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ABSTRACT -
# o “}J:@tb;_’w ' Y
_ v %

This thesis presents a. new algorithm for assigning closed-loop
eigenvalues of multivariable linear systems using output feedback con- -7
'trol.A Subject/{; certain mild restrictions the number of. eigenvalues
which can be assigred to atbitrary, distinct 1ocations is min (mtr-1,n}]
where" o ox, j7d ‘n are the dimensions of the output, control andf‘ ' ‘
state vectots, respectively. Theralgorithm'provides an extension of\<v‘
previous results but allows a significantly large number of eigen—’ »

) values to be assigred. ) ' o . db J'vj o _' !

Afextensive literature survey of mo!l control and eigenvalue :

T

assignment methods based on proportiona; feedback control is dncluded. f‘ : h S

In this survey the existing methods are classified described, 1nter- ’

;preted and critically evaluated\. Furthermore, the design options and

design parameters’ in each method are identified and’ their usefulness
Lo I . *
discussed.

Digital simulation studies involving the application of repred :jﬁ

sentative modal control methods and the new eigenvalue assignment Ef:yh
‘method to the control of a double ‘effect pilot plant evaporator model
are described. In. these studies the effects. of the wvarious design‘.
options on the~response’characteristics are demonstrated. -(‘ e

. ‘Finallx, concluding comments’on the proper.use~of.the design

options are‘presentedbandpfundamental differences between modal

_control and eigenvalue assignment are discussed.
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~_ Significant theorétiéaﬁyadgences have been made in recent

o A -
, ] O R - 4. o
years in the control of linear mdltivariable’systems. However, few q!”
-~ A - u f
(/*T.. * «the methods ‘devel ped have been of much practical values in the unique
3

’ N

«
control probltms facing the processrcontrol engineer. First of all,

- . the physichochemical characteristics of thé\prOCesses "are not well

- s
] e
* . understood and thus thelr modeling lS extremely dlfficulf Even if -

b3 P
' - s f X

a.reasohabﬂ?accurate State spacé represehtati9270f~the system can- be
- N bl

T

reallzed and ‘thus applleation of modern control theory made possible ~

-

b < : C
5 ~ 7 the resulting model often containgg'a large number of interacting
. 3 L ' NL s '

Vi
R3TEY

be accurately

state variables of which, only e‘limited:number ca

- ‘ measured. But, for the appli ation of most of tpe—modern control

, €S;JF methods measurement of (all of thc state variables is-a prerequlslte.
. . A s .
. In the relativély few m ltlvariable control methods where onlv a sub- .

[N

A
riables has to bd ‘measured, the control cosfiguration

— - e "to be used is not specifiedy ;Qg., the desFgn wethod does nOE'PrOVide‘“t

setof theastate

Ny . ' 1L : y 4
any guidance conceérning wpich variables: to measurei and which ones to :

'manipufate;' These are not the only difficulties facing the process '

* . .
‘control engineer, but they are the more pronounced ones. @
. . . . . R ' . . Do
_ Modal control dnd_eigenvalue-assignmeut methods have been
grfatly welcomed by process control engineers' since they promise to

cope - with t:;/above prgggems in thiose cases where the state  space model: . .
'v‘ . ™ - h . . -

Q)\
. . . . . ) . } \ v
of the procéss is available. . : i o ; Co e
. . . R o . - L g
" M " : 2 o " 2 - . .
. The major objective of modal control and eigenvalue assignment
R v . T ) ) _ : - N : v
. ‘
SR - ’ o SR : PR N .
91 - » . - PR « o 0
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~ ] .
' . ) . i 5 " .
. . o .

éa , method; is to incrense tho degree of atability and the speed’ﬁf‘rug@onae'

of the pro;uss. Wodal ‘control also providea ugseful guidance concerning

M

the configuration of the control system which will achieve theae

P B ’ RN -
7o objectives.

‘®€’ S ' Regently, objeetions hgve been rais»d nbninat modal conkroe!

. by r;aeutuhurs who have developed the multivnriable counterpnreu oL
thclufgghical trequency domain xogtrol theory 11}, ‘lit.has been clhimcd
that modnl Lontrol and eigenvalue uasignment methods chnnbt deal with
'certain other coutrol problems,arising in prStess gontrol. Thia‘?

~certalnly true, In fact, no multivnriable control method is capablu
3;6f achfevtng all of the’ deaired‘objeCtives in'a p;nteas control

desibn problem\

o

lt ia the author 8 qpijion thnt modul control theory: and
eigenvalue assignment methrgazmos ess certain.design options which -can
\\hu purposefully used to achieve Lontrol objectives in" addiLion to those

'\of increasing the degree_of atubility and the speed of-rcsponsq of the

-

o

gonttélled-btocessés‘, Fnrthnr‘developments in this area will certainly-

o
PL Y=

add to thu\<iraatility’of-modal npnttol nnd'eigenvnlugggasignmunt

v oL ’ . ’ 4

methods .

1.1 Objectives of the Study

T ‘This sf%dy'is pri vy con :rned with modal chntrol and
«<» .

4Ledbhuk only.

~eigenvu1ue assignment mLLhuda which cmploy proportional
Spee&il emphasis is ‘piven to thoau methods which are upplicnblc to -
ﬁ\f- systema ‘with a restricccd aet ‘of measurementa nnd contro]a.iv
The large number of publicutiona available in this- area. han

~ made the cotralation of the nvailuble resulta rnther difficurt.. In

'fnct' aven the diatinction between modal control und eigenvaluc uaaign-



Eé‘\-\‘,. -

‘ment . has been largely overlooked by many. It has been one of the
1ntént16nsinf';hia study to claésify{ déscribe, interpret and :

P

. . \
cr-itit:ully evaluute th avaﬁnble methods in some detail and thus
prepare- a bauiq for futu e work in this area.

By oombining some, idcns inherent in modal control‘and eigen-'

valae dasignmcnt the uuthor has bcen able to devise an algorithm, which,

)

«ubjeut to ccrtnin mild restrictions, significantly in€§b§ses the numbe
of eigenvalues aasignable to arbitrury, distinct locations. It is hoped‘v

‘that thia extenaion to the avaifnble methods will prove helpful, espe-?'

cinlly, in ita application to aystcms of larger dimensionality It is

»

also hoped that the basic idea employed 1n this algorithm will be use-
. ful in other npplicntions.

- Workers in different,fields of modern contrel theorf hiave
‘cf;ticized mndul”éqntrnl nnd’eigenvnlne ass&§3ment methods for provid-’
ing, in general, a‘nonuniqne uontrolier“matrix(;;} thg-same set of,
ﬁ;nﬁcd-loupfeigqnyniués. 'It is nnn"nf thélobjectivcs of the simulation.
ARstUdies 1n.§h1n thgslg to domonstrute.thut this lack of nniqqeness,may_
Ln.faéﬁ‘bu ve , useful {n fuifilling other deslgn objéctives in1addition

. . - v . . N \
to elgenvalu assignment. o : .. ' fj

| ' :
! _ AnoLer nim of thiq thcsi;\is the appli\ntinn of some of the

'
s

" modal control and eibunvaluc assignement te;hniquc; to the pllot plxnt
‘evnpurator svstvm In Lho Depnrtment of (homxunl lnginuurlng of\ihc
Univcrulty of Albcrtu to evnluntu thus; tt&hﬂiqueb in this- plrtiuuldr

application, Although uxtunsive simulation qzudics could be p;rtoxmed
\

the uxperimontal evuluntiun of tho rcsults had to be poatpon;d beLQUbe

L.

of Lhc Lqui®ant difficultiua.

-~



used in the aéihal investtgation.:‘ﬁiji": -

‘1.3 Preliminary Comments

\ . .
\
N .

1.2 "Structure of the Thesis

[ N
A

The thesis has been organized in the samelsequence ‘that was

O

ln Chapter Two,: the existin;rmethods for modal- control and

eigenvalue assignment have been surveyed, compared and critically
. evaluated. In Chapter Three. a new eigenvalue assignmcnt algorithm

~has been presented.- In Chapter Four, - the reSults of a simulation case

study involving the methods of Chapter Tuo and Chapter Three are blVLn;

. Finally, tn Chapter ?ive, the overall conclusions of the thesis have

. RS
,.

‘been summarized ' o i P f' - T , e

In this thesis no attempt has been made to dwell on the

theoretical concepts f control theory which have been extensively used

in modal_control and elgenvalue assignment.methods. These can be

: found_in standard texts on modern control theory, such as [71'

The methods described in this thesis have been based on

' the state space. representation of linear, lumped parameter, time
_invariant continuouSétime syetems Their application in the simula—

'tion _Studles of Chapter Four has involved though discrete-time models

derived from their,continuous-time counterparts. lhe Justification of

‘this approach can be found in [3, 4}?




CHAPTER TWO

MODAL CONTROL AND EIGENVALUE ASSIGNMENT :

LITERATURE SURVEY AND THEORY

2.1 Introduction
| Modal control has been suggested by Rosenbrock [1] as a design

technique to cope with some of the special control problems 1nvolved 1n
process control. It aims -at- improv1ng théﬁstabilitv and speed of re-
~sponse of interacting processes. Modal control. is not used to ellmlnate
tne 1nteractions lrvolved in a meltivariable system, instead it aims atv
_controlling directly the modes of the system, and provides informatlon
“'about the control configuration that should be used for the achievement
ef its aims. |

Eigenvalue assignment techniqdes have been suggested as an

approach to fulfill the same objectlvcs. Both methods are capable of

achleving the same ODJeCtiveS in cases where the design“r has access’ to
the values of all the state variables of the system. 'In al  other_ceses
the two methods are not expected to be cquall) helpful to. the l
In. fact a combination of the two approaches has been successfully rea—
lized in thc control literature.
”It.fS“the intention 6f thlb chapter to leSbif\ deScribe,v

-—

interpret, dnd critically Lvaluate hese’ methods in some detail The
\

vauthor hopes to identitv the available design ITL?dOmb and desipn

A-parameters in;each method?- The Lriti\ibmb and appramsals are subjettive*

-and the pertincnt referenceq have been cited to help the reader to torm

his own opinions.



2.2 The Modes of a Multivariable System _ ‘

Consider the following state space representation of a linear

time-invariant, lumpéd—param‘ker ﬁultivariable dynamic system,

»
x(t) = & x(2 + 8 u(t) +Ddr) . (2.1)
Tyt = € x(b) » (2.2)
. : . » . ' ' -
where x(t) ‘is the: n x 1 dimensional state vector,

_ gﬂﬁ). is_the r x 1 dimensional control vector,

y(t)  is the. m x 1 dimensional output vector,

Cand g(t)/ is the p x 1 dimensional disturbance vector.

The state variables can be viewed as copponents of the state

vector defined relative -to the Buclidean basis of the state space. In

general, this particularAbas;s results in interacting state variables,

g

‘t.e., the response of a state variable to disturbance inputs and non-

‘zero iditialqunditions depends on the response of the other stg&g

variables.

EConsideration'of Ehé solution to (2;1) namely,

Bunde + [ 2 Vpamar @23
o . I o’ : . ) /". s

x(t) = eﬁi&co) + [ eAMr-1)

.reveals anotherlweg}—knovn fact: Not pnly does thi excursion of a

Ay : J -

- controlled state variable from its steady state value introduce'dé@i—

ations in other controlled state variables, but also the control action

taken to encounter this first excu:sion'directly affects %pe other con-

troi.ed state variables, as well.’ N

‘ ,Qne'gogéible,dpp:oach>to‘thesé problems, modal contiol,'has

" been suggested by Rosenbrock [l].v,It'is'based on the idea of'findiné '

another basis for the'staté-spéce with the favorable property that the

B
~

<



components of the state vector with respect to this new basis are non-
. . - P :I .

interacting. In other words, the new problem consists of the determi-

nation of

n linear combinations of ;he'originalustate vqriabies whiéh

 are decoupled from each other.

B

This decoupling baéis is provided by the n 1linearly inde-

pendent right eigenvectors, ’gl,gz,...,gﬂ,V of A [1,2],, some of which

smai'ﬁe generalized right éigenvectoré for the case of'repeated eigen-

4 N \ :

 values {3]. The new noninteracting variables, zl,z;,...,zn, are

~ \ .

called the canonical or modal state variables an¥ are given by ‘the

linear transformation T /

g

x=¥z- v R o S (2.4)

z=Wlx. @)

Recognition of the fact.that the right eigenvectors and left eigen-

:,veétbrsvbfb é! ‘namely, ’31’32";';3n’ if ndrmél&zed;_férm a,biorthonorma1

set [2], 1Qe}i- oo ; v o : o

’ yieldsﬁ

[
"
| Lot
=
—~
pe

2.7)

Application of this linear transformation-;b (2.1) and (2.2)

30 VAN 2(0) + VB u() + D A (2.8)
o il ‘ ) v [

“J . . ’ b ’ ]
IO RN ETON @



~or, if A possesses distintt.eigenvalues,

2(t) = A z(t) + H u(e) +E d(e) - 0 (2.10)
-~ ’ - y= E _z_(t) v : o : .“(2.11)
where - . A%‘_] a4 ¥ B (2.12)
=V B - C@ay
T : -
. E=V D ~ (2.14)
,  N | :
and & E=¢W 0 @as

A is a diégdnd} g;trix? whoserdiagongl elements édhsist of tﬁe'eigéh-
-v;lﬁes of the sfs#em hatrix, ‘é..-lf A péSsegses repeated eigegvalues,
" then thé ffanéform;fioﬁ of‘(2.12)'will either tesulg ;ﬁ a diagqnaljo;.
Jordan“cahoni§31 ma;rik;_'The latfericase,_whiﬁh involves ahélytiéél”
difficuiﬁie;,,mqy be cénsidered as a‘limiting ééée as‘§uggesteﬁv5y,'

)

_ Rbsgnbrock [1].

N B R

The important outcome of the modal transformation can be

depicted By rewriting (2:8) as: . - - E i 'f‘:> :
) = pa() +s() () (2.16)
S Co RS | TR S ) o
‘where o §(t) = Hu(t) , o an
and Ko =Ea® . . @ay

s .
- Thus, the transformﬁtion qf'the'ﬁontrol'veétof, .E(t), the disturgance
N ve@tor;._g(t),: énd‘tqg output_vectof, 'x(t); “into tbeimodal.inputs;‘
§(t)‘ and ;E(t),;:é;d Ehe modal ;tﬁ%e.vec;or, Qg(t),” hﬁs created  n
decoﬁ?léd firSt,;;der_systeQS, ‘. : ~-f_ﬂ-. | - " : »vA . ~

L 8
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zi(t),= Ai 2, f si'*'ti’ (i,- l,2,.;.,n) _ | (2.19)
from a complex system with irteracting inputs and outputs [4 6]
d yT'he application of the transformations given in (2. 4) (2.7)
and (2.12) to‘(2.3) leads to the represéntatidn»of»the sys response

in terms of its modal components [4]:

n -A, T

x(t) = J Lv; 5(0) + f vz B u(ve ' dr
i=1" .
s : t AT A - '
' +f vipde Paet v . (2.0

vThus, the system response can be represented as a linear combination of
At ' -
~ which will be called the modes of the system 1.e.,

. the terms e LA
w
- At o . B :
x(t) = 2 £ (c) et vt ) oL m() (2.21)
. i=] - o i=] i L ' : )
o MO . th y o |
where Ei(t) e W, is-the {1~ - mode, " and Ei(t) 1s defined to be

the‘cerm in Breckets in'(Z.}O), ‘
‘This.definicion §§;¢he mcde is not uhique. ‘Many authors have-

defined the modes of ‘the system to be the eigenvalues.or the eigenvectors

of the system matrix, A. The definition used here is due to Zadeh and

‘Dcsoer [2], and has been found to simplify some of the. followxng dis—

CUSSLOUS
r

~

When only step changes in both the disturbance and control

inputs are considered (2 20) can be simplified to (4]:

| | ME XI Bu !I 9,2'., %Xit T -
x(e) = [ 2 v x(O)e S + = YAt I .22
1-1 li.- L “Xi ) e }i ) ‘ |

“-which is possibly the most commonly encountereddcase in practice.‘
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'sjstem to.Be'a§ym§tbﬁica11y stable all of its eigenvaldeé

Furthermore, if some of the modes are complex, these modes

contribute to the response as though they were real modes equal to the

sum and the difference of the two éompléx.cohjugafe modes. They also

contz‘ibute. sinusoidal oscillations at the frequency determined the-

limaginaryipait of the complex eigenvalue‘[&].

o

~.The @agnitude of the contribution made by each mode to the

state vector is called the modal activation [4,6], and it‘consists of:

.y . . * _th oo o
i) activation of the - i mode;due to .nonzero initial

states, !I x(0). ' R

ii) activation of the 1t node due'to disturbance inputs,
ot T R O .
[ Tpame * . | e

iii) activation of the ith mode due to control action

t AT

S
o .

i vl g(r)e’:i dr.

Furthermore, comparison of (2.4) and (2.21) suggésts that

n ) .
x(t) = } oz (t)w .
= o1 }1 A

(2.23)
The above considerations lead to some impor;ént conclus ions
for systems with distinct eigenvalues:

1) The‘@odes respond to initial diéturbahces and process

inputs independently of each other, i.e., to determine the modal

: éctivétion of the. i?h mode one makes use of the corresponding left

eigenveétor=“!i, oniy.

2) Each mode is associated with a unique time constant, which.
: : - . - I .- .
is thefnggaiivewteciptOCal of.thé)real part of the eigenvalue; for a
must have

negative real parts..’ -
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-

.f3) The freé response of each mode for-a stable sysfem wi;hl
réal and distinct eigenvalues follows a simple ekponential‘decay, but
~ the free feSponée of the state variables may show a ﬁore compl:cated
Behaviqr. ‘Thié is due to'the fact that s;ate variébles,may have

-positive components in one mode, ahd negative components in atother.

' - L}
- 2.3 1Ideal Modal Control

-

. ‘ 5 Since the state vector is a lineat’combinatibn of the right

elgenvectors (cf., (2.23)), one way of driﬁing it toéwards che origin-

LA

‘of the state space (the_systém steédy state) is by driving,the time-

" varying coefficients in this linear combination, namely the modal

¢
“

state variables towards zero, i.e., by counteracting the modal acti-

- , o ' A : - v
vations. This is the basic idea behind modal"contro]_;,g : !
Thus modal control in its ideal form has ¢o perform the
: . v : : ' : ey ’
following three tasks [6]: L : ﬁ§§b'
‘ : N t o«}j':'

1) Determination of the value of t e “vodal state; or equi-

valently, the modal éctivations,ffrom the sy y outputs (analys;svof :

the outputs).-

2) Application of a lig

proportional linkage between activation nd manipulation is ~chosen-sa
‘that .the control action is zero when the modal adctivation is'zero.‘

'Thus modal control as treated here belongs to the clasd of proportional .
- - : : e, ARt

) . o : . .
. N : 4 R S
controllers. - . - :

:3) Sythesis of a control vector, u, from the modal. control
vector, s, such that each element of u acts on one and only one’

mode (synthesis of the controls).



°

-

Two comments are worth mentioning at this point:

'1). Since ideal moddl control is a strictly proportxonal—type
control it will invariably cause steady-state offsets in the controlle
varlables x.

, ii) Driving the modal state variables towards the origln at

all times does not necessarily imply that the actual state veriables

will be driven towards their Steady-state values at all times. Although

(

the state variables will finally reach their steady - state values, there
may be significant excursions from theeorigin during this process (the
peaking effect"). ’

" The action of the ideal modai controller on & of the systenm

modes can be descrlbed by the ‘block diagram in Figure 2.1.

The B and C metrices in ‘Figure 2.1 are part of the process -

and thus fixed, while the controller natrices P K, and R may be

chosen in any desired way, except that K ‘must bﬁ a diagonal matrix..

Supposeithat,there are n measwrements (i;e., m = n) and
n controls’(i.e., r -‘n), and that the Process is both controllable
and observable. It is under these circumstances that al. modes are |
independently available for observation and mani?ulation. The equi—:
valent condition which makes this possible is that both the B and
C matrices be of rank n. |

Task 1 can only be fulfilled 1if RI satisfies -,

. ‘? , By & vy (1 =1,2,...,8) _ (2,23)
_ and task 3 can only be fulfilled if rif satisfies
Bry=y  =1,2,0..0) | L (2.24)

12 -

Y
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T t . : ' .
where p 1is the 1 h row of B, r is the gt column of ‘R, 'and

% is any positiVé.iﬁteger leéss than or equal to n [4]:.  Thus, if ﬁ,/)
- . . . (" 3

- all the modes of the system are toibe controlled the following relations
] . . .

must hold: . coL Jé;' S S

Ul

HOS
]

e

(2.25)

and } . (2.26)

e

T
oM
HE]

Howévéf, if bnly %  modes are to Se controiled,vthen £ columns of
'fhei'g matrix are chosen‘such that tﬁe”first & columns pf B R are
vthéﬁ £ right eigenvééiors-corfespénding to afe- 2 modes; and the. %
‘rows of P are’chbs;n éuchbtﬁat‘the first- L rows of P § .are'thé'
;érresbondiﬁg leftieigenvectors;
Unaer'the'aséumption of the avéilability of nv‘inAependéht
meashréments and céntrols, (2.23) ~and (é 24) repfesént n eqﬁationé .
in» o unknowns namely the elements of the ,Eg ana ££(~vectors. i t
BQ , when the number of measurements and controls afé less than/¢n
it is in general impossib%g’ o sa sfy (2. 23) and (2. ZA) exactly,
i’becaufe»thgy nqw:rqprésént-(n quagipns in m aqd r unknowns,
'respectivély; . Thus. the modal a;tivatiohiof a-pafticular modé-cannot
be degéctea,:anq the state veétdf canﬁot'be.driQen in the opbosite
vdirectioh off;hat‘pgrtifulaé modal.activétiqn.
.’Thé feedback'contxblﬂlaw uSed_in Figuré>211 is of the géqg;éY .

form: : SR o
wu=-6y < . (2an

' ~Con51dering (2.25) and (2. 26) together with Figure 2.1, (2.27) can be’

’
-

written explicitly as [6]:



» tively created a new system-with a ngw set of eigenvalues, A

givenhbyi

- : L S T -
: ¢ o : N A :
: ' o ,ﬁi ‘ : 15

. u=-g kY gty o N s

C A s S T '
Combining this last equation with (2.1) and (2.2),“the closed-loop

'system repreSentation in the state space is obtained;

(2.29)

1=

.
s BEN Ty ) - \
’ B .

R(6) = (& - ¥ K yDxo) 2%

In the case where A has distinct eigenvflues, ' A can be written as,
‘ ' = = 3
-~ _. ! . . T . . 6 )
. A=WAV | (2.30)
. ,g .
< . '
and (2.29) can be written as:
. ST , sy
Cx(t) = WA - K) V' ox(t) + Dd(t) . . (2.31)

)

This last equation. clearly shows that the mdda ~eontroller has effecé

. . .
@ ) .

. di’

.xdi~-nxi -k, (f= 1,2,7..,n)_. - ; ,(2t32)»

4

but with thé same right and left eigenvector matrices; mE 4dnd !T;

In k2.32) ’xdi represents the ith closedjloop eigenvalue'and k

" the iFh diagonal eiement of the diagonal K matrix. "

v

1$ other'wotﬂs for 'ki > O; the time constants associated

iwith the modes have been reduced, but the directions of the modes have

£

remained unchangedx 'ThiS‘iS the net efféct of the ideal fodal control-

lers on the system eigenproperties.

Theveffect of the ideal'modal eontrollers on tHe system

PN

response can be demonstrated by considering a step change of inputs

at time zero. ,Eon the case where & ‘of the n. modes are controlled

'.the response of the closed—loop system can be obtained from (-.t2) [4]



'r,
4 v, pd (A, =k )t
X( )= 3 = xf.. (L= i 1w,
el ¢ T Ny |
- n v pa At ‘
L (L-e w - (2.33)
1=l t -

g

Obviously, the factora ¢x~%i4)'in'the first summation reduce the g th
. ‘ o S S § - : -

o aecivation to a areat,exﬁent'for-large values of ki. Thus, for inphts';‘

driving the ptoceas away ftom ateady state, the ideal modal controller’

” will deureale the magnitude of the undeairable contributiona of the ¢

qpntrolled modea to the aystem reaponse.

iAnoLhet intereacing property of ;he modal controllers can

be depic:ed by tewriting (2 3 as [6]

o oy
jh%@ N -

% | ~ _
x(t) . ﬁ X = 1 Ky <!i.’5>‘31 +D éi\\x\ . (2.34)
=1 o ,
- - o h ‘ . .o . I
er x(t) = ¢ x - 121 Ky 51 x+Dd - @)

" where Ei "31"!1' denotes ;hd”dyéd}c prdduct of the right aﬁd leff

eigeanctoia'Eorrelponding to the “ith: mode.' Thus, ideal\mbdnl conw

.trollets represen: the sum of a set of dyadic single mode controllera

il -
namely. ‘u= 2 ki Ei‘i' Aasociatéd'with éach mode ‘to be controlled

ky

there is a medsufﬂment vector, v Yyo @ mnnipuiation.vector, i‘: and
a g§in k” which directly reflecto the’ amount by which the CUrreapond— .

1ng open-loop eigenvulue haa been changed.

The modal conttol. through the use of_;;ﬂul analyais and

;;aynthaaia, can be employed to ahift each open-loop syatem eigenvalue

,/‘

B indpendently to a ptelpecified cloqed-loop location. Elgenvalue usifgn-

ey
o
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'mcnt as a simi r aim: replacement of the open—loop eigenvalue set
with a more desira le set for the closed-loop system. In those ingtances

_ whene the designer has access to all the values of the system state
‘vnriables. modal analysis has been employed in eigenvalue assignment‘
to galn control over the fate of each individual'eigenvalue.

\ Modal control changes the system eigenvalues by controlling
its modes while eigenvalue assignment changes the system eigenvalues
without directly controlling its modes;J

. .

2.4 Use of Ideal Modal Annlysis in Eigenvalue Ass_gnment

The control method to be deséribed in this section is mainly
due to bimon nnd Mitter [7] It performs two of the tasks of . ideal
modal control.v It determines the modal state variables and uses feed-
‘bdck to assign the system eigtnvalues without directing the controls
along the right eigenvectors. This has several implications‘

1) Some or all of Lhe system eigenvalues can be positioned

.y .

. without chunging the remaining ones, The necessary nnd sufficient
»zcondition required is the complete controllability of the modes wnose
eigenvalues nr;“to positioned.. |

) The modea will be interacé{hg and at least some of the
Ligenvectors of the. system will change direction arbitrarily |

l) The control energy required for a given eigenvalue shirt.
is greater thnn thnt required by nn ideal modal controller [8]

4) Mensurement of nll of the state variab es is neceasary,
but ‘the number of controls, rf cah be less than the number of.ststes.

The theoretical basis df modal analysis and eigenvalue assign—

ant has been preaented by Simon and Mitter 7], WOnham [9], and Mitter

¢



Y

+

and Foulkes [10]. Two'extremely useful design tools in the eigenvalue
‘assignmEnt’ problem have been introduced by‘Simon and Mitter [7]; the’
v dyadic controller and the recursive design technique. Since these tools
have been extensively used in subsequent studies, Simon and Mitter s
work [7] deserves careful consideration.‘ In the following discussion

it will. be assumed that the open-loop - system has distinct eigenvalues

or has been converted into one with distinct eigenvalues as described

in [11].

Three basic design steps nre involved Yn Simon and Mitter s .

work [7]:

i)' Conversion of the system equations into their modal .

v

;cgggnical form via a similarity transformation.-

11) Construction of the constant controller matrix provlding '

for the desired eigenvalue movements in the modal space.

k iii) Conversion of this'controller into the»form u = g ir.
- The system representation obtained‘throughithe:application
of the tirst step_will be‘that given by (2.105. Nekt , define'the :
control‘lau to shifti 2'.of:the_9ystem eigenvalues (& < n) by'feeding

hack'the corresponding L moda%bstate variables

| [> N

u=gz

L
or equivalently

u f-gl zl-+ 2, % + ... f’sa z, . (2.37)
where 131,32,...,51 are r-dimensional vectors representing the first
% columns of g. The remaining (n-k) columns consist of gfvéctorsggf‘
The resulting closed-loop system in thefmodalhdcmain is given

by

~

1(2.36)

B AT
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B - QtEPzrEA0 T T @238)

or equivalently [7]:

r It
A.a a N a ! .
+
PR 12 12 : .
. [} .
a21.>32+a22 “on 022 :
4 | n N
%31 %32 e 035 Y
. . . [
. . . \
. \ 9
. . . A
‘ azi ay . X£+Q2£ t - o
S 2(t) mfmmm = mm - - == == m == = = = = 2(U)4E (D) (2.39)
' v . : , :
“a+1,1 . Ye#1,2 °z+r,£-:*z+1 g
. . [}
. N
. \
, - '
L @y ‘b ‘ @ e . (lnlv : 9 )\n
‘where’ ‘
o, = hr g (1=1,2, ny j =1 é R I (7'40),'
] ij -1 .&J R IR LR . IX. ,...,_.' - A
and ,§I; répreaenta the »i??P;row of H.’
- Eﬁuétion (2.39)V;ﬁd;éhteé that  the last’ (n-l) eigenvalues

{ N

of-ihe'system are unaffected by the selected control schenme. On'ihe
‘other hand, ;he.first' 2_4¢13envéiues ¢qn'be assignéd.by chqoéing )
31‘32;}7"31-'Suéh thai';he.uppef left partitioh of ‘the system matrix
tn (2.39), deﬁoted by E ;. hés.the‘desiyed eigenvglues; Thié caqxbg.

achieved bv the following 3 Stebs:

';pif - % z1) _Find the charac;eristic-egpatiod'of,,éfi'
. gerpar R esteasdtle it a s+a, =0 L QuD
o o RN ‘- S L =1 o g RN
- . ’ . -‘.( .
‘ —x}h ‘ R ,
w . -
3 ; 3
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desired eigenvalue set, {A

Nute that (2 39) and (2 Al) imply that. in general ”f(iﬁrﬁl 2....,&)

are nonlinear tunctione of the componente of 31 (i

in the important speoial case where;iuff l, they are linear functiono

of the g1 a._l]l

eI >-~-<3'* ) s‘ms‘ ey Nuum

3) Compare the tvo characteristic equatione of Stepa l and ﬁl{!.

2, For the closed-loop ayetem to have the deeired eigenvalue., the
following condition must hold' . | _ sa o l,e, ‘
| | b el 2:--‘:0 R % -

N
»

Eouation;(2}43)'eoneiste'of a'set‘of“»l ‘nonlinear equations

in the (&°:r) unknown components:ofieg.

;-

»

_ Dzedic Agproach' "/74> IR -.5 'Vv" T -5-,'d.)-f'

.or simply;A

. 3 : :
The above discuasion reveals the difficult computational

problem involved in the method and euggests a possible solution to it,l

'namely conversion of the multi input system to an equivalent single-'

- input system in order to convert a nonlinear algebraiC'problem to.a

linear one. This idea which forms the basis of the dyadic approach
is realized by restricting the controller to have linearly dependent

columns. Thus the’ suggested new control law has thenform'[7]:

u -.[kla.ikzg. g--,_kzgjgﬁ - o ‘(Z'AA)f'

x o ',-(2.&5)

ﬁii‘z,....i); But,
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-to the £ ‘modal state variables, zl‘ 'R

R

'i;iis thus given as:,

‘_ system in (2.46) remains controllable, i.e.,

: relating the

21
s

Cif it is desired to assign ) of the system eigenvalues corresponding

' contains the L. left eigen-

fevectors_corresponding'to the eigenvalues to be shifted, as its 2' rows.

The equivalent single input system to that expressed by (2:1) .
- - : {,

| \ | | |
LR = A x(6) +Bu(e) +pa) . (2.46)

b= 2}3' (2.47)
and S w R ga L o Quey

The choice of g is arhitrary_as long as the equivalent
)

R :gfg F0 -12 I c T )

The choice of kT; On-the other hand is dictated by the desired set

of eigenvaluES. This problem has been considered by Simon and Witter

;[7], Gould Murphy and ‘Berkman [12], and Retallack and MacFarlane [13P

The solution which seems to be the most straightforward and computa—»

.tionally easy one: [13], is based -on a result of Hsu and Chen [14]

o

p atio of the closed- and open- loop characteristit equations

to the determinant of the system return-difference matrix.

The elements of k 'are~given‘by‘[13]:

' ' Eiv o ' ' . ,
kgt m ==, (1 =1,2,...,8) i : " (2.50)
i B8 . R ) oo
S | _ o _ , _
‘where B, = A B g B , , (2.51)



O

and ‘ h | .Ei = ‘J;l — - ' (2.52)

Design Freedom:

The»arbitrariness in the‘choicefof ‘g_ can be‘utilizéd asg,

‘a- degree of freedom for ong of the following design objeitives

1) eliminating the need for certain controls

”2) eliminating the need for certain measurements,‘

3)‘ maximizing the .measure of controllability" of the shifted
eigenvalues thus minimizing the absolute value of the controller gains
to ue used, ' li . fli

4) 'affeCtingithevtransient response.of the system.

This first objective can be realized by simply assigning

j-the value of zero. to the elements of g corresponding to the control

' .
'!

A elements to be neglected providing that the controllability condition -
.given by (2 49) 1is not violated

Simon andeitter“[7]Lhave_suggested that‘ (r—l) ot the n’
state measurements can_be.deleted without affecting the attainabilityb
of‘ o eigenvalue locations. This can bebachieved by choosing_thev
gain elements'in‘ 5? ‘such that the row/veCtor (ET !Ejvbdefined in
(2,48)ghas (r-1) zero elements. eThese'zero‘elements will corresoond
to.those state variables; which.now do notNhave to be meaSured. Then
g can be determined to assign the desired eigenvalue set._

The third objective is of great practical importance, sincc

~ high controller gains;may lead to tho unsatisfactory control of a real _pro-

" cess due to noise effects, model inaccuracies; nonlinearitieé, and saturfg
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. ation of manipulated varlables. In the event of shifting one system

eigenvalue, say . Al,’ by using one control element only, a measure of

the degree of controllability of ‘Xl by the scalar control u con-

 sidered is given by [7]: : : :

' <vy»-b> :
l - <y V. >15 , . . R ’
ASEIRA] R

'_where v, "is the left eigenvector corresponding to A and b is

1 2

the control coefficient vector corresponding to the ‘control element u.«

wl has. been generalized @y Simon and Mitter [7] ‘to the case of dyadic

)

" control using all the cohtrol elements by:

T .
» v, EBs . |
wl = % , - (2.54)
; <.Y.1' I I.g.l I ) \ .
where gl = max lgil by definition.’

i=1,...,r ' —— o — e

The above meaSure of controllability is maximized through

'the choice of g} as (7]

g = sign‘(_»:l Ei) (i = l,Z,T..,r), . R ‘(2.52)

The concepts.of the degree of controllability agd‘the degree -

of observabiltty have been c0nsideredgfor multi—input'mu1ti-output-

- systems in [15- 18] But the problem of adjusting the variable system
~.'parameters, e.g., g, such that these degrees are maximized seems. to

o offer challenging mathematical difficulties [17, 18]

The fourth point is also of great practical importance.

Several authors [19 22] have already noted ‘that for multi input systems\

[ 4

.:the controller matrix assigningra-given set of eigenvalues is non-unique.

Ty ) . . - . ) ] . 5
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In particularteach %ﬁoice_of
e ‘ﬁ . e i i

" matrix. Thus in gen%ral the eigenvector@

will depend on the ch01gegof g. which implieL that .L

g

of closed-loop eigenvalgié{

- obtained. - The analytic

b s ’ﬂ"",;'

ﬂﬁfferent transient}f"

Fo

%onses will be

WXQB

,v‘ 7
; the‘closed-logp eigenvec' a.:‘ctions and thus the shape of the tran—

sient_response,'is’not known. - oo , Y b

The dyadic approach above described simplifies the computa-
s b

tional aspect of eigenvalue a351gnment : but this advantage is gained
IS

at the cost of losing some design freedom in specifying G [13 21]
The recur31ve deSign ‘technique of Simon and Witter 171 offers a solution
thls problem and also reduces the computational effort if only a

subset of  eigenvalues are to be assigned,v_ "
and Mitter [7] consists

- The recursive dyadic approach of Simo

of a series of steps\wheré at .each step'a small subset™af eigenvalues
. are shifted by the single step . dyadic approach and the close —loop
- system matrlx-resulting'from;the last step is considered to be’t new

open—loop system matrix. Assignment of £ 'eigenvalues by this ap;:oacb

one at a time will lead to the foll ing control law:

BTty
where : u; =g kyvox 1,2,...,2). ; -
' i
and - e =t a-12.m 0 N0 (28
| ¥y s | SR

to eigenvalue assignment is anéi?resolved problem in control systems

theory.
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ar

2‘(wl \@, .:..,w *), is linearly dependent. /)uuannuu;yd/xhe projection '

vof the - left eigenvector of the viFh

«onto‘the measUrement space instead.

25

Simon and Mitter's [7] work has been very useful from a
theoretical point of view, and has provided the basis for more practical

methods which attempt to assign only a small Subsot of system eigen—

values and require only a small number of measurements. These methods

.are discussed in Sections 2.5, 2 7-2. lO and in Chapter Three.'!v

'

2.5 When the Number of Measurements and the Number of Controls are

+

Less than the Number of States

The application of ideal modal control requires the avail-

; abilitY'of n independent measurements and n independent cOntrols,

Kl

but ‘in industrial situations this requirement usually cannot be ful-

.filled due to.either physical or economical’considerstions. Thus, the

problem of conditioning the system modes in the absence of n"indepen—i

v . . . o ) . : )
~“dent me35urements and controls is an important one.

Mea3urement of -a small number of state”variables leads to the‘

projection of the state vector onto a subspace of the state space

“*called the measurement‘space, To-determine the modal states, one‘must

be able to measure the components of the state vector along the right

eigenvectors (cf., (1.4)@2(2.5)). This is done by determining the pro—

.jection of the state vector along the corresponding right eigenvector.

A

But the deficiency in dimension of the measdrement .space prohibits this.

and leads one to determine the projections of the right eigénvectors

he e/ﬁrojections are then used
. ( B .
he re§ulting set of vectors

in place of the rignt eigenvectors.'
: ey

N 4
' ment space,’namely~ V;,




26

C
. -

El’ Vees WE L w1+l, ceas g:. Thus, measuring the activat’ on of a
controlled mode will, in ‘general, result in a quantity that contains

the activation of all the modes.

The activation of a mode can be estimated reasonably well

by the activation of the mapping of the mode in the meaSurement space

if the components of the mode that are orthogonal to the me?surement

. Space are/small in magnitaﬁ; compared to the mode 1tself If any mode

is orthogonal to the measurement space, then that mode is completely

'unobservable. Therefore, ‘the measurement space must be chosen SuCh

‘that the mode whoge activation is to be measuked has small orthogonal L

components.

In ideal modal control.if only one mode is disturbed, then

the resultant control action is directed along the appropriate right

eigenvector; so@;hat'the component added to the state'Velocity vector,

x(t), directly counters the disturbance. Thus, the control action‘

\“*urdoes not influence the other modes. This cannot be achieved if.

- the rank E\j r < n, Since then the- manipulation space spanned by

the columns of B _cannot, in general, contain the appropriate right

: eigenvector. In fact}\generally all of the right eigenvectors will be

o

outside of the-manipulation space. It is also worth-ndting»that, if

Nt

a mode 1s orthogonal toftheJmanipulation space then that ‘mode is

'uncontrollable.

In Summary, ‘the small number of measured variables means

.

. that estimates of modal activations cannot be tho Lt rue activations

'and the small number of manipul@ted variables me. - *hat'the control'

in

-

action cannot exactly counteract the activations of the controlled
modes._ As a result the control action produces disturbances in modes

Y
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otherithan the controlled mode [4, 6].

Ed
Igg_basically different but bractically quite:limilarapproaches

'
-

_have been adopted to cope with these difficulties, approximate modal

control -and eigenvalue assignment techniques.“

The major reasons for the inabiiity to‘achieve'ideal-modalj

© control in the absence of n 'independent meésurements-and controls
are tne difficulties involved in estlmating a spec1fic modal activation

‘and in influencing a specifir mode w1thout causing any modal interactions

Consequently, there is considerable motivation for trying to alleviate

these difficulties in order to achiewe some of the favorable reSults

obtainable from ideal modal control. Tnis approach will be classified

‘here as "approximate modal ‘control':

-The majot effect of modal control, which accounts°£of its
success, is the’shift-of the,open;loop eigenvalues ‘to more favorable
locations in th@'closed—loop system. Thusgione_should-try to-ehanée
the'system'eigenvalues disregatding any‘interaetion.between tne modal

states which will result from this practite,. This approach will be

classified here aS‘eigenValue.assignment. Eigenvalue assignment tech-

L J

' niques simply insure that some set of desJEed~eigenvalues.fqrm,a sub-

set of the’closed—loop'system'eigenvalues;‘ ‘Thus, they do not prov1de

any pairing between open—loop and tlosed loop - eigenvalues, and cannot

control the movement of the unassigned set of system eigtnvalues

Vor do they attempt to preserve the original eigenvectors
Eigenvalue assignment methods using approximate modal
analysis try to pair open—loop dnd closed -loop eigenvalues and to i

maintain the unassigned set of eigenvalues at their open—loop 10tations.

Several successful_simulation studies employing approximate
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" modal control.have been reported. This is mainly d”e to the fact that

1

a

modal control prowides the designer with criteria for- dec1ding which

modes to'EBn%;ol and which measuréments and manipulated variables to -

use for this “purpose. The success of the resulting modal controiler
lergely depends.how weil'one can meet these criteria.’ Eigenvalue
assignment, on theﬁother’hénd, does not provide the designer with
, fdirect information related to the control.eonfiguration that should
- be used. But, it is possible to combine modal enainis with eigen-
valoe'assignment, ‘and this in fact leadsito what has béen‘cIaseified
) as "apnroximate modal analysis"’in the prekeding paragraph. 'Aporoxi_

mate modal analysis as developed by E.J. Davison and his co—workersv
[23-25] is, in the author's opinion, one of the more practical_and

powerful technigq :es described in this thesis. There are, of course,

'é%ﬁSﬁecial applications in which some of the other techniques will
prove to be more useful. . ‘ ¥

2.6 Criteria ¥or the Selection of Domina- -t _“‘odes, Measurements,l

. and Controls o §\

N\

N Physical systems with a few well—sepg}a&ed dominant modes

-

e
,.

have. been reportedvto perform better under modal Control and eigenvalue

assignment  schemes uSing modal ‘analysis than under"éonwentional
eeontrol.schemes [1, 4,6, 23428];‘tThns;:the designer should first
" analyze the eystem modes to;dete;mine the-dominant.ones, namely, the

"~ ones whidﬁ‘affect the system response the most. This is extremely

i important in view of the fact that the control of every additional
Ce

mode results in mgch greater difficulties in the design stage. - ,?‘

Consideration,of (2.20) indicates thatﬂthere_are‘three '
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3

ditions.“f : S BT,

~influence on the important process variables and amohg tvese, the

are hnStable; they must defdénitely be included among

thus the‘chbice og'thg‘modes to be controlled migh seem easy. But

4
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attributes associated with a mode which must be analyzed: .. . %h,
1) The right eigenvector correspénding to ‘the mode. Com-
parlsoqhof the 1 b element of a normalized right eigenvector to the

. th : ' ' ' : L o
17 - element of the other. right eigenvectors indicates the relative

influence of that mode on the ith state variable [29].

2) The eigenvalue of the ‘mode. This.indicatés the time

constant associgted with the mode. :
' A

3) The modal activations. ' These indicate the influence of

a mode on a state variable for spéeifié'listurbances and initialgy

The first two attributes are the more important ones to con-

sider. It is desirablewﬁf control those modes which have the largeétj:

S~

modes with the larger’time constants. In case.somelof }

<

é%é modes Y,

ose to be
, )

contrbLled.w
. : .

Some typical processes have a wide sﬁectrum of eigenvalues,

A \

it 1is qﬁite‘possi'lé th&t the occurenée Qf a disturb nﬁeiwill creaée
dominant modes éut_of léés iﬁportant ones;byAhighiy_aéﬁi&éting then.

fhc next question which needs some'coﬁéiderét'onvinQOlVes' .
ché choice of the "best"'méasureﬁents and;ﬁanipuléﬁed JZriables
from the often restricted set df possible pnéé in érder Fo:contrél ;he
dqmidan: modes;

Thé "best" méasurements, in ﬁhe_modaiﬁsenSé, #re‘those whicb
'qfé.most sengitive Ed‘the controlled modes and leas# seﬁsitive>t6 :hé
uncontrolled modes: Thé "best' controls arg.éhose whicﬁ haQe-thé most .

5
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‘modal controlﬁg%

‘effect on the controlled modea while having the leaat effect on the

uncontrolled ones.

- Tha above dcflnitiona are applicable only 1f the meaaurement

\—_—\l
und control aectlons of the modal controller are noninteracfl/— This

[

‘being true fot thc ideal modal controllers only. the following criteria

aj/«J

for the choice of the measurement and control spaces are only approxi- .

‘mately truér S o s

oy 3

)] The measurement apace should be chosen such thnt com--~

- ponenta of the controlled modes which are orthogonal to it are of

minimal magnitude and the projections of ‘the uncontrolled modes onto

‘thia space have minimal length.

2) Thc control apace should be chosen such that the pro-

o jectiona of 1ta baais vectota on the controlled modes are of maximal

length while belng of minimal length on the uncqntrolled modes.

Theae arguments are another mnnifoatation of the deairubility
of forming menaurement and control aoctions, which i{n the abaencc of

n independent ‘measurements qnd conttols, act like the left and right

: eigenvector sets of tho originnl gystem,

w - . . !

'1

2.7 Approximate Modal Con;roa

\

Approximntu modn' toggrol uims at. chnnglng thc dominant

)
P

'elgenvalue& of a system, which haa fewur than n 4mensurements nnd

':nl controla. without . Lhiﬁging any of ita othcx elgcnpropcrties.'

{\ .
onsistu of deaigning mcnsurement, b C and

Baaicnlly, the proble,’
una, whiéh in the nbaencu of n measurcements and-
/ he same role as ;hcir counterparts éo_in an ideal .-

eacribed in Section 2\5l.'TWQ different apérouches

l_h
9oL

N

30
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have been used iﬁ'a&tncking this p:obleﬁ! p

1) 6; tgé basis of the criteria given in Section 2.6,béhoose
the "beat“ meuaurement nna cdntrol variables, thus fixing'the‘ € and
B vmntriccs. Then, detdrmipe<thc. P and R matrices in one of the
alkernntiVe wa&évto be described lqter{‘

2) Rather than first chooéing_the "best" measurement and
coﬁtrol variahlés and thén determining the measurement and control
sections, perform these two tasks simul;anééugly. ’ '

| The first approach has been adopted.by[Rosgnbrdck [1], and
by Takabashi 5nd his'cdéwérkéfsvls,;301, rln_deséribing‘;hese methods
ic‘will(bu assumed for simplicity t;at‘thewnumhef;6fﬁmeasu}ements and
contréls-are»uqual (m = f = E)ﬂ and the open;ioop eigenvalﬁesbére
disfinét,‘the.generalizntion 6f the methoas for‘the case where - m¥r
is étraightfo}Q&rd and - can be founa in ﬁhg'original works {1, 5, 30].
Rosenbrock (1] suggésts choosing the [ _ﬁéttix.ih

Figure 2.1 as

¢ W) T ¢ 1-1))

where !2 “contains as its-columns the 2 right eigenvectors cor-

responding to the"l ‘Hoﬁinnnt'modes of the 5ystem.’ Similarly, the
: . B \ . . . s .

5 mutrix in thurcVZ;l should be detefmined from

\

N N o
whure YI contains as its rows the o left eigenvettors belonging
to the £ dominant modes of the syatem. Thus, the approximate moda:

i

controllcr;dpstgned by Rosenbrock's method becomest’
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whe;e K {s an "2 x 4 diagonal mntrix whose diagonal elements are
ﬁO'be obtainen from (2.32), Thia method has been applied in bimulation
:étudies to the control of distillatiqn columns [1, 4, 26, 23] and lQ~ ;;'
the cénﬁrol of a boiler [27]{ in all of these s:udié§ it has been :
oLserved that the control'of a very émail number of dominant mndés

© gave a_signifitant impronemént nvet that-nbtéinable by cortesponding
lconventionnl controllers. Levy s work [4]), which is mainly concerned

‘ with the modal . analysis of different distillatidn column models, is

. extremely useful for any further work in this areéa. It effectively
demonstrates the usefulness of modal analysis in detfrnining the
control;configuraiionrbf'anSysten.

| - Takahashi et,nl [30] have reaiizgq_that'the~objectives of
épproximaté modal control as defined at the beginning of this chapter
could be realizéd.if'the  (n-i) uncontrolled modes of the system vere
unconttollable and unobservable whilerthe rémaining l modes are both
controllable and observable. .For the type of systems under constder-
ation-this would imply.that'the vﬁ and F matrices defined by (2.13)

and (2 15) are of the following &pecidl form:

A o

o

T ol Il B @
A 9 |

‘ . 1 - N _ FE ,‘

E=(fy aBl =0 vl -~ (2.63)

 Any system possessing.this chétacterisftﬁ*hus been designated by -
Takahashi et al [28] as one with "ideal measurement and control" se¢ctions.
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VThe cotrgéponding modal controller gg dgainbthe one giVeﬁ’b} (2.61)
;Ifj(2.62) and (2;63) are'fulfilledlnthis controller performs the
bfunctions of an ideal modal controller foruthe i' mddés of the system
provided that i : ‘ |

\raék H, = rénklfi’- L. sl ) (2.64)

If,’on the othcr hand, only (2 62) and (2 6&),'ot (2 63) and (2. bu)
hold Lhen the values of & of the system eigenvalues can be changed
wlthou; changlng-the values of the remaining eigenvalues, but nothing, .
éan @évsaia about ;he directiogs of';Helcloééd-loop‘éigenvectoral

| The;condltibns fbg-idgal cbnt:él and‘meASufeﬁent sections
lvés ekéleséed'by (2:62) and (2;63).af§ Qery_dlfficulf.tb‘satiéfy. The
fatlure to‘fﬁlfill either {2,62) or (2.63) implies that th. controller
of»tZle) cannot e*aécly fﬁlflllvég? of the objectivés ofbaniidéal o

modal'conttoller. This‘can be déanstrated Sylcon§ldering thé modal

domqln'élbsed—loop;sysfem‘matﬁix:t ﬂ ; f#
U A
| 5 ‘*i,,,k ,
-z %19 - L L _-45,;5:;Afr_ - (2.65)
ST ST NRERTE b 3 T,

' where, éi'.'is an L xR diagonal matrixuﬁith dlagonal entries con-

dinlnh the & dLSiIEd eigenvalueh of the clos;d loop S)btbm ién—

. islan (n»l) x (n—i) matrix containinb the (u-x) open- loop eigen— i

alucs Lorrespondiﬁg to the uncontrolled modcb.b Thus 'the perform1ncek;
‘of the controller of Lquation (2 61) will depcnd on thc dcaignpr s

A,ability to find Such measurements and controls which minimize tn;

v
. i -

elements . AF and AH. R A o
P . = L ‘ . Sd . TSI



:

Loscutoff [5] has suggested specifying1nonzero off;diagonai
elements in X such that either K prl AF or AH Hll Ka would become
a null matrix without affecting the assignability of 1% eigenvalues
This appr04ch neceesitates the solution of nonlinear algebraic equations.
Also it cannot be employed unless the condition mtr > n+l, holds.
>Whenever this: last inequality holds all of the n system eigenvalues
can be assigned. This approach does ‘not provide any improvement over
N Simon‘and Mitter's (7] suggestion’to reduce the number of state measure-
‘ments, (see Section 2.4), in cases where the state variables rather than
the outputs ‘are measured. v

Apart from their contribution ‘to modal analysis, Takahashi
»-et al [30] have suggested the derivation of another approximate modal

controller whose analyzer and synthesizer are obtained from (2 25)

" “and (2 26) by using right and left pseudoinverses Thus,
BEGEETT 266
BTE Cen

and the resulting controller is given bi\A

g E)IL*TE FEET e

‘where K is an: n 8 n diagonal matrix whose diagonal elements are.
obtained from (2 32) of this chapter. The existence of the pseudo-
inverses in equations (2 66) and (2 67) depend on the following rank
‘conditions : '

frank-g\: rank =2 . - (2.69)

d

Takahashi et al»[301 hive not supplied any physical or mathematical
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0conditions nnder which this metnod would perform eatisfectorily. This
is the major weakness of the method; one doea not, have any a priori
knowledge about the expected performance of the controller.

r The second approach mentioned-at the beginning of this
chapter nes been developed by Howartn [6],‘yno hae also applied tne
method to oontrolbone_or two modes,of'the distillation cplumn modelsl

.developed in f&] and [28].

-

Howarth bas defined two objective functions, which give a
quantiqative measure. of the - functional resemblance of . the ‘measurement
and control sections to be synthesized to those of an ideal modal

controller. The objective function defined for. the meaSurement gsection

is

<CT T w > - .
| Ei,:j o |
a = max |. : (j =1,2,...,n) (2.70)
L S <§ 'Ri’ W : o -
and that for the. control section is
) . <v., B r. > . C v : e - v
: .—"—i . . | h X
8 = max | ——-——1 (3 = 1,2,00.,0) " (2.7)

g | e

where i refers to the controlled mode, Ry to the‘_ith. row of E;

'Ei toithe“ith column of ;5;' where: E.'and' R han been defined
" in Figure 2.1. Minimization of a witn respect to the’poseibie
uneasurements eelectable from a fined total set and nith.respECt to
v:-the elenents of p, fixes'the measurement section of the abptokimate i
modnl'controller for the iFh mode. Similarly, minimization of B""

' witih respect to the possible controls selectable from a fixed total

set and with respect to the elements of r fixes the controlvseetion :

.—1»

, .

o
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of the approximate modal controller for the ith mode. ‘Howarth [6]

suggests attacking‘the multiple—mode control problem as a series of
independent single-mode control problems, which can be'solved by‘the"
above procedure.4 This is based on the assumption that the various
single mode controllers thus designed will not interact in the modal
domain. Apart from this the following assumptions have been made in [6]:
| . i)_ The measurement and control sections are noninteracting..
. | ii) The eigenvectors of‘the closed~loop system are the same‘
as those of the open—loop system.
- Howarth [6] has drawn several conclusions from his simulation
studies involving the application of his technique to distillation
| column’ control. '
| 1)  For the case: of single—mode control none of the eigen-
values of the system move towards less desirable locations. Thus
regardless of the gain vabues used, ‘the natural stability of the system :
is preserved.» |
" - 2) .The controller approaches the performancevof the ideal
modal controller at low gain values. |
I 3) The single—mode controller moves the‘zerospof the system
close to'the'eigenvalues of the uncontrolled modes. - This implies high
"'sensitivity of the closed—loop’system to.parametervvariations. ‘
| .Q)I'For single—mode controllers'the eigenvalue oi'the con_

_trolled mode approaches that of the next slowest one as the value of

the gain element is increased.

:*the performance of an ideal modal controller
for control of a single—mode the eigenvalue of the slowest mode must

' be well separated from the other eigenvslues, and the eigenvectors must

A
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. B
'be'well distributed in the state‘space.
'6) The performance of multiple-mode controllers sysnthesized
by this approach is, generally, considereably less satisfactory than

'that of single-mode coantrollers.

By ‘(

Among the approximate modal controllers the oneyproposed by
Howartb [6]'comes‘closest in itsvperformance to the ideal modal con-
troller;’but it"is rather difficult to Justify the computational efforts
resuired in the design process. ‘ In fact, any modal controller which
‘succeeds in reducing the time constants of the slow modes of the
system and~does<noticreate'any new slow:modes may very well be worth
I‘cbnSidering( The.identity'of open- and'closed~loo§ eigenvectors; which
aﬁong the’aﬁproximate controllers, is'best aChievedlby Houartn's o
method, is .a rather unjustifiedﬂdesign criterion. .It 1s possible for
.a controller to result in closed- loop eigenvectors which insure a
kb\\tterbperformance than the open—loop ones, e. g s better disturbance
rejection'properties, lower sensitivity to controller parameters, better

steady state performance,'etc..

2.61 Use of Abproximate Modal Analysis in Eigenvalue Assignmentt'”

Davison. and Goldberg [23] have combined modal analysis with
- the output feedback eigenvalue assignment technique of Davison‘[3l]_
to create the output feedback counterpart of Simon and.Mitter's {7]
' _tecbnique. It has been rather successfully applied in simulation .
studies by Davison and his co—workers [23-25]

- Modal analysis,involves determination of‘the-modal state

7 vector which, in general,_involves'the measurenent;of:all of the-state

"variables. Once some of the modal state variables are known, their
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.proper feedback will ensure the assignment of the corresponding eigen—

values without disturbing the remaining ones. Thus, there is consider-

able incentive to determine the modal state variables.. Davison and

°

Goldberg's method [23] involves generating an approximation of the

modal state variables via the measurement of a few state variables.

. . v
This may be achieved by selecting those measurements which at normal

_operating conditions contribute most to the particular modal states

whose'eigenvalues are to be changed [23]. Now, feedback of m mgdal

states' where m is the number of measurements, by use of the output

"feedback law devised in [31] will guarantee exact assignment of the
_»m corresp din eigenvalues. Thus, if the modal state variables

~fcorresponding to the dominant modes can be approximated well enough

&

then the dominant eigenvalues will be changed. But, since in the.
absence of n- ‘measurements the modal atates cannot be estimated
exactly,nthe remaining (n-m) eigenvalues will move trom their open-
loop locations; too. )

The=successful‘application of approximate modal analysis in

eigenvalue assignment depends on how well the dominant eigenvalues

are separated from the rest and hoW well one can estim&te the modal

. states.

I

2 9. Exact and Approximate Eigenvalue Assignment via the Direct Use

”of the Process Measurementa;,t"”

k]
4

Eigenvalue assignmﬁﬁt techniques involve synthesis of a

,closed -loop- system which possesses a specified set of eigenvalues

_vUnlike modal techniques 'eigenvalue assignment techniques do not

attempt to attribute a pH%&dcal significance to each eigenvalue and

- are not directly,concerned.with the change in eigenvector directionsf

)
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Most of the well-known eigenvalue assignment techniques have -
adopted the objective of'exactly‘attaining a(specified closed—loop .
eigenvalue set. This objective seems  to be an unnecesgarily ambitious'
one at this time. The behaﬁior of the closed-loop system depends on
both its eigenvalue locations and its‘eigenvector directions, as
indicated'by (2.20). But, currently there is’ no systematic way of
selecting these in order - to guarantee certain performance characteristics.
‘Also, the problem of synthesizing closed loop eigenvectors has neither E
been solved nor attempted in the. control literature..

A less ambitious obJectiye employed in other eigenvalue
assignment techniques is that of shifting the?eigenvalues to some region
in the complex plane rather than-to specific locations. This region
might be the left half of-the complex plane or some region areound a. - *
particular point. Techniques which try to acnieve this objective will

v , : - . _
" be referred to here as "approximateieigenvalue aliignmontvtechniquesf.
~The process meaSurements are_commonly all of the state vari-

Jables, some subset_of themior some functions of them.'iFeedback control
techniques.employing easurements of all -of the state variables or n
4'lindependent functions of them (1 e;, the rank of matrix ¢ ing(Z.Z)
is -'m, .which in turn is _the order of the system) are termed as ;tate;
feedback techniques. Feedbackscontrol techniques employing‘some sub-v
vset of the state variablea\are termed incomplete state feedback, and
:those employing. m (m < n) independent functions of them (i e., 'f’
rank ¢ =m are termed output feedback techniques. Here,’no dlS“
tinction will-be made between incoﬂBlete state and'output feedback
'techniques, and’they shall.be referred to as:output feedbach techniquest»

Most -of the chemical processes which present control -problems
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'_can be represented by high order modeis. It is also the rule, rather

.to the designer &re:

'vcontrol and exact eigenvalue assignment will almost ﬁm

<

‘than the exception, that lome of the state variables involved in these

models cannot be meaSured directly with a- desired amount of accuracy.
In fact, economical considerationgoften put a stringent 1imit on the

number of state variables that are measured. Thus, methods based on

the aSSumption of availab lity of. all the state variable measurements

are not often of direct ractical utility. Two alternatives available

Q
v o .
.;l)i Ontput Teedbsck'methods based on the original high order
modei.‘ . |
2) State feedback methods based on a reduced,order model.
'OuEPnt feedback methods capable of handling both exact and

approximateﬂeigenvalue assignment have been devised. : Tney are capable

) ; : e . ) ) S
of fulfilling the eigenvalue ‘assignment  objective in cases where

access to all of the state variable measurements is possible.

"Model reduction technidues which are most’appropriate for

botn modal control,and eigenvslue'assignment are. those based on the

modal characteristics of the system. Representative methods in this

category can be found iny[32-34]'and ngmerouslrelatedjarticles, “The"

success of model reduction in a particular system debends on hoﬁvwelxﬁ‘

the dominant modes retained in the reduced model are separated frq

_,“_.‘,

the neglected.modes. Use of model reduction in conjundﬁlon with mo

:ariaoiy rséultf‘a

“Jin the approximate rather than exact assignment of the system eigén—

’vslues.

i .

The number of eigenvaluea which can be assiéned'ekactly in

_s'particulsr system crucially depends on the number of available
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measurements and controls relative to the order of the model and on

the number of controllable and observable modes. State‘feedback tech-

8 :
niques‘guarantee‘the assignment -of all those eigenvalues that belong
_to‘controllable modes [7, 9]. For outpnt feedback techniques, on the l
‘other hand, the necessary and sufficient’conditions forigigenvalue
assignment are more stringent‘d Davison [31] and Davison and Chatterjee
[BSj'have provided,the”sufficient conditions for the assignment of m
and .max:(m,r) eigenvalues, respectively; vhere m and r are tﬁe
‘numbet ot,nontrivial measurenents and controls .—_The sufficient con-.
ditions for the assignment f. (m+r—l) .eigenvalues have been
developed as patt of this thesis and can be found in ?hagter Three

The’more oractical scate-feedback'algorithms'for eigenvalue
3351gnment have been first developed by Simon and Mitter [7], Porter
. and co—workers [36 -39], and by . Anderson and Luenberger {40}« The :

vl

',tgalgorithms in. [7] and‘[36—39], which'are very similar, have neen
derived from modal analvsis; Their description has been‘attempted‘in
ﬂt Section 2.4.. The extension ot these methods‘to.systems with complex
efgenvalues canibe found i\.L38—39]. Anderson and' Luenberger's method'
[46] is'basedlon‘the trans ormation of'the.system‘matrix to its phase
?variable canonical form; .The linear trensformation leading to. the
phase variable form (unlike the’modaljtransformationllis nonunique

- for multi—input systemst ThisffaEt mav bevutiliaed as a design free-
-dom [41; 42]. . Also this trenSformtion'and fgf sssocieted‘eigenvalne
'iassignment methods do not neoessitate the determination of the system
;.beigenvalues and eigenvectors. These. are a-few advantages of Anderson

-and Luenberger 8 [40] method but it has also disadvantages-’ The

computational effort is almost independent of  the number of eigenvalues
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to be placed, the system must be completely controllable or else
decomposed via- Kalman s structural theorem [43)] before.this eigenvalue
assignment technique can be applied (this difficulty‘can be avoided
by the use of the canonical form 8uggested in [44]) matrix inversions
are required, and it does not possess the clarity and simplicity of
vSimon and Mitter S method [7] and its later modifications [12, 131.

| The feedback matrix guaranteeing the assignment of a set )
of eigenvahus is not unique in multi input systems.. This design free-
dom can be exploited to fulfill other design criteria than assignment
jof’a set of eigenvalues. In Simon®s methods the choice of the g
'vector inv(2.45), the pairing<of open-loop and closed-loop eigenvalues

the number of eigenvalues shifted at each step of the recursive design,

'the sequence in wnich the open—loop eigenvalues are shifted and the

.
\

number of control elements used at each step of the recursive design

i s ].

\

technique constitute - the major design dedgsions. Tnese design free—-
doms can be‘very important in obtaining .a fbetter" transient and .

steady state response, a lower sensitivity to parameter variations

k and a higher degree of integrity. - But, it is unfortunate that systematic
‘methods are currently not available ‘to exploit these design freedoms
i.e., ‘the designer has to tune’ the controller.

' - The more well-known output feedback techniques devised for
exact eigenvalue assignment are due to 6avison (31], Davison and |
ChatterJeee [35], and Jameson [45) .« Sridhar and Lindorff [66] have
. provided an alternative constructive proof to. Davison s theonem [31],
but the validity of their proof ‘has been questioned by Topaloglu and

"Seborg [47].

-The techniques.of_[3l, 45] ensure that the open;loop set of -

c .
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-

eigenvalues is‘;eplaced by a closed ~loop set some. of whose elements,
the assignedAeigenvalues, are prespecified while the remaining eigen-
values cannot be arbitrarily assigned Experience with chemical pro-
cess systems [4 6, 23-28] indicates that changing the value of a few
)
"badly" located dominant eigenvalues of a system can improve its per— '
formance significantly unless the rest of the eigenvalues move to
_"high undesirable" locations. lhe eigenvalue assignment methods
of [31 35 45] may not alwa;s fulfill these conditions since they do
not ensure control over individual eigenvalues and cannot dictate the‘
v

fate of the unassigned eigenvalues Thus it is very possible for a
designer to end up with a closed loop eigenvalue set which is worse ‘l
t'i 'than the open-loop one, because he has inadvertently moved. the well—

located eigenvalues to better positions and the " poorly"'located eigeneb

i : yalues_being left ‘uncontrolled have moved to worse locations.
P . v N : e . . . .

The methods of [31, 35] and‘[45] can be improved by modifying

to
v d’"b
ﬂaiﬁase the number of exactly assigned eigenvalues and to approximately

a851gn the rest of ﬂhe eigenvalues The first obJective may be achieved

to some. extent by the use of approximate modal analysis as described
in Section 2. 8 In cases where this approach can be applied satisfac—

~torily, the contrt eigenvalues will be shifted-to desirable closed—
»loopilocationsbwithoc. shif= ing the uncontrolled eigenvalues. The

second objective has been xchieved to’ some extent through the algorithm

3
N

'developed as part of” this thesis and described in Chapter Three " The

third objective can be achieved by combining the approximate eigenvalue

assignment techniques to be described next with the exact- eigenvalue

'-bassignment tethniques This can be done by using a crucial design ‘tool

&y



. vduveloped and emnioyed in.Chepter‘Three. Furtner information ebout
| this combined 2pproach will be provided in,the‘eimulaﬁion etudy of |
Chapter Four. = f ‘ . S ‘
. The  output feedbeck\algorithm deyeioped in Chapter‘Tnteeiie
'baeed on some of the ioeea invoived in [31, 35;,431. In addition to
enabling the designer to’aelign more eigenvalues, it prdvideeind@itionnl
'deaign freedom theough‘ite eecureiVe nathte which in-turn may ‘lead to |
more eucceeeful epplicetlone. Since it includea the aléorithme of

&

[31 35, 45) as |peciel ceeee, the diICUIlion of cheee algorithme will.

be omitted from this chapter.

Approximate Eigenvalue'Aseignnent Techniquee

Approximnte eigenvalue aeeignment methods do not guarantee
~the exact eleignment of any of the system eligenvalues, and have been
devised mainly to stabilize unltable syeteme.' General information on
the subject of ou:put !eedback etebilization can be found in [68 497,
'1nend neceesary and gufficiant conditions for system ecabilizability by
ﬂconetent Output feedback are provided in [50 51].
| For approximnte eigenvalee eeeIgnment Jameson [45] hae v"
i suggested the use of a dyadic feedback conttoller, G = g'k f{o |
| minimize the value of the closed=-loop charecteristic polynominl | r(h),
when it is avalu: at the desired eigenvalue locations. Thie can_ be

‘done by eelecLT‘u B to fulfill the condition in (2, 49) and dctermining ‘

‘ a ET which will minimize the following objective function:

: .; v . o J_l - izl [r()‘di)lz . hﬂ . ) . (2'72) .

"Jemelon-[45] has generalized this objective funoeion in o;deri;o_nefght



*hall the system sigenvalues'

" where Li represents the weighting on- the ith eigenvalue and M

_approximntu.eigenvsluc assignment techniques are. gradient search .

.techniques based on the sensitivity of the system eigcnvalues on the '1f0

45

the diﬁferent sigonvalues according to their importance and to minimize
the weighted aum of the squares of the elcments of kT This results

in the following objective function for the approximate assignment of

L

Z L [r(A + Z ! kj . (2.73)
ROR ",j T

_ : J
the weighting on the jth . element of 'ET. - Further information on

a modification of this approach will be presented in Chapter Four.
A similar spprosch has been suggested in [lQ, 20]\and 1ts application

in a simulation study invdlving the control of a’ gas turbine has been

- very briefly described in . 2]. These methods have the disadvantage of

not di’fcrcntiating betw N a positive and negative deviation of an

. eigenvalue from its desired value which is important in the stabiliza-
vtion of continuous ~time systems. This difficulty is due to the choice

.of the objective functionsl in thc minimization problem:. An advantage o

5

.of\the method i# thnt it results in a rather simple expression for:

\ ._;

v

.£,-' The obvious disadvantage in ite application is- the lack of
‘informntion about conditions which ensure satisfactory eigenﬁa&ue

assignment. und a’ satisfactury transient and steady state response of’

A

the systcm.

Koenigsberg and Frederick ] (49] and MtBr

:‘clements of the fcedbsck gain matrix. "Both papers [49 53] attempt *f;:}i ;
to shift the "poorly” located open- loop eigenvalues one—by-one to *ZTrj<7;a;?“’

'butter positions without shifting the others significantly. The

g0 and Roy's {53] RIS




iterative procedure can be repeated as many times as desired although
continual improvement of the results is not guaranteed. The sensitivityl
expressions used are due to Rosenbrock (54) and Reddy [55], who in turn
have used the work of Fadeev and Fadeeva [56] | |
| -Still another eigenvalue sensitivity based method is that of
‘ McSparren and Etzweiler [57], whose method involves the change of some
elements in the A matrix.}nxorder to approximately assign all of the
,system'eigenvalues. ‘Theyvalso suggest an iterative approach and provide
some guidelines in the choice‘of state variables to be measured.. A
severe disadvantage of the method is that it is limited to only single-
input systems which are completely controllable and observable.
- The successful application of these methods to the stabili-
,xation of up to 23:.'order systems have been reported [&9 53, 57],

+ which is encouraging‘

[N

v Porter [5&-60] has proposed the application of Liapunov s

L y

direct method in shifting the open-loop eigenvalues of a’ system to more
stable locations thus stabilizing (or increasing the: degree of stability)
of a systega' As naoted by Johnson [61], Porter's method has extrcmely

'restrieted applicability since it requires che existence of n indepen-
. *}’l‘r .

dent measurements and controls, vhere n is the order of the system

PE
,,&nder consideration.

W

CEEN

‘U'f.a;:!!\ B

2. lO Use of Observers\and Compensators in Eigenvalue Assignment

In systems where all of the state variables cannot be :
directly measured and the use of output feedback controllers d0cs not
provide adequate eigenvalue assignment. the designer has- the option :

of using observers and'compensators, This vill ensure‘exact assignment
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~of all of the(system eigenvalues provided that the system is completely

controllable and observable.

t

gReconstruction of“all of ‘the state variables by a reduced

order Luenberger observer [62] and their subsequent use in a state_'
Sy

feedback law ensures the assignmeng of the (Zn-r) eigenvalues»o£~the

| . .-.\ 4

resulting closed-loop system.: The separation property of the observers
'[62] allows the designer to separately specify the eigenvalues of the

controlled system and the observer, and to design the observer and

- (SN

ycontroller indcpendently ‘ S

The application of this approach to physical systems has been

; - it

reported in the literature [63 64]: Sturgeon and Loscutoff [(63) have'

tried ta control a double inverted pendulum both in simulation and

' N
/

experimental studies. Their model of this system 1is GFh 'order with
lone control and three measurements, and their design approach consists rjb
of positioning the observer eigcnvalues by the methods of [40] ‘and
‘those of the controlled system by the methods of [l 5, }0]. Although
simulation studies performed on‘an analog computer gave fairly good f
results the experimental studles resulted in limit cycles [63] |

Sturgeon and Loscutoff attribute this to modelling errors the‘non—

- 3

linearity of the rcal system and noise in the meaSurements.v heir "' .
simulation studies clearly indicate that the observer rather than the .

_controller is the source of the difficueties encountered McMorrnn;[oa] S

..in pralsing the Inverse Nyquist’ method'[8]vrefersuto Munro'* Ph.VD.'

‘thesis where an observer in conjunction with an eigenvalue assignment :
A.tcchnique has-been used. He blames the controller for the extremely

'poor response of the controLled system during regulatory operation.

Simulation and experimentdﬁ observer studies at . the University of

&



Alberta [65] gave'similar results for'an'optimal controller. fhe_poor
responses werebnot due to the controller but to the observer which can
be quite sensitive to unmeasured disturbances.

The degree of the total system consisting of the controller
and observer can be. reduced if only some of the system, eigenvalues have
to be shifted This can be achieved by the use of functional observers

which aim at reconstructing G x rather than X, This method has been

-

studied in [66 67], but not applied to an elgenvalue assignment problem. '

Although this reduction of the observer order is important because of
‘Athe high order of chemical systems, it still does not solve the vid&?
problems associated‘with-unseen disturbances. Smith and Davison [68]
have suggested the obervation of disturbances. This approach may,ber
‘promising, but requires further development:A i |
- The use of dual observers [62] is still another alternative

for assigning the eigenvalues of the controlled system and - the observer.
;'In fact the dual oberver design procedure devised by Murdoch [69]

reduces the order of the observer to (v —l), where . Vo is the-con-

trollability index of the contrOlled sy tem.

Compensators

Pearson and his co—w0rkers [70 7lj have suggested augmenting
the dynamic system to be controlled by an ingenuously designed dynamic
system such that ‘the total system has the desired set of eigenvalues
The dynamical system to be added i.e., the dynamic compensator,'has. )
the minimum degree of min (v -l v -l), vherea'vc. and vo _are
the controllability and observability indices of the system to be
controlled. The compensator design technique suggested in [70 71]

1s a time domain method and provides for the assignment of all of the



L=

. assignment of certain sets of eigenvalues of the total system, the

,5;3’

‘ﬁtihenvalues of the augmented system._ Thus, one does ‘not have the opt‘?gy

of specify@gg the eigenvalues of the controlled system and the com-
pensator separately Algo, the: designer cannot reduce the order of
the compensator by requiring the assignment of only a subset of the
system_eigenvalues.

“Ahmari and VacrOux [72] have suggested a compensator design

technique based on that of [70, 71] and the eigenvalue assignment

. technique of [31 35] They have shown that for every compensator'

order selected there exists a unique maximum number of assignable

n

eigenvalues. Shaw (73), on the other hand has noted that for the

: I
compensator might have to employ unstable eigenvalues. This, in turn,
drastically increases the: sensitivity of the controlled system eigen-

values to parameter variations in the system [73]

Q°v ﬁfChen [74] and Chen and ‘Hsu [75] have proposed frequency
domain:compensators whose minimal order is the same as in 70, Zl].
Tne technique 0}'[7*- 75] allows the designer some freedom in con-
figureating the compensator with the controlled system Chen [74, 75}
has considered two configurations, one of which allows independent
.specification of compensator and controlled system poles thus

Aalleviating some of the: disadvantages of the method ongearson and

his co—workers. But this extension ‘may increase the order of the

‘compensator.

The methods of this section have apparently not been applied

to physical systems. They possess some . design parameters which could

be employed for design objectives in addition to eigenvalue assignment;

The introduction of additional dynamics to already high ordcr systems

’

© 49
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"~ is rather difficult Eg Justify unless the added dynamics can be pur-
: ti‘vv'»:px._b

posfu119 ehployed.

2 _ ' ; .
A chief advantage of eigenvalue assignment techniques is that

they are relatively easy to design and te implement. The use of

observers and compensators in eigenvalue assignment tends to reduce

this advantage considerably.

An interesting interpretation of the methods described in

this section can be found in [76]



- CHAPTER THREE

. A NEW ALGORITHM FOR EIGENVALUE ASSIGNMENT

USING OUTPUT FEEDBACK

]
]

3.1"Introduction - .
} : ¥ :
In recent years the design of control systems which provide

for arbitrary pole aseignment using output feedback control has received
considerable attention [l 2 6=9]. Several design methods have been

’ reportedehich employ a controi%@%trix which is a dyadic product of two
vectors'[l,'Z '81. Typically, the number of eigenvalues which can be
.arbitrarily assigned is restricted to  max (m r) ‘where ‘m "and r

- are the dimensions of the output and” control vectors, respectively [2]

In this chapter, a new algorithm is- presented which allows min: [m+r-l n]

poles to be assigned subject to certain mild restrictions.. The algorithm
' provides a simple, analytical expression for the output control matrix

as the sum of tw ‘dyadic products. }[ .

3.2 Formulation R

Consider the completely controllable and observable system

described by:
O .

[
| §
"
I %
+
{ee]
e

(3.1)

P I

it

y=c

where x 1s an n x 1 gtate vector, u is an r x 1 co\trolvvector

Yy is”an - m x'l output vector, and- A, B and C are constant matrices.

- Davison and Chatterjee [2] have given sufficient conditions for the

arbitrarily close assignment of max (m r) eigenvalues by thedfollow—.‘

ing linear. ‘constant feedback law:

- 51
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ﬁ - . W : U %G . : : (3.2)
_ q ,P ] A W ‘ . *% Z I . \ s . .
*x R g “ e

¢ 24 R ]
53"; he»ciosed loop a&%%%ien-loop'characteristic

? osed-loop system con51sting of

e By

{3.1) and (3 '2) has been derlved by'ﬁgh and Chen [3]:

:;uy = det [1 - C(AI - A) g]ﬂ; \ ' v(3;3)

Assnme that the feedbackrcontrol‘matrix, g; is of the

dyadic form

. =gkl . S e Y

The'reéolvent métrix, L - é)fl, for any A#0 can be expressed
as f4]:

CF(A) pn'l + g_l)\n-?f + ...+ F_

i-2 ‘qm_" RSV 3.3)

where Fl"FZ’ ""‘En }, can be obtained from Leverrier 8 algorithm .

[5]. Combining (3 3)- (3 5) gives [1]:

L3

f(x')f'a an) - fﬁgig(x) Bg - . . " (e

- The choice of a dyadic feedback matrix can be used to form

two systems which are equivalent to the original syscam in (3.1) (3. 2)

and (3.4):
System 1: i?= é_§:+.2.u , :J" o _ e S
: = , v , [ N _ o
with : b= Bg i : - (3.8)
§ T

Cu=kTy | (3.9)

o
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g
\
System 2: §_= A x + B u . o
(3.10)
. % - 'I‘ .
aéyith . o gf = k' ¢ o o ; ' (3fll?
u=gy . R . (3.12)

It is obvious that Systems 1 and 2 have the same closed-1loop
eigenvalues as the orlglnal system Also, Dlng, Brasch and Pearson
[6], and Davison and Wang [7) hdve proved the e\istence of 3 and

. &)' .
5:’ which results [# completely controllable and observable systems

| - {
respectively,. ” : . ~

o o For System. 1 algebraic manipulation of'(3.b)_gives'

r(}) = q(x) -k "€QUe (3.13)
and for System 2:
rO0) = a0 - g B sue (3.14)
" where 4 9=10b, ab, gz by een, gn‘l bl . (3.15)
) o - '
I T R O S R UL (3.18)
r . 3
.l'mal R Jnfl :
. o !
~0 1 a, a, dn_z T
: 1
|
= . ! '\ -
Y 0 0 1 11 dn-3 ! (3.17)
. !’
|
. . |
0 0 0 .0 1
1 3
o=l . .n=2  n-3 T

e = TN T (3.18) -



and a)s 52, e, a1 are.the coefficients of»iq(X),’ which can be Vg

determined, from Leverrier 8 algorithm [5] _Thus (3.l3) and (3.14) give ’

the ﬁelations between the open-loop and closed-loop elgenvalues and -

the controllability and observsbility matmices, Q —andl S, 'of

Systems 1 and 2. _ o .v o @
Davison and Wang [7]vhave shown that almost any output feed-v

back control matrix will generate a closed -loop system with a set of

eigenvclues disjoint from that of ‘any corresponding completely con-

trollable and observable open—loop system. Thus, in what follows, it -

Z will be assumed that. any open-loop ‘system (or equivalent system) either .

ggssesses distinct nonzero eigenvalues or hss been converted into one

>with distinct nonzero eigenvalues.

s

3.3 Algorithm - ' e
' In the derivation of the eigenvalue assignment algorithm, ‘the
two cases of m>r, and r>m will be considered separately - In

-both cases the control law is expressed as |

um 22 o B L Gasy
where' - ",. oy e 31'51 y - S (3fgo)
Yyt 52x S S a2

-

‘Case 1+ m 3-r
The algorithm involves three steps. 'assignment<of m.

distinct- eigenvalues, protection of (r—l) of - the eigenvalues (i e, 4
. %
making them invarisnt to subsequent feedback control), and assignment

: ’!

of m additional distinct eigenvalues " Thus the total number of ..

distinct elgenvalues asaigned will be mrtr-1 (or no if m+r—1 > n).
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Step 1 (Assignment of .4  eigenvalues)

,"Choose a &l véctor such that the resulting equivalent system

‘of (3.7) becomes:

3{_=é13.(.+_111 ul : .
| oy | N ¢ 7))
. y=Cx - .

: S T : - . -
where él 9’_-91' g'&l and‘ Uy 51 Y. Evaluate (3.13) at. m ‘
des;rgq eigenvalues, 'Adl’ Ad2’ e }dm’ and imposg the conditions

that

-

. rl(xdl).a rl(Adz).= A rl(kdﬁ) =0 - : (3.23)
wherel_rl_ is. the tlosed—lodp characteristic polynpmial fqr'the syspem
in  (3.22). Then El can be determined from (3.24) below which is

1. ; o . R - : )

Similar*tobbavison's algdrithm,[B]:

C - . k4 .
] ,:*:”;:/ l(_]_ g (E ngl El) (3.24)
e : _ :
lvhere R L A
»_§§ftﬂxn—l' An—L I Xnel ‘1‘
oA A 2 " Mg |
PR n=2 n-2 _ n-2
Y B Y R -
El = o (3.25)
1 1 1 1
L ! -
8 7 80 10g)s nayl - Gae

and where U5 = U and Q 1s obtained by replacing b with b, in

(3.15);' Thuq,vds'long as (C 91 91 51) ig nonsingular, (3.24) insuges

-

R At
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O L
hat Adl’ Adz’ ey Adm «belong to the set of eigenvalues of the closed-
Aoop sygrem matrix (A + B‘El k C). . The invertibility of (¢ 91 U E )
is determined by the choice of the desired eigenvalues.
Step 2% (Protection of (r-1) ‘eigenvalues) -
Consider the closed—loop_sxsten resuiting from Step 1l as a
S : wh
new open-loop system given by~
N ‘ L L Lo (3.27)
Xagi > v ’ 7 *
where A =A +B g kI : = :
=2 =] =-8-1 —‘lu ¢ : ) [8 ) 5
.;%Qz s ' -Output feedback affects .all of the sytem eigenvalues which

lorrespond to both controllable and observable modes [7] while none

of the eigenvalues belonging to either an uncontrollable or’ unobservable
dee .can be affected by any- output feedback controller [l], [9]. Thus ,

,.a subset of. (r-l) eigenvalues of (3.27) can be "protected" by introduc-

v:ing aﬁ equivalent single input system:

RN :.‘\"

PL

(3.28)

w

with' 92 =B 8 and u, = kg Y, in which the modes corresponding to

theser.(r—li' eigeavalues have been made uncontrollable by an appropri—
ate cn01ce of '32 » However, in order to assign m additional elgen~

.r« .

) values in Step 3, it is® ‘also necessary for the system in (3. 28) to con-

tain at least‘ m',controllable and observable modes . (Observability

‘of the sytem in (3.27) is not affected by going to (3. 28) ) These con-

' ditions can be achieved by choosin& 52 such that
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1<
SR

B g, =0 | ‘- - (3.29)

and

1<
[ N

Bg, = ho - | (3.30)

where 22‘ is an arbitrary vector with at least m nonzero elements

l . : .., .
.-and ¥2- contains as its rows, .(r-l) of the left eilgenvectors of A

corresponding to (r-l1) of the m eigenvalues which were assigned in

2 .
-

Step 1, while !2 has as its (n r+l) rows, the remaining left eigen-‘

vectors of Ay - | o o : T

Equation (3 29) can always be satisfied, since it requires
finding an r- vector, 32’ which is’ orthogonal to  (r-1) r~vectors.
In fact, if vfﬁnk (XZ B) <‘f-1,' then the vector, &) which satisfies'

(3.29) is not.unique. The condltion in (3 30) requires that the choice

&

of g, must be nonorthogonal to at least  m veators, which are a 5ub-.'

set of the rows of ‘gg B. (The number of rows,of“;xg § which fulfill

)

this condition is equal to the degree of the relative minimal polynomial

of 22, for the _matrix 52 [107.).

. «Remark: In situations where a particular choice of g2

satisfies (3.29) but not (3. 30), several alternatives are évallable.

v ] «

One could return to Step 1 and choose. afdifferent g_,% which will

-in general,vchange the (n—m) unassigned eigenvalues of (A + B 84 le)

and consequently result in a newv'(.='2 B) matrix,_or one could perturb
»the desired eigenvalues slightly and repeat Step 1 hoping that the

rLsulting system will allow (3 29) and (3 30) to be satisfied 'Alter{j

natively, one could add another feedback controller with feedback galn
_ - oL S o oo

S

matrix

Gt gy kel 6o
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- to (352f),thué affecting its (n-r+l)"eigenva1ueq,and all of the system
r b . T S .
eigenvectors,

Step 3 (Aasignment of ancther m e{g_pvaluea)
. Connidar the nquivalant lyatam resulting from Step 2 a8 a new

open-loop lyltom given by (3 28)., Application of Step 1 to this system
willyled : “ |

T " . y=1 I
kg €0 4, B . e

’ . \ | » A‘ s :?,
" where Qs+ Y50 F, and 4, Pertain to the system in (3.28) and are C o

‘ nnnlogoua to the quanci;ies defined in (3.15), (3.17), (3. 25) and (3 26),v

respectively, ~ It followa that rank (Qz) =q, rank (E )= m and

BRI rank (Q,) = m. The lalt 1nequality éasults from the sufficient
2

'condition set for successful applicatlon of Step 2, and the fact that
~ the rank of 92 is equal to the number of conttollable modes of Lhe

system in (3, 28) [10]., Thua the condition

rank (g Q, U, &) = mo. (3.33)‘

is shfficiahc for the.lu;cesafuloappligatipn of both Steps 2‘an¢-3.
‘Cale 2;: m <y

The algorithﬁ in.;his case {8 the dual of'thnt described in

Case 1, it'involvau' assignment of r  eigenvalue9, protection of

- (m=1) of these, nnd nssignment of . r. additional eigenvaluus. Thus,
the total number -of eigenvalues assigned is’ (mtr=1) provided that
'(nr»r-l) wmo 7

Here the aigenvalue nlaignmcnt is based on. the usC qf’;hc.

T

. equivalent system glven in (3.10) and the determinntion of a 52 in

.
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Step 2 which makes (m-1) of the r modes (whose: eﬁg%'ﬂﬁlvéb have-bﬁ%ﬁ\f:.;
assigned in SCGP 1) unoblervable while leaving at least : ‘»of Eﬁe T

o -"

0 .
(n=m+l1) remaining modes obaervable. In analogy with Case 1 the final

control law becomes:

T (T

LR kg Ky (3.34)

. wﬁere ' 7 | | !
T T -1 -

R (3.3%)

b'WQQESEYPQ, BN CRTY

and §1y 8,0 Y, and U, are defined in analogy with (3 16) and (3.17).

at each stogc. k; must fulfilr the following conditions

L .
529&-9' | R E I
T 2 ‘ S o
Lt 5 S (3.38)
where thé m=vector ?EE’ contains nt'least ¥ nonzero elemen;s. ;
has - as its é‘lumna (m-1) of the right eigenvectors of éZ' and Ei
hns as its columns thc remaining (n-m+l) right eigenveccors..
’ : Cases 1 and 2 then form a constructive proof for the follow-

ing proposition:

Propesition

ot

lf the system in (3 1) is completely controllable and

obﬁurvublu with rank g = m and rank B=r, then there exists a

constant output feedback matrix G Sucn.thnt min (mtr-l,n) eigen-.
‘vniuob of the closod-loop~sy@tem can be assigned to atbi;yary;ﬁdistinc;

“locations (with complex values chosen as conjugate pairs) ‘provided that

. o
-3
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rank. (Q 91 U E ) = n for m>r (3.39)

T,T §T T.T T : .- B
. rank: (E 91 § B) = rank (E !2 §2 g) = r for m<r . - (3.40)

3.4 Example

" Consider the following third order system with two control

varlables and two output variables:

. Cow - B - p W’ T

Xy -3 »=2“ iO 3 I ‘0 1 )

uxz = 14 ‘-5 -1 xé +11 0 u,

% 0 0 -3)[|x o 1}
L3¢ L . o L3i L ‘

- - (3.
. : 1. 1 :
v, | B RN B .
‘ >“.

y 0 1 0 x

N J1%

’ 7

|3

Ta mal A, m=3 A, -7 o (3.62)
: S . E o

and it is dgsiied'to find a control ldﬁ;-ug “31-15 + 32 Eg; such

that the closed-loop eigenvalues become:

Adl = =10 ‘AdZ = <9 Ad3 f -8 . (3f43)
Choose
. , L' . o S
& 1 ’ . R - . (3.4“) .
1 . 1 o o : o » .

then Ef can be determined from (3.24) as



=1

k] = [-8.27  0.09] . S (3.45)

Thevresultiné system equation, 'é .= AL+ 3 kI . has as ite

eigenvalues:

Adl,-.-I0.00 AdZ = f5.00 Ad3-- -4.18

Now, choose a g, nhich satisfies (3.29) and (3.30) as

2.571

g ~f . - (3.46)
1.000 | e N : '
k, can be calculated from (3.32).-as - .
T Il. R ‘ 2 * J" . ‘-.‘._.'\.'.fl _.', ) K ' . ]
ko™ [¢96.73 34;.58‘] ST (3.
_which yields the final closed 100p s&atem matnix, ‘555;552 +B 37.5; Q)
. e “ 'u»jf. . =3 22
whose eigenvalues are - Som L o '
S E "7..'{:‘ :
Adl = -10.00 » *dzf7-72‘99-/ Adaj—'—§w00' 4 . (3.48)
£ 4.“"1=,‘, . b B . .
. 57 . el . ,' '/
It is worth doting that if previously reported design pro-

4‘

_cedureSc[l 2, 8] were employed, only max (m r) =2 poles could‘be

arbitarily assigned - ”fv
3.5 Conclueions
A new algorithm has been presented to achieve pole.aseignment
Ausing a proportional output feedback control law. Provided that certain_
A mild conditions are sabisfied, thernumber‘of poles- that can be assigned
to arbitrarylﬂdiétinct 1ocation9 is min [m+rji,n] Qhere m, v and n

- o . ‘. - v : .
~are the .dimengigps of the output, control and state vectors, respectively.
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This number is a:significant improvement over the "max (m,r) poles
: ' i - . .
. : . - . T
which can be assigned using previously reported algorithms [l 2, 8]
The algorithm consists of a two stage design procedure where ~

some of. the closed-loop eigenvalues which are shifted during the first

s \1.,
gy

N

;%tsge are then ' protected" by transforming the system into an equivalent

"fsg&gle input (or single output) system. The equivalent system is chosen ‘
1) that it satisfies the conditions of "ideal control" (or "ideal .

measurement") of Takahashi et al [12] since some of the modes have

been made uncontrollable (or unobservabli&% Application of the second

design stage: allows assignment of additional poles without affecting

the "protected" poles.

A numerical - example demonstrates that the algorithnﬁis quite

- »!‘

simple and results in an anslytical expression for the output control

[

ﬂ*matrix. o

<.



CHAPTER FOUR,

SIMULATIONgsEEESEs FOR A DOUBLE

EFFECT EVAPORATOR

4.1 Introduction '
: T

Some of the modal control methods described in Chapter Two
and the eigenvalue assignment algorithm presented in Chapter Three

have been applied to the fifth and third order state space models of
the pilot scale, double effect evaporatoL in the Department of Chemical

l
Engineering at the University of Albertal

?
i 3
In this chapter the author has attempted to describe the

I

design options available in the various design methods and to dem-
onstrate their usefulness in fulfilling two design objectives in.

addition to specification of the closed -loop eigenvalues. These

design objectives have been minimizati n of offset in ‘the most

, important process variable, the prod'ctvconcentration, and some
elements»in the controller'
)‘,. . .
'.matrices. These objectivgs have been deemed important, since inte-
. -

controlnovér the magnitude of the gai

" gral action was notg%ncorporated into the controllers used and .
’excessively high gains would lead to difficulties in the futurevj,'
f-experimental evaluation of the controllers designed in this chapter.i

The simplicity of the resulting controllers and the modest
amounts of computer time required to design them have enabled the

performance of a great number of controllers to be evaluated"only
gt

a few of these will be described here.
| e : ‘ .
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- vertical unit, which is heated by the first effect Vapor. It pro- ; . ift

second effect vapor is totally condensed Tight pressure control , e

cmaintains the necessary pressure differential between~the effects

4.2 _hysical Description and Mathematical Modev

e e Y :1

of ‘the Evaporator

~ Some of the control algorithms described and developed in SRR Jf
"‘d . " PN .n L

g Chapters Two "and’ Three have been applied to the pilot plant scale

dovble Effecc evaporator SChematically rep?esented in Figure 4 1.

The first effect is a natural circudaciqnmgalendria type :,m :

,.,l.‘(

unit which is fed with 5 1b. /min. of 3 2 percent by‘weight of

triethylene glycol : The feed is heated by 2 lb /min. of fresh steam.,

The second- effect is an extetnally forced - circulation 1ong tube

/\;\v

duces about l 5 1b. /min. of ten percent triethylene gIYCol The '

_The systematic modeling of duaevaporator under consider-
ation and: of similar units has been extensively studied at the

University of Alberta [1- 4] Among the;models developed for the,double

’effect evaporator, a,tenth order continuous-time'nonlinear model

derived from material and energy balances has been found to represent

the experimental open-loop system behavior best [3]

;

'. The application of state _space control methods devised for

linear systems has necessitated theJlinearization of the nonlinear

1\.-.'

model. Open loop experimental studies have indicated that this .

. linearization introduces a significant modeling error unless ‘the

process variables stay roughly within a ten percent range of the

“steady state values around which linearization has been performed [3]

A f . ;

kA Regulatory control aims at holding the process variables close to

'their steady state values, thus modeling'errors introduced through

o) C) ‘ _ ' o

‘ linearization are expected to“befsmaller for the Closedeloop system -
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than for the’open-lodp ohe,‘

- Both tﬁe‘design andvimpleﬁentation,offmuitivariable control

7techniQués’c§h be carried out morée easily and more,economically with

lower order models provided that these models predict the system
behavfor satlsfactorlly. The tenth order llnearized evaporator model
has been reduced to fifth and third ordet models through physical and

modal consideratlons by Newell and W1lson~[2—4] 'Open-loop simulation

"and, experimental studles have suggested that the use of reduced order

;

J '
-models for multibariable control studies rather than the tenth order

..';

linean model_is justifiable. This is'due to the fact that the neg-
lected model of the_higher_order-model'are considerably faster than

the retained ones. : ,‘ y @kb". \b

’

The fitth and third order . discrete-time eviporator models

- used in this chapter have been derived by Wilson [4] They are ofe:

© the fotm

DY

',,5’1['(’11%41)?] x(nT) e u(nT) + 9 d(nT) -, (4.1)
}z(.nT) =C }h(nT) , v _ S 62y

Qhete 'T denotes the time base or discretization interval " Wilson

' jnas applied Warshall s model reduction technique [5] to the tenth order

llnearlzed.continuous—time model to obtainvthe fifth and third order

'.continuous—time models,'which then have been discretized with a time

g

base of T = 64 seconds. This discretization is desirable for

‘digital sfmulation and direct digital control applications.

i

The ¢, A, ¢ and 9 macrices for the fifth and third

order discrete evaporator models are pfesented in Tables 4.1 and 4,2,'

W o i g
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TABLE 4.3

Description of the Evéporator Variables.

State Vector, X Normal Steady State’Value

/

x' = [W1, c1, HI, W2, c2]

Wl First effect holdup | 45.5 1b.

C1 ‘First effectfconcéntration _ ; ' 4.59Z'glycol
Hl First effect enthalpy o | 189.2 BTU}lb.
;WZF Sécond effect holdup _ - , | | 41.5 1b.

Cé Sécond effect concentration ' U lO;llZ giycol

Control Vector, u

ul = [s, B1, B2]

S, Steam flow = e, . 2.0 b./min,
Bl First effect bottoms flow _ 3.485 1b./min.
B2 Second effect bottoms flow . § 1.581 lb./ﬁin.

Disturbance Vector, gf‘

g? = [F, CF, HF]

F' Feed flow o | 5.0 1b./min.
' CF - Feed concentration - , 3.2% glycol |
HF Feed enthalpy . - 156.9 BTU/Ib.

Output>Vector, Yy . @

y = Il w2, c2]
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e
respectively. The state, output, control, and disturbance vectors are

defined in Table 4.3 and are expressed in normalized perturbation form, .

i.e.,

_ Wl-Wlss

WL = " Wiss - (ss = steady state) = , { o (4.3)

1

Their normal steady.state values are also presented in Table 4.3.

) These same physical variables are involved in the third order model

except that only W1', w2' snd C2' have been retained as the state

f:variables.

The-aceumulated experience on the experimental hehavior
of the evaporator. over several years suggests that its ekbsed loop .
behavior deteriorates when the gain elements 1n the feedback matrices
are excessively large. This has been attributed to neglncting nolise
' effects nonlinearities and time delays. The recomnended upper limit:

on the value of gain elements is_lO0,0: : ' L.

4. 3 Modal Analysis of the Discrete Fifth Order Evaporator Model

| Some of the design methods discussed in Section 2 b will be
A-applied here to the flfth and third- order evaporator models. 'The‘
eigenproperties of these models are in Table 4 4, The‘arnsnéement of

the matrix element is such that

!T ¢H=2A . = o (4.4)

Table 4 5 gyésent the mode controllability and mode observability 1
matrices for the fifth order model.

Consideration of Tables 4.4, 4.5 reveals that:

1) The open-loop system has twoxungiﬁiiivmodes (corresponding
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to eigenvnldcs of 1.0), -

2) The unstable modes possess repeated eigenvalues with

- »

distinct eigenvcctors." " . e

3) ALl of the system modes arg both controllable and

observable,

4) The;syetem ¢ matrices ire aimoet'diaéonal.

G

- 5) The right and left eigenvectors of the system are fairly

4 . i

well distributed in thc state space.

The'instability of the opcn-loop evap?rator.is ;ue to the
integrating nature of the two liquid levels involved. This type of
Lnstability 15 rnther common in chemical engineering systems, and

thus of considtrnblc intetest. Any aatisfactOry control systems

dcaign myst be able to stabilig. these’ unstable modes 4§§.’

o

The prescnce of a8 pair of repeated eigenvalues with distinct

r.

etgcnvcctors 1mplies that a unity rank feedback matrix cannot stabilize'

4

the aystem. This follows ftom well-known controllability considera

5 7
“ations., In ordcr to shift both of the unsthbbe eigenvalues ChL
: ™~

,designer must 91?E:t 1ncreaae the 'ank ‘of the feedback matrix or add .

'an "inaiknificant" feedback control loop [6) tolgenerate a new open-'

’

"loup systcm with distinct eigenvalucs. Alternatively }me could per-,

’ e A2

‘turb the-elumcnts uf g slightly fo that »f _has distinct LigLanIULs.

A

“ U'fu“ihc p?bximnttly diugo al nnture of the eystcm matrix may
- R ?

e .
mely that thc eigenvcctors form nlmost orthogonal sets, l.e.; the

right clgcnvuetors are nlmost orthogonal to each other nnd so0 are

,'thc left cigcnvccturn. Lonside ration of Table 4. 4 indiLJtLS that

S

: thlﬂ ts not. quitb true, The reneon for'this;is the hign numerienti

uunnttivity of the Ligenveétnrs to the elements of .the system mitrix.

L3
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‘

) Thus, by considering the system matrin alone one cannot, decide on}the
relat#ve influence of each mode on each_Physical variable. But,. with
the eigenvectors well distributed in the state space it is not dif-
ficult to see that: | | .

4 l) Wl 1is most influenced by the first mode, i.e., the mode
whose right elgenvector of the first colum of W in Table 4.4,

é) c2 is most influenced'by the second mode.
23) W2 is most influenced by the ‘third mode.

It is also spparent'that ene1canndt centrol'thevthird mede‘without
»_foectiﬁg the first mode'censiderably. Fortunately, this and similarh
interactions 3mong the system modes have not been so severe as to proe
duce unstable modes in any of the simulation studies to be dcscribed
‘ )

in the Subsequent sections.
1

o : o , - .
Next consider the open-loop response of the system to separ—

- ..‘ N o '&\ ) ) ;.
- ate tﬁenty‘percent,step,chsngea in feedflow, _F, feed concentration,

‘CF, and feed~temperature. TF shown in. Figure 4 2.° The unstable
résponse of the two holdups,"WI 'and. W, is apparent. The dis-
,turbance caused inrthé prcduct cbncentration, CZ.,.thevmaim'Variable?i

of in:erest is also significant. Thus, for any control strategy to
\SUCCEEd the fLrst, the second, and the third modes must be controlLed
! 3]

\This is also the reason for keeping these modes in the third ordcr

- model.”

The small dimensions of the system under consideration makcs
the configuration of.sthe controllergquite simple. The three measure-

ments to be taken are obvious,,and'sohare the three physical usriables,
B \ s .
to. manipulate in order ‘to control Wl w2 and 'C2 'effectively.

1

The fact that the eigenvectors are well distributed in the:

ok

. .
ki - - “
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: ‘ : S ’ .
- 8tate space has two implications on the performance of the modal con-

trollers to be designed:

1) The modes will not be highly interactiye.

/ . - . - .-
2) The magnitude of the controller, gains requimed for a. o

certain eigenvalue shift using modal control are expected not to, be 'i’"

significantly greater than that required for any eigenvalue assign—

X )ment technique. o .

%
I

The basis for the last’ argument can be found in’ McFarIane £:]

n"’

interpretation of modal control [7]

3

4.4 _pplication of Rosenbrock 8 Approximate Modal Control Method”[B]

to the Fifth Order Evaporator Model

Vs 4 .
Rosenbrock s modal oontrdi technique has been simulated in

\ . s

Athis section, This technique has the. desirable feature of providing some

a priori indidﬁ{ion of the success to be expected from its application'

-

to a specific’ physical system. This a‘priori evaluation for the

A

evaporator model has been presented in Section 4.3, It is worth noting

here 5gain that the oﬁgn—loop system eigenvectors are directionallyw

' ﬁi to, the dominant modes of the system are fairly well separated from the

'.'\ -

rest of the eigenvalues. L In facé§>the good distribution of the eigen—‘_

‘.‘
“‘vectors implies that each state variable is affected most by one.

‘ particular mode which is diffsrent for each state variable

The information about how well the eigenvalues of the control-

“'»led modes will bt assigned can be obtained by applying Takahashi et al's .

banalysis [9] described iQ~Section 2.7, Application of their analyeis

-
Lol

[9] using the mode controllability matrix, H, and the mode“observabi'ity

C ey



’matrix, ‘F, given in Tabfe 4.S_suggests that the approximate modal
controllers to be designed can be expected to assign two of the system"
elgenvalues quite well Also the eigenvalues belonging to the uncon-

“ . . {.\

trolled modes will not be moved significantly from thelr open-loop

Locations due to modal interactions Specifically, this is indicated

L

by the zZero elements of the last two rows of the H matrix and the

structure of ﬁ?e modal i' 5 closed loop system matrix of (2. 65)

shoy@ﬁ be noted thoug jfthe above arguments are only approxima*e

and unless either (2. 62 Lr (2. 63) holds, the exact assignment ﬁf any .

o

eigenvalue cannot\be guaranteed

The,availability of three measurements and three controls
Py v . }

‘implies‘that g%ree modes can be approximately controlled,#e“9{§\;?ut,

" as indicated by the applicption of Takahashi et al ! analysis [9] to
che evaporator model e will be possible to assign at most tw0 of the N

three eigenvalues of the controlled modes.

¢

After having decided on,which modes to control as described

in Section bk, The following design options are available and Will

»,

Y inyestigated in the simulation study — . - v " S -

) The order in which the eigenvectors corresponding to-the .

ep,

S controlled modes appear in :;*, and/ V which ure'used in the cal-
culation of the controller matrix.‘_p via, (2. 61) v e
2) The specification of the desired eigenvalues;“ Adl;
azand Agye -
. 3) Pairing of the open loop eigenyalues,withjthe desired }

“

.closed loop eiienvnlues. c ' S e , Ty

. - . . ,

Is
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To demonstrate the usefulness of the above»design options as
"design tools and to correlate the. system closed-loop response, the eigen-
,g\ value 1ocations, the eigenvector directions, and the: characteristits of
the contEoller matrices. - B
| lt'should be noted that in cases where ideal modal controllers
" can be designed, only the second design option (above) has an effect on
the resulting modal controller and thus on the. performance of the
resulting closed-loop system. But; in all other cases these design
“options, in general, can be used to’ obtain different controller matrices

thus different closed-loop eigenvalues, eigenvectors, and transient

N responses. L ' e

Simulation Study ]

1

In the simulation studies to be described in this and the

following sections, disturbances in feed flow and feed concentration ‘

T..;Y-

: presented comparable challenges tdﬁthe controllers, while disturbances

E

- in feed temperature were less severe. Thus most of the simulatioq

studies of this chapter wilﬂ involve feed flow 'and feed conrentrat an

disturbances only...Alsof.the pe;fomance of all of the controllers

will be evaluated by considerin 120/ step changes in feed ‘low and

: : - { : X 4 - _
RSP feed concentration beginning at time"t = 0. This provfﬁgg a common.
v~fp basis fow the various comparisons that are made

R . . »

The eigenvalue and eigenvector calculations in this thesis
have been performed on ‘an IBM 360/67 computer. For this purpose thep
double precision version of the University of Alberta Computing
Center subroutine: CSZOl based on Wilkinson s QR( algorithm [10],

- has been used. The‘determination of.the_controller matrices and

6



5
.. transient responses have been carried out on an IBM 1800. computer.

Table 4.8 reveals that the three lastfclosed—loop eigenvalues

, reSulting from all of the runs'are fairly similar. }urthermore inE}ec- N
,tion of Table 4.10 ‘indicates that the product concentration cz, whfchlis
etpe most important controlled variable, is affected'most by_the’two~'
‘mddes‘corresponding‘to the complex conjugateieigenvalues.. lhis_is one‘
3.denblenation for the small differences observed‘between the lC2v‘res—
W'fpbhsés resulting.frOm the~verious‘runs. | '
!“‘ The location of the closed- loop complex eigenvelues s fairly’
‘close to the origin of the unit circle in the z~ plane | This accounts
for the well damped behavior of the transient responses observed in Mg

every run. S &, o 7

e

Effect of Eige‘n'vector Order : B
The effect of the’ order in which the controlled- mode eigen— 1

2

vectors appear in the eigenvector matrices is considered in Runs 1-6.

1 ~ = . ‘ N
The details of these studies are illustrated in Tables 4, 6 - A lO

Figures 4.3 and 4. 4 compare the best and worse re5ponses that wereé;j'

obfained The difference_in tne.cLosed—loop eigenvalue locetions in»~

1

"'Table 4.8 1is admittedlynnot‘great althougb the' controller gains for

Runs 1 6 differ sign ficantly (cf. Tarle 4, 9) Two of the eigenvalues

R

are fairly well assigned, as would be expected from the earlier dis-

cussion; : _ ' - : T - e ¥

‘The eifect of tée order in which the uncontrolled mode eigen-
vectors uppear in the eigenvector matrices is investigated in Runs 7
and'8.. The resulting élosed -loop eigenvalues and controller matrices

_‘were identical This/is-entirely expectable Since}the_nncontrolled o

mode eigenvectors do not have any effect on the controllgr matrix



- designed.

:;besired Eigenvalues

' In choosing real desired closed loop eigenvalues two. points'
mys't be consi&ered' the absolute and the relative magnitude of the
eigenvalues§ ggms 9 12 consider the first point. It is apparent from ;'
Figures 4.5 - éﬁﬁ'that the transient response improves with decreasing

' magnitude of the eigenvalues. Run 12 is not shown since its transient

responses were essentially *dentical to those in Run 11, Consideration

of Table 4.7 and,Figures 4;

¥ 4.7 indicates that this change is not

feigenvalues.; Also, compari%wm[ﬁ
that‘the amOunt of improvemeqt to be expected by decreasing the valuepr
of .the eigenvalues reaches a limit. Comparison.of the corresponding .
closed loop eigenvaluesrand eigenvectors indicates that there is only
‘a small change in.the eigenvector directions and also in the complex

‘ conjugate closed-loop eigenvalues which belong to the closed loop modes

_most affecting C2.. This Suggests the importance cf the closed-loop\

modes rather than just the closed loop eigenvalues

.
hS

, I Similar observations can be made ab0ut the values of the gaid '
e PR ~ . m

elements in the corresponding controller matrices they appear to tend,

' toward limiting values as the desired eigenvalues become smaller
r l’m ‘ :
Another observation of some practical value, especially in ths par—

ticular case study, is that the increase in the. values of the gain 4
elements has not caused any nonminimum phase behavior which might have
_occurred.according to MacFarlane [7] - Similarly, the’ largest gain‘

elements are considerably smaller than the upper limit of l&O 0 set

in Sec%}on 4 2. ‘ "' R ‘V"‘ S T
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The second pofnt concerning the relative magnitude of the

vr".

desired eigenvalues,ehas been illustrated in.Runs 10, 13-15. Although
the sum of the tnree desired eigenvalues is compdrable the resulting

controller matricea and the closed- ~loop responses in Figures 4.8 and

4 9 are significantly different. Comparison of Runs 7, 12 and 17

indicates that the - relative magnitude of the eigenvalues has very
L

lgwhich pairing will result in the’ best combination

8,

,resulted in the best conéroller while the. cont ollers in Runs 3& and’18f7

. % ’ .
suggests that all of them are quite similar. It 18 very-difficult to. o

Small influence on the values of the gain- elements in cases where all

of the desired eigenvalues have small magnitudes. The runs considered

-

1in this paragraph demonstrates how important this design option can be

in influencing the:magnitude of the various gain elements, particularly

in cases where some of the gain elements become undesirably large.

i

Pairing of Open- loop and Desired 1 Closed- loop Eigenvalues

o

“The last design option, pairing of the desired closed loop

eigenvalues with the open- loop eigenvalues has been;considered inr

Runs 15, 18 and”l9r Run' 19, where the smallest desired. eigenvalue vasﬁ%
L . " ST
paired with the eigenvalue of thé mode influen;jng,ebth WI and w2, ' (RPN

" -~
-~ Ltw

were quite similar as demhnstrated in Figures 4.10 and 4.11. Thus égis ‘1f.;f h

“a sr

: [ ?L
design optioh should not be ignored although it is not obvious a pniors&

r

A closer look at the controller matrices given 1n Tab\e

't

interpret multivariable control laws by . considering the individual
- .

'gain elements in the controller matrices But,AextensiVL experiente

8

: with the evaporator system and the multi loop controllers designed in :

' previous investigdtions [ll 12] indicates that each gain element in _the

controller matrix has' a physically reasonable sign and magnitude with



B . ‘A . , p
; the exception of the small elements in the (1,2) and (2,2) ‘positions

which tend to change sign fromvrun to run.
~ Since. driving the modal activations to zero should eventually
‘ result in driving the state variables to their steady state values, the
behavior of the manipulated variables will be physically meaningful as
long as the modes are not highly interactiye. This has beeen observed

in all of the simulation studies of this section, ~

'Summa

~ The following observations were made’ concerning the application
»

of Rosenbrock s approximate modal control methou [8) to the fifth order

evaporator model ;

1) The product COndentration, cz, Which is thefvariable of -
greatest interest, showed a. small offset and was well behaved The .
: other state variablcs were also satisfactorily controlled N
\ 2) The manipulated variables é, Bl ‘and 82 showed in
" every run the physically expected behavior and never e&;eedcd the
physical limits ‘of the actual evaporator.
3 Two of the sxstem eigenvalues could be £airly well
‘f'assignedg Two of the other egﬁgnvalues &egenerated into a complcx .‘.
_ conjugate pair which changed verﬁ’little from run to run. .
,‘i .4) As the desired eigenvalues.approached the limit zero
the closed -loop eigenvectors approached limiting directions Similarly,

the gain elements in the controller matrices approached limiting vxlues

- which were reasonably small,

9) The closed- loop dominant modes were those pertaining to

a"

- the complex conjugate. eigenvalues. Since thése eigenvalues cauld not be

directly af%fcted the corresponding responses were similar in every run as

‘ R ’ T <
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noted in point 1.
'10)  The choice of desired closed- loop eigenvalue locations,
ordering of the controlled mode eigenvectors in the eigenvector matrices

and the pairing of open-loop and closed -Yoop eigenvalues Proved to be

‘

useful design options

It is very difficult if not impossible to generalize the

details of the evaporator results to other systems. But it 1is possipfg
- ]

g

. to{draw some general conclusions: ' ' oo
"l)” In systems with we&l dlstributed open- loop eigenvectors
and well separated eigenvalues Rosenbrock 'S approximate modal con-. ™

N _

2) If one can. also manage to design a control law with

troller {8] is expected to. give satisfactory results(\

'distinctly dominant closed- loop modes with desirable eigenvalues the
performance of the closed loop system is: expected to be very satisfac—
- tory unless the remaining closed- -loop eigenvalues possess very undesir-

able locations

4.5 Application of Takahashi et al's Approximate Modal Control Method

l;] to the Fifth - Order Evaporator Model

Takahashi et al's. approximate modal control method {91, which
 has’ been dcscribed in Section 2.7, lacks a theoretical hasis¢for pre-
dicting its suitability for constrolling a specific system Thus it
seems rather pointless to attempt a detailed stud) for a specific svtem.i
)Consequently, only representative results were_sought in thisfi%;QStl'f
: gation. |
| nll of the design freedonsldescribed and‘evaluited in bection

4.4 exist for Iakahashi 8 method, too, But, ;hdre only.the third

o
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o

design;option has been evaluated. Experience with the various options E

“in Section 4.4 has suggested that this option has the greatest
AN

influence on the response characteristics of the closed loop system,

The order in which the eigenvectors appear in the- eigenvectq;\matrices

has been selected as the order used in Run 1.
Takahashi et al's method [9] allows the option of assigning
all of the system eigenvalues. This was attempted in Runs 20 and 21.

Table 4. l3 indicates that although the eigenvalues have generally been

> **shlfted in the appropriate direction‘the elgenvalue assigne"_nr is

very poor. The response characteristics in Figureeéﬁ.lz ari 4. iﬁ ire : ﬁt

also worse” than any Of the ones obtained in Section 4.4, In Runs 22
and 23 two. of the desired closed- loop eigenvalues wvere specified to be
the open—loop eigenvalues of -0.1921 and D 438 (i.e., only three of the

open- loop elgenvalues were to be changed).

BN Table 4.12 and Figures 4.12 and 4.13 clearly indicate that -

although five eigenvalues are shifted this strategy has significantly
1mproved the response characteristics since the response times and .
offsets are reduced | 7 _ f

The.results in Table 4 13 indicate that it is very difficult
to‘see a trend in how well the eigenvalues have been assigned. hSim—

' ilarly, it,has not been possible to observe a’trend in‘theiclosed-loop
eigenvectors wnich are therefore not reported Consideration of
Tahle 4 14, on the other hand is very informative‘ Runs 20-23,

_ alth0ugh performed for different specifications of the desired eigen-
values have resulted in very similar controller matrices. This may '
have a mathenatlcal explanatlon since these controller matrices rep-

resent_the least squares solution of a set’of 1inear algebraic eduations.

- w
N

-

. - "»' P - 7'> . ) »;
. I~ . s
T N K -
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Apparently these equations are not very sensitive .to the desired eigen-

values used in Table 4.11. It is possible that use of “the several

design freedoms de5cribed in' Section 4.4 can significantly affect the

&

. value of the gain elements and could help to improve the poo::;j;ﬁsponse

characteristicsg observed ' o =

A clos§¥ look at the controller matrices pertaining to the
first four runs of this section indicates that gain element (l,}) -
in’ % \relating product concentration, C2;l and steam flow rate, -§,
is much smaller than those of the previous section ( In Run 24 this.
_gain element has been assigned a value qfxt—l0.00.' The drastic improve-j
ment in the response characteristics (cf. ,'Figures 4.12 and 4.13)
indicates that intuition may be.helpful, even in multivariable control

°

~ : , .
4.6 _pplication of Model Reduckion and Ideal Modal Control to the~

Fifth Order Evaporator- Model
) ~
. In Section 2.9 ie wasvnOted that model reduction offers an
f

'alternativefto the dpplication of approximate modal con;xbl techniques.

T
p z,.g?.-:-}.

Specifically, thc designer can generate a reduced order system model *

with the same number of state'variables as control and output variables et

which then .can be used to design an ideal modal controller The
application of the ideal modal, controller to the original model w1ll

form the real test for the justification of the approach used Many

[

model rcduetfon tethniques have ‘been proposed in the literaturt But;

since the resulting model will be employed to design an ideal modal
" >

control]er Marshall ] [5] model reduction technique based on “the’ modal ..

. <
. chardcteristics of the system has been. deemed the most suitable

Reduction of “the fifth order evaporator model to the third- ‘

¥
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*- " order model described(in Section 4.2 generates a system with 3 states

. N . R 7
s "3 Outputs, and 3 ¢ rols.- Thus, the application of the ideal modal o ff\

N 6control technique described in Section 2.3 is possible.

L Lf";:.\,’ " .";’{L . ’ (

Tho simulation~studies were performed in’ whieh the desired . +
*"”, e eigenvalue sets were' } : T , e
. . . >g_?‘>}v . -:’."3 ‘ “ o i - v . . s
. - =, {0.0000% '0.0000, 0.0000} (4.5) Y
: Yo : 2 ‘ , -
' . R R : Bo .
. and e RS : -”??

< ‘ ‘-.'-{:‘.;), A ~~-u “ : 7 . T ’ _‘ : [N o
A ‘{Ofg;;k, - 0.0005, 0.0004} . : : (4.6)

The resulting third order closed- loop matrices were exactly aSsigned

<

these eigenvalues and the closed- loop eigenuectors were identical to
* . E
the open—loop ones. Similarly, the resulting controller matrices 1
. . .
‘ ?ere: o A_. o o ’ : ' '
& / . L S _ -
M,‘i;" o : \,F7;729 - 20002 " -13,63
’ " . : ; : o Ty . : e . S
, ‘ .“ Qb = 1'9.233 -.0000 5,465 . : : S (4.7)
. 12.23  24.61  24.14 .
” w . . ’ . - . -l
and . ' ' '
Ve : [ 7.639 -.0491° - ~13.63
D¢ o= |oazs coosor os.es | L 4.®
12.57 24.79 | 2&.13 ) SR
- ' J : - ' :
At this point one might note the similarity of these controller matrices
to each other and especially to those obtained in Section 4.4 for small
ezgenvalues. }¥}_ .
Two tests were applied to eValuate'the'sucqess of this
" approach: . vhi; e - ',“ o ' ( ' Y
. o _ 1) Determination-of the eigenualues‘of the fifth order closed-
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“eigenvalues of ‘the fifth ordermclosedfloop system matrices were:

and .

' good

o I 87
\ . ’\ . \/, . A ‘ a
: _ ‘ - : . P
loop systdm matrix resulting from the use of the controller matricer in
. s . . .
(4.7) and (4.8).

s . . o ;v ot N

-2) Determination of the closed- loop response of the fffth
(¢, o

order model obtained by the- controller matrices of (4. 7) and’(4 8). ¢«

- The results of these tests were very satisfactory The~\

1 AN
A

{0.001, 0. 901 .ho -57620.5621,  0.898) . {_ . (4.9)

{0.002,  -0.005;" 0.577+0.5611, 0.898} . (4.10)

They" are by no means identical to the eigenvalues of the third order
closed ~loop system matrices but they are certainly much better than:

the open-loop system eigenvalues. Thé closed~ loop system response

AN

to  F, CF,‘ and TF disturbances was almost identical using these two

.S

AR

*’controllers. As depictedaby Figures 4. 14, 4 15 and 4, 16 the closed loop

responses obtained in tbis section are, better than any of those obtained

"in Sections 4 4 .and 4. 5. The offsets resulting from the two studies of

g

this section were -0. 002 0 007 and 0. 004 for pF/' CF, and TF

disturbances, respectively.

s _ _
The success of . this combination ionsisting of a modal approach

A

to model reduction and. ideal modal céntrol can by no means bergeneralized

'to other applications. Specifically, one cannot claim that this.‘

/

,approach is superior to the approximate modal control techniques of
?
'[8 9] But it is possible to say that whenever the open- loop system

: possesses well separated eigenvalues and well distributed eigenvectors

the chances of this approach providing satisfactory results are quite

>
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4.7 épplication of.the‘ﬁew E1genv§ﬁue Assignment Method to th

[

Fifth Order Evaporator Model

/ ; ™
In this %ection the eegenvalue a551gnment algorithm developed

in Chapter Three has been applled to ithe “fifth order evaporator model.
- This- algorithm allows the designer to a551gn (mrtr— l) eigenvalues of

a system provided that it fulfills the sufficient conditions of the

proposition presented in Chapter Three. Since the evaporator model C

)

fulfills these\conditions %f was possible,to\assign all of the five

¢ .
of its eigenvalues. £ \\~A.

—

The variousasteps 1nvolved in the application of the method

to the evaporator. model have’ been described in Table 4.15. VYectors

-3} and By ‘refer to the column vectors involveo in Step 1 and
Step 2 of the algorithm- and the asterisk superscripts desxgnate

o

those eigenvalues whose modes have been made uncontrollagle in Step 2
. N - W

of the algorithm (i.e., these eigenvalues were a851gned 1n Step 1

and did abt change in Step 2).

Initial attempts to applv the algorlthm*to the evaporator

model encountered the dﬁfficulty of generating hlgh gains in the

' ;controller matrices as 1llustrated by Runs 25 and 27 . The controller

639

matrlx g 25 shown in Table 4. 18 contains gain elements é%&tn are

unacceptabl large for the satisfactory cbntrol of the actual e\apolator.

. As noted by Fallside and Sera}i [13] the magnitude of the gain elements

in “the controkler matrix depends on the ratio of the elements in the
. . _}."

B vectors. Since the choice of g1 is arbitrary as long as the
corresponding equivalent system remains controllable thlS des1gnvx : Lﬁ

freedom can be used. to reduce the magnitude of the gain elements The

controller matrix obtained in Run Zb ha§ resulted from an exten51ve

'(u'_ |
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s
_ trigl and error search for such a B;- .Alphough most of the gain"
elements’ of Run 26 are c?nsiderably smaller than those of Run 25, one

of them is still greater in absolute value than ﬂufgiﬁtt of 100 00

set in Section 4.2.
Rather than assigning m .of the sytem eigenvalues simulta-

aneously in Step(lﬁ they can be- assigned recursively, one or more at

a time. The question then arises: as to how ‘gl should be chosen for

: ' K J‘
each recursive g’?: of Step 1. In dyadic state feedback methods where

" pairing of closed—loop and open-loop eigenvalues is possible Simon
e ,
¢ and Mltter s [14] strategy of choosing _g so as to maximize the con—‘

trollability of the s?ngle eigenvalue to be assigned can be employed

. (cf., Sect%n 2. 4) However, in output feedback téchniques one does .
not have a priori knowledge about which open-loop eigenvalue will be
n

ishifted to the desired ‘closed-Toop . loc\tion. Thus, a modification of
' Simondand Mitter's approach [14] is needed;v‘ ‘ :

The unique strategy adopted in this thesis uas to perform
v-Step 1 of the algorithm developed in- Chapter Three such that only one ’i‘ﬁim

eigenvalue would be assigned recur51vely._ Thus, rather than assigning‘

three eigenvalues their desired closed-loop locations only one was- . 'ﬁw7il
assigned this value while the other two were. assigned their respective

‘ open—loop locations. The three possible gl s: fulfilling equation

(2. 55) were then tested ‘and the one giving the Smallest gains %as used

in the final-design._ Ic should be noted thOugh that in most of the
runs. only two recursive steps were performed in Step 1, since<the
v'resulting eigenvalue locations were deemed satisfactory.

Run 27 . and Run 28 clearly indicate the success of this

approach in reducing the nagnitude of the controller gains. In fact,

-

e



in all of 'the rﬁhs where this approach yas used, none df .the controller'

- : [

'matrix elements exceeded;a value of" 45 for the desired e nvalues

under consideration However smalIér.desired eigenvalues<ij§hlted in
‘larger‘gains, as would be expected. . ;
The majoridesign‘options in\this eigenvalue assignment-method‘

are:

.l)>'Choice.of the dgsired closed-loop eigenvalue locagions.V
;' o . é)‘,Choice of fheh{gfsh'to be‘useﬁ;

3) Choice of the number of recursive substeps to be used
in Step l of the algorithm o | .4‘ ,0'

t

" The. second design option has been utilized in order to

ensure gain elements of reasonable magnitude in the controller matrices-

A d

as de8cribed above

Runs 29~ 31 illustrated the fact that both the choice of

desired closed ~loop eicenvalues and the number of recursive steps

4 ATIRY

used affect the clo ed ~loop transient response characteristics con-

siderably.A This is n ‘agreement with the arguments puéyh'rward in |

' ‘_Chapter Two: tk'resp nse characteristics of ‘a system are not. only
’governed by its eigenvalues but. also by its eigenvectors whose direc- :
.tions depend on the type of eigenvalue assignment scheme“employed.yb
It is obvious that the choice of the g_s directly affects the'clqsed—
» loop eigenvectors but the analytical relation between these variables
is not known, yet. ii | |
"Runs 32- 35 are presented to indicate that even comparatively
small changes in one of the five closed-loop eigenvalues of the system

'can result in considerably different response characteristics as shown _'

in Figures 4.19 and 4 20
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R v Runs 36 and 37 depicted in/Figures 4 21 - 4, 24 are the best

¢

: iresultS*obtained in a large ﬁumber of applications & 100)'”of the

. new algorith to the evapor éor mgdel The reason for their inclusion
- ’ ) $
in this thesis'is-tozponvi ce the reader that eigenvalue assignment

-
can give excellent results if one is prepared to ‘make exhaustive use

of the available design options.

Runs 38 and 39 use only the first part of-" Runs .36 and 37,
Tespectively Figures 4.25 and 4 26 clearly indicate the need of
using a recursivé scheme in this particular application where ropeated
veigenvalues.wiéh distinct eigenvectors occur. |

e

of the eigenvalue assignment technique developed in Chapter Three to

/-/

—

following observations are made concerning the application

-

. \
the evaporator model :

R § I 5igni£icant variations in: the controller matrices and

the- closed loop transient responses were observed.

2) CF disturbances were ‘more severe than 'TF and “F dis—

‘_turbances and generally caused significant offsets 1in the -m lled

-‘variables. This was due to? he fact that in every run the steam flow—

rate reached a steady state‘below its normal steady state value rather,

.‘x

than above it. Bl and ‘B2 were always properly manipulated

_3) By changihg the value of a small set of desired eigen-

“‘- SR,

‘values, one could always reach a satisfactory closed ~loop performance.

4) Use of a greater number of linearly independent g's: inl
‘ recursive steps in general tended to equalize the magnitude of gain
4elements.]‘ ~ o S ' :‘ -
bth) The large gain elements used in. RLn 29 caused some

overshoot to the feedflow disturbance.

‘;

~

b
KO o

-LEE

ug



' Assign max (m, r) of the system eigenvaluesﬁby the f‘i'”

application cof Step L of Ehe algorithm described in Chapter Three
i (\\) ;

i
'

2% Determine &) or Ej by the application of Step 2 gf /,. }
; Y

; 2 - 25 : r,.;{ o
h‘tsame a@gorithm in order to protect. max (m—
RS .

E)
3

<r—l) of_the alreéd&

ned eigenvalues T o : I

' mﬂ.‘ \'u
3) APPIY Jameson s [15) approximate eigenvalue assignment "‘jﬁg%iﬁo
.¥niQUe by employing By designed above. This approach wﬁql oL “”ﬁfyj‘
A ot *‘\.r\\ ) .

) WO v ¥
minimize the objective function defined in (2 73) and approximately

assign those of the remaining max (n-m+l - r+1) system eigenvalues

uhich belong to both controllable and observable modes
=

4.8 Conclusions B i . - .
£ '"““““’<\<A ‘ ' ‘ ' < :
In this sect\on\some of the more important observations made

: in the simulation studies will .be ;ited “.Their interpretation and7

correlation will be presented in Chapter Five

Controllers derived via the application of Rosenbrock'

2 -
'approximate modal - control method [8] produced closed loop systems with -

-

S o similar response characteristics for any set of de31gn options and

'disturbancesconsidered The location of the desired closed loop

g



. ) ' ' o : ‘3“'

eigenvalues was the most important design option.. Specification of

¥ ..

smaller elgenvalues uniformly improved the response characteristics

of the system but this improvement was not limitless.

W)
'S e

Controllers derived via thewapplication of the eigenvalue

a551gment method described in Chapter Three resulted in closed—loop

.

systems with drastically different response characteristics for each

‘set of design options and for differeat disturbances. The specification
’ .

of the g vectors and the number of recursiqe'steps employed greatly
~affected the responSe characteristics of the closed—loop system.
The gains in the controller matrices of the eigenvalue

assignment technique were in general , higher than those of Rosenbrock s

R [8] method for the same set of desired closed—loop eigenvaluegﬂ

.

Sufficient patience in the use of the various design options
a@allable in each method allowed determlnation of controllers which

prov1ded good response characteristics._ In fact, for the disturbances

‘employed no serlous need appeared for the addition of integral action.
This may, ‘not hold though in experimental studies uhere nodeling errors

-

and noise effects become important.
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.Run v
Number

10
11
12

13

14

15‘..

16
17
18

19

~
-

TABLE 4.6 -

-‘edal Control Method [8]

, Ordering of Eigenvectors*

. *
" The eigenvectors

Design Specifications for Rosenbrock's Approximate

94

[ 5

Y2 ¥y A ES. 0.3 ;-
¥o¥y ¥, wg 0.3
209 'ifa 35' 03

LAY "‘32‘ 34 L8 0.3
'33;3}32 % Y5 0.3
MY, o u 0.3
LF 33 ¥, L o.oooqs
32 ¥3 f wo w, 0.00006
Y, ¥ -5 0:8

L - "Esiv 0.5

My My ow, g 0.05
:b' ¥ 0w, ,35  of09005
M ¥y o¥, g 0.5

¥, WyoW, ¥ 0.1

2 ¥y E, ¥ 0.4
vpowy Tw, ¥s 0.6
LS g;";gs . ‘0.0004;
My ¥y oW, W 0.0001
¥, | 33[‘936 !5 :O;A.

\\Q:ttix ¥ in Table 4.4.

; besired Eigenvaldes ;

- 0.5

0.0003

0.0003
0.8
0.5

‘ 0.05

A3

0.001

0.001

0.6

0.5

- 0.05

0.00005 ° 0.00005

0.4

0.4

0.0001/

0.0001

0:0001

0.4

0.7

<

:  0.6

0.7

©0.0007

0.0007

0.7

©.0.0001

¥, .nay 35. are the cofresponding‘édlumng.Of



. " TABLE 7
o

Response Characteristics for Rosenbrock s Approxlmate'

Modal Control Method [8]

Run éorrespondlng o - Offset in c2' ; ; Offset in c2'
_Number Figures . for F-. Disturpance . for’ CF DistUrbanée

By 43, 46 o013 V‘._{f 0.014

2 N | -0;013 7 o0

3 ' - 0.018 | _ ~ 0.020

4 L -0.013 ;){ . o.ow

5 | ' 4 »;o.djo o S 0.033 .

6 8.3, 4.4 ~-0.03%0 10.033

7 o -0.009 " : 0.0
8 | | -0.009  o0.010

9, 4.5, 4u6, 4.7 ;, B 048 _
10 4.5, 4, 4.7, | -,. | -oﬁqlé . osz
4.8  and ,4.9 . ‘ ‘

11 4., 46, 427 0 -0.009 0.0106

12 o -0.009 o 0.010
13 v'4;8, i.9 | o 0022 - 0.025

14 Yy -0;036 0.033
15 4.10, 4.11 N -0.030 0.033

16 .7 w09 . 0.010
17 a"? . ( S ~ow008 S oo™

18 R ; ~0.030 - - 0.033 

19 4:10, 4.11 , ;T:A{0.699_’ff: i - 0.010

e o o |
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(> - o » - TABLE 4.8 T

L 3
&
1
A
.”"i/‘ :l:
<
v-o,
o

N ! Actual Closed—lo;)p' Eigenvalgis for Ro's‘gnbiloclf's.([‘é] Lo,
' s APProScimate Mod;l Control[Mgthod o : @ o
Run Number _ . e | Closé\d"—l.oop .Eigenvai’dgi. L (
o . 0.520  0.607 0.6573633542 J 0.897
' )2 R ~0.387 o oLszslw.'o:697:o.é9}1 0.895 - )
3 \k> 0.383  0.708 G AR, 2581 . 0.805
A 082 0o Yo e 0.885 D
5 0.441 5.7bs - 0.896
e ous27 0.776 . 0.532;0.171i _ 0.885
oo 10.000 --0.001 0,620;0.4441 :;‘0.898 ' :;
N 8 L 0.000  0.001  6.620+0.444; - 0.898 '
| S .~ 0% o.szjxiy'o.'79£o,0351 © 0.538 :
!\‘10 . 0.486 '0“509.  0.67220.242; 1089 B
o 0049 O.Q<E‘;:'O.62530.4311 0.897 :
12 ©0.000 © 0.000 0.620£0.4471 . oagés
. 13 L o 0.419  0.555 "0.65319;1541"M'0.892
% b.om 0.774  0.535:0.1611  0.s8s
15 0.500  0.779  0.31120.139; o.ésg
1§, O 0.000  0.412 0.61820.4501i - 0.900
10.000  0.000  »0.62810.439' 0.982
Q8f023 0.774 0.53620.16 0.885 -
"0.428-‘;,0.005 ;4 0;304i0.3421;ﬁ< o.Sés{f:y. | ’
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\(n’\‘. | Y TABLE 4.9 s ’ ‘

N NN ,C“\ Controllefs for Rosenbrock ' s Approximate

.. Maodal Control Method [8] - Lo ’

- - : ’ ) - o X ’
2.589  -1.038 -6.465 o [si625 2017 aisiy (}/ 4
4.936  -1.979  2.950 | 6, = |6.919 '-3.958 " 2,048 S

L7546 ‘4.360 - ~12.99)' 10.56:  1.33  9.0o11 | 'é/{
r11554» ' 2,077 4,497} I.554  1.038 -6.458 —
2,962 © 3.958  2.074 Y6 = |2.962 1979 20963 | -

[4-527  23.28  9.126 | - Jes22 15,33

[4-527 23, N R K 3

r Z/ ) 3 . .

3.625 1.038 -2.551 3 B ‘§%589’ '1.038
6.910 -1.979  11.59 Gg = |4.936  1.979

J10.56  9.283 5-148 [ 7.6 2026 s.1ms ]

' \ ° ST o \ e

ﬁs.lé@» ‘—;0049', -9.394 | [5.178 -.0049 ° -9.394
9.871 . -.0093 -.4.208 | - Gg = |9.871 -.0093  4.208

509 258 - 1sos | - lisoe  a4.sh . 18.95 .
| | N

v . . , TE

. A | L E
1.043 o000 -15.28 | - Taszg o000 ~4.491 | -
1969 -.0000 ..7257 | g . =14.93 0000 +2.061 o
3000 4.926  3.207 o 7556 1.232 “9.103’J i_
4.956°  -.0000 - -8.981 - §5-216 0000 - -9.474 | ;

=197354  .o000 - 4.121 6, = |9.826 0000 4.347
16,26 23.40 18.20] L}4;99, "24.63  19.20




it

. =174.923,

7.497
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3.107.

=]s5.923

9.055
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15.08

-
.

~}3.107.

= |s5.923

= |9.867

- 19.055

. . R
>
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" Table 4.3

R
aq

12,608 1252, 3554

,//.é§7é-

15.14

2.076

3.957

30.67

LA
.0016 .

.0030

%24t62

L -1.156
~2.969

2.847

@

k)

s 4

N

L

>

LA

' T.632

8
7.219
' <
~2.540 | -

N

3.107

-
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Vo
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|.8.885

e

v

5.923

. ) é
9.054

d

:5.178\’J557676

19.871

—

115.09-

L

4.661

13.58"

\ '
(contifiued) | S

- .
’ .

~1.557. .

?-2.969
«#°10.23
_2.076

3.957

i ‘s

30.67

-3.957

8.721

' ~9.383

-y

~2.552.
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-Rum'1l - -

"Run_Z. -

‘Run 10 -

TABLE 4.10

Approximate Modal Control Method (8]

]

Eigenvalues: -

0. 502

0. 607

0. 657*0 2691 0 897

Corresponding Right Eigenvectors (columnwise)

-299  -0.082  -—0.04d:0.4321 °  0.592
-0.443 ~0.084 ~0.01920. 0321 -0.005 .
0,323 " 0.617 0.04220. g/91~\\‘ -0.051 ° -

0-053 © -0.138 . -0.035:0.3061 1-.0.795

©0.779 0.766- - 1.0 20.0 1 . 0.128

.Eigénvaluésr : ' . v

1 0.287 - 0.6Z5 . 0.697+0.2011 ~0.895

Corresponding Right Eigenvec rs (columnwise)

- 0.745 ' 0.036 -0.03320.0161 0.005
10.295. 0.074 W14420.4401 -, ro. 609
0.106 ~  -0.694 0.004+0.3721 0.055.

-0.047 - -0.147 . . 0.06620.3581 -0.780

.0.587  _0.700 1.0 20.0 1 . -0.136

EigenvolueS". . : _

0.486\ - 0.500 0.672:0. 2431 0,894

Correspgnding Right Eigenvectors (columnwise)

-0.287  -0.640 0.107+0.152% -0.019

03914 -0.622 - 0.177+0.2491 -0.033

20.288 ~  _g.451 ..-720.42:1 20,610
0.000 . -0.000  -0.003:0.3231 -0.779 .
0.000 - - -0.000 . 1.0 0.0 i -0.139

-

A"\..

loop Eigenvalues and Right Eigenvectors for Rosenbrock\s \fK
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»~ \“
. - ss;) . N
Table 4.10 (continued) ' ! o ;
Run 11 - EigenValues:' ‘
0.050 ﬂ,o.szszo;uu,  0.897
Corresponding Righ ,Eigénvectors,(columnwise):
0.015 0.520» 0.117+0.0881  o.015
-0.993  0.763  0.192:0.1431 ©0.027 © .
-0.120 0.385 ~0.15520. 4001 0.5824 &
0.000  0.000  -0.161:0.2551 0.803 ’
' (0-000 . 0.000 1.0 :0.0 1 0.127
‘ ' J . : s
Run 12 - Eigenvalues: _
0.000 0.000-"  0.620:0.4471 0.89s
; Corresponding»Right Eigenvectors (columnwise): ‘
-0.038 . 0.878  0.117+0.0851 . o0.015 .
-0.988 ~0.046 "+ 0.192+0.1381 © 0.026
) y 798 ) . 9028,
;. <0148 0.477 -0.169:0.3921 .,  0.580
| ©=0.000  0.000  -0.16820.2491 (/’81804;
® 0000 0.000 1.0 20.0 1 0.126 -
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TABLE 4.11

Des'ig.n Specifications for Takahashi's Apprqxiniate '

_ Modal Control Method [9] \.

" Run Number o Desired Eigenvalues '
- 20 007 006 0.05  0.05 0.03
.ﬁ;&i 21 0.00005  0.00004 10.00003  0.00002 0:00661
;é o 0.07  0.06 —.0.05  0.92155 0.43845
23 £ 0.00005 . 0.00004  0.00003 0.92155  0.43845
24 007 o0.06 o.os.. 04 0.03

@
Ko
o
2 5

107
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TABLE 4.12
s Rgisponse Char{cteristicé for Takahashi's Approximate
Modal Control Method‘ [9] '
: T .
" Run Correspondir;xg Offset in (C2°' . Offset in (2° ‘
Number Figuresq, . for F Disturbance for CF Disturbance
20 - - 4a2, w13 _orer . 0.087
21 o . -0.162 . 0.635
22 .12, 4.13 ~ -0.091 C o 0.049
23 - . | -0.091 . 0.049
26 402, 413 -0.018 . §.009

1',




“"Run Number’

20
21
22

23

24

0.

0.061
0.000

0.020

10.014 *

TABLE.4.13

~ Modal Control Method [9]

" Closed-loop Eipenvalues

0.148
0.088
0.092

'0.086

0.926+0.0301

© 0.92420,0304

0.89520.0411

0.895+0.0411

-—

'Clbsedfloop Eigenvalues for Takahéshi's Approximate

0.466

0.467

0.507

0.508

109
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‘ TABLE 4.14

o

Controller Matribes.for'Takahaahi's Approximate

w
" Modal Control Method [9]

7758 ~.2997  -.4112] o [eaas -.3242  -.4357

Gy =|8-768 . -.1196 3.270 Gy =[9-427 -1sas 3452

16.14 22,60 8.9971  li7.36  23.99 9.501

. -7 . L . _ - ' o

N

-/»' ) R - = ) " . : -

1.013 . -.0570 -1.243 - |1.020 " -.0576 -1.249
G 72376 -.1309 33721 g =[2-441  -.1362 3390

e 2367 9.996 | . 37.23. 23.81  10.05
_ AR ‘ . T

r -

7758 -.2997. -10.00

G, .=18.768 —.1196 ©3.270

16.14  22.60 8.997
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TABLE 4.16
Response Chira’cterist:ics 'f-or Eigehvaluelg: :
.Assignment He;hods S
Run - Correspon&i’dg . Offset im C2' . Offsdf in c2°
Numbers | <Figutes for F .Disturbanc_:e fér_' CF Dj.stu ?ance
200 4.y, 4.18 -0.004 * g 07154'
%0 47, s ~ 0.010 o 0.201
_4//J 3§i o 4.17;, 4.18 : 0;054 J ) - 0.054
EYS .'_ 4.19, 4.20. 0.090 o  0.085
33 . 4.19,>'4;éo  o.0s0 | 10.067 .
36 409, 4;20,  -0.013. . o.o3s
EI 4.19, 4.20 9056 o.018 .«
36," 4;21, 4.22 - ~0.016 j_‘, ' ~0.003
37 .4;23,5 TR 0.003. -~ 0.001
38 425, 4.26 unstable N ynstéble‘
39 | | A~va,25, .g.ggf ; - -0.004 "', " 0.086 B



25 0.3
 .25 0.3
it "} 0.0006

28 0:006-

29 0.7

- 302 0.7

Vji . C0.7

32 ' 0.006

33 0.006

34 1 0.006

35 ' 6.006

3 [

37 01

38 0.6

39 0.

" TABLE 4.17

Actual Closed-loop Eigenvalues for the Eigenbélue -
' Assignment Methods

Run'Number 

Closed-loop Eigenvalues

0.4
0.4
0.0007
0.007
0.8
0.8
0.8 
©0.438:
0.438
0.438
‘0:438
0.2
0.2
0.7 A

0.2

0.5
0.5
0.5

0.5

- 0.62

©0.75

0.62

0.7

0.6

0.4

0.007

0.7

0.3 .

1.0 1.0
1.0 1.6
1.0 1.0
_ 6;92910.0731’
0.72 0.82
0.85 0.9
0.72 p:sé
0.8 0.9
0.8 0.9

0.8 0.9
_ ‘ »

0.8 0.9

0.8 0.9;'
’0.85Q:o;d751

0.97 1.0

0

.95120.0511

118



27

'8.204

8.204

12.13

fQF;3066'

7.637

8.884

=| 6.550

' L-'.2954 »

|-16.69

22.18

I-4.991

8.204.

12.13

12;13,

i
13.42

19.11
6.575-

9.659 .

-170.7 -

-170.7

' -170.7

- -453.9

-453.9

-453.9

22.11 .
-66.30

-80.18

13.43
'5.234

4.914

26,45

3.955

' 20.88

-14.75

" 21.81

4.022

~163.4

16.60

=55:51.*

TABLE 4.18

q
-163.4

qflajv

—4ht . 4
~444 .4

-444 4

-66.83

20.80 -

10.76 |

 4@53J ﬂ

39.87
10{87,

27.94

-37.53
44,61

-3.733

r

r

‘Controller Matrices

55.13

5
1 2.344

2.344
[

21187
2.965

3.087

l4.009

rv.
b 464
12.96

3.666

7.538

.0116 -

.0290

19.86

25.00

12.07 .
U

. .
1.664

5.786

-.0123

-58.26°

-.0307

16.79

14.77

16.79-

Z2.268
-20.64

- -23.52

©33.23

.9010°

23.66

9.597
11.20

- 13.99

. -6.485

- 10.49

" 17.60

. =1.002

~18.14

52.60

8.204

- 24,67

. 25.93

-.0401

-190.4

22.05
22.05

22.05

-4.354

-16.27

5.319

33:15

14.98

-8.227

20.36"

119



peo
10.65

= |6.725

[~
6.235

7.125

6.235
L

L?.667

5.436

9,359

18.84

20.30
. 8.015

20.30

[

Table 4.18 (conﬁinued)'

heY

12.20
24.08

22.37

21.27

23.26

23.26

2.458
2.458

2.458

o T

-8.662"

-8.662

-8.662

120

—8.500'11
-8.500

-8.500




m Amocmpp:umg mUV wmmum wzm.n:uwm jo. - : Amoampunumﬁn 1) mamum mimusumm uo SR
Taquny pue .sanTeAusg Iy PRITsaq jo uukum 8T° v mu:mE umpssz vcm sanTeAualdyy paatsag jo 399333 : 4 mu:mwm‘
: © S3UNIN z» wE. R , . SEUNIN NI u‘E
- S - R - S - va = o .

| ,, : . ...,fn

<4
4

ey —
0f umYy — —

O pa—

" " "
14 > T v




122

30 N BUVIWY
ro I - 1

Awu:mnu:uman d) msam>cwwam

poi1Tsag auQ JO UOTIBFIBA usu 30300339 . 61" Y wu:wwhm
‘ . SAMNIN NI N , _ . SANIN NI L
09 .8 E pa =i -0 09 - N pa
+ %o (1] T :
8 hy=

T : m

4 .m . o . uv,uw..t o
= vr.*n.wumvn}mu wh.ﬂlﬂhﬁl«.uﬁuv\ﬁ/ Sy I
5 | T E
2 : .m

4 z { iy

+ T . ..<r + + ;

ﬁu.qllll‘{ilj\l L e e e
. ’ m 4. 4.6 m
?m s e RIS o S| : . z
& . 4+ [ 4 :
g ’ 4° 3
- , A r e r et . N
s e R e e S A T e o W : I.III.IIl.lllll.l..\\ A= P 3
. g D IR ‘
9 1 J o . e
. o = =
) .
+ + + -+ . SN + s — ;

A



123

o2}

C UKD AL

&

a3t

At

le

(soueqanistq  JI9) ,oaﬁw>cmwﬂm
po1ysaQ duQ JO UOTIBTIBA dU3 JO 109333

SAUNIN NI' NIt
= .. ve ;T -0

—

)

2
NINET NI W14 'vw;us ,

14

6g uny

€ uny
Z¢ uny

. x.b
i’ N e e S T M
) r-
o w
’ N b=y
| I
T— et — L )

he uny-

o e ® w2 -1 0o

0Z°% .@andtyg
SAUMNIN NI NIl

. —— - M— —— —— ——— —— —— — ————

+ 4+ 0+ + + A+

ot

QI 2 NI AOND

6.

b

P



124

\'1 . -

Amucmnuzumﬁn J9) mu:am>=uwﬁm : . Aoucmnu:umﬁa mv na:am>comﬁm
aooa pesol) 1vay .cwﬂmma H:uamwuu:m vy mpsﬁqm mooﬂ ~pasoT) ey ‘u8tsaq Hnuammuu:m v HN 4 uu:wwm
) SAIPNIN NI L ) COSAUNIN ND DL
03 - & = va o o L e w S a2 .0

4+ o ) + TN -
- w . . m
ol —4
cA = .
—t . —
| R l. - fr2
" |b | m N . . \‘ . m
: Ao Gl
. @ A N %
+ ..-E 4 4 ..D.m
. .
L}
I | L

-—(

ot
WD T NI NND

y

ot
TOAY N NOND




'125,

[ - L ~

(93110qan3IsTd 49) mmaﬁm>cowam .door-pasoTy v _ Amucmnunumﬁn 1) mm:am>aowﬂm aooﬁ vuoOﬁo _
oy 93ednfuop-x%ardwo) ‘udysag Tnyssssong v vz q 2an81g . oumwsﬂcounxmaaeoo ‘udTsag (nyssodong vV €Z°Y mu:wﬂm
- W.E.ZN: NI L v S3IMNIN ZN Ny .
B - x: 1 3 3 va L A o . . 0 " E Tve e T
l/ L d LY o ;r B ’ ’ ) +V L
m, ‘ . =3 B
- A - 5 . m
i L e A, . JiE
m 7 . .u . - I«‘," M . ﬂ) N I‘\V‘/\. .N
+ i L.E % 4 ..E.
,,\.\ ’
Y , ; .
9 + 0 + . ] . ... MA-.G
\ 8 18
gv vm m ; -+ e . ,v . vm TNA
+ ..vv..n -+ - o . .-nm



126

Amu:mnu:umﬂa

\31103—m>:1m~m 991yl LTuQ 3o juow GzZ°h
L suMNIN ND I e T

aa. & E w .wvm - S
+ ) 4..&

6c My — — —
f‘- m ﬁ i gm ||l_l|||..
h¢ ~

o e e o

28]

>
1
+

Auucmnu:uwﬂ:

SAIMNIN NI AL

.

g)

mmshm>c;mﬁm mouca A1uQ 3o uancqum<mm b uhnmﬁm.

o3

t

E . 93

4+

9
-+

1
1+

.0,

0h NI ‘NI BAN

ps .
WIAY W NI NN

144



fmatrix in terms of its eigenproperties, namely, g = - Z A

e

CHAPTER FIVE

CONCLUSIONS

- 5.1 Interpretation of the Simulation Results .

The different response characteristics observed in- the
application of eigenvalue assignment methods and Rosenbrock' “5
approximate modal control method may be explained by the following
argvments. | N -

Considet the dyadic representation of the open—loop system

w><v.
. | gm0 17

The recursive application of the eigenvalue assignment method of

Chapter Three to assign L= min,(m,r) system eigenvalues will‘

. result in the following closed-loop system matrii, QCL\’
B W ¢
$ A, w ><v + ><k R (5.1)
cL i=]1 _i -1 i’l B , . :

»

- . . . . . x,

The directions of the {k'} in (5. l) depend on the set of desired
closed~loop eigenvalues whereas the , {gi}' can be assigned almost
any set of elements._ Thus, the closed Eoop eigenvectors will in

general, be different from the open—loop~ones and will highly depend
7

on the choice .of desired eigengggues and the {Ei}'
: . g

Application of Rosenbrock”s approximate ‘modal control

2

method for the same purpose, ﬂ?ﬂ the other hand will result in the

rxf’“‘

follouing closed-loop systéiwhmtrix (cf., (2 61))

Bovy + (G BTOR (CHp T
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or ) . . N X . . ‘ "‘, -v . ‘ .
n . 2 En . . .
QCL = Z Ai Ei><!i + z ki h, >§£i : . (5f2)
- 1i=1 : A= . %
where hi represents the 1 column of ’( v g) and - £i repre-
'_sents the i~th row of ‘(g !1)_1.' Ei _and ii do not depend on the
.set of desired closed—loop eigenvalues, but k, does. Therefore ,

i

for each set of desired closedeloop'eigenvalues' in general, a dif-
'—ferent set of closed-loop eigenvectors will be obtained - But, as
Adi (i = 1,2,...,2) approaches zero, ki'v(i = 1 2,...,2) will
attain the value of the open—loop eigenvalues which are being shifted
b(cf., 2.32). Thus, the second summatiori in (5. 2), namely the con-
troller matrix, will become a constant matrix which in turn means'
that the closed loop system' eigenvectors will assume fixed directions
in the state space. Thus, in Rosenbrock's approximate modal control
‘method [8], the seneitivity of the eigenvectors to the specification
of the desired closed- loop eigenvalues diminishes when 'Adi
:(i - l,...,l) approaches zero .and, thus uniformly changing response :
‘characteristics which approach an asymptotic limit are observed
’(éf., Runs 9- -12). - . - i
These observations'cannotvbe made'in'theuapplication of
eigenvalue assignment techniques where the magnitude of the elements'
in {51l- of (5 1) may become unbounded as the desired eigenvalues
arewmadevsmaller; Even’for.the same specification of the"ﬂgi}‘;
theieigenvector directions will be, in- general highly affected by ‘the
choice of the desired closed loop eigenvalues, and thus significantly

"varying response characteristics can result, (cf s Runs 32-35).

Similarly,since the eigenvector directions highly,depend on the
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¢

specification of the desired closed-loop eigenvalues different responsé”
characteristics for CF and F disturbances are observed in different
runs, i.e., for some runs, CF disturbances cause larger offsets and in_
other'runs _F‘ disturbances are more severe.

This then forms an explanation of some of the phenomena which

could not be accounted for in Chapter Four.

5. 2 Comparison of Des1gn Methods

A rather detailed discussion and comparison of the various
modal control and eigenvalue assignment methods considered in this |
thesis have been.provided in Chapter Two. Thus, thisssection will only
~ summarize the experience gained with the four methods simulated in |
‘Chapter Four.' |

Both modal control and eigenvalue assignment methods increased

the degree of stability ‘and the ‘Speed of response of the system under
consideration. The design options and design parameters involved in
‘eigenvalue assignment methods were found to have a larger effect‘on
the shape of the closed loop system response ihan those invblved in ,j
;modal control methods. ~But currently there is ‘no systematic way of
Vexploiting these design options and parameters in order to improve

~ the shape”of response.

| ‘Appiication of‘Rosenbrock's apprOXimate modal,control'method
resulted in favorahle response characteristics provided that the ;
: desired real eigenvalues had reasonably small magnitudes. Thevamount |
of offset in the controlled variables decreased as the real parts.of

the closed loop eigenvalues decreased The closed-loop'eigenvactors

tended to assume_fixed directions in’ thefState space as the desired
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real eigenvalues tendgd towards zero. Thus the shape of response
could not be affected to any great extent- The design options con-

sisting of the ordering of the eigenvectors in the eigenvector matrices

and the pairing of closed loop and open—loop eigenvalues influenced

r
[

'the response characteristics of the system but, to a smaller extent
than the location of the closed-loop eigenvalues The gain;'in the f
- controller matrices had the physically expected signs and magnitudes
were always‘reasonably small, and did not vary 31gnificantly for the
various options considered. Different disturbances had.a similar
: effect on: the closed loop response characteristics of the system for
'f'the same control law.. " The. successful‘application of Rosenbrock s
fapproximate modal'control technique in this case study was attributed
to some of the desirable features of the open loop eigenproper"es.
Application of the eigenvalue assignme t algorithm of
.Chapter Three resulted in a wide spectrum of closed ~loop response

fcharacteristics .The closed loop eigenvector directions and/tﬁ’\shape

of responses uere quité sensitive to the existinggdesign options and

'design parameters. Thus, extensive utilizariOn of these design options :

*

and parameters resulted in satisfactory controllers. The eigenvector
directions and the response characteristics of the closed loop system
.could not be correlated with the various design options and design
rparameters:‘-The controller,gains required for the assignment of a: |

set of eigenvalues were always larger in absolute value than those w

‘resulting from the application of Rosenbrock s approximate modal con- '

‘trol method. Recursive application of the eigehvalue assignment methods

\

was found to. reduce the controller gains and to improve the response_.

_’:_

che racteristics Some suggestions were made in Chapter F0ur for the -

;; . o . :

LT
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S
successful application of this procedure. Different disturbances had

a vastly different effect on the closed- -loop response characteristics

of the system. e

' Application of Takahashi S approximate modal control method

rr

“ggave large d?fsets in the controlled variables which could not be
reduced greatly by~ the specification of smaller real desired closed—

‘loop eigenvalues.' The combination of a mode—based model reduction

technique with the ideal modal control method, on the other hand, gave

‘excellent results The generality of the results noted in this para-

vgraph is rather doubtful, though, since® extensive Studlies were not ‘

performed to evaluate these last two approaches.:

It is worth noting that approximate‘modal controlltechniques,
in general, cannot guarantee the assignment of a set of eigenvalues.
In fact, their- application to. some systems may even result in a less
desirable set of closed loop eigenvaluesethan the open—loop ones.

Their Success in this case study is due«to the favorable eigenproperties

of the open—loop system. By contrast the eigenvalue assignment method

-of Chapter Three-guarantees the assignment of ‘at least a subset of the

-system eigenvalues. Thus its applicability is greater, and as. demon—

strated in Chapter Four it can provide excellent results if the avail-'

»able design options and parameters are properly exploited and the -
unassigned closed -loop eigenvalues do not attain undesirable locations

. 1in ‘the complex plane.

° o . R .
The computational efforts involved in designing'controllers

_7is relatively small in both modal control and eigenvalue assignment

methods.

AN
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B

5.3 Recommendations

The simulation studies in this thesis involve a relatively

.. low order model Therefore, it has not been possible to demonstrate

™

the usefulness of modal analysis in configurating the control system.

Similarly, it has not been possible -to fully demonstrate the benefits

of the new eigenvalue assignment method - which in most instances ‘

' guarantees the assignment of a significantly larger number of eigen—

values than in previously developed methods. Future work aiming to
assess the real benefits of modal control and eigenvalue assignment
should involve systems with higher order state space models

h\ » lhe greater 1mportance of.” the closed -loop eigenvector direc-
tions on the closed -loop . response characteristics of the system" be-

came readily apparent. during this investigation. 'It was realized that

eigenvalue assignment did not provide satisfactory response character-
istics unless extensive tuning was performed Thus, systematic methods

‘to affect the modes of the system rather than just its eigenvalues are

greatly needed. The potential usefulness of the design freedom avail- -

‘able in choosing the g -vector in fulfilling this oijctive is undeni-

~

" able. Preservation of the open—loop eigenvector directions in the

closed- loop system is ‘an arbitrary and unjustified objective unless‘
the open~loop eigenvectors already have desirable directions.

Exact eigenvalue assignment has been found to be an unnec-

: ,essarily ambitious. goal. Rather than exactly assigning a few elgen— _
- values, future work should -attempt to gain some control over all of -,

" the system eigenvalues.

Studies concerning determinatioh of desirable closed -loop

- eigenvector directions for a specific system to fulfﬁéd Such objectives
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as disturbance rejection, high integrity, and low sensitivity to con-

. 1
.. troller gain yariations may prove to be'ﬁery fruitful.
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" NOMENCLATURE -

‘ ~ : . 4
Alphabetic ” o f

a coefficient in a_characteristic pélynomial_
‘A system métrix of a continuous-time model

b. : coefficient in a characteristicxpolynomial
E . control coefficient‘vectér

gv ' 'poﬁtrol coéffipient mat?i* ’;j.

Bl . first effect bottoms flow

ﬁg ,second’effect bottoms'flow

S - output coefficient, vector

c ' P oﬁtput coefficient matrix

i

- Cc1 fier‘effect'concentration -
" C2 second effect'éoncentratioh -
CF| feed Eéncgntgation* | ’
g: disturbhqqé véctor
D ’. xdistu%bangé éoeffiéiéd;bmaﬁrii
e vgctof defihed_in (3.18)
‘matrix defined in (3.25)
fcolumnvvéﬁtot of YE
 _?_ feed conqenfration
sf, ,‘médéi ou;put.coeffiﬁient matrix

F() mafrix function defined in (3.5) )
., dyadic matrix | | |
g g.cpluhg vector of a‘dyadié Coh@roller

controller matrix
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column vector of H

-4

Nz

modal control'coefficient‘matrix ‘ '\’

H1 first effect enthalpy

®

HF feed enthalpy

Jl . bbjeétive func;ibn defined in (2;72)
vJé objective function defiﬁed.in (2.?3) '
B } k - controller gain S B
’ N k éontrﬁller vector . ‘ _' oo f.. . -
i K modal domain controller matrix
L) A nhmber ofwéigénvalues aésighed, numbéf éf ﬁodes coytrolled
? ' L~ weighting on eigenvalues o | |
f SR © m°  number S% o;tpufs
& fm’. ‘ {E » gode.vector
‘- Q?&;-;lJ M Qeighting pn'contfollet'gaids
. | vxff n - number of states
: b,ﬁ)“. p - numbér of distutbanc#s
i ‘ ’ -,{ Eﬁ ) ‘cdluﬁn of matrix P )
f{ R analyzgflmatrix )
| : q( ) oﬁeﬁ—lobp:characcgfistic polfnomiélv I o
| .Vec;or définéd 1n (2.Z6)L:.‘ - o
Q. controllability matrix
r .'-'nuﬁber of contfols 
) } () zclosedéloop’ch§rééééristic ﬁbiyﬁbmialv.
X column of "R matrix L
R :syh;hesizer ﬁatrii o
- \’ ‘ '
4
' .
T
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Kal

le

€ 1< <

't 4

In

Y

modal control element

- modal control vector

obaervability matrix

medal disturbance giement, time

ﬁodalvdisturbancé vector
discrepization interval
cbn;rol elementw
control vector
‘matrix defined in (3.17)
;léft eigenvectof |
.leffleigenvectoriﬁatrix
right e1genvectot H
right éiéenvector maf;i;
sfate variable -

o
state vector
o;tpuf-elément
output vector-

modal state variable

modal state vector

=Y

W
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Greek o s .

o scalar defined in (2. 40), objective function defined 1n (2 70) ‘
B scalar defined in (2 51), objective function defined in (2. 71)
dij Kronecker delta | ¥
A partition of a matrix
4 discrete eontrol,coefficientvmatrix
9 " discrete d sturbance coefficient matrix
¢ lgdiscrete srare coeffflient matrix‘fj
' A -’. eigenvalue‘
1-& : reigen;alﬁe oatrix'
Q ._'k index »' - T
£ e , mooalkactivatioo, scalar defineo in (2.52)
no product’ : _ -';44 ‘: o N
L sum . v' e |
-_r‘ timev
Y degree of controllability
.Sugerscrigt R
L time derivative &
' ' Perturbation variable--\\ ' _’ : o a
*g vector projection, arbitrary vector or matrix:
T . " matrix transpose , . |
l first partition-of‘a;mafrix
2 fsecond%partition of a matrix ff
;i:v | mat:ii inversion | B '

. * )
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‘Subscript

- ' vector

o / C)ﬂ' "
o= matrix [

e cdntro‘lab‘lity y )
d 'désiréé ' fx
{l eleme;t ountgr,'fuﬁ;cbunterl
j  e1ement- ounter

SR aiig of'matrix”paftifion

"o _ bﬁséfvability_ o .

g . Tl e, 5

' Symbols -  2?
< > dot product
>< dyadicgproduct
AbS@é@iacioﬁé
ﬁ;;ﬂ minimum
max maximum ‘ ,
sign ' signum
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