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Abstract

Computing a Nash equilibrium in zero-sum games, or more generally saddle

point optimization, is a fundamental problem in game theory and machine

learning, with applications spanning across a wide variety of domains, from

generative modeling and computer vision to super-human AI in imperfect in-

formation games like poker. Despite the broad application of Nash equilibria,

traditional methods from optimization and machine learning are not directly

applicable. However, in zero-sum games an effective and simple method exists

– self-play with online learning. In this setup, an equilibrium is computed

by pitting two algorithms against each other to play out a game repeatedly.

Online learning with self-play via Counterfactual Regret Minimization (CFR)

is the leading approach for saddle point computation in large games with se-

quential decision making and imperfect information. For very large games,

CFR can be scaled in various dimensions such as sampling, subgame decom-

position, and function approximation. Despite the growing interests in scaling

algorithms with function approximation in areas such as reinforcement learn-

ing, current theoretical guarantees for CFR and function approximation are

minimal. In this thesis we extend theoretical results for CFR when using func-

tion approximation, and complement these worst-case guarantees with exper-

iments on several common benchmark games with sequential decision making

and imperfect information.

The thesis is outlined as follows. First, relevant background is given by

defining external regret – a quantity to evaluate online learning algorithms.
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Then the connection between regret, self-play, and general concave-convex sad-

dle point problems is given. A generalization of external regret in the specific

online decision problem is also reviewed. The main theoretical contributions

are then presented, generalizing previous work to different types of regret in

the online decision problem and with different algorithms. The new theoret-

ical guarantees with function approximation give rise to two new families of

algorithms, presented as f -RCFR and f -RCFR+, combining function approxi-

mation and CFR like algorithms. Both f -RCFR and f -RCFR+ algorithms are

then compared across different games, with f -RCFR+ demonstrating superior

performance and better management of function approximator capacity.
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Preface

Parts of this thesis was published as a conference paper with shared first co-

authorship with Dustin Morrill in the proceedings of the 19th International

Conference on Autonomous Agents and Multiagent Systems, 2020 [14]. My

contributions in the publication include the theory presented in Sections 3.1

and 3.2, and Figures 5.1, 5.2, and 5.3. This thesis extends the results presented

in the paper with new theoretical results, and experiments. The new theoret-

ical results are presented in Chapter 3 (Section 3.2.1 and afterwards). The

new experiments include those for the f -RCFR+ algorithm (Section 4.4), and

experiments with sampling (Section 5.4.2). These experiments would not be

possible without the OpenSpiel package [38] and Dustin Morill’s experiment

contributions that were used in the publication.

Outside the scope of this thesis I also performed research within the area

of uncertainty in machine learning. In particular, computing simultaneous

predictions intervals with applications to survival analysis [54].
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Don’t worry about the overall importance of the problem;

work on it if it looks interesting.

I think there’s a sufficient correlation between interest and importance.

– David Harold Blackwell

It’s easier to resist at the beginning than at the end.

– Leonardo da Vinci
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Chapter 1

Introduction

A fundamental problem with growing interests and applications to machine

learning is saddle point optimization, or min max optimization, or computing

a Nash equilibrium in a two-player zero-sum game.1 Some examples of appli-

cations include learning generative models [21], reinforcement learning [13, 64],

computer vision [12], training neural networks for supervised learning [49], and

learning to play poker at an expert level [4, 7, 41]. Fundamentally, the sad-

dle point problem entails finding an equilibrium in a zero-sum game between

the minimization and the maximization player. In practice we seek efficient

algorithms that will find a good approximate equilibrium, a pair of strategies,

one for each player, that is “close” to an equilibrium. Efficient algorithms

will converge to a neighbourhood of an equilibrium with minimal iterations,

small memory requirements, and typically only requiring feedback that is eas-

ily attainable (e.g . using a first-order oracle that only provides gradient or

subgradient feedback).

In addition to saddle point optimization, the relatively new field of online

convex optimization has caught the interest of many researchers in theoretical

machine learning. In online optimization a learning algorithm’s performance

is measured by it’s external regret, the difference in accrued rewards (or costs)

versus the best fixed decision in hindsight, for any possible sequence of reward

functions (or loss functions). For concave-convex games, algorithms suitable

for online convex optimization [11, 28, 47], can be used to efficiently find an

1In the sequel we will often refer to two-player zero-sum games as zero-sum.
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equilibrium via self-play. Online algorithms are typically simple to implement,

and only require first-order information.

Outside of machine learning, connections between equilibria and online

learning have been known for decades [3, 11, 26, 27]. In Blackwell’s seminal

work, zero-sum games are extended to those with vector payoffs, one player

seeks to force an average payoff vector to approach a closed convex set regard-

less of the sequence played by the other player [3]. The beauty of Blackwell’s

work is a constructive proof, providing a simple algorithm to force approach-

ability of a target set. When applied to traditional matrix games, Blackwell’s

algorithm yields the popular regret-matching algorithm, a parameter-free no-

regret online learning algorithm; thus capable of computing a Nash equilibrium

in zero-sum games [11, 27].

The simple procedure of playing out a game with two online learning algo-

rithms to find a saddle point is not just theoretically sound but is the leading

approach in computing a Nash equilibrium in large sequential games. In par-

ticular, the dominant framework for approximating Nash equilibria in sequen-

tial games with imperfect information is Counterfactual Regret Minimization

(CFR), which has successfully been used to solve and expertly play human-

scale poker games [4, 7, 8, 41]. In addition to the online learning approach to

solving games, the CFR framework reduces online learning over a large strat-

egy space to many simple online learning problems, one for each decision point

in the game [17, 69]. In principle, the CFR framework justifies running any

no-regret algorithm at each decision point, however, CFR is often used with

the regret-matching algorithm or variants thereof.

For very large games, one cannot store information for each state, rendering

CFR intractable. Historically, scaling CFR to large games has been done

with abstraction, similar states are grouped together to form a smaller but

strategically similar game [20, 31, 66, 69]. The abstract game is solved with

CFR and the resulting strategies are translated back to original game.

Function approximation is a natural generalization of abstraction. In CFR,

this amounts to estimating the information required for each online algorithm

instead of storing them all in a table [6, 39, 42, 57, 65]. Game solving with
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function approximation can be competitive with domain specific state abstrac-

tion [6, 29, 42, 65], and in some cases is able to outperform tabular CFR with-

out abstraction if the players are optimizing against their best responses [40].

Function approximation has facilitated many recent successes in game playing

more broadly [51, 52, 61].

Combining function approximation and regret-minimization with applica-

tions to CFR was initially studied by Waugh et al . [65], introducing the Re-

gression Regret-Matching (RRM) Theorem—giving a sufficient condition for

function approximator error to still achieve no regret when combining ap-

proximation with regret-matching. A direct application of RRM is a regret-

bound for CFR with regret-matching and function approximation, amounting

to the Regression Counterfactual Regret Minimization (RCFR) algorithm. In-

tuitively, in a given iteration RCFR prescribes at each state a distribution

over actions proportional to a rectified linear unit (ReLU) function applied to

approximate action preferences. However, most reinforcement learning (RL)

algorithms for discrete action spaces take a different approach: they exponenti-

ate and normalize the preferences according to the softmax function. Coupling

CFR with the softmax function amounts to using the Hedge or Exponential

Weights learning algorithm at each decision point to generate policies [19].

In fact, RM and Hedge can be unified. Greenwald et al . [23] present (Φ, f)-

regret matching, a general framework for constructing algorithms to minimize

Φ-regret—a generalization of external regret when using a policy parameter-

ized by a link function f .

In this thesis, we generalize generalize the RRM Theorem to (Φ, f)-regret

matching by extending the Greenwald et al . framework to the case when the

inputs to the algorithms are approximate, and to a new class of algorithms,

(Φ, f)-regret matching+. This new class generalizes the regret-matching+

algorithm; an algorithm commonly observed to accelerated learning in games

and played a major in solving human-scale games [4, 59, 60]. This new approx-

imate (Φ, f)-regret matching and (Φ, f)-regret matching+ framework allows

for the use of a broad class of link functions and regret objectives, and provides

a simple recipe for generating regret bounds under new choices for both when
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approximations are used. Our analysis, both due to improvements previously

made by Greenwald et al . [23] and more careful application of conventional

inequalities, tightens the bound for RRM. The corresponding improvement to

the RCFR Theorem [42, 65] is magnified because the bound in this theorem

is essentially the RRM bound multiplied by the size of the game. In addition,

this framework provides insight into the effectiveness of combining function

approximation with regret minimization as the impact of inaccuracy on the

bounds varies between link functions and parameter choices.

The approximate (Φ, f)-regret matching and (Φ, f)-regret matching+ frame-

works provide the basis for bounds that apply to RCFR algorithms with al-

ternative link functions, thereby allowing the sound use of alternative policy

parameterizations, including softmax. We call this generalization f -RCFR

and f -RCFR+. We provide regret and equilibrium approximation bounds

for this algorithm with the polynomial and exponential link functions, and

we test them in two games commonly used in games research, Leduc hold’em

poker [55] and imperfect information goofspiel [36]. A simple but extensible

linear representation is used to isolate the effect of the link function and the

degree of approximation on learning performance. We find that the polyno-

mial link function performs better when the approximation error is small while

the exponential link function (corresponding to a softmax parameterization)

can perform better when the approximation error is large. Moreover, we find

that f -RCFR+ almost always outperforms f -RCFR.

This thesis is organized as follows. In Chapter 2 we formally define a Nash

equilibrium in the context of two-player zero-sum games and the connection

with online learning. We then define online decision problems and present

the Φ-regret matching framework developed by Greenwald, Li, and Marks.

In Chapter 3 the framework is extended to approximate regret matching and

approximated regret matching+, with regret bounds for these new classes of

algorithms. In Chapter 4 we discuss extensive-form games, the CFR frame-

work, and present f -RCFR and f -RCFR+ algorithms along with worst-case

guarantees. Afterward, in Chapter 5 we present experiments and results, com-

paring the f -RCFR and f -RCFR+ algorithms for various parameter choices

4



and game environments.
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Chapter 2

Background Material

Online learning has a rich history, attracting the interests of both the AI

and game theory community [50]. Learning “online” consists of making deci-

sions only from past observations. Performance of following such a decision

rule is measured by comparing the accrued rewards (costs) with some base-

line sequence of decisions. Crucially, in this work we do not make explicit

assumptions on the sequence of reward (loss) functions that the agent will ob-

serve. More precisely, the reward function may change from one time step to

the next, thus allowing for arbitrary changes in the reward function, possibly

controlled by an adversary. Indeed, if the losses are chosen by a worst-case

adversary then we have a two player game, the decision-maker against the en-

vironment. Additionally, we will assume that an agent is maximizing rewards

instead of minimizing losses to closely follow the extensive-form games litera-

ture. Much of the online learning literature, however, is embedded within the

field of online optimization, for which the convention of minimizing losses is

used. Thus results can be carried over from one community to another with

the appropriate change of sign.

In this chapter we formally define regret, a metric which we use to evaluate

online algorithms. Then we define zero-sum games and present the well-known

folk-theorem, justifying self-play of online algorithms for solving games. We

then close the chapter with a more general definition of regret, Φ-regret.
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2.1 External Regret

The online learning problem can be viewed from the perspective of an agent

interacting with an environment. Consider an agent that is tasked with making

repeated decisions xt from some convex compact set X , for time steps t ∈
{1, · · · , T}.1 At a given time step t the reward is given by some concave

continuous function f t : X → R, which is revealed to the agent after xt is

chosen. We then evaluate the decisions {xt}t≤T by comparing the accrued

rewards with a simple baseline strategy, the best fixed decision in hindsight

RT
X := max

x∈X

T
∑

t=1

f t(x)−
T
∑

t=1

f t(xt). (2.1)

The difference in reward RT
X is referred to as external regret. A desired

property of decision rules or learning algorithms is no-regret.

Definition 1. A decision rule or learning algorithm is said to be no-regret or

Hannan Consistent if

lim
T→∞

RT
X

T
≤ 0.

Equivalently, the regret must grow at a sublinear rate RT
X ∈ o(T ). Notice

the above definition does not make assumptions on the sequence of reward

functions {f t}t≤T . In the optimization literature, the above setup is referred

to as online convex optimization [28, 68]. It is interesting to note that designing

no-regret algorithms for linear functions is enough to achieve no-regret in the

more general concave setting if all {−f t}t≤T are subdifferentiable [28].2

2.1.1 External Regret and Zero-Sum Games

Without explicit assumptions on the sequence of reward functions {f t}t≤T ,

the online problem allows for modeling worst-case adversarial environments.

1In the Euclidean space R
d, compactness is equivalent to closed and bounded.

2The function f is subdifferentialble at x if there exists g such that for all y in the domain
f(y) ≥ f(x) + 〈g, y − x〉.
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Therefore, it should not be surprising that there exists a strong connection be-

tween online learning and games. We consider the connection between external

regret and a simple adversarial environment — two-player zero-sum games.

Consider a two player game consisting of a row and column player whose

decisions lie in the convex compact sets X and Y , respectively. We consider

the concave-convex continuous payoff function f : X × Y → R. That is,

f(·, y) is concave for each y and f(x, ·) is convex for each x. The game is

zero-sum because the row player is trying to maximize their payoff given by

f while the column player is doing the same with payoff given by −f . An

important solution concept for this zero-sum game is a Nash equilibrium [43],

or equivalently a saddle point of f .

Definition 2. A Nash equilibrium of the two-player zero-sum game given by

the concave-convex payoff function f : X × Y → R is a pair (x̄, ȳ) ∈ X × Y
such that

∀(x, y) ∈ X × Y f(x, ȳ) ≤ f(x̄, ȳ) ≤ f(x̄, y).

That is, neither the row player nor the column player can unilaterally

improve their payoff by deviating.

The saddle point interpretation is interesting as it corresponds to the min-

imax value of the game [53]. The Nash equilibrium (x̄, ȳ) is minimax optimal

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y) = f(x̄, ȳ) = v.

The value v corresponds to the value of the game, and if the row player plays

their part of a Nash equilibrium they are guaranteed a payoff of at least v, that

is ∀y ∈ Y f(x̄, y) ≥ v, and similarly for the column player. In fact, the set

of maxmin strategies for both players coincide with the set of Nash equilibria.

Therefore, playing a Nash equilibrium is safe and the game is considered solved

if such an equilibrium is found in a two-player zero-sum game.

2.1.2 Computing a Nash Equilibrium

The safety guarantee of a Nash equilibrium in a two-player zero-sum game

thus motivates computing a strategy x̄ that is close to a Nash equilibrium.

8



In particular, offline computation of x̄ can later be used against arbitrary

opponents. An equilibrium can be approximated as closely as needed in offline

self-play, where both players are using no-regret learning algorithms to play

the game.

First we define an approximate solution to a game, an ǫ-Nash equilibrium.

Definition 3. An ǫ-Nash equilibrium of the two-player zero-sum game given

by the concave-convex function f : X × Y → R is a pair (x̄, ȳ) ∈ X × Y such

that, for ǫ ≥ 0

∀(x, y) ∈ X × Y f(x, ȳ)− ǫ ≤ f(x̄, ȳ) ≤ f(x̄, y) + ǫ.

Similar definitions of an approximate equilibrium also exist, such as the

following:

max
x∈X

f(x, ȳ)−min
y∈Y

f(x̄, y) ≤ ǫ′, (2.2)

max
x∈X

f(x, ȳ)−min
y∈Y

f(x̄, y)

2
≤ ǫ′

2
. (2.3)

The value on the left-hand of condition (2.2) is typically referred to as the

saddle point residual or gap in the optimization literature. Similarly, the value

in condition (2.3) is referred to as the exploitability of (x̄, ȳ) and is simply

the average best response value for both players. We have that an ǫ-Nash

equilibrium has a saddle point residual of at most 2ǫ and an exploitability of

at most ǫ. Conversely, a saddle point residual of 2ǫ implies an exploitability

of ǫ and a 2ǫ Nash equilibrium. Clearly, with smaller ǫ we attain a better

approximation of the equilibrium and better guarantees against worst-case

opponents.

If both the column and row players repeatedly play the game given by

f with decisions {(xt, yt)}t≤T while observing the reward functions f t(·) =

f(·, yt) and f̃ t(·) = −f(xt, ·), respectively, we then have the following folk-

theorem giving a worst-case bound on ǫ for the ǫ-Nash equilibrium formed by

the average decisions.
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Theorem 1. Given a two-player zero-sum game with concave-convex payoff

function f : X ×Y → R, if both players pick decisions (xt, yt) ∈ X ×Y at time

t ∈ {1, · · · , T} then the average strategies (x̄, ȳ) form an ǫ- Nash equilibrium

with ǫ ≤ RT
X
+RT

Y

T
. Where x̄ = 1

T

∑T
t=1 x

t, and ȳ = 1
T

∑T
t=1 y

t.

Proof. Let f t(·) = f(·, yt) and f̃ t(·) = −f(xt, ·).

max
x∈X

f(x, ȳ)− f(x̄, ȳ) ≤ max
x∈X

T
∑

t=1

1

T
f(x, yt)− f(x̄, ȳ) (2.4)

= max
x∈X

T
∑

t=1

1

T

(

f(x, yt)− f(xt, yt) + f(xt, yt)
)

− f(x̄, ȳ) (2.5)

= max
x∈X

T
∑

t=1

1

T

(

f t(x)− f t(xt)
)

+
T
∑

t=1

1

T
f(xt, yt)− f(x̄, ȳ) (2.6)

=
RT

X

T
+

T
∑

t=1

1

T
f(xt, yt)− f(x̄, ȳ) (2.7)

≤ RT
X

T
+

T
∑

t=1

1

T

(

f(xt, yt)− f(xt, ȳ)
)

=
RT

X

T
+

T
∑

t=1

1

T

(

f̃ t(ȳ)− f̃ t(yt)
)

(2.8)

≤ RT
X +RT

Y

T
(2.9)

The first and second inequality follow by convexity. Similarly we have for the

column player, min
y∈Y

f(x̄, ȳ)− f(x̄, y) ≤ RT
X
+RT

Y

T
.

The above proof can be also be modified to bound the saddle point residual

by
RT

X
+RT

Y

T
, which in turn would yield the same result, see Farina, Kroer, and

Sandholm [15] for example.

Interestingly, this analysis is decentralized and does not directly deal with

the interaction of both learners. The Ω(
√
T ) lower bound for online convex

optimization [28], therefore, incorrectly implies a Ω(
√
T ) lower bound on RT

X +

RT
Y . With more careful analysis it is possible to achieve a constant bound if the

algorithms in self-play satisfy a condition known as regret bounded by variation

in utilities (RVU) [16, 58].3

3The improved regret bounds assume a smooth game, see Section 5.2.3 in Bubeck et al.
for a formal definition of smoothness in games [9]. Acceleration of online learning methods
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2.2 Online Learning on the Simplex

When decisions live in the simplex X = ∆(A), where ∆(A) is the set of all

probability distributions over finite actions A, and reward functions are linear,

we recover a well-studied online learning problem.4 We refer to such a problem

as an online decision problem (ODP) and adopt the notation from Greenwald

et al . [23]. In other works, this problem setting is also referred to as prediction

with expert advice [11].

Formally, an ODP consists of a finite set of possible actions A and a

bounded set of possible rewards R ⊂ R where supx∈R |x| = U . The tuple

(A,R) fully characterizes the problem and is referred to as a reward system.

Furthermore, let Π denote the set of reward functions r : A→ R.

Similar to the general online learning problem, at each round t an agent

selects a policy, that is, a distribution over actions xt ∈ ∆(A). The agent

then samples an action, at ∼ xt, and subsequently receives a reward function,

rt ∈ Π. Knowledge of the selected reward function allows the agent to compute

the rewards for actions that were not taken at time t, in contrast to the bandit

setting where the agent only observes rt(at).

Crucially, each rt may be selected arbitrarily from Π, thus allowing for

modeling multi-agent, adversarial interactions, and game theoretic equilib-

rium concepts even though it is described from the perspective of a single

agent’s decisions. For example, if we formulate a game with the payoff function

f(x, y) = 〈x,By〉 where the row player makes decisions x ∈ ∆(Ax) and the col-

umn player y ∈ ∆(Ay), then we recover the traditional normal-form zero-sum

game. From Theorem 1, if the row and column player observe f t(·) = 〈·, Byt〉
and f̃ t(·) = −〈B⊤xt, ·〉 at the end of each round, then an ǫ-Nash equilibrium

can be computed with self-play.

Recall that the algorithms employed in self-play are online, depending only

for saddle point computation predates the RVU condition [48]. The RVU condition was in-
troduced by Syrgkanis, Agarwal, Luo, and Schapire [58] and allows for mixing and matching
different algorithms. Accelerated convergence is guaranteed so long as each learner satisfies
the RVU condition.

4Observe that this setting entails a compact decision set with a continuous reward func-
tion.
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on previous experience of play to make their next decision. We denote this

experience at time t as a history h ∈ H t := At×Πt, where H0 := {∅}. We can

then formalize the notion of an online algorithm in the ODP setting with the

following definition.

Definition 4. An online learning algorithm in an ODP is a sequence of func-

tions {Lt}∞t=1, where Lt : Ht−1 → ∆(A).

2.2.1 Beyond External Regret

From the definition of external regret (2.1) we have for an ODP

RT
X = RT

∆(A) = max
a∈A

T
∑

t=1

rt(a)− 〈rt, xt〉. (2.10)

We overload notation and write the expected reward of policy x with reward

function r as the standard inner product 〈r, x〉, where r is the associated

reward vector {r(a)}a∈A and x the appropriate vector of probabilities over

actions. The best policy in hindsight will be any that has support that is

a subset of the set of optimal actions given the observed reward functions –

Argmax
a∈A

∑T
t=1 r

t(a). Therefore, it is sufficient to track the performance of the

best action to measure the regret.

In this work we talk about two generalizations of external regret. The first

is with respect to the baseline action, instead of comparing with the best action

in hindsight we may consider the best sequence of policies that are derived from

the policies chosen by the agent {xt}t≤T . The second generalization differs

between the expected accrued rewards
∑

t〈rt, xt〉 and those collected by the

sampled actions
∑

t r
t(at), where at ∼ xt. The work by Greenwald, Li, and

Marks [23] refer to the former as distribution regret and the latter as action

regret. Generalizations to other types of regret allow for a broader application

of self-play, including efficient computation of a correlated equilibrium [11].

Both generalizations of external regret are nicely included within the Φ-regret

framework for which we make use of and reintroduce below [23].

12



Action Transformations

To generalize regret to different baselines, it is useful to define action trans-

formations. Action transformations are functions of the form φ : A → ∆(A),

mapping each action a ∈ A to a policy. Let ΦALL denote the set of all action

transformations for the set of actions A. Two important subsets of ΦALL are

the external and internal transformations. The transformations induce alter-

native sequences of decisions with a baseline expected reward 〈rt, φ(at)〉, when
at ∼ xt.

External transformations, ΦEXT , transform all actions to the same action.

Formally, if δa ∈ ∆(A) is the distribution with full weight on action a, then

ΦEXT := {φ : ∃a ∈ A ∀a′ ∈ A φ(a′) = δa}. Note that there are |ΦEXT | = |A|
external transformations.

Internal transformations, ΦINT , transform one action to another action.

Formally, the internal transformation from action a to action b is defined piece-

wise as

φ
(a,b)
INT (a

′) =

{

δb if a′ = a,

δa′ otherwise.

Note that there are |ΦINT | = |A|2 − |A|+ 1 internal transformations [23].

We define the policy induced by a policy x and action transformation φ as

[φ](x) =
∑

a∈A x(a)φ(a). Note that [φ](x) is the expected policy given by φ,

Ea∼x[φ(a)].

Φ-Regret

The regret for not following action transformation φ when action a was chosen

and reward function r was observed is the instantaneous φ-regret,

ρ̂φ(a, r) = Ea′∼φ(a)[r(a
′)]− r(a) = 〈r, φ(a)〉 − r(a). (2.11)

Similarly, on expectation for policy x we have the expected instantaneous φ-

regret,

ρφ(x, r) = Ea∼x[ρ̂φ(a, r)] = 〈r, [φ](x)〉 − 〈r, x〉. (2.12)
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For a set of action transformations, Φ, the instantaneous Φ-regret vectors

are ρ̂Φ(a, r) = (ρ̂φ(a, r))φ∈Φ, and ρΦ(x, r) = (ρφ(x, r))φ∈Φ for action a and

policy x respectively.

For an ODP with observed history h at time t, composed of reward func-

tions {rt}Tt=1 and actions {at}Tt=1 selected by the agent on each round, the Φ-

regret after T -rounds against action transformations Φ is R̂T
Φ(h) =

∑T
t=1 ρ̂Φ(a

t, rt).

For brevity we will omit the h argument, and for convenience we set R̂0
Φ := 0.

Note that R̂ is a random vector due to the sampled actions. Similarly, we have

for the chosen policies {xt}Tt=1 the expected Φ-regret RT
Φ =

∑T
t=1 ρΦ(x

t, rt).

We seek to bound the expected average maximum Φ-regret,

E

[

1

T
max
φ∈Φ

R̂T
φ

]

, (2.13)

as well as the average expected regret by interchanging the max and the ex-

pectation

1

T
max
φ∈Φ

RT
φ . (2.14)

Choosing Φ to be ΦEXT or ΦINT corresponds to the well studied maximum

external regret or maximum internal regret objectives, respectively. More

precisely, if Φ = ΦEXT then ρΦ(x, r) = (〈r, [φ](x)〉 − 〈r, x〉)φ∈Φ = (r(a) −
〈r, x〉)a∈A, therefore, maxφ∈ΦR

T
φ amounts to the same external regret objective

RT
∆(A) defined in (2.10).

Connections to Other Equilibria Outside of two-player zero-sum games,

self-play via regret-minimization can be used for computing other types of

equilibria. More specifically, if all players are minimizing external regret then

an ǫ-coarse correlated equilibrium can be computed with the average decisions

or sampled actions. Similarly, if all players are minimizing internal regret then

an ǫ-correlated equilibrium can be computed. We refer the reader to Cesa-

Bianchi and Lugosi for an extensive review of online learning in connection

with computing various eqiilibria [11].
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Chapter 3

Approximate Regret-Matching

Recall that no-regret algorithms can be used in self-play to find an ǫ-Nash

equilibrium. However, in games with multiple decision points, the regret for

both players RT
X , R

T
Y , may be decomposed as a sum of regrets, one for each

decision point. Instead of reasoning about regret over the policy space for

a player in the whole game we can minimize regret locally over the simplex

at each decision point. For games with many decision points, it may not be

feasible to store the information required to be no-regret, typically on the

order of the number of decision points. In this work we consider the case

of minimizing regret when approximations are used instead of true values,

ultimately showing how regret may be bounded in terms of approximation

error. In this chapter we focus on the single state/decision point case, where Φ-

regret is minimized with approximations. The analysis closely follows the work

of Greenwald, Li, and Marks [23]; however, the main contribution comprises

extensions of their work when algorithms use approximations, and an extension

of their framework to a new class of algorithms inspired by a successful variant

of regret-matching, regret-matching+.

3.1 General Bounds

For a finite set of action transformations Φ, we seek no-regret algorithms where

the average regret is measured by the objectives 2.13, and 2.14. For the remain-

der of the chapter, emphasis will be placed on the former objective, however,

this chapter will conclude with discussion on transferring the results to the lat-
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ter case where regret is defined with expected reward from the chosen policies

and not the sampled actions.

Given a finite set of action transformations Φ and a link function f : R|Φ| →
R

|Φ|
+ , where R

N
+ denotes the N -dimensional positive orthant, we can define a

general class of online learning algorithms known as (Φ, f)-regret-matching

algorithms [23]. A (Φ, f)-regret-matching algorithm at time t chooses x ∈
∆(A) that is a fixed point of

Mt(x) :=

∑

φ∈Φ Y
t
φ [φ](x)

∑

φ∈Φ Y
t
φ

,

when R̂t−1
Φ ∈ R

|Φ|
+ \ {0}, where Y t

Φ := (Y t
φ)φ∈Φ := f(R̂t−1

Φ ), and arbitrarily oth-

erwise. Note that Mt is a convex combination of linear operators {[φ]}φ∈Φ,
hence the fixed point always exists by the Brouwer Fixed Point Theorem. If

Φ = ΦEXT then the fixed point of Mt is a distribution x ∝ Y t
Φ [24]. Examples

of (Φ, f)-regret-matching algorithms include Hart’s algorithm [27]—typically

called “regret-matching”—and Hedge [19], with link functions f(x)i = x+i and

f(x)i = e
1

τ
xi with temperature parameter τ > 0, respectively. When the

decision set is the simplex, Hedge possess a better regret bound, however,

Regret-matching and its variants are have typically shown to perform better

in practice. In the next chapter, we will see that with approximations the per-

formance gap between hedge and regret-matching is less clear, thus motivating

studying different link functions.

A useful technique for bounding regret when estimates are used in place of

true values is to define an ǫ−Blackwell condition, as was used in the Regression

Regret-Matching Theorem (RRM) [65]. The analysis in RRM was specific to

Φ = ΦEXT and the polynomial link f with p = 2. To generalize across different

link functions and Φ ⊆ ΦALL we define the (Φ, f, ǫ)-Blackwell condition.

Definition 5 ((Φ, f, ǫ)-Blackwell Condition). For a given reward system (A,R),

finite set of action transformations Φ ⊆ ΦALL, and link function f : R|Φ| →
R

|Φ|
+ , a learning algorithm satisfies the (Φ, f, ǫ)-Blackwell condition if

〈f(R̂t−1
Φ (h)),Ea∼Lt(h)[ρΦ(a, r)]〉 ≤ ǫ. (3.1)
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The Regret Matching Theorem [23] shows that the (Φ, f)-Blackwell condi-

tion (ǫ = 0) holds with equality for (Φ, f)-regret-matching algorithms.

We seek to bound the expected average Φ-regret when an algorithm at

time t chooses the fixed point of

M̃t(x) :=

∑

φ∈Φ Ỹ
t
φ [φ](x)

∑

φ∈Φ Ỹ
t
π

, (3.2)

when R̃t−1
Φ ∈ R

|Φ|
+ \ {0} and arbitrarily otherwise, where Ỹ t

Φ := f(R̃t−1
Φ ) and

R̃t−1
Φ is an estimate of R̂t−1

Φ , possibly from a function approximator. Such an

algorithm is referred to as approximate (Φ, f)-regret-matching.

Similarly to the RRM Theorem [42, 65], we show that the ǫ parameter

of the (Φ, f, ǫ)-Blackwell condition depends on the link output approximation

error,
∥

∥

∥
Y t
Φ − Ỹ t

Φ

∥

∥

∥

1
.

Theorem 2. Given reward system (A,R), a finite set of action transforma-

tions Φ ⊆ ΦALL, and link function f : R|Φ| → R
|Φ|
+ , then an approximate (Φ, f)-

regret-matching algorithm, {Lt}∞t=1, satisfies the (Φ, f, ǫ)-Blackwell Condition

with ǫ ≤ 2U
∥

∥

∥
Y t
Φ − Ỹ t

Φ

∥

∥

∥

1
, where Y t

Φ := f(R̂t−1
Φ ), and Ỹ t

Φ := f(R̃t−1
Φ ).

Proof. We denote r = (r′(a))a∈A as the reward vector for an arbitrary re-

ward function r′ : A → R. Since by construction this algorithm chooses

Lt at each timestep t to be the fixed point of M̃t, all that remains to be

shown is that this algorithm satisfies the (Φ, f, ǫ)-Blackwell condition with

ǫ ≤ 2U
∥

∥

∥
Y t
Φ − Ỹ t

Φ

∥

∥

∥

1
, t > 0.

By expanding the value of interest in the (Φ, f)-Blackwell condition and

applying elementary upper bounds, we arrive at the desired bound. For sim-

plicity, we omit timestep indices and set L := Lt(h).
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First, suppose
∑

φ∈Φ Ỹ
t
Φ 6= 0:

〈Y t
Φ,Ea∼L[ρΦ(a, r)]〉 =

∑

φ∈Φ

Y t
φ (〈r, [φ](L)〉 − 〈r, L〉)

= 〈r,
∑

φ∈Φ

Y t
φ ([φ]L− L)〉

= 〈r,
∑

φ∈Φ

(

Ỹ t
Φ − Ỹ t

Φ + Y t
φ

)

([φ](L)− L)〉

= 〈r,
(

∑

φ∈Φ

Ỹ t
Φ

)

(

M̃L− L
)

+
∑

φ∈Φ

(

Y t
φ − Ỹ t

φ

)

([φ](L)− L)〉

= 〈r,
∑

φ∈Φ

(

Y t
φ − Ỹ t

φ

)

([φ](L)− L)〉 (3.3)

≤ ‖r‖∞

∥

∥

∥

∥

∥

∑

φ∈Φ

(

Y t
φ − Ỹ t

φ

)

([φ](L)− L)

∥

∥

∥

∥

∥

1

≤ ‖r‖∞
∑

φ∈Φ

|Y t
φ − Ỹ t

Φ| (‖[φ](L)‖1 + ‖L‖1)

≤ ‖r‖∞
∑

φ∈Φ

|Y t
φ − Ỹ t

Φ|(1 + 1)

≤ 2U
∥

∥

∥
Y t
φ − Ỹ t

Φ

∥

∥

∥

1
.

If
∑

φ∈Φ Ỹ
t
Φ = 0 it is easy to see the inequality still holds.

Therefore, {Lt}∞t=1 satisfies the (Φ, f, ǫ)-Blackwell condition with ǫ ≤
2U
∥

∥

∥
Y t
φ − Ỹ t

Φ

∥

∥

∥

1
, as required to complete the argument.

In the special case that
∑

φ∈Φ Y
t
φ =

∑

φ∈Φ Ỹ
t
φ = c, for c > 0, a refinement

of theorem (2) can be made, removing the constant of two.

Corollary 1. Given reward system (A,R), a finite set of action transforma-

tions Φ ⊆ ΦALL, and link function f : R|Φ| → R
|Φ|
+ , if

∑

φ∈Φ Y
t
Φ =

∑

φ∈Φ Ỹ
t
Φ = c

for c > 0, then an approximate (Φ, f)-regret-matching algorithm, {Lt}∞t=1, sat-

isfies the (Φ, f, ǫ)-Blackwell Condition with ǫ ≤ U
∥

∥

∥
Y t
Φ − Ỹ t

Φ

∥

∥

∥

1
, where Y t

Φ :=

f(R̂t−1
Φ ), and Ỹ t

Φ := f(R̃t−1
Φ ).

Proof. If
∑

φ∈Φ Y
t
φ =

∑

φ∈Φ Ỹ
t
φ = c and L ∈ ∆(A), then

∑

φ∈Φ Y
t
φL =

∑

φ∈Φ Ỹ
t
ΦL =
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cL. Therefore, in line (3.3) of Theorem 2 we have

〈r,
∑

φ∈Φ

(Y t
φ − Ỹ t

φ)([φ](L)− L)〉 = 〈r,
∑

φ∈Φ

(Y t
φ − Ỹ t

φ)[φ](L)〉+ 〈r, cL− cL〉

= 〈r,
∑

φ∈Φ

(Y t
φ − Ỹ t

φ)([φ](L))〉.

Proceeding in the same steps as theorem (2) yields the result.

For a (Φ, f)-regret-matching algorithm, an approach to bound the expected

average Φ-regret is to use the (Φ, f)-Blackwell condition along with a bound on

E[G(R̂t
Φ)] for an appropriate function G [11, 23]. Bounding the regret for an

approximate (Φ, f)-regret-matching algorithm will be done similarly, except

the bound on ǫ from Theorem 2 will be used. Proceeding in this fashion yields

the following theorem:

Theorem 3. Given a real-valued reward system (A,R) a finite set Φ ⊆ ΦALL

of action transformations. If 〈G, g, γ〉 is a Gordon triple1, then an approximate

(Φ, g)-regret-matching algorithm {Lt}∞t=1 guarantees at all times t ≥ 0

E[G(R̂t
Φ)] ≤ G(0) + t sup

a∈A,r∈Π
γ(ρΦ(a, r)) + 2U

t
∑

s=1

E

[∥

∥

∥
g(R̂s−1

Φ )− g(R̃s−1
Φ )

∥

∥

∥

1

]

.

(3.4)

Proof. The proof is similar to [23, Corollary 7] except that the learning algo-

rithm is playing the approximate fixed point with respect to the link function g.

From Theorem 1 we have 〈g(R̂t−1
Φ (h)),Ea∼Lt(h)[ρΦ(a, r)]〉 ≤ 2U

∥

∥

∥
g(R̂t−1

Φ )− g(R̃t−1
Φ )

∥

∥

∥

1
.

Noticing that

Ea∼Lt(h)[ρΦ(a, r)] = E[ρΦ(a, r)|R̂t−1
Φ ]

and taking xt = ρΦ(a, r), X
t = R̂t

Φ we have

〈g(X t−1),E[xt|X t−1]〉+ E[γ(xt)|X t−1] ≤

2U
∥

∥

∥
g(R̂Φ)− g(R̃t−1

Φ )
∥

∥

∥

1
+ sup

a∈A,r∈Π
γ(ρΦ(a, r)).

The result directly follows from Theorem 12 by taking

C(τ) = 2U
∥

∥

∥
g(R̂τ−1

Φ )− g(R̃τ−1
Φ )

∥

∥

∥

1
+ sup

a∈A,r∈Π
γ(ρΦ(a, r)).

.
1A Gordon triple 〈G, g, γ〉 consists of three functions G : Rn → R, g : Rn → R

n, and
γ : Rn → R such that for all x, y ∈ R

n, G(x+ y) ≤ G(x) + g(x) · y + γ(y).
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Remark 1. If the function g in the approximation error term (3.4) satisfies

the condition of Corollary 1 then one attains a tighter bound by removing the

constant of two in C(τ).

3.2 Bounds for Specific Link Functions

In this section we give regret bounds for approximate (Φ, f)-regret-matching

algorithms when f is the polynomial and exponential link function.

Polynomial Link Function

Given the polynomial link function f(x)i = (x+i )
p−1 we consider two cases

2 < p < ∞ and 1 < p ≤ 2. For the following results it is useful to denote the

maximal activation µ(Φ) = maxa∈A|{φ ∈ Φ : φ(a) 6= δa}| [23].
For the case p > 2 we have the following bound on the expected average

Φ-regret:

Theorem 4. Given an ODP, a finite set of action transformations Φ ⊆ ΦALL,

and the polynomial link function f with p > 2, then an approximate (Φ, f)-

regret-matching algorithm guarantees

E

[

max
φ∈Φ

1

t
R̂t

Φ

]

≤

1

t

√

√

√

√t(p− 1)4U2(µ(Φ))2/p + 2U
t
∑

k=1

E

[
∥

∥

∥
g(R̂k−1

Φ )− g(R̃k−1
Φ )

∥

∥

∥

1

]

,

where g : R|Φ| → R
|Φ|
+ and g(x)i = 0 if xi ≤ 0, g(x)i =

2(xi)
p−1

‖x+‖p−2
p

otherwise.

Proof. The proof follows closely to [23, Theorem 9]. Taking G(x) = ‖x+‖2p
and γ(x) = (p−1) ‖x‖2p then 〈G, g, γ〉 is a Gordon triple [23]. Given the above

Gordon triple we have
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(

E

[

max
φ∈Φ

R̂t
Φ

])2

≤ E

[∥

∥

∥
(R̂t

Φ)
+
∥

∥

∥

]2

p
(3.5)

= E[G(R̂t
Φ)] (3.6)

≤ G(0) + t sup
a∈A,r∈Π

γ(ρΦ(a, r)) + 2U
t
∑

s=1

E

[∥

∥

∥
g(R̂s−1

Φ )− g(R̃s−1
Φ )

∥

∥

∥

1

]

(3.7)

≤ G(0) + t(p− 1)4U2(µ(Φ))2/p + 2U
t
∑

k=1

E

[∥

∥

∥
g(R̂k−1

Φ )− g(R̃k−1
Φ )

∥

∥

∥

1

]

(3.8)

The first inequality is from Lemma 1. The second inequality follows from

Corollary 9 and Theorem 3. The third inequality is an application of Lemma

2. The result then immediately follows.

Similarly for the case 1 < p ≤ 2 we have the following.

Theorem 5. Given an ODP, a finite set of action transformations Φ ⊆ ΦALL,

and the polynomial link function f with 1 < p ≤ 2, then an approximate (Φ, f)-

regret-matching algorithm guarantees

E

[

max
φ∈Φ

1

t
R̂t

Φ

]

≤ 1

t

(

t(2U)pµ(Φ) + 2U
t
∑

k=1

E

[∥

∥

∥
g(R̂k−1

Φ )− g(R̃k−1
Φ )

∥

∥

∥

1
]
]

)1/p

where g : R|Φ| → R
|Φ|
+ and g(x)i = p(x+i )

p−1.

Proof. The proof follows closely to [23, Theorem 11]. Taking G(x) = ‖x+‖pp
and γ(x) = (p−1) ‖x‖pp then 〈G, g, γ〉 is a Gordon triple [23]. Given the above

Gordon triple we have
(

E

[

max
φ∈Φ

R̂t
Φ

])p

≤ E

[
∥

∥

∥
(R̂t

Φ)
+
∥

∥

∥

]p

p
(3.9)

= E

[

G(R̂t
Φ)
]

(3.10)

≤ G(0) + t sup
a∈A,r∈Π

γ(ρΦ(a, r)) + 2U
t
∑

s=1

E

[
∥

∥

∥
g(R̂s−1

Φ )− g(R̃s−1
Φ )

∥

∥

∥

1

]

(3.11)

≤ G(0) + t(2U)p(µ(Φ)) + 2U
t
∑

k=1

E

[
∥

∥

∥
g(R̂k−1

Φ )− g(R̃k−1
Φ )

∥

∥

∥

1

]

(3.12)

The first inequality is from Lemma 1. The second inequality follows from

Corollary 9 and Theorem 3. The third inequality is an application of Lemma

2. The result then immediately follows.
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In comparison to the RRM Theorem [42], the above bound is tighter as

there is no
√

|A| term in front of the errors and the |A| term has been replaced

by2 |A|−1. These improvements are due to the tighter bound in Theorem 2 and

the original Φ-regret analysis [23], respectively. Aside from these differences,

the bounds coincide.

Exponential Link Function

Theorem 6. Given an ODP, a finite set of action transformations Φ ⊆ ΦALL,

and an exponential link function f(x)i = e
1

τ
xi with τ > 0, then an approximate

(Φ, f)- regret-matching algorithm guarantees

E

[

max
φ∈Φ

1

t
R̂t

Φ

]

≤ 1

t

(

τ ln|Φ|+ U
t
∑

k=1

E

[∥

∥

∥
g(R̂k−1

Φ )− g(R̃k−1
Φ )

∥

∥

∥

1

]

)

+
2U2

τ

where g : R|Φ| → R
|Φ|
+ and g(x)i = e

1

τ
xi/
∑

j e
1

τ
xj .

Proof. The proof follows closely to [23, Theorem 13]. TakingG(x) = τ ln
(

∑

i e
1

τ
xi

)

and γ(x) = 1
2τ

‖x‖2∞ then 〈G, g, γ〉 is a Gordon triple [23]. Given the above

Gordon triple we have

E

[

max
φ∈Φ

1

τ
R̂t

Φ

]

= E

[

ln e
max
φ∈Φ

1

τ
R̂t

Φ

]

(3.13)

= E

[

ln max
φ∈Φ

e
1

τ
R̂t

Φ

]

(3.14)

≤ E

[

ln
∑

φ∈Φ

e
1

τ
R̂t

Φ

]

(3.15)

=
1

τ
E[G(R̂t

Φ)] (3.16)

≤ 1

τ

(

G(0) + t sup
a∈A,r∈Π

γ(ρΦ(a, r)) + U

t
∑

s=1

E

[∥

∥

∥
g(R̂s−1

Φ )− g(R̃s−1
Φ )

∥

∥

∥

1

]

)

(3.17)

≤ 1

τ

(

G(0) + t
2U2

τ
+ U

t
∑

s=1

E

[∥

∥

∥
g(R̂s−1

Φ )− g(R̃s−1
Φ )

∥

∥

∥

1

]

)

(3.18)

The second inequality follows from Corollary 9, Theorem 3, and by Remark

1, since
∑

φ∈Φ Y
t
φ =

∑

φ∈Φ Ỹ
t
φ = 1. The result then immediately follows.

2For Φ = ΦEXT , µ(Φ) = |A| − 1.
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The Hedge algorithm corresponds to the exponential link function f(x)i =

e
1

τ
xi when Φ = ΦEXT , so Theorem 6 provides a bound on a regression Hedge

algorithm. Note that in this case, the approximation error term is not inside a

root function as it is under the polynomial link function. This seems to imply

that at the level of link outputs, polynomial link functions have a better depen-

dence on the approximation errors. However, g in the exponential link function

bound is normalized to the simplex while the polynomial link functions can

take on larger values. Which link function has a better dependence on the ap-

proximation errors depends on the magnitude of the cumulative regrets, which

depends on the environment and the algorithm’s empirical performance.

3.2.1 Lipschitz Conditions

The bounds for approximate regret-matching include an error term

t
∑

s=1

∥

∥

∥
g(R̂s−1

Φ )− g(R̃s−1
Φ )

∥

∥

∥

1
.

Given that the objective of a function approximator is typically to minimize

a loss of the form
∥

∥

∥
R̂t

Φ − R̃t
Φ

∥

∥

∥
, it is attractive to include this term directly in

the bound. If the function g is Lipschitz continuous then replacing the error

with an appropriate prediction error is possible.

Definition 6. A function f : Rd → R
m is Lipschitz continuous with constant

L and with respect to the norm ‖·‖, f ∈ F(L, ‖·‖), if

‖f(x)− f(y)‖∗ ≤ L ‖x− y‖ , ∀x, y ∈ R
d. (3.19)

Where ‖·‖∗ is the dual norm, ‖x‖∗ = sup{〈x, y〉| ‖y‖ ≤ 1}. Recall that the
norms ‖·‖p, ‖·‖q are dual to each other if 1

p
+ 1

q
= 1 [5].

Noticing that in most cases the function g in the error bound (3.4) is the

gradient mapping of some potential function G, allows for the application of

a well known result, giving a necessary and sufficient condition for Lipschitz

continuity for the function of interest g.

Theorem 7 (Theorem 2.1.5 [44]). If G is continuously differentiable then the

inclusion of ∇G ∈ F(L, ‖·‖) is equivalent to the following condition
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0 ≤ G(y)−G(x)− 〈∇G(x), y − x〉 ≤ L

2
‖x− y‖2 .

As a consequence we have the following results.

Corollary 2. Given an ODP, a finite set of action transformations Φ ⊆ ΦALL,

and the polynomial link function f with p ≥ 2, then an approximate (Φ, f)-

regret-matching algorithm guarantees

E

[

max
φ∈Φ

1

t
R̂t

Φ

]

≤

1

t

√

√

√

√t(p− 1)4U2(µ(Φ))2/p + 4|Φ| 1pU
t
∑

k=1

E

[

∥

∥

∥
R̂k−1

Φ − R̃k−1
Φ

∥

∥

∥

p

]

.

Proof. For p > 2, if G(x) = ‖x+‖2p, g is taken to be the same as in Theorem

4, and γ(x) = (p − 1) ‖x‖2p, then 〈G, g, γ〉 is a Gordon triple [23]. Therefore,

the following condition holds

∀x, y ∈ R
|Φ| G(y) ≤ G(x) + 〈g(x), y − x〉+ γ(y − x)

= G(x) + 〈g(x), y − x〉+ (p− 1) ‖y − x‖2p .

Greenwald, Li, and Marks [24] showed that g is indeed the gradient map-

ping of G, g = ∇G, and that G is continuously differentiable. G is convex,

then by Theorem 7, g ∈ F(2(p− 1), || · ||p). From Hölder’s inequality we have

‖x‖1 ≤ |Φ|
q−1

q ‖x‖q.3. Applying the Lipschitz condition and picking q such

that ‖·‖q is dual to ‖·‖p (q = p/p−1) yields the result.

For the case p = 2, take g : R|Φ| → R
|Φ|
+ and g(x)i = 2(x+i ). We then have

‖g(x)− g(y)‖1 = 2

|Φ|
∑

i=1

|x+i − y+i |

≤ 2

|Φ|
∑

i=1

|xi − yi| = 2 ‖x− y‖1

≤ 2
√

|Φ| ‖x− y‖2 .

Using the bound from Theorem 5 with p=2 and applying the above in-

equality gives the result.
3Apply Hölder’s inequality with the vector x and 1, the vector of all ones and the same

dimension as x.
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Corollary 3. Given an ODP, a finite set of action transformations Φ ⊆ ΦALL,

and an exponential link function f(x)i = e
1

τ
xi with τ > 0, then an approximate

(Φ, f)- regret-matching algorithm guarantees

E

[

max
φ∈Φ

1

t
R̂t

Φ

]

≤ 1

t

(

τ ln|Φ|+ U

τ

t
∑

k=1

E

[∥

∥

∥
R̂k−1

Φ − R̃k−1
Φ

∥

∥

∥

∞

]

)

+
2U2

τ
.

Proof. Taking G(x) = τ ln
(

∑

i e
1

τ
xi

)

, g(x)i = e
1

τ
xi/
∑

j e
1

τ
xj , and γ(x) =

1
2τ

‖x‖2∞, then 〈G, g, γ〉 is a Gordon triple [23]. Observing that G is convex and

differentiable [44], and that g = ∇G [24], then by the definition of a gordon

triple we have

∀x, y ∈ R
|Φ| G(y) ≤ G(x) + 〈g(x), y − x〉+ γ(y − x)

= G(x) + 〈g(x), y − x〉+ 1

2τ
‖y − x‖2∞ .

Therefore, by Theorem 7 g ∈ F(1/τ, ‖·‖∞). Using the well-known fact that the

norms ‖·‖1 and ‖·‖∞ are dual to each other yields the result.

The case of p < 2 is omitted and left for future-analysis. Leveraging the

Gordon triple used in Theorem 5 along with the techniques used by Nesterov

[44, Theorem 2.1.5], it may be possible to attain results similar to Corollary

2.

3.3 Approximate Regret-Matching+

In practice, the simple modification of regret-matching algorithms, entailing

“forgetting” negative values in the stored regret vector Rt
Φ, has proven to

be an important modification in the context of computing Nash equilibria in

large games; playing a major role in solving heads-up limit Texas Hold’em [4,

60], and achieving expert-level play in no limit Hold’em [41]. This modi-

fied algorithm is typically referred to as regret-matching+ (pronounced regret-

matching-plus), initially discovered by Tammelin [59], and later shown to be

no-regret by Tammelin, Burch, Johanson, and Bowling [60].

Regret-matching+ was designed for minimizing the regret objective (2.13)

with Φ = ΦEXT , and using the polynomial link function with p = 2. The
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algorithm removes the negative regret values by performing the update

Qt
Φ =

(

Qt−1
Φ + ρΦ(x

t, rt)
)+
, (3.20)

where Q0
Φ = 0, and with policy xt ∝ (Qt−1

Φ )+. We then have the following:

∀φ ∈ Φ ∀rt ∈ Π Qt−1
φ + ρφ(x

t, rt) ≤ Qt
φ.

Applying this inequality iteratively, we have Rt
Φ ≤ Qt

Φ where the inequality

is satisfied for each component of the vectors. Similarly, for regret defined

by the sampled actions we have R̂t
Φ ≤ Q̂t

Φ when Q̂t
Φ =

(

Q̂t−1
Φ + ρ̂Φ(a

t, rt)
)+

.

Consequently, the modified objectives

E

[

1

T
max
φ∈Φ

Q̂T
φ

]

, (3.21)

and

1

T
max
φ∈Φ

QT
φ , (3.22)

upper bound the objectives (2.13), (2.14), respectively. Regret bounds for

these new objectives therefore imply regret bounds for the original objetives.

Similarly to the previous sections, we present the results for objective (3.21).

Extensions to objective (3.22) are discussed in the next section.

Regret-matching+ was introduced with update rule (3.20) when Φ = ΦEXT

and p = 2, thus, analysis for different link functions, action transformations,

and regret objective (2.13), is to the best of our knowledge novel. Given

the results from Section 3.2, bounds for the objectives (3.21), and (3.22), are

readily attained for the polynomial link-function via a modified definition of a

Gordon triple for which the Gordon triples used in Theorems 4, and 5, satisfy.

First we need to consider a slightly modified version of the (Φ, f, ǫ)-Blackwell

condition, where the inner product of 〈f(R̂t−1
Φ (h)),Ea∼Lt(h)[ρΦ(a, r)]〉 is re-

placed with 〈f(Q̂t−1
Φ (h)),Ea∼Lt(h)[ρΦ(a, r)]〉. For the remainder of this section,

the (Φ, f, ǫ)-Blackwell condition will refer to this modified version using Q̂t−1
Φ

instead of R̂t−1
Φ . Furthermore, an algorithm that plays the fixed point using

Q̂t−1
Φ instead of R̂t−1

Φ , the policy xt is chosen such that xt = M̃t(x
t) where
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Y t
Φ := (Y t

φ)φ∈Φ := f(Q̂t−1
Φ ), will be referred to as an approximate (Φ, f)- regret-

matching+ algorithm.

Before stating the results we need a result similar to Theorem 3 for approx-

imate (Φ, f)- regret-matching+ algorithms. In addition, we need a different

definition than a Gordon triple, which we coin as a positive invariant Gordon

triple.

Definition 7. A positive invariant Gordon triple 〈G, g, γ〉 consists of three

functions G : Rn → R, g : Rn → R
n, and γ : Rn → R such that for all

x, y ∈ R
n, G((x+ y)+) ≤ G(x) + 〈g(x), y〉+ γ(y).

Equipped with this new definition, we can arrive at a result similar to

Theorem 3 for approximate (Φ, g)-regret-matching+ algorithms.

Theorem 8. Given a real-valued reward system (A,R) a finite set Φ ⊆ ΦALL

of action transformations. If 〈G, g, γ〉 is a positive invariant Gordon triple,

then an approximate (Φ, g)-regret-matching+ algorithm {Lt}∞t=1 guarantees at

all times t ≥ 0

E[G(Q̂t
Φ)] ≤ G(0) + t sup

a∈A,r∈Π
γ(ρΦ(a, r)) + 2U

t
∑

s=1

E

[∥

∥

∥
g(Q̂s−1

Φ )− g(Q̃s−1
Φ )

∥

∥

∥

1

]

.

(3.23)

Proof. The proof is similar to [23, Corollary 7] except that the learning algo-

rithm is playing the approximate fixed point with respect to the link function

g and using the values (Y t
φ)φ∈Φ = g(Q̃t−1

Φ ). Observe that Theorem 2 holds

when applying the link function g to the vectors Q̂t−1
Φ , and Q̃t−1

Φ , therefore, we

have g(Q̂t−1
Φ (h)) · Ea∼Lt(h)[ρ

Φ(a, r)] ≤ 2U
∥

∥

∥
g(Q̂t−1

Φ )− g(Q̃t−1
Φ )

∥

∥

∥

1
.

Noticing that

Ea∼Lt(h)[ρΦ(a, r)] = E[ρΦ(a, r)|Q̂t−1
Φ ]

and taking xt = ρΦ(a, r), X
t = Q̂t

Φ we have

〈g(X t−1),E[xt|X t−1]〉+ E[γ(xt)|X t−1] ≤

2U
∥

∥

∥
g(Q̂t−1

Φ )− g(Q̃t−1
Φ )

∥

∥

∥

1
+ sup

a∈A,r∈Π
γ(ρΦ(a, r)).
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Unlike Theorem 12 [23, Theorem 6], we let X t = (X t−1+xt)+. However, since

〈G, g, γ〉 is a positive invariant Gordon triple, we have

G(X t) = G((X t−1 + xt)+)

≤ G(X t−1) + 〈g(X t−1), xt〉+ γ(xt).

Following the same steps as Greenwald, Li, and Marks [23] and taking

C(τ) = 2U
∥

∥

∥
g(R̂τ−1

Φ )− g(R̃τ−1
Φ )

∥

∥

∥

1
+ sup

a∈A,r∈Π
γ(ρΦ(a, r)),

gives the desired result.

Theorem 9. Given an ODP, a finite set of action transformations Φ ⊆ ΦALL,

and the polynomial link function f with p > 2, then an approximate (Φ, f)-

regret-matching+ algorithm guarantees

E

[

max
φ∈Φ

1

t
Q̂t

Φ

]

≤

1

t

√

√

√

√t(p− 1)4U2(µ(Φ))2/p + 2U
t
∑

k=1

E

[∥

∥

∥
g(Q̂k−1

Φ )− g(Q̃k−1
Φ )

∥

∥

∥

1

]

,

where g : R|Φ| → R
|Φ|
+ and g(x)i = 0 if xi ≤ 0, g(x)i =

2(xi)
p−1

‖x+‖p−2
p

otherwise.

Proof. The proof follows closely to [23, Theorem 9]. Taking G(x) = ‖x+‖2p and
γ(x) = (p − 1) ‖x‖2p then 〈G, g, γ〉 is a Gordon triple [23]. In addition, since

G(x+) = G(x) we have that 〈G, g, γ〉 is a positive invariant Gordon triple.

(

E

[

max
φ∈Φ

Q̂t
Φ

])2

≤ E

[
∥

∥

∥
(Q̂t

Φ)
+
∥

∥

∥

]2

p
(3.24)

= E[G(Q̂t
Φ)] (3.25)

≤ G(0) + t sup
a∈A,r∈Π

γ(ρΦ(a, r)) + 2U
t
∑

s=1

E

[∥

∥

∥
g(Q̂s−1

Φ )− g(Q̃s−1
Φ )

∥

∥

∥

1

]

(3.26)

≤ G(0) + t(p− 1)4U2(µ(Φ))2/p + 2U
t
∑

k=1

E

[∥

∥

∥
g(Q̂k−1

Φ )− g(Q̃k−1
Φ )

∥

∥

∥

1

]

(3.27)

The first inequality is from Lemma 1. The second inequality follows from

Corollary 1 and Theorem 8. The third inequality is an application of Lemma

2. The result then immediately follows.
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Similarly for the case 1 < p ≤ 2 we have a similar result.

Theorem 10. Given an ODP, a finite set of action transformations Φ ⊆
ΦALL, and the polynomial link function f with 1 < p ≤ 2, then an approximate

(Φ, f)- regret-matching algorithm guarantees

E

[

max
φ∈Φ

1

t
Q̂t

Φ

]

≤ 1

t

(

t(2U)pµ(Φ) + 2U
t
∑

k=1

E

[∥

∥

∥
g(Q̂k−1

Φ )− g(Q̃k−1
Φ )

∥

∥

∥

1

]

)1/p

where g : R|Φ| → R
|Φ|
+ and g(x)i = p(x+i )

p−1.

Proof. The proof follows closely to [23, Theorem 11]. Taking G(x) = ‖x+‖pp
and γ(x) = (p−1) ‖x‖pp then 〈G, g, γ〉 is a Gordon triple [23]. In addition, since

G(x+) = G(x) we have that 〈G, g, γ〉 is a positive invariant Gordon triple.

(

E

[

max
φ∈Φ

Q̂t
Φ

])p

≤ E

[
∥

∥

∥
(Q̂t

Φ)
+
∥

∥

∥

]p

p
(3.28)

= E

[

G(Q̂t
Φ)
]

(3.29)

≤ G(0) + t sup
a∈A,r∈Π

γ(ρΦ(a, r)) + 2U
t
∑

s=1

E

[
∥

∥

∥
g(Q̂s−1

Φ )− g(Q̃s−1
Φ )

∥

∥

∥

1

]

(3.30)

≤ G(0) + t(2U)p(µ(Φ)) + 2U
t
∑

k=1

E

[
∥

∥

∥
g(Q̂k−1

Φ )− g(Q̃k−1
Φ )

∥

∥

∥

1

]

(3.31)

The first inequality is from Lemma 1. The second inequality follows from

Corollary 1 and Theorem 8. The third inequality is an application of Lemma

2. The result then immediately follows.

Similar to Section 3.2.1 we may use the Lipschitz continuity of the function

g to replace the errors to be of the form
∥

∥

∥
Q̂t

Φ −Qt
Φ

∥

∥

∥

1
(when p ≥ 2). Analysis

of the exponential link function is left as future work. Despite no current

regret bound, experiments in later sections imply that approximate (Φ, f)-

regret-matching+ algorithm with an exponential link function may posses a

useful regret bounds.

3.3.1 Related Work

An analysis of combining regression with regret-matching+ was first done by

Morrill [42]. In particular, a bound similar to Theorem 10 was derived for
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1
T
max
φ∈Φ

QT
φ . The approach involved the analysis of the Gordon triple in Theorem

5, however, G(Qt
Φ + q) was considered, with q = Qt+1

Φ − Qt
Φ instead of q =

ρΦ(x, r). Unfortunately, in an attempt to bound the inner product 〈g(Qt
Φ), q〉,

which would provide an alternative proof to Theorem 9 (when p = 2,Φ =

ΦEXT ), not all cases of q were considered in the proof, rendering the proof

incomplete [42, Theorem 3.0.10].4

Generalizing regret-matching+ to Φ-regret is novel, however, this extension

is not surprising by noticing that when p = 2, the algorithms presented thus far

are closely related to Blackewell’s algorithm in his approachability theorem [3].

Therefore, a recent alternative proof by Kroer [33] for regret-matching+ via

Blackwell approachability can easily be extended to the Φ-regret case.5

3.4 Interchanging Expectation and Max

Extending the previous results to the objective 1
T
max
φ∈Φ

RT
φ can be done by mod-

ifying the algorithms to use the expected regrets RT
Φ in the fixed point cal-

culation, Mt(x) = x, instead of the random values R̂T
Φ [23]. To consider the

non-sampling case, first observe that we bound the expected regret (2.13)

for a given algorithm by bounding the evolution of a potential function G.

Equipped with an upper bound on E[G(R̂T
Φ)], we can achieve an appropriate

bound on the regret. When considering the non-sampling case the same trick

applies, once we know a bound on G(RT
Φ) we can achieve a regret bound on

1
T
max
φ∈Φ

RT
φ . More specifically, for a given algorithm we will consider a specific

Gordon triple 〈G, g, γ〉. We then have

G(RT
Φ) = G(RT−1

Φ +ρΦ(x
T , r)) ≤ G(RT−1

Φ )+〈g(RT−1
Φ ), ρΦ(x

T , r)〉+γ(ρΦ(xT , r)).

To achieve a favorable growth rate on G we would like the linear inner product

term to be small. Therefore, it is reasonable to redefine the (Φ, f, ǫ)-Blackwell

condition to be

〈f(RT−1
Φ ), ρΦ(x

T , r)〉 ≤ ǫ.

4Thanks to discussions with Dustin Morrill, a counterexample to Theorem 3.0.10 by
Morrill [42] can be found.

5As mentioned in the lecture note by Kroer [33], it should be noted that this new alter-
native proof was developed in conjunction with Gabriele Farina.
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This modified condition amounts to the same condition as presented by Cesa-

Bianchi and Lugosi when ǫ = 0 [11]. Following similar steps as Theorem 2

and Greenwald, Li, and Marks [23], it can be shown that an approximate

(Φ, f)-regret matching algorithm using expected values satisfies

〈f(R̃T−1
Φ ), ρΦ(x

T , r)〉 = 0.

Therefore,

〈f(RT−1
Φ ), ρΦ(x

T , r)〉 = 〈f(RT−1
Φ )− f(R̃T−1

Φ ), ρΦ(x
T , r)〉+ 〈f(R̃T−1

Φ ), ρΦ(x
T , r)〉

≤
∥

∥ρΦ(x
T , r)

∥

∥

∞

∥

∥

∥
f(RT−1

Φ )− f(R̃T−1
Φ )

∥

∥

∥

1

≤ 2U
∥

∥

∥
f(RT−1

Φ )− f(R̃T−1
Φ )

∥

∥

∥

1
.

Immediately, we can recover a new version of Theorem 3. Consequently, all the

results follow with similar steps, ultimately providing bounds with Rt
Φ in place

of R̂t
Φ, and E

[
∥

∥

∥
R̂t

Φ − R̃t
Φ

∥

∥

∥

1

]

replaced with
∥

∥

∥
Rt

Φ − R̃t
Φ

∥

∥

∥

1
. Moreover, we can

apply a similar reasoning to extend the bounds for all the approximate (Φ, f)-

regret matching+ algorithms presented in Section 3.3 to the non-sampling case

given a positive invariant Gordon triple.

3.5 Future Work

This chapter has discussed extensions of previous work by Waugh, Morrill,

Bagnell, and Bowling and Morrill, considering approximation in the more

general Φ-regret setting introduced by [23]. The extensions presented herein

pose two interesting fundamental questions. First, Section 3.3 extends all the

previous results to approximate (Φ, f)-regret-matching+ for the case f(x) =

(x+)p−1, p > 1, this gives a new set of algorithms for the purpose of minimizing

internal regret and therefore computing a correlated equilibrium in a normal

form game [11]. Given the large success of regret-matching+ (Φ = ΦEXT , p =

2), it would be interesting to know if this experimental success carries over to

the internal regret case and for p 6= 2. Second, with the unattractive |A|3 time

complexity of the fixed point computation for internal regret, can we mod-

ify the (Φ, f)-regret-matching+ algorithm in a way similar to Greenwald, Li,
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and Schudy [25] to improve computational efficiency and maintain empirical

performance?
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Chapter 4

Approximate Regret-Matching

in Extensive-Form Games

In this chapter we discuss regret minimization with function approximation in

extensive-from games, for the purpose of computing an ǫ-Nash equilibrium in

a two-player zero-sum game. Recall that a Nash equilibrium in this context

consists of a policy that is not exploitable, and will guarantee a minimal re-

ward regardless of how the other player plays. Extensive-from games model

sequential decision making in stochastic environments with multiple agents

and imperfect information. This includes for example a finite partially ob-

servable Markov decision process (POMDP) when conditioning on the entire

history of actions and observations.

4.1 Background

Here we define a two-player zero-sum extensive-form game1 as well as three-

important formulations, the normal form, behavioral form, and the sequence

form.

Informally, an extensive-from game is a turn based game modelled as a

tree. Nodes are states and branches are actions; at each node in the tree one

player selects a branch to transition to the next state. Stochastic transitions

are represented by a chance “player,” c. The leaves of the tree are the terminal

1We limit our setup to two-player zero-sum games. The regret guarantee applies more
generally with N-players, however, the connection between regret and a Nash equilibrium
(Theorem 1) is lost.
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states of the game, where rewards are then distributed to each player.

Formally, a zero-sum extensive-form game (EFG) is a tuple

(H,A, A, p, xc,S, r1) .

The collection of nodes is the set of histories H. Each node h ∈ H is equiva-

lently represented as a history of actions, the sequence of actions taken (includ-

ing chance) to traverse the tree and arrive at node h. The actions available

to all players in the game, including chance outcomes, is given by the set

A. For convenience, we define the action function A : H → A, where A(h)

gives the set of actions available at each history h. The player to act at each

non-terminal history is determined by p : H \ Z → {1, 2, c}, where terminal

histories are those with no valid actions, Z := {h|h ∈ H, A(h) = ∅}. xc is a

fixed stochastic policy assigned to the chance player that determines the like-

lihood of random outcomes, like those from die rolls or draws from a shuffled

deck of cards.

Imperfect information is modelled by a partition S of the histories belong-

ing to all players except chance. When a player acts at a history they may not

be able to observe all the previous actions by the other players. For example,

in poker a player cannot observe the cards dealt to the other players, an ac-

tion made by chance at the beginning of the game. A collection of histories

that are indistinguishable to a player form an information state s ∈ S. We

further denote the collection of information states belonging to player i as Si.

An information state s ∈ Si is a subset of the histories belonging to player

i, s ⊆ {h : h ∈ H, p(h) = i}. We must have A(h) = A(h′) if h, h′ ∈ s ∈ S,
otherwise the player can distinguish histories in the same information state.

We can therefore denote the actions at s as A(s). Additionally, we assume

perfect recall so that for all histories in an information state, the sequence of

information states admitted by the preceding histories must be identical. The

reward or utility function for player 1 is r1 : Z → R, the game is zero-sum

because player 2’s utility function is set to r2 := −r1.
Recall that in our definition of a Nash equilibrium (Definition 2), we require

a two-argument function f along with a set of policies X for the row player
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and Y for the column player. The corresponding Nash equilibrium for an

extensive-form game will be a saddle point with respected to a function f that

gives the expected reward for the first player (row-player). However, we must

define the set of policies for each player. How these sets are constructed will

have a large impact on the performance of algorithms at both a theoretical

and empirical level. Below we introduce three different representations of a

policy in an extensive-form game.

Normal Form

The most classical formulation of an action and a policy for a player is that

of the normal form.2 Where agents’ actions are specified at a macro level,

an action a for player i prescribes an action at each state si ∈ Si. The set

of actions for player i is then the cartesian product Ãi = Π
s∈Si

A(s), policies

or the set of mixed strategies is simply the simplex ∆(Ãi). Finding a Nash

equilibrium can then be written as a bilinear saddle point problem

min
x∈∆(Ã1)

max
y∈∆(Ã2)

〈x,By〉,

where B ∈ R
|Ã1|×|Ã2| is a matrix with entry Bij as the expected reward for

the row player under chance when the row and column player play actions

i ∈ Ã1 and j ∈ Ã2 (i.e., a deterministic policy), respectively. We can use

online learning and self-play to compute an ǫ-Nash equilibrium, however, this

problem is exponential in the number of states. The number of rows or columns

in B is on the order of |A||Si|.

Behavioral Form

A more convenient representation of a policy is the behavioral form. In the

behavioral form, player i’s policy or behavioral strategy, xi ∈ Σi defines

a probability distribution over valid actions at each of i’s information states.

Given a policy xi we denote the probability of selecting action a in information

state s as xi(s, a). Sometimes we will refer to the policy at state s, xi(s) =

(xi(s, a))a∈A ∈ ∆(A(s)). A joint policy or strategy profile is an assignment

2The normal form is also referred to as the strategic form in the literature.
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of policies for each player, x := (x1, x2). We also make use of the notation x−i

to index the strategies of all players except for i and chance in the profile x.

Unlike the strategic form, a policy randomizes over actions at each information

state independently. In the case of games with perfect recall, the strategic and

behavioral form are equivalent, for each behavioral policy can be represented

by an equivalent policy in the strategic form and vice-versa [35].3

Given that we will mostly deal with the behavioural form, extra notation is

needed for computing the expected rewards and distribution over histories for

a given profile x. We use ηx(z) to denote the probability of reaching terminal

history z ∈ Z under profile x from the beginning of the game and ηx(h, z) the

same except starting from history h ∈ H. We subscript η by the player to

denote that player’s contribution to these probabilities ηx(z) = ηxi (z)η
x
−i(z) =

ηx1 (z)η
x
2 (z)η

x
c (z). Since chance’s contribution, ηxc (z), does not depend on the

profile x, we may simply write ηc(z). The expected value to player i under

profile x is ri(x) = ri(x1, x2) =
∑

z∈Z η
x(z)ri(z).

The Nash equilibrium in the behavioral form can then be expressed as a

solution (x̄1, x̄2) to the following saddle point problem

∀(x1, x2) ∈ Σ1 × Σ2 r1(x1, x̄2) ≤ r1(x̄1, x̄2) ≤ r1(x̄1, x2). (4.1)

A best response for player i to another player’s strategy, x−i, is a policy

that achieves the maximum reward against x−i, r
∗
i (x−i) = maxxi∈Σi

ri ((xi, x−i)).

Recall that a profile, x, is an ε-Nash equilibrium if neither player can unilat-

erally deviate from their assigned policy and gain more than ε (see Definition

3). Will make use of the alternative metric, exploitability of x (see inequality

2.3), the average of the best response values (r∗1(x−1) + r∗2(x−2))/2.

Sequence Form

Despite the convenient representation of the behavioral form, the expected

reward r1 is not concave in the policy of the row player nor is it convex in

3Two policies are equivalent if they induce the same distribution over outcomes. Inter-
estingly, in general the two forms are not comparable. There are games where behavioral
strategies are more expressive and conversely there exists games where the the strategic
form is more expressive.
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the policy of the column player; as one must multiply probabilities of selecting

actions along the terminal history z to compute ηx(z). Therefore we cannot

directly apply Theorem 1. Fortunately, we can consider the sequence form

representation, with the same size the behavioral form (on the order of |Si||A|),
and recover a bilinear saddle point for the Nash equilibrium [32, 62].

A sequence form policy x̂i ∈ Σ̂i for player i is a vector indexed by infor-

mation state and action pairs, also referred to as sequences, (s, a), s ∈ Si, a ∈
A(s), including the empty sequence ∅. x̂i(s, a) is the probability that player i

plays the sequence of actions to reach s and then play a at s.4

To recover a valid behavioral policy we must impose some restrictions on

the vector x̂i. First, it is useful to refer to the unique parent pair par(s) ∈
Si ×A associated with s, where par(s) is the previous information state and

action visited and taken by player i before reaching s. If there are no previous

actions before s then par(s) = ∅. ∅ refers to the empty sequence at the root

of the game. The set of sequence form policies Σ̂i for player i is then defined

with the following constraints:

x̂i ≥ 0

x̂i(∅) = 1

x̂i(par(s)) =
∑

a∈A(s)

x̂i(s, a) ∀s ∈ Si.

The first condition ensures there are no negative entries in the vector. The last

condition can be interpreted as a flow of probability, the probability flowing

into a state must equal the probability flowing out through the actions available

at the state. The last two conditions can also be written as a solution to a

linear system Ex̂i = e, see Nisan, Roughgarden, Tardos, and Vazirani [45] for

details. For a sequence form policy x̂i, we can recover an equivalent behavioral

form xi, where xi(s, a) ∝ x̂i(s, a).

An equivalent representation of the sequence form, and perhaps more intu-

itive is that of a treeplex [30, 34]. The treeplex representation can be thought

of as a tree of simplicies. For a given player there is a scaled simplex ∆̃(s) at

4Due to perfect recall we have that the sequence of actions played by player i leading to
s ∈ Si is well-defined. There cannot be two distinct sequences of actions leading to s.
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each s ∈ Si, where ∆̃(s) = x̂i(par(s))∆(A(s)). Notice here that a choice in the

scaled simplex entails picking how to randomize over actions at A(s). Indeed,

the treeplex view can be thought of as a top-down perspective for building the

sequence form policy x̂i using the associated behavioral form policy xi.

To form a bilinear saddle point problem we need a payoff matrix B̂

that will preserve the normal form and behavioral form Nash equlibria. To

this end, we define the set of reachable terminal histories for the sequences,

(s, a) and (s′, a′), for player 1 and 2 respectively as Z((s, a), (s′, a′)) ⊆ Z.

Z((s, a), (s′, a′)) = ∅ when the state and action pairs, which uniquely defines

a sequence of actions for each player, cannot end in a terminal history when

played against one another.5 The payoff matrix B̂ ∈ R
dim(Σ̂1)×dim(Σ̂2) is then

given by the following entries B̂(s,a),(s′,a′) =
∑

z∈Z((s,a),(s′,a′)) ηc(z)r1(z). Note

that B̂ is sparse, as per convention, we set B̂(s,a),(s′,a′) = 0 if Z((s, a), (s′, a′)) =

∅.

The Nash equilibrium can then be computed in the sequence form by find-

ing a solution (x̂1, x̂2) to the following saddle point problem

∀(x1, x2) ∈ Σ̂1 × Σ̂2 〈x1, B̂x̂2〉 ≤ 〈x̂1, B̂x̂2〉 ≤ 〈x̂1, B̂x2〉. (4.2)

The solution (x̂1, x̂2) will correspond to a solution of (4.1) for the corresponding

equivalent behavioral policies. With the saddle point in the sequence form we

can now apply no-regret online learning to compute and ǫ−Nash equilibrium

using the self-play setup of Theorem 1.

4.2 Counterfactual Regret Minimization

The sequence form allows one to compactly pose a Nash equilibrium as a

bilinear saddle point problem (4.2). However, the sequence form is not as

convenient as the behavioral form. Fortunately, counterfactual regret mini-

mization (CFR) [69] allows for bounding the sequence form regret RT
Σ̂i
, by the

regret over multiple ODPs, one at each information state. Effectively, allow-

5Note that it is possible for both players to specify a sequence of actions that can lead
to a terminal history but yet are not compatible with each other.
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ing one to only deal with behavioral policies and yet minimize regret over the

sequence form.

Recall that an ODP requires a set of actions and a set of linear reward

functions (see Section 2.2 for details). As in Theorem 1, we construct specific

reward functions using the policies picked by both players. At the information

state s ∈ Si, we define the ODP at s with actions A(s). For the policy profile x

selected, we define the reward for a ∈ A(s) at at s as the counterfactual value

of playing a, vxi (s, a). The counterfactual value of a is the expected value of

playing a assuming that player i plays to reach s and both players play out

the rest of the game using x. Formally,

vxi (s, a) =
∑

h∈s,z∈Z

ηxi (ha, z)η
x
−i(z)ri(z),

where ha ∈ H is the history that results from taking action a at history h,

and ηxi (h, z) = 0 whenever z is unreachable from ha.6

Accordingly, the regret, also referred to as instantaneous regret, within the

ODP at s ∈ Si for not committing to a ∈ A(s) is

ρxi (s, a) = vxi (s, a)−
∑

a′∈A(s)

xi(s, a
′)vxi (s, a

′). (4.3)

The associated instantaneous regret vector is then denoted as ρxi (s) =

(ρxi (s, a))a∈A(s). We denote the cumulative counterfactual regret for action

a and information state s as RT
i (s, a) =

∑T
t=1 ρ

xt

i (s, a), where xt := (xt1, x
t
2) is

the profile at time t. The regret vector at s is then RT
i (s) = (RT

i (s, a))a∈A(s).

Remark 2. For convenience we have introduced new notation for the instan-

taneous regret at state s (4.3), however, this is none other than the expected

instantaneous φ-regret, ρφ(x, r)(2.12), where x is the behavioral policy at state

s, φ ∈ ΦEXT , and the reward function is rt(·) = vx
t

i (s, ·).

Zinkevich et al . [69] showed how the external regret over the se-

quence form RT
Σ̂i

is upper bounded by the external regrets over each state

6Note that if x
−i does not allow for player i to reach s then the counterfactual value is

0 for all actions a ∈ A(s).
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maxa∈A(s)R
T
i (s, a).

7

Theorem 11 (CFR). For both players, i ∈ {1, 2}, the regret of i’s policies

constructed from their ODP learners after T iterations of CFR

RT
Σ̂i

≤
∑

s∈Si

(

max
a∈A(s)

RT
i (s, a)

)+

.

Furthermore, the behavioral policy constructed from the average sequence form

policy, x̄ := (x̄1, x̄2), is an
(

RT

Σ̂1
+RT

Σ̂2

)

/T-Nash equilibrium, where

x̄i(s, a) ∝
T
∑

t=1

∑

h∈s,a∈A(h)

ηx
t

i (h)xti(s, a).

See Farina et al . [17] for the sketch of an alternative proof using the regret

circuits framework that is perhaps more intuitive than the proof in the original

work.8

With Theorem 11 and Remark 2, we can compute a ǫ-Nash equilibrium

with any of the approximate regret-matching algorithms from Chapter 3, using

the polynomial or exponential link function, and their plus variants.

4.3 f-RCFR

Games that humans are interested in playing, or those that model problems of

practical importance, typically have an immense number of information states

or actions. But such games often contain structure that can be recovered by

endowing information state-action pairs (sequences) with a feature repre-

sentation, ϕ : S × A → R
d, d > 0. A function approximator, y : Rd → R,

could then make use of shared properties between sequences to allow more effi-

cient learning. RCFR [65] uses a function approximator to predict cumulative

7The regret bound shown by Zinkevich, Johanson, Bowling, and Piccione is quite loose,
see for example Farina, Kroer, and Sandholm [15] for a tighter bound. Furthermore, the
concept of counterfactual regret applies more generally to sequential decision processes (not
just extensive-from games), and with possible additional convex losses/concave rewards at
the decision nodes [15].

8The alternative proof given by Farina, Kroer, and Sandholm provides new insights on
the generality of a CFR like approach to online optimization. In fact, it is shown that CFR
is a specific instance of regret decomposition. Regret decomposition applies more generally,
it is applicable when the decision set X can be constructed by simple convex preserving
operations.
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counterfactual regrets at each information state and generates policies with a

normalized ReLU transformation.

Thanks to our new analysis of approximate regret matching, we now know

that any link function that admits a no-ΦEXT-regret regret matching algorithm

also has an approximate version. Rather than restricting ourselves to the

polynomial link function with parameter p = 2, we can consider alternate

parameter choices or alternative link functions, like the exponential function.

So instead of a normalized ReLU policy, we employ a policy generated by

the external regret fixed point of link function f : R|A| → R
|A|
+ with respect

to approximate regrets predicted by a functional regret estimator, R̃(s) =

(y (ϕ(s, a)))a∈A(s) , for all s ∈ S. More formally, the f -RCFR policy for player i

given functional regret estimator R̃ is x(s) ∝ f(R̃(s)) when R̃(s) ∈ R
|A(s)|
+ \{0}

and arbitrarily otherwise, for all s ∈ Si. Since the input to any link function

in an approximate regret matching algorithm is simply an estimate of the

counterfactual regret, we can reuse all of the techniques previously developed

for RCFR-like methods to train regret estimators [6, 39, 42, 57, 65].

Using Theorem 3 and the CFR Theorem 11, we can derive an improved

regret bound with the polynomial link and a new bound with the exponential

link.

Corollary 4 (polynomial (p > 2)). Given the polynomial link function f

with p > 2, let xti(s) ∝ f(R̃t−1
i (s)) be the policy that f -RCFR assigns to

player i at iteration t in information state s ∈ Si and denote the cumulative

approximation error in s as ǫi(s) =
∑T

t=1

∥

∥

∥
g(Rt−1

i (s))− g
(

R̃t−1
i (s)

)∥

∥

∥

1
, where

g : R|A(s)| → R
|A(s)|
+ and g(x)i = 0 if xi ≤ 0, g(x)i =

2(xi)
p−1

‖x+‖p−2
p

otherwise. Then

after T -iterations, f -RCFR guarantees, for both players, i ∈ {1, 2},

RT
Σ̂i

≤
∑

s∈Si

√

T (p− 1)4U2(|A(s)| − 1)2/p + 2Uǫi(s).

Noticing that |A(s)| ≤ |A| and letting ǫ∗i = maxs∈Si
ǫi(s), we have

RT
Σ̂i

≤ |Si|
√

T (p− 1)4U2(|A| − 1)2/p + 2Uǫ∗i .

Proof. This result follows directly from Theorem 11 and Remark 2. The coun-

terfactual regret, RT
i (s), at each information state corresponds to ΦEXT regret
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for an online ODP with µ(ΦEXT ) = |A(s)| − 1. Therefore, playing an approx-

imate (ΦEXT , f)-regret matching algorithm at each state with a polynomial

link function with p > 2 results in the regret bound presented in Theorem

4 for each state specific ODP. Although Theorem 4 is stated with respect to

random regrets and counterfactual regret is an expected regret, the analysis

of Greenwald et al . [23, Corollary 18] allows us to trivially extend our bounds

from Section 3.2 to this case (see Section 3.4 for more details). The result then

follows trivially from Theorem 11.

The proofs for the polynomial link with p ≤ 2 and the exponential link are

very similar and omitted for brevity.

Corollary 5 (polynomial (1 < p ≤ 2)). Given the polynomial link function

f with p ≤ 2, let xti(s) ∝ f(R̃t−1
i (s)) be the policy that f -RCFR assigns to

player i at iteration t in information state s ∈ Si and denote the cumulative

approximation error in s as ǫi(s) =
∑T

t=1

∥

∥

∥
g(Rt−1

i (s))− g
(

R̃t−1
i (s)

)
∥

∥

∥

1
, where

g : R
N → R

N
+ , and g(x)i = p(x+i )

p−1. Then after T -iterations, f -RCFR

guarantees, for both players, i ∈ {1, 2},

RT
Σ̂i

≤
∑

s∈Si

(T (2U)p(|A(s)| − 1) + 2Uǫi(s))
1/p .

Noticing that |A(s)| ≤ |A| and letting ǫ∗i = maxs∈Si
ǫi(s), we have

RT
Σ̂i

≤ |Si| (T (2U)p(|A| − 1) + 2Uǫ∗i )
1/p .

The above theorem provides a tighter bound for RCFR (p = 2) than what

exists in the literature. The improvement is a direct consequence of the tighter

bound for RRM presented in Theorem 5 in Section 3.2. Given the application

of the RRM Theorem by Brown et al . [6], and the recent stochastic regret

minimization results from Farina, Kroer, and Sandholm [18], our results should

lead to a tighter bound when a function approximator learns from sampled

counterfactual regret targets.

Corollary 6 (exponential). Given the exponential link function f with τ > 0,

let xti ∝ f(R̃t−1
i (s)) be the policy that f -RCFR assigns to player i at it-

eration t and denote the cumulative approximation error in s as ǫi(s) =
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∑T
t=1

∥

∥

∥
g(Rt−1

i (s))− g
(

R̃t−1
i (s)

)∥

∥

∥

1
, where g : R

N → R
N
+ , and g(x)i =

e
1

τ
xi/
∑

j e
1

τ
xj . Then after T -iterations, f -RCFR guarantees, for both players,

i ∈ {1, 2},

RT
Σ̂i

≤
∑

s∈Si

(

τ ln|A(s)|+ 2Uǫi(s) +
T2U2

τ

)

.

Noticing that |A(s)| ≤ |A| and letting ǫ∗i = maxs∈Si
ǫi(s), we have

RT
Σ̂i

≤
(

τ ln|A|+ 2Uǫ∗i +
T2U2

τ

)

.

Furthermore, the profile of average sequence weight policies, x̄t, is an (ε1,t +

ε2,t)-Nash equilibrium.

This bound shares the same advantage with respect to the action set size

dependence over the polynomial RCFR bounds as the bound of Theorem 6

has over the bounds of Theorems 4 and 5.

With the exponential link function, f -RCFR is approximately Hedge ap-

plied to each information state with function approximation. To make a con-

nection with the field of reinforcement learning, we can compare f -RCFR with

two recently developed algorithms that also generalize Hedge to sequential de-

cision problems and utilize function approximation: Politex [1] and neural

replicator dynamics (NeuRD) [46].

In contrast to f -RCFR, Politex trains models to predict cumulative ac-

tion values. An action value is proportional to a counterfactual value where

the constant depends on the policies of the other players and chance [56, 69].

If Politex instead trains on counterfactual regrets, then we arrive at an

f -RCFR instance with a softmax parameterization and a regret estimator up-

dated in a two-step process: construct an instantaneous regret estimator and

combine it with the previous estimator to predict cumulative regrets. In fact,

our implementation of f -RCFR for the experiments that follow uses the same

two-step update procedure.

Instead of training a model of instantaneous regrets, NeuRD performs a

gradient descent step on the squared loss between the current policy logits

and a target constructed by adding the logits to the instantaneous regret after
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each iteration. We can see this as a “bootstrap” regret target, as described by

Morrill [42], where the policy logits are approximate. NeuRD is therefore an

instance of f -RCFR with a softmax parameterization and a regret estimator

trained on bootstrap regret targets.

4.4 f-RCFR+

Given our extension to (Φ, f)-regret-matching+ (Theorems 10 and 9), we can

derive bounds for an f -RCFR+ algorithm. f -RCFR+ is the same as f -RCFR

except uses an approximate (Φ, f)-regret-matching+ algorithm at each state,

xti(s) ∝ f(Q̃t−1
i (s)). Where Q̃t

i(s) is an approximation of Qt
i(s), the regret

vector attained with the following update rule

Qt
i(s) = (Qt−1

i (s) + ρx
t

i (s))+,

Qt
i(s) is sometimes referred to as the “Q-regret” vector at state s. Recalling

the upper bound RT
i (s) ≤ QT

i (s) and following similar reasoning to Corollary

4 we attain the following results.

Corollary 7. Given the polynomial link function f with p > 2, let xti(s) ∝
f(Q̃t−1

i (s)) be the policy that f -RCFR assigns to player i at iteration t in

information state s ∈ Si and denote the cumulative approximation error in

s as ǫi(s) =
∑T

t=1

∥

∥

∥
g(Qt−1(s))− g

(

Q̃t−1
i (s)

)∥

∥

∥

1
, where g : R|A(s)| → R

|A(s)|
+

and g(x)i = 0 if xi ≤ 0, g(x)i =
2(xi)

p−1

‖x+‖p−2
p

otherwise. Then after T -iterations,

f -RCFR guarantees, for both players, i ∈ {1, 2},

RT
Σ̂i

≤
∑

s∈Si

√

T (p− 1)4U2(|A(s)| − 1)2/p + 2Uǫi(s).

Noticing that |A(s)| ≤ |A| and letting ǫ∗i = maxs∈Si
ǫi(s), we have

RT
Σ̂i

≤ |Si|
√

T (p− 1)4U2(|A| − 1)2/p + 2Uǫ∗i .

Corollary 8. Given the polynomial link function f with 1 < p ≤ 2, let xti(s) ∝
f(Q̃t−1

i (s)) be the policy that f -RCFR assigns to player i at iteration t in

information state s ∈ Si and denote the cumulative approximation error in s as

44



ǫi(s) =
∑T

t=1

∥

∥

∥
g(Qt−1

i (s))− g
(

Q̃t−1
i (s)

)∥

∥

∥

1
, where g : RN → R

N
+ , and g(x)i =

p(x+i )
p−1. Then after T -iterations, f -RCFR guarantees, for both players, i ∈

{1, 2},

RT
Σ̂i

≤
∑

s∈Si

(T (2U)p(|A(s)| − 1) + 2Uǫi(s))
1/p .

Noticing that |A(s)| ≤ |A| and letting ǫ∗i = maxs∈Si
ǫi(s), we have

RT
Σ̂i

≤ |Si| (T (2U)p(|A| − 1) + 2Uǫ∗i )
1/p .

We close the chapter with a few remarks. First, the Corollaries 7 and 8, are

very similar to Corollaries 4 and 5, except for the the function approximation

error. One is measured with respect to Rt
i(s) while the other is with respect to

Qt
i(s). Second, using the results from Section 3.2.1, we can replace the error

terms in the bounds with terms such as
∥

∥

∥
Rt

i(s)− R̃t
i(s)
∥

∥

∥
or
∥

∥

∥
Qt

i(s)− Q̃t
i(s)
∥

∥

∥
.

Third, f -RCFR+ with a polynomial link function with p = 2, corresponds to

Morrill’s RCFR+ algorithm [42].
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Chapter 5

Experiments

To examine the impact of the link function, choices for their parameters, and

the interaction between link function and function approximation, we test

f -RCFR in two games commonly used as research testbeds, Leduc hold’em

poker [55] and imperfect information goofspiel [36] with linear function approx-

imation. We then compare f -RCFR with f -RCFR+ using the same hyper-

parameters, with the only difference being the regret targets approximated by

the function approximator, as explained in Section 4.4.

5.1 Algorithm Implementation

Our regret estimators are independent linear function approximators for each

player, i ∈ {1, 2}, and action a ∈ ⋃s∈Si
A(s). Our features are built on tug-of-

war hashing features [2].

We randomly partition the information states that share the same action

into m-buckets and repeat this n-times to generate n-sparse indicator features

of length m. The sign of each feature is randomly flipped to -1 independently

to reduce bias introduced by collisions. The expected sign associated with all

other information states that share a non-zero entry in their feature vector is,

by design, zero. We use the number of partitions, n, to control the severity of

approximation in our experiments.

We do ridge regression on counterfactual regret targets to train our regret

estimators. After the first iteration, we simply add this new vector of weights

to our previous weights. Since the counterfactual regrets are computed for
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5.2 Games

In Leduc hold’em poker [55], the deck consists of 6 cards, two suits each with

3 ranks (e.g ., king, queen, and ace), and played with two players. At the start

of the game each player antes 1 chip and receives one private card. Betting is

restricted to two rounds with a maximum of two raises each round, and bets

are limited to 2 and 4 chips. Before the second round of betting a public card

is revealed from the deck. Provided no one folds, the player with a private

card matching the public card wins, if no players match, the winnings go to

the player with the private card of highest rank. This game has 936 states.

Goofspiel is played with two players and a deck with three suits. Each

suit consists of N cards of different rank. Two of the suits form the hands

of the players. The third is used as a deck of point cards. At each round a

card is revealed from the point deck and players simultaneously bid by playing

a card from their hand. The player with the highest bid (i.e. highest rank)

receives points equal to the rank of the revealed card. The player with the

most points when the point deck runs out is the winner and receives a utility

of +1. The loser receives a utility of -1. We use an imperfect information

variant of goofspiel where the bidding cards are not revealed [36]. We use two

variants of goofspiel: one with a shuffled point deck and four ranks that we

call “random goofspiel” and a second with a sorted point deck in decreasing

order but five ranks that we call “goofspiel”. Goofspiel is roughly twice as

large as Leduc hold’em at 2124-information states, while random goofspiel is

larger still at 3608-information states. Our experiments use the OpenSpiel [38]

implementations of these games.

Convergence to a Nash equilibrium in each game is measured by the ex-

ploitability of the average strategy profile after each iteration. Exploitability

in Leduc hold’em is measured in milli-big blinds. Exploitability in goofspiel

and random goofspiel is measured in milli-utils.
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5.3 Parameters

From Theorems 1 and 11, any network of external regret minimizers (one at

each information state) can be combined to produce an average strategy pro-

file with bounded exploitability. Therefore, the bounds presented in Sections

3.2 and 3.3, provide an exploitability bound for f -RCFR and f -RCFR+, for

different link functions f , and when estimates of counterfactual regrets are

used at each information state in place of true values (Corollaries 4, 5, 6, 9,

and 10).

Most notably, the appearance of function approximator error within the

regret bounds in Sections 3.2 and 3.3 appear in different forms depending on

the link function f . For the polynomial link function, the bounds vary with

the p parameter and similarly the exponential link with the τ parameter. We

tested the polynomial link function with p ∈ {1.1, 1.5, 2, 2.5, 3} to test values

around the common choice (p = 2). The exponential link function was tested

with τ ∈ {0.01, 0.05, 0.1, 0.5, 1} in Leduc hold’em and random goofspiel, and

τ ∈ {0.1, 0.5, 1, 5, 10} in goofspiel.

To examine the relationships between a link function, link function spe-

cific parameters, and function approximator error, we examine the empirical

exploitability of f -RCFR with different levels of approximation. The degree

of approximation is adjusted via the quality of features. In particular, we vary

the number of partitions, n. Increasing n increases discriminative power and

reduces approximation error (Figure 5.1).

The number of buckets in each partition is fixed at m = 10. If the number

of information states that share an action is not evenly divisible by ten, a

subset of the buckets are assigned one more information state than the others.

Thus, adding a partition adds ten features. Only one feature per partition is

non-zero for any given information set, so the prediction cost grows linearly

with the number of partitions. The ridge regression update cost however,

grows quadratically with the total number of features.
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5.4 Results and Analysis

Figure 5.2 shows the average exploitability of the best link function and hyper-

parameter configuration during learning (top) and after 100k-iterations (bot-

tom). The best parameterization was selected according to the average final

exploitability after 100K-iterations over 5-runs. Notice that the exploitability

of the average strategy profile decreases as the number of partitions increases,

as predicted by the f -RCFR exploitability bounds given the decrease in the

prediction error associated with increasing the number of partitions (Figure

5.1).1

With 30 and 40-partitions in Leduc hold’em, and 60 and 90 in random

goofspiel, the best instance with an exponential link function outperforms all

of those with polynomial link functions, including RCFR (polynomial link with

p = 2) (Figure 5.3, top and bottom). These feature parameters correspond to

a moderate amount of function approximation error. In addition, this perfor-

mance difference was observed across all configurations of the exponential and

polynomial link in Leduc hold’em. i.e., all of the instances with the exponen-

tial link function plateau to a final average exploitability lower than that of

all those with polynomial link functions.

The exponential link function does not outperform the polynomial link

function in goofspiel or when the number of partitions is large, however (Fig-

ure 5.3, center and Figure 5.2, bottom). Thus, the relative performance of

different link functions is dependent on the game and the degree of function

approximation error.

Among the different choices of p for the polynomial link function, p = 2

(RCFR) performs well with respect to the other polynomial instances across

all partition numbers and in all three games (Figure 5.2 (bottom)). It is

outperformed only by p = 1.1 and p = 1.5 in random goofspiel with many

partitions, n = 90 and n = 120 respectively.

1We include statistical significance tests for Figures 5.2, 5.4, and 5.5 in the appendix
(Section A.3).
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5.4.1 f-RCFR+

Similar to our f -RCFR experiments we test the f -RCFR+ algorithm with

the same link function and hyper-parameters on the games Leduc, goofspiel,

and random goofspiel. To highlight the performance difference between f -

RCFR+ and f -RCFR, in Figures 5.4 and 5.5, for each link function we show

the exploitability of all the f -RCFR+ instances (dotted lines) with varying

partition sizes, along with their f -RCFR counterparts (solid lines). For the

polynomial link function (Figure 5.4), all instances of f -RCFR+ outperform

their f -RCFR counterparts, except when p = 1.1. Interestingly, none of the f -

RCFR+ instances plateau except for in the game of Leduc with large function

approximation error (20 partitions). This suggests a more efficient use of the

function approximator; indeed, in Figure 5.6 (right) the funtion approxima-

tion error accumulated by all the f -RCFR+ instances with a polynomial link

function is much lower than all of the f -RCFR ones. This observation corrob-

orates Morrill’s experimental results, where using function approximation, in

particular regression trees, to learn Q regret vectors with the polynomial link

function with p = 2 leads to lower function approximation error and superior

performance across different games [42]. In addition to the larger approxima-

tion error, a disadvantage for f -RCFR with the polynomial link function is

the irrelevance of negative values in the regret vectors R(s); a policy is invari-

ant to negative values, therefore there is no need to accurately predict them.

In a sense f -RCFR+ is also wasting capacity by learning targets of value 0,

however, no capacity of the function approximator is spent on distinguishing

between the bad actions for which the regret is 0.

Despite the much lower approximation error for f -RCFR+, it is likely not

the major contributor to the observed performance gain. CFR with regret-

matching+ at each state, i.e., f -RCFR+ with p = 2 and zero function approx-

imation error, is known to converge an order of magnitude faster than CFR in

practice [10, 42, 59].2 The performance gain of f -RCFR+ is therefore likely

2Tabular f -RCFR+ with p = 2 is CFR with regret-matching+ at each information
set and is similar to CFR+ [59]. In the current literature CFR+ refers to a collection of
modifications in addition to using regret-matching+, including linear weighting of iterates
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due to the acceleration properties of regret-matching+.3

Unlike the polynomial link function, there is no regret bound when using

the exponential link function with Q-regrets. However, Figure 5.5 suggests

some convergence properties might exist given the decrease in exploitability

across all the partitions and games. In some games the exploitability is seen

to increase after some iterations, this is expected and is observed even in f -

RCFR with an exponential link function if the temperature τ is not properly

tuned. Similar to the polynomial link function, we observe lower function

approximation error with Q-regret targets and the exponential link function

(Figure 5.6, left). However, unlike the polynomial link, the performance gain

of f -RCFR+ with the exponential link depends on the function approximation

error. With any degree of function approximation error f -RCFR+ outperforms

f -RCFR (first three columns of Figure 5.5). When the function approximation

error is negligible then both algorithms perform comparably (last column of

Figure 5.5).

5.4.2 External Sampling

The main focus thus far has been scaling regret minimization in extensive

form games by combining function approximation with CFR. For very large

games, function approximation is not enough, computing the counterfactual

value vxi (s, a) requires a traversal of the whole subtree below state s. A more

scalable approach is to approximate the counterfactual values via sampling.

The Monte-Carlo counterfactual regret minimization algorithm (MCCFR) [36,

37], constructs unbiased estimates of the counterfactual values vxi (s, a) and

instantaneous regrets ρxi (s, a) by sampling a block of terminal histories Q ⊂ Z.

For a given sampled block Q, the sum in computing the counterfactual value

vxi (s, a) (Equation 4.2) is modified to be a sum over terminal histories that are

in the sampled block. Ultimately, the algorithm only updates states that can

reach a terminal history in the sampled block.

and alternating updates. f -RCFR+ is closest to Morrill’s RCFR+ without bootstrapping.
3Understanding the acceleration of regret-matching+ is still an open problem, however,

recently it has been shown that there exists a game where convergence is slower than
O(1/T ) [16]; thus, it cannot be an optimistic method [48, 58].
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Chapter 6

Conclusion

In this thesis, we generalize existing regret bounds with function approxima-

tion, allowing for different link functions, including the polynomial and ex-

ponential link functions, and regret metrics, including external and internal

regret. Furthermore, we provide regret bounds for a new class of algorithms

– approximate (Φ, f)-regret-matching+, a generalization regret-matching+.

The generalization to different link functions and the new class of algorithms

allows us to construct regret bounds for a general f -RCFR algorithm and

f -RCFR+ algorithm, respectively. The f -RCFR algorithm can approximate

Nash equilibria in zero-sum games with imperfect information using alternative

functional policy parameterizations beyond the previously studied normalized

ReLU parameterization.

We then examine the performance of f -RCFR and f -RCFR+, with the

polynomial and exponential link functions under different hyper-parameter

choices, and different levels of function approximation error in Leduc hold’em

poker and imperfect information goofspiel. In most cases, f -RCFR+ outper-

forms f -RCFR except with the polynomial link function and p = 1.1. In all

cases the f -RCFR+ algorithm provides easier targets to learn than f -RCFR,

permitting much lower function approximation error and faster convergence to

an approximate Nash equilibrium. Within the family of f -RCFR algorithms,

the polynomial link function and p = 2 often achieves an exploitability compet-

itive with or lower than other choices, but the exponential link function can

outperform all polynomial parameters when the functional regret estimator
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has a moderate degree of approximation.

This work focuses primarily on the benefits of alternatives to the ReLU

policy parameterization. However, extending the RRM Theorem to a more

general class of regret metrics that includes internal regret also suggests fu-

ture directions, particularly the approximation of correlated equilibria [11] or

extensive-form correlated equilibria [63] with function approximation.

NeuRD [46] and Politex [1] demonstrate that benefits can be gained by

adapting a regret-minimizing method to the function approximation case in

RL settings. These algorithms are also particular ways of implementing ap-

proximate Hedge, utilizing softmax policies. Since ReLU policies outperform

softmax policies in some cases, it would be worthwhile to investigate their

performance in RL applications, and if the their f -RCFR+ alternatives.

Finally, it would be interesting to test whether using Q-regrets improves

performance beyond computing Nash equilibria in zero-sum games, such as in

computing correlated equilibria N -player general-sum games, or single agent

control problems.
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Appendix A

Appendix

A.1 Existing Results

Below we recall results from Greenwald et al . [23] and include the detailed

proofs omitted in the main body of the paper.

Lemma 1. If x is a random vector that takes values in R
n, then (E[maxixi])

q ≤
E[‖x+‖qp] for p, q ≥ 1.

See [Lemma 21][23].

Lemma 2. Given a reward system (A,R) and a finite set of action transfor-

mations Φ ⊆ ΦALL, then
∥

∥ρΦ(a, r)
∥

∥

p
≤ 2U(µ(Φ))1/p for any reward function

r ∈ Π.

The proof is indentical to [Lemma 22][23] except we have that regrets are

bounded in [−2U, 2U ] instead of [−1, 1]. Also note that by assumption R is

bounded.

Theorem 12 (Gordon 2005). Assume 〈G, g, γ〉 is a Gordon triple and C :

N → R. Let X0 ∈ R
n, let x1, x2, ... be a sequence of random vectors over R

n,

and define Xt = Xt−1 + xt for all times t ≥ 1.

If for all times t ≥ 1,

〈g(Xt−1),E[xt|Xt−1]〉+ E[γ(xt)|Xt−1] ≤ C(t) a.s.

then, for all times t ≥ 0,

E[G(Xt)] ≤ G(X0) +
t
∑

τ=1

E[C(τ)].
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It should be noted that the above theorem was originally proved by Gordon

[22].

A.2 Proofs

An important observation of Theorem 2 is the following corollary:

Corollary 9. For a reward system (A,R), finite set of action transformations

Φ ⊆ ΦALL, and two link functions f and f ′, if there exists a strictly positive

function ψ : R|Φ| → R such that f ′(x) = ψ(x)f(x) then for any ǫ ∈ R, an

approximate (Φ, f)-regret-matching algorithm satisfies

〈f ′(RΦ
t−1(h)),Ea∼Lt(h)[ρ

Φ(a, r)]〉 ≤ 2U
∥

∥

∥
f ′(RΦ

t−1)− f ′(R̃Φ
t−1)

∥

∥

∥

1
.

Proof. The reasoning is similar to [Lemma 20][23]. The played fixed point is

the same under both link functions, thus following the same steps to Theorem

1 provides the above bound.

A.3 Statistical Significance Tests

Below we include statistical signifance tests for Figures 5.2, 5.4, and 5.5. The

following tables use Welch’s two-sided t-test [67], also known as the “unequal

variances t-test.” The test seeks to test whether samples from two populations

have a different mean. It is assumed that both populations are sampled from a

Normal distribution, though the unknown variances of both populations may

differ. Given two sets of samples {X1i}i≤N1
, and {X2i}i≤N2

, with true means

µ1 and µ2 respectively, the test statistic is given by

t =
X̄1 − X̄2
√

s2
1

N1
+

s2
2

N2

,

where X̄i denotes the sample mean for population i and s2i the unbiased sample

variance, s2i =
∑Ni

j=1
(Xij−X̄i)

2

Ni−1
. Under the null hypothesis (µ1 = µ2) the test

statistic follows the Student’s t-distribution with mean zero and approximately
(

s2
1

N1
+

s2
2

N2

)2

s4
1

N3
1
−N1

+
s4
2

N3
2
−N2

(A.1)
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degrees of freedom.

In the tables that follow, both the sampled t statistic according to equation

A.1, as well as the p-value for the two-sided test are reported. A p-value less

than 0.05 means the observed value of the t statistic lies within the critical

region and we may reject the null-hypothesis at a 5% level of significance. For

the case when the p-value is larger than 0.05 we highlight the cells in bold; in

these cases we cannot reject the null hypothesis.

A.3.1 Figure 5.2

For the following three tables (Tables A.1, A.2, A.3), each row (population 1)

is tested against each column (population 2) for significance in the difference

in the mean. The data in Tables A.1, A.2, A.3, are from the top of Figure 5.2,

where for each game and number partitions we consider the the average final

exploitability over 5 independent runs.

The tables show there is sufficient evidence to reject the null hypothesis

for all pairs of number of partitions in each game. As the number of partitions

increases the average exploitability decreases.

Figure 5.2 (top Leduc)
Partitions 20 30 40 50

t p-value t p-value t p-value t p-value
10 7.562 8.16× 10−5 20.54 1.32× 10−5 24.20 1.19× 10−5 28.03 9.64× 10−6

20 — 13.50 5.90× 10−5 17.90 3.53× 10−5 22.59 2.27× 10−5

30 — — 11.56 1.27× 10−5 28.03 9.64× 10−6

40 — — — 23.88 1.82× 10−5

Table A.1: Statistical tests for top of Figure 5.2 in Leduc.

Figure 5.2 (top goofspiel)
Partitions 40 50 60

t p-value t p-value t p-value
20 8.31 7.80× 10−4 10.91 1.33× 10−4 14.84 1.20× 10−4

40 — 7.63 1.38× 10−4 29.79 7.55× 10−6

50 — — 10.16 5.38× 10−4

Table A.2: Statistical tests for top of Figure 5.2 in goofspiel.
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Figure 5.2 (top random goofspiel)
Partitions 60 90 120

t p-value t p-value t p-value
30 17.27 1.93× 10−7 40.84 3.40× 10−10 69.81 2.52× 10−7

60 — 17.17 6.59× 10−7 35.00 3.98× 10−6

90 — — 22.20 2.44× 10−5

Table A.3: Statistical tests for top of Figure 5.2 in random goofspiel.

The following three tables (Tables A.4, A.5, A.6), test for a significant dif-

ference in the mean for the data used in the bottom of Figure 5.2. For each

game and each number of partitions, we compare the average final exploitabil-

ity over five independent runs for the best polynomial f -RCFR (population 1)

and best exponential f -RCFR (population 2) instances.

The performance of the best exponential link function and best polynomial

link function differ with statistical significance for: 30, 40, and 50 paritions in

Leduc; 60 paritions in goofspiel; 60, and 120 partitions in random goofspiel.

Figure 5.2 (bottom Leduc)
Partitions t p-value

10 2.243 0.0554
20 -1.37 0.217
30 -6.933 2.58× 10−4

40 -8.88 2.23× 10−5

50 56.53 6.75× 10−8

Table A.4: Statistical tests for bottom of Figure 5.2 in Leduc.
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Figure 5.2 (bottom goofspiel)
Partitions t p-value

20 0.432 0.540
40 1.666 0.158
50 0.02555 0.980
60 13.86 6.42× 10−6

Table A.5: Statistical tests for bottom of Figure 5.2 in goofspiel.

Figure 5.2 (bottom random goofspiel)
Partitions t p-value

30 0.6197 0.555
60 -5.454 9.10× 10−4

90 -1.658 0.137
120 55.28 2.035× 10−11

Table A.6: Statistical tests for bottom of Figure 5.2 in random goofspiel.

A.3.2 Figure 5.4

The following three tables (Tables A.7, A.8, A.9), test for statistical signif-

icance in Figure 5.4. The tables compare each f -RCFR instance with the

polynomial link function against their respective f -RCFR+ counterpart with

the same link function and link function parameters. For each game, number

of partitions, and choice of the link function parameter p, the final average

exploitability is compared between f -RCFR (population 1) and f -RCFR+

(population 2) over 5 independent runs.

Figure 5.4 (Leduc)
Partitions p = 1.1 p = 1.5 p = 2 p = 2.5 p = 3

t p-value t p-value t p-value t p-value t p-value
20 5.033 2.94× 10−3 28.65 4.34× 10−7 23.07 1.30× 10−6 16.33 2.30× 10−5 18.04 7.41× 10−6

30 −0.662 0.527 25.93 1.30× 10−5 25.16 1.48× 10−5 23.98 1.79× 10−5 26.47 1.20× 10−5

40 17.15 4.81× 10−6 26.04 1.29× 10−5 23.0 2.12× 10−5 27.52 1.04× 10−5 23.96 1.80× 10−5

50 −19.15 4.38× 10−7 30.46 5.85× 10−8 31.72 3.04× 10−6 44.85 1.11× 10−6 47.15 7.79× 10−7

Table A.7: Statistical tests for Figure 5.4 in Leduc.
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Figure 5.4 (goofspiel)
Partitions p = 1.1 p = 1.5 p = 2 p = 2.5 p = 3

t p-value t p-value t p-value t p-value t p-value
20 5.07 3.65× 10−3 16.96 7.04× 10−5 15.83 9.32× 10−5 19.62 3.97× 10−5 12.85 2.11× 10−4

40 −2.34 0.0529 68.31 2.75× 10−7 35.50 3.76× 10−6 37.50 3.02× 10−6 43.25 1.71× 10−6

50 −8.073 5.31× 10−4 12.54 2.33× 10−4 11.22 3.60× 10−4 12.53 2.33× 10−4 14.91 1.18× 10−4

60 −51.10 8.60× 10−7 23.29 2.00× 10−5 8.426 1.08× 10−3 15.23 1.04× 10−4 6.842 2.39× 10−3

Table A.8: Statistical tests for Figure 5.4 in goofspiel.

Figure 5.4 (random goofspiel)
Partitions p = 1.1 p = 1.5 p = 2 p = 2.5 p = 3

t p-value t p-value t p-value t p-value t p-value
30 6.33 1.50× 10−3 129.70 1.035× 10−12 76.69 2.69× 10−8 57.69 2.76× 10−7 63.63 1.25× 10−7

60 8.006 5.00× 10−4 62.74 3.86× 10−7 232.19 2.06× 10−9 169.80 7.21× 10−9 99.55 6.10× 10−8

90 4.879 1.46× 10−3 21.82 2.61× 10−5 28.55 8.95× 10−6 38.65 2.68× 10−6 29.04 8.37× 10−6

120 −14.98 1.16× 10−4 15.28 1.06× 10−4 11.47 4.48× 10−5 18.47 4.48× 10−5 12.45 4.62× 10−6

Table A.9: Statistical tests for Figure 5.4 in random goofspiel.

A.3.3 Figure 5.5

The following three tables (Tables A.10, A.11, A.12), test for statistical sig-

nificance in Figure 5.4. The tables compare each f -RCFR instance with the

exponential link function against their respective f -RCFR+ counterpart with

the same link function and link function parameter. For each game, number

of partitions, and choice of the link function parameter τ , the final average

exploitability is compared between f -RCFR (population 1) and f -RCFR+

(population 2) over 5 independent runs.

Figure 5.5 (Leduc)
Partitions τ = 0.01 τ = 0.05 τ = 0.1 τ = 0.5 τ = 1

t p-value t p-value t p-value t p-value t p-value
20 17.24 2.36× 10−7 33.20 3.07× 10−8 18.60 2.06× 10−5 18.82 2.60× 10−5 17.38 5.15× 10−5

30 8.78 2.49× 10−5 26.66 2.34× 10−6 19.99 4.47× 10−5 26.77 1.02× 10−5 31.94 4.04× 10−6

40 5.12 1.43× 10−3 29.18 7.82× 10−7 22.41 2.30× 10−5 22.57 2.27× 10−5 18.62 4.81× 10−5

50 −84.79 3.64× 10−12 167.63 7.23× 10−9 46.60 1.27× 10−6 −242.9 1.72× 10−9 −1170 3.20× 10−12

Table A.10: Statistical tests for Figure 5.5 in Leduc.

Figure 5.5 (goofspiel)
Partitions τ = 0.1 τ = 0.5 τ = 1 τ = 10 τ = 5

t p-value t p-value t p-value t p-value t p-value
20 7.884 1.23× 10−3 8.83 8.70× 10−4 14.87 1.08× 10−4 10.95 3.93× 10−4 29.56 7.60× 10−6

40 14.88 9.64× 10−5 8.885 7.75× 10−4 10.90 3.12× 10−4 11.29 3.51× 10−4 13.03 2.00× 10−4

50 5.84 3.85× 10−3 6.944 2.15× 10−3 10.63 2.42× 10−4 11.40 3.37× 10−4 9.784 6.10× 10−4

60 −24.03 9.88× 10−6 −42.58 2.94× 10−9 −3.188 0.0312 −229.7 2.14× 10−9 −58.34 2.76× 10−9

Table A.11: Statistical tests for Figure 5.5 in goofspiel.
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Figure 5.5 (random goofspiel)
Partitions τ = 0.01 τ = 0.05 τ = 0.1 τ = 0.5 τ = 1

t p-value t p-value t p-value t p-value t p-value
30 15.02 6.01× 10−7 47.87 3.05× 10−10 34.57 2.43× 10−6 61.51 1.46× 10−10 32.35 3.47× 10−7

60 13.30 2.27× 10−6 18.95 2.51× 10−6 29.07 6.50× 10−6 54.27 6.85× 10−7 22.65 2.24× 10−5

90 5.526 7.06× 10−4 13.07 1.03× 10−5 20.85 1.03× 10−5 26.86 1.14× 10−5 27.49 1.04× 10−5

120 −47.67 5.13× 10−7 −100.6 7.12× 10−13 −23.09 1.33× 10−8 −257.2 5.83× 10−11 −374.2 2.72× 10−10

Table A.12: Statistical tests for Figure 5.5 in random goofspiel.
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