mod generated by the Fock spaces.

32



This category is rigid (contains duals) and has braiding and twist. The data is

1. Fy~F g, (Duals)

2. Fg, @ Fg, ~ Fp,45,, (Fusion/Tensor products)
3. Cry eFs, = e”wlﬁ?IdFﬁl@FﬁQ, (Braidings)

4. O, = ™ 1dg,, (Ribbon Twists)

Let H® denote the category of C-graded complex vector spaces with finite or countable

dimension and let Hy : V' — V be the degree map on V := @ V, given by Hy |y, = vidy,.
veC
H® can be given a (non-unique) ribbon structure by defining the braiding ¢ and twist 6 by

cuy = Tyy o eTHvEHV 2.1.5

Oy = ™V 1dy, (2.1.6)

where 717y is the usual flip map. Denote by Mg the full tensor subcategory of H® with
purely imaginary index. g, is braided equivalent to the full subcategory of H-Mod whose
simple objects are given by Fock modules F;, with y € R, or, iy € iR (see [CGR, Subsection
2.3] for details). The equivalence is given by identifying the usual Fock space F;, with the

one dimensional vector space of degree 1y, F;, := Cuv;,,.

The Singlet vertex operator algebra M(r) and its category of mod-

ules

Let r € Z~y and L := +/2rZ an even lattice. The lattice VOA V; := @leL F, associated to
L can be constructed via the reconstruction theorem as outlined in [FB, Proposition 5.2.5].

Let €7(z) denote the usual fields associated to lattice vertex operator algebras:

b, _ b
e(2) := 8,27 exp (—')/Z P ”) exp (—72 s ”) ,

n<0 n>0
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5 V?

where S, is the shift operator F5 — Fs.. Define the screening operator Q = e, ¥ " where

e’(z) = 3. elz ™! is the expansion of €7(z). The Singlet VOA is then defined as the kernel
neZ

M(r) = Kerg,(Q). For kys € Z,1 < s <1, let ay, = —E1/2r + f/% For s = r, the
Fock space with F,,  is simple as an M(r)-module, which we denote by Fy, .. When s # 7,
Fy, , is reducible and we define My, to be the socle of Fy, which is known to be a simple
M(r)-module. Note that we are always working with the category of Z>o-graded modules

for the singlet. These and further results on the module categories for the singlet could be
found in [A1] and [AM1] (see also of [CM1, Section 3.2]).

It is expected that the module categories of M(r) and Uf(ﬁ[g) are equivalent as monoidal
(or perhaps braided) categories. This is motivated by the following statement proven in
[CMR]:

Proposition 2.1.8. For o € C := (C\Z)urZ,ie{0,1,...,r—2} and k € Z, consider the

map

#: Vor Fasron, ©: S ®CE — Mi_pip1 (2.1.7)
2r

between simple modules of Uf (sly) and the (Zso-graded) simple modules for M(r) singlet

vertex operator algebra. This map satisfies the following properties:

1. This map is a bijection of the sets of representatives of equivalence classes (under

isomorphisms) of simple modules.
2. Assuming the fusion rules for M(r) are as conjectured in [CM1], this map induces an
isomorphism from the Grothendieck ring of weight modules of Uf (sly) to the conjec-

tured Grothendieck ring of M(r).

A precise conjecture on the connection between the module categories of M(r) and Uf (sly)
is given in [CMR, Subsection 3.1] and [CGR, Conjecture 5.8].
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Simple currents and algebra objects

Conformal extensions of vertex operator algebras can be studied efficiently via the notion
of (super)commutative algebra objects in vertex tensor categories. The representation cat-
egory for the extended vertex operator (super)algebra then corresponds to the category of
local modules for the corresponding (super)commutative algebra object. This program has
been developed in [KO, HKL, CKM]. It works particularly well for simple current exten-
sions [CKL, CKLR]. For us, we are interested in algebra objects built as direct sums of
simple currents which correspond to some vertex operator algebra under the identification

in Proposition 2.1.8, or its higher rank analogue.

Definition 2.1.9. A simple current is a simple object which is invertible with respect to

the tensor product. Objects which are their own inverse are called self-dual.
Definition 2.1.10. A commutative associative unital algebra (or just algebra, for short) in a
braided monoidal category C is an object A in C with multiplication morphism p: A®A — A

and unit ¢ : 1T — A with the following assumptions:

e Associativity: po (p®Ids) = pro (Ida ® p) o as a4 where aga4: (AR A) @A —
A® (A® A) is the associativity isomorphism.

e Unit: o (t®1Idy)oly" =1Idy where [, : 1 ® A — A is the left unit isomorphism.
e Commutativity: pocg 4 = p where ca 4 is the braiding.
e (Optional assumption) Haploid: dim(Home(1,A)) = 1.

Supercommutative superalgebra objects are defined as follows:

Definition 2.1.11. A € C is a superalgebra if it is an algebra with a Z,-grading compatible
with the product. That is, A = A° & A! such that

(A @ Ay C AT
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A is supercommutative if for x € A’y € A,
plaiga = (=1)7 - po Cai Aj- (2.1.8)
We denote by RepA the category of objects (V,uy) where V' € C is an object in C and

py € Hom(A ® V, V) is a C-morphism satisfying the usual assumptions required to make V'

an A-module:

o pyo(ldg®@py)=pvo(p®lds)o aZ,lA,Vﬂ
-1 _
® [y O (L ® Idv) 9 lv - IdV

Although C is braided, RepA need not be, but there is a full subcategory of RepA which is
braided [KO]:

Definition 2.1.12. The category of local modules Rep’A is the full subcategory of RepA

whose objects are given by
{(V,puv) € RepA|py ocyaocay = pv}
Definition 2.1.13. [CGR, Section 2| Let C be a tensor category with tensor identity 1 and

an algebra object A. A morphism w : A® A — 1 is called a non-degenerate invariant pairing
if

a*l
1. The morphisms A®(A®A) % A®A % 1 and AR (A®A) 24 (A A)0A 225
A® A% 1 coincide. (Invariance)

2. For any object V' and morphism f : V' — A the equalities w o (f ® Id4) = 0 or
wo (Idg ® f) = 0 both imply that f = 0. (non-degeneracy)

The notion of simplicity of an extended vertex operator algebra corresponds precisely to the
corresponding algebra object having a non-degenerate invariant pairing. This is explained

in the proof of Corollary 5.9 of [CGR]. The most well behaved modules in RepA are those
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which can be obtained by induction.

Definition 2.1.14. Let C be a category with algebra object A. The induction functor
& :C — Rep A is defined by Z (V) = (A®V, pz(v)) where pizy = (p®1dy)o aZ}Ay (here
w is the product on A) and for any morphism f, Z(f) =Ids ® f.

We also have a forgetful restriction functor G : Rep A — C that sends an object (X, ux) to

X. The induction and restriction functors satisfy Frobenius reciprocity:
Home (X, G(Y)) = Hompgep 4(F(X),Y) (2.1.9)

for X € C and Y € Rep A.

It was shown in [CKL, Theorem 3.12] that in the module category of a vertex operator
algebra V' satisfying certain assumptions, certain (super)-algebra objects built from simple
currents have (super)-vertex operator algebra structure and give a (super)-vertex operator
algebra extension V. of V. If the module category of V is sufficiently nice, then the cat-
egory Rep”V, (with V, viewed as a categorical (super)-algebra object) is equivalent as a
braided tensor category to the category of generalized modules of V, (with V. now viewed as

a (super)-vertex operator algebra).

Loewy Diagrams

Recall that a filtration, or series, for a module M is a family of proper submodules ordered

by inclusion as
OIM()CMlC"'CMn,lCMnIM.

Loewy diagrams are defined in terms of socle filtrations.

Definition 2.1.15. The socle filtration of M is the filtration defined by M; = Socle(M)
(the socle of a module is its largest semi-simple submodule) and we inductively define Mj,
to be the largest submodule of M such that M /Mj_; is semi-simple. We define the Loewy
diagram of M to be the diagram whose k-th layer from the bottom consists of composition

factors of the semisimple module My /M _; with downward arrows indicating submodule
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inclusion.

2.2 The B,-algebra as a simple current extension

Let C = HEH X 75(5[2)—Mod be the Deligne product of H$ (see subsection 2.1.1) and
Uf (sl3)-Mod. The tensor product in this category is given by

(XRY)® (XRY)=(XeX)X (YY)

and the braiding, twist, and rigidity morphisms are given by the product of the corresponding
morphisms in Uf(ﬁ[g)-MOd and H,. Notice that for any A € iR, we have

(FARCH)® (F_,RC!)=F,RCY.
Hence, F\ X CH is a simple current. In what follows, we choose a A, that satisfies

A= — (2.2.1)

,
5
We can define an object A, of the extended category C® (which allows infinite direct sums

while retaining sufficient structure, see [AR]) by

A =P F, BCH® = HF, KCy. (2.2.2)

kEZ kEZ

Remark 2.2.1. The B,-algebra is a vertex operator algebra extension of H® M(r) and it

decomposes as an H ® M(r)-module as

B, = P Fp B My, (2.2.3)

keZ

so that under the correspondence of Proposition 2.1.8 the B,-algebra is the image of A,

B, = @ Fi R e(CL). (2.2.4)

kEZ

The following is a special case of [CGR, Proposition 2.15]. Note that the proof of that
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Proposition is in Appendix A of that paper.

Proposition 2.2.2. [CGR, Proposition 2.15] A, can be given a structure of a commutative
algebra object in C® with non-degenerate invariant pairing. This structure is unique up to

isomorphism.

We now give some criteria on analyzing certain objects in the category Rep® A associated to
an algebra object A in Hi X C.

Lemma 2.2.3. If X € C is simple, then .#(X) € RepA is simple. If P € C is projective,
then .7 (P) is projective in Rep A.

Proof. The first statement is [CKM, Proposition 4.4]. For the second, note that Hompgep, 4(.% (P), ) =
Hom¢ (P, e) o G as functors, due to the Frobenius reciprocity of :# and G. Our forgetful re-
striction functor G is exact. Also, Hom¢(P, e) is exact since P is projective. Therefore the

functor Hompgep 4(-% (P), o) is exact, which proves that . (P) is projective.

Lemma 2.2.4. If W =, @ F, X X, is a simple object in Rep A then W is isomorphic to

the induction of a simple object.

Proof. Pick and fix any vy amongst the v appearing above, and pick a non-zero morphism
f S, — X,, where S,, is a simple module. Consider g : F,, X .S, ﬂ F, XX, <=

P F, X X, which is a non-zero morphism as well. By Frobenius reciprocity, we obtain a
14

non-zero morphism h : % (F,, X S,,) — W.

Now, note that .Z(F,, K S,,) as an object of C decomposes as @ (Fix,11,) X (CH ® S,,),
k

where the summands are all (mutually inequivalent) simple objects due to the simple current
property of F,XCi. Now, [CKM, Proposition 4.4] applies and tells us that .Z (F,, X S,,) is
infact a simple Rep A object. Since W is simple with a non-zero morphism % (F,, X S,,) —
W, W is isomorphic to the induced object .7 (F,, X S,,).
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Theorem 2.2.5. The following list of objects in C induce to Rep®(.A,) by the induction
functor .# : C — Rep(A,):

1. F, ®V, induces to Rep’(A,) if and only if a 4+ 7 — 1 + 2\, € 2Z;
2. F, X (S; ® CH) induces to Rep”(A,) if and only if i + fr + 2\, € 2Z;

3. F, X (P, ® Cl) induces to Rep’(A,) if and only if i + ér + 2\,.y € 2Z.

Proof. Recall from subsection 2.1.1 that given any F., X X € C®, Z(F, X X) € Rep’ A, iff
hzF,RX) © MAT,F.,&X = Uz (F,XX)

where pzr rx) = (4 ®Idp mx) 0 a;d’Athx and M4 p = ¢p a0 cap is the monodromy. By
Proposition 2.2.2 we can, without loss of generality, assume that p(1, ® 1,) = 1,4, in which
case the above equation holds iff M4, p xx = Id, but by Theorem 2.11 in [CKL] it is enough
to check that My, wcr r,mx = 1d. Note that we have

My, wmcr p.mx = Mr,, r, B Mcr x (2.2.5)

where My, p, = ¢**71d by (2.1.5). Recall that the braiding on Uf(ﬁ[g)-MOd is given by
7 o R where 7 is the usual flip map and

r—1

2n
_ H®H/2 {1} n(n—1)/2 m n
R=q g T q E"® F". (2.2.6)

n=0

Since the generating vector v, € CH satisfies Ev, = Fv, = 0, the braiding acts as 7 o ¢/1®/2

and hence the monodromy Mcu x acts as q’®H on CH ® X. The endomorphism rings of V,,
and S; ® CfI are one dimensional, so the monodromies Meh vy, and Mcn s;ecH Must act as

scalars on CH @ V,, and C# @ (S; @ CI), respectively. It follows by direct computation on
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the usual generators of these modules that

Mgy, = ¢ V14, (2.2.7)
Mep (socm =4 1d (2.2.8)
It follows that
Mg, wcr pomy, = (1) 04, (2.2.9)
My, wep mm(siec) = (—1) 77471, (2.2.10)

and so F, ¥V, and F, X (S; ® C) lift to Rep® A, iff a4+ 1 — 1+ 2\7,i + br +2\,y € 27,
respectively. The endomorphism ring of P; (and hence the endomorphism ring of C¥ @ (P, ®
CH) is two-dimensional spanned by the identity and a nilpotent operator (see Theorem 6.2
in [CGP1]), but Mcg7pi®(cg has no nilpotent part since it acts by ¢7®, so it must act by a

scalar multiple of the identity. Acting on the vector v, ® (w; ® vy, ), it is easily seen that

and so
MFM‘EC?’FW@(R‘@Cg) = (_1)i+h+2>\”1d.
Therefore, F, X (P, @ Cf) lifts iff i + ¢r + 2\,y € 2Z. )

The induction functor .# : C¥ — Rep(A,) is a tensor functor by Theorem 2.59 in [CKM]
and Rep” A, is a tensor subcategory of Rep A,, so for any objects .Z# (U),.% (V) € Rep®(A4,),

FUYR F(V)2FUV). (2.2.12)

Rep’(A,) is rigid by Proposition 2.77 and Lemma 2.78 of [CKM], and by Proposition 2.67
of [CKM], the braiding cflf_ on Rep’(A,) satisfies the relation

IdAT (%9 Cuyv = tgz(CUy) =gvu©° C;?U),y(v) o} fU,V (2.2.13)
where fyy : FU V) S F(U)@ F(V) and gyy : F(V) @ F(U) = F(V @ U) are

isomorphisms defined in Theorem 2.59 of [CKM]. Ultimately, we are interested in the scalars

associated to the monodromy isomorphisms cﬁ}’“(‘/% F) © C;T(U% FWV) therefore for calculation
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purposes, we ignore the f and g isomorphisms and simply take

C,?(U),E(V) — Id.Ar ® Cva. (2214)

We compute that 0y gcryer = Idg,ger)yer when 7 is odd, so 04, = Idy, for odd r, and hence
by Corollary 2.82 and Theorem 2.89 in [CKM], we have

Oz = F(Ov) =1da, @0y

SFw.z0n) =¢o(Ids, ® Sgy) o

Using Lemmas 2.2.3 and 2.2.4, and exactness of the Deligne product and induction functor

together with Lemma 2.1.3, we easily obtain the following Proposition:

Proposition 2.2.6. The simple modules in Rep’(A,) are

EY =7 (F,®V,) with a € C and v\, + %T_l €Z, (2.2.15)
ES. =% (FyR(S;®Cfl))  withie{0,....,r—2} and 7\, + it €7Z. (22.16)
We have families of indecomposable modules:
Vo=F (F,RV,) with o ¢ C and v\, + %T_l €7, (2.2.17)
L= F,R(PoCH) withie{0,...,r =2} and A, + U Z, (2.2.18)
with QF; , being projective, and the above modules satisfy EY, = EY .\ . ., ES , =

s V o~V P o~ OP ~
ED initiks @ra = Qiin ks a0d Q- = Q1 py 0y, for all & € Z. The indecomposable

modules admit the following Loewy diagrams:

S \%
E’y, (r—1)—i,¢ E’y,i—l—l—r-{—ﬁr
1% P
v, i+L4r \I{ Q'y,r—l,f \l/
S \%
E’y,i—l,ﬁ—i—l E’y,r—l—i-{—ér
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ES

7,44
S . S /P S
Fori=1,....r=2: Elq o i1 Quie E2-im
S
E%M

I

The category Rep’(A,) is a rigid monoidal category with tensor product .% (U) @ .Z (V)

FZ (U ®V). Rep®(A,) is also braided with braiding c“;T(U)’ # (v defined by

Cruy,zv) = Id4, ® cyv,

where cyy is the braiding on Cq given by the product of the braidings on H-Mod and
UqH(slg)—Mod. If r is odd, then Rep”(A,) has twist 64, and Hopf links S;(U),y(\/) given by

Oz = 1da, ® Oy, (2.2.19)
SZwy.z0v) = Sty (2.2.20)

where 6y and Sgjy, are the twist and Hopf links respectively on C?®, and we are viewing the
Hopf links as scalars.

2.3 Modular data for typical modules

In this section we compute and compare the modular data for typical and atypical modules

in B, and C through the correspondence ¢ : Repthf (sl2) = RepyM(r), Vo = F ety 1, Si®
2r

CH +— M;_y;11 of Proposition 2.1.8 found in [CMR].

2.3.1 Typical modules

The typical modules in C take the form % (F, X V,) for a € C := (C\ Z) U7rZ, which is
associated to the B,.-Module

— T _
Bpoi= 7 (F, B F}) (2.3.1)
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through the above correspondence. Recall that F, denotes the usual Fock space as a module
of the Heisenberg VOA H, and F atro1 28 A module of the singlet VOA M(r). Note that
by Theorem 2.2.5, E,, € Rep’ B, iff v\, + 5+ % € Z and that since v takes purely
imaginary values, we are therefore forced to take aw € (R\ Z) UrZ. On the quantum group
side, Fy, X CH induces to the algebra object A, under .% : C — A,-Mod, and on the VOA

side, Fy, ® My induces to B,. Therefore, we have

Eyo = Eyx atr (2.3.2)
We re-parameterize the space of simple typicals with the following substitution:

y=22 €:7Ar+%. (2.3.3)

r

Considering isomorphisms, our parameter space reduces to £ + % € Z,ve(—1,1]\ %Z.
This re-parametrization is done to facilitate a comparison with [CR2] and [CR3] which
correspond to r = 2 and r = 3 cases. The following SX matrix calculations will also work
with v € (—1, 1], and therefore, for what follows we work with this slightly larger parameter
space. By abuse of notation, we still let £,, := E, ,. For characters, we use the following

convention:

_ 2
P 4)\,~'y/7‘q'y /2

chlF] = n(q)

(2.3.4)
where 2z = e2™¢, ¢ = €2™7. We introduce another variable y = ¢*™* in the characters to have
the S matrix come out nicely'. We multiply the characters by y=%" = e=87%/7_ Under the
S-transformations, we have:
1 2
S : (CuTv ’i) = (£7 —— k= C_) . (235)

T T T

Lemma 2.3.1. Using the parametrisation (2.3.3) for the typical modules, their (super)characters

"'Without this additional variable modular S-transformation would give a ¢ and 7 dependent prefactor,
often called automorphy factor. The only purpose of y is to get rid of this factor.
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are given by

—8mik/T ) )
ch[E, ¢)(z;q) = ¢ 5 Z 2TITE T emiv =AM (9 4 7 — ) r odd
n(r)? 2=
—8mik/T ) )
sch[E, ¢](z;q) = 677(7')2 Z 2T T miv =AM (9 4 7 — m) T even.

meZ+(1/2)
Proof. Let r be odd. By construction, we have:

ch[E,al(zq) = Y e ¥/ ch {FMAT X FWH)M]

kEZ var
. 1(at(k+1)r—1  ag)?
e—87rm/rz—4’y)w/r—4k/\3/Tq('y+k)\r)2/2 qg( o 2 )
T T
) )
81—y Ay 1 0
—8mik/r ,—AyAr 7 T+ 2
o e z q 2 4r 2% k(’yAr-‘r%)
) () o
n keZ
ori (22 a?
e—87rifi/'r€27ri4(—4«/)\r/r)e miT| 5 +5-

(2.3.6)

(2.3.7)

— D 620+ (YA +a/2)r —m),  (23.8)

n()?

mEeZ

where our d-function is supported at 0. Passing to the v, ¢ notation (2.3.3), we observe the

following relations:

_4)\7“’7(/7“ = CV - 4(6/7“,
V)2 +a?/Ar = =0 Jr + vl)2.

(2.3.9)
(2.3.10)

The expression for ch[E, |(z;¢) follows straightforwardly. For r even, we introduce a factor

of e™* in the very first summation. The rest now follows similarly.
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If r is odd, we set

e—87Ti(H—<2/T)/T

.02 . 2 — —
S{ch[E, ]} = T E :e—zmz fr7 grilv—a/r)m s <u)
—1/7

-
meZ
Tl —swite—c/ryje N g=mic? e gmine i
— y e TR T)/T e T TTe TN~ T T’eﬂ'll/m(s(2<'_€_m7_)
—i1n(T)? T;Z
|7—| —8mik /T 2mim?27 /v  mivm
meZ
and similarly if r is even,
|T| —8mik/T 2rim?r/r  mivm
S {sch[E, |} = gtk > oe €mVmE (2 — £ — mr). (2.3.12)
meZ+(1/2)
Regardless of the parity of r, let:
X |T| 1 (48l Jr—ev —4'v ) (2 3 13)
(v,0), (V’K) _27_2 v

Now we show that this S-matrix correctly gets us the S-transformations of the characters in
the r odd case. In the r even case, the calculation is similar, except with characters replaced

with supercharacters and summations over Z now changed to summations over Z + (1/2).

Z/ %oy Ch B o]/

Vel

787rm T
_ Z/ |7—| 1 mi(4el Jr—ev' —0'v ) / Z 62771752/7’ mi(v -4 /r)m5(2C + I — )dV/
s s 2° n(q)?

meZ

—8mik 1
Z ’7—‘ m(4€€’/7’ K’V)e 2/ Z 627rz'7—£’2/rem'(—4€’/7")m6(2g + 0+ — m)/ lem’(l/m—y’ﬁ)dl/
ez —iT n(a) mezZ 12
—871'2,% T
_ Z ﬂeﬂi(ﬂf’/rfé’u) / Z 62#176’2/1” mi(—4e"/r) m5(2C + 07— )(5(€ N m)
vez T n(a)” mez

7| iy € ST 2wt/ /
_ e v TiT s 2C Ny
=2 —iT n(q)? ( )

Ve
_ Z |T’ 787r'm/reﬂimue27ri7'm2/r5(2<- —mr — g)
—717'77
— SX{ch[E M]} . (2.3.14)
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All that remains now is to make an appropriate choice of normalisation. For this purpose,
we obtain a resolution of the tensor identity Sy ® C¥, and by induction, a resolution of A,
in terms of other typical modules through the short exact sequences from Lemma 2.1.3. We
transfer this resolution to the vertex operator algebra side and obtain a character relation

for B, from Proposition 2.1.8.

Shifting the short exact sequence in Lemma 2.1.3 by (j,¢) — (j + 1, — 1), we can obtain a

family of linked short exact sequences

i
0— S(T,Q),jk X Cgk—l)r — ‘/(ijrl)Jr(Z;cfl)r ELN Sjk X (CZT — 0, (2315)
where (Jgi1, lpy1) = (r — 2 — Jg, & — 1). We therefore obtain a long exact sequence

sV, v By, By, By, Bs ecl o (2:3.16)

where ny = (jp + 1) + (lx — 1)r. We can take (jo, %) = (0,0), tensor this sequence with
Fy, and apply the induction functor (see Definition 2.1.14) and lastly, the correspondence
in Proposition 2.1.8. This sends Sy @ C¥ to B,, so we obtain the following relation for the

character of B,:

o0

ch[B,] =Y (~1)"ch[Y,, ] = > (ch[Ya,,] — ch[Yp,,...]). (2.3.17)

m=0 =0

where Y,, = Z(FfXF nmﬁq) (recall that F e corresponds to V,,  through proposition
2r 2r

2.1.8). Note that by Theorem 2.2.5, the module Fy XV, lifts to Rep’(A,) through the

induction functor iff n,,+r—1 € 2Z. Observe by a simple induction that with (jg, ¢y) = (0,0),

the indices n,, satisfy

o { 1—(m+1)r for m even (2.3.18)

—1—mr  for m odd,

so Fo XV, lifts to Rep’ A, and Fy X Fumer—1 lifts to Rep® B, for all m and r. Adopting the

Var
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parametrisation (2.3.3) for the modules Y, gives the following:

EQ(I—(m+1)'r) 1—(m+1)r for m even
) 2

Y, = G (2.3.19)
Eociommy 1mr for m odd.
s ’ 2

We write 1 for the B,-algebra and obtain from (2.3.17) the relation

>

X —
S]17(V/7el) -
m=0

<S)(<2(1_(2:~n+1)r)71_(2g+1)r)’(v’,f’) B S>(<2(—1—(im+1)r)7—1—(227n+1)")7(l,/’g/)) . (2-3-20)
By substituting (2.3.13) into (2.3.20) and simplifying, we deduce that
7'| 1 ° 1-(2m+1) 1 (2mt1)
LY

00
’ ’
_ |7—| l § <67ri(7"—1)%67ri2gwu’ . eﬂi(r—&-l)%em%;ru’) )

X o |T| 1 r—1 - 2mr r—+1 G 2mr
Sty = —ir5 (a: Z " -z Z x ) :
m=0
= ﬂx—(x_l —x) Z " (2.3.21)

Since x lies on the unit circle this sum is not convergent. If we infinitesimally deform z to

lie within the unit circle, this sum converges to

7|1 z—a27!

(2.3.22)

—iT2 xr—ax"

This is the motivation for our choice of normalisation factor S} (W) i.e. we define it to be

7|1 z—a27!
SY gy = s (2.3.23)

—iT2 xr—ax "’

where z = e™%. As a further motivation we note that this type of regularization worked
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very well in the Verlinde formula story of [CR2, CR3].

We will now compare the modular SX matrix coming from modular transformations of char-
acters for B, with the S® matrix coming from Hopf links in C for typical modules calculated

on the quantum group side. These quantities agree up to normalised conjugation.

Proposition 2.3.2. The normalized modular S-matrix SX and Hopf links S® agree. That

is,

Sty St
ol — ”@ L1 (2.3.24)
St ST )

Proof. Tt follows from equation 2.3.13 and Definition 2.3.23 that the normalisation of SX is
given by

gx T T
(1,0),(v",¢) _ z o mi(4el Jr—v' —0'v) 2.3.95
ST, (v 07) r—a1 ° (2.3.25)

s . . . . . . . .
where z = e™'/2. Since the S® matrix is preserved under induction, we just calculate it in

the category C. The S®-matrix for typical modules satisfies the relation

® ) ®
SFWlﬁvapsz‘Z'VaQ o Sle iFoyg SVal,VaQ (2'3'26>

where S p = *™72. By Lemma 6.6 in [CGP1], we have

® o r—1  _aja ® o r—lr{o@}
SVal’Vag - (_]') rq ! 27 SSO;VOL2 - <_1) {7"062}' (2327>
Hence,
F(’JYDI &VQI’F'YQ'EV"Q — 627Ti’y1’yz 109 {TO{Q} ) (2328)
SFogso,FW&an {as}

Setting (v, 0) = (22, My + 41), (U, 0) = (222, \yp + 22), 2 = €™'/2, adopting the notation

G000y = SE mVa, B @V, 1 = Fo X .Sp, and recalling that ¢ = e ™/" we easily see that

® T —r
S @O,y X — T il [r—t ')
ey T
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2.4 Modular data for atypical modules

Recall that by G* we mean the quotient of the Grothedieck ring by the ideal of the Grothendieck
ring formed by the negligible objects.

In this section we derive G=(C°) for the category of local modules C° in C (those which
are induced to Rep® A, by the induction functor). We also compute the corresponding S®-
matrix and make a comparison with the matrix SX coming from modular transformations of
characters appearing in the Verlinde algebra of characters V**(B,) of the semisimplification

of B,-Mod. The Verlinde formula then follows from the standard categorical argument.

2.4.1 Structure of Grothendieck rings

We start by determining structure of the underlying Grothendieck rings.

Proposition 2.4.1. G* (CO) has a Z-basis with elements M, ; ., of the form

r—1 r—3
MfT”T,zm,()» ne{0,1,..., 5 },me{0,1,..., 5 } (2.4.1)
r—3 r—3
MQQnTtlzmm, ne{0,1,..., 5 },me{0,1,..., 5 } (2.4.2)
when r is odd, and
r—2 r—2
M;\—"T,Qm,()? nef{0,1,..., 5 },me{0,1,..., 5 } (2.4.3)
r—2 r—4
M%ﬂgmﬂ,m ne{0,1,..., 5 },me{0,1,..., 5 } (2.4.4)
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when r is even. The product is given by

( it

Z MJH»y modr l7’(5+£’) mod 2r lfl—l—j < T,
I=li—j]
by 2

ML .l ML irf! - (245)
" " 2r—4—i—j
Z Mx+y mcdr Lr(44+¢) mod 2r if ¢ +j >

I=li—jl
L by 2

Proof. We first note that the quantum dimension of an object V' € Uf (sly)-Mod is given by

k
Z vl (K" ),
i=0

where {vg, ..., v} is a basis for V. Hence, if V' =V, then

r—1
: v r—1)(a+r— i r—1)(a+r— 1 _qQT
qdlm(Va) _ § Kl E q( 1)(a+r—1-2i) __ q( D(a+ 1)1_—q2 =0. (246)
=0

By Lemma 2.1.3 we have the short exact sequence
0= Vicimirer = P @ Cll = Vigirier — 0,

so we see that the quantum dimension of the P,@C} is also zero. Hence, G*(C?) is generated
by the elements corresponding to the F., & (S; ® C£) which are induced into Rep”(.A,) by the
induction functor, which by theorem 2.2.5, are those objects such that ¢ + r¢ + 2\.y € 2Z.
We will denote the object in G*(C°)corresponding to F., X (S; ® Cf!) by M., ; .¢. Recall from

Lemma 2.1.3 that for any ¢ € {1, ..., — 1} we have the short exact sequence
0— Sr—l—z‘ X (Cg, — ‘/i—I—ér — Sz'_l X Cvl'{(é+1) — 0,
so we have My, _1_; 0 = =M, ;_1 ,(41). So, for any i € {0, ...,r — 2}, we have

M%i,rﬁ = M'y,r—l—(r—l—i),rﬁ = _M'y,r—l—(i—i—l),r(f—i—l) = M'y,i,r(€+2)- (247)
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Hence, G*(C°) is generated by elements of the form M, o and M, ; , which satisfy

i+ 2\ € 27, (2.4.8)
i+ 142\ € 2Z. (2.4.9)

If i is odd in (2.4.8), then i + 2\, being even implies that v = 2”“ for some n € Z, and i

even in (2.4.8) implies v = 2% for some n € Z. If r and ¢ are both odd or even in (2.4.9),
then 7 + r is even, so v = 2” - for some n € Z. If one of r and i is odd in (2.4.9), and one
is even, then 7 + r is odd, so 'y = 2”“ for some n € Z. Notice also that Fy, X C# induces
to the identity in Rep® A, and hence corresponds with the identity in C°. So, we have the

relation

M'y,i,r( = M'y,i,rﬂ ’ M)\T,O,T = M'y+)\r,i,r(€+1)7 (2410)

and 55 + A, = 0, so the elements M, ; ., have v € {0 ™ =11, Combining the above

) 2)\ YA
remarks, we see that when r is odd, G*(C°) is generated by the objects

Moo 10,1, 5 ,,“wrgg}
M 2 o nE{QLHWZ%iLmG{QLHWT;3}
Magis 510 nefol,.. . "~ ,,”wrgg}
Mt o, nG{QL“WZ%ELmG{QL”wrgg}
and if r is even, then G*(C°) is generated by the objects
Mzo oo 1 E€{0,1,..., " ,,HWT;2}
Mo s 1€ {0,010 ,,“wrgz}
Mzsst 50101 nG{QLHWC%ELmG{QLHWT;4}
P S (U ,,HWT;4}
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The tensor products for the F., and S; modules (see [CGP1, Proposition 8.4]) are given by

r itj
@ S iti+j5 <,
I=|i—j
i
F’Y ® F’Y' = F;yJ,,»y/ and Sz ® Sj =
2T—4—i—j r—1
d sSe @ bB ifitj>r
I=|i—j] 1=2r—2—i—j
by 2 by 2

\

The projective indecomposable modules denoted by P; have quantum dimension zero so their

corresponding object in G*(C°) is zero. We therefore have the product

r itj
Z | Mz+y21;\lodr7l7r(€+g/) mod or i<,
I=[i—Jl
by 2
Mo ire My oo § = (2.4.11)
2r—4—i—j
Z | Mz+y21;10dr7l’7,(z+é,) modor L1+ j >
I=li—j|
by 2

\

This set can be reduced as we have not yet accounted for the relation M, ,_;_; .0 = =M, ;1 »(041)-
Consider the case r odd. Notice that every generator of the form Mzn 5, o corresponds to a
generator of the form Mzn 5,11, and each generator of the form Manii o, 41 to One of the

form M% under M, . _1_; 0 = =M, ;1 r(.41). We therefore have the set

2m,r

r—1 r—3
M%72m’0, ne {0,...,7}77”6 {(ﬁ),...7 2 }
r—3

r—3
n € {0, ...,T},m € {0, ..., 5 }

Notice that the product of any pair of elements of this generating set will be a sum of gener-
ators of the form M%Mg where ¢ must be even, and hence will be a sum of elements in the
set with positive coefficients. Therefore, this set in fact gives a Z,-basis for the ring when r
is odd.
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When r is even, by the exact same considerations we obtain the set

r—2 r—2
Mzs 510, ne{0,1,...,7},7716{0,1,..., 5 }
r—4

2

2)

r—2
M2n+12m+170, nE{O,l,...,T},mG{0,1,...,

Further, the product of generators of any of these generators with another of the same form
will be a sum of generators M 2 9m 0 with positive coefficients. A product of a generator
M‘%gm,o with another M%Qmﬂp will then be a sum of generators M%,zmﬂ,o with positive
coefficients. Hence, this set is again a Z,-basis.

O

2.4.2 Comparison for odd r

Let VW € Uf(ﬁb)—l\/[od and w € W a highest weight vector of weight A. For any v € C,
define U, : Z[z] — C by ¥,(2°) = ¢”*. Then, as noted in the proof of Lemma 6.6 in [CGP1],
the open Hopf links @y satisty vy (w) = Wyy1—,(x(V))w where x (V') is the character of
V. Clearly then, when W is simple, @y = Va1 (x(V))Idw. Using the fact that the Hopf
link Sy, is the trace of the open Hopf link ®yy, and the appropriate character formulas
[CGP1, Equation (16)], it is easy to show that

(1)U DD+ D41 {t+D)+ 1)} tr(Ids cn) (2.4.12)

@® —

where tr(ldg gcn) = (—1)(=3[5 4 1]. The Hopf links in H;pe (see Subsection 2.1.1) are

easily seen to be S§ = eMM2eT2N = 2772 Therefore, the Hopf links are given by
1,

Fryg

SGD ) . SGD
(7171'7":)7('727]‘7[) - Sz®©ﬁ7S]®C£IZ F’Yl 7F"/2

_ (_1)k(j+r(£71)+1)+(i+1)(€+1)+€+1+(17r)€+j6271-1'7172[(Z- + 1)(] + 1)]

_ (_1)(i+1)(€+1)+(j+1)(k+1)+r(k€+k+€)eQm"yyyz[<Zv + 1)(]» + 1)] (2.4_13>

Normalizing the S® matrix and restricting to odd r (i.e., using i,j € 27Z for all elements of
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our generating set) gives

S?jylvivk)r('y?:jrg) — eTri(Q"/l'YQ‘FT’kl) {(Z + 1)(.] + ]‘)} )
?())7070)7(’727j7€) {j + 1}

Below, in order to find SX, we shall use certain modular transformation properties from [C2].

For this, it will be beneficial for us to re-parametrize by setting (s,s’) = (i + 1, —2\7; —

@

rk), (n,n') = (j + 1, =272 — r{) and adopting the notation S& ), .y = ST, i k) (120 WE
see that So fns)

(s,8"),(n,n’) n's' LIS

(1,0),(n,n')

Recall that .7 (F, X (S; @ CH)) = @ Fyyrn, K (S ® Cf{kﬂ)) which corresponds to
keZ

B Frirn, B Mi_(esryina
keZ

under the correspondence in Proposition 2.1.8. This module is the spectral flow ([C2, Sub-
section 3.1.2))

o (W,) = P P ¥ M 5, (2.4.15)

keZ
of the module Wy defined in [C2, Subsection 4.2], where A, = -\, k= —k — ¢, and
(s,s") = (i +1,—2\.y — rf). Consider the basis for odd r given in Proposition 2.4.1. By
applying the relation M, . _1_n,r = —M, o_1(e+1) to the generators of the form M%Qm,r,
keeping in mind that )TT = —\, and that the correspondence in Proposition 2.1.8 preserves

tensor structure up to character, it is easy to see that the Verlinde algebra of characters,

V(B,), generated by the atypical modules of B, has a generating set
{Ch[US,(WS)] | (s,8") € A}

where
A ={(s,N0<s<r—1,0<s<r—1, s+ +1€2Z}. (2.4.16)

This set is closed under modular transformations, and we will show that the corresponding

SX-matrix agrees with the S®-matrix (2.4.14) up to normalised conjugation. From the char-
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$/2

;2 s ’ ’
acter formula for W, and the relation ch[o® (M)](u;7) = ¢& ~ 2+ 2 ch[M](u+75;7) (see
[C2, Subsections 4.3 and 3.1.2]), we see that the character of o (W) is given by

EE AW rntlo 22 r(ntles)?
/ q 4r 2 rr q 2 2r q 2 2r
chlo* (W) (us 7) = —Z( - o )

77(7—)2 nez 1— qu(n+%7%)+5 1 — xqr(n+§+ﬂ)+§
(2.4.17)

where z = 2™ ¢ = ¢*™7. Even though s = 0,s = r are not allowed in (2.4.16), it is easy to

see that with s = 0,7 in equation (2.4.17), for all ', we have

ch[o® (Wo)](u; 7) = ch[o® (W_,)](u; 7) = 0, (2.4.18)
ch[o® (W)](u; 7) + chlo® (W_,)](u; T) = 0. (2.4.19)

Recall the notation from [C2]:
(v;7) = ¢"/%(2 H (1—2%¢"(1 —¢")* (1 — 272" (2.4.20)

with z = e*™. By [C2, Theorem 3.6 and Subsection 4.3], we have the following:

s u —1 . (v;7) o U v —1
chlo® (W)](—; —) = lim pTESE chlo™x] (25— —)
II(v; 2mi (2 u? ’
= n(gi’)?e”’” T Seananchle® (6w v57)
(n,n')ESr
77riu2 H N
= Z e S(s,s),(nynty I (U’T)ch[ (nn)(XT)](U;U;T)
o v~>0 77( )2
(n,n')ESy
—7'riu2 ’
= Y e S manchlo™ (W) (u, ), (2.4.21)
(n,n')ESy

with Sis ¢ () = _Tl — % (sn=s"n") and Syi={(n,n)—r<n<r—-1,0<n<r—-1,n+
n' 4+ 1 € 2Z}. It follows that the character of o' (W,) satisfies

2

s u —1 —27miu n'
chlo™ (W)](=:—) = > e (S — Sts)—nary) chlo™ (W) (u, 7), (2.4.22)
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and therefore,

—2miu?

Slamay =€ (Stssmm) = s, ()

1 .2 . . .
—27miu 21 1 o _ 27 27i
— e eTrnS (6 —ns _ er ns>

,
]_ —2riu? /o

=——e  ¢"°{ns}. (2.4.23)
,

The unit object in C is Fo X (Sy @ CL') which induces to € Fj\ X (Sy @ C), so the identity
kEZ
object corresponds to o®(W;), which we will simply denote by 1 in the index. Hence, the

normalized SX-matrix is given by

SXS s (n.n/ ot [nS]
1,(n,n’)

The following proposition follows by comparing (2.4.24) and (2.4.14):

Proposition 2.4.2. For atypical modules, the matrices S® and SX are in agreement up to

normalization. That is,

X ®
5(378/)7(n7n/) — 5(878/)7(n7n/)
SX

1,(n,n’) Sﬂ,(n,n’)

(2.4.25)

for (s,5'), (n,n’) € A,.

It then follows that the matrix S® is invertible since SX is, and by the standard argument

the categorical Verlinde formula holds. We include this argument here for completeness:

Recall that the Hopf links give a one dimensional representation of the fusion ring and

therefore satisfy

SGD @ SGD
(s,8"),(n,n’) Z(t,t"),(n,n') (m,m”) (m,m’),(n,n’)
=2 Moo =ge "~ 7

Si},(n,n/) S?f,(n,n’)

where the sum runs over the pairs corresponding to the basis of G*(C°) in Proposition 2.4.1.
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The matrix SX is invertible, so by the above corollary, S® is also invertible. Cancelling out

the ST, ) terms and multiplying by (S“")(’kl’k,)’(n’n,) for any fixed (k, k") yields

@ SGD
(575,)7(”’7”’) (trt/)’(nvn/) @\ —1 _ (mm) ® @\ —1
> (S e = 2 Ny St ) Sy ey
1,(n,n’) (m,m’)
Summing over the index (n,n’) then gives
S® S® (S“D)
(5,5, (n0) 2 (1)) (k) () o
> go = 2 N (ST ™)
/ 1,(n,n’)
(n,n ) (m m
Z Nss’) (t,t") 5(mm ),(k,k")
(m,m’)
_ (k)
= NFE (2.4.26)

which is the Verlinde formula and by Proposition 2.4.2, the Verlinde formula also holds for
atypical B, modules:

Corollary 2.4.3. The Verlinde formula holds for the Verlinde algebra of characters gener-
ated by atypical modules of B, when r is odd. That is,

@ (s,8"),(t,t")
(n,n’)eAr S]lv(nvnl)

Z SGD s,8"),(n,n’) ?z,t’) (n,n’) (SGD) (n,n’),(k,k") N(k,k’)

where A, is given in (2.4.16).

2.4.3 Comparison for even r

When 7 is even, B, has half integer L(0)-grading and Zs-grading given by
B, = B’® B!,

where B? is the integer part of the %Z—grading and BE is the non-integer part. In this case,
we instead compare the ring QSS(Cg) for the modules which lift to BY modules with the
Verlinde algebra of characters of BY. Note that when we computed G*(C°) we used the
relation M, ; o» = M, 1 (¢41)» Which no longer holds. To remedy this, we need only notice

that the objects M, ;. and M, 2y (¢12), induce to the same Bg module and are therefore
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equal in G**(C3). Hence, it is enough to add to the basis for G**(C°) with 7 even obtained
in Proposition 2.4.1 the shifted elements M.\ ; (+1)r for each basis element M, ; ,.. Hence,

a basis for G**(C7) is given by

r—2 r—2
M%72m70,M27§7K7"2m7T ’I’Le {0,17..., 2 },me {0,1,...7 2 },
r—2 r—4
M%’2m+170,M2n—5i—r72m+1,7‘ nE{O,l,..., 5 },mE{O,l,..., 5 }
This is not a Z, basis with respect to the product
l ‘Z‘|Mz+y;\od2r’lﬂ‘(z+é,) mod 2r 1f7/+] < T7
=|7—
by QJ
M%,i,r@ . M%Jﬂng/ - (2427)
2r—4—i—j
l ‘Z | Mz+y 211;\01;1 Qr,l,r(l-&-é’) mod 2r lf 1 + j 2 T.
=|1—)]
L by 2
Applying the relation M, ;_1 ;1) = =M, ,_1_j ¢, We obtain a basis
r—2 r—2
M%,2m,07M27§7§T7T‘—2—2m,0 n E {07 1’...7 2 },me {0,].,..., 2 }7
r—2 r—4
M%’zm_"_LO,M2n~‘2f)1\7'r77,_2_(2m+1)’0 n e {O, 1,...,7},771, € {0,1,..., 2 },

which is easily seen to be a Z-basis. We have already seen that the Hopf links satisfy
equation (2.4.13). Restricting this equation to r even (k = ¢ = 0) gives

(S50 smmy = (—1)*+"q" {ns}, (2.4.28)
once again making the substitution (s, s') = (i+1, =2\y1—7k), (n,n) = (j+1, =2\y2 —71f)

and the indices run over the set A, U A, where A, := {(s, s’ — 7)|(s,s') € A,}. We therefore

have four cases:
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((87 S/)’ (n’ n/)) (Sg§>(s>3/)v(n’n/)

A x A, (=1)5t7¢"* {ns}

A, x A, (1) g {ns}

A, x A, (=1)*+1g"* {ns}

A, x A, q"* {ns}

Following the analysis in Subsection 2.4.2 and replacing characters with supercharacters
where necessary, we see that the SX matrix for the atypical B, modules {o* (W,)|(s,s') € A,}
are still given by equation (2.4.23). However, each B, module ¢* (W) splits into two B?
modules o* (W,)? and ¢ (W;)!, where we recall that o' (W) is given by equation (2.4.15)
and o (W,)?, 0¥ (W,)! are given by the even and odd summands respectively. It then follows
from equation (2.4.23) and [C2, Equation 4.9] that these matrices agree up to normalised

conjugation.

2.5 The characters of B, and of a QH-reduction

In this section, we set n = r — 1 and compare the character of B, with a certain Quantum-
Hamiltonian reduction of sl, as announced in [C2, Remark 5.6]. For more details about

Quantum-Hamiltonian reduction, see [Ara] for instance.

Recall that sl,,_; can be embedded in sl,, such that
5[n = 5[n—1 s> Pn—1 S5} Pn—1 ©® (C

where p,_; is the standard representation of sl, ; and p,_7 its conjugate. To carry out
computations, we see sl,,_; as embedded in the upper-left square of the matrix realisation of
sl,. Fix the sly-triplet {F, H, E'} in sl,_; as follows

n—2 n—1 n—2
1
o= E :ei-ﬁ-l,i? H:= ) E (n — 2i)e;;, E.= g €ii+1 (2.5.1)
i=1 i=1 i=1
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n —~
Notice that for any matrix h = ) Aje;; € b, we have
j=1

n—2

[F, h] = Z()\z - )\i+1)ei+1,i7
i=1
and the matrix must be of trace zero, so 0 = (n — 1)A; + A,,. It follows that the subalgebra
ofa annihilated by F under the adjoint action is Span-{A} where A is the diagonal matrix
A= diag{% s n, —2}. Let K = Av for complex v and set x = e”. Let A, denote the set
of positive roots of the full sl,, A% C Ay the set of positive roots such that a(H) = 0, and
A_% C A, the positive roots for which f(H) = 1/2. By [KW, Equation (11)], the character of

the Quantum-Hamiltonian reduction associated to (2.5.1) is given by the following formula:

[T du(rr,a(K —7H))

L r(r+1) ('r2—1)(’r—2) n(TT)_%T2+gT_3 OLEA+
(=i) 7 g = oS 5 (252)
( I1 1911(T,Q(K))> [ Jo(r, B(K))
CMEA% ,BGA%
where 911 and ¥y, are the standard Jacobi theta functions:
(. 2) = —ig" 2 2(r) [T (1 - — gt (2.5.3)
k=1
Jor(7,2) = [J(1 = u™'¢" ) (1 = ¢")(1 — ug*'7?) (2.5.4)
k=1
where u = €?™* and ¢ = >,

Theorem 2.5.1. Let r € Z. Then the character of B, is given by equation (2.5.2).

Proof. As for proving [C2, Theorem 5.5, a character is viewed as a formal power series
o

where we admit ﬁ = >~ 2%, Two formal power series X,Y will be seen as equivalent if

X = v¢*2®Y for v € C and a,b € Q. Also here, it is enough to show that ch[B,|(x;q) is

equivalent to (2.5.2) since both are formal power series of the form ¢~ 2i (14 ---).
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Let’s then make the formula (2.5.2) explicit, keeping in mind that n = r — 1 here. First let’s

fix a standard choice of positive roots for sl, = sl,_; and compute A(}r and A3:

J
AL = AL (sl,) = {ai,j =Y a|1<i<j<n-— 1} where ag(e;;) = 00 — Ot

o ;;(K)=0if j <n—1;
® ;,1(K)=u;

o A} ={an, 1} and Az =) if n is even (r odd);

o A =0 and Az = {ans, 1, —wn 4} if nis odd (r even).

We shall now examine each factor in (2.5.2). For any choice of n, since o, j(K — 7H) =

T(i—j—1)ifi <jand o;p1(K —TH) = v — 7(§ — i) one obtains:

o

Vi1 (17, ai (k—1)+(j—i+1) k—(j—i .

, &Yy _ T‘ 7 1—q" (j—i+1) < -1
=l -0y G<n—1)
?911(7"7' Oy n— 1 —TH d r(k—1)+(2 —4) (7

) 5 —1 (1 . xqr (5-1) ’
IR | |
where we used the observation [](1—u"1¢*)(1—ug"* ') ~ ] (1 —ug®)(1—u"t¢*!) on each
k=1 k=1
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line. Then, aiming to find the product over A, as in the numerator of (2.5.2), we write:

ﬁ H Vi (rr, 0 (K —7H)) ﬁ H (1_qu-i-(j—i-l—l—r))(l_qu—(j—i—l-l))

TT)
k=11<i<j<n—1 ( k=11<i<j<n—1

~ lo_o[ H (1 o quf(rfa))erfa(l . qu7a>r72—a

k=11<a<n-—-2

~ H o rk 1 qr(k—l)—H) H (1 _qu—b)r—4

1<b<n
o)
~ H - rk 1 qr(k71)+1) H (1 _qufb>r74
1<b<n

N (7:7((:7))>T_ T = g — gy, (2.5.5)

We also will need the following for the numerator:

H V1 (r7, i1 (K — 7H)) NH H 2l B VG0 (] i (59)

1<i<n—1 n(rr) k=11<i<n—1
1 (1= ag i1~ amlghi )
oo (1= 2q™3r=3)(1 — zg™2rt2)(1 — - 1g7*F+2)72) (1 — - 1grhta)ts)
(2.5.6)
Finally completing the product of 118 over A, in the numerator of (2.5.2) yields:
H 9y (7‘7‘, a(K B TH)) N 77(7“7') (n—2)2("—1,)+(n71)f(n—3)n(7_)n73 . H(l _ qufl)(l _ qr(k—1)+1)
a€A+ k=1
1 — 2d* 53 (1 — o 1gk—5+3
x H U 2 0o ) 257)
1 _ xq”’” r— )(1 _ xqu+§r+§)(1 _ x—1qr(k+§) 5)(1 _ x—1qr(k+ )+ )
The 7 factors written in terms of r instead of n read:
r—3)(r— r2 r
() Ty = p(er) T () (2:5.8)
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The denominator of (2.5.2) is given up to equivalence by

o0

n(r) [ =271 - a"¢b) r odd, (2.5.9)
k=0
n(7) H(l — 27 E) (1 — g T2) T even. (2.5.10)
k=0
7‘2 T
In effect, collecting various 7 factors arising from ¥s now gets us: n(rr)z 2 (7).

Canceling these with the 7 factors already present in the (2.5.2), we are left with simply
n(rr)?
n(r)*

We now show the rest of the calculation for » be odd, the other case is similar. In this case,

the character, up to ~ equivalence has now simplified to:

r, 3 r, 3

77(707_)2 H (1 _ qr(k+1)71)(1 _ qu+1><1 _ qu+§+§)(1 _ x*lqk—g‘f'i)

() g (L= 2g™ 3 8) (1 — ag™ 5 2) (1 — o D-2)(1 — 2 1g H+ D 3) (1 — 2-1gh+)(1 — 2P
(1 _ qr(k—i-l)—l)(l _ qu+1)

_ n(rr)? H
M g (1= 2™ 38 (1 — g ) (1 — a1 (7)1 — a1y ) s)

ﬁ[ (1—z7'¢")

77(7,7)2 ﬁ (1 qr(k—i-l)—l)(l qu—i-l)
n(r)2 (1— xqu+§r—%)(1 _ xqu+gr+%)(1 _ x_lqr(k-s-%)—%)(l _ x_1qr(k+%)+%)

(
(r7)® 1 (1= g™ — g™

n(r)? (- xqu%_%)(l _ xqu+§+%)(1 _ x—lqr(k—&-%)—%)(l _ x_1qr(k+§)+%)'

The character of B, can be written in a product form using B, = W; and the [C2, Subsection
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4.1, Proposition 5.2] as follows:

T(2qz;
ch[B, (25 7) = ch[Wi] (23 7) = lim LT ke, (2 2% 7)
z—1 77(7—)2
1 % 110 H (1 — g™ 1) (1 — g *+D)2(1 — grlktD-1)
~ ! o BT (1 — 2 D5 (1 — a1 RTE) (1 — gttt h) )
n(rr)? ﬁ (1 — g™ +1) (1 — g +D-1)
n(7)? P (1-— xqr(k+%)+%)(1 _ xqr(kJr%)*%)(l T qr(k+ )+ %)(1 — x*lqr(’%%)f%)'
(2.5.12)

This matches with (2.5.11), completing the proof.

Theorem 2.5.1 shows that the character of B, coincides with that of a quantum Hamiltonian

reduction, as suggested in [C2, Remark 5.6].
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Chapter 3

Categories of Weight Modules for
Unrolled Restricted Quantum Groups
at Roots of Unity

Motivated by connections to the singlet vertex operator algebra in the g = sl case, we study
the unrolled restricted quantum group Uf(g) at arbitrary roots of unity with a focus on its
category of weight modules. We show that the braid group action on the Drinfeld-Jimbo
algebra U,(g) naturally extends to the unrolled quantum groups and that the category of
weight modules is a generically semi-simple ribbon category (previously known only for odd

roots) with trivial Miiger center and self-dual projective modules.

3.1 Preliminaries

Generically semisimple categories

Let k be a field. A k-category is a category C such that its Hom-sets are left k-modules, and
morphism composition is k-bilinear. A pivotal k-linear category C is said to be G-graded for
some group G if for each g € G we have a non-empty full subcategory C, stable under retract
such that such that
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e C=6C,
g4
o Vel = V"€(y,

e VeljandWely = VW ely,

Vel,,Welyand Hom(V,IW) #0 = g=y¢.

A subset X C G is called symmetric if X! = X and small if it cannot cover G by finite
translations, i.e. for any n € N and Vg,...,g, € G, | g:X # G.
i=1

Definition 3.1.1. A G-graded category C is called generically G-semisimple if there exists
a small symmetric subset X C G such that for all g € G\ X, C, is semisimple. X is referred

to as the singular locus of C and simple objects in C, with g € G\ X are called generic.

Generically semisimple categories appeared in [GP1, CGP1] and were used in [GP2] to prove
that representation categories of unrolled quantum groups at odd roots of unity are ribbon.
If C has braiding c_ _, then an object Y € C is said to be transparent if cy x ocxy = Idxgy
for all X €C.

Definition 3.1.2. The Miiger center of C is the full subcategory of C consisting of all

transparent objects.

Triviality of the Miiger center should be viewed as a non-degeneracy condition. Indeed,
for finite braided tensor categories triviality of the Miiger center is equivalent to the usual

notions of non-degeneracy (see [S, Theorem 1.1]).

3.2 The Unrolled Restricted Quantum Group Uf(g)

We first fix our notations. Let g be a simple finite dimensional complex Lie algebra of rank
n and dimension n + 2N with Cartan martix A = (a;j)1<i j<» and Cartan subalgebra b.
Let A := {ay,...,an} C h* be the set of simple roots of g, AT (A™) the set of positive

(negative) roots, and @ := @ Za; the integer root lattice. Let {H, ..., H,} be the basis of
i=1
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b such that a;(H;) = a;; and (,) the form defined by (o, a;) = d-aij where d; = (a4, a;) /2
and normalized such that short roots have length 2. Let P := EB Zw; be the Welght lattice
generated by the dual basis {wy, ...,w,} C b* of {d1Hy, ..., d, H } C b, and p := Z a€P

anA*
the Weyl vector.

Now, let £ > 3 and r = £ when ( is odd, r = 3¢ when ( is even (i.e. set r = 20/(3 + (—1)")).
Let ¢ € C be an primitive ¢-th root of unity, ¢; = ¢%, and fix the notation

=q¢"—q % |z _r-a” n|! = [n|[n — ") = {n}!
= - W= T2 = - el () = e (G2)
i =X, Gl =l — 1sal+ ) 322

We will often use a subscript i, e.g. [z];, to denote the substitution ¢ — ¢; in the above

formulas.

Definition 3.2.1. Let L be a lattice such that () € L C P. The unrolled quantum group
UJ'(g) associated to L is the C-algebra with generators K., X;, X_;, H;, (we will often let
K,, = K;) with i =1,....n, v € L, and relations

Ko =1, K’YlK’Y2 = KVH—’YQ? K’YXiJ'K—’Y = qi<%aj>X0j’ (323)
[Hi7 H]] = O, [Hza Kfy] = O, [H'uXij] = :I:ainij, (324)
Ko, — K5}
[Xi7 X,j] = 6i,j—_17 (325)
45 — 4,
1—a;; 1
— Qyj a; .- .
<—1>’“( K ) XEXGXES T =0 itiA ), (3.2.6)
k=0 qi

There is a Hopf-algebra structure on Uf (g) with coproduct A, counit €, and antipode S
defined by

A(K,) = Ky ® K, e(Ky) =1, S(K,) = K-, (3.2.7)
AX) =10 X+ X; ® K,, e(X;) =0, S(X;) = —XiK_,,, (3.2.8)
AX) =K o, X+ X ,®1, e(X_;) =0, S(X_;) =—-Ku X, (3.2.9)
AH) =10 H; + H;® 1, e(H;) =0, S(H;) = —H,. (3.2.10)



It is easy to see that the subalgebra generated by K, and X4, is the usual Drinfeld-Jimbo
algebra U,(g). The unrolled quantum group is actually a smash product of the Drinfeld-
Jimbo algebra with the universal enveloping algebra of h, which we will briefly recall. Let
the generators Hy, ..., H, € h act on U,(g) by the derivation Oy, : U,(g) — U,(g) defined by

8HiXij = j:ainij, 8H1K7 = 0. (3211)

It is easy to see that these operators commute, so they do indeed define an action of h on

U,(g). It is easy to check the relations

(Ao dy,)(X;) = (1d ® 0n, + O, ® 1d) 0 A(X})

and A o0y, (K,) =0= 0y, ® 1 +1® 0py,) o A(K,), so b acts on U,(g) by C-biderivations.
It follows from [AS, Lemma 2.6] that U,(g) x U(h) := U,(g) ® U(h) is a Hopf algebra with
algebra structure coming from the smash product (the unit here is 1 ® 1) and coalgebra

structure coming from the tensor product:

(X ® H) : (Y ® Hl) - X(aH(l)Y) ® H(Q)H/
AX®H)=(Ido7®]I1d) o (Ay,g) @ Auw)(X @ H)
€ = €Uy(e) @ CU(h)
where 7 : Uy(g) ® U(h) = U(h) ® U,(g) is the usual flip map and A(H) = > H) ® Hy) is

(H)
the Sweedler notation for the coproduct. We then see that for any X € U,(g) and H; € U(b),

we have

(X®1)- (1 H,)=X® H, (X)) - (Y®l)=XY®1
(1@ H;) - (X®1)=0y(X)® H, (1®H;) - 1®H;)=1® H;Hj,

so Uy(g) x U(h) is generated by the elements {X; ® 1, K, ® 1,1® H;|i =1,...,n,7 € L}.
By abuse of notation, we set Xy, = (X4, ® 1), K, = (K, ® 1), and H; := (1® H;), and
we see that U,(g) x U(h) is generated by X1, K, (v € L), and H;, i = 1,...,n with defining
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relations (3.2.3)-(3.2.6) and Hopf algebra structure given by equations (3.2.7)-(3.2.10). This

is precisely the unrolled quantum group of Definition 3.2.1.

There exists an automorphism of U,(g) which swaps X; with X_; and inverts K; (see [J,
Lemma 4.6]). It is easily checked that this automorphism can be extended to U (g) by
defining w(H;) = —H;, so there exists an automorphism w : UqH(g) — Uf(g) defined by

(X)) = Xty w(K)=K_,  w(H)=—H,. (3.2.12)

This automorphism will appear in Section 3.3 in the definition of a Hermitian form on Verma
modules introduced in [DCK], and the definition of a contravariant functor analogous to the

duality functor for Lie algebras.

3.2.1 Braid Group Action on U/ (g)

Recall that for a finite dimensional Lie algebra the scalars a;;a;; are equal to 0,1, 2, or 3 for

it # 7 and for each case let m;; be 2, 3,4, 6 respectively. Then,

Definition 3.2.2. The braid group B, associated to g has generators T; with 1 <7 < n and
defining relations
TTiT; - = T;TiT; - - -

for i # j where each side of the equation is a product of m;; generators.

It is well known (see [KIS, CP]) that the braid group of g acts on the quantum group U,(g)

by algebra automorphisms defined as follows:

Ti(K;) = K;K; “V, Ti(X;) = —X_,K;, Ti(X_) =K 'X; (3.2.13)
Ti(X;) = > (=) g XXX i, (3.2.14)

t=0

s
Ti(X_;) =Y (1) g XX xT i, (3.2.15)

t=0
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where Xf_fz) = X%,/[n]g,!. Therefore, if we extend the action of By to Ul (g) by
Ti(H;) = Hj — aji H;,

it is enough to check that the automorphisms 7T;, i = 1,...,n respect equations (3.2.4) and

the braid group relations when acting on the H;. We first note that the relations
[Th.(H;), Ti(Hj)] = [Tx(H;), Ti(K,)] = 0
follow trivially from [H;, H;] = [H;, K| = 0. We must therefore show that
[T%(H:), Te( X)) = Fai;Te(Xy;).

We will prove the statement for positive index, as the negative index case is identical. Sup-
pose k = j, then 7;(X,;) = —X_;K; and we have

—J
so we see that [H,, —X_;K;] = a,;X_;K;. Hence,
[T5(H:), T5(X5)] = [H; — ai;Hj, =X ]
= [Hi, =X K] — ai;[Hj, X_K]

= CLin_jKj — 26Lin_jKj
= —ay XK = aiT5(X;).

Suppose now that k£ # 7. We then see that we must show

—a; —ak
S (=1 g T (H), X T XX = 3 (1) T g ey X T XX,
t=0 t=0

Clearly then, it is enough to show that

(T, XX X0 = a XXX

J
for each t = 0, ..., —ay;. It follows easily from equation (3.2.4) that
(H, X 70X X0 = (—agan + an) X, 70X X0,
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Therefore,

[T(H:), X X5 X0 = [, X700 — a He, X7 XX
= (—(ijaik + Qi5 — aik(—Qakj + akj))X]i_akj_t)XjX]gt)
= CLin,g_akj_t)Xlegt).

We see then that equations (3.2.13)-(3.2.16) define an automorphism of U/ (g). To show
that these automorphisms give an action of the braid group, we need only show that they
satisfy the braid relations as operators on U;I (g). We know these relations are satisfied for

the elements of U,(g), so we need only check the H;. This amounts to showing that
Ty (Hy) =TT, (H).

One therefore computes T;7j - - - (Hy) and checks that the result is symmetric in ¢ and j,

giving the following proposition:

Proposition 3.2.3. The elements T; of the braid group By act on UJ(g) by automorphisms
given by relations (3.2.13)-(3.2.15) and

Let W denote the Weyl group of g and {s;|i = 1,...,n} the simple reflections generating
W. Let s;, ---s;, be a reduced decomposition of the longest element wy of W. Then,
Bk = Si,Siy +** Sip_, iy, k= 1,..., N gives a total ordering on the set of positive roots At of

g and for each f;, i = 1,..., N, we can associate the root vectors X,z € U,(g) as seen in
[CP, Subsections 8.1 and 9.1]. We have the following PBW theorem [CP]:

Theorem 3.2.4. The multiplication operation in U,(g) defines a vector space isomorphism

Us(n™) @ Uy(h) @ Uy(n™) = Uy(g)

where U,(n*) is the subalgebra generated by the X4,, and U,(f) the subalgebra generated
by the K. The set {X:I’f:lﬁlX:I‘ffﬁ2 . -Xi%“ki € Z>o} is a basis of U,(nF).

72



It can be shown by induction on s [J] that
[X;, X5,] = [s]; X5, [Ki; di(1 — 8], (3.2.17)
where [K;;n] = (Ki¢" — K; 'q¢7")/(¢; — ¢; ). Let do = (e, @), and define
To :=1/gcd(dy, ). (3.2.18)

Then [ry,]; = [r] = 0, so it follows from equations (3.2.5) and (3.2.17) that [X;, X'%'] = 0 for
all 4, j. Applying the braid group action then gives [X 5, X™%] = 0 for all o, 5 € AT, where we
have used the fact that d, = d; when « lies in the Weyl orbit of «;. It follows that given any
maximal vector v (i.e. X;v = 0 for all 7) in some Uf(g)-module V, X" v is also maximal.
In particular, all Verma modules of Uf(g) will be reducible and therefore there will be no
projective irreducible modules (as all irreducibles are quotients of Vermas). Obtaining a
category of representations which is generically semisimple is the motivation for our choice
of definition of the unrolled restricted quantum group at arbitrary roots and to do this, we
quotient out { X2 }oea+. It follows from equation (3.2.3) that X; ® K;X; = ¢*% X; @ X;K;,

so equation (3.2.8) and the ¢-binomial formula tell us that

=3 (%),
q

X' KX, " =1 X" + X, @ K,
k=0 4

(3

since (TZZ) =1if k = 0,7, and zero otherwise. We can perform the same computation for
X%, so we see that the two-sided ideal generated by {X\% }4,ea is a Hopf ideal (it follows
immediately from equations (3.2.3) and (3.2.8) that this ideal is invariant under the antipode
S).

Definition 3.2.5. The unrolled restricted quantum group of g, U;{(g), is defined to be the
unrolled quantum group UqH (g) of Definition 3.2.1 quotiented by the Hopf ideal generated

by {Xlogi}aieA-

This definition is very closely related to that of the small quantum group in [L]. It follows
trivially from the braid relations that X%, = 0 in Uf(g) for every root vector a € A*, and

it follows from the PBW theorem that {)(f:lﬁl)(j?ﬁ2 . -Xi%N | 0 < k; < rp} is a basis of
H

U, (n%).
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3.3 Representation Theory of Uf(g)

For each module V' of UqH(g) and A € b*, define the set V(\) := {v € V' | Hv = A(H;)v}. If
V(A) # 0, then we call A a weight of V', V() its weight space, and any v € V(\) a weight

vector of weight .

Definition 3.3.1. A Uf(g)—module V is called a weight module if V' splits as a direct sum
of weight spaces and for each v = > ko, € L, K, = [] qf i a5 operators on V. We define
i=1

i=1

C to be the category of finite dimensional weight modules for Uf(g).
Given any V € C, we denote by I'(V) the set of weights of V. That is,

D(V) = {\ € b* | V()) # 0} (3.3.1)

We define the character of a module V' € C using the dimensions of the H-eigenspaces as

=) dimV ()2 (3.3.2)

Aeh*

It is easy to show that for any module V and A € h*,

XV C V£ ay). (3.3.3)

We define the usual partial order “>” on h* by Ay > o iff Ay = Ay + Z k;c«; for some
k; € Z>o. A weight X of V' is said to be highest weight if it is maximal Wlth respect to the

partial order among the weights of M. A vector v € V is called maximal if X;v = 0 for each

1, and a module generated by a maximal vector will be called highest weight.

Given a weight A € b*, denote by I* the ideal of Uf(g) generated by the relations H; - 1 =
ANH;), Ky -1=11 qfiA(Hi) for v = > kjo; € L and X; - 1 = 0 for each i.
i=1

i=1

Definition 3.3.2. Define M* := Uf(g)/[’\. M?* is generated as a module by the coset
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vy = 1 + I* with relations

Xﬂ})\ = 07 H,ﬂ})\ = /\(Hz‘)U,\, K/YU)\ — q’iﬂz\(Hi)v)\7

=1

where y = 3" k;o; € L. It follows from Theorem 3.2.4 that M has basis { X5 X5 - XiVv, | 0 <
k; < Tﬁi}'

Clearly, M € C and is universal with respect to highest weight modules in C, that is, for any
module M € C generated by a highest weight vector of weight A, there exists a surjection
M*» — M. Each proper submodule N of M? is a direct sum of its weight spaces and has
N(A) = 0, so the union of all proper submodules is a maximal proper submodule. Hence, each
reducible M* has a unique maximal proper submodule N* and unique irreducible quotient
S* of highest weight A\. We therefore refer to M* as the Verma (or universal highest weight)

module of highest weight \ and we have the following proposition by standard arguments:
Proposition 3.3.3. V € C is irreducible iff V =2 S* for some \ € b*.

It is clear that every module in C is a module over U,(g) and since the H; act semi-simply, M*
is irreducible iff it is irreducible as a U,(g)-module. Kac and De Concini defined a Hermitian
form H on M* [DCK, Equation 1.9.2] by

H(vy,vy) =1 and H(Xu,v) = H(u,w(X)v)

for all X € Uf(g) and u,v € M* where w is the automorphism defined in equation (3.2.12).
Let n € AT and denote by det,(\) the determinant of the Gram matrix of H restricted to
JV{A()\ —n) in the basis consisting of elements Fﬁkl1 e ngvvm with k& = (ky, ..., ky) € Par(n) :=
{k € ZV| Y kifi = 1,0 < k; < rg,}. The determinant of H vanishes precisely on the
maximal submodule of M* and is given on M*(\ — n) by [DCK, Equation 1.9.3]

ra—1 {mda} |Par(n—ma)| N . N .
det, (\) = H H ( ERE ) ()\(Ka)q<ﬂva>—5<a,a> — \NK )q—<p,a>+7<a7a>)| ar(n—ma)|
a€A+ m=0 «

where p is the Weyl vector. It then follows as in [DCK, Theorem 3.2] that we have the

following;:
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Proposition 3.3.4. M* is irreducible iff g?tee)=kae) L] foralla € At and k =1,..., 74—
1.

For each @ € A" we associate to A the scalars A\, € C defined by
Ao = (A +p,a).
Notice that M? is reducible iff for some oo € A+ we have
2N\ — kNdy) = il (3.3.4)

for some k) € {1,....,ro — 1}, n) € Z, where d, := (o, a). This motivates the following

definition:

Definition 3.3.5. We call the scalar A\, typical if 2(A\,—kd,) # 0 mod £ forallk = 1,...,r,—1
and atypical otherwise. We call A\ € h* typical if A, is typical for all @« € A™ and atypical

otherwise.

Clearly, M?* is irreducible iff \ is typical. We can rewrite the atypicality condition into a

more convenient form, which will be useful in the next subsection:

Proposition 3.3.6. )\, is typical iff \, € C, where

(C\ gaZ)UrZ if ¢ is even
(C\&zZ)uizZ iflisodd

where g, = ged(dy, 7).

Proof. By Proposition 3.3.4 and the following comments, A, is atypical iff 2(\, — kd,) =
0 mod ¢ for some k =1, ...,r, — 1. That is, iff

ra—1

>\a c U U né—i—;kda

neZ k=1
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Assume now that ged(d;,r) = 1 for all i. Note that each non-simple root « lies in the

Weyl orbit of some simple root a; and that d, = d,,., so gcd(dy,r) = 1 for all &« € AT (so

r—1
ro = r for all a). Let r = ¢ be odd, then we have A\, € |J |J 2*25= which is clearly
neZ k=1

a subset of %Z. Suppose nr + 2kd, = rm for some m € Z. Then r(m —n) = 2kd, and
we have gcd(r,2d,) = 1 so we must have 2d,|m — n. However, we have k € {1,....7 — 1}
so |r(m — n)| > |2kd,]|, a contradiction. Hence, Ao € 1Z \ Z. Let z € Z \ rZ. Since
gcd(r, 2d,,) = 1, there exist a, b € Z such that 2d,a+br = 1. Since x & rZ, we have ax & rZ,
otherwise © = 2d,ax + brx € rZ. Therefore, there exist m,k € Z with £k = 1,...,r — 1 such
that ax = mr + k. Then, 2d,ax = 2d,mr + 2d,k, so x = 2d,k modr (since 2d,a = 1 modr)

r—1
and so x € |J U rn+ 2d,k. Hence, we have shown
n€Z k=1

rilnr+2dak 1 r
UU 5" =32\

2
nez k=1

r—1
A similar argument shows that J (J 2828 = 7\ rZ when ¢ is even. Suppose now that

neZ k=1
gcd(dy,r) # 0. Then we have

U “Ol (nro +2k)d, doZ \ 17 { even
nez ko1 2 b7\ 7 (odd

Remark 3.3.7. The invertible objects in C are clearly the 1-dimensional S*. Note that we
have

XjX,ﬂ))\ = (51'73‘ [)\(Hz)]Z’U)\

so S* is 1-dimensional iff 2X\(H;)d; = 0 mod ¢ i.e. A(H;) € %ZZ for all 7. These objects
played a crucial role in [CGR] for the construction of certain quasi-Hopf algebras Uf (sly)
whose representation theory related to the triplet VOA. We expect this to remain true in
the higher rank case, and will be investigated in future work. We also expect the higher

rank analogues of Uf (sly) to be closely related to those quantum groups which appear in
[N, GLO].
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3.3.1 Categorical Structure

We first remark that it is easily seen (as in [GP1, Subsection 5.6]), that the square of the

antipode acts as conjugation by Kgp”", ie.

S%(x) = K%;%Kgp_l

for x € Uf(g) where p := 3 zA:+ a is the Weyl vector. A Hopf algebra in which the square
ac
of the antipode acts as conjugation by a group-like element is pivotal (see [B, Proposition

2.9]), so C is pivotal. It is clear from equation (3.3.3) that given any v € V(\), every weight

for the submodule (v) C V generated by v has the form A + > k;a; for some k; € Z. That
i=1

is, every weight vector in (v) has weight differing from A by an element of the root lattice @

of g. We can quotient h* by () to obtain the group t := h*/Q). We then define C5 for A Etto
be the full subcategory of C consisting of modules whose weights differ from A by an element
of Q). Clearly,

c=EPecs (3.3.5)

Aet

and it is easy to see that this gives C a t-grading as in Section 3.1. In fact, we have the

following:

Proposition 3.3.8. C is generically t-semisimple.

Proof. Let X be the subset of t consisting of equivalence classes A corresponding to weights
such that )\, € WZ for some o € A*. Notice that this implies that u, € WZ
for all 1 € X since p being comparable to X implies that

fto = Aq mod d,Z. (3.3.6)

Equation (3.3.6) is easy to see for simple roots and for non-simple roots, one uses invariance
of (—, —) under the action of the Weyl group. X is clearly symmetric. To see y is small,

consider the subset

A={p"et]|(u*)q = ai for some a #0 € R and all « € AT} C t.
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Each p® is distinct since the corresponding weights do not differ by elements of the root
lattice. Suppose that p@ + X = pb 4+ X for some a # b, both non-zero. Then @ — b € X,
a contradiction since any element pu € u® — E will have purely imaginary u, for each a, so
i cannot belong to X'. Therefore, A cannot be covered by finitely many translations of X
and X is small. Notice that by construction, t\ X’ consists of equivalence classes A such that

every weight of every module V' € Cy is typical.

The argument in [CGP2, Lemma 7.1] can be applied to our setting to show that the irre-

ducibles of typical weight are projective. Recall that {szlﬁ1 X fﬁz e Xf:%N |0 <k; <rg}isa

_ N N
basis of Uf(ni). Let X, :=[] Xﬁik Yand X_ = I Xﬁik " denote the highest and lowest
k=1 k=1

weight vectors of Uf(g). Suppose A € h* is of typical weight and that there is a surjection
f: M — M* for some M € C. Since \ is typical, M?* is irreducible so X, X_ acts on the
generator vy of M?* by a scalar, which we denote v. Then there is a vector w € f’l(%v,\).
The vector w' := X, X w is maximal since X is maximal in Uf(?]*) (ie. XX =0 for
all X € Uf(?ﬁ)) and non-zero since f(w’) = wvy. Therefore, by the universal property of
Verma modules there is a map g : M* — M such that g(vy) = w’ and f : M — M?* splits.
Hence, every C5 with ) € t\ X contains only projective irreducible modules and is therefore

semisimple. O

It is well known (see [GP1, Section 5.6], for example) that the duality morphisms are given
by

CC)WV:]I—>V®V*, 1*—>Zvi®7};7
i€l
Sy VIRV o1, foue flu),
Soevy 1 - V@V, 1+— ZU?@KQ;IUZ-,

Sy VeV =1, v fe f(KE),

where 1 is the 1-dimensional module of weight zero and {v; }ies, {v] }ier are dual bases of V'
and V*. The pivotal structure on C is the monoidal natural transformation ¢ : Ide — (—)**
defined by components

% zwvo@(;# V=V
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where 1y : V' — V** is the canonical embedding ¢y (v)(f) = f(v) and ¢,(v) = zv denotes
left multiplication. It was shown in [GP1, Subsection 5.8] (see also [GP2, Subsection 4.2])
that the unrolled quantum group U, qH (g) is braided. The proof of this statement is given for
odd roots, but holds for even roots as well with very minor adjustments. The proof uses a
projection map p : Up(g) — U< from the h-adic quantum group Uy (g) to the C[[h]]-module

generated by the monomials

[T IT x5 1T x%, (3.3.7)
=1

Ji=1 Jo=1

with m; € Zso, 0 < kj,, kj, < r. If we generalize this by defining U< to be the C[[h]]-module
generated by the monomials in equation (3.3.7) with m; € Z>o and 0 < kj, < rg, , then
the proof follows verbatim as in [GP1, Subsection 5.8]. This yields an R-matrix R := J%

where

> di(A™Y) Hi®H;

H = q : (3.3.8)
N [rs;—1 (( -1 J
L 45, — 9, )Xﬁi ® X_/Bi)
% =] Z T , (3.3.9)
i=1 j=0 v AB;

where {3}, is the ordered bases for AT as described in Subsection 3.2.1, [J; ¢]! is defined in
equation (3.2.2), and gz = ¢'*#)/2. Recall that Uf(g) is the quotient of UqH(g) by the Hopf
ideal I generated by the set {X.5'} so the braided structure on UJ'(g) induces a braided
structure on the quotient Uf(g). We then obtain a braiding on C given by ¢ = 7 o R where
T: VW - W®V for any V,W € C is the usual flip map.

Let M € C be simple with maximal vector m € M(\), and define the family of morphisms
Oy :V —V by
Oy := (Idy @ &) o (cyy ® Idy+) o (Idy @ coevy)

where cyy is the braiding. An easy computation shows that

AA2(1—7)p)

On(m) = q m.
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Hence, on any simple module M € C with maximal vector m € M(\),
Oy = ¢PM2AA g, (3.3.10)

We then observe, as in [GP2][Subsection 4.4], that (gx)« = (0gr)* for all generic simple
modules (S* such that A € t\ x), where f* denotes the right dual. So, by [GP2, Theorem
9], C is ribbon.

Corollary 3.3.9. C is a ribbon category.
We also observe here that C has trivial Miiger center (recall Definition 3.1.2):

Proposition 3.3.10. C has no non-trivial transparent objects (i.e. C has trivial Miiger

center).

Proof. Given a pair of irreducible modules S*, S# € C, it is easy to see that the braiding
¢ =To X acts as 7o on the product of highest weights vy ®v, € S*® S*. We therefore
see that

Csngn © Cox gu(Un @ vy) = M Id.

Hence, there is no irreducible object transparent to all other irreducible objects since there is
no weight A € h* such that (\, p) € éZ for all 4 € h*. In particular, there are no non-trivial
irreducible transparent objects. If some M € C were transparent, then all of its subquotients
and, in particular, the factors appearing in its composition series must also be transparent,
so any transparent object has composition factors isomorphic to 1. Any such module has
character ch[M] = 0 (recall Equation (3.3.2)), but any module in C with vanishing character
is a direct sum of dim(M) copies of 1. Indeed, the elements Hy, ..., H,, act semisimply on M
(as they do on all modules in C) so they must act by zero since ch[M] = 0, and it follows

from Equation (3.3.3) that Xo;m € M(+a;) = 0, so Xyym = 0 for all m € M. Recalling

that K, = [] qzlel as operators on C, we see that
i=1
Xem=Hm=0 and Km=1
for all m € M. Hence, M a direct sum of dim(M) copies of 1, and C has trivial Miiger
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center. O

3.3.2 Duality

Given any M € C, the antipode S : Uf(g) — Uf(g) defines a module structure on the dual
M* = Hom¢(M, C) by

for each f € M*,m € M, and x € Uf(g). Let M} be the module obtained by twisting M*
by the automorphism w defined in equation (3.2.12), allowing = € Uf(g) to act on M* as
w(z) and for convenience set M := M7, which is easily seen to lie in C. Note that M is
therefore the dual defined with respect to the anti-homomorphism S o w : Uf(g) — U;{ (9).
It is easy to check that this map is an involution, i.e. Sow oS ow = Id. We therefore have

that the canonical map ¢ : M — M is an isomorphism, since
X - o()(f) = o(v)(S(w(X)) - f) = o(v)(f o (X)) = f(X - v) = (X - v) (),

where IT : Uf(g) — End(M) is the representation defining the action on M. Hence, M= M.
The (contravariant) functor M — M is exact as the composition of exact functors (taking
duals in a tensor category and twisting by automorphisms), and one sees immediately (since
S(H;) = —H;) that dimM()\) = dimM(\), so ch[M] = ch[M]. Exactness implies that M is
simple iff M is, and then ch[S*] = ch[S*] implies S* 22 S*. We therefore obtain the following

proposition:
Proposition 3.3.11.

The contravariant functor M — M is exact and ]\2 = M.

e ch[M] = ch[M] for all M € C.

M is simple iff M is simple.

S =2 8 for all A € b*.
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Recall that a filtration, or series, for a module M is a family of proper submodules ordered
by inclusion
O:M()CMlC"'CMn,lCMn:M.

A series for a module M is called a composition series if successive quotients are irreducible
modules: My /M,_; = S* for some A\, € b*. Similarly, a series is called a Verma (or

~Y

standard) series if successive quotients are Verma modules: M, /My 1 = M™ for some

AL € f]*

We have already observed in Proposition 3.3.8 that irreducible modules of typical weight are

projective. Given any V € C and A € h* typical, we have a surjection
Sop@Idy: (S QV 1V =V (3.3.11)

where S*®(S*)*®V is projective since projective modules form an ideal in pivotal categories
(see [GPV, Lemma 17]), so C has enough projectives and since every module in C is finite,
every module in C has a projective cover. We denote by P?* the projective cover of S*, and it
follows easily from the defining property of projective modules that P* is also the projective
cover of M*. Replacing V in Equation (3.3.11) by an arbitrary Verma module M* and
noting M* = S* for typical A (recall Proposition 3.3.4 and 3.3.6), we obtain a surjection
from the projective module M* @ (M*)* @ M* onto M*. It then follows that P* appears
in the decomposition of M* ® (M*)* ® M* into a direct sum of projective covers. It can be
shown that M* ® (M*)* ® M* has a standard filtration by the argument in [Hu, Theorem
3.6], and P* then has a standard filtration by the argument in [Hu, Proposition 3.7 (b)] since
it is a summand of a module admitting a standard filtration. We denote by (P* : M*) the
multiplicity of M* in the standard filtration of P*, and [M* : S*] the multiplicity of S* in
the composition series of M*. With the existence of the duality functor M — M satisfying
the properties in Proposition 3.3.11, BGG reciprocity follows as in [Hu]:

Proposition 3.3.12. BGG reciprocity holds in C. That is, we have (P* : M*) = [M* : S*].
Let P € C be projective, then P is isomorphic to a direct sum of projective covers of
irreducible modules: P =2 @/\kef)* ey, P for some ¢y, € Z,. Since unrolling the quantum

group gives us additive weights, rather than multiplicative weights, the argument of [Hu,

Corollary 3.10] can be used to show that projectives in C are determined up to isomorphism
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by their characters, which we include here for convenience. It is clearly enough to show
that the characters determine the coefficients cy, of P, since then two projective modules
with coinciding characters will both be isomorphic to the same sum of projective covers.
We proceed by induction on length of standard filtrations. If P has length 1, it is a Verma
module and the statement is trivial. If P has length > 1, let

ocMyc---CcM,=P

with My /M1 = M" denote a standard filtration of P, so ch[P] = """ d,, ,ch[M*/]. Let
A be minimal s.t. dy # 0. By BGG reciprocity, (P* : M?) # 0 iff [M* : S#] # 0, s0 u < A
and therefore by minimality of A\, P* appears in the decomposition of P with multiplicity
dy, that is, P = dyP* & P for some projective module P. By the induction assumption, the
coefficients of P are determined by its character, so P is determined by up to isomorphism

by its character.
Proposition 3.3.13. Projective modules in C are isomorphic if their characters coincide.

It is apparent from the construction of projective covers in [CGP1] for Uf (sly) that the socle
and top of projective covers coincide. This is actually a general feature of C for any Uf(g)

and is a consquence of the following theorem:

Theorem 3.3.14. P is self-dual (P* = P?).

Proof. We first recall that any indecomposable module is a quotient of a direct sum of
projective covers. Indeed, any cyclic indecomposable module M has a unique maximal
submodule and irreducible quotient S*. This gives a surjection ¢ : M — S* and projectivity
of P* guarantees the existence of a map ¢ : P* — M such that ¢op = ¢* where ¢* : P* — S
is the essential surjection. It follows that there exists a v € P* such that ¢op(v) = vy € S*
and since ¢ : M — S* is the quotient map (by the maximal ideal of M), we see that ¢(v)
lies in the top of M and therefore generates M (otherwise it lies in the maximal submodule).
Hence, ¢ : P* — M is surjective. Any indecomposablenM € C is finitely generated by some

{v1,...,v,}, so there exists a canonical surjection ® : @ P* — M given by mapping each
k=1
P* onto the cyclic submodules (v;,) of M. We therefore have for each P* a short exact
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sequence

0— N PP — P -0
k=1

for some Ay, ..., \,, € b* and some submodule N* of @ P**. Applying the duality functor,
k=1
we obtain an exact sequence

0— P = P - N —o0.
k=1

C is pivotal so by [GPV, Lemma 17], projective and injective objects coincide in C. Therefore,

the sequence splits and P* is a summand of €@ P> Further, it is easy to see that the
k=1
functor X — X preserves indecomposability since taking duals and twisting by w preserve

indecomposability in C. Since the P are indecomposable, we have P* = P* for some
Ak € b* and ch[P*] = ch[P*], so we must have A\, = A. That is, P* & P, O

Theorem 3.3.14 has the following immediate corollary
Corollary 3.3.15. e Socle(P*) = S

e P* is the injective hull of S*.

e C is Unimodular.
Unimodularity follows from P° being the injective hull of 1 (see [ENO, EGNO]), so by [GKP,
Corollary 3.2.1], we see that there exists a right trace on the ideal of projective modules in
C (for details on categorical traces see [GP2, Subsection 1.3].). It then follows exactly as in

[GP2, Theorem 22| that this right trace is in fact a two-sided trace:

Corollary 3.3.16. C admits a unique non-zero two-sided trace on the ideal Proj of projec-

tive modules.
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Chapter 4

Algebra Objects and Simple Currents
in Repﬁf(g)wt

In this Chapter we construct families of commutative (super) algebra objects in the category
of weight modules for the unrolled restricted quantum group UqH(g) of a simple Lie algebra
g at roots of unity, and study their categories of local modules. We determine their simple
modules and derive conditions for these categories being finite, non-degenerate, and ribbon.
Motivated by numerous examples in the g = sl, case, we expect some of these categories to
compare nicely to categories of modules for vertex operator algebras. We focus in particular
on examples expected to correspond to the higher rank triplet vertex algebra Wy (r) of Feigin
and Tipunin [FT] and the Bg(r) algebras of [C1].

4.1 Preliminaries

The identification in Proposition 2.1.8 between irreducible Uf(ﬁlg) and W3} (r)-modules
preserved twists. The higher rank singlet W§(r) (see [CM2] for details) is a subalgebra of
the Heisenberg vertex algebra whose rank is that of @ and for A € \/rP it is expected that
F) has a simple W (r)-submodule M), that is a simple current. This Conjecture would follow
from [M, Cor. 4.8] together with [Su] if one could prove that W (r) is a simple vertex algebra
and braided tensor category exists on a category of Wg(r) that contains all the M. The

twist is determined from the action of e*™*%0 with L, the Virasoro zero-mode of the vertex
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. 2(1-7)
algebra. The twist acts on Fock spaces F by the scalar 0, = M IMTTZTP Tt then follows

from Equation 3.3.10, that the twists on Rep, o W§(r) and Rep Uf(g)” act on Fy and SV™

by the same scalar. We therefore make the identification
¢ Rep<S>Wg(T) — Repwtﬁf(g), My C Fy — SV™ (4.1.1)

for A € \/rP. Note that the simple currents in Rep<s>Wg(T) are conjecturally precisely the
Fock spaces M, C F, with A € y/rP while the simple currents in Rep,,, Uf(g) (for g of
ADE type) are the irreducibles S* with A € 7P (see [R, Remark 4.7]), so ¢ identifies simple

currents.

Higher rank Heisenberg vertex operator algebra

One of the examples we are interested in is the Deligne product C X H of the category C
of Uf(g) weight modules with a semi-simple category H of modules over the Heisenberg
vertex operator algebra. We define and review the category # in this section following [DN].

Tensor category structure is due to [CKLR].

Let b be the Cartan subalgebra of g and 6 = bh®Clt,t '] @ CK the corresponding affine Lie
algebra. Let A € h* and denote by F, the the usual Fock space

Fr:=U(h) ®upecyaeck) C

where h ® tClt] acts trivially on C, b acts as A(h) for all h € h, and K acts as 1. For h € b
and n € Z we adopt the notation h(n) := h @ t™ € h ® C[t, '] and define

h(z) = h(n)z""".

ne”L

The Fock space H := F( carries the structure of a vertex operator algebra. Set 1 :=1®1 and
for any v := hy(—nq) - - - hyp(—n4,)1 € H where hy, ..., by, € b, we define the vertex operator

Y (—, z) acting on F, by
Y(v,2) :=: [0 hi(2)] -+ [0"  Th(2)] 1,

where OF = %(%)k and : XY: denotes the normal ordering of two fields X,Y. Set w :=
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% S Hy(—1)?1 where Hy, ..., H, is an orthonormal basis of h with respect to the Killing form,
k=1

and we denote Y (w,z) = > L,27""!. Then, H := Fy is a vertex operator algebra and it
neL
has vertex tensor categories of Fock modules, but for that one has to ensure that conformal

weight is real (see [CKLR, Theorem 2.3|, which requires the action of the Hy to be either

real or purely imaginary. For us the latter case is relevant, e.g.

Theorem 4.1.1. (H,Y,1,w) is a simple vertex operator algebra called the Heisenberg vertex
operator algebra with vacuum 1, state-field correspondence Y (—, z), and Virasoro element
w. We define ‘H to be the category of H-modules on which b acts semisimply and A\(Hj) € iR
for all kK = 1,...,n. This category is semisimple and generated by the Fock modules F,,
A € h*. Tensor products are additive in the index (F), ® Fy, = Fy,+2,), so all Fock spaces

are simple currents with F_, the inverse of F,. The braiding and twist on H are given by

Braiding CFy, Fy, = T 0 T2 (4.1.2)

Twist O, = emMVIdg, (4.1.3)

A

where 7 is the usual flip map.

4.2 Simple Current Extensions

We want to construct and study braided tensor categories related to the module categories
of the higher rank triplet Wy(r) (see [BM, Mi, CM2]) and “Bp” Bg(r) (see [C3]) vertex
operator algebras associated to the root lattice () of a simple finite dimensional complex Lie
algebra g of ADE type. The triplet Wg(r) is an infinite order simple current extension of
the singlet algebra inside Rep W (r)®, while Bg(r) is a simple current extension in the
Deligne product (RepW§(r)XH)® where H is the category in Definition 4.1.1. In the g = sl
case (see [CGR, ACKR]), such categories can be constructed from the category of weight
modules over the unrolled restricted quantum group Uf(ﬁ[g) through the identification of
simple Uf (sly) and W3, (p)-modules found in [CMR, Theorem 1]. We therefore study algebra
objects in the category C of weight modules over Uf(g) and CKH. Both cases can be handled

simultaneously by considering categories of a particular form.

Throughout this section, let B be a braided tensor category whose simple currents {Cy | A €
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L} are indexed by a normed lattice (£, (—, —)) such that the braiding on simple currents
is given by cc, c,,(vx @ vy,) = ¢? 22y, ®@ vy, for a primitive (-th root of unity q and
Cy, ® Cy, = Cy, 12, We assume also that objects in B carry vector space structure and
dimEnd(C,) =1 for all A € £. For any lattice L C L, define the object

AL = @C,\ € B°.

AEL

where B® denotes an appropriate direct sum completion of B (see [AR]).

Theorem 4.2.1. A; is an associative algebra object for all L C L. Aj, is commutative if
and only if /2/¢L is an even lattice. That is, if and only if (A, \) € ¢Z and 2(\, u) € ¢Z for
all \,p € L.

Proof. To realize Ay as a commutative algebra object in B®, we must define a product
e Ar®Ap — Ap and unit ¢ : Cy — Ay satisfying the associativity, unit, and commutativity

constraints:

Ho (:u ® IdAL) =HO (Id-AL ® M) O QAL ALAL> (4'2‘1)
po(t®@Idy,)oly) =1Idy,, (4.2.2)
HOCALAL = Hs (4'2'3)

where aa, a4, 4, is the associativity constraint, [4, the left unit constraint, and cu4, 4,
the braiding. Denote by 1, a generator of Cy. We may assume that ¢(1) = 1. Since
dimEnd(C,) = 1, we have

1y, @ 1y,) = ta, o lny+as (4.2.4)

for some ¢y, 5, € C and it is easy to see that Ay, is a commutative algebra object if and only

if these scalars satisfy

t)\1+)\2,)\3t/\1,)\2 = t>\1,)\2+>\3t)\27>\37
t)“o == t07/\ = 1, (425)

AL
t>\1,)\2 = t>\2,>\1q< ! 2>'
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Let A} denote the same object with algebra structure given by structure constants ) ..
It is easy to see that A; and A} are isomorphic if and only if there exist scalars ¢y, A € L
such that

Dry+2
Bhing = 2t g (4.2.6)

Oxy Prs

Denote by {v;}", the generators of L. Then we can write any A\ € L as A = ) n;7y; for some
i=1
n; € Z, and we fix the notation

AR = Zni%, A2k = ani, N = npy. (4.2.7)

i>k i>k

with A<¥ A\SF definied similarly. Fix non-zero scalars ¢,, and define the scalar ¢, for any

A € L recursively by the relations

oo =1 ¢n% _ ¢(n—1)%‘¢%‘ by = Pr<mPrm

tn—1)7i Ex<m am

and let #} ,, be the scalars determined by equation (4.2.6). We have the following:

/ _ ¢(”+1)%‘

toy=thog=1, t, . . = myii = 1, ther,, = "tk =1, (4.2.8)
0A A0 T ¢n%‘¢’}’i " At ¢A<k¢n’)’k/ Tk
foralln € Z,i =1,..m, k" > k. By associativity, we then have
/ /
/ o t(n+m*1)%,%tn’n,(mfl)%‘ —
nyLmYE t = "nyi,(m—1)y
(m—1)ivi
We therefore see that ¢/ =1 for all n,m € Z and i = 1,...,m. We can translate this
and equation (4.2.8) into the notation of (4.2.7) as
bk b =1 ta<k o =1
forall \,p € L and k =1,...,m. We then see that
, l)\k’uktl)\<k’)\k+‘uk
t)\gk#k - 4 =1 (429)
/\<k7>\k

for any A, € L. It follows again by associativity and equation (4.2.9) that for any k,
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t/

/
A<k = t)\_,_ <k—1 k- 1t>\ <t—1- Then,

Y !
t&u - t>\+u<m7umt/\,u<m

T / !
- t)\+u<m7umt>\+u<mfl7umflt>\7“<mf2 (4210)
m
— t/
- At+p<k pk
k=1

Then, for any A\, u € L and any k = 1, ..., m we have

t/ . Ht/
ASk >k = Sk (u>k)<s (u>Fk)s
s=1

m
— H t/
- >\§k+(u>k)<5)”u,5
s=k+1

m
p— / J—
- H baskppory<e e = 1
s=k+1

where we have used equation (4.2.8) and (4.2.9), and the fact that s > k in the last line.
SO we haVe tl)\ﬂuk = tl)\ﬁk+)\>khuktl)\§k7)\>k = tg\gk’)\>k+“ktl)\>k#k == tl)\>kﬂuk fOI‘ any )\7/,11 G L In

particular, ¢ =thon k> SO equation (4.2.10) can be rewritten as

/\+ <k k

m

th =[] thorn H P | Ul (4.2.11)
k=1 k=1

k=1

We are now ready to evaluate equations 4.2.5. Let \; = Y~ nly; € L (i = 1,2,3). Then, we
j=1

have

/ / o /
t/\1+>\27/\3t>\17>\2 - t>\1 /\2+>\3t/\2 A3

A (Ht/>\1+>\2,>\’§> (H t&mg) (H tAl,A’er’f) (H Az,Ak>
k=1 = k1

- >k >k k >k vk >k vk k >k vk
o (Hqu FATE Ak > (Hqu ALY ) (Hqu BY.EBY. > Hqu ALY )

k=1

m
)\>k7)\k )\>k7)\k )\>k7)\k )\>k7>\k )\>k7>\k )\>k7>\k
TN Hg( 1 3>q<2 3>q< 1 Hq 1 q 1 q 2
k=1 k=1
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which is trivially true for all \; € L. Therefore, Ay is an algebra object for all L C L. For

commutativity, we obtain the following:

! — (A1,A2)
e = Do d
m m
/ . <)\1,)\2> H /
< 11 B =4 WY
k=1 k=1
m m
N H gP Tt AE) = (A H g2 ")
k=1 k=1
DORD DRI ACTITY 3 X (npnd4nind) (i) + 3 npng (veovk) X 20 nAng (v, k)
= qr=1i>k = gk=1i>k k=1 qr=1i>k

m m
> nEnd (Yrk) 3= 2nin3 (v5 k)
= 1 =qgr=1 qr=19>k

Clearly, this holds for all ny,n% € Z if (v, ) € (Z for all k, and 2(v;, ) € (Z whenever
j # k. Tt is also easy to see that we can choose appropriate coefficients to obtain the

equations ¢ =1 and ¢*) = 1. Hence, commutativity holds if and only if

2(vi,7;) €LL i # ]

It is easy to check that this conditions implies

NN € 07
2(\, u) € UZ

for all A\, u € L. m

We have the following useful corollary of the proof of Theorem 4.2.1:

Corollary 4.2.2. The scalars t, ), of equation (4.2.4) defining the product p: Ay @ A, —

A; are non-zero.
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Let L* be the lattice defined by adding a generator p € L to a lattice L C £, and let

ALV« = @CA

AELH

be the corresponding algebra object. Note that if = 0, we recover the usual algebra objects
defined above. If u &€ L and 2u € L, then every element in L* is in L or p + L, so we can

decompose Ar. as A, & A}, where

A(zu - @CA - AL7 A},u - @Cp—i-)\a
AEL AEL

and it is easy to show that p(A%, ® AELM) C Aﬁ since dimHom(C,,, C,,) = dx,.r,- Hence,

Apu is a superalgebra object, and we have shown the first part of the following proposition:

Proposition 4.2.3. Let L C £ such that A is commutative and p € £ such that p & L

and 2u € L, then Apu is a superalgebra. Ajp. is supercommutative if and only if
2(u, p) € 07\ 207 and 2(u, \) € (Z

for all A € L.

Proof. 1t follows from the proof of Theorem 4.2.1 that Ay, is isomorphic to an algebra object

with structure constants ¢, , as in equation (4.2.4) satisfying equation (4.2.11). Recall that

ALM - @C)\ @ @C;Hr)\

AeL AEL

where @ Cy and € C,;, are the 0 and 1 components of the Zy-grading respectively. For
AEL AEL
Apu to be supercommutative, A7 must be commutative which holds if and only if (A, \) € (Z

and 2(\, \') € (Z by Theorem 4.2.1. It then follows from equation (2.1.8) that to show Ap.

is supercommutative, we need to show that

Lt ds it he = _Q<M+A1’M+A2>tu+)\g,u+>\1 (4.2.12)
WAL s (4.2.13)
R ISV (4.2.14)

tu+>\17)\2 =dq

t)\l Lt = 4
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for all A\, Ao € L. Let 7v1,...,7n» be a generating set for L, and ~,,,1 = p. We can apply
Equation (4.2.11) to obtain the following relations

<M7>‘2>

tu+/\1,u+>\2 =dq t>\17/\27

<N7)‘2>

tu+)\1,)\2 =dq t>\17)\27

tz\l,u+>\2 = t>\1,>\27

for all Aj,A\y € L. It then follows from an easy computation using the fact that ¢, , =

q¢?1A2)ty . (from the proof of Theorem 4.2.1) that Ap. is supercommutative if and only if

2(u, p) € 07\ 207 and 2(u, \) € (Z

for all A € L. O

The categories C and CXH consist of finite length modules and therefore all indecomposables
have simple submodules. If we assume this property for B, then we have the following
proposition which was proven in [CKM, Proposition 4.4] for module categories of vertex

operator algebras, but holds more generally:

Proposition 4.2.4. Suppose every indecomposable object in B has a simple subobject.
Then N € Rep Ay is simple if and only if N 2 .% (M) for a simple object M € B.

Proof. Let M € B be simple and suppose .# (M) € RepAp. is reducible with proper subob-
ject X. We then have a Rep®Ap.-morphism X < .% (M) which gives a B-morphism

G(X) = G(F (M) = P M* e B®

AELH

by Frobenius reciprocity, where we have adopted the notation M* := Cy ® M. Since every
M?* € B is simple, we have that

G(X)=Epm

AT

for some non-empty subset 7' C L*. By Corollary 4.2.2, the scalars ¢y, », defining the product
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on Ap. are non-zero, so we see that the action of Az, on % (M) satisfies
Cy- M7 = M,

In particular, any summand M7 generates .# (M), so X = .% (M) and we see that .7 (M)
has no non-trivial proper subobjects. It follows that the induction .% (M) of a simple object
M € B is always simple.

Let N € Rep®Ap. be simple and N’ an indecomposable summand in G(N) € B® (so N’ €
B). Then N’ contains a simple submodule M and we therefore have a non-zero map f :
M — N'" — G(N). By Frobenius reciprocity, we obtain a non-zero Rep.Ap.-morphism
g:F#(M)— N, which is an isomorphism because N and .# (M) are both simple. O

Given any superalgebra object A = A%@ Al it is easy to check that A! € RepA® with action
given by the restriction | yo547 A" @ A1 — Al of the product 1 : A® A — A. Suppose
A is supercommutative and a direct sum of simple currents such that A% = A, for some
lattice L € £ and A is a non-trivial simple object in RepA°. Since A is supercommutative,
A" = A is commutative and because Al is simple in RepA°, we know A' = .#(M) for
some simple module M € B by Proposition 4.2.4. Since A is a direct sum of simple currents,

A2 Z(M) = @ C,® M is a direct sum of simple currents, so we must have M = C,, for
AEL
some p € L. Hence, we have

A=A @A = A @ G(F(C,) =P Cr& P Cpin = Ap.
AEL AEL
Since m(C, ® C,) C A we have 2u € L, and p ¢ L otherwise Al = G(.F#(C,)) = Ay is
trivial in Rep.Ay. We therefore have the following;:

Corollary 4.2.5. Let A = A° @ A! be a supercommutative superalgebra which is a direct
sum of simple currents such that A° = A; for some lattice L C £ and A' is a non-trivial
simple object in RepA°. Then A = Ay for some lattice L* C £ is of the type described in
Proposition 4.2.3.
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4.3 Examples

Recall from Definition 3.3.1 that a Uf(g)—module V is called a weight module if the H; act
5 kid, n
semi-simply on V' and we have K, = qg1 as operators on V for v = > k;a; € L, and C
i=1
denotes the category of weight modules for Uf(g) at (-th root of unity. We denote by M?*
and S* the Verma and irreducible modules of highest weight A € h* in C, and by P* the
projective cover of S*. As noted in [R, Remark 4.6], the simple-currents in C are given by
the set

{S*xe L} (4.3.1)

where £ := {\ € h*|\(H;) € 5~Z}. Throughout this section, we will denote by I'(X) the
set of weights of a module X € C, and we adopt the notation Cy := S* when \ € L.

Lemma 4.3.1. For any A € L, the braiding c_ _ acts as 7 o 5 (recall Equation 3.3.8) on
X®C,,C,®X e foral X €C.

Proof. Recall that the braiding in C is given by 7 o % where 7 is the flip map and 57
and Z are defined by Equation 3.3.8 and 3.3.9. It follows immediately from equation (3.3.9)
that action of the braiding coincides with that of 70 .57 on X ® C, and C, ® X € C since

for all 4, X4, acts as zero on C,. O

Theorem 4.3.2. o Z(P*) € Rep”’(Aprx) if and only if X € £(L")*.

e Let X € C and let Px € C be the projective cover of X. Then .#(X) € Rep®(A.) if
and only if .#(Px) € Rep’ Ap..

e .Z(P?) is the projective cover of .7 (S*) in Rep®ALx.
e The distinct irreducible objects in Rep’ Az. are given by the set {.#(S*)| A € A(L*)}

where A(LM) = £(L")* /(L") N L*. Rep’Ap. is finite if and only if rank(L¥) =
rank(P).

Proof. Recall from Definition 2.1.12 that .% (X) € Rep®(Ayx) if and only if Mc, x = cxc, ©
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cc, x = 1d for all A € L*. It follows from Lemma 4.3.1 and equation (3.3.8) that for any
vector w, € X of weight v € h* we have

Me, x (03 @ w,) = ¢**7'1d (4.3.2)

We therefore have X local if and only if 2(\,v) € ¢Z for all v € I'(X) and A € L*, which
holds if and only if v € g(L“)* for all v € I'(X). Recall, however, that L* C L, so it is
easy to see that a € é(L“)* for all @ € ). For any cyclic indecomposable X € C, all of the
weights of X differ by an element of @, so .#(X) € Rep’Ap. if and only if any one of its
weights v € I'(X) satisfies equation (4.3.2). In particular, .#(P*) € Rep’ Az« if and only if
A€ £(LM)* and F(X) € Rep’ Ay if and only if #(Px) € Rep” Ay as their weights dif and

only ifer by elements in Q).

Define G := {y € h*| 2(\,7) € (Z VA € L'} = L(L")*, so F(P?) € Rep’(Arw) if and
only if v € G. It is easy to see that two irreducible modules S, 57 induce to the same
module if and only if 71 — 79 € L*. In particular, the set of distinct .%(L?) is in bijective
correspondence with the quotient of free abelian groups G/(GNL#*), which is finite if and only
if rank(G) = rank(G N L#), which holds if and only if L* has full rank (rank(L*) = rank(P)).

It follows immediately from Frobenius reciprocity that . (P*) € Rep® A is projective, and
the surjection f : P* — S* induces to a surjection Z(f) = Ida, ® f : F(P*) — F(S*).
If Z(P*) is not the projective cover of .Z(S*), then .Z (f) must not be essential. That is,
there exists a proper submodule A C .%(P?) such that % (f)(A) = #(S*). Note that

ﬂ(P/\) S, @PM—W 9(50‘) ~ @S)\-W

yeL yeL

and we must have Z(f)|prtr : P — SA7. Therefore, if f is not essential, there exists
a P7 with a submodule A’ which surjects onto S?, contradicting the fact that P? is the

projective cover of S7. n

Recall that r = ¢ if £ is odd and r = ¢/2 if £ is even. We have the following:

Lemma 4.3.3. If r { 2d; for all i, then Ext'(C,,,C,,) = 0 for all A\, \s € L.
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Proof. Let N € Ext'(C,,,Cy,,), that is,
0—>Cy,, > N—=>C, —0. (4.3.3)

If \; = \o, then the sequence splits since X4, acts as zero for all i as ch[N] = 2z* and the
H; act semisimply. Suppose now that A\; > \. If the sequence does not split, we must have
A1 = Ay — o for some i (otherwise, Xi,v), = 0 for all i and the sequence splits as above).
Any vector ny, € N(\;) is highest weight and generates N. We therefore have a quotient
map ¢ : MM — N vy, + ny,, from the Verma module M* of highest weight \; onto N.

However, \; € L, so it follows from equation (3.2.5) that we have
XinivM = [)\1(H1) — 2]i1})\1 = —[Q]iX_ﬂ))\l.

2]; = 0 if and only if r|2d;. We then see that X2 vy, # 0, a contradiction, so the module N
cannot exist if 7 { 2d; for all 7. If A\; < Ao, then the above argument tells us that the dualized
sequence

0—+Cy - N—=Cy, =0
splits, where (—) is the exact contravariant functor defined in [R, Subsection 4.2], hence the

original sequence splits. O

Let L* C L such that A;. is a supercommutative superalgebra object. Recall from Equation
(3.3.10), that the twist acts on C, as

Oc, = g2 = gOmH2-nre g,

It then follows from [CKM, Proposition 2.86] and Proposition 4.2.3 that Rep”.Az. is ribbon
if 2(1 —r)(X, p) € (Z for all A € L and 2(1 —r){p, p) € £Z. This gives us the first statement
of the following proposition, where we recall that A(L") := £(L*)*/4(L")* N L*.

Proposition 4.3.4. Let Ay, be a supercommutative superalgebra. Then

o Rep’ Ay, is ribbon if 2(1 — r)(X, p) € (Z for all X € L and 2(1 — r)(u, p) € :Z.
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e If 7 { 2d; for all i, then Rep® A has non-trivial Miiger center if and only if there exists
a A € A(L") such that (\,7) € £Z for all v € A(L").

Proof. As the braiding on induced modules (hence all simple modules) in Rep®A. descends
from that of C® [CKM, Theorem 2.67] (i.e. acts by the same scalar), an irreducible module
F(S*) € Rep’ Apw is transparent to all other irreducible modules . (S) € Rep® Az if and

only if it satisfies

Ca(sN),7(SN) © Ca(sN), 7(SN) = q2<M >Id=¢(sk)®ﬁ(sk’) = Idﬁ(S*)@ﬁ(s*’)

for all .Z(S*) € Rep’Ar.. Recall from Theorem 4.3.2 that irreducibles in Rep®A. are
given by the set {Z(S*) |\ € A(L")} where A(L) = L(L")*/L(L")* N L*. Hence, .# (L)
is transparent if and only if (A, X) € £Z for all X' € A(L*). It follows that if there is no
such A € A(L#), then the only transparent irreducible object is the unit object Ap.. If an
indecomposable module X € Rep A is transparent, then all of the irreducible factors in
its composition series are. Therefore, all transparent objects in Rep’ A« are extensions of

Apr.. Suppose now that we have an object N € Ext%{epoAi (Apw, Apn), that is,
0— A — N — A — 0.

This sequence splits if and only if dim Hom(Ap., N) = 2. The restriction functor G :
RepApw — C then yields a corresponding sequence

0> ECi5gN) S PCy—0
AeLr AELH
in C®. Let ¢, := t|c, and N7 the indecomposable factor in G(N) containing Im(t,). Then

we have an exact sequence

()—>(C7L—”>N7M@(CA—>O

AET

for some finite " C L. It follows from Lemma 4.3.3 that this sequence splits for all v, so
dim Hom¢(C,, G(N)) > 2. By Frobenius reciprocity, we have dim Hom(Ap., X) > 2, so the
original sequence splits. It follows that all transparent objects in Rep’Az. are trivial (direct
sums of Apu). O
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4.3.1 Braided Tensor Categories for Wy(r)

The triplet vertex operator algebra Wg(r) associated to the root lattice ) of a finite di-
mensional complex simple Lie algebra g of ADE type can be written as a simple current

extension of the singlet as

Wo(r) = @ Fy € (Repo W3 (r)®.
AEVIQ

The algebra object in C® corresponding to the triplet vertex operator algebra under the map
¢ : Rep o Wo(r) — Repr(g)M of Equation (4.1.1) is

ATQ - @ (C)\.

AerQ

It follows from Theorem 4.3.2 that the irreducible modules in Rep®A;, are
{Z(SY) X e P/rQ}

Recall that the order |P/r@| is equal to the determinant of the change of basis matrix
A,g«p, which is easily seen to be rA where A is the Cartan matrix of g, so RepOArQ has
Det(A) - k(@) distinct irreducible objects. Further, we have {p, o) € Z for all a € Q, so it
follows from Proposition 4.3.4 that RepOArQ is ribbon. Suppose A € Rep’ Ay, is transparent,

i.e. (A, ) € rZ for all v € P/rQ. Tt follows that (\ wy) € rZ for all fundamental weights

wr € P,so A € Q/r@ and we can write A = > mya; where > m; € rZ and 0 < m; < r.
k=1 k=1

Then, if (X, p) € rZ, choose j such that n; # 0, then (A, p+w;) = (A, p) + m; & rZ. Hence,

RepOArQ has trivial Miiger center by Proposition 4.3.4.

Proposition 4.3.5. RepOArQ is a finite non-degenerate ribbon category (i.e. Log-Modular)

with det(A) - k@) distinct irreducible modules.

We expect that Rep®A,q and the category Rep,, Wq(r) generated by irreducible We(r)-

modules are ribbon equivalent.
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4.3.2 Braided Tensor Categories for Bg(r)

Let H denote the Heisenberg vertex operator algebra of Subsection 4.1 whose rank coincides
with that of g, and H the category of modules on which the zero-mode Ly of the Virasoro
element acts semi-simply. This category is semisimple with irreducible modules Fy, A € b*
and fusion rules

FA®@F, = Fp.

We see then every object F) € H is a simple current with tensor inverse F_,. Hence, any
object Cy XK F, € C X H in the Deligne product of C H with v € h* and A € £ = {\ €
h* | \(H;) € ﬁZ} is a simple current. We can therefore define a family B9 of objects in

(C X H)® where a € C as:
% = @C)\ X Fa)\

AEL

It follows from Lemma 4.3.1 and Equation (4.1.2) that the braiding in C X"H acts on simple
currents as ¢, ®F,»,C,8F,, = (](1“"12)<’\’“> Id. We then have the following corollary of Theorem
4.2.1:

Corollary 4.3.6. B9 € (C X H)? is a commutative algebra object if and only if

(1+pa®)(\, \) € pZ,
(1+pa®)(\, \) € 2pZ,

for all A\, \' € L.

The higher rank Bg(r) vertex operator algebras of ADE type can be realized as (see [C3,
Section 3))

Bq(r) = @ M iy ® F /=, € Rep WO (r)y @ H (4.3.4)

AEP

where M s is a simple current for Wg(r), which corresponds to C,, under the correspon-

dence in equation (4.1.1). Bg(r) therefore corresponds to the object

B = P CaBF =, = P CLRF,,»

AEP AerP

where a, = \/—1/r, which clearly satisfies the conditions of Corollary 4.3.6 since 1+ra? = 0.
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It follows from Equations (3.3.10) and (4.1.3) that the twist acts on Cy X F,, 5 as

Ocywr,, , = Oc, RO, | = gPAF2A=A=0N — 20100,

Hence, by [CKM, Proposition 2.86] Rep”B%, is ribbon if and only if (1 — 7)()\,p) € Z
forall A € P. p € EQ, so this holds if r is odd, or p € ). The irreducible modules in
RepB%, are {F(SFKF,)| (\, u + ray) € Z for all A € P} with relations % (S* K F,) =
F(SFA K F.iq,n) for all A € 7P. The monodromy (double braiding) acts on pairs of
irreducible modules .#(S* X F.), Z(S* K F.) as M g (sugF.) 7 (sv'&F ) = g1+ g0
F(S* X F,) is transparent if and only if

2ju, ) + 2 (3,7 € 202 (4.3.5)

for all p/,4 € b* such that (\, i/ + ra,y’) € Z for all A € P. It is easy to see that
F(S* X F,) € Rep”B%, implies Z(SH+* X Friip) € Rep® A, p for all o, 8 € Q. It then
follows from Equation (4.3.5) that % (S* X F,) is transparent if and only if y € 7P and
v € ra.P. Let y=ri and v = ra,y where 1,7 € P. Then,

2(p, p) + 2r{y, ) € 2r'Z
€ 2rk

%,7)
2r{fi, 1) + 2r*ar(3,7')

(o ') + (3, 1) — (Vo 1) +ran(3,7) €
(=31 + (1 +ray) €
Y1) €

(1 —

/

S A

/

where we have used the fact that (A, ¢/ + ra,y') € Z for all A € P and 7/ € P. Hence,
F (S F,) is transparent if and only if (fi — 7, i) € Z for all z/ such that Z(S* KF.,) €
Repo%ﬁ; for some " € h*. This clearly never holds as we can always choose a g’ not in the
root lattice (). Hence, there are no transparent objects and the argument in Proposition 4.3.4
can be applied to show that the Miiger center is trivial. We therefore make the following

conjecture for the full subcategory Rep y, Bq(r) of Bg(r)-modules generated by irreducibles:

Proposition 4.3.7. Repo%f}, is non-degenerate, ribbon if r is odd or p € @, and the

102



irreducible modules can be indexed as

{8 |y € b%, and i+ ra,y € Q }

with relations S% = SHTA for all A € rP, where a, = \/—1/r.

Yt+arA

We expect that Rep’®B%, and the category Rep ;) Bo(r) generated by irreducible Bg(r)-

modules are ribbon equivalent.
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Chapter 5

Projective modules for Uﬁ (sl3)

In this Chapter we consider the special case of U?(ﬁ[g), which is the easiest case beyond
rank 1. The category of weight modules for UiH(E[g) is expected to be ribbon equivalent
to the category of modules generated by irreducibles for the singlet vertex algebra W22(2),
Repy W4,(2). The corresponding triplet Wy, (2) and Ba,(2) algebras can be constructed
from this category. Ba,(2) is particularly interesting because it is isomorphic to the simple
affine vertex algebra L_%(E[g). Our primary focus is to study the structure of projective
modules in the category of weight modules for Ufl (sl3). To reach this goal, we determine
the structure and characters of all irreducible modules, and the Loewy diagrams for Verma
modules. Combining these results with the self-duality of projective covers (Theorem 3.3.14)
allows us to determine the Loewy diagrams of all projective covers. Knowing the Loewy
diagrams also allows us to compute all tensor product S* @ M* between irreducible modules
and projective Verma modules. The results of this chapter will appear in a future paper
coauthored with Thomas Creutzig and David Ridout, along with the construction of braided
tensor categories for Wa,(2) and By, (2), and a comparison with the known properties of

Rep W4, (2) and RepiyL_s (sl3).

5.1 Irreducible and Verma modules

Throughout this chapter we consider the category of weight modules C for the unrolled
restricted quantum group Uf(slg). Recall from Propositions 3.3.4 and 3.3.6 that the ir-
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reducibility of a Verma module M* is determined by the typicality A € h*. This can be

translated into the g = sl3 case as follows:

Definition 5.1.1. For A € b*, let \; := (A + p, ;) for j = 1,2 and A3 = A\; + Ao. We call
Ae (k€ {1,2,3}) typical if A, € C := C\ ZU2Z. We call a weight A\ € h* typical if A is
typical for k£ = 1,2, 3, and semi-typical if some, but not all \; are typical. Note that

It is easy to check that there are five distinct cases:
1. X typical,
2. M, A € 1427,
3. M €2Z and \g € 1 +2Z or \y € 2Z and A\ € 1 + 27,
4. My eC\Zand Ay € 14+2Z or Ay € Z\ Z and \; € 1 + 27Z,
5. A, A2 € C\Z and A\ + A\p € 1+ 2Z.

Each case yields a different structure for S*, as described in the following proposition:

Proposition 5.1.2. o If \j, \y € 1 + 27, then dim(S*) = 1 and ch[S?] = 2*.

o If \j,\y € C\ Z with \; + Xy € 1 + 27, then dim(S*) = 4 with

Ch[S)\] — Z)\ + Z)\—al + Z)\—ag + Z)\—al—ag

e If \ is semi-typical with atypical index \; (i € {1,2}), then if j # i € {1,2},

dim(S*) =3 ch[SA] = 2t + A 4 A (ontar) if \; €2Z
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dim(S*) =4 ch[SY) = 2} 4 227 f pA(ete2) g pAmeim2ey i )\ e C\ Z

e If ) is typical, then dim(S*) = 8 and

ch[$*] = ch[M*] = 2* ] (

aEA~

Proof. Let vy € S* be a vector of weight \. If A\;,\y € 1 + 2Z, then X_;vy and X_vy
are maximal since XX vy = Opp[A(Hg)va = 0 by Equation (5.1.1), and are therefore
contained in the maximal submodule of M*. Hence, S* is one-dimensional with character

2

Suppose that Aj, Ao € C\ Z and A3 € 1+ 27Z. Then we have \(Hy) + N(Hy) = A\ + X —2 €
1 4 27Z by Equation (5.1.1). We have the following relation:

X1([MHz) = 1JX 1 X avy + [M(H2)] X2 X qun) = ([AM(Hz) — 1[AH1) + 1] + [A(Ho)][A(H1)]) X—20x
AU+ =MIh+T2))

] —_2U)

(
(Z)\(H1+H2 (_1))\(H1+H2)Z)\(H1+H2)>X
¢

(
2
2 YN
2 )\(H1+H2

)\(H1+H2))X

—1 _ouy =0

where the second line follows by expanding terms and the final line follows from A(H;) +
A(Hjy) € 1+ 2Z. We also have the relation

XQ([)\(HQ) — 1]X_1X_2U,\ + [)\(HQ)]X_QX_l’l))\) = [)\(HQ)]([)\(HQ) — 1] + [)\(Hz) + 1])X_1’U)\

_ P\i]jf)] (Z-)\(H2)(Z‘ + Z'_l) — i_)‘(HQ)(i + i_l)) =0

since 1! = —i. We therefore see that v = [AN(Hy) — 1]X_ 1 X svy + [MH2)| X 2 X quy €
M*\ — a1 — ay) is maximal and generates a proper submodule which must also contain
X_jv, X_9v, and X_; X_ov. Further, since A\, Ay € C\Z, we easily check that X _jvy, X vy,
and X_; X_,v, are not in the maximal submodule of M*. Hence, S* has dimension 4 and

character z* 4 221 4 pA—e2 | A—a1—az
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Let \; € C, Ay € 1 +2Z. Then, X_,v, is maximal since Xz X _ov) = Ok 2[A(H2)vy = 0.
Therefore, X_svy, X_1X _svy, X_oX_1X _ 9vy, and X_1X_>X_1X_svy are all contained in

the maximal submodule of M*. We have the following:

X1 X _quy = [A(Hy)]wy,
XoX 50X quy = [A(Hs) + 1] X vy,
X1 XX o X 10y = NH)) — X0 X_10s + NHD)]X_1 X o0y
XoX 1 X 90X quy,=0.

We therefore see that X_v) and X_5X_;v, are not contained in the maximal submodule of
M? since [\(H;)] and [A\(H2)+1] are non-zero, and X _1 X X v, is contained in the maximal
submodule iff \(H;) — 1 = \; — 2 € 2Z, so the result follows. The case Ay € C, A\, € 1 + 27Z

is similar.

If X\ is typical, then S* = M?*. The Verma module M” is a free Uf(n_)—module, so by
Proposition 3.2.4 has a basis given by {X™ X" X"%vy |ng = 0,1} where X_3:= =X X _;+
qX_1X_5 is the vector associated to the root —a; — as. Therefore, dim(S*) = 23 = 8 and

the character is given by

s — )= 3 2 <i z"“o‘> ~2 ] (Zza__11> .

na=0 aEAT Na=0 aEAT
acAT
where we have adopted the notation n, = n,, for £ = 1,2 and n3 = na,1a, O

We are now ready to begin constructing Loewy diagrams, which we now define. Recall that
a filtration, or series, for a module M is a family of proper submodules ordered by inclusion

as
O=MyCcM;C---CM,.1CM,=DM.

Such a series is a composition (standard) series if successive quotients are irreducible (Verma)
modules: My /M1 = SN (My/My_1 = M**) for some A\, € h*. Loewy diagrams are defined

in terms of socle filtrations.

Definition 5.1.3. The socle filtration of M is the filtration defined by M; = Socle(M)
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(the socle of a module is its largest semi-simple submodule) and we inductively define M
to be the largest submodule of M such that M /Mj_; is semi-simple. We define the Loewy
diagram of M to be the diagram whose k-th layer from the bottom consists of composition
factors of the semisimple module M /M;_; with downward arrows indicating submodule

inclusion.

Knowing the structure of irreducibles in each case is sufficient for determining the Loewy

diagrams of Verma modules.

Proposition 5.1.4. The Loewy diagrams for the reducible M* are as follows:

(3)5,\ (3)5)\
(1)5)\70(1 M/\ (1)5)\704172042 (I)Sx\72alfa2 M)\ (I)S/\fag
(3) S)\—Ozl—az <3)S)\—041—a2

Loewy Diagram for A\; € 1 4 27Z, Ay € 2Z. Loewy Diagram for A\; € 2Z, Ay € 1 + 2Z.

@ oA @ oA
wo | wo |
@ gA—as @ gA—an
Loewy Diagram for Ay € C\ Z, \y € 1 4 2Z. Loewy Diagram for \; € 1 + 27Z,
Ao € 1+ 27. A € C\ Z.
(4>S)\ (1)5)\
v | o

(4)5«)\704170[2 \ /

<1)S)\—2(a1—o¢2)
Loewy Diagram for A, \y € C\ Z

AL+ A2 €1+ 27 Loewy Diagram for A, A» € 1+ 2Z.
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where left superscripts indicate the dimension of S*.

Proof. Let \; € 2Z and A\, € 1+ 2Z. It follows from Proposition 5.1.2 that the top of M?* is
a 3 dimensional irreducible module spanned by vy, X_jvy, and X_5X_jvy. One easily checks
that X_,vy, and X_; X _,vy are maximal. Each of these vectors generate submodules of M?*

and we have

()\—Oég)lz/\l‘i‘lE].‘f“QZ (/\—O[2>2:/\2—2E].+QZ
(/\—041—012)1:/\1—1€1+QZ ()\—Ozl—ag)gz)\g—:lGQZ
()\—2041—@2)1:/\1—361—1—22 ()\—20./1—042)2:>\2€1—{—QZ

Therefore by Proposition 5.1.2 X_sv, generates submodule whose irreducible quotient is
one dimensional, and X_1X_5v, generates an irreducible 3-dimensional submodule spanned
by X 1 X ouy, X 9 X 1 X ovuy, and X_ 1 X 52X X ovy. We therefore see that X_; X _sv,
generates the socle of M?, and it is easy to check that the image of X_1X_»X_;v, is maximal
in M*/Soc(M*) and generates a 1-dimensional irreducible submodule of M*/Soc(M?) of
weight A — 2a; — ay. The Loewy diagram then follows:

(3)51)\ (3)5)\
(1)5')\7041 M/\ 1) S)\fa172042 (I)S/\72O{17a2 M)\ (1)5/\7042
(3) S)\—Ozl—az <3)S)\—041—a2

Loewy Diagram for A\; € 1 4 2Z, Ay € 2Z. Loewy Diagram for A\; € 2Z, Ay € 1 + 2Z.

where the left superscript indicates dimension. Let Ay € C\ Z and Ay € 1+ 2Z. Then by
Proposition 5.1.2, the irreducible quotient of M?* is 4-dimensional with basis given by the
images of vy, X_jvy, X o X_juy, and X_1X 5 X_jv\. We also have that X _,v, is maximal
and

A—a)1 =M\ +1€C\Z, (A—ag)s =X —2€ 1+ 2Z.

Therefore, it follows again from Proposition 5.1.2 that X v, generates an irreducible sub-
module with highest weight A — ay and dimension 4. The A\; € 14 2Z, )\, € C\ Z case is
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similar. We therefore have the following Loewy diagrams:

™ g @ g
M J{ M J{
@ GA-as @ gr—an
Loewy Diagram for \; € C\ Z, Loewy Diagram for \; € 1 + 27,
N €1+ 2Z. A2 € C\ Z.

Let A, Ay € 1427, then it is easy to check as above that X _jvy, X _svy, and X_1 X o X _1 X _sv,
are maximal and generate submodules whose irreducible quotients have dimension 3, 3, and
1 respectively by Proposition 5.1.2, while the irreducible quotient of M? is also dimension 1.
It is clear then that X ;X _5X_; X_,v, generates the socle of M?* and it is easy to check that
the submodule generated by X_jv, does not contain X _,v) and vice versa. We therefore

have the following Loewy diagram:

(1)5,\
N
(S)SA—OQ M/\

™~ v

(I)S/\72(a1+a2)

(3) S)\—Ozg

Loewy Diagram for A, Ay € 1 4 27Z.

If A\;, Ay € C\Z, \; + Ay € 14 2Z, then it follows from Proposition 5.1.2 that the irreducible
quotient S* of M? has character z* + 2 ™ 4 A=e2 4 A—e1—a2 Tt was observed in the
proof of Proposition 5.1.2 that there exists a maximal vector v of weight A — a3 — ag. It
is easily seen that A — a; — «s is of the same weight type as A and therefore v generates a

4-dimensional irreducible submodule. The result follows. O
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5.2 Projective Modules

Recall from Theorem 3.3.14 that projective covers in the category of weight modules of
Uf(g) are self-dual under the exact contravariant duality functor (—) of Subsection 3.3.2. It
turns out that for UZH (sl3), with a few additional observations, this constrains the projective
covers enough to determine their Loewy diagrams. We begin by establishing two necessary

lemmas.

Lemma 5.2.1. For A € h* such that \; € 2Z, Ay € 1 4 2Z, there does not exist a module

with a Loewy diagram of the form

(3)5)\
N
(1)S>\+a2 (1)S>\—2a1—a2
\ ( /
S)\

3)

Proof. Suppose there exists such a module M. Then by Proposition 5.1.2, we have ch[M] =
2( AT g AT ) pAee g pAm2an e Lot {0} 03, ) _0ls U3 ays Ur—ay—ags Va—aq —ag» Urbazs Ur—2a1—as |
be a basis for M where the v,ll generate the top S* and Ui generate the socle. We immedi-
ately see that X_yv} = 0 since A — ap is not a weight of M, and from the form of the Loewy
diagram we have XQ'U}\ = AUrtay, X—2Urtay = bv?\ for some non-zero scalars a,b. It follows

from the identity XoX_o = X X5 + K;_qKQ_

— ,11 that
0= XX ovy = X 2 Xovy + [MHy) vy = X 2 Xovy = abvy,

a contradiction. O

Lemma 5.2.2. Suppose the socle filtration of P* has length n. Then we have the following:

e An irreducible module S* appears in the k-th row of the Loewy diagram of P* iff it
also appears in the (n + 1 — k)-th row.

e There is an arrow from S* in the (k — 1)-st row to S#* in the k-th row of the Loewy
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diagram of P* iff there is an arrow from S#2 in the (n + 1 — k)-th row to S¥ in the

(n + 2 — k)-th row.

Proof. We first establish the isomorphism Socle(M) = Top(M) for any module M € C,
where Top(V) is the largest semisimple quotient of N. Suppose S* is an irreducible factor

appearing in Socle(M). Then we have a short exact sequence
0—S*—>M— M/S" — 0.

The duality functor is involutive and preserves irreducibles by [R, Proposition 4.11], so this

short exact sequence holds if and only if the short exact sequence

0— (M/Sr) — M — S* — 0.

holds as well. Hence, S* appears in Socle(M) if and only if it appears in Top(M) with the

same multiplicity. Now, let
OZMOCM]_C"'CMn:P)\

be a socle filtration for P* as defined in Subsection 5.1.3. If S* appears in the (n+ 1 — k)-th
row of the Loewy diagram of P*, then by definition it appears in Top(M;) and therefore

appears in Socle(Mk). We have a short exact sequence
0 — M, — P* — P*/M;, — 0
which yields another exact sequence
0 — (P)/M,) — P = M, — 0,

where we have used Theorem 3.3.14, so M, is a quotient of P* whose socle filtration has
length k (since My has length k). In particular, this means that the irreducible factors ap-
pearing in the socle of M must appear in the k-th row of the Loewy diagram of P*, hence

SH appears there. The other direction is given by replacing k£ with n + 1 — k above.

Suppose now that there is an arrow from S#? in the (n+1—k)-th row to S#* in the (n+2—k)-
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th row. In particular, this means that there exist cyclic submodules N; C Ny C P* whose
socle filtrations have length have length & — 1 and k respectively and Top(N;) = S#* and
Top(N,) = S*2. In particular, Ny C N, implies that N, is a quotient of N,. Since N, has
socle filtration length k& — 1, Socle(N;) = S* appears in the (k — 1)-st row of the Loewy
diagram of N, and has an arrow to Socle(Ny) = S* in the k-th row of the diagram since
by definition all factors in the second last row of a diagram must have an arrow to the socle
in the final row (otherwise they would be irreducible, and hence in the socle i.e. the final
row). The statement then follows since N is a quotient of P*. The other direction follows

by replacing n +1 — k and n 4+ 2 — k with k£ and k£ — 1 above. O]

With these two Lemma’s, we are now ready to prove the main theorem for this section.

Theorem 5.2.3. The Loewy diagrams and Verma factors (in the standard filtration) for

the projective covers are:

(4)5)\ (4)8)\

(4) SA—a1 P> (4)54)\4-@1 (4)5’)\—a2 P (4) GA+az
\ /

(4)51)\ (4) S)\
Loewy Diagram for \; € 1 +2Z, )y € C\Z Loewy Diagram for \; € C\ Z, s € 1 + 27
Verma factors: M?*, Mt Verma factors: M?, Moz
(4>S)\
@ gA—a1—az P> ) gAtar+an
(4)5)\

Loewy Diagram for A\j, A\y € C\Z, \; + Ay € 1 + 27Z
Verma factors: M?*, MAToite:
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(1>S)\+a2 (I)SA—OQ (I)S)\—2a1—oz2
W ghtentes @ gAtaz—a @ g 3 gA—a1—ag
(1)5)\"1‘012 (1)5)\_a2 (1)5)‘_2011 —a

Loewy diagram for \; € 27, Ay € 1 + 27
Verma, factors: M?*, M ez pfrtaites

The diagram for \; € 1 + 27Z, A\ € 27 can be obtained by swapping a; <+ a5 in the simple

factors.
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(3)SA+CM1+2CM2 (3) S)\+2a1+a2 (3) S}\—l-ag (3) S)\+a1 (3)5)\—011 (3)5)\—&2

=0 =

<1)S)\+2(a1+042) (I)S)\-‘r?ag (1)5)\4—2041 (I)S)\GB4 (I)SA—Zal (I)S)\—Qozg (1)3)\—2(0(14-0(2)

N AT e 2/

(3) S/\+a1+2a2 (3) S)\+2a1+o¢2 (3) S/\+a2 (3) S}\-‘roq (S)S)\—Oq (3>S)\—042

\\//

(1) S)\
Loewy diagram for A\, Ay € 1+ 27
Verma factors: M*, MA+tor Jfrtes JpAt+2ea+tas Jritait2es ) rit+2(aites)

Proof. We first need to determine the Verma factors of P* for any A € h*. By BGG reci-
procity (Proposition 3.3.12), it is sufficient to determine which Verma modules M* contain
S* in their standard filtrations. Recall that M* has a basis { X"} X" X %0, | ny, € {0,1}},
so the weights of M* are

{p, =, pp— o, —aq — ao, o — 201 — g, o — @ — 209, 1t — 2(0n + az) }
We therefore see that the only possibilities for u such that [M* : S*] # 0 are those in the set
F()\) = {)\,)\+a1,)\+a2,)\+a1—|—a2,)\+2041+a2,)\+oz1+2042,)\+2(a1+a2)}.

The corresponding scalars for the weights in T'(\) are

A+ ar)1 =AM +2 A+ ar)g =X —1 (5.2.1)

A+ az); =X —1 A+ ag)eg =Xy +2 (5.2.2)

A+ a1 +ag); =M +1 A+ a1+ ag)s=X+1 (5.2.3)
A+ 201 + )1 = A +3 (A 4201 + )2 = Ay (5.2.4)
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()\ + oy + 2@2)1 = )\1 ()\ + oy + 2062)2 = )\2 + 3 (525)
(A4 201 +209)1 = A + 2 (A + 201 +209)2 = Ao + 2 (5.2.6)

Suppose that \; € 1427, Ay € C\Z. Then each weight p € T'()\) satisfies yu; € Z, us € C\ Z.
Since we are looking for those M* such that [M*,S*] # 0, u must be atypical, hence
p1 € 1+ 2Z. It then follows from Equations (5.2.1)-(5.2.6) that the only weights in I'(\) of
this type are A\, A + a1, A + a3 + 2as, and A + 2(a; + a3). It then follows from Proposition
5.1.4 that the only weights in this list whose corresponding Verma module contains S*
as an irreducible factor is A and A + ;. Hence, P* has Verma length two with factors
M* and M1 and that the irreducible factors of P* are “$* with multiplicity two and
Wgrtar (1 gA—az with multiplicity one. It follows immediately from Lemma 5.2.2 that the

Loewy diagram of P? is:

Loewy Diagram for \; € 1 + 27, s € C\ Z

The argument for A\; € C\ Z, Ay € 1 + 2Z is identical. Suppose that A\, Ay € C\ Z and
A+ Ay € 1427Z. Then every pu € T'(A) has py, uo € C\Z, and we easily check using Equation
(5.2.1)-(5.2.6) that only = A\ A+ oy + g, and A + 2(ay + an) satisfy g + pe € 14+ 2Z. By
Proposition 5.1.4, S* does not appear in the Loewy diagram of M**2(@1#e2) hut does appear
in the diagrams for M* and M**®1+e2 Qo the Verma factors of P* are M* and MAtaita
and the irreducible factors are ’$* with multiplicity two and ' §A—e1—e2 W gitantas it
multiplicty 1. It again follows immediately from Lemma 5.2.2 that the Loewy diagram of

P is given by
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(4)5/\

Loewy Diagram for A\j, Ao € C\ Z
A+ X e+ 27

Suppose now that A\; € 2Z and Ay € 14 27Z. Then, one checks again using Equations (5.2.1)-
(5.2.6) that the atypical weights in T'(\) are A\, A+ ag, A+ ag + a9, A+ 201 + g, A+ 2071 + 2.
It then follows from Proposition 5.1.4 and BGG reciprocity in the usual way that the Verma

factors are M*, M M1 and MAe1te2 where

()\+042)1€1+2Z ()\+(12)261+2Z
()\+OZ1+O[2)1€1+2Z (/\+041+OZ2>2€2Z

and the Loewy diagrams for the Verma factors are therefore given by

(3) S)\ (1)SA+042
M) gA—201—az M ) gA—a ) gAtaz—ay Mt () gA

™~ N

(3)8)\7a17a2 <1)S)\72a17a2

<3)S)\+a1+a2

N

(1)S>\+042 M)\—i-al—i-ag (I)SA—CVQ

N

(3>S)\

We therefore see that the factors in the Loewy diagram of P* are @8 with multiplicity
3, WGA-az (Wghtas gpnq W gA-201-a2 with multiplicity 2, and ¥ S ter—or @ gritartar 44

@ gA—ar—az with multiplicity 1. It then follows immediately from Lemma 5.2.2 that the

Loewy diagram for P* (possibly with missing arrows) is given by
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(1)5)\4-012 (1)‘5')\—042 (1)‘5')\—2011 —a
(S)S)\+a1+oc2 (3) S)x+0<2—a1 (3)S>\ (3)5')\—061—042
(1)SA+012 (1)5)\—042 (I)S)\—2011 —Q2
(3>S)\

Partial Loewy diagram for P

where we have filled in the arrows we get for free from the Loewy diagrams of Verma mod-
ules and the dual arrows from Lemma 5.2.2. It remains only to determine if there exist
arrows from the second to third row in the diagram which are currently missing (arrows
from the third to fourth row are then determined by Lemma 5.2.2). Suppose there ex-
ists a module M € C such that 0 — ¥ S§A-a1—e2 5 Ap 5 W ghtes () holds. It follows

from Proposition 5.1.2 that ch[M] = zA-o1702 4 A-a1=2a2 4 A-2Aartez 4 yAtez  Hepce,
Xei - MOA+ a3) € M(A+ ay + ;) = @ for i = 1,2 and therefore S must be
a summand. That is, Ext!(®§A-a1—a2 W gAta2) — g and an identical argument shows

that Ext!(®¥gAterter (gA-201-a2) — o Therefore, there are no arrows from "’ S*o2 to
@ gr-ar—ar op from P GA-2m—ar o @ GAtartaz  Hence, the Loewy diagram of P is given
by the partial diagram above with an additional arrow from M gr=e2 i the second row to
X in the third row, and an arrow from S in the third row to ’$*~°2 in the fourth. We
must now determine the arrows originating from ’$*~°2 in the second row. However, by the
same argument as above we easily find that Extl((g)S)‘J”"?*al, (DS)‘*O‘?) = . To complete
the proof, we observe that Lemma 5.2.1 implies the existence of an arrow from $*~2 in
the second row to ”.S* in the third, since if such an arrow does not exist, there would be a

quotient of P* whose Loewy diagram contradicts the Lemma.

To determine the Verma length of totally atypical P* (A, Ay € 1+ 2Z), one checks by
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the usual method that the atypical weights in I'(\) are A\, A + aq, A + ag, A + 201 + ag, A +
ay + 2a, A + 2(a; + az). All corresponding Verma modules contain S* with multiplicity
one in their Loewy diagrams by Proposition 5.1.4. Therefore P* has Verma length 6. It
follows again from Proposition 5.1.4 that the irreducible factors for P* are (1)5”2(0‘1*0‘2),
WgA-2taz) D grt2ar (D ght2an with multiplicity 1, @G Teat2ez & gri2aitas @) gatar
@ gr a2 with multiplicity 2, and "’$* with multiplicity 6. By Lemma 5.2.2, the Loewy
diagram of P* must have an odd number of rows (since otherwise all factors would have
even multiplicity), and therefore the multiplicity one factors must all lie in the center row.
Further, we know that A/*2(@1%92) is 3 submodule of P* by the argument in [Hu, Proposition
3.7 (a)] since A+2(ag+0r) is maximal among the weights of P, so the irreducible submodule
WG of M M2Ae1+a2) g the socle of P*. Note that S 2(@1+e2) hag multiplicity 1 in P* and
therefore lies in the center row, so the socle filtration of P* has length 5. It therefore follows

from Lemma 5.2.2 that the Loewy diagram of P* must take the following form:

(US)\

//\\

(3) S/\+a1+2a2 (3) S)\+2a1+a2 (3) S/\+a2 (3) S)\+a1 <3)S)\7041 (3>S)\7a2

a0 = s

(1)SA+2(a1+a2) <1>S,\+2a2 <1)S,\+2a1 ™) gre4 (1)5)\72a1 (1)5)\72a2 (1)5)\72(a1+a2)

A R

(3)S>\+a1+2a2 (3)SA+2a1+a2 (3)S>\+a2 (3)S)\+a1 (3)8)\—a1 (3)5)\—112

\\//

(US)\

Here, we have filled in the arrows we get for free from the Loewy diagrams in Proposition
5.1.4 of the Verma factors of P* (red arrows), Lemma 5.2.2 (blue arrows), and the definition
of Loewy diagram (green arrows). One can easily check using the same character argument

as the previous case that there are no missing arrows from the second row to the third row,
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and hence no missing arrows from the third row to the fourth row by Lemma 5.2.2.

5.3 Tensor Structure

Here we compute all tensor products S* ® M* when M* is projective. To do this, we use
Proposition 3.3.13 and the fact that projectives form a tensor ideal in C since C is pivotal
(see [GPV, Lemma 17]). The argument in [CGP2, Lemma 7.1} can be easily adapted to our
setting to show that M* is projective iff u is typical. Recall from Proposition 5.1.2 that the

character of M* is given by

A— > naa

Zzaem AH(z—l)

na=0 acA
aEAT

where A* are the sets of positive and negative roots. It follows from the above equation

that the character of tensor product of Verma modules is given by
11
A A = 3 3 S fa e e o) (53.1)
n1:O TLQZOTL =0

To determine tensor products, we must determine the typicality of the weights appearing in

the character formula. We first note the following identities:

A+p)r1=M+wm—1 A+ ) =X+ —1 (5.3.2)
A+p—a))1=M+pu —3 A+ —a1)e = Ao+ po (5.3.3)

A+ p—a)1 =M+ A+p—a)a=X o+ p2—3 (5.3.4)
A+p—og—ag) =M+ —2 A+ p—og —ag)y =X+ p1g — 2 (5.3.5)
A+ p—20q —ag)1 =M +pu —4 AN+ p—200 —ag)y =X+ s — 1 (5.3.6)
A+ p—a1 —20)1 =M\ +pg — 1 A+ — g —20)e = Ay + g — 4 (5.3.7)
(A4 — 200 — 209)1 = A\ + g — 3 (A4 1 — 200 — 2009)2 = Ay + 2 — 3 (5.3.8)
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If all of the above weights are typical, then we have

1
M@ M' = 5 MAtrmmemezmns(arte) (5.3.9)

n;=0
i=1,2,3

by Proposition 3.3.13. Let A € h* be such that \; € 2Z and Ay € 1427, so S* has dimension

3 and character 2* 4+ 22~ 4 A~ (@1%e2) Ly Proposition 5.1.2. Then, we have

200 1
h S)\ MH = Ap Ap—oaq M-p—(a1+az) <
ch[S* ® M¥"] = (M + 2 +z ) H o

a€EA~

= Ch[MH'”] + Ch[M/\+u—a1] 4 Ch[MM'”_O‘l_O‘?]

Therefore, if 1 € C\ Z and uy € 27Z, then by equations (5.3.2), (5.3.3), and (5.3.5), A+ u
is typical and A + p — a3, A+ p — a1 — ay are atypical with (A 4+ p — a3 — az); € C\ Z and
(A p—ay—ag)y € 1427. Tt follows from Theorem 5.2.3 that the Verma factors of PAT#—a1—a2
are MATH=a=az and MATr—e1 Hence, we have ch[S* @ M#]| = ch[M* @ PAM#=21=22] Tt then
follows from Proposition 3.3.13 that

SA ®Q MH =~ M ATH D prtr-ai—az

If py € 27 and py € C\ Z, then by equations (5.3.2), (5.3.3), and (5.3.5), A+ p — oy —ay is
typical and A + p, A + o — oy are atypical. By the same argument above, we see that

S)\ ® M,u ~ M)\Jrufalfaz EB P)\Jr,ufoq

If py, po € 27, then in the same way as before, we see that A+, A+p—aq, and A\+p—aq —ae
are all atypical and (A\+p—a; —ag); € 2Z, (A\+p— a1 —az)s € 1+27Z. 1t then follows from
Theorem 5.2.3 that the Verma factors of PATH=®1=02 gre NATH NAtH=1 and MATH— =0z,

We therefore have ch[S* ® M*#] = ch[PA#~*1792] 50 we see that
SA ®Q M+ =~ prtu—ar—az
Letting Ay € 1+ 27 and Ay € 2Z, and performing the same analysis, we obtain the following

S* @ MM = MA@ pATrmaier when ju; € 27,y € C\ Z
S* @ Mt =2 MRz gy pAtusa when p; € C\ Z, uy € 27
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S* @ MHF =2 pru-ai—a: when pu1, o € 27

Now, let A € h* with \; € C\ Z, Xy € 1+ 2Z. Then by Proposition 5.1.2, dim(S*) = 4 and

has character z* 4 22~ 4 zA-a1—a2 4 ;A=2e1-a2 W then have

200 1
h SA MM = A Ap—on Ap—a1—az Ap—2a1—az ol
ch[S* @ M*] = (2N + 2 + 2 + 2 ) H —

aEA~
= Ch[M)‘Jr,u] + Ch[MAﬁu*al] 4 Ch[M)\Jr,u*mfag] 4 Ch[M/\Jrqualfaz].

If py € 2Z and py € C\ Z, then the highest weights of the Verma modules appearing in the

character are all typical, so their direct sum is projective and we have

SA ® MH = M)\-i—u D M>\+M—Ot1 D M>\+M—Ot1—042 D M)\+M_2a1_062. (5310)

If py1, po € 27, then it follows from equations (5.3.2), (5.3.3), (5.3.5), and (5.3.6) that A + u
and A + pu — 200 — ap are typical, while A + y — a; and A + u — ay3 — ay are atypical
with A+ p—a1 —ag); € C\Z, A+ p— a3 —ag)y € 1+ 2Z. It follows from Theorem
5.1.4 that PAMr-21722 hag Verma factors MAT#=*1792 and MA#=%1 Hence, ch[S* @ MH] =
ch[M?*] 4+ ch[MAr—20a=a2] 4 ch[PAv—a172] 50 we have

S/\ ®Q M+ =~ M D MATH—200—az D pAtu—ai—az

If iy € C\Z and py € 27, then we have three distinct cases: A\ + p1 & Z, A\ + pq € 27, and
A+ € 1427, In the first case, the highest weights of the Verma modules appearing in the
character of S*®@ M* are again typical, so the tensor product is given by equation (5.3.10). In
the second case, use equations (5.3.2)-(5.3.8) again to determine that A+pu—2aq —aq is typical
while the other weights are atypical and (A4 p—ay —ag)1 € 2Z, ( A+ p—aq —aw)g € 1+ 27Z.
It follows from Proposition 5.2.3 that ch[S* @ M#] = ch[MATr-201702] 4 ch[PAMH-a1—az] o
we have
) @ MP o N Mr201-02 @ pAtp—ai—as.

In the third case of \; + uy € 1 4 27Z, by the usual argument we see that A + p is the only
typical weight while (A + p — 20q — @)1 € 2Z, (A + p — 2a1 — ag)g € 1 + 27, so we get an

122



equivalence of characters from Theorem 5.2.3 and

S)\ ® MH = M)\Jr,u D P/\JFN*QCU*O!Q

Suppose now that pq, s € C\ Z. If Ay + 1 & Z, all highest weights of the Verma modules
appearing in the character of S* @ M* are typical and the tensor product is again given by
equation (5.3.10). If Ay + 3 € Z, then an analysis identical to the analagous cases above

gives

S)\ ®Q MH =~ M)\+M—Oé1—012 D MA+M—2061—012 D P/\-i-M—Oll if )\1 + 1 € 27,
S* @ MHF = MAMH @ MR @ pAalai-az if \y 4 € 1427

The cases for \; € 2Z, \y € 1 + 27 are symmetric. If \;, s € 1 4 2Z, then S is one
dimensional and we have S* @ M#* = M>*.  We are therefore left only with the case

A, A2 € C\Z, Ay + Ay € 1 4+ 27Z. By Proposition 5.1.2, we have

20 1
h S)\ MH = A Atp—og Atp—ag Atp—a1—az <
ch[S* @ MH| = (2" + 2 +z +z ) H o

aEA~

= Ch[MM-u] + Ch[M’\+”_°‘1] + Ch[M)r‘r,ll—ag] + Ch[M’\+“_a1_a2]_

If p11, po € 27, then we see immediately from equations (5.3.2)-(5.3.8) that 71,7, € C\ Z for
Y=A+p A+ p—a, A+ pu—ag, \+ g — a; — ay. Further, we have

(A+p)s€1+2Z
A+ p—ay); €2Z
A+ —ag)3 € 27
AN+p—a; —ag)3 €1+27Z

so we know A\ + p — ay, k = 1,2 are typical. It follows from Theorem 5.2.3 that PATH-a1—az
has Verma factors MAH=1722 and M*# so the characters of S* @ M#* and M H—1 @

M=z @y pAtu—ai—az coincide and the modules are isomorphic. In the same way, one can

show that in the other cases for u typical, all weights are typical and

S)\ ® MH M/\+u D M)\—i—u—oq D M/\—i-u—ozz D M/\—i—u—oq—az
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Proposition 5.3.1. Let ¢,j € {1,2} with ¢ # j. If \; € 1 +2Z and \; € 2Z, then

S* @ MHF = MA@ pAr-ai—a: when p; € 2Z, p; € C\ Z
S* @ Mt = MRz gy pAtu—ay when p; € C\ Z, u; € 27
S* @ Mt =2 prumor—e: when p1, o € 27

For \; € 1 +2Z and \; € C\ Z, we get

S*@ MF = MA@ MATETY @ MR e g M RTei20 when p; € C\ Z, py € 27

SA @ MH =2 MA@ MR- aim29 gy pAtamai—as when ju1, pto € 27
S* @ MP =2 MAMH2e 0 gy pAtu-or-az when p; € 27, \; + pj € 27
S @ M# = MM @ pATHTleg—a when p1; € 27, \j + p; € 1+ 27Z

Sr@ M* = MA@ MATETY g Mo g VMR when py € 27, A+ € 7

For )\1,)\26C\Z, )\3:)\1—|—)\261+QZ, we have

S @ MM = MATH—o1 @ pfAtr—a2 g pAtp—ai—az If f11, po € 27
SA@ MM = MA@ MOTHTOL g MATHTO gy pATHT oo Otherwise
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