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Abstract 

The traditional electric grid based on centralized generation plants and unidirectional 

transmission and distribution systems is transitioning to a smart grid that is decentralized and 

multidirectional with high integration of information and communication technologies. With the 

rapid development of smart grids, large amounts of smart meters and sensors are deployed with 

huge coverage. As a result, large amounts of multi-sourced heterogeneous smart grid data are 

being produced. This massive amount of data needs to be sufficiently managed to increase the 

efficiency, reliability, and sustainability of the smart grid. Interestingly, the nature of smart grids 

can be considered as a big data challenge that requires advanced informatics techniques and 

cyber-infrastructure to deal with huge amounts of data and their analytics to take the smart grid a 

step forward in the big data era. 

In this thesis, a big data framework that potentially promotes innovative smart grid data 

analytics is presented. Further, the framework is developed to comply with the Lambda 

architecture that is capable of performing parallel batch and real-time operations on distributed 

data. Implementations of the frameworks on cloud-computing based platforms are presented, and 

various applications are applied on top of the framework, including visualization, load 

monitoring, and data mining. The framework is able to acquire, store, process and query massive 

amounts of smart grid data in near real-time, which is milliseconds in this study. This suggests 

that the framework is feasible in performing further smart grid data analytics. 

The second part of the thesis presents various smart grid applications that are applied on top 

of the smart grid big data framework. First, an unsupervised algorithm to extract electric vehicle 

charging loads (EVCLs) non-intrusively from the smart meter data is proposed. The proposed 
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algorithm can run on low-frequency smart meter sampling data and requires only the real power 

smart meter measurement, which is the type of data recorded and communicated by most smart 

meters. Validation results on real aggregated residential household loads have shown that the 

proposed approach is efficient in extracting EVCLs and effective in mitigating the interference 

of other appliances, such as cloth dryers and air condition systems, that have similar load 

behaviors as electric vehicles (EVs). Secondly, a method to define flexibility for the collective 

EV charging demand is presented. This is achieved by analyzing the time-variable patterns of the 

aggregated EV charging behaviors. Furthermore, a case study on real residential data to analyze 

EV charging trends and quantify the flexibility achievable from the aggregated EV load in 

different time periods is presented. To verify the effectiveness of the approach, the EVCL 

extraction algorithm was applied on real residential datasets. The results of extracting the EVCLs 

from residential households were satisfactory. The extracted EVCLs were segmented into 

weekdays and weekends, and the flexibility achievable from the collective EV charging behavior 

was analyzed. Further, statistical indicators that represent time periods where trends in EV 

charging may occur are discussed. Finally, a method to group EV charging customers into 

clusters to reshape the aggregated EVCL is presented. This part of the thesis promotes the 

reliability and economical operation of smart grids. The utilized indicators based on statistical 

analysis can potentially assist operators and researchers in understanding time periods where 

trends in EV charging behaviors may arise and act accordingly. 
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Chapter 1 

Introduction  

1.1 Research Motivations 

Ever growing volume of data production is the reality we are living in. The recent technological 

advancements have led to a deluge of data from various domains, such as social networks, 

scientific sensors, smart cities, and the Internet. The global data volume from 2005 to 2020 is 

predicted to grow by a factor of 300, from 130 exabytes to 40,000 exabytes, representing a 

double growth every two years [1]. To cope with the volume, velocity and variety of data 

produced, the term “big data” was brought up to capture the meaning of this evolving trend of 

data. 

Big data are becoming a new technology focus in science and engineering domains. Big data 

includes a set of tools and mechanisms to acquire, store, and process disparate data while 

leveraging the massively parallel processing power to perform complex transformations and 

analysis. However, designing and deploying a big data framework system for a specific 

application is not a straightforward task [2], [3]. This is due to the fact that data comes from 

multiple, heterogeneous and autonomous sources with complex and evolving relationships, and 

keeps on growing. Moreover, the rise of big data applications where data collection has grown 

tremendously is beyond the capability of current commonly used hardware and software 

platforms to manage, store and process within a tolerable amount of time [2].  

Many utilities are transferring to smart meters and smart grids as part of long-range planning 

to improve the reliability of power supply, incorporate distributed generation resources, develop 

storage solutions, use the power plants efficiently, and enable customers to participate in 

controlling their energy use. The IEEE 2030 standard [4] states that the smart grid system is 

based on an interconnection of three systems: 1) the electric power system which emphasise the 

power generation, delivery and consumption. 2) the communication system which emphasis the 

communication connectivity among systems, devices, and applications. 3) the information 
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technology system which includes technologies that store, process and manage data information 

for decision making on the power system operation. The latter leads to incorporate other 

challenges, for example, going from a system that reads the meter once a month to a smart meter 

that can provide meter readings every few minutes leads to millions of reads per hour. The result 

is a massive increase in data that is overwhelming, if not managed properly. This generated data, 

if managed efficiently, can provide a better understanding of customer behavior and assist in 

defining electric tariffs. For example, time-of-use (TOU) pricing encourages customers to 

operate certain higher voltage appliances at off-peak periods. Consequently, customers save 

money and less power is generated. For this, developing a framework that is able to handle the 

smart grid big data is considered in this thesis. 

The growth of electric vehicles (EVs) poses a challenge to electricity systems, but also a 

promising opportunity to reduce petroleum use. Accordingly, many economic and environmental 

issues can be overcome. For this purpose, EVs have received increasing attention recently. The 

U.S. electric power research institution (EPRI) projects that 62% of the entire U.S. vehicle fleet 

will consist of EVs by 2050 [5]. Those EV loads bring large impacts on smart grids, including an 

increase in system peak demand and voltage unbalances, especially at the electric power 

distribution level [6]. The gravity of this impact depends on the EV charging behaviors. As the 

rapid popularization of EVs introduces many new load peaks to the electrical grid, extracting and 

aggregating those EV charging loads is essential to allow smart grid operators to make intelligent 

and informed decisions about conserving energy and promoting the reliability of the electrical 

grid. 

1.2 Thesis Objectives 

This thesis aims at proposing a big data framework that is able to handle the smart grid big data. 

Also, providing a cost-effective development environment for a non-data scientist to perform 

smart grid research. Once the smart grid big data framework is developed, smart grid-related 

applications are applied on top of the framework to promote the reliability of the grid and assist 

the smart grid operators in planning and making informed decisions. 

First, the thesis objectives for the framework development are summarized as follows. 
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- Proposing a comprehensive big data framework for smart grids, which covers handling the 

smart grid data from generation to analytics. 

- Including a feedback loop in the framework to monitor the effects of made decisions.  

- Utilizing open source state-of-the-art prevalent Hadoop platform to address smart grids 

big data challenges. 

- Adopting open source tools to provide an easy and cost-effective development 

environment for practicing engineers to develop similar tools for their demanding smart 

grid applications. 

- Perform various smart grid data analytical applications on top of the framework. 

Secondly, smart grid data analytic applications are applied on top of the framework aiming at 

reducing the effects of EV charging on the electric grid. The objectives of this part are 

summarized as follows. 

- Proposing a new unsupervised approach for solving the EV disaggregation problem. 

- Extracting the EV charging loads non-intrusively from the smart meter real power data. 

- Mitigating the interference of other household appliances that have similar load patterns 

as EVs. 

- Define the EV charging demand by analyzing the time-variable patterns of the aggregated 

EV charging behaviors. 

- Quantifying the flexibility amount achievable from the aggregate EV load in different 
time periods. 

- Choosing groups of customers that can be targeted to reshape the collective EV load. 

1.3 Thesis Contributions 

The key contributions of this thesis are as follows: 

- Developing an eco-system for smart grid big data applications to improve decision 

making and acquire further advantages for operating the smart grid. 

- Providing a big data eco-system that can be built and utilized by non-data scientists for 

their smart grid big data applications.  

- Enabling data mining and knowledge discovery from massive distributed datasets of smart 

grid big data. 



4 
 
 

 

 

 

- Proposing an unsupervised non-intrusive algorithm to extract EV charging loads from the 

aggregated residential loads. 

- Quantifying the amount of the flexibility that can be achieved from the aggregated EV 

charging load demand at different time periods. 

- Presenting a method to choose groups of customers to target for EV load reshaping. 

1.4 Thesis Outline 

The remainder of the thesis is organized as follows. A literature survey is presented in Chapter 2. 

Chapter 3 introduces the smart grid big data framework that covers the lifecycle of smart grid 

data from data generation to data analytics. The core components of the framework are discussed 

in details. Further, an implementation of the framework on a secured cloud computing platform 

and the application on two real scenarios are presented. In 2015, a big data architecture, namely 

the Lambda architecture, that allows batch and real-time computing was introduced. For this, in 

Chapter 4, the framework of Chapter 3 is extended to comply with the Lambda architecture 

allowing to perform parallel batch and real-time operations on distributed smart grid data. An 

implementation of the Lambda architecture for smart grid big data analytics on a cloud 

computing platform and a data mining application are presented in the same chapter. Chapter 5 

presents an unsupervised algorithm to extract EV charging load patterns non-intrusively from the 

aggregated residential meter readings. A method to define flexibility indices for the collective 

EV changing demand by analyzing the time-variable patterns of the aggregated EV charging 

behaviors is presented in details in Chapter 6. Also, details on how the smart grid operators could 

utilize the flexibility indices are shown. Chapter 7 uses the methods in the previous chapter to 

present a method to group customers into distinct clusters based on their EV charging behaviors. 

Furthermore, a case study is carried out to test the feasibility of this methodology in reshaping 

the aggregated EV charging loads. Finally, the summary of the thesis and future work are 

presented in Chapter 8. 
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Chapter 2  

Literature Survey 

2.1 Smart Grid Big Data 

There has been much discussion about what big data actually means [2], [7], [8]. However, the 

most common definition in literature is the “Vs” definition [2], [9]-[14] which includes several 

characteristics of big data beginning with the letter “V”. The “3Vs” definition includes [14]: 

volume, variety and velocity. 

- Volume: big data implies enormous volumes of data. This data is generated by machines, 

networks, social media, etc. Thus, the volume of data to be analyzed is massive. 

- Variety: refers to the various sources and formats of data (structured, semi-structured and 

unstructured). As data comes in the form of photos, videos, logs, sensor devices, etc., this 

variety of data formats creates challenges for storage, mining and analyzing data. 

- Velocity: the velocity of data is the rate at which data arrives. This also includes the time 

that it takes to process and understand the acquired data to assist in decision making. 

In [2], [15]-[19] various challenges and issues in adopting big data technology were 

discussed. From their research, it was concluded that refining a unified framework suitable for 

every module is not straight-forward due to the diversity of applications. The actual challenge of 

big data is not in collecting it, but in managing it as well as making sense of it. In general, the 

challenges in designing a big data system can be summarized as [2]: 

- First, due to the variety of disparate data sources and sheer volume, it is challenging to 

collect and integrate data with scalability from distributed sources. 

- Second, big data systems need to store and manage the massive heterogeneous gathered 

data, while providing function and performance guarantee, in terms of fast retrieval, 

scalability, and privacy protection. 

- Third, big data analytics must effectively mine massive datasets at different levels in real-

time or near real-time, including modeling, visualization, prediction, and optimization, 
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such that inherent promises can be revealed to improve decision making and acquire 

further advantages. 

Many utilities are transferring to smart meters and smart grids as part of long-range planning 

to improve the reliability of power supply, incorporate distributed generation resources, develop 

storage solutions, use the power plants efficiently, and enable customers to participate in 

controlling their energy use. To accomplish this, utilities are deploying smart meter systems as a 

first step. This leads to incorporate other challenges. For example, going from a system that reads 

the meter once a month to a smart meter that can provide meter readings every few minutes leads 

to millions of readings per hour. The result is a massive increase in data that is overwhelming, if 

not managed properly. This generated data, if managed efficiently, can provide a better 

understanding of customer behavior and assist in defining electric tariffs. For example, time-of- 

use (TOU) pricing encourages customers to operate certain higher voltage appliances at off-peak 

periods. Consequently, customers save money and less power is generated. 

Developing frameworks that address the challenges of smart grid big data are of research 

interest. In [17], [18] several main elements of big data and database technologies that are 

beneficial within the utility eco-system are scratched on, but a comprehensive idea on how big 

data elements can construct a framework to deal with smart grid data has not been presented. The 

work in [20] analyzed several challenges of big data and suggested that high-performance 

computing platforms are required to unleash the power of big data. In [21], a mathematical 

model for healthcare big data analytics was presented. A big data value chain in [2] was 

presented; it decomposed big data into four sequential modules, namely data generation, data 

acquisition, data storage, and data analytics. More in detail, numerous approaches for each 

module were highlighted, and a prevalent framework for addressing big data challenges was 

suggested. The work presented in [7] demonstrates a cloud-based dynamic demand response 

(DDR) platform project that is being deployed in the University of Southern California campus 

as a testbed for transforming Los Angeles utility into a smart grid in the future. In [22] a secure 

cloud computing based framework for big data information management in smart grids was 

proposed. However, a platform to apply big data analytics on the distributed cloud structure has 

not been included. Works related to smart grid big data mainly describe possible theoretical 
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frameworks and challenges, and lack practical implementation. As handling smart grid big data 

is becoming an area of research interest, developing an effective and comprehensive big data 

framework for analytics in smart grids is of interest to take the smart grids a step forward in the 

big data era. 

2.2 Hadoop Platform 

Hadoop [23] is an open-source platform that supports storing and processing large amounts of 

data. It relays on distributed hardware to store and process data, which enables processing large 

amounts of data on distributed clusters of commodity servers. The core of Hadoop consists of 

two components: a storage component which is Hadoop`s Distributed File System (HDFS) [24] 

and a processing component called MapReduce [25]. 

HDFS [24], [25] is a distributed storage file system that is developed to run on commodity 

hardware. An HDFS cluster consists of NameNode(s) that manage the file system metadata, and 

numerous DataNodes that store data. A file is split into blocks, and these blocks are stored in a 

set of DataNodes. Each block has several replications distributed in different DataNodes for 

reliability purposes. 

MapReduce [26] is the processing component of Hadoop. It mainly consists of master node(s) 

(JobTracker) and slave nodes (TaskTracker) per cluster. The master is responsible for scheduling 

jobs for the slaves, monitoring them and re-executing the failed tasks. The slaves execute the 

tasks as directed by the master. The MapReduce and HDFS run on the same set of nodes, which 

allows tasks to be scheduled on the nodes in which data are already available. In 2013, Hadoop 

was released with Yarn [27] (Yet Another Resource Negotiator). The fundamental idea of Yarn 

is to split the two major responsibilities of the JobTracker/TaskTracker of the MapReduce into 

separate entities. Yarn basically consists of a global ResourceManager and per-node slave 

NodeManager for managing applications in a distributed manner. An ApplicationMaster in Yarn 

negotiates resources from the ResourceManager and works with the NodeManager(s) to execute 

and monitor the component tasks. Each ApplicationMaster has responsibility for negotiating 

appropriate resource containers from the scheduler, tracking their status, and monitoring their 

progress. 
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2.3 Lambda Architecture  

Lambda architecture is a data-processing architecture designed to handle massive amounts of 

data by taking advantage of batch and real-time methods. The basis of the Lambda architecture is 

to compute arbitrary functions on distributed datasets in real-time; also, to combine batch and 

real-time processing capabilities to balance data latency throughput and fault tolerance. 

However, there is no single tool that can accomplish this task. Instead, a variety of tools and 

techniques are used to build a complete big data system. The Lambda architecture addresses the 

problem of computing arbitrary functions parallel on distributed data in real-time by presenting a 

three-layered architecture that consists of a batch layer, a speed layer, and a serving layer [28]. 

The batch layer is mainly responsible for two tasks. The first is to store the constantly 

growing master data in a distributed file system manner, which is, in this case, a Hadoop 

distributed file system (HDFS) [23]. The second task is to precompute batch views for this 

distributed data by using the MapReduce [25] processing paradigm. Those batch views can be 

used to answer incoming queries with low read latency. It should be noted that the Hadoop 

platform, which contains the HDFS and MapReduce components, can fulfill the functionality of 

the batch layer. 

Differently from the batch layer, the speed layer does not precompute the views for the entire 

data. Instead, it uses an incremental approach which stores and updates the real-time views of the 

data. Thus, it supplements the gap that is left by the batch layer. The speed layer only computes 

views for recent data, due to the fact that older data is absorbed into the batch layer. 

The serving layer is a specialized distributed database that indexes the batch views so that 

they can be queried in a low-latency and ad-hoc manner. It is responsible for merging the results 

of batch and speed layer computations on the data. This way the serving layer can provide the 

real-time computation results over all the data. 

2.4 Electric Vehicle Load Monitoring 

Appliance load monitoring (ALM) is an essential solution for energy management that allows 

obtaining appliance-specific energy consumption statistics that can further be used to devise load 

scheduling strategies for optimal energy utilization. In literature, there are two major approaches 
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to ALM, namely intrusive load monitoring (ILM) and non-intrusive load monitoring (NILM). 

Different approaches have been used for load disaggregation. Artificial neural networks (ANN) 

[29], [30], support vector machines (SVM) [31], [32], and nearest neighbor (k-NN) [29], [33], 

are among the algorithms that have been popular for appliance disaggregation. However, the 

construction and training of ANNs [34] are arbitrary, and tuning can result in local maxima and 

overfitting. SVM [34] use optimal line separation between classifications and also requires 

training. The k-NN classifies unlabeled data that is nearest to each other based on a distance 

function. However, this method is impractical due to large storage requirements and can be 

susceptible to the curse of dimensionality. Recently, methods that use a hidden Markov model 

(HMM) [34] have become of research interest [35]-[38]. However, these methods require 

extensive training and computation [39]. There has been a devoted effort in extracting appliance 

signatures from aggregated data. Most methods require smart meter data with high sampling 

rates higher than 1-Hz. Also, different combinations of electrical measurements are used to 

disaggregate appliances, such as the active power (P), reactive power (Q) and current (I) [40]-

[43]. Recent research [33], [35], [44] propose methods that utilize the real power measurements. 

The main reason for using only the real power measurement is because it is the type of data 

recorded and communicated by most smart meters. 

EVs are a topic undergoing intense research, and methods to extract EV charging loads 

(EVCL) are recently emerging. The EVCL pattern can be decomposed into three stages: 1) 

gradual increase in charging load (stage1), 2) steady charging load (stage2), and 3) gradual 

decrease in charging load (stage3). Fig. 2.1 illustrates the typical stages of the EVCL pattern. In 

[45], a method for extracting stage2 EVCLs is presented. However, it cannot extract the EVCLs 

if other appliances were operating at the time the EV was plugged-in. Also, it requires a 

sampling rate of 1-Hz (1-second). Moreover, it requires the active and reactive power 

measurements, which is not the reality of most deployed smart meters. In [39], an algorithm to 

extract stage2 EVCLs with amplitudes from 3 kW to 4 kW, from the aggregated signal is 

presented. The algorithm did not require training and was able to outperform the HMM 

algorithms on extracting EVCLs. Previous works of extracting EVCLs don’t include stage1 and 

stage3 patterns. Non-intrusive methods to extract various amplitudes of EVCLs including all 
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three stages of charging are of interest. The extraction and aggregation of such load behaviors 

can be aggregated and open further smart grid analyses and studies that could promote the 

reliability of the smart grid in spite of the rapid growth of EVs. 

 

 

Figure 2.1: The three stages of the EV charging loads pattern. 

 

2.5 Defining Flexibility of Residential Electric Vehicle Loads 

The rapid popularization of EVs introduces many new load peaks to the electrical grid. 

Extracting and aggregating those EVCLs is essential to allow smart grid operators to make 

intelligent and informed decisions about conserving energy and promoting the reliability of the 

electrical grid. Hence, a huge amount of research was conducted on EVs and their upcoming 

challenges to the grid in recent years. Due to the instability that EVs introduce to the grid, 

research studies focus mainly on smart charging of EVs [46]-[49]. Also, investigating the effects 

of EVs on distribution networks [50] and allocating of optimal capacity and location of 

commercial and residential EV charging stations [51]-[55]. To promote the reliablity of the grid 

and minimize infrastructural changes, many utilities use time-of-use (TOU) based electricity 

demand response (DR) programs, which can potentially promote the reliability of the grid by 

Stage1 Stage2 Stage3 
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shifting EV load demand from peak load periods to off-peak load periods. In a TOU system, the 

price of electricity differs during peak and off-peak hours. This encourages customers to charge 

EVs during off-peak hours [56], [57]. However, currently only 1% of residential customers in 

North America are billed with TOU rates, and 5% of utilities provide TOU pricing to residential 

customers [58], Although the number of utilities adopting TOU-DR programs for residential 

customers is increasing [56], the coordination of DR resources is a challenging task due to the 

lack of communication with each load. The current terminology has adopted the term flexibility 

to indicate the capacity to adapt across temporal, circumstances, intention and area of application 

[59]. For the applications to the electrical grid, flexibility refers to the possibility of deploying 

the resources to respond reliably to the load and generation variations at acceptable costs. One   

of the current challenges is to address the quantification of the flexibility amount. Recent    

works focus on obtaining flexibility from the generation and demand side [60]-[67]; however,  

no works address the extraction and quantification of the flexible amount of the aggregate 

demand of EVs. For this purpose, quantifying the flexibility amount of the aggregated             

EV charging demand is a key factor in promoting the reliability of the grid in spite of the rapid 

growth of EVs. 
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Chapter 3 

Big Data Framework for Analytics in Smart Grids 

3.1 Introduction 

This chapter highlights the big data core components used in the framework for smart grids. The 

features of using the Hadoop platform in the smart grid environment are highlighted. The 

framework’s stages including, data acquisition, data storing and processing, data querying, and 

data analytics components are discussed in details. Also, the components that can be beneficial 

for smart grid big data from the smart grid applications point of view are discussed. Then the 

framework that covers the lifecycle of smart grid data from data generation to data analytics is 

presented. Also, this chapter includes an implementation of the framework on a secured cloud-

computing platform. To verify the effectiveness of the framework, this chapter presents the 

application of the framework on two scenarios: the first scenario is a single-house that includes 

micro-generators (i.e., wind turbine, photovoltaic (PV) roof panels and EV), the second scenario 

includes a real smart metering electricity behavior dataset from the Irish Social Science Data 

Archive for 6436 participating Irish homes and businesses. The framework is capable of 

handling smart grid data from various resources including, transmission, distribution and 

consumption data. Finally, the conclusions and benefits of utilizing the framework for smart 

grids are summarized. 

3.2 Big Data Core Components for Smart Grids 

Figure 3.1 illustrates the hierarchical architecture of the core components of the framework for 

smart grid big data. In the following subsections, the components of the data acquisition, data 

storing and processing, data querying and, data analytics components are introduced. The data 

storing and processing components are included in the same subsection as they are both under 

the same platform (Hadoop). 
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Figure 3.1: A hierarchical architecture of the core components for smart grid big data, including the components of 
data acquisition, data storing, data processing, data querying and data analytics. 

 

 

3.2.1 Data Acquisition Component 

Flume [68] is a distributed system developed by Apache that efficiently collects, aggregates, and 

transfers large amounts of log data from disparate sources to a centralized storage. However, 

flume can be used to ingest large amounts of streaming data such as social media and sensor data 

into the Hadoop Distributed File System (HDFS) which will be introduced in the following 

subsection. Figure 3.2 depicts a representative Flume topology [68] and the following 

components make-up the Flume tool: 

- Event: a stream of data that is transported by Flume. 

- Source: the entity through which data enters into Flume. A source can actively poll for 

data or wait for data to be delivered to it. 

- Sink: the entity that delivers the data to the destination. A variety of sinks allows data to be 

streamed to multiple destinations. Here the HDFS sink that writes events to HDFS storages 

is used. 

- Channel: the conduit between the source and the sink. Sources ingest events into the 

channel, and the sinks drain the channel. 
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Tableau Mahout SAMOA Data Analytics 

HIVE IMPALA Data Querying 

MapReduce YARN Distributed Data Processing 

HDFS Distributed Data Storing 

Flume Data Acquisition 
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Figure 3.2: A basic Flume topology to ingest data into HDFS. 
 
 
 
 

3.2.2 Distributed Data Storing and Processing Components 

Hadoop [23] the open-source software platform that supports massive data storage and 

processing enables distributed processing of large amounts of data on clusters of commodity 

servers. The core of Hadoop consists of two main components: a storage component which is the 

Hadoop Distributed File System (HDFS) [24] and a processing component called MapReduce 

[26]. Hadoop is considered to be a major part of any architecture in big data. 

Hadoop was inspired by Google’s work on its distributed file system, Google`s File System 

(GFS) [25] and the MapReduce programming model. In 2006, these software components 

became an Apache project, called Hadoop. MapReduce was sufficient at a few specific kinds of 

batch processing, which was an obstacle in taking advantage of Hadoop’s flexibility with data 

and storage. In 2013, Hadoop was released with Yarn [27] (Yet Another Resource Negotiator) or 

MapReduce2. Yarn the general-purpose resource manager for Hadoop enabled applications from 

other processing frameworks to run on a Hadoop cluster in a distributed manner. 
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3.2.3 Data Querying Component 

Hive [69] and Impala [70] are two SQL-like high-level declarative languages that express big 

data analysis tasks. They facilitate querying and managing big data residing in distributed 

storage. Hive express big data analysis tasks in MapReduce operations. Whereas, Impala is an 

interactive SQL query tool on big data [80]. Impala doesn’t have to translate an SQL query into 

another processing framework, such as MapReduce operations. The execution of an Impala 

query is executed in parallel in each node’s memory in the cluster. The intermediate results of 

the nodes are transmitted and aggregated then returned. 

3.2.4 Data Analytics Components 

Mahout [71] is a data mining library implemented on top of Hadoop and provides batch machine 

learning processing. It contains a few core algorithms for scalable performant machine learning 

applications. 

SAMOA [72] (Scalable Advanced Massive Online Analysis) is a distributed streaming 

machine learning framework that contains a programming abstraction for distributed streaming 

algorithms for some common data mining and machine learning tasks. 

Tableau [73] is an interactive data visualization tool that enables users to analyze, visualize 

and share information and dashboards. 

3.3 Features of Hadoop’s Platform for Smart Grids 

Hadoop has attracted substantial attention from both industry and scholars. In fact, Hadoop has 

long been the mainstay of the big data movement. Hadoop has many advantages, and the 

following features make it suitable for smart grid big data management and analysis: 

3.3.1 Scalability 

Hadoop allows hardware infrastructure to be scaled up and down without affecting the existing 

data [2]. The system can automatically re-distribute data and computation tasks to accommodate 

hardware changes. For example, if new neighborhoods or generation utilities are added to the 
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grid, additional nodes and storage devices can be added to the existing cluster without affecting 

the functionality of the existing nodes. 

3.3.2 Flexibility 

Hadoop is free of schema and able to absorb various types of data from numerous sources. 

Moreover, different types of data from numerous sources can be aggregated for further analysis. 

Hence, many challenges of the various types of smart grid data can be addressed. 

3.3.3 Fault Tolerance 

Missing data and computation failures are common in smart grid data. Hadoop can recover the 

data and computation failures caused by node breakdown or network congestion by storing the 

data at many nodes and distributing the computation work to other healthy nodes in the cluster. 

3.4 Proposed Big Data Framework for Smart Grids 

The framework to deal with smart grid big data is presented in Figure 3.3. The framework covers 

the lifecycle of smart grid data from data generation to data analytics. The following sub-sections 

discuss the framework stages in details. 
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Figure 3.3: The framework to deal with smart grid big data for visual analytics. The framework covers the lifecycle 
of smart grid data from data generation to data analytics and forms a learn and response loop. 

  

3.4.1 Data Generation 

Streaming data is generated from thousands of smart meters in the smart grid. The generated data 

may belong to a supplier site or a demand site. In addition, environmental events such as weather 

conditions from weather stations can be beneficial. For example, to predict the amount of power 

that can be generated from a certain power resource such as, wind farms. In this framework, data 

from various sources are considered these include EVs, residential homes, commercial buildings, 

industrial factories, solar panels, wind turbines and various power plants. Considering data from 

such sources could increase the grid’s reliability as technology changes are starting to permeate 

through the entire smart grid, from generation to transmission to distribution. For example, 

renewable power resources are being included in the generation mix, not just by the power 

generation utilities, but also by consumers through rooftop solar panels, residential wind 

turbines, EVs and other micro-generators that can act as positive supply to the grid. 

 
 

                                                  
 
 

                                                                                  
 

 

 
 

 
 

 

                                                                   
 

 

HIVE IMPALA 

MapReduce YARN 

Env. 
Events

Solar 
Panels

Wind 
Turbines

Power 
Plants

EV Residential Building
s

Factories

Flume

HDFS

Visual Analytics/Sharing

Customers Service Providers Researchers

D
e

cisio
n

   m
a

kin
g      &

      D
D

R
   stra

te
gy

 
Data Mining Forecasting

/

 

Monitor 

 

 

Analytics 

 

Data Qurying 

 

Data Processing 

 

Data Storing 

 

Data Acquisition 

 

Data Generation 



18 
 
 

 

 

 

3.4.2 Data Acquisition 

The data acquisition for smart grids’ data can be decomposed into three sub-tasks, namely, data 

collection, data transmission, and data pre-processing. The data generated from the previous 

stage are collected proactively by centralized/distributed agents. The collected data is then 

transmitted to a master node in the Hadoop cluster. Once the raw data are gathered, it is 

transferred to a data storage infrastructure for subsequent processing. Due to the diverse source 

of data, the collected data may have different formats and information. Accordingly, data pre-

processing is required. Data integration techniques aim to combine data from different sources 

and provide a unified view of the data [2]. In this framework, the data is transferred to comma-

separated value (csv) files. The attributes of the data contain information such as, the timestamp, 

smart meter ID, generated/consumed power and location. Also, in the pre-processing of data, 

inaccurate and incomplete data can be amended or removed to improve the quality of data; also, 

this can be done at a further step in the process. 

Flume can fulfill the function of the data acquisition. It can collect, aggregate, and transfer the 

large amounts of generated data from various sources to a Hadoop master node. When a Flume 

source receives data, it stores it into one or more channels. The channel is a passive store that 

keeps the event until it is consumed by a flume sink. The flume sink removes the event from the 

channel and puts it into an external repository. In this framework, the data files are ingested into 

an external HDFS repository. 

3.4.3 Data Storing and Processing 

After the smart grid data has been acquired, in this stage, the HDFS handles storing the data for 

further processing. An HDFS cluster consists of a single NameNode that manages the file system 

metadata, and collections of DataNodes that store the actual data. The received smart grid data is 

split into one or more blocks, and these blocks are stored in a set of DataNodes. Hadoop Yarn is 

the computation core for big data analysis. The HDFS and Yarn run on the same set of nodes, 

which allows tasks to be processed on the nodes in which smart grid data are already present. 
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3.4.4 Data Querying 

Hive and Impala are used in this framework to read the smart grid data from an HDFS repository 

and select, analyze or generate data of interest. For example, the consumption of electricity for a 

certain region or the aggregated power produced from wind farms can be obtained. The data 

querying stage runs on top of a Hadoop cluster which allows obtaining prompt results.  

3.4.5 Data Analytics 

The smart grid data acquired must be shared to improve the efficiency of the smart grid. For 

example, this data can be utilized by analytics for proposing curtailment, researchers for data 

mining and correlations, and consumers visualizing and gaining knowledge of their power 

profiles. 

The data analytics stage has two main objectives, to learn and to respond. Sharing the grid’s 

status between utilities and consumers promotes the reliability of the smart grid. Also, consumers 

act as an active part in the reliability of the grid. This can be achieved through visualization 

dashboard portals, which provide a visualization of the smart grid’s status that can be accessed 

via the Internet or mobile apps. Consequently, a DR strategy by analytics can be suggested to 

determine customers and buildings to target during a peak load period. Moreover, dynamic 

power pricing and incentives for reducing load during peak periods can be advertised for. 

3.5 Implementation on a Cloud Computing Platform 

This section demonstrates the implementation of the framework on a cloud computing platform. 

Then a method to establish a secure connection between the cloud cluster nodes is briefly 

presented. Further, the settings of the components that are used at each stage of the framework 

are discussed. For simplicity, in the data storing and data processing stages a Hadoop distribution 

namely, Cloudera distribution Hadoop (CDH) that contains MapReduce/Yarn and HDFS is used 

instead of setting up each component separately. 
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3.5.1 Cloud Platform 

Cloud computing can be deployed as the infrastructure layer for big data systems to meet certain 

infrastructure requirements, such as cost-effectiveness, improved accessibility, and scalability. 

Based on the requirements of the proposed framework, Infrastructure as a Service (IaaS) clouds 

[74] is appropriate to use to implement the smart grid big data framework. Cloud service 

providers such as, Amazon AWS and Google can be utilized to build a cluster that will host the 

framework. In this implementation, a Google cloud platform cluster with six machines is used. 

Five machines running CentOS Linux operating system will be deployed for the Hadoop 

platform. The remaining machine will be running Windows operating system to perform the 

visual analytical tasks. In the Hadoop cluster there will be one master node and four slave nodes. 

The IP address and hostname of the nodes are identified at each node in the /etc/hosts file (Figure 

3.4): 

 
Figure 3.4: The IP address and hostname of the machines identified at each cluster node in the /etc/hosts file.  

 

It should be noted that at any time a new node is added to the cluster, it must be defined to all 

other cluster nodes in the /etc/hosts file. 

Often smart grid big data analysis is conducted with a vast array of data sources that come 

from many sources. For that, it is required to be aware of the security and governance policies 

that apply to various smart grid data sources. The data that remains will need to be secured and 

governed. Therefore, a well-defined security strategy is required. It should be notated that 

security is something that requires frequent update strategies because the state-of-the-art is 

constantly evolving. In order to establish the smart grid framework in a secure cluster 

environment, Secure Shell version 2 (SSH) protocol [75] is adopted. SSH is 

a cryptographic network protocol that allows network systems to operate securely over an 

 10.240.0.2     master.sgf    #IP and node name for master 

10.240.0.3     slave1.sgf    #IP and node name for slave1     

10.240.0.4     slave2.sgf    #IP and node name for slave2     

10.240.0.5     slave3.sgf    #IP and node name for slave3 

    10.240.0.6      slave4.sgf    #IP and node name for slave4 
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unsecured network. The SSH provides a secure encrypted link in a client-server architecture, 

which connects a client with a server. In addition, SSH provides authentication, encryption and 

data integrity to secure network communications. The setup of SSH enables different operations 

on the cluster, such as starting, stopping, and distributing operations to nodes. In the context of 

our cluster, it provides secured connection between the slaves and master(s) nodes. Also, 

specifies how a node can connect securely to another node, and then use the resulting secure 

connection to access the other nodes resources. An advantage of implementing the framework 

using known cloud service providers is that their cloud service complies with the Cloud Security 

Alliance (CSA) which promote the use of best practices for providing and ensuring security 

within cloud computing. To implement the SSH in the cloud cluster, the public key 

authentication method is used. Public key authentication in SSH is considered to be a popular 

strong authentication method. To accomplish this, a manually generating public and private key 

are generated on a node. The public key will be given to all cluster nodes that require 

authentication. Any data encrypted with that public key, will be decrypted with the 

corresponding private key. Thus, every cluster node has a file which contains the complete list of 

the other node keys. While authentication is based on the private key, the key itself is not 

transferred through the network during authentication. The SSH only verifies if the same node 

offering the public key also owns the matching private key. This will prevent a node that doesn’t 

belong to the cluster to connect as an authenticated node (eavesdropping). The commands to 

setup an SSH connections are presented in Figure 3.5. 

 

 

Figure 3.5: Commands to setup an SSH connection. 

Then the public key (id_rsa.pub) is copied to each node. Hence, every node in the cluster has 

the complete list of the other node keys. 

 ~]$ ssh-keygen 

~]$ cd ~/.ssh 

~]$ cp id_rsa.pub authorized_keys   #copying node key to list of authorized keys 
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The components that are needed to implement the framework (i.e., Flume, Hadoop, Hive, 

Impala) are setup on the cluster. Fortunately, those components can be found in open source 

distributions. For simplicity, in this framework CDH is used. During the setup of CDH, the 

master and slave nodes are identified by their hostname or IP address. The master node will run 

the master “daemons” and it knows where the slaves are located and how many resources they 

have. A node identified as master runs several services; the most important is 

the ResourceManager which decides how to assign the resources. Nodes identified as slaves 

announce themselves to the ResourceManager. Periodically, they send heartbeats to the 

ResourceManager. Each slave node offers resources to the cluster. The resource capacity is the 

amount of memory and the number of cores. At run-time, the ResourceManager will decide how 

to use this capacity. 

3.5.2 Flume 

Once the data are available from smart meters, it is sent to a local node. An advantage of using 

the cloud service is that the data can be sent from any location as long as there is an Internet 

connection and the security protocol of the cloud allows it. For example, a neighborhood’s data 

can be sent to a node using one Internet connection. It should be noted that the network 

communication and aggregation of smart meter data is beyond the scope of this thesis. Nodes 

that act as flume agents can be master or slave nodes. In this implementation, a flume agent 

receives data in a csv file format. The attributes of the file can include data such as, the 

timestamp (Datetimes), smart meter’s ID (ID), generated (Gen)/consumed (Cons) power and zip 

code (Zip) (Figure 3.6). 

 

 

Figure 3.6: Sample of the csv file that includes attributes of timestamp, smart meter’s ID, generated power and zip 
code.  

 2009-07-14 00:00:00,1001,0.286,80302 

2009-07-14 00:00:00,1002,0.089,80302 

2009-07-14 00:00:00,1003,0.086,80302 

2009-07-14 00:00:00,1004,0.149,80302 

2009-07-14 00:00:00,1005,0.086,80302 
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When a flume source receives an event it stores it into a channel that keeps the file event until 

it’s consumed by a flume sink (Figure 3.2). The sink removes the file event from the channel and 

puts it into the HDFS sink. The file events are removed from the channel only after they are 

stored in the HDFS repository for reliability. The flume agent configuration is stored in a local 

configuration file (/etc/flume-ng/conf/flume.conf). This is a text file that follows the Java 

properties file format. Configurations for one or more agents can be specified in the same 

configuration file. The configuration file includes properties of each source, sink and channel in 

an agent and how they are wired together to form data flows. Figure 3.7 is the configuration for 

the Hadoop cluster, where the flume agent is the master node. 

 

 

 

 

Figure 3.7: Flume configuration file flume.conf  that defines how the source, sink and channel are wired together to 
form the data flows.   

 

 # Initialize agent's source, channel and sink 

agent.sources = SGFExampleDir 

agent.channels = memoryChannel 

agent.sinks = flumeHDFS 

# Setting the source to spool directory where the file exists 

agent.sources. SGFExampleDir.type = spooldir 

agent.sources. SGFExampleDir.spoolDir =   

/usr/local/flumeSGF 

# Setting the sink to HDFS repository 

agent.sinks.flumeHDFS.type = hdfs 

agent.sinks.flumeHDFS.hdfs.path =  

hdfs://master/user/flume/sgf 

agent.sinks.flumeHDFS.hdfs.fileType = DataStream 

# Write format can be text or writable 

agent.sinks.flumeHDFS.hdfs.writeFormat = Text 

# Connect source and sink with channel 

agent.sources. SGFExampleDir.channels = memoryChannel 

     agent.sinks.flumeHDFS.channel = memoryChannel 
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3.5.3 Hadoop Platform 

In this illustration, the Cloudera Manager Hadoop distribution is used for simplicity. The reason 

for using such distribution is to provide an easy development environment for practicing users 

that are not familiar with CentOS operating system to develop similar tools for their demanding 

smart grid applications. Cloudera Manager automates the installation of the essential 

configuration, debugging, SQL database, CDH agents, and other components. 

During the installation, the cluster nodes are specified using the IP address and hostname 

(Figure 3.4). It should be noted that an existing link between the cluster nodes should exist. This 

has been completed by establishing the SSH secure encrypted link. Also, the cluster nodes are 

assigned master and slave roles, and there can be more than one master node in the cluster. The 

nodes are assigned roles that run on them. For example, nodes that perform MapReduce tasks are 

specified, and nodes that perform a Hive task are also specified. A cluster node may be specified 

to perform more than one task. The status and usage of nodes can be monitored through 

Cloudera Manager. This can assist decision makers in adding/reducing the number of nodes in 

the cluster and monitoring the reliability of nodes. 

Identifying the master and slave nodes was completed during the setting-up of CDH for the 

cluster. In the previous step, Flume ingested the data into the HDFS repository. HDFS manages 

storage on the cluster by breaking the incoming files into blocks, and storing each of the blocks 

redundantly across the slaves. In the common case, HDFS stores three complete copies of each 

file by copying each block to three different nodes for reliability (Figure 3.8). Each block size is 

128 MB by default, and can be changed to meet the application demand. However, decreasing 

the block size could lead to a huge number of blocks throughout the cluster, which causes the 

master node to manage an enormous amount of metadata.  

The CDH processing component, YARN, takes advantage of this data distribution by 

distributing the work involved in a task to many different nodes in the cluster. Each of the nodes 

runs the task on its own block of the file (Figure 3.9). The results are collated and digested into a 

single result after each involved block has been processed. The CDH monitors jobs during 

execution, and will restart work lost due to node failure if necessary. 
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Figure 3.8: HDFS distributes file blocks among cluster nodes.  

 

Figure 3.9: CDH distributes the work out to the nodes.  

 

3.5.4 Hive 

Hive facilitates reading, writing, and managing the data stored in the HDFS repository using an 

SQL-like interface. In this framework, Hive reads the smart grid data file from the HDFS 

repository and generates a data table of interest. In this implementation, it is desired to build a 

table that includes only the time stamp, smart meter ID, and consumption of the smart meter. The 

SQL-like query can achieve this (Figure 3.10): 

 

 

Figure 3.10. The Hive SQL-like query to build a table that includes the time stamp, ID and consumption of the smart 
meters.  
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 CREATE EXTERNAL TABLE ConsumptionsTable ( 

   Datetimes TIMESTAMP, 

   ID                BIGINT, 

   Cons           FLOAT ) 

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY ',' 

LOCATION 'user/flume/sgf'; 
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This query will read data from 'user/flume/sgf' (the path where Flume sinks the data in Figure 

3.7), and anytime new data is ingested into this directory, the “ConsumptionsTable” table will be 

updated automatically. 

3.5.5 Impala 

Similar to Hive, Impala is able to read, write, and manage the data stored in the HDFS repository 

using SQL-like queries. However, Hive and Impala differ in the way they function and how 

SQL-like statements are written. The following query is an example that deals with a single 

house smart meter data, including power generated from solar panel (pvpower) and a residential 

wind turbine (windpower). The query creates a table that includes the timestamp, consumption, 

pvpower, windpower and zip code (Figure 3.11). The “Invalidate metadata” statement is required 

after a table is created, to update the metadata. To respond to queries, Impala must have current 

metadata about the data and tables that clients query directly. Therefore, if the data table used by 

Impala is modified, the information cached by Impala must be updated. In cases where a delay of 

data occurs due to power outages, Flume will ensure the data is stored into the HDFS storage, 

and Impala/Hive will update the tables when the data becomes available in “'user/flume/sgf'”. 

Adding the “ORDER BY” statement will reorder the data based on the timestamp in this case. 

 

 

 

Figure 3.11: The Impala SQL-like query to build a table that includes the timestamp, consumption, pvpower, 
windpower and zip code.  

 

 CREATE EXTERNAL TABLE SingleHouse ( 

datetimes TIMESTAMP , Cons float, pvpower float,  

windpower float, Zip STRING  ) 

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY',' 

LOCATION 'user/flume/sgf'; 

Invalidate metadata; 

ORDER BY (datetimes) DESC; 
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3.5.6 Visual Analytics 

In this implementation, the Tableau software [73] is used for the smart grid big data visual 

analytics. The Tableau presents interactive data visualizations by means of SQL queries. Here it 

is desired to send SQL queries to Hive/Impala to build a visualization of data of interest. In order 

to accomplish this, a connection between Tableau and Hive or Impala has to be established. 

Open database connectivity (ODBC) interface allows applications to access data in database 

management systems (DBMS) using SQL as a standard for accessing the data. The remaining 

machine running Windows operating system is used to setup Tableau and install Hive/Impala 

ODBC drivers [76]. In the Tableau software, a Hadoop server is chosen to connect to, and the 

machine and port are determined. The IP address or hostname of one of the machines that run 

Hive/Impala is entered. For example, to connect to the master node, the IP address should be 

10.240.0.2 (from Figure 3.4). In the port field, the port is the number of the transmission control 

protocol (TCP) port that the Hive/Impala server uses to listen for client connections. In CDH, the 

Hive TCP port is 10000, and the Impala TCP port is 21050. Once a connection is established, the 

desired HDFS data can be reached. The visualizations in Tableau are built by sending SQL-like 

Hive/Impala queries generated by Tableau. The Hive/Impala perform on top of the Hadoop 

platform which allows vastly improved speed on big datasets for prompt visual analytics. 

3.6 Practical Applications of the Framework 

The framework described in Section 3.4 can be applied to manage energy for a single-house, 

neighborhood or the entire grid. In this section, the cloud platform and Hadoop cluster to 

implement the proposed framework are presented. Furthermore, the application of the framework 

is applied to two scenarios. In the first scenario, the framework is applied on a single-house to 

manage its power usage, to save power and contribute to a smooth and efficient functioning of 

the smart grid. In the second scenario, the framework is applied on a recently available smart 

metering dataset that consists of 6,436 homes and businesses. Based on the requirements of the 

framework, such as cost-effectiveness, improved accessibility, and scalability, Infrastructure as a 

Service (IaaS) clouds [77] are appropriate to use in implementing the framework. An advantage 

of using such service is that the data can be sent from any location as long as there is an Internet 
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connection and the security protocol [78] of the cloud allows it. The framework was hosted on a 

Google cloud platform that consists of six machines. A Hadoop cluster is setup on five machines 

with one master node and four slave nodes. The components that are needed to implement the 

framework (i.e., Flume, Hadoop, Hive, Impala) are setup on the cluster. The master node is a 2.6 

GHz, 7.5 GB RAM running 64-bit Linux operating system. All slave nodes were 2.6 GHz, 3.75 

GB RAM running 64-bit Linux operating system. The remaining machine was a 2.6 GHz, 3.75 

GB RAM running 64-bit Windows operating system to run Tableau to perform the visualization 

tasks. A secure encrypted link between the cluster nodes was setup using the SSH protocol [78]. 

3.6.1 Single-house Application 

In the first scenario, beside the typical household appliances that consume power, this house 

includes micro-power generators namely, a residential wind turbine and rooftop photovoltaic 

(PV) solar panels. Furthermore, an EV is included in the scenario, as EVs are a subject 

undergoing intense study in smart grids. The household electric power consumption data was 

obtained from the UCI data repository [79]. It includes the global active power and three sub-

meterings. The first sub-metering corresponds to the kitchen, containing mainly a dishwasher, an 

oven, and a microwave. The second sub-metering corresponds to the laundry room, containing a 

washing machine, a dryer, a refrigerator and a light. The third sub-metering corresponds to a 

water heater and an air-conditioner. To calculate the power output of the wind turbine and PV 

solar panels, the wind speed, temperature and irradiation data were obtained from [80] with the 

latitude of 39.74ºN and longitude of 105.18ºW. Due to the lack of datasets that include the power 

consumption and micro-power generators’ data, it is assumed that the house exists in a location 

where the data of micro-power generators is available. For that, it is assumed that the house is 

located with the latitude of 39.74ºN and longitude of 105.18ºW, which is the same coordinates of 

the data of the wind speed, temperature, and irradiation. The wind turbine considered was a 3 

kW residential turbine. The wind turbine’s power output was calculated using the weather data 

(i.e., the wind speed and air density) of the specified location and the wind turbine’s data sheet 

[81] put in the formulas of [82]. The number of rooftop PV solar panels [83] was ten, and the 

method to calculate the power output with respect to the weather data (i.e., ambient temperature 
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and solar irradiation) for the location is described in details in [84]. The EV charging (G2V) 

profile was obtained from a study of EV driver recharging habits in the north east of England 

[85], and the EV discharging (V2G) habit was obtained from [86] as it suggested that 10% of the 

EV’s energy can be discharged into the network. Figure 3.12(a) illustrates the consumption and 

generation of the house with a one-minute time resolution using the Tableau visualization tool. 

While Figure 3.12(b) illustrates a dashboard for the power status of the aforementioned house 

updated every one minute. The consumption of power (household loads and G2V) is in red color 

whereas the aggregated generation from the PV panels, wind turbine and V2G is in blue (Figure 

3.12(b)). A pie-chart can be added on the location of the houses to observe the average 

consumption/generation power (Figure 3.12(c)). This can be applied to other locations on the 

map if data were available. 
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(a) 

 
(b) 

 
(c) 

Figure 3.12: Dashboards for power status. (a) cumulative consumption and generation with one-minute time 
resolution. (b) power status of the house.  (c) Map with pie-chart for consumption (red) and generation for the house. 
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3.6.2 Smart Grid Application 

Due to the lack of lengthy datasets similar to the data used in the first scenario that consider 

micro-generators, in the second scenario a large smart grid data set is considered. The reason for 

applying the first scenario was to show that micro-generators and EV systems data can be 

included in the framework. In the second scenario, it is also desired to test the efficiency of the 

framework in handling lengthy smart grid data. 

In the second scenario, a smart metering electricity behavior dataset from the Irish Social 

Science Data Archive [87] that took place from July 2009 to December 2010 for 6,436 Irish 

homes and businesses with a 30-minute time resolution is used to test the feasibility of the 

framework. Each smart meter produced around 25,730 electricity consumption time-series 

readings during the mentioned period. This corresponds to over 165 million electricity 

consumption readings to be ingested. The data generation rate of each smart meter was 30-

minutes. Thus, 6,436 smart meter data observations were ingested every 30-minutes. Each 

observation contains the timestamp, smart meter ID, and electricity consumption. Utility 

companies may have access to additional data about their customers, e.g., location and square 

footage of the home. However, this information is usually not available to third-party 

applications. The data were individually ingested to the master node in the Hadoop cluster using 

Flume. Once the data are collected, it is stored into the HDFS infrastructure. The SQL queries to 

read and arrange tables from the electricity consumption of the 6,436 smart meter readings are 

run in Hive and Impala. As Hive and Impala differ in the way they function, it was desirable to 

observe which data querying component is able to perform faster. In this Hadoop cluster, both 

Hive and Impala were able to produce/update the table with the new 6,436 smart meter data 

readings (i.e., the timestamp, smart meter ID and electricity consumption from each smart meter 

every 30-minutes) in a comparable amount of time (less than one second). 
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(a) 

 

 

 
(b) 

Figure 3.13: Dashboards for power status in the smart grid. (a) Power consumption of 6,436 Irish home and 
businesses updated every 30-minutes. (b) Power consumption of 11 selected smart meters. 
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In this application, the focus is to develop a dashboard to visualize the status of the smart grid 

for DDR purposes. To achieve this, Tableau visualization software was used. The Tableau 

software connects with the Hadoop cluster through Hive or Impala queries to achieve near real-

time visualization. Here Impala was able to outperform Hive in updating the visualization of the 

smart grids status. This suggests that Hive can be suitable for big data batch processing, whereas, 

Impala can satisfy the requirement of near real-time big data processing. Figure 3.13(a) presents 

a dashboard for the status of the on-hand smart grid with the aggregated consumption of 6,436 

Irish homes and businesses. Consequently, a DR strategy by analytics can be suggested during 

peak periods. Moreover, dynamic power pricing and incentives for reducing loads during peak 

periods can be advertised for. The locations of the smart meters’ can be visualized on a map 

similar to Figure 3.12(c). Also, a view of the power consumption for a certain region or specific 

smart meters can be obtained (Figure 3.13(b)) for further analysis. 

3.7 Conclusion 

This chapter presented a big data framework for smart grids. The concept of big data and the 

core components of the framework were highlighted. The framework’s stages including, data 

acquisition, data storing and processing, data querying, and data analytics components were 

discussed in details. Furthermore, the functionality of the Hadoop platform and the features that 

make it suitable for the smart grid big data management and analysis were highlighted. 

To verify the effectiveness of the framework, the framework was implemented on a cloud-

based platform. Furthermore, the application of the framework was applied to two scenarios. The 

first scenario was a single-house that included micro-generators (i.e., wind turbine, PV roof 

panels and EV). The second scenario included a real smart metering electricity behavior dataset 

from the Irish Social Science Data Archive for 6,436 participating Irish homes and businesses. 

The framework was able to acquire, store, process and query the massive amount of data in near 

real-time. Also, this chapter covered a DDR task, by enabling the smart grid users to share and 

visualize its information. This can present the following benefits: 

- The integration of renewables by using demand-side management to address supply 
fluctuations is promoted. 



34 
 
 

 

 

 

- The grid’s reliability can be increased by using the customers as a virtual power resource 
during peak periods (negative demand is equivalent to a positive supply). 

- This can elude the need to build new power plants for standby generation, by lowering the 
peak periods and advertising for incentives for reducing loads. 

- The environmental impacts can be limited as monitoring micro-generators are included, 
especially vehicle-to-grid (V2G) power. 

Finally, the impact of the presented framework goes beyond visual analytics, but in this work, 

the main objective was to introduce a framework that can sufficiently handle the massive smart 

grid data. The application of the two scenarios and the visualization of the grid’s status, suggests 

that this framework is feasible in performing further smart grid data analytics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 
 

 

 

 

Chapter 4 

Lambda Architecture for Smart Grids Big Data Analytics 

4.1 Introduction 

The previous chapter presented a framework that covers the life-cycle of smart grid big data 

from generation to analytics. That framework utilized state-of-the-art big data components to 

address the smart grid big data challenges. However, the previous presented framework can be 

developed to scale with big data applications that require real-time updates. For that, in this 

chapter the framework is developed to comply with Lambda architecture to handle massive 

quantities of data by taking advantage of both batch and real-time processing methods. 

In this chapter the features of utilizing the Lambda architecture for smart grid big data are 

highlighted. Then the smart grid big data Lambda architecture eco-system is presented. Further, 

the implementation of the eco-system on a cloud computing platform is presented. In addition, 

visualization and data mining applications are presented. Finally, the conclusions of the chapter 

are drawn. 

4.2 Features of the Lambda Architecture for Smart Grids 

The following features make the Lambda architecture suitable for smart grid big data 

management and analytics. 

4.2.1 Robustness and Fault Tolerance 

Computation failures and node breakdown are common in smart grid systems. The Lambda 

architecture is tolerant to machine failure and data corruption. The batch and real-time views can 

always be recomputed from the master data. Also, replicates of the data are stored in many 

nodes, and the computation tasks can be distributed to other healthy nodes in the cluster in case 

of machine failures or breakdowns. 
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4.2.2 Low Latency 

The Lambda architecture brings parallel computation, and allows achieving real-time read and 

updating without compromising robustness. This allows smart grid operators to monitor the 

status of the grid in real-time, in addition, to propose demand-side-management decisions to 

produce desired changes in the aggregated load shape during rapid imbalances in the smart grid. 

4.2.3 Scalability 

Layers of the Lambda architecture can be scaled independently. This enables the system to 

automatically redistribute data and computation tasks to accommodate hardware changes without 

affecting the functionality of the cluster nodes. Also, this supports installing new smart meters to 

the grid by adding computation nodes and storage devices to the existing Lambda architecture 

cluster without affecting the existing infrastructure. 

4.2.4 Generalization and Flexibility 

The Lambda architecture is able to store and compute views for various types of data from 

numerous sources, which makes it feasible to be used across a large number of different smart 

grid big data applications. 

4.3 Smart Grid Big Data Lambda Architecture Eco-system 

The architecture for smart grid data can be decomposed into five subsequent stages: 

1- Smart grid data generation. 

2- Smart grid data collecting. 

3- Data storing and processing 

4- Data querying. 

5- Data analytics. 

This smart grid big data eco-system includes a feedback loop that could assist the smart grid 

operators in observing the results of their decisions on the reliability of the grid. Figure 4.1 
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presents the smart grid big data cycle based on the Lambda architecture, and the following 

subsections discuss the stages of this architecture. 

 

 

 

Figure 4.1: The smart grid big data eco-system to deal with the smart grid big data from data collecting to data 
analytics, with visualization and feedback loop capabilities. 

 

4.3.1 Smart Grid Data 

The deployment of smart meters and sensors throughout the grid results in massive amounts of 

data. This includes generation side data (wind farms and PV plants), consumption side data 

(residential homes, factories, and EV charging stations), prosumers data (residential PV panels 

and V2G) and, weather and natural disasters data can be included in the smart grid system. Also, 

images and video footage could be included to detect physical attacks (California transmission 

substation sniper attack [88]) or investigate power outages. The smart grid data is considered to 

be large in volume, high in velocity and wide in variety. The value of this smart grid big data 

becomes useful when integrated with multi-sourced existing smart grid data in an analytics 

environment, and can potentially enhance the functionality of the smart grid. 
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4.3.2 Data Collecting 

The multi-source smart grid data generated from the previous layer are to be sent pro-actively to 

the utility center. To accomplish this, the smart meter data is transmitted to a cloud storage 

platform through an Internet connection. A reliable tool that is capable of collecting the smart 

grid data from a single/multisource is Flume [68]. In this smart grid big data eco-system, Flume 

pulls the data and transfers it to a specific master node in the Hadoop cluster. An advantage of 

using Flume for data aggregation and transmission is that it ensures the data is stored in the 

desired final destination. This ensures that the data will be delivered even in cases where 

disconnections and outages occur. Flume accomplishes this by keeping the actual data in a 

virtual memory channel until it is completely ingested into the data repository. 

4.3.3 Lambda Architecture (Data Storing and Processing) 

From the previous layer, the data is sent to a Hadoop master node. The HDFS component in the 

batch layer of the Lambda architecture eco-system manages storing the data across multiple 

nodes in the cluster. Also, the batch layer performs its second task, to precompute batch views 

for this distributed data by using the MapReduce processing component. Meanwhile, the speed 

layer in the Lambda architecture stores, updates and computes the real-time views of the data 

collected from Flume. As mentioned in Section 2.3, the Hadoop platform can accomplish the 

operation of the batch layer of the Lambda architecture. In order to accomplish the functionality 

of the speed layer of the Lambda architecture in this smart grid big data eco-system, Apache 

Spark [89], [90] is used. The main feature of Spark is its in-memory cluster computation 

capability that increases the processing speed of an application. The serving layer of the Lambda 

architecture merges the results of batch and speed layer computations to provide real-time 

computation results for the subsequent data querying layer. 

4.3.4 Data Querying 

The data querying layer includes tools that enable to extract, load and aggregate data stored in 

HDFS form. In this smart grid big data eco-system, three querying tools are used. Each querying 
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tool differs in the way it functions and executes various parallel operations on a cluster. Hive 

[69] uses MapReduce operations to retrieve data. Impala [70] uses the nodes memory to execute 

the queries. While, Spark SQL [91] is a component on top of Spark in the speed layer of the 

Lambda architecture that uses resilient distributed dataset, which is a collection of objects 

partitioned across the nodes of the cluster that can be operated-on in parallel. The reason for 

including those querying tools is to enable using the suitable querying tool for a specific type of 

application. For example, for real-time visualization of the grid load, Impala and Spark SQL 

maybe options to use in this application. However, to compute the amount of power consumed 

by a specific region during the past year, Hive would be a suitable option to use. Also, including 

those three data querying components make the smart grid big data eco-system a more compact 

system. 

4.3.5 Analytics 

The data analytics is the most important stage in this developed smart grid big data eco-system. 

The main objectives of this stage are to extract useful information and insights, and assist the 

smart grid operators in making informed decisions that could essentially promote the reliability 

and operation of the smart grid. Also, to observe the effects of the decisions made on the smart 

grid by using the feedback loop. In this eco-system, three analytical tools are presented. These 

tools can cover data mining and knowledge discovery, statistical and table manipulation, and 

visual analytics applications. It should be noted that other analytical tools maybe used on top of 

this eco-system, however, the tools illustrated in this section are able to perform an entire smart 

grid big data analytical application including, observing the results of decision making using the 

feedback loop. 

4.4 Implementation on a Cloud Computing Platform 

In this section the implementation of the smart grid big data eco-system on a cloud computing 

platform cluster and the method to establish secure connections between the cluster nodes are 

presented. A hierarchical view of the utilized tools to implement the smart grid big data Lambda 
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architecture eco-system is shown in Figure 4.2. Further, the settings to connect the analytical 

tools to the Lambda architecture are highlighted. 

 

 

 
 

Figure 4.2:  Hierarchical view of the utilized components to implement the smart grid big data eco-system. 

 

 

The IaaS cloud computing platform can meet the smart grid big data requirements, which 

provide reliability, scalability, cost-effectiveness, and service provisions for hardware services 

such as, virtual machines and storage. For this implementation, the Google cloud computing is 

used to host the eco-system. Six machines were used to build-up the eco-system cluster. This six 

node cluster consists of one master node and five worker nodes. The master node is 8 vCPUs 30 

GB RAM machine and the worker nodes are 4 vCPUs 15 GB RAM machines, all running 64-bit 

Linux operating system. To establish a secure encrypted connection between the cluster nodes, 

the secure-shell (SSH) [75] connection is used. 

Once a secured connection is established, the various types of smart grid data are pro-actively 

sent to the IP address of the master node. The advantage of using a cloud computing platform is 

that the data can be sent from any location through an Internet connection. The data collection 

component, Flume, is setup on the master node to actively poll for data, and is responsible to 

sink the data in the HDFS repository. To organize the data present in the repository, multiple 

Flume agents are setup. For example, residential smart meter and power plant generation data are 
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stored in separate directories. This prevents “Data Swamp”, which is a phenomenon in data lakes 

that occurs due to large volume of unorganized ingestion of data, from happening. 

To implement the Lambda architecture the following components were setup on the cluster 

nodes: 

- Hadoop platform: includes the storing component HDFS and the processing components 

MapReduce and Yarn. 

- Spark Core [89]: contains the basic functionality of Spark, including components for 

scheduling, memory management, fault recovery, interacting with the storage system. 

- Spark SQL to query the data [91]. 

- Hive: facilitates reading, writing, and managing the data stored in the repository using 

queries. 

- Impala Cloudera:  to read, write, and manage the data stored in parallel on the node’s 

memory. 

In order to install and configure the above components, Linux and programming background 

experience is required. Alternatively, Hadoop open-source distributions can be used, such as, 

Cloudera distribution of Hadoop (CDH) and Hortonworks Hadoop distribution. Those 

distributions include most of the smart grid big data components that are used in this eco-system, 

and the average user is able to configure the settings. It should be noted that using the CDH 

distribution is more convenient; also, it includes the Impala querying tool. 

To perform data analytic applications on top of the smart grid Lambda architecture eco-

system, a machine that runs Windows operation system is used. The RapidMiner Radoop [92], 

Matlab [93] and Tableau [73] tools are installed on this machine. Then a remote connection 

between those analytic tools and the cluster through the master node is established. This 

connection allows access to the data and run queries using Spark SQL, Hive and Impala. Those 

connections are established by using Open Database Connectivity (ODBC) drivers [76] and 

configuring the TCP port. For example, the TCP ports in the CDH distribution for Hive and 

Impala are 10000 and 21050, respectively. In this smart grid big data eco-system, Radoop is used 

for data mining, Matlab tall arrays for table organization, and Tableau for visual analytics. 

Matlab tall arrays provide working with data backed by a distributed data store. It should be 



42 
 
 

 

 

 

noted that Radoop and Matlab can be used for many other applications, such as data mining and 

statistical applications. 

Once the eco-system has been built, and a remote connection to the cluster exists, analytical 

applications can be performed on top of the eco-system. 

4.5 Practical Applications of the Smart Grid Big Data Lambda Architecture 

In this application of the smart grid big data eco-system it is desired to perform an unsupervised 

data mining application and visualization of smart grid data. The data mining application is 

clustering the residential customer daily loads, and visualizing the residential load consumption 

of the smart grid. The utilized smart grid data is from the Pecan Street Dataport [94]. This data 

includes the smart meter data for 359 real households in Texas, Colorado, and California 

recorded every ten minutes. The following subsections present the steps to accomplish an 

analytics task on top of the smart grid big data Lambda architecture eco-system. 

4.5.1 Storing and Organizing the Data 

Every ten-minute, Flume ingests the smart meter data into the batch layer and speed layer. This 

data includes the timestamp, ID, and load of the smart meter. For the specific application of 

clustering the daily residential loads, Matlab accesses this data through Spark SQL and organize 

it into daily loads of tall arrays. This corresponds to 144 ten-minute load observations per day 

from each smart meter. The Flume file and commands to configure Spark for Matlab, and 

read/store into HDFS are presented in Appendix A and Appendix B, respectively.  

In order to extract, process and store the data, the Extract, Process, Store (EPS) process [95] is 

used. This EPS process uses the smart grid data stored by extracting appropriate information, 

structuralizing it, processing and querying, and storing the data in the desired form. The daily 

residential loads are stored into the HDFS repository using Hive queries. The results of this step 

are: 

1- Real-time ten-minute smart meter readings of the smart grid for visualizing the residential 

load consumption. 

2- The daily residential loads for clustering. 
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4.5.2 Visualization of Smart Grid Loads 

The objective of this step is to visualize the residential loads as they are recorded every ten 

minutes from the smart meters in real-time. Differently from the visualization task in the 

previous chapter where Tableau was connected to the distributed smart grid data through an 

Impala connection, here the connection and visualization are run through Spark. The 

disadvantage of using Impala is that the recent smart meter data is first stored in the HDFS 

repository in the batch layer then can be accessed. This causes delays in the visualization 

especially when the number of smart meters within the smart grid is high, accordingly real-time 

visualizations of the smart grid loads cannot be achieved. However, in the Lambda architecture, 

this delay is overcome by introducing the speed layer for real-time access to the recent data. This 

Spark connection to Tableau allows the smart grid operators to monitor the loads in real-time. 

The result of this step is a real-time visualization of the residential loads (Figure 4.3). It is worth 

noting that the visualizations may be shared with customers through online dashboards to 

monitor the status of the smart grid, which makes them an active component in the reliability and 

operation of the grid. 

 

 
 
Figure 4.3:  Energy consumption observation for the residential customers for Jan. 8, 2017. 
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4.5.3 Clustering Residential Customer Daily Loads 

In this step of the application, it is desired to partition the residential customers into groups based 

on the shape of the load consumption on top of the smart grid big data eco-system. To 

accomplish this big data mining task, the Radoop tool is configured to connect to the cluster 

nodes through Spark. The Radoop process to preprocess the data and group the residential 

customers is presented in Figure 4.4. The first step in this process is to retrieve the daily 

residential customer loads from the distributed HDFS repository. This is achieved by the serving 

layer which merges the results of the batch and speed layers to compute views of the data. Once 

views of the desired data are available, it is necessary to preprocess the retrieved data, such as 

dropping daily loads with missing values and selecting the load attributes and customers to 

cluster. After the data is preprocessed, a suitable clustering algorithm can be applied to the data. 

It should be noted that the chosen clustering algorithm should be designed to be applied in 

parallel on distributed data. Data mining algorithms that run parallel on distributed data are still 

narrow and are a topic that is under research. In this application, the well-known K-means 

clustering algorithm is used to partition the residential customers into groups based on their load 

profiles. The results of applying the K-means algorithm are stored back into the HDFS repository 

for further analysis. This formation of customer groups based on the load consumptions can 

assist the smart grid operators in the tariff formation process. Also, those clusters can present 

detailed knowledge of the consumption nature to promote demand response programs. In this 

clustering application, the customers are grouped into five clusters. It should be noted that 

choosing the number of clusters is beyond the scope of this application. In this smart grid big 

data eco-system, Tableau, and Matlab can be used for collecting and visualizing the results of the 

K-means algorithm. Figure 4.5 shows the clusters’ representatives for January 2017. It can be 

observed that customers in cluster# 4 have abnormal load consumptions when comparing it with 

the other clusters. This cluster has higher load consumption profiles, and may be of interest to 

apply demand response strategies. The smart grid operators may decide to target those customers 

to promote the reliability of the smart grid or reassign tariff formation. Figure 4.6 shows a 

zoomed view of cluster# 4. It should be noted that this data mining application can be applied to 

a larger number of customers, and as the scale of data is larger, more accurate knowledge and 
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insights maybe achieved that could essentially assist the smart grid operators in decision making 

and promoting the reliability of the smart grid. 

To test the robustness of the presented eco-system in situations where cluster nodes 

breakdown or are disconnected, in the first case two nodes are randomly disconnected from the 

cluster, then the clustering of the daily residential loads application is run on those four 

remaining nodes. The remaining four nodes were able to retrieve the data and present the same 

results. However, the execution time of the Radoop process increased. This was accomplished by 

the storing of smart grid data in multiple nodes and distributing the computation work to other 

healthy nodes in the cluster. Further, the same application was run on three nodes; this includes a 

master node and two worker nodes. The same Radoop clustering results were successfully 

achieved. This suggests that the presented smart grid big data Lambda architecture eco-system is 

robust to network outages and node failures. The execution times for the robustness tests for six, 

four and three nodes are presented in Table 4.1. The success of a test in Table 4.1 indicates that 

the required data to perform the clustering of residential daily loads were retrieved from the 

healthy nodes in the cluster.  

The main objective of this data mining application was to test the feasibility of the smart grid 

Lambda architecture eco-system in performing data analytical applications on large-scale 

distributed smart grid big data. The results obtained from this application suggest that various 

data analytical applications can be applied on top of the presented eco-system. 

 

 
Figure 4.4:  Radoop RapidMiner nest process to preprocess the data, apply the data mining clustering K-means 

algorithm and store the results into the HDFS repository. 
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Figure 4.5: Visualization of the five cluster representatives of the K-means clustering algorithm. 

  

 

 
Figure 4.6: Zoomed view into cluster# 4 as it represents abnormal or interesting load consumption behavior. 
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Table 4.1   Robustness Test Execution Times for the Smart Gird Big Data Eco-System on Clustering Residential 
Customer Daily Loads 

 
Number of cluster 

nodes (including one 
master node) 

6 nodes 4 nodes 3 nodes 

Success    

Radoop process 
execution time 0.27 sec 0.59 sec 1.29 sec 

 
 

4.6 Conclusions 

This chapter presented a smart grid big data eco-system based on the Lambda architecture. The 

Lambda architecture design and principals for building batch and real-time processing systems 

were discussed. This eco-system is able to handle massive quantities of smart grid data by taking 

advantage of batch and real-time processing methods. Furthermore, this eco-system collects then 

stores the smart grid big data into a cloud. This allows collecting various types of smart grid data 

including smart meter data, and image and video data to enable data mining in digital image and 

video processing applications. 

The presented eco-system was implemented and setup on a cloud computing platform. 

Furthermore, data mining and visualization applications on real smart grid data were performed. 

The data mining application was to partition the daily smart meter readings into groups based on 

the load consumption. In the visualization application, the presented eco-system was able to 

overcome the delay in real-time visualization of the previous smart grid big data frameworks by 

utilizing the Lambda architecture. In addition, the robustness tests carried out proved the 

robustness of the eco-system in cases of network outages or node failures. 

Due to the lack of a mature tool that can perform data analytic applications, this eco-system 

utilized a combination of analytic tools that were sufficient to perform the desired applications of 

visualization and data analytics. Also, it is worth noting that other analytic tools can be used on 

top of the eco-system, and as data mining algorithms develop to work parallel on distributed 

data, they can be applied on top of the presented eco-system. 
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Chapter 5 

Unsupervised Non-intrusive Extraction of Electrical Vehicle 

Charging Load Patterns (EEVCLP) 

5.1 Introduction 

The previous chapter presented an eco-system that is capable of collecting and storing the smart 

grid data, including the smart meter data, for further analysis. With the rapid popularization of 

EVs and the issues it introduces to the electrical grid, in this chapter it is desired to extract the 

EV charging loads (EVCLs) from the aggregated smart meter daily loads of residential 

households. Extracting and aggregating those EVCLs is essential to allow smart grid operators to 

make intelligent and informed decisions about conserving energy and promoting the reliability of 

the grid. 

In this chapter, an unsupervised algorithm to extract the EVCLs non-intrusively from the 

smart meter data is proposed. The proposed algorithm can run on low-frequency smart meter 

sampling data and only requires the real power measurement, which is the type of data 

communicated and recorded by most smart meters. Furthermore, validation results and case 

studies are shown. 

5.2 Theoretical Background of ICA for Extracting EVCLs 

ICA [96], [97] is a signal processing technique whose goal is to express a set of random variables 

as linear combinations of statistically independent component variables. One of the main 

applications of ICA is in blind source separation [97]. In the basic form of ICA [96], x = [x1, . . ., 

xm] is a random time-varying observed signal vector, and likewise s = [s1, . . ., sm] is a random 

vector with the original signal elements. Then the linear relationship is given by: 

                                                        x As                                                                  (5.1) 

where A is an unknown m×n mixing matrix to be estimated. 
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The statistical model in (5.1) is called the ICA model. The ICA model is a generative model, 

which means that it describes how the observed data are generated by a process of mixing the 

components s. The independent components are latent variables that cannot be directly observed. 

Also, the mixing matrix A is assumed to be unknown. The only observation is the random vector 

x, and it is desired to estimate A and s using it. To obtain this, it is assumed that the components 

si are statistically independent. Also, the independent component has non-gaussian distributions. 

However, in the basic model, these distributions are not known (if they are known, the problem 

is considerably simplified). For simplicity, it is assumed that the unknown mixing matrix A is 

square. Then, after estimating the matrix A the inverse can be computed (W), and the 

independent components are obtained by: 

                                                        s Wx                                                                  (5.2) 

Before applying the ICA algorithm on data, it is useful to do some preprocessing, to make the 

problem of ICA estimation simpler and better conditioned. The used preprocessing techniques 

including centering and whitening are presented in Appendix C. 

Although ICA separates the signals, the exact amplitude and sign of the independent 

components cannot be determined. This is considered to be a drawback in applications where the 

amplitudes of the signals are desired. 

5.3 Independent Component Analysis for Extracting Electric Vehicle Loads 

In the context of applying the independent component analysis (ICA) for extracting the steady 

charging load (stage2) of EVs, x is the observed aggregated signal composed of two mixed 

signals. The first is the aggregated signal without the EVCL signal, and the other is the EVCL 

signal. Figure 5.1 illustrates the problem of the ICA in the context of extracting EVCLs from a 

mixture of aggregated appliance signals. Initially, it is assumed that the amplitude of the EV 

signal is known. This means that one independent distribution is known and, hence, this 

simplifies the problem. Accordingly, the ICA model can act as extracting the distribution pattern 

of the EV load from the observed aggregated signal. Although the EVCL can be extracted from 

the aggregated signal using the ICA method, the amplitude and sign of the extracted EVCL 



50 
 
 

 

 

 

cannot be determined. This is due to the unavoidable ambiguities of ICA. For that, the grouping 

of EVs in categories will assist in estimating the amplitude of the extracted EVCL signal in 

Section 5.3. For that, various EV charging amplitudes have been collected. Table 5.1 presents 

some of the collected charging amplitudes at stage2 for existing EVs in global markets [98], 

including 100% EVs and plug-in hybrid vehicles. The EV signal that the ICA needs to extract is 

called a template. A template is a row vector that contains N replicates of the EV charging 

amplitude. The EVs can be grouped into categories based on their charging amplitudes. For 

example, EVs that have charging amplitudes of 3xxxW are grouped in the same category and 

EVs that have charging amplitudes of 6xxxW are in the same category, and so on. 

 

 

 

Figure 5.1:  The extraction of EVCL from the aggregated load problem. Source1 is the aggregated load pattern 
without the EVCL. Source2 is the EVCL. Mixture is the aggregated load pattern. 

 

 
Table 5.1  Stage2 Charging Amplitudes of EVs in Global Markets 

Model Max Charge Category# 
Porsche Panamera S 3 kW  

 
1 

Audi A3 e-tron, Cadillac ELR, Chevy Spark, Chevy Volt, Ford Fusion, Hyundai Sonata, 
Mercedes S550, Mitsubishi i-MiEV, Nissan LEAF 

3.3 kW 

Porsche Cayenne S, Volkswagen e-Golf 3.6 kW 
Tesla 6 kW  

2 Fiat 500e, Ford Focus, Honda Accord, Kia Soul, Nissan LEAF 6.6 kW 
BMW i3, Volkswagen e-Golf 7.2 kW 3 
Tesla Model S, Tesla Model X 10 kW 4 

 

Original signal 1 

 
Original signal 2 

 

 
 

Mixture 
 

 

IC
A 

Extracted signal 1        

    
Extracted signal 2 
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5.4 Proposed EEVCLP Algorithm 

5.4.1 General Aspects 

This section illustrates the general proposed extraction of EV charging load pattern (EEVCLP) 

algorithm. The initial data is the aggregated load pattern (ALP) vector x = [xt, . . ., xT], for t = 1,. . 

., T. The ALP contains T observations with a time-series resolution of one minute ( =1). The 

mathematical formulation presented here is described by considering all vectors as row vectors. 

The flowchart of the EEVCLP algorithm is presented in Figure 5.2 and the parameters are 

presented in Table 5.2. 

The vector s = [snm, . . ., sNm] represents the m-th template to be extracted from the ALP x. The 

whole set S of templates is represented by the matrix S = [sm, . . ., sM] for m = 1,. . ., M. From 

Table 5.1, the number of templates M=7. Each template sm contains N points of stage2 charging 

power amplitudes to be extracted. In this illustration, the ICA is applied with a time frame 

window size of N=10. The window is then shifted progressively to the next frame until the entire 

ALP (x) is covered. For example, if x contains the daily ALP with one-minute time-steps 

(T=1440), accordingly, the ICA will be applied T/N = 144 times to cover the whole sequence of 

x. The templates are grouped into categories based on their charging amplitude. For example, 

EVs that have charging amplitudes of 3xxxW are in the same category and EVs that have 

charging amplitudes of 6xxxW are in the same category, and so on. This assumption will assist 

in the estimation of the amplitude of the extracted EVCL in the iterative process (Section 5.4.2). 

The extracted EVCL can include more than one extracted charging session (ECS). An ECS 

consists of the index time t when the EV starts charging (starte) and the index time t when the 

EV ends its charging session (ende). The ECSs are registered as couples in a vector De = [starte, 

ende] and the entire couples of ECSs for an extracted EVCL are represented in the matrix D = 

[De,…, DE]. 

As mentioned previously, in the context of applying the ICA for extracting the EVCL, the 

observed signal vector is x and one of the sources s is assumed to be known. This means that one 

independent distribution is known and, hence, this simplifies the problem. Accordingly, the ICA 
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model can act as extracting the distribution pattern of the template sm from the aggregated power 

x. 

 

Figure 5.2:  Flow-chart of the EEVCLP. 

 

 

Setup: data x, parameters N, M, pmax, m=0, templates S 

Iteration m= m+1; p=0 

 

 

N 
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Apply ICA for actual load x and template sm 

Obtain the extracted EVCLs matrix Z 

p= p+1 

Obtain the extracted EVCL solutions cp 
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Update the extracted EVCLs cp 

Construct ESTx of cp by one of the estimation methods 1-4 

Compute Error0pm 

Compute Error1m; Obtain best extracted EVCL  

M = m 

Y 

N 

Obtain and EVCLs that exist in the same category, if any 

Construct EST2x to improve the amplitude estimation by the 
estimation method 1-4 
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Obtain the final extracted EVCL of Stage2  

End 

Extract gradual increase (Stage1) and update EVCL  

Extract gradual decrease (Stage3) and undergo correction 

phase, and update EVCL  

 

Extraction of Stage1 & Stage3   
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Table 5.2  The Parameters and Descriptions for the EEVCLP Algorithm 

 
a  Index of error1 

b  Index of error2 

C Solution vector 
g  Index of overall minimum error 

S Vector template of maximum charging amplitude 

  Time resolution 

X Original aggregated load pattern 

   Component of stage1/stage3 

  Pattern window of stage3 

Z Extracted signal by independent component analysis 

Be Base load 

C Matrix of solution vectors 

D Vector of start and end couple 

D Matrix for start and end couples 

Error# Error between the reconstructed and original signal 

ESTx Reconstructed load pattern 

ESTx2 Reconstructed load pattern to improve 
the estimated amplitude 

F  Final extracted stage2 signal 

P The preceding components 

F The following components 

starte Start time index of charging session 

ende End time index of charging session 

M Number of templates 

N Window size of sequence to be extracted 

P Counts of non-zero extracted signals 

S Matrix of templates s 

 V  Duration of stage1/ stage3 

Z Extracted signals matrix of/independent component analysis 
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5.4.2 Iterative Process 

Initialization 

The initialization includes the setting-up of the number of minimum desired sequence of EVCL 

to be extracted at each window (N), and the amplitudes and number of templates (M). 

Successive Iteration 

Application of ICA (Step1): The ICA is applied with a window size of N=10 on the entire 

sequence of x to extract the m-th EVCL (sm). The result is a vector zn = [znt, . . ., znT], for t = 1,. . 

., T that represents the extracted EVCL from x. The vector zn will contain detections of EVCLs if 

the whole sm template window matches. This will lead to missing EVCLs that have not started at 

the beginning of the window. For this purpose, the ICA is repeatedly applied N times. At the 

beginning of every repetition n, the window is shifted one position to the right. Thus, ten 

extracted EVCLs are obtained and stored in an N×T matrix Z= [zn, . . ., zN], for n = 1,. . ., N. 

Extracting the EVCL vector (Step2): Here a variable p for p =1,…, N/2  is  introduced. This 

variable represents the number of non-zero extracted EVCL occurrences in the t-th column of 

matrix Z. From each column t of matrix Z, a solution component ct, for t = 1,. . ., T is generated. 

The component ct is zero, unless there are p non-zero occurrences then ct becomes: 

  tc = { 1
/



 
 
 
 nt

N

n
Z p ,

    of occurancenumbe s pr 

0               , otherwise
            (5.3) 

The result is an extracted EVCL solution vector cp = [cp1,…, cpT] and the set of solutions C is 

represented by the matrix C = [c1,…, cp], for p = 1,…, 5. 

Removing false positive extractions of EVCLs (Step3): Due to appliances that may have similar 

operation cycles and amplitudes as EVs (e.g., A/C units and dryers) the generated solution cp can 

contain false positive (FP) detections of EVCLs. It is desired to shave or at least mitigate these 

FP extractions. To achieve this, the signatures of household appliances that may cause FP 
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detections are studied to take advantage of their behavior in reducing the FP detections rate. It 

was observed that most of the FPs occur from dryers, especially, when s is from Category#1. 

The following steps were generated after studying the appliances that interfere, and have similar 

amplitudes and patterns to EVs. 

1- If the length between two consecutive couples of ECSs is:  

  1 1 1( ) 18  AND ( ) 120  OR   ( ) 120       e e e e e eabs start end abs start end abs start end  (5.4) 

           then remove both couples of ECSs from cp and update the ECS matrix D. 

2- If the length of a couple ECS is ( ) 20e eabs start end  , remove the ECS couple from cp and 

update the ECS matrix D. 
The latter will lead the proposed algorithm not to extract EVCLs that have charging sessions 

< 20-minutes. Such short charging sessions can be neglected when there is a trade-off between 

accuracy and detecting shorter charging sessions. The state-of-the-art algorithms [39] can only 

extract EVCLs that have charging sessions > 30-minutes. 

The result from this step is an updated matrix C that has zero/reduced FP detections of 

EVCLs. 

Estimating the amplitude (Step 4): As mentioned in Section 5.2, the ICA algorithm is unable to 

detect the sign and estimate the amplitude of the separated signal. In the context of EV charging, 

the sign of the extracted EVCL must always be positive as it consumes power. Accordingly, this 

drawback of ICA can be overcome. However, the remaining issue of estimating the amplitude of 

the extracted EVCL needs to be addressed. For this purpose, four estimation methods will be 

introduced to estimate the amplitude of the extracted EVCLs. 

It should be noted that, for EV templates (s) that have greater amplitude than the ALP (x), 

there will be no ECS detected. For example, if s7 (from Category#4) is selected as a template, 

where the amplitude is 10 kW, and the entire ALP (x) has amplitude less than 10 kW, there will 

be no extracted EVCL (cp). Accordingly, there is no reason to estimate the amplitude and the 

algorithm will return zero EVCLs. 

In this algorithm, it is assumed that the amplitude can be estimated from the components of x 

that precede (P) and/or follow (F) a De charging couple: 
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 ( ( ) ,..., ( ) )  e e e eP x D start ps D start fs            (5.5) 

 ( ( ) ,..., ( ) )  e e e eF x D end ps D end fs            (5.6) 

where a duration of 10-minutes that precede and/or follow are considered, ps = 5 and fs = 15. In 

a second formation of the algorithm, ps = 10 and fs = 20. This means that 10-minutes that 

precede and/or follow the ECS are used to estimate the amplitude of the ECS of the extracted 

EVCL. The reason behind skipping the components that directly precede (stage1) and follow 

(stage3) the ECS is due to the gradient nature of EVs charging pattern behavior during the 

plugging and unplugging, which could penalize the results of the amplitude estimation methods. 

In the following methods the steady amplitude of stage2 is estimated by computing the load 

before and/or after an ECS occurs (baseload). The baseload is then added to the extracted EVCL 

to reconstruct the original ALP (x). Then the amplitude of the ECS can be the one that has a 

reconstructed load pattern (ESTx) closest to the original x. This estimation of the amplitude using 

the baseload ensures that the best chosen EV template sm does not overestimate the actual EV 

amplitude. For example, if the ALP exceeds 10 kW and the actual EV charging amplitude is 7 

kW (in Category#3), the amplitude estimation using the baseload will ensure that the extracted 

EVCL will not be overestimated and assigned to a template in Category#4 with an amplitude of 

10 kW. Following are four estimation methods; it should be noted that Methods 1-3 are the same 

when computing ESTx, but differ when computing ESTx2 in the following subsection. 

Method 1, 2, 3: 

For each ECS couple, the baseload (Be ) is computed: 

  eB =

{
 
 

 
 max{max( ),max( )}P F ,              ( )   

AND   ( )


 

e e

e e

D start fs
T D end fs

 

max( )F ,                                            ( )e eD start fs

 max( )P ,                                             ( ) e eT D end fs

             (5.7) 

Then the baseload (Be) is used to reconstruct an estimation of the original ALP (x). 
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 1(( ) / )
  ,  for   

max( ( ,..., ))



  
    
 

t m e
t pt e e

e e

ESTx x
x s B

ESTx C start t end
x start end

             (5.8) 

where ESTx is a reconstruction of x. 

Method 4: 

The two-bin histogram (hb1, hb2) is computed [99] for P and F, and the mean of the 

components of each bin is computed, then: 

  eB =

{
  
 

  
 max{mean( 2( )),mean( 2( ))}hb P hb F ,            ( )   

AND   ( )


 

e e

e e

D start fs
T D end fs

mean( 2( ))hb F  ,                                        ( )e eD start fs

 mean( 2( ))hb P ,                                         ( ) e eT D end fs

             (5.9) 

The baseload (Be) is used to reconstruct the original ALP (x): 

 
1(( ) / )   ,   for   



    t t m e pt e e

ESTx x
ESTx x S B C start t end             (5.10) 

where ESTx is a reconstruction of x. 

Now the error between the original x and the reconstructed ALP (ESTx) is computed: 

 
1

0 ( )


pm t t

T

t
x ESTo xErr r             (5.11) 

where p represents the extracted EVCL solution cp and m represents the EV template sm. 

For the remaining solution vectors C = [c2,…, cp], the same operations of Step3 and Step4 are 

performed with the shaving of FP extractions, the reconstruction of ESTx, and the computation of 

Error0pm. After the Error0 has been computed for each p, the minimum error (Error1m) of the 

extracted EVCL solution vectors C for iteration m is computed: 

 mi ( )1 (n )0m mError abs Error               (5.12) 
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 arg min( ( )) 0m mabs Errora            (5.13) 

and the related extracted EVCL solution vector cp and index are stored in matrix C  and vector a , 

respectively. The corresponding cp is interpolated as the best extracted EVCL c  for iteration m, 

m 1[ ,..., ]
m ma a Tc c c . 

For the successive iterations m=1,…, M, the group of operations are the same as the ones 

described in Step1 to Step4, this includes the application of ICA, the generation of extracted 

EVCL solution vectors C, the shaving of FP extractions, the reconstruction of ESTx, the 

computation of Error1m, and storing the best estimations of the extracted EVCLs in C . 

Before the final best-extracted EVCL and amplitude template are obtained the next stage is an 

attempt to improve the accuracy of the extracted EVCL amplitudes. 

Local Estimation Improvement 

In this stage, an attempt to improve the accuracy of the amplitude of the extracted EVCL is 

presented. From the vector Error1, the minimum index is located: 

 arg min( 1 ))( abs Errorb            (5.14) 

then the corresponding best EVCL bc  and the EVCLs that exist in the same category, if any, are 

of interest for further processing. For example, if b=2  then the EVCLs 1c  and 2c  are involved as 

they fall in the same category (Category#1). For each one of these bc , the ECSs matrix D is 

computed. Then similar to the reconstruction of the original ALP (x) part in Step4, for each 

couple De, the reconstructed load pattern ESTx2 is computed by following the same method 

(Methods 1-4) chosen from Step4, including the previously reconstructed load pattern (ESTx): 

 2 ESTx x                  (5.15) 
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Method 1: 

 2 ( )   ,   for      t t t e eB x ESTx start t end            (5.16) 

 2 2   ,   for      t t t e eESTx ESTx B start t end            (5.17) 

Method 2: 

Be is computed using (5.7) 

     2eB =

{
 
 

 
 

 

 (10 ^ ( 1 )

              /( 1)
e b

e e

B length Error

end start



  ,          

( ) 0
e

e

end

t t
t start

x ESTx


 

 (10 ^ ( 1 )

                /( 1)
e b

e e

B length Error

end start



   ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (5.18) 

     2 (( / ) 2  ,   for   )     t t e e eb b ec cEST x x B B start t end           (5.19) 

Method 3, 4:          

    2 ( )  /( 1)


 
     
 


e

e

end

e t t e e
t start

B x ESTx end start          (5.20) 

    2 2   ,   for      t t e e eESTx ESTx B start t end          (5.21) 

Now the error between the original x and the reconstructed ALP (EST2x) is computed: 

    
1

(2 2 )



T

t
t

tbError x EST x            (5.22) 

The final extracted EVCL ( F ) with the best-estimated amplitude can be obtained by: 

     arg min min ( mi1) n 2)(, abs Error abs Errorg            (5.23) 
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      F   cg            (5.24) 

 

The final extracted stage2 EVCL ( F ) is the gc vector that has the minimum error between the 

reconstructed load pattern and the original ALP (x). As mentioned previously, this step was to 

improve the selection of the best estimate from the templates (S). 

5.4.3 Extraction of Gradual Increase in the EVCL (Stage1) 

To extract the gradual increase in EVCLs, sufficient stage1 samples must be studied. Thus the 

data for 100 EVs from different categories are obtained. Figure 5.3(a) shows a zoomed view of 

stage1. It can be observed that it takes no more than two-minutes (  2V  ) to reach the maximum 

charging amplitude for all EVs from different categories. This corresponds to three time 

observations. The first observation in stage1 is when the EV is plugged-in, 2estartF  = 0, and the 

third observation is the maximum charging amplitude, 
estartF . In order to compute the second 

observation, the curve fitting process [100] is used to express the behavior of stage1. The general 

function that computes the second observation, 1estartF  , of stage1 for all EVs categories can be 

presented as: 

 

 

      log( ) 69( ) 2970.5  ,      f.82 or   2    H    
      ( ( ) 69.82) / 3263.4  H H    
      1F F  

e estart startH               (5.25) 
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                             (a)                                                                                         (b) 

Figure 5.3: Zoomed view for EVs from different categories (a) stage1 durations. (b) stage3 durations. 

 

5.4.4 Extraction of Gradual Decrease in the EVCL (Stage3) and Correction 

Phase 

In order to study the behavior of EVCLs at stage3, various EVCLs from different categories are 

obtained. Figure 5.3(b) shows a zoomed view of stage3 for the gathered data. Now, differently 

from stage1, it can be observed that EVCLs from different categories have different behaviors at 

stage3. Moreover, EVs that belong to the same category have different patterns when ending 

their charging sessions. EVs from Category#1 and #2 have two stage3 patterns, while EVs from 

Category#3 and #4 have one stage3 pattern. 

EVs from Category#1 have two patterns. In the first pattern, it takes up to ten-minutes             

(  10V  ) to reach zero watts. In the second pattern, it takes two minutes to reach zero watts. The 

curve fitting process is used to express those two behaviors of Category#1 EVs. For the ten-

minute pattern, the first observation is the maximum charging amplitude, 
eendF , and the last 

observation is  10eendF  = 0. Each remaining observation,  , in-between is computed by: 

 

      log( ) 5164( ) 1773.1   ,      for  1 9.4      H    
      ( ) ( ( ) 1081.7) / 4082.7  H H    
      ( )F F   

e eend endH             (5.26) 
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Similarly, the two-minute (  2V  ) stage3 pattern of Category#1 can be computed by: 

 
 
 

     log( ) 360( ) 2804.6 2   ,      f8.4 or   2     H   
 

      ( ( ) 6689.6) / 9395.9  H H    
      1F F  

e eend endH            (5.27) 
 

The algorithm begins extracting stage3 with assuming  10V  . During the extraction of stage3, 

the algorithm performs a correction phase. At this phase the resulted stage3 pattern window 

1( ,..., )Vv v   is placed at the end of the ECS, which corresponds to ,...,
e e Vend endx x


. If the pattern   

matches the ALP (  =1): 

 

             = {
 1   ,                

e e V eend end endx x F


 

0  ,                otherwise
         (5.28) 

Then the end of the charging session was determined adequately, but if the pattern   doesn’t 

exist (  =0), this means that the duration of the ECS was overestimated due to overlapping with 

other appliances, and the correction phase is entered. At this phase the window,  , is shifted one 

position backwards until the condition  =1 is satisfied. If the window  reaches the start of the 

ECS, i.e., 1v
estartx , and  =0. This means that the EVCL doesn’t match the 10-minute pattern 

and is likely to match the 2-minute pattern of Category#1. 

Now similarly, the algorithm begins extracting stage3 with assuming  2V  . During the 

extraction the correction phase is undergone. The resulted pattern window   is placed at the end 

of the ECS, i.e., 1v
eendx , and the window is shifted one position backwards until  =1. It should 

be noted that, the correction phase could correct the duration of an ECS to under 20-minutes. 

However, removing the FP detection rule of eliminating ECS < 20-minutes (Section 5.4.2) will 

cause detecting FPs and more importantly disable the signal amplitude estimation. 

For EVCLs from Category#2, the stage3 pattern has two patterns. The first could take up to 

40-minutes. However, after 20-minutes the charging amplitude is much lower and sometimes 
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reaches zero and bounces up, therefore it can be neglected to capture higher amplitudes. For this, 

the first pattern is limited to 20-minutes (  20V  ): 

 
       log( ) 8268( ) 2652   ,      for  1 19      H    

      ( ( ) 324.1180) / 7944.7  H H    
      1F F  

e eend endH            (5.29) 
 

The two-minute (  2V  ) stage3 pattern of Category#2 can be computed by: 

      log( ) 122( ) 9066.9 2   ,      f5.4 or   2     H    
      ( ( ) 8735.6) / 9961  H H    
      1F F  

e eend endH            (5.30) 
 

The group of operations are the same as the ones described for Category#1, this includes the 

extraction of stage3 and undergoing the correction phase. 

For EVCLs from Category#3 and #4, stage3 has a two-minute duration pattern that can be 

computed respectively by: 

      log( ) 146( ) 1021.9 2   ,      f5.8 or   2     H    
      ( ( ) 343.1281) /1122.7  H H    
      1F F  

e eend endH             (5.31) 
 
   

and,  

      log( ) 206( ) 1423.3 2   ,      f4.2 or   2     H    
      ( ( ) 500.5451) /1563.7  H H    
      1F F  

e eend endH            (5.32) 
 

5.5 Verifications and Discussions 

To verify the proposed approach, the EEVCLP algorithm is first applied on the same dataset 

used by [39]. It should be noted that the algorithm in [39] can only extract EVCLs of stage2. To 

perform a fair comparison, in this first verification study the proposed algorithm is limited to 

only extract stage2 patterns. In the latter verification studies, the results are presented by 
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applying the proposed algorithm including the extraction of stage1, stage3 and entering the 

correction phase. 

5.5.1 Verification and Comparison on Dataset#1 on Extracting Stage2 

Patterns 

The EEVCLP algorithm was tested by using data from the Pecan Street Inc. [94], which contains 

up to 1-minute time-steps of circuit-level and house-level electricity data from 1391 households 

in Texas, Colorado, and California. It should be noted that not all households have EVs. To 

verify the proposed approach, the available dataset used by [39] was used as a benchmark. This 

dataset (Dataset#1) includes the daily aggregated power signals for 23 households, and the 

ground truth of the EVCLs from [94]. The EVs considered in this dataset have amplitudes that 

fall in Category#1. It should be noted that houses#4, #5, #13 and #23, do not include any 

EVCLs, in order to test the extraction of FPs from the EVCLs. The proposed algorithm was 

applied each time with one of the four estimation methods (Method 1 to Method 4) twice (two-

runs). In the first run, the duration of 10-minutes that precede and/or follow an extracted EVCL 

to estimate its amplitude was, ps = 5 and fs = 15. In the second run, ps = 10 and fs = 20. Thus, 

the proposed algorithm was run eight times in total with different combinations of estimation 

methods, and ps and fs. Figure 5.4, illustrates how the extracted stage2 EVCL was obtained for 

house#2 using the proposed algorithm with estimation Method 3, and ps = 10 and fs = 20. 

Differently from [39] where only accuracy was used as an evaluation metric, here an evaluation 

metric from the information retrieval domain, modified F-score [101] is used. The reason for 

involving evaluation metrics other than the accuracy is due to the fact that with power 

disaggregation, the accuracy can be very skewed if the appliance is rarely used. For example, if 

the EV was plugged-in for only 20-minutes in a 24-hour period, and the algorithm was unable to 

extract any charging session, it will still achieve high accuracy. For that, the results of the 

proposed algorithm are evaluated using a modified F-score, and the accuracy and error are 

measured only when EVCLs are present either in the EVCL ground truth or the extracted EVCL. 

This not only measures the accuracy of classification of the state of the appliance, it also 
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measures the accuracy of the estimated amplitude. The utilized evaluation measures are 

presented in [101] and Appendix D, and the modified F-score was computed by: 

 

      2  



score

precision recallF
precision recall

            (5.33) 

 
 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5.4:  The result of the proposed algorithm with estimation Method 3. (a) the EVCL after applying ICA. (b) 
EVCL after removing the FPs. (c) final EVCL (transparent yellow) vs. the actual EVCL (red). 
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Table 5.3  Performance Comparison of the Proposed Algorithm with Estimation Methods 1- 4, ps = 5 and fs = 15 to 
Extract stage2 

EEVCLP with ps = 5 and fs = 15 

 Estimation Method 1 Estimation Method 2 Estimation Method 3 Estimation Method 4 
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1 1 0.99 89.29 100 94.34 1 11.09 89.29 100 94.34 1 0.99 89.29 100 94.34 1 0.99 89.29 100 94.34 

2 1 -100 0.00 0.00 0.00 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07 

3 1 3.37 83.58 95.73 89.24 1 17.57 92.13 100 95.90 1 3.37 83.58 95.73 89.24 1 7.23 84.17 100 91.41 

4 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

5 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

6 1 -9.99 98.21 98.21 98.21 1 2.23 100 94.64 97.25 1 -0.99 98.21 98.21 98.21 1 2.23 100 94.64 97.25 

7 1 -9.78 99.00 99.00 99.00 1 -9.78 99.00 99.00 99.00 1 -1.75 100 99.00 99.50 1 6.09 100 98.00 98.99 

8 1 -5.39 95.45 100 97.67 1 -5.39 95.45 100 97.67 1 10.95 97.67 100 98.82 1 51.38 64.06 97.62 77.36 

9 1 -3.62 99.05 96.30 97.65 1 4.14 100 96.30 98.11 1 -9.88 99.07 99.07 99.07 1 -9.88 99.07 99.07 99.07 

10 1 -10.7 99.54 98.64 99.09 1 6.09 100 98.18 99.08 1 -10.7 99.54 98.64 99.09 1 6.09 100 98.18 99.08 

11 1 -9.25 98.85 99.61 99.23 1 6.39 100 98.45 99.22 1 6.39 100 98.45 99.22 1 6.39 100 98.45 99.22 

12 1 -9.58 99.54 100 99.77 1 8.01 100 100 100 1 -9.58 99.54 100 99.77 1 -0.53 99.54 100 99.77 

13 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

14 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 

15 1 -7.87 97.92 100 98.95 1 -0.77 100 100 100 1 -0.77 100 100 100.00 1 -0.77 100 100 100 

16 1 -7.06 97.10 100 98.53 1 -7.06 97.10 100 98.53 1 3.45 100 95.52 97.71 1 -7.06 97.10 100 98.53 

17 1 -4.46 94.29 100 97.06 1 1.55 96.77 90.91 93.75 1 1.55 96.77 90.91 93.75 1 4.82 96.88 93.94 95.38 

18 1 -6.65 96.67 100 98.31 1 -6.65 96.67 100 98.31 1 -6.65 96.67 100 98.31 1 8.28 98.28 98.28 98.28 

19 1 -100 0.00 0.00 0.00 2 -100 0.00 0.00 0.00 2 -100 0.00 0.00 0.00 2 -100 0.00 0.00 0.00 

20 1 -11.5 99.10 97.36 98.22 1 -11.5 99.10 97.36 98.22 1 5.24 100 97.36 98.66 1 -3.53 100 97.36 98.66 

21 1 -9.94 98.91 98.91 98.91 1 4.55 100 96.74 98.34 1 4.55 100 96.74 98.34 1 -2.01 100 98.91 99.45 

22 1 -8.46 98.49 100 99.24 1 5.99 100 97.96 98.97 1 -8.46 98.49 100 99.24 1 -8.46 98.49 100 99.24 

23 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

Overall 16.78 86.05 88.61 87.27  11.27 91.88 92.91 92.34  10.03 91.53 92.92 92.16  12.16 89.85 93.17 91.25 

 

 
Table 5.4  Performance Comparison of the Proposed Algorithm with Estimation Methods 1-4, ps = 10 and fs = 20 to 

Extract stage2 
EEVCLP with ps = 10 and fs = 20 

 Estimation Method 1 Estimation Method 2 Estimation Method 3 Estimation Method 4 
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1 1 0.99 89.29 100 94.34 1 11.09 89.29 100 94.34 1 19.02 90.91 100 95.24 1 11.09 89.29 100 94.34 

2 1 -100 0.00 0.00 0.00 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07 

3 1 7.23 84.17 100 91.41 1 7.23 84.17 100 91.41 1 7.23 84.17 100 91.41 1 7.77 92.13 100 95.90 

4 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

5 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

6 1 -9.99 98.21 98.21 98.21 1 -9.99 98.21 98.21 98.21 1 -9.99 98.21 98.21 98.21 1 -0.99 98.21 98.21 98.21 

7 1 -9.78 99.00 99.00 99.00 1 -9.78 99.00 99.00 99.00 1 -2.75 100 98.00 98.99 1 6.09 100 98.00 98.99 

8 1 -5.39 95.45 100 97.67 1 -5.39 95.45 100 97.67 1 1.71 97.67 100 98.82 1 5.79 97.56 95.24 96.39 

9 1 -9.88 99.07 99.07 99.07 1 -4.87 100 87.96 93.60 1 -4.87 100 87.96 93.60 1 -9.88 99.07 99.07 99.07 

10 1 -10.36 99.54 99.09 99.32 1 5.11 100 97.27 98.62 1 -1.40 99.54 99.09 99.32 1 -10.36 99.54 99.09 99.32 

11 1 -9.25 98.85 99.61 99.23 1 6.39 100 98.45 99.22 1 -0.94 99.61 99.61 99.61 1 6.39 100 98.45 99.22 

12 1 -9.58 99.54 100 99.77 1 8.01 100 100 100 1 -9.58 99.54 100 99.77 1 8.01 100 100 100 

13 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

14 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 1 10.28 90.00 100 94.74 1 12.48 88.24 100.00 93.75 

15 1 -11.71 97.83 95.74 96.77 1 -9.22 100 91.49 95.56 1 1.34 100 93.62 96.70 1 -7.87 100 85.11 91.95 

16 1 -9.75 98.51 98.51 98.51 1 -9.75 98.51 98.51 98.51 1 -9.75 98.51 98.51 98.51 1 -9.75 98.51 98.51 98.51 

17 1 -4.46 94.29 100 97.06 1 1.55 96.77 90.91 93.75 1 1.55 96.77 90.91 93.75 1 1.55 96.77 90.91 93.75 

18 1 -6.65 96.67 100 98.31 1 8.28 98.28 98.28 98.28 1 0.97 98.31 100 99.15 1 8.28 98.28 98.28 98.28 

19 1 39.38 64.62 100 78.50 1 63.65 64.47 97.62 77.65 1 53.32 64.62 100 78.50 1 -100 0.00 0.00 0.00 

20 1 -12.30 99.55 96.92 98.21 1 -3.97 100 96.92 98.43 1 4.29 100 96.48 98.21 1 -3.97 100 96.92 98.43 

21 1 -9.94 98.91 98.91 98.91 1 -0.93 98.91 98.91 98.91 1 -9.94 98.91 98.91 98.91 1 -0.93 98.91 98.91 98.91 

22 1 -8.46 98.49 100 99.24 1 7.09 100 98.98 99.49 1 7.09 100 98.98 99.49 1 -8.46 98.49 100.00 99.24 

23 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 

Overall 14.49 89.57 93.95 91.48  9.35 94.91 97.28 95.81  8.48 95.11 97.69 96.10  11.83 91.86 92.24 91.96 
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A detailed comparison of the results from each run of the proposed method on extracting 

stage2 is presented in Table 5.3 and Table 5.4. It was observed that the proposed algorithms 

achieve relatively high F-scores, except for house#19. The resulted EVCL when ps = 5 and fs = 

15, was unable to detect the actual EVCLs. This suggests that considering observations of ALP 

that are closer to an ECS to estimate the amplitude may extract FPs or not extract any EVCLs. It 

should be noted that extracting the EVCL for house#19 (Figure 5.5) is a challenging task due to 

the high degree of overlapping of other appliances that have similar EV load patterns. The best 

extracted stage2 EVCL for house#19 was extracted using the proposed algorithm with Method 3. 

The overall results of the proposed algorithm, regardless of the used estimation method, 

outperformed [39] on all evaluation measures. The overall results of the proposed algorithm on 

extracting stage2 were satisfactory, and the best approach was using Method 3 with ps = 10 and 

fs = 20, as it had the best overall performance and presented the best result on house#19. The 

results of the approaches discussed were compared with the state-of-the-art [39] (Table 5.5). 

Their algorithm extracted the second ECS of house#19 as two separate ECSs. Although their 

algorithm performed better on house#19 (Figure 5.5), it has failed to extract the EVCLs for 

houses#2 and #17, and overestimated house#3. A drawback of [39] is introducing definitions: 

effective width (the width of an EVCL segment at the bottom) and effective height (the height at 

which the EVCL segment’s width is 80% of the bottom width). Those definitions restrict the 

detection of EVCLs to certain charging patterns. In house#17, their algorithm failed because it 

can only extract EVCLs that have durations longer than 30-minutes and shorter than 200-

minutes. In order to extract EVCLs that have less than a period of 30-minutes, FPs extractions 

may appear. On the other hand, the algorithm proposed in this work can extract EVCLs that have 

durations as low as 20-minutes. From this, there is a trade-off between detecting shorter EVCLs 

and extracting FPs that occur from other appliances. As noted previously in this verification 

study, the intention was to only extract the stage2 EVCLs for fair comparison with the state-of-

the-art method. For this purpose, the correction phase, and extracting stage1 and stage3, has not 

been undertaken. In the following verification study the overestimation of house#19 will be 

addressed. 
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Table 5.5  Performance of the Algorithm in [39] on Dataset#1 

Car Category Error % Precision Recall F-score 

1 1 25.71 89.29 100 94.34 

2 0 -100 0.00 0.00 0.00 

3 1+ 49.84 0.00 0.00 0.00 

4 0 0.00 - - - 

5 0 0.00 - - - 

6 1 0.46 98.25 100 99.12 

7 1 1.58 99.01 100 99.50 

8 1 13.41 95.45 100 97.67 

9 1 4.64 99.08 100 99.54 

10 1 -0.55 98.65 100 99.32 

11 1 -0.55 98.85 100 99.42 

12 1 3.90 99.08 100 99.54 

13 0 0.00 - - - 

14 1 14.58 86.54 100 92.78 

15 1 0.80 97.92 100 98.95 

16 1 1.72 97.10 100 98.53 

17 0 -100 0.00 0.00 0.00 

18 1 2.14 96.67 100 98.31 

19 1 -8.97 99.47 89.05 93.97 

20 1 6.46 98.66 97.36 98.00 

21 1 -0.32 98.92 100 99.46 

22 1 18.36 97.00 98.98 97.98 

23 0 0.00 - - - 

Overall 18.63 81.57 83.44 82.44 

 
 
 
 

 

Figure 5.5:  The actual EVCL vs. the results from [39] and the proposed algorithm on extracting stage2. 
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5.5.2 Verification on Dataset#1 and #2 on Extracting All Stages 

In the previous verification, the proposed algorithm was applied on Dataset#1 that contains EVs 

from Category#1 to extract stage2 EVCL patterns. To further verify the proposed algorithm, a 

dataset from the Pecan Street Inc. [94] that contains eleven daily aggregated power signals and 

the ground truth of EVs from Category#2, #3 and #4 is considered (Dataset#2). In this 

verification study, the proposed algorithm is applied to extract the EVCLs including stage1 and 

stage3, and enter the correction phase. The proposed algorithm using Method 3 with ps = 10 and 

fs = 20, which had the best overall performance in extracting stage2 is used. The evaluation 

measures are presented in Table 5.5, and the EVCL for house#19 is presented in Figure 5.6. It 

can be observed that during the extraction of stage3 the correction phase was able to correct the 

overestimated duration of the second ECS (Figure 5.6). This suggests that the correction phase 

can capture the duration of the EVCL when overlapping with appliances that have similar EV 

load patterns. The EVCL for house#30 is presented in Figure 5.7. It can be observed that the 

ALP exceeds 10 kW at some periods, which may cause to estimate the amplitude of the EV to a 

template in Category#4 (10 kW), but this is unlikely to happen. This is due to that the estimation 

method involves the baseload in estimating the amplitude of the EVCL. Also, it can be observed 

from Figure 5.7 that the second charging session was not extracted. This is because the proposed 

algorithm neglects charging periods less than 20-minutes to reduce the FPs that may occur. The 

results of applying the algorithm presented in [39] on Dataset#2 are also presented in Table 5.6. 

Differently from the previous application, the evaluation measures are computed with including 

all three stages (stage1, stage2 and stage3). It can be observed that their method presented less 

accurate results on EVCLs with higher amplitudes. This is due to the fact that, as previously 

mentioned, it restricts the detection of EVCLs to certain charging patterns. Also, it is observed 

that the F-score decreased, this is because the algorithm in [39] doesn’t involve the extraction of 

stage1 and stage3 of the EVCLs. The results of applying the proposed algorithm to extract 

EVCLs that have higher charging amplitudes (e.g., Tesla EVs) suggest that the algorithm is 

capable of extracting various types of EVCL amplitudes. 
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Table 5.6 Performance of the Algorithm on Dataset#1 and Dataset#2 for All Stages 
 EEVCLP [39]'s algorithm 
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Dataset#1 

1 1 12.34 90.09 1 12.35 87.52 

2 0 0.17 90.74 0 -100 0.00 

3 1 3.07 89.14 1+ 37.05 0.00 

4 0 0.00 - 0 0.00 - 

5 0 0.00 - 0 0.00 - 

6 1 -10.33 98.25 1 -2.45 98.52 

7 1 -5.25 97.03 1 -3.35 97.59 

8 1 -2.96 95.56 1 0.00 91.41 

9 1 -6.03 92.82 1 -0.68 96.03 

10 1 -3.45 98.21 1 -5.01 97.28 

11 1 -2.40 98.29 1 -5.83 96.83 

12 1 -10.01 99.54 1 2.61 98.22 

13 0 0.00 - 0 0.00 - 

14 1 4.39 92.16 1 0.93 90.04 

15 1 -2.47 93.75 1 -13.44 92.86 

16 1 -12.64 97.84 1 -10.37 94.29 

17 0 -3.49 88.57 0 -100 0.00 

18 1 -2.23 95.08 1 -12.66 92.62 

19 1 -0.03 98.37 1 -10.19 93.34 

20 1 3.70 96.92 1 1.35 92.95 

21 1 -19.79 93.92 1 -9.95 94.89 

22 1 5.28 97.24 1 7.47 88.37 

23 0 0.00 - 0 0.00 - 

Dataset#2 

24 2 -11.97 96.92 2 -14.78 86.53 

25 2 -8.21 93.08 3 -36.18 75.18 

26 3 -10.54 99.31 0 -100 0.00 

27 3 1.07 91.94 3 -4.10 98 

28 3 16.40 79.92 0 -100 0.00 

29 2 10.87 74.24 3 -52.40 49.62 

30 2 -20.67 89.91 2 -47.35 63.02 

31 2 -6.95 97.37 2 -45.38 67.79 

32 2 -3.39 99.58 2 -1.89 99.05 

33 2 0.08 96.87 2 9.03 92.15 

34 4 -6.37 97.10 3 -19.59 80.17 

Overall  6.88 93.99  23.48 77.34 
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Figure 5.6:  The actual EVCL vs. the extracted EVCL from the proposed algorithm with estimation Method 3 for 
house#19 after undergoing correction phase. 

 

 

Figure 5.7:  The actual EVCL vs. the extracted EVCL from the proposed algorithm with all stages. 

 

5.5.3 Verification on Extracting Hourly EVCLs 

To further test the effectiveness of the proposed algorithm, the household data of Dataset#1 and 

Dataset#2 are considered. It is assumed that those 34-houses are located in the same 

neighborhood. Then differently from the previous applications, the data is ingested in segments 

of 1-hour, in order to monitor the charging behavior of a certain neighborhood during the past 

hour. The results of this application are shown in Figure 5.8. From the cumulative plot (Figure 

5.8(b)) it can be observed that this neighborhood plug-in their EVs from around 18:00 to 06:00. 

An accurate estimation of the aggregated charging demand is critical for utilities to evaluate the 

power delivery. Also, analyzing and studying such behaviors can assist the smart grid operators 
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in planning and dynamic demand response strategies. In this application (Figure 5.8(a)) some 

EVCLs may have been missed due to the rule of neglecting charging sessions less than 20-

minutes, For example, if the on-hand hour is 18:00 to 18:59, and a 30-minute charging session 

started at 18:45 (relies between two following hours) then it will be neglected as it was extracted 

as a less than 20-minute charging session. It should be noted that the state-of-the-art algorithms 

neglect charging sessions <30-minutes; accordingly, those algorithms tend to miss many EVCLs, 

and are infeasible in capturing the charging behaviors of the EVs during the past hour or shorter 

time periods. 

 

 
(a) 

 

       
(b) 

Figure 5.8. (a) The extracted EVCLs from Dataset#1 and Dataset#2. (b) The cumulative EVCLs for the 
neighborhood. 
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5.5.4 Lower Sampling Rates 

In the previous applications, the proposed algorithm was tested on datasets with 1-minute 

sampling rates ( =1). In this application, the effect of sampling the data at lower rates is tested. 

For this purpose, Dataset#1 and Dataset#2 are sampled at rates from  =2 to  =5. Then the 

EEVCLP algorithm is applied. The results are presented in Table 5.7. From the results, it was 

observed that at lower sampling rates, the accuracy measures of the extracted EVCLs decrease. 

 

 
Table 5.7  Performance of the Proposed Algorithm with Lower Sampling Rates 

 N = 10,  = 2 N = 10,  = 3 N = 10,  = 4 N = 10,  = 5 
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1 51.42 74.63 1.81 96.97 -0.87 95.65 18.92 90.91 

2 8.11 95.83 14.86 96.97 -36.97 73.68 -100 0.00 

3 7.79 87.60 -9.59 82.50 -16.11 75.00 5.45 92.31 

4 0.00 - 0.00 - 0.00 - 0.00 - 

5 0.00 - 0.00 - 0.00 - 0.00 - 

6 -4.52 98.18 -6.51 97.14 -48.56 72.73 -100 0.00 

7 -11.65 98.99 -3.57 98.51 -9.86 96.00 -9.87 95.00 

8 3.16 92.68 6.40 96.55 -0.73 95.24 -100 0.00 

9 -16.53 96.15 -17.92 87.50 4.26 98.11 -44.23 76.47 

10 -5.46 96.74 -14.31 92.75 -14.86 95.33 -23.45 87.18 

11 -2.43 99.22 -5.56 97.62 -13.48 88.89 -23.76 91.67 

12 7.01 99.53 -9.24 95.65 -2.83 99.07 -26.74 89.74 

13 0.00 - 0.00 - 0.00 - 0.00 - 

14 3.33 97.67 1.03 96.55 6.63 91.67 0.21 94.74 

15 -14.21 88.37 -18.89 85.71 -9.55 100.00 0.07 94.74 

16 -0.85 100.00 62.23 75.86 -47.50 69.23 -2.95 96.30 

17 277.64 41.56 211.37 44.90 -100 0.00 -100 0.00 

18 37.05 79.45 -13.20 88.89 -3.44 96.55 8.11 95.65 

19 34.67 76.34 30.63 74.71 -100 0.00 20.08 69.39 

20 -5.25 97.76 -3.58 98.65 4.20 98.18 5.66 98.88 

21 39.00 76.92 40.60 80.00 -0.89 95.65 -14.68 97.30 

22 -65.77 48.06 -66.46 50.57 -66.91 46.88 -63.96 50.00 

23 0.00 - 0.00 - 0.00 - 0.00 - 

24 0.77 100 -8.39 75.00 -100 0.00 -44.26 94.74 

25 -0.12 100 -42.72 93.15 -47.61 90.20 -52.24 97.67 

26 -10.45 99.44 -0.43 99.58 -46.97 73.68 -58.45 92.83 

27 -7.76 94.62 2.72 100 2.72 100 -100 0.00 

28 18.34 91.51 18.48 91.55 -0.19 100 -0.17 100 

29 8.38 89.95 11.10 88.19 12.23 47.14 3.77 42.59 

30 -23.79 91.30 -59.43 83.15 -30.73 86.57 -70.95 65.22 

31 -15.69 92.96 -32.80 81.82 -100 0.00 -100 0.00 

32 -0.05 96.49 -1.03 96.00 -3.87 94.55 -62.70 76.92 

33 -8.09 97.87 -2.49 98.90 -6.79 98.59 -68.94 63.64 

34 -24.48 98.59 -23.38 97.87 -22.25 97.14 -26.59 100 

Overall 23.79 89.94 24.69 88.10 28.70 75.85 41.87 68.46 
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5.5.5 Extracting EVCLs of Different Categories 

In this application, it is desired to extract EVCLs for households that have more than one EV. In 

cases where the EVs have the same charging amplitudes, the proposed algorithm can extract the 

EVCL at one run. However, in cases where the EVs have different charging amplitudes, the 

algorithm is run twice. In the first run, the algorithm will extract the EV that has higher charging 

amplitude. The extracted EVCL is subtracted from the ALP. Then, in the second run, the 

algorithm extracts the EV having the lower amplitude. In order to verify this, the actual EVCL of 

house#1 (has an EV of Category#1) is added to the ALP of a house that has an EV of 

Category#3. The actual EVCL of house#1 was added during the operation of other appliances 

(Fig 5.9 (a)) to further test the extraction during overlapping with other appliances. The EVCL 

from the first run and second run are shown in Figure 5.9 (b) and (c), respectively. 

 

 
(a) 

 

 
(b) 
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(c) 

 

Figure 5.9: Extracting EVCLs of different categories. (a) The actual EVCL of house#1 added to an actual ALP. (b) 
The resulted EVCL of the first run of the algorithm. (c) The resulted EVCL of the second run of the algorithm. 

 

5.6 Conclusions 

This chapter introduced an algorithm related to extracting EV charging loads (EVCL). The 

proposed algorithm (EEVCLP) is unsupervised and is able to run on low-frequency smart meter 

data. In addition, the proposed algorithm only requires the real power smart meter measurement, 

which is the type of data recorded and communicated by most smart meters. The proposed 

algorithm utilizes a signal processing method, ICA, to extract the EVCLs from the aggregated 

load pattern of households. The amplitude and sign of the extracted EVCLs obtained by applying 

the ICA method have been addressed by introducing amplitude estimation methods. In addition, 

the proposed algorithm can effectively mitigate the interference of other appliances that have 

similar load behaviors as EVs. 

In order to verify the effectiveness of the proposed approach, the EEVCLP algorithm was 

applied on real household datasets and compared with the state-of-the-art algorithms. Further, the 

proposed algorithm includes extracting the gradual increase, steady and gradual decrease in the 

EV charging patterns. The results of extracting the EVCLs from the daily ALP of households 

were satisfactory. Furthermore, the proposed algorithm was tested by ingesting 1-hour segments 

to monitor the EV charging behaviors of a neighborhood during the past hour. The results were 

satisfactory and suggested that the proposed algorithm is able to run on shorter time frames. 
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Aggregating the EVCLs could provide an accurate estimation of the aggregated charging 

demand that is critical for utilities to evaluate the power delivery, and can assist smart grid 

operators in planning and dynamic demand response strategies. Also, further analyses and 

studies can be carried out from aggregating such charging behaviors of EVs. It should be noted 

that the EEVCLP was applied on top of the smart grid big data eco-system. 
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Chapter 6 

Defining Flexibility of Residential Electrical Vehicle Charging 

Loads 

6.1 Introduction 

In the previous chapter, the EEVCLP algorithm extracted the EV charging loads (EVCLs). 

Those extracted EVCLs can be aggregated for further analysis. In this chapter, a method to 

define flexibility for the collective EV charging demand by analyzing the time-variable patterns 

of the aggregated EV charging behaviors is presented. Those flexibility indices reflect the 

collective trend in EV charging in certain time periods. This information is useful for system 

operators to identify how flexible the aggregated EVCL is at different time periods and plan for 

demand response programs accordingly.  

6.2 Modeling Demand Variations Using Bayesian Maximum Likelihood 

From the previous chapter, each extracted EVCL pattern is represented by f 1[ ,..., ]Tf f , for t = 

1,. . ., T. The matrix of all extracted EVCLs is represented by the matrix kF , for k = 1,. . ., K. The 

EV load variations referring to an increase or decrease from one-time observation to the 

following one is computed for all extracted EVCLs f : 

                                  ( 1)   ,      for   2,...,  kt kt k t tf f f T                                           (6.1) 

The extracted EVCL and its variation can be represented by the following vectors: 

                                                      fk 1[ ,..., ] Tf f                                                                   (6.2) 

                                                   fk 1[ ,..., ]   Tf f                                                        (6.3) 
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6.2.1 Binomial Representation of Variations 

For the particular problem in this chapter, the variations in EVCL may be positive or negative. 

Accordingly, the demand variations can be modeled with the binomial distribution with two 

response variables: 1) increasing in EVCL demand, 2) decreasing in EVCL demand. Each 

observation can be considered as a Bernoulli trial with two outcomes. The outcome of each trial 

at a particular time observation t is: 

                                  kt = {
1ktUPos   ,    0ktf 

1ktUNeg    ,    0ktf 
                                                                  (6.4) 

6.2.2 Bayesian Maximum Likelihood Estimation 

From the binomial model presented in the previous subsection, the probability of an increase       

( t ) is unknown, and a suitable estimation method is needed. The Bayesian maximum likelihood 

estimation method [102] is used. The reason for using such method is due to it providing a 

natural and principled way of combining prior information about EV charging behaviors with 

data, within a solid decision theoretical framework. In addition, it incorporates past information 

about the increase in EVCLs and forms a prior distribution for future increase in EVCLs 

analysis. All inferences logically follow from Bayes’ theorem. Bayes formula is presented by 

[102]: 

                                      
   

 

|
|

 
 

data
data

data

p f p
p f

p f
                                                     (6.5) 

This formula can be expressed informally in English by: 

                                        


likelihood priorposterior
evidence

                                                     (6.6) 

The Bayes formula converts the prior information about the increase in EVCLs into a 

posterior probability  | datap f  by using the likelihood function  |datap f . 
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To compute the probability of an increase ( t ) using the Bayesian maximum likelihood 

estimation method, first, the prior probability is computed. To compute the prior probability of 

EVCL increase, EVCL pattern data is needed. This data can be extracted by the EEVCLP 

algorithm (Chapter 5) for past years for the same location where the posterior probability is 

desired. If prior historical data is unavailable for that location, data for another location can be 

used instead to compute the prior. For example, if historical EVCLs data for Texas is available, 

the prior probability of an increase in EVCLs can be computed, and recent data from Texas can 

be used to compute the likelihood. However, if it is desired to compute the likehood of EVCL 

increase for California were historical data (prior) is unavailable, the computed Texas prior 

probability can be used. Following are the steps to compute the Bayesian likelihood estimation 

for the increase in EVCL. 

Step1 (Prior): Previous aggregated residential load patterns that include EVCLs are obtained. 

The EEVCLP algorithm is applied (Chapter 5) then the variations are modeled with the binomial 

distribution (Section 6.2.1). The number of trials (increase/decrease) is computed: 

                                        
1

 
T

t t
t

n UPos UNeg                                                                   (6.7) 

The probability of success (increase in EVCL) is computed: 

                                       
1

/



T

t
t

m UPos n                                                                   (6.8) 

   Step2 (Likelihood): Recent residential load patterns that include EVCLs are obtained. Then 

similar to Step1, the EEVCLP algorithm is applied, and the variations are modeled with the 

binomial distribution. The number of trials from this data is computed: 

                                       
1

 
T

t t
t

UPos UNeg                                                                   (6.9) 

The number of successes (increase in EVCL) is computed: 
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1


T

t
t

Y UPos                                                                (6.10) 

Step3 (Posterior): In this step (6.5) converts our prior belief about the increase in EVCL 

(before seeing data) into a posterior probability by using the likelihood function (Step2). The 

posterior probability of increase for this binomial process can be computed by: 

                                                 ( ) 1   a Y n m                                                               (6.11) 

                                            ( (1 )) 1     b Y n m                                                   (6.12) 

                                                  


t
amean

a b
                                                              (6.13) 

and, the confidence intervals are computed by: 

                                    2var ( ) / ( ) ( 1)    a b a b a b                                                   (6.14) 

                                                  var  t mean                                                               (6.15) 

                                                  var  t mean                                                               (6.16)        

The probability of an increase in EVCL and its upper and lower limits can be represented by 

the following vectors: 

                                                  2 3[ , ,..., ]  Tt w w w                                                    (6.17) 

                                                  2 3[ , ,..., ]  Tt w w w                                                    (6.18) 

                                                  2 3[ , ,..., ]  Tt w w w                                                    (6.19) 
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6.3 Flexibility Definitions for EVCLs 

In the previous section, the probability of demand increase in EVCL at each time observation 

was modeled using the Bayesian maximum likelihood method. In this section, the probability of 

demand increase in EVCL (
t ) is used to define a flexibility index of EV aggregated demand 

(FIEVAD). Further, the flexibility percentage level (FPL), that expresses the percentage of 

flexible demand associated with the flexibility index (FIEVAD), is defined. 

6.3.1 Flexibility Index of EV Aggregated Demand (FIEVAD) 

Let 

f and f
 be mean values of the load variations for increase and decrease in demand, 

respectively, and can be computed by: 

                   
tf



1
/



 
T

t
t

f Y   ,                   0 tf r fo                                                    (6.20) 

                  
tf

  
1

/ ( )


 
T

t
t

Yf  ,             0 tf r fo                                                    (6.21) 

Now, the minimum between the probability of an increase in demand and the complementary 

probability is computed: 

                                              min( ,1 )


  


 
t

t tt                                                                 (6.22) 

By definition, the value of each entry  t is in the range of [0, 0.5]. In fact the minimum 

complementary value of entries t  and (1 ) t is equal to 0.5 when 0.5 t , and is equal to zero 

when 1 t . In order to obtain the formulation of the FIEVAD in a range of [0, 1] in line with 

the probabilistic limits, the probability values of  t are multiplied by two, which are the number 

of variations (increase and decrease in demand) of the binomial probability distribution: 

 

                    2 t tFIEVAD  ,    with   [0,1]FIEVAD                                                   (6.23) 
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It can be noted from the formation of the FIEVAD value that it gives information about the 

possible probabilistic change to the nearest optimum, 0 or 1, for each binomial category (increase 

or decrease in demand). Also, by definition, the FIEVAD values are symmetric with respect to 

0.5. This corresponds to that any change in t determines opposite changes in  f and f
 . 

The flexibility index (FIEVAD) is not a quantitative margin expressed in watts, but reflects 

EV charging behavioral interpretation in terms of collective trend. Also, the FIEVAD 

incorporates both the possibility of increasing/decreasing in the aggregated EVCL and accepting 

variations. If the FIEVAD value is close to 1, this indicates that the EV charging behavior is very 

random and there is no collective trend in the corresponding observation time. Accordingly, the 

flexibility to change the behavior is high, and there is a high chance to obtain DR benefits. This 

information can assist operators and researchers to improve the reliability and economical 

operation of the grid by managing supply using flexibility indices. FIEVAD values close to zero, 

indicate that there is a collective behavior (trend) in EV charging. Accordingly, the aggregated 

demand is rigid to accept DR changes. 

6.3.2 Flexibility Percentage Level (FPL) 

The flexibility percentage level (FPL) expresses the percentage of flexible demand associated 

with the flexibility index (FIEVAD). This indicator represents what percentage of aggregated 

demand can be reduced or increased without affecting the average change in the collective 

demand. The FPL can be computed by: 

 

                                100
2

 

  
  

 

t t t
t

t

f f FIEVADFPL
f

                                                    (6.24) 

 

where 
tf is the mean value of the extracted EVCLs f at time observation t. The FPL increases 

as customers change their EV charging behavior from an increase in EVCL demand towards a 

decrease in EVCL demand and vice versa. However, increasing the FPL is challenging when 
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customers follow a trend behavior (i.e., t is close to 0 or 1). For example, if t =0.9, which 

means there is a trend in EV charging behavior, it is hard to reverse this trend by reducing t  to 

zero. Also, when t = 0.1, which means there is no trend in EV charging, it is more reasonable to 

reduce t to zero than increasing it to 1. This is one of the reasons to define the FIEVAD as the 

minimum of the two binomial probabilities of increase and decrease in EV charging demand in 

(6.23). 

The FPL takes into account the increase and decrease in collective demand together. Separate 

information for the maximum increase ( VPL ) and decrease ( VPL ) in aggregate demand can be 

obtained by: 

 

                                  (1 ) 100
 

 
  t t

t t
t

f fVPL w
f

                                                         (6.25) 

 

                                   ( ) 100
 

 
 t t

t t
t

f fVPL w
f

                                                            (6.26) 

These indicators represent the maximum demand variation that may be obtained in the case 

were all the increasing EV charging demand changes to decreasing in EV charging demand, and 

vice versa. It should be noted that ( VPL ) and ( VPL ) refer to load variability and not to the 

flexibility in collective EV load demand. The FPL, VPL  and VPL can be expressed in watts by: 

 

                                   ( /100) t t tFPLwatt f FPL                                                             (6.27) 

                                   ( /100)  t t tVPLwatt f VPL                                                          (6.29) 

                                   ( /100)  t t tVPLwatt f VPL                                                           (6.30) 
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6.4 Applications and Discussions 

In this section, the application of the previously mentioned methods to extract EVCLs and define 

flexibility for the extracted aggregated EVCLs is presented. In the following subsection, a 

verification of the EEVCLP algorithm on extracting EVCLs and comparing the aggregated 

EVCLs to the aggregated ground-truth is presented. The resulted data is used in a case study in 

order to quantify the flexibility achievable from the aggregate EV load in different time periods. 

It should be noted that the proposed approach is applied off-line in the following verifications. 

6.4.1 Extracting and Comparing the Aggregated EVCLs 

In this verification of the EEVCLP algorithm, data from the Pecan Street Inc. [39] for each 

month of 2015 and 2016 are considered. Each month is divided into weekdays and weekends. 

The reason for this separation is because EV charging behaviors vary between weekdays and 

weekends. For each month, the EEVCLP algorithm is applied to extract the EVCLs ( F matrix). 

Figure 6.1 shows the daily residential loads for weekdays and weekends of July 2016. The 

extracted EVCLs from the daily residential loads of Figure 6.1, using the EEVCLP algorithm, 

are presented in Figure 6.2. Those extracted EVCLs are aggregated and compared with the actual 

aggregated EVCL demand pattern in Figure 6.3. The error between the actual and extracted 

aggregated EVCL demand for weekdays and weekends for July 2016 was -3.12% and -4.75%, 

respectively. 
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(a)   

 

 
(b) 

 

Figure 6.1.  The daily residential loads for July 2016. (a) weekdays. (b) weekends. 
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(a) 

 

 
(b) 

 

Figure 6.2.  The daily EVCLs for July 2016. (a) weekdays. (b) weekends. 
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(a) 

 

 
(b) 

 

Figure 6.3.  Comparison between the aggregated actual and extracted EVCLs. (a) weekdays. (b) weekends. 

 

6.4.2 Case Study on Defining Flexibility 

In this case study, it is intended to define the flexibility for a certain time frame. For this purpose, 

the time observation duration is 15-minutes. Each time observation is the sum of EVCLs in that 

15-minute period. The general layout of the procedure of this case study is presented in Figure 

6.4. 
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Figure 6.4:  General layout of the procedure. 

 

 

  The demand variations for the extracted EVCLs ( F ) for each month are first modeled using 

the Bayesian maximum likelihood method (Section 6.2.2). In this illustration, we continue with 

presenting the results of July. To compute the probability of an increase in EVCL (t ): 

1- First, the prior probability of an increase in EVCLs is computed using (6.7) and (6.8). This 

corresponds to data of July 2015. However, as mentioned in Section 6.2.2 if prior 

historical data is unavailable for a certain location, data for another location can be used 

instead to compute the prior. 

2- The likelihood of the recent data is computed using (6.9) and (6.10). This corresponds to 

the extracted EVCLs for July 2016 (Figure 6.3).  

3- The posterior probability, which corresponds to t can now be achieved by (6.11)-(6.13). 

Figure 6.5 presents the probability of an increase in EVCL and its upper and lower limits for 

July. It can be observed that there is a high probability of an increase in EV charging around 
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hour 11:00 and hour 17:00 in weekdays. The same effect can be observed between hour 7:00 and 

8:00 in weekends. The EV charging behavior between hour 5:00 and hour 7:00 is similar for 

weekdays and weekends. 

The flexibility index (FIEVAD) is computed using (6.20)-(6.23). Figure 6.6 presents the 

FIEVAD values. It can be noted that lower FIEVAD values appear during the morning and 

evening periods in weekdays, where there is a collective tend, and the aggregated demand 

becomes more unlikely to induce DR changes. The same effect can be observed between hour 

7:00 and 8:00 in weekends. As mentioned previously, FIEVAD closer to one indicates that the 

EV charging behavior is random and there is no collective trend, accordingly, there is more 

chance for inducing DR changes. This effect can be observed more in weekends. 

 
 

 
(a) 

 

 
(b) 

Figure 6.5:  The probability of increase in EVCL and its upper and lower limits. (a) weekdays. (b) weekends. 
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(a) 

 

 
(b) 

Figure 6.6:  The FIEVAD values. (a) weekdays. (b) weekends. 

 

The flexibility percentage (FPL) is presented in Figure 6.7. This represents the percentage of 

the aggregated EV charging demand that can be reduced or increased without affecting the 

average change in the collective EV charging. It can be observed that when trend periods arise, 

the probability to achieve higher FPL values is low.  

The variability VPL  and VPL  are presented in Figure 6.8. As mentioned previously, these 

indicators represent the maximum demand variation that could be obtained when all the increase 

in demand changes to decrease in demand, and vice versa. The yellow bars represent the 

maximum decrease in collective demand if all the increase in demand changes to decrease in the 

collective EV charging demand at that time period. Whereas, the red bars represent the 

maximum increase in demand for a time period if all the decrease in demand changes to increase 
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in the collective EV charging demand. This can be useful for grid operators to make decisions on 

which time periods can be selected to establish EV DR programs. The grid operators may 

involve other inputs for effective decision-making such as, peak loads and electricity price. 

The procedure followed in this application is useful for system operators to identify how 

flexible the aggregated EVCL in different periods of time. This can assist the operators in 

deciding whether or not it can be viable to incentivize EV charging customers to change their 

charging demand patterns, taking into account the flexibility information identified to represent 

the collective behavior of the aggregated EV charging. On the basis of the flexibility indices, the 

expected response to DR programs can be higher in some time periods and lower in other time 

periods; accordingly, it may be useless for the operators to propose incentives to customers in 

time periods where the EV aggregate demand has low flexibility. In particular, in the time 

periods where the values of the FIEVAD and FPL indicators are low, the decisions aiming to 

reshape the aggregate EV charging demand is unlikely to be effective. This is because the 

collective EV charging behavior is following a trend in these time periods, which limits the 

overall demand flexibility. In other time periods where the FIEVAD and FPL values are higher, 

the collective behavior of the consumers is random, and there is no clear trend in the changing 

demand. This suggests that consumers are more available to accept changes, leading to a better 

ability to reshape the aggregated EV charging demand. The operators could use the FPL as an 

indicator to represent the percentage of the aggregated EV charging demand that can be reduced 

or increased without affecting the average change in the collective EV charging. Then, the 

variability VPL  and VPL  can be used to represent the maximum variation limits when all the 

increase in demand changes to decrease in demand, and vice versa. This can assist operators in 

the reshaping of the EV charging demand at the selected time periods, as decreasing the 

aggregated EV charging demand at one time period may imply an increase in another. 

 

 
 
 
 
 
 



92 
 
 

 

 

 

 
 
 

 
(a) 

 
 

 
(b) 

 

Figure 6.7.  The FPL percentage. (a) weekdays. (b) weekends. 
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(a) 

 
 

 
(b) 

 

Figure 6.8.  The 15-min aggregated EV load (blue), VPL in kW (red) and VPL in kW (yellow). (a) weekdays. (b) 
weekends. 
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6.5 Conclusions 

In this chapter, a method to model the probability of an increase in EVCLs, using the Bayesian 

maximum likelihood, and quantify the flexibility of the aggregated EVCL demand is presented. 

The flexibility index of EV aggregated demand (FIEVAD) expresses the EV charging behavior 

in terms of collective trend. A FIEVAD close to one indicates that the EV charging behavior is 

very random and there is no collective trend. Accordingly, the probability of customers to change 

their charging behavior is high at those time periods. In contrast, FIEVAD values close to zero, 

indicates that there is a collective trend in EV charging and the customers are less likely to 

accept demand response changes at those time periods. 

The work presented in this chapter promotes the reliability and economical operation of smart 

grids and can be useful for grid operators to plan for smart charging decisions on which time 

periods can be selected to establish DR programs. Also, the utilized indicators based on 

statistical analysis can assist operators and researchers in understanding time periods where 

trends in EV charging behaviors may arise and act accordingly. 

 

 

 

 

 

 

 



95 
 
 

 

 

 

Chapter 7 

Clustering and Targeting EV Charging Customers for Load 

Shaping 

7.1 Introduction 

In the previous chapter, a method to quantify the amount of flexibility achievable from the 

collective EV charging load was presented. In this chapter, it is desired to choose which 

customers to target for reshaping the EV charging load in a way that promotes the reliability of 

the smart grid based on those flexibility indices. Figure 7.1 describes the relationship between 

chapters 5, 6 and this Chapter 7. A case study on the same data used in Chapters 5 and 6 is 

presented in this chapter. 

 

 

Figure 7.1.  Relationship between chapters 5, 6 and 7. 
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daily customer load patterns 

Quantify the amount of flexibility achievable from 

the aggregated EV charging loads 

Choose groups of EV charging customers to reshape 

the EV charging load and observing the effects 

Chapter 5 

Chapter 6 

Chapter 7 



96 
 
 

 

 

 

7.2 Clustering Customers into Groups 

At each time period, the customers can be grouped into two distinct clusters. The first cluster 

includes customers that have a low collective or no charging profile during that time period. The 

second cluster includes customers that are charging their EVs and have a high collective 

charging profile during the same time period. For example, in hours between 6:00 am and 9:00 

am the customers can be grouped into two clusters based on their EV charging behavior. The 

first group consists of customers who are not charging their EVs, and the other group consists of 

customers who are charging their EVs at this time period. To achieve this grouping of customers, 

data mining methods are needed. In this approach, the K-means clustering algorithm is used to 

group customers into two distinct clusters. Appendix E describes the K-means clustering 

algorithm in details. The cluster representatives of each cluster could show which group of 

customers are charging during that time period. RapidMiner Radoop [92] was used to apply the 

K-means clustering algorithm on the distributed data on top of the eco-system of Chapter 4. 

7.3 Methodology to Target Customers and Reshape the EVCL 

In this section, customers that are not charging or have low EV charging profiles will be referred 

to as Cluster#1. Customers in this cluster are used in cases were the EV charging demand is 

lower than the average daily load or what the operators desire at that time period. The average 

daily load (ADL) can be computed from historical data, such as the same day of the passed week 

or year. This group of customers are targeted to assist in increasing the loads. On the other hand, 

customers that are charging their EVs or have high charging profiles will be referred to as 

Cluster#2. This group of customers are targeted to assist in reducing the load during peak or high 

load periods. As reducing the EVCLs at some time periods will increase the charging load at 

other time periods, customers of Cluster#1 and Cluster#2 are targeted depending on the 

flexibility indices presented in Chapter 6. 

7.3.1 Retrieving and Clustering the EV Charging Customers 

To achieve the Cluster#1 and Cluster#2 groupings, the K-means clustering algorithm is run on 

top of the smart grid big data Lambda architecture eco-system of Chapter 4. The eco-system 
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retrieves the customers EVCLs from the distributed HDFS repositories. The data is then 

preprocessed; this includes selecting the time period to be clustered and removing customer 

profiles with missing data. Once the desired data is preprocessed, the K-means clustering 

algorithm is applied, and the grouping of EV charging customers is achieved. 

7.3.2 Using Flexibility Indices to Reshape EV Load 

Once the groupings of customers are obtained, at each time period the flexibility index of EV 

aggregated demand (FIEVAD) and flexibility percentage level (FPL) are computed as shown in 

Chapter 6. The FIEVAD expresses the amount of flexibility at a time period. FIEVAD values 

closer to one indicate that the collective behavior in EV charging is random. At those time 

periods it is more likely that customers will accept changes. On the other hand, FIEVAD values 

closer to zero indicate there is a collective trend in EV charging or a collective trend in no 

charging of EVs. The aggregated EVCL and probability of increase are used to distinguish 

between a trend in charging and no charging of EVs cases. At time periods when it is desired to 

reduce the aggregated EVCLs, the FIEVAD value is an indicator to the possibility of achieving 

that. The FPL express the percentage of EVCL that could be increased or decreased without 

affecting the average collective EV charging demand. The aggregated EVCL and probability of 

increase indicate to whether the aggregated load should be increased or decreased. 

In cases were the aggregated EVCL is above the average daily load or above what the 

operators desire, the aggregated EVCL should be reduced by the FPL percentage at that time 

period and vice-versa. However, the suggested FPL may only be achieved if the customers of the 

targeted cluster accept to change their behavior. In this case study, it is assumed that each 

customer has a 50% probability of accepting changes in their EV charging behavior at a specific 

time period. For that, the suggested FPL at a certain time period may not be reached. The 

procedure followed to change the EV charging behaviors to reshape the aggregated EVCL 

(AggEVL) is shown in Figure 7.2. In this chapter the time period to perform clustering is 3-

hours. 

 

 



98 
 
 

 

 

 

 

 

 

 

Figure 7.2.  The procedure followed to change the EV charging behaviors to reshape the aggregated EVCL 
(AggEVL) using the average daily load (ADL), ρ the upper FIEVAD and β lower FIEVAD. 

 

 

7.4 Case Study on Choosing Customers to Reshape EVCL 

In this case, it is desired to follow the procedure of Figure 7.2 to choose customers that can 

potentially smooth the aggregated EVCL closer to the daily average pattern or how operators 

desire. Then the effects of the changes of customers’ behaviors are observed to test the feasibility 

of the approach in reshaping the EV load. 
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The first step is to compute the FIEVAD and FPL. From the previous chapter (Chapter 6) the 

FIEVAD and FPL are used in this case study. Figure 7.3 presents the FIEVAD. The flexibility 

indices were computed for time periods of 15-minutes. 

 

 

 
 

Figure 7.3:  The FIEVAD values. 

 

 

In the next step, the customers are grouped into two clusters every 3-hours. This is because 

customers often change their EV charging behaviors. For example, in the time period of 6:00 am 

to 9:00 am, a customer may be classified in Cluster#1 and then in the following time period (9:00 

am to 12:00 pm) the customer may be classified as in Cluster#2. Figure 7.4 and Figure 7.5 show 

the groupings of customers and centroids of the time period from 21:00 to 00:00, respectively. It 

can be observed from Figure 7.4 (a) that this group are not charging their EVs or have relatively 

low charging profiles during this 3-hour time period. By contrast, it can be observed in Figure 

7.4 (b) that this group have high charging profiles at the same 3-hour period. Figure 7.5 presents 

the centroids of each cluster. It can be clearly observed that Cluster#1 have a low profile pattern 

and Cluster#2 have a high profile pattern at this 3-hour time period. In this case study, if the 

FIEVAD is ρ ≥ 0.80, this is considered a high value of flexibility, and at this time period the EV 

charging behavior is random and the customers are more likely to accept change, whereas, if the 

FIEVAD is β ≤ 0.30, this indicated there is a strong trend in the EV charging behavior and 
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customers are rigid to accept changes at this time period. The results of targeting customers in 

Cluster#2 is shown is Figure 7.6. The blue bars of Figure 7.6 express how the aggregated EVCL 

is after some customers accepting to change their behaviour and not to charge their EVs during 

this time period. The probability of a customer accepting change was set to 50%. The results of 

the application through the entire day are shown in Figure 7.7. It can observed that between the 

hours of 19:00 and 05:00 the aggregated EVCL was high (red) and by grouping and targeting 

customers that may have potential in changing their charging behavior the aggregated EVCL was 

relatively reduced during some time periods. Also, it can be seen around the hours of 09:00, 

11:00 and 16:00 there was an increase in the aggregated EVCL. This is because reducing the 

aggregated EVCL at some periods will cause an increase in other time periods. By following the 

methodology in this case study, the customers during the hours of 09:00, 11:00 and 16:00 were 

encouraged to charge their EVs and have accepted to change their charging behaviors. The effect 

of increasing the probability of customers accepting to change their EV charging behaviours at 

70% and 100%, at each time period independently, are presented in Figure 7.8 and 7.9, 

respectively. The high FIEVAD was set to ρ ≥ 0.80 and the low FIEVAD was set to β ≤ 0.30. It 

should be noted that, the probability of customers accepting to change their charging behaviours 

can be increased by demand-side-management strategies such as, TOU and DR programs. 
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(a) 

 
(b) 

Figure 7.4:  The groupings EVCLs. (a) Cluster#1. (b) Cluster#2. The thickness of the lines indicates to multiple 

EVs. 

 
Figure 7.5:  The resulted centroids. 
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Figure 7.6:  The aggregated EVCL before (red) and after customer accepting changes (blue). 

 

 

 

 
Figure 7.7:  The aggregated EVCL before (red) and after customer accepting changes (blue) for an entire day with 

the accepting probability of 50% at each time period. 
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Figure 7.8:  The aggregated EVCL before (red) and after customer accepting changes (blue) for an entire day with 

the accepting probability of 70% at each time period. 

 

 

 
Figure 7.9:  The aggregated EVCL before (red) and after customer accepting changes (blue) for an entire day with 

the accepting probability of 100% at each time period. 
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7.5 Conclusion 

In this chapter, a method to group customers into distinct groupings based on their EV charging 

behaviors is presented. The customers in those groups are then targeted to assist in reshaping the 

aggregated EVCL in a way that promotes the reliability of the smart grid. Furthermore, a case 

study was carried out to test the feasibility of this methodology in reshaping the aggregated 

EVCL. The FIEVAD and FPL were utilized to express the possibility of customers to accept 

changes in the EV charging behavior at different time periods. The results of the case study 

suggest that the methodology could potentially encourage customers to change their EV charging 

behavior and obtain desired changes to the collective aggregated EVCL. This essentially 

promotes the reliability and operation of the smart grid. To further encourage the customers to 

accept changes, incentivizing studies can be performed. Also, studies to reshape the aggregated 

load in ways that consumes renewable power can be included to reshape the EV load. 
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Chapter 8 

Summary and Future Work 

8.1     Summary 

This thesis presented a framework to deal with the smart grid big data covering the lifecycle of 

smart grid from data generation to data analytics. The framework also includes a learn-and-

response loop that enables to monitor the effects of the decisions made on the grid. The primary 

objective was to build a comprehensive framework capable of handling smart grid big data and 

applying innovative studies related to EVs.  To achieve these objectives, state-of-the-art big data 

components were utilized; also, various analytical methods were proposed to extract EV 

charging loads, quantify the flexibility of the aggregated EV charging load demand and, choose 

EV charging customers to target in reshaping the EV collective load. The proposed methods and 

studies were run on top of the smart grid big data Lambda architecture eco-system. 

Chapter 3 presented a big data framework for smart grids. The framework’s stages including, 

data acquisition, data storing and processing, data querying, and data analytics components were 

discussed in details. Furthermore, the functionality of the Apache Hadoop platform and the 

features that make it suitable for the smart grid big data management and analysis were 

discussed. The framework was implemented on a cloud-based platform. Furthermore, visual 

analytical applications on real data were performed. 

Chapter 4 extends the framework of Chapter 3 by presenting a smart grid big data eco-system 

based on the Lambda architecture. This eco-system is able to handle massive quantities of smart 

grid data by taking advantage of batch and real-time processing methods. The Lambda 

architecture design and principals for building batch and real-time processing systems were 

discussed. The eco-system collects then stores the smart grid big data into a cloud. This allows 

collecting various types of smart grid data including smart meter data, and image and video data 

to enable data mining in digital image and video processing applications. 

Data mining and visualization applications on real smart grid data were performed. The data 

mining application was to partition the daily smart meter readings into groups based on the load 
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consumption. In the visualization application, the presented eco-system was able to overcome the 

delay in real-time visualization of the previous smart grid big data frameworks by utilizing the 

Lambda architecture. 

In Chapter 5, an algorithm to extract EV charging loads (EVCL) non-intrusively was 

proposed. The proposed algorithm (EEVCLP) is unsupervised and is able to run on low-

frequency real power data. The proposed algorithm utilizes a signal processing method, ICA, to 

extract the EVCLs from the aggregated load pattern of households. In addition, the proposed 

algorithm can effectively mitigate the interference of other appliances that have similar load 

behaviors as EVs. 

To verify the effectiveness of the EEVCLP algorithm, the algorithm was applied on real 

household datasets on top of the smart grid big data Lambda architecture eco-system. The results 

of extracting the EVCLs from the daily ALP of households were satisfactory. Furthermore, the 

proposed algorithm was tested by ingesting 1-hour segments to monitor the EV charging 

behaviors of a neighborhood during the past hour. The results were satisfactory and suggested 

that the proposed algorithm is able to run on shorter time frames. Aggregating the extracted 

EVCLs can potentially provide an accurate estimation of the charging demand that is critical for 

utilities to evaluate the power delivery, and can assist smart grid operators in planning and 

demand response strategies. Also, further analyses and studies can be carried out from 

aggregating such charging behaviors of EVs.  

Chapter 6 presents a method to model the probability of an increase in EVCLs and quantify 

the flexibility of the aggregated EVCL demand. The proposed flexibility index of EV aggregated 

demand (FIEVAD) expresses the EV charging behavior in terms of collective trend. FIEVAD 

values close to one indicate there is no collective trend in EV charging. In contrast, FIEVAD 

values close to zero, indicate that there is a collective trend in EV charging and the customers are 

less likely to accept changes at those time periods. This can be useful for grid operators to plan 

for informed charging decisions on which time periods can be targeted to establish demand 

response programs. 

In Chapter 7, a methodology to group customers into distinct clusters based on their EV 

charging behaviors is presented. The customers in those groups are then targeted to assist in 
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reshaping the aggregated EVCL in a way that promotes the reliability of the smart grid. 

Furthermore, a case study was performed to test the feasibility of this methodology in reshaping 

the aggregated EVCL. The results of the case study suggest that the methodology could 

potentially encourage customers to change their EV charging behavior and obtain desired 

changes to the collective aggregated EVCL. This essentially promotes the reliability and 

operation of the smart grid. The probability of customers accepting to change their behaviour 

could be increased by demand-side-management strategies including, TOU and incentivizing 

programs.  

 

8.2     Future Work 

The following research directions can be followed as an extension out of this thesis: 

- Extending the smart grid big data Lambda architecture with components that enable real-

time image and video processing applications. 

- Proposing data mining algorithms that can be applied on distributed data.  

- Proposing supervised algorithms to predict outages. 

- The trend of further developing the smart grid big data Lambda architecture eco-system for 

non-data scientists. 

- Enhancing the method of choosing EV charging customers by increasing the probability of 

accepting changes. 

- Consumer-oriented applications to provide feedback to end-users on reducing electricity 

consumption and saving money through smartphone push notifications. 

- Modeling and extracting other major appliances from the aggregated load. 
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Appendix A 

Flume Agent Configuration 

# Active Flume Components 

FlumeDatLakeAgent1.sources = FDLsource 

FlumeDatLakeAgent1.channels = FDLmemoryChannel 

FlumeDatLakeAgent1.sinks = FDLHDFSsink 

# Setting the source to spool directory where the file exists 

FlumeDatLakeAgent1.sources. FDLsource.type = spooldir 

FlumeDatLakeAgent1.sources. FDLsource.spoolDir = /usr/local/flume/smartmeters 

FlumeDatLakeAgent1.sources. FDLsource.bind=10.142.0.8 

FlumeDatLakeAgent1.sources. FDLsource.port=10010 

 

# Setting the channel to memory 

FlumeDatLakeAgent1.channels. FDLmemoryChannel.type = memory 

# Max number of events stored in the memory channel 

FlumeDatLakeAgent1.channels. FDLmemoryChannel.capacity = 1000000 

FlumeDatLakeAgent1.channels. FDLmemoryChannel.batchSize = 1000000 

FlumeDatLakeAgent1.channels. FDLmemoryChannel.transactioncapacity = 1000000 

 

# Use a channel which buffers events in file 

FlumeDatLakeAgent1.channels. FDLmemoryChannel.type = file 

 

FlumeDatLakeAgent1. FDLmemoryChannel.checkpointDir = /usr/local/TempDLBuffer 

FlumeDatLakeAgent1.channels. FDLmemoryChannel.dataDirs = /usr/local/TempDLBuffer2/Data2 

 

# Setting the sink to HDFS 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.type = hdfs 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.path = hdfs://10.142.0.2/user/flume/smartmeters 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.fileType = DataStream 

 

# Write format can be text or writable 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.writeFormat = Text 

# use a single csv file at a time 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.maxOpenFiles = 10 

 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollCount=10000 
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FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollInterval=0 

#Each file how many bytes 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollSize = 0 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.batchSize =1000 

 

# rollover file based on max time of 1 min 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollInterval = 0 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.idleTimeout = 60 

 

# Connect source and sink with channel 

FlumeDatLakeAgent1.sources. FDLsource.channels = FDLmemoryChannel 

FlumeDatLakeAgent1.sinks. FDLHDFSsink.channel = FDLmemoryChannel 
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Appendix B 

Commands to Configure Spark for Matlab and Read/Store into 

HDFS 

% defining the Spark cluster and properties. 
cluster = parallel.cluster.Hadoop(... 

'HadoopInstallFolder','/opt/cloudera/parcels/CDH/lib/hadoop', ... 

'SparkInstallFolder','/opt/cloudera/parcels/CDH/lib/spark/lib/spark-2.2.0-bin-hadoop2.6'); 

cluster.SparkProperties('spark.driver.memory') = '4096m'; 

cluster.SparkProperties('spark.executor.memory') = '4096m'; 

cluster.SparkProperties('spark.yarn.executor.memoryOverhead')='2048'; 

mapreducer(cluster); 

 

% setting up environment variables 
setenv('HADOOP_HOME','/opt/cloudera/parcels/CDH/lib/hadoop') 

setenv('HADOOP_PREFIX','/opt/cloudera/parcels/CDH/lib/hadoop') 

setenv('MATLAB_HADOOP_INSTALL','/opt/cloudera/parcels/CDH/lib/hadoop') 

 

% pointing to the HDFS location and defining data as tall table. 
ds = datastore('hdfs://master/user/LoadsTab'); %HDFS location 

tt = tall(ds); 

 

% storing into HDFS. 
formatOut = 'dd-mm-yy_HHMM'; %Timestamp 

command = ['hadoop fs -copyFromLocal ./loadsJan.csv /user/LoadsTab/Jan' datestr(now,formatOut)]; %Copy to HDFS 

status = system(command); 
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Appendix C 

Preprocessing of ICA 

Before applying the ICA algorithm on data, it is useful to do some preprocessing, to make the 

problem of ICA estimation simpler and better conditioned. The used preprocessing techniques 

are: 

Centering: 

A common and necessary preprocessing step is to center x. This is achieved by subtracting its 

mean vector { }m E x : 

       cx x m             (C.1) 

This implies that s is a zero-mean vector as well, by taking expectations on both sides of (5.1): 

      ( ) cs W x m             (C.2) 

From this, all observation vectors are assumed to be centered, whereas, the mixing matrix 

remains unaffected after this centering step. 

Whitening: 

Another useful step in the preprocessing is to whiten the observed vector (x). Whitening 

involves linearly transforming the observation vector x, such that a new whitened vector xw that 

has components that are uncorrelated and have their variances equal unity is obtained: 

 { }T
w wE x x I                  (C.3) 

A simple method to perform the whitening transformation is to use the eigenvalue 

decomposition (EVD) of the covariance matrix: 

 { }T TE xx EDE                  (C.4) 

where E is the orthogonal matrix of eigenvectors of { }TE xx and D is the diagonal matrix of its 

eigenvalues 1diag( ,..., )nD d d . The observation vector can be whitened by the following 

transformation: 

 0.5 T
wx ED E x                  (C.5) 

where the matrix 0.5D  is computed by a simple component-wise operation: 
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 0.5 0.5 0.5
1diag( ,..., )   nD d d                  (C.6) 

Whitening transforms the mixing matrix into Aw. From (5.1) and (B.5): 

 0.5 T
w wx ED E As A s                  (C.7) 

hence, 

 { } { }T T T
w w w wE x x A E ss A                  (C.8) 

                                                                    T
w wA A    

                                                                    I   

The main purpose of whitening is to reduce the number of parameters to be estimated. Instead 

of having to estimate the n2 elements of the original matrix A, we only need to estimate the new 

orthogonal mixing matrix, where an orthogonal matrix has n(n−1)/2 degrees of freedom. 
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Appendix D 

Modified F-Score 

The advantage of using the modified F-score metric is that it involves all possible extraction 

outcomes for x, the algorithm extracted value, and x0, the ground truth value: 

- The true negative (TN) is when x=0 and x0 = 0. 

- The false negative (FN) is when x=0 and x0 > 0. 

- The false positive (FP) is when x>0 and x0 = 0. 

- The accurate true positive (ATP) is when x>0 and x0 >0, and               . a  

- The inaccurate true positive (ITP) is when x>0 and x0 >0, and             . a  

 where the error threshold ρ = 0.2. 

     The modified F-score not only measures the accuracy of the state of the EV charging, it also 

measures the accuracy of the extracted amplitude by involving the  ATP  (accurate amplitude 

estimation) and ITP (inaccurate amplitude estimation). 

     The modified F-score can be defined as the harmonic mean of the precision and recall, and 

are computed by: a  

                                               
 

ATPPrecision
ATP FP ITP

                                                    (D.1)    

  

                                                    
 

ATPRecall
ATP FN ITP

                                                   (D.2)     
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Appendix E 

K-means Clustering Algorithm 

The K-means is one of the most popular partitional clustering methods. It groups a set of N input 

data points into K clusters using an iterative procedure. The number of K clusters is a user-

specified parameter. The average of all data points in a cluster is the representative data point 

(centroid). The main goal of K-means is to minimize the sum of square error over all K clusters. 

The K-means clustering can be summarized by the following steps: 

1. Initialize K data points randomly or on some prior knowledge, C = [C1, C2,…, CK]. 

2. Calculate the distances between each data point x and centroid C, assign each data point to 

the nearest centroid. 

          
 ,    if  ||  ||

     for   1, ,

||

,   ,   and   1, ,

||   

    

i w i w i jx C x C x C
i N j w j K

                                                                 (E.1) 

 

3. Recalculate the centroid for each cluster. 

                   
 

1  


 
k

k
x Ck

C x
N

                                                                                                        (E.2) 

where Nk is the number of data points in Ck. 

Repeat steps 2 and 3; terminate when there is no change for each cluster. 


