More Reliable Protein NMR Peak Assignment via Improved
2-Interval Scheduling

Zhi-Zhong Chen *  Tao Jiang T Guohui Lin ¥  Romeo Rizzi ¥  Jianjun Wen ¥
Dong Xu | Ying Xu **

Abstract

Protein NMR peak assignment refers to the process of assigning a group of “spin systems”
obtained experimentally to a protein sequence of amino acids. The automation of this process
is still an unsolved and challenging problem in NMR protein structure determination. Recently,
protein NMR peak assignment has been formulated as an interval scheduling problem, where
a protein sequence P of amino acids is viewed as a discrete time interval Z (the amino acids
on P one-to-one correspond to the time units of ), each subset S of spin systems that are
known to originate from consecutive amino acids from P is viewed as a “job” jg, the preference
of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of
executing job jg in the subinterval of Z corresponding to P, and the goal is to maximize the total
profit of executing the jobs (on a single machine) during Z. The interval scheduling problem is
Max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job
Js usually requires at most 10 consecutive time units, and typically the jobs that require one
or two consecutive time units are the most difficult to assign/schedule. In order to solve these
most difficult assignments, we present an efficient %—approximation algorithm for the special
case of the interval scheduling problem where each job takes one or two consecutive time units.
Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e. jobs that
need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR
peak assignment. Our experimental study shows that the new heuristic produces the best peak
assignment in most of the cases, compared with the NMR peak assignment algorithms in the
recent literature. The above algorithm is also the first approximation algorithm for a nontrivial
case of the well-known interval scheduling problem that breaks the ratio 2 barrier.

Keywords: structural genomics, computational biology, protein NMR peak assignment, approxi-
mation algorithm, interval scheduling, constrained bipartite matching.

*Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Part of
work done while visiting at University of Alberta. Email: chen@r.dendai.ac.jp.

fSupported in part by NSF Grants CCR-~9988353 and ITR-0085910, and National Key Project for Basic Research
(973). Department of Compute Science, University of California, Riverside, CA 92521, and Shanghai Center for
Bioinformation Technology. Email: jiang@cs.ucr.edu.

fSupported in part by NSERC grants RGPIN249633 and A008599, PENCE, and Startup Grant REE-P5-01-02-Sci
from the University of Alberta. Department of Computing Science, University of Alberta, Edmonton, Alberta T6G
2E8, Canada. Email: ghlin@cs.ualberta.ca.

$Dipartimento di Informatica e Telecomunicazioni, Universita di Trento, Italy Email: romeo@science.unitn.it

TDepartment of Computer Science, University of California, Riverside, CA 92521. Email: wjianju@cs.ucr.edu.

ISupported by the Office of Biological and Environmental Research, U.S. Department of Energy, under Contract
DE-AC05-000R22725, managed by UT-Battelle, LLC. Protein Informatics Group, Life Sciences Division, Oak Ridge
National Laboratory, Oak Ridge, TN 37831-6480, USA. Email: xud@ornl.gov.

**Supported by the Office of Biological and Environmental Research, U.S. Department of Energy, under Contract
DE-AC05-000R22725, managed by UT-Battelle, LLC. Protein Informatics Group, Life Sciences Division and Com-
puter Sciences and Mathematics Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831-6480, USA. Email:
xyn@ornl.gov.



1 Introduction

Due to the efforts of structural genomics [7], the NMR (nuclear magnetic resonance) technique has
been used as a high-throughput technology to solve protein structures at a genome scale. Typically,
protein structure determination via NMR involves the following steps:

e NMR spectral data generation, which produces

— resonance peaks corresponding to amino acids in the target protein sequence. Peaks
corresponding to a common amino acid are grouped into a spin system;

— certain geometric relationships (e.g. distances and angles) between the spin systems;

e Peak picking, which identifies “real” resonance peaks (peaks generated from protein atoms
rather than noise) from NMR spectral maps.

e Peak assignment, which assigns resonance peaks, typically peak groups, to individual residues
of the target protein sequence.

e Structural restraint extraction, which extracts inter-residue distances, dihedral angles, etc.,
based on the peak assignment.

e Structure calculation, which calculates the protein structure, using molecular simulation and
energy minimization, under the identified NMR restraints.

Among the five steps, the third one (namely, NMR peak assignment) is very time consuming. The
process usually takes weeks or sometimes even months of manual work in order to produce a nearly
complete assignment. The automation of the assignment process is still an unsolved and challenging
problem in NMR protein structure determination.

Two key pieces of information form the foundation of NMR peak assignment:

e The likelihood (or weight) of the matching between a spin system and an amino acid on the
protein sequence.

e The sequential adjacency (i.e., consecutivity) information of some subsets of spin systems
(i.e., each such subset of spin systems should correspond to a subsequence of consecutive
amino acids on the host protein sequence). Each maximal such subset is called a segment
of spin systems. It is worth noting that each segment usually consists of at most 10 spin
Systems.

In a recently developed computational framework [8], the NMR peak assignment problem has been
formulated as an interval scheduling problem ! as follows. A protein sequence P of amino acids
is viewed as a discrete time interval Z (the amino acids on P one-to-one correspond to the time
units of 7). Each segment S of spin systems is viewed as a job jg. Each job jg requires |S]|
consecutive time units of Z (this corresponds to the requirement that the spin systems in S should
be assigned to |S| consecutive amino acids on P). For each time unit ¢ of Z, the profit w(jg,t) of
starting executing job jg at time unit ¢ and finishing at time unit ¢ + |S| — 1 of Z corresponds to
the preference of assigning the spin systems in S to those |S| consecutive amino acids on P that
correspond to the time units ¢,t+1,...,t+|S|—1. Given Z, the jobs jg, and the profits w(jg, t), our
goal is to maximize the total profit of the executed jobs (i.e. we want to find a maximum-likelihood
assignment of the given spin systems to the amino acids on P).

Unfortunately, the interval scheduling problem is Max SNP-hard [3, 4]. Indeed, for every integer
k > 2, the special case of the interval scheduling problem (called the k-interval scheduling problem
or k-ISP for short) where each job requires at most k consecutive time units is Max SNP-hard.
On the other hand, several 2-approximation algorithms for the interval scheduling problem are
known [2, 1, 3, 4]. Although these algorithms are theoretically sound, applying them to protein
NMR peak assignment produces unsatisfactory assignments as demonstrated in [3]. A major reason
why these algorithms do not have good performance in protein NMR, peak assignment is that they
ignore the following important observation:

n [8], it was called the constrained bipartite matching problem.



e In the real practice of protein NMR peak assignment, long segments S of spin systems are
typically easier to assign than shorter segments. In fact, many long segments have unique
matches. On the other hand, segments consisting of one or two spin systems are often very
difficult to assign.

The above observation suggests the following heuristic framework for protein NMR peak assign-
ment: first try to assign segments consisting of at least k + 1 spin systems for some small integer
k (say, k = 2), and then solve an instance of k-ISP. In [6], we have presented such a heuristic and
have shown that it is very effective for protein NMR peak assignment. A major drawback of the
heuristic in [6] is that it uses an inefficient branch-and-bound algorithm for k-ISP.

In order to improve the efficiency of the heuristic in [6], we present a new approximation
algorithm for 2-ISP in this paper. This algorithm achieves an approximation ratio of % and is the
first approximation algorithm for a nontrivial case of the interval scheduling problem that breaks
the ratio 2 barrier. Our algorithm is quite nontrivial — it consists of four separate algorithms
and outputs the best solution returned by them. The main tool used in the algorithm design is
maximum-weight bipartite matching and careful manipulation of the input instance. Substituting
the new algorithm for the branch-and-bound algorithm in the heuristic in [6], we obtain a new
heuristic for protein NMR peak assignment. We have performed extensive experiments on 70
instances of (pseudo) real NMR data derived from 14 proteins to evaluate the performance of our
new heuristic in terms of (i) the weight of the assignment and (ii) the number of correctly assigned
resonance peaks. The experimental results show that not only does the new heuristic run very fast,
it also produces the best peak assignment on most of the instances, compared with the protein
NMR peak assignment algorithms in the recent literature £3 4, 6, 8]

The rest of the paper is organized as follows. The ——approxunatlon algorithm for 2-ISP is
presented in Section 2. In Section 3, we consider an 1nterest1ng special profit function in interval
scheduling, and present a (1.5 + €)-approximation algorithm for 2-ISP under this special profit
function for any € > 0. This improves on an approximation result in [4]. In Section 4, we describe
our new heuristic for protein NMR peak assignment based on the %—approximation algorithm for
2-ISP, and give the experimental results. We end this paper with a short discussion in Section 5.

2 A new approximation algorithm for 2-ISP

Let Z be the given discrete time interval. Without loss of generality, we may assume that 7 =
[0,1]. Let J1 = {vi,v2,...,vn,} be the given set of jobs requiring one time unit of Z. Let J2» =
{VUny41,Vny+3, - - -, Uny+2n,—1} be the given set of jobs requiring two contiguous time units of Z. Note
that ny + ng is the total number of given jobs. For each 1 <4 < I, let u; denote the time unit
[i—1,d)of Z. Let U = {u; | 1 <i < T}. Let J5 = {Un,42,Vns44;- -+, Uny+2n,}. Let V. =T1UT2UT,.
We construct an edge-weighted bipartite graph G with color classes U and V as follows: For every
vj € J1 and every u; € U such that the profit of executing job v; in time unit wu; is positive, (u;,v;)
is an edge of G' and its weight is the profit. Similarly, for every v; € J> and every u; € U such that
the profit of executing job v; in the two time units w;, u;41 is positive, both (u;, v;) and (wiy1,vj41)
are edges of G and the weight of each of them is half the profit. Figure 1 shows an example of G.

U U2 U Us U Us Us Ui Un Uiz U Uis Uis Uie Uiz Uis U U U Uz Usz U

Wztsse s\ s/

Vs V6 Vi V& V2 Vo Vie Vu Viz Viz Via Vi Vis_Vie Viz Vis Vs Vio Vo Vo Voo V23 Vu

Figure 1: An example of G. The three bold edges (u13,v13), (u14,v14), and (u14,v3) each have
weight 3, and the other edges each have weight 1. Also, for each v; € J2, v; and vj41 are underlined
together. In other words, ny = 4.

A constrained matching of G is a matching M of G such that for every u; € U and every
vj € Jo, (us,v5) € M if and only if (uij41,vj41) € M. The objective of 2-ISP is equivalent to finding



a maximum-weight constrained matching in G. For each edge (u;,v;) of G, let w(u;,v;) denote
the weight of the edge. For convenience, let w(u;,v;) = 0 for all (u;,v;) ¢ E. For a (constrained
or unconstrained) matching M of G, let w;(M) (respectively, wa(M)) denote the total weight of
edges (uj,vj) € M with v; € Jp (respectively, v; € Jo U Jy); let w(M) = wi (M) + wa(M).

Let M* be a maximum-weight constrained matching in GG. In Sections 2.1, 2.3 through 2.5, we
will design four algorithms each outputting a constrained matching in G. We will try to find a
large constant € such that the heaviest one among the four output matchings is of weight at least
(3 + e)w(M*). It will turn out that € = 5. So, fix e = 5= for the discussions in the rest of this
section.

2.1 Algorithm 1

This algorithm will output a constrained matching of large weight when wq(M™) is relatively large
compared with wy (M*). We first explain the idea behind the algorithm. Suppose that we partition
the time interval Z into shorter intervals, called basic intervals, in such a way that each basic
interval, except possibly the first and the last (which may possibly consist of 1 or 2 time units),
consists of 3 time units. There are exactly three such partitions of Z (see Figure 2). Denote them
by Py, P1, and P, respectively. With respect to each P, with 0 < h < 2, consider the problem
Qp, of finding a constrained scheduling which maximizes the total profit of the executed jobs, but
subject to the constraint that each basic interval in P, can be assigned to at most one job and each
executed job should be completed within a single basic interval in Pj. It is not so hard to see that
each problem Qj requires the computation of a maximum-weight (unconstrained) matching in a
suitably constructed bipartite graph, and hence can be solved in polynomial time.

Interval T 24 | le us | Ua |u5 | Us | Uz | Us| Uy |M10|M11 |U12|M13|u14|1/l15|u16|u17|u18|u19|u20|u21 |LI22|M23|U24

Partition 1 28 |U2 [Z5] mlus Us M7|us Uo Mmll/ln U u13|u14 Uis uleltm Uis u19|U20 Uz uzzluzz U2a

Partition O | Y U2 us |u4 Us Ll6| Ur Us uqlum Un u12|u13 Us u15|u16 U7 l/llxluw U2 u21|u22 U2 u24|

Partition 2 | ¥ M2|U3 Us u§| Us U7 usl Us Uro ulllulz Uiz u|4|u15 Uis u17|u13 Ui Mzoluzl U2 u23|u24

Figure 2: An example of interval 7 and its partitions.

We claim that among the three problems Qp, the best one gives a scheduling by which the
executed jobs achieve at least a total profit of %wl(M *) + %’U)Q(M *). This claim is actually easier
to see, if we refer to a more constrained scheduling problem Q) than Qj by adding the following
constraint:

e For each job v; € J1 and for each basic interval b in P, only the primary time unit of b can
be assigned to v;j, where the primary time unit of b, is u; if b consists of three time units
Uj—1U;Ui41, 18 w1 if b consists of the first two time units ujus of Z, is uy if b consists of the
last two time units u;_juy of Z, is b itself if b consists of one time unit only.

[Comment: The crux is that for each basic interval b consisting of at least two time units,
each sub-interval of b consisting of two time units must contain the primary time unit of b.
Thus, by this constraint, we are allowed to assign at most one job to each basic interval. In
turn, Q) is more constrained than Qj,.]

Consider an optimal (unconstrained) scheduling AM*. For each job v; € J, if M* assigns v; to
two time units w;u;11, then this assignment of v; is also valid in exactly two problems among Q,

", and Q5, because there are exactly two indices h € {0, 1,2} such that some basic interval in P,
contains both time units w;u;41. Similarly, for each job v; € J1, if M* assigns v; to one time unit
u;, then this assignment of v; is also valid in at least one problem among Qy, @}, and Q5, because



there is at least one index h € {0, 1,2} such that u; is the primary time unit of some basic interval
in Py. Thus, by inheriting from the optimal scheduling M*, the three problems Q) have more-
constrained schedulings M;" such that M; is a sub-scheduling of M™* and the three schedulings M
altogether achieve at least a total profit of wq(M™*) + 2we(M*). Hence, the best more-constrained
scheduling among M7, M3, and M3 achieves at least a total profit of 1wy (M*)+ %'ZUQ (M™). Indeed,
we can prove the following better bound which is needed in later sections:

The best more-constrained scheduling among M7, M5, and M3 achieves a total profit
of at least fwi(M*) + 2wy(M*) + $(p1 + pr), where p1 = 0 (respectively, p; = 0) if
M* assigns no job in J; to uj (respectively, uy), while py (respectively, p;) equals the
weight of the edge of M™* incident to u; (respectively, uy) otherwise.

To see why we have this better bound, first note that there are exactly two indices h € {0, 1,2}
such that u; is the primary time unit of a basic interval in P,. Similarly, there are exactly two
indices h € {0,1,2} such that uy is the primary time unit of a basic interval in Pj,. By these two
facts, the better bound follows.

As it should be expected, the constrained scheduling problems Q; may often lead to better
experimental results than the more-constrained scheduling problems Q. However, as for general
theoretical results, we don’t know if there is a difference between the two types of problems.
Moreover, Q) can be solved more efficiently than Q. Hence, for simplicity, in the following
exposition we will consider only the more-constrained scheduling problems Q.

It is not hard to see that each more-constrained scheduling problem Q) requires the computation
of a maximum-weight (unconstrained) matching in a suitably constructed bipartite graph G, and
hence can be solved in polynomial time. For clarity, we detail the construction of the graphs Gj
below.

For each index h € {0, 1,2}, let G}, be the edge-weighted bipartite graph obtained from G as
follows: (See Figure 3 for an example of Gy constructed from graph G in Figure 1.)

1. For every v; € Jo, merge the two vertices v; and v;41 into a single super-vertex s; j+1 (with
all resulting multiple edges deleted).

2. For all ¢ such that h+1 < i < T —2andi— 1= h (mod 3), perform the following three
sub-steps:

(a) Merge w;, uit+1, and ;12 into a single super-vertex ¢; j1+1 42 (with all resulting multiple
edges deleted).

(b) For every v; € Ji that is a neighbor of t; ;11 42, if edge (uit1,v;) is not in the original
input graph, then delete the edge between ¢; ;142 and v;; otherwise, assign a weight
of w(ui+1,v;) to the edge between t; ;41,42 and v;.

(c) Forevery vj € Jo such that s; j 41 is a neighbor of ¢; ;11 ;42, if neither {(us, v;), (wit1,vj41)}
nor {(ui+1,v5), (Uit+2,vj+1)} is a matching in the original input graph, then delete
the edge between ¢; ;1142 and s;ji1; otherwise, assign a weight of max{w(u;,v;) +
W(Uit1,Vj41), W(Uit1,05) + w(wit2,vj41)} to the edge between ¢; ;1142 and s j11.

3. If neither u; nor uo was merged in Step 2a, then perform the following three sub-steps:

(a) Merge u; and ug into a single super-vertex t1 » (with all resulting multiple edges deleted).

(b) For every vj; € Ji that is a neighbor of t1 5, if edge (u1,v;) is not in the original input
graph, then delete the edge between ;2 and v;; otherwise, assign a weight of w(u,v;)
to the edge between t1 2 and v;.

(c) For every v; € J» such that s; ;41 is a neighbor of 12, if {(u1,v;), (u2,vj41)} is not
a matching in the original input graph, then delete the edge between ¢12 and s jy1;
otherwise, assign a weight of w(uy, vj) + w(ug, vj+1) to the edge between ¢1 9 and s; j41.

4. If neither uy_1 nor uy was merged in Step 2a, then perform the following three sub-steps:

(a) Merge ur—q and uy into a single super-vertex t7_q 7 (with all resulting multiple edges
deleted).



(b) For every v; € Ji that is a neighbor of t;_; , if edge (ur, v;) is not in the original input
graph, then delete the edge between t;_1 ; and v;; otherwise, assign a weight of w(ur, v;)
to the edge between t;_1 ; and v;.
(c) For every v; € Jo such that s; ;41 is a neighbor of t7_y 1, if {(ur—1,v;), (ur,vj4+1)} is not
a matching in the original input graph, then delete the edge between ¢;_; ; and s; jy1;
otherwise, assign a weight of w(ur_1,v;) + w(ur,vj41) to the edge between ¢7_1  and
Sjj+1-
5. If u; was merged in neither Step 2a nor Step 3a, then for every v; € Jo such that s; ;.1 is a
neighbor of uy, delete the edge between u; and s; j41.

6. If u; was merged in neither Step 2a nor Step 4a, then for every v; € Jo such that s; ;.1 is a
neighbor of uy, delete the edge between u; and s; ;1.

Lo bas le1s fo 0 t213,14 5617 118.19.20 bino U
RN L RN N A
Vi Ss.6 S728 V2 Sot0 Sz Sizaa V3o Sisie 1718 V4o S1920 0 S2122 82324

Figure 3: Graph G2 constructed from graph G in Figure 1. The number beside each edge is the
weight of that edge.

For each h € {0,1,2}, let M} be a maximum-weight matching in Gj. In our example (cf.
Figure 3), Ms may consist of the following edges: (¢12,v1), (t3.45,556), (t6,7,8,57,8), (t9,10,11,59,10),
(t12,13,14, 513,14), (t15,16,17, 515,16), (£18,19,20,519,20), and (t21,22.23, $21,22). From each M), we can
obtain a constrained matching M}, in the original input graph by performing the following steps in
turn:

e Initialize Mj, = 0.

e For each edge (u;,v;) € My, add (ui,vj) to My,

e For each edge (t;i+1,i+2,v;) € My, add (uiy1,v;) to M;,.
e For each edge (t12,vj) € My, add (u1,v;) to Mj,.

e For each edge (t;_1,7,vj) € My, add (uz,vj) to Mj,.

e For each edge (ti,i+1,i+2; Sj7j+1) € Mh, ifw(qi, Uj)—i-w(ui_;,_l, ’Uj+1) > w(ui+1, ’Uj)—i-w(ui_;,_g, Uj+1),
then add edges (uj,v;) and (w41, vj+1) to Mp; otherwise, add edges (uiy1,v;) and (uit2,vj41)
to Mh.

e For each edge (t12,8j+1) € My, add edges (u1,v;) and (ug,vj11) to My,

e For each edge (t7—1,1,5jj+1) € My, add (ur—1,v;) and (uz,vj41) to M.

Note that w(Mp,) = w(Mp). In our example (cf. Figures 1 and 3), if M, is as mentioned
above, then My consists of the following edges: (uy,v1), (u4,vs), (us,ve), (u7,v7), (us,vs), (ug,vg),

(u10,v10), (w13, v13), (14, v14), (U5, v16), (16, V17), (W19, V19), (U20,V20), (u21,v21), and (uge, v22).
In summary, we have established the following lemma:

Lemma 2.1 A constrained matching Zy in G can be found in O(I(ny + n2)v/I + ny + na) time,
whose weight is at least 3wy (M*) + Swa(M*) + §(p1 + p1), where p1 = 0 (respectively, p; = 0) if
uy (respectively, ur) is not matched to a vertex of Ji by M*, while p1 (respectively, pr) equals the
weight of the edge of M* incident to uy (respectively, uy) otherwise.

Corollary 2.2 If wi(M*) < (5 — 3e)w(M*), then w(Z1) > (5 + e)w(M*).



PROOF.  Assume wi(M*) < (1 — 3e)w(M*). Then, wa(M*) = 1 — wi(M*) > (3 + 3e)w(M*).
Moreover, by Lemma 2.1, w(Zy) > gwi(M*) + %wg(M*) = %w(M*) + %wg(M*). Thus, w(Z1) >
(3 + 3(z +3))w(M*) > (3 + w(M*). O

2.2 Preparing for the other three algorithms

Before running the other three algorithms, we need to compute a maximum-weight unconstrained
matching M}, of G. The unconstrained matching M}, will be an additional input to the other
three algorithms. Therefore, before proceeding to the details of the algorithms, fix a maximum-
weight unconstrained matching M, of G. See Figure 4 for an example. The algorithms in Sec-

U U Us Us Us Us U1 Us U U Un Uiz Uz Us Uis Uwe Uir Uis Uo U U U2 Uz U

e el

Vi Vs Vs V. Vs V2 Vo Vio Vi _Vi2 Viz Vis Vi Vis_ Vie Viz__Vis Vi Vio Voo VoV V23 Vu

Figure 4: A maximum-weight unconstrained matching M, of the graph G in Figure 1.

tions 2.3 through 2.5 will use M, in a sophisticated way. But first, we use M to define several
subsets of U as follows.

o Uy = {u; € U | u; is not matched by M }.

Uy = {u; € U | u; is matched to a v; € Ji by M, }.

Us1 = {u; € U | u; is matched to a v; € Jo by M, }.

Uz = {u; € U | u; is matched to a v; € J; by M }.
o W = {uz el | Uij—1 € U271 and Ui41 € U272}.
° WL:{uZ'EU\ui+1€W}andWR:{ui€U|ui_1€W}.

In our example (Cf. Figures 1 and 4), U() = {uQ,ulo,un}, U1 = {ul,ug,uM,ulg}, U271 =
{U4au57u97U127u137U18aU217U23}7 U2,2 = {’us,U?,Usaun,U157u16,u20,u237u24}, W = {uﬁ,u14,u19},
Wi = {us,u13,u1s}, and Wr = {ur,uis,u20}. In general, whenever u; € W, we have u;—1 € Wy,
and u;+1 € Wg. Moreover, since W C Uy, no two sets among W, Wy and Wg can intersect.

A common idea behind the forthcoming algorithms is to divide the weights w; (M*) and wq(M™)
into smaller parts, based on the aforementioned subsets of U. The smaller parts are defined as
follows.

e (31, is the total weight of all edges (u;,vj) € M* such that u; € Wr and v; € Ji.
e [ is the total weight of all edges (u;,vj) € M* such that u; € W and v; € Ji.

e [r is the total weight of all edges (u;,v;) € M* such that u; € Wgr and v; € J;.
o B=wi(M*)~ BB~ Pk

e «y is the total weight of all edges (u;, v;) € M* such that either v; € J> and {w;, i1 }NW = 0,
or v; € Jy and {u;—1,u;} NW = 0.

e o is the total weight of all edges (u;,v;) € M* such that either v; € J> and {u;, uiy1} C
Wi UW U Wkg, or v; € .,72/ and {ui_l,ui} CWrLUuWUWg.

Lemma 2.3 o + a; = we(M*) and B, + B+ Br + B = w1 (M*).



PROOF. Note that when {u;, uit1} "W # 0, then {u;, uit1} € Wy UW U Wg. The same holds
for {uz;l, ul} g

Now, we are ready to explain how the four algorithms are related. The algorithm in Section 2.3,
called Algorithm 2, will output a constrained matching of weight at least % B+ %ao +0+ %(ﬁ L+ 0R).
The algorithm in Section 2.4, called Algorithm 3, will output a constrained matching of weight at
least 4+ 3+ ;. Thus, if § > (% + ge)w(M*), then Algorithm 2 or 3 will output a constrained
matching of weight at least (3 + €)w(M*) (see Corollary 2.6 below). On the other hand, if 8 <
(3 + 2e)w(M*), then Algorithm 1 or 4 will output a constrained matching of weight at least
(3 + e)w(M*) (see Section 2.6).

2.3 Algorithm 2

We first explain the idea behind the algorithm. The removal of the vertices in W leaves |W| + 1
blocks of U each of which consists of consecutive vertices of U. For each block b, we use the idea of
Algorithm 1 to construct three graphs Gy o, Gp1, Gy 2. For each h € {0,1,2}, we consider the graph
UpGh,p, where b ranges over all blocks, and obtain a new graph G}, from UGy, 5, by adding the vertices
of W and the edges {u;,vj} of G such that u; € W and v; € J1. We then compute a maximum-
weight (unconstramed) matching in each G}, and further convert it to a constrained matching M} h
of G as in Algorithm 1. The output of Algorithm 2 is the heaviest matching among MY, M{, M. In
our example (cf. Figures 1 and 4), G} is as shown in Figure 5, and M/, may consist of the following
edg‘353 (ubvl)v (U4,U5), (U5,U6), (uﬁa UQ)a (U/7a U7)7 (U/Sa U8)7 (u97 U9)7 (u10>v10)7 (Ulg,’l)ll), <U13, U12)7
(u14,v3), (u1s,v17), (u16,v18), (w19,v4), (u22,v21), and (u23, v22).

tiy bas Us Tz Toron tois Ui lisie hras Ue toa Torosoa

IS S N T A

Vi Sse  S78 V2o Soi0 Sz Sias V3o Sisie S8 V4o S1920 0 S2122 0 82324

Figure 5: Graph G constructed from graph G in Figure 1 and matching M in Figure 4. The
number beside each edge is the weight of that edge.

We next proceed to the details of Algorithm 2. Recall that the removal of the vertices in W
leaves |W |+ 1 blocks of U each of which consists of consecutive vertices of U. For each block b, let
Gy be the subgraph of G induced by V U {u; € U | u; is a vertex in block b}.

1. For each block b, perform the following steps.

(a) Delete all edges {u;,v;} from G} such that u; is the first vertex in block b and v; € Js;
further delete all edges {u;,v;} from G} such that u; is the last vertex in block b and
Vj e .

(b) Construct three edge-weighted bipartite graphs Gy 9, Gp 1, Gp,2 from G in the same way
as Algorithm 1 constructs the graphs Gg, G1, Gy from G.

2. For each h € {0,1,2}, construct a new edge-weighted bipartite graph G} as follows. The
vertex set of G, is the union of W and the vertex sets of the graphs G, where b ranges over
all blocks. Note that even if a vertex appears in two or more of the graphs Gy, 5, it appears in
G, only once. The edges of the graphs Gy, j, where b ranges over all blocks are also edges in
G}, and inherit their weights to G},. Moreover, each edge (u;,v;) in G such that u; € W and
vj € J1 is also an edge in Gj, and inherits its weight from G to G},. G}, has no other edges.

3. For each h € {0,1,2}, compute a maximum-weight matching M; in G}, and then compute
a constrained matching Mh in G from M;j in the same way as Algorithm 1 computes the
constrained matching My in G from Mj,.



4. Let Zy be the maximum-weight matching among the matchings M, M1, M. Output Zs.

Lemma 2.4 w(Zy) > %B + %040 + 6+ %(ﬁL + BR).

ProOOF. Immediate from Lemma 2.1 and Algorithm 2. O

2.4 Algorithm 3

We first explain the idea behind Algorithm 3. Suppose that we partition the time interval Z into
shorter intervals in such a way that each shorter interval consists of either one time unit or three
time units w;—qu;u;+1 where u; € W. There is only one such partition of Z. Further suppose
that we want to execute at most one job in each of the shorter intervals, while maximizing the
total profit of the executed jobs. This problem can be solved in polynomial time by computing
a maximum-weight (unconstrained) matching in a suitably constructed bipartite graph. We can
prove that this matching results in a scheduling by which the executed jobs achieve at least a total
profit of B+ 0+ aj.

We next proceed to the details of Algorithm 3. Algorithm 3 computes a constrained matching
of G as follows. (See Figure 6 for an example.)

1. Construct a new edge-weighted bipartite graph G” from G as follows:
(a) For each u; € W, merge u;—1, u; and w;41 into a super-vertex t;_j ; j+1 (with all resulting
multiple edges deleted).

(b) For each v; € J, merge the two vertices v; and v, into a super-vertex s; j41 (with all
resulting multiple edges deleted).

(c) For each edge (ti—1i+1,v;) such that v; € Ji, if (u;,v;) is not an edge in the original
input graph, then delete the edge (t;—1;i+1,v;); otherwise, assign a weight of w(u;,v;)
to the edge (ti—l,z',i+17 ’Uj).

(d) For each edge (ti—14,i+1,5j,j+1), if neither {(w;—1,v;), (ui, vj41)} nor {(us, v5), (Wit1,v41)}
is a matching in the original input graph, then delete the edge (ti—1,,i+1,5;,j+1); other-
wise, assign a weight of max{w(u;—1,v;) + w(us, vj+1), w(ui, vj) + w(wip1,vj41)} to the
edge (ti—14,i+1,5j,j+1)-

(e) Delete all edges (us, 55,j+1). (Note that w; ¢ W UW U Wg.)

2. Compute a maximum-weight unconstrained matching M” in G”.

3. Construct a constrained matching Z3 in G from M" as follows.
(a
(b
(c

Initialize Z3 = 0.
For each edge (u;,v;) € M”, add (u;,v;) to Zs.
For each edge (ti—1,i+1,v5) € M”, add (u;,vj) to Zs.

)
)
)
)

(d For each edge (tifl,i,i+17 Sj’jJrl) € M”, ifw(ul-,l, Uj)+w(ui, Uj+1) > w(ui, vj)—i—w(uiﬂ, ’L)j+1),
then add edges (uij—1,v;) and (u;, vj+1) to Zs; otherwise, add edges (u;, v;) and (wi41,v;41)
to Zs.

4. Output Zs.

In our example (cf. Figures 1 and 6), M” may consist of the following edges: (u1,v1), (567, 578),
(ug,v2), (t13714,15,513,14), and (t1819.20, 517,18), and in turn Z3 consists of the following edges:
(u1,v1), (us,v7), (ue,v8), (ug,v2), (u13,v13), (U14,v14), (u18,v17), and (u19, v1g).

Lemma 2.5 w(Z3) > 3+ 3+ ;.



Ut Uz Us Us 567 Us U Ui Un Uiz hzaans Uie U1 Lisopo U2t Uz U U
2
2 1 6 2 2
ll/ W 3 2 1
Vi Ss6  S1s W2 So10 Sz Siza W3 Sis16  S17,18 Vs S92 S22 82324

Figure 6: Graph G” constructed from graph G in Figure 1 and matching M in Figure 4. The
number beside each edge is the weight of that edge.

PRrROOF. Similar to the proof of Lemma 2.1. O

Corollary 2.6 If 3> (3 + Se)w(M*), then max{w(Z;),w(Z3)} > (3 + e)w(M*).

ProoF. It suffices to show that if max{w(Z2),w(Z3)} < (3 +€)w(M*), then 8 < (} + 2e)w(M*).
So, assume that max{w(Z2),w(Z3)} < (3 +€)w(M*). Then, we have the following two inequalities:

w(Z2) < (% +e)w(M™). (2.1)
w(Zs) < (% + (M), (2.2)

Combining Inequality 2.1 and the inequality in Lemma 2.4, we obtain a new inequality, and further
multiply it by a factor % to obtain:

ao—i-gﬂ—F%B—&-ﬂL—i-ﬁR < (i—i—;e) w(M*) (2.3)

Moreover, combining Inequality 2.2 and the inequality in Lemma 2.5, we obtain:
_ 1 .
a1+ﬁ+ﬁ<<2+6)w(M ). (2.4)
Now, adding Inequalities 2.3 and 2.4, we obtain

) 3= 5 b
O(0+Oél+§,8+§ﬂ+,8L+ﬂR< (4+26)M(M*)

In turn, by Lemma 2.3, we have

w1 (M™) + wo(M™) + %ﬁ+ %B < (i + ;e) w(M™).

Using the fact that wy(M*) + we(M*) = w(M*) and 3 > 0, we finally obtain

3 1 5 1 5
iﬁ < (4 + 26) w(M™), or equivalently, 8 < (6 + 36) w(M™),

which completes the proof. O

10



2.5 Algorithm 4

The idea behind Algorithm 4 is to convert M, to a constrained matching of G. To convert M7,
we partition Uy UUs; (respectively, U; U Uz 2) into two subsets none of which contains two vertices
u; and u;4q such that u; € Uy (respectively, u;y1 € Uz 2). The set of edges of M, incident to the
vertices of each such subset can be extended to a constrained matching of G. In this way, we obtain
four constrained matchings of G. Algorithm 4 outputs the heaviest one among the four matchings.
We can prove that the weight of the output matching is at least w(M},)/2.

We next proceed to the details of Algorithm 4. Algorithm 4 computes a constrained matching

in G as follows. (See Figure 7 for an example.)

1. Starting at uy, divide U into segments each of which is in the following form:
Uj—pUi—p41 * * " U1 UGU4T " U —1 Ut

where uj € Upg foralli —¢ < j<i—1,uj €cUspforalli+1<j<i+7r u_p1 & Uz,
Uitr4+1 & Uz 2, and u; has no restriction. Note that £ and/or r may be equal to zero. We call
u; the center of the segment. For each segment s, let ¢(s) denote the integer i such that u; is
the center of s; let /(s) denote the number of vertices in s that precede u,); let 7(s) denote
the number of vertices in s that succeed w,s).

[Comment: In our example (cf. Figure 7), U is divided into 8 segments. We name them
from left to right as si,...,ss. For example, s; consists of only u; while s3 consists of
U4, ..., ug. Moreover, c(s1) =1, £(s1) =r(s1) =0, c(s2) = 2, l(s2) =0, r(s2) =1, c(s3) = 6,
L(s3) = r(s3) =2, c(sq) =10, £(s4) = r(s4) = 1, c(s5) = 14, (s5) = r(s5) = 2, c(sg) = 17,
U(sg) = r(s6) = 0, c(s7) = 19, l(s7) = r(s7) = 1, c(ss) = 22, £(ss) = 1, and r(ss) = 2.
Alternatively, it is also valid that c¢(sg) = 23, ¢(sg) = 2, and r(sg) = 1.

Given M}, (and hence the partition of U as Uy U U; U Uz 1 U Usz2), the division of U into
segments is unique. To see this, consider two relations Riegy and Ryign defined on U as follows:
For every pair (u;, u;), ui Riefeu; if and only if j = i+ 1 and u; € Ua1; uiRyighttt; if and only if
j=1—1and u; € Uza. Then, the segments one-to-one correspond to the equivalence classes
of the symmetric and transitive closure of the relation Rieg U Riyight.-|

2. For each segment s, compute two integers x5 and y, as follows:

o If uc,) € Up, then z5 = c(s) — 1 and ys = c(s) + 1.
o If uc,) € Up, then x5 = ys = c(s).

o If u) € Uz, then x5 = c(s) and ys = c(s) + 1.
(

o If ug) € Uz, then x5 = c(s) — 1 and ys = c(s).
[Comment: In our example (cf. Figure 7), x5, = ys; = 1, x5, = 1, Y5, = 3, Ty = Ysy = 6,
x54 = 97 y84 = 117 xSS = ySS = 147 $56 = 167 ysa = 187 .',1737 = y87 = 197 x38 = 227 and y88 - 23

In other words, for each segment s, u;, is the rightmost vertex in s with u,, € U1 U Uy,
while u,, is the leftmost vertex in s with u,, € Uy o U U]

3. Let

IN

Usy = U{uZ | (xs —i) mod 2 =0,c(s) — 4(s) <i < x4},

Usy = Jfui | (2 —1) mod 2 =1,¢c(s) — £(s) <i <z},

Usy=|J{wi | (i —ys) mod 2 =0,y, <i < c(s) +r(s)},

11



Usy = U{uz | (i —ys) mod 2 =1,ys <i<e(s)+7(s)},

where s runs over all segments.
[Comment: In our example (cf. Figure 7), US; = {u1,uq, ug, ug, ui2, uiq, uig, use}, Ug =
{U5, u13, U418, UQl}, UiQ — {’LLl, us, ue, ug, U11, U14, U16, U19, U23}, and U;,Q = {’LL’?, U15, U20, 'LL24}.

Note that if a vertex u; € U belongs to more than one of the four sets U3 1, U3y, U3 o, U3,
then u; € Uy, u; is the center of the segment containing w;, and u; belongs to only Us; and

Us o]

. Let
Mg, = {(ui,v;) € My, | ui € Uz1} U {(uit1,v41) | us € Uz N U2 and {w;, v} € My},
Mgy = {(ui,v;) € My, | wi € Ug1} U {(uit1,v541) | us € Uz N U231 and {ui, v} € My},
M3y = {(ui; v) € Mg, | ui € Uzo} U{(ui—1,vj-1) | us € Uy NUz2 and {us, v} € My, },
M3y = {(ui,v;) € My, | ui € Ugp} U{(uim1,v5-1) | us € Ugp NUz2 and {ui, v} € My, }.

[Comment: Ms,, M3, M$ 4, MS, are constrained matchings in G (cf. Lemma 2.7). In our
example (cf. Figure 7), the edges in M$, are (u1,v1), (u4,vs), (us,v6), (us,v2), (ug,v9),
(ul(),’l)l()), (ulg,'l}u), (ulg,vlg), (U14,Ug), <U19,1)4), (UQQ,'U23), and <UQ3,UQ4); the edges in M20,1
are (us,vr), (u6,vs), (u13,v13), (w14,v14), (u1s,v17), (U19,v18), (u21,v21), and (u2g,v22); the
edges in M§, are (u1,v1), (u2,vs), (u3,ve), (us,v2), (ur,v7), (us,vs), (u10,v13), (u11,v14),
(U14, Ug), (U15, 7)17), (ulﬁ, 1}18), (ulg, U4), (UQQ, 1)21) and ('LL23, 1}22) the edges m M2 o are (UG, 1}9)
(ur,v10), (u14,v15), (w15,v16), (U19,v19), (u20,v20), (u23,v23), and (uz4, vaa).

Note that for each edge (u;,v;) € Mg, U Mg,, we have v; ¢ J1. Indeed, Ug; C Uz and
Ugo C Uz ]

. For the set Uil of vertices of U that are not matched by M3, compute a maximum-weight
matching N3, between the vertices in Ué”l and the vertices in J;.

[Comment: M$, U N3 is a constrained matching in G (cf. Lemma 2.7). In our example (cf.
Figures 1 and 7), the vertices in 02071 are Ui, ..., Uq, UTy..., W12, U5, ..., UL7, U20, U2z, and
ugq; N§y = {(u1,v1), (ug, v2)}.]

. For the set 172072 of vertices of U that are not matched by M3 ,, compute a maximum-weight
matching N3, between the vertices in 17572 and the vertices in Ji.

[Comment: M$oU N3, is a constrained matching in G (cf. Lemma 2.7). In our example (cf.
Figures 1 and 7), the vertices in U3y are ui, ..., us, us,..., U1, Uie,---,u1s, U1, and ug;

NSy = {(ug,v1), (ug, v2)}.]

. Let Z4 be the maximum-weight matching among Mg, M3 UNZ, M54, M3,UNZ 5. Output
Zy.

Lemma 2.7 M3, M3, UN3,, M3, and M3y U N34 are constrained matchings in G.

PROOF. Note that Us; C U — Uz 2. Thus, to prove that M3, is a constrained matching in G, it
suffices to prove that for every u; € U2 1N U2 1, Uip1 & U2 1- Consider an arbitrary u; € U2 1N U2 1.
By the definition of a segment, u; and Uit belong to the same segment. So, by the definition of
Us1, uit1 & U3q. This completes the proof that Mg, is a constrained matching of G. Similarly,
we can prove that Mg,, M3, and Mg, are constrained matchings in G.

12



W U Uz Us Us Us U7 Us U U Un U Yz Uis Uis U U Uis Uv Un Un Uz Usn Un

e el

Vi Vs Vs Vi_ Vs V2 W Ve Vu Vio Viz_Vie Vi Vis Vie Viz_Vis Vs Vio Voo Vo Voo V23 Vu

Figure 7: The segments of U obtained from M}, in Figure 4. Each segment is shown by drawing
a common line above the vertices of that segment.

To see that M3, UNZ; and M3 ,UNJ 4 are constrained matchings in G, first note that U3, C Uz
and Ugy C Uz 2. Thus, for every edge (u;,v;) € M3, UMS,, we have v; € J1. In turn, Mg, U N3,
is a constrained matching in G. Similarly, M5, U N3, is a constrained matching in G. a

Lemma 2.8 w(Ms;) +w(Mg,) +w(Ms o) +w(Mg ) > 2w(My,).

PRrROOF. Consider an arbitrary edge (u;,v;) € My,. We distinguish three cases as follows.

Case 1: u; € Uy (ie., v; € J1). Then, u; must be the center of a segment and hence wu; is
contained in both U$; and US 5 by Step 3; consequently, edge (u;, v;) is contained in both Mg ; and
M3 5 by Step 4.

Case 2: u; € Uy (hence, v; € J2). Then, u; and wu; 1 must belong to the same segment, say
s. If (wig1,vj41) is also in M, then either u; or u;4 is the center of s. In either case, 3 = ¢ and
ys = i+ 1, and hence (u;,v;) belongs to both Mg, and M3, by Step 4 (and so does (ui+1,vj+1)).
On the other hand, if (u;41,vj+1) is not in My, then either Mg, or Mg, contains both (u;,v;) and
(Wit1,vj41). Since (uj,vj) and (u;41,vj41) have the same weight, we can think of (u;y1,vj4+1) as a
copy of (u;,vj).

Case 3: u; € Us o (hence, v; € J3). Similar to Case 2.

By the above case-analysis, we see that for each edge (u;, v;) of My, either (u;,v;) belongs to
two of M5, M3, MS 4, M3, or one of Mgy, M3, M5y, M3, contains both (u;,v;) and its copy

This completes the proof of the lemma.

Lemma 2.9 (U—-U$,)N(U—-Ug,) CW.

Proor. First note that U —(72"71 (respectively, U —(_]2072) is the set of vertices in U that are matched
by Mg, (respectively, Mg,). Thus, U — 02071 C {Ue(s)—t(s)s - - » Ua(s)—1, Ug(s) | S is a segment} and
U — U22 - {uy(s E 3
and z(s) < y(s) for every segment s, it follows that for every u; € (U — Us;) N (U — Usg,), we
have i = x(s) = y(s) for some segment s. Now, by the definitions of z(s) and y(s), the fact
i = z(s) = y(s) implies u; € Uy. Moreover, since u; € (U — Ug,) N (U — US5), u; is matched by
M3, and so u;—1 € Uz 1. For the same reason, u; is matched by M§’2 and so uij41 € Uap.

In summary, for every u; € (U— U2 ONU-U8 2) we have u; € Uy, uj—1 € Uz 1, and w41 € Uz o;
hence, u; € W. This completes the proof of the lemma. O

y(s)+1s - -+ Ue(s)+r(s) | s is a segment}. In turn, since segments are disjoint

2.6 Performance of the algorithm when [ is small

For a contradiction, assume the following:
Assumption 2.10 8 < (g + 3)w(M*) and max{w(Z1), w(Z4)} < (5 + €)w(M*).

We want to derive a contradiction under this assumption. First, we derive three inequalities
from this assumption and the lemmas in Section 2.5.

13



Lemma 2.11 w(M3,) + w(M$4) > (1 — 2e)w(M™).

PROOF.  Assume, on the contrary, that w(Mg,) + w(Msg,) < (1 — 2¢)w(M*). By Lemma 2.8
and the fact that w(My,) > w(M™), we have w(Ms,) + w(Mg,) > (1 + 2¢)w(M*). But then
max{w(M§ ), w(Ms,)} > (5 + €)w(M*), contradicting Assumption 2.10. O

Lemma 2.12 w(N$ ;) + w(Ng,) < dew(M*).

PROOF. Obviously, w(Mé”1 U NQ"J) + w(Mé”Q U N§’72) = w(Mé’}l) + w(MiQ) + w(NQO,l) + w(NQOQ).
By Assumption 2.10, w(M$; U N§ 1) + w(MFo U NSy) < (1 + 2¢)w(M*). So, by Lemma 2.11,
w(Ng1) + w(Ngp) < dew(M”). o

Lemma 2.13 § > wi(M*) — dew(M™).

PROOF. Let v be the total weight of all edges (u;,v;) € M* such that v; € J; and u; € 172071.
Let 72 be the total weight of all edges (u;,v;) € M* such that v; € 71 and u; € US,. Let 43 be
the total weight of all edges (u;,v;) € M* such that v; € Jy and u; € (U — Ug,) N (U — Ug,).
Clearly, v1 +72 +73 > w1 (M*). By Steps 5 and 6 in Algorithm 4, 41 < w(Ng;) and 7o < w(Ng,).
So, by Lemma 2.12, 1 + 72 < 4ew(M™). Moreover, by Lemma 2.9, f > ~3. Thus, § > 3 >
wl(M*)—'yl—’yg>w1(M*)—4ew(M*). O

Now, we are ready to get a contradiction. By Corollary 2.2 and Assumption 2.10, wi(M*) >

(3 —3e)w(M*). Thus, by Lemma 2.13, 8 > (5 —7e)w(M*). On the other hand, by Assumption 2.10,

B < (3 + 2)w(M*). Hence,
1 Te < 1 n 5
2 T 3"

contradicting our choice that € = %.

Therefore, we have

Theorem 2.14 A constrained matching Z in G with w(Z) > 2w(M*) can be found in O(|E|\/I(n1 + n2))

time.

3 2-ISP with a special profit function

In this section, we consider proportional 2-1SP, where all the positive profits of executing a job are
proportional to the lengths of the jobs. A %—approximation algorithm was recently presented in [4]
for proportional 2-ISP. Here, we present a (1.5 + €)-approximation algorithm for it for any € > 0.

Let U, Ji, and J> be as in Section 2. Let E be the set of those (u;,v;) € U x J; such that
the profit of executing job v; in time unit u; is positive. Let F' be the set of those (uj, uit1,v;) €
U x U x J5 such that the profit of executing job v; in time units u; and w; 1 is positive.

Consider the hypergraph H = (U U J1 U J2, E U F') on vertex set U U J; U J2 and on edge set
E U F. Obviously, proportional 2-ISP becomes the problem of finding a matching £’ U F’ in H
with ' C E and F’ C F such that |E’| + 2|F’| is maximized over all matchings in H. Our idea is
to reduce this problem to the problem of finding a maximum cardinality matching in a 3-uniform
hypergraph (i.e. each hyperedge consists of exactly three vertices). Since the latter problem admits
a (1.5 + ¢)-approximation algorithm [5] and our reduction is approximation preserving, it follows
that proportional 2-ISP admits a (1.5 + €)-approximation algorithm.

We now detail the approximation-preserving reduction. From H, we construct a 3-uniform
hypergraph H as follows. Let

L4 ﬁZ{ﬂz‘]uiEU}andU:{ﬂi|uieU};

14



o Jo={0j|v; € R} and Jo = {1 | vj € To};
o F = i, @, v} | (us,v5) € E}
o F'={{ii, i1, 05} | (wisuiv1,vj) € FJ;
o F = {{u;ui1,75} | (wi,uir1,v5) € F}.
The vertex set of H is U UU U J1 U jg U J2, and the edge set is EUFUTF.

Lemma 3.1 Let E' UF’ with E' C E and F' C F be a matching in H. Then, there is a matching
in H of cardinality |E'| + 2|F'|.

PROOF. Tt suffices to check that E'UF’UF” is a matching in H, where B/ = {{i;, i, v;} | (us, vj) €
El}, F' = {{ﬂi,ﬂi+1,’[}j} | (ui,ui+1,vj) S F,}, and F’/ = {{ﬂi,ﬂi+1,ﬁj} | (ui,qu,vj) (S F/} O

Lemma 3.2 Let E'UF' UF be a matching in H with E' C E, F'CFand T CF. Then, we
can compute a matching E' U F' in H with E' C E, F' C F, and |E'| + 2|F'| > |E'| + |F'| + [F'|.

PROOF. Let E'UF'UF be a matching in H as in the lemma. Consider B/ = {(uj, v) | {1, v} €
E’}. Clearly, E’ is a matching in H, that is, no vertex in U U J; belongs to more than one pair in
E'. Moreover, if u; € U is a vertex belonging to some pair in E’, then neither 4; belongs to some
triple in F' nor u; belongs to some triple in T

Now, either |F| > [F'| or |F'| < [F'|. We assume |E’| > |F|; the other case is similar. Consider
F' = {(uj, uiy1,v;) | {@,Giy1,0;} € F'}. Clearly, F” is a matching in H, that is, no vertex in UU Jy
belongs to more than one triple in F’. Note that E' U F’ is also a matching in H and

|E'| +2|F'| = |E') + 2max{|F'|, [F|} > |E| + || + [F].

By the above two lemmas, we have

Theorem 3.3 For every € > 0, there is a polynomial-time (1.5 + €)-approximation algorithm for
proportional 2-ISP.

4 A new heuristic for protein NMR peak assignment

As mentioned in Section 1, the 1—73—approximation algorithm for 2-ISP can be easily incorporated
into a heuristic framework for protein NMR peak assignment introduced in [6]. The heuristic first
tries to assign “long” segments of three or more spin systems that are under the consecutivity
constraint to segments of the host protein sequence, using a simple greedy strategy, and then solves
an instance of 2-ISP formed by the remaining unassigned spin systems and amino acids. The first
step of the framework is also called greedy filtering and may potentially help improve the accuracy
of the heuristic significantly in practice because we are often able to assign long segments of spin
systems with high confidence. We have tested the new heuristic based on the 1—73—approxirnation
algorithm for 2-ISP and compared the results with two of the best approximation and heuristic
algorithms in [3, 4, 6], namely the 2-approximation algorithm for the interval scheduling problem
[3, 4] and the branch-and-bound algorithm (augmented with greedy filtering) [6]. The test data
consists of 70 (pseudo) real instances of NMR peak assignment derived from 14 proteins, each with 5
(density) levels of consecutivity constraints, as shown in Table 1. Each protein is represented as an
entry in the BioMagResBank database [9], e.g. bmr4027, and the consecutivity level is represented

15



by the underscore symbol following the BioMagResBank entry. For example, -5 means that the
number of pairs of consecutive spin systems in the input is 50% of the total number of spin systems.
Hence, the higher the consecutivity level index, the more the constraint.

Note that, both the new heuristic algorithm and the 2-approximation algorithm are very fast
in general while the branch-and-bound algorithm can be much slower because it may have to
explore much of the entire search space. On a standard Linux workstation, it took seconds to
hours for each assignment by the branch-and-bound algorithm in the above experiment, while it
took a few seconds consistently using either the new heuristic algorithm or the 2-approximation
algorithm. Table 1 shows the comparison of the performance of the three algorithms in terms of
(i) the weight of the assignment and (ii) the number of correctly assigned spin systems. Although
measure (i) is the objective in the interval scheduling problem, measure (ii) is what it counts in
NMR peak assignment. Clearly, the new heuristic outperformed the 2-approximation algorithm
in both measures by large margins. Furthermore, the new heuristic outperformed the branch-and-
bound algorithm in measure (ii), although the branch-and-bound algorithm did slightly better in
measure (i). More precisely, the new heuristic was able to assign the same number of or more spin
systems correctly than the branch-and-bound algorithm on 53 out of the 70 instances, among which
the new heuristic algorithm improved over the branch-and-bound algorithm on 39 instances. 2
Previously, the branch-and-bound algorithm was known to have the best assignment accuracy
(among all heuristics proposed for the interval scheduling problem) [6]. The result demonstrates
that this new heuristic based on the %—approximation algorithm for 2-ISP will be very useful in the
automation of NMR peak assignment. In particular, the good assignment accuracy and fast speed
allow us to tackle some large-scale problems in experimental NMR peak assignment within realistic
computation resources. As an example of application, the consecutivity information derived from
experiments may sometimes be ambiguous. The new heuristic algorithm makes it possible for
the user to experiment with different interpretations of consecutivity and compare the resulting
assignments.

5 Discussion

The computational method, presented in this paper, provides a more accurate and more efficient
technique for NMR peak assignment, compared to our previous algorithms [3, 4, 6, 8]. While
this algorithm will prove to be useful to protein NMR experimentalists for their data assignment
procedures, it could be used to help protein structure study directly. We are in the process of
incorporating this algorithm into a computational pipeline for fast protein fold recognition and
structure determination, using an iterative procedure of NMR peak assignments and protein struc-
ture prediction. The basic idea of this pipeline can be briefly outlined as follows.

Recent developments in applications of residual dipolar coupling (RDC) data to protein structure
determination have indicated that RDC data alone may be adequate for accurate resolution of pro-
tein structures [11], bypassing the expensive and time-consuming step of NOE (nuclear Overhauser
effect) data collection and assignments. We have recently demonstrated (unpublished results) that
if the RDC data/peaks are accurrately assigned, we can accurately identify the correct fold of a
target protein in the PDB database [10] even when the target protein has lower than 25% of se-
quence identity with the corresponding PDB protein of the same structural fold. In addition, we
have found that RDC data can be used to accurately rank sequence-fold alignments (alignment
accuracy), suggesting the possibility of protein backbone structure prediction by combining RDC
data and fold-recognition techniques like protein threading [13].

By including RDC data in our peak assignment algorithm (like [12]), we expect to achieve
two things: (a) an improved accuracy of peak assignments with the added information, and (b) an
assignment (possibly partial) of the RDC peaks. Using assigned RDC peaks and the aforementioned
strategy, we can identify the correct structural folds of a target protein in the PDB database.

2Tt is not completely clear to us why the new heuristic did better on these 39 instances, although the weighting
function between spin systems and amino acids could be a factor.

16



Wi Ry Wo | Rs W3 | Rs Wi | Ry Wy | Ry W3 | Rs
bmr4027_5 | 1873820 | 40 | 1827498 311934329 | 33 || bmr4144.5 | 919419 | 11 | 921816 | 17 | 997603 | 16
bmr4027_6 | 1854762 | 64 | 1818131 81 1921093 | 37 || bmr4144.6 | 923546 | 21 | 897500 | 11 | 993361 | 11
bmr4027_7 | 1845477 | 89 | 1784027 | 44 | 1910897 | 74 || bmr4144.7 | 954141 | 68 | 842073 2| 954633 | 64
bmr4027_8 | 1900416 | 151 | 1671475 | 19 | 1894532 | 128 || bmr4144.8 | 953741 | 69 | 804531 5| 954585 | 67
bmr4027_9 | 1896606 | 156 | 1652859 | 60 | 1896606 | 156 || bmr4144.9 | 952241 | 75| 837519 | 35| 952241 | 75

bmr4288.5 | 1243144 | 36 | 1169907 6 | 1256475 | 12 || bmr4302.5 | 1275787 | 31 | 1219920 | 11 | 1331391 | 16
bmr4288._6 | 1197106 | 49 | 1179110 | 15 | 1261696 | 26 || bmr4302.6 | 1282789 | 51 | 1174564 0] 1324395 | 43
bmr4288_7 | 1232771 | 65 | 1112288 | 22 | 1251020 | 57 || bmr4302.7 | 1310324 | 78 | 1181267 8| 1323495 | 62
bmr4288.8 | 1201192 | 68 | 1133554 | 35 | 1238344 | 66 || bmr4302.8 | 1308217 | 112 | 1152323 | 27 | 1308217 | 103
bmr4288_9 | 1249465 | 105 | 1051817 | 48 | 1249465 | 105 || bmr4302_9 | 1250300 | 111 | 1293954 | 107 | 1298321 | 110

bmr4309.5 | 1974762 | 35 | 1954955 | 13 | 2117910 | 25 || bmr4316.5 | 999920 | 43 | 890944 2| 1009329 | 30
bmr4309.6 | 1960424 | 48 | 1924727 | 12 | 2110992 | 57 || bmr4316.6 | 967526 | 59 | 863207 | 13 | 1022505 | 35
bmr4309_7 | 2046029 | 119 | 1885986 | 24 | 2093595 | 77 || bmr4316.7 | 925817 | 75 | 882818 911029287 | 79
bmr4309.8 | 1962114 | 121 | 1868338 | 55 | 2067295 | 101 || bmr4316.8 | 1005898 | 75 | 957378 | 62 | 1029287 | 89
bmr4309_9 | 2048987 | 178 | 1796864 | 95 | 2048987 | 178 || bmr4316_9 | 1029827 | 89 | 984774 | 85 | 1029287 | 89

bmr4318.5 | 2338383 | 19 | 2355926 2| 2497294 | 20 || bmr4353.5 | 1468772 | 20 | 1417351 8 | 15632518 | 17
bmr4318_6 | 2265090 | 34 | 2312260 | 13 | 2481789 | 35 || bmr4353.6 | 1428944 | 23 | 1421633 | 18 | 1524784 | 24
bmr4318.7 | 2268700 | 73 | 2259377 | 52 | 2444439 | 52 || bmr4353.7 | 1461648 | 56 | 1370235 | 14 | 1516244 | 44
bmr4318.8 | 2217936 | 92 | 2214174 | 63 | 2420829 | 62 || bmr4353.8 | 1443261 | 78 | 1337329 9| 1472871 | 80
bmr4318_9 | 2339582 | 201 | 2158223 | 122 | 2383453 | 201 || bmr4353_9 | 1474022 | 124 | 1273988 | 15 | 1483781 | 126

bmr4391.5 | 691804 | 10 | 688400 5| 753046 | 18 || bmr4393.5 | 1816837 | 49 | 1742954 3| 1874095 | 41
bmr4391.6 | 680959 7| 699066 8| 745501 | 10 || bmr4393.6 | 1843685 | 71 | 1772955 | 42 | 1871616 | 59
bmr4391.7 | 699199 | 17 | 684953 | 37 | 735683 | 26 || bmr4393.7 | 1847874 | 102 | 1722026 | 22 | 1862221 | 76
bmr4391.8 | 688368 | 38 | 663147 | 30 | 723111 | 42 || bmr4393.8 | 1832576 | 129 | 1709538 | 65 | 1853749 | 130
bmr4391.9 | 710914 | 66 | 687290 | 45| 710914 | 66 || bmr4393_9 | 1837340 | 142 | 1527885 3 | 1851298 | 152

bmr4579.5 | 913713 | 18 | 894084 2| 967647 | 15 | bmr4670.5 | 1365873 | 32 | 1309727 | 11 | 1435721 | 22
bmr4579.6 | 889118 | 35 | 911564 8 976720 | 32 || bmr4670.6 | 1326082 | 35 | 1290812 | 13 | 1429449 | 30
bmr4579.7 | 903586 | 48 | 873884 | 17 | 958335 | 44 || bmr4670.7 | 1353618 | 78 | 1239001 6 | 1402335 | 38
bmr4579.8 | 933371 | 72| 877556 | 26 | 956115 | 63 || bmr4670.8 | 1391055 | 116 | 1236726 | 19 | 1391055 | 116
bmr4579.9 | 950173 | 86 | 760356 0] 950173 | 86 || bmr4670.9 | 1391055 | 120 | 1237614 | 60 | 1391055 | 116

bmr4752.5 | 881020 | 21 | 796019 8 | 884307 | 21 || bmr4929.5 | 1410017 | 17 | 1408112 4 | 1496460 | 23
bmr4752.6 | 877313 | 32| 824289 6 | 892520 | 32 || bmr4929.6 | 1391418 | 36 | 1385673 | 12 | 1496954 | 32
bmr4752_7 | 866896 | 43 | 752633 3] 887292 | 41 || bmr4929.7 | 1427122 | 69 | 1378166 | 30 | 1490155 | 56
bmr4752.8 | 882755 | 68 | 730276 | 17 | 882755 | 68 || bmr4929.8 | 1459368 | 82 | 1281548 | 18 | 1481593 | 88
bmr4752_9 | 882755 | 68 | 812950 | 44 | 882755 | 68 || bmr4929.9 | 1477704 | 114 | 1178499 | 20 | 1477704 | 114

Table 1: The performance of the new heuristic comprising greedy filtering and the %—approximation al-
gorithm for 2-ISP in comparison with two of the best approximation and heuristic algorithms in [3, 4, 6]
on 70 instances of NMR peak assignment. The number after the underscore symbol in the name of each
instance indicates the density level of consecutivity constraints in the instance. Wj; and R; represent the
total assignment weight and number of spin systems correctly assigned by the new heuristic, respectively. Wy
and Ry (W3 and Rj3) are corresponding values for the 2-approximation algorithm for the interval scheduling

problem (the branch-and-bound algorithm augmented with greedy filtering, respectively).

Then based on the identified structural fold and a computed sequence-fold alignment, we can back-
calculate the theoretical RDC peaks of the predicted backbone structure (possibly partial). Through
matching the theoretical and experimental RDC peaks, we can establish an iterative procedure for
NMR data assignment and structure prediction. Such a process will iterate until most of the RDC
peaks are assigned and a structure is predicted. We expect that such a procedure will prove to be
highly effective for fast and accurate protein fold and backbone structure predictions, using NMR
data from only a small number of NMR, experiments.

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to
approximating resource allocation and scheduling. Journal of the ACM, 48:1069-1090, 2001.

17



2]

A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of multiple
machines in real-time scheduling. Proceedings of the 31th Annual ACM Symposium on Theory
of Computing (STOC’99), pp. 622-631, ACM, 1999.

Z.-7Z. Chen, T. Jiang, G. Lin, J. Wen, D. Xu, J. Xu, and Y. Xu. Approximation algorithms
for NMR spectral peak assignment. To appear in Theoretical Computer Science, 2002.

Z.-7Z. Chen, T. Jiang, G. Lin, J. Wen, D. Xu, and Y. Xu. Improved approximation algo-
rithms for NMR spectral peak assignment. Proceedings of the 2nd Workshop on Algorithms in
Bioinformatics (WABI’2002), Lecture Notes in Computer Science, Vol. 2452, pp. 82-96, 2002.

C.A.J. Hurkens and A. Schrijver. On the size of systems of sets of every ¢ of which have an
SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM
Journal on Discrete Mathematics, 2(1):68-72, 1989.

G. Lin, D. Xu, Z.-Z. Chen, T. Jiang, J. Wen, and Y. Xu. An efficient branch-and-bound algo-
rithm for the assignment of protein backbone NMR peaks. Proceedings of the IEEE Computer
Society Bioinformatics Conference (CSB’2002), Palo Alto, CA. Pages 165-174. Aug. 2002.

National Institute of General Medical Sciences. Pilot projects for the protein structure initia-
tive (structural genomics). http://www.nih.gov/grants/quide/rfa-files/REFA-GM-99-009.html,
June:RFA GM-99-009, 1999.

Y. Xu, D. Xu, D. Kim, V. Olman, J. Razumovskaya, and T. Jiang. Automated assignment of
backbone NMR, peaks using constrained bipartite matching. IEEFE Computing in Science &
Engineering, 4:50-62, 2002.

University of Wisconsin. BioMagResBank. http://www.bmrb.wisc.edu. University of Wisconsin,
Madison, Wisconsin, 2001.

F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers,
O. Kennard, T. Shimanouchi, and M. Tasumi, The Protein Data Bank: A Computer Based
Archival File for Macromolecular Structures, J. Mol. Biol., 112:535 - 542, 1977.

J.C. Hus, D. Marion and M. Blackledge, Determination of protein backbone structure using
only residual dipolar couplings, J. Am. Chem. Soc, 123:1541-1542, 2001.

J.C. Hus, J.J. Prompers, and R. Bruschweiler, Assignment strategy for proteins with known
structure, Journal of Magnetic Resonnance, 157:119-123, 2002.

Y. Xu and D. Xu, Protein Threading using PROSPECT: design and evaluation, Protein:
Structure, Function, Genetics, 40:343 - 354, 2000.

18



