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Abstract

In this thesis, ultrasonic B-scan signal processing is investigated. A B-scan displays

a cross-sectional view of the test piece and defects within it. Compared to A-scan

signals, B-scan images offer more reliable fault detection. Nonetheless, traditional

ultrasonic signal processing methods are mostly based on A-scan signals and little

research has been reported on ultrasonic B-scan signal processing. The aim of the

current thesis is to investigate different aspects of ultrasonic B-scan signal processing

including denoising, parameter estimation and fault identification.

The stationary wavelet transform (SWT) is used to denoise B-scan signals. SWT

exhibits a good denoising performance. A thresholding scheme based on the ampli-

tude of the analytic signal was reported to further improve the denoising performance

of the stationary wavelet transform. In this work, the application of the analytic

wavelet thresholding is extended to two dimensional signals for removing noise from

B-scans. In addition, an extra step is proposed for removing noises caused by the

waves reflected at the wedge-specimen interface.

The ultrasonic signal is further processed to extract fault related features. A

model-based method is proposed for estimating parameters of ultrasonic echoes such

as the time of arrival of echoes. Despite many advantages such as excellent estimation

accuracy, the current model-based methods applied to ultrasonic signals suffer from

a major disadvantage. These methods often involve solving an optimization problem

with many parameters. Some researchers calculated the envelope of the ultrasonic



echo to reduce the number of parameters by removing phase and frequency from the

parameter set. A quasi maximum likelihood estimator is proposed for estimating

parameters of the echo envelope. Using experimental and simulated signals, it is

shown that the proposed method improves the parameter estimation compared to

the state of the art available in the literature.

Current crack sizing techniques often neglect the effect of the crack orientation

when estimating the crack length. This introduces errors in estimating the length of

inclined cracks. A modified relative arrival time technique is proposed for estimating

the crack length and inclination angle using the relative time of arrival of the echo

diffracted from the crack tip with respect to the echo reflected from the crack corner.
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Chapter 1

Introduction

Non-destructive testing and evaluation (NDT&E) has been extensively practiced for

detection of defects in engineering structures. Among many different NDT methods

available, the bulk of the market mainly uses five methods: ultrasonic testing (UT),

eddy current, radiographic testing, dye penetrants and magnetic particles [2]. While

each NDT method has particular capabilities suitable for special applications, UT

has wide-ranging capabilities applicable to a variety of applications [3]. UT is widely

used in aerospace, automotive, utility, and petrochemical industries [4]. In the 1990s,

UT alone accounted for 28% of the NDT market, over twice its market share in the

1950s [4]. The UT market is still growing fast and a recent study reported a 37%

market share for UT, surpassing the radiographic testing [5].

Eddy current testing uses electromagnetic induction for detecting faults on surface

or near the surface of conductive materials [6]. The testing procedure is relatively

simple and the cost is moderate [7]. It can be used for crack detection, material thick-

ness measurement, coating thickness measurement and conductivity measurement [8].

There are several limitations, among them: it is only applicable to conductive mate-

rials, the surface of the material must be accessible to the probe, the rough finish of

the material may cause bad readings, the depth of penetration into the material is

limited, and flaws that lie parallel to the probe may be undetectable [8].

Radiographic testing employs x-ray to detect internal defects. Using this technique

a wide range of materials with different shapes and sizes from a micro-miniature

electronic part to a power plant structure can be inspected. The major disadvantage

of this technique is the safety concerns due to the exposure to the radiation [6].

Dye penetrant inspection reveals flaws, such as surface cracks and pores, which

are open to the surface, by bleed-out of a colored or fluorescent dye from the flaw.

Before applying this method the surface has to be prepared and well cleaned of any
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dirt, oil and grease [9].

Magnetic particle inspection uses magnetic field and small magnetic particles to

detect surface and sub-surface defects such as crack, inclusion and porosity, in ferro-

magnetic materials [9]. This technique is fast and relatively easy to apply [8]. Yet,

there are certain limitations for using this technique. It is only applicable to surface

and subsurface defects in ferromagnetic materials and a thin layer of coating or paint

can adversely affect sensitivity [6].

Ultrasonic testing uses high frequency elastic waves in the material to conduct

examinations and make measurements [10]. Many factors contribute to the popular-

ity of UT among the NDT practitioners. This includes its capability of detection of

both surface flaws, e.g. cracks, and internal flaws, e.g. voids or inclusions of foreign

material. It is also used to measure the wall thickness of tubes and pipes to assess

the material loss due to corrosion or other causes [11]. It is applicable to a wide range

of engineering materials, such as steel and concrete, and for considerable thickness

of materials, for example greater than 300mm for steel. Furthermore, UT does not

require implementing safety measures as needed for radiography. It can detect em-

bedded flaws with a surface area of 1.3 mm2 [12]. Its accuracy in sizing of crack-like

flaws is unique and in many cases it is better than 1 mm [13–15].

Nonetheless, the suitable application of UT requires high expertise inspectors in

order to interpret data and achieve reliable results [3,15]. The use of advanced signal

processing can assist inspectors in data analysis by removing the noise and generating

a clearer signal, and by accurately estimating the parameters which are used for fault

characterization.

Figure 1.1 shows the UT procedure which includes 1) data acquisition, 2) signal

denoising, 3) parameter estimation, 4) fault identification and 5) decision making. In

the first step, ultrasonic signal is collected using a proper test setup. The resulting

ultrasonic signal is often noisy. Therefore, it is necessary to denoise this signal in

order to be able to extract useful features from the signal. Based on the extracted

features, faults in the material can be identified, i.e. they can be detected, located

and sized. Finally, quality and maintenance decisions are made based on the number

of faults and their severity.

The scope of this thesis includes the three middle steps; i.e. denoising, parameter

estimation and fault identification. The first and the last steps are excluded from this

thesis as they are less related to the ultrasonic signal processing. The first step is

mainly concerned about the hardware technology, e.g. ultrasonic transducer [16–18],

couplant [19], robots [20] used in ultrasonic testing. The decision making deal with
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Figure 1.1: Ultrasonic Testing Procedure

topics such as reliability [21–26].

1.1 History of ultrasonic testing

The use of ultrasonics in NDT was originated in the early twentieth century. Sokolov

(1929) at the V.I. Ulyanov (Lenin) Electrotechnical Institute conducted the first ex-

periments using the quartz transducers to create ultrasonic vibrations in materials.

He demonstrated a through-transmission technique for detecting flaws in metals [27].

Firestone (1940) in USA developed the pulse-echo ultrasonic flaw detector [28]. A few

years later, Branson (1946) introduced the first portable thickness measuring instru-

ment and in mid 1950’s Erdman developed ultrasonic immersion B-scan and C-scan1

instruments [27].

In the early 1970’s, the advancement in hardware technology led to the ability to

detect smaller flaws [8]. More parts were consequently being rejected even though

the probability of failure did not change. This fact led to a change in the damage

evaluation from a zero defect requirement to a test and evaluate strategy based on

damage tolerance [29]. Therefore, only parts with cracks greater than the critical

crack length, which was specified using fracture mechanics, were being rejected. Since

then, the field of ultrasonic testing has grown at a remarkable rate as a result of rapid

advancement in electronics and computer technology [28]. Now, it is used more

frequently than radiography and is the most widely used NDT technique [28].

In Canada, UT was not a significant method until late 1960’s [30]. Radiogra-

phy and the surface methods such as magnetic particle and liquid penetrant testing

1Refer to Sec. 2.3 for the definition of B-scan and C-scan displays.
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were the predominant methods used. This could be attributed largely to the lack

of UT equipment and competent technicians. Then, in the period of 1965 to 1985

improvements in UT instrumentation and technician competence raised the level of

industry confidence in UT in Canada to such a level that areas of inspection that

were previously the sole domain of radiography are replaced by UT [30]. In 1990’s

the two largest pipeline operators in Canada, Trans Canada Corp. and Enbridge

Inc., were developing plans to use ultrasonics as the primary NDT method instead

of radiography for weld inspection. In 1993, Trans Canada Corp. became the first

North American company to use ultrasonics as the primary nondestructive testing

(NDT) method on a pipeline construction project [31].

1.2 Ultrasonic signal processing

As a consequence of the growing significance of ultrasonics, much research has been

carried out on developing NDT techniques based on UT [32]. Nevertheless, the current

practice of the ultrasonic testing is limited mainly due to the lack of adequate signal

processing techniques to process and explain the detected signals [33]. Currently,

there is also high demand for automatic ultrasonic signal processing techniques to

not only remove the need for manual flaw detection and assessment, but also increase

the accuracy, reliability and repeatability of the non-destructive evaluation [2,34,35].

Signal processing is a crucial aspect of any ultrasonic non-destructive testing. The

objective of signal processing is to extract information from the collected signal to

detect flaws in structures and to assess the severity of damage. Robustness to the high

level of noise is indispensable for any signal-processing approaches in this field as high

level of noise is expected in many UT applications such as pipeline inspection [36].

The surrounding environment, transducers, the data acquisition system are the main

sources of the noise [37].

Once the signal has been denoised, proper parameter estimation methods can be

used to extract interested features of the signal for detecting flaws and evaluating their

severity. Therefore, the ultrasonic signal processing can be divided into two tasks [38]:

a) Denoising and b) Parameter estimation for fault detection and evaluation.

Many signal processing techniques have been utilized in ultrasonics for signal

denoising and feature extraction. This includes classical signal processing techniques

such as signal averaging, matched filtering, frequency spectrum analysis [39], spectral

correlation [40], neural nets, and autoregressive analysis [41] as well as emerging

techniques such as wavelet transform (WT) and its variants such as stationary wavelet
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transform and wavelet packet transform, and empirical mode decomposition. Some

research has also been reported on the use of higher order statistics for ultrasonic

signal processing [42–44].

Most of the above-mentioned methods are focused on A-scan signal processing. A

B-scan image can provide more accurate fault detection and assessment by keeping

the geometrical coherence of defects which leads to a better noise immunity [45]. It

is, therefore, increasingly used in ultrasonic NDT&E. In this thesis, we investigate

different aspects of ultrasonic B-scan signal processing including denoising, parameter

estimation and fault identification.

1.2.1 Ultrasonic signal denoising

Donoho [46] pioneered a wavelet based noise removal scheme by applying soft and hard

thresholding. This method and its variants are now widely used for denoising non-

stationary signals which exhibit time-varying spectral characteristics [47]. Because of

the non-stationary nature of ultrasonic signals, the use of wavelet transform for signal

denoising and feature extraction of ultrasonic signals was extensively investigated.

Kreidl et al. [48] investigated the utilization of the wavelet thresholding for ul-

trasonic noise suppression. They compared different wavelet filters including the

Daubechies, Symlet, Coiflet and Biorthogonal families as well as different methods

for estimating the threshold value. Matz et al. [49] compared different wavelet func-

tions and concluded that discrete Meyer filter outperforms others. Kananen et al. [50]

found that the Daubechies-6 performs the best among Daubechies and Symlet fami-

lies. Chen et al. [51] stated that the Morlet wavelet is the optimal choice for denoising

ultrasonic signals. Then, they proposed an adaptive Morlet wavelet for ultrasonic sig-

nal denoising.

These methods were proposed for denoising A-scan signals. Although a two di-

mensional (2D) B-scan image can be denoised by removing noise from every single

A-scan, the denoising performance can be improved if a 2D denoising method is

used. Proper 2D denoising techniques should be developed to more effectively treat

ultrasonic B-scans.

In Chapter 3, we propose a 2D method for denoising B-scan signals. The proposed

method is based on the analytic wavelet thresholding technique [52] which has been

adapted for 2D ultrasonic B-scan. The proposed method is shown to improve the

denoising performance compared to standard wavelet thresholding.
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1.2.2 Ultrasonic echo parameter estimation

The denoised ultrasonic signal can be used for fault detection and assessment. Exist-

ing ultrasonic techniques use time of flight (TOF), amplitude of the echo or spectral

features of the received signal for crack sizing. TOF-based techniques such as time of

flight diffraction [14] and relative arrival time technique [53, 54] are currently exten-

sively used because of their reliability in crack sizing [55,56].

The methods used for the TOF estimation are mostly based on the cross-correlation

between the received signal and a reference signal. Cross-correlation methods are pop-

ular mainly because of their simplicity and the ability to detect flaws without any

priori knowledge of the specimen under examination. However, a reference signal may

not be available. Even if it is available, frequency dependent scattering and attenua-

tion may distort the received echo by introducing a frequency downshift [57, 58]. In

this case, the cross-correlation methods become ineffective especially when it comes

to damage sizing.

Recently, Dimirli and Saniie [57] proposed a model-based method for TOF estima-

tion. They assumed that the received signal is the result of superposition of a number

of Gaussian echoes and estimated the parameters using maximum likelihood method.

Satyanarayan et al. [35] performed parameter estimation with the aid of time domain

finite difference model. Such methods not only overcome the above-mentioned disad-

vantages of cross correlation methods, they also provide more information about the

defect which are represented by model parameters.

In Chapter 4, a model-based method similar to [57] is proposed, but the Quasi log-

likelihood method is used to estimate the parameters of the envelope signal computed

from the original ultrasonic signal. The proposed method is shown to provide a better

estimation of the number of echoes and more consistent and accurate estimation of

TOF.

In addition, we derive a theoretical expression showing the amount of improve-

ment in the time of flight estimation accuracy achieved by using a B-scan signal. This

theoretical expression also states minimum requirements for achieving a certain level

of accuracy in parameter estimation. Subsequently, to estimate parameters of the ul-

trasonic echoes from the B-scan signal, we extend the proposed parameter estimation

method to two dimensions.

6



1.2.3 Fault characterization using ultrasonic B-scan signals

After the TOF values are estimated, they are used for locating and sizing defects.

When using crack sizing methods such as relative arrival time technique1, it is as-

sumed that the crack is normal to the surface. However, this assumption may not

be true. To take into account the effect of crack orientation, in Chapter 5, we derive

theoretical expressions relating the crack orientation and length with B-scan echo pa-

rameters. Using these expressions, equations are derived to calculate the crack length

and orientation from a B-scan signal.

1.3 Objective and outline of the present work

As mentioned earlier, most of the existing ultrasonic signal processing methods are

based on ultrasonic A-scan signals and little research has been conducted on the ul-

trasonic B-scan signal processing. The objective of the present work is to develop

signal processing methods applied to ultrasonic B-scan signals. This includes the

techniques used in denoising, parameter estimation and crack identification. To eval-

uate the performance of the proposed methods, we will use three kinds of ultrasonic

signals:

• simulated signals generated from the mathematical model derived in Chapter 2

• simulated signals obtained from finite element analysis which is presented in

Chapter 6

• experimental signals described in Chapter 7.

The remainder of this thesis is organized into the following chapters.

Chapter 2 presents a brief introduction to ultrasonic wave propagation in material,

ultrasonic testing, and different test setups used in UT and crack sizing techniques. In

addition, a mathematical model is proposed for ultrasonic pulse-echo B-scan signals.

This model will be used for parameter estimation as well as generating simulated

signals.

Chapter 3 presents our proposed denoising method based on analytic wavelet

thresholding for ultrasonic B-Scan signal denoising. Simulated signlas and exper-

imental signals, which are presented in Chapter 7, will be used to evaluated the

performance of the proposed denoising method.

1Refer to Sec. 2.2.1 for the description of the relative arrival time technique.
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Chapter 4 presents our proposed model-based methods for damage assessment.

We employ quasi-maximum-likelihood method for estimating TOF for crack sizing.

The performance of the proposed method is evaluated using simulated signals and

the experimental signals presented in Chapter 7. This method is shown to improve

the estimation results significantly.

Chapter 5 addresses the crack identification problem. In particular, we investi-

gate the crack sizing problem for inclined cracks using B-scan images. Theoretical

expressions are developed to calculate the length and the inclination angle of inclined

cracks. Finite element simulation is used to support assumptions used in the the-

oretical derivation. To assess the accuracy of the derived expressions for the crack

size and orientation, they are applied to finite element simulated signals presented in

Chapter 6 and experimental signals presented in Chapter 7.

In Chapter 6, ultrasonic wave propagation in a specimen with a crack is modeled

using finite element method. The FE simulated signals will be used in Chapter 5

for assessing the accuracy of the proposed crack sizing method. The advantage of

using FE simulated signal over the experimental signal is that the FE simulated

signal contains less noise. In addition, while the experimental signal only shows the

response of the transducer, in the finite element model the wave propagation can be

observed in the material. Therefore, the nature of different echoes, e.g. tip diffraction

echo and corner reflection echo, can be determined with a greater certainty.

Chapter 7 describes the experimental setups used to collect ultrasonic signals.

This includes the data collected under the pulse-echo and pitch-catch setups. These

data are used to assess the performance of the methods proposed in Chapters 3-5 and

to validate the finite element model in Chapter 6.

Finally, conclusions of this work are summarized in Chapter 8.
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Chapter 2

Fundamentals of Ultrasonic Testing

This chapter presents a brief introduction to ultrasonic wave propagation and ultra-

sonic fault detection techniques. Covering all ultrasonic fault detection techniques is

beyond the scope of this thesis, hence only those techniques which will be used later

in this thesis are introduced. We will also review the existing mathematical models

for the ultrasonic echo waveform and develop a model for ultrasonic echoes in two

dimensions.

2.1 Ultrasonic wave propagation

The Navier equations describe the motion of an elastic isotropic solid [32],

(λ+ µ)∇∇·−→u + µ∇2−→u +
−→
f = ρ

∂2−→u
∂t2

(2.1)

where −→u is displacement vector,
−→
f body force per unit volume, ρ density, t time,

and λ and µ Lame’s first and second parameters, respectively. In addition, the ∇
operator is defined as ∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z
in Cartesian coordinate system where

x̂, ŷ and ẑ are unit vectors in their respective directions. When applied to a scalar

field, the del operator denotes gradient, its dot product with a vector field denotes

divergence, its cross product with a vector field is called curl, and ∇2 denotes the

Laplace operator defined as ∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
.

In the absence of body forces, equation (2.1) simplifies to,

(λ+ µ)∇∇·−→u + µ∇2−→u = ρ
∂2−→u
∂t2

. (2.2)

Using Helmholtz decomposition, the displacement vector can be expressed as the
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gradient of a potential scalar, Φ, and the curl of a zero divergence potential vector,
−→
Ψ [32]:

−→u = ∇Φ +∇×
−→
Ψ , ∇·

−→
Ψ = 0. (2.3)

Substituting equation (2.3) into equation (2.2) and after some manipulation, we ob-

tain the following set of equations,
∇2Φ =

∂2Φ

c2L∂t
2

∇2−→Ψ =
∂2−→Ψ
c2S∂t

2

(2.4)

where

cL =

√
λ+ 2µ

ρ
and cS =

√
µ

ρ
(2.5)

are the longitudinal and transverse wave speeds, respectively. A longitudinal wave

propagates in the same direction as the displacement of particles in the transmit-

ting medium, while a transverse wave propagates in a direction perpendicular to the

displacement of particles. If the rotational part, ∇×
−→
Ψ is zero; that is,

−→u = ∇Φ, (2.6)

equation (2.2) simplifies to,

∇2−→u =
∂2−→u
c2L∂t

2
. (2.7)

The dilatational/longitudinal wave propagates with the velocity cL. This wave is

often denoted by P-wave (Primary wave or Pressure wave). Similarly, if the displace-

ment has only rotational part, i.e. the irrotational part ∇ϕ = 0, then

∇2−→u =
∂2−→u
c2S∂t

2
(2.8)

which shows a distortional/shear wave traveling with the velocity of cS. This wave is

often denoted by S-wave (Secondary wave or Shear wave).

2.1.1 Reflection, refraction and mode conversion

Ultrasonic testing involves the transmission of high frequency elastic waves into mate-

rial. The transmitted ultrasonic waves may encounter and reflect from discontinuities

such as cracks. The reflected waves carry critical information about the test piece
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and the faults within. However, ultrasonic testing and evaluation requires under-

standing of the wave propagation process which includes reflection, refraction and

mode conversion. In the following, these physical mechanisms are introduced.

Normal beam incidence

If a plane wave encounters an interface between two materials at normal angle (see

Figure 2.1), it will be divided into two components: some energy is transmitted and

some is reflected [32]. The relative acoustic impedance of the two materials determines

the amount of energy which is transmitted and reflected. The acoustic impedance of

a medium is defined as

Z = ρc (2.9)

in which c is the wave velocity, thus c = cL for a longitudinal wave and c = cS

for a shear wave. Subsequently, the stress reflection coefficient, R, and the stress

transmission coefficient, T , can be written as,

R =
σ
(R)
x

σ
(I)
x

∣∣∣∣∣
interface

=
Z2 − Z1

Z1 + Z2

(2.10)

and

T =
σ
(T )
x

σ
(I)
x

∣∣∣∣∣
interface

=
2Z1

Z1 + Z2

(2.11)

in which σx is the normal stress in x direction along which the wave propagates,

superscripts I, R, and T respectively denote the incident, reflected and transmitted

waves, and Z1 and Z2 are the impedance of medium 1 and medium 2 as demonstrated

in Figure 2.1. Note that we have R + T = 1. According to equations (2.10) and

(2.11), for the special case that two media have the same impedance (Z1 = Z2), wave

completely transmits into the second medium and no reflection occurs (T = 1 and

R = 0). According to equation 2.10, the stress reflection coefficient can be positive

or negative depending on Z2 and Z1 values. A negative R value infers shifting the

reflection wave phase by π radians.

Oblique beam incidence

An ultrasonic wave encountering an interface at an inclined angle, refracts, reflects

and undergoes mode conversion. Snell’s law describes the relationship between the
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Figure 2.1: Normal incidence of an ultrasound wave on the interface of two media

angle of incidence and the angle of refraction:

sin(θ1)

sin(θ2)
=

c1
c2

(2.12)

in which θ1 denotes the angle of incidence, θ2 the angle of refraction, c1 wave velocity

in medium 1 and c2 wave velocity in medium 2 as shown in Figure 2.2. The wave can

be either longitudinal or transverse.

At a solid-solid interface, ultrasonic waves may undergo mode conversion; e.g. a

longitudinal wave, depending on the angle of incidence, may convert to shear wave

and/or surface wave. This complicates the formulation of wave propagation in the

general case. In the following, we consider two cases which are of interest for NDT

applications. In the first case, reflection and refraction at a solid-solid interface with

smooth contact is presented. In the second case, the reflection at a stress free surface

is presented.

Reflection and refraction at a solid-solid interface with smooth contact:

Normal beam testing cannot often detect defects [8]. In this case, angle beam testing,

which uses an incidence of other than 90◦, is performed. An angle beam transducer

used in NDT consists of a contact P-wave transducer and a wedge on which the

transducer is placed, as shown in Figure 2.3. When couplant is applied between two

solid media, the shear stress vanishes at the interface between the wedge and the test

piece. In this case, the ratios between the stress amplitude of incident wave and the

12
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Figure 2.2: Snell’s Law

stress amplitudes of reflected and transmitted waves are given by [59],

Pt

Pi

=
ρ2
ρ1

2cos(2θs1)cos(2θs2)

∆

Pr

Pi

=
∆2 −∆3

∆

St

Pi

=
ρ2
ρ1

−2c2s2sin(2θp2)cos(2θs1)
c2p2∆

Sr

Pi

=
−2c2s1sin(2θp2)cos(2θs1)

c2p2∆

(2.13)
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Figure 2.3: Ultrasonic angle beam testing

in which ∆ = ∆1 +∆2 and

∆1 =
cp1cosθp2
cp2cosθp1

(cos2(2θs1) +
c2s1sin(2θs1)sin(2θp1)

c2p1
)

∆2 =
ρ2
ρ1

(cos2(2θs2) +
c2s2sin(2θs2)sin(2θp2)

c2p2
)

∆3 =
cp1cosθp2
cp2cosθp1

(cos2(2θs1)−
c2s1sin(2θs1)sin(2θp1)

c2p1
)

(2.14)

P denotes the amplitude of P-wave, S the amplitude of S-wave, subscripts i, r, t, p,

s, 1 and 2 denote incident, reflected, transmitted, P-wave, S-wave, medium 1 and

medium 2, respectively. Figure 2.4 illustrates the notation too. Furthermore, the

angles of incident, reflected and transmitted waves are given by generalized Snell’s

law as,
sin(θp1)

cp1
=

sin(θs1)

cs1
=

sin(θp2)

cp2
=

sin(θs2)

cs2
. (2.15)

Critical Angles: By increasing the angle of incidence, the angle of refracted

wave increases. In particular case when cp2 > cp1, for some specific value of θp1, the

angle θp2 becomes equal to 90◦. At this angle, there would be no refracted longitudinal

wave in the medium 2 and only the shear wave would propagate to the medium 2.

This value of angle θp1 is called first critical angle.

Generally, angles larger than the first critical angle are used for ultrasonic an-

gle beam testing [60]. Beyond the first critical angle, the longitudinal wave totally

reflects and only shear wave is transmitted into the specimen. This facilitates the

interpretation of received echoes. We will use the angle-beam shear wave in our ex-
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Figure 2.4: Incident, reflected and transmitted waves

perimental setup. Other types of ultrasonic wave are also used in ultrasonic testing

and are introduced briefly in the following.

Just near and smaller than the first critical angle, creeping waves are produced.

Creeping waves have the same properties as longitudinal waves. They are gener-

ated parallel to the scanning surface and travel near the surface. This enables the

creeping waves to detect surface breaking defects without being affected by surface

irregularities [60].

If cs2 > cp1, there would be a second critical angle for which the refracted shear

wave angle, θs2 would be equal to 90◦. At this point, no wave enters the second

medium and shear wave appears as the surface wave propagating along the scanning

surface. These surface waves, also called Rayleigh waves, can travel along flat and

curved surfaces. Rayleigh waves are used in NDT for the detection of surface cracks

and defects [60]. A major difference between Rayleigh wave and creeping wave is that

the Rayleigh wave follows the surface contour while the creeping wave does not. This

difference makes these two waves suited for different applications. For example, the

creeping waves can be used for inspecting weld caps without flush grinding [60].

For the Lucite wedge and the steel specimen used in our experiments in Chapter

7, the first and the second critical angles are 26.5◦ and 56.5◦, respectively. This range

of incident longitudinal wave angle (26.5◦ − 56.5◦) is the usable range in ultrasonic

NDT. Figure 2.5 shows the ratio St

Pi
for different incident angles. As it can be seen, at

an incident angle about 37◦ (equivalent to refracted shear wave of 45◦), the amplitude

of the shear wave transmitted into the test piece is close to maximum.
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Reflection at a stress-free surface: In angle beam testing, ultrasonic waves may

undergo different phenomena such as reflection, refraction, diffraction and attenua-

tion. Reflection from a surface under stress-free condition frequently occurs in ultra-

sonic testing. For example, ultrasonic reflection from a crack surface can be modeled

as reflection from a stress-free surface. As shown in Figure 2.6, for a stress-free surface

there will be no transmitted wave and hence all energy will be reflected back. In this

case the amplitude of reflected waves are [59],
Pr =

∆1 −∆2

∆
Pi +

2c2p1sin(2θs1)cos(2θs1)

c2s1∆
Si

Sr =
−2sin(2θp1)cos(2θs1)

∆
Pi +

∆1 −∆2

∆
Si

(2.16)

in which ∆ = ∆1 +∆2 and 
∆1 = sin(2θp1)sin(2θs1)

∆2 = (c2p1/c
2
s1)cos

2(2θs1)

. (2.17)

Based on equation (2.16), in general if a pure shear wave is incident on a stress-

free surface, both longitudinal wave and shear waves are reflected from the surface.

However, if the angle of incidence is either 0◦ or 45◦, only the shear wave is reflected.

In our experimental setup1, we use a Lucite wedge which has a standard refracted

1Refer to Chapter 7 for details of experiments.
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Figure 2.6: Incident and reflected waves at a stress-free surface

shear wave angle of 45◦ in steel. Therefore, when testing a steel block, if shear waves

are incident on either the backwall or a crack normal to the surface, only shear waves

are reflected.

2.2 Fault detection using ultrasonic testing

Whenever an elastic wave propagating in a medium hits an inhomogeneity or dis-

continuity, it reflects off it. Therefore elastic waves can be employed to detect such

discontinuities. The smaller the wavelength, i.e. the higher the frequency, the smaller

the discontinuity can be detected. Sound or elastic waves with the frequency above

20kHz are called ultrasound or ultrasonics (beyond the human hearing frequency

range) [60]. Because of their short wavelength, ultrasonic waves are employed in

NDT for detection of defects. In NDT applications, frequencies from 1 to 10 MHz

are typically used, although lower or higher frequencies are sometimes required for

specific applications [6].

Various types of instrumentations, test setups and couplings have been used. Ac-

cording to the method used to couple the test object and the transducer, there are

two major test methods: contact and immersion methods. In the contact method, a

thin layer of liquid transfers the ultrasonic energy to the test piece. In the immer-

sion method, both the probe and the test piece are immersed in a fluid, e.g. water,

through which the ultrasonic energy is transfered.

There are three general configurations used alone or in combination with each

other to identify defects: through transmission, pulse echo and pitch catch. In the

through transmission setup, an ultrasonic transmitter is used on one side of the test

piece while a receiver is placed on the opposite side. Scanning of the material using

this method will reveal the location of defects. This method requires the access to

both sides of the material.

In this thesis, the other two methods are used, because in many applications,
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Figure 2.7: Transducer arrangements in the pitch-catch and pulse-echo setups

such as pipeline inspection, often only one side is accessible. In both pulse-echo and

pitch-catch setups, a transducer emits ultrasonic pulses. These pulses travel through

the object and respond to its geometry and mechanical properties. Ultrasonic signal

is then either (a) transmitted to another transducer on the same side of the material,

or reflected back to the original transducer (see Figure 2.7). Either way, the received

signal is transformed back into an electrical signal. This observed signal provides a

detailed account of the specimen under investigation. Using each of these methods,

we can determine:

• the thickness of the specimen

• the presence of a flaw or defect and its size, shape and position

The so called pulse-echo reflection technique is used usually for ultrasonic flaw

detection [10], whereas the pitch-catch setup is used to size the flaws, especially the

crack-like flaws. Different methods were developed for locating and sizing defects.

We explain in the following two popular methods used for crack size measurement:

relative arrival time technique (RATT), which utilizes the pulse-echo arrangement,

and time of flight diffraction (TOFD), which utilizes the pitch-catch arrangement.

The other types of defects such as void and impurity are not studied in this thesis

and need to be investigated in future studies.
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Figure 2.8: Ultrasound ray path in the wedge and the material

2.2.1 Relative arrival time technique

Figure 2.8 illustrates the schematic of the pulse-echo setup. As illustrated in Figure

2.8, the received signal consists of three echoes:

1. At the interface of the wedge and the specimen, a portion of the wave reflects

back to the wedge due to the mismatch of the impedances. This echo is called

the wedge echo or wedge noise [61].

2. The portion of the wave that is incident on the crack and is reflected back to

the transducer is commonly referred to as the corner trap echo.

3. When the ultrasonic wave impinges on the crack tip, it backscatters in a circular

form [61]. Some of these scattered waves make their way back to the transducer.

Relative arrival time technique (RATT) involves the measurement of echoes from

the corner trap and the top tip diffraction [53, 54, 62]. As commonly assumed in

deriving RATT, let us assume a crack normal to the specimen surface. Figure 2.9(a)

illustrates the wedge/specimen interface. In this figure, ∆OAO’ shows a wedge with

an incidence angle of θw. To simplify the derivation of the RATT, we consider a

hypothetical wedge which has the same physical property as the test object and has

an angle θ equal to the refracted wave angle. By using Snell’s law it can be shown

that it takes an ultrasonic wave the same time to travel from point O to point A in

the actual wedge as to travel from point O to point A′ in the hypothetical wedge.

From Snell’s law we have sin(θ)
sin(θw)

= cs
cw

and from the geometry we have sin(θ)
sin(θw)

= OA′

OA
,

hence
OA′

cs
=

OA

cw
= tw/2 (2.18)
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Figure 2.9: Derivation of the RATT, a) Wedge-specimen Interface b) Ultrasonic rays
incident on the crack corner, BA, and crack tip, CE (points B and C are located on
the hypothetical wedge)

where cw, cs and tw are the wave speed in the wedge, the wave speed in the specimen

and the wedge time delay, respectively. The wedge delay is defined as the time that

the received ultrasonic wave has spent in the wedge. Clearly, by replacing the wedge

with this hypothetical wedge there would be no refraction at the interface. Figure

2.9(b) illustrates the travelling paths of two ultrasonic rays incident on the crack

corner and crack tip. Evidently, the difference between the travel distance of these

two rays is equal to ED which is equal to crack length times cos(θ). The crack length,

EA, can then be related to the time of arrival of the corner trap echo, τCT and the

time of arrival of tip diffraction echo, τTD as,

crack length =
cs(τCT − τTD)

2cos(θ)
. (2.19)

Therefore, when using the RATT, the first step is to determine whether an echo

related to the crack is present in the received signal. Next, the time of arrival of

corner trap echo and tip diffracted echo should be estimated. Finally, equation (2.19)

is used to calculate the crack size using the estimated times of arrival of corner trap

echo and tip diffracted echo.

2.2.2 Time of flight diffraction

The time of flight diffraction (TOFD) technique, which utilizes pitch-catch setup, was

first developed in the late 1970s by Silk [63]. TOFD technique is increasingly used

to find the crack location and size, based on the arrival time of the diffracted signals

from the defective edges of the crack [14].

Let’s consider a surface breaking crack which is located exactly at midway between

two transducers as shown in Figure 2.10. In this case, the time of flight of ultrasonic
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Figure 2.10: Schematic of the experimental setup

waves travelling from the transmitter to the receiver can be obtained as

t =
2
√
d2 + s2

cs
(2.20)

in which 2s denotes the distance between the beam index locations of the two trans-

ducers, and d denotes the length of the crack. The beam index is a location at the

bottom of the wedge at which the center beam intersects the wedge bottom surface.

The center beam path is often marked on the wedge so the distance between beam

indexes can be easily measured. Rearranging equation (2.20) gives the crack length

as,

d = 2
√
(cst/2)2 − s2. (2.21)

Even if the transducers are not placed symmetrically around the crack, equation

(2.20) is still applicable to most practical cases with an acceptable accuracy [51]. If we

move both transducers by an equal small step ϵ along the specimen, i.e. the distances

between the crack and the two transducers are s − ϵ and s + ϵ, it can be shown the

error in the estimated crack size is,

∆d =
s2 − d2

s2 + d2
(
ϵ2

2d
). (2.22)

As it can be seen in equation (2.22), the error, ∆d, is of the second order, hence the

error would be negligible for small asymmetry.

If the crack is located inside the material, an echo will be diffracted from each of

two edges. The same equation (equation (2.21)) can be used to estimate the length

of each crack edge. Subsequently, the crack length can be calculated by subtracting
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Figure 2.11: An example of an A-scan signal obtained using pitch-catch setup from
a sample with a 12.5 mm crack

the length of two edges from each other.

2.3 Ultrasonic signal representation

There are several ways to display the ultrasonic signal. The most common displays

are A-scan, B-scan and C-scan. Most of the commercial ultrasonic flaw detection

equipment provides the A-scan display [6]. The A-scan displays the echo amplitude

versus time so A-scan results in a one-dimensional signal. Knowing the speed of wave

in the medium, the echo arrival time can be converted to the travel distance. The

defect location can then be determined using the A-scan display.

An A-scan examines a specimen only at one point on its surface. By moving the

transducer, a B-scan consisting of A-scans produced at multiple points along a line

across the surface of test piece is produced. The B-scan display is used when the

information on the cross section of defect is required. In a B-scan image, the distance

between each consecutive two A-scans indicates the distance that the transducer

moved between two adjacent A-scans [64]. Often, a position sensor is used to measure

the position of transducer. An alternative way to produce a B-scan image is to use

phased array transducers. A phased array transducer can produce a B-scan image

without the need for moving the transducer. In this method, the B-scan is generated

by proper timing of an array of transducers. An example of an A-scan signal and an

example of a B-scan signal are depicted in Figure 2.11 and Figure 2.12, respectively.

In a C-scan presentation, an area of the specimen is scanned. The scanning is

often accomplished using an automated positioning system which moves transducer
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Figure 2.12: An example of a B-scan signal obtained using pulse-echo setup from a
specimen with a slot length of 0.1 mm

by a specified step-size. Again, at each point an A-scan is produced. Each A-scan

is then passed through a gate which can be placed either along a single time-line

(corresponding to a single depth) to detect defects in the full volume of the component

or at various depths within the thickness of the component to detect defects in a range

of depths [65]. The peak amplitude of each A-scan within a gate is then recorded.

Finally, the recorded peak values corresponding to A-scans collected at different points

on the surface of the specimen are displayed as color or gray scale image. C-scan

signals are not used in this thesis.

2.4 Mathematical models of the ultrasonic echo

waveform

An A-scan signal may in general contain multiple echoes [57, 66–68]. Each echo can

be modeled as,

g(t) = T (t− τ)cos(2πfc(t− τ) + ϕ) (2.23)

in which g(t) is the received echo waveform, T is the envelope of the echo, t is time,

τ is time of arrival (also called time of flight), fc is the transducer’s center frequency,
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Figure 2.13: An ultrasonic A-scan signal to which a Gaussian echo model is fitted

and ϕ is phase. Gaussian echo is widely used to model the ultrasonic echo [57], in

which T(t) is approximated by a Gaussian function so that

g(t) = βe−αt(t−τ)2cos(2πfc(t− τ) + ϕ) (2.24)

in which β is amplitude and αt is temporal bandwidth factor. Figure 2.13 shows an

experimental ultrasonic signal to which a Gaussian echo model is fitted. As can be

seen in Figure 2.13, Gaussian echo model gives a good approximation of the ultrasonic

echo. In addition to the Gaussian echo model, there are other echo models proposed

in the literature. Due to dispersion, echo envelope often rises sharply before the peak

and slowly decays after [69]. Cavaccini et al. [70] simulated ultrasonic echo envelopes

by adding two distorted Gaussian branches at left and right of the peak. Demirli and

Saniie [69] proposed an envelope model composed of a linear combination of fixed-

width and equally-spaced Gaussian functions. They also replaced the cosine term by

a chirp signal to account for the fact that the wave group velocity depends on the

frequency in dispersive media.

Modeling B-scans is more difficult as the echo is not only a function of time, but

also a function of transducer position. In this case, the signal is two dimensional and

can be written as,

g(x, t) = e(x, t)cos(2πfc(t− τ(x)) + ϕ) (2.25)

where e is the envelope and x is the transducer position. Compared to the A-scan

model given by (2.23), in the B-scan model, the envelope, e(x, t), and the time of

arrival, τ(x), are functions of the transducer position. Assuming that all A-scan
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echoes within a B-scan echo have similar waveforms except that each A-scan echo is

time-shifted and amplitude scaled. The envelope, e(x, t), can then be written as,

e(x, t) = X(x)T (t− τ(x)) (2.26)

where the amplitude of envelope, e(x, t), at x is given by the function X(x) and

the envelope shape is determined by function T (t) which is time shifted by τ(x).

Substituting e(x, t) from (2.26) into (2.25) gives,

g(x, t) = X(x)T (t− τ(x))cos(2πfc(t− τ(x)) + ϕ). (2.27)

As indicated in equation (2.27), both amplitude and time of flight are functions

of x. In a pitch-catch arrangement, it is known that the time of flights of diffracted

signals caused by a crack is represented in a B-scan image by parabolas [71, 72].

Maalmi et al. used Hough transform to detect these parabolas in the B-scan image

[72]. In contrast to pitch-catch arrangement for which a mathematical model is

available in the literature, B-scan signal in pulse-echo arrangement has not yet been

properly modeled mathematically. Therefore, we devote the remainder of this section

to modeling of the B-scan signal obtained from a pulse-echo arrangement. We will

use this model in Chapter 4 in our model-based parameter estimation method.

Figure 2.14(a) illustrates the travel paths of two ultrasonic rays through the wedge

and the specimen. We define the central ray as the one reflecting from the corner

of the slot and it is represented by a solid line. Note that the central ray is not

necessarily emitted/received from/by the center of the transducer. The other ray (we

will call it the dashed ray) is represented by a dashed line. It can be shown that

BC +CD+DF = (BC +CH) +DF = ls and AB +GF = lw, where ls is the travel

distance of the central ray in the specimen and lw is its travel distance in the wedge.

Thus, the total travel distance of a dashed ray is equal to the total travel distance of

the central ray.

Figure 2.14(b) shows the travel paths of the central ray when the transducer is at

two different positions. As it can be seen, travel paths of the central ray at these two

positions are mostly coincident and the only difference is the distance between the

two transducers. Therefore, the difference between the travel distances of the central

ray at these two positions can be calculated as

∆l = 2∆xsin(θw), (2.28)
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Figure 2.14: (a) Travel paths of two ultrasonic rays through the wedge and the
specimen, (b) Travel paths of the central ray at two different transducer positions.

where x, l, and θw are respectively the horizontal distance from the transducer to the

slot, the distance the wave travels to the slot and back to the transducer, and the

angle of incidence at the wedge-specimen interface on the wedge side. Substituting

l = vwτ in equation (2.28) gives

∆τ

∆x
=

2sin(θw)

cw
, (2.29)

in which τ and cw are the time of arrival and wave velocity in the wedge, respectively.

Alternatively from Snell’s law, one may rewrite equation (2.29) as

∆τ

∆x
=

2sin(θ)

cs
, (2.30)

where vs is the wave velocity in the specimen and θ is the wave angle upon entering a

specimen with a normal surface. As expected, the time of flight is a linear function of

the distance between the transducer and the slot. All parameters in equation (2.30)

are known before performing the test. For our experimental setup1, the speed of the

refracted shear wave in the specimen has been obtained using assisted calibration of

Omniscan as 3229 m/s. Evaluating Equation (2.30) gives

∆τ

∆x
=

2sin(θ)

cs
=

2sin(45)

3.229
= 0.438 µs/mm. (2.31)

If the crack is not perpendicular to the surface, the ultrasonic rays will not stay

1Refer to Sec. 7.1 for details of this experiment.
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Figure 2.15: Travel paths of a ray at two different transducer positions

parallel to each other after reflecting from the crack surface. As a result, the reflected

waves may arrive at the receiver at different angles. Therefore, the value of
∆τ

∆x
will

be different from equation (2.31). Let us consider an ultrasonic ray that encounters

the receiver at an angle α as shown in Figure 2.15. The difference between the travel

distances of this ray at these two positions is equal to

∆l = ∆xsin(θw) + ∆xsin(θw)/cos(α). (2.32)

Hence,
∆τ

∆x
=

sin(θ)

cs

(
1 +

1

cos(α)

)
. (2.33)

Because the longitudinal transducer responds only to normal component of the

particle velocity [73], the response of the transducer to rays with large angle of inci-

dence is weak. For small values of α, equation (2.33) can be approximated as,

∆τ

∆x
≈ sin(θ)

cs

(
2 + α2/2

)
. (2.34)

As can be seen in equation (2.33), the change in
∆τ

∆x
is proportional to α2 for small

α values. Therefore, it is expected that
∆τ

∆x
be slightly greater than the value given

in equation (2.31), if the crack is not normal to the surface.

For an experimental B-scan image1, we have calculated the time of flight values

for corner trap echo and tip diffracted echo. The time of flight for each echo is

calculated by finding the maxima of the signal envelope. The signal envelope, in turn,

1The B-scan image for this experimental data is shown in Figure 7.13.
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Figure 2.16: Time of flight of (a) the corner trap echo and (b) the tip diffracted echo,
versus the transducer distance to crack

is calculated using the Hilbert transform. Figure 2.16 gives these calculated time of

flight values at different transducer positions. From these experimental results, it can

be observed that for both echoes the slope of the fitted line is in good agreement with

the theoretical value given by equation (2.31); in both cases there is less than 0.5%

deviation from theory.

The last parameter to determine is the amplitude, X(x). When the transducer

is far enough away from the crack, there would be no echoes received by the trans-

ducer. As the transducer gets closer to the crack the amplitude of the received signal

gradually increases and reaches its maximum. We have performed curve fitting to

an experimental dataset1 and found that a reasonably accurate approximation to the

amplitude of the ultrasonic echoes can be produced using Gaussian function, such

1This dataset is explained in Sec. 7.1.
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Figure 2.17: Amplitude of the corner trap echo

that

g(x, t) = βe−αx(x−x0)2e−αt(t−τ(x))2cos(2πfc(t− τ(x)) + ϕ) (2.35)

where αx is spatial bandwidth factor and x0 is the position where maximum amplitude

occurs. For example, Figure 2.17 shows a Gaussian function fitted to the amplitude

of a corner trap echo1.

As will be discussed in Chapter 4, a model-based parameter estimation method can

utilize the model developed in this section to accurately estimate the parameters of an

ultrasonic B-scan echo. Comparing to conventional methods such as cross-correlation

method, model-based methods allow a more accurate time-of-flight estimation.

2.5 Summary

In this chapter, the ultrasonic wave propagation, the ultrasonic non-destructive test-

ing and the ultrasonic signal modeling have been introduced. The concepts introduced

in this chapter will be used in later chapters frequently.

The study of the ultrasonic wave propagation helps us in the proper selection of

parameters of the experimental setup2. It has been shown that in ultrasonic angle

beam testing, if the angle of incidence is greater than the first critical angle, only the

shear wave will transmit into the second media. This simplifies the signal processing

which otherwise could be complex due to the presence of both longitudinal wave and

1The B-scan image for this experimental data is shown in Figure 7.13.
2Refer to Chapter 7 for details of experiments.
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shear wave in the test piece. Furthermore, if a shear wave is incident on a stress-free

surface at the angle of 45◦, only shear wave will be reflected. Therefore, we have

selected a wedge with standard refraction angle of 45◦ so that when the shear wave

is incident on the backwall or a crack normal to the surface only shear wave will be

reflected.

Two crack sizing methods have been introduced: time of flight diffraction and rel-

ative arrival time technique. The crack sizing accuracy for known cracks will be used

as a performance index for denoising and parameter estimation methods proposed in

this thesis.

In the literature, different mathematical models were reported for ultrasonic A-

scans. Because, in this thesis, we seek signal processing of ultrasonic B-scans, a

mathematical model has been developed for the ultrasonic B-scan signal. This model

will be used for parameter estimation in Chapter 4. We will also use this model for

the selection of the maximum scanning step size in the experimental work in Chapter

7.
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Chapter 3

Denoising Ultrasonic Pulse-Echo

B-scan Signals Using

Two-Dimensional Analytic Wavelet

Thresholding

When an ultrasonic angle-beam pulse-echo setup is used, two kinds of noise are present

in the received signal: 1) random noise, and 2) wedge noise. In this chapter, we

propose a method for removing both random noise and wedge noise using a two-

dimensional stationary wavelet transform (2D SWT). To improve the performance of

the 2D SWT, we employ analytic wavelet thresholding. In this method, the threshold-

ing is performed based on the amplitude of the analytic signal (The amplitude of an

analytic signal constructs the envelope of the corresponding signal.) of the stationary

wavelet coefficients.

Currently, the formulation of analytic signals is mainly limited to 1D signals and

no regular generalization of analytic signals to multi dimensions is available. We prove

that under certain conditions, the envelope of the ultrasonic B-scan can be extracted

exactly by introducing a reference vector. Such a reference vector defines the low

frequency and high frequency components in the frequency domain. By utilizing this

definition of the low frequency and high frequency components, we can get the 2D

analytic signal.

The proposed denoising method is applied to simulated and experimental data to

assess its performance. The results show that the proposed denoising method is able

to reveal echoes reflected from a surface breaking crack as small as 0.1mm. Major
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contribution of this chapter has been published in [74,75] 1.

3.1 Introduction

Raw ultrasonic signals typically contain high levels of noise. The presence of these

noises and spurious signals diminish the probability of damage detection and increase

the false alarm rate [76]. These noises are primarily caused either by electric sources,

e.g. noises and spurious signals generated in amplifiers, or by acoustic sources, e.g.

waves backscattered by structural inhomogeneities [77].

The ultrasonic denoising problem has been addressed by many researchers. How-

ever, most of the reported works deal with A-scan signals (for example see [76–85]).

Recently, the use of B-scan images has become more common as a result of advances

in signal processing and hardware technology. A B-scan image can provide more ac-

curate fault detection and assessment by keeping the geometrical coherence of defects

which leads to a better noise immunity [45]. A B-scan signal can be denoised by

independently denoising each A-scan contained in the B-scan signal and then recon-

structing the B-scan by combining denoised A-scans. But, the denoising performance

might not be as satisfactory as a 2D denoising method which employs the signal

dependency in both dimensions.

Little research has been reported on denoising B-scan signals. Most of the pub-

lished works are on suppressing speckle noise from B-scan images (for example see

[86–90]). Speckle noise is a random, deterministic, coherent interference in an ul-

trasound B-scan. Speckle noise occurs when many sub-resolution scatterers in the

medium cause interference in the wave received from an object [87]. For instance,

in NDT applications, grain boundaries in a medium such as cast stainless steel may

cause speckle noise [91]. The use of ultrasonic non-destructive testing for such appli-

cations is limited [91]. In this thesis, we consider more typical applications of UT,

such as structures made of mild steel, for which the grain boundaries are too small

to reflect ultrasonic waves. Therefore, we do not investigate this type of noise.

The other types of noise which are present in the ultrasonic signal are: 1) back-

ground noise, and 2) non-coherent random noise. Non-coherent random noise does

not correlate with the ultrasonic echoes. They are caused by different sources such as

1Versions of this chapter have been published in “M.R. Hoseini, M.J. Zuo, and X. Wang, Two
dimensional analytic wavelet thresholding and its application to ultrasonic pulse-echo B-scan denois-
ing, In Proceedings of CCECE. 2010, 1-5.”; and “Mohammad R. Hoseini, Ming J. Zuo, Xiaodong
Wang, Denoising ultrasonic pulse-echo signal using two-dimensional analytic wavelet thresholding,
Measurement 45(3): 255-267, 2012.”
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electric sources and quantization errors. Removing this type of noise has been investi-

gated in different fields including the ultrasonic testing. Yet again, the B-scan signal

denoising has not been well studied. Cao et al. [92] proposed using Wiener filtering

to denoise B-scan images. Wiener filtering requires some prior knowledge about the

signal and noise. In addition, Wiener filter is not adaptive as it assumes the signal is

stationary. Therefore, proper non-stationary methods need to be developed.

In ultrasonic contact testing, background noise is also present. It may be caused

either by the interface between the wedge and the test piece in the pulse-echo setup

or by the backwall in the pitch-catch setup. Wells et al. [93] removed background

noise from B-scan by iteratively subtracting the average of A-scans from each A-scan.

Although this method provides a simple way to remove background noise, it assumes

that the background noise does not change as the transducer moves. Therefore, this

method cannot compensate for the small changes in the amplitude and the time of

arrival of background noise.

In this chapter, we propose a method based on the 2D wavelet transform to denoise

ultrasonic pulse-echo B-scan images. The proposed method simultaneously takes into

account both random noise and background noise. The remainder of this chapter

is organized as follows. Section 3.2 briefly introduces the wavelet transform and in-

vestigates the analytical wavelet thresholding for a 2D signal. Section 3.3 explains

the denoising method proposed. Section 3.4 presents a comparison between the pro-

posed denoising method and two existing methods using simulated and experimental

signals. Finally, conclusions are given in Section 3.5.

3.2 Wavelet denoising

The basic idea behind wavelet denoising is that most of the energy of a signal is

concentrated in a few coefficients in the wavelet domain, whereas noise energy spread

over a large number of coefficients. Therefore, insignificant coefficients are likely

to contain mostly noise. In wavelet thresholding methods, a threshold is set and

coefficients smaller than this threshold are discarded.

Like other transforms such as the Fourier transform, wavelet transform uses basis

functions for signal transformation. The basis functions of the Fourier transform

consist of sines and cosines which transform a signal from the time domain (or other

domains such as spatial domain) to the frequency domain. But, wavelets, which

are basis functions of the wavelet transform, transform a signal from time domain

to time-frequency domain. This is achieved by replacing the Fourier basis by more
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localized basis functions labeled by time and frequency (or scale) parameters [94].

Wavelets, gµ,τ (t), are generated by time scaling and translating of a prototype called

mother wavelet as

gµ,τ (t) =
1
√
µ
g

(
t− τ

µ

)
µ, τ ∈ R, (3.1)

where g(t), µ and τ denote the mother wavelet, the scale parameter and the time

translation parameter, respectively. Then, the continuous wavelet transform,Wf (µ, τ),

of a signal f(t) at the time parameter τ and the scale parameter µ is calculated as:

Wf (τ, µ) =

∫ ∞

−∞
f(t)ḡτ ,µ (t)dt, (3.2)

where ḡ is the complex conjugate of g.

Unlike the Fourier transform which uses fixed basis functions, i.e. sines and cosines,

the wavelet transform offers flexibility in the choice of mother wavelets. There are

different families of wavelets, e.g. Daubechies, symlet and coiflet families, that one

can choose from. Generally, a properly selected wavelet matches well to the analyzed

signal [95] and hence results in a sparse representation of the signal. In other words,

the signal energy is concentrated in a few coefficients.

The continuous wavelet transform parameters (µ, τ) can be sampled to reduce

the redundancy and to make the wavelet transform more practical in dealing with

discrete signals [96]. This will lead to discrete wavelet transform (DWT). DWT is

essentially a filter bank consisting of bandpass filters that effectively splits a signal

into a number of subbands.

DWT can be performed using a simple and efficient algorithm called pyramidal

algorithm [97]. As illustrated in Figure 3.1(a), the pyramidal algorithm decomposes

a signal, fm[n], at level m (f0 is the original signal to start with) by convolving it

with a low-pass filter, h (scaling filter), to form an approximation signal, fm+1[n], at

level m+ 1, and a high-pass filter, g (wavelet filter), to form a detail signal, f ′
m+1[n],

at level m+ 1,

fm+1[n] =
∑
k

h[2n− k]fm[k]

f ′
m+1[n] =

∑
k

g[2n− k]fm[k] (3.3)

The resulting signals, fm+1[n] and f ′
m+1[n], are subsequently sampled at every other

point in order to avoid redundancy. If needed, the approximation coefficient, fm+1[n],
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Figure 3.1: Decomposition of a signal, fm, at level m into approximation and detail
signals at level m+1, (a) wavelet decomposition, 1D signal, (b) SWT decomposition,
1D signal, (c) SWT decomposition, 2D signal.

is further decomposed to reach the desirable level of decomposition.

To illustrate how the discrete wavelet analysis is performed, we present an example

in the following. Figure 3.2 shows examples of scaling filters and wavelet filters.

These wavelet filters are from the Daubechies family denoted as ‘dbN’ where N is a

positive integer. A Daubechies wavelet of order N has N vanishing moments. That

is the scaling function can generate polynomials up to degree N − 1. In other words,

the wavelet coefficients are zero for polynomials of degree at most N − 1. Another

important property of Daubechies wavelets is their compact support, i.e. the function

is non-zero only for a limited portion of its domain. A ‘dbN’ wavelet has a support

size of 2N − 1. Wavelets with a shorter support length have the advantage of being
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more localized in time.

Now, suppose we would like to analyze the signal shown in Figure 3.3 using one

of the wavelet functions shown in Figure 3.2. As it can be seen in Figure 3.3, the

signal is initially constant, then linear and eventually constant again. This suggests

that ‘db2’ is the best wavelet among Daubechies family for analyzing this signal as it

has two vanishing moments.

Figure 3.3 shows one level decomposition of the signal using ‘db1’1-‘db4’. As can

be seen, all approximation and detail coefficients have half the length of the original

signal (The length of coefficients is often a little different from exactly half the length

of the original signal depending on how the signal boundaries are treated.). In general,

the approximation coefficient is similar to the original signal except for some details

which are captured by the detail coefficient. As mentioned earlier, we would like to

achieve a transformation which results in a sparse representation of the signal, i.e. a

signal representation that has fewer number of nonzero coefficients. Comparing the

coefficients in Figure 3.3 shows that the ‘db1’ performs worst as the detail coefficients

have many nonzero elements. The other filters are almost the same, ‘db2’ detail has 2

nonzero elements, ‘db3’ 4 nonzero elements and ‘db4’ 6 nonzero elements. Therefore

as expected, the best representation of the signal is obtained by ‘db2’.

For the above example, it is rather easy to determine which wavelet should be se-

lected, however, in practice, signals are much more complex and are contaminated by

noise. Therefore, selecting a proper wavelet can be challenging. A common selection

criterion is the Shannon entropy.

Shannon entropy of a signal, si, i = 1, 2, . . . , n is defined as S = −
n∑

i=1

pi loge pi

where pi = s2i /
n∑

i=1

s2i . Shannon entropy, a measure of the randomness in a system, is

an excellent indication of energy concentration [98]. The higher the energy concen-

tration of a signal, the lower the Shannon entropy. Let us elaborate this concept by

considering two extremes. Suppose all energy of the signal is captured by one coef-

ficient (the highest possible energy concentration), i.e. all other coefficients are zero.

In this case, pi = s2i /
n∑

i=1

s2i = 1 and S = 0. This means that there is no randomness

in this signal (S = 0). If si’s are wavelet coefficients, it means that the signal is

completely represented only by one coefficient (the best possible transformation). On

the other extreme, if the signal energy is spread equally over all coefficients, i.e. si = c

and c is a constant, Shannon entropy takes its maximum S = loge n. Therefore to

select the best wavelet basis, we need to minimize the Shannon entropy.

1‘db1’ is also called Haar wavelet
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to 4
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Although DWT is very efficient from the computational point of view, it is not

translation invariant, i.e. translating the original signal may lead to different wavelet

coefficients [99]. This degrades the quality of denoising [52]. To overcome this draw-

back, stationary wavelet transform (SWT) was proposed [100]. The only difference

between SWT and DWT is that when calculating SWT the signal is not decimated,

instead, at each level the filters are up-sampled, i.e.

fm+1[n] =
∑
k

hm[n− k]fm[k]

f ′
m+1[n] =

∑
k

gm[n− k]fm[k] (3.4)

in which the scaling filter is defined recursively as:

hm+1[k] = hm[k] ↑ 2 =

{
hm[k/2], k even

0, k odd
(3.5)

where h0[k] = h[k] and ↑ 2 denotes upsampling by a factor of 2. The wavelet filter,

gm[k], can be defined similarly. Figures 3.1 (a) and (b) illustrate how DWT and SWT

are performed, respectively.

The 2D wavelet transform can be formulated to be separable in the two dimensions

so it can be computed by extending the 1D pyramidal algorithm transform. In other

words, 1D wavelet decomposition is performed first in one direction, then in another

direction. Thus, the 2D SWT of a 2D function, fm[n1, n2], is calculated as:

fm+1[n] =
∑
k1

∑
k2

hH
m[n1 − k1]h

V
m[n2 − k2]fm[k1, k2]

fH
m+1[n] =

∑
k1

∑
k2

hH
m[n1 − k1]g

V
m[n2 − k2]fm[k1, k2]

fV
m+1[n] =

∑
k1

∑
k2

gHm [n1 − k1]h
V
m[n2 − k2]fm[k1, k2]

fD
m+1[n] =

∑
k1

∑
k2

gHm [n1 − k1]g
V
m[n2 − k2]fm[k1, k2] (3.6)

where superscripts H, V, and D stand for horizontal, vertical, and diagonal coeffi-

cients, respectively. Figure 3.1 (c) illustrates how 2D SWT is performed using the

pyramidal algorithm. As illustrated, a 2D signal is decomposed into an approxima-

tion signal and three detail signals. Because each detail signal is associated with the

detail of the signal in one direction, they are called horizontal, vertical, and diagonal
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Table 3.1: Frequency content of each wavelet coefficient

Low Vertical
Frequency

High Vertical
Frequency

Low Horizontal
Frequency

Approximation
Coefficient

Horizontal De-
tail Coefficient

High Horizontal
Frequency

Vertical Detail
Coefficient

Diagonal Detail
Coefficient

detail coefficients. Table 3.1 gives the frequency content of each wavelet coefficient.

For example, the horizontal detail coefficient, which is passed through a scaling filter

in horizontal direction and through a wavelet filter in vertical direction, contains the

horizontal low frequency and vertical high frequency content of the signal.

3.2.1 Wavelet thresholding

Wavelet denoising is performed by transforming a signal to the wavelet domain, treat-

ing it in the wavelet domain and then transforming it back to the time/spatial domain.

Wavelet thresholding, a widely used wavelet denoising method, is performed by esti-

mating a threshold and removing noise according to a shrinkage rule. The shrinkage

rule defines how the threshold is applied. There are two popular shrinkage rules:

• Hard thresholding sets any wavelet coefficient, fi, less than or equal to the

threshold to zero.

if fi < thresh

fi ← 0

end

• Soft thresholding, in addition, subtracts threshold from any coefficient greater

than the threshold.

if fi < thresh

fi ← 0

else

fi ← fi − thresh

end

Wavelet thresholding combines simplicity and efficiency and exhibits certain asymp-

totic optimality properties [101]. It has become a standard technique used extensively

for signal denoising. We have applied the wavelet thresholding algorithm in the fol-

lowing steps:
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1. Perform the wavelet transform: In this work, we use the 2D SWT to decompose

an ultrasonic B-scan image. SWT often produces a lower estimation risk than

does DWT, thanks to its redundancy [102].

2. Estimate a threshold: There are many methods available for estimating the

threshold. Coifman and Donoho [103] found that universal thresholding when

used in conjunction with SWT produces a smaller number of noise spikes. The

universal threshold for a signal contaminated by white Gaussian noise (WGN)

is given by: σn

√
2 log n, where σn is the standard deviation of the noise and n

is the number of coefficients. If σn is unknown, it can be estimated using the

robust median absolute deviation of the finest scale,

σMAD =
median(|fD

1,1|, |fD
1,2|, . . . , |fD

1,n|)
0.6475

(3.7)

where fD
1,i is the i’th coefficient of the diagonal coefficient at the first level.

3. Apply a shrinkage rule to the wavelet coefficients: Coifman and Donoho [103]

found that combining the hard shrinkage rule and SWT gave both good visual

characteristics and good quantitative characteristics; hence, we have adopted

the hard shrinkage rule throughout.

4. Perform the inverse transform of the wavelet coefficients.

Although SWT denoising often results in a high denoising performance, at least

one of its aspects is unattractive; the thresholding of an SWT coefficient which is

oscillatory about zero degrades the denoising efficiency. To overcome this problem,

Olhede andWalden [52] proposed analytic wavelet thresholding. They applied wavelet

thresholding to the amplitude (the envelope amplitude) of the signal rather than to its

magnitude 1. In other words, they suppressed the effect of the phase. In setting the

threshold value, they proved that the amplitude of WGN asymptotically follows chi

distribution and adapted the universal threshold value, σn

√
2 log(n log n), proposed

by Sardy [104] for chi-distributed white noise.

The amplitude of a real-valued signal can be obtained by calculating its analytic

signal. The analytic signal, a(t), of a signal, x(t), is a complex valued signal whose

absolute is equal to the amplitude of the envelope of x(t) and its argument is equal

1The terms amplitude and magnitude may be used interchangeably. The following example
clarifies the difference between amplitude and magnitude, as used in this thesis. Let s = A cos(ωt+ϕ),
then the magnitude of s is equal to its absolute value |A cos(ωt+ ϕ)| and the amplitude is equal to
A.
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to the instantaneous phase of x(t). In order to apply analytic thresholding to a 2D

signal we need to calculate its analytic signal, but a regular generalization of the

analytic signal is not available in multiple dimensions [105]. In the following section,

we address this problem.

3.2.2 Analytic signal of two dimensional signals

The analytic signal plays an important role in signal processing because its magni-

tude and angular argument are frequently used to demodulate signals and define the

instantaneous amplitude and phase of real-valued signals. This can be achieved using

Hilbert transform under certain conditions stated in Bedrosian’s theorem. According

to Bedrosian’s theorem, if the envelope and carrier are non-overlapping band-limited

signals, the amplitude of the analytic signal is identical to the envelope [106]. The

analytic signal, a(t), arising from a 1D signal, x(t), is defined as:

a(t) = x(t) + iH[x(t)] (3.8)

where H denotes the Hilbert transform. For a signal, x(t), the amplitude and the

magnitude of the signal are defined as |a(t)| and |x(t)|, respectively. Hilbert transform
is an integral transform defined by:

H[x(t)] =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (3.9)

Analytic signals may be better understood in the frequency domain. If X(ω) is

the Fourier transform of the real signal, x(t), then

A(ω) = (1 + sign(ω))X(ω) (3.10)

where A(ω) is the Fourier transform of the analytic signal and the sign function is

defined as:

sign(ω) =


1, if ω > 0

0, if ω = 0

−1, if ω < 0

(3.11)

In other words, the analytic signal is computed in the frequency domain by suppress-

ing negative frequency components and doubling positive frequency components.

In order to generalize the concept of the analytic signal to multiple dimensions,

the positive and negative frequencies in multiple dimensions need to be defined. A
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Figure 3.4: Illustration of high frequency (HF) carrier, low frequency (LF) envelope,
reference vector and positive and negative frequency regions in two dimensions. (a) a
properly selected reference vector, n̂, and (b) an improperly selected reference vector,
n̂.

straightforward way to define positive and negative frequencies is to introduce a ref-

erence vector in the frequency domain. Introducing a reference vector, n̂, a frequency

coordinate, u, is labeled positive if uT n̂ > 0 and negative if uT n̂ < 0 [105]. Despite the

argument put forward by Blow and Sommer [107] that this method is one-dimensional

in nature, we will show that it is suited for our purpose.

The envelope of the signal is best recovered in the direction of the reference vector

and worst recovered in the direction n̂⊥ which is perpendicular to the reference vector

[107]. However, there is no general rule for selecting the direction n̂. Figure 3.4

demonstrates a properly and an improperly selected reference vectors. For a properly

selected reference vector, high frequency and low frequency components are projected

to high frequency and low frequency regions of the reference vector, respectively. In

addition, the projection of the high-frequency carrier on the reference vector does

not overlap with the projection of the low-frequency envelope; hence, according to

Bedrosian’s theorem, the low frequency envelope can be extracted using the Hilbert

transform (see Section 3.2.3 for the proof for 2D signals). In fact, the reference vector

not only defines the negative and positive frequencies but also defines the concept of

high frequency and low frequency in multiple dimensions. To determine the reference

vector, it is often adequate to know roughly where the HF and LF components are

located in the frequency plane.
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Figure 3.5: 2D frequency spectrum of the product of envelope and carrier.

Figure 3.5 depicts the 2D FT of the product of the envelope and carrier. As

illustrated, selecting any reference vector among n̂, û1 and û2 and suppressing the

negative frequency components defined by these reference vectors leads to the same

result. If no prior knowledge about the HF and LF components is available, the refer-

ence vector can be chosen in the direction of the principal axis of the second moment

of the area with minimum moment (compare Figures 3.4 (a) and (b)). Principal

axes form a coordinate system in which the second moments of area assume their

maximums and minimums.

Let’s recall the 2D Gaussian echo model, equation (2.25),

g(x, t) = e(x, t)cos(2πfc(t− τ(x)) + ϕ) (3.12)

in which τ(x) is a linear function of x; that is τ(x) = ax + b where a and b are

constants. Taking the Fourier transform of equation (3.12) gives,

G(fx, ft) =
1

2
E(fx + afc, ft − fc)exp(i(ϕ− 2πfcb))

+
1

2
E(fx − afc, ft + fc)exp(−i(ϕ− 2πfcb)).

(3.13)

According to equation (3.13), the envelope, E(fx, ft), is shifted to carrier frequencies

at (afc,−fc) and (−afc, fc). Therefore, equation (3.13) implies that the cosine term
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Figure 3.6: a) 2D Fourier transform of a pulse-echo B-scan obtained from a specimen
with a 3 mm crack after removing wedge noise, and b) its envelope spectrum.

in equation (3.12) shifts the envelope to the 2nd and 4th quadrants.

Figure 3.6(a) depicts the 2D FT of an experimental ultrasonic signal. It can

be seen that the crack echoes in the frequency domain appear in the 2nd and 4th

quadrants. It is easy, therefore, to introduce a reference vector in order to remove

either the 2nd or the 4th quadrant and keep the other one. To calculate the envelope

spectrum of this experimental signal, we have selected the y-axis as the reference

vector. Figure 3.6(b) shows the envelope spectrum calculated by introducing y-axis

as the reference vector.

3.2.3 Mathematical proof for recovering the envelope of a

2D signal

In the previous section, we have introduced a reference vector to recover the envelope

of a 2D modulated signal. In this section, we prove that the envelope can be exactly

recovered, if the reference vector is selected properly.

Theorem 1 Let f(x) and g(x) be general complex functions of 2D real variable x. If

(a) Fourier transform, F (u), of f(x) vanishes for |u1| > a and the Fourier transform,

G(u), of g(x) vanishes for |u1| < a , where a is an arbitrary positive constant,

or

(b) f(x) and g(x) are analytic signals with respect to a reference vector u1, i.e. both

F (u) and G(u) vanish for u1 < 0.
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then the directional Hilbert transform (HT) of the product of f(x) and g(x) is given

by,

H1[f(x)g(x)] = f(x)H1[g(x)] (3.14)

in which the directional Hilbert transform of a function f(x) with respect to a reference

vector u1 is defined as

FT[H1[f(x)]] = i sign(u1)F (u) (3.15)

or

H1[f(x)] =
1

(2π)2

∫
U

i sign(u1)F (u)eiu.xdU (3.16)

in which FT denotes the Fourier transform, dU = du1du2, and the integration is

performed over the interval of (−∞,∞) for two variables of u1 and u2.

Proof The Fourier transform of the product of two functions is equal to the

convolution of their Fourier transforms, thus

f(x)g(x) =
1

(2π)4

∫
V

∫
U

F (u)G(v)ei(u+v).xdUdV (3.17)

Now from equations (3.15) and (3.17) we have

H1[f(x)g(x)] =
1

(2π)4

∫
V

∫
U

i sign(u1 + v1)F (u)G(v)ei(u+v).xdUdV (3.18)

But, either

(a) Functions f and g are band-limited signals, hence the product F (u)G(v) is non-

vanishing only when |u1| < a and |v1| > a.

or

(b) Functions f and g are analytic, thus F(u)G(v) is non-vanishing only when u1 > 0

and v1 > 0.

In either case, for the non-vanishing region sign(u1 + v1) = sign(v1), hence equation

(3.18) yields

H1[f(x)g(x)] =
1

(2π)4

∫
V

∫
U

i sign(v1)F (u)G(v)ei(u+v).xdUdV (3.19)
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Integrating over U gives,

H1[f(x)g(x)] =
1

(2π)2
f(x)

∫
V

i sign(v1)G(v)eiv.xdV (3.20)

Finally from the definition of the directional HT, equation (3.20) becomes

H1[f(x)g(x)] = f(x)H1[g(x)]. (3.21)

Proof ends.

In this proof, for simplicity and without loss of generality we let the frequency

axis, u1, be the reference vector. This theorem implies that the directional HT of

the product of a low frequency envelope and a high frequency carrier is equal to the

envelope multiplied by the directional HT of the carrier. Note that high frequency and

low frequency are defined with respect to the reference vector. Likewise the analytic

signal can be defined as amplitude of the analytic signal of this product; that is

A(u) = (1+sign(u1))F (u) or a(x) = f(x)−H1[f(x)] . Now, let f(x) = e(x) cos(ω.x)

where e(x) is the low frequency envelope which takes only positive values. According

to the above theorem, the directional HT and the analytical signal of f(x) are:

H1[f(x)] = H1[e(x) cos(ω.x)] = e(x)H1[cos(ω.x)] = −e(x) sin(ω.x) (3.22)

a(x) = e(x) cos(ω.x)− ie(x) sin(ω.x) = e(x)eiω.x (3.23)

Clearly, the amplitude of the analytic signal obtained from the directional HT is equal

to the envelope signal.

The proposed denoising method for 2D signals uses a thresholding method based

on the amplitude of the noisy signal. The amplitude is obtained by calculating the

envelope of the signal. Calculation of the envelope of 2D signals are addressed in this

section. The following section presents the proposed denoising method.

3.3 Proposed denoising method

This section presents the proposed denoising method. The proposed method removes

background noise and random noise to enhance the B-scan image quality. In ultrasonic

pulse-echo setup the background noise is caused by wave reflection at the wedge-

specimen interface. In pitch-catch setup, the background noise is caused by the

backwall echo. In either case, this background noise conveys no information on the
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damage and corrupts the signal. In this study, we assume non-correlated random

noise. Such noise may be generated by different sources, such as electrical interference

and quantization.

The proposed method employs the 2D SWT because of its excellent denoising

performance. To further improve the denoising performance, analytic thresholding is

used. We also implement a step to remove the background noise. To illustrate, we

apply the proposed method, step by step, to an experimental signal (shown in Figure

7.6).

Figure 3.7 illustrates the flowchart of the proposed denoising method. Firstly, the

signal is decomposed using the 2D SWT. The horizontal wavelet filter is selected to

best match the crack echo. Such a filter transforms signal energy to a few wavelet

coefficients; in other words wavelet coefficients provide a sparse representation of the

signal. The selection is made among three orthogonal wavelet families of Daubechies

(dbN), symlet (symN), and coiflet (coifN), based on the Shannon entropy criterion

[108].

As explained in Section 3.1, wavelet basis selection can be performed by minimiz-

ing the Shannon entropy. An A-scan signal is decomposed using dbN (N=1, 2, . . . ,

15), symN (N=1, 2, . . . , 15), and coifN (N=1, 2, . . . , 5) wavelets; this done, its en-

tropy is calculated. Figure 3.8 depicts the entropy of wavelet coefficients for different

wavelets. The minimum entropy belongs to sym9 and the best level of decomposition

for all wavelets is three.

We choose the Haar mother wavelet as the vertical filter. It is employed to separate

wedge noise from the crack echo as much as possible. Haar wavelet has one vanishing

moment. In other words, the approximation coefficient contains the locally constant

portion of the signal, and the detail coefficients contain the varying portion. Because

the wedge echo does not change when transducer is moved, it appears mainly in the

approximation and/or vertical coefficients depending on its horizontal frequency; in

contrast the time of flight of the crack echo changes as the transducer’s position does,

hence the crack echo appears in the horizontal and/or diagonal coefficients.

Figure 3.9 shows the SWT decomposition of the experimental signal. As illus-

trated, the approximation coefficient contains most of the energy; however, the crack

echo is mainly captured by the horizontal detail. The image can be decomposed to

higher levels to better separate the wedge and flaw signals, as well as to achieve better

denoising. Using the fact that the crack echo and background noise are captured by

different wavelet coefficients, Cygan et al. [45] extracted the crack echo from the

original B-scan. Nonetheless, this separation is not perfect, in particular, the approx-

48



Decompose the B-Scan image using stationary wavelet

Background noise removal (step 1: For each approximation and

vertical coefficient, subtract the average of A-scans from each A-scan)

For every coefficient find the reference vector

Calculate the envelope for each coefficient

Estimate the threshold

Apply hard threshoding to all coefficients

Reconstruct the B-scan image from the denoised coefficeints

Background noise removal (step 2: From the horizontal detail

coefficient, identify the region in the B-scan image in which the crack

echo is located. Discard the rest of image for all wavelet coefficients.)

Figure 3.7: Flowchart of the proposed denoising method
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Figure 3.8: The Shannon entropy of wavelet coefficients of an A-scan signal for dif-
ferent mother wavelets

imation coefficient contains some of the flaw signal’s energy as well. Therefore, some

information will be lost if we discard this coefficient from our analysis. Moreover, the

wavelet filter causes a delay which affects the size-estimation.

The next step is to remove the background noise caused by wedge-specimen in-

terface. Mosey et al. [109] recommended calculating the mean of A-scans, iteratively

subtracting the mean from all A-scans to remove the background of the B-scan im-

age. Although this method is conceptually simple, it can’t remove the wedge noise

effectively when there are small variations in it or the signal-to-noise ratio (SNR) is

low due to high level of random noise. Petcher and Dixon [110] proposed using the

Hough transform to remove the surface waves from ultrasonic B-scans. Although this

method improves the denoising, it cannot effectively compensate for local changes in

the background noise. Recently, Cygan et al. [45] used wavelet transform to remove

the wedge echo. They decomposed the B-scan image using wavelet transform, then

suppressed the wavelet coefficients (which include wedge noise) and reconstructed the

signal. Because wedge noise normally appears in the approximation and vertical de-

tail coefficients, removing the approximation coefficient may cause major distortion

in the reconstructed signal.

To overcome the shortcomings of the existing methods, we propose a two-step

denoising scheme to remove the wedge echo. In the first step, the average value

of all A-scans in the approximation/vertical is subtracted from each A-scan in the

approximation/vertical coefficient. Figure 3.10 depicts the approximation coefficient

after the first step background noise removal. It can be observed that the background

noise has been significantly reduced; as a result the crack echo has emerged in the
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 A  H

 V  D

A: Approximation, H: Horizontal, V: Vertical, D: Diagonal.

For all wavelet coefficients:

x-axis: time ranging from 0 to 20.48 s

y-axis: transducer distance to the slot ranging from 0 to 30 mm

Figure 3.9: Stationary wavelet decomposition of signal shown in Figure 7.6
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Figure 3.10: Approximation coefficient after the first step of background noise re-
moval.

approximation coefficient while it was barely observable before removing background

noise (Compare Figure 3.9 and Figure 3.10). Nonetheless, background noise is still

present in this coefficient.

As can be seen in Figure 3.9, the horizontal detail coefficient mostly contains

crack echo. Therefore, we can conclude that if the amplitude of the horizontal detail

is smaller than noise level at a time and a position in the B-scan image, then the crack

echo is not present at that point. Using this fact, we can further remove background

noise as follows. If the amplitude of the horizontal detail is less than a threshold, then

we set all other coefficients, i.e. approximation, vertical detail and diagonal detail,

at the corresponding time and position to zero. The amplitude of the horizontal

coefficient is calculated using the directional HT explained in Section 3.2.2.

To determine whether the horizontal detail amplitude is smaller than the noise

level or not, we need to set a threshold value. In Section 3.2.1, we set a threshold

for removing the random noise. The values in the signal which are smaller than

this value are mostly noise, but not all. The threshold value for this step is set to

ασn

√
2 log(n log n), 0 < α ≤ 1 which is a fraction of the threshold used for removing

the random noise. By trial and error α = 0.75 is selected. Selecting this value,

effectively removes background noise while it hardly affects the crack echo. Figure

3.11 shows the approximation after the second step background noise removal. It can
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Figure 3.11: Approximation coefficient after the second step of background noise
removal.

be observed that the background noise has been greatly reduced.

Finally, every coefficient is denoised and the B-scan image is reconstructed using

the method explained in Section 3.2. The Sym9 and Haar mother wavelets are used

as horizontal and vertical filters, respectively, for three-level SWT decomposition of

the signal. Universal thresholding is used with a threshold value of σn

√
2 log(n log n).

Then, the analytic signal of all coefficients (including the approximation) is calculated

and they are hard thresholded.

Figure 3.12 shows the denoised coefficients. Compared to Figure 3.9, the reduction

in wedge noise and random noise is evident. Finally, Figure 3.13 shows the denoised

B-scan image. It can be observed that the noise has been greatly reduced. Yet, some

artifacts can be observed in the left portion of Figure 3.13. We believe that these

artifacts are caused by echoes reflected by irregularities near the surface. Since these

echoes arrive earlier than any other echoes reflected by defects inside the material,

they do not distort the echoes reflected by defects. To assess the performance of the

proposed method quantitatively and compare it to other methods, in the following

section, experimental signals as well as simulated B-scan signals with different levels

of noise are denoised using the proposed method.
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For all wavelet coefficients:

x-axis: time ranging from 0 to 20.48 s

y-axis: transducer distance to the slot ranging from 0 to 30 mm

Figure 3.12: Denoised stationary wavelet coefficients.
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Figure 3.13: Denoised B-scan image
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3.4 Evaluating the performance of the proposed

method

In this section, we evaluate the performance of the proposed method using experi-

mental and simulated signals.

3.4.1 Generating simulated B-scans

We set up a simulated B-scan as b = c+w+ r, consisting of three terms: (1) c: crack

echo (2) w: wedge noise (3) r: random noise. The parameters of each term are given

as follows.

Crack echo

The crack echo is generated using the 2D ultrasonic model given by equation (2.35).

The simulated signal is intended to be similar to the experimental signal, thus the

parameters of equation (2.35) are estimated from the experimental signal. The pa-

rameters of function X(x) in equation (2.35) are given in Figure 2.17. The time of

arrival of the echo is given in Figure 2.16(a). The center frequency of the transducer

is 2.25MHz. The parameters of function T (t) is obtained by fitting a Gaussian signal

to an envelope of an experimental A-scan and finally the amplitude is set to 1 for

convenience. By substituting these parameters, equation (2.35) yields

g(x, t) = e−0.0256(x−14.39)2e−5.67(t−τ(x))2cos(4.5π(t− τ(x)) + ϕ)

where τ = 0.4376x+ 7.162
(3.24)

Wedge echo

Similarly, the Gaussian echo model is used for generating wedge noise. The param-

eters of this Gaussian echo are obtained by curve fitting of an experimental signal.

Unlike the crack echo, neither the amplitude nor the time of flight of the wedge echo

changes with time. However, we allow small random changes in amplitude and time

of flight to take into account variations in wedge echo caused by contact conditions

which can be observed in the experimental data.

g(x, t) = βe−3.3(t−τ)2cos(4.5π(t− τ) + ϕ) (3.25)
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where: β = Aw(1+0.1rnd), τ = 14.4+0.02rnd, rnd is a uniformly distributed random

number between -1 and 1, and Aw is chosen with regard to required noise level.

Random noise

To incorporate the effect of random noise, a Gaussian distributed white noise with

different powers is added to the signal.

3.4.2 Performance evaluation

Simulated signal

The signal-to-noise ratio (SNR) of the denoised B-scan image is calculated to indicate

the performance of each method. SNR is defined as follows:

SNR = 10 log(
Psignal

Pnoise

) (3.26)

in which P is the power of a 2D signal defined as P =
∑
i

∑
j

x2
ij. Here, the signal is

the crack echo and noise is the sum of random noise and background noise.

Figure 3.14 demonstrates the amount of improvement in SNR achieved by the

proposed method compared to two other methods for different noise levels. In each

plot the amplitude of wedge echo is fixed and the random noise level is varied. The

range of random noise power added to the signal is the same for all plots. The

amplitude of wedge echo, Aw, is set to 0.1, 0.2, 0.5, and 1 which are equivalent to

signal-to-background noise ratio of 13.5 dB, 7.5 dB, -0.5 dB and -6.5 dB, respectively.

Signal-to-background noise ratio is defined as 10 log(Psignal/Pbackground noise). The two

methods, which are compared with the proposed method, are ‘swt’ and ‘dwt’. The

first method, ‘swt’, is similar to the proposed method but its thresholding is based

on the magnitude not the amplitude of the signal. The latter, ‘dwt’, is similar to

‘swt’ but it employs DWT instead of SWT. DWT and SWT are common denoising

methods which are widely used as benchmark denoising methods. A step similar

to the proposed method has been added to these two methods for removing the

background noise.
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It can be seen that the ‘dwt’ method always results in smaller improvement in

SNR. This shows that using SWT instead of DWT can improve denoising. Compar-

ing the proposed method and ‘swt’ shows that using analytic thresholding further

improves denoising, especially when the random noise level is high. If the random

noise level is low, both the ‘swt’ method and the proposed method provides almost

identical performance. This is because the analytic thresholding, which is the the

only difference between these methods, has not yet been applied. Therefore, if there

is no random noise in the signal, the proposed method and ‘swt’ are exactly the same

with regard to wedge noise removal.

Figure 3.15(a) shows a simulated B-scan image with an SNR of -18 dB and Aw = 1.

Figures 3.15(b), (c), and (d) show the B-scan denoised by the proposed method, ‘swt’,

and ‘dwt’, respectively. As can be observed, in all cases, wedge noise is perfectly

removed and little random noise is left, but the proposed method retains the crack

echo better than the two other methods do. This can be better seen by comparing

A-scan signals as shown in Figure 3.16 in which the crack echo distortion is negligible

when the proposed method is used.

Experimental signal

In order to evaluate the performance of the proposed method using experimental data,

time of flight is estimated and compared with a theoretical value, for different slot

lengths. The experimental setup is described in Section 7.1.3 for . The theoretical

time of flight is τ = ax + b where a is given by equation (2.31), and constant b is

calibrated using experimental data. From Figure 2.16(a), b’s value is 7.162 µs.

Figure 3.17 shows the error for estimated time of arrival using experimental signals

from specimens with different crack lengths. The error has been averaged over 3 trials

of available data for each crack length. As can be seen in Figure 3.17, for cracks larger

than 1mm all methods perform similarly because the SNR value is relatively high.

For crack lengths smaller than 0.5mm, the time of arrival can be best estimated from

images denoised by the proposed method. This can be attributed to better denoising

performance of the proposed method.

3.5 Summary and conclusions

In this chapter, a method has been proposed for noise removal from ultrasonic pulse-

echo B-scan images. The proposed method decomposes the B-scan image using 2D

SWT and removes wedge noise present in the B-scan in two steps. In the first step, the
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Figure 3.15: a) Simulated B-scan image with SNR of -18dB denoised by b) the
proposed method, c) ‘swt’, and d) ‘dwt’

average of all A-scans is subtracted from each A-scan in approximation and vertical

detail coefficients. In the second step, the region that the crack echo is located in

the B-scan image is identified by thresholding the horizontal detail coefficient. Next,

the background noise has been removed by vanishing the rest of image. The only

assumption on which our method of wedge noise removal is based is that changes in

wedge noise are negligible as a transducer moves along a specimen. Thus, the proposed

method can be applied without limitation to B-scan images unless conditions related

to the transducer-specimen interface change dramatically causing large variations in

ultrasonic reflection at the interface.

In removing random noise, we have used analytic wavelet thresholding. Gener-

alizing the analytic signal concept to two dimensions has been studied in relation

to ultrasonic B-scans. The performance of the proposed method has been evaluated

by applying it to simulated and experimental signals; this has shown that analytic

wavelet thresholding can enhance noise removal. It has also been observed that SWT

performs better than discrete wavelet transform. Using the proposed method we have

been able to detect echoes from a crack as small as 0.1 mm.

Once the raw ultrasonic signal is denoised, it is further processed for extracting
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Figure 3.16: a) Simulated A-scan at x = 15 mm with SNR of -18dB denoised by b)
the proposed method, c) ‘swt’, and d) ‘dwt’
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by proposed method, ‘swt’, and ‘dwt’.
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fault related features. Most importantly, proper criteria need to be developed for

detecting echoes. In addition, features such as the time of flight of the detected

echoes need to be estimated for sizing faults. In the following chapter, we propose

a model-based technique to increase the probability of detection of ultrasonic echoes

and to improve the accuracy of the time of flight estimation.
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Chapter 4

Time of Flight Estimation Using

Envelope and Quasi Maximum

Likelihood Method

Time of flight (TOF) is widely used to detect, locate and size faults in ultrasonic

non-destructive evaluation. Therefore, the estimation of TOF plays an important

role in ultrasonic signal processing. The TOF estimation is carried out in different

applications including non-destructive testing and evaluation [57, 111–113], medical

imaging [114], and ultrasonic object detection [115]. In ultrasonic NDT&E, techniques

based on TOF, such as time of flight diffraction [14] and relative arrival time technique

[53, 54], are commonly used because they provide excellent probability of detection

and accurate measurement of defects [55, 56, 115, 116]. The probability of detection

depends upon whether or not the echoes associated with defects are detected. The

accuracy of defect measurements is determined by the error in the TOF estimation.

The time-of-flight estimation is conventionally performed by gating and peak de-

tection [117]. In this method a threshold is set for the echo signal and the TOF is

estimated by locating the peaks greater than this threshold [118]. However, when the

signal-to-noise ratio (SNR) is low, i.e. the noise level is close or higher than the signal

amplitude, this criterion may not be effective. Other conventional methods such as

overlap and phase slope methods suffer from the same problem [119]. While they

can effectively estimate TOF for a clean and undistorted signal, they give poor TOF

estimation when the signal is noisy or distorted [119].

The cross-correlation method can achieve a high signal-to-noise ratio (SNR) en-

hancement [120]. In fact, according to the maximum likelihood criterion, in the

presence of white Gaussian noise (WGN), the cross-correlation estimator provides

62



the optimal solution if the signal is not distorted [121]. However, the frequency de-

pendent scattering, dispersion and attenuation may distort the received signal [57,58],

and the TOF estimates based on the cross-correlation may become significantly bi-

ased [121]. In addition, the cross-correlation method requires a reference signal which

may not be available.

Model-based methods can overcome the shortcomings of the cross-correlation

method. They do not need a reference signal. In addition, they can achieve high

resolution TOF estimates, while the resolution of TOF estimates obtained by cross-

correlation methods is limited by the sampling interval [57]. Nevertheless, these

methods can run into difficulty as well. When there are multiple echoes in the signal,

a large number of parameters need to be estimated by solving a non-linear opti-

mization problem. In such cases, it is often desired to reduce the dimension of the

problem through a transformation, while capturing the main features of the original

signal [122, 123]. In general, one can expect more robust parameter estimation with

reduced dimensions provided that the model is not misspecified [124].

By considering only the envelope of the ultrasonic signals, the number of param-

eters can be reduced [115, 121] and the probability of detection improves [125]. Lu

et al. [115] used the least square method to estimate parameters of the denoised

envelope of the ultrasonic signal. But it should be mentioned that the least square

method is optimal only when the signal noise is WGN. The transformation applied

for extracting the envelope from the original signal will change the existing noise

to a non-WGN. Angrisani and Moriello [121] estimated the TOF by calculating the

slope of the rising edge of the envelope. Clearly, this estimator does not utilize all

information contained in the envelope.

We propose using quasi maximum likelihood (QML) method for estimating pa-

rameters of the envelope of ultrasonic echoes. The proposed estimator uses all data

points in the signal for parameter estimation. In addition, instead of being limited to

WGN, a more realistic probability distribution is used for the envelope. Furthermore,

unlike the aforementioned works which only studied the TOF estimation using A-scan

signals, we investigate the TOF estimation using B-scan signals.

Although significant research has been undertaken in recent decades to improve

the TOF estimation, most of these works are based on A-scan signals and few have

investigated the TOF estimation using B-scan images. Intuitively, by using a B-

scan signal the TOF can be estimated more accurately because it contains more

information than does an A-scan signal. To evaluate the improvement which can be

achieved by using the B-scan, we derive the theoretical bounds on the variance of the
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A-scan and B-scan TOF estimators.

The remainder of this chapter is organized as follows. Section 4.1 analytically

evaluates the improvement in the accuracy of TOF estimation in terms of signal

parameters when the B-scan is used. Section 4.2 formulates the quasi maximum

likelihood estimation problem. Subsequently, in Section 4.3, the proposed method is

applied to an A-scan signal. Section 4.4 presents the results of the TOF estimation

using B-scan signals. Finally, Section 4.5 summarizes results and presents conclusions.

Major contribution of this chapter has been published in [126] and a paper is in

preparation [127] 1.

4.1 Theoretical lower bounds on the variances of

A-scan and B-scan TOF estimators

The goal of this section is to compare the TOF estimation using A-scan and B-scan

signals and to establish a theoretical relation between the accuracy of the TOF values

estimated from A-scan and B-scan signals. This relation is obtained using the Cramer

Rao bound (CRB). The CRB provides a lower bound on the variance of any unbiased

estimator. An unbiased estimator has an expected value equal to the true parameter

value. According to CRB, the variance of any unbiased estimator is at least as high

as the inverse of the corresponding Fisher information matrix [128],

V ar(θ̂i) ≥ [I−1(θ)]ii (4.1)

where θ, θ̂i and I denote the parameter vector, the estimator of the i’th parameter

and Fisher information matrix (FIM), respectively.

The Fisher information matrix describes the amount of information that data

provide about unknown parameters. FIM is defined as the variance of the gradient

of the log-likelihood function with respect to θ,

Iij(θ) = E [(
∂

∂θi
log f(X;θ))(

∂

∂θj
log f(X;θ))] (4.2)

where E denotes the expectation operator and f(X; θ) is the probability density

1Part of this chapter has been published in “Mohammad R. Hoseini, Xiaodong Wang, Ming J.
Zuo, Estimating ultrasonic time of flight using envelope and quasi maximum likelihood method for
damage detection and assessment, Measurement 45(8):2072-2080, 2012.”. In addition, the following
paper has been submitted: “Mohammad R. Hoseini, Xiaodong Wang, Ming J. Zuo, Using Ultrasonic
Pulse-Echo B-scan Signals for Time of Flight Estimation, Submitted to Measurement.”
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function of the random variable X. If a signal, s(t;θ), is contaminated with white

Gaussian noise (WGN), i.e. x(t;θ) = s(t;θ)+w(t) where w is WGN and x, the noisy

signal, is a realization of random variable X, then FIM can be simplified to [128]

Iij(θ) =
1

σ2
HTH (4.3)

where σ2 is the variance of noise and

H = [
∂s(t;θ)

∂θi
] (4.4)

is the gradient matrix of the signal s(t;θ) with respect to θ. In the following sections,

we compare the lower bounds on the variance of the TOF values estimated from an

A-scan and a B-scan.

4.1.1 Cramer-Rao bound on the TOF estimated from an A-

scan

Let us recall the Gaussian echo model (GEM) for an A-scan given by equation (2.24).

In discrete form, GEM can be represented by

sn(θ) = βe−αt(tn−τ)2cos(2πfc(tn − τ) + ϕ)

θ =
[
τ ϕ fc αt β

] (4.5)

where tn = nT, n = 1, 2, . . . , N and T is the sampling interval. Demirli and Saniie

[57] obtained FIM using equation (4.3) and then calculated the lower bounds for an

ultrasonic A-scan as

I = ζ



γ −2πfc 0 0 0

−2πfc 1 0 0 0

0 0 π2

αt
0 0

0 0 0 3
16α2

t

−1
4αtβ

0 0 0 −1
4αtβ

1
β2


(4.6)
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I−1 = ζ−1



1
αt

2πfc
αt

0 0 0
2πfc
αt

γ
αt

0 0 0

0 0 αt

π2 0 0

0 0 0 8α2
t 2αtβ

0 0 0 2αtβ 1.5β2

 (4.7)

where γ = αt + (2πfc)
2, ζ = Es

σ2 , Es =
N∑

n=1

s2n = β2

2

√
π
2αt

fs,t is the signal energy, and

fs,t is the temporal sampling frequency.

4.1.2 Cramer-Rao bound on the TOF estimated from a B-

scan

As mentioned in Section 2.4, the B-scan signal can be expressed as

s(x, t;θ) = β(x)e−αt(t−τ(x))2cos(2πfc(t− τ(x)) + ϕ)

τ = ax+ b.
(4.8)

In Chapter 2, it is assumed that the amplitude, β(x), can be modeled as a Gaussian

function. However, in general, the function β(x) may not be known. In this section,

the lower bounds are derived for the case that the function β(x) is not known. Then,

we derive the lower bounds for the special case that β(x) is a Gaussian function.

Unknown amplitude

If β(x) is not known, the discrete B-scan signal can be expressed as

smn(θ) = βme
−αt(t−τm)2cos(2πfc(tn − τm) + ϕ)

τm = axm + b

θ =
[
a b ϕ fc αt β1 β2 . . . βM

] (4.9)

where xm = m∆x,m = 1, 2, . . . ,M , ∆x is the scanning step size and M is the number

of A-scans in the B-scan image. As can be seen in equation (4.9), the parameter vector

θ has 5+M variables. To simplify the analytical derivations, we define function s̄mn

as

s̄mn(θ) = βme
−αt(t−τm)2sin(2πfc(tn − τm) + ϕ). (4.10)
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Taking the partial derivatives of smn(θ) with respect to θ gives,

∂smn

∂a
= xm(2αt(tn − τm)smn + 2πfcs̄mn) (4.11)

∂smn

∂b
= 2αt(tn − τm)smn + 2πfcs̄mn (4.12)

∂smn

∂ϕ
= −s̄mn (4.13)

∂smn

∂fc
= −2π(tn − τm)s̄mn (4.14)

∂smn

∂αt

= −(tn − τm)
2smn (4.15)

∂smn

∂βl

=
smn

βl

δlm (4.16)

where δlm denotes Kronecker delta defined as

δlm =

{
0, if l ̸= m

1, if l = m
. (4.17)

The Fisher information is equal to

Iij(θ) =
1

σ2
HTH =

1

σ2

M∑
m=1

N∑
n=1

∂smn

∂θi

∂smn

∂θj
. (4.18)

Assuming that the sampling frequency is high enough, FIM given in equation (4.18)

can be approximated by the following integral

Iij(θ) =
fs,tfs,x
σ2

∫ ∞

−∞

∫ ∞

−∞

∂s(x, t)

∂θi

∂s(x, t)

∂θj
dxdt. (4.19)

In the following, a few identities, which will be used in calculating the above integral,

are given. From the Fourier transform table, we have

1√
2π

∫ ∞

−∞
e−αt2cosωtdt =

1√
2α

e−
ω2

4α (4.20)

1√
2π

∫ ∞

−∞
t2e−αt2cosωt dt =

e−
ω2

4α

(2α)
3
2

(
1− ω2

2α

)
(4.21)
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1√
2π

∫ ∞

−∞
t4e−αt2cosωt dt =

e−
ω2

4α

(2α)
5
2

(
3− 3ω2

α
+

ω4

4α2

)
(4.22)

We also define ζ = Es/σ
2 where Es is the signal energy, ζ is a parameter related to

the signal-to-noise ratio: SNR = 10 log( ζ
MN

). The signal energy is equal to

Es =
∑
m

∑
n

s2mn

=
∑
m

∑
n

β2
m e−2αt(tn−τm)2cos2 (2πfc (tn − τm) + ϕ)

= fs,tfs,x

∫ ∞

−∞

∫ ∞

−∞
β2(x) e−2αt(t−τ(x))2cos2 (2πfc(t− τ(x)) + ϕ) dxdt

= fs,tfs,x

∫ ∞

−∞

∫ ∞

−∞
β2(x) e−2αt(t−τ(x))2 1 + cos (4πfc(t− τ(x)) + 2ϕ)

2
dxdt

=
1

2

√
π

2αt

(
1 + cos(2ϕ)e

− (2πfc)
2

2αt

)
fs,tfs,xA

2

(4.23)

where A2 =
∫∞
−∞ β2(x)dx. Ultrasonic transducers often act as passband filters [129].

Therefore, as mentioned in Section 2.4, the ultrasonic echo is often modeled as a low

frequency envelope modulating a high frequency carrier. This bandpass condition

requires that the radian center frequency be greater than the frequency bandwidth.

For the bandpass condition1 [57,115], i.e. e
− (2πfc)

2

2αt ≪ 1 , equation (4.23) simplifies to

Es =
1

2

√
π

2αt

fs,tfs,xA
2. (4.24)

Each element of the Fisher information matrix can be calculated by taking the

integral given in equation (4.18) using identities (4.20)-(4.22), such that

I11 =
1

σ2

∑
m

∑
n

∂smn

∂a

∂smn

∂a

=
1

σ2

∑
m

∑
n

x2
m(2αt(tn − τm)smn + 2πfcs̄mn)

2 = (αt + (2πfc)
2)C2ζ

(4.25)

I12 =
1

σ2

∑
m

∑
n

∂smn

∂a

∂smn

∂b

=
1

σ2

∑
m

∑
n

xm(2αt(tn − τm)smn + 2πfcs̄mn)
2 = (αt + (2πfc)

2)Bζ

(4.26)

1This condition applies to our experimental data presented in Chapter 7. For these experimental

signals: e−
(2πfc)2

2αt ≈ 0.002.
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I13 =
1

σ2

∑
m

∑
n

∂smn

∂a

∂smn

∂ϕ

=
1

σ2

∑
m

∑
n

−s̄mnxm(2αt(tn − τm)smn + 2πfcs̄mn) = −2πfcBζ

(4.27)

I14 =
1

σ2

∑
m

∑
n

∂smn

∂a

∂smn

∂fc

=
1

σ2

∑
m

∑
n

−2π(tn − τm)s̄mnxm(2αt(tn − τm)smn + 2πfcs̄mn) = 0

(4.28)

I15 =
1

σ2

∑
m

∑
n

∂smn

∂a

∂smn

∂αt

=
1

σ2

∑
m

∑
n

−(tn − τm)
2smnxm(2αt(tn − τm)smn + 2πfcs̄mn) = 0

(4.29)

I1(5+m) =
1

σ2

∑
m

∑
n

∂smn

∂a

∂smn

∂βm

=
1

σ2

∑
m

∑
n

smn

βm

xm(2αt(tn − τm)smn + 2πfcs̄mn) = 0

(4.30)

I22 =
1

σ2

∑
m

∑
n

∂smn

∂b

∂smn

∂b

=
1

σ2

∑
m

∑
n

(2αt(tn − τm)smn + 2πfcs̄mn)
2 = (αt + (2πfc)

2)ζ

(4.31)

I23 =
1

σ2

∑
m

∑
n

∂smn

∂b

∂smn

∂ϕ

=
1

σ2

∑
m

∑
n

−s̄mn(2αt(tn − τm)smn + 2πfcs̄mn) = −2πfcζ
(4.32)

I24 =
1

σ2

∑
m

∑
n

∂smn

∂b

∂smn

∂fc

=
1

σ2

∑
m

∑
n

−2π(tn − τm)s̄mn(2αt(tn − τm)smn + 2πfcs̄mn) = 0

(4.33)

I25 =
1

σ2

∑
m

∑
n

∂smn

∂b

∂smn

∂αt

=
1

σ2

∑
m

∑
n

−(tn − τm)
2smn(2αt(tn − τm)smn + 2πfcs̄mn) = 0

(4.34)
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I2(5+m) =
1

σ2

∑
m

∑
n

∂smn

∂b

∂smn

∂βm

=
1

σ2

∑
m

∑
n

smn

βm

(2αt(tn − τm)smn + 2πfcs̄mn) = 0

(4.35)

I33 =
1

σ2

∑
m

∑
n

∂smn

∂ϕ

∂smn

∂ϕ
=

1

σ2

∑
m

∑
n

s̄2mn = ζ (4.36)

I34 =
1

σ2

∑
m

∑
n

∂smn

∂ϕ

∂smn

∂fc
=

1

σ2

∑
m

∑
n

2π(tn − τm)s̄
2
mn = 0 (4.37)

I35 =
1

σ2

∑
m

∑
n

∂smn

∂ϕ

∂smn

∂αt

=
1

σ2

∑
m

∑
n

(tn − τm)
2smns̄mn = 0 (4.38)

I3(5+m) =
1

σ2

∑
l

∑
n

∂sln
∂ϕ

∂sln
∂βm

=
1

σ2

∑
n

s̄mn
smn

βm

= 0 (4.39)

I44 =
1

σ2

∑
m

∑
n

∂smn

∂fc

∂smn

∂fc
=

1

σ2

∑
m

∑
n

4π2(tn − τm)
2s̄2mn =

π2

αt

ζ (4.40)

I45 =
1

σ2

∑
m

∑
n

∂smn

∂fc

∂smn

∂αt

=
1

σ2

∑
m

∑
n

2π(tn − τm)
3smns̄mn = 0 (4.41)

I4(5+m) =
1

σ2

∑
l

∑
n

∂sln
∂fc

∂sln
∂βm

=
1

σ2

∑
n

−2π(tn − τm)s̄mn
smn

βm

= 0 (4.42)

I55 =
1

σ2

∑
m

∑
n

∂smn

∂αt

∂smn

∂αt

=
1

σ2

∑
m

∑
n

(tn − τm)
4s2mn =

3ζ

(4αt)2
(4.43)

I5(5+m) =
1

σ2

∑
l

∑
n

∂sln
∂αt

∂sln
∂βm

=
1

σ2

∑
n

−(tn − τm)
2 s

2
mn

βm

=
−βmζ

4αtA2fs,x
(4.44)

I(5+m)(5+m) =
1

σ2

∑
l

∑
n

∂sln
∂βm

∂sln
∂βm

=
1

σ2

∑
n

s2mn

β2
m

=
ζ

A2fs,x
(4.45)

where B = 1
A2

∫∞
−∞ xβ2(x)dx and C2 = 1

A2

∫∞
−∞ x2β2(x)dx.

Using all calculated elements, the Fisher information becomes

I = ζ

 I1 0 0

0 π2

αt
0

0 0 I2

 (4.46)
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where I1 and I2 are:

I1 =

 γC2 γB −2πfcB
γB γ −2πfc

−2πfcB −2πfc 1



I2 =



3
16α2

t

−β1

4αtA2fs,x

−β2

4αtA2fs,x
. . . −βM

4αtA2fs,x
−β1

4αtA2fs,x
1

A2fs,x
0 . . . 0

−β2

4αtA2fs,x
0 1

A2fs,x
. . . 0

...
...

...
. . .

...
−βM

4αtA2fs,x
0 0 . . . 1

A2fs,x


.

Taking the inverse of this matrix, we obtain

I−1 = ζ−1

 I
−1
1 0 0

0 αt

π2 0

0 0 I−1
2

 (4.47)

where I−1
1 and I−1

2 are:

I−1
1 =


1

γ(C2−B2)
−B

γ(C2−B2)
0

−B
γ(C2−B2)

γC2−(2πfc)2B2

αtγ(C2−B2)
2πfc
αt

0 2πfc
αt

γ
αt



I−1
2 =



8α2
t 2αtβ1 2αtβ2 . . . 2αtβM

2αtβ1 fs,xA
2 +

β2
1

2
β1β2

2
. . . β1βM

2

2αtβ2
β1β2

2
fs,xA

2 +
β2
2

2
. . . β2βM

2
...

...
...

. . .
...

2αtβM
β1βM

2
β2βM

2
. . . fs,xA

2 +
β2
M

2


.

The lower bounds on the variance of the TOF estimator is not explicitly expressed in

equation 4.47, but τ = ax + b and the lower bounds on the variances of parameters

a and b are expressed explicitly. For any dependent variable such as the TOF, the

lower bounds can be obtained as

V ar(τ̂) ≥
[
∂τ

∂θ

]T
I−1

[
∂τ

∂θ

]
. (4.48)
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At position xm, τm = axm + b. Thus,

V ar(τ̂m) ≥ ζ−1

{
(xm −B)2

γ(C2 −B2)
+

1

αt

}
(4.49)

Equation (4.49) gives the lower bound for any unknown function β(x). To compare

to the case that β(x) is known to be Gaussian, we substitute B and C values for a

Gaussian function in equation (4.49). By this substitution, equation (4.49) becomes

V ar(τ̂m) ≥ ζ−1

{
4αx(xm − x0)

2

γ
+

1

αt

}
(4.50)

Gaussian amplitude

Let us assume that the amplitude can be modeled as a Gaussian function. Hence,

the B-scan signal can be written as

s(x, t;θ) = βe−αx(x−x0)2e−αt(t−τ(x))2cos(2πfc(t− τ(x)) + ϕ)

τ(x) = ax+ b

θ =
[
a b ϕ fc x0 αt αx β

]
.

(4.51)

By discretizing, we obtain

smn(θ) = βe−αx(xm−x0)2e−αt(t−τm)2cos(2πfc(tn − τm) + ϕ)

τm = axm + b

θ =
[
a b ϕ fc x0 αt αx β

]
.

(4.52)

Taking the partial derivatives of smn(θ) with respect to θ gives,

∂smn

∂a
= xm(2αt(tn − τm)smn + 2πfcs̄mn) (4.53)

∂smn

∂b
= 2αt(tn − τm)smn + 2πfcs̄mn (4.54)

∂smn

∂ϕ
= −s̄mn (4.55)

∂smn

∂fc
= −2π(tn − τm)s̄mn (4.56)

∂smn

∂x0

= 2αx(tn − τm)smn (4.57)
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∂smn

∂αt

= −(tn − τm)
2smn (4.58)

∂smn

∂αx

= −(xm − x0)
2smn (4.59)

∂smn

∂β
=

smn

β
(4.60)

By substituting these partial derivatives in equation (4.18), the Fisher information is

obtained

I = ζ


I1 0 0 0

0 π2

αt
0 0

0 0 αx 0

0 0 0 I2

 (4.61)

where I1 and I2 are:

I1 =

 γ( 1
4αx

+ x2
0) γx0 −2πfcx0

γx0 γ −2πfc
−2πfcx0 −2πfc 1



I2 =


3

16α2
x

1
16αxαt

−1
4αtβ

1
16αxαt

3
16α2

t

−1
4αxβ

−1
4αtβ

−1
4αxβ

1
β2

 .

Taking the inverse of this matrix, we obtain

I−1 = ζ−1


I−1
1 0 0 0

0 αt

π2 0 0

0 0 1
αx

0

0 0 0 I−1
2

 (4.62)

where I−1
1 and I−1

2 are:

I−1
1 =


4αx

γ
−4αxx0

γ
0

−4αxx0

γ
1
αt

+
4αxx2

0

γ
2πfc
αt

0 2πfc
αt

γ
αt



I−1
2 =

 8α2
t 0 2αtβ

0 8α2
x 2αxβ

2αtβ 2αxβ 2β2

 .
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Finally, the CRB on the TOF estimator is equal to

V ar(τ̂m) ≥ ζ−1

{
4αx(xm − x0)

2

γ
+

1

αt

}
. (4.63)

It can be seen that equation (4.63) is identical to equation (4.50). Therefore, it can

be concluded that knowing that β(x) is a Gaussian function does not improve the

Cramer Rao bound on TOF. Nonetheless, the computational cost of the model with

unknown β(x) is much higher than the model with Gaussian β(x). Therefore, to

overcome this computational burden, we assume the Gaussian function for parameter

estimation in Section 4.4.

4.1.3 Comparison

As calculated in Section 4.1.1, for an A-scan recorded at position xm, the CRB on

the TOF estimator is equal to CRBA-scan = ζ−1
m

1
αt
. As shown in Section 4.1.2, for a

B-scan signal, the CRB on the TOF estimator has been obtained to be CRBB-scan =

ζ−1
{

4αx(xm−x0)2

γ
+ 1

αt

}
. Hence,

CRBB-scan
CRBA-scan

=
ζm
ζ

{
4αxαt(xm − x0)

2

γ
+ 1

}
=

Esm

Es

{
4αxαt(xm − x0)

2

γ
+ 1

}
=

e−αx(xm−x0)2

fs,x
√

π
2αx

{
4αxαt(xm − x0)

2

γ
+ 1

}
≤ 1

fs,x

√
2αx

π

(4.64)

Therefore, if a B-scan signal is used for estimating TOF instead of an A-scan signal,

the CRB improves at least by a factor of 1
fs,x

√
2αx

π
(This is equal to the reciprocal of

the ratio of the energy of the B-scan signal to the energy of the A-scan signal whose

energy is maximum among all A-scans within the B-scan; i.e. the A-scan which is

recorded at xm = x0.). For example, for the experimental data presented in Section

7.1, the B-scan CRB for TOF is at least 25 times smaller than the A-scan CRB.

Therefore, much more accurate estimation can be obtained by using B-scan signals.
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4.2 Estimating parameters of the echo envelope

Let us consider a single-echo ultrasonic signal corrupted by WGN,

xi(θ) = si(θ) + wi (4.65)

where wi is WGN, xi is the noisy signal and si is either an ultrasonic A-scan signal

given by equation (4.5) or an ultrasonic B-scan signal given by equation (4.52). The

envelope of this signal can be written as,

ai(θ) = λi(θ) + vi (4.66)

in which vi is noise, ai is the envelope of xi, and λi is the envelope of si. Since

the phase information is lost when extracting the envelope, equation (4.66) has two

parameters, i.e. center frequency and phase, fewer than equation (4.65). Hence, we

have achieved dimension reduction. In addition to reduced dimension, the Gaussian

envelope model (GENVM) is a more general model than the GEM, because GENVM

can be used for any signal with Gaussian envelope. For example, when the dispersion

effect is significant the GEM may not be effective [69]. In this case, models such as

Gaussian chirplet echo model can be used [111]. Since the Gaussian chirplet model

has Gaussian envelope, the GENVM will be sufficient to model the dispersed signal.

It is worth noting that by estimating the parameters of GENVM, both TOF

and amplitude which are used for crack sizing are obtained. But in the following

discussion, the focus will be on the accuracy of the estimated TOF values because of

its key role in ultrasonic non-destructive testing.

Nevertheless, there is a major difficulty in parameter estimation from the enve-

lope signal. Unlike wi, vi is neither white nor Gaussian distributed. In fact, the joint

probability distribution of vi is not known in general. Therefore, traditional estima-

tion methods such as maximum likelihood estimation (MLE) cannot be used when

applying to GENVM. We will use the quasi maximum likelihood estimation (QMLE)

to estimate unknown parameters of ai. Unlike maximum likelihood method, QMLE

does not need the exact distribution function for parameter estimation. This method

uses a function related to the log-likelihood for parameter estimation. In the following

section, we formulate the QMLE for estimating parameters from the envelope of the

signal.
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4.2.1 Quasi maximum likelihood estimation

Maximum likelihood estimation is a standard approach used in estimation and in-

ference in statistics. However, its application is limited to the cases where the joint

probability distribution function is well defined. Quasi maximum likelihood method

can, however, draw statistical inference and estimate parameters for cases that the

exact joint probability distribution is not available [130]. This method estimates

parameters of a statistical model by maximizing the quasi likelihood (QL) function,

which is often a simplified form of the actual likelihood function. As long as this quasi

likelihood function is not overly simplified, the quasi maximum likelihood estimator

remains consistent [131].

A common assumption used in forming the quasi likelihood function is to treat

certain data as being independent, even though they are dependent. This then enables

us to substitute conditional probabilities by marginal probabilities [131]. Fortunately,

the marginal probability distribution of ai is known to be Rician distribution,

f(ai) =
ai
σ2

e−
a2i+λ2i (θ)

2σ2 I0

(
λi(θ)ai
σ2

)
(4.67)

where Iv(•) is the modified Bessel function of the first kind of order v. Now, the QL

function can be formed by multiplying the marginal distributions given in Equation

(4.67),

QL
(
θ, σ2

)
=

1

σ2N
e
−

N∑
i=1

a2i+λ2i
2σ2

N∏
i=1

aiI0

(
λiai
σ2

)
(4.68)

It is common to work with logarithm of the likelihood/quasi-likelihood function,

because it is often more convenient to take derivatives from the quasi log-likelihood

(QLL) function. Taking the logarithm of Equation (4.68) apart from a constant

yields,

QLL
(
θ, σ2

)
=

N∑
i=1

ln ai −N lnσ2 −
N∑
i=1

a2i + λ2
i

2σ2
+

N∑
i=1

ln I0

(
λiai
σ2

)
(4.69)

The estimated values of parameter vector θ can be determined by maximizing

the QLL function. By taking partial derivatives of equation (4.69) with respect to

variables θ and σ2 and setting them equal to zero, the following set of equations are
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obtained 
−

N∑
i=1

λi
∂λi

∂θj
+

N∑
i=1

ai
∂λi

∂θj
g
(
λiai
σ2

)
= 0

−Nσ2 + 1
2

N∑
i=1

(a2i + λ2
i )−

N∑
i=1

λiaig
(
λiai
σ2

)
= 0

(4.70)

where g(x) =
I′0(x)

I0(x)
= I1(x)

I0(x)
. The remaining issue is to replace λi with A-scan and

B-scan signals and solve the resulting equations.

4.3 A-scan signal parameter estimation

In general, the reflected signal may contain multiple echoes and the number of echoes

is often unknown. Therefore, in addition to parameters of the echo, the number of

echoes need to be estimated. To simplify the analysis, we first assume a single echo

problem. Then, a multiple echo problem with an unknown number of echoes is solved.

4.3.1 Estimating parameters of a single echo

In this section, we derive equations for estimating parameters of a single echo signal

from its envelope. By substituting the Gaussian envelope, λi = βe−αt(ti−τ)2 , in equa-

tion (4.70) and after some simplifications, the following set of equations are obtained

N∑
i=1

li = 0

N∑
i=1

tili = 0

N∑
i=1

t2i li = 0

(4.71)

where li = −λ2
i + aiλig

(
λiai
σ2

)
and σ2 = 1

2N

N∑
i=1

(a2i − λ2
i ). To solve this system of non-

linear equations for the parameter vector θ, an iterative method based on trust-region

dogleg method is employed [132]. The reason for selecting this method is that the

trust-region techniques improve the robustness even when the initial guess is far from

the solution. In addition, these techniques can handle the case when the Jacobian

matrix is singular, while Newton’s method may get into difficulties [133].

The performance of the proposed method, which estimates parameters of the

envelope signal using QMLE, is compared with two other methods. A model-based

method and a cross-correlation method are selected for the comparison because of

their robustness to noise. In the first method, the least square estimation (LSE)
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Figure 4.1: A simulated signal single-echo with (a) no noise (b) an SNR of -10dB

is used to estimate parameters of the original signal. In the second method, first

the cross-correlation signal is calculated. Then, the envelope of this cross-correlation

signal is calculated and its peak location is taken as TOF.

The cross-correlation method requires a reference signal. Reference signals are

often obtained from a calibration or reference specimen. Therefore, they have gen-

erally a waveform similar to ultrasonic signals collected from the test specimen. We

generate a reference signal following the Gaussian echo model as

ri = e−8(ti−6)2 cos (8π (ti − 6)) , i = 1, 2, ..., 1000 (4.72)

To compare the performance of these methods, they are applied to a simulated single-

echo signal which is generated as follows,

xi = e−10(ti−6)2 cos (10π (ti − 6) + π/4) + wi, i = 1, 2, ..., 1000 (4.73)

The shape distortion is introduced in this simulated signal by altering the center

frequency and the bandwidth factor. The relative change in these two parameters is

selected to be close to that of the experimental signal presented in Section 7.2. Both

reference and simulated signals are sampled at a sampling frequency of 100MHz.

Figure 4.1 depicts the signal generated from equation (4.73).

Initial guess values for QMLE and LSE methods are generated based on the prop-

erties of the Gaussian echo signal such as its bandwidth as follows. First, the envelope,

ai, is smoothed using a moving average filter to avoid selecting spontaneous spikes

caused by noise as the maximum points. This smoothed signal is denoted by a′i.

The initial guess values for amplitude and TOF are selected to be β0 = max(a′i) and

τ0 = argmax(a′i). The initial value for αt is calculated as αt0 =
4 ln 2

FWHM
, where FWHM
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Figure 4.2: TOF estimation error for a simulated single-echo signal

denotes the full width at half maximum [134]. LSE method requires two more initial

values for the frequency and the phase. The initial value for frequency is obtained

by counting zero-crossings and the initial value for phase is obtained by letting the

maximum point phase equal to π/2.

In the calculation of the TOF for QMLE method, the dogleg method starts from

the generated initial guess values and finds the solution of equation (4.71). It stops

whenever the error is smaller than some predefined value. Similarly, for LSE method,

the dogleg method is used to find the solution of the non-linear least square problem.

Finally, for ‘cross-correlation’, the TOF is computed by simply locating the peak of

the envelope of the cross-correlation [135].

Monte Carlo simulation is used to evaluate the parameter estimation accuracy

and reliability of each method. Signals with different noise levels ranging from -10dB

to 10dB are generated. At each signal-to-noise ratio, 500 trials of the signal are

generated and the echo parameters are estimated using QMLE and LSE methods.

Figure 4.2 compares the absolute error of TOF estimates averaged over 500 trials.

Clearly, the cross-correlation method results in larger errors for all SNR values. The

errors from QMLE and LSE methods are very close. Therefore, for the single echo

case, the proposed method achieves the same accuracy as the LSE method does. This

shows that estimating TOF from the envelope of a Gaussian echo can be as accurate

as estimating TOF from the original signal. This indicates that no information on

TOF has been lost when calculating the envelope.
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4.3.2 Multiple echo problem

Let us consider a signal composed of J Gaussian echoes, i.e. si =
∑J

j=1 sij. Unlike the

single-echo case, the instantaneous amplitude of a multi-echo signal depends on the

phase parameter. Since the envelope does not preserve phase information, the instan-

taneous amplitude has to be estimated. The instantaneous amplitude is estimated by

the average amplitude given by λi = (
∑J

j=1 λ
2
ij)

1/2 where λij = βje
−αtj (ti−τj)

2

[136].

Substituting λi into equation (4.70) gives,

N∑
i=1

lij = 0

N∑
i=1

tilij = 0

N∑
i=1

t2i lij = 0

(4.74)

where lij = −λ2
ij + ai

λ2
ij

λi
g
(

λiai
σ2

)
and σ2 = 1

2N

N∑
i=1

(a2i − λ2
i ).

An important parameter in the current process is the model order which is equal

to the number of echoes times the number of parameters of each echo. Akaike’s in-

formation criterion (AIC) [137] is widely used in the context of model order selection.

AIC is a penalized log-likelihood criterion which is defined by

AIC = −2 lnL(θ̂) + 2p (4.75)

in which L(θ̂) is the likelihood function for the estimated parameters θ̂, and p is the

model order. In the special case of WGN for which MLE simplifies to LSE, AIC

accordingly simplifies to [138]

AIC = −2 ln RSS

N
+ 2p (4.76)

where RSS stands for the residual sum of squares. Although a complicated model is

penalized by the 2p term, in general AIC tends to select complicated models when

N is large [139]; i.e. it overfits the signal. The consistent AIC (CAIC) proposed by

Bozdogan [140] satisfies the consistency in common cases as the sample size becomes

large. CAIC is defined by:

CAIC = −2 lnL(θ̂) + p(lnN + 1). (4.77)
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For the special case of WGN, CAIC simplifies to,

CAIC = −2 ln RSS

N
+ p(lnN + 1) (4.78)

In order to select the model order for LSE method, we will use equation (4.78).

The proposed method uses the envelope for which the log-likelihood function is not

available. Therefore, CAIC cannot be calculated for the proposed method. Because

QLL function approximates log-likelihood function, likewise CAIC can be approxi-

mated by substituting QLL in the place of log-likelihood function in equation (4.77).

Hence the CAIC for the proposed method can be approximated as

CAIC = −2QLL+ p(lnN + 1) (4.79)

To find the number of echoes, we first set J = 0, estimate the parameters, and

evaluate CAIC. Next, we add one echo at a time until the CAIC reaches the minimum

and starts increasing. The number of echoes corresponding to the minimum CAIC

will be selected. The solution of each step is used as the initial guess for the next

step. For the newly added echo, the initial guess is calculated similar to the single

echo case, but the signal is replaced by the residual, which is the difference between

the estimated signal and the observed signal.

The performance of the proposed method is compared with those of LSE and cross-

correlation methods. For the LSE method an algorithm similar to that of the proposed

method is used. The initial values for the two extra parameters, i.e. frequency and

phase, are determined in a similar way to the single echo case, except that the original

signal is replaced by the residual signal when calculating the initial values for the

parameters of the new echo.

The reference signal for the cross-correlation method is given by equation (4.72).

In NDT applications, often the TOF of echoes is found from the peak of the signal

envelope to account for the signal phase [141]. Therefore, after calculating the cross-

correlation, its envelope is recovered using the Hilbert transform. Number of echoes

is estimated by setting a threshold and counting the number of peaks in the cross-

correlation envelope which are greater than the threshold. The choice of the threshold

value inevitably involves a trade-off between false alarms and missed defects [142].

The threshold value is determined adaptively based on the noise level to achieve a

false alarm probability of 10%. Finally, the peak location gives the TOF value.

For performance comparison, a simulated signal consisting of two echoes is gener-
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Table 4.1: The results of a Monte Carlo simulation with 500 trials for estimating the
number of echoes of a signal with 2 echoes corrupted by different levels of noise.

Actual number of echoes=2
Estimated number of echoes

SNR (dB) 0 1 2 3 4 5

Cross-correlation

-10 3.2% 91.6% 5.2% 0.0% 0.0% 0.0%
-5 0.0% 95.0% 4.4% 0.6% 0.0% 0.0%
0 0.0% 87.2% 12.6% 0.2% 0.0% 0.0%
5 0.0% 48.2% 49.8% 2.0% 0.0% 0.0%
10 0.0% 0.2% 91.0% 8.6% 0.2% 0.0%

LSE

-10 58.8% 41.2% 0.0% 0.0% 0.0% 0.0%
-5 5.2% 61.2% 33.4% 0.2% 0.0% 0.0%
0 0.6% 14.2% 76.0% 8.6% 0.6% 0.0%
5 0.0% 0.8% 88.6% 7.8% 2.2% 0.6%
10 0.0% 0.0% 99.8% 0.0% 0.2% 0.0%

QMLE

-10 11.2% 79.0% 9.6% 0.2% 0.0% 0.0%
-5 0.0% 3.8% 94.6% 1.4% 0.2% 0.0%
0 0.0% 0.0% 97.6% 2.4% 0.0% 0.0%
5 0.0% 0.0% 98.0% 2.0% 0.0% 0.0%
10 0.0% 0.0% 99.6% 0.4% 0.0% 0.0%

ated as,

xi = 0.6e−10(ti−5)2 cos (12π (ti − 5) + π/4)

+e−10(ti−6)2 cos (10π (ti − 6) + π/2) + wi, i = 1, 2, ..., 1000
(4.80)

Table 4.1 presents the percentage of trials with the estimated echo numbers from

different methods. These values are obtained using a Monte Carlo simulation with

500 trials. Monte Carlo simulation has been conducted for different SNR values for

each method. According to Table 4.1, the proposed method is more likely to result

in the correct number of echoes, while the LSE and cross-correlation methods are

more likely to either underfit or overfit the model. For example, at SNR of 0 dB,

the chance of selecting the true value 2 as the number of echoes for QMLE, LSE

and cross-correlation is 97.6%, 76% and 12.6%, respectively. With the decrease of

the SNR value, the advantage of the proposed method over the other two methods

becomes more obvious.

The simulated signal in equation (4.80) contains two echoes with TOFs of 5µs

and 6µs. Figure 4.3 compares the error of the estimated TOFs for the first echo and

the second echo at different SNR values. Because the estimated number of echoes

can be smaller or greater than two, we have calculated the error only using the trials
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Figure 4.3: TOF estimation error for a simulated 2-echo signal, (a) first echo, and
(b) second echo

that these echoes are detected. Whether an echo is detected or not is decided by

comparing the estimated TOF with the exact TOF given by equation (4.80). If the

estimation error is within a specified range, the echo is said to be detected. On this

range, the echo has a sizable amplitude. If the estimated TOF is outside this range,

the model is fitted to noise and not to the echo. Therefore, in this case, it is said

that the echo is not detected. The maximum acceptable error is considered to be 0.5

s. This value corresponds to approximately 10 dB reduction in the amplitude from

the peak. The maximum error, i.e. 0.5 s, has been considered for all cases that the

echo is not detected. The estimation error is then averaged over all trials. Based

on Figure 4.3, it is clear that the proposed method outperforms LSE method when

applied to the simulated signals. In next section, the performance of these methods

are compared using experimental signals.

4.3.3 Experimental results

The main concern in NDT applications is to detect defects and then to assess the

severity of defects. In this section, we compare the performance of the proposed

method with LSE and cross-correlation methods using the following two measures: (1)

probability of detection of a crack, and (2) the error of the estimated TOF. We define

the probability of detection as the fraction of trials that the error of TOF is smaller

than 0.5µs. The error of TOF estimator indicates the reliability of TOF estimation

and henceforth the accuracy of the crack size estimation. We have calculated the error

only for cases that the crack tip is detected as defined for calculating the probability

of detection.

The experimental setup is described in Section 7.2. Table 4.2 presents the es-

timated TOF values of tip diffraction echo. For the wedge distance of 10 mm, the
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Table 4.2: TOF of tip diffraction echo estimated using cross-correlation, LSE and
QMLE methods for signals collected at different wedge distances

Wedge distance (mm)
0 2 4 6 8 10

Theoretical TOF (µs) 17.03 17.48 17.94 18.42 18.91 19.80

Cross-
correlation

Estimated TOF (µs) 17.43 17.52 18.16 18.55 19.15 19.52
Error (µs) -0.30 -0.04 -0.22 -0.13 -0.24 0.28

Relative Error (%) 1.76 0.23 1.23 0.70 1.27 1.41

LSE
Estimated TOF (µs) 16.92 17.47 17.98 18.46 18.67 0.00

Error (µs) 0.11 0.01 -0.04 -0.04 0.24 0.00
Relative Error (%) 0.65 0.06 0.22 0.22 1.27 0.00

QMLE
Estimated TOF (µs) 17.12 17.46 17.94 18.40 18.88 19.90

Error (µs) -0.09 0.02 0.00 0.02 0.03 -0.10
Relative Error (%) 0.53 0.11 0.00 0.11 0.16 0.51

LSE method has not detected the tip diffraction echo, while the cross-correlation and

QMLE methods have detected the tip diffraction echo in all cases. In order to calcu-

late the estimation error, the estimated TOF values are compared to the theoretical

values given by equation (2.20). The average estimation errors for cross-correlation,

LSE and QMLE methods are 0.20 s, 0.09 s and 0.04 s, respectively. Although the

proposed method again outperforms the other two methods, the difference between

them is relatively small because of the high SNR.

The experimental signals are collected under lab conditions hence they contain

low level of noise. In order to simulate the noise that is usually present in field

measurements, we have added different levels of white Gaussian noise to the signal

collected at the wedge distance of 2 mm. The SNR is calculated assuming that the

original signal contains no noise.

Figure 4.4 depicts the probability of detection for all three methods. Clearly, the

proposed method results in a higher probability of detection, especially for lower SNR

values. Figure 4.5 is generated in the same way as Figure 4.3. As seen, the proposed

method results in smaller TOF estimation error than the other two methods. This is

in agreement with simulated results.

4.3.4 Discussion

It has been shown that the QMLE improves the accuracy of TOF estimation by

estimating the parameters of the envelope of the echo. It should be noted that this

method can be used with cross-correlation to further improve the TOF estimation. In

84



SNR (dB)

P
ro

b
a

b
ili

ty
 o

f 
d

e
te

c
ti
o

n
 (

%
)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

20

40

60

80

100

QMLE

LSE

Cross-correlation

Figure 4.4: Probability of detection at different SNR values obtained using QMLE,
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particular, if both the received signal and reference signal can be estimated by GEM

and the distortion of the received signal is negligible, it can be shown that the cross-

correlated signal can be modeled by GEM as well. Therefore, in this case, the same

equations given in this chapter for estimating parameters of the envelope of the echo

can be used to estimate parameters of the envelope of the cross-correlated signal.

In the following, we prove that the cross-correlation of two GEM with negligible

distortion; i.e. with the same bandwidth factor and center frequency, is a Gaussian

echo.

Let’s assume a Gaussian echo signal,

s(t) = βe−αt(t−τ)2+j(2πfc(t−τ)+ϕ1). (4.81)

To simplify the proof, complex notation is used in equation (4.81). With no loss of

generality, we assume the reference signal as

r(t) = e−αtt2+j(2πfct+ϕ2). (4.82)

The cross-correlation of these two signals is given by

(s ⋆ r)(t) =

∫ ∞

−∞
s∗(u)r(u+ t)du

=

∫ ∞

−∞
Ae−αt(u−τ)2−j(2πfc(u−τ)+ϕ1)e−α(u+t)2+j(2πfc(u+t)+ϕ2)du

= βej(2πfc(t−τ)+ϕ2−ϕ1)

∫ ∞

−∞
e−αt(2u2−2u(t+τ)+t2+τ2)du

= βe−
αt
2
(t−τ)2+j(2πfc(t−τ)+ϕ2−ϕ1)

∫ ∞

−∞
e−2αt(u− t+τ

2
)
2

du

= βe−
αt
2
(t−τ)2+j(2πfc(t−τ)+ϕ2−ϕ1)

∫ ∞

−∞
e−2αtu2

du

= β

√
π

2αt

e−
αt
2
(t−τ)2+j(2πfc(t−τ)+ϕ2−ϕ1)

(4.83)

where ⋆ denotes the cross-correlation operator and superscript ∗ denotes complex

conjugate. According to equation (4.83), the cross-correlated signal is also a Gaussian

echo signal. Furthermore, based on equation (4.7), the ratio of the CRBs of TOF for

the original signal and the cross-correlated signal can be written as

CRBCross-correlated
CRBOriginal signal

=
2
√
2αt

πf 2
s,t

σ′2

σ2
(4.84)
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where σ′2 is the variance of noise in the cross-correlation signal. This ratio is often

a small number because the variance of noise is often reduced considerably when

the signal is cross-correlated, and 2
√
2αt

πf2
s,t

is a small number1. Therefore, estimating

parameters from the cross-correlation signal can significantly decrease the estimation

error. Nevertheless, such an improvement can be achieved only when the received

echoes is negligibly distorted.

The goal of this chapter is to develop an effective model-based method for estimat-

ing the parameters of B-scan echoes. In this section, we have applied the proposed

method to a simpler case, i.e. A-scan echoes. The proposed method has performed

well when applied to simulated and experimental signals. In the following section, we

investigate the parameter estimation of B-scan echoes.

4.4 B-scan signal parameter estimation

In this section, we derive equations for estimating parameters of a single echo B-scan

signal from its envelope. Similar to an A-scan signal, we first consider a single echo

signal, then a multi-echo signal. As observed for the A-scan signal, QMLE and LSE

methods perform better than the cross-correlation method. Therefore, in this section,

we only compare the performance of QMLE and LSE method. Similar to the A-scan

signal parameter estimation, the single echo problem and the multiple echo problem

are investigated.

4.4.1 Single echo

By substituting the two dimensional Gaussian envelope, λij = βe−αt(ti−τj)
2−αx(xj−x0)2 ,

in equation (4.70) and after some simplification, the following set of equations can be

1The transducer, we have used in our experiments in Chapter 7 has a frequency bandwidth of
1.5 MHz which is equivalent to αt = 16(MHz)2. The minimum sampling frequency, we have used,

was 50 Mhz. This gives 2
√
2αt

πf2
s,t

= 0.006≪ 1.
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obtained 

M∑
j=1

Lj = 0

M∑
j=1

xjLj = 0

M∑
j=1

x2
jLj = 0

N∑
i=1

M∑
j=1

t2i lij = 0

N∑
i=1

M∑
j=1

τjtilij = 0

N∑
i=1

M∑
j=1

xjτjtilij = 0

(4.85)

where Lj =
N∑
i=1

lij, lij = −λ2
ij + aijλijg

(
λijaij
σ2

)
and σ2 = 1

2MN

N∑
i=1

M∑
j=1

(
a2ij − λ2

ij

)
.

For comparing the performance of LSE and QMLE methods, a simulated B-scan

signal is generated according to equation (3.24). For parameters in common with

A-scan signal, i.e. β, αt, fc and ϕ, firstly the A-scan which has the maximum ampli-

tude among all A-scans within the B-scan signal is selected. These initial values are

then calculated the same way as we have performed for the A-scan signal in Section

4.3. The A-scan with maximum amplitude is selected because it has supposedly the

highest SNR. Other initial values are determined as follows. The initial guess for x0

is determined by the location of the peak, a is given by theory, b = τ0 − ax0 where

(τ0, x0) is the location of the peak, and αx = 4 ln 2/FWHM − a2αt in which FWHM

is the full width at half maximum at time t = τ0.

Parameters of this single echo signal is estimated by solving equation (4.85). The

simulated signals are generated with SNRs of -10 dB to 10 dB. Figure 4.6 shows an

example of a simulated signal with SNR of -10 dB and signals reconstructed with

parameters estimated using QMLE and LSE methods. The TOF error is evaluated

at x = x0. Figure 4.7 depicts the TOF error averaged over 100 trials for each SNR.

As shown in this figure, both methods perform similarly for SNRs greater than -2 dB,

but the QMLE method clearly performs better than LSE method for SNRs smaller

than -2 dB.

4.4.2 Multiple echo signal

Let’s consider a signal composed of K Gaussian echoes, i.e. sij =
∑K

k=1 sijk. Similar to

the A-scan signal, the instantaneous amplitude of the B-scan signal is estimated by the
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Figure 4.6: An example of a simulated B-scan signal (a) with no noise, (b) with
an SNR of -10 dB, (c) signal reconstructed with parameters estimated using LSE
method, and (d) the envelope of the signal reconstructed with parameters estimated
using QMLE method.
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average amplitude given by λi = (
∑K

k=1 λ
2
ijk)

1/2 where λijk = βke
−αtk

(ti−τjk)
2−αxk

(xj−x0k
)2 .

Substituting λijk into equation (4.70) gives,

M∑
j=1

Ljk = 0

M∑
j=1

xjLjk = 0

M∑
j=1

x2
jLjk = 0

N∑
i=1

M∑
j=1

t2i lijk = 0

N∑
i=1

M∑
j=1

τjktilijk = 0

N∑
i=1

M∑
j=1

xjτjktilijk = 0

(4.86)

where Ljk =
N∑
i=1

lijk, lijk = −λ2
ijk + aij

λ2
ijk

λij
g
(

λijaij
σ2

)
and σ2 = 1

2MN

N∑
i=1

M∑
j=1

(
a2ij − λ2

ij

)
.

A two-echo B-scan signal has been generated as follows

g(x, t) = e−0.0256(x−17.5)2e−5.67(t−τ1(x))2cos(4.5π(t− τ1(x)) + π/4)

+ 0.3e−0.032(x−12.5)2e−4(t−τ2(x))2cos(4.5π(t− τ2(x)) + π/2)

where τ1 = 0.4376x+ 7.162, τ2 = 0.4376x+ 5.913.

(4.87)

In equation (4.87) one echo has an amplitude 3.3 times greater than the other. A

practical example, for such a signal is a pulse-echo B-scan signal containing a corner

reflection echo and a tip diffraction echo. Often the amplitude of corner reflection echo

is much greater than that of tip diffraction echo. If the corner reflection is detected,

then the crack is detected as well. If the tip diffraction echo is also detected, the

crack size can be estimated using the time of flights of corner trap echo, τCT , and tip

diffraction echo, τTD. According to equation (2.19), the error of the estimated crack

size is proportional to the error of τCT − τTD.

The simulated signals are generated with SNRs of -10 dB to 10 dB. Figure 4.8

shows an example of a simulated signal with SNR of -10 dB and signals reconstructed

with parameters estimated using QMLE and LSE methods. The performance of these

two methods are compared using two criteria. First the probability of detection is

compared. That is the probability that at least one of the echoes is detected. Another

criterion is whether the size of crack can be estimated and, if it can, what would be

the error. To size the crack, both corner trap and tip diffraction echoes should be
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Figure 4.8: An example of a simulated B-scan signal containing 2 echoes (a) with no
noise, (b) with an SNR of -10 dB, (c) signal reconstructed with parameters estimated
using LSE method, and (d) the envelope of the signal reconstructed with parameters
estimated using QMLE method.

detected. The error is estimated by calculating the error of τCT − τTD.

Table 4.3 presents the probability of detection and the probability that the crack

size can be estimated. According to this table, the probability of detection for both

methods is about 100%. This shows that both methods are likely to detect the corner

reflection. However, the probability that the crack size can be estimated is higher for

QMLE method at lower SNRs and is about 100% at higher SNRs for both methods.

Figure 4.9 shows the error of τCT − τTD. As shown, at SNRs higher than 0 dB

the LSE method performs slightly better, while the QMLE improves the crack size

estimation accuracy greatly in lower SNRs. To further compare the performance of

these methods, in the next section, they are applied to experimental B-scan signals.
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Table 4.3: The probability of detection (POD) and the probability of sizing (POS)
obtained using a Monte Carlo simulation with 50 trials for QMLE and LSE methods

QMLE LSE
POD POS POD POS

SNR (dB)

-10 94% 56% 94% 24%
-5 100% 74% 100% 62%
0 100% 100% 100% 90%
5 100% 100% 100% 100%
10 100% 100% 100% 100%
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Figure 4.9: Relative TOF estimation error for an experimental B-scan signal
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Figure 4.10: B-scan image of a specimen with 0.1 mm slot

4.4.3 Experimental signal

The proposed method has been applied to the experimental B-scans described in

Section 7.1.3. Figure 4.10 depicts a B-scan image of a specimen with 0.1 mm slot.

In this B-scan image, even the corner trap echo is barely observed due to interface

echoes and random noise. However, using the method proposed for removing noise

from the B-scan signals in Chapter 3, we can effectively remove both the interface

echoes and random noise. For example, as shown in Figure 4.11, the corner trap echo

can be easily observed after denoising.

After denoising the B-scan signals, the proposed parameter estimation method is

applied to these signals for estimating the TOF. The slot is detected, if any of echoes

is detected in the received signal. As indicated in Table 4.4 both LSE and QMLE

could detect slots in all specimens. Table 4.4 also presents the error of the slot length

estimation for both methods. According to this table, neither of LSE and QMLE

methods could detect the tip diffraction echo for the specimen with 0.1mm slot and

hence the slot length cannot be estimated for this case. However, the QMLE method

is able to estimate the size of the specimen with 0.3mm, while the LSE method is not.

For larger slots, both methods are able to size the slot and their estimation errors are

close to each other.
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Figure 4.11: Denoised B-scan image of a specimen with 0.1 mm slot

Table 4.4: The error in estimation of the length of slots (δest − δact) for experimental
signals

QMLE LSE
Detected? δest − δact (mm) Detected? δest − δact (mm)

Slot
Length
(mm)

0.1 Yes N/A Yes N/A
0.3 Yes 0.43 Yes N/A
0.5 Yes 0.08 Yes 0.70
1 Yes 0.58 Yes -0.71
1.5 Yes -0.70 Yes -0.54
2 Yes 0.24 Yes 0.15
2.5 Yes 0.11 Yes 0.15
3 Yes -0.11 Yes -0.08
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4.5 Summary and conclusions

In this chapter, a novel model-based method for TOF estimation is proposed. It

has been shown that model-based methods have clear advantages over conventional

cross-correlation methods in estimating parameters of ultrasonic echoes. However,

when there are multiple echoes in the received signal a high-dimensional nonlinear

optimization problem needs to be solved. This optimum solution can be difficult to

achieve. To reduce the number of parameters of the model and to achieve a more

robust estimation, the envelope of the signal is extracted. Envelope of an ultrasonic

echo preserves the main features of the ultrasonic echo, i.e. TOF and amplitude,

which are commonly used for damage assessment in the ultrasonic non-destructive

evaluation. Subsequently, the parameters of the envelope of the echo are estimated

using the quasi maximum likelihood method. It has been shown this proposed method

improves the parameter estimation accuracy, especially at lower SNR values.

Analytically, it has been proved that using a B-scan image instead of an A-scan

signal can significantly improve the accuracy of the TOF estimation. The proposed

method is then applied to a set of experimental B-scan signals. Through this analy-

sis, it has been shown that the proposed model based parameter estimation method

combined with the denoising method proposed in Chapter 3 is able to detect cracks

as small as 0.1 mm and size cracks as small as 0.3 mm.

Estimated TOF values are used to size and locate faults such as cracks. The

existing crack sizing techniques, such as relative arrival time technique, assume that

cracks are normal to the test piece surface. This assumption reduces the crack siz-

ing accuracy. In the following chapter, a modified relative arrival time technique is

proposed for estimating the length of inclined cracks.
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Chapter 5

Modified Relative Arrival Time

Technique for Estimating Crack

Size and Orientation

In Chapters 3 and 4, we have investigated denoising and parameter estimation of B-

scan signals. The next step is to identify the faults based on the estimated parameters.

A critical parameter of a crack to be determined is its size. If the crack size is known,

it is possible to estimate the remaining life and reliability of a part using fracture

mechanics [14].

Current crack sizing techniques, such as relative arrival time technique (RATT)

which has been used in Chapter 4, do not take into account the effect of crack orien-

tation [143]. These techniques often assume that the crack is normal to the surface of

the test piece. Clearly, this assumption introduces errors in estimating the length of

inclined cracks. Ciorau [144] investigated the inherent error in using RATT for sizing

inclined cracks by evaluating the crack sizing error for different crack orientations.

However, they did not provide a method to account for this error.

Recently, Satyanarayan et al. [53] simulated the ultrasonic phased-array B-scan

image for different crack orientations and observed that the change in crack orientation

changed the position of tip diffraction echo with respect to corner reflection echo.

However, they did not evaluate how to determine whether a change is caused by

the crack orientation or the change in crack size. They did not estimate the crack

orientation in this work.

Klima et al. [145] studied the relation between the crack orientation and the

amplitude of the echo. They used this relation to explain why the echoes received

from the surface cracks which are at different angles with respect to the transducer
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have different amplitudes. However, they did not use these results to estimate the

crack length. Moreover, the amplitude of the echo can be influenced by other factors

such as surface roughness of the specimen [14, 146]. Thus, it does not provide a

reliable crack size estimation.

In this chapter, we propose a modified relative arrival time technique for estimating

the length of inclined cracks from a pulse echo B-scan image. In addition, the proposed

modified RATT provides an estimate of the inclination angle of the crack. A paper

is in preparation from the contents of this chapter [147] 1.

5.1 Modified relative arrival time technique

The relationship between the crack angle, the angle of incidence and the parameters

of the corner trap echo and the tip diffraction echo can be established theoretically

using ray tracing method for special cases under some assumptions. In the ray tracing

method [148–150], ultrasonic waves are modeled as rays, each of which propagates

independent of other rays. These rays may reflect, refract, diffract, attenuate, and

undergo mode conversion as discussed in Section 2.1.1. The ray tracing method

was successfully used for simulating ultrasonic fields [150]. The same concept has

been used in crack sizing techniques such as TOFD and RATT. Similarly, we derive

an equation for estimating the crack size and angle for special cases using the ray

tracing method. Then, we use the derived equations for the crack depth and angle

for other crack angles to assess its applicability in more general cases.

Assume an unfocused transducer which generates an axisymmetric ultrasonic

beam profile with a maximum at the center of the beam. The axisymmetric assump-

tion holds because of the symmetric shape of ultrasonic transducers. The intensity

of ultrasonic beams decreases abruptly with distance from its central axis [151], and

hence the maximum wave intensity is assumed to occur at the center of the beam.

Figure 5.1 depicts the schematic of a specimen with a crack with an angle of γ to

which an ultrasonic angle beam with an incident angle of θ is emitted. The crack is

assumed to be normal to the x-z plane and our objective is to the determine the crack

orientation in the x-z plane. It should be noted that the present work is different from

the work in Ref. [152] which determined the crack orientation in the x-y plane using

horizontally polarized shear waves.

1The following paper is in preparation from the contents of this chapter: “Mohammad R. Hoseini,
Xiaodong Wang, Ming J. Zuo, Modified Relative Arrival Time Technique for Sizing Inclined Cracks,
In preparation.”
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Figure 5.2: The ultrasonic beam reflected by the crack

When the ultrasonic wave is incident on the crack, a portion is reflected, which

forms the corner echo, and a portion is diffracted from the crack tip, which forms

the tip diffracted echo. Figure 5.2 shows the ultrasonic beam which is reflected by

the crack. This beam is confined by the following two rays: the ray which is incident

on the crack tip, and the ray which is reflected from the backwall and its reflection

is incident on the crack tip. In general, only part of this beam is received by the

transducer. However, for three special cases: γ = θ, γ = π/2 and γ = π− θ, it can be

easily shown geometrically that this beam is completely received by the transducer

(For γ = θ and γ = π−θ, the beam is reflected exactly on the same path back toward

the transducer. For γ = π/2, every pair of rays located evenly about the ray incident

on the corner, travel the same path, but in opposite directions.).

As assumed, if the central axis is at the middle of this beam, the energy received

by the transducer will be maximum. Maximum amplitude of the tip diffraction echo

occurs when the beam center encounters the crack tip [27]. If the maximum amplitude

of the corner trap occurs at x0 and the maximum amplitude of tip diffracted echo

occurs at x′
0, we define ∆x0 = x0 − x′

0. From Figure 5.2, the relation between ∆x0

and parameters θ, γ and δ can be obtained as,

∆x0 = δ sin γ tan θ. (5.1)
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Figure 5.3: Relative arrival time technique for inclined cracks

The relative arrival time technique (RATT) utilizes the difference between the

TOF of corner trap echo, τ , and tip diffraction echo, τ ′, to estimate the crack length.

Deriving a general theoretical formula for ∆τ = τ − τ ′ is difficult, hence we attempt

to approximate ∆τ . Assume that the rays reflected from the crack, in average, travel

the same distance as the ray incident exactly on the corner of the crack. It can be

shown that this assumption holds if γ = θ, γ = π/2 or γ = π − θ, because all rays

travel the same distance in these special cases (For example, see Section 2.4 for proof

when γ = π/2). From Figure 5.3, we have,

∆τ =
2δ

cs
sin(γ + θ). (5.2)

Conventional RATT uses equation (5.2) for crack sizing assuming that γ = π/2.

This assumption causes an error equal to

ϵ =
cs∆τ

2

(
1

cos(θ)
− 1

sin(γ + θ)

)
. (5.3)

Figure 5.4 shows the relative error in sizing inclined cracks using the conventional

RATT. As it can be seen, the RATT overestimates the crack size for γ ≤ π/2 and

underestimates the crack size for γ ≥ π/2. This observation is in agreement with

findings of [144].

From a B-scan signal, ∆τ and ∆x0 can be estimated. Subsequently, unknown

parameters δ and γ can be obtained by simultaneously solving equations (5.1) and

(5.2). In a B-scan image, ∆x0 is determined by finding the positions of the peak of

the tip echo and the peak of the corner echo. ∆τ is calculated by selecting an A-scan

within the B-scan signal and then calculating the difference between the times of
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Figure 5.4: Relative error in sizing inclined cracks using the conventional RATT for
θ = π/4.

arrival of the tip echo and the corner echo. Clearly, the value of ∆τ , and hence γ and

δ, depends on the selected A-scan signal.

According to equation (4.63), the error in evaluating the TOF is minimum at the

position that the amplitude of the corresponding echo is maximum. Therefore, the

expected error in sizing cracks is minimum, if τ is evaluated at x0 and τ ′ is evaluated

at x′
0. Let τ0 be the TOF of the corner echo at x0 and τ ′0 be the TOF of the tip

echo at x′
0. In Section 2.4, it has been shown that the TOF is a linear function of

the transducer position. Therefore, τ0 and τ ′0 can be written as τ0 = ax0 + b and

τ ′0 = a′x′
0 + b′, respectively. According to equation (2.34), a′ ≈ a ≈ ∆τ

∆x
≈ 2 sin(θ)

cs
.

Hence,

∆τ0 = τ0 − τ ′0 = a∆x0 + b− b′. (5.4)

But b− b′ = (ax+ b)− (ax+ b′) = τ − τ ′ = ∆τ . Substituting ∆τ from equation (5.2)

and ∆x0 from equation (5.1) into equation (5.4) gives

∆τ0 =
2δ

cs

(
sin θ cos γ +

sin γ

cos θ

)
. (5.5)

By solving equations (5.1) and (5.5) for γ and δ, we obtain

γ = cot−1

(
cs∆τ0

2∆x0 cos θ
− 2

sin 2θ

)
δ =

∆x0

sin γ tan θ
.

(5.6)

Figure 5.5 shows the relative position of the corner trap echo and the tip diffraction
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echo for different crack orientations when θ = π/4. The following observations can

be made form Figure 5.5:

1. The change in the position of the tip diffraction echo is relatively small for

γ ≤ 90◦ (This can also be observed from equation (5.2). According to this

equation, the maximum change in TOF occurs at 135◦.).

2. It is always true that x′
0 < x0. This property can be used to identify the tip

diffraction echo when there are multiple echoes in the B-scan.

3. For γ ≤ 180 − θ, the tip diffraction echo arrives earlier than the corner trap

echo. For γ ≥ 180−θ, the tip diffraction echo arrives later than the corner trap

echo.

To ensure that the ray tracing assumptions used for deriving modified RATT do

not significantly deviate from the physics of the wave propagation, a finite element

simulation is conducted. The details of the finite element model and simulation

parameters are provided in Chapter 6.

Figure 5.6 shows the displacement contours at different times for γ = 60◦. To

obtain a sharp contrast image, only the specimen is displayed. From Figure 5.6,

the formation of the reflected wave and the circular diffracted wave can be clearly

observed. However, for γ = 135◦ shown in Figure 5.7, only one echo is observed.

This phenomenon can be explained using Figure 5.3. For γ = 135◦ and θ = 45◦,

the incident wave arrives at the tip of the crack and the corner of the crack at the

same time. Therefore, at γ = 135◦, the tip diffracted echo is merged into the corner

reflected echo. As a result, the tip diffracted echo can be hardly distinguished from

the corner reflection echo in the B-scan image. Figure 6.47 shows the B-scan signal

from a specimen with a 135◦ crack. In Figure 6.47, as expected, only one echo can be

observed. Therefore, the application of the modified RATT for sizing a crack with an

inclination angle close to γ = 180− θ, e.g. γ = 135◦ for the incident angle of θ = 45◦,

is not practical.

We have compared the TOA of the corner reflection and the tip diffraction waves

approximated from the displacement contours with the TOA of the waves observed in

the simulated B-scans to ensure that each pulse in the B-scan is correctly associated

with the corresponding wave type as assumed in the theoretical derivation of the

modified RATT formula. The comparison shows the ray tracing assumptions are in

good agreement with physics of the wave propagation as modeled using the finite

element method.
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Figure 5.5: The schematic position of the corner trap echo and tip diffraction echo in
the B-scan image for different crack orientations.
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Figure 5.6: Wave propagation in the specimen with a 60◦ crack at different time
instances, R: Reflection corner echo, D: Diffracted tip echo
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Figure 5.7: Wave propagation in the specimen with a 135◦ crack at different time
instances, R: Reflection corner echo, D: Diffracted tip echo
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In the following sections, we use equation (5.6) to estimate the crack orientation

and its length for finite element (FE) simulated B-scans and experimental B-scans.

The FE B-scans essentially contain less noise and no uncertainty associated with

human error. Therefore, we can validate the equations derived in this section. Then,

we estimate the crack length and orientation for experimental data to assess the

applicability of equation (5.6) to real experimental data.

5.2 Analyzing FE simulated B-scans

The FE simulated B-scans, of which the details are presented in Chapter 6, are used

to assess the accuracy of the method proposed to estimate the crack orientation

and estimate the crack length for inclined cracks. The B-scans are first denoised

using the 2D analytic wavelet thresholding method proposed in Chapter 3. The echo

parameters including the TOF and the peak location are then estimated using the

method proposed in Chapter 4. The echo with maximum amplitude is considered to

be the corner trap echo and the other echo is considered to be the tip diffraction echo.

If the estimated number of echoes is greater than two, the closest echo to the corner

trap echo satisfying the condition x′
0 < x0 is chosen to be tip diffraction echo.

Figures 5.8 and 5.9 show the estimated crack angle and length for different given

crack angles, respectively. Table 5.1 presents the corresponding estimation results.

For cracks with 120◦ and 135◦ orientations, only the corner trap has been detected.

Thus the crack angle and the crack length are not estimated for these two angles.

This is expected because at these angles, the TOAs of the corner trap echo and the

tip diffracted echo are very close and hence these echoes overlap. Thus, it is likely

that the echo with smaller amplitude, i.e. the tip diffraction echo, is not detected.

For cracks with 45◦, 90◦ and 135◦ orientations, the exact ray tracing solution is

available. Therefore, it is expected that the error be smaller for these crack angles

provided that both echoes are detected. This is in agreement with the results obtained

for FE B-scans. As can be seen from Figures 5.8 and 5.9, the maximum error in

estimating the crack orientation belongs to 15◦ crack and the maximum error in sizing

belongs to 165◦ crack. This is expected because these angles are farthest crack angles

among the simulated crack angles from the exact ray tracing solutions. Furthermore,

they are obtained by extrapolating the equations for exact solutions.

In general, we have observed a good agreement between theory and the results

obtained using the FE simulated B-scans. In the following section, we apply the

modified RATT to experimental B-scans.
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Figure 5.8: Estimated crack angle versus actual crack angle
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Figure 5.9: Estimated crack length for different crack angles, actual crack length =
3mm
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Table 5.1: Estimated crack lengths, δ, and estimated crack angles, γ, for different
crack angles; actual crack length = 3mm

γ (deg) Relative Error δ (mm) Relative Error

Crack Angle (deg)

15 80 436% 2.18 -27%
30 37 23% 2.55 -15%
45 40 -10% 3.10 3%
60 38 -36% 3.17 6%
75 47 -37% 2.71 -10%
90 89 -1% 3.00 0%
105 94 -10% 3.02 0%
120 N/A N/A N/A N/A
135 N/A N/A N/A N/A
150 132 -12% 2.67 -11%
165 152 -8% 4.74 58%

5.3 Experimental signal parameter estimation

In this section, the experimental B-scans recorded from samples with different crack

orientations (Data presented in Section 7.1.4) are analyzed. The experimental signals

are processed similar to FE signals in the previous section.

Figures 5.10 and 5.11 show the estimated crack angle and length for different

crack angles, respectively. Table 5.2 presents the estimation results. In general, the

estimation results are similar to the FE case. For the experimental data, the tip

diffraction echo for 120◦ crack is detected, while it could not be detected for FE

simulated signals. This can be attributed to the longer pulse-width of the FE signals

which is caused by the numerical damping as discussed in Chapter 6. The shorter

pulse width of the experimental signal makes it easier to distinguish between corner

trap and tip diffracted echoes. We can also observe that:

• In general, the crack angle error is greater for γ < π/2.

• In general, the crack length error is greater for γ > π/2.

These observations can be attributed to the fact that the relative position of the tip

diffraction echo to the corner reflected echo is less sensitive to the crack angle for

γ < π/2.

Table 5.3 presents crack sizing results using the conventional RATT. To obtain

the relative times of arrival, the TOF is evaluated at x = x0 where x0 is the position

at which the amplitude of the corner trap echo is maximum. For γ = 150◦, the

corner echo arrives earlier than the tip echo; therefore, as can be seen in Table 5.3,
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Figure 5.10: Estimated crack angle versus actual crack angle
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Figure 5.11: Estimated crack length for different crack angles, actual crack length =
3mm

Table 5.2: Estimated crack lengths, δ, and estimated crack angles, γ, for different
crack angles; actual crack length = 3mm

γ (deg) Relative Error δ (mm) Relative Error

Crack Angle (deg)

30 23 -23% 2.46 -18%
60 53 -11% 3.07 2%
90 93 4% 3.00 0%
120 119 0% 3.72 24%
150 152 1% 4.01 34%
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Table 5.3: Crack lengths, δ, estimated using the conventional RATT; actual crack
length = 3mm

δ (mm) Relative Error

Crack Angle (deg)

30 3.16 5%
60 4.20 40%
90 2.70 -10%
120 1.49 -50%
150 -1.80 -160%

the conventional RATT formula results in a negative value for the crack length. For

other crack angles, in general, the conventional RATT results in much greater error.

5.4 Summary and conclusions

In conventional relative arrival time technique, it is assumed that cracks are perpen-

dicular to the specimen’s surface. This assumption causes errors in crack sizing. In

this chapter, a modified relative arrival time technique is proposed for estimating

the size and orientation of inclined cracks. The proposed technique utilizes ultra-

sonic B-scan signals for estimating crack size and orientation. The modified RATT

is obtained by deriving a relation between the crack length and orientation, and the

parameters of the corner echo and the tip echo.

The proposed technique is applied to FE simulated B-scans and experimental B-

scans. Comparing the results obtained using the modified RATT and the conventional

RATT shows that the modified RATT results in smaller errors. Based on estimation

results obtained for both experimental and FE simulated signals, we have observed

that

• generally, the error is smaller for cases that the exact theoretical solution for

the crack length and orientation is available; i.e. γ = θ, γ = π/2 and γ = π− θ,

• the estimation error for crack angle is greater when γ < π/2,

• the estimation error for crack length is greater when γ > π/2.

These observations are in agreement with the theoretical predictions obtained using

ray tracing method. Therefore, in summary, we can conclude that the modified RATT

can overcome the shortcomings of the conventional RATT in dealing with inclined

cracks.
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Chapter 6

Finite Element Simulation of the

Ultrasonic Wave Propagation

Numerical analysis provides insights into the ultrasonic wave propagation and its

interaction with the medium. In addition, through this numerical analysis, simulated

signals can be generated when the experimental data either is not available or is

available only for a limited number of cases.

The ultrasonic wave propagation can be modeled using numerical methods includ-

ing finite element, finite difference, finite volume, boundary element, pseudo-spectral

and mesh-less methods [153]. Among these methods finite element and finite differ-

ence are the most commonly used methods.

The finite difference has the advantage of simple implementation, however it re-

quires rectangular grid. Finite element method (FEM) uses unstructured meshes

which can accurately model complex geometries and nonlinearities [154].

In this chapter, the ultrasonic angle beam testing is simulated using finite element

method, using Ansys, to generate simulated ultrasonic signals. Finite element method

allows us to properly model a crack by using a finer mesh close to the crack and a

coarser mesh everywhere else. In addition, the geometry of the specimen and wedge

can be easily meshed using FEM.

To successfully perform finite element analysis (FEA), some parameters need to be

determined prior to the analysis, most importantly mesh size and time-step. In this

chapter, the proper values of these parameters are first investigated. Next, the FE

model is validated by comparing the FE simulated signals to existing experimental

data. Finally, simulation is conducted to generate typical ultrasonic signals.

The simulated ultrasonic signals have been used in Chapter 5 for evaluating the

performance of the proposed method for estimating crack depth and orientation. In
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addition, in Chapter 5, we have used the ray tracing method to derive the modified

relative arrival time technique. However, the ray tracing method involves a major

simplifying assumption; it assumes that the ultrasonic waves travel on the straight

lines. We have used the finite element analysis to simulate the wave propagation inside

the material. From the simulation, the propagation of the tip diffraction echo and

the corner reflection echo has been examined and compared to the ray tracing. Note

that the experimental signals presented in Chapter 7 do not provide show how the

ultrasonic waves propagated as they are only measured at the transducer. By contrast,

the wave propagation inside the material can be clearly observed by displaying the

stress contours or other physical quantities at any time step.

6.1 Parameter selection of the finite element model

Among different parameters used in a finite element analysis, the most critical ones are

the time-step and mesh size which are important for achieving the required accuracy

and numerical stability. The selection of these parameters, in turn, depends upon the

FE solver. Implicit and explicit solvers have been used by other researchers to solve

FE problems [155]. In explicit methods, the system state at a later time, X(t+∆t),

is given explicitly by the system state at the current time, X(t); that is,

X(t+∆t) = F (X(t)) (6.1)

In contrast to explicit methods, in implicit methods, there is an implicit relation

between the state of the system at a later time and the state of the system at the

current time; that is,

G(X(t), X(t+∆t)) = 0 (6.2)

Clearly, explicit methods significantly reduce the computational demand for cal-

culating the system state for each iteration. Because of this computational efficiency,

the explicit methods are often used for solving problems involving high frequency

dynamic phenomena, such as impact and wave propagation problems [156]. Never-

theless, explicit methods may become unstable if the time step is not selected small

enough. For linear problems, the critical time step, called Courant number, is given

by,

∆t =
Tn

π
(6.3)

where ∆t and Tn denote the time step and the smallest period for a given FE dis-
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cretization, respectively. The critical time step can be estimated based on the size of

the smallest element in the FE mesh and the wave speed in the material as [157],

∆t =
h

cL
(6.4)

where h and cL denote the element size and the longitudinal wave speed, respectively.

Our objective is to simulate ultrasonic wave propagation in a specimen with a

surface crack to generate simulated B-scan images of the specimen. In order to model

the crack properly, a very fine mesh is required near the crack tip [158]. Therefore,

according to equation (6.4), a very small time step should be used. On the other

hand, the highest accuracy of explicit solvers is achieved by integrating with a time

step equal to the critical time step and the accuracy is less when a smaller time step

is employed [157]. Therefore, a uniform mesh is the optimal mesh for the explicit

FEM [159]. This means either a uniform fine mesh should be used for the whole

model or the accuracy will be reduced due to use of non-uniform mesh.

We employ the Newmark method which is a commonly used implicit method

in structural dynamics. In contrast to explicit methods, implicit methods can be

formulated to be unconditionally stable at the expense of longer computation time

[155]. Yet, the time step and mesh size should be selected such that the applied

loads and the physics of the problem are represented properly. In the following, we

investigate the selection of the time step and mesh size by studying one dimensional

ultrasonic wave propagation.

In this section, pulse-echo ultrasonic wave propagation is modeled in one dimen-

sion to investigate the proper selection of time step and mesh size. A steel block is

modeled with the length of L = 20mm and width of W = 2mm as depicted in Figure

6.1. The mechanical properties of steel used in this model are: modulus of elasticity,

E = 200GPa, density, ρ = 7850kg/m3 and Poisson’s ratio, ν = 0.3. Given these

mechanical properties, the longitudinal wave speed in this medium can be calculated

as,

cL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
= 5.856mm/µs (6.5)

Symmetric boundary condition is applied on two opposite sides along the length

of rectangle. The right side is fixed as illustrated in Figure 6.1. On the left side,

the transducer is located. Exciting the transducer generates ultrasonic waves inside

the specimen. Ultrasonic waves travel along the length of the specimen, are reflected

back from the right edge of the specimen, and are received by the transducer.
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Figure 6.1: One-dimensional model geometry

A 5 MHz 3-cycle Hanning function is used as the excitation force. Figures 6.2 and

6.3 show the excitation which is applied as pressure on the left side of the specimen in

the time domain and frequency domain, respectively. In general an N-cycle Hanning

window can be expressed as

x = (1− cos
2πn

LH − 1
)cos

2πNn

LH − 1
, n = 0, 1, . . . , LH − 1 (6.6)

where LH is the length of the N -cycle Hanning function which can be calculated as,

LH =
2πfsN

f
(6.7)

where fs is the sampling frequency and f is the center frequency of the excitation

force. The value of fs is selected to be the reciprocal of the FE solver time step.

We will use the normal acceleration at the transducer surface as the transducer

output signal. The actual output of the transducer could be calculated using the

voltage-to-surface acceleration impulse response of the transducer [160]. However, to

simplify the FE model, the piezoelectric transducer is not included in the FE model.

The FE model is built and analyzed in Ansys R⃝. The 2-D Plane182 element type

is used in the analysis. Plane182 is defined by four nodes; each having two degrees of

freedom: translations in the nodal x and y directions (Figure 6.4) [161]. The element

may be used as a plane element (plane stress, plane strain and generalized plane

strain) or as an axisymmetric element [161]. The plane strain option is used for this

analysis.

Although a higher order element, such as Plane183 with a quadratic displace-

ment, is more favorable for structural stress problems because of the continuity of the

stress and strain fields [162], based on our simulation results in this section, Plane183
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Figure 6.5: Meshed model

element offers no advantage over Plane182 when dealing with wave propagation prob-

lems which involve large gradients, while it significantly increases the problem size.

Figure 6.5 depicts the meshing. As can be seen in Figure 6.5 the length of specimen

has been divided into N elements. Therefore, each element length will be L/N .

As shown in Figure 6.3, most of the energy of excitation force (99.9% of the energy)

is contained within the range 5 ± 3MHz. Therefore, the maximum frequency of

interest is selected to be fmax = 8MHz. Correspondingly, the minimum wavelength to

be considered is λmin = c/fmax = 0.73mm. For the Newmark method, it is suggested

to use time step size and element size as ∆t = 1/(20fmax) and ∆x = λmin/20,

respectively [163].

The Newmark method with parameter γ = 0.01 is used. The parameter γ ensures

stability by damping out the high frequency oscillations, when no structural damp-

ing is applied [161]. Nevertheless, this numerical damping may cause a frequency

downshift and loss of accuracy [164,165]. Through trial and error, γ = 0.01 has been

selected.
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Figure 6.6: Transducer response for rt = 15 and rx = 5

In the following, we first compare different time steps and element sizes. Then,

we compare two element types: Plane182 and Plane183.

6.1.1 Effect of the time step and element size

The FE simulation has been conducted for different time steps and element sizes.

We express the two parameters, time step and element size, in terms of the following

non-dimensional ratios: rt = 1/(fmax∆t) and rx = λmin/∆x, respectively.

Figures 6.6 shows the transducer response for rt = 15 and rx = 5. Two pulses

are observed: the first pulse corresponds to the emitted wave and the second one

corresponds to the echo. In the time domain, a noticeable difference between the

incident wave and the reflected wave is their pulsewidths. Comparing the full width

at half maximum (FWHM)1 of the echo and the emitted signal shows that the FWHM

of the echo is 48.6% greater than that of the emitted signal. Another difference is

the reduction of the amplitude of the reflected wave. This reduction occurs mainly

due to damping which dissipates the signal energy and the numerical diffusion [166]

which spreads out the signal energy in time and space.

Figure 6.7 shows the frequency spectrum of the received echo. The frequency

spectrum of the echo is calculated by taking the Fourier transform of the received

signal from 2.5µs to 10µs. Therefore, only the echo signal is included in the frequency

1FWHM is the distance between points on a curve at which the function reaches half its maximum
value [134]. This measure is commonly used to express the width of a bump on a curve
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Figure 6.7: Frequency spectrum of the echo signal for rt = 15 and rx = 5

spectrum and the excitation is excluded. As can be seen in Figure 6.7, the frequency

spectrum of the echo signal is similar to that of the excitation force shown in Figure

6.3. Figure 6.8 shows the excitation and response spectra, each normalized by its

peak for comparison. As shown in Figure 6.8, the excitation force spectrum and the

echo spectrum are almost identical. In order to quantitatively evaluate the difference

between the two spectra, we define the difference, d{a,b}, between two spectra, a

and b, as

d{a,b} = |a− b|2

|a||b|
. (6.8)

Using equation (6.8), the difference between the normalized spectra of the excitation

force and the echo is calculated to be 0.6%.

By comparing the spectra of the transducer response and the excitation force, it

can be observed that the amplitude of higher frequency components of the received

signal is slightly smaller than that of the excitation force. This has resulted in a slight

shift in the center frequency of the echo from 5MHz to 4.9MHz.

Frequency downshift is caused by the numerical damping which has been added

for the solution stability. This becomes more evident as γ increases. For example,

Figure 6.9 shows the spectrum of the transducer response and the spectrum of the

excitation force when γ parameter of the Newmark method has been increased to

0.05. Clearly, the frequency downshift has increased from the case that γ was set to

0.01 shown in Figure 6.8. By increasing γ from 0.01 to 0.05, the center frequency has
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Figure 6.8: Comparison of the excitation force spectrum and the echo signal spectrum
for rt = 15 and rx = 5 with normalized y-axis

decreased from 4.9 MHz to 4.3 MHz.

Figures 6.10 and 6.11 show the received signal for rt = 10 and rx = 5 in the time

domain and the frequency domain, respectively. Figure 6.12 shows the normalized

spectra of the excitation and the response for the same settings. The results are

generally similar to the case that rt = 15. Yet, some differences can be observed.

The echo amplitude has slightly decreased by reducing rt. The difference between the

spectra of emitted signal and the echo has increased to 1.3%. In addition, the center

frequency of the echo has decreased to 4.8MHz. These results show that there is no

major distortion in the received signal due to selection of a large time step or element

size for rt = 10 and rx = 5.

These changes become more evident by further decreasing of rt to 5 as shown in

Figures 6.13 to 6.15. As depicted in Figure 6.13, clearly the amplitude of the echo

has decreased. The difference between two spectra increased to 9% and the center

frequency decreased to 4.4MHz. Moreover, it is observed in Figure 6.13 that a large

time step has caused the so-called numerical dispersion. The numerical dispersion

causes a frequency dependent alteration in the wave speed [167, 168]. As a result,

as can be seen in Figure 6.13, lower frequency waves arrive first and then higher

frequency waves arrive.

The effect of numerical dispersion can be more clearly observed from the time-
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Figure 6.9: Comparison of the excitation force spectrum and the echo signal spectrum
for rt = 15, rx = 5 and γ = 0.05 with normalized y-axis
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Figure 6.10: Transducer response for rt = 10 and rx = 5
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Figure 6.11: Transducer response spectrum for rt = 10 and rx = 5
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Figure 6.12: Comparison of the excitation force spectrum and the echo signal spec-
trum for rt = 10 and rx = 5 with normalized y-axis
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Figure 6.13: Transducer response for rt = 5 and rx = 5

frequency representation (TFR) of the received signal. Figures 6.16 and 6.17 show

the short-time Fourier transforms of the received signals for rt = 15 and rx = 5,

and rt = 5 and rx = 5, respectively. The x-axis represents time, the y-axis indicates

frequency and the amplitude is plotted in gray scale. It can be seen for rt = 15 the

TFR of the echo is almost identical to the TFR of the emitted signal, except that it

is time-shifted, while for rt = 5 the numerical dispersion is obviously present, i.e. as

time passes the frequency of the echo signal increases.

Figures 6.18 and 6.19 show the transducer response for rt = 15 and rx = 3 in

the time domain and the frequency domain, respectively. It is clear the response has

been distorted. This difference can be obviously seen in Figure 6.20 by comparing

the frequency spectra of the emitted and received signals. As can be seen more peaks

appear in the received signal due to selection of large element size.

Based on the results of the FE simulation for the one dimensional wave propaga-

tion, we set the following criteria for our FE analysis:

rt ≥ 10, rx ≥ 5 (6.9)

As seen, these values are minimum requirements for which the distortion in the re-

sponse waveform is negligible.
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Figure 6.14: Transducer response spectrum for rt = 5 and rx = 5
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Figure 6.15: Comparison of the excitation force spectrum and the transducer response
spectrum for rt = 5 and rx = 5 with normalized y-axis
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Figure 6.16: Transducer response spectrogram for rt = 15 and rx = 5
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Figure 6.17: Transducer response spectrogram for rt = 5 and rx = 5
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Figure 6.18: Transducer response for rt = 15 and rx = 3
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Figure 6.19: Transducer response spectrum for rt = 15 and rx = 3
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Figure 6.20: Comparison of the excitation force spectrum and the transducer response
spectrum for rt = 15 and rx = 3 with normalized y-axis

6.1.2 Comparison of Plane182 and Plane183 elements

In general, a higher order element is more favorable when the solution is expected

to be a smooth function; e.g. structural static analysis [157], while a lower order

element type is preferred when dealing with wave propagation problems [169, 170].

To decide on the element order, we have compared a linear element, i.e. Plane182,

with a quadratic element, i.e. Plane183.

Figures 6.21-6.23 show the transducer response when Plane183 is used, rt = 10

and rx = 5. Comparing to the corresponding results obtained using Plane182 in

Figures 6.10-6.12, no improvement is observed when a higher order element is used.

As presented in Table 6.1 there is no major change in the spectra of the excitation force

and the transducer response, d{F,A}, or the frequency downshift values. Moreover,

the computational time is closely related to the number of nodes. For the same

number of elements, the number of nodes of the FE model meshed by Plane183 is

approximately 2.5 times greater than the model meshed by Plane182. If we increase

the number of elements of the model which uses Plane182 element by the same factor,

i.e. to increase rx to 12.5, we can achieve much more accurate results as shown in

Figures 6.24-6.26 and Table 6.1.
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Table 6.1: The difference between the normalized spectra of the excitation force and
the received signal and the frequency downshift for different FE model parameters

Element Type γ rt rx d{F,A}1(%) Frequency Downshift2(%)
Plane182 0.01 15 5 0.6 2.2
Plane182 0.01 10 5 1.3 4.2
Plane182 0.01 5 5 9.0 11.2
Plane182 0.05 15 5 12.9 13.3
Plane182 0.01 10 12.5 0.4 0.0
Plane183 0.01 10 5 2.6 4.2

1 F: Excitation force spectrum, A: Transducer response spectrum, and
d{F,A} is defined by equation (6.8).
2 Frequency downshift (%) = fce−fcr

fce
× 100 where fcr and fce denote the re-

sponse center frequency and the excitation center frequency, respectively.
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Figure 6.21: Transducer response for Plane183 element, rt = 10 and rx = 5
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Figure 6.22: Transducer response spectrum for Plane183 element, rt = 10 and rx = 5
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Figure 6.23: Comparison of the excitation force spectrum and the transducer response
spectrum for Plane183 element, rt = 10 and rx = 5 with normalized y-axis
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Figure 6.24: Transducer response for rt = 10 and rx = 12.5
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Figure 6.25: Transducer response spectrum for rt = 10 and rx = 12.5
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Figure 6.26: Comparison of the excitation force spectrum and the transducer response
spectrum for rt = 10 and rx = 12.5 with normalized y-axis

6.2 FE modeling of ultrasonic angle beam testing

In this section, we model ultrasonic angle beam testing of a specimen with an inclined

surface crack. These FEA results have been used in Chapter 5 for developing features

that can be used to estimate the crack size and orientation. In this section, the

FE model is validated first by comparing to experimental signals. Then, the FEA

simulated signals for specimens with different crack orientations are presented.

6.2.1 Model Validation

We validate our model in two steps. In the first step, we simulate a specimen with

no crack and compare the simulated signal with the experimental signal. This model

allows us to check whether the guidelines we developed for 1D model is sufficient for

a 2D model without dealing with the difficulties of modeling a crack.

In the second step, we model a specimen with crack and compare FE results with

experimental data. This is the model whose results will be used for developing proper

features for calculating crack size and orientation.
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Figure 6.27: Geometry of the wedge and a specimen with no crack

Specimen with no crack

Figure 6.27 demonstrates the geometry of the specimen in whichW=50 mm and H=23

mm. The experimental setup for this model is explained in Section 7.1.5. Figure 6.28

shows the simulated B-scan image. For easier comparison with the experimental data

the origin of the time axis is set at the wedge delay. Comparing the simulated B-scan

with the experimental B-scan shown in Figure 7.23 shows that the simulated B-scan

and the experimental B-scan are generally similar to each other1.

The time of arrival (TOA) of the echo is estimated from an arbitrary selected

A-scan recorded at the distance of 10 mm (Figure 6.29). From Figure 6.29, the time

of arrival is 20.08µs. The theoretical time of arrival, τtheoretical, is equal to,

τtheoretical =
2

v
(H cos θ + x sin θ) =

2

3.229
(23 cos 45 + 22.8 sin 45) = 20.06µs (6.10)

where v = 3.229mm/µs is the shear wave velocity, θ = 45◦ is the refraction angle,

H=23 mm is the height of the specimen and x = 10+12.8 = 22.8mm2 is the distance

from the probe index to the specimen’s edge. A good agreement is observed between

the theoretical TOA and the TOA obtained from FEM. Similar results have been

obtained when different A-scans have been selected. Therefore, we can conclude that

the FEM results can correctly predict the TOA.

To compare the experimental and FE signals, we have calculated the cross-correlation

1The FE simulation has been carried out for a smaller time duration and a smaller scanning span
hence the second echo which has been seen in the experimental B-scan cannot be observed in the
simulated B-scan.

2The distance from the beam index to the edge of the wedge is 12.8 mm.
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Figure 6.28: FE simulated B-scan of a specimen with no crack
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Figure 6.29: A-scan of a specimen with no crack, the distance from the near edge of
the wedge to the edge of specimen = 10.1 mm
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Figure 6.30: Cross-correlation between the experimental B-scan and FE simulated
B-scan

between these two signals. The cross-correlation of two signals f(t) and g(t) is defined

as

(f ⋆ g)(t) =

∫ ∞

−∞
f(τ)g(t+ τ)dτ (6.11)

A cross-correlation with a strong peak indicates a strong correlation between two

signals. If the peak occurs at point other than zero it shows that there is a time

delay between two signals, otherwise they are synchronous. To calculate the cross-

correlation between the experimental signal and the FE simulated signal, the cross-

correlation of every two corresponding A-scans is calculated1. Figure 6.30 shows

the cross-correlation and Figure 6.31 shows the normalized cross-correlation between

experimental B-scan and FE simulated B-scan. As can be seen in these figures, there

are strong peaks around zero. These peaks around zero can be consistently observed

for all A-scans recorded at different transducer positions. This indicates a very good

correlation between the experimental B-scan and the FE simulated B-scan. Therefore,

in this case, our FE model can generate signals which are very close to experimental

ones.

In order to examine the frequency downshift for this case, we have calculated

the average frequency spectrum by averaging over frequency spectra of all A-scans.

Figure 6.32 shows the normalized frequency spectra of the received signal and the

1Note that this is not a 2D cross-correlation because the cross-correlation integral is only taken
over time.
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Figure 6.31: Normalized cross-correlation between the experimental B-scan and FE
simulated B-scan

excitation force applied to the transducer. Each frequency spectrum is normalized

by its peak. The center frequency of the transducer response is at 1.45 MHz while

the center frequency of the force is at 2.25 MHz. Comparing to the one dimensional

case the frequency downshift has increased because of the longer distance that wave

travels. Therefore, due to this frequency downshift, the frequency of the received

signal and associated parameters, such as pulse-width, should be treated with care

when analyzing the FEM results.

In summary, we can conclude that in general, our FE model generates results

which are very close to the experimental ones. In particular, the TOA values are

very close to the experimental and theoretical values. This shows that using the

parameters selected in this section, our FE model is able to accurately predict TOA.

Nonetheless, there is considerable frequency downshift due to the numerical damping

which should be taken into account when analyzing FE results. In the next section,

we will add a crack to our model to validate our model in the presence of a crack.

Specimen with a crack

The geometry and mechanical properties of the FE model for the specimen with an

inclined crack are shown in Figure 6.33. The transducer in the model is excited with

a 3-cycle Hanning signal and the response of the transducer is calculated and stored.

These simulated signals are then compared to the experimental signals presented
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Figure 6.32: Comparison of the excitation force spectrum and the transducer response
spectrum with normalized y-axis

in Section 7.1.4 for specimens with crack angles of 30◦, 60◦, 90◦, 120◦ and 150◦

degrees to validate the FE model. For comparison, the cross-correlation between the

experimental signal and FE simulated signal is computed as explained in the previous

section. Prior to computation of the cross-correlation, the experimental signals were

denoised using the method proposed in Chapter 3.

Figures 6.34-6.38 show the cross-correlation between the experimental and FE sig-

nals for different crack orientations. As can be seen, the peak of the cross-correlation

occurs close to t = 0µs. This observation shows that the difference between the TOF

values of the experimental and numerical signals is negligible.

6.2.2 FE simulated signals for specimens with different crack

orientations

After validating the FE model, the ultrasonic wave propagation for specimens with

different crack orientations is simulated using FEM. The crack angle is varied from

15◦ to 165◦ with a step size of 15◦. Figures 6.39-6.49 show the simulated B-scans for

different crack angles. These signals have been used in Chapter 5 for evaluation of

the proposed method for estimating crack depth and orientation.
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Figure 6.33: FE model of the specimen with an inclined crack
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Figure 6.34: Cross-correlation between the experimental B-scan and FE simulated
B-scan for the specimen with a 30◦ crack
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Figure 6.35: Cross-correlation between the experimental B-scan and FE simulated
B-scan for the specimen with a 60◦ crack
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Figure 6.36: Cross-correlation between the experimental B-scan and FE simulated
B-scan for the specimen with a 90◦ crack

135



time (µs)

T
ra

ns
du

ce
r 

po
si

tio
n 

(m
m

)

−10 −5 0 5 10
0

5

10

15

20

25

30

Figure 6.37: Cross-correlation between the experimental B-scan and FE simulated
B-scan for the specimen with a 120◦ crack
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Figure 6.38: Cross-correlation between the experimental B-scan and FE simulated
B-scan for the specimen with a 150◦ crack
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Figure 6.39: FE simulated B-scan of the specimen with a crack angle of 15◦
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Figure 6.40: FE simulated B-scan of the specimen with a crack angle of 30◦
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Figure 6.41: FE simulated B-scan of the specimen with a crack angle of 45◦
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Figure 6.42: FE simulated B-scan of the specimen with a crack angle of 60◦
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Figure 6.43: FE simulated B-scan of the specimen with a crack angle of 75◦
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Figure 6.44: FE simulated B-scan of the specimen with a crack angle of 90◦
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Figure 6.45: FE simulated B-scan of the specimen with a crack angle of 105◦
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Figure 6.46: FE simulated B-scan of the specimen with a crack angle of 120◦
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Figure 6.47: FE simulated B-scan of the specimen with a crack angle of 135◦
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Figure 6.48: FE simulated B-scan of the specimen with a crack angle of 150◦
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Figure 6.49: FE simulated B-scan of the specimen with a crack angle of 165◦

6.3 Summary

The ultrasonic angle beam testing has been simulated using the finite element method.

The selection of the proper parameters for the FE model has been investigated. By

comparing to the experimental signals, it has been shown that the FE model with

these selected parameters can accurately predict the TOF. This will serve our purpose

in estimating crack depth and orientation from B-scan signal in Chapter 5. Yet,

there are some deviation from the experimental signals which should be taken into

account when analyzing the FE signals. The main deviations observed in the FE

simulated signals, are the frequency downshift and increase in the pulse-width due to

the numerical damping.

After validating the FE model, B-scan images have been simulated for cracks

with different orientations. These simulated B-scans have been used in Chapter 5 for

evaluation of the proposed method for estimating crack size and orientation.
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Chapter 7

Experiments

In order to evaluate the performance of the denoising method proposed in Chapter

3, the parameter estimation method proposed in Chapter 4, and the crack size and

orientation estimation method in Chapter 5, we have used the ultrasonic testing

data available in the Reliability Research Lab at University of Alberta. Although

the author of this thesis participated in conducting some of these experiments, the

experiments were not designed or conducted as part of this thesis. The details of

these experiments were documented in technical reports [1,171,172]. In addition, we

have conducted two more experiments in this research program which are described

in Section 7.1.4 and Section 7.1.5.

Pulse-echo and pitch-catch setups were used to collect experimental data. These

two setups are widely used in ultrasonic fault detection and assessment. In both

experimental setups, angle-beam shear waves were used for inspecting specimens on

which surface cracks were approximated by creating a slot using electro-discharge

machining (EDM). The angle of wedge is selected such that only the shear wave

transmit into the test piece and the longitudinal wave reflects at the interface of the

wedge and the specimen. This simplifies the interpretation of the received signal [173].

In the first set of experiments, pulse-echo setup was used to acquire B-scan images

of specimens. On each specimen, a surface crack with the length ranging from 0.1mm

to 3mm was introduced. The B-scan images acquired from this experimental setup

allow us to evaluate the proposed two dimensional denoising method. In addition, the

data from specimens with different crack lengths will be used to examine the effect

of the crack length on the denoising and estimation results. A shorter crack length

essentially results in a signal with a lower signal-to-noise ratio (SNR) and hence it

influences the denoising and estimation results.

In addition to the data which was ready to use, we have designed two more
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experiments. The first one is to examine the effect of the crack orientation on crack

sizing. In the other experiment, we have scanned a specimen without a crack. In this

case, a strong echo from the edge of the specimen is present in the received signal.

Because the interpretation of the received signal is easier for this signal, we will use

this signal for finite element model validation.

In the pulse-echo setup, when scanning the specimens, the crack was located on

the far side (bottom surface). At least two echoes are expected to appear in the

received signal when using this configuration: corner trap echo and tip diffraction

echo [174]. Therefore, relative arrival time technique (RATT), which is used for crack

sizing in this thesis, can be used in this configuration.

In the second set of experiments, pitch-catch setup was used to acquire A-scan

signals. Due to lack of instruments to move two transducers together in a controlled

manner, to send a pulse using one transducer and record the signal using the other one,

no B-scan image was collected for this setup. The distance between two transducers

was manually varied during the experiments. The energy level of the received signal

depends on the distance between the two transducers. Therefore, signals with different

SNR values are available from this setup. These data will be used to evaluate the

performance of the parameter estimation method proposed in Chapter 4.

In the pitch-catch experiment, the objective is to receive the tip diffraction echo.

Estimating the time of flight of this echo allows us to estimate the crack length. In

this experiment, the crack was located on the top surface. Therefore, the time of

flights of tip diffracted echo and backwall echo would be far enough to avoid overlap

of these two echoes. Detecting a crack on the bottom surface using this setup is a

challenging problem, because of the overlapping of the backwall echo with often a

much weaker tip diffracted echo [175].

7.1 Pulse-echo setup

Ultrasonic pulse-echo is commonly used for fault detection as well as fault assessment.

We have used experimental data collected using pulse-echo setup to test the proposed

denoising method (Chapter 3) and parameter estimation method (Chapter 4) in this

thesis.
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7.1.1 Minimum temporal and spatial resolution

First, we will determine the necessary temporal and spatial resolution for the ex-

periments. To avoid aliasing, the Nyquist frequency, which is half of the sampling

frequency, should be higher than the maximum frequency of the sampled signal [176].

This gives the minimum temporal and spatial resolution which should be used in

the experiment. Let g(x, t) be the two-dimensional B-scan signal and G(fx, ft) be

its Fourier transform (FT). According to Nyquist-Shannon sampling theorem, the

temporal sampling frequency, fs,t, and the spatial sampling frequency, fs,x, shall be

selected to be at least twice the corresponding bandwidth of G(fx, ft), i.e.

G(fx, ft) = 0, if |fx| >
fs,x
2

or |ft| >
fs,t
2
. (7.1)

Let’s recall from Section 2.4 that the 2D echo is modeled as

g(x, t) = e(x, t)cos(2πfc(t− τ(x)) + ϕ) (7.2)

where e(x, t) is the envelope of echo and τ(x) is a linear function of x; that is τ(x) =

ax+ b where a and b are constants. Taking the FT of equation (7.2) gives

G(fx, ft) =
1

2
E(fx + afc, ft − fc)exp(i(ϕ− 2πfcb))

+
1

2
E(fx − afc, ft + fc)exp(−i(ϕ− 2πfcb)),

(7.3)

where E(fx, ft) is the FT of e(x, t).

In Section 2.4, the envelope of the echo, in turn, has been modeled as

e(x, t) = X(x)T (t− τ(x)). (7.4)

Taking the FT of equation (7.4), we obtain

E(fx, ft) = T (ft)X(fx + aft)exp(−2πiftb) (7.5)

where functions T and X are the Fourier transforms of T and X, respectively.

Inserting G(fx, ft) from equation (7.3) into equation (7.1) gives,

E(fx, ft) = 0, if |fx| > fs,x/2− afc or |ft| > fs,t/2− fc. (7.6)

Practically, it is reasonable to assume that E(fx, ft) ≈ 0 in equation (7.6) if the power
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of the component at (fx, ft) is smaller than the maximum power by at least M dB

where M ≫ 0. Thus, for a Gaussian echo we have,∣∣∣∣E(fx, ft)

E(0, 0)

∣∣∣∣ = ∣∣∣∣T (ft)T (0)

∣∣∣∣ = exp(
−(πft)2

αt

) < 10−M/20. (7.7)

After some algebraic manipulation we obtain,

min(fs,t) = 2fc +
2

π

√
Mαt ln 10

20
. (7.8)

The frequency bandwidth of the transducer used in the pulse-echo experiment was

1.5 MHz, hence αt = 16 (MHz)2. For M = 20 the minimum sampling frequency is 8.4

MHz which is well below the sampling frequency of 100 MHz used in the experiment.

Let X(x) be a Gaussian function as well, then for the minimum spatial step size,

we have,∣∣∣∣E(fx, ft)

E(0, 0)

∣∣∣∣ = ∣∣∣∣T (ft)X(fx + aft)

T (0)X(0)

∣∣∣∣ = exp(−π2(
f 2
t

αt

+
(fx + aft)

2

αx

)) < 10−M/20. (7.9)

For a given fs,x, the condition expressed in equation (7.9) should hold for all

values of ft. This can be achieved by maximizing E(fx, ft)/E(0, 0) with respect to ft.

Letting partial derivative of E(fx, ft)/E(0, 0) with respect to ft equal to zero results

in,
E(fx, ft)

E(0, 0)
= exp(

−(πfx)2

a2αt + αx

) < 10−M/20. (7.10)

Finally, after some algebraic manipulation we obtain

min(fs,x) = 2afc +
2

π

√
M ln 10

20
(a2αt + αx). (7.11)

The value of αx is approximated by curve fitting for different slot sizes from 0.1

mm to 3 mm. Figure 2.17 depicts the curve fitting results for a specimen with a

3mm slot. By performing curve fitting using the experimental data from specimens

with slot lengths from 0.1 mm to 3 mm we have found the maximum value of αx

to be 0.04mm−2. From equation (2.31) a is determined to be 0.438µ s/mm and M

is assumed to be 20. Substituting these parameter values in equation (7.11) gives a

minimum spatial sampling frequency of 3.7mm−1 or a maximum step size of 0.27 mm;

this is slightly larger than the 0.25 mm step size used in the pulse-echo experiment.
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7.1.2 Instrumentation

Figure 7.1 illustrates the schematic of the experimental setup and Figure 7.2 shows

pictures of the experimental setup. The test setup consists of Omniscan data acquisi-

tion system, Bi-slide positioning system, VXM stepping motor controller and a PC on

which COSMOS software is installed. The COSMOS is used to program the bi-slide

movement through the stepping motor controller. The Bi-slide system allows auto-

mated and accurate positioning of the ultrasonic transducer on the specimen. When

the Bi-slide moves the transducer to a new position, the stepping motor controller

also sends a pulse to Omniscan to trigger acquiring ultrasonic signal at the new trans-

ducer position. The transducer is Krautkramer, Benchmark Series, miniature angle

beam transducer, 2.25MHz center frequency, 1.5 MHz bandwidth, and 0.5” element

diameter. The wedge used in this experiment has a standard refracted shear wave

angle of 45◦ in steel.

The transducer was moved linearly along the specimen to obtain a B-scan. At

every step, 2048 data points were collected at a sampling frequency of 100 MHz.

Each of these recorded data constitutes an A-scan. By each movement of the stepper

motor, a pulse was also sent to the Omniscan to indicate the transducer position.

Finally, a B-scan was produced consisting of A-scans collected at points along the

scan line.

7.1.3 Specimens with different crack lengths

In this experiment, nine 4140-steel specimens (185mm x 40 mm x 16 mm) were tested.

Figure 7.3 illustrates the test specimen dimensions. The nine specimens had nominal

slot lengths of 0 mm, 0.1 mm, 0.3 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm and

3 mm, respectively. The length of each EDM cut was 40 mm (each cut was a full

length cut along the width of specimens). Table 7.1 presents the actual length and

width of specimens measured using a microscope [172].

Figure 7.4 illustrates the scanning span for this experiment. The positioning

system was programmed to linearly move the transducer for a distance of 30 mm

with a step size of 0.25 mm. The starting position of the transducer was at 30 mm

distance, measured from the probe beam index to the EDM slot. All experiments

were repeated three times to ensure the repeatability of data.

The gain level of input voltage to the transducers were varied from 5 dB to 60

dB with an increment size of 2.5 dB. This gain value was applied to the input signal.

A smaller gain level leads to a weaker pulse and hence a weaker signal which in
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Figure 7.1: Schematic of the ultrasonic pulse-echo testing using Bi-slide [1]
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Figure 7.2: Ultrasonic pulse-echo testing using Bi-slide [1]
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Figure 7.3: Specimen dimensions

Table 7.1: The length and width of the slots cut on the specimens (mm)

Nominal length Measured length Measured Width
0.1 0.112 0.171
0.3 0.281 0.168
0.5 0.502 0.193
1 1.021 0.189
1.5 1.519 0.192
2 2.032 0.217

2.5 2.548 0.203
3 3.056 0.208

149



 

30

Transducer

Figure 7.4: The scanning span

turn results in lower signal-to-noise ratio. However, greater gain levels may lead

to acoustic saturation of the transducer [177] and/or over-range values. Acoustic

saturation occurs when the ultrasonic transducer is excited with a signal beyond the

transducer’s dynamic range in which transducer has a linear behavior. Over-range

values occur when the signal received by the transducer is not recorded properly when

the signal is digitized. This is called data clipping. Therefore, it is not uncommon to

see either low SNR for a small crack or a distorted signal for a large crack.

Figures 7.5-7.13 depict the B-scan images obtained at a gain level of 40 dB from

the specimens with different crack lengths. In each plot, the horizontal axis represents

time and the vertical axis represents the transducer position. The origin of the time

axis is set at the moment when a predetermined waiting time, the wedge delay, is

elapsed after triggering the input signal. The wedge delay is determined through

a calibration process which establishes a zero position for the entry surface of the

test piece. The calibration is performed using an OmniScan R⃝ unit as specified in

Ref. [178]. The transducer position is measured from the beam index to the crack

location as shown in Figure 7.4.

As can be seen in Figure 7.5, when there was no slot in the specimen, the only

echoes in the received signal were those reflected at the interface of the wedge and the

specimen due to mismatch of the acoustic impedances. These echoes are called wedge

echo. The amplitude and the time of flight of these echoes were almost constant in

all A-scans within the B-scan image and did not change as transducer moves along

the specimen. Therefore, they appeared as vertical lines in the B-scan image.

In Figure 7.6, for a specimen with 0.1 mm slot, there was also another echo which

was reflected from the corner of the slot. This echo becomes much stronger compared
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Figure 7.5: B-scan image of a specimen with no slot, Gain level: 40 dB

with the wedge echo for longer slots as shown in Figures 7.9-7.13. For example, as

can be seen in Figure 7.13, for a 3 mm crack the amplitude of the corner trap echo

was much greater than that of wedge echo. There was also another echo marked in

Figure 7.13 as tip diffraction echo. This echo arrived earlier than the corner trap echo

and was diffracted from the tip of crack. This echo is hardly evident in the B-scan

images of smaller cracks such as 0.1 mm and 0.3 mm crack cases. Comparing the

B-scans for different crack sizes shows that the echoes are stronger for longer cracks

as more waves are reflected from a longer crack.

Figures 7.14 and 7.15 depict the 3D plots of the B-scan of specimen with slot

lengths of 0.5 mm and 3 mm. It can be observed that some data for the 3 mm slot

were clipped but for 0.5 mm slot no data was clipped (the maximum value for this

data acquisition system is 128).

7.1.4 Specimens with different crack orientations

In addition to the aforementioned experimental data which were available in the

Reliability Research Lab, we have designed and conducted an experiment to study the

effect of the crack orientation on the parameter estimation results. This experiment

is described in this section.
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Figure 7.6: B-scan of a specimen with a slot length of 0.1 mm, Gain level: 40 dB
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Figure 7.7: B-scan of a specimen with a slot length of 0.3 mm, Gain level 40 dB
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Figure 7.8: B-scan of a specimen with a slot length of 0.5 mm, Gain level: 40 dB
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Figure 7.9: B-scan of a specimen with a slot length of 1 mm, Gain level: 40 dB
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Figure 7.10: B-scan of a specimen with a slot length of 1.5 mm, Gain level: 40 dB
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Figure 7.11: B-scan of a specimen with a slot length of 2 mm, Gain level: 40 dB
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Figure 7.12: B-scan of a specimen with a slot length of 2.5 mm, Gain level: 40 dB
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Figure 7.13: B-scan of a specimen with a slot length of 3 mm, Gain level: 40 dB
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Figure 7.14: 3D B-scan plot of a specimen with a slot length of 0.5 mm, Gain level:
40 dB

Figure 7.15: 3D B-scan plot of a specimen with a slot length of 3 mm, Gain level: 40
dB
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In the middle of one 4140-steel specimen (185 mm x 40 mm x 16 mm) two slots

with angles of 30 degrees and 60 degrees and length of 3 mm were created at two

sides of the specimen using EDM. Figure 7.16 shows the specimen drawing and Figure

7.17 illustrates the ultrasonic scanning span. The experiment was conducted at the

following crack angles: 30◦, 60◦, 120◦ and 150◦ (total of four sets of data). This was

achieved by scanning the top surface and bottom surface of the specimen in two

opposite directions. For example, scanning the 30◦ in one direction results in 30◦

dataset and scanning in the opposite direction results in 150◦ dataset. It would be

insightful if the experiment is carried out for 45◦ and 135◦ in future studies as these two

angles represent special cases at which the waves are either parallel or perpendicular

to the crack. The experiment was conducted for gain levels of 30 dB, 40 dB, 50 dB

and 60 dB. Combined with the data for 3mm slot at 90◦, which was explained in Sec.

7.1.3, there are data available for every 30◦ from 30◦ to 150◦ slot angle.

Figures 7.18-7.21 show the B-scan images for slot angles of 30◦, 60◦, 120◦ and 150◦.

Generally, these figures resemble those of the 90◦ crack, yet there are some major

differences. A major difference is that there are some extra echoes mostly within the

first 5 µs of the B-scans. These echoes were generated by the crack on the top surface.

In this study, we consider only echoes reflected from the crack on the bottom

surface. Since the echoes from the two cracks on the top and bottom surfaces did not

overlap, they can be easily separated. The echoes from the crack on the top surface

were located within the first 5 µs, while the echoes from the bottom surface did not

appear till about 8 µs. For this reason, we can ignore the interactions between the

two cracks.

7.1.5 Specimen without any crack

In order to validate the finite element model in Chapter 6, we have designed an

experiment with a specimen without a crack. Since our objective is to evaluate the

accuracy of the finite element analysis for proper selection of time step and element

size, the experiment has been designed such that the received signal can be easily

interpreted. This can be achieved by testing a specimen with no crack. The received

signal for this experiment contains a clear strong echo from the edge of specimen.

Figure 7.22 shows the geometry of the specimen. The sampling frequency of 50

MHz was chosen for this experiment. The reason of selection of a smaller sampling

frequency for this experiment is to collect data for a longer time - the total number of

sampled data is fixed in the OmniScan software - as the height of specimen is larger
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Figure 7.16: Specimen dimensions, all dimensions are in mm
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Figure 7.18: B-scan image of the specimen with a slot angle of 30◦
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Figure 7.19: B-scan image of the specimen with a slot angle of 60◦
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Figure 7.20: B-scan image of the specimen with a slot angle of 120◦
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Figure 7.21: B-scan image of the specimen with a slot angle of 150◦
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Figure 7.22: Specimen Geometry

than the specimens used in two previous set of experiments. The transducer was

moved for a distance of 30 mm with a step size of 0.25 mm. The starting position

of the transducer was at 30 mm distance, measured from the near edge of the wedge

to the edge of the specimen. The distance between the near edge of the wedge and

probe index is 12.8 mm so the scanning span was 42.8 mm - 12.8 mm from the probe

index to the edge of the specimen. All other settings are similar to the experiment

explained in Section 7.1.3.

Figure 7.23 shows an example of B-scan image collected in this experiment. Two

echoes can be observed in this image. The first echo is the one reflected from the

corner of the specimen. The second echo is due to double reflection as shown in Figure

7.24. The time of arrival of these two echoes can be used to confirm their sources.

Figure 7.25 shows an A-scan recorded at the distance of 10 mm. The time of

arrival is obtained from the envelope’s peak. Therefore, the length of the source of

the first echo can be calculated as,

h =
vτ

2 cos θ
− x tan θ =

3.229× 20.06

2 cos 45
− 22.8 tan 45 = 23.00mm (7.12)

where v = 3.229mm/µs is the shear wave velocity, τ = 20.06µs is the time of arrival,

θ = 45◦ is the refraction angle and x = 10 + 12.8 = 22.8mm is the distance from

the probe index to the specimen’s edge. The estimated length of the source of the
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Figure 7.23: B-scan image of a specimen with no crack, Gain level = 25dB
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Figure 7.24: Schematic of the double reflected echo
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Figure 7.25: A-scan of a specimen with no crack, Gain level = 25dB, the distance
from the near edge of the wedge to the edge of specimen = 10 mm

first echo is equal to the height of the specimen. This confirms that the first echo

is reflected from the corner of the specimen. The length of the second echo can be

estimated in the same way. The time of arrival is estimated to be 38.74µs when

the transducer was positioned 30mm apart from the specimen edge. Therefore, the

length of the second echo’s source is

h =
3.229× 38.74

2 cos 45
− 42.8 tan 45 = 45.65mm. (7.13)

The value of h obtained here is almost equal to 46mm(= 2 × 23mm). As shown in

Figure 7.24, this time of arrival corresponds to the double reflection.

7.2 Pitch-catch setup

Time of flight diffraction is widely used in practice for crack sizing [14]. TOFD utilizes

ultrasonic pitch-catch setup. This method estimates the crack size using the time of

flights of the echoes diffracted from the crack tips. Therefore, we have used the data

from a pitch-catch experiment to assess the reliability of our proposed parameter

estimation method in Chapter 4.
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Figure 7.26: Pitch-Catch test setup

7.2.1 Instrumentation

Figure 7.26 shows the pitch-catch arrangement used in this experiment. Figure 2.10

depicts the schematic of the experimental setup. As indicated in Figure 2.10, 2s′ de-

notes the distance between the front faces of the two wedges, 2s the distance between

the beam index locations of the two transducers, H the thickness of the specimen,

and d the length of the simulated crack. The location of the transducer beam index

is marked on the wedge by the manufacturer. The front face of wedge used in our

experiment is 12.8 mm from the transducer beam index; thus,

2s = 2s′ + 25.6 (mm). (7.14)

The transducer is a Krautkramer, Benchmark Series, miniature angle beam trans-

ducer, with a center frequency of 2.25MHz, a bandwidth of 1.5 MHz, and a diameter

of 0.5”. A GE Inspection Technologies W-211 model Lucite wedge was used in this

experiment which has a standard refracted shear wave angle of 45◦ in steel. The spec-

imen was made of mild steel. An AFG320 function generator and a TDS3000 series

oscilloscope were used in the experiment. The function generator was set to generate
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Figure 7.28: Reference signal for the cross-correlation method

a step function for triggering the 2.25MHz transmitter. The oscilloscope recorded the

ultrasonic signal measured by the receiver at a sampling frequency of 100MHz. The

sampling frequency was selected well above the transducer center frequency to avoid

aliasing. Two repeated data samples were collected for each setting.

To calculate the TOFD, the wedge delay (the time that the wave travels in the

wedge) needs to be calculated. To calculate the wedge delay, an experiment was

conducted by placing the two transducers facing each other as shown in Figure 7.27.

Figure 7.28 shows signals recorded on two trials. This signal will be also used as

reference signal for the cross-correlation method in Chapter 4.
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Figure 7.29: Experimental ultrasonic A-scan, 2s′ = 0

Time of Flight Diffraction Experiments

Two sets of experiments were conducted. In the first set, the two transducers were

placed so the crack was located midway between the transmitter and the receiver.

The thickness of the specimen was 22.5 mm, and the length of the edge crack was

12.5 mm. Ultrasonic signals were collected when the distance between the two wedges

(2s′) were: 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm.

Figures 7.29-7.34 show the ultrasonic A-scans for different wedge distances. In

each A-scan, two echoes are marked: tip diffraction and backwall echoes. As can be

seen, the amplitude of the backwall echo is greater than that of the tip diffraction.

Generally, the larger the distance between the two transducers, the weaker the tip

diffraction echo. This can be clearly observed by comparing Figure 7.34 with other

figures.

The second experiment was conducted using similar settings. It was designed to

examine the effect of the two transducers being placed asymmetrically around the

crack. We kept the same distances between two wedges as the first experiment, but

changed their distance to the crack position. For every 2s’ distance, we conducted

experiment when the distance, s′1, between the transmitter’s wedge and the crack

took each of the following values: 0, 1, 2, ... , 2s′.

Figures 7.35-7.39 show the ultrasonic A-scans for different locations of the trans-

ducers when the distance between two wedges was 4 mm. The amplitude and the

time of flight values of both tip diffraction echo and backwall echo were almost the

same for different A-scans.
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Figure 7.30: Experimental ultrasonic A-scan, 2s′ = 2
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Figure 7.31: Experimental ultrasonic A-scan, 2s′ = 4
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Figure 7.32: Experimental ultrasonic A-scan, 2s′ = 6
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Figure 7.33: Experimental ultrasonic A-scan, 2s′ = 8
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Figure 7.34: Experimental ultrasonic A-scan, 2s′ = 10
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Figure 7.35: Experimental ultrasonic A-scan, 2s′ = 4, s′1 = 0
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Figure 7.36: Experimental ultrasonic A-scan, 2s′ = 4, s′1 = 1
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Figure 7.37: Experimental ultrasonic A-scan, 2s′ = 4, s′1 = 2
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Figure 7.38: Experimental ultrasonic A-scan, 2s′ = 4, s′1 = 3
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Figure 7.39: Experimental ultrasonic A-scan, 2s′ = 4, s′1 = 4

7.3 Summary

In this chapter, the experimental data which are used throughout this thesis have been

described. We have mostly used the experimental data which were available in the

Reliability Research Lab at University of Alberta. In addition to these experimental

data, we have conducted two more experiments which are explained in Sections 7.1.4

and 7.1.5.

For the pulse-echo setup, we have derived the equations for the minimum temporal

and spatial resolution in order to avoid aliasing. Comparing these values and the step

size and the sampling frequency used in the pulse-echo experiment shows that the

aliasing is negligible.
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Chapter 8

Summary and Conclusions

In this thesis, we have investigated different aspects of ultrasonic B-scan signal pro-

cessing for damage detection and assessment. As shown in Chapter 4, B-scan signals

can provide much more reliable estimation of the time of flight of ultrasonic echoes

than A-scan signals. The TOF is the primary parameter which is used in crack size

estimation. In addition, the B-scan images provide more information about the dam-

age. For example, in Chapter 5, we have used B-scan images to estimate the crack

orientation.

Because of these advantages and advances in hardware technology, the B-scan

images are becoming increasingly more popular in NDT. However, little research has

been reported on the ultrasonic B-scan signal processing. Therefore, we investigate

B-scan signal denoising, parameter estimation and fault identification in this thesis.

8.1 Contributions of this Thesis

In Chapter 3, a method is proposed for removing noise from the ultrasonic pulse-echo

B-scan image. The proposed method is based on the analytic wavelet threshold-

ing which was originally proposed for denoising one-dimensional signals by Olhede

and Walden [52]. In this method, the stationary wavelet coefficients were denoised

based on the amplitude of the envelope of the signal. To extend this method to

two dimensions, we have first addressed the problem of extracting the envelope of a

two-dimensional signal. It has been shown that by introducing a reference vector the

envelope of an ultrasonic pulse-echo B-scan image can be extracted. In addition, we

have implemented a step to remove the interface noise. Using simulated and exper-

imental signals, it has been shown that the proposed method can effectively remove

both random noise and interface noise from the B-scan signal. Using the proposed
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method, we could detect cracks as small as 0.1 mm based on the lab experimental

data.

In Chapter 4, we have investigated the ultrasonic echo parameter estimation. A

model-based method has been proposed for estimating parameters of the ultrasonic

echo. In this method, the signal envelope is first extracted. Then, the parameters

of the envelope is estimated using quasi maximum likelihood method. The enve-

lope of the echo has fewer parameters than the echo itself. Using experimental A-

scan signals, it has been shown that the proposed method performs better than the

cross-correlation method and the maximum likelihood method which both utilize the

original signals.

In addition, using the mathematical model proposed in Chapter 2 for the ultra-

sonic pulse-echo B-scan signal, we have shown analytically that the time of flight

estimation based on the B-scan signal is more accurate than estimation based on

the corresponding A-scan signal. We have also applied the proposed method to the

B-scan signal. Again using experimental and simulated signals, we have shown that

the TOF estimator based on the envelope of the echo is more accurate than the TOF

estimator based on the echo. For comparison, two indicators have been used: a) es-

timated number of echoes error, and b) TOF error. The estimated number of echoes

is related to the probability of detection and the false alarm rate. Therefore, this is

a main indicator in NDT. The TOF error is related to crack size estimation error.

The comparison shows the proposed method outperforms other methods especially

in estimating the number of echoes.

In Chapter 5, a method has been proposed to estimate the crack depth and orien-

tation for inclined cracks using B-scan signals. First, the relation between the crack

orientation and depth and the parameters of the corner trap echo and tip diffraction

echo has been derived theoretically. The resulting formula has been applied to ex-

perimental B-scans and the FE simulated B-scan signals. The results show that the

proposed formula is able to estimate the crack depth and orientation.

The contributions of this thesis are summarized as follows:

• A mathematical model has been developed for the ultrasonic pulse-echo B-scan.

• A denoising method for removing random noise and interface noise from ultra-

sonic B-scans has been proposed.

• A model-based method has been proposed to estimate parameters of the Gaus-

sian echo.
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• The accuracy of the time of flight estimation from the B-scan signal is theo-

retically derived and compared to the accuracy of the time of flight estimation

from the A-scan signal.

• The proposed parameter estimation method has been extended to two dimen-

sions to estimate echo parameters from the B-scan.

• Theoretical equations have been derived to estimate the crack depth and orien-

tation for the inclined cracks.

8.2 Future Works

In this thesis, ultrasonic signal denoising, parameter estimation and fault detection

has been investigated. Yet, some aspects of the ultrasonic B-scan signal processing

have not addressed and need more investigation. In parameter estimation, we have

only considered the Gaussian echo model. Although the Gaussian echo model is used

widely for modeling ultrasonic signals, it is not always applicable. In addition, the

white Gaussian noise is assumed throughout this study. However, noise may follow a

different distribution or be correlated. The performance of the proposed parameter

estimation method needs to be investigated under these unidealized conditions.

We have applied the methods proposed in this thesis only to the signals obtained

from contact transducers. Furthermore, except for the parameter estimation of the

1D signal, we have used signals only from the pulse-echo setup. The applicability of

the proposed methods for ultrasonic signals obtained from the pitch-catch setup and

the immersion setup should be investigated. In addition, only the surface cracks have

been studied. Other types of faults such as voids and inclusions and also the cracks

inside the material need to be investigated as well.
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