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Abstract

Entropy measures of probability distributions are widely used mea-
sures in ecology, biology, genetics, and in other fields, to quantify
species diversity of a community. Unfortunately, entropy–based di-
versity indices, or diversity indices for short, suffer from three prob-
lems. First, when computing the diversity for samples withdrawn from
communities with different structures, diversity indices can easily yield
non-comparable and hard to interpret results. Second, diversity indices
impose weighting schemes on the species distributions that unneces-
sarily emphasize low abundant rare species, or erroneously identified
ones. Third, diversity indices do not allow for comparing distributions
against each other, which is necessary when a community has a well-
known species’ distribution. In this paper we propose a new method-
ology based on divergence measures to quantify the species diversity
of a community. Our two–step approach naturally overcomes the pre-
vious mentioned problems, and can be used as an efficient biomarker
for health risks. We validate our proposed approach in the diversity
analysis of infants’ gut microbiota according to mode of delivery and
diet. Unlike entropy–based indices, divergence–based measures yield
sharp and significantly different diversity results between the groups
of each mode, which is consistent with recently reported taxa profiles
for these cases.

Keywords

Divergence measures; Diversity measures; Entropy measures; Human micro-
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1 Introduction

With advances in biotechnologies, characterizations of microbiome diversity
has become increasingly important. Recently, various studies in humans and
animal model have shown that disturbed acquisition and composition of mi-
crobiota during early infancy, for instance subsequent to caesarean section
delivery, antibiotic use and formula–feeding, is linked to a greater risk of
developing diseases later in life such as allergy, asthma, obesity, metabolic
syndrome, necrotizing enterocolitis, diabetes, cancer, infantile colic, and in-
flammatory bowel diseases [32]. Species diversity is a key component in
the portfolio of studying infants’ gut microbiota, and in order to proceed
to the problem addressed here, we shall begin our discussion with a formal
definition of diversity.
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Let C be a community of living organisms where each member of this
community (called an individual) has the label of a species. Let s be the
number of different species (or individual categories) in C, where the species
are labelled from 1 to s. Denote the probabilities of species discovery, or
relative abundance, by π = [π1, π2, . . . , πs]

⊤, where
∑s

j=1 πj = 1, and πj ≥
0. Suppose a random sample of m individuals is taken from C and each
individual is correctly classified according to its species identity. If xj is
the number of individuals of the jth species observed in the sample, then
x = [x1, x2, . . . , xs]

⊤, where
∑s

j=1 xj = m, is a multinomial distribution M
with parameters (m,π); or x ∼ M(π) for short.

The diversity of community C is a key concept in ecological studies.
The main difficulty in measuring the (self) diversity of a community (or
α–diversity) is compressing the complexity of a distribution, with a multidi-
mensional representation of species relative abundance, into a single scalar
statistic [15]. In its simplest definition, a diversity index is a function of
two properties that characterize the species in C: (i) the number of species
present in the community (species richness or abundance), and (ii) the even-
ness with which the individuals are distributed among these species (species
relative evenness or equitability). If s is the number of species in C, then the
diversity is higher whenever s is increasing, and/or M(π) approaches the
uniform distribution U ; i.e., πi ≈ πj for 1 ≤ i, j ≤ s and i 6= j.

The previous verbal definition of diversity, although based on “ecological”
concepts, naturally coincides with the definition of entropy in information
theory [26]. Indeed, plant, animal, and microbial ecologists have heavily
relied on entropy measures as diversity indices. Further, each research com-
munity has proposed its own variants of diversity measures, each exhibit-
ing different sensitivity to one of the aspects characterizing the community
(richness, evenness, etc.). Despite the plethora of these diversity indices,
the ubiquitous Shannon (or Shannon–Wiener) entropy [26] seems to be the
index of choice for various ecology researchers1. A widely used estimator for
Shannon’s entropy H is the maximum likelihood estimate (MLE) given by:

Ĥ = −
s∑

j=1

π̂j log2(π̂j) = −
s∑

j=1

xj

m
log2(

xj

m
), (1)

where π̂j is the MLE of πj. Note that H, like any other entropy measure,
is a function defined on the space of distribution functions satisfying some
postulates: (i) non negativity, (ii) attains a maximum for the uniform dis-
tribution, and (iii) has a minimum when the distribution is degenerate.

1Other diversity indices will be discussed in the following sections.
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Figure 1: In this example, and using Equation (1), the entropies for samples
x1 and x2 are: 1.52 and 1.96, respectively. Although it is possible to conclude
that x2 is more diverse than x1, one should note that these two samples are
not comparable since the common species between both samples are only
‘b’, ‘c’, and ‘d’ but not ‘a’ nor ‘e’.

Thus a measure of entropy is in fact, an index of similarity of a distribution
function with the uniform distribution U .

In this paper, we consider three problems of entropy–based diversity mea-
sures, exemplified by Shannon’s entropy, when used to compare the diversity
between two or more communities. Although we faced these problems in the
context of gut microbiome analysis, we will show that these problems are
independent from the community type under consideration.

The first problem that affects the comparison of multiple communities is
due to the convex weight π̂j assigned to the log term in Equation (1), thereby
assigning a larger weight per individual to rare than common species. Such
a weighting scheme will increase the influence of rare species while decrease
the influence of common species, thereby creating a balance between rare
and common species. While such a weighting scheme might be useful in some
cases, we argue whether it is always desirable. For instance, if some of the
rare species are not the usual habitants of a community, i.e., noisy samples,
or some individuals were not correctly classified to their true species identity,
then H will unnecessarily emphasize the importance of such samples. More
importantly, the reader should note that this weighting scheme alters the
true distribution of the species. Thus, it would be desirable to have the
flexibility of computing the diversity of C without relying on such weights.

The second problem arises when comparing two or more values of the
Shannon index. That is, when comparing the diversity of two samples, and
each collected from a different community, if the two samples do not contain
the same species categories and all their relative abundances are non–zeros,
Shannon’s entropy will be a misleading index of the diversity of both com-
munities. The reason for that is that Shannon’s entropy positively correlates
with species richness (the number of species categories) and evenness. To see
this, consider the example depicted in Figure (1). In this example, x1 and x2

are two samples withdrawn from communities C1 and C2, respectively. Using
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(a) Step 1

(b) Step 2

Figure 2: (a) The first step of our proposed approach creates a set of species
that is the union of all species from x1 and x2. Then, x1 and x2 are re-
presented using the unified set of species. Note that this will introduce
zero counts in the new representation. Since 0 log 0 = 0, using Shannon’s
entropy for the new x1 and x2 will be identical to the situation in Figure
(1). However, using the divergence naturally overcomes this problem. (b)
Samples x1 and x2 are represented using their distributions (or relative
normalized abundances), and U is the uniform distribution over the unified
set of species. Here we have used U as the reference distribution to illustrate
the main idea. In the second step, the proposed framework measures the
diversity of x1 and x2 as the divergence between x1 and U , and between x2

and U , respectively.

Equation (1), the entropies for x1 and x2 are 1.52 and 1.96, respectively.
Although, at first glance, it is possible to conclude that C2 is more diverse
than C1, one should note that these two values are not comparable since the
common species between both samples are only ‘b’, ‘c’, and ‘d’ but not ‘a’
nor ‘e’. In fact, it is enough to have one different species in both samples to
render the values not comparable. Note that the value of H in the examples
above will be more perplexing if the number of species in both samples are
not equal, and the situation becomes worse when there are tens or hundreds
of samples to compare, each with hundreds or thousands of species.

The third problem is due to the definition of entropy itself which turns
to limit the scope of diversity. First, based on the definition of entropy, note
that computing the diversity of C is equivalent to measuring the similarity
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between the distribution of species in C and the uniform distribution U over
the same set of species. Second, note also that U has the highest entropy (or
diversity) among all other possible distributions defined over the s species of
C. These two remarks imply that U is the ultimate reference distribution for
comparisons for any community C. However, in nature surrounding us, it is
less probable that a community of any living species can have such a uniform
distribution. It is more reasonable to believe that each community will have
a latent distribution M(π∗) that is not necessarily uniform. Biologists,
after a fair amount of research, may provide a reasonable estimate or a
model M(π̂∗) for the latent distribution, which makes it the new reference
distribution for a given type of communities instead of U . For instance,
in macroecology and community ecology, this is know as the occupancy
frequency distribution (OFD) and there has been many advances in that
regard since it was first introduced by Raunkiær in 1918 [19, 10]. In such
cases, using M(π̂∗) as a reference distribution will be preferable over using
U . Further, if M(π̂1) and M(π̂2) are empirically estimated from two other
communities C1 and C2, respectively, an interesting question then is, how
to measure the pairwise similarity/dissimilarity directly between M(π̂1),
M(π̂2), and M(π̂∗) without relying on their entropies?

To overcome the aforementioned problems, we propose a new method-
ology for assessing and comparing the diversity of multiple communities.
Our approach, which is also grounded on information theoretic principles,
has two steps. In the first step, depicted in Figure (2a), we overcome the
problem of communities with different species by first defining a new set of
species that is the union of all species from all communities under consider-
ation. Next, each community is re-represented using the new unified set of
species, thereby creating a common ground for comparisons for all commu-
nities under study. Note that, for Figure (2b), using the new representation
will introduce species with zero counts in the sample. If entropy is used to
assess the diversity of these communities, then zero count species will be
neglected by H since 0 log 0 is 0, which reduces to the problem depicted in
Figure (1). We overcome this problem, however, using the second step of
our proposed framework.

In the second step, we generalize entropy–based diversity indices to
divergence–based indices. That is, instead of measuring the entropy for
each community given its new representation based on the unified set of
species, we compute the divergence between the distribution of each com-
munity and the reference model M(π̂∗). When M(π̂∗) is not known for the
community under consideration, then one has no other option but to use
the ultimate diverse distribution which is the uniform distribution U defined
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over the unified set of species, as depicted in Figure (2b). Unlike entropy-
based measures, the divergence measures the dissimilarity (or difference)
between any two probability distribution functions defined over the same
set of outcomes. In other words, the divergence between two distribution
functions is analogous to the distance between two points in an Euclidean
space. As will be explained in § 3, zero count species are not neglected by
divergence measures, and they increase the dissimilarity between the two
distributions. Hence, by definition, the divergence overcomes the second
and third problems of entropy-based measures mentioned above. Further,
divergence measures do not impose any weights that alter the original sam-
ple distribution under consideration, and therefore they also overcome the
first problem we discussed above of entropy-based measures.

Readers familiar with Whittaker’s beta diversity [30] should note the
difference between this type of diversity on one hand, and the methodology
proposed here on the other hand. Beta diversity [30, p. 320] measures
the extent of change in community composition, or degree of community
differentiation, in relation to a complex-gradient of environment, or a pattern
of environments. Note that this description covers two different aspects for
a community: (i) the change in the composition of the community itself,
and (ii) the degrees of differences in diversity between the community itself
(as a subgroup), its surrounding communities (other subgroups), and the
species diversity at the regional or landscape scale. See [29] for a clear
overview of beta diversity. Our proposed methodology as described above,
is not addressing the extent of compositional change in one community, nor
is addressing the relation and structural differences between a community
and its surrounding communities, or its surrounding region at large.

To the best of our knowledge, we are unaware of any research in the
literature that has addressed the above issues together with a proposed so-
lution. We validate the proposed divergence–based diversity measures in
the analysis of 24 infants’ gut microbiota according to infant diet (breast-
fed vs. formula-fed), and mode of delivery (vaginal vs. caesarean section).
Note that in this context, community sequencing of hypervariable portions
of the bacterial 16S rRNA gene yields a series of unique motifs considered
individually as “operational taxonomic units” (OTUs). Each OTU corre-
sponds to a unique group of individuals sharing a common taxonomic af-
filiation (e.g., at the level of subspecies, species, genus, family or higher).
In this analysis, we show that diversity indices such as Shannon’s entropy
index, Gini–Simpson’s index, and Hill–Jost numbers, fail to detect any sig-
nificant difference in the microbiota diversity among these groups. However,
divergence–based diversity measures are more sensitive in detecting dysbio-
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sis of infant gut microbiota secondary to the delivery method and infant
diet, and yield findings consistent with observed differences in the relative
abundance of individual microbiota species, as we and others have reported
[25, 2]. Last, we show how a precise statement using our proposed measures
can turn into an efficient biomarker for health risks.

2 Background and Literature Review

In this section we cover two different aspects for the research presented
in this paper: (i) a brief literature review of diversity indices, and (ii)
the specific context of our study which assesses the diversity of infants’
microbiota according delivery mode and diet.

2.1 Overview of Diversity Indices

Since its introduction in 1943 [7, 17, 18], the concept of species diversity
has been defined in various and disparate ways leading to a plethora of di-
versity measures with different and rather “conflicting” characteristics [13].
This has led some researchers in the 70’s, such as Hurlbert [11], to conclude
that species diversity is meaningless. More recently, this debate has evolved
to the need for a consistent terminology for quantifying species diversity
[20, 28]. The first effort to disambiguate the term is due to Whittaker [31],
followed by Hill [8], and more recently by Jost [13]. Most researchers, in-
cluding Hurlbert, have agreed that the definition of a community’s diversity
within itself (α–diversity) should, at best, be restricted to the one intro-
duced in § 1. Jost [13] made a further distinction between a diversity index,
such as H, and a diversity number. In his argument: “A diversity index is
not necessarily a diversity. The radius of a sphere is an index of its vol-
ume but is not itself the volume, and using the radius in place of volume in
engineering equations will give catastrophic misleading results”. Based on
his argument, the diversity of a community reduces to finding a community
that is composed of equally common species. Using simple algebra, he de-
vises an algorithm for recovering the diversity number given the value of a
diversity index. For instance, the expression for the diversity number based
on Shannon’s index is exp(−H).

In the literature, there are two other well known indices, the Simpson’s
index [27]: Sp =

∑s
j=1 π̂

2
j , and the Chao-1 index [4]: Ch = s+ a2

2b , where a
is the number of singletons (species with a single occurrence), and b is the
number of doubletons (species with a double occurrences) in C. Simpson’s
index is sensitive to the abundance of the more plentiful species in a sample
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and therefore can be regarded as a measure of dominance concentration.
Similar toH, Simpson’s index is a weighted mean of the relative abundances,
and both measures were shown to be special cases from Rényi’s entropy.
Hill [8] and Jost [13], however, advised to use the reciprocal of Simpson’s
index, 1/Sp, or the generalized entropy, ln(Sp), as diversity numbers, while
Whittaker [31] and Pielou [22] favoured the Gini–Simpson index: 1− Sp.

Shannon’s and Simpson’s indices perform as expected when approxi-
mating the diversity of common species, however each may fall short as a
single complete measure when examining numerous low abundant organisms
that dominate the composition of a community [15]. Both indices have been
shown by Hill, through Renyi’s definition of generalized entropy [24], to have
similar characteristics, but differing only in the contribution of low abundant
species to the magnitude of the calculated statistic. Renyi’s entropy unifies
Shannon’s and Simpson’s diversity indices as entropies with a parmeter q,
the power to which the contribution of taxonomic abundances is raised:

Dq =

(
s∑

i=1

πq
i

) 1
1−q

. (2)

Hence, q values of 2, 1, and 0, are associated with Simpson’s index, Shan-
non’s index, and the total number of species detected, respectively. While
these are known as Hill numbers, surprisingly, Jost’s interpretation and algo-
rithm for recovering the diversity number from any entropy–based diversity
index yields exactly the expression in Equation (2).

Chao-1 index, in fact, is a richness estimator – i.e., an estimator for s –
although various studies have used it as a diversity measure. Chao-1 relies on
the existence of singletons and doubletons in the sample. If no singletons nor
doubletons in the sample, Chao-1 equals the number of observed species in
the sample. Note that Chao-1 does not strictly follow our chosen definition
of diversity introduced in § 1 since it does not address the equitability of
relative abundances in the sample.

Despite the differences between all the above indices, it is worth not-
ing that various researchers consider that the number of species, Simpson’s
index, and Shannon’s index are in some sense, similar evaluations for the
number of species present in the sample, and they only differ in their propen-
sity to include or exclude the relatively rare species [8].

In a different research path, Chao and Shen [5] consider three shortcom-
ings of the MLE for H in Equation (1): (i) Equation (1) is derived under
the assumptions that s is known, (ii) it is assumed that m > s, and (iii)
the fact that the MLE π̂j is negatively biased; i.e., Ĥ is an underestimate
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for H. In practice, the true value of s is unknown, and rare species may
not be discovered in a sample due the existence of numerous low abundant
species. Further, due to negative bias of π̂j, Ĥ yields an estimation error
that will differ between samples, depending on the diversity and evenness in
each, and will be large for small samples [9]. Hence the authors proposed a
nonparametric estimator for H for the particular case when s is unknown,
while taking into account the possibility of having unseen species. Note that
the motivations for the Chao and Chen estimator are different from our mo-
tivations discussed in § 1. Further, their estimator relies on the concept
of sample coverage to adjust the sample fraction for unseen species which
relies on the presence of singletons and doubletons as in the Chao-1 index.
Such assumptions on singletons and doubletons might not be applicable in
some domains. For instance, due to the current bioinformatics approaches
for translating raw sequenced output into OTU abundance, it is rare, if not
impossible to enumerate OTUs with single or double occurrences since they
are usually filtered out prior to the determination of OTU abundances in
sequenced samples.

2.2 Infant Gut Microbiome Profile According to Infant Diet

and Mode of Delivery

In this section we discuss the specific context of our study where we ap-
plied our proposed divergence–based measures. Recently, [2] have profiled
the gut microbiome (using fecal samples) of 24 healthy Canadian infants
selected from a national birth cohort, according to mode of delivery – vagi-
nally (V) vs. cesarean section (CS), and infant diet – breast-fed (BF) vs.
formula-fed (FF). In their study2, the authors found that, unlike vaginally
born infants, CS–delivered infants had bacterial communities with signifi-
cantly lower relative abundances of genus Escherichia-Shigella and an ab-
sence of Bacteroides. Further, compared with infants who were breast-fed,
those who were not breast-fed had bacterial communities with significantly
higher abundances of the family Peptostreptococcaceae and the family Ver-
rucomicrobiaceae (genus Akkermansia). Colonization with Clostridium dif-
ficile was least likely significantly lower among exclusively breastfed infants
than among infants receiving formula; the prevalence did not differ by mode
of delivery.

To measure richness and diversity of the samples, the authors used the
Chao-1 estimator (see § 2.1) and Shannon’s entropy MLE in Equation (1).

2For complete details on this study, please refer to [2]
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Table 1: Richness and diversity (with standard deviation) of fecal microbiota in
infants, by early-life exposures [2].

Exposure No. infants (n) Chao-1 (Richness) p value Shannon (Diversity) p value

Mode of delivery

Vaginal 18 11.2 (4.4) 0.007 1.33 (0.49) 0.06
Emergency CS 3 19.7 (3.2) 2.02 (0.48)
Elective CS 3 9.3 (1.5) 1.09 (0.47)

Diet at 4 months

Exclusive BF 10 9.0 (4.1) 0.006 1.19 (0.51) 0.1
Partially BF 5 12.6 (5.3) 1.42 (0.64)
Not BF 9 15.0 (4.0) 1.58 (0.47)

Table (1), taken from Table (4) in [2], shows the values of Chao-1 and Shan-
non’s entropy (with standard deviation), and p values for the significance
tests (two-tailed Student t–test, with trend test for diet group). It can be
seen that the values of the Chao-1 estimator are consistent with the gen-
eral profile characteristics described above. Indeed, there is a statistical
significance (p = 0.007) between the richness of vaginally delivered infants,
emergency CS infants, and elective CS infants. Similarly, there is a statis-
tical significance (p = 0.006) between exclusively BF infants, partially BF
infants, and only FF infants.

On the other hand, Shannon’s index values did not show any statisti-
cal significance between any of the groups, which is not consistent with the
richness estimator, nor with the microbiota’s profile described above. For
instance, for infant diet, p = 0.1, not BF infants had the highest diversity,
followed by partially BF infants, and finally exclusively BF infants. Ac-
cording to Shannon’s index, no significant difference can be found between
the different groups. The same interpretation follows for delivery mode,
p = 0.06.

Note that when we carried our own analysis using the same dataset (§ 4)
no statistically significant differences in diversity were found among these
groups when using the Gini-Simpson index and Jost’s diversity numbers [13]
(or Hill numbers [8]). In § 4, we will show that our proposed approach for
measuring diversity will yield sharper results, with statistically significant
differences among all these group.
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3 Divergence–based Diversity Measures

In this section we introduce our two-step framework for measuring the di-
versity using divergence measures. We begin our discussion with the nec-
essary notations. Let {Ci}ni=1 be the set of communities under study, and

xi = [x1i , . . . , x
j
i , . . . , x

si
i ]

⊤ be the sample withdrawn from Ci, where si is the
number of observed species (or OTUs) in Ci. Accordingly, xi ∼ M(mi,πi),
where

∑si
j=1 x

j
i = mi is the total number of individuals in the sample xi.

Let Ωi = {o1, . . . , oj , . . . , osi} be the set of species’ labels (or OTUs) found
in Ci. To avoid any reliance on the order of species labels in Ωi, for any label
o, we use the following notation to index the elements of sample xi:

xi(o) =

{
xji if o = oj and oj ∈ Ωi,
0 otherwise.

(3)

The first step of our proposed framework is to have a unified represen-
tation for all samples. To achieve this, let Ω∗ be the union set of species
collected from all the samples under consideration:

Ω∗ =

n⋃

i=1

Ωi ≡ {o1, . . . , os}, (4)

where the cardinality of Ω∗ is s. The set Ω∗ includes all {Ωi}ni=1, and hence
all samples {xi}ni=1 need to be represented in terms of its elements. This can
be obtained using our notation for indexing the elements of xi in Equation
(3):

x̄i = [xi(o1),xi(o2), . . . ,xi(os)]
⊤, 1 ≤ i ≤ n, (5)

where x̄i is the new sample representing Ci using Ω∗. Further, we define the
empirical discrete distribution Xi from x̄i as:

Xi =
[
π̂1
i , . . . , π̂

s
i

]⊤ ≡
[
xi(o1)
mi

, · · · , xi(os)
mi

]⊤
, 1 ≤ i ≤ n. (6)

The rational for using Ω∗ instead of {Ωi}ni=1 is that it provides a com-
mon ground for comparing all samples from different communities. That
is, it reduces the comparison between communities to the differences in the
distribution of relatives abundances. The problem, however, is that the new
representation x̄i, and consequently the discrete distribution Xi, is sparse;
i.e., it contains a considerable number of zero elements since not all species
in Ω∗ are present in all Ci’s. Recall that entropy–based diversity measures
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correlate with the number of (nonzero) species in the sample, and with the
evenness (or equitability) of the relative abundances (or the individuals’
distribution in a sample). When using entropy–based diversity measures on
such representations, it is enough to have one zero element per sample (in
any location) to render the entropy values meaningless and not comparable.
This is exactly the scenario depicted in Figure (2a), and since 0 log 0 = 0, it
reduces to the problem in Figure (1). Even if Xi does not have any zero ele-
ments, entropy–based measures will alter the original distribution to create
a balance between rare and abundant species. In addition, entropy–based
measures are not flexible in terms of the reference distribution, nor they
allow for pairwise comparisons between all samples. We overcome these
problem, however, using the second step of our proposed framework.

3.1 From Entropy to Divergence

To overcome the above problem, we rely on the basic definition of entropy
(which coincides with our definition of diversity). That is, an entropy mea-
sure is a function defined on the space of distribution functions satisfying
some postulates: (i) non negativity, (ii) attains a maximum for the uniform
distribution (i.e., maximum diversity), and (iii) has a minimum when the
distribution is degenerate. Thus a measure of entropy is in fact, an index of
similarity of a distribution function with the uniform distribution U . Let us
define the uniform discrete distribution over Ω∗:

U = [u1, u2, . . . , us]
⊤ = [1

s
, 1
s
, · · · , 1

s
]⊤. (7)

The second step of our proposed framework is to replace the entropy of
a distribution with a surrogate function that measures the dissimilarity be-
tween the given distribution, say Xi , and the reference distribution M(π̂∗).
When M(π̂∗) is not known, then one has no other option but to use the
uniform distribution U defined over Ω∗ as a reference distribution.

The natural function that measures the dissimilarity between any two
probability distributions is the divergence, Ali–Silvey distance [1], or f -
divergence according to Csiszar [6, 14]. If D is the space of probability
distributions, and P,Q ∈ D are two distributions defined over the same set
of outcomes E, then the divergence quantifies how P diverges from Q over
all the elements of E. For simplicity, the divergence between two probability
distributions is analogous, for instance, to the Euclidean distance between
two points in an Euclidean space. The smaller the divergence between two
distributions, the more similar these two distributions are, and vice versa.
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The divergence between P and Q, denoted by div(P,Q), has to satisfy
some conditions. One of the conditions relevant to our discussion is that
div should be zero when P = Q, and as large as possible when P and Q
are completely different. The divergence by definition does not need to be
symmetric, nor does it need to satisfy the triangle inequality, and hence it
is different from distance metrics in that regard. However, in this research
work, we will consider symmetric divergence measures, and some will satisfy
the triangle inequality. That is, for P,Q,Z ∈ D, all defined over E, then
div(P,Q) = div(Q,P), and div(P,Z) ≤ div(P,Q) + div(Q,Z).

Since we are interested in discrete probability distributions, let P =
[p1, . . . , ps]

⊤, and Q = [q1, . . . , qs]
⊤, where for 1 ≤ j ≤ s, pj ≥ 0, qj ≥ 0,∑s

j=1 pj = 1, and
∑s

j=1 qj = 1. For the purpose of measuring the diversity
of a distribution, we shall consider the following divergence measures:

1. The total variational distance (or the L1 distance) [1, 6]:

DV (P,Q) =
1

2

s∑

j=1

|pj − qj|. (8)

2. The Hellinger distance [23]:

DH(P,Q) =
1√
2

s∑

j=1

(√
pj −

√
qj
)2

. (9)

3. The symmetric Kullback-Leibler (KL) divergence [14]:

DSKL(P,Q) =

s∑

j=1

(pj − qj) log2
pj
qj
. (10)

4. The Bhattacharyya distance [3]:

DB(P,Q) = − log




s∑

j=1

√
pjqj


 . (11)

5. The square root of Jensen-Shannon divergence [16]:

DJS(P,Q) =
√

1
2divKL(P,Z) + 1

2divKL(Q,Z), (12)

divKL(P,Z) =
s∑

j=1

pj log
pj
zj
,

divKL(Q,Z) =

s∑

j=1

qj log
qj
zj
,

14



where Z = 1
2 (P + Q) = 1

2 [p1 + q1, . . . , ps + qs]
⊤ is the middle dis-

tribution for P and Q, and divKL is the directed KL divergence [14]
between two distributions. All measures in Equations (8) – (12) have
the following properties: (i) div(P,Q) ≥ 0, (ii) div(P,P) = 0, (iii)
div(P,Q) = 0 iff P = Q, and (iv) symmetry. Only DH and DJS sat-
isfy the triangle inequality. Note that both DH and DB are derived
from the Bhattacharyya coefficient Γ(P,Q) =

∑s
j=1

√
(pjqj), where

DH = 1− Γ(P,Q), and DB = − log Γ(P,Q).

Given all the divergence measures in Equations (8) – (12), the diversity
of any discrete distribution from {Xi}ni=1 can be measured as follows:

1. Replace P in Equations (8) – (12) with Xi.

2. Replace Q in Equations (8) – (12) with the reference distribution,
whether it beM(π̂∗), or U from Equation (7) ifM(π̂∗) is not available.

Since these particular divergences are analogous to distance measures, the
smaller the divergence, the more diverse is the discrete distribution Xi with
respect to the reference distribution of choice.

3.2 Properties of Divergence–based Diversity Measures

Consider now how the proposed approach for measuring diversity differs
from entropy measures with regards to the three problems introduced in § 1
for comparing the diversity of multiple communities.

First, using the set Ω∗, we have a fixed unified set of species (or OTUs)
for comparing all the samples. This eliminates one source of variation among
all the samples, and renders the difference between samples to be based only
on the difference between their distributions.

Second, it can be noticed from all the divergence measures in Equations
(8) – (12) that, zero elements in any distribution Xi penalizes the divergence
between Xi and the reference distribution (whether it be M(π̂∗) or U),
and hence increases the divergence. This is unlike entropy measures which
ignores these zero elements.

Third, except for DSKL and DJS, all other divergence measures do not
impose any weighting scheme on the distribution Xi. For DSKL in Equa-
tion (10), the imposed weights (pj − qj), are the differences between the
probabilities for each outcome, which is maximized when the distributions
are in complete disagreement, and zero when the distributions match. This
weighting scheme penalizes the difference (or disagreement) between the
two distributions. For DJS in Equation (12), both distributions P and Q
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are compared against the middle distribution Z. If P completely disagrees
with Z, the difference log(pj/zj) = log pj − log zj is maximum, and it penal-
izes the final divergence DJS. A similar interpretation follows for Q and Z.
Here, it is important to note the difference between the weighting scheme
for Ĥ in Equation (1) on one hand, and that for DSKL and DJS on the
other. In Ĥ, the weights are set to create a balance between rare and com-
mon species, and hence they alter the original distribution of the sample.
However, in DSKL and DJS the weights penalize the disagreement (or the
difference) between Xi and the reference distribution without altering any
of them.

Divergence measures in general can be seen as distances between prob-
ability distributions. However, unlike distance metrics which have measure-
ment units, in information theory, divergence measures do not have such
units. Nevertheless, one cannot compare two different divergence values
measured using two different divergence measures. At this point, one may
ask whether there is a biological interpretation for the divergence measures
presented here. Currently, from a statistical and information theoretic per-
spective, we cannot claim whether such an interpretation exist or not. If
such an interpretation exists, it can be established by domain experts from
each field through extensive analysis of these measures on their communities
of interest.

Throughout the previous discussion we have always considered two ref-
erence distributions: (i) the latent species distribution M(π∗), and (ii) the
discrete uniform distribution U . In principle, we believe that any commu-
nity C has its own latent species distribution M(π∗). If an estimate for this
distribution is available, say M(π̂∗), then one can use it as the reference
distribution to measure the diversity of a community. Due to their defini-
tion, entropy-based measures do not enjoy such a flexibility. When M(π∗)
is not known, and hence M(π̂∗) is not available, one has no other option but
to use U as the reference distribution. Still, divergence-based measures will
be better to use for the three reasons mentioned above. Another advantage
of divergence-based measures is that they allow direct pairwise comparisons
between all communities, which is not possible to compute using entropy-
based measures.

Invariance of ranking among groups. When comparing the diversity
of two communities, the ranking of the two communities should not be
changed when a third community is added to the comparison. This is known
as the invariance of ranking among groups. This property holds as well for
divergence-based diversity measures under the condition that all groups have
the same reference distribution. If the reference distributions changes for one
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community, or for all communities, then the ranking among communities can
change. Note that this is a natural consequence of changing the reference
distribution for one or all communities, and hence it should not be considered
a disadvantage of divergence-based diversity measures. Also note that it is
not possible to compare the diversity of two or more communities with
different reference distributions.

Monotonicity and principle of transfer. For a community C with
multinomial distribution M(m,π), Patil and Taille [21] define the diversity
of C as the average rarity δ(C) =

∑m
i=1 πiR(πi), where R(πi) is the rarity

of species i. For instance, for Shannon’s index R(πi) = − log(πi), while for
Simpson’s index R(πi) = (1 − πi). The rarity coefficient R should satisfy
two requirements: (i) R is a nonnegative monotonic function, and (ii) R
satisfies the principle of transfer; i.e. diversity increases if a new species is
introduced to the community, and/or by making the distribution more even.

Monotonicity is satisfied by the definition of divergence according to [1],
albeit in a different sense that suits the nature of probability distributions.
Too see this, let div denote any of the previously mentioned divergence
measures. Then, by definition of divergence [1], div(P,Q) is minimum when
P = Q, and maximum when P and Q are orthogonal. Further, let θ be a
real parameter, and {Pθ s.t. θ ∈ (a, b)} be a family of mutually continuous
distributions on the real line, such that Pθ has a monotone likelihood ratio3.
Then, if a < θ1 < θ2 < θ3 < b, we have that div(Pθ1 ,Pθ2) ≤ div(Pθ1 ,Pθ3).
This property says that as the distance between the parameters (defining the
distributions) increases, the divergence will increase as well. This property
immediately applies to our multinomial distributions parameterized with
(m,π).

The principle of transfer, as explained above, has two aspects. The first
is that adding a new species to the community should increase the diversity.
This property holds for all the proposed divergence since they are sums of
individual coefficients, each representing one species. The second is that
increasing evenness should increase the diversity. This property also holds
for the proposed divergence measures when the reference distribution is the
uniform distribution. Increasing the evenness of a distribution makes it more
similar to the uniform distribution, and hence decreases the divergence; i.e.
increases diversity.

3Any two probability distributions P(x) and Q(x) have the monotone likelihood ratio
property if for any x1 > x2, we have that P(x1)/Q(x1) ≥ P(x2)/Q(x2).
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4 Application to Gut Microbiome Analysis

In this section we validate our propposed divergence–based diversity mea-
sures in a real world test case. To this end, we consider the application
introduced in § 2.2, in which it is desired to assess the diversity of microbial
consortia sampled from the feces of 24 infants stratified according to mode
of delivery and diet, and see how it can deliver results that are consistent
with the taxa profile reported in recent studies [25, 2]. The final data set
that is used here is a table with 24 rows and 188 columns for the different
species categories (or taxa in this case). Each entry in the table is the abun-
dance (or counts) of a specific taxon (OTU) in each infant’s gut. This table
is sparse since relatively few taxa were recovered from each infant. Details
of this study and the dataset can be found in [2].

Tables (2) and (3) report bacterial diversity of fecal samples according to
mode of delivery and infant diet, respectively, with p values of significance
tests. Similar to [2], all diversity measures used a rarefied dataset of 10,000
sequences (or individuals) per sample4. For statistical significance, we used
the Kruskal–Wallis (KW) test (at α = 0.05 level) since we do not assume
normality of the data. All our implementation and experimental analysis
were carried out using MATLAB from Mathworks. Statistical significance
tests were carried out using R (www.r-project.org). Note that in the upper
part of Tables (2) and (3), higher index values indicate higher diversity, while
in the lower part, smaller divergence values indicate higher diversity.

4.1 Microbiome Diversity According to Delivery Mode

The upper part of Table (2) shows the diversity values (with standard devia-
tion) and p values for the different delivery mode groups. All three entropy-
based indices show a consistent trend; emergency CS–delivered infants have
the highest diversity, followed by vaginally delivered infants, and the lowest
diversity is for elective CS–delivered infants. In the lower part of Table (2),
divergence based indices show a similar trend, however the KW test shows
significant difference between emergency CS–delivered infants and vaginally
delivered infants.

The results in Table (2) are worth careful consideration. Entropy-based

4When the total number of individuals in each sample xi are not equal, stratified
sampling (or rarefaction) is used to make all samples xi have equal number of individuals.
We used stratified sampling to generate 10,000 sequences (or individuals) per sample, and
this process was repeated for 1000 trials. All reported diversity measures are averages
over the 1000 trials.
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Table 2: Diversity of fecal microbiota in infants (with standard deviation) accord-
ing to mode of delivery. Bold numbers indicate statistically significant at α < 0.05
level from Vaginal.

Index Elective CS Emergency CS Vaginal p value
n = 3 n = 3 n = 18

Shannon’s Entropy 1.09 (0.47) 2.01 (0.48) 1.33 (0.48) 0.088
Hill–Jost No. 3.22 (1.61) 8.03 (3.28) 4.17 (1.86) 0.088
Gini–Simpson 0.49 (0.23) 0.77 (0.15) 0.59 (0.21) 0.125

DV 0.96 (0.01) 0.9 (0.02) 0.95 (0.02) 0.022
DH 0.84 (0.02) 0.75 (0.049) 0.82 (0.04) 0.031
DSKL 20.98 (0.37) 19.03 (0.81) 20.56 (0.83) 0.033
DB 1.85 (0.12) 1.39 (0.16) 1.76 (0.24) 0.031
DJS 0.79 (0.01) 0.75 (0.02) 0.78 (0.02) 0.023

measures show indeed differing diversity values for the three birth mode
groups. However, due to the problems depicted in Figures (1) and (2a),
these values cannot be compared to each other since we know from our
data that the gut microbiota of individual infants is composed of few taxa
with abundances greater than zero. This will result in communities with
different taxa (or attributes) as depicted in Figures (1), and hence com-
parisons of entropy-based values do not permit unambiguous conclusions.
In our proposed framework, divergence-based measures also differ by birth
mode, however these values are able to be compared with each other. Recall
that our framework, first, uses a unified set of taxa for all the samples, and
second, divergence-based measures by definition, penalize taxa with zero
abundances and not discarded5 as in the case of entropy-based measures.
That is, even if one uses a unified set of taxa for all samples, entropy-
based measures cannot handle zero count taxa as depicted in Figure (2a),
and this where divergence-based measures have an edge over entropy-based
measures. From the definition of divergence, it suffices to have a difference in
one taxon’s relative abundance to change the value of divergence. Whether
statistically significant or not, differences in divergence-based measures in-
dicate that there are differences in taxonimic distributions. The fact that
this difference is statistically significant is a strong evidence that at least
two groups have different taxonomic distributions.

The key advantage of using a unified set of taxa and divergence measures
(instead of entropy), is that it creates a direct relation between the relative
abundance of any taxon and the value of divergence. This is particularly

5Due to 0 log 0 as depicted in Figure (2a)
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important when computing the average diversity over multiple samples, or
infants, as is the case studied here. Any change in the relative abundance
of any taxon in any sample, is detected and quantified by any of the above
divergence measures. Unfortunately, this is not the case for entropy-based
measures, again due to the problems in Figures (1) and (2a). That is, while
one can observe differences in the taxon’s relative abundance across samples,
these differences might not be uniformly detected in comparisons of entropy-
based measures of these samples. For instance, while [2] found no correlation
between the Shannon’s index of total diversity and the relative abundance
of Bacteroidetes taxa in CS–delivered infants, [12] observed lower total gut
microbiota diversity, as well as lower Bacteroidetes diversity in their CS–
delivered infants.

4.2 Microbiome Diversity According to Infant Diet

The upper part of Table (3) shows the diversity values (with standard de-
viation) and p values for the different diet groups. All three entropy-based
indices show a consistent trend; exclusively formula-fed infants have the
highest diversity, followed by partially breast-fed infants, and the lowest di-
versity is for exclusively breast-fed infants. In the lower part of Table (3),
divergence-based indices show a similar trend, however the KW test shows
significant difference between exclusively breast-fed infants and exclusively
formula-fed infants. The results’ interpretation for Table (3) is similar to
the discussion above for Table (2). The values for divergence-based indices
can be compared to each other, and they show that there are differences
in the taxonomic distributions among these groups. The statistical signifi-
cant difference is a strong evidence that at least two groups have different
taxonomic distributions.

4.3 Divergence–based Diversity Measures as Biomarkers

In this work, diversity indices have been viewed as measures for quanti-
fying the difference (or discrepancy) between two probability distributions.
Entropy–based indices measure this difference in terms of similarity between
a given distribution and the uniform distribution, while divergence–based
indices measure the difference between any two given distributions in a sim-
ilar fashion to distances between points. We also introduced the notion of
a reference distribution; we believe that any community of organisms has a
specific species distribution. If a sample of species is randomly drawn from
this community, then diversity measures how similar is the sample’s species
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Table 3: Diversity of fecal microbiota in infants (with standard deviation) accord-
ing to infant diet. Bold numbers indicate statistically significant at α < 0.05 level
from Exclusive FF.

Index Exclusive BF Partially BF Exclusive FF p value
n = 10 n = 5 n = 9

Shannon’s Entropy 1.19 (0.51) 1.42 (0.64) 1.57 (0.47) 0.369
Hill–Jost No. 3.64 (1.56) 4.9 (3.39) 5.32 (2.45) 0.369
Gini–Simpson 0.56 (0.24) 0.6 (0.24) 0.64 (0.17) 0.719

DV 0.96 (0.02) 0.94 (0.03) 0.93 (0.02) 0.009
DH 0.84 (0.03) 0.81 (0.05) 0.79 (0.04) 0.049
DSKL 20.91 (0.79) 20.32 (1.13) 19.93 (0.79) 0.084
DB 1.86 (0.25) 1.69 (0.25) 1.59 (0.18) 0.049
DJS 0.79 (0.01) 0.78 (0.02) 0.77 (0.01) 0.018

distribution to the species distribution of the original community. Based
on this view, it is possible that diversity indices can act as biomarkers for
health risks. To do this, diversity needs to be put in a precise statement that
includes the following information. Here, we shall only consider divergence–
based diversity measures.

1. The set of species (or OTUs) based on which the diversity is measured,
or Ω∗ in our case.

2. The reference distribution M(π̂∗), or U defined over Ω∗ when the
earlier is not available.

3. A symmetric divergence measures, div for instance.

4. A specified range R̂div = [t1, t2] that is dependent on the particular
choice of divergence used, where 0 ≤ t1 < t2. Without loss of general-
ity, we have assumed a reasonable sample size to estimate R̂div.

The estimate R̂div defines the range for div values of normal and healthy
cases. If the estimated diversity of a community under study in not within
the range of R̂div, then this indicates a significant disruption in the species
(or OTUs) distribution and signals a possible health risk. Any statement
that includes this information gives a precise context for the measured di-
versity, and makes it possible to use it as a biomarker for health risks.
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5 Concluding Remarks

We have proposed a new framework for measuring communities’ diversity
based on divergence measures. The framework overcomes various shortcom-
ings in entropy-based measures, and is more accurate in detecting changes in
species’ distribution. Although we have used the framework in the analysis
of infants gut’s microbiome, the framework is not restricted to microbiome
analysis and can be used for comparing diversities of any types of commu-
nities.
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