
Sometimes its good to contrast what you like with something else. It makes you
appreciate it even more.

– Darby Conley, Get Fuzzy, 2001.
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Abstract

Group comparison per se is a fundamental task in many scientific endeavours but

is also the basis of any classifier. Comparing groups of sequence data is a relevant

task. To contrast sequence groups, we define Emerging Sequences (ESs) as subse-

quences that are frequent in sequences of one group and less frequent in another,

and thus distinguishing sequences of different classes.

There are two challenges to distinguish sequence classes by ESs: the extraction

of ESs is not trivially efficient and only exact matches of sequences are considered.

In our work we address those problems by a suffix tree-based framework and a

sliding window matching mechanism. A classification model based on ESs is also

proposed.

Evaluating against several other learning algorithms, the experiments on two

datasets show that our similar ESs-based classification model outperforms the base-

line approaches. With the ESs’ high discriminative power, our proposed model

achieves satisfactory F-measures on classifying sequences.
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Chapter 1

Introduction

Any science inevitably calls for comparison. Group comparison has always been a

scientific endeavour in Statistics [36] and since the early days of Data Mining with

works such as discriminant rule discovery [21]. It also is the basis of any classifier in

Machine Learning. Contrast sets (CSs) [8] and Emerging patterns (EPs) [15], which

contrast between groups of categorical data, can facilitate the classifiers and thus

improving classification performance [16] [34]. At a higher level, data distributions

can also be used to contrast databases [48].

Comparing groups of sequence data is a relevant task in many applications, such

as comparing amino acid sequences of two protein families, distinguishing harmful

operations from normal ones in software management, comparing good customers

from churning ones in e-business, or contrasting successful and unsuccessful users

(or learners) of software or e-learning environments, are typical examples where

contrasting sequence groups is crucial. In this thesis, we focus on the sequence data

and try to find the differences between sequence groups.

1.1 Background, Challenges and Approach

To contrast groups of sequences, one fundamental question is:“How do several se-

quence classes differ?” In categorical data, discriminative patterns, typically con-

junctions of attribute value pairs, are extracted to represent multi-dimensional data;
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a similar strategy, i.e. the extraction of discriminative patterns, can be adopted in

sequence data. However, since the order of items is important in sequences, dif-

ferent from categorical data, the discriminative patterns we are interested in should

also consider the order of items in the sequence data. For instance, in a protein

family, a protein sequence contains the subsequence 〈FMV CICDDANEAG〉,
where every letter represents an amino acid. If the order of amino acids changes, it

is possible that this protein is a member of a different protein family. We opt to use

subsequences as discriminative patterns to contrast sequence groups.

In categorical data, learning algorithms based on discriminative patterns, such

as CSs and EPs, are proved having satisfactory performance on classification, be-

cause they take advantage of the discriminative power between high support and

low support patterns. We believe that discriminative subsequences are helpful in

sequence classification as well. We give two specific examples to highlight this

idea.

Example 1.1. Borrowing an example from Ji, Bailey and Dong [25], for instance,

the subsequences “having horns”, “faces worship”, “stones price” and “ornaments

price” appear several times in the Book of Revelation, but never in the Book of

Genesis. Biblical scholars might be interested in those subsequences and regard

them as fingerprints associated with the Book of Revelation.

Example 1.2. When students collaborate to work on programming course projects,

their events are recorded. In this particular case, there are three types of events: T

represents the operation about a new task, W means communication by collabo-

rative web page, and S is a source code writing event. After comparing the event

sequences of different teams, Kay et al. [27] found that the best student groups

had interesting sequential patterns, where W and S occurred in alternation, such as

〈SWS〉, 〈WSWS〉. And these patterns were often not present in the other groups.

Therefore, those event patterns could be suggested as examples of future teamwork
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projects.

Since discriminative subsequences are helpful in classification, two main steps

are needed to distinguish one sequence group from another:

• First, discriminative subsequences are extracted from two sequence groups

respectively.

• Then, we build a classifier by using the discriminative subsequences.

However, there are two main challenges to contrast sequence groups using sub-

sequences. First, the mining of discriminative subsequences is hard. Wang et al.

proved that the complexity of finding emerging patterns is MAX SNP-hard [49].

As a more complex pattern, the number of sequential pattern candidates increases

exponentially with the size of the vocabulary; therefore, the mining of discrimina-

tive subsequences cannot be done in polynomial time. Another problem is during

the classification stage: as subsequences become long, an approximative match is

desired instead of an exact match when subsequences are compared against dis-

criminative patterns. For instance, in Example 1.2, subsequences s1 = 〈SWS〉 and

s2 = 〈WSWS〉 are discriminative features to distinguish successful teams from

unsuccessful ones. If a new team has an event sequence s3 = 〈STWS〉, the prob-

lem is whether we should classify it as a unsuccessful team. The new sequence is

very similar with s1 and s2, so it is more likely that this team will be successful.

In this thesis, we first define Emerging Sequences (ESs) as subsequences that

are frequent in sequences of one group and less frequent in the sequences of an-

other, and thus distinguishing or contrasting sequences of different classes. Two

hypotheses are proposed:

Hypothesis 1.1. We can compare labeled groups of sequences by extracting subse-

quences that contrast those groups.
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Hypothesis 1.2. We can use Emerging Sequences (ESs) to build classification mod-

els to classify sequences.

To verify the hypotheses, an ES-based classification framework is proposed. In

this framework, ESs are mined more efficiently by a suffix tree-based approach;

and a sliding window matching mechanism is also implemented to consider similar

subsequences. Our proposed ES-based learning model can be divided into four

stages:

1. Preprocess the sequence datasets and extract Emerging Sequence candidates.

2. Select the most discriminative Emerging Sequences.

3. Transform the sequences into tokenized transactional datasets.

4. Train the classifier by Emerging Sequences.

To validate our 4 stage learning model, we perform experiments on two types

of datasets, one from software engineering and another from bioinformatics. We

compare our approach to several other techniques, such as ConSGapMiner [25],

static feature selection, exact sequence matching, or Association Rule-based Clas-

sifier, to illustrate the discriminative power of ESs and the performance of our pro-

posed strategies. The experiments show that ESs are much more discriminative

than frequent subsequences and our similar ES-based classification model achieves

satisfactory F-measures (as high as 98%) on classifying sequences. When our al-

gorithm is trained by using jumping emerging sequences (i.e. subsequences present

in a group and totally absent or negligible in others), the best performance can be

achieved.

4



1.2 Dissertation Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce some

terminologies and define the problem. In Chapter 3, we review the related works

on statistics and data mining. Two sequence mining algorithms and two feature

selection strategies are discussed in Chapter 4. Chapter 5 presents the transforma-

tion from sequence datasets to transactional datasets and the classification based on

ESs. We present the prediction performance of our proposed approach in Chapter 6.

Finally, we summarize our research in Chapter 7.

A paper based on this thesis was accepted by The Twelfth International Confer-

ence on Discovery Science 2009 [14].
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Chapter 2

Preliminaries and Problem Definition

In this chapter, we first explain some notations used throughout this dissertation.

Then a formal definition of the problem is given.

2.1 Terminology

Let I = {i1, i2, . . . , ik} be a set of all items, or the alphabet, a sequence is an

ordered list of items from I . Given a sequence S = 〈s1, s2, . . . , sn〉 and a sequence

T = 〈t1, t2, . . . , tm〉, we say that S is a subsequence of T or T contains S, denoted

as S v T , if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that s1 = tj1 ,

s2 = tj2 , . . ., sn = tjn .

Definition 2.1 (Subsequence Occurrence). Given a sequence S = 〈s1, s2, . . . , sn〉
and a subsequence S ′ = 〈s′1, s′2, . . . , s′m〉 of S, an occurrence of S ′ is a sequence of

indices {i1, i2, . . . , im}, whose items represent the positions of elements in S.

For instance, if sequence S = 〈B, C, B, C, A, C〉, and its subsequence S ′ =

〈B,C〉. There are 5 occurrences of S ′ in S: {1, 2}, {1, 4}, {1, 6}, {3, 4} and {3, 6}.

Definition 2.2 (Gap Constraint). The gap constraint is specified by a positive inte-

ger g. In a subsequence occurrence os = {i1, i2, i3, . . . , im}, the difference of any

two adjacent indices is ik+1 − ik. If ik+1 − ik ≤ g + 1, we say the occurrence os

fulfills the g-gap constraint.
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Table 2.1: A sequence dataset example.

sequence ID sequences labels
1 abcac pos
2 cab pos
3 bcab pos
4 acabd neg
5 bda neg

For example, if g = 1, the occurrences of S ′ {1, 2} and {3, 4} fulfill the 1-gap

constraint (also 0-gap) but {1, 4}, {1, 6} and {3, 6} do not.

Definition 2.3 (Count and Support). Given a sequence dataset Dc, where c is a

class label, Dc consists of a set of sequences. The count of a sequence α, denoted

as count(α,Dc), is the number of sequences in Dc containing α; while the support

support(α,Dc) is the ratio between its count and the number of sequences in Dc.

For example, in Table 2.1, if the gap constraint is 0, the count of the sequence

α = 〈a, b〉 in Dpos is 3, while support(α,Dpos) = count(α,Dpos)
3

= 100%, meaning

all pos sequences contain α.

The notion of Emerging Sequences (ESs) was introduced by Zaı̈ane et al. [51],

here we generalize this notion and define:

Definition 2.4 (Emerging Sequences). Given two contrasting sequence classes,

Emerging Sequences (ESs) are subsequences that are frequent in sequences of one

group and less frequent in the sequences of another, and thus distinguishing or

contrasting sequences of different classes.

Given two contrasting sequence datasets Dpos and Dneg and a sequence α, if

support(α,Dpos) − support(α,Dneg) > δ, where δ is the minimum difference

threshold, α is an Emerging Sequence distinguishing Dpos from Dneg. For instance,

in Table 2.1, subsequence α = 〈a, b〉 is an emerging sequence distinguishing Dpos
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from Dneg, when the minimum difference δ = 40%. Because support(α,Dpos) −
support(α,Dneg) = 100%− 50% > δ.

Definition 2.5 (Edit Distance). Edit Distance [30] between two sequences is given

by the minimum number of operations needed to transform one sequence into the

other, where an operation is an insertion, deletion, or substitution of a single item.

For instance, given s1 = 〈kitten〉 and s2 = 〈sitting〉, three operations are

needed to convert s1 into s2 (substitute k with s, substitute e with i, insert g). So

the edit distance between them is distance(s1, s2) = 3. Edit distance is used to

measure the similarity between sequences.

2.2 Problem Definition

Given two contrasting sequence groupsDpos andDneg as the training sets, the target

of our research is to build an unified model based on discriminative subsequences.

When classifying new unknown sequences, we expect to distinguish sequences in

one group from another. We believe the Emerging Sequences can facilitate the

classification and thus improve the prediction accuracy.
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Chapter 3

Related Works

This chapter is a review of the background related to data comparison. Section 3.1

reviews the statistical approaches to handle univariate problems. Section 3.2 presents

different data mining solutions for pattern and rule based contrasts. In section 3.3,

sequence based contrasts are presented.

3.1 Univariate Contrasts

For univariate contrasts, since there is only one feature, emphasis is less on finding

the contrast and more on evaluating its power [26]. For instance, Table 3.1 shows

the heights and genders of six people, where the height is the feature and the gender

is the class label. In statistics, the discriminative power of height feature can be

evaluated by different approaches, e.g. t-test, χ2 test and Wilcoxon rank sum. Based

on those methods, the following questions can be answered: are the means of males’

heights and females’ heights the same? Do the samples for each class come from

the same distribution? How well the dataset fits a hypothesis? Therefore, we can

examine whether two classes of data are dissimilar and whether the difference is

statistically significant.

Besides those statistical works, Odds Ratio and Risk Ratio are often used in

comparative studies between two groups of subjects. The odds ratio is the ratio

of the odds of an event occurring in one group to the odds of it occurring in an-
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Table 3.1: Univariate data example: height vs gender. This table has the heights
and genders of 6 persons. Every column represents one person; the rows represent
ID, height and gender respectively.

ID 1 2 3 4 5 6

Height (cm) 182 173 165 181 162 177
Gender male male female male female female

other group. Take the table 3.2 as the example, the odds of disease for males is

322/1173 = 0.275; while the odds of disease for females is 135/1325 = 0.102.

Therefore, the odds ratio for males to have disease over that of females is 322/1173
135/1325

=

2.694. The risk ratio is a ratio of the probability of the event occurring in the ex-

posed group versus a non-exposed group. The risk ratio for males to have disease

over that of females is 322/1495
135/1460

= 2.329.

Table 3.2: Binary feature table: the relation between gender and health

disease healthy total
male 322 1173 1495

female 135 1325 1460

Odds ratio and risk ratio are widely used in univariate contrasts. They can also

be used for quality evaluation of multivariate contrasts.

3.2 Pattern and Rule based Contrasts

Compared to univariate contrasts, data miners focus on the multivariate problems.

Patterns and rules, typically conjunctions of attribute value pairs, are extracted from

datasets and used to distinguish classes.

As the pervasive application of relational database system, researchers started to

learn knowledge in the form of rules from relational databases. Characteristic rules

and discriminant rules was introduced by Cai et al. [11]. A characteristic rule is
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an assertion which characterizes a concept satisfied by all or most of the examples

in the class undergoing examination (called the target class), while a discriminant

rule is an assertion which discriminates the target class from other classes (called

contrasting classes). The attribute-oriented induction method [11] was also applied

to extract these two rules from relational databases. Han et al. designed a data

mining query language (DMQL) [20], which can find rules to discriminate the target

class from contrasting classes.

Based on the association rule mining [1], Liu et al. integrated classification and

association rule mining and proposed a new algorithm: Association Rule-based

Classifier (ARC) [38] [4]. An association rule is of the form:

X → C(s, c)

where X is a pattern, C is the class label, s represents the support of the pattern

in the dataset, and c is the confidence. ARC extracts classification rules with high

confidences and supports, and classifies new instances based on those rules. After

compared with C4.5 [44], ARC surpasses C4.5 on prediction accuracy. This work

demonstrated that the rule based contrasts can improve the classification accuracy

in multivariate problems. In our research, ARC is used as a classifier to validate the

discriminative power of Emerging Sequences.

To define the discriminative patterns in categorical data, the idea of Contrast

Sets (CSs) [8] was introduced by Bay et al. Contrast sets are conjunctions of

attributes and values, whose supports differ meaningfully across groups. Sup-

pose cs is a contrast set, and G represents a group; the support of a contrast set

support(cs,G) with respect to a group G is the percentage of examples in G. cs

is a valid contrast set only if it is significant and large. Significant means ∃i, j
such that support(cs,Gi) 6= support(cs,Gj); and a large contrast set cs is one

such maxij|support(cs,Gi) − support(cs,Gj)| > δ, where δ is the minimum de-

viation. Bay et al. also proposed an algorithm STUCCO (Search and Testing for
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Understandable Consistent Contrasts) based on Max-Miner [9] to extract contrast

sets. By using Chi square to measure the statistical significance of contrast patterns

and other pruning techniques, STUCCO can find contrast sets that discriminate one

class from others efficiently. CIGAR [23], a variation of STUCCO, is developed

by Hilderman et al. While STUCCO pruning the search space by controlling the

Type I error, CIGAR seeks to control Type II error. Another algorithm proposed

by Satsangi et al. [46] also concentrates on contrast set mining: their association

rule based approach finds all contrast sets that are found by STUCCO and other

interesting CSs that STUCCO fails to discover.

At the same time, Emerging Patterns (EPs) [15], which are similar with contrast

sets are introduced by Dong et al. Different from contrast sets, which are extracted

based on the support differences, EPs are patterns fulfilling the support ratio thresh-

old. Thus, growthRate was introduced to represent the ratio of the supports:

growthRate =
support(pattern,Gi)

support(pattern,Gj)

the pattern is an ρ − emerging pattern when its growthRate ≥ ρ. When

growthRate = ∞, the pattern is called jump emerging pattern, which means this

pattern appears in one class but never occurs in the other class. Given a minimum

ratio threshold ρ, the extraction of emerging patterns is not efficient for two reasons.

One is the threshold constraint is neither monotonic nor anti-monotonic, thus, the

Apriori property no longer holds for emerging patterns and the searching space can-

not be pruned. Another difficulty results from the fact that emerging patterns with

low supports (as low as 1%) can give very useful new insights [15]. However, as the

decrease of support ratio threshold, the number of candidates increase exponentially

and the mining of EPs is inefficient. Wang et al. [49] proved the complexity of find-

ing emerging patterns is MAX SNP-hard [42], which means that polynomial time

approximation schemes to extract EPs do not exist for the problem unless P=NP.

Dong et al. also developed a border differential algorithm [15]: as the large
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collections of itemsets are interval-closed, it can be efficiently represented by the

maximal and minimum borders discovered by Max-Miner [9]. Based on the bor-

der differential algorithm [15], Mao et al. proposed some methods for efficiently

discovering highly differentiative gene groups (HDGG) [41]. The discovering of

HDGG is challengeable because of the high dimensions of microarrays. With the

implementation of the border differential algorithm [15], 75 genes can be handled

by current generation PCs. This algorithm surpasses the top-k method [32] on the

discovering of HDGG.

Bailey et al. concentrated on the jumping emerging patterns (JEP) [7]. By

building a similar tree with Frequent Pattern Tree (FP-Tree) [22], the mining per-

formance is typically around 5 times faster than earlier approaches.

Based on the contrast sets and emerging patterns, some classification algorithms

were developed. The first classifier specially designed for EPs was proposed by

Dong et al [16], and it is called Classification by Aggregating Emerging Patterns

(CAEP). By mining emerging patterns and calculating the aggregate scores, the

instance can be classified according to the largest normalized score. Experiments

show that CAEP has consistent good accuracy on predication, and it almost always

outperforms C4.5 [44] and ARC [38]. Unlike CAEP [16], DeEPs (Decision-making

by Emerging Patterns) [31] developed by Li et al. is implemented by the lazy learn-

ing strategy, i.e. the generalization beyond the training data is delayed until a query

is made to the system. The motivation of DeEPs is that, the eager-learning classi-

fiers, which try to generalize the training data before receiving queries, may ignore

some emerging patterns relevant to a specific testing instance. On the contrary, for

a testing instance T , DeEPs projects each training instance to contain only items

in T , then discovers all emerging patterns from projected data. Since no relevant

emerging patterns are missing for testing instances, DeEPs is superior to other clas-

sifiers. Another application of emerging patterns is the Weighted Decision Trees
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(WDTs) [2] proposed by Alhammady et al. To enhance the noise tolerance, the

weights are added to the decision tree. Emerging patterns can help to construct the

WDTs, which has better performance than C4.5 [44].

Among classifiers using contrast sets and emerging patterns, most classification

algorithms are based on EPs. Nevertheless, compound-risk factors Naı̈ve Bayes

(crf-NB) [34] proposed by Li et al. applied both Emerging Patterns and Contrast

Sets. Besides EPs and CSs, the features with high Odds Risk values is also an

important factor of the classifier. crf-NB has three thresholds for emerging patterns,

contrast sets and odds risk patterns respectively; the pattern that meets any condition

is a strong pattern. Unlike Naı̈ve Bayes [28], crf-NB only takes strong patterns

into account, and ignores the independence of attributes. The experiments show

that, crf-NB surpasses Naı̈ve Bayes greatly on classification accuracy. Inspired by

crf-NB [34], we propose the Emerging Sequences Naı̈ve Bayes classifier (es-NB),

which only considers ESs. More information about es-NB is provided in Chapter 5.

Some other classification algorithms, i.e. CMAR [35], PCL [33] and CPAR [50],

also adopt pattern and rule based contrast. Those are not discussed here specifically.

3.3 Sequence based Contrasts

Unlike categorical data, there is very little work on contrasting groups of sequences.

Sequence data are very different from relational data, because the order of items is

important. As a classic topic, frequent subsequences mining is well developed, and

many practical algorithms had been proposed, i.e. GSP [47], SPADE [52], PrefixS-

pan [43], and SPAM [6]. Those algorithms can be used to extract discriminative

subsequences. Given two sequence groups, to extract discriminative subsequences,

a simplistic approach is to mine frequent subsequences in each group respectively,

then remove those that are also frequent in the other group. However, there are

two problems by extracting contrasting subsequences with those algorithms. One
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challenge is the low efficiency: the support thresholds in mining distinguishing pat-

terns need to be lower than those used for mining frequent patterns [15], which

means the minimum supports offer very weak pruning power on the large search

spaces [26]. Another problem of previous algorithms is that items do not have to be

appearing closely with each other in the original sequence, while the gaps between

items are significant in comparing sequences. An example is the relations between

words in a long sentence. A verb probably serves as the predicate of a subject if

they are close to each other. Therefore, gap constraints need to be considered in

subsequence mining.

The gap requirement between items in the original sequence is applied in align-

ment of genome or protein sequences [19], e.g. BLAST (Basic Local Alignment

Search Tool) [3]. When computing the optimal alignment of two sequences, scores

are deducted for insertions or deletions. Under this regime, the sequence with lower

gaps is likely to be chosen. To mine contrasting subsequences with gap constraint,

an algorithm ConSGapMiner was proposed by Ji et al. [25]. ConSGapMiner in-

troduces maximum-gap constraint to the subsequence mining. There are two main

steps of ConSGapMiner algorithm: first, a DFS (Depth First Search) tree is built

to enumerate all possible subsequences candidates; then, for each candidate, the bit-

set operations are applied to prune nodes which cannot fulfill the g-gap constraint,

i.e. any two adjacent items in the subsequence have a larger distance than g + 1 in

the original sequence.

Suppose the vocabulary is {A,B,C}, Figure 3.1 is the Depth First Search tree

for candidate generation. In this DFS tree, each node represents a sequence, and the

numbers in the node are the supports of the sequence in the target class and the con-

trasting class. It starts with an empty sequence; each node in the tree is extended

by adding a single item from the alphabet, e.g. AA’s children are AAA, AAB,

and AAC. Once a new node is created, the supports in both classes are calculated
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Figure 3.1: DFS tree for candidates generation. [25]

by bitset operations. Bitset operation is a smart algorithm to calculate g-gap con-

straint supports, however, the number of candidates increases exponentially with

the growth of the tree. As a result, ConSGapMiner is not an efficient algorithm

because of the nature of its data structure.

Another related work is emerging substrings proposed by Chan et al. [12].

Emerging substrings, which are motivated by Emerging Patterns, occur more fre-

quently in one class rather than in other classes. Based on the Generalized Suffix

Tree (GST) [19], emerging substrings can be extracted in linear time. Compared

with ConSGapMiner [25], this algorithm can only mine substrings in which items

have to be appearing immediately next to each other in the original sequence, i.e.

only 0-gap constraint subsequences are extracted. The problem of this algorithm

is that, subsequences with larger gaps are ignored, while our approach solves this

problem in the classification stage by the similar matching mechanism.

Generally, the contrast sequences are always based on the frequencies of sub-

sequences or substrings. Lin et al. implemented the Contrast Sets on time series

data [37]. Instead of calculating the supports of subsequences, they compared sub-

sequences by Euclidean Distance. Given two time series T and S, the subsequence
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in T , which distinguishes T from S the most, has the largest distance to its closest

match in S. Lin et al. also proposed an algorithm called Group SAX, which can

make the extraction more efficient by reducing the distance calculation times. This

strategy cannot be implemented on sequence data directly, because the frequencies

of subsequences are ignored.

A recent work, which is similar to our framework, concentrates on the soft-

ware behaviours application [39]. They mine iterative patterns from software be-

haviours, and distinguish events that generate failures by an SVM classifier. One

primary difference between this framework and ours is that, in our algorithm, items

in subsequences have to be close to each other in the original sequence, while it

is not important in the software behaviours application. Indeed the gap they use is

undetermined and arbitrarily large.
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Chapter 4

Sequence Mining and Feature
Selection

The data on which we focus are sequence data. To distinguish one group of se-

quence data from another, representative features must be extracted. However, in

the domain of sequence data, the number of useful features is exponential in the

size of the data. To refine numerous features, Lesh et al. demonstrated that subse-

quences can reduce the size of features, meanwhile improve the accuracy of clas-

sifiers [29]. In their approach, however, they did not consider any gap constraint

and apply exact matches only. In this chapter, discriminative subsequences are ex-

tracted as emerging sequences, and the classification based on ESs is described in

Chapter 5.

In Section 4.1, we explain how we first preprocess the datasets and extract

the emerging sequence candidates, two strategies based on preprocessing with and

without gap constraint are adopted in this stage. In Section 4.2, both static and

dynamic feature selections are proposed to extract the most discriminative and rep-

resentative subsequences as emerging sequences.

4.1 ES Candidates Mining

To find the representative subsequences, the following domain-and-classifier-independent

heuristics are useful for selecting sequences to serve as features [29]:
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• Features should be relatively frequent at least in one class.

• Features should be distinctive of at least one class.

The reason for the first heuristic is that the features have to be common in one

group; the rare features do not help in the classification. The intuition behind the

second heuristic is, if a feature is frequent in both original classes, it cannot improve

the accuracy of classifiers. In other words, the emerging sequence candidates should

be common in one group, and exceptional in another.

LetDpos andDneg to be two classes of sequences, the supports of a ES candidate

α in both classes, denoted as support(α,Dpos) and support(α,Dneg), need to meet

the following conditions:

support(α,Dpos) > θ (4.1)

support(α,Dneg) ≤ θ (4.2)

where θ is the minimum support threshold. Therefore, any subsequence fulfilling

the conditions is discriminative.

As sequence mining topic is well developed, many existing algorithms, such

as GSP [47], SPADE [52], PrefixSpan [43], and SPAM [6] can extract frequent

subsequences easily. However, there are two problems with ESs extraction using

those algorithms. One challenge is the low efficiency: the support thresholds in

mining distinguishing patterns need to be lower than those used for mining frequent

patterns [15], which means the minimum support offers very weak pruning power

on the large search spaces [26]. Another problem of those algorithms is that, items

do not have to be appearing closely with each other in the original sequence, while

the gaps between items are significant in comparing sequences, e.g. in the UNIX

command sequence, only if a “ls” is close to a “lpr”, it is possible that they have a
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relation because they may operate on the same file. Therefore, the gap constraint

is needed when preprocessing, i.e. items in subsequences cannot be too far apart

in the original sequences. Two strategies are adopted in ES candidates mining to

solve these problems: one is based on ConSGapMiner [25], which can control

the gap constraint; another is a suffix tree-based framework, which can extract ES

candidates in linear time.

4.1.1 ES Candidates with Gap Constraint

When extracting ES candidates with gap contraint, the base algorithm we used is

ConSGapMiner [25]. It assumes the subsequence exists in both groups and uses

frequency constraints to prune the search space while counting supports of sub-

sequence occurrences in groups. Other than meeting the requirement above, this

algorithm also considers the gap constraint g, i.e. in an subsequence occurrence, if

the indices difference of any two adjacent items is lower than or equal to g + 1, we

say the subsequence fulfills the g-gap constraint.

Given two classes of sequences Dpos and Dneg, the original ConSGapMiner

extracts subsequences if and only if the following conditions are true:

1. Frequency Condition: support(α,Dpos) > δ

2. Infrequency Condition: support(α,Dneg) ≤ β

3. Minimality Condition: There is no subsequence of α satisfying 1 and 2.

In our application, δ and β are the same; and sequences do not need to fulfill the

minimality condition, because subsequences with the highest supports can facilitate

the classification while the independence of them is not important. The revised

algorithm is presented in Algorithm 1.

The preprocessing algorithm is a recursive algorithm, which builds a DFS tree

as illustrated in Figure 3.1. For a sequence s fulfilling the discriminative conditions,
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Input: sequence datasets Dpos and Dneg, the current sequence s, maximum
gap g, support threshold θ, vocabulary I , the global variable R
containing all emerging sequence candidate

foreach i ∈ I do1

ns ← s + i;2

support(ns,Dpos) ← support count(ns, g, pos);3

support(ns,Dneg) ← support count(ns, g, neg);4

if support(ns,Dpos) ≥ θ then5

if support(ns,Dneg) < θ then6

R ← R ∪ ns ;7

end8

preprocess(ns, g, θ);9

end10

end11

Algorithm 1: Preprocessing with Gap Constraint: preprocess(s, g, θ). It pre-
processes the sequence dataset Dpos and Dneg, and saves all ES candidates in
the result R.

one item is chosen from the vocabulary at a time (line 1). A new sequence ns is

created by appending the item at the end of the original sequence s (line 2). In line

3-4, we calculate the supports of the new sequence in both Dpos and Dneg, and test

if it can meet the g-gap constraint. If the new sequence ns fulfills the discriminative

conditions, we add ns to R; as long as ns is frequent enough in Dpos, we continue

to search, by creating new sequences from the current one (Line 5-10). Finally, all

sequences in R are frequent in Dpos and infrequent in Dneg.

This algorithm uses bitset operations to validate g-gap constraint, and prunes

the search space by checking the supports in both sequence groups. However, as

the tree grows, the number of candidates increases exponentially. Compared with

previous sequence mining algorithms, the revised ConSGapMiner can control

the gap constraint, nevertheless, it is still not efficient due to the nature of its data

structure (DFS).
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4.1.2 ES Candidates with 0-Gap Constraint

Another preprocessing strategy is to mine subsequences without gap, i.e. the items

in the subsequence are adjacent in the original sequence (0-gap constraint). The

revised ConSGapMiner can still be used to extract subsequences fulfilling 0-gap

constraint. However, without considering the gaps, a faster algorithm based on

generalized suffix tree (GST) is implemented, which can extract subsequences in

linear time [19].

(a) The GST before bab is inserted.

(b) The GST after bab is inserted.

Figure 4.1: An example of the Generalized Suffix Tree (GST). This GST is built
by two sequences s1 = 〈abcdab〉 and s2 = 〈dbab〉. It has 4 internal nodes, and 0 is
the root. Figure 4.1(a) is the GST before 〈bab〉 is inserted; and Figure 4.1(b) is the
complete GST.
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This tree is called generalized suffix tree (GST) because it is built by the suffixes

of sequences. Figure 4.1 is a GST containing sequences s1 = 〈abcdab〉 and s2 =

〈dbab〉. Every edge starting from the root has a suffix attached with it, and the

indices at the leaves indicate the original sequence ID of the suffix, e.g. the edge

〈cdab 1$〉 is a suffix of the sequence s1 because it ends with 1$. Given a sequence

s1 = 〈abcdab〉, its first suffix is extracted starting from the first index, so suf1 =

〈abcdab〉; and the second suffix suf2 = 〈bcdab〉 starts from the second index. Every

suffix is added to the tree after extracted, and the strategy is as follows: suffixes with

the same prefixes share the edge. Starting from the root, if an edge has the same

prefix with the current suffix, no extra edge is created; once the suffix has a different

item, a new internal node and an new edge are created. For example, Figure 4.1(a)

is the GST before the suffix 〈bab〉 is inserted. When inserting 〈bab〉, an edge from

the root starts with b, so no edge is created; however, the next item of this edge is c,

while that of the suffix is a, so a new edge is generated from node 2, and the new

edge has items 〈ab 2$〉 (Figure 4.1(b)).

By Ukkonen’s Algorithm [19], the GST can be built in linear time, i.e. if the

sum length of sequences is n, the GST is built in O(n) time complexity. The

support counting of subsequences is also fast. For instance, to find the count of

subsequences ab, we start from the root, and find node 2; the edge (0, 2) has the

subsequence 〈ab〉 attached. So the count of 〈ab〉 is the number of leaves from

node 2, and count(ab) = 3. One problem of the current algorithm is that, GST

counts the total occurrences of subsequences, while some subsequences appear

more than once in one transaction, e.g. count(ab) = 3 when there are only 2

transactions. If the count is higher than the transaction number, the support of the

subsequence becomes higher than 100%, which does not make sense in classifica-

tion. To solve this problem, we store the leaves IDs in internal nodes and remove

the redundant IDs when counting supports. So the support of a subsequences is the
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number of IDs. For example, when building the tree, the transaction IDs in node 1

are { 1$ 2$ 1$}; only { 1$ 2$} are kept, so the count of ab is 2 and its support is

support(ab) = 2
2

= 100%.

In conclusion, the advantage of the suffix tree-based framework is that ES can-

didate mining can be done in linear time. However, only subsequences fulfilling

the 0-gap constraint are mined, i.e. items have to be appearing immediately next

to each other in the original sequence. Information may be lost when mining ES

candidates by GST. To handle the low gap constraint subsequences, we propose a

sliding window matching mechanism for the distance metric between sequences;

more information is provided in Section 5.1.

4.2 Feature Selection

After preprocessing, numerous ES candidates are extracted. In this section, we re-

fine the result and select the most discriminative subsequences as ESs. Existing

studies on categorical data demonstrate that, discriminative patterns can improve

the prediction accuracy [16] [31]. In our research, the sequence datasets are trans-

formed to transactional datasets according to emerging sequences (See Figure 4.2);

and the transformation is described in Section 5.1. To build informative transac-

tional datasets, we have to find the most Emerging Sequences, and thus contrasting

sequence groups.

To evaluate the discriminative power of subsequences, a similar mechanism

with Contrast Sets [8] is applied. Given two sequence groups Dpos and Dneg, the

ES candidates are ranked by the supports difference:

sup diff = support(α,Dpos)− support(α,Dneg)

The larger sup diff is, the more discriminative the subsequence. After ES can-

didates are sorted, one question is: how many subsequences should be chosen as
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emerging sequences? In this section, we adopt two approaches to select ESs: one

fixes the amount of ESs for each sequence group, while another method expresses

each original sequence by the same number of ESs.

4.2.1 Static Feature Selection

One straightforward approach to select features is to fix the number of ESs for

each sequence group, i.e. after sorting ES candidates of each sequence group, we

choose the top n of them as emerging sequences. Since the number of ESs for each

sequence group is fixed, we name this method static feature selection.

However, the original sequences are not frequency-balanced, i.e. some se-

quences contain many highly frequent subsequences, while others do not. If only

a small amount of ESs are selected, the problem is the existence of silent transac-

tions, i.e. some original sequences do not contain any emerging sequence, and the

transformed transactions are empty. In Table 4.1, if the number of ESs (fulfilling

0-gap constraint) that contrast the positive class to the negative class is set to 1,

the subsequence ca is selected because its supports in two classes are 75% and 0%

respectively. Meanwhile, the sequence 4 cannot be expressed by ESs and is called

silent. Therefore, we cannot expect good performances if many of the correspond-

ing transactions are empty.

Table 4.1: A frequency-imbalanced sequence dataset.

sequence ID sequences labels
1 abcad pos
2 aca pos
3 cabd pos
4 e pos
5 bda neg
6 bdcda neg

To eliminate the silent transactions, a direct solution is to increase the num-
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ber of ESs. When more candidates are selected, the transformed transactions are

less likely to be silent. In the dataset illustrated in Table 4.1, if the number of ESs

that contrast pos to neg is set to 4, the subsequences ca (sup diff = 75%), ab

(sup diff = 50%), c (sup diff = 25%) and e (sup diff = 25%) are selected

as ES, and the sequence 4 can be expressed. However, even if a large number of

candidates are chosen as ESs, some of them are not distinct enough. The transac-

tional datasets are less informative, if many less discriminative subsequences are

chosen as ESs. For instance, the sequence 1 in Table 4.1 is already expressed by

ca (sup diff = 75%) when the number of ESs is 1; if the number of ESs is set to

4, the subsequence c (sup diff = 25%) is also extracted. Since c is less discrim-

inative and contained by ca, the increase of ESs number does not keep the most

valuable information for the sequence 1. In other words, more ESs do not ensure

better prediction accuracy.

In conclusion, static feature selection suffers from silent transactions when only

a small amount of ESs are selected; if many candidates are chosen as ESs, however,

the transformed transactional datasets are less representative, and thus hard to be

distinguished. It is difficult to choose the number of ESs to optimize the classifica-

tion performance if a static feature selection strategy is adopted.

4.2.2 Dynamic Feature Selection

The number of emerging sequences should be enough so most original sequences

can be covered; on the other hand, our classification model suffers from outliers

if low frequent subsequences are selected. To avoid this contradiction, a dynamic

feature selection strategy is adopted [24]. Each sequence in the input dataset is to

be expressed by the selected features. However, for any sequence, only the top-m

subsequences, based on sup diff , are kept. It guarantees that each sequence can

be represented by at least m ESs (the high-ranked ones) and the database does not
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become too large due to the possible sheer number of candidate subsequences.

Input: the sequence dataset D, the sorted set of Emerging Sequence
candidates ESc, the minimum subsequence number m

Output: The set of Emerging Sequences ES
foreach sequence ∈ D do1

count ← 0;2

foreach candidate ∈ ESc do3

if candidate v sequence then4

count ← count + 1;5

mark the candidate ;6

end7

if count = m then8

break;9

end10

end11

end12

ES ← all marked subsequences in ESc;13

Algorithm 2: Dynamic Feature Selection.

The dynamic feature selection algorithm is presented in Algorithm 2. For each

sequence in the dataset D, we check inclusion of any subsequence (i.e. candidate

feature) sorted by sup diff . We mark candidate subsequences that are included in

the input sequences (Line 6) up to m per sequence (Line 8). Then, we output the

union of all marked subsequences (Line 13).

Figure 4.2 presents the 4 stages of our proposed learning model. The minimum

support θ in Stage 1 is set to 50% as an example. The numbers in the brackets after

ESs are their supports in the positive and the negative class respectively. In Stage

1 and 2, we preprocess the original dataset and emerging sequences are extracted.

In Stage 3, the sequence dataset is transformed to a transactional dataset, in which

the transactions are simple sets of tokens representing ESs. Finally, we build a

classifier based on the transactional dataset. The specific strategies in Stage 3 and 4

are described in Chapter 5.
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Figure 4.2: Four stages of classification. In Stage 1 and 2, ESs fulfilling 0-gap con-
straint are extracted. We transform the sequence dataset to a transactional dataset
in Stage 3. The classification is performed in Stage 4.
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Chapter 5

Transformation and Classification

After preprocessing and feature selection, ESs are extracted to contrast sequence

groups. In this chapter, the sequence datasets are transformed to transactional

datasets in order to be in a suitable form for learning algorithms. The transac-

tions are simple sets of tokens representing ESs. Each ES is represented by a token

(i.e. a simple ID) used within transactions (See Fig 4.2). Then, two classification

algorithms trained by ESs are proposed on the transactional datasets.

In section 5.1, we describe the transformation and the sliding window matching

mechanism for the distance metric between sequences. In section 5.2, two classi-

fication algorithms, Emerging Sequences Naı̈ve Bayes and Association Rule-based

Classifier are chosen to validate the discriminative power of emerging sequences.

5.1 Transformation to Transactional Datasets

To transform the sequence datasets to transactional datasets, we tokenize emerging

sequences, so transactions are sets of tokens representing ESs. The transformation

of training sets is straightforward: a transaction contains the corresponding tokens

if the original sequence contain ESs. However, when classifying a new sequence

instance, subsequences that are similar with ESs should also be considered.

To consider similar subsequences, we implement a sliding window matching

mechanism for the distance metric between sequences. Given a sequence S of
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length ls, an emerging sequence es of length le, and ls ≥ le, we first extract a subse-

quence S1 of length le starting from the first index of S, whose items are contiguous

in S. Then we compare S1 and es, if they are similar (i.e. not necessarily an exact

match), the corresponding transaction should contain the token representing es. If

not, we slide the window of length le to one position right to extract a new subse-

quence S2, and compare it with es again. So there are ls − le + 1 subsequences in

total.

For example, given a sequence S = 〈abcde〉 and an emerging sequence es =

〈bad〉, since the length of es is 3; 5 − 3 + 1 = 3 subsequences 〈abc〉, 〈bcd〉, and

〈cde〉 are extracted and compared with the emerging sequence es (see Figure 5.1);

no exact matches but 〈bcd〉 could be similar to 〈bad〉 (see below).

ba d ecThe Original Sequence

The Sliding Window of Length 3

Figure 5.1: Subsequence extraction by the sliding window.

We measure the similarity between the emerging sequence and extracted sub-

sequences by using the edit distance, also known as the Levenshtein distance [30].

The distance measure estimates the minimum needed operations or cost of oper-

ations to transform one sequence to the other. For simplification, the cost of all

operations are assumed the same being one unit of measure (i.e. deletion, insertion

and substitution cost the same one unit of measure). To compare two sequences,

we introduce a maximum difference γ ∈ [0, 1]. First we calculate the edit distance

between sequences. If the distance is equal to or lower than γ × le, we say they are

similar. For instance, when comparing the emerging sequence es = 〈bad〉 and the

subsequence seq = {bcd}, if γ = 0.4, as distance(es, seq) = 1 < (γ × 3), they

are similar. When γ = 0, the sequence S has to contain the emerging sequence (i.e.
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exact match); when γ = 1, any subsequence is considered a match regardless. In

this research, our proposed classification model has the best performance when γ is

between 0.1 and 0.3.

The sliding window mechanism allows us to consider similar matches instead

of only exact matches. Its performance is validated in Section 6.4.

5.2 Classification

As discussed in the previous section, sequence datasets are transformed to trans-

actional datasets. To validate the discriminative power of ESs, learning algorithms

trained by ESs are used to classify new sequence instances. We implement a Naı̈ve

Bayes based classifier and an Association Rule-based Classifier (ARC) [38]. If the

features are informative, Naı̈ve Bayes always has good prediction accuracy [34];

ARC is also proven having satisfactory performance when classifying sequence

data [24].

5.2.1 Emerging Sequences Naı̈ve Bayes

One reason we choose Naı̈ve Bayes (NB) as the classifier is that no parameter is

needed, so the selected features are the only factor associated with the performance

of the classification model. Trained by representative features, NB outperforms

other state-of-art learning algorithms. In [34], Li et al. compared the performances

of the compound-risk factors Naı̈ve Bayes (crf-NB) with SVM [13], C4.5 [44],

Bagging [10] and Boosting [18], and found crf-NB had the highest prediction ac-

curacy.

A Naı̈ve Bayes classifier [28] assumes that all features are independent. Given a

sequence S and a set of independent subsequences seqindep = {seq1, seq2, . . . , seqn},

the sequence S can be represented by a set of subsequence-value pairs: S =

{seq1 = v1, seq2 = v2, seq3 = v3, ..., seqn = vn}, where vi is either true or false,
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indicating whether S contains seqi. When C is the class set, according to the Bayes

rules, the probability that sequence S is in the class c is:

p(c|S) =
p(S|c)p(c)

p(S)
(5.1)

where p(S|c) is the conditional probability of sequence S when class label c is

known, and c ∈ C. Due to the independence of subsequences, p(S|c) can be rewrit-

ten as:

p(S|c) =
∏

i

p(seqi = vi|c) (5.2)

Therefore, the class label predicted by Naı̈ve Bayes is:

predict(S) = arg maxc∈Cp(c)×∏

i

p(seqi = vi|c) (5.3)

In [45], Rish proved that the class-conditional mutual information is not a good

predictor of Naı̈ve Bayes performance, i.e. when features are independent, the

Naı̈ve Bayes classifier may not have the best prediction accuracy. Therefore, in the

Emerging Sequences Naı̈ve Bayes (es-NB), we do not assume the independence of

subsequences. To convert the original Naı̈ve Bayes to es-NB, we simply choose the

Emerging Sequences to build the feature set.

predict′(S) = arg maxc∈Cp(c)×∏

i

p(esi = vi|c) (5.4)

Equation 5.4 is used to predict labels, where {es1, es2, . . . , esm} is the set of

Emerging Sequences.

5.2.2 Classification based on Association

Another classifier we choose is Association Rule-based Classifier (ARC) [38]. Un-

like the Naı̈ve Bayes classifier, ARC needs two parameters: the minimum support is

the threshold to generate rules, and the minimum confidence helps to prune unnec-

essary rules and select the rules to apply. ARC also proved having satisfactory per-
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formance when classifying sequence datasets [24]. There are two stages of ARC: a

training stage and a classification stage.

5.2.2.1 Training Stage

Given a transactional dataset D, the minimum support min sup and the minimum

confidence min conf , the procedures of ARC is as follows. In this dataset, each

transaction consists of an antecedent (sequence set) and a label:

< seq1, seq2, . . . , seqi >→ label

Table 5.1: The example of a transactional dataset D. The rows represent trans-
actions; for each row, the first column is the transaction ID, the second column
represents the subsequences it contains, and the third column is the class label.

Transaction ID subsequences labels
1 seq1, seq2, seq3 A
2 seq2, seq3 A
3 seq1, seq3, seq4, seq5 B
4 seq3 B
5 seq1, seq2, seq3 A

The support of a rule is the ratio between its occurrence and the number of

transactions in this class. For example, given a transactional dataset D as presented

in Table 5.1, the support of rule r1 :< seq1, seq3 >→ A is 2
3

= 67%, because

this rule appears twice in D and there are 3 transactions labeled with A. In the

rule mining phase, Apriori [1] is used to extract all the item sets with supports

higher than min sup. In our case, the transactional dataset is transformed by a

preprocessed sequence dataset, and the ESs used in the transformation fulfill the

minimum support threshold. As a result, min sup is not necessary in the rule

mining stage; theoretically, the minimum support in ARC should be 0. However,

due to the hardware limitation, the minimum support is between 1% and 4% in
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our experiments, thus avoiding too many rules and keeping completeness of the

datasets. In conclusion, the extracted rules of this stage are frequent.

The second phase is rule pruning, which is based on the confidence. The confi-

dence of a rule is the ratio between the occurrences of the rule and its antecedent.

Take r1 :< seq1, seq3 >→ A as an example, and its occurrence is 2; mean-

while, < seq1, seq3 > appears 3 times in the dataset D. So the confidence of r1

is conf(r1) = 2
3

= 0.67. For all rules that have the same sequence set, the rule

with the highest confidence is chosen as a possible rule. If there are more than one

rules having the same confidence, only one is selected randomly. For instance, the

following rules have the same sequence set < seq1, seq3 >:

r1 :< seq1, seq3 >→ A

r2 :< seq1, seq3 >→ B

The occurrence of the r1 is 2, while that of r2 is 1. So, their confidences are 67%

and 33% respectively. As a result, only one possible rule r1 is generated because

conf(r1) > conf(r2). Finally, if the confidence of the possible rule is higher than

the minimum confidence min conf , we say the rule is accurate. Therefore, all the

rules in the classifier are both frequent and accurate.

In our research, two sequence groups are compared at a time. For any two rules

ri and rj with the same antecedent and different labels, the sum of their confidences

is 100%, i.e. conf(ri) + conf(rj) = 100%. In our research, we fix min conf as

51%. If conf(ri) 6= conf(rj), the rule with the lower confidence is eliminated; if

conf(ri) = conf(rj) = 50%, both rules have lower confidences than the threshold,

so no rule is selected. Therefore, no useful rule is eliminated by min conf in our

case.

In conclusion, both min sup and min conf are not important in the training

stage, and the only features can influence the performance of ARC.
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5.2.2.2 Classification Stage

In the classification stage, a testing sequence may match more than one rules, which

have different labels. There are different strategies to decide the label:

• choose the rule having the highest precedence

• choose the label having the highest average confidence

The first strategy is proposed by Liu et al [38]. Given two rules ri and rj , ri has

a higher precedence if:

1. conf(ri) > conf(rj), or

2. if conf(ri) = conf(rj), sup(ri) > sup(rj), or

3. if conf(ri) = conf(rj) and sup(ri) = sup(rj), ri is generated earlier than rj

This strategy makes sense, because it chooses the optimal rule for the testing se-

quence. However, it ignores the effects of other rules.

Table 5.2: An example of a rule set. The rule set consists of 4 rules, two of them
are labeled as pos, while the other two are neg. They are ranked by confidence.

rule ID rules confidences
r1 < seq1, seq3 >→ pos 90%
r2 < seq1, seq2, seq4 >→ neg 85%
r3 < seq3, seq4 >→ neg 80%
r4 < seq1, seq5 >→ pos 60%

Given a testing transaction s = {seq1, seq2, seq3, seq4, seq5}, it matches the

antecedents of 4 rules in Table 5.2. If the rule with the highest precedence (r1)

is chosen, the transaction should be labeled pos. However, both r2 and r3 also

have high confidences, and they should play roles in the final decision. To make

a more comprehensive consideration, the alternative strategy is that, the label with
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the higher average confidence is selected. In the example above, the label of r1 and

r4 is pos, and their average confidence is 75%, while that of r2 and r3 with label neg

is 82.5%. So the transaction s should be labeled as neg. In our ARC, we choose the

average confidence strategy, thus avoiding the ignorance of other matched rules.

In very few cases, the testing sequence cannot match any rule in ARC. There-

fore, we choose the label having more training data as the default label, and the

unknown sequences are classified with the default label directly. As the number of

these cases is very low, this simplistic method will not affect the overall accuracy.
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Chapter 6

Experimental Results

To evaluate the performance of our proposed classification model, we tested the

classifier on two types of datasets in this chapter. As discussed in Chapters 4 and 5,

our proposed similar Emerging Sequence-based algorithm (Similar ES) can be di-

vided into four stages (See Figure 4.2):

1. Subsequences, which fulfill the discriminative conditions (support(α,Dpos) >

θ and support(α,Dneg) ≤ θ) are chosen as candidates.

2. Subsequences with higher sup diff are selected as Emerging Sequences.

3. Transform the sequence datasets to the transactional datasets, and subse-

quences that are similar with ESs are considered as well.

4. Train a classifier by Emerging Sequences.

Figure 6.1 illustrates the approaches on 4 stages. On each stage, different strate-

gies can be applied: on Stage 1, we can mine subsequences with varying gap con-

straint by ConSGapMiner or without gap (0-gap constraint) by the suffix tree-

based framework; on Stage 2, the static or dynamic feature selection methods can

be chosen; on Stage 3, we can perform exact matching or similar matching mech-

anisms; and on Stage 4, two classifiers, Naı̈ve Bayes or Association Rule-based

Classifiers can be selected. To build the optimal classification model, we compare

different methods on each stage and present the results in this chapter.
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Figure 6.1: 4-Stage Classification Framework

This chapter is organized as follows: we first introduce the evaluation method-

ology and datasets in Section 6.1. In Section 6.2, we compare the candidates min-

ing algorithms with different gap constraints, and decide the strategy for Stage 1.

Section 6.3 presents the comparison between static and dynamic feature selections

(Stage 2). Section 6.4 presents the advantage of similar matching mechanism (Stage

3). Before deciding the classifier in Stage 4, we show the discriminative power

of emerging sequences, and discuss the most emerging sequences in Section 6.5.

Known the most emerging sequences, we compare the performances of our pro-

posed model by different classifiers in Section 6.6.

6.1 Evaluation Methodology and Datasets

To decide the optimal strategy in different stages, we fix the methods of other stages,

and only change the method in the current stage. However, when evaluating the

strategies in a stage, an issue is how to choose the algorithms in other stages. For
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example, when validating the algorithms in Stage 1, there are 8 combinations to

choose the algorithms in other stages. Thus we proceed in a top-down fashion, as

we select an appropriate strategy at a given stage, we fix the approaches needed

at the other stages. To do this, we simply choose the approach that needs simpler

parameters or does not need parameter inputs. More specifically, the static feature

selection needs a simpler parameter as opposed to the dynamic feature selection

which needs a more complex parameter setting, the exact matching does not need

parameters, an neither does Naı̈ve Bayes. Therefore, the static feature selection,

exact matching mechanism and Emerging Sequences Naı̈ve Bayes classifier are the

algorithms of other stages when evaluating the methods of Stage 1.

We apply the F-measure to evaluate the prediction performance. The F-measure

is a harmonic average between precision and recall; the relations are illustrated as

follows:

Table 6.1: Confusion Matrix.

Correct Results
E1 E2

Obtained Results
E1 TP (true positive) FP (false positive)
E2 FN (false negative) TN (true negative)

“Precision is the percentage of slots in the hypothesis that are correct, while

recall is the percentage of reference slots for which the hypothesis is correct” [40].

Precision =
TP

TP + FP
,Recall =

TP

TP + FN

The F-measure can be interpreted as a weighted average of the precision and

recall and is typically defined as follows:

F −measure =
2× Precision×Recall

Precision + Recall

Finally, we perform 6-fold cross validation, and the average F-measure of the 6

folds is reported for each dataset.
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The first type of datasets we use is the UNIX user commands dataset from the

UCI Machine Learning Repository [5]. It contains 9 sets of sanitized user data

drawn from the command histories of 8 UNIX computer users at Purdue University.

This dataset only keeps command names, flags, and shell meta characters, while

removing filenames, user names, directory structures etc. The average sequence

number in each group is 1011, and the average length of sequences is 27. The size

of the vocabulary is 2345. We believe different users have discriminative habits

when typing commands.

The second dataset is the epitope data, which are short linear peptides (amino

acid sequences) generated by cleavage of antigenic proteins [17]. The identification

of epitopes in protein sequences is important for understanding disease pathogen-

esis, and a major step involves identifying the peptides that bind to a target major

histocompatibility complex (MHC) molecule. The average sequence number in

each group is 363, and the average length of sequences is 13. The size of the vo-

cabulary is 20. To contrast the binding and non-binding peptides, we perform the

test on several groups of the epitope data.

6.2 Candidates Mining by Varying Gap Constraint

As discussed in Section 4.1, the subsequence leaving the gap constraint arbitrary

is meaningless to represent the original sequence. So the items of subsequences

should be close in the original sequence. We expect the highest prediction accuracy

when the gap constraint is close to 0. To find the best gap for Stage 1, we fixed the

other stages with algorithms without parameters, thus we adopt the static feature

selection, exact matching mechanism and Emerging Sequences Naı̈ve Bayes clas-

sifier while changing the gap constraint in Stage 1. In each experiment, two users’

commands are chosen from the UNIX command dataset [5], and the highest F-

measure indicated the optimal gap constraint needed. To control the gap constraint,
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we implement ConSGapMiner [25] as the candidate mining algorithm.
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(b) User 6 and User 7.

Figure 6.2: The comparisons of F-measures with different gap constraints. In each
figure, a user pair is chosen. X-axis is the number of emerging sequences, y-axis
is the average F-measure. There are 4 curves in a figure, each represents the F-
measure with a gap constraint (from gap = 0 to gap = 3). Static feature selection,
exact matching mechanism and Emerging Sequences Naı̈ve Bayes classifier are
used in this comparison.

Figure 6.2 is the comparisons of F-measures when different gap constraints are

chosen. In each figure, one user pair is selected. We find that the curves of different

gap constraints are very close. i.e. the gap constraint in ConSGapMiner is not a

decisive factor of the classification performance when it is close to 0. Therefore,
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we can extract the ES candidates fulfilling 0-gap constraint because it does not

influence the prediction accuracy. Note that a 0-gap constraint is different from

having no gap constraints at all where any gap is possible. A 0-gap constraint

specifically means no gaps are allowed.

Since both ConSGapMiner and our suffix tree-based framework can extract

subsequences fulfilling 0-gap constraint, we compare these two algorithms by scal-

ability. As illustrated in Figure 6.3, ConSGapMiner is much slower due to the ex-

ponential growth of the data structure used in it. In conclusion, the suffix tree-based

framework, if used in Stage 1, has a similar performance with ConSGapMiner on

the prediction accuracy while decreasing the run time significantly. All following

experiments are performed by adopting the suffix tree-based framework.
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(a) Minimum Support θ = 0.2.
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(b) Minimum Support θ = 0.05.

Figure 6.3: Scalability of Similar ES versus ConSGapMiner with increasing size of
Unix command dataset.

6.3 Static Feature selection vs Dynamic Feature se-
lection

After ES candidates are extracted, the next issue is the selection of features. How

many emerging sequences to keep and which ones to weed out. As discussed in

Section 4.2, we implement both the static and the dynamic feature selection meth-
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ods. In the static feature selection, we choose the top-k subsequences (ranked by

sup diff ) of each class as emerging sequences; while top-m emerging sequences

are selected for each original sequence in the dynamic feature selection. As we

increase k or m, the sum of ESs in both classes also increases. We present the re-

lation between the sum of ESs and the average F-measure on both the static feature

selection and the dynamic feature selection in Figure 6.4.
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Figure 6.4: The relation between the sum of ESs and the average F-measure on
both the static feature selection and the dynamic feature selection. In each figure,
a user pair is chosen. The x-axis is the sum of ESs in two sequence groups, while
the y-axis is average F-measure. GST, exact matching mechanism and Emerging
Sequences Naı̈ve Bayes classifier are used in this comparison.

Since the static feature selection method fixes the number of ESs in each se-

quence class to k, the number of the ESs selected remains always the same (2k)

regardless of the sizes of classes. Suppose the numbers of ES candidates in two
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classes are x and y (x > y), at most 2y ESs can be selected by the static feature

selection. The dynamic feature selection does not suffer from this problem because

the number of ESs is fixed by sequence not by class, all sequences have the chance

to be expressed. In Figure 6.4(b), for instance, over 1600 ESs are selected by the

dynamic approach while the static method can only extract 300 ESs because one

class has 150 candidates.

The main reason that the dynamic approach is superior to the static method is

that the average F-measure of the dynamic approach is monotonic with respect to

the number of ESs. On the contrary, in the static feature selection, the relationship

between the number of ESs and the average F-measure is not stable: the highest

F-measure is achieved when 600 ESs are selected in Figure 6.4(a); however, in

Figure 6.4(b), our algorithm attains the best performance when the number of ESs is

about 100. By only comparing the highest classification accuracies of two methods,

it is clear that the dynamic feature selection performs better than the static approach

in most cases.

Since the dynamic feature selection is easier to control, guarantees that all se-

quences are expressed (i.e. no silent sequence), and performs better in the classifi-

cation, the next issue is to determine how-many ESs should be extracted for each

sequence, so that the algorithm can achieve the highest prediction accuracy. Fig-

ure 6.5 illustrates the relation between the number of ESs for each sequence and

the average F-measure. When every original sequence is covered by 1 to 3 ESs, our

proposed model has the highest prediction accuracy. In other words, the dynamic

feature selection ensures that, every sequence can be expressed by at least 1 to 3

ESs, thus keeping the completeness of the datasets.

In conclusion, the best prediction performance can be achieved when m is set to

1-3. Moreover, in most cases, the dynamic approach outperforms the static one on

classification accuracy. Therefore, we choose the dynamic feature selection as the
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Figure 6.5: The relation between the number of ESs for each sequence and the
average F-measure in the dynamic feature selection. The x-axis is the number of
ESs for each sequence, while the y-axis is average F-measure.

method in Stage 2 (see Figure 4.2). The following experiments are all performed

based on the dynamic feature selection.

6.4 Similar Matching vs Exact Matching

As we decide the strategies of Stage one and Stage two in our proposed frame-

work, the next issue is the transformation from sequence datasets to transactional

datasets. We believe the sliding window matching mechanism considers similar

subsequences, thus improving the prediction accuracy. To validate the improve-

ment, we design another algorithm based on exact matching mechanism. Com-

pared with the similar ES-based algorithm, the exact ES-based algorithm also has 4
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stages, and both algorithms adopt Emerging Sequences Naı̈ve Bayes as the classi-

fier. The only difference is that the exact ES-based algorithm only considers exact

matching, i.e. a transaction contains the tokens if the original sequence contains the

corresponding ESs.

In Table 6.2, we present the F-measures and standard deviations of the UNIX

user command dataset [5] in Row 1-5, where the minimum support θ is set to 0.01;

the result of epitope data [17] is presented in Row 6-11, and θ is set to 0.05. As

discussed in Section 6.3, the parameter m is set to 2 to achieve the best classifica-

tion performance. One more parameter γ, which is specially designed for similar

ESs-based algorithm (See Section 5.1), is used to measure the distance difference

between two sequences. It is set to 0.1 for the UNIX command dataset, and 0.2 for

the epitope dataset.

Table 6.2: Classification performances of exact ESs-based algorithm and similar
ESs-based algorithm. For the prediction accuracies of the Similar ESs-based algo-
rithm on all UNIX user pairs, please refer to Appendix A.

Datasets Exact ESs-based Similar ESs-based Difference

user 0 and 3 0.963133± 0.0189591 0.962192± 0.00864717 1%
user 0 and 5 0.939128± 0.0107074 0.940028± 0.0118862 0%
user 2 and 7 0.971946± 0.0128228 0.969818± 0.00861439 0%
user 7 and 8 0.852766± 0.0192199 0.853639± 0.0233047 0%
user 2 and 3 0.984494± 0.00798139 0.984516± 0.00600006 0%

I-Ek 0.859395± 0.0237948 0.862556± 0.023571 0%
HLA-DR1 0.72197± 0.0382523 0.741143± 0.0228598 2%
HLA-DQ2 0.811726± 0.0936836 0.864592± 0.0300073 5%
HLA-DQ4 0.789487± 0.0922259 0.821227± 0.055203 3%
HLA-DR3 0.757886± 0.0329568 0.777372± 0.0662611 2%
HLA-DR7 0.770727± 0.0323399 0.790606± 0.035915 2%

From Table 6.2, we observe that, the sliding window matching mechanism en-

hances the classification accuracy: the F-measures are improved by up to 5%. How-

ever, its improvement also depends on the datasets. An extreme example is the
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result of user 2 and 3 (Row 5), where the exact matching and similar matching al-

gorithms have similar F-measures. The reason for that is that users 2 and 3 have one

length-1 emerging sequence respectively. When the maximum difference γ is set

to 0.1, our framework always seeks exact matching subsequences, in other words,

both approaches become literally identical.

We notice that the performances on the UNIX command dataset (in the order

of 94%) is much better than those on the epitope dataset (in the order of 81%).

One explanation is that, the epitope dataset is already preprocessed by removing

short, unnatural, and duplicated peptides [17], while the frequencies of peptides are

important for our algorithm. Therefore, our preprocessing-embedded model works

better on raw data.

6.5 Discriminative Power of Emerging Sequences

Before deciding the classifier in Stage 4, one important task is to find the most

emerging sequences. With different minimum support θ, emerging sequences have

different discriminative power. Trained by the most discriminative features, classi-

fiers have the best performances; meanwhile, the comparison between classifiers is

meaningful. In this section, we first verify the discriminative power of emerging se-

quences, then the most emerging sequences can be found by varying the minimum

support θ.

6.5.1 Emerging Sequences vs Frequent Subsequences

Given two sequence classes, to distinguish the target class from the contrasting

class, we select emerging sequences with the largest support differences. To vali-

date the discriminative power of ESs, we design another two 4-stage classification

frameworks, one based on the frequent subsequences in the target class, while an-

other based on the ESs we define. The first two stages of these algorithms are
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different:

• Frequency-based Algorithm: In Stage 1, subsequences that are frequent con-

stitute the feature set (support(α,Dpos) > θ); in Stage 2, subsequences are

ranked by their frequencies.

• ESs-based Algorithm: In Stages 1, subsequences fulfilling the discriminative

conditions are selected (support(α,Dpos) > θ and support(α,Dneg) ≤ θ);

in Stage 2, subsequences with higher sup diff are selected as Emerging Se-

quences..

The motivation for the frequency-based algorithm is that if we rank subse-

quences according to frequency, those discriminative ones usually have high ranks [39].

We can evaluate the effect of ESs according to the comparison between this ap-

proach and the ESs-based Algorithm.

Table 6.3: Classification performances of Frequency-based algorithm and ESs-
based algorithm.

Datasets Frequency-based ESs-based Difference

user 0 and 3 0.891992± 0.0280118 0.953464± 0.0121005 6%
user 0 and 5 0.869967± 0.0250203 0.939128± 0.0107074 7%
user 2 and 7 0.94854± 0.0110985 0.969787± 0.00733708 2%
user 7 and 8 0.818205± 0.0154953 0.852122± 0.0180784 3%
user 2 and 3 0.965973± 0.0225253 0.984494± 0.00798139 2%

I-Ek 0.760296± 0.0299356 0.859395± 0.0237948 10%
HLA-DR1 0.63103± 0.0218163 0.72197± 0.0382523 9%
HLA-DQ2 0.661909± 0.0620348 0.811726± 0.0936836 15%
HLA-DQ4 0.712941± 0.0581559 0.789487± 0.0922259 8%
HLA-DR3 0.607697± 0.051646 0.757886± 0.0329568 15%
HLA-DR7 0.696771± 0.0255892 0.770727± 0.0323399 7%

Table 6.3 is the comparison between the frequency-based algorithm and the

ESs-based algorithm. Both algorithms adopt Emerging Sequence Naı̈ve Bayes as

the classifier. We perform the experiments on the same datasets with Section 6.4.
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By comparing two approaches ( based on frequent subsequences versus based

on emerging sequences), we find that Emerging Sequences play a significant role in

classification: the F-measures are improved by up to 15%. Therefore, the Emerging

Sequences we define are much more discriminative than frequent subsequences.

6.5.2 Emerging Sequences of Varying Minimum Support

As we verify the discriminative power of ESs, the next issue is to find the most

emerging sequences. In our research, emerging sequences are subsequences that

fulfill the discriminative conditions (support(α,Dpos) > θ and support(α,Dneg) ≤
θ). Generally, as the increase of the minimum support θ, less ESs are extracted. In

this section, we seek the relationship between θ and ESs; we want to find the optimal

value for θ, so ESs have the highest discriminative power.

We test the emerging sequences in the 4-stage classification framework. As

ESs are used to train the classifier, if the classifier can achieve a better prediction

performance, the ESs have the higher discriminative power. In our proposed frame-

work, the approaches from Stage 1 to 3 are decided. As the classifier of Stage 4

is unknown, we perform the experiments on both classifiers (es-NB and ARC). We

choose four user pairs from the UNIX command dataset [5]. The parameter m in

Stage 2 is set to 2, and the maximum difference γ in Stage 3 is set to 0.1.

As shown in Figure 6.6, we observe that, as the increase of the minimum sup-

port, the curve of the average F-measure goes down rapidly. The es-NB classifier

has the best prediction performance when the minimum support is close to 0. In

other words, the emerging sequences are the most discriminative if θ ≈ 0. To ver-

ify this result, we perform the same experiments on the Association Rule-based

Classifier, and present the result in Figure 6.7.

From Figure 6.7, the conclusion is the same: with the increase of the minimum

support, the classification accuracy degrades. The reason for that is that, if θ is too
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Figure 6.6: The classification performance of es-NB with varying minimum sup-
port. Four user pairs are chosen. In each figure, x-axis represents the minimum
support θ in preprocessing, while y-axis represents the average F-measure.

high, the minimum support threshold eliminates some emerging sequences of high

discriminative power. When θ is set to 0.01, our Similar ESs-based model achieve

the highest accuracy. Given two groups of sequences (the target group and the

contrasting group), Stage 1 of our algorithm ensures that the ESs candidates hardly

appear in the contrasting group, while Stage 2 selects the high-frequent candidates

in the target group. In other words, the most emerging sequences are frequent in

the target group, while they (almost) cannot be found in the contrasting group. We

name this type of subsequences jumping emerging sequences (JESs). In conclusion,

our proposed algorithm achieves the best performance when the classifier is trained

by JESs.
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Figure 6.7: The classification performance of ARC with varying minimum support.
Four user pairs are chosen. In each figure, x-axis represents the minimum support
θ in preprocessing, while y-axis represents the average F-measure.

6.6 Naı̈ve Bayes vs Association Rule-based Classifier

For both Emerging Sequence Naı̈ve Bayes and Association Rule-based Classifier

(ARC), the best prediction accuracy can be achieved when the minimum support

θ is close to 0. Therefore, instead of comparing the curves in Figure 6.6 and Fig-

ure 6.7, we just need to compare their average F-measures when θ = 0.01. We

perform the experiments on five user pairs from the UNIX command dataset [5].

We design two algorithms based on our 4-stage classification framework, while the

first 3 stages are the same. The only difference is that, one algorithm adopts es-NB,

while the other implements ARC.

The average F-measures and standard deviations are presented in Table 6.4. We
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Table 6.4: Classification performances of es-NB and ARC. For the prediction accu-
racies of es-NB on all UNIX user pairs, please refer to Appendix A.

Datasets es-NB ARC Difference

user 0 and 3 0.963133± 0.0189591 0.947097± 0.0229249 2%
user 1 and 2 0.959736± 0.0149326 0.93348± 0.0124664 3%
user 1 and 8 0.958649± 0.0113836 0.957143± 0.0142829 0%
user 2 and 7 0.971946± 0.0128228 0.952679± 0.00812296 2%
user 7 and 8 0.852766± 0.0192199 0.793003± 0.0101451 6%

observe that, es-NB outperforms ARC in most cases by up to 6% in average F-

measure. One possible explanation is that, the minimum support and minimum

confidence thresholds of ARC eliminate some potential rules, while es-NB keeps

all discriminative information in the form of conditional probabilities. Therefore,

es-NB is chosen as the classifier in our proposed prediction model.
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Chapter 7

Conclusion

In this dissertation, we define Emerging Sequences (ESs) as subsequences that are

frequent in sequences of one group and less frequent in the sequences of another,

and thus distinguishing or contrasting sequences of different classes. ESs can be

used to contrast sequence groups. However, there are two challenges to distin-

guish sequence classes: the extraction of ESs is not trivially efficient and only exact

matches of sequences are considered. In our work we address those problems by

a suffix tree-based framework and a sliding window matching mechanism for the

distance metric between sequences. We propose a 4-stage classification framework

for sequence data based on Emerging Sequences.

To decide the approaches and evaluate the current strategies in 4 stages, we de-

sign several other algorithms, which adopt ConSGapMiner, static feature selec-

tion, exact sequence matching, or Association Rule-based Classifier in each stage,

and perform the comparisons with the baseline algorithm. We find that the combina-

tion of GST, dynamic feature selection, similar matching mechanism and Emerging

Sequence Naı̈ve Bayes has a better prediction accuracy when classifying sequence

groups. To demonstrate the discriminative power of Emerging Sequences, we per-

formed the experiments on the UNIX command dataset [5] and epitope dataset [17].

The experiments show that ESs are much more discriminative than frequent subse-

quences on these datasets. Our similar ESs-based classification model achieves
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satisfactory F-measures (as high as 98%) on the UNIX command dataset. The best

performance can be achieved when our algorithm is trained using jumping emerging

sequences.

Our proposed algorithm is based on a Naı̈ve Bayes classifier since it gave better

results with our Emerging Sequence patterns on those datasets, than other classifiers

such as an Associative Classifier. The Associative classifier, however, gave better

results using our Emerging Sequence patterns on other protein data, not reported

in this thesis. One interesting question which remains an open problem is how to

select the best classifier given a sequence dataset or given properties of a set of

discovered discriminative sequences.
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Appendix A

Prediction accuracies on all user
pairs of the UNIX command dataset

Table A.1: Prediction accuracies on all user pairs of the UNIX command dataset [5].
The experiments are performed on the Similar ES-based classification framework.

user 0 user 1 user 2 user 3 user 4 user 5 user 6 user 7

user 1
0.788±
0.046

— — — — — — —

user 2
0.974±
0.008

0.960±
0.015

— — — — — —

user 3
0.963±
0.019

0.977±
0.015

0.985±
0.008

— — — — —

user 4
0.943±
0.019

0.925±
0.013

0.924±
0.019

0.961±
0.009

— — — —

user 5
0.940±
0.012

0.914±
0.025

0.957±
0.014

0.970±
0.015

0.923±
0.018

— — —

user 6
0.788±
0.016

0.838±
0.025

0.942±
0.007

0.967±
0.009

0.922±
0.007

0.744±
0.031

— —

user 7
0.973±
0.014

0.936±
0.014

0.972±
0.013

0.973±
0.009

0.981±
0.004

0.792±
0.051

0.936±
0.009

—

user 8
0.982±
0.009

0.959±
0.011

0.982±
0.006

0.966±
0.008

0.985±
0.008

0.805±
0.038

0.974±
0.005

0.853±
0.019
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