

Big Data Framework for Analytics in Smart Grids and Applications on Electric

Vehicle Loads

By

Amr Munshi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

©Amr Munshi, 2019

ii

Abstract

The traditional electric grid based on centralized generation plants and unidirectional

transmission and distribution systems is transitioning to a smart grid that is decentralized and

multidirectional with high integration of information and communication technologies. With the

rapid development of smart grids, large amounts of smart meters and sensors are deployed with

huge coverage. As a result, large amounts of multi-sourced heterogeneous smart grid data are

being produced. This massive amount of data needs to be sufficiently managed to increase the

efficiency, reliability, and sustainability of the smart grid. Interestingly, the nature of smart grids

can be considered as a big data challenge that requires advanced informatics techniques and

cyber-infrastructure to deal with huge amounts of data and their analytics to take the smart grid a

step forward in the big data era.

In this thesis, a big data framework that potentially promotes innovative smart grid data

analytics is presented. Further, the framework is developed to comply with the Lambda

architecture that is capable of performing parallel batch and real-time operations on distributed

data. Implementations of the frameworks on cloud-computing based platforms are presented, and

various applications are applied on top of the framework, including visualization, load

monitoring, and data mining. The framework is able to acquire, store, process and query massive

amounts of smart grid data in near real-time, which is milliseconds in this study. This suggests

that the framework is feasible in performing further smart grid data analytics.

The second part of the thesis presents various smart grid applications that are applied on top

of the smart grid big data framework. First, an unsupervised algorithm to extract electric vehicle

charging loads (EVCLs) non-intrusively from the smart meter data is proposed. The proposed

iii

algorithm can run on low-frequency smart meter sampling data and requires only the real power

smart meter measurement, which is the type of data recorded and communicated by most smart

meters. Validation results on real aggregated residential household loads have shown that the

proposed approach is efficient in extracting EVCLs and effective in mitigating the interference

of other appliances, such as cloth dryers and air condition systems, that have similar load

behaviors as electric vehicles (EVs). Secondly, a method to define flexibility for the collective

EV charging demand is presented. This is achieved by analyzing the time-variable patterns of the

aggregated EV charging behaviors. Furthermore, a case study on real residential data to analyze

EV charging trends and quantify the flexibility achievable from the aggregated EV load in

different time periods is presented. To verify the effectiveness of the approach, the EVCL

extraction algorithm was applied on real residential datasets. The results of extracting the EVCLs

from residential households were satisfactory. The extracted EVCLs were segmented into

weekdays and weekends, and the flexibility achievable from the collective EV charging behavior

was analyzed. Further, statistical indicators that represent time periods where trends in EV

charging may occur are discussed. Finally, a method to group EV charging customers into

clusters to reshape the aggregated EVCL is presented. This part of the thesis promotes the

reliability and economical operation of smart grids. The utilized indicators based on statistical

analysis can potentially assist operators and researchers in understanding time periods where

trends in EV charging behaviors may arise and act accordingly.

iv

Preface

This thesis is an original work by Amr Munshi. As detailed in the following, some chapters of

this thesis have been published or accepted for publication as scholarly articles in which Prof.

Yasser A.-R. I. Mohamed was the supervisory author and has contributed to concepts formations

and the manuscript composition.

Chapter 3 of this thesis has been published as A. A. Munshi and Y. A.-R. I. Mohamed, “Big

data framework for analytics in smart grids,” Electric Power Systems Research, vol. 151, pp.

369-380, Oct. 2017.

Chapter 4 of this thesis has been published as A. A. Munshi and Y. A.-R. I. Mohamed, “Data

lake lambda architecture for smart grids big data analytics,” IEEE Access. vol. 6, pp. 40463-

40471, Aug. 2018.

Chapter 5 of this thesis has been accepted for publication as A. A. Munshi and Y. A.-R. I.

Mohamed, “Unsupervised non-Intrusive extraction of electrical vehicle charging load

patterns,” IEEE Transactions on Industrial Informatics. DOI: 10.1109/TII.2018.2806936

Chapter 6 of this thesis has been published as A. A. Munshi and Y. A.-R. Mohamed,

“Extracting and defining flexibility of residential electrical vehicle charging loads,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 2, pp. 448-461, Feb. 2018.

v

Acknowledgment

I would like to express my gratitude to my supervisor, Prof. Yasser A.-R. I. Mohamed, for his

continuous guidance and assistance throughout my Ph.D studies. His valuable discussions,

insightful suggestions, and constant feedback were always helpful and inspiring. Also, his

continuous support and encouragement were my greatest motive to aim for the best.

I would like to express my thanks to the examiners committee for their support, valued time

and interests in my thesis.

I would like to show my deepest gratitude and respect to my family, especially my parents, to

whom I owe all the success in my life. No words can express my gratitude, but I pray that God

will bless them and reward them.

Many thanks to my wife, without whom I could have never been able to achieve this work.

Her patience and encouragement were always a source of strength for me.

Many thanks to my daughter and two sons, who accepted trading our playing time together

with research time. I will make it up to them.

vi

Table of Contents

Abstract .. ii

Preface ... iv

Acknowledgment ... v

Table of Contents .. vi

List of Tables .. xii

List of Figures ... xiii

List of Acronyms ... xvi

Chapter 1 .. 1

Introduction .. 1

1.1 Research Motivations ... 1

1.2 Thesis Objectives .. 2

1.3 Thesis Contributions ... 3

1.4 Thesis Outline ... 4

Chapter 2 .. 5

Literature Survey .. 5

2.1 Smart Grid Big Data ... 5

2.2 Hadoop Platform... 7

2.3 Lambda Architecture .. 8

2.4 Electric Vehicle Load Monitoring .. 8

2.5 Defining Flexibility of Residential Electric Vehicle Loads 10

Chapter 3 .. 12

Big Data Framework for Analytics in Smart Grids ... 12

vii

3.1 Introduction .. 12

3.2 Big Data Core Components for Smart Grids .. 12

3.2.1 Data Acquisition Component .. 13

3.2.2 Distributed Data Storing and Processing Components 14

3.2.3 Data Querying Component .. 15

3.2.4 Data Analytics Components .. 15

3.3 Features of Hadoop’s Platform for Smart Grids ... 15

3.3.1 Scalability .. 15

3.3.2 Flexibility .. 16

3.3.3 Fault Tolerance .. 16

3.4 Proposed Big Data Framework for Smart Grids .. 16

3.4.1 Data Generation ... 17

3.4.2 Data Acquisition .. 18

3.4.3 Data Storing and Processing ... 18

3.4.4 Data Querying ... 19

3.4.5 Data Analytics ... 19

3.5 Implementation on a Cloud Computing Platform .. 19

3.5.1 Cloud Platform .. 20

3.5.2 Flume ... 22

3.5.3 Hadoop Platform ... 24

3.5.4 Hive ... 25

3.5.5 Impala .. 26

3.5.6 Visual Analytics .. 27

3.6 Practical Applications of the Framework ... 27

viii

3.6.1 Single-house Application .. 28

3.6.2 Smart Grid Application ... 31

3.7 Conclusion .. 33

Chapter 4 .. 35

Lambda Architecture for Smart Grids Big Data Analytics .. 35

4.1 Introduction .. 35

4.2 Features of the Lambda Architecture for Smart Grids ... 35

4.2.1 Robustness and Fault Tolerance .. 35

4.2.2 Low Latency .. 36

4.2.3 Scalability .. 36

4.2.4 Generalization and Flexibility ... 36

4.3 Smart Grid Big Data Lambda Architecture Eco-system .. 36

4.3.1 Smart Grid Data .. 37

4.3.2 Data Collecting .. 38

4.3.3 Lambda Architecture (Data Storing and Processing) .. 38

4.3.4 Data Querying ... 38

4.3.5 Analytics .. 39

4.4 Implementation on a Cloud Computing Platform .. 39

4.5 Practical Applications of the Smart Grid Big Data Lambda Architecture 42

4.5.1 Storing and Organizing the Data ... 42

4.5.2 Visualization of Smart Grid Loads .. 43

4.5.3 Clustering Residential Customer Daily Loads .. 44

4.6 Conclusions .. 47

Chapter 5 .. 48

ix

Unsupervised Non-intrusive Extraction of Electrical Vehicle Charging Load Patterns

(EEVCLP) ... 48

5.1 Introduction .. 48

5.2 Theoretical Background of ICA for Extracting EVCLs ... 48

5.3 Independent Component Analysis for Extracting Electric Vehicle Loads 49

5.4 Proposed EEVCLP Algorithm.. 51

5.4.1 General Aspects ... 51

5.4.2 Iterative Process .. 54

5.4.3 Extraction of Gradual Increase in the EVCL (Stage1) .. 60

5.4.4 Extraction of Gradual Decrease in the EVCL (Stage3) and Correction Phase ... 61

5.5 Verifications and Discussions .. 63

5.5.1 Verification and Comparison on Dataset#1 on Extracting Stage2 Patterns 64

5.5.2 Verification on Dataset#1 and #2 on Extracting All Stages 69

5.5.3 Verification on Extracting Hourly EVCLs .. 71

5.5.4 Lower Sampling Rates .. 73

5.5.5 Extracting EVCLs of Different Categories ... 74

5.6 Conclusions .. 75

Chapter 6 .. 77

Defining Flexibility of Residential Electrical Vehicle Charging Loads 77

6.1 Introduction .. 77

6.2 Modeling Demand Variations Using Bayesian Maximum Likelihood 77

6.2.1 Binomial Representation of Variations ... 78

6.2.2 Bayesian Maximum Likelihood Estimation .. 78

6.3 Flexibility Definitions for EVCLs .. 81

x

6.3.1 Flexibility Index of EV Aggregated Demand (FIEVAD) 81

6.3.2 Flexibility Percentage Level (FPL) ... 82

6.4 Applications and Discussions ... 84

6.4.1 Extracting and Comparing the Aggregated EVCLs .. 84

6.4.2 Case Study on Defining Flexibility ... 87

6.5 Conclusions .. 94

Chapter 7 .. 95

Clustering and Targeting EV Charging Customers for Load Shaping 95

7.1 Introduction .. 95

7.2 Clustering Customers into Groups ... 96

7.3 Methodology to Target Customers and Reshape the EVCL .. 96

7.3.1 Retrieving and Clustering the EV Charging Customers 96

7.3.2 Using Flexibility Indices to Reshape EV Load ... 97

7.4 Case Study on Choosing Customers to Reshape EVCL .. 98

7.5 Conclusion .. 104

Chapter 8 .. 105

Summary and Future Work .. 105

8.1 Summary ... 105

8.2 Future Work .. 107

Bibliography ... 108

Appendix A .. 116

Flume Agent Configuration ... 116

Appendix B .. 118

Commands to Configure Spark for Matlab and Read/Store into HDFS 118

xi

Appendix C .. 119

Preprocessing of ICA ... 119

Appendix D .. 121

Modified F-Score ... 121

Appendix E ... 122

K-means Clustering Algorithm .. 122

xii

List of Tables

Table 4.1 Robustness Test Execution Times for The Smart Gird Big Data Eco-System on
Clustering Residential Customer Daily Loads …………………………………...……………...47

Table 5.1 Stage2 Charging Amplitudes of EVs in Global Markets………………..…………...50

Table 5.2 The Parameters and Descriptions for the EEVCLP Algorithm………………………53

Table 5.3 Performance Comparison of the Proposed Algorithm with Estimation Methods 1- 4, ps
= 5 and fs = 15 to Extract stage2…………………………………………………………….…..66

Table 5.4 Performance Comparison of the Proposed Algorithm with Estimation Methods 1-4, ps
= 10 and fs = 20 to Extract stage2…………………………………………………………...…..66

Table 5.5 Performance of the Algorithm in [39] on Dataset#1………………….……………...68

Table 5.6 Performance of the Algorithm on Dataset#1 and Dataset#2 for All
Stages……………………………………...………...…………………………...……………....70

Table 5.7 Performance of the Proposed Algorithm with Lower Sampling
Rates……………………………………………………………………………………………...73

xiii

List of Figures

Figure 2.1: The three stages of the EV charging loads pattern…………………………………..10

Figure 3.1: A hierarchical architecture of the core components for smart grid big data, including
the components of data acquisition, data storing, data processing, data querying and data
analytics.……………………………………………………………………………………....…13

Figure 3.2: A basic Flume topology to ingest data into HDFS..……………………………...…14

Figure 3.3: The framework to deal with smart grid big data for visual analytics. The framework
covers the lifecycle of smart grid data from data generation to data analytics and forms a learn
and response loop..………………………………………………………………………..…...…17

Figure 3.4: The IP address and host name of the machines identified at each cluster node in the
/etc/hosts file……………………………………………………………………...……...........…20

Figure 3.5: Commands to setup an SSH connection…………………………………...……...…21

Figure 3.6: Sample of the csv file that includes attributes of timestamp, smart meter’s ID,
generated power and zip code..…………………………………………………………...…...…22

Figure 3.7: Flume configuration file flume.conf that defines how the source, sink and channel are
wired together to form the data flows..………………………………………………………..…23

Figure 3.8: HDFS distributes file blocks among cluster nodes………………………..……...…25

Figure 3.9: CDH distributes the work out to the nodes………………………………..……...…25

Figure 3.10. The Hive SQL-like query to build a table that includes the time stamp, ID and
consumption of the smart meters..………………………………………………………….....…25

Figure 3.11: The Impala SQL-like query to build a table that includes the timestamp,
consumption, pvpower, windpower and zip code..…………………………………………...…26

Figure 3.12: Dashboards for power status. (a) cumulative consumption and generation with one-
minute time resolution. (b) power status of the house. (c) Map with pie-chart for consumption
(red) and generation for the house..…………………………………………………...……....…30

Figure 3.13: Dashboards for power status in the smart grid. (a) Power consumption of 6,436 Irish
home and businesses updated every 30-minutes. (b) Power consumption of 11 selected smart
meters.……..……....32

xiv

Figure 4.1: The smart grid big data eco-system to deal with the smart grid big data from data
collecting to data analytics, with visualization and feedback loop capabilities..……………...…37

Figure 4.2: Hierarchical view of the utilized components to implement the smart grid big data
eco-system..…………………………………………………………………………………....…40

Figure 4.3: Energy consumption observation for the residential customers for Jan. 8,
2017..………………………………………………………………………………………......…43

Figure 4.4: Radoop RapidMiner nest process to preprocess the data, apply the data mining
clustering K-means algorithm and store the results into the HDFS repository..……………...…45

Figure 4.5: Visualization of the five cluster representatives of the K-means clustering
algorithm..…………………………………………………………………………………......…46

Figure 4.6: Zoomed view into cluster# 4 as it represents abnormal or interesting load
consumption behavior.……...…46

Figure 5.1: The extraction of EVCL from the aggregated load problem. Source1 is the
aggregated load pattern without the EVCL. Source2 is the EVCL. Mixture is the aggregated load
pattern………………………………………………………………………………….……...…50

Figure 5.2: Flow-chart of the EEVCLP..……………………………………………………..…53

Figure 5.3: Zoomed view for EVs from different categories (a) stage1 durations. (b) stage3
durations………………………………………………………………………………..……...…61

Figure 5.4: The result of the proposed algorithm with estimation Method 3. (a) the EVCL after
applying ICA. (b) EVCL after removing the FPs. (c) final EVCL (transparent yellow) vs. the
actual EVCL (red)..……..…65

Figure 5.5: The actual EVCL vs. the results from [39] and the proposed algorithm on extracting
stage2..………………………………………………………………………………………...…68

Figure 5.6: The actual EVCL vs. the extracted EVCL from the proposed algorithm with
estimation Method 3 for house#19 after undergoing correction phase..……………………....…71

Figure 5.7: The actual EVCL vs. the extracted EVCL from the proposed algorithm with all
stages..……...…...71

Figure 5.8. (a) The extracted EVCLs from Dataset#1 and Dataset#2. (b) The cumulative EVCLs
for the neighborhood..……..…..72

Figure 5.9: Extracting EVCLs of different categories. (a) The actual EVCL of house#1 added to
an actual ALP. (b) The resulted EVCL of the first run of the algorithm. (c) The resulted EVCL of

xv

the second run of the algorithm..……..74-75

Figure 6.1. The daily residential loads for July 2016. (a) weekdays. (b) weekends..………...…85

Figure 6.2. The daily EVCLs for July 2016. (a) weekdays. (b) weekends..………………….…86

Figure 6.3. Comparison between the aggregated actual and extracted EVCLs. (a) weekdays. (b)
weekends.……...…87

Figure 6.4: General layout of the procedure..……...…88

Figure 6.5: The probability of increase in EVCL and its upper and lower limits. (a) weekdays.
(b) weekends..………………………………………………………………………………....…89

Figure 6.6: The FIEVAD values. (a) weekdays. (b) weekends..………………………...…...…90

Figure 6.7. The FPL percentage. (a) weekdays. (b) weekends……………………….……....…92

Figure 6.8. The 15-min aggregated EV load (blue), VPL in kW (red) and VPL in kW (yellow).
(a) weekdays. (b) weekends..………………………………..…………………………….......…93

Figure 7.1. Relationship between chapters 5, 6 and 7…………………………………………..95

Figure 7.2. The procedure followed to change the EV charging behaviours to reshape the
aggregated EVCL (AggEVL) using the average daily load (ADL), ρ the upper FIEVAD and β
lower FIEVAD…………………………………………………………………………………...98

Figure 7.3: The FIEVAD values……………………………………………………………...…99

Figure 7.4: The groupings EVCLs. (a) Cluster#1. (b) Cluster#2……………………………...101

Figure 7.5: The resulted centroids……………………………………………………………..101

Figure 7.6: The aggregated EVCL before (red) and after customer accepting changes (blue)..102

Figure 7.7: The aggregated EVCL before (red) and after customer accepting changes (blue) for
an entire day with the accepting probability of 50% at each time period.………..…………….102

Figure 7.8: The aggregated EVCL before (red) and after customer accepting changes (blue) for
an entire day with the accepting probability of 70% at each time period.………..…………….103

Figure 7.9: The aggregated EVCL before (red) and after customer accepting changes (blue) for
an entire day with the accepting probability of 70% at each time period………...…………….103

xvi

List of Acronyms

ADL: Average Daily Load

ALM: Appliance Load Monitoring

ALP: Aggregated Load Pattern

ANN: Artificial Neural Networks

CDH: Cloudera Distribution of Hadoop

CSA: Cloud Security Alliance

DBMS: Data Base Management System

DR: Demand Response

DDR: Dynamic Demand Response

ECS: Extracted Charging Session

EEVCLP: Extraction of Electric Vehicle Charging Load Pattern

EPRI: Electric Power Research Institution

EV: Electric Vehicle

EVCL: Electric Vehicle Charging Loads

G2V: Grid-to-vehicle

HDFS: Hadoop Distributed File System

HMM: Hidden Markov Model

ILM: Intrusive Load Monitoring

K-NN: K-Nearest Neighbour

NILM: Non-Intrusive Load Monitoring

ODBC: Open Database Connection

xvii

PV: Photovoltaic

SSH: Secure Shell

SVM: Support Vector Machines

TCP: Transmission Control Protocol

TOU: Time-of-use

V2G: Vehicle-to-grid

YARN: Yet Another Resource Negotiator

1

Chapter 1

Introduction

1.1 Research Motivations

Ever growing volume of data production is the reality we are living in. The recent technological

advancements have led to a deluge of data from various domains, such as social networks,

scientific sensors, smart cities, and the Internet. The global data volume from 2005 to 2020 is

predicted to grow by a factor of 300, from 130 exabytes to 40,000 exabytes, representing a

double growth every two years [1]. To cope with the volume, velocity and variety of data

produced, the term “big data” was brought up to capture the meaning of this evolving trend of

data.

Big data are becoming a new technology focus in science and engineering domains. Big data

includes a set of tools and mechanisms to acquire, store, and process disparate data while

leveraging the massively parallel processing power to perform complex transformations and

analysis. However, designing and deploying a big data framework system for a specific

application is not a straightforward task [2], [3]. This is due to the fact that data comes from

multiple, heterogeneous and autonomous sources with complex and evolving relationships, and

keeps on growing. Moreover, the rise of big data applications where data collection has grown

tremendously is beyond the capability of current commonly used hardware and software

platforms to manage, store and process within a tolerable amount of time [2].

Many utilities are transferring to smart meters and smart grids as part of long-range planning

to improve the reliability of power supply, incorporate distributed generation resources, develop

storage solutions, use the power plants efficiently, and enable customers to participate in

controlling their energy use. The IEEE 2030 standard [4] states that the smart grid system is

based on an interconnection of three systems: 1) the electric power system which emphasise the

power generation, delivery and consumption. 2) the communication system which emphasis the

communication connectivity among systems, devices, and applications. 3) the information

2

technology system which includes technologies that store, process and manage data information

for decision making on the power system operation. The latter leads to incorporate other

challenges, for example, going from a system that reads the meter once a month to a smart meter

that can provide meter readings every few minutes leads to millions of reads per hour. The result

is a massive increase in data that is overwhelming, if not managed properly. This generated data,

if managed efficiently, can provide a better understanding of customer behavior and assist in

defining electric tariffs. For example, time-of-use (TOU) pricing encourages customers to

operate certain higher voltage appliances at off-peak periods. Consequently, customers save

money and less power is generated. For this, developing a framework that is able to handle the

smart grid big data is considered in this thesis.

The growth of electric vehicles (EVs) poses a challenge to electricity systems, but also a

promising opportunity to reduce petroleum use. Accordingly, many economic and environmental

issues can be overcome. For this purpose, EVs have received increasing attention recently. The

U.S. electric power research institution (EPRI) projects that 62% of the entire U.S. vehicle fleet

will consist of EVs by 2050 [5]. Those EV loads bring large impacts on smart grids, including an

increase in system peak demand and voltage unbalances, especially at the electric power

distribution level [6]. The gravity of this impact depends on the EV charging behaviors. As the

rapid popularization of EVs introduces many new load peaks to the electrical grid, extracting and

aggregating those EV charging loads is essential to allow smart grid operators to make intelligent

and informed decisions about conserving energy and promoting the reliability of the electrical

grid.

1.2 Thesis Objectives

This thesis aims at proposing a big data framework that is able to handle the smart grid big data.

Also, providing a cost-effective development environment for a non-data scientist to perform

smart grid research. Once the smart grid big data framework is developed, smart grid-related

applications are applied on top of the framework to promote the reliability of the grid and assist

the smart grid operators in planning and making informed decisions.

First, the thesis objectives for the framework development are summarized as follows.

3

- Proposing a comprehensive big data framework for smart grids, which covers handling the

smart grid data from generation to analytics.

- Including a feedback loop in the framework to monitor the effects of made decisions.

- Utilizing open source state-of-the-art prevalent Hadoop platform to address smart grids

big data challenges.

- Adopting open source tools to provide an easy and cost-effective development

environment for practicing engineers to develop similar tools for their demanding smart

grid applications.

- Perform various smart grid data analytical applications on top of the framework.

Secondly, smart grid data analytic applications are applied on top of the framework aiming at

reducing the effects of EV charging on the electric grid. The objectives of this part are

summarized as follows.

- Proposing a new unsupervised approach for solving the EV disaggregation problem.

- Extracting the EV charging loads non-intrusively from the smart meter real power data.

- Mitigating the interference of other household appliances that have similar load patterns

as EVs.

- Define the EV charging demand by analyzing the time-variable patterns of the aggregated

EV charging behaviors.

- Quantifying the flexibility amount achievable from the aggregate EV load in different
time periods.

- Choosing groups of customers that can be targeted to reshape the collective EV load.

1.3 Thesis Contributions

The key contributions of this thesis are as follows:

- Developing an eco-system for smart grid big data applications to improve decision

making and acquire further advantages for operating the smart grid.

- Providing a big data eco-system that can be built and utilized by non-data scientists for

their smart grid big data applications.

- Enabling data mining and knowledge discovery from massive distributed datasets of smart

grid big data.

4

- Proposing an unsupervised non-intrusive algorithm to extract EV charging loads from the

aggregated residential loads.

- Quantifying the amount of the flexibility that can be achieved from the aggregated EV

charging load demand at different time periods.

- Presenting a method to choose groups of customers to target for EV load reshaping.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. A literature survey is presented in Chapter 2.

Chapter 3 introduces the smart grid big data framework that covers the lifecycle of smart grid

data from data generation to data analytics. The core components of the framework are discussed

in details. Further, an implementation of the framework on a secured cloud computing platform

and the application on two real scenarios are presented. In 2015, a big data architecture, namely

the Lambda architecture, that allows batch and real-time computing was introduced. For this, in

Chapter 4, the framework of Chapter 3 is extended to comply with the Lambda architecture

allowing to perform parallel batch and real-time operations on distributed smart grid data. An

implementation of the Lambda architecture for smart grid big data analytics on a cloud

computing platform and a data mining application are presented in the same chapter. Chapter 5

presents an unsupervised algorithm to extract EV charging load patterns non-intrusively from the

aggregated residential meter readings. A method to define flexibility indices for the collective

EV changing demand by analyzing the time-variable patterns of the aggregated EV charging

behaviors is presented in details in Chapter 6. Also, details on how the smart grid operators could

utilize the flexibility indices are shown. Chapter 7 uses the methods in the previous chapter to

present a method to group customers into distinct clusters based on their EV charging behaviors.

Furthermore, a case study is carried out to test the feasibility of this methodology in reshaping

the aggregated EV charging loads. Finally, the summary of the thesis and future work are

presented in Chapter 8.

5

Chapter 2

Literature Survey

2.1 Smart Grid Big Data

There has been much discussion about what big data actually means [2], [7], [8]. However, the

most common definition in literature is the “Vs” definition [2], [9]-[14] which includes several

characteristics of big data beginning with the letter “V”. The “3Vs” definition includes [14]:

volume, variety and velocity.

- Volume: big data implies enormous volumes of data. This data is generated by machines,

networks, social media, etc. Thus, the volume of data to be analyzed is massive.

- Variety: refers to the various sources and formats of data (structured, semi-structured and

unstructured). As data comes in the form of photos, videos, logs, sensor devices, etc., this

variety of data formats creates challenges for storage, mining and analyzing data.

- Velocity: the velocity of data is the rate at which data arrives. This also includes the time

that it takes to process and understand the acquired data to assist in decision making.

In [2], [15]-[19] various challenges and issues in adopting big data technology were

discussed. From their research, it was concluded that refining a unified framework suitable for

every module is not straight-forward due to the diversity of applications. The actual challenge of

big data is not in collecting it, but in managing it as well as making sense of it. In general, the

challenges in designing a big data system can be summarized as [2]:

- First, due to the variety of disparate data sources and sheer volume, it is challenging to

collect and integrate data with scalability from distributed sources.

- Second, big data systems need to store and manage the massive heterogeneous gathered

data, while providing function and performance guarantee, in terms of fast retrieval,

scalability, and privacy protection.

- Third, big data analytics must effectively mine massive datasets at different levels in real-

time or near real-time, including modeling, visualization, prediction, and optimization,

6

such that inherent promises can be revealed to improve decision making and acquire

further advantages.

Many utilities are transferring to smart meters and smart grids as part of long-range planning

to improve the reliability of power supply, incorporate distributed generation resources, develop

storage solutions, use the power plants efficiently, and enable customers to participate in

controlling their energy use. To accomplish this, utilities are deploying smart meter systems as a

first step. This leads to incorporate other challenges. For example, going from a system that reads

the meter once a month to a smart meter that can provide meter readings every few minutes leads

to millions of readings per hour. The result is a massive increase in data that is overwhelming, if

not managed properly. This generated data, if managed efficiently, can provide a better

understanding of customer behavior and assist in defining electric tariffs. For example, time-of-

use (TOU) pricing encourages customers to operate certain higher voltage appliances at off-peak

periods. Consequently, customers save money and less power is generated.

Developing frameworks that address the challenges of smart grid big data are of research

interest. In [17], [18] several main elements of big data and database technologies that are

beneficial within the utility eco-system are scratched on, but a comprehensive idea on how big

data elements can construct a framework to deal with smart grid data has not been presented. The

work in [20] analyzed several challenges of big data and suggested that high-performance

computing platforms are required to unleash the power of big data. In [21], a mathematical

model for healthcare big data analytics was presented. A big data value chain in [2] was

presented; it decomposed big data into four sequential modules, namely data generation, data

acquisition, data storage, and data analytics. More in detail, numerous approaches for each

module were highlighted, and a prevalent framework for addressing big data challenges was

suggested. The work presented in [7] demonstrates a cloud-based dynamic demand response

(DDR) platform project that is being deployed in the University of Southern California campus

as a testbed for transforming Los Angeles utility into a smart grid in the future. In [22] a secure

cloud computing based framework for big data information management in smart grids was

proposed. However, a platform to apply big data analytics on the distributed cloud structure has

not been included. Works related to smart grid big data mainly describe possible theoretical

7

frameworks and challenges, and lack practical implementation. As handling smart grid big data

is becoming an area of research interest, developing an effective and comprehensive big data

framework for analytics in smart grids is of interest to take the smart grids a step forward in the

big data era.

2.2 Hadoop Platform

Hadoop [23] is an open-source platform that supports storing and processing large amounts of

data. It relays on distributed hardware to store and process data, which enables processing large

amounts of data on distributed clusters of commodity servers. The core of Hadoop consists of

two components: a storage component which is Hadoop`s Distributed File System (HDFS) [24]

and a processing component called MapReduce [25].

HDFS [24], [25] is a distributed storage file system that is developed to run on commodity

hardware. An HDFS cluster consists of NameNode(s) that manage the file system metadata, and

numerous DataNodes that store data. A file is split into blocks, and these blocks are stored in a

set of DataNodes. Each block has several replications distributed in different DataNodes for

reliability purposes.

MapReduce [26] is the processing component of Hadoop. It mainly consists of master node(s)

(JobTracker) and slave nodes (TaskTracker) per cluster. The master is responsible for scheduling

jobs for the slaves, monitoring them and re-executing the failed tasks. The slaves execute the

tasks as directed by the master. The MapReduce and HDFS run on the same set of nodes, which

allows tasks to be scheduled on the nodes in which data are already available. In 2013, Hadoop

was released with Yarn [27] (Yet Another Resource Negotiator). The fundamental idea of Yarn

is to split the two major responsibilities of the JobTracker/TaskTracker of the MapReduce into

separate entities. Yarn basically consists of a global ResourceManager and per-node slave

NodeManager for managing applications in a distributed manner. An ApplicationMaster in Yarn

negotiates resources from the ResourceManager and works with the NodeManager(s) to execute

and monitor the component tasks. Each ApplicationMaster has responsibility for negotiating

appropriate resource containers from the scheduler, tracking their status, and monitoring their

progress.

8

2.3 Lambda Architecture

Lambda architecture is a data-processing architecture designed to handle massive amounts of

data by taking advantage of batch and real-time methods. The basis of the Lambda architecture is

to compute arbitrary functions on distributed datasets in real-time; also, to combine batch and

real-time processing capabilities to balance data latency throughput and fault tolerance.

However, there is no single tool that can accomplish this task. Instead, a variety of tools and

techniques are used to build a complete big data system. The Lambda architecture addresses the

problem of computing arbitrary functions parallel on distributed data in real-time by presenting a

three-layered architecture that consists of a batch layer, a speed layer, and a serving layer [28].

The batch layer is mainly responsible for two tasks. The first is to store the constantly

growing master data in a distributed file system manner, which is, in this case, a Hadoop

distributed file system (HDFS) [23]. The second task is to precompute batch views for this

distributed data by using the MapReduce [25] processing paradigm. Those batch views can be

used to answer incoming queries with low read latency. It should be noted that the Hadoop

platform, which contains the HDFS and MapReduce components, can fulfill the functionality of

the batch layer.

Differently from the batch layer, the speed layer does not precompute the views for the entire

data. Instead, it uses an incremental approach which stores and updates the real-time views of the

data. Thus, it supplements the gap that is left by the batch layer. The speed layer only computes

views for recent data, due to the fact that older data is absorbed into the batch layer.

The serving layer is a specialized distributed database that indexes the batch views so that

they can be queried in a low-latency and ad-hoc manner. It is responsible for merging the results

of batch and speed layer computations on the data. This way the serving layer can provide the

real-time computation results over all the data.

2.4 Electric Vehicle Load Monitoring

Appliance load monitoring (ALM) is an essential solution for energy management that allows

obtaining appliance-specific energy consumption statistics that can further be used to devise load

scheduling strategies for optimal energy utilization. In literature, there are two major approaches

9

to ALM, namely intrusive load monitoring (ILM) and non-intrusive load monitoring (NILM).

Different approaches have been used for load disaggregation. Artificial neural networks (ANN)

[29], [30], support vector machines (SVM) [31], [32], and nearest neighbor (k-NN) [29], [33],

are among the algorithms that have been popular for appliance disaggregation. However, the

construction and training of ANNs [34] are arbitrary, and tuning can result in local maxima and

overfitting. SVM [34] use optimal line separation between classifications and also requires

training. The k-NN classifies unlabeled data that is nearest to each other based on a distance

function. However, this method is impractical due to large storage requirements and can be

susceptible to the curse of dimensionality. Recently, methods that use a hidden Markov model

(HMM) [34] have become of research interest [35]-[38]. However, these methods require

extensive training and computation [39]. There has been a devoted effort in extracting appliance

signatures from aggregated data. Most methods require smart meter data with high sampling

rates higher than 1-Hz. Also, different combinations of electrical measurements are used to

disaggregate appliances, such as the active power (P), reactive power (Q) and current (I) [40]-

[43]. Recent research [33], [35], [44] propose methods that utilize the real power measurements.

The main reason for using only the real power measurement is because it is the type of data

recorded and communicated by most smart meters.

EVs are a topic undergoing intense research, and methods to extract EV charging loads

(EVCL) are recently emerging. The EVCL pattern can be decomposed into three stages: 1)

gradual increase in charging load (stage1), 2) steady charging load (stage2), and 3) gradual

decrease in charging load (stage3). Fig. 2.1 illustrates the typical stages of the EVCL pattern. In

[45], a method for extracting stage2 EVCLs is presented. However, it cannot extract the EVCLs

if other appliances were operating at the time the EV was plugged-in. Also, it requires a

sampling rate of 1-Hz (1-second). Moreover, it requires the active and reactive power

measurements, which is not the reality of most deployed smart meters. In [39], an algorithm to

extract stage2 EVCLs with amplitudes from 3 kW to 4 kW, from the aggregated signal is

presented. The algorithm did not require training and was able to outperform the HMM

algorithms on extracting EVCLs. Previous works of extracting EVCLs don’t include stage1 and

stage3 patterns. Non-intrusive methods to extract various amplitudes of EVCLs including all

10

three stages of charging are of interest. The extraction and aggregation of such load behaviors

can be aggregated and open further smart grid analyses and studies that could promote the

reliability of the smart grid in spite of the rapid growth of EVs.

Figure 2.1: The three stages of the EV charging loads pattern.

2.5 Defining Flexibility of Residential Electric Vehicle Loads

The rapid popularization of EVs introduces many new load peaks to the electrical grid.

Extracting and aggregating those EVCLs is essential to allow smart grid operators to make

intelligent and informed decisions about conserving energy and promoting the reliability of the

electrical grid. Hence, a huge amount of research was conducted on EVs and their upcoming

challenges to the grid in recent years. Due to the instability that EVs introduce to the grid,

research studies focus mainly on smart charging of EVs [46]-[49]. Also, investigating the effects

of EVs on distribution networks [50] and allocating of optimal capacity and location of

commercial and residential EV charging stations [51]-[55]. To promote the reliablity of the grid

and minimize infrastructural changes, many utilities use time-of-use (TOU) based electricity

demand response (DR) programs, which can potentially promote the reliability of the grid by

Stage1 Stage2 Stage3

11

shifting EV load demand from peak load periods to off-peak load periods. In a TOU system, the

price of electricity differs during peak and off-peak hours. This encourages customers to charge

EVs during off-peak hours [56], [57]. However, currently only 1% of residential customers in

North America are billed with TOU rates, and 5% of utilities provide TOU pricing to residential

customers [58], Although the number of utilities adopting TOU-DR programs for residential

customers is increasing [56], the coordination of DR resources is a challenging task due to the

lack of communication with each load. The current terminology has adopted the term flexibility

to indicate the capacity to adapt across temporal, circumstances, intention and area of application

[59]. For the applications to the electrical grid, flexibility refers to the possibility of deploying

the resources to respond reliably to the load and generation variations at acceptable costs. One

of the current challenges is to address the quantification of the flexibility amount. Recent

works focus on obtaining flexibility from the generation and demand side [60]-[67]; however,

no works address the extraction and quantification of the flexible amount of the aggregate

demand of EVs. For this purpose, quantifying the flexibility amount of the aggregated

EV charging demand is a key factor in promoting the reliability of the grid in spite of the rapid

growth of EVs.

12

Chapter 3

Big Data Framework for Analytics in Smart Grids

3.1 Introduction

This chapter highlights the big data core components used in the framework for smart grids. The

features of using the Hadoop platform in the smart grid environment are highlighted. The

framework’s stages including, data acquisition, data storing and processing, data querying, and

data analytics components are discussed in details. Also, the components that can be beneficial

for smart grid big data from the smart grid applications point of view are discussed. Then the

framework that covers the lifecycle of smart grid data from data generation to data analytics is

presented. Also, this chapter includes an implementation of the framework on a secured cloud-

computing platform. To verify the effectiveness of the framework, this chapter presents the

application of the framework on two scenarios: the first scenario is a single-house that includes

micro-generators (i.e., wind turbine, photovoltaic (PV) roof panels and EV), the second scenario

includes a real smart metering electricity behavior dataset from the Irish Social Science Data

Archive for 6436 participating Irish homes and businesses. The framework is capable of

handling smart grid data from various resources including, transmission, distribution and

consumption data. Finally, the conclusions and benefits of utilizing the framework for smart

grids are summarized.

3.2 Big Data Core Components for Smart Grids

Figure 3.1 illustrates the hierarchical architecture of the core components of the framework for

smart grid big data. In the following subsections, the components of the data acquisition, data

storing and processing, data querying and, data analytics components are introduced. The data

storing and processing components are included in the same subsection as they are both under

the same platform (Hadoop).

13

Figure 3.1: A hierarchical architecture of the core components for smart grid big data, including the components of
data acquisition, data storing, data processing, data querying and data analytics.

3.2.1 Data Acquisition Component

Flume [68] is a distributed system developed by Apache that efficiently collects, aggregates, and

transfers large amounts of log data from disparate sources to a centralized storage. However,

flume can be used to ingest large amounts of streaming data such as social media and sensor data

into the Hadoop Distributed File System (HDFS) which will be introduced in the following

subsection. Figure 3.2 depicts a representative Flume topology [68] and the following

components make-up the Flume tool:

- Event: a stream of data that is transported by Flume.

- Source: the entity through which data enters into Flume. A source can actively poll for

data or wait for data to be delivered to it.

- Sink: the entity that delivers the data to the destination. A variety of sinks allows data to be

streamed to multiple destinations. Here the HDFS sink that writes events to HDFS storages

is used.

- Channel: the conduit between the source and the sink. Sources ingest events into the

channel, and the sinks drain the channel.

Tableau Mahout SAMOA Data Analytics

HIVE IMPALA Data Querying

MapReduce YARN Distributed Data Processing

HDFS Distributed Data Storing

Flume Data Acquisition

14

Figure 3.2: A basic Flume topology to ingest data into HDFS.

3.2.2 Distributed Data Storing and Processing Components

Hadoop [23] the open-source software platform that supports massive data storage and

processing enables distributed processing of large amounts of data on clusters of commodity

servers. The core of Hadoop consists of two main components: a storage component which is the

Hadoop Distributed File System (HDFS) [24] and a processing component called MapReduce

[26]. Hadoop is considered to be a major part of any architecture in big data.

Hadoop was inspired by Google’s work on its distributed file system, Google`s File System

(GFS) [25] and the MapReduce programming model. In 2006, these software components

became an Apache project, called Hadoop. MapReduce was sufficient at a few specific kinds of

batch processing, which was an obstacle in taking advantage of Hadoop’s flexibility with data

and storage. In 2013, Hadoop was released with Yarn [27] (Yet Another Resource Negotiator) or

MapReduce2. Yarn the general-purpose resource manager for Hadoop enabled applications from

other processing frameworks to run on a Hadoop cluster in a distributed manner.

15

3.2.3 Data Querying Component

Hive [69] and Impala [70] are two SQL-like high-level declarative languages that express big

data analysis tasks. They facilitate querying and managing big data residing in distributed

storage. Hive express big data analysis tasks in MapReduce operations. Whereas, Impala is an

interactive SQL query tool on big data [80]. Impala doesn’t have to translate an SQL query into

another processing framework, such as MapReduce operations. The execution of an Impala

query is executed in parallel in each node’s memory in the cluster. The intermediate results of

the nodes are transmitted and aggregated then returned.

3.2.4 Data Analytics Components

Mahout [71] is a data mining library implemented on top of Hadoop and provides batch machine

learning processing. It contains a few core algorithms for scalable performant machine learning

applications.

SAMOA [72] (Scalable Advanced Massive Online Analysis) is a distributed streaming

machine learning framework that contains a programming abstraction for distributed streaming

algorithms for some common data mining and machine learning tasks.

Tableau [73] is an interactive data visualization tool that enables users to analyze, visualize

and share information and dashboards.

3.3 Features of Hadoop’s Platform for Smart Grids

Hadoop has attracted substantial attention from both industry and scholars. In fact, Hadoop has

long been the mainstay of the big data movement. Hadoop has many advantages, and the

following features make it suitable for smart grid big data management and analysis:

3.3.1 Scalability

Hadoop allows hardware infrastructure to be scaled up and down without affecting the existing

data [2]. The system can automatically re-distribute data and computation tasks to accommodate

hardware changes. For example, if new neighborhoods or generation utilities are added to the

16

grid, additional nodes and storage devices can be added to the existing cluster without affecting

the functionality of the existing nodes.

3.3.2 Flexibility

Hadoop is free of schema and able to absorb various types of data from numerous sources.

Moreover, different types of data from numerous sources can be aggregated for further analysis.

Hence, many challenges of the various types of smart grid data can be addressed.

3.3.3 Fault Tolerance

Missing data and computation failures are common in smart grid data. Hadoop can recover the

data and computation failures caused by node breakdown or network congestion by storing the

data at many nodes and distributing the computation work to other healthy nodes in the cluster.

3.4 Proposed Big Data Framework for Smart Grids

The framework to deal with smart grid big data is presented in Figure 3.3. The framework covers

the lifecycle of smart grid data from data generation to data analytics. The following sub-sections

discuss the framework stages in details.

17

Figure 3.3: The framework to deal with smart grid big data for visual analytics. The framework covers the lifecycle
of smart grid data from data generation to data analytics and forms a learn and response loop.

3.4.1 Data Generation

Streaming data is generated from thousands of smart meters in the smart grid. The generated data

may belong to a supplier site or a demand site. In addition, environmental events such as weather

conditions from weather stations can be beneficial. For example, to predict the amount of power

that can be generated from a certain power resource such as, wind farms. In this framework, data

from various sources are considered these include EVs, residential homes, commercial buildings,

industrial factories, solar panels, wind turbines and various power plants. Considering data from

such sources could increase the grid’s reliability as technology changes are starting to permeate

through the entire smart grid, from generation to transmission to distribution. For example,

renewable power resources are being included in the generation mix, not just by the power

generation utilities, but also by consumers through rooftop solar panels, residential wind

turbines, EVs and other micro-generators that can act as positive supply to the grid.

HIVE IMPALA

MapReduce YARN

Env.
Events

Solar
Panels

Wind
Turbines

Power
Plants

EV Residential Building
s

Factories

Flume

HDFS

Visual Analytics/Sharing

Customers Service Providers Researchers

D
e

cisio
n

 m
a

kin
g &

 D
D

R
 stra

te
gy

Data Mining Forecasting

/

Monitor

Analytics

Data Qurying

Data Processing

Data Storing

Data Acquisition

Data Generation

18

3.4.2 Data Acquisition

The data acquisition for smart grids’ data can be decomposed into three sub-tasks, namely, data

collection, data transmission, and data pre-processing. The data generated from the previous

stage are collected proactively by centralized/distributed agents. The collected data is then

transmitted to a master node in the Hadoop cluster. Once the raw data are gathered, it is

transferred to a data storage infrastructure for subsequent processing. Due to the diverse source

of data, the collected data may have different formats and information. Accordingly, data pre-

processing is required. Data integration techniques aim to combine data from different sources

and provide a unified view of the data [2]. In this framework, the data is transferred to comma-

separated value (csv) files. The attributes of the data contain information such as, the timestamp,

smart meter ID, generated/consumed power and location. Also, in the pre-processing of data,

inaccurate and incomplete data can be amended or removed to improve the quality of data; also,

this can be done at a further step in the process.

Flume can fulfill the function of the data acquisition. It can collect, aggregate, and transfer the

large amounts of generated data from various sources to a Hadoop master node. When a Flume

source receives data, it stores it into one or more channels. The channel is a passive store that

keeps the event until it is consumed by a flume sink. The flume sink removes the event from the

channel and puts it into an external repository. In this framework, the data files are ingested into

an external HDFS repository.

3.4.3 Data Storing and Processing

After the smart grid data has been acquired, in this stage, the HDFS handles storing the data for

further processing. An HDFS cluster consists of a single NameNode that manages the file system

metadata, and collections of DataNodes that store the actual data. The received smart grid data is

split into one or more blocks, and these blocks are stored in a set of DataNodes. Hadoop Yarn is

the computation core for big data analysis. The HDFS and Yarn run on the same set of nodes,

which allows tasks to be processed on the nodes in which smart grid data are already present.

19

3.4.4 Data Querying

Hive and Impala are used in this framework to read the smart grid data from an HDFS repository

and select, analyze or generate data of interest. For example, the consumption of electricity for a

certain region or the aggregated power produced from wind farms can be obtained. The data

querying stage runs on top of a Hadoop cluster which allows obtaining prompt results.

3.4.5 Data Analytics

The smart grid data acquired must be shared to improve the efficiency of the smart grid. For

example, this data can be utilized by analytics for proposing curtailment, researchers for data

mining and correlations, and consumers visualizing and gaining knowledge of their power

profiles.

The data analytics stage has two main objectives, to learn and to respond. Sharing the grid’s

status between utilities and consumers promotes the reliability of the smart grid. Also, consumers

act as an active part in the reliability of the grid. This can be achieved through visualization

dashboard portals, which provide a visualization of the smart grid’s status that can be accessed

via the Internet or mobile apps. Consequently, a DR strategy by analytics can be suggested to

determine customers and buildings to target during a peak load period. Moreover, dynamic

power pricing and incentives for reducing load during peak periods can be advertised for.

3.5 Implementation on a Cloud Computing Platform

This section demonstrates the implementation of the framework on a cloud computing platform.

Then a method to establish a secure connection between the cloud cluster nodes is briefly

presented. Further, the settings of the components that are used at each stage of the framework

are discussed. For simplicity, in the data storing and data processing stages a Hadoop distribution

namely, Cloudera distribution Hadoop (CDH) that contains MapReduce/Yarn and HDFS is used

instead of setting up each component separately.

20

3.5.1 Cloud Platform

Cloud computing can be deployed as the infrastructure layer for big data systems to meet certain

infrastructure requirements, such as cost-effectiveness, improved accessibility, and scalability.

Based on the requirements of the proposed framework, Infrastructure as a Service (IaaS) clouds

[74] is appropriate to use to implement the smart grid big data framework. Cloud service

providers such as, Amazon AWS and Google can be utilized to build a cluster that will host the

framework. In this implementation, a Google cloud platform cluster with six machines is used.

Five machines running CentOS Linux operating system will be deployed for the Hadoop

platform. The remaining machine will be running Windows operating system to perform the

visual analytical tasks. In the Hadoop cluster there will be one master node and four slave nodes.

The IP address and hostname of the nodes are identified at each node in the /etc/hosts file (Figure

3.4):

Figure 3.4: The IP address and hostname of the machines identified at each cluster node in the /etc/hosts file.

It should be noted that at any time a new node is added to the cluster, it must be defined to all

other cluster nodes in the /etc/hosts file.

Often smart grid big data analysis is conducted with a vast array of data sources that come

from many sources. For that, it is required to be aware of the security and governance policies

that apply to various smart grid data sources. The data that remains will need to be secured and

governed. Therefore, a well-defined security strategy is required. It should be notated that

security is something that requires frequent update strategies because the state-of-the-art is

constantly evolving. In order to establish the smart grid framework in a secure cluster

environment, Secure Shell version 2 (SSH) protocol [75] is adopted. SSH is

a cryptographic network protocol that allows network systems to operate securely over an

 10.240.0.2 master.sgf #IP and node name for master

10.240.0.3 slave1.sgf #IP and node name for slave1

10.240.0.4 slave2.sgf #IP and node name for slave2

10.240.0.5 slave3.sgf #IP and node name for slave3

 10.240.0.6 slave4.sgf #IP and node name for slave4

21

unsecured network. The SSH provides a secure encrypted link in a client-server architecture,

which connects a client with a server. In addition, SSH provides authentication, encryption and

data integrity to secure network communications. The setup of SSH enables different operations

on the cluster, such as starting, stopping, and distributing operations to nodes. In the context of

our cluster, it provides secured connection between the slaves and master(s) nodes. Also,

specifies how a node can connect securely to another node, and then use the resulting secure

connection to access the other nodes resources. An advantage of implementing the framework

using known cloud service providers is that their cloud service complies with the Cloud Security

Alliance (CSA) which promote the use of best practices for providing and ensuring security

within cloud computing. To implement the SSH in the cloud cluster, the public key

authentication method is used. Public key authentication in SSH is considered to be a popular

strong authentication method. To accomplish this, a manually generating public and private key

are generated on a node. The public key will be given to all cluster nodes that require

authentication. Any data encrypted with that public key, will be decrypted with the

corresponding private key. Thus, every cluster node has a file which contains the complete list of

the other node keys. While authentication is based on the private key, the key itself is not

transferred through the network during authentication. The SSH only verifies if the same node

offering the public key also owns the matching private key. This will prevent a node that doesn’t

belong to the cluster to connect as an authenticated node (eavesdropping). The commands to

setup an SSH connections are presented in Figure 3.5.

Figure 3.5: Commands to setup an SSH connection.

Then the public key (id_rsa.pub) is copied to each node. Hence, every node in the cluster has

the complete list of the other node keys.

 ~]$ ssh-keygen

~]$ cd ~/.ssh

~]$ cp id_rsa.pub authorized_keys #copying node key to list of authorized keys

22

The components that are needed to implement the framework (i.e., Flume, Hadoop, Hive,

Impala) are setup on the cluster. Fortunately, those components can be found in open source

distributions. For simplicity, in this framework CDH is used. During the setup of CDH, the

master and slave nodes are identified by their hostname or IP address. The master node will run

the master “daemons” and it knows where the slaves are located and how many resources they

have. A node identified as master runs several services; the most important is

the ResourceManager which decides how to assign the resources. Nodes identified as slaves

announce themselves to the ResourceManager. Periodically, they send heartbeats to the

ResourceManager. Each slave node offers resources to the cluster. The resource capacity is the

amount of memory and the number of cores. At run-time, the ResourceManager will decide how

to use this capacity.

3.5.2 Flume

Once the data are available from smart meters, it is sent to a local node. An advantage of using

the cloud service is that the data can be sent from any location as long as there is an Internet

connection and the security protocol of the cloud allows it. For example, a neighborhood’s data

can be sent to a node using one Internet connection. It should be noted that the network

communication and aggregation of smart meter data is beyond the scope of this thesis. Nodes

that act as flume agents can be master or slave nodes. In this implementation, a flume agent

receives data in a csv file format. The attributes of the file can include data such as, the

timestamp (Datetimes), smart meter’s ID (ID), generated (Gen)/consumed (Cons) power and zip

code (Zip) (Figure 3.6).

Figure 3.6: Sample of the csv file that includes attributes of timestamp, smart meter’s ID, generated power and zip
code.

 2009-07-14 00:00:00,1001,0.286,80302

2009-07-14 00:00:00,1002,0.089,80302

2009-07-14 00:00:00,1003,0.086,80302

2009-07-14 00:00:00,1004,0.149,80302

2009-07-14 00:00:00,1005,0.086,80302

23

When a flume source receives an event it stores it into a channel that keeps the file event until

it’s consumed by a flume sink (Figure 3.2). The sink removes the file event from the channel and

puts it into the HDFS sink. The file events are removed from the channel only after they are

stored in the HDFS repository for reliability. The flume agent configuration is stored in a local

configuration file (/etc/flume-ng/conf/flume.conf). This is a text file that follows the Java

properties file format. Configurations for one or more agents can be specified in the same

configuration file. The configuration file includes properties of each source, sink and channel in

an agent and how they are wired together to form data flows. Figure 3.7 is the configuration for

the Hadoop cluster, where the flume agent is the master node.

Figure 3.7: Flume configuration file flume.conf that defines how the source, sink and channel are wired together to
form the data flows.

 # Initialize agent's source, channel and sink

agent.sources = SGFExampleDir

agent.channels = memoryChannel

agent.sinks = flumeHDFS

Setting the source to spool directory where the file exists

agent.sources. SGFExampleDir.type = spooldir

agent.sources. SGFExampleDir.spoolDir =

/usr/local/flumeSGF

Setting the sink to HDFS repository

agent.sinks.flumeHDFS.type = hdfs

agent.sinks.flumeHDFS.hdfs.path =

hdfs://master/user/flume/sgf

agent.sinks.flumeHDFS.hdfs.fileType = DataStream

Write format can be text or writable

agent.sinks.flumeHDFS.hdfs.writeFormat = Text

Connect source and sink with channel

agent.sources. SGFExampleDir.channels = memoryChannel

 agent.sinks.flumeHDFS.channel = memoryChannel

24

3.5.3 Hadoop Platform

In this illustration, the Cloudera Manager Hadoop distribution is used for simplicity. The reason

for using such distribution is to provide an easy development environment for practicing users

that are not familiar with CentOS operating system to develop similar tools for their demanding

smart grid applications. Cloudera Manager automates the installation of the essential

configuration, debugging, SQL database, CDH agents, and other components.

During the installation, the cluster nodes are specified using the IP address and hostname

(Figure 3.4). It should be noted that an existing link between the cluster nodes should exist. This

has been completed by establishing the SSH secure encrypted link. Also, the cluster nodes are

assigned master and slave roles, and there can be more than one master node in the cluster. The

nodes are assigned roles that run on them. For example, nodes that perform MapReduce tasks are

specified, and nodes that perform a Hive task are also specified. A cluster node may be specified

to perform more than one task. The status and usage of nodes can be monitored through

Cloudera Manager. This can assist decision makers in adding/reducing the number of nodes in

the cluster and monitoring the reliability of nodes.

Identifying the master and slave nodes was completed during the setting-up of CDH for the

cluster. In the previous step, Flume ingested the data into the HDFS repository. HDFS manages

storage on the cluster by breaking the incoming files into blocks, and storing each of the blocks

redundantly across the slaves. In the common case, HDFS stores three complete copies of each

file by copying each block to three different nodes for reliability (Figure 3.8). Each block size is

128 MB by default, and can be changed to meet the application demand. However, decreasing

the block size could lead to a huge number of blocks throughout the cluster, which causes the

master node to manage an enormous amount of metadata.

The CDH processing component, YARN, takes advantage of this data distribution by

distributing the work involved in a task to many different nodes in the cluster. Each of the nodes

runs the task on its own block of the file (Figure 3.9). The results are collated and digested into a

single result after each involved block has been processed. The CDH monitors jobs during

execution, and will restart work lost due to node failure if necessary.

25

Figure 3.8: HDFS distributes file blocks among cluster nodes.

Figure 3.9: CDH distributes the work out to the nodes.

3.5.4 Hive

Hive facilitates reading, writing, and managing the data stored in the HDFS repository using an

SQL-like interface. In this framework, Hive reads the smart grid data file from the HDFS

repository and generates a data table of interest. In this implementation, it is desired to build a

table that includes only the time stamp, smart meter ID, and consumption of the smart meter. The

SQL-like query can achieve this (Figure 3.10):

Figure 3.10. The Hive SQL-like query to build a table that includes the time stamp, ID and consumption of the smart
meters.

1

2

3

4

HDFS

1

1 1

2
2

2

3

3
3

4 4

4

1

1 1

2
2

2

3

3
3

4 4

4

 CREATE EXTERNAL TABLE ConsumptionsTable (

 Datetimes TIMESTAMP,

 ID BIGINT,

 Cons FLOAT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LOCATION 'user/flume/sgf';

26

This query will read data from 'user/flume/sgf' (the path where Flume sinks the data in Figure

3.7), and anytime new data is ingested into this directory, the “ConsumptionsTable” table will be

updated automatically.

3.5.5 Impala

Similar to Hive, Impala is able to read, write, and manage the data stored in the HDFS repository

using SQL-like queries. However, Hive and Impala differ in the way they function and how

SQL-like statements are written. The following query is an example that deals with a single

house smart meter data, including power generated from solar panel (pvpower) and a residential

wind turbine (windpower). The query creates a table that includes the timestamp, consumption,

pvpower, windpower and zip code (Figure 3.11). The “Invalidate metadata” statement is required

after a table is created, to update the metadata. To respond to queries, Impala must have current

metadata about the data and tables that clients query directly. Therefore, if the data table used by

Impala is modified, the information cached by Impala must be updated. In cases where a delay of

data occurs due to power outages, Flume will ensure the data is stored into the HDFS storage,

and Impala/Hive will update the tables when the data becomes available in “'user/flume/sgf'”.

Adding the “ORDER BY” statement will reorder the data based on the timestamp in this case.

Figure 3.11: The Impala SQL-like query to build a table that includes the timestamp, consumption, pvpower,
windpower and zip code.

 CREATE EXTERNAL TABLE SingleHouse (

datetimes TIMESTAMP , Cons float, pvpower float,

windpower float, Zip STRING)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY','

LOCATION 'user/flume/sgf';

Invalidate metadata;

ORDER BY (datetimes) DESC;

27

3.5.6 Visual Analytics

In this implementation, the Tableau software [73] is used for the smart grid big data visual

analytics. The Tableau presents interactive data visualizations by means of SQL queries. Here it

is desired to send SQL queries to Hive/Impala to build a visualization of data of interest. In order

to accomplish this, a connection between Tableau and Hive or Impala has to be established.

Open database connectivity (ODBC) interface allows applications to access data in database

management systems (DBMS) using SQL as a standard for accessing the data. The remaining

machine running Windows operating system is used to setup Tableau and install Hive/Impala

ODBC drivers [76]. In the Tableau software, a Hadoop server is chosen to connect to, and the

machine and port are determined. The IP address or hostname of one of the machines that run

Hive/Impala is entered. For example, to connect to the master node, the IP address should be

10.240.0.2 (from Figure 3.4). In the port field, the port is the number of the transmission control

protocol (TCP) port that the Hive/Impala server uses to listen for client connections. In CDH, the

Hive TCP port is 10000, and the Impala TCP port is 21050. Once a connection is established, the

desired HDFS data can be reached. The visualizations in Tableau are built by sending SQL-like

Hive/Impala queries generated by Tableau. The Hive/Impala perform on top of the Hadoop

platform which allows vastly improved speed on big datasets for prompt visual analytics.

3.6 Practical Applications of the Framework

The framework described in Section 3.4 can be applied to manage energy for a single-house,

neighborhood or the entire grid. In this section, the cloud platform and Hadoop cluster to

implement the proposed framework are presented. Furthermore, the application of the framework

is applied to two scenarios. In the first scenario, the framework is applied on a single-house to

manage its power usage, to save power and contribute to a smooth and efficient functioning of

the smart grid. In the second scenario, the framework is applied on a recently available smart

metering dataset that consists of 6,436 homes and businesses. Based on the requirements of the

framework, such as cost-effectiveness, improved accessibility, and scalability, Infrastructure as a

Service (IaaS) clouds [77] are appropriate to use in implementing the framework. An advantage

of using such service is that the data can be sent from any location as long as there is an Internet

28

connection and the security protocol [78] of the cloud allows it. The framework was hosted on a

Google cloud platform that consists of six machines. A Hadoop cluster is setup on five machines

with one master node and four slave nodes. The components that are needed to implement the

framework (i.e., Flume, Hadoop, Hive, Impala) are setup on the cluster. The master node is a 2.6

GHz, 7.5 GB RAM running 64-bit Linux operating system. All slave nodes were 2.6 GHz, 3.75

GB RAM running 64-bit Linux operating system. The remaining machine was a 2.6 GHz, 3.75

GB RAM running 64-bit Windows operating system to run Tableau to perform the visualization

tasks. A secure encrypted link between the cluster nodes was setup using the SSH protocol [78].

3.6.1 Single-house Application

In the first scenario, beside the typical household appliances that consume power, this house

includes micro-power generators namely, a residential wind turbine and rooftop photovoltaic

(PV) solar panels. Furthermore, an EV is included in the scenario, as EVs are a subject

undergoing intense study in smart grids. The household electric power consumption data was

obtained from the UCI data repository [79]. It includes the global active power and three sub-

meterings. The first sub-metering corresponds to the kitchen, containing mainly a dishwasher, an

oven, and a microwave. The second sub-metering corresponds to the laundry room, containing a

washing machine, a dryer, a refrigerator and a light. The third sub-metering corresponds to a

water heater and an air-conditioner. To calculate the power output of the wind turbine and PV

solar panels, the wind speed, temperature and irradiation data were obtained from [80] with the

latitude of 39.74ºN and longitude of 105.18ºW. Due to the lack of datasets that include the power

consumption and micro-power generators’ data, it is assumed that the house exists in a location

where the data of micro-power generators is available. For that, it is assumed that the house is

located with the latitude of 39.74ºN and longitude of 105.18ºW, which is the same coordinates of

the data of the wind speed, temperature, and irradiation. The wind turbine considered was a 3

kW residential turbine. The wind turbine’s power output was calculated using the weather data

(i.e., the wind speed and air density) of the specified location and the wind turbine’s data sheet

[81] put in the formulas of [82]. The number of rooftop PV solar panels [83] was ten, and the

method to calculate the power output with respect to the weather data (i.e., ambient temperature

29

and solar irradiation) for the location is described in details in [84]. The EV charging (G2V)

profile was obtained from a study of EV driver recharging habits in the north east of England

[85], and the EV discharging (V2G) habit was obtained from [86] as it suggested that 10% of the

EV’s energy can be discharged into the network. Figure 3.12(a) illustrates the consumption and

generation of the house with a one-minute time resolution using the Tableau visualization tool.

While Figure 3.12(b) illustrates a dashboard for the power status of the aforementioned house

updated every one minute. The consumption of power (household loads and G2V) is in red color

whereas the aggregated generation from the PV panels, wind turbine and V2G is in blue (Figure

3.12(b)). A pie-chart can be added on the location of the houses to observe the average

consumption/generation power (Figure 3.12(c)). This can be applied to other locations on the

map if data were available.

30

(a)

(b)

(c)

Figure 3.12: Dashboards for power status. (a) cumulative consumption and generation with one-minute time
resolution. (b) power status of the house. (c) Map with pie-chart for consumption (red) and generation for the house.

31

3.6.2 Smart Grid Application

Due to the lack of lengthy datasets similar to the data used in the first scenario that consider

micro-generators, in the second scenario a large smart grid data set is considered. The reason for

applying the first scenario was to show that micro-generators and EV systems data can be

included in the framework. In the second scenario, it is also desired to test the efficiency of the

framework in handling lengthy smart grid data.

In the second scenario, a smart metering electricity behavior dataset from the Irish Social

Science Data Archive [87] that took place from July 2009 to December 2010 for 6,436 Irish

homes and businesses with a 30-minute time resolution is used to test the feasibility of the

framework. Each smart meter produced around 25,730 electricity consumption time-series

readings during the mentioned period. This corresponds to over 165 million electricity

consumption readings to be ingested. The data generation rate of each smart meter was 30-

minutes. Thus, 6,436 smart meter data observations were ingested every 30-minutes. Each

observation contains the timestamp, smart meter ID, and electricity consumption. Utility

companies may have access to additional data about their customers, e.g., location and square

footage of the home. However, this information is usually not available to third-party

applications. The data were individually ingested to the master node in the Hadoop cluster using

Flume. Once the data are collected, it is stored into the HDFS infrastructure. The SQL queries to

read and arrange tables from the electricity consumption of the 6,436 smart meter readings are

run in Hive and Impala. As Hive and Impala differ in the way they function, it was desirable to

observe which data querying component is able to perform faster. In this Hadoop cluster, both

Hive and Impala were able to produce/update the table with the new 6,436 smart meter data

readings (i.e., the timestamp, smart meter ID and electricity consumption from each smart meter

every 30-minutes) in a comparable amount of time (less than one second).

32

(a)

(b)

Figure 3.13: Dashboards for power status in the smart grid. (a) Power consumption of 6,436 Irish home and
businesses updated every 30-minutes. (b) Power consumption of 11 selected smart meters.

33

In this application, the focus is to develop a dashboard to visualize the status of the smart grid

for DDR purposes. To achieve this, Tableau visualization software was used. The Tableau

software connects with the Hadoop cluster through Hive or Impala queries to achieve near real-

time visualization. Here Impala was able to outperform Hive in updating the visualization of the

smart grids status. This suggests that Hive can be suitable for big data batch processing, whereas,

Impala can satisfy the requirement of near real-time big data processing. Figure 3.13(a) presents

a dashboard for the status of the on-hand smart grid with the aggregated consumption of 6,436

Irish homes and businesses. Consequently, a DR strategy by analytics can be suggested during

peak periods. Moreover, dynamic power pricing and incentives for reducing loads during peak

periods can be advertised for. The locations of the smart meters’ can be visualized on a map

similar to Figure 3.12(c). Also, a view of the power consumption for a certain region or specific

smart meters can be obtained (Figure 3.13(b)) for further analysis.

3.7 Conclusion

This chapter presented a big data framework for smart grids. The concept of big data and the

core components of the framework were highlighted. The framework’s stages including, data

acquisition, data storing and processing, data querying, and data analytics components were

discussed in details. Furthermore, the functionality of the Hadoop platform and the features that

make it suitable for the smart grid big data management and analysis were highlighted.

To verify the effectiveness of the framework, the framework was implemented on a cloud-

based platform. Furthermore, the application of the framework was applied to two scenarios. The

first scenario was a single-house that included micro-generators (i.e., wind turbine, PV roof

panels and EV). The second scenario included a real smart metering electricity behavior dataset

from the Irish Social Science Data Archive for 6,436 participating Irish homes and businesses.

The framework was able to acquire, store, process and query the massive amount of data in near

real-time. Also, this chapter covered a DDR task, by enabling the smart grid users to share and

visualize its information. This can present the following benefits:

- The integration of renewables by using demand-side management to address supply
fluctuations is promoted.

34

- The grid’s reliability can be increased by using the customers as a virtual power resource
during peak periods (negative demand is equivalent to a positive supply).

- This can elude the need to build new power plants for standby generation, by lowering the
peak periods and advertising for incentives for reducing loads.

- The environmental impacts can be limited as monitoring micro-generators are included,
especially vehicle-to-grid (V2G) power.

Finally, the impact of the presented framework goes beyond visual analytics, but in this work,

the main objective was to introduce a framework that can sufficiently handle the massive smart

grid data. The application of the two scenarios and the visualization of the grid’s status, suggests

that this framework is feasible in performing further smart grid data analytics.

35

Chapter 4

Lambda Architecture for Smart Grids Big Data Analytics

4.1 Introduction

The previous chapter presented a framework that covers the life-cycle of smart grid big data

from generation to analytics. That framework utilized state-of-the-art big data components to

address the smart grid big data challenges. However, the previous presented framework can be

developed to scale with big data applications that require real-time updates. For that, in this

chapter the framework is developed to comply with Lambda architecture to handle massive

quantities of data by taking advantage of both batch and real-time processing methods.

In this chapter the features of utilizing the Lambda architecture for smart grid big data are

highlighted. Then the smart grid big data Lambda architecture eco-system is presented. Further,

the implementation of the eco-system on a cloud computing platform is presented. In addition,

visualization and data mining applications are presented. Finally, the conclusions of the chapter

are drawn.

4.2 Features of the Lambda Architecture for Smart Grids

The following features make the Lambda architecture suitable for smart grid big data

management and analytics.

4.2.1 Robustness and Fault Tolerance

Computation failures and node breakdown are common in smart grid systems. The Lambda

architecture is tolerant to machine failure and data corruption. The batch and real-time views can

always be recomputed from the master data. Also, replicates of the data are stored in many

nodes, and the computation tasks can be distributed to other healthy nodes in the cluster in case

of machine failures or breakdowns.

36

4.2.2 Low Latency

The Lambda architecture brings parallel computation, and allows achieving real-time read and

updating without compromising robustness. This allows smart grid operators to monitor the

status of the grid in real-time, in addition, to propose demand-side-management decisions to

produce desired changes in the aggregated load shape during rapid imbalances in the smart grid.

4.2.3 Scalability

Layers of the Lambda architecture can be scaled independently. This enables the system to

automatically redistribute data and computation tasks to accommodate hardware changes without

affecting the functionality of the cluster nodes. Also, this supports installing new smart meters to

the grid by adding computation nodes and storage devices to the existing Lambda architecture

cluster without affecting the existing infrastructure.

4.2.4 Generalization and Flexibility

The Lambda architecture is able to store and compute views for various types of data from

numerous sources, which makes it feasible to be used across a large number of different smart

grid big data applications.

4.3 Smart Grid Big Data Lambda Architecture Eco-system

The architecture for smart grid data can be decomposed into five subsequent stages:

1- Smart grid data generation.

2- Smart grid data collecting.

3- Data storing and processing

4- Data querying.

5- Data analytics.

This smart grid big data eco-system includes a feedback loop that could assist the smart grid

operators in observing the results of their decisions on the reliability of the grid. Figure 4.1

37

presents the smart grid big data cycle based on the Lambda architecture, and the following

subsections discuss the stages of this architecture.

Figure 4.1: The smart grid big data eco-system to deal with the smart grid big data from data collecting to data
analytics, with visualization and feedback loop capabilities.

4.3.1 Smart Grid Data

The deployment of smart meters and sensors throughout the grid results in massive amounts of

data. This includes generation side data (wind farms and PV plants), consumption side data

(residential homes, factories, and EV charging stations), prosumers data (residential PV panels

and V2G) and, weather and natural disasters data can be included in the smart grid system. Also,

images and video footage could be included to detect physical attacks (California transmission

substation sniper attack [88]) or investigate power outages. The smart grid data is considered to

be large in volume, high in velocity and wide in variety. The value of this smart grid big data

becomes useful when integrated with multi-sourced existing smart grid data in an analytics

environment, and can potentially enhance the functionality of the smart grid.

38

4.3.2 Data Collecting

The multi-source smart grid data generated from the previous layer are to be sent pro-actively to

the utility center. To accomplish this, the smart meter data is transmitted to a cloud storage

platform through an Internet connection. A reliable tool that is capable of collecting the smart

grid data from a single/multisource is Flume [68]. In this smart grid big data eco-system, Flume

pulls the data and transfers it to a specific master node in the Hadoop cluster. An advantage of

using Flume for data aggregation and transmission is that it ensures the data is stored in the

desired final destination. This ensures that the data will be delivered even in cases where

disconnections and outages occur. Flume accomplishes this by keeping the actual data in a

virtual memory channel until it is completely ingested into the data repository.

4.3.3 Lambda Architecture (Data Storing and Processing)

From the previous layer, the data is sent to a Hadoop master node. The HDFS component in the

batch layer of the Lambda architecture eco-system manages storing the data across multiple

nodes in the cluster. Also, the batch layer performs its second task, to precompute batch views

for this distributed data by using the MapReduce processing component. Meanwhile, the speed

layer in the Lambda architecture stores, updates and computes the real-time views of the data

collected from Flume. As mentioned in Section 2.3, the Hadoop platform can accomplish the

operation of the batch layer of the Lambda architecture. In order to accomplish the functionality

of the speed layer of the Lambda architecture in this smart grid big data eco-system, Apache

Spark [89], [90] is used. The main feature of Spark is its in-memory cluster computation

capability that increases the processing speed of an application. The serving layer of the Lambda

architecture merges the results of batch and speed layer computations to provide real-time

computation results for the subsequent data querying layer.

4.3.4 Data Querying

The data querying layer includes tools that enable to extract, load and aggregate data stored in

HDFS form. In this smart grid big data eco-system, three querying tools are used. Each querying

39

tool differs in the way it functions and executes various parallel operations on a cluster. Hive

[69] uses MapReduce operations to retrieve data. Impala [70] uses the nodes memory to execute

the queries. While, Spark SQL [91] is a component on top of Spark in the speed layer of the

Lambda architecture that uses resilient distributed dataset, which is a collection of objects

partitioned across the nodes of the cluster that can be operated-on in parallel. The reason for

including those querying tools is to enable using the suitable querying tool for a specific type of

application. For example, for real-time visualization of the grid load, Impala and Spark SQL

maybe options to use in this application. However, to compute the amount of power consumed

by a specific region during the past year, Hive would be a suitable option to use. Also, including

those three data querying components make the smart grid big data eco-system a more compact

system.

4.3.5 Analytics

The data analytics is the most important stage in this developed smart grid big data eco-system.

The main objectives of this stage are to extract useful information and insights, and assist the

smart grid operators in making informed decisions that could essentially promote the reliability

and operation of the smart grid. Also, to observe the effects of the decisions made on the smart

grid by using the feedback loop. In this eco-system, three analytical tools are presented. These

tools can cover data mining and knowledge discovery, statistical and table manipulation, and

visual analytics applications. It should be noted that other analytical tools maybe used on top of

this eco-system, however, the tools illustrated in this section are able to perform an entire smart

grid big data analytical application including, observing the results of decision making using the

feedback loop.

4.4 Implementation on a Cloud Computing Platform

In this section the implementation of the smart grid big data eco-system on a cloud computing

platform cluster and the method to establish secure connections between the cluster nodes are

presented. A hierarchical view of the utilized tools to implement the smart grid big data Lambda

40

architecture eco-system is shown in Figure 4.2. Further, the settings to connect the analytical

tools to the Lambda architecture are highlighted.

Figure 4.2: Hierarchical view of the utilized components to implement the smart grid big data eco-system.

The IaaS cloud computing platform can meet the smart grid big data requirements, which

provide reliability, scalability, cost-effectiveness, and service provisions for hardware services

such as, virtual machines and storage. For this implementation, the Google cloud computing is

used to host the eco-system. Six machines were used to build-up the eco-system cluster. This six

node cluster consists of one master node and five worker nodes. The master node is 8 vCPUs 30

GB RAM machine and the worker nodes are 4 vCPUs 15 GB RAM machines, all running 64-bit

Linux operating system. To establish a secure encrypted connection between the cluster nodes,

the secure-shell (SSH) [75] connection is used.

Once a secured connection is established, the various types of smart grid data are pro-actively

sent to the IP address of the master node. The advantage of using a cloud computing platform is

that the data can be sent from any location through an Internet connection. The data collection

component, Flume, is setup on the master node to actively poll for data, and is responsible to

sink the data in the HDFS repository. To organize the data present in the repository, multiple

Flume agents are setup. For example, residential smart meter and power plant generation data are

Data Collection

Data Storing and

Computation

Data Querying

Analytics Applications

Flume

HDFS
 (Storing)

MapReduce – Yarn

(Computation)

Hive
(SQL)

Spark SQL
(Querying)

 Spark Core

(Computation)

Impala Cloudera
(SQL)

Radoop
(Big Data Analytics)

Matlab
(Big Tables and Analytics)

Tableau
(Visual Analytics)

C
lo

u
d

e
ra

 H
a

d
o

o
p

D

is
tr

ib
u

ti
o

n

41

stored in separate directories. This prevents “Data Swamp”, which is a phenomenon in data lakes

that occurs due to large volume of unorganized ingestion of data, from happening.

To implement the Lambda architecture the following components were setup on the cluster

nodes:

- Hadoop platform: includes the storing component HDFS and the processing components

MapReduce and Yarn.

- Spark Core [89]: contains the basic functionality of Spark, including components for

scheduling, memory management, fault recovery, interacting with the storage system.

- Spark SQL to query the data [91].

- Hive: facilitates reading, writing, and managing the data stored in the repository using

queries.

- Impala Cloudera: to read, write, and manage the data stored in parallel on the node’s

memory.

In order to install and configure the above components, Linux and programming background

experience is required. Alternatively, Hadoop open-source distributions can be used, such as,

Cloudera distribution of Hadoop (CDH) and Hortonworks Hadoop distribution. Those

distributions include most of the smart grid big data components that are used in this eco-system,

and the average user is able to configure the settings. It should be noted that using the CDH

distribution is more convenient; also, it includes the Impala querying tool.

To perform data analytic applications on top of the smart grid Lambda architecture eco-

system, a machine that runs Windows operation system is used. The RapidMiner Radoop [92],

Matlab [93] and Tableau [73] tools are installed on this machine. Then a remote connection

between those analytic tools and the cluster through the master node is established. This

connection allows access to the data and run queries using Spark SQL, Hive and Impala. Those

connections are established by using Open Database Connectivity (ODBC) drivers [76] and

configuring the TCP port. For example, the TCP ports in the CDH distribution for Hive and

Impala are 10000 and 21050, respectively. In this smart grid big data eco-system, Radoop is used

for data mining, Matlab tall arrays for table organization, and Tableau for visual analytics.

Matlab tall arrays provide working with data backed by a distributed data store. It should be

42

noted that Radoop and Matlab can be used for many other applications, such as data mining and

statistical applications.

Once the eco-system has been built, and a remote connection to the cluster exists, analytical

applications can be performed on top of the eco-system.

4.5 Practical Applications of the Smart Grid Big Data Lambda Architecture

In this application of the smart grid big data eco-system it is desired to perform an unsupervised

data mining application and visualization of smart grid data. The data mining application is

clustering the residential customer daily loads, and visualizing the residential load consumption

of the smart grid. The utilized smart grid data is from the Pecan Street Dataport [94]. This data

includes the smart meter data for 359 real households in Texas, Colorado, and California

recorded every ten minutes. The following subsections present the steps to accomplish an

analytics task on top of the smart grid big data Lambda architecture eco-system.

4.5.1 Storing and Organizing the Data

Every ten-minute, Flume ingests the smart meter data into the batch layer and speed layer. This

data includes the timestamp, ID, and load of the smart meter. For the specific application of

clustering the daily residential loads, Matlab accesses this data through Spark SQL and organize

it into daily loads of tall arrays. This corresponds to 144 ten-minute load observations per day

from each smart meter. The Flume file and commands to configure Spark for Matlab, and

read/store into HDFS are presented in Appendix A and Appendix B, respectively.

In order to extract, process and store the data, the Extract, Process, Store (EPS) process [95] is

used. This EPS process uses the smart grid data stored by extracting appropriate information,

structuralizing it, processing and querying, and storing the data in the desired form. The daily

residential loads are stored into the HDFS repository using Hive queries. The results of this step

are:

1- Real-time ten-minute smart meter readings of the smart grid for visualizing the residential

load consumption.

2- The daily residential loads for clustering.

43

4.5.2 Visualization of Smart Grid Loads

The objective of this step is to visualize the residential loads as they are recorded every ten

minutes from the smart meters in real-time. Differently from the visualization task in the

previous chapter where Tableau was connected to the distributed smart grid data through an

Impala connection, here the connection and visualization are run through Spark. The

disadvantage of using Impala is that the recent smart meter data is first stored in the HDFS

repository in the batch layer then can be accessed. This causes delays in the visualization

especially when the number of smart meters within the smart grid is high, accordingly real-time

visualizations of the smart grid loads cannot be achieved. However, in the Lambda architecture,

this delay is overcome by introducing the speed layer for real-time access to the recent data. This

Spark connection to Tableau allows the smart grid operators to monitor the loads in real-time.

The result of this step is a real-time visualization of the residential loads (Figure 4.3). It is worth

noting that the visualizations may be shared with customers through online dashboards to

monitor the status of the smart grid, which makes them an active component in the reliability and

operation of the grid.

Figure 4.3: Energy consumption observation for the residential customers for Jan. 8, 2017.

44

4.5.3 Clustering Residential Customer Daily Loads

In this step of the application, it is desired to partition the residential customers into groups based

on the shape of the load consumption on top of the smart grid big data eco-system. To

accomplish this big data mining task, the Radoop tool is configured to connect to the cluster

nodes through Spark. The Radoop process to preprocess the data and group the residential

customers is presented in Figure 4.4. The first step in this process is to retrieve the daily

residential customer loads from the distributed HDFS repository. This is achieved by the serving

layer which merges the results of the batch and speed layers to compute views of the data. Once

views of the desired data are available, it is necessary to preprocess the retrieved data, such as

dropping daily loads with missing values and selecting the load attributes and customers to

cluster. After the data is preprocessed, a suitable clustering algorithm can be applied to the data.

It should be noted that the chosen clustering algorithm should be designed to be applied in

parallel on distributed data. Data mining algorithms that run parallel on distributed data are still

narrow and are a topic that is under research. In this application, the well-known K-means

clustering algorithm is used to partition the residential customers into groups based on their load

profiles. The results of applying the K-means algorithm are stored back into the HDFS repository

for further analysis. This formation of customer groups based on the load consumptions can

assist the smart grid operators in the tariff formation process. Also, those clusters can present

detailed knowledge of the consumption nature to promote demand response programs. In this

clustering application, the customers are grouped into five clusters. It should be noted that

choosing the number of clusters is beyond the scope of this application. In this smart grid big

data eco-system, Tableau, and Matlab can be used for collecting and visualizing the results of the

K-means algorithm. Figure 4.5 shows the clusters’ representatives for January 2017. It can be

observed that customers in cluster# 4 have abnormal load consumptions when comparing it with

the other clusters. This cluster has higher load consumption profiles, and may be of interest to

apply demand response strategies. The smart grid operators may decide to target those customers

to promote the reliability of the smart grid or reassign tariff formation. Figure 4.6 shows a

zoomed view of cluster# 4. It should be noted that this data mining application can be applied to

a larger number of customers, and as the scale of data is larger, more accurate knowledge and

45

insights maybe achieved that could essentially assist the smart grid operators in decision making

and promoting the reliability of the smart grid.

To test the robustness of the presented eco-system in situations where cluster nodes

breakdown or are disconnected, in the first case two nodes are randomly disconnected from the

cluster, then the clustering of the daily residential loads application is run on those four

remaining nodes. The remaining four nodes were able to retrieve the data and present the same

results. However, the execution time of the Radoop process increased. This was accomplished by

the storing of smart grid data in multiple nodes and distributing the computation work to other

healthy nodes in the cluster. Further, the same application was run on three nodes; this includes a

master node and two worker nodes. The same Radoop clustering results were successfully

achieved. This suggests that the presented smart grid big data Lambda architecture eco-system is

robust to network outages and node failures. The execution times for the robustness tests for six,

four and three nodes are presented in Table 4.1. The success of a test in Table 4.1 indicates that

the required data to perform the clustering of residential daily loads were retrieved from the

healthy nodes in the cluster.

The main objective of this data mining application was to test the feasibility of the smart grid

Lambda architecture eco-system in performing data analytical applications on large-scale

distributed smart grid big data. The results obtained from this application suggest that various

data analytical applications can be applied on top of the presented eco-system.

Figure 4.4: Radoop RapidMiner nest process to preprocess the data, apply the data mining clustering K-means

algorithm and store the results into the HDFS repository.

46

Figure 4.5: Visualization of the five cluster representatives of the K-means clustering algorithm.

Figure 4.6: Zoomed view into cluster# 4 as it represents abnormal or interesting load consumption behavior.

47

Table 4.1 Robustness Test Execution Times for the Smart Gird Big Data Eco-System on Clustering Residential
Customer Daily Loads

Number of cluster

nodes (including one
master node)

6 nodes 4 nodes 3 nodes

Success   

Radoop process
execution time 0.27 sec 0.59 sec 1.29 sec

4.6 Conclusions

This chapter presented a smart grid big data eco-system based on the Lambda architecture. The

Lambda architecture design and principals for building batch and real-time processing systems

were discussed. This eco-system is able to handle massive quantities of smart grid data by taking

advantage of batch and real-time processing methods. Furthermore, this eco-system collects then

stores the smart grid big data into a cloud. This allows collecting various types of smart grid data

including smart meter data, and image and video data to enable data mining in digital image and

video processing applications.

The presented eco-system was implemented and setup on a cloud computing platform.

Furthermore, data mining and visualization applications on real smart grid data were performed.

The data mining application was to partition the daily smart meter readings into groups based on

the load consumption. In the visualization application, the presented eco-system was able to

overcome the delay in real-time visualization of the previous smart grid big data frameworks by

utilizing the Lambda architecture. In addition, the robustness tests carried out proved the

robustness of the eco-system in cases of network outages or node failures.

Due to the lack of a mature tool that can perform data analytic applications, this eco-system

utilized a combination of analytic tools that were sufficient to perform the desired applications of

visualization and data analytics. Also, it is worth noting that other analytic tools can be used on

top of the eco-system, and as data mining algorithms develop to work parallel on distributed

data, they can be applied on top of the presented eco-system.

48

Chapter 5

Unsupervised Non-intrusive Extraction of Electrical Vehicle

Charging Load Patterns (EEVCLP)

5.1 Introduction

The previous chapter presented an eco-system that is capable of collecting and storing the smart

grid data, including the smart meter data, for further analysis. With the rapid popularization of

EVs and the issues it introduces to the electrical grid, in this chapter it is desired to extract the

EV charging loads (EVCLs) from the aggregated smart meter daily loads of residential

households. Extracting and aggregating those EVCLs is essential to allow smart grid operators to

make intelligent and informed decisions about conserving energy and promoting the reliability of

the grid.

In this chapter, an unsupervised algorithm to extract the EVCLs non-intrusively from the

smart meter data is proposed. The proposed algorithm can run on low-frequency smart meter

sampling data and only requires the real power measurement, which is the type of data

communicated and recorded by most smart meters. Furthermore, validation results and case

studies are shown.

5.2 Theoretical Background of ICA for Extracting EVCLs

ICA [96], [97] is a signal processing technique whose goal is to express a set of random variables

as linear combinations of statistically independent component variables. One of the main

applications of ICA is in blind source separation [97]. In the basic form of ICA [96], x = [x1, . . .,

xm] is a random time-varying observed signal vector, and likewise s = [s1, . . ., sm] is a random

vector with the original signal elements. Then the linear relationship is given by:

 x As (5.1)

where A is an unknown m×n mixing matrix to be estimated.

49

The statistical model in (5.1) is called the ICA model. The ICA model is a generative model,

which means that it describes how the observed data are generated by a process of mixing the

components s. The independent components are latent variables that cannot be directly observed.

Also, the mixing matrix A is assumed to be unknown. The only observation is the random vector

x, and it is desired to estimate A and s using it. To obtain this, it is assumed that the components

si are statistically independent. Also, the independent component has non-gaussian distributions.

However, in the basic model, these distributions are not known (if they are known, the problem

is considerably simplified). For simplicity, it is assumed that the unknown mixing matrix A is

square. Then, after estimating the matrix A the inverse can be computed (W), and the

independent components are obtained by:

 s Wx (5.2)

Before applying the ICA algorithm on data, it is useful to do some preprocessing, to make the

problem of ICA estimation simpler and better conditioned. The used preprocessing techniques

including centering and whitening are presented in Appendix C.

Although ICA separates the signals, the exact amplitude and sign of the independent

components cannot be determined. This is considered to be a drawback in applications where the

amplitudes of the signals are desired.

5.3 Independent Component Analysis for Extracting Electric Vehicle Loads

In the context of applying the independent component analysis (ICA) for extracting the steady

charging load (stage2) of EVs, x is the observed aggregated signal composed of two mixed

signals. The first is the aggregated signal without the EVCL signal, and the other is the EVCL

signal. Figure 5.1 illustrates the problem of the ICA in the context of extracting EVCLs from a

mixture of aggregated appliance signals. Initially, it is assumed that the amplitude of the EV

signal is known. This means that one independent distribution is known and, hence, this

simplifies the problem. Accordingly, the ICA model can act as extracting the distribution pattern

of the EV load from the observed aggregated signal. Although the EVCL can be extracted from

the aggregated signal using the ICA method, the amplitude and sign of the extracted EVCL

50

cannot be determined. This is due to the unavoidable ambiguities of ICA. For that, the grouping

of EVs in categories will assist in estimating the amplitude of the extracted EVCL signal in

Section 5.3. For that, various EV charging amplitudes have been collected. Table 5.1 presents

some of the collected charging amplitudes at stage2 for existing EVs in global markets [98],

including 100% EVs and plug-in hybrid vehicles. The EV signal that the ICA needs to extract is

called a template. A template is a row vector that contains N replicates of the EV charging

amplitude. The EVs can be grouped into categories based on their charging amplitudes. For

example, EVs that have charging amplitudes of 3xxxW are grouped in the same category and

EVs that have charging amplitudes of 6xxxW are in the same category, and so on.

Figure 5.1: The extraction of EVCL from the aggregated load problem. Source1 is the aggregated load pattern
without the EVCL. Source2 is the EVCL. Mixture is the aggregated load pattern.

Table 5.1 Stage2 Charging Amplitudes of EVs in Global Markets

Model Max Charge Category#
Porsche Panamera S 3 kW

1

Audi A3 e-tron, Cadillac ELR, Chevy Spark, Chevy Volt, Ford Fusion, Hyundai Sonata,
Mercedes S550, Mitsubishi i-MiEV, Nissan LEAF

3.3 kW

Porsche Cayenne S, Volkswagen e-Golf 3.6 kW
Tesla 6 kW

2 Fiat 500e, Ford Focus, Honda Accord, Kia Soul, Nissan LEAF 6.6 kW
BMW i3, Volkswagen e-Golf 7.2 kW 3
Tesla Model S, Tesla Model X 10 kW 4

Original signal 1

Original signal 2

Mixture

IC
A

Extracted signal 1

Extracted signal 2

51

5.4 Proposed EEVCLP Algorithm

5.4.1 General Aspects

This section illustrates the general proposed extraction of EV charging load pattern (EEVCLP)

algorithm. The initial data is the aggregated load pattern (ALP) vector x = [xt, . . ., xT], for t = 1,. .

., T. The ALP contains T observations with a time-series resolution of one minute ( =1). The

mathematical formulation presented here is described by considering all vectors as row vectors.

The flowchart of the EEVCLP algorithm is presented in Figure 5.2 and the parameters are

presented in Table 5.2.

The vector s = [snm, . . ., sNm] represents the m-th template to be extracted from the ALP x. The

whole set S of templates is represented by the matrix S = [sm, . . ., sM] for m = 1,. . ., M. From

Table 5.1, the number of templates M=7. Each template sm contains N points of stage2 charging

power amplitudes to be extracted. In this illustration, the ICA is applied with a time frame

window size of N=10. The window is then shifted progressively to the next frame until the entire

ALP (x) is covered. For example, if x contains the daily ALP with one-minute time-steps

(T=1440), accordingly, the ICA will be applied T/N = 144 times to cover the whole sequence of

x. The templates are grouped into categories based on their charging amplitude. For example,

EVs that have charging amplitudes of 3xxxW are in the same category and EVs that have

charging amplitudes of 6xxxW are in the same category, and so on. This assumption will assist

in the estimation of the amplitude of the extracted EVCL in the iterative process (Section 5.4.2).

The extracted EVCL can include more than one extracted charging session (ECS). An ECS

consists of the index time t when the EV starts charging (starte) and the index time t when the

EV ends its charging session (ende). The ECSs are registered as couples in a vector De = [starte,

ende] and the entire couples of ECSs for an extracted EVCL are represented in the matrix D =

[De,…, DE].

As mentioned previously, in the context of applying the ICA for extracting the EVCL, the

observed signal vector is x and one of the sources s is assumed to be known. This means that one

independent distribution is known and, hence, this simplifies the problem. Accordingly, the ICA

52

model can act as extracting the distribution pattern of the template sm from the aggregated power

x.

Figure 5.2: Flow-chart of the EEVCLP.

Setup: data x, parameters N, M, pmax, m=0, templates S

Iteration m= m+1; p=0

N

Y

Initialization

Iterative Process

pmax = p

Local Estimation &

Final Stage2 EVCL

Result

Start

Apply ICA for actual load x and template sm

Obtain the extracted EVCLs matrix Z

p= p+1

Obtain the extracted EVCL solutions cp

Detect and remove false extractions FPs

Update the extracted EVCLs cp

Construct ESTx of cp by one of the estimation methods 1-4

Compute Error0pm

Compute Error1m; Obtain best extracted EVCL

M = m

Y

N

Obtain and EVCLs that exist in the same category, if any

Construct EST2x to improve the amplitude estimation by the
estimation method 1-4

Compute

Obtain the final extracted EVCL of Stage2

End

Extract gradual increase (Stage1) and update EVCL

Extract gradual decrease (Stage3) and undergo correction

phase, and update EVCL

Extraction of Stage1 & Stage3

53

Table 5.2 The Parameters and Descriptions for the EEVCLP Algorithm

a Index of error1

b Index of error2

C Solution vector
g Index of overall minimum error

S Vector template of maximum charging amplitude

 Time resolution

X Original aggregated load pattern

  Component of stage1/stage3

 Pattern window of stage3

Z Extracted signal by independent component analysis

Be Base load

C Matrix of solution vectors

D Vector of start and end couple

D Matrix for start and end couples

Error# Error between the reconstructed and original signal

ESTx Reconstructed load pattern

ESTx2 Reconstructed load pattern to improve
the estimated amplitude

F Final extracted stage2 signal

P The preceding components

F The following components

starte Start time index of charging session

ende End time index of charging session

M Number of templates

N Window size of sequence to be extracted

P Counts of non-zero extracted signals

S Matrix of templates s

 V Duration of stage1/ stage3

Z Extracted signals matrix of/independent component analysis

54

5.4.2 Iterative Process

Initialization

The initialization includes the setting-up of the number of minimum desired sequence of EVCL

to be extracted at each window (N), and the amplitudes and number of templates (M).

Successive Iteration

Application of ICA (Step1): The ICA is applied with a window size of N=10 on the entire

sequence of x to extract the m-th EVCL (sm). The result is a vector zn = [znt, . . ., znT], for t = 1,. .

., T that represents the extracted EVCL from x. The vector zn will contain detections of EVCLs if

the whole sm template window matches. This will lead to missing EVCLs that have not started at

the beginning of the window. For this purpose, the ICA is repeatedly applied N times. At the

beginning of every repetition n, the window is shifted one position to the right. Thus, ten

extracted EVCLs are obtained and stored in an N×T matrix Z= [zn, . . ., zN], for n = 1,. . ., N.

Extracting the EVCL vector (Step2): Here a variable p for p =1,…, N/2 is introduced. This

variable represents the number of non-zero extracted EVCL occurrences in the t-th column of

matrix Z. From each column t of matrix Z, a solution component ct, for t = 1,. . ., T is generated.

The component ct is zero, unless there are p non-zero occurrences then ct becomes:

 tc = { 1
/



 
 
 
 nt

N

n
Z p ,

 of occurancenumbe s pr 

0 , otherwise
 (5.3)

The result is an extracted EVCL solution vector cp = [cp1,…, cpT] and the set of solutions C is

represented by the matrix C = [c1,…, cp], for p = 1,…, 5.

Removing false positive extractions of EVCLs (Step3): Due to appliances that may have similar

operation cycles and amplitudes as EVs (e.g., A/C units and dryers) the generated solution cp can

contain false positive (FP) detections of EVCLs. It is desired to shave or at least mitigate these

FP extractions. To achieve this, the signatures of household appliances that may cause FP

55

detections are studied to take advantage of their behavior in reducing the FP detections rate. It

was observed that most of the FPs occur from dryers, especially, when s is from Category#1.

The following steps were generated after studying the appliances that interfere, and have similar

amplitudes and patterns to EVs.

1- If the length between two consecutive couples of ECSs is:

  1 1 1() 18 AND () 120 OR () 120       e e e e e eabs start end abs start end abs start end (5.4)

 then remove both couples of ECSs from cp and update the ECS matrix D.

2- If the length of a couple ECS is () 20e eabs start end  , remove the ECS couple from cp and

update the ECS matrix D.
The latter will lead the proposed algorithm not to extract EVCLs that have charging sessions

< 20-minutes. Such short charging sessions can be neglected when there is a trade-off between

accuracy and detecting shorter charging sessions. The state-of-the-art algorithms [39] can only

extract EVCLs that have charging sessions > 30-minutes.

The result from this step is an updated matrix C that has zero/reduced FP detections of

EVCLs.

Estimating the amplitude (Step 4): As mentioned in Section 5.2, the ICA algorithm is unable to

detect the sign and estimate the amplitude of the separated signal. In the context of EV charging,

the sign of the extracted EVCL must always be positive as it consumes power. Accordingly, this

drawback of ICA can be overcome. However, the remaining issue of estimating the amplitude of

the extracted EVCL needs to be addressed. For this purpose, four estimation methods will be

introduced to estimate the amplitude of the extracted EVCLs.

It should be noted that, for EV templates (s) that have greater amplitude than the ALP (x),

there will be no ECS detected. For example, if s7 (from Category#4) is selected as a template,

where the amplitude is 10 kW, and the entire ALP (x) has amplitude less than 10 kW, there will

be no extracted EVCL (cp). Accordingly, there is no reason to estimate the amplitude and the

algorithm will return zero EVCLs.

In this algorithm, it is assumed that the amplitude can be estimated from the components of x

that precede (P) and/or follow (F) a De charging couple:

56

 (() ,..., ())  e e e eP x D start ps D start fs (5.5)

 (() ,..., ())  e e e eF x D end ps D end fs (5.6)

where a duration of 10-minutes that precede and/or follow are considered, ps = 5 and fs = 15. In

a second formation of the algorithm, ps = 10 and fs = 20. This means that 10-minutes that

precede and/or follow the ECS are used to estimate the amplitude of the ECS of the extracted

EVCL. The reason behind skipping the components that directly precede (stage1) and follow

(stage3) the ECS is due to the gradient nature of EVs charging pattern behavior during the

plugging and unplugging, which could penalize the results of the amplitude estimation methods.

In the following methods the steady amplitude of stage2 is estimated by computing the load

before and/or after an ECS occurs (baseload). The baseload is then added to the extracted EVCL

to reconstruct the original ALP (x). Then the amplitude of the ECS can be the one that has a

reconstructed load pattern (ESTx) closest to the original x. This estimation of the amplitude using

the baseload ensures that the best chosen EV template sm does not overestimate the actual EV

amplitude. For example, if the ALP exceeds 10 kW and the actual EV charging amplitude is 7

kW (in Category#3), the amplitude estimation using the baseload will ensure that the extracted

EVCL will not be overestimated and assigned to a template in Category#4 with an amplitude of

10 kW. Following are four estimation methods; it should be noted that Methods 1-3 are the same

when computing ESTx, but differ when computing ESTx2 in the following subsection.

Method 1, 2, 3:

For each ECS couple, the baseload (Be) is computed:

 eB =

{

 max{max(),max()}P F , ()

AND ()


 

e e

e e

D start fs
T D end fs

max()F , ()e eD start fs

 max()P , () e eT D end fs

 (5.7)

Then the baseload (Be) is used to reconstruct an estimation of the original ALP (x).

57

 1(() /)
 , for

max((,...,))



  
    
 

t m e
t pt e e

e e

ESTx x
x s B

ESTx C start t end
x start end

 (5.8)

where ESTx is a reconstruction of x.

Method 4:

The two-bin histogram (hb1, hb2) is computed [99] for P and F, and the mean of the

components of each bin is computed, then:

 eB =

{

 max{mean(2()),mean(2())}hb P hb F , ()

AND ()


 

e e

e e

D start fs
T D end fs

mean(2())hb F , ()e eD start fs

 mean(2())hb P , () e eT D end fs

 (5.9)

The baseload (Be) is used to reconstruct the original ALP (x):

1(() /) , for



    t t m e pt e e

ESTx x
ESTx x S B C start t end (5.10)

where ESTx is a reconstruction of x.

Now the error between the original x and the reconstructed ALP (ESTx) is computed:

1

0 ()


pm t t

T

t
x ESTo xErr r (5.11)

where p represents the extracted EVCL solution cp and m represents the EV template sm.

For the remaining solution vectors C = [c2,…, cp], the same operations of Step3 and Step4 are

performed with the shaving of FP extractions, the reconstruction of ESTx, and the computation of

Error0pm. After the Error0 has been computed for each p, the minimum error (Error1m) of the

extracted EVCL solution vectors C for iteration m is computed:

 mi ()1 (n)0m mError abs Error (5.12)

58

 arg min(()) 0m mabs Errora (5.13)

and the related extracted EVCL solution vector cp and index are stored in matrix C and vector a ,

respectively. The corresponding cp is interpolated as the best extracted EVCL c for iteration m,

m 1[,...,]
m ma a Tc c c .

For the successive iterations m=1,…, M, the group of operations are the same as the ones

described in Step1 to Step4, this includes the application of ICA, the generation of extracted

EVCL solution vectors C, the shaving of FP extractions, the reconstruction of ESTx, the

computation of Error1m, and storing the best estimations of the extracted EVCLs in C .

Before the final best-extracted EVCL and amplitude template are obtained the next stage is an

attempt to improve the accuracy of the extracted EVCL amplitudes.

Local Estimation Improvement

In this stage, an attempt to improve the accuracy of the amplitude of the extracted EVCL is

presented. From the vector Error1, the minimum index is located:

 arg min(1))( abs Errorb (5.14)

then the corresponding best EVCL bc and the EVCLs that exist in the same category, if any, are

of interest for further processing. For example, if b=2 then the EVCLs 1c and 2c are involved as

they fall in the same category (Category#1). For each one of these bc , the ECSs matrix D is

computed. Then similar to the reconstruction of the original ALP (x) part in Step4, for each

couple De, the reconstructed load pattern ESTx2 is computed by following the same method

(Methods 1-4) chosen from Step4, including the previously reconstructed load pattern (ESTx):

 2 ESTx x (5.15)

59

Method 1:

 2 () , for    t t t e eB x ESTx start t end (5.16)

 2 2 , for    t t t e eESTx ESTx B start t end (5.17)

Method 2:

Be is computed using (5.7)

 2eB =

{

 (10 ^ (1)

 /(1)
e b

e e

B length Error

end start



  ,

() 0
e

e

end

t t
t start

x ESTx


 

 (10 ^ (1)

 /(1)
e b

e e

B length Error

end start



  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.18)

  2 ((/) 2 , for)     t t e e eb b ec cEST x x B B start t end (5.19)

Method 3, 4:

 2 () /(1)


 
     
 


e

e

end

e t t e e
t start

B x ESTx end start (5.20)

 2 2 , for    t t e e eESTx ESTx B start t end (5.21)

Now the error between the original x and the reconstructed ALP (EST2x) is computed:

1

(2 2)



T

t
t

tbError x EST x (5.22)

The final extracted EVCL (F) with the best-estimated amplitude can be obtained by:

  arg min min (mi1) n 2)(, abs Error abs Errorg (5.23)

60

 F  cg (5.24)

The final extracted stage2 EVCL (F) is the gc vector that has the minimum error between the

reconstructed load pattern and the original ALP (x). As mentioned previously, this step was to

improve the selection of the best estimate from the templates (S).

5.4.3 Extraction of Gradual Increase in the EVCL (Stage1)

To extract the gradual increase in EVCLs, sufficient stage1 samples must be studied. Thus the

data for 100 EVs from different categories are obtained. Figure 5.3(a) shows a zoomed view of

stage1. It can be observed that it takes no more than two-minutes (2V ) to reach the maximum

charging amplitude for all EVs from different categories. This corresponds to three time

observations. The first observation in stage1 is when the EV is plugged-in, 2estartF  = 0, and the

third observation is the maximum charging amplitude,
estartF . In order to compute the second

observation, the curve fitting process [100] is used to express the behavior of stage1. The general

function that computes the second observation, 1estartF  , of stage1 for all EVs categories can be

presented as:

 log() 69() 2970.5 , f.82 or 2    H
 (() 69.82) / 3263.4  H H
 1F F  

e estart startH (5.25)

61

 (a) (b)

Figure 5.3: Zoomed view for EVs from different categories (a) stage1 durations. (b) stage3 durations.

5.4.4 Extraction of Gradual Decrease in the EVCL (Stage3) and Correction

Phase

In order to study the behavior of EVCLs at stage3, various EVCLs from different categories are

obtained. Figure 5.3(b) shows a zoomed view of stage3 for the gathered data. Now, differently

from stage1, it can be observed that EVCLs from different categories have different behaviors at

stage3. Moreover, EVs that belong to the same category have different patterns when ending

their charging sessions. EVs from Category#1 and #2 have two stage3 patterns, while EVs from

Category#3 and #4 have one stage3 pattern.

EVs from Category#1 have two patterns. In the first pattern, it takes up to ten-minutes

(10V ) to reach zero watts. In the second pattern, it takes two minutes to reach zero watts. The

curve fitting process is used to express those two behaviors of Category#1 EVs. For the ten-

minute pattern, the first observation is the maximum charging amplitude,
eendF , and the last

observation is 10eendF  = 0. Each remaining observation,  , in-between is computed by:

 log() 5164() 1773.1 , for 1 9.4      H
 () (() 1081.7) / 4082.7  H H
 ()F F   

e eend endH (5.26)

62

Similarly, the two-minute (2V ) stage3 pattern of Category#1 can be computed by:

 log() 360() 2804.6 2 , f8.4 or 2     H

 (() 6689.6) / 9395.9  H H
 1F F  

e eend endH (5.27)

The algorithm begins extracting stage3 with assuming 10V  . During the extraction of stage3,

the algorithm performs a correction phase. At this phase the resulted stage3 pattern window

1(,...,)Vv v  is placed at the end of the ECS, which corresponds to ,...,
e e Vend endx x


. If the pattern 

matches the ALP ( =1):

  = {
 1 ,

e e V eend end endx x F


 

0 , otherwise
 (5.28)

Then the end of the charging session was determined adequately, but if the pattern  doesn’t

exist ( =0), this means that the duration of the ECS was overestimated due to overlapping with

other appliances, and the correction phase is entered. At this phase the window,  , is shifted one

position backwards until the condition  =1 is satisfied. If the window reaches the start of the

ECS, i.e., 1v
estartx , and  =0. This means that the EVCL doesn’t match the 10-minute pattern

and is likely to match the 2-minute pattern of Category#1.

Now similarly, the algorithm begins extracting stage3 with assuming 2V  . During the

extraction the correction phase is undergone. The resulted pattern window  is placed at the end

of the ECS, i.e., 1v
eendx , and the window is shifted one position backwards until  =1. It should

be noted that, the correction phase could correct the duration of an ECS to under 20-minutes.

However, removing the FP detection rule of eliminating ECS < 20-minutes (Section 5.4.2) will

cause detecting FPs and more importantly disable the signal amplitude estimation.

For EVCLs from Category#2, the stage3 pattern has two patterns. The first could take up to

40-minutes. However, after 20-minutes the charging amplitude is much lower and sometimes

63

reaches zero and bounces up, therefore it can be neglected to capture higher amplitudes. For this,

the first pattern is limited to 20-minutes (20V ):

 log() 8268() 2652 , for 1 19      H

 (() 324.1180) / 7944.7  H H
 1F F  

e eend endH (5.29)

The two-minute (2V ) stage3 pattern of Category#2 can be computed by:

 log() 122() 9066.9 2 , f5.4 or 2     H
 (() 8735.6) / 9961  H H
 1F F  

e eend endH (5.30)

The group of operations are the same as the ones described for Category#1, this includes the

extraction of stage3 and undergoing the correction phase.

For EVCLs from Category#3 and #4, stage3 has a two-minute duration pattern that can be

computed respectively by:

 log() 146() 1021.9 2 , f5.8 or 2     H
 (() 343.1281) /1122.7  H H
 1F F  

e eend endH (5.31)

and,

 log() 206() 1423.3 2 , f4.2 or 2     H
 (() 500.5451) /1563.7  H H
 1F F  

e eend endH (5.32)

5.5 Verifications and Discussions

To verify the proposed approach, the EEVCLP algorithm is first applied on the same dataset

used by [39]. It should be noted that the algorithm in [39] can only extract EVCLs of stage2. To

perform a fair comparison, in this first verification study the proposed algorithm is limited to

only extract stage2 patterns. In the latter verification studies, the results are presented by

64

applying the proposed algorithm including the extraction of stage1, stage3 and entering the

correction phase.

5.5.1 Verification and Comparison on Dataset#1 on Extracting Stage2

Patterns

The EEVCLP algorithm was tested by using data from the Pecan Street Inc. [94], which contains

up to 1-minute time-steps of circuit-level and house-level electricity data from 1391 households

in Texas, Colorado, and California. It should be noted that not all households have EVs. To

verify the proposed approach, the available dataset used by [39] was used as a benchmark. This

dataset (Dataset#1) includes the daily aggregated power signals for 23 households, and the

ground truth of the EVCLs from [94]. The EVs considered in this dataset have amplitudes that

fall in Category#1. It should be noted that houses#4, #5, #13 and #23, do not include any

EVCLs, in order to test the extraction of FPs from the EVCLs. The proposed algorithm was

applied each time with one of the four estimation methods (Method 1 to Method 4) twice (two-

runs). In the first run, the duration of 10-minutes that precede and/or follow an extracted EVCL

to estimate its amplitude was, ps = 5 and fs = 15. In the second run, ps = 10 and fs = 20. Thus,

the proposed algorithm was run eight times in total with different combinations of estimation

methods, and ps and fs. Figure 5.4, illustrates how the extracted stage2 EVCL was obtained for

house#2 using the proposed algorithm with estimation Method 3, and ps = 10 and fs = 20.

Differently from [39] where only accuracy was used as an evaluation metric, here an evaluation

metric from the information retrieval domain, modified F-score [101] is used. The reason for

involving evaluation metrics other than the accuracy is due to the fact that with power

disaggregation, the accuracy can be very skewed if the appliance is rarely used. For example, if

the EV was plugged-in for only 20-minutes in a 24-hour period, and the algorithm was unable to

extract any charging session, it will still achieve high accuracy. For that, the results of the

proposed algorithm are evaluated using a modified F-score, and the accuracy and error are

measured only when EVCLs are present either in the EVCL ground truth or the extracted EVCL.

This not only measures the accuracy of classification of the state of the appliance, it also

65

measures the accuracy of the estimated amplitude. The utilized evaluation measures are

presented in [101] and Appendix D, and the modified F-score was computed by:

 2  



score

precision recallF
precision recall

 (5.33)

(a)

(b)

(c)

Figure 5.4: The result of the proposed algorithm with estimation Method 3. (a) the EVCL after applying ICA. (b)
EVCL after removing the FPs. (c) final EVCL (transparent yellow) vs. the actual EVCL (red).

66

Table 5.3 Performance Comparison of the Proposed Algorithm with Estimation Methods 1- 4, ps = 5 and fs = 15 to
Extract stage2

EEVCLP with ps = 5 and fs = 15

 Estimation Method 1 Estimation Method 2 Estimation Method 3 Estimation Method 4

C
ar

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

1 1 0.99 89.29 100 94.34 1 11.09 89.29 100 94.34 1 0.99 89.29 100 94.34 1 0.99 89.29 100 94.34

2 1 -100 0.00 0.00 0.00 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07

3 1 3.37 83.58 95.73 89.24 1 17.57 92.13 100 95.90 1 3.37 83.58 95.73 89.24 1 7.23 84.17 100 91.41

4 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

5 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

6 1 -9.99 98.21 98.21 98.21 1 2.23 100 94.64 97.25 1 -0.99 98.21 98.21 98.21 1 2.23 100 94.64 97.25

7 1 -9.78 99.00 99.00 99.00 1 -9.78 99.00 99.00 99.00 1 -1.75 100 99.00 99.50 1 6.09 100 98.00 98.99

8 1 -5.39 95.45 100 97.67 1 -5.39 95.45 100 97.67 1 10.95 97.67 100 98.82 1 51.38 64.06 97.62 77.36

9 1 -3.62 99.05 96.30 97.65 1 4.14 100 96.30 98.11 1 -9.88 99.07 99.07 99.07 1 -9.88 99.07 99.07 99.07

10 1 -10.7 99.54 98.64 99.09 1 6.09 100 98.18 99.08 1 -10.7 99.54 98.64 99.09 1 6.09 100 98.18 99.08

11 1 -9.25 98.85 99.61 99.23 1 6.39 100 98.45 99.22 1 6.39 100 98.45 99.22 1 6.39 100 98.45 99.22

12 1 -9.58 99.54 100 99.77 1 8.01 100 100 100 1 -9.58 99.54 100 99.77 1 -0.53 99.54 100 99.77

13 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

14 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74

15 1 -7.87 97.92 100 98.95 1 -0.77 100 100 100 1 -0.77 100 100 100.00 1 -0.77 100 100 100

16 1 -7.06 97.10 100 98.53 1 -7.06 97.10 100 98.53 1 3.45 100 95.52 97.71 1 -7.06 97.10 100 98.53

17 1 -4.46 94.29 100 97.06 1 1.55 96.77 90.91 93.75 1 1.55 96.77 90.91 93.75 1 4.82 96.88 93.94 95.38

18 1 -6.65 96.67 100 98.31 1 -6.65 96.67 100 98.31 1 -6.65 96.67 100 98.31 1 8.28 98.28 98.28 98.28

19 1 -100 0.00 0.00 0.00 2 -100 0.00 0.00 0.00 2 -100 0.00 0.00 0.00 2 -100 0.00 0.00 0.00

20 1 -11.5 99.10 97.36 98.22 1 -11.5 99.10 97.36 98.22 1 5.24 100 97.36 98.66 1 -3.53 100 97.36 98.66

21 1 -9.94 98.91 98.91 98.91 1 4.55 100 96.74 98.34 1 4.55 100 96.74 98.34 1 -2.01 100 98.91 99.45

22 1 -8.46 98.49 100 99.24 1 5.99 100 97.96 98.97 1 -8.46 98.49 100 99.24 1 -8.46 98.49 100 99.24

23 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

Overall 16.78 86.05 88.61 87.27 11.27 91.88 92.91 92.34 10.03 91.53 92.92 92.16 12.16 89.85 93.17 91.25

Table 5.4 Performance Comparison of the Proposed Algorithm with Estimation Methods 1-4, ps = 10 and fs = 20 to

Extract stage2
EEVCLP with ps = 10 and fs = 20

 Estimation Method 1 Estimation Method 2 Estimation Method 3 Estimation Method 4

C
ar

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

C
at

e
go

ry

Er
ro

r%

P
re

ci
si

o
n

R
e

ca
ll

F-
sc

o
re

1 1 0.99 89.29 100 94.34 1 11.09 89.29 100 94.34 1 19.02 90.91 100 95.24 1 11.09 89.29 100 94.34

2 1 -100 0.00 0.00 0.00 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07 1 5.20 90.38 95.92 93.07

3 1 7.23 84.17 100 91.41 1 7.23 84.17 100 91.41 1 7.23 84.17 100 91.41 1 7.77 92.13 100 95.90

4 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

5 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

6 1 -9.99 98.21 98.21 98.21 1 -9.99 98.21 98.21 98.21 1 -9.99 98.21 98.21 98.21 1 -0.99 98.21 98.21 98.21

7 1 -9.78 99.00 99.00 99.00 1 -9.78 99.00 99.00 99.00 1 -2.75 100 98.00 98.99 1 6.09 100 98.00 98.99

8 1 -5.39 95.45 100 97.67 1 -5.39 95.45 100 97.67 1 1.71 97.67 100 98.82 1 5.79 97.56 95.24 96.39

9 1 -9.88 99.07 99.07 99.07 1 -4.87 100 87.96 93.60 1 -4.87 100 87.96 93.60 1 -9.88 99.07 99.07 99.07

10 1 -10.36 99.54 99.09 99.32 1 5.11 100 97.27 98.62 1 -1.40 99.54 99.09 99.32 1 -10.36 99.54 99.09 99.32

11 1 -9.25 98.85 99.61 99.23 1 6.39 100 98.45 99.22 1 -0.94 99.61 99.61 99.61 1 6.39 100 98.45 99.22

12 1 -9.58 99.54 100 99.77 1 8.01 100 100 100 1 -9.58 99.54 100 99.77 1 8.01 100 100 100

13 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

14 1 0.25 90.00 100 94.74 1 0.25 90.00 100 94.74 1 10.28 90.00 100 94.74 1 12.48 88.24 100.00 93.75

15 1 -11.71 97.83 95.74 96.77 1 -9.22 100 91.49 95.56 1 1.34 100 93.62 96.70 1 -7.87 100 85.11 91.95

16 1 -9.75 98.51 98.51 98.51 1 -9.75 98.51 98.51 98.51 1 -9.75 98.51 98.51 98.51 1 -9.75 98.51 98.51 98.51

17 1 -4.46 94.29 100 97.06 1 1.55 96.77 90.91 93.75 1 1.55 96.77 90.91 93.75 1 1.55 96.77 90.91 93.75

18 1 -6.65 96.67 100 98.31 1 8.28 98.28 98.28 98.28 1 0.97 98.31 100 99.15 1 8.28 98.28 98.28 98.28

19 1 39.38 64.62 100 78.50 1 63.65 64.47 97.62 77.65 1 53.32 64.62 100 78.50 1 -100 0.00 0.00 0.00

20 1 -12.30 99.55 96.92 98.21 1 -3.97 100 96.92 98.43 1 4.29 100 96.48 98.21 1 -3.97 100 96.92 98.43

21 1 -9.94 98.91 98.91 98.91 1 -0.93 98.91 98.91 98.91 1 -9.94 98.91 98.91 98.91 1 -0.93 98.91 98.91 98.91

22 1 -8.46 98.49 100 99.24 1 7.09 100 98.98 99.49 1 7.09 100 98.98 99.49 1 -8.46 98.49 100.00 99.24

23 0 0.00 - - - 0 0.00 - - - 0 0.00 - - - 0 0.00 - - -

Overall 14.49 89.57 93.95 91.48 9.35 94.91 97.28 95.81 8.48 95.11 97.69 96.10 11.83 91.86 92.24 91.96

67

A detailed comparison of the results from each run of the proposed method on extracting

stage2 is presented in Table 5.3 and Table 5.4. It was observed that the proposed algorithms

achieve relatively high F-scores, except for house#19. The resulted EVCL when ps = 5 and fs =

15, was unable to detect the actual EVCLs. This suggests that considering observations of ALP

that are closer to an ECS to estimate the amplitude may extract FPs or not extract any EVCLs. It

should be noted that extracting the EVCL for house#19 (Figure 5.5) is a challenging task due to

the high degree of overlapping of other appliances that have similar EV load patterns. The best

extracted stage2 EVCL for house#19 was extracted using the proposed algorithm with Method 3.

The overall results of the proposed algorithm, regardless of the used estimation method,

outperformed [39] on all evaluation measures. The overall results of the proposed algorithm on

extracting stage2 were satisfactory, and the best approach was using Method 3 with ps = 10 and

fs = 20, as it had the best overall performance and presented the best result on house#19. The

results of the approaches discussed were compared with the state-of-the-art [39] (Table 5.5).

Their algorithm extracted the second ECS of house#19 as two separate ECSs. Although their

algorithm performed better on house#19 (Figure 5.5), it has failed to extract the EVCLs for

houses#2 and #17, and overestimated house#3. A drawback of [39] is introducing definitions:

effective width (the width of an EVCL segment at the bottom) and effective height (the height at

which the EVCL segment’s width is 80% of the bottom width). Those definitions restrict the

detection of EVCLs to certain charging patterns. In house#17, their algorithm failed because it

can only extract EVCLs that have durations longer than 30-minutes and shorter than 200-

minutes. In order to extract EVCLs that have less than a period of 30-minutes, FPs extractions

may appear. On the other hand, the algorithm proposed in this work can extract EVCLs that have

durations as low as 20-minutes. From this, there is a trade-off between detecting shorter EVCLs

and extracting FPs that occur from other appliances. As noted previously in this verification

study, the intention was to only extract the stage2 EVCLs for fair comparison with the state-of-

the-art method. For this purpose, the correction phase, and extracting stage1 and stage3, has not

been undertaken. In the following verification study the overestimation of house#19 will be

addressed.

68

Table 5.5 Performance of the Algorithm in [39] on Dataset#1

Car Category Error % Precision Recall F-score

1 1 25.71 89.29 100 94.34

2 0 -100 0.00 0.00 0.00

3 1+ 49.84 0.00 0.00 0.00

4 0 0.00 - - -

5 0 0.00 - - -

6 1 0.46 98.25 100 99.12

7 1 1.58 99.01 100 99.50

8 1 13.41 95.45 100 97.67

9 1 4.64 99.08 100 99.54

10 1 -0.55 98.65 100 99.32

11 1 -0.55 98.85 100 99.42

12 1 3.90 99.08 100 99.54

13 0 0.00 - - -

14 1 14.58 86.54 100 92.78

15 1 0.80 97.92 100 98.95

16 1 1.72 97.10 100 98.53

17 0 -100 0.00 0.00 0.00

18 1 2.14 96.67 100 98.31

19 1 -8.97 99.47 89.05 93.97

20 1 6.46 98.66 97.36 98.00

21 1 -0.32 98.92 100 99.46

22 1 18.36 97.00 98.98 97.98

23 0 0.00 - - -

Overall 18.63 81.57 83.44 82.44

Figure 5.5: The actual EVCL vs. the results from [39] and the proposed algorithm on extracting stage2.

69

5.5.2 Verification on Dataset#1 and #2 on Extracting All Stages

In the previous verification, the proposed algorithm was applied on Dataset#1 that contains EVs

from Category#1 to extract stage2 EVCL patterns. To further verify the proposed algorithm, a

dataset from the Pecan Street Inc. [94] that contains eleven daily aggregated power signals and

the ground truth of EVs from Category#2, #3 and #4 is considered (Dataset#2). In this

verification study, the proposed algorithm is applied to extract the EVCLs including stage1 and

stage3, and enter the correction phase. The proposed algorithm using Method 3 with ps = 10 and

fs = 20, which had the best overall performance in extracting stage2 is used. The evaluation

measures are presented in Table 5.5, and the EVCL for house#19 is presented in Figure 5.6. It

can be observed that during the extraction of stage3 the correction phase was able to correct the

overestimated duration of the second ECS (Figure 5.6). This suggests that the correction phase

can capture the duration of the EVCL when overlapping with appliances that have similar EV

load patterns. The EVCL for house#30 is presented in Figure 5.7. It can be observed that the

ALP exceeds 10 kW at some periods, which may cause to estimate the amplitude of the EV to a

template in Category#4 (10 kW), but this is unlikely to happen. This is due to that the estimation

method involves the baseload in estimating the amplitude of the EVCL. Also, it can be observed

from Figure 5.7 that the second charging session was not extracted. This is because the proposed

algorithm neglects charging periods less than 20-minutes to reduce the FPs that may occur. The

results of applying the algorithm presented in [39] on Dataset#2 are also presented in Table 5.6.

Differently from the previous application, the evaluation measures are computed with including

all three stages (stage1, stage2 and stage3). It can be observed that their method presented less

accurate results on EVCLs with higher amplitudes. This is due to the fact that, as previously

mentioned, it restricts the detection of EVCLs to certain charging patterns. Also, it is observed

that the F-score decreased, this is because the algorithm in [39] doesn’t involve the extraction of

stage1 and stage3 of the EVCLs. The results of applying the proposed algorithm to extract

EVCLs that have higher charging amplitudes (e.g., Tesla EVs) suggest that the algorithm is

capable of extracting various types of EVCL amplitudes.

70

Table 5.6 Performance of the Algorithm on Dataset#1 and Dataset#2 for All Stages
 EEVCLP [39]'s algorithm

C
ar

C
at

e
go

ry

Er
ro

r
%

F-
sc

o
re

C
at

e
go

ry

Er
ro

r
%

F-
sc

o
re

Dataset#1

1 1 12.34 90.09 1 12.35 87.52

2 0 0.17 90.74 0 -100 0.00

3 1 3.07 89.14 1+ 37.05 0.00

4 0 0.00 - 0 0.00 -

5 0 0.00 - 0 0.00 -

6 1 -10.33 98.25 1 -2.45 98.52

7 1 -5.25 97.03 1 -3.35 97.59

8 1 -2.96 95.56 1 0.00 91.41

9 1 -6.03 92.82 1 -0.68 96.03

10 1 -3.45 98.21 1 -5.01 97.28

11 1 -2.40 98.29 1 -5.83 96.83

12 1 -10.01 99.54 1 2.61 98.22

13 0 0.00 - 0 0.00 -

14 1 4.39 92.16 1 0.93 90.04

15 1 -2.47 93.75 1 -13.44 92.86

16 1 -12.64 97.84 1 -10.37 94.29

17 0 -3.49 88.57 0 -100 0.00

18 1 -2.23 95.08 1 -12.66 92.62

19 1 -0.03 98.37 1 -10.19 93.34

20 1 3.70 96.92 1 1.35 92.95

21 1 -19.79 93.92 1 -9.95 94.89

22 1 5.28 97.24 1 7.47 88.37

23 0 0.00 - 0 0.00 -

Dataset#2

24 2 -11.97 96.92 2 -14.78 86.53

25 2 -8.21 93.08 3 -36.18 75.18

26 3 -10.54 99.31 0 -100 0.00

27 3 1.07 91.94 3 -4.10 98

28 3 16.40 79.92 0 -100 0.00

29 2 10.87 74.24 3 -52.40 49.62

30 2 -20.67 89.91 2 -47.35 63.02

31 2 -6.95 97.37 2 -45.38 67.79

32 2 -3.39 99.58 2 -1.89 99.05

33 2 0.08 96.87 2 9.03 92.15

34 4 -6.37 97.10 3 -19.59 80.17

Overall 6.88 93.99 23.48 77.34

71

Figure 5.6: The actual EVCL vs. the extracted EVCL from the proposed algorithm with estimation Method 3 for
house#19 after undergoing correction phase.

Figure 5.7: The actual EVCL vs. the extracted EVCL from the proposed algorithm with all stages.

5.5.3 Verification on Extracting Hourly EVCLs

To further test the effectiveness of the proposed algorithm, the household data of Dataset#1 and

Dataset#2 are considered. It is assumed that those 34-houses are located in the same

neighborhood. Then differently from the previous applications, the data is ingested in segments

of 1-hour, in order to monitor the charging behavior of a certain neighborhood during the past

hour. The results of this application are shown in Figure 5.8. From the cumulative plot (Figure

5.8(b)) it can be observed that this neighborhood plug-in their EVs from around 18:00 to 06:00.

An accurate estimation of the aggregated charging demand is critical for utilities to evaluate the

power delivery. Also, analyzing and studying such behaviors can assist the smart grid operators

72

in planning and dynamic demand response strategies. In this application (Figure 5.8(a)) some

EVCLs may have been missed due to the rule of neglecting charging sessions less than 20-

minutes, For example, if the on-hand hour is 18:00 to 18:59, and a 30-minute charging session

started at 18:45 (relies between two following hours) then it will be neglected as it was extracted

as a less than 20-minute charging session. It should be noted that the state-of-the-art algorithms

neglect charging sessions <30-minutes; accordingly, those algorithms tend to miss many EVCLs,

and are infeasible in capturing the charging behaviors of the EVs during the past hour or shorter

time periods.

(a)

(b)

Figure 5.8. (a) The extracted EVCLs from Dataset#1 and Dataset#2. (b) The cumulative EVCLs for the
neighborhood.

73

5.5.4 Lower Sampling Rates

In the previous applications, the proposed algorithm was tested on datasets with 1-minute

sampling rates ( =1). In this application, the effect of sampling the data at lower rates is tested.

For this purpose, Dataset#1 and Dataset#2 are sampled at rates from  =2 to  =5. Then the

EEVCLP algorithm is applied. The results are presented in Table 5.7. From the results, it was

observed that at lower sampling rates, the accuracy measures of the extracted EVCLs decrease.

Table 5.7 Performance of the Proposed Algorithm with Lower Sampling Rates

 N = 10,  = 2 N = 10,  = 3 N = 10,  = 4 N = 10,  = 5

C
ar

Er
ro

r
%

F-
sc

o
re

Er
ro

r
%

F-
sc

o
re

Er
ro

r
%

F-
sc

o
re

Er
ro

r
%

F-
sc

o
re

1 51.42 74.63 1.81 96.97 -0.87 95.65 18.92 90.91

2 8.11 95.83 14.86 96.97 -36.97 73.68 -100 0.00

3 7.79 87.60 -9.59 82.50 -16.11 75.00 5.45 92.31

4 0.00 - 0.00 - 0.00 - 0.00 -

5 0.00 - 0.00 - 0.00 - 0.00 -

6 -4.52 98.18 -6.51 97.14 -48.56 72.73 -100 0.00

7 -11.65 98.99 -3.57 98.51 -9.86 96.00 -9.87 95.00

8 3.16 92.68 6.40 96.55 -0.73 95.24 -100 0.00

9 -16.53 96.15 -17.92 87.50 4.26 98.11 -44.23 76.47

10 -5.46 96.74 -14.31 92.75 -14.86 95.33 -23.45 87.18

11 -2.43 99.22 -5.56 97.62 -13.48 88.89 -23.76 91.67

12 7.01 99.53 -9.24 95.65 -2.83 99.07 -26.74 89.74

13 0.00 - 0.00 - 0.00 - 0.00 -

14 3.33 97.67 1.03 96.55 6.63 91.67 0.21 94.74

15 -14.21 88.37 -18.89 85.71 -9.55 100.00 0.07 94.74

16 -0.85 100.00 62.23 75.86 -47.50 69.23 -2.95 96.30

17 277.64 41.56 211.37 44.90 -100 0.00 -100 0.00

18 37.05 79.45 -13.20 88.89 -3.44 96.55 8.11 95.65

19 34.67 76.34 30.63 74.71 -100 0.00 20.08 69.39

20 -5.25 97.76 -3.58 98.65 4.20 98.18 5.66 98.88

21 39.00 76.92 40.60 80.00 -0.89 95.65 -14.68 97.30

22 -65.77 48.06 -66.46 50.57 -66.91 46.88 -63.96 50.00

23 0.00 - 0.00 - 0.00 - 0.00 -

24 0.77 100 -8.39 75.00 -100 0.00 -44.26 94.74

25 -0.12 100 -42.72 93.15 -47.61 90.20 -52.24 97.67

26 -10.45 99.44 -0.43 99.58 -46.97 73.68 -58.45 92.83

27 -7.76 94.62 2.72 100 2.72 100 -100 0.00

28 18.34 91.51 18.48 91.55 -0.19 100 -0.17 100

29 8.38 89.95 11.10 88.19 12.23 47.14 3.77 42.59

30 -23.79 91.30 -59.43 83.15 -30.73 86.57 -70.95 65.22

31 -15.69 92.96 -32.80 81.82 -100 0.00 -100 0.00

32 -0.05 96.49 -1.03 96.00 -3.87 94.55 -62.70 76.92

33 -8.09 97.87 -2.49 98.90 -6.79 98.59 -68.94 63.64

34 -24.48 98.59 -23.38 97.87 -22.25 97.14 -26.59 100

Overall 23.79 89.94 24.69 88.10 28.70 75.85 41.87 68.46

74

5.5.5 Extracting EVCLs of Different Categories

In this application, it is desired to extract EVCLs for households that have more than one EV. In

cases where the EVs have the same charging amplitudes, the proposed algorithm can extract the

EVCL at one run. However, in cases where the EVs have different charging amplitudes, the

algorithm is run twice. In the first run, the algorithm will extract the EV that has higher charging

amplitude. The extracted EVCL is subtracted from the ALP. Then, in the second run, the

algorithm extracts the EV having the lower amplitude. In order to verify this, the actual EVCL of

house#1 (has an EV of Category#1) is added to the ALP of a house that has an EV of

Category#3. The actual EVCL of house#1 was added during the operation of other appliances

(Fig 5.9 (a)) to further test the extraction during overlapping with other appliances. The EVCL

from the first run and second run are shown in Figure 5.9 (b) and (c), respectively.

(a)

(b)

75

(c)

Figure 5.9: Extracting EVCLs of different categories. (a) The actual EVCL of house#1 added to an actual ALP. (b)
The resulted EVCL of the first run of the algorithm. (c) The resulted EVCL of the second run of the algorithm.

5.6 Conclusions

This chapter introduced an algorithm related to extracting EV charging loads (EVCL). The

proposed algorithm (EEVCLP) is unsupervised and is able to run on low-frequency smart meter

data. In addition, the proposed algorithm only requires the real power smart meter measurement,

which is the type of data recorded and communicated by most smart meters. The proposed

algorithm utilizes a signal processing method, ICA, to extract the EVCLs from the aggregated

load pattern of households. The amplitude and sign of the extracted EVCLs obtained by applying

the ICA method have been addressed by introducing amplitude estimation methods. In addition,

the proposed algorithm can effectively mitigate the interference of other appliances that have

similar load behaviors as EVs.

In order to verify the effectiveness of the proposed approach, the EEVCLP algorithm was

applied on real household datasets and compared with the state-of-the-art algorithms. Further, the

proposed algorithm includes extracting the gradual increase, steady and gradual decrease in the

EV charging patterns. The results of extracting the EVCLs from the daily ALP of households

were satisfactory. Furthermore, the proposed algorithm was tested by ingesting 1-hour segments

to monitor the EV charging behaviors of a neighborhood during the past hour. The results were

satisfactory and suggested that the proposed algorithm is able to run on shorter time frames.

76

Aggregating the EVCLs could provide an accurate estimation of the aggregated charging

demand that is critical for utilities to evaluate the power delivery, and can assist smart grid

operators in planning and dynamic demand response strategies. Also, further analyses and

studies can be carried out from aggregating such charging behaviors of EVs. It should be noted

that the EEVCLP was applied on top of the smart grid big data eco-system.

77

Chapter 6

Defining Flexibility of Residential Electrical Vehicle Charging

Loads

6.1 Introduction

In the previous chapter, the EEVCLP algorithm extracted the EV charging loads (EVCLs).

Those extracted EVCLs can be aggregated for further analysis. In this chapter, a method to

define flexibility for the collective EV charging demand by analyzing the time-variable patterns

of the aggregated EV charging behaviors is presented. Those flexibility indices reflect the

collective trend in EV charging in certain time periods. This information is useful for system

operators to identify how flexible the aggregated EVCL is at different time periods and plan for

demand response programs accordingly.

6.2 Modeling Demand Variations Using Bayesian Maximum Likelihood

From the previous chapter, each extracted EVCL pattern is represented by f 1[,...,]Tf f , for t =

1,. . ., T. The matrix of all extracted EVCLs is represented by the matrix kF , for k = 1,. . ., K. The

EV load variations referring to an increase or decrease from one-time observation to the

following one is computed for all extracted EVCLs f :

 (1) , for 2,...,  kt kt k t tf f f T (6.1)

The extracted EVCL and its variation can be represented by the following vectors:

 fk 1[,...,] Tf f (6.2)

 fk 1[,...,]   Tf f (6.3)

78

6.2.1 Binomial Representation of Variations

For the particular problem in this chapter, the variations in EVCL may be positive or negative.

Accordingly, the demand variations can be modeled with the binomial distribution with two

response variables: 1) increasing in EVCL demand, 2) decreasing in EVCL demand. Each

observation can be considered as a Bernoulli trial with two outcomes. The outcome of each trial

at a particular time observation t is:

 kt = {
1ktUPos  , 0ktf 

1ktUNeg  , 0ktf 
 (6.4)

6.2.2 Bayesian Maximum Likelihood Estimation

From the binomial model presented in the previous subsection, the probability of an increase

(t) is unknown, and a suitable estimation method is needed. The Bayesian maximum likelihood

estimation method [102] is used. The reason for using such method is due to it providing a

natural and principled way of combining prior information about EV charging behaviors with

data, within a solid decision theoretical framework. In addition, it incorporates past information

about the increase in EVCLs and forms a prior distribution for future increase in EVCLs

analysis. All inferences logically follow from Bayes’ theorem. Bayes formula is presented by

[102]:

  
   

 

|
|

 
 

data
data

data

p f p
p f

p f
 (6.5)

This formula can be expressed informally in English by:

 


likelihood priorposterior
evidence

 (6.6)

The Bayes formula converts the prior information about the increase in EVCLs into a

posterior probability  | datap f by using the likelihood function  |datap f .

79

To compute the probability of an increase (t) using the Bayesian maximum likelihood

estimation method, first, the prior probability is computed. To compute the prior probability of

EVCL increase, EVCL pattern data is needed. This data can be extracted by the EEVCLP

algorithm (Chapter 5) for past years for the same location where the posterior probability is

desired. If prior historical data is unavailable for that location, data for another location can be

used instead to compute the prior. For example, if historical EVCLs data for Texas is available,

the prior probability of an increase in EVCLs can be computed, and recent data from Texas can

be used to compute the likelihood. However, if it is desired to compute the likehood of EVCL

increase for California were historical data (prior) is unavailable, the computed Texas prior

probability can be used. Following are the steps to compute the Bayesian likelihood estimation

for the increase in EVCL.

Step1 (Prior): Previous aggregated residential load patterns that include EVCLs are obtained.

The EEVCLP algorithm is applied (Chapter 5) then the variations are modeled with the binomial

distribution (Section 6.2.1). The number of trials (increase/decrease) is computed:

1

 
T

t t
t

n UPos UNeg (6.7)

The probability of success (increase in EVCL) is computed:

1

/



T

t
t

m UPos n (6.8)

 Step2 (Likelihood): Recent residential load patterns that include EVCLs are obtained. Then

similar to Step1, the EEVCLP algorithm is applied, and the variations are modeled with the

binomial distribution. The number of trials from this data is computed:

1

 
T

t t
t

UPos UNeg (6.9)

The number of successes (increase in EVCL) is computed:

80

1


T

t
t

Y UPos (6.10)

Step3 (Posterior): In this step (6.5) converts our prior belief about the increase in EVCL

(before seeing data) into a posterior probability by using the likelihood function (Step2). The

posterior probability of increase for this binomial process can be computed by:

 () 1   a Y n m (6.11)

 ((1)) 1     b Y n m (6.12)

   


t
amean

a b
 (6.13)

and, the confidence intervals are computed by:

 2var () / () (1)    a b a b a b (6.14)

 var  t mean (6.15)

 var  t mean (6.16)

The probability of an increase in EVCL and its upper and lower limits can be represented by

the following vectors:

 2 3[, ,...,]  Tt w w w (6.17)

 2 3[, ,...,]  Tt w w w (6.18)

 2 3[, ,...,]  Tt w w w (6.19)

81

6.3 Flexibility Definitions for EVCLs

In the previous section, the probability of demand increase in EVCL at each time observation

was modeled using the Bayesian maximum likelihood method. In this section, the probability of

demand increase in EVCL (
t) is used to define a flexibility index of EV aggregated demand

(FIEVAD). Further, the flexibility percentage level (FPL), that expresses the percentage of

flexible demand associated with the flexibility index (FIEVAD), is defined.

6.3.1 Flexibility Index of EV Aggregated Demand (FIEVAD)

Let 

f and f
 be mean values of the load variations for increase and decrease in demand,

respectively, and can be computed by:

tf



1
/



 
T

t
t

f Y , 0 tf r fo (6.20)

tf


1

/ ()


 
T

t
t

Yf , 0 tf r fo (6.21)

Now, the minimum between the probability of an increase in demand and the complementary

probability is computed:

 min(,1)


  


 
t

t tt (6.22)

By definition, the value of each entry  t is in the range of [0, 0.5]. In fact the minimum

complementary value of entries t and (1) t is equal to 0.5 when 0.5 t , and is equal to zero

when 1 t . In order to obtain the formulation of the FIEVAD in a range of [0, 1] in line with

the probabilistic limits, the probability values of  t are multiplied by two, which are the number

of variations (increase and decrease in demand) of the binomial probability distribution:

 2 t tFIEVAD , with [0,1]FIEVAD (6.23)

82

It can be noted from the formation of the FIEVAD value that it gives information about the

possible probabilistic change to the nearest optimum, 0 or 1, for each binomial category (increase

or decrease in demand). Also, by definition, the FIEVAD values are symmetric with respect to

0.5. This corresponds to that any change in t determines opposite changes in  f and f
 .

The flexibility index (FIEVAD) is not a quantitative margin expressed in watts, but reflects

EV charging behavioral interpretation in terms of collective trend. Also, the FIEVAD

incorporates both the possibility of increasing/decreasing in the aggregated EVCL and accepting

variations. If the FIEVAD value is close to 1, this indicates that the EV charging behavior is very

random and there is no collective trend in the corresponding observation time. Accordingly, the

flexibility to change the behavior is high, and there is a high chance to obtain DR benefits. This

information can assist operators and researchers to improve the reliability and economical

operation of the grid by managing supply using flexibility indices. FIEVAD values close to zero,

indicate that there is a collective behavior (trend) in EV charging. Accordingly, the aggregated

demand is rigid to accept DR changes.

6.3.2 Flexibility Percentage Level (FPL)

The flexibility percentage level (FPL) expresses the percentage of flexible demand associated

with the flexibility index (FIEVAD). This indicator represents what percentage of aggregated

demand can be reduced or increased without affecting the average change in the collective

demand. The FPL can be computed by:

 100
2

 

  
  

 

t t t
t

t

f f FIEVADFPL
f

 (6.24)

where
tf is the mean value of the extracted EVCLs f at time observation t. The FPL increases

as customers change their EV charging behavior from an increase in EVCL demand towards a

decrease in EVCL demand and vice versa. However, increasing the FPL is challenging when

83

customers follow a trend behavior (i.e., t is close to 0 or 1). For example, if t =0.9, which

means there is a trend in EV charging behavior, it is hard to reverse this trend by reducing t to

zero. Also, when t = 0.1, which means there is no trend in EV charging, it is more reasonable to

reduce t to zero than increasing it to 1. This is one of the reasons to define the FIEVAD as the

minimum of the two binomial probabilities of increase and decrease in EV charging demand in

(6.23).

The FPL takes into account the increase and decrease in collective demand together. Separate

information for the maximum increase (VPL) and decrease (VPL) in aggregate demand can be

obtained by:

 (1) 100
 

 
  t t

t t
t

f fVPL w
f

 (6.25)

 () 100
 

 
 t t

t t
t

f fVPL w
f

 (6.26)

These indicators represent the maximum demand variation that may be obtained in the case

were all the increasing EV charging demand changes to decreasing in EV charging demand, and

vice versa. It should be noted that (VPL) and (VPL) refer to load variability and not to the

flexibility in collective EV load demand. The FPL, VPL and VPL can be expressed in watts by:

 (/100) t t tFPLwatt f FPL (6.27)

 (/100)  t t tVPLwatt f VPL (6.29)

 (/100)  t t tVPLwatt f VPL (6.30)

84

6.4 Applications and Discussions

In this section, the application of the previously mentioned methods to extract EVCLs and define

flexibility for the extracted aggregated EVCLs is presented. In the following subsection, a

verification of the EEVCLP algorithm on extracting EVCLs and comparing the aggregated

EVCLs to the aggregated ground-truth is presented. The resulted data is used in a case study in

order to quantify the flexibility achievable from the aggregate EV load in different time periods.

It should be noted that the proposed approach is applied off-line in the following verifications.

6.4.1 Extracting and Comparing the Aggregated EVCLs

In this verification of the EEVCLP algorithm, data from the Pecan Street Inc. [39] for each

month of 2015 and 2016 are considered. Each month is divided into weekdays and weekends.

The reason for this separation is because EV charging behaviors vary between weekdays and

weekends. For each month, the EEVCLP algorithm is applied to extract the EVCLs (F matrix).

Figure 6.1 shows the daily residential loads for weekdays and weekends of July 2016. The

extracted EVCLs from the daily residential loads of Figure 6.1, using the EEVCLP algorithm,

are presented in Figure 6.2. Those extracted EVCLs are aggregated and compared with the actual

aggregated EVCL demand pattern in Figure 6.3. The error between the actual and extracted

aggregated EVCL demand for weekdays and weekends for July 2016 was -3.12% and -4.75%,

respectively.

85

(a)

(b)

Figure 6.1. The daily residential loads for July 2016. (a) weekdays. (b) weekends.

86

(a)

(b)

Figure 6.2. The daily EVCLs for July 2016. (a) weekdays. (b) weekends.

87

(a)

(b)

Figure 6.3. Comparison between the aggregated actual and extracted EVCLs. (a) weekdays. (b) weekends.

6.4.2 Case Study on Defining Flexibility

In this case study, it is intended to define the flexibility for a certain time frame. For this purpose,

the time observation duration is 15-minutes. Each time observation is the sum of EVCLs in that

15-minute period. The general layout of the procedure of this case study is presented in Figure

6.4.

88

Figure 6.4: General layout of the procedure.

 The demand variations for the extracted EVCLs (F) for each month are first modeled using

the Bayesian maximum likelihood method (Section 6.2.2). In this illustration, we continue with

presenting the results of July. To compute the probability of an increase in EVCL (t):

1- First, the prior probability of an increase in EVCLs is computed using (6.7) and (6.8). This

corresponds to data of July 2015. However, as mentioned in Section 6.2.2 if prior

historical data is unavailable for a certain location, data for another location can be used

instead to compute the prior.

2- The likelihood of the recent data is computed using (6.9) and (6.10). This corresponds to

the extracted EVCLs for July 2016 (Figure 6.3).

3- The posterior probability, which corresponds to t can now be achieved by (6.11)-(6.13).

Figure 6.5 presents the probability of an increase in EVCL and its upper and lower limits for

July. It can be observed that there is a high probability of an increase in EV charging around

Compute prior prob. of increase in EVCLs

Aggregated residential load for past years

Extract EVCLs using the EEVCL algorithm

Aggregated residential load of on-hand data

Compute Likelihood prob. of increase in EVCLs

Extract EVCLs using the EEVCL algorithm

Bayesian maximum likelihood of increase in EVCLs

Compute the percentage fexibility index of EV aggregatred demand (FIEVAD)

Compute FPL, and in KW

prior

Likelihood

posterior

St
a

g
e

1

St
a

g
e

2

St
a

g
e

3

St
a

g
e

4

89

hour 11:00 and hour 17:00 in weekdays. The same effect can be observed between hour 7:00 and

8:00 in weekends. The EV charging behavior between hour 5:00 and hour 7:00 is similar for

weekdays and weekends.

The flexibility index (FIEVAD) is computed using (6.20)-(6.23). Figure 6.6 presents the

FIEVAD values. It can be noted that lower FIEVAD values appear during the morning and

evening periods in weekdays, where there is a collective tend, and the aggregated demand

becomes more unlikely to induce DR changes. The same effect can be observed between hour

7:00 and 8:00 in weekends. As mentioned previously, FIEVAD closer to one indicates that the

EV charging behavior is random and there is no collective trend, accordingly, there is more

chance for inducing DR changes. This effect can be observed more in weekends.

(a)

(b)

Figure 6.5: The probability of increase in EVCL and its upper and lower limits. (a) weekdays. (b) weekends.

90

(a)

(b)

Figure 6.6: The FIEVAD values. (a) weekdays. (b) weekends.

The flexibility percentage (FPL) is presented in Figure 6.7. This represents the percentage of

the aggregated EV charging demand that can be reduced or increased without affecting the

average change in the collective EV charging. It can be observed that when trend periods arise,

the probability to achieve higher FPL values is low.

The variability VPL and VPL are presented in Figure 6.8. As mentioned previously, these

indicators represent the maximum demand variation that could be obtained when all the increase

in demand changes to decrease in demand, and vice versa. The yellow bars represent the

maximum decrease in collective demand if all the increase in demand changes to decrease in the

collective EV charging demand at that time period. Whereas, the red bars represent the

maximum increase in demand for a time period if all the decrease in demand changes to increase

91

in the collective EV charging demand. This can be useful for grid operators to make decisions on

which time periods can be selected to establish EV DR programs. The grid operators may

involve other inputs for effective decision-making such as, peak loads and electricity price.

The procedure followed in this application is useful for system operators to identify how

flexible the aggregated EVCL in different periods of time. This can assist the operators in

deciding whether or not it can be viable to incentivize EV charging customers to change their

charging demand patterns, taking into account the flexibility information identified to represent

the collective behavior of the aggregated EV charging. On the basis of the flexibility indices, the

expected response to DR programs can be higher in some time periods and lower in other time

periods; accordingly, it may be useless for the operators to propose incentives to customers in

time periods where the EV aggregate demand has low flexibility. In particular, in the time

periods where the values of the FIEVAD and FPL indicators are low, the decisions aiming to

reshape the aggregate EV charging demand is unlikely to be effective. This is because the

collective EV charging behavior is following a trend in these time periods, which limits the

overall demand flexibility. In other time periods where the FIEVAD and FPL values are higher,

the collective behavior of the consumers is random, and there is no clear trend in the changing

demand. This suggests that consumers are more available to accept changes, leading to a better

ability to reshape the aggregated EV charging demand. The operators could use the FPL as an

indicator to represent the percentage of the aggregated EV charging demand that can be reduced

or increased without affecting the average change in the collective EV charging. Then, the

variability VPL and VPL can be used to represent the maximum variation limits when all the

increase in demand changes to decrease in demand, and vice versa. This can assist operators in

the reshaping of the EV charging demand at the selected time periods, as decreasing the

aggregated EV charging demand at one time period may imply an increase in another.

92

(a)

(b)

Figure 6.7. The FPL percentage. (a) weekdays. (b) weekends.

93

(a)

(b)

Figure 6.8. The 15-min aggregated EV load (blue), VPL in kW (red) and VPL in kW (yellow). (a) weekdays. (b)
weekends.

94

6.5 Conclusions

In this chapter, a method to model the probability of an increase in EVCLs, using the Bayesian

maximum likelihood, and quantify the flexibility of the aggregated EVCL demand is presented.

The flexibility index of EV aggregated demand (FIEVAD) expresses the EV charging behavior

in terms of collective trend. A FIEVAD close to one indicates that the EV charging behavior is

very random and there is no collective trend. Accordingly, the probability of customers to change

their charging behavior is high at those time periods. In contrast, FIEVAD values close to zero,

indicates that there is a collective trend in EV charging and the customers are less likely to

accept demand response changes at those time periods.

The work presented in this chapter promotes the reliability and economical operation of smart

grids and can be useful for grid operators to plan for smart charging decisions on which time

periods can be selected to establish DR programs. Also, the utilized indicators based on

statistical analysis can assist operators and researchers in understanding time periods where

trends in EV charging behaviors may arise and act accordingly.

95

Chapter 7

Clustering and Targeting EV Charging Customers for Load

Shaping

7.1 Introduction

In the previous chapter, a method to quantify the amount of flexibility achievable from the

collective EV charging load was presented. In this chapter, it is desired to choose which

customers to target for reshaping the EV charging load in a way that promotes the reliability of

the smart grid based on those flexibility indices. Figure 7.1 describes the relationship between

chapters 5, 6 and this Chapter 7. A case study on the same data used in Chapters 5 and 6 is

presented in this chapter.

Figure 7.1. Relationship between chapters 5, 6 and 7.

Extracting EV charging loads from the aggregated

daily customer load patterns

Quantify the amount of flexibility achievable from

the aggregated EV charging loads

Choose groups of EV charging customers to reshape

the EV charging load and observing the effects

Chapter 5

Chapter 6

Chapter 7

96

7.2 Clustering Customers into Groups

At each time period, the customers can be grouped into two distinct clusters. The first cluster

includes customers that have a low collective or no charging profile during that time period. The

second cluster includes customers that are charging their EVs and have a high collective

charging profile during the same time period. For example, in hours between 6:00 am and 9:00

am the customers can be grouped into two clusters based on their EV charging behavior. The

first group consists of customers who are not charging their EVs, and the other group consists of

customers who are charging their EVs at this time period. To achieve this grouping of customers,

data mining methods are needed. In this approach, the K-means clustering algorithm is used to

group customers into two distinct clusters. Appendix E describes the K-means clustering

algorithm in details. The cluster representatives of each cluster could show which group of

customers are charging during that time period. RapidMiner Radoop [92] was used to apply the

K-means clustering algorithm on the distributed data on top of the eco-system of Chapter 4.

7.3 Methodology to Target Customers and Reshape the EVCL

In this section, customers that are not charging or have low EV charging profiles will be referred

to as Cluster#1. Customers in this cluster are used in cases were the EV charging demand is

lower than the average daily load or what the operators desire at that time period. The average

daily load (ADL) can be computed from historical data, such as the same day of the passed week

or year. This group of customers are targeted to assist in increasing the loads. On the other hand,

customers that are charging their EVs or have high charging profiles will be referred to as

Cluster#2. This group of customers are targeted to assist in reducing the load during peak or high

load periods. As reducing the EVCLs at some time periods will increase the charging load at

other time periods, customers of Cluster#1 and Cluster#2 are targeted depending on the

flexibility indices presented in Chapter 6.

7.3.1 Retrieving and Clustering the EV Charging Customers

To achieve the Cluster#1 and Cluster#2 groupings, the K-means clustering algorithm is run on

top of the smart grid big data Lambda architecture eco-system of Chapter 4. The eco-system

97

retrieves the customers EVCLs from the distributed HDFS repositories. The data is then

preprocessed; this includes selecting the time period to be clustered and removing customer

profiles with missing data. Once the desired data is preprocessed, the K-means clustering

algorithm is applied, and the grouping of EV charging customers is achieved.

7.3.2 Using Flexibility Indices to Reshape EV Load

Once the groupings of customers are obtained, at each time period the flexibility index of EV

aggregated demand (FIEVAD) and flexibility percentage level (FPL) are computed as shown in

Chapter 6. The FIEVAD expresses the amount of flexibility at a time period. FIEVAD values

closer to one indicate that the collective behavior in EV charging is random. At those time

periods it is more likely that customers will accept changes. On the other hand, FIEVAD values

closer to zero indicate there is a collective trend in EV charging or a collective trend in no

charging of EVs. The aggregated EVCL and probability of increase are used to distinguish

between a trend in charging and no charging of EVs cases. At time periods when it is desired to

reduce the aggregated EVCLs, the FIEVAD value is an indicator to the possibility of achieving

that. The FPL express the percentage of EVCL that could be increased or decreased without

affecting the average collective EV charging demand. The aggregated EVCL and probability of

increase indicate to whether the aggregated load should be increased or decreased.

In cases were the aggregated EVCL is above the average daily load or above what the

operators desire, the aggregated EVCL should be reduced by the FPL percentage at that time

period and vice-versa. However, the suggested FPL may only be achieved if the customers of the

targeted cluster accept to change their behavior. In this case study, it is assumed that each

customer has a 50% probability of accepting changes in their EV charging behavior at a specific

time period. For that, the suggested FPL at a certain time period may not be reached. The

procedure followed to change the EV charging behaviors to reshape the aggregated EVCL

(AggEVL) is shown in Figure 7.2. In this chapter the time period to perform clustering is 3-

hours.

98

Figure 7.2. The procedure followed to change the EV charging behaviors to reshape the aggregated EVCL
(AggEVL) using the average daily load (ADL), ρ the upper FIEVAD and β lower FIEVAD.

7.4 Case Study on Choosing Customers to Reshape EVCL

In this case, it is desired to follow the procedure of Figure 7.2 to choose customers that can

potentially smooth the aggregated EVCL closer to the daily average pattern or how operators

desire. Then the effects of the changes of customers’ behaviors are observed to test the feasibility

of the approach in reshaping the EV load.

 Compute the FIEVAD, FPL and average daily

load from historical data.

Cluster the customers into two groups

based on their EV charging behaviours at

the time-period.

FIEVAD ≥ ρ FIEVAD ≤ β

AggEVL > ADL AggEVL < ADL

Target

Cluster#2

customers to

reduce load

Target

Cluster#1

customers to

increase load

AggEVL > ADL AggEVL < ADL

Target

Cluster#1

customers to

encourage

charging

Customers

following a

trend less likely

to accept

(Cluster#2)

99

The first step is to compute the FIEVAD and FPL. From the previous chapter (Chapter 6) the

FIEVAD and FPL are used in this case study. Figure 7.3 presents the FIEVAD. The flexibility

indices were computed for time periods of 15-minutes.

Figure 7.3: The FIEVAD values.

In the next step, the customers are grouped into two clusters every 3-hours. This is because

customers often change their EV charging behaviors. For example, in the time period of 6:00 am

to 9:00 am, a customer may be classified in Cluster#1 and then in the following time period (9:00

am to 12:00 pm) the customer may be classified as in Cluster#2. Figure 7.4 and Figure 7.5 show

the groupings of customers and centroids of the time period from 21:00 to 00:00, respectively. It

can be observed from Figure 7.4 (a) that this group are not charging their EVs or have relatively

low charging profiles during this 3-hour time period. By contrast, it can be observed in Figure

7.4 (b) that this group have high charging profiles at the same 3-hour period. Figure 7.5 presents

the centroids of each cluster. It can be clearly observed that Cluster#1 have a low profile pattern

and Cluster#2 have a high profile pattern at this 3-hour time period. In this case study, if the

FIEVAD is ρ ≥ 0.80, this is considered a high value of flexibility, and at this time period the EV

charging behavior is random and the customers are more likely to accept change, whereas, if the

FIEVAD is β ≤ 0.30, this indicated there is a strong trend in the EV charging behavior and

100

customers are rigid to accept changes at this time period. The results of targeting customers in

Cluster#2 is shown is Figure 7.6. The blue bars of Figure 7.6 express how the aggregated EVCL

is after some customers accepting to change their behaviour and not to charge their EVs during

this time period. The probability of a customer accepting change was set to 50%. The results of

the application through the entire day are shown in Figure 7.7. It can observed that between the

hours of 19:00 and 05:00 the aggregated EVCL was high (red) and by grouping and targeting

customers that may have potential in changing their charging behavior the aggregated EVCL was

relatively reduced during some time periods. Also, it can be seen around the hours of 09:00,

11:00 and 16:00 there was an increase in the aggregated EVCL. This is because reducing the

aggregated EVCL at some periods will cause an increase in other time periods. By following the

methodology in this case study, the customers during the hours of 09:00, 11:00 and 16:00 were

encouraged to charge their EVs and have accepted to change their charging behaviors. The effect

of increasing the probability of customers accepting to change their EV charging behaviours at

70% and 100%, at each time period independently, are presented in Figure 7.8 and 7.9,

respectively. The high FIEVAD was set to ρ ≥ 0.80 and the low FIEVAD was set to β ≤ 0.30. It

should be noted that, the probability of customers accepting to change their charging behaviours

can be increased by demand-side-management strategies such as, TOU and DR programs.

101

(a)

(b)

Figure 7.4: The groupings EVCLs. (a) Cluster#1. (b) Cluster#2. The thickness of the lines indicates to multiple

EVs.

Figure 7.5: The resulted centroids.

102

Figure 7.6: The aggregated EVCL before (red) and after customer accepting changes (blue).

Figure 7.7: The aggregated EVCL before (red) and after customer accepting changes (blue) for an entire day with

the accepting probability of 50% at each time period.

103

Figure 7.8: The aggregated EVCL before (red) and after customer accepting changes (blue) for an entire day with

the accepting probability of 70% at each time period.

Figure 7.9: The aggregated EVCL before (red) and after customer accepting changes (blue) for an entire day with

the accepting probability of 100% at each time period.

104

7.5 Conclusion

In this chapter, a method to group customers into distinct groupings based on their EV charging

behaviors is presented. The customers in those groups are then targeted to assist in reshaping the

aggregated EVCL in a way that promotes the reliability of the smart grid. Furthermore, a case

study was carried out to test the feasibility of this methodology in reshaping the aggregated

EVCL. The FIEVAD and FPL were utilized to express the possibility of customers to accept

changes in the EV charging behavior at different time periods. The results of the case study

suggest that the methodology could potentially encourage customers to change their EV charging

behavior and obtain desired changes to the collective aggregated EVCL. This essentially

promotes the reliability and operation of the smart grid. To further encourage the customers to

accept changes, incentivizing studies can be performed. Also, studies to reshape the aggregated

load in ways that consumes renewable power can be included to reshape the EV load.

105

Chapter 8

Summary and Future Work

8.1 Summary

This thesis presented a framework to deal with the smart grid big data covering the lifecycle of

smart grid from data generation to data analytics. The framework also includes a learn-and-

response loop that enables to monitor the effects of the decisions made on the grid. The primary

objective was to build a comprehensive framework capable of handling smart grid big data and

applying innovative studies related to EVs. To achieve these objectives, state-of-the-art big data

components were utilized; also, various analytical methods were proposed to extract EV

charging loads, quantify the flexibility of the aggregated EV charging load demand and, choose

EV charging customers to target in reshaping the EV collective load. The proposed methods and

studies were run on top of the smart grid big data Lambda architecture eco-system.

Chapter 3 presented a big data framework for smart grids. The framework’s stages including,

data acquisition, data storing and processing, data querying, and data analytics components were

discussed in details. Furthermore, the functionality of the Apache Hadoop platform and the

features that make it suitable for the smart grid big data management and analysis were

discussed. The framework was implemented on a cloud-based platform. Furthermore, visual

analytical applications on real data were performed.

Chapter 4 extends the framework of Chapter 3 by presenting a smart grid big data eco-system

based on the Lambda architecture. This eco-system is able to handle massive quantities of smart

grid data by taking advantage of batch and real-time processing methods. The Lambda

architecture design and principals for building batch and real-time processing systems were

discussed. The eco-system collects then stores the smart grid big data into a cloud. This allows

collecting various types of smart grid data including smart meter data, and image and video data

to enable data mining in digital image and video processing applications.

Data mining and visualization applications on real smart grid data were performed. The data

mining application was to partition the daily smart meter readings into groups based on the load

106

consumption. In the visualization application, the presented eco-system was able to overcome the

delay in real-time visualization of the previous smart grid big data frameworks by utilizing the

Lambda architecture.

In Chapter 5, an algorithm to extract EV charging loads (EVCL) non-intrusively was

proposed. The proposed algorithm (EEVCLP) is unsupervised and is able to run on low-

frequency real power data. The proposed algorithm utilizes a signal processing method, ICA, to

extract the EVCLs from the aggregated load pattern of households. In addition, the proposed

algorithm can effectively mitigate the interference of other appliances that have similar load

behaviors as EVs.

To verify the effectiveness of the EEVCLP algorithm, the algorithm was applied on real

household datasets on top of the smart grid big data Lambda architecture eco-system. The results

of extracting the EVCLs from the daily ALP of households were satisfactory. Furthermore, the

proposed algorithm was tested by ingesting 1-hour segments to monitor the EV charging

behaviors of a neighborhood during the past hour. The results were satisfactory and suggested

that the proposed algorithm is able to run on shorter time frames. Aggregating the extracted

EVCLs can potentially provide an accurate estimation of the charging demand that is critical for

utilities to evaluate the power delivery, and can assist smart grid operators in planning and

demand response strategies. Also, further analyses and studies can be carried out from

aggregating such charging behaviors of EVs.

Chapter 6 presents a method to model the probability of an increase in EVCLs and quantify

the flexibility of the aggregated EVCL demand. The proposed flexibility index of EV aggregated

demand (FIEVAD) expresses the EV charging behavior in terms of collective trend. FIEVAD

values close to one indicate there is no collective trend in EV charging. In contrast, FIEVAD

values close to zero, indicate that there is a collective trend in EV charging and the customers are

less likely to accept changes at those time periods. This can be useful for grid operators to plan

for informed charging decisions on which time periods can be targeted to establish demand

response programs.

In Chapter 7, a methodology to group customers into distinct clusters based on their EV

charging behaviors is presented. The customers in those groups are then targeted to assist in

107

reshaping the aggregated EVCL in a way that promotes the reliability of the smart grid.

Furthermore, a case study was performed to test the feasibility of this methodology in reshaping

the aggregated EVCL. The results of the case study suggest that the methodology could

potentially encourage customers to change their EV charging behavior and obtain desired

changes to the collective aggregated EVCL. This essentially promotes the reliability and

operation of the smart grid. The probability of customers accepting to change their behaviour

could be increased by demand-side-management strategies including, TOU and incentivizing

programs.

8.2 Future Work

The following research directions can be followed as an extension out of this thesis:

- Extending the smart grid big data Lambda architecture with components that enable real-

time image and video processing applications.

- Proposing data mining algorithms that can be applied on distributed data.

- Proposing supervised algorithms to predict outages.

- The trend of further developing the smart grid big data Lambda architecture eco-system for

non-data scientists.

- Enhancing the method of choosing EV charging customers by increasing the probability of

accepting changes.

- Consumer-oriented applications to provide feedback to end-users on reducing electricity

consumption and saving money through smartphone push notifications.

- Modeling and extracting other major appliances from the aggregated load.

108

Bibliography

[1] J. Gantz, and D. Reinsel, “The digital universe in 2020: Big data, bigger digital shadows,
and biggest growth in the far east,” IDC Anal. Future, 2012.

[2] H. Hu, Y. Wen, T-S. Chua, and X. Li, “Toward scalable systems for big data analytics: A
technology tutorial,” IEEE Access, vol. 2, pp. 652-687, May 2014.

[3] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 1, pp. 97-107, Jan. 2014.

[4] IEEE Std 2030-2011, “Guide for smart grid interoperability of energy technology and
information technology operation with the electric power system (EPS), and end-use
applications and loads,” 2011.

[5] M. Duvall and E. Knipping, “Environmental assessment of plug-in hybrid electric
vehicles,” EPRI Jul. 2007.

[6] A. Dubey, and S. Santoso, “Electric vehicle charging on residential distribution systems:
impacts and mitigations,” IEEE Access, vol. 3, pp. 1871-1893, 2015.

[7] Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, and V. Prasanna,
“Cloud-based software platform for data-driven smart grid management,” IEEE/AIP
Comput. Sci. Eng., vol. 15, no. 4, pp. 38–47, 2013.

[8] O. R. Team, Big Data Now: Current Perspectives from O'Reilly Radar, Sebastopol, CA,
USA: O'Reilly Media, 2011.

[9] M. Grobelnik. (2012, Jul.). Big Data Tutorial. Available [Online]:
http://videolectures.net/eswc2012_grobelnik_big_data/

[10] J. Manyika et al., Big data: The Next Frontier for Innovation, Competition, and
Productivity. San Francisco, CA, USA: McKinsey Global Institute, 2011, pp. 1-137.

[11] P. Zikopoulos, and C. Eaton, Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data, New York, NY, USA: McGraw-Hill, 2011.

[12] E. Meijer, “The world according to LINQ,” Commun. ACM, vol. 54, no. 10, pp. 45-51,
Aug. 2011.

[13] D. Laney, “3d data management: Controlling data volume, velocity and variety,” Gartner,
Stamford, CT, USA, White Paper, 2001.

[14] P. Zikopoulos, D. deRoos, C. Bienko, R. Buglio, and M. Andrews, Big Data: Beyond the
Hype, New York, NY, USA: McGraw-Hill, 2015.

http://videolectures.net/eswc2012_grobelnik_big_data/

109

[15] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, challenges, tools and good
practices,” Proc. Contemporary Computing, pp. 404-409, 2013.

[16] Y. Demchenko, C. deLaat, and P. Membrey, “Defining architecture components of the big
data ecosystem,” Proc. Collaboration Technologies and Systems, pp. 104-112, May 2014.

[17] C. L. Stimmel, Big Data Analytics Strategies for the Smart Grid, CRC Press, pp. 155-169,
2015.

[18] X. He, Q. Ai, C. Qiu, W. Huang, L. Piao, and H. Liu, “A big data architecture design for
smart grids based on random matrix theory,” IEEE Trans. on Smart Grid, vol. 8, no.
2, pp. 674-686, 2017.

[19] A. A. Munshi, and Y. A. I. Mohamed, “Cloud-based visual analytics for smart grids big
data,” Proc.IEEE Innovative Smart Grid Technologies, 2016.

[20] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 1, pp. 97-107, Jan. 2014.

[21] H. Khazaei, C. McGregor, M. Eklund, K. El-Khatib, and A Thommandram, “Toward a big
data healthcare analytics system: a mathematical modeling perspective,” IEEE World
Congress on Services, 2014.

[22] J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang, “A secure cloud computing based
framework for big data information management of smart grid,” IEEE Transactions on
Cloud Computing, vol. 3, no. 2, pp. 233-244, 2015.

[23] T. White, Hadoop: The Definitive Guide, Sebastopol, CA, USA: O'Reilly Media, Yahoo!
Press, 2012.

[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,”
Proc. IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-10,
May 2010.

[25] S. Ghemawat, H. Gobioff, and S-T. Leung, “The google file system,” Proc. 19th ACM
Symposium on Operating System Design and Implementation, Oct. 2003.

[26] J. Dean, and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
Proc. 6th Symposium on Operating System Design and Implementation (OSDI’04), Dec.
2004.

[27] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another resource negotiator,” Proc.
4th Symposium on Cloud Computing, 2013.

110

[28] N. Marz, and J. Warren, Big Data: Principles and Best Practices of Scale realtime data
systems, Manning, Apr. 2015.

[29] M. –S. Tsai, and Y. –H. Lin, “Modern development of an adaptive non-intrusive appliance
load monitoring system in electricity energy conservation,” Applied Energy, vol. 96, pp.
55-73, 2012.

[30] H. –H. Chang, C. –L. Lin, and J. –K. Lee, “Load identification in nonintrusive load
monitoring using steady-state and turn-on transient energy algorithms,” in Proc. CSCWD,
Shanghai, China. 2010, pp. 27-32.

[31] M. Figueiredo, A. de Almeida, and B. Ribeiro, “Home electrical signal disaggregation for
non-intrusive load monitoring (nilm) systems,” Neurocomputing, vol. 96, pp. 66-73, 2012.

[32] J. Kolter, S. Batra, and A. Ng, “Energy disaggregation via discriminative sparse coding,”
in Proc. Neural Information Processing Systems, 2010.

[33] M. E. Berges, E. Goldman, H. S. Matthews, and L. Soibelman, “Enhancing electricity
audits in residential buildings with nonintrusive load monitoring,” Journal of Industrial
Ecology, vol. 14, no. 5, pp. 844-858, 2010.

[34] S. Marsland, Machine Learning: An Algorithmic Perspective, 2nd ed., Chapman &
Hall/CRC, Boca Raton: USA, 2015.

[35] M. Zeifman, “Disaggregation of home energy display data using probabilistic approach,”
IEEE Trans. Consumer Electronics, vol. 58, no. 1, pp. 23-31, 2012.

[36] T. Zia, D. Bruckner, and A. Zaidi, “A hidden markov model based procedure for
identifying household electric loads,” in Proc. IEEE IECON, Melbourne, Nov. 2011. pp.
3218-3223.

[37] J. Kolter, and T. Jaakkola, “Approximate inference in additive factorial hmms with
application to energy disaggregation,” Journal of Machine Learning Research, vol. 22, pp.
1472-1482, 2012.

[38] M. J. Johnson, and A. S. Willsky, “Bayesian nonparametric hidden semi-markov models,”
Journal of Machine Learning Research, vol. 14, no. 1, pp. 673-701, 2013.

[39] Z. Zhang, J. H. Son, Y. Li, M. Trayer, Z. Pi, D. Y. Hwang, and J. K. Monn, “Training-free
non-intrusive load monitoring of electric vehicle charging with low sampling rate,” in
Proc. IEEE IECON, Dallas, 2014. pp. 5418-5425.

[40] G. Hart, “Nonintrusive appliance load monitoring,” in Proc. IEEE, Dec. 1992. pp. 1870-
1891.

111

[41] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Armstrong, “Power
signature analysis,” IEEE Power and Energy Magazine, vol.1, no. 2, pp. 56-63, 2003.

[42] R. Fisera, and K. Macek, “Virtual sub-metering via combined classifiers,” in Proc.
IDAACS, vol. 1, pp. 126-131, 2011.

[43] H. -H. Chang, C. –L. Lin, and J. –K. Lee, “Load identification in nonintrusive load
monitoring using steady-state and turn-on transient energy algorithms,” in Proc. CSCWD,
pp. 27-32, 2010.

[44] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “Non-intrusive load monitoring using prior
models of general appliance types,” in Proc. AAAI, pp. 356-362, 2012.

[45] P. Zhang, C. Zhou, B. G. Stewart, D. M. Hepburn, W. Zhou, and J. Yu, “An improved non-
intrusive load monitoring method for recognition of electric vehicle battery charging load,”
Energy Procedia, vol. 12, pp. 104-112, 2011.

[46] M. A. Ortega-Vazquez, “Optimal scheduling of electric vehicle charging and vehicle-to-
grid services at household level including battery degradation and price uncertainty,” IET
Gener. Transm. Distrib., vol. 8, no. 6, pp. 1007–1016, Jun. 2014.

[47] T. Zhang, W. Chen, Z. Han, and Z. Cao, “Charging scheduling of electric vehicles with
local renewable energy under uncertain electric vehicle arrival and grid power price,” IEEE
Veh. Technol., vol. 63, no. 6, pp. 2600–2612, Jan. 2013.

[48] Y. Liu, R. Deng, and H. Liang, “Game-theoretic control of PHEV charging with power
flow analysis,” AIMS Energy, vol. 4, no. 2, pp. 379-396, Mar. 2016.

[49] M. Wang, H. Liang, R. Zhang, R. Deng, and X. Shen, “Mobility-aware coordinated
charging for electric vehicles in VANET-enhanced smart grid,” IEEE Journal on Selected
Areas in Communications - Smart Grid Communications Series, vol. 32, no. 7, pp. 1344-
1360, July 2014

[50] V. Aravinthan and W. Jewell, “Controlled electric vehicle charging for mitigating impacts
on distribution assets,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 999–1009, Jan. 2015.

[51] M. Moradijoz, M. Parsa Moghaddam, M. R. Haghifam, and E. Alishahi, “A multi-
objective optimization problem for allocating parking lots in a distribution network,” Int. J.
Elect. Power Energy Syst., vol. 46, pp. 115– 122, Mar. 2013.

[52] M. R. Aghaebrahimi, M. M. Ghasemipour, and A. Sedghi, “Probabilistic optimal
placement of EV parking considering different operation strategies,” in Proc. 17th IEEE
Mediterr. Electrotech. Conf. (MELECON), Apr. 2014, pp. 108–114.

112

[53] Z. Hu, Y. Song, and Z. Luo, “Optimal siting and sizing of electric vehicle charging
stations,” in Proc. IEEE Int. Elect. Veh. Conf., 2012, pp. 1–6.

[54] A. El-Zonkoly, H. Ashour, and A. Ahmed, “Optimal allocation, sizing and energy
management of PHEV parking lots in distribution system,” in Proc. 5th Int. Renew. Energy
Congr. (IREC), 2014, pp. 1–5.

[55] M. Moradijoz, A. Ghazanfarimeymand, M. P. Moghaddam, and M. R. Haghifam,
“Optimum placement of distributed generation and parking lots for loss reduction in
distribution networks,” in Proc. 17th Conf. Elect. Power Distrib. Netw. (EPDC), 2012, pp.
1–5

[56] “2012 assessment of demand response and advanced metering,” U.S. Federal Energy
Regulatory Commission, Washington, DC, Dec. 2012.

[57] I. Sulyma, K. Tiedemann, M. Pedersen, M. Rebman, and M. Yu, “Experimental evidence:
A residential time of use pilot,” in Proc. ACEEE Summer Study Energy Efficiency
Buildings, 2008, pp. 292–304

[58] P. L. Joskow and C. D. Wolfram, “Dynamic pricing of electricity,” Amer. Econ. Rev., vol.
102, no. 3, pp. 381–385, 2012.

[59] W. Golden and P. Powell, “Towards a definition of flexibility: in search of the holy grail?,”
Omega, vol. 28, no. 4, pp. 373–384, 2000.

[60] E. Lannoye, D. Flynn, and M. O’Malley, “Evaluation of power system flexibility,” IEEE
Trans. Power Syst., vol. 27, no. 2, pp. 922–931, 2012.

[61] J. Ma, V. Silva, R. Belhomme, D. S. Kirschen, and L. F. Ochoa, “Evaluating and planning
flexibility in sustainable power systems,” in Proc. IEEE Power Energy Soc. Gen. Meeting
(PES), Vancouver, BC, Canada, 2013, pp. 1–11.

[62] A. Papavasiliou and S. S. Oren, “Large-scale integration of deferrable demand and
renewable energy sources,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 489–499, Jan.
2014.

[63] I. A. Sajjad, G. Chicco, and R. Napoli “Demand flexibility time intervals for aggregate
residential load patterns,” Power Tech, 2015.

[64] I. A. Sajjad, and G. Chicco, “Definitions of demand flexibility for aggregate residential
loads,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2633-2643, 2016.

[65] R. Stamminger et al., “Synergy potential of smart appliances,” Fed. Ministry Environ.,
Nat. Conserv., Nuclear Safety, Bonn, Germany, Tech. Rep. Project Smart, 2008.

113

[66] A. Safdarian, M. Fotuhi-Firuzabad, and M. Lehtonen, “Benefits of demand response on
operation of distribution networks: A case study,” IEEE Syst. J., vol. 10, no. 1, pp. 189–
197, Mar. 2016.

[67] M. Alizadeh, A. Scaglione, A. Applebaum, G. Kesidis, and K. Levitt, “Reduced-order load
models for large populations of flexible appliances,” IEEE Trans. Power Syst., vol. 30, no.
4, pp. 1758–1774, Jul. 2015.

[68] VMware, “Apache flume and apache sqoop data ingestion to apache Hadoop clusters on
vmware vsphere,” VMware, CA, USA, White Paper, 2013.

[69] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu., P. Wyckoff, and
R. Murthy, Hive: A warehousing solution over a mapreduce framework,” Proc. Very Large
Data Bases, vol. 2, no. 2, pp. 1626-1629, Aug. 2009.

[70] J. Li, “Design of real-time data analysis system based on Impala,” IEEE Workshop in
Advanced Research and Technology in Industry Applications, pp. 934-936, Sept. 2014.

[71] Apache Mahout, Apache, [Online]. Available: https://mahout.apache.org/docs/0.13.0/

[72] A. Bifet, and G. D-F. Morales, “Big data stream learning with SAMOA,” IEEE Data
Mining Workshop, pp. 1199-1202, Dec. 2014.

[73] Tableau Software. Tableau. [Online]. Available:
https://onlinehelp.tableau.com/current/pro/desktop/enus/help.htm#save_savework_packagedworkb
ooks.html

[74] N. Serrano, G. Gallardo, and J. Hernantes, “Infrastructure as a service and cloud
technologies,” Software, IEEE , vol. 32, no. 2, pp. 30-36, 2015.

[75] F. Fakhar, and M. A. Shibli, “Management of symmetric cryptographic keys in cloud
based environment,” Advanced Communication Technology (ICACT), Jan. 2013.

[76] Cloudera Inc. “Cloudera ODBC driver for impala”, 2016, Available [Online]:
http://www.cloudera.com/documentation/other/connectors/impala-odbc/latest/Cloudera-ODBC-
Driver-for-Impala-Install-Guide.pdf

[77] N. Serrano, G. Gallardo, and J. Hernantes, “Infrastructure as a service and cloud
technologies,” Software, IEEE , vol. 32, no. 2, pp. 30-36, 2015.

[78] F. Fakhar, and M. A. Shibli, “Management of symmetric cryptographic keys in cloud
based environment,” Advanced Communication Technology (ICACT), Jan. 2013.

[79] Lichman, M. (2013). UCI Machine Learning Repository http://archive.ics.uci.edu/ml

https://mahout.apache.org/docs/0.13.0/
http://www.cloudera.com/documentation/other/connectors/impala-odbc/latest/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
http://www.cloudera.com/documentation/other/connectors/impala-odbc/latest/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
http://archive.ics.uci.edu/ml

114

[80] Solar Radiation Research Laboratory (BMS), Available [Online]:
http://www.nrel.gov/midc/srrl_bms

[81] Kingspan wind, “KW3 Small Wind Turbines,” RAL 9005, datasheet.

[82] A. A. Munshi, and Y. A.-R. I. Mohamed, “Big data framework for analytics in smart
grids,” Electric Power Systems Reseacrch, vol. 151, pp. 369-380, Oct. 2017.

[83] SUNPOWER, “E20/435 Solar Panel,” SPR-435NE-WHT-D datasheet, 2011.

[84] G. M. Masters, Renewable and Efficient Electric Power Systems, John Wiley & Son, pp.
505-531, 2004.

[85] A. P. Robinson, P. T. Blythe, M. C. Bell, Y. Hubner, and G. A. Hill, “Analysis of electric
vehicle driver recharging demand profiles and subsequent impacts on the carbon content of
electric vehicle trips,” Energy Policy, vol. 61, pp. 337-348, 2013.

[86] M. Alonso, H. Amaris, J. G. Germain, and J. M. Galan, “Optimal charging scheduling of
electric vehicles in smart grids by heuristic algorithms, ” Energies, vol. 7, no. 4, pp. 2449-
2475, 2014.

[87] Irish Social Science Data Archive (ISSDA), Available [Online]: www.ucd.ie/issda

[88] R. Smith, “Assault on California power station raises alarm on potential for terrorism,”
Wall Street J., pp. 1–7, Feb. 2014.

[89] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proc. HotCloud ’10, 2010.

[90] M. Guller, Big Data Analytics with Spark: A practitioner’s Guide to Using Spark for Large
Scale Data Analysis, Apress, 2015.

[91] M. Armbrust, R. Xin, C. Lian, Y. Yuai, D. Liu, J. Bradley, X. Meng, T. Kaftan, M.
Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational data processing in spark. In
ACM Special Interest Group on Management of Data, 2015.

[92] RapidMiner, “RapidMiner Radoop Documentation,” Apr. 2015. Available [Online]:
https://docs.rapidminer.com/downloads/rapidminer-radoop-manual.pdf

[93] Matlab, “Tall Arrays,” [Online]:
 https://www.mathworks.com/help/matlab/import_export/tall-arrays.html

[94] Pecan Street Inc. Dataport (2015). http://www.pecanstreet.org

http://www.nrel.gov/midc/srrl_bms
http://www.ucd.ie/issda
https://www.mathworks.com/help/matlab/import_export/tall-arrays.html
http://www.pecanstreet.org/

115

[95] B. Malysiak-Mrozek, M. Stabla, and D. Mrozek, “Soft and declarative fishing of
information in big data lake,” in IEEE Trans. on Fuzzy Systems, vol. 26, no. 5, pp.
2732-2747, 2018.

[96] P. Comon, “Independent component analysis: a new concept?,” Signal Processing, pp.
287-314, 1994,.

[97] C. Jutten, and J. Herault, “Blind separation of sources, part I: an adaptive algorithm based
on neuromimetic architecture,” Signal Processing, vol. 24, no. 1, pp. 1-10, 1991.

[98] EVObsession, (2015). Electric car charging 101 – types of charging, charging networks,
apps and more!”, [Online]. Available: http://evobsession.com/electric-car-charging-101-types-
of-charging-apps-more/

[99] M. P. Wand, “Data-based choice of histogram bin width,” Stat. Comput. Graphics, vol. 51,
no. 1, pp. 59-64, 1997.

[100] Synergy, The KaleidaGraph Guide to Curve Fitting, 2006, [Online]:
http://www.synergy.com/Tools/curvefitting.pdf

[101] H. Kim, M. Marwah, M. F. Arlitt, G. Lyon, and J. Han, “Unsupervised disaggregation of
low frequency power measurements,” in Proc. SIAM, pp. 747-758, 2011.

[102] R. Duda, P. E. Hatt, and D. G. Stork, Pattern Classification, Wiley, 2000.

http://evobsession.com/electric-car-charging-101-types-of-charging-apps-more/
http://evobsession.com/electric-car-charging-101-types-of-charging-apps-more/
http://www.synergy.com/Tools/curvefitting.pdf

116

Appendix A

Flume Agent Configuration

Active Flume Components

FlumeDatLakeAgent1.sources = FDLsource

FlumeDatLakeAgent1.channels = FDLmemoryChannel

FlumeDatLakeAgent1.sinks = FDLHDFSsink

Setting the source to spool directory where the file exists

FlumeDatLakeAgent1.sources. FDLsource.type = spooldir

FlumeDatLakeAgent1.sources. FDLsource.spoolDir = /usr/local/flume/smartmeters

FlumeDatLakeAgent1.sources. FDLsource.bind=10.142.0.8

FlumeDatLakeAgent1.sources. FDLsource.port=10010

Setting the channel to memory

FlumeDatLakeAgent1.channels. FDLmemoryChannel.type = memory

Max number of events stored in the memory channel

FlumeDatLakeAgent1.channels. FDLmemoryChannel.capacity = 1000000

FlumeDatLakeAgent1.channels. FDLmemoryChannel.batchSize = 1000000

FlumeDatLakeAgent1.channels. FDLmemoryChannel.transactioncapacity = 1000000

Use a channel which buffers events in file

FlumeDatLakeAgent1.channels. FDLmemoryChannel.type = file

FlumeDatLakeAgent1. FDLmemoryChannel.checkpointDir = /usr/local/TempDLBuffer

FlumeDatLakeAgent1.channels. FDLmemoryChannel.dataDirs = /usr/local/TempDLBuffer2/Data2

Setting the sink to HDFS

FlumeDatLakeAgent1.sinks. FDLHDFSsink.type = hdfs

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.path = hdfs://10.142.0.2/user/flume/smartmeters

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.fileType = DataStream

Write format can be text or writable

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.writeFormat = Text

use a single csv file at a time

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.maxOpenFiles = 10

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollCount=10000

117

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollInterval=0

#Each file how many bytes

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollSize = 0

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.batchSize =1000

rollover file based on max time of 1 min

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.rollInterval = 0

FlumeDatLakeAgent1.sinks. FDLHDFSsink.hdfs.idleTimeout = 60

Connect source and sink with channel

FlumeDatLakeAgent1.sources. FDLsource.channels = FDLmemoryChannel

FlumeDatLakeAgent1.sinks. FDLHDFSsink.channel = FDLmemoryChannel

118

Appendix B

Commands to Configure Spark for Matlab and Read/Store into

HDFS

% defining the Spark cluster and properties.
cluster = parallel.cluster.Hadoop(...

'HadoopInstallFolder','/opt/cloudera/parcels/CDH/lib/hadoop', ...

'SparkInstallFolder','/opt/cloudera/parcels/CDH/lib/spark/lib/spark-2.2.0-bin-hadoop2.6');

cluster.SparkProperties('spark.driver.memory') = '4096m';

cluster.SparkProperties('spark.executor.memory') = '4096m';

cluster.SparkProperties('spark.yarn.executor.memoryOverhead')='2048';

mapreducer(cluster);

% setting up environment variables
setenv('HADOOP_HOME','/opt/cloudera/parcels/CDH/lib/hadoop')

setenv('HADOOP_PREFIX','/opt/cloudera/parcels/CDH/lib/hadoop')

setenv('MATLAB_HADOOP_INSTALL','/opt/cloudera/parcels/CDH/lib/hadoop')

% pointing to the HDFS location and defining data as tall table.
ds = datastore('hdfs://master/user/LoadsTab'); %HDFS location

tt = tall(ds);

% storing into HDFS.
formatOut = 'dd-mm-yy_HHMM'; %Timestamp

command = ['hadoop fs -copyFromLocal ./loadsJan.csv /user/LoadsTab/Jan' datestr(now,formatOut)]; %Copy to HDFS

status = system(command);

119

Appendix C

Preprocessing of ICA

Before applying the ICA algorithm on data, it is useful to do some preprocessing, to make the

problem of ICA estimation simpler and better conditioned. The used preprocessing techniques

are:

Centering:

A common and necessary preprocessing step is to center x. This is achieved by subtracting its

mean vector { }m E x :

  cx x m (C.1)

This implies that s is a zero-mean vector as well, by taking expectations on both sides of (5.1):

 () cs W x m (C.2)

From this, all observation vectors are assumed to be centered, whereas, the mixing matrix

remains unaffected after this centering step.

Whitening:

Another useful step in the preprocessing is to whiten the observed vector (x). Whitening

involves linearly transforming the observation vector x, such that a new whitened vector xw that

has components that are uncorrelated and have their variances equal unity is obtained:

 { }T
w wE x x I (C.3)

A simple method to perform the whitening transformation is to use the eigenvalue

decomposition (EVD) of the covariance matrix:

 { }T TE xx EDE (C.4)

where E is the orthogonal matrix of eigenvectors of { }TE xx and D is the diagonal matrix of its

eigenvalues 1diag(,...,)nD d d . The observation vector can be whitened by the following

transformation:

 0.5 T
wx ED E x (C.5)

where the matrix 0.5D is computed by a simple component-wise operation:

120

 0.5 0.5 0.5
1diag(,...,)   nD d d (C.6)

Whitening transforms the mixing matrix into Aw. From (5.1) and (B.5):

 0.5 T
w wx ED E As A s (C.7)

hence,

 { } { }T T T
w w w wE x x A E ss A (C.8)

  T
w wA A

  I

The main purpose of whitening is to reduce the number of parameters to be estimated. Instead

of having to estimate the n2 elements of the original matrix A, we only need to estimate the new

orthogonal mixing matrix, where an orthogonal matrix has n(n−1)/2 degrees of freedom.

121

Appendix D

Modified F-Score

The advantage of using the modified F-score metric is that it involves all possible extraction

outcomes for x, the algorithm extracted value, and x0, the ground truth value:

- The true negative (TN) is when x=0 and x0 = 0.

- The false negative (FN) is when x=0 and x0 > 0.

- The false positive (FP) is when x>0 and x0 = 0.

- The accurate true positive (ATP) is when x>0 and x0 >0, and . a

- The inaccurate true positive (ITP) is when x>0 and x0 >0, and . a

 where the error threshold ρ = 0.2.

 The modified F-score not only measures the accuracy of the state of the EV charging, it also

measures the accuracy of the extracted amplitude by involving the ATP (accurate amplitude

estimation) and ITP (inaccurate amplitude estimation).

 The modified F-score can be defined as the harmonic mean of the precision and recall, and

are computed by: a

 
 

ATPPrecision
ATP FP ITP

 (D.1)

 
 

ATPRecall
ATP FN ITP

 (D.2)

 2  



score

precision recallF
precision recall

 (D.3)

0

0

| |





x x
x

0

0

| |
 




x x
x

122

Appendix E

K-means Clustering Algorithm

The K-means is one of the most popular partitional clustering methods. It groups a set of N input

data points into K clusters using an iterative procedure. The number of K clusters is a user-

specified parameter. The average of all data points in a cluster is the representative data point

(centroid). The main goal of K-means is to minimize the sum of square error over all K clusters.

The K-means clustering can be summarized by the following steps:

1. Initialize K data points randomly or on some prior knowledge, C = [C1, C2,…, CK].

2. Calculate the distances between each data point x and centroid C, assign each data point to

the nearest centroid.

 , if || ||

 for 1, ,

||

, , and 1, ,

||   

    

i w i w i jx C x C x C
i N j w j K

 (E.1)

3. Recalculate the centroid for each cluster.

1


 
k

k
x Ck

C x
N

 (E.2)

where Nk is the number of data points in Ck.

Repeat steps 2 and 3; terminate when there is no change for each cluster.

