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Abstract

Semi-detailed soil surveys often lack details on landscape position of specific soils. The
primary objective was to investigate a method of improving survey detail, by providing
soil position information derived from a digital elevation model (DEM). Slope magnitudes
determined from the DEM were underestimated compared to those from the soil survey.
The pattern of DEM-derived slope breaks and soil survey slope classes did not correspond
along unidirectional transects, but did when the entire study area was considered. Potential
depressions were located on the DEM using a combination of profile and plan curvature.
Proportions of depressions were significantly different from the proportions of Gleysols
and gleyed subgroups in each soil survey polygon. These depressions may be considered
centre locations of actual landscape depressions. Depressions in open areas could be
located with DEM data alone, but not those within treed areas. Satellite image data
provided information on soil wetness in both areas. Using this information, possible
depressions in treed areas were identified. Positioning soils in the landscape using both

the DEM and satellite imagery was limited by the relatively coarse 25 m spatial resolution.



To Mike, my husband, for being my number one fan
and
To my parents for instilling me with curiosity



Acknowledgements

My greatest thanks go to my supervisor, Dr. Peter Crown, for keeping me on track
and always making time for my questions no matter how full his schedule. Without his
guidance my project would not have come to fruition. I would also like to thank my
supervisory committee, Dr. Yongsheng Feng and Mr. Tim Martin for their valuable help
and advice on statistical analyses and GIS, respectively.

I would have been lost had it not been for my friend Deb Klita who guided me
through the realm of PCI software. Thanks also to Dr. Wayne Pettapiece and Dr. Claudia
Palylyk for listening to my plans and providing suggestions.

I consider myself fortunate to have had the opportunity to get to know my
officemates: Jose, Amro, and Hong Wei. Thanks for the long chats and moral support!

I am forever grateful to Mike, my husband, for his support and patience and for
putting up with my sometimes frenzied behavior. His calm sensibility got me through the
days before and after my defense. I would never have reached this stage without the
*“‘you can do it!” attitude of my parents and the cheers of my best friend Catherine. Thank
you so much for believing in me. And thank you Catherine for always seeming to know

when I needed to see a movie most.



Table of Contents

CHAPTER 1 INtrOQUCLION. .....ccouriieieeeeecerenecenesneeseseoeesceesesssesssssssnssessesessnsesssssassssnnnns 1
1.1 Background .......c...eeooeoiiienineecctienieestetecssecteessreesan s e es e r e e s an s e s s as e e s e e e 1
1.2 RAtIONAE.........ooeeieeeeeeeeeee et ece s cse e e s eee st esane e s sasesssae sesnsssnssrnaeess e snne s nnas 2
1.3 ODJECHIVES ....covveeeiereereeeiceeeeeesceeeeeseeseresnsesesseessssssses s ss e snesrsressnsessesanassnnasssnnses 4
1.4 StUAY ATEAS .......eoeeieeieeceeeeeeeieeeereeeee s cee e e e satee e cee st ess s nes sess e s ne e m e sness e snae e nnnenas 5
1.4.1 Study ATea L....c.ooieeeieieeiireececceeteetceete e s s e e b srtees e s ne s sn s sennees 6
1.4.2 Study AT 2......cooeeeriieiereerecccoteeeseeceeresisnesissssssess s s eseassssnsesesssnnsssssnnsnunenee 6
1.5 Structure 0f the TheSIS .......cccerrreerirererceiiice et rnieestinnrer e sree s nseesa e e e nne e e 6
1.6 References Cited ...........ccoeoueeerreererecrseaerecieiincercseisinneensresnrensesssseesssessssnsnssnsnssanss 7
CHAPTER 2 Literature ReVIEW ..........cecveeeeecririctiiineiinniciirentecestnres e e snenene e e nneeeas 8
2.1 Soil-Landscape MOodelS .........cocoereeeremrenciiccecctictereneenrcenennr e e e 10
2.2 Role of Digital Elevation Models in the Study of Soil-Landscape Relationships ....... 11
2.2.1 Statistical MOdEIS.........ccoorririiirecieeiecrecccreteceesterese e eee e e nas 13
2.2.2 EXPEIt SYSLEIDS........eurieeurernereenoeesereeeceererssseetssssssssssessisessrnnsesssssnsesssssnsessenes 15
2.2.3 Combined Satellite and Topographic Data............cccccvrurerimnmmrnnrenrecennneneenn. 17
2.3 COonCIUSION .....cciiiiieieieccctttcentt et tse e e e ses s sses s e e e saeeaseasessnsssraneassssssssnnnenes 20
2.4 References Cited .........ccccoriririririiieceeeiiiicieieeeneresarn e eenaesse e s se s ese s nesenans 21
CHAPTER 3 Digital Elevation and Soil Survey Data Compatibility..........cccoervverunrinneen. 24
3.1 Introduction and Background..............cccceceiiiieiemriiinnenennietntiinineeeninrinneeeessneenensenes 24
3.1.1 WHhat i8S SIOPEY ... ceeereeirereieeceeeeeeeeseeesecaeesseneresssssasesssssenssssnsssnsersnssssreses 24
3.1.2 Digital Elevation Data and Other Data Sources........ccc.ccveeeeenreieeneenneeeenennne 25



3.3 MEhOGS......ocoeieecciieciiteeitcen e e e s e es s nes 28

3.3.1 Data CONVEISION ......cccreeeeeeerineeeenicrririestresstessaeeannneasseeesassensasessssassssssessans 28
3.3.2 StUAY ATEES .......ooeeeceieiieieeeeceeeeeseeatetesaeesaeeesesesaesnes s s aene e st s e sesemnasnnens 30
3.3.3 Transect PrOQUCHION.......ccoeceenmeiciiiitiiietecetececccer e eesecse e eneesesmsasnenne 30
3.3.4 Soil Survey Slope Data COnVETSION.........cccceeueeremtrrrerrecerereeesranesmeeeeenseeeaees 31
3.3.5 Slope Boundary Detection ..........ccoccevuiruieminerntirsceeeseeseeennceeeeeraeesaserasesseees 32
3.3.6 Global Slope DIfferences............ccoereeinuiiiiirciiniieneetiesteee s e eceseaneeaee 35
3.4 Results and DiSCUSSION ........cooueirueirmirrirereeeetee ettt sses e 36
3.5 CODCIUSION.......cceieeieeeeeceeeseneeeieecrerneeesatessteseseessnesesma e ssse s nnssasnneasssesensssassssannnes 48
3.6 References Cited ........cccoeoieimeiemerecuictintnnecrteenteseesece et e e seeeseae s e sassasasasnens 49
CHAPTER 4 Soil-Landscape Position Prediction.........c.ccceeeveeeeeeinirnuieneereenenenenneenenne 52
4.1 INTOQUCHON ........eeeeereciiiitieietteestre et ees e et essaen s seessesa s eeessnesestnssnnessnne 52
4.2 ODBJECHIVES ....c.ueereeeeeceeenctecreetenaceseesseessnssssesssntsesssssessesastsssessssesatessasssnssansressasnnrssnes 53
4.3 MEhOGS......cooieeeeenereeeeceetrteeeer ettt et st s eee s sae e em s e s e e et e anenes 53
4.3.1 The Digital Elevation Model ........cccccccoeicimiriiiriccirnceeeersreeeeereereecneennns 53
4.3.2 Depressions Derived from the DEM..........cccccooviiiiiiiiniicricnnceccrreeeeeenae 54
4.3.3 Satellite IMAZETY ......ccoouirceieeireeeneeeetne et ce e e s e e s e s e s seassnesnsvassnes 56
4.3.4 Field VEerifiCatiOn ........cccoeireuremeerccciennirreieeeceeeesreeneeseseeeesesaneessnneessssnsnnan 58
4.4 Results and DiSCUSSION ......ccouuireereceeieiininiiiiitenetteeeeereeeecareresnnseessncesessaneesasnns 59
4.4.1 Augmented DEM Data .........cccooviiiiiminiieniiiieecteneecneeneesnenesve s enenseennenees 66
4.4.2 Proximity of Water to Depressions........ccccoouveereirincceeerccrenceneceesrecreneenenerenns 75
4.4.3 Field VerifiCatiOn ........cocerrereueeerocireceessteeeeessaeessesressnnessesesssseassasessssssassennns 79
4.5 CODCIISION.......c...teiiieecenreeeeeeeeestere s ssat s sae s esseses s eese s saat e s sasaeeesenesaeasnneasasnnen 79

4.6 References CIted .......comn e ieeccreeseeeeeenrssiereeeesssssssrsserssssessassssssssmnnnsssessssssseemsonnnnnns 81



CHAPTER 5 Synthesis and Suggestions for Further Studies .............cccceouevcuevermerenerenee 83

5.1 Suggestions for Further Studies.........ccccceeererneminriniiinneinieinensseeescesreceesneessnnes 85
5.2 References CIted........coueiemiveecerereereeecctececeneinnessseesssesesseesaserasnssesssnesssssssssnene 88
APPENDICES .........oottiercieeieneeseeeatecesosessesestssesesssesastesssessssensssnessossasessonnesssssssessn 89
Appendix I Derivation of equation used for determining significance of generalized

AISLANCE VAIUES. ....eeeneieeceeceeec ettt cece ettt e s es s s s b s 89
Appendix II Text files used to calculate generalized distance (D?) with the GRASS

version 4.1 map calCUIAtoN..........ccoeriiicecee ettt st 90
Appendix III Relationships between the locations of soil survey slope class boundaries and
DEM-derived significant slope breaks along transects in Area | and Area 2.................... 92
Appendix IV Results of the Chi-square test for Area 1 and Area 2................coceureueeneee 102

Appendix V Algorithm for calculating curvature from Pennock et al. (1987) adapted for
use with the GRASS version 4.1 map calculator command. .........ccccceveciricerrecvneencnncen. 104

Appendix VI GRASS version 4.1 commands used throughout this study...................... 105



List of Tables

Table 2.1. Survey intensity level criteria (modified from Coen 1987).......ccccoerrieiennennn. 9
Table 3.1. Location and area of Study Area 1 and Area 2............ccccouvivvineriniccrncnnnes 30
Table 3.2. Slope designations for transect OTENtAtiON. ......ccccceeeueeeeeecrcrercresneeennererorcsens 34

Table 3.3. Proportions of soil survey and DEM slope classes for Area 1 and Area 2. ...... 37

Table 3.4. Percentage of grid cells representing significant slope breaks in each direction

for each soil survey slope class in Study Area L. ......ccooovrieiiiieiciierceceeenee. 45
Table 3.5. Percentage of grid cells representing significant slope breaks in each direction

for each soil survey slope class in Study Area 2. ..........cccovuvinriiniciiniiieniinienenes 45
Table 4.1. Reclassification boundaries for profile and plan curvature classes. .................. 55
Table 4.2. Geometric correction data for each of the LANDSAT TM images. ................ 56
Table 4.3. Threshold values for water for bands 4 and S on each image. ......................... 57

Table 4.4. Cross products of the assumed depression categories calculated using
information from both dates...........ccccceeeeereiiiiniieieereeeerre et et e e eas 58

Table 4.5. Percentages of each soil survey polygon in each curvature category compared
to the percentage of each soil survey polygon described as Gleysols or gleyed
SUDZTOUPS. ..ceecieeeeerueereaesneesiaeeaaarsnnnessseaessesasessesessssensessesosessssssassaessesaranssessessesnannnnn 61

Table 4.6. Comparison of proportions of Gleysols and gleyed subgroups with proportions
of DEM-derived depressions and water and healthy vegetation identified from June
15, 1990 LANDSAT TM satellite imagery. The water and vegetation proportions are
comprised of areas in these classes that are not coincident with DEM-derived
EPTESSIONS. .....ooeeeieireiriereieuerscee e easesntssteessnaeessasessne s ssssae s sasasssnessesnssssssnssseres 68

Table 4.7a. Total number of grid cells representing depressions in each curvature
Lo 1170 o O T 71

Table 4.7b. Total number of grid cells and percentages of depressions in each curvature
class that are characterized by standing water. ............cccocomiiniiinineiinieccennnenee 71

Table 4.7c. Total grid cell counts and percentages of depressions in each curvature class
that are characterized by Vegetation. ..........ccceeecerinmiiiiiminneiiciiiie e 72

Table 4.7d. Grid cell counts and percentages of other depressions in each curvature class
that are not identified by standing water or vegetation. .........c.cceeecereeceeevereescrrcenrcens 72



Table 4.8a. Coincidence of depression grid cells identified as standing water in each
curvature class for June 15, 1990 and August S, 1991.....coverermreiieceeeceeeeeeenee 72

Table 4.8b. Coincidence of standing water grid cells identified from the satellite imagery
that do not occur in depressions for June 15, 1990 and August, 1991. ..................... 73

Table 4.8c. Coincidence for each curvature class of depression grid cells identified by
vegetation on the June 15, 1990 imagery with depression cells identified as standing
water on the August 5, 1991 INAGETY. ..cc..eeeirieeeieriiceeerrtreereeeeceeceeserneaeeee e ennees 73

Table 4.8d. Coincidence for each curvature class of depression grid cells identified as
standing water on the June 15, 1990 imagery with depression grid cells characterized
by vegetation on the August 5, 1991 IMagETY. ....ccccreirmieieiireeccecteeeere e 74

Table 4.8e. Coincidence of depression grid cells identified as healthy vegetation in each
curvature class for June 15, 1990 and August 5, 1991...........eemrieeeeeeeeee 74

Table 4.9. UTM coordinates determined in the field compared to DEM database
coordinates for five corner loCations. ...........ccceeecieeierricerrrtrereeeerneeectee e e e eeeeens 79



List of Figures

Figure 1.1. Sketch map of Alberta with general location of Study Areas indicated by gray
DOttt ettt ettt et s e e et e e 5

Figure 3.1. Sequence of steps for converting original 1:20 000 DEM point data to GRASS
VETSION 4.1 TaStEr OTMAL. .......oouvueeieiereeeeceeeeceeee e 29

Figure 3.2. Thirty random transects for Area 1 slope analysis on classed DEM-derived
slope coverage and corresponding soil survey slope COVETABE. ......evunrumrermnrenreeeerennes 38

Figure 3.3. Thirty random transects for Area 2 slope analysis on classed DEM-derived
slope coverage and corresponding soil survey slope COVETAEE. .....cuunnnnrnnrerrneerreeannne 39

Figure 3.4. Autocorrelation coefficient plotted against lag for eleven randomly selected
transects from AT€a L... ......c.commimiioiieeeecee et 40

Figure 3.5. Autocorrelation coefficient plotted against lag for eleven randomly selected
ransects from ATea 2.. ...t 41

Figure 3.6. Example of the relationships between the locations of soil survey slope class
boundaries and DEM-derived statistically significant slope breaks along two transects
in Area 1. Generalized distance (D?) values greater than the 1% significance line
represent significant slope breaks onthe DEM. .........ccoo.oomovememooooooooo 42

Figure 3.7. Example of the relationships between the locations of soil survey slope class
boundaries and DEM-derived statistically significant slope breaks along two transects
in Area 2. Generalized distance (D?) values greater than the 1% significance line
represent significant slope breaks on the DEM.........cccoovvoeememoomooeoeoooooo 43

Figure 3.8. Grid cells represent statistically significant slope breaks occurring in the north-
south, east-west, or both directions, as identified from the DEM slope coverages for
Area 1 and Area 2. Soil survey slope classes indicated by red letters in
€ACH POLYZOM. ...t 44

Figure 3.9. Differences between soil survey and corresponding DEM-derived slope classes
for Area 1 and Area 2 when DEM slope values were classified into similar classes as
the SOIL SUTVEY. ...ttt e 47

Figure 4.1. Reclassifications of profile and plan curvatures into concave elements. White
areas represent level areas and CODVEXIHES. ...........c.oeeemeeeememeeeeeeeeeoeeeoeeoooo 60

Figure 4.2. Labeled soil survey polygons. Numbers coincide with those listed in Table
A5 ettt esssa s s ses s seRs b et e e et e e ettt e 62



Figure 4.3. Depressions determined from the cross product of DEM-derived profile and
plan curvatures. Cells with blue-green tones and red-yellow tones are more and less
concave in the profile direction, respectively. ........cccccceecininnrenrnnnnnneenieeennnen. 63

Figure 4.4. Scatter plot of the DEM-derived assumed depressions percentages with their
corresponding percentages of Gleysols and gleyed subgroups from the soil survey...64

Figure 4.5. Color composite LANDSAT TM satellite images of the Study Area from June
15, 1990 and August 5, 1991 with histogram equalization. Band 3 = green, Band 4 =
red, Band 5 = DIUE. .....oovuniiieeeeeeeeeeeee e et e sse s 67

Figure 4.6. DEM-derived depression coverage combined with standing water and
vegetation information identified from LANDSAT TM satellite imagery for June 15,
1990 and August 5, 1991...... e eeeecccee e cceneeenestss st s s e anes 70

Figure 4.7. Distance from nearest DEM-derived depression of all grid cells in the Study
Area and of areas identified as standing water on LANDSAT TM imagery for June
15, 1990 and AUgUSE 5, 1991......e et ns e se e et ee e s me s 77

Figure 4.8. Distance in metres from nearest DEM-derived depressions of areas of standing
water determined from LANDSAT TM imagery for June 15, 1990 and August 5,



CHAPTER 1 Introduction

1.1 Background

Soil is an important resource. [t is essential to agricultural food and fibre
production, necessary for natural resource management, and requires consideration in
urban planning. Formation of the soil resource occurs at the interface of the
environmental spheres surrounding it, including the biosphere, lithosphere, atmosphere,
and hydrosphere. As a result, the processes occurring within soils are the same as those
that take place within these spheres. The rate at which these different processes occur is
dependent upon the flow of water and solar energy through the landscape, which in tumn is
a function of topography. Therefore, soil characteristics at various positions in the
landscape, are determined by the rates of these processes.

Soil geography, the way in which soils are associated with the landscape, follows
two somewhat opposing views (Coen 1987). The entity “soil” forms a continuum across
the landscape, but soils may also be thought of as three-dimensional bodies occupying
specific dimensions in the landscape (Coen 1987). Soil classification is based upon the
later view. The conceptual basis for soil classification is the pedon, the smallest three-
dimensional body of soil. Each taxonomic class is typified by the variability enclosed
within the central concept pedon (Soil Classification Working Group 1998). Soil bodies
possessing a range of properties that differ from this central concept are placed into other
taxonomic classes (Coen 1987). The purpose of soil surveys is to capture the
arrangement of these three-dimensional soil bodies on a two-dimensional map (Coen
1987).

In Alberta, information about the distribution of soils is available from the
extensive coverage of soil surveys. Many of these surveys, are mapped on a county basis
at a semi-detailed level and mid-scale, approximately 1:50 000. On the county surveys
available, such as that of the County of Two Hills (Macyk et al. 1985), soils are classified
at the series level according to the Canadian System of Soil Classification (Soil
Classification Working Group 1998). The dominant and subdominant soils within each

polygon are documented as percentages. Although these proportions are given as exact



percentages there is a degree of implied variability associated with them. In addition to
the soils present in each polygon a stoniness class and slope class are often also indicated.
These soil surveys have provided soils information to agricultural professionals,
engineers, and other environmental professionals for many years. However, aside from
block diagrams that may be included in the accompanying reports, this soils information
does not carry with it an indication of the positional arrangement of individual kinds of
soils in the landscape. As a result, the data are not detailed enough for many geographical
information system-based environmental models.

Geographical information systems (GIS) provide digital frameworks for modeling
the environment and managing natural resources. These GIS frameworks allow for
multiple data layers from a variety of sources to be combined in a number of ways. Data
layers may be in either raster or vector format, and have generally been scanned or
digitized from existing paper maps. Polygons are well-suited to vector format, therefore,
soil survey polygons are often digitized to serve as a soils data layer in GIS-based

environmental models.

1.2 Rationale

Digitizing polygons of a semi-detailed soil survey may impose difficulties for a
GIS-based model. Firstly, data structure within geographical information systems is
based upon point locations (Burrough 1986). Lines are made up of a series of points and
areas are comprised of lines. Therefore, digitized soil survey polygons possess loeations,
but the information about the soils within the polygons do not because there is little or no
indication of the positional arrangement of the specific soils. Furthermore, the dominant
and subdominant soils of each polygon are indicated as percentages, which may be
interpreted as the areal extent of each kind of soil in a particular polygon, and/or as the
statistical distribution of each kind of soil based on a relatively small number of sample
points. Each polygon may also contain a certain percentage of inclusions which are soils
that are not specifically documented in a polygon’s notation, but are known to exist in the
landscape. Inclusions may be termed similar, dissimilar, nonlimiting, or limiting (Coen

1987). Similar inclusions have properties within the limits of the dominant soil and do



not require different management practices. Dissimilar soils, on the other hand, have
properties that vary from the dominant soil and generally require different management.
Similar components and some dissimilar components may be considered nonlimiting if
they do not significantly affect the management of the map unit as a whole. Limiting
soils, that are dissimilar require very different management from the dominant soils in the
map unit (Coen 1987). The location of inclusions, especially limiting ones, may be of
importance for modeling certain processes.

In addition to potential problems the digitized soil survey data may cause for GIS-
based modeling purposes, the users may not possess the required knowledge of soil
distribution patterns to properly interpret the data once it is in digital form. These
problems indicate that there is a need for more detailed soil survey data. However,
resurveying the entire province of Alberta is not feasible. Consequently, methods of
enhancing the available soil survey data need to be developed.

Since soil properties are strongly related to topographical position, and vegetation
patterns are influenced by both soil properties and topography, enhancing soil survey data
may be achieved by combining digital elevation and remote sensing data. Digital
elevation models (DEMs) are digital representations of topography (Burrough 1986). In
addition to providing a means of visualizing landscape form, DEMs may also be used to
quantify this form. Various terrain derivatives, such as slope magnitude, aspect, and
curvature, can be calculated from a DEM, thereby allowing the landscape within soil
survey polygons to be characterized.

Digital elevation data coverage is available for the province of Alberta at a scale
of 1:20 000 (Land Information Services Division 1988). The area covered by these
elevation data correspond to the 1:50 000 National Topographic Series map sheets and
are comprised of 25 m x 25 m grid cells. The dimensions of these elevation data make
them relatively compatible with the 30 m pixels of LANDSAT Thematic Mapper (TM)
satellite imagery (Lillesand and Kiefer 1994).

Information about the current land cover of an area can be derived from satellite
imagery. Each pixel of the image is a record of the radiance of the land cover

characteristics for a specific area on the ground. Imagery from the LANDSAT series of



satellites is commonly used for agricultural and environmental applications because these
satellites were launched for the specific purpose of earth observation (Lillesand and
Kiefer 1994). LANDSAT satellites 4 and 5 have onboard thematic mapper (TM) sensors
which collect radiance data in six bands of the electromagnetic spectrum, including: blue,
green, red, near infrared, mid-infrared (2) (Lillesand and Kiefer 1994). The spatial
resolution of these data is 30 m. An additional spectral band collects emitted thermal
infrared energy at a spatial resolution of 120 m (Lillesand and Kiefer 1994).

1.3 Objectives

The primary objective of this study is to explore the possibility of enhancing
existing semi-detailed soil survey data with digital elevation data available for the
province of Alberta, augmented by satellite imagery. These elevation and image data will
be used as provided and will not undergo additional pre-processing. Reaching this
primary objective is very much dependent upon the success of the following individual
steps:
Step 1:
¢ Determine the compatibility, with respect to landscape representation, of the Alberta
1:20 000 digital elevation data and the soil survey information by examining the
coincidence of slope magnitude boundaries.
Step 2:
e Utilize slope curvature to evaluate the utility of the Alberta 1:20 000 digital elevation
data for predicting the landscape position of specific soils, particularly those with wetter
moisture regimes.
Step 3:
e Assess the usefulness of information extracted from LANDSAT TM imagery in
combination with digital elevation data for predicting soil-landscape position by

determining the location of standing water.



1.4 Study Areas
Two areas, each 1024 ha, were chosen for this study. Study Area 1 was used as
the landscape base throughout the entire study, while Study Area 2 was used only for
comparative purposes in the study of Step 1. Both Areas are located in east-central
Alberta within the County of Two Hills (Figure 1.1). The Study Areas are found within
> 120°wW
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Figure 1.1. Sketch map of Alberta with general location of Study Areas indicated by the
gray box.

the Mymam Upland physiographic region, which is predominantly hummocky
disintegration moraine, but contains small areas of glaciofluvial landforms (Pettapiece
1986). Slopes within this region are in the range of 5% to 15% (Pettapiece 1989).

The County of Two Hills is located in the Boreal Forest vegetation region of
Alberta (Macyk et al. 1985). However, much of the native Parkland vegetation patterns

have been altered by agricultural practices.



14.1 Study Areal

The first Study Area is located 18 km east of Two Hills, Alberta at Sec. 5, 6, 7, 8-
T55-R10-W4" in the Rannach Grazing Reserve. Because the Area is part of a grazing
reserve, vegetation consists primarily of native and tame forage, as well as, tree and shrub
species common to the Aspen Parkland (Alberta Agriculture, Food, and Rural
Development date unknown). Slope classes, according to the Two Hills County soil
survey, range from relatively level to quite steep, including: 2-5%, 6-9%, 10-15%, and
16-30% (Macyk et al. 1985). Despite its somewhat complex topography, the pattern of
soils in the area is relatively simple in terms of soil taxonomy and parent geologic
material. Luvisolic soils and their associated Luvic Gleysols cover most of Study Area 1,
with the Orthic and Dark Gray subgroups being most common (Macyk et al. 1985).

1.4.2 Study Area2

The second Area is located at Sec.25, 36-T54-R10-W4™ and Sec. 30, 31-T54-R9-
W4™, approximately 24 km east of the town of Two Hills, Alberta. The percent slopes in
this area range from 6% to 30% (Macyk et al. 1985). Land use within this Study Area is
agricultural, primarily annual crops and rangeland. Therefore, in those fields seeded with
annual crops, vegetation types will tend to be quite variable. Sections of rangeland will
have species similar to those of Study Area 1. Soils within Study Area 2 are Luvisols and
Luvic Gleysols similar to those of Study Area 1 (Macyk et al. 1985).

1.5 Structure of the Thesis

A review of literature on historical soil-landscape models and the use of digital
elevation data for examining soil-landscape relationships further is included in Chapter 2.
Results of the study to determine the degree of landscape compatibility between soil
survey data and Alberta 1:20 000 digital elevation data is in Chapter 3. The study of
using digital elevation data augmented by satellite imagery to predict soil-landscape
position is in Chapter 4. A synthesis of the conclusions and suggestions for further study
is included in Chapter S.



1.6 References Cited

Alberta Agriculture, Food, and Rural Development. date unknown. Grazing reserves:
central region. Alberta Agriculture Food and Rural Development, Edmonton,
Alberta.

Burrough, P.A. 1986. Principles of geographical information systems for land resources
assessment. Oxford: Clarendon Press.

Coen, G.M. (Ed.) 1987. Soil Survey Handbook Volume I. Technical Bulletin No. 1987-
9E, Land Resource Research Centre, Soil Survey, Agriculture Canada, Edmonton,
AB.

Land Information Services Division. 1988. Specifications and procedures manual:
Provincial digital base mapping project. Alberta, Forestry Lands and Wildlife.

Lillesand, T.M. & Kiefer, R.W. 1994. Remote sensing and image interpretation (3rd ed.).
New York: Wiley.

Macyk, T.M., Greenlee, G.M., & Veauvy, C.F. 1985. Soil survey of the County of Two
Hills No. 21. Alberta Soil Survey Report No. 35. Edmonton: Alberta Research
Council.

Pettapiece, W.W. 1986. Physiographic map of Alberta. Ottawa: Land Resources
Research Centre, Research Branch, Agriculture Canada.

Pettapiece, W.W. 1989. Agroecological resource areas of Alberta. Ottawa: Land
Resources Research Centre, Research Branch, Agriculture Canada.

Soil Classification Working Group. 1998. The Canadian system of soil classification.
Agric. and Agri-Food Can. Publ. 1646 (Revised). 187 pp.



CHAPTER 2 Literature Review

Soil surveys provide soils information for a variety of users in agricultural,
engineering, and geological fields. To interpret the information within a soil survey users
must possess knowledge of soil distribution patterns. However, users frequently
misunderstand soil survey techniques, and as a result misinterpret the amount of detail
portrayed. This is of particular concern today, since soil surveys are being digitized and
used as information layers within geographical information systems.

One significant area of misunderstanding is that of map unit homogeneity.
Homogeneity is directly related to map intensity level and scale. As map intensity level
decreases, the complexity of soil units within each delineated area also increases (Coen
1987). Therefore, taxonomic purity is neither possible, nor the mandate of soil survey
(Dent and Young 1981, Miller and McCormack 1979). Instead, each map unit is
homogeneous at its given intensity level with respect to soil distribution patterns, not one
particular kind of soil. Essentially, since soil forms a continuum across the landscape,
map polygons are drawn such that the variability within a polygon is less than that of the
entire landscape (Dent and Young 1981). As the survey intensity level increases, the
amount of detail increases (Table 2.1). Most Alberta county soil surveys are mapped at
intensity level [II. This type of survey is slightly more detailed than a reconnaissance
survey and is generally mapped at scales between 1:20 000 and 1:200 000, with the most
common scale being 1:50 000 (Coen 1987).

To map soils in an area of interest, one must develop a model of soil distribution
in the landscape and use it to predict soil distribution patterns. Therefore, according to
Miller and McCormack (1979) the soil surveyor digs pits to test this working model, not
to find out what kind of soil is in the pit. Several soil-landscape models exist, many of
these are based upon the concept of the toposequence, which focuses on the influence of

topography on differences in soil characteristics.



Table 2.1. Survey intensity level criteria (modified from Coen 1987).

Survey | Common Name | Inspection Intensity | Kinds of Soil | Map Units Scale

Intensity Components

Level
(SIL)

SIL 1 very detailed 2 | inspection per Series or Mainly 1:14 000 or
delineation. phases of simple larger
Boundaries observed | series units
along entire length.

SIL2 detailed = | inspection in 90% | Series or Simple and | 1:5 000 to
of delineations. phases of compound | 1:40 000
Boundaries series units
determined from
remotely sensed data
and verified at
intervals.

SIL3 reconnaissance | > | inspection in Series, Compound | 1:20 000
greater than 60% of | phases of and some to 1:200 000
the delineations. series or simple
Boundaries phases of units
determined from subgroups
remotely sensed data
and verified at some
locations.

SIL4 broad 2 | inspection in Series or Mainly 1:50 000 to

reconnaissance | greater than 30% of | phases of compound | 1:300 000
the delineations. subgroups
Boundaries inferred
from remotely sensed
data.

SIL5 exploratory Mapped by widely Phases of Mainly 1:100 000 or
spaced observations. | subgroups, compound | smaller
Boundaries from great groups
aerial photographs. or orders
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2.1 Soil-Landscape Models

Topography has long been recognized as playing a role in soil development.
Jenny (1941) built on the catena concept introduced by Milne in 1936 by setting forth a
model of five factors for soil formation. Jenny (1941) was the first to specifically propose
topography as one of five soil-forming factors, the others being parent geologic material,
vegetation, climate, and time. In addition to being considered a soil forming factor on its
own, topography also exerts influence upon the climate, vegetation, and parent geologic
material factors. The shape of the landscape controls solar energy and water transfers,
which influence processes of erosion and deposition, as well as, determine the amount
and type of vegetation present. These processes are particularly important with respect to
soil patterns and distribution in the landscape, especially in northern and southern
latitudes (Conacher and Dalrymple 1977, Kachanoski 1988). Several attempts have been
made to solve the soil = f(parent geologic material, topography, vegetation, climate,
time) “equation”. However, these attempts have met with little success. Despite the fact
that the equation of the five soil-forming factors cannot be “solved” mathematically, its
value as a qualitative model of soil genesis and soil-landscape relationships is not by any
means diminished. Jenny’s model of soil formation has had a significant influence on the
study and understanding of soil-landscapes (Smeck et al. 1983).

A variety of approaches may be taken to classify any given landscape into its
components, or landform elements. The term “landform’ may have both morphometric
and genetic connotations associated with it. Many landscape classification systems, as
they relate to soil distribution, are based upon the catena concept which centers around
the premise that soils in a sequence change with respect to topographic position, varying
drainage conditions, and landsurface history (Ruhe 1960). The history of the land surface
includes both physiography and the geomorphic evolution of the landscape. Thus, the
term catena is often used interchangeably with toposequence and chronosequence.

Landform elements are distinguishable on the basis of their form, however, in
most cases a spatial position is also implied. The terms used to describe landform
elements are quite similar, but the methods used to arrive at the definitions for each of

these terms may differ quite substantially. Speight (1968) parametrically arrived at the
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definitions of seven landform elements by using slope magnitude, downslope- and across-
slope curvature, and unit catchment area. Five units, including summit, shoulder,
backslope, footslope, and toeslope were delimited using slope gradient and curvature by
Ruhe and Walker (1968). In an earlier study, Ruhe (1960) designated only four elements:
upland, pediment backslope, pediment footslope, and alluvial toeslope. The technique
used to determine these elements was not documented. Although related to the catena
concept, a slightly different approach was taken by Dan and Yaalon (1968). The
pedomorphic form of soil individuals were genetically and evolutionarily interrelated to
their positions along a pedomorphic surface. The characteristics exhibited by the soils
indicated their maturity and were related to the ongoing drainage and erosion/deposition
processes (Dan and Yaalon 1968). Conacher and Dalrymple’s (1977) nine-unit
landsurface model also uses the catena concept , but expanded it to include process-
response elements, which were defined with respect to the intensities and combinations of
processes occurring along a catena. Thus, the nine-unit land surface model is similar to

the pedomorphic forms of Dan and Yaalon (1968).

2.2 Role of Digital Elevation Models in the Study of Soil-Landscape Relationships

The potential of digital elevation models (DEMs) for studying and understanding
soil-landscape relationships is being realized. Digital elevation models are digital
representations of the land surface (Burrough 1986). They may be either in vector or
raster format, with the latter being most common because map calculations and
topographic attributes are more easily calculated. Elevation data for DEM generation
may be obtained through primary or secondary methods. Primary DEMs are produced
from elevations measured directly in the field, and are often more accurate than their
secondary counterparts (Chang and Tsai 1991). The accuracy of primary DEMs is in part
dependent upon whether the data points selected represent significant landscape features,
such as slope breaks and ridgelines (Carter 1988). Secondary DEMs are derived from
digitizing topographic contours and subsequently, interpolating elevation values (Chang
and Tsai 1991). The interpolation process, though, often results in DEMs with elevations
biased towards that of the contours (Moore et al. 1993b).
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Digital elevation models provide a method of calculating terrain attributes that
previously needed to be measured in the field, including, slope magnitude, slope aspect,
and curvature. These attributes may be combined using various techniques and
algorithms to automatically delineate landform elements. Pennock et al. (1987) used
profile curvature, plan curvature, and slope gradient to delineate seven landform
elements. Profile curvature formed the basis for this classification, while plan curvature
was used to subdivide the elements further into convergent and divergent units. A slope
gradient was included to separate backslopes from level areas. MacMillan and Pettapiece
(1997) initially applied the method of Pennock ez al. (1987) to their S m DEM, but found
that it did not successfully segment the landscape for the purpose of soil-landscape
studies. Instead, MacMillan and Pettapiece (1997) segmented the landscape into four
generalized units on the basis of relative relief and slope gradient.

Terrain position may be determined without calculating terrain attributes.
Skidmore (1990) used an algorithm that calculated the valley and ridge cells of a DEM by
considering the number of cells within a 3 x 3 moving kernel with elevations lower or
higher than the centre cell. The relative terrain position of cells that were neither ridges,
nor valleys was calculated mathematically by dividing the Euclidean distance to the
nearest valley by the sum of the Euclidean distance to the nearest valley and the
Euclidean distance to the nearest ridge. Landscape position names were allocated to
ranges of the resulting values.

Terrain attributes from DEMs can also be statistically combined using methods
common to image classification. Six terrain attributes calculated from a DEM were
classified by using an isodata clustering algorithm and maximum likelihood classifier
(Irvin et al. 1995). This unsupervised classification provided information regarding
significant landform features and also differentiated features with different slope aspects.
However, because the clustering algorithm only assigns each grid cell to a single class,
transition zone information may be lost. Therefore, a continuous classification was also
applied to the terrain attributes. This type of classification allows for partial membership
of a grid cell in more than one class (Irvin et al. 1995). Therefore, it can provide more

complete information about a landscape than the unsupervised classification.



13

The advent of DEMs and geographical information systems has, thus allowed the
study of soil-landscape relationships to continue on a more detailed level. Studies relating
to the quantification of soil-landscape relationships have been conducted primarily using
one of three methods: statistical, expert systems, or combination of these with remotely

sensed data.

2.2.1 Statistical Models

Both terrain and soil attributes exhibit patterns of spatial variability and specific
relationships between these spatial patterns are known to exist. Models of soil genesis,
such as the catena concept and five soil forming factors, take these spatial relationships
into account in a qualitative manner. Because DEMs allow for efficient calculation of
topographic parameters, including those that are not easily estimated in the field, there
have been attempts to use these DEM-derived parameters in conjunction with soil .
attributes to quantify soil-landscape relationships. Primary terrain attributes considered
basic for landscape characterization include slope magnitude, aspect, and plan and profile
curvature (Pennock et al. 1987, Moore et al. 1993a, and Bell et al. 1994). In addition to
these attributes are those relating to water movement, such as specific catchment area,
maximum flow path length, flow direction and drainage path (Moore et al. 1993a, Bell et
al. 1994). Secondary attributes derived from combinations of primary terrain attributes,
describe water and sediment transport processes (Moore et al. 1993a). Since water plays
an important role in soil development, secondary terrain attributes may assist in
explaining soil spatial variability (Moore et al. 1993a, Bell et al. 1994). The primary
method of quantification of these soil-landscape relationships has been through statistical
techniques (Pennock, et al. 1987, Moore, et al. 1993a, Bell, et al. 1994, and Odeh, et al.
1994).

Multi-linear regression is the most common technique being employed to
statistically quantify soil-landscape relationships. Individual regressions of each soil
attribute with each terrain attribute are followed by step-wise linear regression to produce
the “best” combination of terrain attributes for explaining variation in a soil characteristic

(Pennock et al. 1987, Moore et al. 1993a, Bell et al. 1994). For a particular soil
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parameter, the “best™ combination will ultimately depend upon the terrain attributes
considered initially. Both Moore et al. (1993a) and Bell et al. (1994) considered terrain
attributes relating to water flow within the landscape. As a result, wetness index and
depression proximity index explained 51% (Bell et al. 1994) of the variation in A horizon
thickness, whereas wetness index and slope explained 50% (Moore et al. 1993a). The
wetness index is defined as the natural log of the specific catchment area divided by the
tangent of the slope angle in degrees (Moore et al. 1993a). Depression proximity index is
equivalent to the elevation above the nearest drainage path divided by the horizontal
distance to the nearest drainage path all multiplied by 100 (Bell ez al. 1994). Less of the
variation in A horizon thickness is accounted for by primary variables alone. Only 39%
of this variability is accounted for by plan curvature, slope gradient, and local catchment
area (Pennock er al. 1987). Since both multiple and individual regression analyses
explained very little of the soil attribute variability, Pennock et al. (1987) concluded that
soil-landscape relationships are insufficiently described by regression techniques.
Although Pennock et al. (1987), Moore et al. (1993a) and Bell et al. (1994) conducted
their studies in North America, the drier Saskatchewan climate (Pennock et al. 1987)
compared to the more humid Minnesota and Colorado climates (Bell et al. 1994, Moore
et al. 1993), may have had an effect on the results obtained. However, Pennock et al.
(1987) only considered water movement in the landscape in an indirect manner by
including plan curvature in the analyses. Odeh et al. (1994), on the other hand,
determined that multi-linear regression is in fact more precise than the geostatistical
interpolation techniques of ordinary and universal kriging and cokriging for predicting
such variables as depth of solum, depth to bedrock, and topsoil gravel.

The premise that the range of soil attribute values in a mapping unit is primarily a
function of terrain may be the basis for deriving enhanced soil attribute maps (Moore et
al. 1993a). By further assuming that the relationship between soil and terrain attributes is
linear, a soil attribute at a particular point may be predicted based on a weighting
coefficient and the maximum and minimum soil and terrain attribute values for a map
unit (Moore et al. 1993a). Soil attribute values would be obtained from a soil survey and
terrain variable values would be acquired from the DEM. This particular method,
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however, is dependent upon obtaining realistic values to describe the range of the soil
attributes (Moore et al. 1993a).

Using DEM-derived terrain attributes to produce enhanced soil attribute maps is
not necessarily comparable to producing enhanced soil surveys. Each map unit of an
intensity level III soil survey contains proportions of dominant and subdominant soils.
These soils are classified at the series level according to the Canadian System of Soil
Classification (Soil Classification Working Group 1998). The soil series is the most
specific level of classification in the Canadian System, and therefore, carries with it all
the criteria of the preceding levels, including the Family, Subgroup, Great Group, and
Order. Classification at the most generalized level, or Order, is based upon diagnostic
horizons. Although the attributes included within the regression analysis do not
necessarily correspond with, or relate to properties of diagnostic horizons, from a
management point of view, the degree of expression of a particular soil property may be
all that is required to predict the location of different soils. However, if the above results
are to be used as indicators of the relationships between DEM terrain attributes and soil
attributes, then they are only as good as the DEM used in the study. Researchers will use
DEMs that have been generated by different means and possessing varying resolutions.
Also, the quantification of soil-landscape relationships is largely dependent upon which
parameters are included in the model. Therefore, the regression analysis still requires a
degree of tacit knowledge with respect to the terrain and soil attributes to include in the
analysis. Regression analysis in this manner will only be effective for those soil
parameters that are definitely correlated with landscape position. Because expert systems
capture the tacit knowledge of experts and combine it with landscape information, they
may prove more useful in predicting the position of kinds of soils in the landscape.

2.2.2 Expert Systems

Expert systems are an automatic method of applying the knowledge of experts.
The construction of an expert system centers upon establishing a rule base. Each rule
consists of the probability of a certain property occurring given a particular question
(Skidmore et al. 1991). These probabilities are determined by a person possessing the
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appropriate background knowledge (Skidmore er al. 1991). The overall likelihood that a
particular event will occur is a function of the probabilities of the properties involved. As
a result, the event that has the highest overall probability is considered the most likely to
occur. Once the rule base is established, the process of assigning the most probable event
is automatic.

The soil survey reports and maps at the intensity levels and scales in Alberta do
not contain specific information regarding the landscape position of each named soil.
Consequently, users must possess the necessary background knowledge to determine a
soil’s most likely position (MacMillan and Pettapiece 1997). Because the expert system
approach is based upon capturing expert knowledge, it lends itself to the automatic
assignment of soils to their respective landscape positions. Prior to allocating soils to
their landscape position, meaningful landform elements must be defined. This may be
achieved through the consideration of various terrain attributes derived from a DEM
(Pennock et al. 1987, Skidmore 1990, Irvin et al. 1995) or through field observation
(MacLeod et al. 1995).

The rule base of expert systems dealing with soil-landscape relationships is
comprised of a combination of soil attributes which correlate with landscape position
(MacMillan & Pettapiece 1997). In this respect, expert systems pertaining to soil-
landscape relationships, and the statistical techniques mentioned previously, are similar.
However, the soil attributes used in the statistical techniques are those which are
specifically measurable, such as A-horizon thickness, or depth to carbonates. The-soil
attributes employed in the expert system of MacMillan and Pettapiece (1997) are those
which are grouped into classes, and relate to the taxonomic classification of soils, such as
drainage class, salinity class, and soil variant. These soil attributes are assigned
probabilities of occurring on each of the determined landform elements. The relative
overall likelihood of a particular soil occurring on a particular landform element is
determined by the arithmetic mean of the individual probabilities of each of the soil
attributes in the rule base (MacMillan and Pettapiece 1997). Soils are allocated to their
most likely landscape position by considering the proportion of the landscape occupied by
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each of the defined landform elements and the proportion of the landscape occupied by
each soil (MacMillan and Pettapiece 1997).

While MacMillan and Pettapiece (1997) used an expert system to assign kinds of
soils to their most likely landscape positions, Skidmore et al. (1991) used an expert
system to determine which soil-landscape unit was most likely to occur in a particular
location in the forest. Therefore, in the case of Skidmore et al. (1991) the soil-landscape
units were established. The rule base included attributes pertaining to topographic
position, wetness index, slope, and forest overstorey.

The approach taken by MacLeod et al. (1995) is similar to that of an expert
system, but does not strictly meet the definition. A soil-landscape model was initially
developed using field data to delineate land components, land elements, and soil classes.
In this particular area, microtopography plays an important role in distinguishing between
land components (MacLeod et al. 1995). When the DEM form of the model was
compared to the derived soil-landscape model from the field, it was observed that
necessary distinctions between land components that are distinguished on the basis of
microtopography were absent (MacLeod et al. 1995). The DEM was able to
automatically detect ridge crests, steep slopes, hilly slopes and flats (MacLeod et al.
1995). However, it is unclear if the landform detection was the result of a morphometric
analysis. Soil classes were assigned based on the dominant soil class in each of the DEM
land components. Tacit knowledge was required to determine the areal extent of actual
land components in each of the DEM land components (MacLeod ez al. 1995).

2.2.3 Combined Satellite and Topographic Data

Satellite imagery may be used in conjunction with topographic data for soil-
related applications. Providing there are no clouds at the time of imaging, satellite
imagery, such as that provided by LANDSAT or SPOT, gives up-to-date information
regarding land cover. The radiance recorded by the satellite sensors is determined by
ground characteristics, such as, amount and kind of vegetation, amount and color of
exposed soil, and moisture content. These characteristics vary from location to location

and on a broad scale are influenced by the climate of an area.
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Analogue LANDSAT MSS data were used as the basis of a soil mapping project
in India (Singh and Dwivedi 1986). Initially, the imagery was used to delineate general
units based on lithology. When topographic information was overlaid on the image,
physiographic units were recognized. The units delineated on these two data sets
provided a generalized legend for the resulting soil map. With the help of field
observations, the original units were subdivided based on land characteristics that were
evident on the imagery, such as land use and drainage patterns. The soils of the
physiographic units were evaluated during field visits for the purpose of mapping.
Although the procedure used by Singh and Dwivedi (1986) was not automated, the
concept is the same as those of similar projects which have employed GIS.

A similar soil mapping exercise was conducted by Liengsakul et al. (1993).
However, in this project, satellite data and data from existing maps were integrated within
a GIS. Terrain mapping units were used as the basis for the preparation of the soil map.
These terrain mapping units, or TMUs, were quite similar to the combined lithological
and physiographical units determined by Singh and Dwivedi (1986). Each TMU was a
cross product of lithological units and those characteristics relating to physiography,
including, slope and elevation classes, and landforms (Liengsakul ez al. 1993). As with
Singh and Dwivedi (1986) field observations were used to characterize the soils in each
TMU.

Both Singh and Dwivedi (1986) and Liengsakul ez al. (1993) approached the
problem of soil mapping by combining separate data layers. However, Lee et al. (1988)
and Su et al. (1989) approached the soil mapping process by integrating the topographic
and satellite data. By doing so, image processing techniques could be applied to both
types of data as a whole. They determined that combining the data during classification
was the most appropriate and assessed the accuracy of two approaches. Their layered
approach, which incorporated unsupervised classification was insufficiently accurate (Lee
et al. 1988). A logical channel approach, whereby elevation data and attributes derived
from these data are included as additional “bands” for classification was more useful (Lee
et al. 1988).
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Unsupervised classification was performed on the combined TM, slope, and
elevation data on the premise that natural groupings would be more likely to emerge than
with supervised classification (Lee et al. 1988). The TM data used were absolute
radiance ratio transformed images. Detailed soil units visible on a rasterized soil map
were not distinguishable on the classified image (Lee ez al. 1988). The classes were
subsequently redefined and grouped together into larger meaningful units. To do so, the
spectral mean of each class was plotted against elevation and the classes were merged
based upon their relative distance in this space (Lee et al. 1988).

Geng et al. (1998) used unsupervised classification to separate land cover types in
a boreal wetland ecosystem. Several combinations of LANDSAT TM image bands 2, 4,
and 7 and topographic data were classified. Although the classification results were not
significantly different from each other, the addition of band ratio 4/2 and slope provided
an indication of the spatial location of specific land cover classes and was recommended
for boreal wetland classification.

Classifying combined imagery and topographic data using a supervised approach,
on the other hand, allows for redefinition of classes during the training stage instead of
after classification is complete. For example, Su et al. (1989) found that lower
separations among lowland soil map units in a first training stage necessitated redefining
those units into a single lowland map unit.

Su et al. (1989) also used the greatest average transformed divergences to
determine optimal two, three, four, and five band combinations for classification.
Transformed divergence is a measure of the statistical separability of classes. A larger
divergence value generally' means greater statistical separability between classes and
better classification results (Lillesand and Kiefer 1994). With TM data, bands 4 and 5 in
combination with elevation, slope and aspect resulted in the largest transformed
divergence value. The overall accuracy of the classification results from this particular
band combination was 55%, when compared with a standard soil survey of the area.
SPOT bands 1, 2, and 3 used in combination with elevation and slope, produced an
overall accuracy of 57%, whereas a similar Landsat TM band combination (2,3,4,

elevation, and slope) resulted in 53% accuracy. The small difference in accuracy between
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the two images may be attributed to the fact that the SPOT imagery had to be resampled
to 30 m. Thus, a degree of soil information could have been lost (Su ez al. 1989).

Both Lee et al. (1988) and Su et al. (1989) agree that classification with respect to
soil information was better achieved using a combination of both satellite imagery and
topographical data as opposed to using imagery alone. This is to be expected since soils
are classified and identified based upon the physical, morphological, or chemical
characteristics of their horizons, and not on surface spectral characteristics.

2.3 Conclusion

The process behind soil mapping is often misunderstood by the users of soil
surveys because there is little or no information about the specific distribution of soils in
the landscape within each soil polygon. The distribution of various soils in the landscape
is generally a function of topographical position. Therefore, by providing a way of
visually representing the landscape, a framework for depicting the landscape position of
various soils may be developed. Digital elevation models provide the basis of this
framework. Generally, the use of DEMs for soil applications has followed one of three
techniques: statistical analyses, expert systems, or a combination of topographical data
with satellite imagery. The statistical techniques focus primarily on relating various soil
characteristics with terrain attributes that are efficiently calculated from a DEM. While
useful for a single soil attribute, this technique will not necessarily work well for soils
considered as whole entities and classified taxonomically. Also, the technique is only as
good as the terrain attributes considered. Although expert systems also use combinations
of soil attributes, those taken into consideration may be ones that relate to soil
classification. Because the idea behind an expert system is to capture the knowledge of
experts, this method might be more applicable for assigning soils to their most likely
landscape position. The information provided by DEMs for soil landscape position
assignment may be augmented by satellite imagery. With respect to soils-related
applications, combined topographic and satellite data have generally been used for
creating soil maps. However, if soil maps can be created using elevation and satellite

data, then potential exists for these data to be used to enhance existing soil maps.
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CHAPTER 3 Digital Elevation and Soil Survey Data Compatibility

3.1 Introduction and Background

Topography influences the kinds and rates of biological, chemical, and physical
processes occurring at different locations in the landscape (Blaszczynski 1997).
Therefore, by understanding landscape patterns, we attain a better understanding and, to
some extent, an ability to predict these ecosystem processes (Pike 1988, Swanson et al.
1988). Because digital elevation models (DEMs) are digital representations of altitude,
they provide a means for continued study and perhaps further understanding of landscape
complexity (Burrough 1986). They may be combined with other data sets within a
geographical information system (GIS) to create an information framework for a
particular landscape. However, when using digital elevation data in conjunction with
other data sets, such as a soil survey, it becomes necessary to quantify the relationship
between the two. This is particularly important in cases where the digital elevation data
will be used to enhance the detail of the soil survey, as in this study. The relationship, or
compatibility, of two data sets may be determined using a parameter common to both. In
this study, slope magnitude was chosen as the basis for evaluating DEM and soil survey
compatibility, since slope may be easily calculated from digital elevation data in a GIS,

and each soil survey polygon contains a slope class.

3.1.1 What is Slope?

The term slope may be defined in two ways, both of which relate to the ground
surface. The first definition considers slope as a unit on the ground surface which, in
combination with other units, forms a landform. Slope may also be defined as the
inclination of the ground surface (Strahler 1956). In the latter case, slope is the first
derivative of elevation, or the rate of change of elevation (Pike 1988). In this study, slope
refers to the inclination of the land surface. It is recognized that the slope values derived
from the DEM will be different from those documented in the soil survey, primarily
because they are determined using significantly dissimilar methods. Slope values
determined using DEM data are derived for each cell using either a method of finite
differences, or a least squares fitted polynomial (Burrough 1986). Therefore, these slopes



25

are quantitative in nature. The slope class reported for each polygon of the soil survey, on
the other hand, is determined by the surveyor based on the pattern of the landscape.
Therefore, these slope classes are included as descriptors of the pattern within each
polygon. Consequently, the landscape within each polygon may include slopes that are
steeper or shallower than the reported class, resulting in a description of slope that is
qualitative in nature. Soil survey slope class intervals are not equal, and the class range
becomes wider as the slopes become steeper. For example, the 2-5% class covers a range
of 3%, whereas the 16-30% class covers a range of 15%. This variation in the slope
classes is a result of two factors. The first of these is that as the landscape becomes more
complex, the soil surveyor’s ability to distinguish more detailed slope classes is
diminished. Secondly, more emphasis is placed upon relatively level areas of the
landscape because historically soil survey information was primarily for agricultural
purposes (Coen 1973).

3.1.2 Digital Elevation Data and Other Data Sources

Both Niemann (1988) and Schmid-McGibbon (1993) recognized disagreement
between slope data derived from a DEM and those data from other information sources.
In a comparison of DEM-derived slopes with those from a physical land classification
map, Niemann (1988) discovered that DEM-derived slopes exhibited a higher degree of
variability in areas that were assigned steeper slope classes on the land classification map.
The difference was attributed to the high degree of generalization in the physical land
classification map. Although several reasons were given for the level of generalization,
Niemann (1988) failed to point out that disparity in the values may be due to the different
means of determining slope. These different methods of determining slope relate directly
to the definition of slope implied in each data set. In the DEM, slope is the inclination of
the land surface for a single grid cell, whereas in the soil survey, slope refers to the
general trend of the landscape within an entire polygon.

Similarly, the definition of landform surface expression affects the extent of
agreement between DEM-derived landform units and those delineated on soil survey and
surficial geology maps (Schmid-McGibbon 1993). The subjectivity of the interpreter
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which is dependent on one’s expertise and judgment, as well as, source data quality are
additional reasons for data set incompatibility (Schmid-McGibbon 1993). The former
reason relates directly to differences in slope values between DEM data and soil survey
data.

Representation of slope as extracted from digital elevation data will vary
depending on several factors related to the DEM, including: method of generation, source
data and presentation scale, along with the technique used to calculate slope (Chang and
Tsai 1991). Generally, those DEMs generated using measurements obtained directly
from the field are more accurate than those produced by interpolating elevation values
from digitized topographic contours (Chang and Tsai 1991). Poor accuracies in slope
angle maps may be caused by the coarse resolution of the original data source (Walsh et
al. 1987). Digitizing points at 60 m intervals further generalized the small scale
topographic map that was used as a source of elevation in a study by Walsh et al. (1987).
Additional inaccuracies were incurred when the data were aggregated into grid cells.

Chang and Tsai (1991) used DEMs of varying grid cell sizes to analyze the effect
of resolution on slope and aspect mapping. Grid cell sizes ranged from 8 m to 80 m. The
8 m and 20 m were surveyed directly using a stereoplotting system, while the 40 m, 60 m,
and 80 m grids were resampled from the 20 m grid. Larger grid cell sizes resulted in a
decrease in the standard deviation and mean of slope values, a result Carter (1990) stated
should be expected. MacMillan and Pettapiece (1997) illustrated the effect of grid cell
size by resampling a S m grid to 10 m, 20 m, 50 m and 100 m grid cells. Although
resampling may show the correct trend of generalization that is occurring in the data, it is
not a true representation of a change in grid cell size. Resampling a DEM is equivalent to
resampling a satellite image. Each cell contains information gathered at a particular
scale, which may be referred to as the “information scale”. Changing the dimensions of
the cells of an image does not change the information scale, instead it alters the scale at
which this information is presented, or the “presentation scale”. The algorithms available
for assigning values to the newly resampled grid cells are numerous and vary

considerably. Therefore, significantly different results may be produced depending on the
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algorithm used (Moore ez al. 1993). Neither MacMillan and Pettapiece (1997), nor
Chang and Tsai (1991) indicate the resampling algorithm used in their research.

A more reliable approach to determining the effects of grid cell size was carried
out by Hammer ez al. (1995). Slope maps generated from DEMs with 10 m and 30 m
grid cell sizes were compared with field measurements. Both DEMs were produced
separately. According to Hammer et al. (1995), slope maps with 10 m grid cells more
accurately depicted the variability in the landscape than the 30 m slope map, however this
was only achieved after two iterations of a low pass filter. Low pass filters maintain low
frequency variation, while removing high frequency variation (Lillesand and Kiefer
1994). As a result of filtering, the value assigned to each cell is a function of the values
of its neighboring cells, which in effect, decreases the image scale (Moore et al. 1993).
Therefore, the grid cells are 10 m, but the values they contain represent a coarser scale.
Depending on the topography of the study area, low pass filtering either improved or did
not improve the classification of areas into correct or adjacent slope classes on the 30 m
slope maps (Hammer et al. 1995). Slope maps derived from these 30 m data tended to
overestimate all slope classes except the steepest. Overestimation was particularly
prevalent on concavities, whereas underestimation was common on convexities. Bolstad
and Stowe (1994) determined that the opposite was true of USGS (United States
Geological Survey) 30 m data. In this case, larger errors in slope were associated with
steeper slopes. However, in the area studied, the steeper slopes were forested which
would have created difficulties in stereo correlation (Bolstad and Stowe 1994).

Hammer ez al. (1995) concluded that slope class maps generated from 10m DEMs
may be potentially useful for mapping soil surveys. In an earlier study, Klingebiel e al.
(1987) used slope-, aspect-, and elevation-class maps derived from USGS 30 m digital
elevation data in the premap stage of soil survey production. Verification of these maps
using randomly selected sites in the field resulted in “sufficiently accurate” information to
be used in soil surveys. However, the term “sufficient accuracy” is quite vague and does
not define the parameters considered accurate for the purpose.

The different results obtained by various researchers indicates that the degree to
which DEMs accurately represent the landscape is dependent upon factors pertaining to
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the landscape and DEM. Therefore, it is necessary to evaluate the suitability of a DEM
for a particular landscape.

3.2 Objectives

The goal of this study is to investigate the use of digital elevation data and their
derivatives for predicting soil distribution patterns, which would subsequently be used to
enhance existing soil survey data. To ensure these two data sets are compatible, it
becomes necessary to quantify the relationship between them, by considering a landscape
parameter common to both. In this case, slope magnitude is an appropriate parameter.
This part of the study is not meant to be a comparison of the two data sets, since the
methods of determining slope for each vary significantly. Rather, the objective is to
ascertain the degree of similarity between the slope distribution patterns portrayed by the
DEM and the soil survey. Meeting this objective is accomplished using the following
three approaches:
1. Examine the coincidence along random transects of statistically determined slope
breaks from the DEM with soil survey slope boundaries
2. Apply the statistical technique to the entire Study Area
3. Examine the slope magnitude distribution for the DEM and soil survey using simple

map calculations.

3.3 Methods
3.3.1 Data Conversion

The analyses for this study were conducted using the Geographical Resources
Analysis Support System (GRASS) version 4.1 geographical information system
(USACERL 1993), in the Spatial Information Systems Laboratory, Department of
Renewable Resources, University of Alberta. Alberta 1:20 000 digital elevation data
comprised of 25 m grid cells was used as the elevation database (Land Information
Services Division 1988). These data are in point (x,y,z) coordinate form and need to be
converted to raster form within GRASS before being usable. Figure 3.1 illustrates the
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Extract point data from original file and convert it to Product: text file

a GRASS site_list file for area of interest

y
Remove irregular data i.e. those points notin 25 m
increments

Ensure the extraction process was successful by
verifying the minimum and maximum castings and
northings

!

Reorder file to display from top to bottom

Convert sites file to a raster formatted file Product: text file

Add header to text box

l

Convert ASCII text file to binary with
r.in.ascii in GRASS4.1

Display product Product: raster file

Figure 3.1. Sequence of steps for converting original 1:20 000 DEM point data to GRASS
version 4.1 raster format.
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steps required to convert the point data to raster data within GRASS. The data were not
pre-processed further.

3.3.2 Study Areas

Two Study Areas were chosen for this investigation. The first of these Areas is
located in the Rannach Grazing Reserve east of Two Hills, Alberta. It was selected from
the soil survey based on its relatively high landscape complexity, but rather simple soil
distribution in terms of parent geologic material and catenary relationships. With respect
to this Area, landscape complexity refers to the presence of polygons covering slope
classes ranging from relatively level to quite steep, including: 2-5%, 6-9%, 10-15%, and
16-30%. The second Area was selected from the 73E1 INW DEM map sheet on the basis
of landscape complexity as it appeared on the DEM. This Area is also located within the
County of Two Hills.

Table 3.1. Location and area of Study Area 1 and Area 2.

Areal Area 2
Legal Location Sec. S, 6, 7, 8-T55-R10- Sec 25, 36-T54-R10-W4"
wa® & Sec. 30, 31-T54-R9-
w4t

UTM Coordinates 467712.5 5954962.5 476662.5 5951737.5
Northwest corner

UTM Coordinates 470937.5 5951737.5 479912.5 5948512.5
Southeast comer

Area 1024 ha 1024 ha

The elevation data for both Areas were extracted using the procedure in Figure 3.1.
Easting and northing coordinates for the boundaries of each Area were measured from the
1:50 000 National Topographic Series sheet 73E/11 Mymam, Alberta.

3.3.3 Transect Production

Since slope classes in the soil survey are reported as percent, the study was
conducted using percent slope. From the elevation data, a DEM representing percent
slope was created in GRASS. Slope in GRASS is determined using a fitted polynomial



31

algorithm and a 3 x 3 kernel, which is convolved through the data set (USACERL 1993).
“Edge effects™ occur due to the convolution process because no elevation data are present
beyond the edges of the data set. Consequently, the resulting slope model is one cell
smaller on all sides than the original data set.

Sixty random point locations were automatically selected on the slope coverage to
represent the end points of 30 transects. Although randomly generated, the point
locations required further randomization because they were arranged according to their
easting location. Therefore, each two consecutive points would produce an horizontal
line. The purpose, however, was to have transects randomly placed in all directions
throughout the entire Study Area. To achieve this, random numbers from 1 to 60 were
generated in a Microsoft EXCEL spreadsheet and pasted into the point file list. By
numerically sorting the random numbers, the points became randomized. The 30
transects produced were used for analysis.

Within the suite of raster commands in GRASS is one which returns the category
values of each cell along a line or transect. This command, r.profile (Appendix VI), was
used to return the category values along each of the 30 transects. The resulting ASCII file
was imported into an EXCEL spreadsheet. Each category value in the file was greater
than the percent slope value by 1%. Therefore, one (1) was subtracted from each value to
give the actual percent slope. '

3.3.4 Soil Survey Slope Data Conversion

Polygons from the published County of Two Hills soil survey (Macyk et al. 1985)
for both Study Areas were digitized. The areas were registered to the digital elevation
models using the UTM coordinate system. Polygons were labeled with respect to the
slope class documented in the soil survey. Once all the polygons were labeled with their
slope classes (3 = 2-5%, 4 = 6-9%, 5 = 10-15%, 6 = 16-30%), the file was converted from
vector format to raster format. The same procedure for recording the values along the

transects was followed as with the slope values in the DEM data set.
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3.3.5 Slope Boundary Detection

Soil boundary detection from transect data has been examined primarily by
Webster and Wong (1969), Webster (1973), and (1978), but also by Nash and Daugherty
(1990). The boundary seeking technique used by these researchers generally follows the
procedure set forth by Webster and Wong (1969). This method, referred to as the split
moving window (SMW), employs 2 moving 1 x » window, whereby the top half of the
window is considered one sample and the bottom half a second sample. Therefore, n
must be an even number so as to divide the window in half equally. Differences among
these researchers centers primarily on the statistical variable calculated within the
window. Student’s t-test (¢), Mahalanobis’ generalized distance (D?), and squared-
Euclidean distance (SED) have been used for boundary detection (Webster and Wong
1969, Webster 1973, and Nash and Daugherty 1990). As the window moves along the
transect, a statistical variable is calculated considering each half of the window as a
separate sample. Boundaries along the transect are indicated by large ¢, D?, or SED
values and represent areas of significant change in the data. A boundary is assumed to
occur at the center of the window. However, the actual point that the boundary occurs
cannot be specifically determined because two cells occupy the center of the window.
Since the grid cells of the DEM used in this particular study are 25 m, the detected
boundary would be somewhere within 50 m. This moving window technique is in fact a
one-dimensional filter. Detecting boundaries with two-dimensional filters is quite
common in remote sensing applications. As an example, El-Sawaf (1997) used various
filters on LANDSAT satellite data to automatically detect field boundaries.

Hawkins and Merriam (1973) employed a slightly different technique for
boundary detection. While still maintaining that a boundary occurs at the point where
within-class variance is least, the transect is considered in its entirety. The transect is
subsequently divided into the number of sections that meet the minimum-variance
criterion.

The principal behind Webster’s (1973) research was applied to the slope data of
the DEM used in this study. The generalized distance (DY equation, listed as follows,
was chosen as the method of boundary detection.
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Dz - (Yl - YZ )2
50 +5,]
Where: X, and X, are the means of the values within the upper
and lower halves of the moving window, respectively
s; and s; are the variances for the upper and lower halves

of the moving window, respectively
Essentially, generalized distance is the Student’s ¢-test squared. It pools the variances

from each half of the window, thus when one variance is equal to zero, the denominator is
not zero.

The size of the 1 x n window is important. If the window is too small, the data
will be noisy and the actual boundary will be difficult to detect. If the window is too
large, more than one boundary will be contained in one window and will also be missed
(Webster 1973, 1978). Autocorrelation was used to determine the optimal window size.
According to Davis (1986), data series that are comprised of 50 or more measurements
are best for determining autocorrelation because as lag increases, the number of values
included in the correlation calculation decreases. Ideally, the series of measurements
should be infinitely long, so that the number of measurements included in the calculation
is also infinite, thereby calculating correlation based on a relatively consistent number of
values. Thus, data series with more measurements provide correlation results that may be
considered more reliable. Also, the number of lags for which the autocorrelation is
calculated should not exceed n/4, where n is the number of values in the data series
(Davis 1986).

Autocorrelation was performed on a random sample of transects each of which
was comprised of greater than or equal to S0 DEM slope values. By only considering
those transects with 50 or more values, ten of the original 30 transects in Area | were
eliminated from the analysis. Based on this criterion, eleven of the transects in Area 2
were eliminated from analysis. Each transect was oriented in one of four directions: east-
west, north-south, northeast-southwest, northwest-southeast. To obtain a representative
random sample, it was deemed necessary that the sample contain transects oriented in all

four directions. To determine the direction of orientation of each line, the slope (rise/run)
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was calculated using the easting and northing coordinates of each end point. The
following table illustrates the slope designations for each orientation.

Table 3.2. Slope designations for transect orientation.

Orientation __| Line Slope Values | Equivalent Degrees
North-South 47t0<& -4.T7to< | 78 t0o 90

East-West 0.21 to (-0.21) 12 to (-12)
Northeast- 4.71t00.21 78t0 12

Southwest

Northwest- -4.7 to (-0.21) -78 to (-12)
Southeast

Eleven of the remaining transects were randomly chosen for autocorrelation, by selecting
half of the number of transects from each orientation. In instances where the number of
total transects in an orientation was an odd number, the closest larger number of transects
was chosen, for example, if the total number of transects was equal to five, then three
transects were randomly chosen. A total of four, six, five, and five transects fell into
north-south, east-west, northeast-southwest, and northwest-southeast orientations,
respectively for Area 1, while a total of five, three, five, and six transects fell into the
same orientations for Area 2.

Generalized distance (D?) was calculated for the transects with 50 or more
observations. The D? values for each transect were plotted with the median values of the
soil survey slope classes along the same transect to determine if any of the documented
slope breaks occurred in the same place. However, some of the D’ values were infinite,
since the denominator was zero. Infinite values represented boundaries only if the
numerator was unequal to zero. In this instance, the cell was assigned a value 2.5 times
greater than the largest D? value along the transect. If both numerator and denominator
were equal to zero, the cell was assigned a value of zero because no difference existed
between the two halves of the window. A 1% significance line was also plotted on each
transect graph. The value for 1% significance is based on the critical level of ¢ for 2n-2
degrees of freedom. In this instance, » refers to the number of cells in half of the 1 x n
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window. The critical value for a significance of 1% was determined as being > 1/37,
which is equal to the value 3.29. Derivation of this equation is included in Appendix L.

To further examine the pattern of slope change, the one-dimensional moving
window was applied to both study areas in their entirety. Since the slope coverages are
one cell smaller than the original DEM around the perimeter, a new region was set to
remove these zero-value cells from the calculation. In the first pass, the eight grid cell
window was applied to each column, thereby giving the generalized distance for each cell
in the vertical, or north-south direction. The second pass of the moving window
calculated generalized distance for each cell in the horizontal, or east-west direction. The
actual text files containing the steps for calculating both the horizontal and vertical
generalized distance are in (Appendix II). These text files were used in conjunction with
the map calculator in GRASS to create the coverages. Each horizontal and vertical
generalized distance map was reclassed into those grid cells which had generalized
distance values that were significant at the 1% level and those that were not. Unlike the
transect data, control over the value given to undefined values was not possible.
Therefore, some grid cells may be labeled as being significant, when in fact they are not.
The reclassed horizontal and vertical generalized distance maps for each Study Area were
added together using the map calculator, resulting in a final map that displayed grid cells
which were significant in both the horizontal and vertical directions, as well, as those
which were significant in only one of the two directions. Significance refers to

significant change in slope.

3.3.6 Global Slope Differences

The generalized distance calculations give a very specific “picture” of the changes
in slope on the slope coverages, but they do not indicate how the slope values derived
from the DEM vary from the soil survey slope classes. Thus, to investigate this further,
the slope values from the DEM were classified into classes with limits similar to those of
the soil survey. Slope values for Area | ranged from 0 to 23% and were divided into
classes with the following limits: 0-1%, 2-5%, 6-9%, 10-15%, and 16-30%. Area 2 slope
values ranged from 0 to 39% and were classified into the same class limits as for Area 1,
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with the addition of a 31-45% class. A report of the areal extent of each class for both
areas was generated for the classed slope map and the soil survey slope map. To illustrate
the difference between the distribution of DEM slope classes and those of the soil survey,
the classed DEM slope maps were subtracted from their respective soil survey slope
maps. Reports of the areal extents of each class difference were generated.

3.4 Results and Discussion

Autocorrelation was performed on eleven transects from both Areas 1 (Figure 3.2)
and 2 (Figure 3.3). The results of the autocorrelation were plotted against lag for each of
these transects (Figures 3.4 and 3.5). At a lag of approximately eight cells, the pattern of
autocorrelation values changes. Since a window that is too small will not provide
meaningful results, eight cells, which is equivalent to 200 m on the DEM, was visually
determined from these graphs as being the optimal window length for both Study Areas.

The split moving window technique detects local boundaries. When applied to
entire Study Areas, local boundaries are found on a global scale. With respect to the
transects (Figure 3.2 and 3.3), very little agreement occurs between the boundaries
detected from the DEM data and the polygon boundaries of the soil survey (Figures 3.6
and 3.7 and Appendix III). For example, a peak in the generalized distance values does
not often occur in the same place as a change in the soil survey slope line (Figure 3.6).
This is especially true for Area 2. Three factors accounting for the disparity must be
noted. First and foremost, errors within the elevation surface will influence the number
of slope breaks detected. However, since there is limited documentation on the specifics
of error generation in this elevation data it is impossible to determine for certain degree to
which it affected the results. With respect to the generalized distance values in Figures
3.6 and 3.7, the noise below the 1% significance line may in fact be artifacts of the DEM.
Second, because the results of the split moving window are based on the slope values of
eight grid cells, significant changes in slope will be recorded whenever the center of the
window is situated in a “valley” or on top of a hill. Thus, the window is detecting local
changes in slope. Significant slope changes delineated on a soil survey, on the other

hand, are determined using a global technique; albeit one that is subjective. In the case of
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a soil survey, the lay of the land is more important than individual slope gradients.
Therefore, significant change in the slope of the landscape in general dictates a change
significant enough to draw a new polygon.

In Study Area 2, a third factor responsible for fewer coincident boundaries, is that very
few soil survey slope boundaries exist. The majority of Study Area 2 (92.26%) falls into
two slope classes, 10-15% and 16-30% (Table 3.3).

Table 3.3. Proportions of soil survey and DEM slope classes for Area | and Area 2.

Area 1l Area 2
Slope Class | Soil Survey | DEM (%) | Soil Survey | DEM (%)
(%) (%)
0-1% 0 17.78 0 8.51
2-5% 11.15 67.35 0 61.43
6-9% 61.58 10.91 1.74 24.15
10-15% 15.93 3.58 48.87 54.97
16-30% 11.34 0.37 43.39 0.90
31-45% 0 0 0 00.04

Another method of determining the compatibility of the pattern of DEM-derived
slopes with the soil survey slope classes involved applying the split moving window to
the entire area. Figure 3.8 illustrates those grid cells which represent significant slope
breaks in the north-south direction, east-west direction and in both directions (NS + EW)
for Study Areas 1 and 2, respectively. The soil survey polygons are overlaid on these
coverages. A relationship between the number of these slope breaks and the soil survey
slope class appears to exist. Polygons designated 2-5% slope have a fewer number of
slope breaks than those designated 16-30% slope. This relationship is more visually
evident on Study Area 1, but less so on Study Area 2, probably because of the presence of
fewer different slope classes in Area 2. The chi-square test (xz) was used to determine if
a relationship actually existed. The observed value was the number of slope breaks in the
north-south, east-west, and both directions for each soil survey slope class. The expected
value was a percentage of the total number of slope breaks equal to the areal extent of the
soil survey slope class in the Study Area (Table 3.4).
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Figure 3.6. Example of the relationships between the locations of soil survey slope class
boundaries and DEM-derived statistically significant slope breaks along two
transects in Area 1. Generalized distance (D”) values greater than the 1%
significance line represent significant slope breaks on the DEM.
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Figure 3.7. Example of the relationships between the locations of soil survey slope class
boundaries and DEM-derived statistically significant slope breaks along two
transects in Area 2. Generalized distance (D?) values greater than the 1%
significance line represent significant slope breaks on the DEM.
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For example, the 2-5% slope class occupied 11.2% of Study Area 1 (Table 3.3), thus
11.2% of the total number of slope breaks was considered the expected value. If the x>
value is not significant, then the slope breaks are randomly distributed and do not cluster
in any particular area. For Study Area 1, the ¥? value is significant at the 1% level for the
slope breaks in the north-south, east-west directions, both directions and a total of all
slope breaks (Table 3.4 and Appendix IV)). Slope breaks in Study Area 1 tend to cluster
in the 10-15% slope class and the 16-30% slope class.

Table 3.4. Percentage of grid cells representing significant slope breaks in each direction
for each soil survey slope class in Study Area 1.

Soil Survey No Data North- East- North-South
Slope Class South West & East West
2-5% 85.6 5.2 7.7 1.5
6-9% 83.2 8.0 7.0 1.9
10-15% 80.3 10.4 7.6 1.7
16-30% 70.4 11.1 13.4 5.0

Study Area 2, on the other hand, produced very different results. The % values
were significant at 1% only for grid cells that represented slope breaks in both directions
and for total grid cells, but were not significant for grid cells that represented in the east-
west or north-south oriented slope breaks (Table 3.5 and Appendix [V). However, it
must be noted that as with the transect data, anomalies within the DEM could influence
the number of slope breaks detected.

Table 3.5. Percentage of grid cells representing significant slope breaks in each direction
for each soil survey slope class in Study Area 2.

Soil Survey | No Data | North-South | East-West | North-South
Slope Class & East West
6-9% 82.2 8.9 7.9 1.0
10-15% 81.7 8.0 9.0 1.2
16-30% 79.2 8.8 9.6 2.4

Differences between the two Areas and the relationships of their DEM-derived
slopes with those of the soil survey may be attributed to landscape complexity and its
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definition. The term “landscape complexity™ is rather ambiguous, since it can be
interpreted in many ways and refer to various spatial scales. Both Study Areas 1 and 2
may be considered topographically complex, but in ways that are distinct from each other.
Area | is complex in that it contains several slope classes, thus, there are areas of steep
and relatively flat slopes. Area 2 only contains three slope classes, but the majority of
this Area is occupied by two slope classes, 10-15% and 16-30%. These steeper slope
classes often indicate inherent complexity, or a large amount of variability within a small
area. This is particularly true of Study Area 2 (Table 3.3). The relationship between the
number of slope breaks per unit area and the soil survey slope class is not as apparent as
in Study Area 1. Consequently, it is much easier to observe differences when comparing
the number of slope breaks in a polygon labeled 2-5% with one labeled 16-30% than in
the comparison of a polygon labeled 10-15% with one labeled 16-30%. Landscape
complexity is ultimately related to topographic grain. Since topographic grain is the
distance between landscape peaks and valleys (Pike 1989), it relates to slope length,
which is associated with landscape complexity. This is evidenced further when the
DEM-derived slopes are compared to the soil survey slopes on a class-by-class basis.

Figure 3.9 illustrates the difference between the soil survey slope classes and the
DEM-derived slope classes. White regions represent areas that have the same slope class
on both slope maps. Most of the DEM slope classes in Area 1 differ from those of the
soil survey by one or two classes. The proportions of soil survey and DEM slope classes
are listed in Table 3.3. On Figure 3.9, one class comprises the grid cells with soil survey
slope classes that are one, two, and three classes less than those of the DEM, since each
of these differences contain fewer than 20 cells.

Subtraction of the two slope maps for Area 2 produces results unlike those of
Area 1 (Figure 3.9). Very little of the Area falls within the same slope class on both
maps. Instead, for a majority of the Area the difference between the two maps is two or
three classes. The distribution patterns of these category differences varies substantially
from that of Area 1.

Generally, the DEM generated slope values are less than their corresponding soil

survey slope classes and the disparity between the two increases as the slope class
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increases. Therefore, in an absolute sense the values of the DEM are

underestimated. However, the absolute values are not as important as the pattern of slope
they represent.

3.5 Conclusion

The extent to which a DEM accurately portrays a landscape is dependent on many
factors, including: the source of the DEM, its data resolution and the presentation
resolution of the DEM, as well as the surfacing algorithm used. When DEMs are
generated using contour maps they are essentially an estimation of an already
approximate representation of the topographic surface (Carter 1988). Slopes derived
from the DEM are generally underestimated compared to those of the soil survey.
However, the pattern of slope breaks from the DEM and thus, landscape representation,
relates well to that of the soil survey particularly for Area 1. Relationships between the
slope patterns determined from the DEM and those of the soil survey are not as evident
for Area 2. Landscape complexity, therefore, plays a determining role in the degree to
which DEM-derived slopes correspond to slope classes documented in a soil survey.

The transect approach is inappropriate for assessing compatibility between the
DEM and soil survey slope boundaries, since individual slope breaks instead of landscape
boundaries are detected on the DEM. The second approach, applying the statistical
boundary detection technique to the Study Area in its entirety, is more useful because the
relationship between the pattern of slope breaks and soil survey slope class becomes
evident. However, since anomalies within the DEM can affect the pattern of slope breaks
detected, and artifact information is unavailable for the Alberta 1:20 000 digital elevation
data, an analysis to determine the data’s quality would be beneficial.
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CHAPTER 4 Soil-Landscape Position Prediction

4.1 Introduction

Hummocky disintegration moraine, a series of “knob” and “kettle” formations, is
a common landform found throughout the prairies. The *“kettles” are depressions which
form intermittent or permanent wetlands throughout the landscape (Best and Moore
1979), which are often characterized by soils of the Gleysolic Order. Gleysolic soils
feature characteristics that are indicative of periodic reducing conditions during soil
development. Reducing conditions are a result of saturation due to slow water recharge
or groundwater discharge. However, these soils may be associated with various moisture
regimes ranging from aqueous to aquic to no longer being saturated for extended periods
(Soil Classification Working Group 1998). According to the County of Two Hills soil
survey (Macyk et al. 1985), Gleysolic soils occupy between 20% and 40% of each of the
polygons within the Study Area.

Locating the depressions within the landscape provides a potential basis for
assigning the soils to their most probable landscape position. Since digital elevation
models are digital representations of topography (Burrough 1986), they allow for
calculation of terrain attributes, including slope magnitude, slope aspect, énd curvature.
The specific topographic information provided by these attributes would permit the
identification of topographic lows and depressions and potential areas of Gleysolic soils.
However, since not all depressions in the landscape are wet, useful information regarding
those depressions that are, may be provided by remotely sensed data.

Satellite imagery has been used for inventory and subsequent monitoring of the
permanent and intermittent prairie wetlands, primarily because of their significance as
wildlife habitat and ground water regulators (Best and Moore 1979). Studies initially
used LANDSAT Multispectral Scanner (MSS) imagery, specifically band 7 (0.8-1.1um),
to identify and morphometrically characterize prairie lakes and wetlands (Best and Moore
1979, Gilmer et al. 1980). Best and Moore (1979) employed photographic enhancement
techniques, whereas, Gilmer ez al. (1980) delineated wetlands on the LANDSAT data and
then made adjustments using high resolution aircraft data. More recent studies have
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focused on delineating wetlands using supervised classification and a combination of
LANDSAT TM bands 7, 2, 4 (Hewitt 1990), or bands 3, 4, and 5 (Yi et al. 1994).
Johnston and Barson (1993) took a different approach to wetland inventory and
classification using LANDSAT TM imagery. Instead of supervised classification, a
threshold technique was applied to band S of multitemporal images to determine the
location and extent of wet areas. This technique provided a simple method for
delineating wetlands.

The above mentioned research efforts concentrated on locating areas characterized
by standing water. However, the same spectral bands and methods may be employed to
assess regional soil moisture conditions. Shih and Jordan (1992) determined principal
landuse classes by classifying bands 2, 3, and 5 of a LANDSAT Thematic Mapper (TM)
image. Band 7 was separated into four “albedo groups” that corresponded to qualitative
moisture conditions which were subsequently overlain on the landuse classes. The results
provided an indication of the soil moisture distribution within each landuse class.
Therefore, satellite imagery may be used to determine parameters and features associated

with moisture in the landscape.

4.2 Objectives
Since depressions in the landscape often possess dissimilar soils with moisture

regimes that require different management from upland areas, the objective of this study
was to first locate depressions in the landscape using terrain derivatives calculated from a
digital elevation model. This topographic information would be subsequently augmented
with information derived from LANDSAT TM satellite imagery regarding the moisture
status of the depressions.

4.3 Methods
4.3.1 The Digital Elevation Model

Alberta 1:20 000 digital elevation data comprised of 25 m grid cells were used as
the elevation database (Land Information Services Division 1988). These data were used

as provided by the Land Information Services Division and were not pre-processed.
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4.3.2 Depressions Derived from the DEM

The concave curvature of depressions enables them to trap and hold water.
Curvature is the second derivative of elevation and indicates the degree of convexity, or
concavity of landscape facets (Burrough 1986). Therefore, it was considered to be an
indicator of potential depressional areas. Geographical Resource Analysis Support
System (GRASS) GIS (USACERL 1993), however, does not have within its suite of
commands one for calculating curvature. To overcome this problem, the curvature
portion of the algorithm set forth by Pennock et al. (1987), which included both plan and
profile curvature, was adapted for use in the GRASS raster map calculator (Appendix V).

Profile curvature is the degree of convexity or concavity parallel to the direction
of the slope. It affects water flow and sediment transport (Moore et al. 1993a). Water
tends to slow down, or pool in areas that are concave. Plan curvature, on the other hand,
is the convexity or concavity perpendicular to the direction of the slope. It determines
whether water flow down a particular slope will be convergent or divergent. Thus, plan
curvature is a measure of the concentration of water in the landscape (Moore et al. 1993a)
Water flow will be convergent in areas of concave plan curvature.

The 1024 ha Study Area is located east of the town of Two Hills, Alberta within
the Rannach Grazing Reserve. Because the Area is part of a grazing reserve, vegetation
consists mainly of native and tame forage, as well as, tree and shrub species common to
the Aspen Parkland, such as trembling aspen (Populus tremuloides), balsam poplar
(Populus balsamifera), wild rose (Rosa acicularis), saskatoon berry (dmelanchier
alnifolia), chokecherry (Prunus virginiana), snowberry (Symphoricarpos albus) and
willow (Salix spp.) (Alberta Agriculture Food and Rural Development date unknown).
According to the Two Hills County soil survey, slope classes range from relatively level
to quite steep (Macyk et al. 1985). Most of the Study Area’s soils are Luvisolic and their
associated Luvic Gleysols (Macyk et al. 1985).

Profile and plan curvature were calculated and reclassed to extract only the
concave information within the Study Area (Table 4.1). Positive and negative values
refer to convex and concave curvatures, respectively. The reclassification boundaries and

the name of each class were based on the curvature classification of Young (1972).
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Table 4.1. Reclassification boundaries for profile and plan curvature classes.

Profile curvature Plan curvature Label
(degrees of (degrees of
slope/100 m) slope/100 m)
-500 thru -100 -1261 thru -100 markedly concave
-99 thru -10 -99 thru -10 moderately concave
-9 thru -1 -9 thru -1 slightly concave
0 thru 100 0 thru 1461 level and convexities

A cross product of the two reclassed curvature coverages was created using the
command r.cross (Appendix VI). Six curvature categories, including:
moderately/markedly (I), moderately/moderately (II), moderately/slightly (IIT),
slightly/markedly (IV), slightly/moderately (V), and slightly/slightly (VI) were considered
to represent depressional areas. Although the slightly/markedly and slightly/moderately
classes are not greatly concave in the profile direction, the significant concavity in the
plan direction indicates water will converge in these areas. The slightly/slightly category
was included in the analyses because of the resolution of the DEM data. Water may, in
fact, pool in the slightly/slightly concave areas because the 25 m grid cells of the DEM
cover such a large area. The six categories were used as a mask to create the final
depressions coverage, and proportions of the soil survey polygons occupied by these
depression locations was determined. These proportions were compared to the
proportions of Gleysols and gleyed subgroups within each soil survey polygon and the
differences were tested for significance by applying the sign test. A regression analysis
was also performed to determine if the two data sets exhibited the same pattern of results.

The sign test is often used as a quick substitute for the z-test, particularly when the
variances are known to be unequal, as in the present case (Snedecor and Cochran 1980).
Significance is determined by considering the number of observations with positive and
negative signs. If the two data sets are not significantly different, then the observation is
equally likely to have either a positive, or a negative sign. The following equation is used

to calculate a corrected z-value (z.) for determining significance:
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z.=(Rr—n-1)/n

Where: r = number of positively-signed observations
n = total number of observations

4.3.3 Satellite Imagery

LANDSAT TM images from June 15, 1990 and August 5, 1991 were chosen for
analyses because they relate temporally to the aerial photographs available for the Study
Area, and they depict the landscape at wetter and drier times of any given year,
respectively. These images are part of a collection of archived images used for research
activities in the Spatial Information Systems Laboratory, University of Alberta.
Consequently, they had been previously geometrically corrected and resampled to 25 m
using cubic convolution. The following table lists the number of ground control points
(GCPs) used for each image correction and the residual errors in the x and y directions
(Crown et al. 1994). The geometrically corrected image data were used without
additional radiometric processing.

Table 4.2. Geometric correction data for each of the LANDSAT TM images.

June 15, 1990 | August S, 1991
# GCPs 20 15
Residual error (x) | 0.39 0.21
Residual error (y) | 0.39 0.37

All image analyses were conducted using PCI image processing software version
6.0 (PCI Inc. 1996). The depressions coverage from GRASS was imported into the PCI
image database and manually registered to the image.

LANDSAT TM bands 4 (0.76-0.90um) and 5 (1.55-1.75um) of the June 15, 1990
and August 5, 1991 scenes were segmented into two classes using threshold values.
These bands are both within the infrared portion of the spectrum. Since water strongly
absorbs infrared energy, it will appear dark-toned on band 4 and S images. However, in
the near infrared portion of the spectrum vegetation is strongly reflective and appears

lighter-toned on an image. The lighter tones of vegetation on band 4 imagery provide a
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backdrop for delineating the darker water bodies. Relative reflectance in band S is
inversely proportional to the water content of vegetation and soil (Lillesand and Kiefer
1994). Therefore, vegetation with higher water contents often exhibit darker image tones
on band 5 imagery. Consequently, information concerning moister areas in the landscape
may be derived from an analysis of a combination of band 4 and 5 images.

The technique of gray level thresholding was used to establish the location of
areas of standing water. This landscape feature was of interest because it was most likely
to occur in depressional areas.

Thresholding is an image processing technique that segments the gray level values
of the image (Lillesand and Kiefer 1994). Those values above the threshold fall into one
class, while those below fall into another class. With respect to using this technique to
locate on the image areas of standing water, the threshold boundary is set such that the
pixels are either “wet”, or “not wet”.

Spot checks of water bodies and dugouts identified on aerial photographs from
July 10, 1991 were used to determine the threshold values of open water for the two
infrared bands (Table 4.3).

Table 4.3. Threshold values for water for bands 4 and 5 on each image.

June 15,1990 | August 5, 1991

Band4 | Oto 80 0to 65

BandS | Oto85 0 to 90

Areas considered to be standing water were represented by those pixels with
values below the threshold value for both TM bands. These data were added to the
depression coverage to determine the coincidence of wet areas identified on the satellite
image with depressional areas calculated from the DEM. A second class emerged as a
result of the thresholding procedure. It included large areas of contiguous pixels with
values that fell below the band $ threshold, but above the band 4 threshold. Because of
these relative reflectance values, it was hypothesized that this class represented vegetation
associated with saturated depressions. Since vegetation located within and around the

perimeter of saturated depressions is markedly different from surrounding areas, if large
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enough, these depressions should be discernible on satellite imagery. Depressions in the
Study Area were often characterized by willows, aspen, and sedges. Generally, these
depressions also exhibited signs of spring saturation. However, there were depressions in
the landscape that did not show signs of saturation. The vegetation within these
depressions was not significantly different from surrounding pasture vegetation. The
relationship of the identified vegetation class with the DEM-derived depressions was
explored further.

Within GRASS, masks were used to create the following raster layers for both
June and August data: depressions characterized by standing water, standing water areas
that do not coincide with depressions, other depressions, and vegetation in depressions.
Generally, since more precipitation is received in June than in August, it may be assumed
that a larger number of depressions would be wet in June than in August. To further
investigate this assumption, several comparisons of depressional features on the two dates

were made using the ».cross command in GRASS (Table 4.4).

Table 4.4. Cross products of the assumed depression categories calculated using
information from both dates.

June 15, 1990

August §, 1991

standing water depressions standing water depressions
standing water areas that are standing water areas that are
not depressions not depressions

vegetation depressions vegetation depressions

vegetation areas that are not in
depressions

vegetation areas that are not in
depressions

other depressions

other depressions

4.3.4 Field Verification

The success of overlay analyses is dependent upon proper data registration. In
this case, the DEM depressions coverage was manually registered to two separate satellite
image files, which were used to identify depressions characterized by standing water
and/or vegetation. Since these final overlay products were compared directly to each

other, some assurance of proper registration was required.
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To verify the data registration, a hand-held Garmin 45 global positioning system
(GPS) (Garmin Corp. 1994) unit was used. Ten UTM (NAD 27) position readings were
recorded for five comer locations of the Study Area, two of which were section and
quarter section corners. For each location, the difference between the average of the ten

position readings and its corresponding database location was calculated.

4.4 Results and Discussion

Although the DEM adequately represents the degree of landscape complexity
connoted by information on the soil survey (Chapter 3), different results are obtained
when examining the DEM for a specific landscape position. Depressional areas were
considered to be a basis for ascertaining the position of soils in the landscape. To identify
these areas on the DEM, a combination of profile and plan curvature was employed
(Figure 4.1). One might assume that the more strongly concave areas would correspond
to areas of Gleysolic soils because they would be most likely to possess standing water.
However, this is not the case here, since the proportions of moderately/markedly (I) and
moderately/moderately (II) depressions are quite small compared to the proportions of
Gleysols and gleyed subgroups from the soil survey. For example, these two depression
categories represent only 3.0% of polygon #5 (Table 4.5, Figures 4.2 and 4.3); a value
that is less than the corresponding proportion of Gleysols. These proportions were
substantially increased when the six curvature categories were taken into account (Table
4.5).

For each soil survey polygon, there is a difference between the proportions of
Gleysols and gleyed subgroups and the corresponding percentages of depressions (Table
4.5). The sign test was applied to determine the difference between these two data sets.
The resulting sign test two-tailed z. value of 2.74, was significant at the 0.05 level.
Consequently, these two data sets are significantly different from one another. A very
low level of correlation exists between the two data sets (R2 =0.0298) (Figure 4.4).
Thus, the two data sets do not exhibit the same pattern of distribution, i.e. larger
percentages of Gleysolic soils in a polygon are not necessarily associated with larger

proportions of DEM-derived depressions.
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Table 4.5. Percentages of each soil survey polygon in each curvature category compared
to the percentage of each soil survey polygon described as Gleysols or gleyed

subgroups.

Curvature Soil Survey

Classes
Polygon I o I v \'% VI Total Gleysols,

# gleyed
subgroups

1 0 0 0] 187 3.7 0 224 40
2 0 0 0 9.7 12.9 0 22.6 20
3 08] 23 0 6.2 6.2 0.8 16.3 30
4 0f 0.1 0] 12.8 5.1 0 18.0 30
5 15] 15 0] 109 8.3 0.6 22.7 40
6 0 0 0 3.9 10.3 0 14.1 40
7 0.7 0.7 0} 136 6.4 0 21.5 30
8 36| 42 0.5 6.6 7.5 0.1 225 30
9 05] 29 0] 109 6.4 0.3 21.0 30-40
10 0.7] 1.8 0f 123 7.5 0.2 22.4 30
11 03] 0.3 0| 103 6.5 0 17.4 30
12 0.1] 0.9 0 9.2 6.2 0 16.5 30
13 04| 04 0.1} 119 6.5 0.1 19.5 40
14 0 0 0 9.3 6.7 0 16.0 30
15 0 0 0 4.4 8.0 0 124 0
16 3.0] 22 0.4 4.3 7.9 0.4 18.1 30
17 1.3] 25 0{ 10.6 7.9 0.6 228 30
18 1.1 0 0f 16.0 10.2 0 273 40
19 0.1 0 0] 110 7.5 0 18.6 40
20 03] 03 0§ 143 5.9 0 21.0 0
21 04| 0.3 0 143 6.1 0.1 21.1 30
22 27] 2.2 03] 133 6.8 0.1 254 40
23 16 2.1 0} 16.1 2.6 0.5 22.8 40
24 0 0 0 1.8 5.4 0 7.3 30
25 50] 3.3 0] 14.1 8.3 0 30.6 30
26 241 0.8 0 7.3 5.7 0 16.3 30
27 26] 1.9 0 84 8.3 0.2 214 30
28 8.7] 44 0 4.4 8.7 0 26.1 0
29 0 04 0] 15.1 5.2 0 20.7 0
30 0 0 0 6.9 5.6 0 12.5 0
Curvature Classes:
I Moderately/markedly
I Moderately/moderately
I Moderately/slightly
v Slightly/markedly
\" Slightly/moderately
VI Slightly/slightly
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Figure 4.2. Labeled soil survey polygons. Numbers coincide with those listed in Table 4.5.
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Figure 4.3. Depressions determined from the cross product of DEM-derived profile
and plan curvatures. Cells with blue-green tones and red-yellow tones are more

and less concave in the profile direction. respectively.
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Figure 4.4. Scatter plot of the DEM-derived assumed depressions percentages with their
corresponding percentages of Gleysols and gleyed subgroups from the soil
survey.

Three factors may have attributed to the lack of correspondence between the
DEM-derived depressions and the soil survey proportions of Gleysols and gleyed
subgroups. These factors include: the method of calculating curvature, nature of the
DEM, and the percentages of Gleysols and gleyed subgroups on the soil survey. The first
two factors are interrelated. Each terrain derivative, including plan and profile curvature,
is calculated by manipulating the coefficients of the least squares equation that forms the
second-order trend surface (Pennock et al. 1987). This trend surface is fitted to the
elevation values within a moving 3 x 3 kernel (Pennock et al. 1987). Because they are
based on least-squares which minimize the variance within data, trend surfaces do not
necessarily fit the data exactly (Zevenbergen and Thomne 1987). Therefore, the
calculation may not capture the full range of curvatures present within the elevation data.
This is possibly the reason why Pennock et al. (1987) only classified their curvature data
into the very broad curvature classes of linear, concave, and convex. To locate
depressional areas within a landscape, a more detailed classification of curvature was
required. It is possible that because this algorithm is based upon a trend surface,
classifying the resulting data into more specific classes is beyond the data’s capabilities.
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The plan and profile curvature calculations were carried out using a 3 x 3 kernel.
The dimensions of this kernel remain fixed. Therefore, each cell received a curvature
value based upon its eight neighbouring cells. The fixed nature of the kernel allows for
little flexibility with respect to the complexity of the landscape under consideration. Asa
result, calculated landscape parameters will not necessarily exhibit the general trends
necessary for visual interpretation (Dillworth et al. 1994). This particular drawback was
recognized by Pennock et al. (1994). In an earlier paper, Pennock et al. (1987) used
terrain derivative to segment a landscape into landform elements, but the isolated and
somewhat scattered distribution of certain elements made interpretation and further
analyses difficult. To solve this problem, Pennock et al. (1994) developed algorithms to
amalgamate the elements into larger complexes.

In addition to limitations that may be intrinsic to the input data because of the
algorithm, errors may also have been introduced from the framework (GRASS) in which
it was calculated. The curvature algorithms were adapted for use with the r.mapcalc
(Appendix VI) map calculator in GRASS. GRASS allows for floating point values
within calculations, but will only return integers as results. Therefore, decimal numbers
are truncated, for example, a value of 0.5 becomes 0. The calculations were performed in
several steps (Appendix V), each of which resulted in values between zero and one. To
produce integer results, each step required multiplying by a factor of 10. These
modifications might have introduced rounding errors in the curvature values.

The nature of the DEM, its resolution and generation method, is a second factor
that may contribute to the lack of correlation between the two data sets. The grid cells of
the DEM are 25 m x 25 m and cover an area of 625 m’. Consequently, a great deal of
landscape variation can occur in such a large area and many smaller depressional areas
could be located within each cell. These depressional areas would escape detection
because of the resolution of the DEM.

Curvature values are particularly sensitive to errors present within the elevation
surface because curvature is a second derivative of elevation (Moore et al. 1993b).
Digital elevation data that have been interpolated from contours, such as the Alberta
1:20 000 data (Land Information Services Division 1988), will tend to be biased toward
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contour elevations where the data are concentrated (Moore ez al. 1993b). As a result,
curvature coverages may appear wavy (Moore ef al. 1993). Therefore, some of the
detected depressions may not exist in nature, but were artifacts of the DEM, while others
might have missed detection.

Finally, the proportions of depressions determined from the DEM may not be
directly comparable to proportions of Gleysolic soils and gleyed subgroups on the soil
survey, despite the fact that Gleysolic soils are associated with depressions in the
landscape (Soil Classification Working Group 1998). The problem lies with the soil
survey proportions and what they represent. The mapping of semi-detailed soil surveys is
dependent upon photo-interpretation of landscape units based upon relief and parent
materials. These units will correspond to the relative proportions of the different kinds of
soils present (Dent and Young 1981). On the other hand, the proportions may be
considered to be based upon the distribution of soils represented by the sample points
observed during survey. Although an indication of areal extent exists in each of these
situations, the variation implied in the soil survey proportions makes direct comparisons

with DEM-derived depression proportions problematic.

4.4.1 Augmented DEM Data

Since the elevation data alone may not provide sufficient information regarding
the location of Gleysolic and gleyed subgroup soils, satellite imagery was employed. The
imagery (Figure 4.5) served to augment the DEM-derived data by providing information
about areas of standing water and vegetation associated with depressions.

Proportions of DEM-derived depressions were combined with proportions of
standing water and vegetation identified from the June 15, 1990 LANDSAT TM image.
These percentages were compared to the proportions of Gleysols and gleyed subgroups
for each soil survey polygon (Table 4.6). Since many of these combined percentages
were considerably different from those of the DEM-derived depressions alone, the sign
test was again applied to determine if these combined percentages were significantly
different from the soil survey proportions of Gleysols and gleyed subgroups. A two-tailed
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Table 4.6. Comparison of proportions of Gleysols and gleyed subgroups with proportions
of DEM-derived depressions and water and vegetation as identified from June
15, 1990 LANDSAT TM satellite imagery. The water and vegetation
proportions are comprised of areas in these classes that are not coincident with

DEM-derived depressions.
Polygon Total Water | Vegetation Total Soil Survey Gleysols,
# DEM- (%) (%) (%) gleyed subgroups
derived (%)
Depression
s (%)
\ 22.4 0 0 22.4 40
2 22.6 19.4 12.9 54.9 20
3 16.3 0 0 16.3 30
4 18.0 0 2.8 20.8 30
5 22.7 0 3.0 25.7 40
6 14.1 0 6.4 20.5 40
7 21.5 1.6 7.5 30.6 30
8 22.5 0.1 16.2 38.8 - 30
9 21.0 1.1 10.1 322 30-40
10 22.4 3.1 14.3 39.8 30
11 17.4 0.5 10.7 28.6 30
12 16.5 0.1 5.8 224 30
13 19.5 2.7 254 47.6 40
14 16.0 0.5 1.9 18.4 30
15 12.4 0 6.2 18.6 0
16 18.1 0.6 12.4 31.1 30
17 22.8 0 6.8 29.6 30
18 27.3 4.7 14.6 46.6 40
19 18.6 0.1 18.0 36.7 .40
20 21.0 0.4 2.7 24.1 0
21 21.1 0.1 4.2 254 30
22 25.4 0.8 7.7 33.9 40
23 22.8 1.0 23.8 47.6 40
24 7.3 0 0 7.3 30
25 30.6 1.7 5.0 37.3 30
26 16.3 0 0 16.3 30
27 21.4 1.1 5.1 27.6 30
28 26.1 8.7 26.1 60.9 0
29 20.7 0 3.0 23.7 0
30 12.5 0 0.9 13.4 0
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sign test z. value of 0.183 was no longer significant at the 0.05 level. Therefore, when
the standing water and vegetation information was included with the DEM-derived
depressions, the proportions were no longer significantly different from those of the soil
survey. The DEM-derived depression data were augmented by the information
determined from the satellite imagery. However, the vegetation class provided
extraneous information, since most areas of healthy trees and shrubs were included, not
just those in depressional areas (Figures 4.5 and 4.6). Therefore, it became evident that
the vegetation class represented a complex mixed class of woody species including: aspen
poplar (Populus tremuloides), balsam poplar (Populus balsamifera), dogwood (Cornus
stolonifera), saskatoon berry (Amelanchier alnifolia), chokecherry (Prunus virginiana),
willow (Salix spp.), wild rose (Rosa acicularis), snowberry (Symphoricarpos albus),
buffalo berry (Shepherdia canadensis), and low-bush cranberry (Viburnum edule). The
mapping of this vegetation class depended more upon the general phenology and density
of these trees and shrubs than on their proximity to depressions. For example, the two -
rectangular clusters of upland aspen located west of the centre of the Study Area were
identified as part of this class on the images (Figure 4.6). As a result, the lack of
significance should be considered with care.

The standing water and vegetation classes derived from both June 15, 1990 and
August 5, 1991 image dates were further combined with the DEM-derived depressions
data (Table 4.7a, Figure 4.6). Generally, the proportions of depressions in each curvature
category identified with standing water in August were similar to, or less than those of
June (Table 4.7b). This is to be expected since although the average amount of
precipitation is approximately equal in August and June (Macyk er al. 1985), shallower
depressions, such as those in the slightly/markedly and slightly/moderately categories,
would no longer contain surface water from spring runoff. Furthermore, a majority of the
depressions classified as standing water on the June image were identified as vegetation
on the August image (Table 4.8d). One grid cell of the moderately/slightly curvature
class was identified as standing water on the August image. This one cell represents
9.1% (Table 4.7b) of the depression cells in this curvature category, a proportion that is

incongruous with those of the other curvature categories. The moderately/slightly
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curvature class, though, contains only 11 depression grid cells. Because the June and
August images were from different years, it is possible that this particular depression
could be characterized by standing water in August. However, this depression may also
be very healthy vegetation, since it was identified as vegetation on the June image.

Only 11 of the depressions were characterized by standing water on both dates.
These cells represent approximately 17 % of all depression grid cells with water in June,
and 50% of all depression grid cells with water in August (Table 4.8a). Areas of standing
water which did not correspond with depressions were identified on both images. Fewer
of these areas were identified on the August image data, 58% of which coincided with
those identified on the June data (Table 4.8b).

Table 4.7a. Total number of grid cells representing depressions in each curvature

category.
Cell count

markedly/markedly 0

markedly/moderately 0

markedly/slightly 0
I moderately/markedly concave 164
II | moderately/moderately concave 179
Il | moderately/slightly concave 11
IV_| slightly/markedly concave 1848
V | slightly/moderately concave 1102
VI | slightly/slightly concave 17

Table 4.7b. Total number of grid cells and percentages of depressions in each curvature
class that are characterized by standing water.

June 15, 1990 August 5, 1991

Cell count % Cell count %
I moderately/markedly concave 7 4.26 5 3.05
I | moderately/moderately concave 2 1.12 4 2.23
III | moderately/slightly concave 0 0 l 9.09
IV | slightly/markedly concave 31 1.68 6 0.32
V_| slightly/moderately concave 23 2.09 5 0.45
VI | slightly/slightly concave 0 0 0 0




Table 4.7c. Total grid cell counts and percentages of depressions in each curvature class

that are characterized by vegetation.

June 15, 1990 August 5, 1991

Cell count % Cell count %
I moderately/markedly concave 24 14.6 59 36.0
II | moderately/moderately concave 26 14.5 47 26.3
I | moderately/slightly concave 1 9.09 2 18.2
IV | slightly/markedly concave 171 9.25 453 245
V_| slightly/moderately concave 116 10.5 298 27.0
VI | slightly/slightly concave 1 5.88 5 294

Table 4.7d. Grid cell counts and percentages of other depressions in each curvature class

that are not identified by standing water or vegetation.

June 15, 1990 August §, 1991

Cell count % Cell count %
I | moderately/markedly concave 133 81.1 100 61.0
II | moderately/moderately concave 151 84.4 128 71.5
I | moderately/slightly concave 10 90.9 8 72.7
IV | slightly/markedly concave 1646 89.1 1389 75.2
V_| slightly/moderately concave 963 874 799 72.5
V1 | slightly/slightly concave 16 94.1 12 70.6

Table 4.8a. Coincidence of depression grid cells identified as standing water in each

curvature class for June 15, 1990 and August 5, 1991.

August S,
1991
I |II m |IV |V VI non-
coincident
grid cells
I 3 4
Junels, | II 2
1990 m
v 4 27
\' 19
Vi 4
non- 2 |4 I 2 l
coincident
| grid cells
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Table 4.8b. Coincidence of standing water grid cells identified from the satellite imagery

June 15,

1990

that do not occur in depressions for June 15, 1990 and August, 1991.

August §, 1991
water non-
coincident
grid cells
water 29 129
non- 21
coincident
_grid cells

Table 4.8c. Coincidence for each curvature class of depression grid cells identified by

June 15,
1990

vegetation on the June 15, 1990 imagery with depression cells identified as
standing water on the August 5, 1991 imagery.

August 5§,
1991
I 1 | m v |V VI non-
coincident
grid cells
I 24
11 3 23
m 1
v 2 169
\Z 116
VI 1
non- 5 1 4 5
coincident
| grid cells
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Table 4.8d. Coincidence for each curvature class of depression grid cells identified as
standing water on the June 15, 1990 imagery with depression grid cells
characterized by vegetation on the August 5, 1991 imagery.

August S,
1991
I 1 I v |V Vi non-
coincident
grid cells
I 3 4
Junels, |II 1 1
1990 X
v 22 9
\' 16 7
VI
non- 56 |46 |2 431 [ 282 |5
coincident
| grid cells

Table 4.8e. Coincidence of depression grid cells identified as vegetation in each curvature
class for June 15, 1990 and August 5, 1991.

Aungust S,
1991
I I m IV |V \'% | non-
coincident
grid cells
I 23 1
Junels, | I 19 7
1990 m 1
|\ 143 28
v 93 23
VI I
non- 36 128 |2 3101205 | 4
coincident
| grid cells

On the August image, a greater proportion of depressions in each curvature
category were characterized by vegetation (Table 4.7c). A possible reason for this is that
1991 was a relatively dry year, thus vegetation located within depressions would be able
to fulfill its water needs and appear healthier, compared to surrounding vegetation. Some

depressions may not be identified as having vegetation on the June image because the
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vegetation within the depression was not significantly different from that surrounding it.
However, many of the depressions in each curvature class identified as vegetation on one
image date were also vegetation on the other image date (Table 4.8¢).

The difference between the threshold values determined for the August and June
images may provide a more likely reason for the greater proportion of vegetation
observed on the August image (Figure 4.6). Because August 1991 was very dry, the band
5 threshold for the August image was set at a greater value than for the June image, so as
to capture the standing water information. The band 4 threshold, on the other hand, was
less for August than June. As a result of this threshold arrangement more vegetation was
included in the analyses.

Very little correspondence existed between vegetation depressions in June with
standing water depressions in August (Table 4.8c). One exception occurred in curvature
category II (moderately/moderately). Three of the four depressions classified as standing
water on the August image were vegetation on the June image. These three depression
cells may have been either visible wet soil after the vegetation had been trampled, or
healthy vegetation with gray level values within the thresholds for both bands 4 and 5 on
the August image.

Those depressions in each curvature category that are not characterized by either

standing water or vegetation were considered “other” dépressions (Table 4.7d).

4.4.2 Proximity of Water to Depressions

On both the June and August image data, pixels were identified as being standing
water, but were not associated with depressional areas (Table 4.8b). In all likelihood,
these areas would be in proximity to depressions, providing the depression actually
existed. The distance away these areas were from the closest depression was determined
for the June and August image dates (Figures 4.7 and 4.8). A majority of these “wet”
areas determined from the June and August image dates were within 50 m of the closest
assumed depression. Since it is possible that the majority of any collection of randomly
chosen cells may also be located within 50 m of a depression, two statistical approaches

were taken to determine if a relationship existed between wet areas and DEM
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depressions. The chi-square test was used to examine the relationship between the
observed number of standing water cells located at each distance from depressions with
the expected number, which was based upon the proportions of the entire area (Figure
4.7). Chi-square values of 17.77 and 27.26 were calculated from the June and August
data, respectively. Both of these values are significant at the 0.01 level for five degrees of
freedom, which indicates that a relationship between standing water and depressions
exists.

A test for significance between proportions was also applied. In this case, the
expected number of standing water grid cells coincident with depressions was compared
to the actual number. Neither the June, nor the August results were significant at the
standard 0.05 level. However, since the value of 1.84 calculated for the June data is
significant at the 0.1 level, the coincidence of standing water cells and depressions is not
random. The lack of significance of the value calculated for the August data (1.18) may
be due to the small number of standing water cells associated with depressions on this
date. As aresult, the depressions derived from the DEM may be considered to represent
the location of the centre of each depression, rather than the entire depression. This may
be particularly true, since parameters regarding the size and shape of the depressions
cannot be meaningfully calculated due to the resolution of the data.
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4.4.3 Field Verification

The data registration between the DEM-derived depressions coverage and the
satellite imagery, was verified in the field. When compared to the DEM database UTM
coordinates, the GPS UTM positions were generally within one or two 25 m grid cells
(Table 4.9).

Table 4.9. UTM coordinates determined in the field compared to DEM database
coordinates for five corner locations.

Point # | DEM Database Average GPS UTM | Difference (m)
UTM Coordinates Coordinates

Easting Northing | Easting Northing | Easting | Northing
1 467725 5954950 | 467765 5954974 -40 -24
2 468525 5954950 | 468582 5954971 -57 -21
3 470925 5951750 | 471013 5951773 -88 23
4 467725 5951750 | 467758 5951740 -33 10
5 467725 5953350 | 467734 5953351 -9 1

These results provided assurance that proper data registration was achieved. GPS
readings were recorded at Study Area boundary positions, including: the northwest corner
of section 7 (point 1), northeast comner of the northwest quarter section of section 7 (point
2), the southeast corner of section 5 (point 3), the southwest corner of section 6 (point 4),
and the northwest corner of section 6 (point 5). Point #3 had a measured location that
was greater than two cells from the corresponding database location in the easting
direction. This greater difference may be the result of measuring at an incorrect location,

or GPS inaccuracies.

4.5 Conclusion

The purpose of a soil survey map is to adequately represent the patterns of the
three-dimensional soil surface in two-dimensions. However, the specific arrangement of
soils within each polygon is often not indicated on available semi-detailed soil surveys.
Thus, the amount of information a user obtains from the soil map and accompanying
report, is dependent on his or her knowledge of soil distribution patterns. People who use
soil survey information are from varying fields of study, including those who specialize in
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GIS. Soil surveys are often digitized to serve as data layers within a GIS application.

The location-based data structure of GIS and possibility that the users may not possess the
knowledge required to interpret digital soils data, suggests there is a need for more
detailed soil survey data. One method for enhancing soil survey data uses digital
elevation data augmented by satellite image data. The usefulness of a DEM for a given
application depends on how well it represents the landscape, and whether the feature of
interest is resolvable on the elevation surface. For the purpose of assigning kinds of soils
to their most probable landscape position, depressional areas with their “dissimilar soils”
become the feature of interest. The landscape position and moisture regime of
depressional area soils make them unique compared to other soils in the landscape. Due
to the resolution of the Alberta 1:20 000 digital elevation data, potential errors within this
elevation surface, and limitations associated with the curvature algorithm, the proportions
of depressions within the soil survey polygons were significantly different from the
proportions of Gleysols and gleyed subgroups. Although the addition of satellite
information regarding standing water and vegetation improved the comparability between
the DEM-derived depressions and the proportion of Gleysols and gleyed subgroups, some
unrelated information was also included. The vegetation class was mixed and complex
and sensitive to the threshold values. The larger proportion of vegetation extracted from
the August image compared to the June image indicated that the threshold value was
inappropriate. Therefore, the gray level thresholding technique was effective for
extracting information regarding standing water, but the approach was too simplistic for
classifying vegetation. A combination of digital elevation data and satellite imagery,
however, does improve the detection of depressions in the landscape, over digital
elevation data alone. The resolution of the two data sets limits these identifications to the

centre locations of relatively large depressions.
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CHAPTER 5 Synthesis and Suggestions for Further Studies

Soil survey maps and reports have provided information about the distribution of
soils in the landscape to many different users. The use of these surveys requires that the
users possess knowledge about soil-distribution patterns, so that they might mentally
recreate the three-dimensional nature of soil distribution from the two-dimensional map
representation. However, the advent of geographical information systems (GIS) has
caused problems in this regard, since many users no longer possess the tacit knowledge of
soil distribution required to adequately interpret the soil map. Furthermore, once a soil
survey map is digitized for input into a GIS, a level of its three-dimensional information
is lost. The map is still a two-dimensional representation, but the qualitative information
contained within the report cannot be easily included in the database framework. Asa
result, the information content is lessened compared to the original product. The detail of
these soil surveys, particularly those that are detailed reconnaissance, is inadequate for
most environmental models and natural resource management projects that use a GIS
framework. Thus, it becomes necessary to enhance the detail of the existing soil survey
data.

This study was undertaken as a response to this apparent need for increased soil
survey detail. The primary objective was to investigate a method of improving
reconnaissance soil survey detail by providing landscape position information for the
soils present in each polygon. This task was to be accomplished through a series of sub-
objectives, using available 1:20 000 digital elevation data for Alberta (Land Information
Services Division 1988) and LANDSAT Thematic Mapper satellite imagery. The data
were used as provided without extra pre-processing. The sub-objectives included:
¢ Determining the compatibility with respect to landscape representation of the Alberta
1:20 000 digital elevation data and the soil survey information.
¢ Using DEM-derived slope curvature to evaluate the applicability of the Alberta 1:20
000 digital elevation data for predicting the landscape position of moister soils.
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e Evaluating the usefulness for predicting soil-landscape position of a combination of
digital elevation data and information extracted from LANDSAT TM imagery regarding
wet or moist areas in the landscape.

Using digital elevation data for the purpose of enhancing soil survey information
requires that the two data sets be compatible with respect to the manner in which they
represent the landscape. As presented in Chapter 3, slope magnitude, a parameter
common to both the Two Hills County soil survey (Macyk ez al. 1985) and Alberta
1:20 000 digital elevation data, was used as the basis for quantifying the relationship
between these two data sets for two Study Areas. An indication of the compatibility of
the two data sets was achieved by analyzing the coincidence of slope magnitude
boundaries on a local scale along transects and a global scale by considering the Study
Areas in their entirety. Slope boundaries on the DEM were determined statistically using
a one-dimensional moving window. The technique was first applied along randomly
placed transects, and then to the entire Study Area. Based on the patterns of the DEM-
derived slope breaks within areas of different soil survey slope classes, the DEM was
considered to adequately represent the landscape. However, due to the different methods
by which the two slope maps were created, the DEM-derived slope coverage could not
duplicate the soil survey slope classes.

Potential exists for digital elevation data, augmented by satellite data, to be used
to provide more detailed information regarding the landscape position of different kinds
of soils than that provided by the available soil surveys. Since soil properties are related
to topographical position, defining a particular position may serve as a basis for
determining the most probable position of soils. The distinct moisture regime, landscape
position, and Gleysolic soils of wetter areas in the landscape may provide this basis.
Moister areas of the landscape generally occur in depressions, which usually possess a
degree of concavity. Therefore, curvature, as calculated from the DEM, was considered
to be an indicator of potential depressional areas in Chapter 4. Six curvature classes
representing potential depressions were determined based upon calculations made in the
profile and plan directions. When compared to the proportions of Gleysols and gleyed

subgroups in each of the soil survey polygons, the proportions of depressions were
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significantly different. Therefore, satellite imagery was used to augment the DEM data
by providing information regarding wet, or moist areas. The differences between the
proportions of Gleysols and gleyed subgroups and DEM depressions were no longer
significant when proportions of image-derived information were included. However,
some of the moister areas identified on the imagery may not have been associated with
depressions in the landscape. A majority of the locations classified as standing water on
the images were within 50 m of the nearest depression. Therefore, the DEM-derived
depressions may be considered centre locations of depressions in the landscape.
Although the image data augmented the DEM, the utility of these data for positioning
soils in the landscape was limited by the relatively coarse 25 m spatial resolution.
However, if the idea of inventory of any resource is landscape stratification and
subsequent identification of what is within the strata, DEMs could contribute to both

aspects of soil resource inventory.

5.1 Suggestions for Further Studies

o The spatial resolution of the digital elevation data and satellite imagery was
likely too coarse for the task at hand. Theoretically, assigning kinds of soils to their
landscape positions should be possible using the techniques applied in this study. Digital
elevation data and satellite imagery possessing resolutions of approximately 10 m should
be tested, since landscape subtleties may become more evident.

e Since there is limited documentation of errors intrinsic within the Alberta
1:20 000 digital elevation data, an examination of data quality would be beneficial.

e The thresholding technique proved to be too simplistic for classifying
vegetation. Therefore, an analysis of other classification techniques that would more
successfully stratify vegetation associated with depressions would be useful.

e The Study Areas chosen for this investigation were located with the Parkland
region of northeastern Alberta. It would be interesting to conduct a similar study in the
drier grassland region of southern Alberta.

e Terrain derivatives, such as curvature, are generally calculated from raster

DEMs using a geometric window of fixed dimensions. The window’s rigid dimensions
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make visual interpretation of general trends in these derivatives difficult and parameters
relating to size and shape cannot be determined with certainty (Dillworth et al. 1994).
Therefore, it would be beneficial to consider a method for calculating curvature and other
terrain characteristics that would take into account landscape complexity and permit
quantification of parameters relating to size and shape. Geographical windows, such as
those used by Dillworth et al. (1994) for landscape analyses of spectrally classified
images, allow for such considerations. With modifications, geographical windows may
be used for calculating terrain attributes from a DEM.

e The techniques of this study may be applied to precision farming, such as
investigating the yield returns associated with spraying pesticides only on those slope
positions with microclimatic conditions favorable for disease infection. Generally
depressions and low areas possess favorable conditions for disease development because
of their greater moisture content, humidity, vegetation canopy cover etc. A digital
elevation model and remotely sensed data would provide information regarding the
location and extent of these areas, as well as, an indication of vegetation conditions at the
crucial time for disease development.

¢ Soil is both a sink and source of carbon dioxide. Its ability to store carbon has
come to the forefront particularly since atmospheric carbon levels have recently been
cause for concern. Whether soil acts as a sink or a source depends upon the rate of
organic matter decomposition, which varies with soil moisture status and fertility, as well
as substrate composition. These factors are ultimately affected by agricultural
management practices. A soil-landscape model would help with management concerns
and the prediction of potenﬁal locations of soils that could store significantly more carbon
than other soils. For example, Arrouays ez al. (1998) predicted soil carbon storage in
temperate forest soils with the aid of slope magnitude calculated from a DEM.

* A soil-landscape model would also serve to detect eroded areas and those with
erosion potential. Desmet and Govers (1995) reproduced the general pattern of observed
erosion in an agricultural landscape by including topographic information from a DEM in
an erosion model. This model may be improved with the addition of remotely sensed

data. Eroded areas would be evident on imagery, since their relative reflectance
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characteristics would be different from those of vegetation and uneroded areas. This
information paired with soil characteristics that influence erosion, such as texture, and
landscape position would provide a basis for locating eroded areas and predicting erosion
hazard.

e Potential areas of soil compaction might also be predicted with the help of a
soil-landscape model. The behaviour of cattle with respect to where they graze and
congregate is often dependent upon landscape features, including topography, vegetation,
and water availability. A DEM would provide topographical information. High
resolution imagery could be used to locate areas of unpalatable plants and water bodies.
These two data sources combined with soils information relating to characteristics
affecting compaction could be used in conjunction with a model of animal behavior to

predict potential areas of soil compaction.
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Appendix I Derivation of equation used for determining significance of generalized
distance values.
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Appendix I1 Text files used to calculate generalized distance (D?) with the GRASS
version 4.1 map calculator.

Areal

Vertical (North-South)
averagel=(@study.slope{0,0]+@study.slope{-1,0]+@study.slope{-2,0]+@study.slope[-3,0])/4
average2=(@study.slope(1,0]+@study.slope[2,0]+@study.slope(3,0]+@study.slope[4,0])/4
numerator=(average | -average2)*(averagel-average2)

varl=(((@study.slope(0,0]-average 1 )*(@study.slope{0,0]-average 1))+((@study.slope[-1,0]-
averagel )*(@study.slope[-1,0]-average 1) }+((@study.slope[-2,0]-average | )*(@study.slope[-2,0]-
averagel ))+((@study.slope[-3,0]-average 1 )*(@study.slope[-3,0]-average1)))/3
var2=(((@study.slope{ 1,0]-average2)*(@study.slope{ 1 ,0]-average2))+((@study.slope[2,0]-
average2)*(@study.slope[2,0]-average2))+((@study.slope[3,0]-average2)*(@study.slope[3,0]-
average2))+((@study.slope[4,0]-average2)*(@study.slope[4,0]-average2)))/3
dsvert=(numerator*1000)/(varl+var2)

Horizontal (East-West)

averagehl= (@study.slope(0,0]+@study.slope[0,-1 [+@study.slope[0,-2]+@study.slope[0,-3])/4
averageh2= (@study.slope[0, | [+@study.slope[0,2}+@study.slope[0,3]+@study.slope[0,4])/4
numeratorh=(averageh1-averageh2)*(averagehl-averageh?)

varh 1=(((@study.slope{0,0]-averageh1)*(@study.slope[0,0]-averageh1))}+((@study.slope[0,- 1 ]-
averageh1)*(@study.slope[0,- 1 }-averagehl)+((@study.slope[0,-2]-averageh1 )*(@study.slope[0,-2]-
averagehl))+((@study.slope[0,-3]-averageh 1 )*(@study.slope[0,-3]-averageh1)))/3
varh2=(((@study.slope[0, 1]-averageh2)*(@study.slope[0, | ]-averageh2)}+((@study.slope[0,2]-
averageh2)*(@study.slope[0,2]-averageh2))+((@study.slope[0,3]-averageh2)*(@study.slope{0,3]-
averageh2))+((@study.slope[0,4]-averageh2)*(@study.slope[0,4]-averageh2)))/3

dshor= (numeratorh*1000)/(varh1+varh2)

Area2

Vertical (North-South)

averagela=((@area2 slope[0,0]+@area2.slope[-1,0]+@area2.slope[-2,0]+@area2 slope[-3,0])/4
average2a=((@area2.slopef 1,0]+@area2.slope{2,0]+@area2.slope(3,0]+@area2.slope[4,0])/4
numeratora2=(average l a-average2a)*(averagel a-average2a)

var la=(((@area2.slope[0,0]-average | a)*(@area2.slope{0,0]-average 1 a))+((@area2.slope[-1,0]-
averagela)*(@area2.slope{-1,0]-averagela))+((@area2.slope[-2,0]-average | 2)*(@area2.slope[-2,0]-
averagela))y+((@area2 slope[-3,0}-average 1 a)*(@areal.slope[-3,0]-averagel a)))/3
var2a=(((@area2.slope[!,0]-average2a)*(@area2.slope[ 1 ,0]-average2a))+((@area2.slope[2,0]-
average2a)*(@area2.slope[2,0]-average2a))+((@area2.slope(3,0]-average2a)*(@area2.slope([3,0]-
average2a))+((@area2 slope[4,0]-average2a)*(@area2.slope[4,0]-average2a)))/3
dsverta2=(numeratora2*1000)/(varla+var2a)

90
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Horizontal (East-West)

averagehla= (@area2.slope[0,0]+@area2 slope[0,- 1 J+@area2.slope[0,-2]+@area2.slope[0,-3])/4
averageh2a= (@area2.slope[0, 1 +@area2 slope[0,2]+@area2.slope[0,3]+@area2.slope{0,4])/4
numeratorha?=(averagehla-averageh2a)*(averagehla-averageh2a)
varhla=(((@area2.slope[0,0]-averageh1a)*(@area2 slope[0,0}-averagehla))+((@area2.slope(0,-1]-
averagehla)*(@area2.slope[0,- | ]-averagehla))+((@area2.slope[0,-2}-averagehla)*(@area2.slope[0,-2]-
averagehla))+((@area2.slope[0,-3]-averagehla)*(@area2 slope[0,-3]-averagehla)))/3
varh2a=(((@area2.s1ope{0, | ]-averageh2a)*(@area2.slope([0, | ]-averageh2a))+((@area2.slope(0,2]-
averageh2a)*(@area2.slope[0,2]-averageh2a))+((@area2.slope[0,3]-averageh2a)*(@area2 slope{0,3]-
averageh2a))+((@area2.slope[0,4]-averageh2a)*(@area2.slope[0,4}-averageh2a)))/3

dshora2= (numeratorha2*1000)/(varhla+varh2a)
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Appendix IV Results of the Chi-square test for Area 1 and Area 2.

ected — Observed)’
xz - z (Exp )

Degrees of Freedom = n-2

Expected
Area 1 Analysis
Soil Proportion Observed Expected Chi-square
Survey of Study Significant Significant value
Slope Area (%) Slope Breaks | Slope Breaks
Class (# of cells) (# of cells)
North-South
Orientation
2-5% 11.15 93 151 22.19
6-9% 61.58 790 833 2.24
10-15% 15.93 267 216 12.29
16-30% 11.34 203 153 16.01
Total 100 1353 1353 52.73*
East-West
Orientation
2-5% 11.15 139 142 0.08
6-9% 61.58 696 786 10.39
10-15% 15.93 196 203 0.27
16-30% 11.34 246 145 70.71
Total 100 1277 1277 81.44*
North-South &
East-West
Orientations
2-5% 11.15 27 39 3.65
6-9% 61.58 187 215 3.63
10-15% 15.93 43 56 2.85
16-30% 11.34 92 40 69.44
Total 100 349 349 79.57*
Total
2-5% 11.15 259 332 16.11
6-9% 61.58 1673 1834 14.21
10-15% 15.93 506 475 2.08
16-30% 11.34 541 338 122.20
Total 100 2979 2979 154.61*

Degrees of freedom = 2
* indicates values significant at 5%




Area 2 Analysis

Soil Proportion Observed Expected Chi-square
Survey of Study Significant Significant value
Slope Area (%) Slope Breaks | Slope Breaks
Class (# of cells) (# of cells)

North-South

Orientation
6-9% 7.74 112 106 0.32
10-15% 48.87 636 670 1.77
16-30% 43.39 624 595 1.38
Total 100 1372 1372 3.47

East-West

Orientation
6-9% 7.74 100 116 2.13
10-15% 48.87 719 731 0.18
16-30% 43.39 676 649 1.15
Total 100 1495 1495 3.47

North-South &
East-West

Orientations
6-9% 7.74 12 21 4.10
10-15% 48.87 97 135 10.64
16-30% 43.39 167 120 18.64
Total 100 276 276 33.38*

Total

6-9% 7.74 224 243 1.53
10-15% 48.87 1452 1536 4.59
16-30% 43.39 1467 1364 7.82
Total 100 53143 3143 13.94*

Degrees of Freedom = 1
* indicates values significant at 5%
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Appendix V Algorithm for calculating curvature from Pennock et al. (1987) adapted for
use with the GRASS version 4.1 map calculator command.

Coefficient Layers

layer.a = ( (final.dem(-1,-1] + final.dem(-1,1] + final.dem[0,-1] + final.dem[0,1] + final.dem[1,-1] +
final dem(1,1])/3750.0 - (final.dem(-1,0] + final. dem({0,0] + final.dem([1,0])/1875.0 ) * 10000
layer.b = ( (final.dem(-1,-1] + final.dem{-1,0] + final.dem(-1,1] + final.dem(1,-1] + final.dem([1,0] +
final. dem(1,1])/3750.0 - (final.dem[0,-1] + final.dem[0,0] + final. dem([0,1])/1875.0 ) * 10000
layer.c = ( (final.dem(-1,1] + final.dem([1,-1] - final.dem(-1,-1] - final.dem(1,1})/2500.0 ) * 10000
layer.d = ( (final.dem{-1,1] + final. dem(0,1] + final.dem([1,1] - final.dem[-1,-1] - final.dem[0,-1] -
final.dem([1,-1])/150.0 ) * 100

layer.e = ( (final.dem[-1,-1] + final.dem([-1,0] + final.dem{-1,1] - final.dem([1,-1] - final.dem[1,0] -
final.dem[1,1])/150.0 ) * 100

Profile Curvature

profilel = layer.a * (layer.d * layer.d) + layer.b * (layer.e * layer.e) + (layer.c * layer.d * layer.e)
profile? = (layer.e * layer.e) + (layer.d * layer.d)

profile3 =(1 + (layer.d / 100.0) * (layer.d / 100.0) + (layer.e/100.0) * (layer.e/100.0)) * 10000
profile3a = exp(profile3,1.5)

profile.curv =( -2 * (profilel/100000000.0)/(profile2/10000.0 * profile3a/1000000.0)) * 57.296 * 100

Plan Curvature

planl = -2 * (layer.b * layer.d * layer.d + layer.a * layer.e * layer.e - layer.c * layer.d * layer.e)
plan2 = layer.e * layer.e + layer.d * layer.d

plan2a = exp(plan2,1.5)

plan.curv = ((plan1/100000000.0)/(plan2a/1000000.0)) * 57.296 * 100
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Appendix VI GRASS version 4.1 commands used throughout this study.

Raster Commands

Command
r.buffer

r.cross

r.in.ascii
r.mapcalc
r.mask

r.profile

r.random

r.reclass

r.report

r.slope.aspect

r.stats
r.support

r.what.rast

Vector Commands

Command

v.clean

v.digit

Description

Creates a raster map layer showing user-defined buffer zones
around cells with non-zero category values

Creates a raster map layer of the cross product of category values
from multiple map layers

Creates a raster file (binary) from an ASCII text file
Raster map layer calculator
Establishes or removes a current working mask

Returns as output raster map layer category values along user-
defined lines

Generates random point locations and stores them as a site_list file
and/or a raster map layer

Creates a new map layer with categories based upon the user’s
reclassification of existing categories

Reports area statistics for raster map layers

Generates slope gradient and aspect raster layers from true
elevation map layer

Generates area and location statistics for raster map layers
Enables user to create and/or modify raster layer support files

Queries raster map layers

Description
Removes dead lines from GRASS vector files

Interactive program for vector digitizing, editing, and labeling



v.support

v.spag

v.to.rast
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Creates GRASS support files for (binary) vector data

Fixes vector data that were not digitized in correct GRASS format
by creating nodes at line crossings and deleting hanging lines

Converts a binary GRASS vector map into a GRASS raster map
layer
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