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Abstract

When a semi-infinite body of homogeneous fluid initially at rest behind a vertical

retaining wall is suddenly released by the removal of the barrier the resulting flow

over a horizontal or sloping bed is referred to as a dam-break flow. When resistance

to the flow is neglected the exact solution, in the case of a stable horizontal bed with

or without ‘tail water’, may be obtained on the basis of shallow-water theory via the

method of characteristics and the results are well known. Discrepancies between

these shallow-water based solutions and experiments have been partially accounted

for by the introduction of flow resistance in the form of basal friction. This added

friction significantly modifies the wave speed and flow profile near the head of the

wave so that the simple exact solutions no longer apply and various asymptotic

or numerical approaches must be implemented to solve these frictionally modified

depth-averaged shallow-water equations. When the bed is no longer stable so

that solid particles may be exchanged between the bed and the water column the

dynamics of the flow becomes highly complex as the buoyancy forces vary in space

and time according to the competing rates of erosion and deposition. Furthermore,

when the Froude number of the flow is close to unity perturbations in the height

and velocity profiles grow into N-waves and the bed below develops ripples which

act to sustain the N-waves in the fluid above. It is our intention here to study

dam-break flows over erodible sloping beds as agents of sediment transport taking

into account basal friction as well as the effects of particle concentrations on flow

dynamics including both erosion and deposition. We shall consider shallow flows

over initially dry beds and investigate the effects of changes in the depositional and

erosional models employed as well as in the nature of the drag acting on the flow

and the slope of the bed. These models include effects hitherto neglected in such

studies and offer insights into the transport of sediment in the worst case scenario

of the complete and instantaneous collapse of a dam.
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Chapter 1

Introduction

Dam-break flows, which are represented by the sudden release of fluid contained
in a semi-infinite reservoir behind a vertical barrier, are of both practical and fun-
damental importance in fluid mechanics, engineering, and geomorphology. They
have played a crucial role in underpinning simple models for a number of natural
and catastrophic events such as break-out floods from the failure of end moraine
dams, glacial lake outburst floods, various sheet flow events as well as the formative
stages of lahars or debris flows [10, 21, 42, 48]. Although in practice the release of
water upon collapse of the retaining barrier will often be more gradual than that
in the idealised mathematical models one can view these models as providing the
worst case scenario for these events[53, 48].

Sediment transport plays in important role in various geological phenomena. For
example, the propagation and resulting deposition patterns of turbidity currents,
which are gravity currents driven by density gradients caused by the presence of
sediment suspended in the flow by turbulence, are of particular interest to ge-
ologists and engineers. Turbidity surges in ancient seas have contributed to the
formation some petroleum reservoirs, and modern turbidity currents may interfere
with offshore structures designed to exploit these petroleum resources [13]. Rel-
atively simple box models of suspension-driven turbidity surges suggest that the
overall thickness of proximal deposits resulting from particle driven gravity surges
should exhibit a maximum at a predictable distance downstream from the source.
As a result, suspension driven turbidity currents running out on flat plains should
result in lenticular deposition patterns with coarse-grain deposition layers exhibit-
ing maximal thickness upstream relative to fine-grain deposition layers. These
geometries have been observed in ancient, near-reef basins and abyssal plains [13].
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The significance of the impact of sediment transport via dam-break flows is ex-
emplified in the recent study of Clarke et al [11] which considers the flood that
emerged from Lake Agassiz several thousand years ago due to the collapse of a
glacial dam. It has been postulated that the flood waters from Lake Agassiz
were voluminous enough to cap the Atlantic Ocean thereby disrupting the North
Atlantic meridional overturning current (MOC) and triggering a significant cli-
matic cold event 8200 calendar years BP. However, whether or not the flood wa-
ters were buoyant relative to the salt-water of the Atlantic Ocean so as to cap it
would depend on their sediment load. That is, if the flood waters were sufficiently
sediment-laden upon their arrival at the ocean, they would hug the bottom of the
ocean leaving the MOC intact [11].

The earliest work on dam-break flows considered single phase, low aspect ratio,
frictionless flows in rectangular geometry taking the shallow-water equations as
the governing model equations. With the bed below the dam assumed horizontal
and dry, the solution for the flow is a centred simple wave that was first developed
by Ritter [45]. If the initial depth of water behind the dam is h0, the front of the
flow advances as a wave over the dry bed with constant speed 2

√
gh0, while the

reduction of depth spreads back from the initial position of the dam with speed√
gh0, where g is the acceleration due to gravity. In the disturbed region between

the two extremes of depth, the velocity u and the depth of the flow h are given by

u =
2
3

(x
t

+
√
gh0

)
and

√
gh =

1
3

(
2
√
gh0 − x

t

)
, (1.1)

where x measures distance downstream of the original position of the dam and t

the time elapsed since its collapse. The depth of the flow increases from zero at the
front, whose position is given by x = 2

√
gh0 t, to the value h0 at x = −√gh0 t. Over

the same range, u falls in a linear fashion from 2
√
gh0 to zero in the undisturbed

portion of the reservoir. Although these solutions do provide a reasonably good
match to the experimental observations when the transients associated with the
initial release have died down there are still important properties of the flow that
are not captured by the classical shallow-water model used in the construction of
the solutions displayed in (1.1). It has been observed in particular [15, 48] that
for the dam-break flow experiments the water near the tip piles up and the front
speed is appreciably less than that predicted by the simple theory.

In order to account for this blunting of the tip and the slowing down of the front
several authors [16, 53, 54, 26] have postulated that near the tip, where the depth
of flow drops to zero, frictional resistance and the resulting turbulence dominate
the flow. To account for this basal friction a Chézy resistance term is added to
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the momentum equation [53, 54]. Various asymptotic procedures were employed
[16, 53, 26] to determine the influence of this resistance and it was found that its
inclusion brought theory and experiment into closer accord. Since we are interested
in developing and exploiting models for sediment transport that employ dam-
break flows on down-sloping topography as paradigms for certain geological and
engineering processes we shall extend the model beyond what is discussed in this
paragraph while appreciating the significant gains achieved through the addition
of the resistance term. In fact, basal friction with realistic parameterisations for
geological applications appears to have a much greater influence on flow dynamics
than does the presence of particles in suspension.

Two classes of sudden release flows have been considered as agents of sediment
transport. These are fixed-volume releases and dam-break flows. Although we
shall here concentrate on dam-break flows, with their infinite source of fluid, several
of the assumptions from the earlier work on fixed-volume releases will be adopted
and so we will give a brief overview of the fixed-volume work as it relates to the
current study.

Fixed-volume releases of well-mixed particulate suspensions in the purely deposi-
tional regime and their subsequent depositional patterns have been studied both
theoretically and experimentally employing lock-release flows by a multitude of
authors [7, 6, 8, 39, 23, 38, 14]. For the theoretical work in [7, 6, 8, 39, 37] it
was assumed that the particles are vertically well-mixed by the turbulence in the
current, are advected by the mean flow without diffusion, and settle out through
the viscous sub-layer at the bottom of the current with the Stokes settling veloc-
ity for an isolated particle in a fluid at rest with no re-entrainment of particles
into the fluid column. It was further assumed that the pressure distribution was
hydrostatic for these shallow inertial flows, that the horizontal velocity field was
vertically uniform, and that the only resistance to the flow was due to the lighter
ambient fluid which had to be displaced by the heavier particle-driven bottom hug-
ging flow. The experimentally determined particle deposition patterns provided in
[7, 6, 8, 14] would seem to confirm that these assumptions provide a very good first
approximation to the output of a highly complex dynamical system. In particular,
the more recent and accurate measurements of de Rooij and Dalziel [14] seem to
confirm the theoretical predictions of [7, 8] for the distal depositional patterns.
The discrepancies between the model predictions of [7, 8] and the measurements
of [14] in the proximal depositional pattern would appear to be due to the fact
that the model does not take into account the initial turbulence of mixing present
in the release volume behind the dam rather than the assumptions inherent in the
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model itself. When this initial turbulence is taken into account [38] the typical
lenticular deposits seen in the experimentally determined depositional patterns [23]
are reproduced under the well-mixed and hydrostatic assumptions. More recent
high-resolution numerical simulations for particle-driven flows have been carried
out by Necker et al. [40], and Blanchette et al. [5]. In Necker et al.[40], lock
exchange flows involving dilute suspensions of small particles having negligible in-
ertia are considered. By neglecting inertia the particle’s velocity is then the sum of
the local fluid velocity and the settling speed. This assumption requires that the
aerodynamic response time for the particles is significantly lower than the charac-
teristic time scale of the flow. A Boussinesq approximation for dilute suspensions
was invoked [7, 6, 8, 39, 38, 37] and no re-entrainment of particles into the water
column was included. Comparisons with the experimental results of de Rooij and
Dalziel [14] were included and reasonable agreement was achieved. In Blanchette
et al. [5], lock release models were again investigated for dilute suspension flows
under a Boussinesq approximation neglecting particle-particle interactions, parti-
cle inertia and taking the particle velocity to be the sum of the local fluid velocity
and the particle settling velocity. Both erosion and deposition were included in
their model. The erosion or deposition depth was assumed small allowing them to
keep the position of the bottom boundary fixed in the computations. Calculations
of particle deposition patterns were compared with the experimental results of de
Rooij and Dalziel [14] and reasonable agreement achieved.

Recent studies [10, 21, 42] have employed dam-break flows as agents of sediment
transport. In [10, 21] flow over an erodible bed consisting of loose coarse sediment
was investigated. The constitutive assumptions adopted in [10, 21] lead to the en
masse mobilisation of the bed particles as bed-load by the flow to form a steep
debris snout that leaves behind a uniform scour pit. On the other hand, the com-
plimentary paper [42] deals with dam-break flow over a bed that consists of fine
sediment that can be entrained into the water column and transported in suspen-
sion. In [42] the sediment transport was passive in that the suspended particles
did not influence the flow dynamics which could then be completely specified by
employing the simple exact solution of the shallow-water equations for both a dry
bed [45] and a bed with ‘tail water’ [45, 49]. Hydraulic resistance and morpholog-
ical evolution were excluded from their model and a Lagrangian formulation was
used [44] for depth-averaged flow quantities.

In the present work we shall employ dam-break flows over sloping beds as agents
of sediment transport. The inclusion of a velocity dependent basal friction as well
as bottom topography and non-passive particle transport adds several important
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mechanisms that were absent from the analysis in [42]. It is felt that the inclu-
sion of these will shed light on those various phenomena that involve erosion and
deposition of particles under flood conditions in the natural environment when
topography is involved. We shall assume that our flows are shallow so that the
pressure remains hydrostatic throughout the flow regime [42, 26, 7, 6, 8, 39, 19, 36]
and also that the particle concentration in the flow remains sufficiently low that we
may treat the particles as being isolated and employ a Boussinesq approximation
whereby the particles appear in the momentum equations only in the buoyancy
terms. This puts definite constraints on the range of particle volume fractions
φ(x, t) in our well-mixed suspensions. It is known [2] that when the mean volume
fraction of particles in suspension is ≈ 0.01 the mean free distance between grains
is about four particle diameters and the probability of collisions is small. On the
other hand, at a value of φ ≈ 0.09, the mean free distance is approximately equal
to the grain diameter, and the probability of collisions becomes a certainty. When
erosion exceeds deposition so that particle concentrations are increasing we shall
assume that our model calculations are valid up until φ ≈ 0.05. Although the bot-
tom boundary shear stress could be calculated from the full governing equations we
shall adopt the common and much simpler approach of introducing a Chézy drag
coefficient CD which when viscous effects are small (large Reynolds number flows)
gives the boundary shear stress as τb = CDρfu

2, where ρf is the density of the fluid
and u a depth averaged horizontal velocity [53, 26]. The Chézy drag coefficient
is dimensionless and usually falls in the range 0.01-0.001 for most environmental
flows [26]. With all of our additions to the model of Pritchard and Hogg [42]
(basal drag, bottom topography, and particle modified flow dynamics) the simple
shallow-water based solutions [45] will no longer apply and the approach adopted
in [42] is not available so that an alternative approach will have to be adopted.

The model is developed in full detail in Chapter 2 where we shall also elaborate
upon the validity of the assumptions that underlie its formulation. In Chapter 3
we will explore various asymptotic results to explore various limiting cases of the
model. Chapter 4 is devoted to exploring the implications of our modeling as-
sumptions. Chapter 5 details the numerical method used throughout the current
study to solve the model equations. Finally, in Chapter 6 we will summarise and
discuss the main results of this study and make some concluding remarks.
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Chapter 2

Model development

We consider the two-dimensional flow resulting from the sudden release of water
initially held at rest behind a plane vertical retaining wall of height h0. The bed
below the dam which is initially located at x = 0, is gently sloping and specified by
the topography z = b(x, t). It is assumed that there is no water below the dam and
that the bed is comprised of fine or cohesive material which, once a threshold shear
stress is exceeded, is entrained into the water column and transported in suspension
to possibly be deposited downstream. Although in the early stages of such dam-
break flows the aspect ratio, being the ratio of a typical vertical to horizontal
scale of the flow, will not be small, there soon comes a post-release time when the
assumption of a small aspect ratio has validity. The validity of this assumption, as
a first approximation, is evident when one compares the theoretical results based
on the solution of the shallow-water equations with the earlier experimental work
of Dressler [16] and the more recent experiments of Stansby, Chegini, and Barnes
[48]. There certainly are discrepancies between theory and experiment, especially
in the early post-initiation stages of the flow, when the vertical and streamwise
scales of the motion are of comparable order and non-hydraulic influences can be
seen. However, there soon comes a time when transients arising from the initial
release have died out and the streamwise scales dominate the vertical ones so that
the flow may be considered a shallow flow with negligible vertical accelerations and
a hydrostatic pressure distribution may be adopted [48, 45, 26, 54, 49]. Another
discrepancy between the experimental observations and the Ritter solution of the
shallow-water equations [45] can be seen in the frontal region of the flow field
where the experimental front [48, 16] becomes blunted and the extent of the flow
diminished from that derived on the basis of shallow-water theory. To account
for these discrepancies several authors have introduced the notion of a basal drag

6



b(x, t)
x

z

u(x, t)
h(x, t)

reservoir

h0

Figure 2.1: Schematic for the dam-break flow on a sloping dry erodible bed.

term into the horizontal momentum equation [53, 15, 26] and achieved a high
degree of success in reconciling theory with experiment [26]. Our model will be
based upon the assumption of a hydrostatic pressure distribution since vertical
accelerations may be considered negligible for shallow flows. We will also include
basal friction to account for the blunting and retarding of the flow front as seen
in the experiments. The effect of suspended particles will enter the flow dynamics
through the buoyancy terms and both erosion and deposition of these particles
will be accounted for in the model so that these buoyancy effects will vary in both
space and time. Figure 2.1 summarises the scenario described above.

Based upon the previous successful reconciliations between the theoretically deter-
mined depositional patterns obtained employing the vertically well-mixed assump-
tion for lock release flows and the experimentally measured patterns [7, 6, 8] we
shall adopt this assumption here. This same assumption which gives rise to a vol-
ume fraction φ of particles in suspension as a function of the streamwise coordinate
x and time t only, has also been employed with success for other flow scenarios
including dam-break flows [42, 26, 44]. The bulk density ρ of the suspension is
then given by

ρ(φ) = ρpφ+ (1− φ)ρf , (2.1)

where ρp is the particle density. We shall also assume that the particles have the
same velocity as the fluid so that the continuity equation for the flow is

∂

∂t
ρ+

∂

∂x
(ρu) +

∂

∂z
(ρw) = ψ (2.2)

where ψ describes the generation and removal of mass through the mechanisms
of bed erosion and sediment deposition and w is the vertical velocity of the fluid.
Since mass is entrained into, or deposited out of the fluid at the bed we set

ψ(x, z, t) =
(
qe − qd

)
δ(z − b) (2.3)
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where qe and qd are the mass fluxes due to erosion and deposition respectively and
δ is the Dirac delta function (the erosion and deposition fluxes qe and qd will be
described in greater detail in Section 2.2).

Under the assumption that the particles have the same velocity as the fluid, the
horizontal momentum equation for the flow is

∂

∂t
(ρu) +

∂

∂x
(ρuu) +

∂

∂z
(ρuw) = − ∂

∂x
p+

∂

∂z
τxz (2.4)

where p is the pressure and τxz is the relevant stress component [30]. Again, we
assume that the pressure field p is hydrostatic since the flow regimes that we are
interested in are shallow. That is, at any point in the flow the pressure is given by

p = p0 + ρg(h+ b− z) (2.5)

where p0 is the pressure of the atmosphere and g is the acceleration due to gravity.
The kinematic and dynamic boundary conditions for the system are

p = p0

w =
∂

∂t
(b+ h) + u

∂

∂x
(b+ h)

τxz = 0

 at z = b+ h, and

τxz = τb

w =
∂

∂t
b+ u

∂

∂x
b

 at z = b.

(2.6)

Finally, we shall assume that although the bed is erodible it is otherwise immobile.
That is, the continuity equation for the bed material lacks any spatial flux and is
therefore given by

∂

∂t
(ρpb) = −ψ (= qd − qe). (2.7)

2.1 Depth averaging

In order to obtain a set of equations that are relatively simple in structure we will
average the model equations (2.2) and (2.4) over the depth of the flow. To do so,
each equation is integrated over the depth of the fluid (ie, from b to b + h), the
Leibniz result for differentiating integrals with variable limits is employed, and the
various boundary conditions in (2.6) are applied.
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In order to see how the various boundary conditions in (2.6) enter into the model,
we will depth average the generic transport equation

∂

∂t
ϕ+∇ · (ϕu) = ψ (2.8)

where u = (u,w) is the fluid velocity and ψ represents the sources and sinks of
the quantity ϕ, which models the transport of a scalar quantity ϕ (ie, the bulk
density ρ or horizontal momentum ρu). Integrating the transport equation (2.8)
over depth gives∫ b+h

b

∂

∂t
ϕ dz +

∫ b+h

b

∂

∂x
(ϕu) dz +

∫ b+h

b

∂

∂z
(ϕw) dz =

∫ b+h

b
ψ dz.

Simplifying each term on the left, we obtain∫ b+h

b

∂

∂t
ϕ dz =

∂

∂t

∫ b+h

b
ϕ dz − ϕ(z = b+ h)

∂

∂t
(b+ h) + ϕ(z = b)

∂

∂t
b

=
∂

∂t
(hϕ)− ϕ(z = b+ h)

∂

∂t
(b+ h) + ϕ(z = b)

∂

∂t
b,

∫ b+h

b

∂

∂x
(ϕu) dz =

∂

∂x

∫ b+h

b
ϕu dz

− ϕ(z = b+ h)u(z = b+ h)
∂

∂x
(b+ h)

+ ϕ(z = b)u(z = b)
∂

∂x
b, and

∫ b+h

b

∂

∂z
(ϕw) dz = ϕ(z = b+ h)w(z = b+ h)− ϕ(z = b)w(z = b)

= ϕ(z = b+ h)
∂

∂t
(b+ h)

+ ϕ(z = b+ h)u(z = b+ h)
∂

∂x
(b+ h)

− ϕ(z = b)
∂

∂t
b− ϕ(z = b)u(z = b)

∂

∂x
b.

Adding these together, we obtain∫ b+h

b

∂

∂t
ϕ dz +

∫ b+h

b

∂

∂x
(ϕu) dz +

∫ b+h

b

∂

∂z
(ϕw) dz =

∂

∂t
(hϕ) +

∂

∂x

∫ b+h

b
ϕu dz

where

ϕ(x, t) =
1
h

∫ b+h

b
ϕ(x, z, t) dz
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is the depth average of ϕ. Therefore, the depth averaged transport equation for a
scalar quantity ϕ subject to the boundary conditions (2.6) is

∂

∂t
(hϕ) +

∂

∂x

∫ b+h

b
ϕu dz =

∫ b+h

b
ψ dz. (2.9)

Employing (2.9), the depth averaged continuity equation (2.2) is given by

∂

∂t
(ρh) +

∂

∂x
(ρhu) = qe − qd (2.10)

and the depth averaged momentum equation (2.4) is given by

∂

∂t
(ρhu) +

∂

∂x

(
ρhβu2 + ρg

h2

2

)
= −ρgh ∂b

∂x
− τb (2.11)

where we have introduced the shape factor (Boussinesq coefficient) β through the
relations [26]

βhu2 =
∫ b+h

b
u2 dz, β = 1 +

1
h

∫ b+h

b

(
1− u

u

)2
dz. (2.12)

The magnitude of β ≥ 1 corresponds to the amount of shear present in the hori-
zontal velocity field and may depend on such factors as the Reynolds number or
the boundary roughness [26]. Earlier work in [39, 37, 35] has demonstrated that
even in the absence of these mechanisms and with the assumption of a hydro-
static pressure field, velocity shear will always be present in particle-driven flows
whenever the horizontal density gradients of the suspension are non-vanishing.

Thus far we have developed two depth averaged model equations for continuity
(2.10) and momentum (2.11); and a model equation for the evolution of the bed
(2.7). These equations contain the four unknowns φ (through ρ), h, u, and b;
and therefore the system is under-determined. In order to close the system we will
employ the Boussinesq approximation thereby simplifying the momentum equation
and splitting the continuity equation into two equations for the conservation of (i)
fluid mass and (ii) particle mass. We will do so by re-writing the density as
ρ = ρf + φρ∆, where ρ∆ = ρp − ρf , in the mass and momentum equations.

Re-arranging the mass balance equation (2.10), we obtain

ρ∆

[
∂

∂t
(φh) +

∂

∂x
(φhu)

]
+ ρf

[
∂

∂t
h+

∂

∂x
(hu)

]
= qe − qd. (2.13)

With regards to mass balance, the Boussinesq approximation is equivalent to re-
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quiring that the velocity of the interstitial fluid remain divergence free, which
implies that

∂

∂t
h+

∂

∂x
(hu) = 0 (2.14)

which is the canonical conservation of mass equation for shallow-water flows. Em-
ploying (2.14) in (2.13), we obtain

∂

∂t
(φh) +

∂

∂x
(φhu) =

1
ρ∆

(
qe − qd

)
(2.15)

which describes the conservation of particle mass through advection by the inter-
stitial fluid and through the exchange of particles with the bed.

Re-arranging the horizontal momentum equation (2.11), we obtain

ρf

[
∂

∂t
(hu) +

∂

∂x

(
hβu2 +

ρ

ρf
g
h2

2

)]
+ ρ∆

[
∂

∂t
(φhu) +

∂

∂x

(
φhβu2

)]
= −ρgh ∂b

∂x
− τb.

(2.16)

With regards to momentum balance, employing the Boussinesq approximation
means that we can ignore the ρ∆[ · ] term on the left hand side of (2.16). However,
instead of ignoring this term completely, we first re-write it according to

∂

∂t
(φhu) +

∂

∂x

(
φhβu2

)
= u

∂

∂t
(φh) + βu

∂

∂x
(φhu)

+ φh
∂u

∂t
+ φhu

∂

∂x
(βu)

= u
∂

∂t
(φh) + u

∂

∂x
(φhu) + (β − 1)u

∂

∂x
(φhu)

+ φh
∂u

∂t
+ φhu

∂

∂x
(βu)

= u

[
∂

∂t
(φh) +

∂

∂x
(φhu)

]
+ (β − 1)u

∂

∂x
(φhu) + φh

[
∂

∂t
u+ u

∂

∂x
(βu)

]
.

(2.17)

Then, employing the particle mass balance equation (2.15), the first term on the
right-hand-side becomes

u
1
ρ∆

(qe − qd). (2.18)

This represents the momentum exchanged between the fluid and bed due to the
erosion and deposition of particles. When a particle at rest in the bed is entrained
into the fluid it is accelerated by the fluid, thereby taking momentum away from
the fluid. When a moving particle suspended in the fluid is deposited onto the
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bed, it decelerates to rest, thereby giving its momentum to the fluid (in this model
– a more physically reasonable interpretation would be that the particles would
give their momentum to the bed or elsewhere). We will retain this term in the
Boussinesq momentum equation as a source term and neglect the remaining terms.

In summary, the model equations for fluid mass balance, momentum balance,
particle mass balance, and bed evolution are:

∂

∂t
h+

∂

∂x
(hu) = 0, (2.19a)

∂

∂t
(φh) +

∂

∂x
(φhu) =

1
ρ∆

(
qe − qd

)
, (2.19b)

∂

∂t
(hu) +

∂

∂x

(
hβu2 +

ρ

ρf
g
h2

2

)
= − 1

ρf

[
ρgh

∂b

∂x
+ CDρfu

2 + u
(
qe − qd

)]
, (2.19c)

and
∂

∂t
(ρpb) = qd − qe. (2.19d)

where we have employed the Chézy drag law τb = CDρfu
2 in the momentum

equation.

At this stage we see some fundamental differences between our model for sediment
transport under dam-break flow and that employed by Pritchard and Hogg [42].
In their analysis they assumed that the flow dynamics were not influenced by the
particles suspended in the water column and that there was no friction acting
on the flow. These two assumptions (as well as the well-mixed particulate load
assumption) were essential for their Lagrangian approach to work in that it was
based on the use of the known Ritter solution [45] of the shallow-water equations
to provide the background flow. Given that basal friction was required in order
to obtain agreement between experiment and theory for the dam-break problem
involving clear water and given the influence that this term had on both the flow
profile and the front speed and given that erosion is very dependent on fluid ve-
locity this omission could be a major source of error in predicting the transport
of particles in suspension. The fact that entrainment and deposition of particles
is also dependent on the depth of the flow and given the influence of drag on the
depth profile provides another possible source of error that can be attributed to
the omission of such drag terms. The inverse dependence of the budget of particles
in suspension on the depth of the flow regime has been observed experimentally
in the case of purely depositional particle-driven lock-release flows in [7, 6, 8].

Most of our analysis will deal with the complex interactions between particles and
flow when these relatively fine, inertia free [40] particles may be lifted into the
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fluid column or deposited from it while being advected by the flow itself. This
mass of suspended sediment will either increase or decrease depending upon the
relative magnitudes of the mass erosion and deposition fluxes and these changes
in the bulk density will, in turn, then feed back into the driving buoyancy forces
which influence the rate of erosion in a nonlinear fashion through the velocity field.
Since depth-averaged quantities are used throughout with the assumption of well-
mixed suspensions [42, 7, 43] the model will apply to the situation in which the
suspension is sufficiently dilute so that the potential energy associated with the
particles is small compared to that associated with the suspending fluid.

When we examine the relatively simpler cases of particle-free dam-break flows the
model equations in (2.19) will simplify to the pair of dimensional equations

∂

∂t
h+

∂

∂x
(hu) = 0, (2.20a)

∂

∂t
(hu) +

∂

∂x

[
βhu2 +

1
2
gh2

]
= −gh ∂b

∂x
− CDu2. (2.20b)

We will solve the pure initial value problem consisting of equations (2.19) or (2.20)
together with the initial conditions

u(x, 0) = 0, φ(x, 0) = 0, and h(x, 0) =

h0 if x < 0

0 if x > 0,
(2.21)

which corresponds to the complete and catastrophic collapse of a dam with clear
water in its reservoir.

Finally, velocity shear can be accounted for in the model by choosing values of
β > 1 [26]. However, it would seem preferable at this stage to have a more
concrete reason behind our choice for the β values. This can be afforded through
the approach adopted by Huang and Garcia [28], as well as others [26], in which
it is assumed that the velocity profile is given by

u(x, z, t) = u(x, t)
(

1 + 2k
k + 1

)[
1−

(
1− z − b

h

) k+1
k

]
. (2.22)

This velocity profile satisfies the no slip condition at the base z = b(x) of the flow
whereas it gives a vanishing shear stress at the free surface z = h(x, t) + b(x). For
this vertical structure of the flow field the shape factor β is given by

β =
2(2k + 1)

3k + 2
. (2.23)
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Figure 2.2: (i) Plot of depth vs horizontal velocity at the station x = 0 for the
Ritter solution with k = 0.1, 0.2, 0.5, 1.0, 2.0. (ii) Plot of horizontal velocity shear
vs depth at the station x = 0 for the Ritter solution with k = 0.1, 0.2, 0.5, 1.0, 2.0.

With 0 < k ≤ 2 [28] we have 1 < β ≤ 5/4. In Figure 2.2 we have plotted the
velocity shear profile for dam-break flow over a horizontal bed at two different
times and for various values of the index k at the station x = 0 corresponding to
the initial location of the dam.

2.2 Deposition and erosion

Observations have shown that qe and qd are functions of both the fluid velocity
u and the volume fraction of particles in suspension φ [50]. A wide range of
empirical and semi-empirical expressions have been proposed and used to describe
the entrainment and deposition of sediment yet none have, as yet, gained universal
acceptance [5, 44]. We shall adopt the usual [42, 7, 6, 8, 39, 44] expression for the
mass deposition rate which is appropriate for dilute suspensions where interactions
amoung the particles such as those that lead to hindered settling [40] may be
neglected, that is,

qd = ρpφvs (2.24)

where vs is the Stokes settling velocity. In the absence of entrainment, this relation
results in the exponential decrease of the particle concentration (volume fraction)
with time. Martin and Nokes demonstrate that the concentration of crystals set-
tling in a vigorously convecting magma chamber also decreases exponentially, on
a time scale given by the ratio of the layer depth and the settling speed, regardless
of the turbulence of the ambient [34]. The Stokes settling velocity for an isolated
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spherical particle in a fluid of kinematic viscosity υ is given by

vs =
γga2

18υ
, (2.25)

where a is the diameter of the particle [7, 39]. When there are no particles in
suspension behind the dam we need only consider deposition when u > uc, where
uc is some critical velocity (corresponding to a critical bed shear) below which
particles are not entrained into the fluid column [42, 5, 44, 50, 22]. When models
for purely depositional flows have been considered in the context of fixed volume
releases corresponding to the particle-laden lock release flow experiments of [7, 6,
8, 23] the turbulence of initial mixing behind the lock has been accounted for in
[38, 40]. This initial turbulence was shown to influence the deposition rates in
the zone near the initial position of the lock with the most complete study of this
effect being given in the recent work of Necker et al. [40]. Here with our infinite
source of fluid this effect is not taken into account.

In this study, we consider erosion rates of the form [42, 44, 43]

qe(u) =

ρpve
(
u2

u2
c
− 1
)n

for |u| ≥ uc,
0 for |u| < uc

(2.26)

where ve is a sediment entrainment rate and uc is the critical velocity for entrain-
ment of sediment referred to above which may be obtained from a Shields criterion
[17] together with the Chézy closure for bottom drag [44], and n is a dimensionless
exponent. Many of the models employed in the literature have a more complicated
structure than that represented in (2.26) and an excellent review of these is pre-
sented in Garcia and Parker [22]. However, this model does share the principal
features of all such models in that there is a critical shear stress for the entrainment
of sediment and the asymptotic form qe ∼ (bed stress)n [22] applies. Pritchard and
Hogg [44] considered a range of values for n showing that the results obtained were
robust to the functional form of the erosional relation. The sediment entrainment
rate ve has units of velocity and will be taken to be proportional to the settling
velocity vs [44].

A further justification of (2.26) is obtained by considering a particle of diameter
a at rest on the bed. The particle is acted on by a gravitational force Fg equal to

Fg =
π

6
(
ρp − ρf

)
ga3 (2.27)
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and by a dynamic pressure force Fd equal to

Fd =
1
8
CD ρf u

2 a2 (2.28)

for high particle Reynolds number where CD here is a form drag coefficient for
the particle [11]. A simple criteria for particle entrainment is that the dynamic
pressure force overcomes gravity. Therefore, particles are entrained into the fluid
when Fd > Fg at a rate proportional to the square of the fluid velocity above some
threshold, and for a given velocity u the largest particle size that can be entrained
is given by

amax =
3CD ρf u2

4(ρp − ρf )g
(2.29)

for high particle Reynolds number [11].

As mentioned in the introduction, the range of particle volume fractions φ(x, t) to
which our theory, involving unhindered settling of particles, applies is constrained.
At a value of φ ≈ 0.09 the mean free distance between particles is approximately
equal to the grain diameter and the probability of collisions becomes a certainty
[2]. Models for particle-laden currents in the purely depositional regime have
been presented [7, 6, 8] wherein particles were allowed to be . 5% by volume
of the current. More recent studies [5, 9] have limited the volume fractions to
φ = O(10−2) and there are compelling reasons to adopt this range for the validity
of the model [1].

2.3 Non-dimensional equations

We will make all equations non-dimensional using the non-dimensionalisation and
scaling scheme

t =
h0

U
t̃, x = h0x̃, h = h0h̃, φ = φ0φ̃, b = h0b̃,

ĝ = (γφ0 + 1)g, U =
√
ĝh0, u = Uũ,

qe = Uρpφ0q̃e, and qd = Uρpφ0q̃d,

(2.30)

where non-dimensional quantities are indicated by a tilde henceforth to be dropped
from non-dimensional quantities, ĝ is a ‘modified gravity’ which for our parameter
values lies in the range 1.15g ≤ ĝ ≤ 1.25g, the dimensionless parameter γ =
(ρp − ρf )/ρf , and the typical velocity scale U is the buoyancy velocity.
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Figure 2.3: Dimensionless deposition and erosion terms.

Rendering equations (2.19), (2.24), and (2.26), non-dimensional gives

∂

∂t
h+

∂

∂x
(hu) = 0, (2.31a)

∂

∂t
(hu)+

∂

∂x

[
βhu2 +

1
2

Γ(φ)h2

]
= −hΓ(φ)bx−CDu2−φ0(γ+1)u(qe−qd), (2.31b)

∂

∂t
(φh) +

∂

∂x
(φhu) = qe − qd, (2.31c)

qd = udφ, (2.31d)

qe(u) =

ue
(
u2

u2
c
− 1
)n

for |u| ≥ uc,
0 for |u| < uc

(2.31e)

and
∂

∂t
b = −φ0(qe − qd) (2.31f)

where we have introduced the non-dimensional function Γ(φ) = (φφ0γ + 1)/(1 +
γφ0) for convenience as well as ud = vs/U and ue = ve/Uφ0 for the dimensionless
deposition and erosion terms, respectively.

The dimensionless deposition and erosion terms (2.31d) and (2.31e) are plotted in
Figure 2.3. In this figure we see that the mass erosion rate is much more sensitive
to changes in the value of the exponent n when the horizontal fluid velocity exceeds√

2uc. We also note that the curves qe(u) are concave up when (2n−1)u2/u2
c−1 > 0

and concave down when (2n− 1)u2/u2
c − 1 < 0 so that they are always concave up

for n ≥ 1 which is the typical range for this exponent [42, 44].

In the case of particle-free dam-break flows, the model equations (2.20) reduce to
the non-dimensional form

∂

∂t
h+

∂

∂x
(hu) = 0, (2.32a)
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∂

∂t
(hu) +

∂

∂x

[
hu2 +

1
2
h2

]
= −h ∂b

∂x
− CDu2. (2.32b)

The non-dimensionalised initial conditions for the complete and catastrophic fail-
ure of a dam are

u(x, 0) = 0, φ(x, 0) = 0, and h(x, 0) =

1 if x < 0

0 otherwise .
(2.33)

2.4 Front position

The front position xf of the flow is the position of the point at which the height
field vanishes. It is an important property of the flow field especially for hazard
management, as it describes how fast the front of the flow travels. For a particle-
free dam-break flow in the absence of drag, we can determine xf by solving equation
(1.1) with h = 0 for x to obtain

xf = 2t
√
gh0, (2.34)

which, in terms of our non-dimensional variables, is xf = 2t. This will act as an
important benchmark to which other flow configurations will be compared.

In most of the literature on compositionally-driven gravity currents [46, 47] the
usual scenario involves the deployment of a two-layer shallow-water theory (very
often with a rigid lid approximation) as the mathematical model for the study of
fixed-volume lock-release flows that are compositionally-driven [46]. These flows
in their post-release phase involve a dense (usually saline) bottom-hugging cur-
rent that displaces a lighter ambient fluid (usually fresh water) as it moves under
gravitational collapse along a rectangular channel. These gravity currents have a
distinctive shape with a rather thick head or front and a rather thinner tail whose
thickness varies slowly in both space and time. The usual practise, in order to
achieve better agreement between the shallow-water theory based solutions and
the lock-release experiments, is to introduce an empirical front condition of the
general form [46, 47, 41]

u2
f =

β2

2
2− hf/H
1 + hf/H

(1− hf/H) g′hf , (2.35)

where uf (t) is the front speed, hf (t) is the front depth, H is the total depth of the
two fluid system, g′ the usual reduced gravity, and β is a dimensionless parameter
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that is determined experimentally. A full discussion of the various front conditions
that are employed in this approach to lock-release flows to bring observation and
theory into closer accord is contained in [41]. Essentially, the use of conditions like
(2.35) mean that the current front is being treated similarly to a hydraulic jump.
On the other hand in the case of dam-break flows the underlying flow derived from
the shallow-water equations has zero depth at the front since there is no fluid to
be displaced by the bottom-hugging current and so the necessary modifications to
bring the model solutions into closer agreement with the experimental observations
do not involve imposing a depth-dependent front condition but rather a drag term
of the Chézy type [53, 15, 26, 4]. Since this drag appears as a source (sink) term in
the shallow-water equations we avoid the mathematical difficulties inherent in the
introduction of a traveling discontinuity that may violate the Rankine-Hugoniot
conditions.

2.5 Conservative variables

In order to emphasise the mathematical differences that exist between our model
approach and that of Pritchard and Hogg [42] as well as to set up our system of
equations in the form that the numerical scheme will most easily handle we write
the equations (2.31) in the form of a hyperbolic balance law

∂

∂t
q +

∂

∂x
f(q) = ψ(q) (2.36)

where we have introduced the quantities q = (q1, q2, q3, q4)T = (h, uh, φh, b)T ,

f(q) =


q2

q2
2/q1 + 1/2 Γ(q3/q1) q2

1

q2q3/q1

0

 =


uh

hu2 + 1/2 Γ(φ)h2

uhφ

0

 , (2.37)
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and

ψ(q) =


0

−q1Γ(q3/q1)∂q4∂x − CD(q2/q1)2 − (γ + 1) q2/q1 (qe − qd)
qe − qd

−φ0(qe − qd)



=


0

−hΓ(φ) ∂b∂x − CDu2 − (γ + 1)u (qe − qd)
qe − qd

−φ0(qe − qd)

 .

(2.38)

The function f(q) is called the flux vector and q the vector of field variables. The
Jacobian f ′ of the flux vector (excluding the bed equation) is

f ′ =


0 1 0

−u2 + φh
2

(
1− 1

γφ0+1

)
+ h

γφ0+1 2u h
2

(
1− 1

γφ0+1

)
−φu φ u

 (2.39)

and the characteristic wave speeds (ie, the eigenvalues of f ′) are

u and u±
√
φh

(
1− 1

γφ0 + 1

)
+

h

γφ0 + 1
. (2.40)

From the above results we see that our system is strictly hyperbolic and that with
the eigenvalues denoted λ1 = u and λ2,3 = u±√φh(1− 1/(γφ0 + 1)) + h/(γφ0 + 1)
the characteristic field associated with λ1 is linearly degenerate (ie, ∇q λ1 · r1 ≡ 0
where r1 is the associated right eigenvector) whereas the characteristic fields as-
sociated with λ2,3 are genuinely nonlinear (ie, ∇q λ2,3 · r2,3 6= 0). For future
reference we include the (non-normalised) right eigenvectors associated with our
strictly hyperbolic system. They are

r1 =

 1
u

−φ− 2/(γφ0)

 , and

r2,3 =


1

u±
√
φh
(

1− 1
γφ0+1

)
+ h

γφ0+1

φ

 .

(2.41)

We note that as γ → 0 in (2.41) we obtain the two characteristic wave speeds
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u±√h that underly the particle-free equations that were employed by Pritchard
and Hogg [42].

In our formulation of particle entrainment and transport for fine cohesive sedi-
ment we are assuming that the advective transport of particles dominates diffusive
transport [43] and that the mass exchange fluxes may be expressed in terms of the
vertically averaged volume fraction of particles φ(x, t), and the vertically averaged
velocity u(x, t). This depth-averaged approach is appropriate when the charac-
teristic vertical length scale of the flow is very much smaller than the horizontal
length scale [43]. This assumption of small aspect ratio flows is at the heart of
most of the theories developed for particle-driven flows whether with or without
re-entrainment of particles [42, 7, 6, 8, 39, 38, 37, 44, 43] and certainly under-
lies all of the theoretical treatments of dam-break flows [53, 45, 16, 15, 26, 54]
and we have adopted this approach throughout our analysis. We believe that the
model presented here provides a leading-order description of the phenomena under
discussion in the present study.
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Chapter 3

Asymptotic results

In this chapter we consider two limiting cases of the particle-free model (2.20): (i)
small drag and (ii) gently sloping linear beds. The small drag case is a brief review
of the results of Hogg and Pritchard [26]. The gently sloping linear bed case is
original work.

3.1 Drag

For simple particle- and drag-free dam-break flows over flat beds (CD ≡ 0, β ≡ 1,
and b(x, t) ≡ 0), the exact solution to the model equations (2.20) together with the
initial conditions (2.21) is the well-known Ritter solution (1.1) for −1 < x/t < 2.
From this solution various asymptotic methods have been employed [15, 53, 54, 26]
to isolate and determine the influence of drag (0 < CD � 1). The most complete
analysis was carried out by Hogg and Pritchard [26] using more precise asymptotic
techniques than were available to earlier authors. The result of their analysis is
summarised in Figure 3.1 where we have plotted the first order correction (in
CD for CD � 1) to the height profile and front position of the Ritter solution
(1.1). This result affords us the opportunity to compare our numerical solver to a
theoretical result.

In Figure 3.2 we have plotted the height profile of a simple dam-break flow with
drag obtained by our numerical solver. Qualitatively the numerical solution matches
the corrected solutions quite well, although the front position of the numerical so-
lution is slightly more retarded than the first order correction. However, as can
also be seen in Figure 3.2, the numerical solution is also deeper in the bulk of the
fluid behind the front due to higher order effects. As such, since mass is conserved,
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Figure 3.1: (i) Height profile of the Ritter solution (dashed) and first order correc-
tion (solid) for a simple dam-break flow with drag at t = 100. (ii) Front position
of the Ritter solution (dashed) and first order correction (solid) for a simple dam-
break flow with drag. Parameter value used was CD = 0.00001.
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Figure 3.2: Height profile of the Ritter solution (dotted), first order correction
(dashed), and numerical solution (solid) for a simple dam-break flow with drag at
t = 100. Parameter value used is CD = 0.00001.

the front will contain less fluid and travel slightly slower than the first order correc-
tion. In each case, the height profile decreases quadratically in the bulk of the fluid
and forms a blunt snout at the front that is significantly retarded compared to the
Ritter solution. Quantitatively, at t = 100.0 the front positions of the corrected
and numerical solutions only differ by 2%.

In Figure 3.3 we have plotted the front position xf at t = 100.0 versus the drag
coefficient CD obtained by our numerical solver. The discrepancy between the
numerical and theoretical results decreases as the drag coefficient CD is taken
smaller until CD ≈ 2 × 10−5. This is expected as the theoretical result is a first
order correction for CD � 1 to the Ritter solution and becomes more accurate
as CD is taken smaller. For CD ≤ 2 × 10−5 the discrepancy appears to increase
as CD decreases, although the relative error is still quite small. In any case, the
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Figure 3.3: Front position xf at t = 100.0 of the first order correction (dashed
line) and numerical solution (dots) for various values of the drag coefficient CD.
The grid spacing used in all of the simulations is ∆x = 0.1.
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Figure 3.4: Velocity of a particle-free dam-break flow over a flat bottom with basal
drag at t = 100. Solid lines indicate numerical solutions and dashed lines show the
Ritter solutions. Parameter values used are CD = 0.001 and β = 1.0.

solver performs well and the numerical results are consistent with the theoretical
corrections of Hogg and Pritchard[26].

Finally, in Figure 3.4 we have plotted the velocity profile of a particle-free dam-
break flow with drag. In agreement with the experimental results [16] and the
theoretical approach adopted in [53], we note that the velocity is nearly uniform in
the blunt snout. That is, in the deformed tip basal drag retards the flow so that the
velocity profile is approximately horizontal there. The assumption that the velocity
in the tip depends only on time was crucial to the theoretical development in [53]
and appears to be confirmed by our numerical work.
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3.2 Linear bed slope

In a similar manner to the previous section, we look for a solution close to the
Ritter solution for slightly sloping linear beds. This involves solving the initial
value problem consisting of equations (2.32) with CD ≡ 0 and β ≡ 1 together with
the initial conditions of equation (2.21). We shall take the bottom topography to
be specified by

b(x) = −sxΘ(x) (3.1)

where s is a small non-dimensional parameter and Θ is the Heaviside step function.
Employing this simple linear form for the bottom topography allows us to explore
the effects of sloping bed topography and appeal to our intuition while interpreting
both theoretical and numerical results. Furthermore, the streamwise gradient of
a linear slope is constant, affording us the opportunity to perform an asymptotic
expansion over the bed slope s.

We begin by performing an asymptotic analysis of the initial value problem by
looking for solutions of the form

h(x, t) = h(0)(x, t) + sh(1)(x, t) +O(s2)

u(x, t) = u(0)(x, t) + su(1)(x, t) +O(s2)
(3.2)

with s� 1. The conservation of momentum equation can be re-written as

∂

∂t
u+

∂

∂x

[
h+

1
2
u2

]
= sΘ(x) (3.3)

by evaluating the partial derivatives in the momentum equation and employing
the mass conservation equation in (2.20) and also employing (3.1). The leading
order system is

∂

∂t
h(0) +

∂

∂x

[
h(0)u(0)

]
= 0

∂

∂t
u(0) +

∂

∂x

[
h(0) +

1
2

(u(0))2

]
= 0

(3.4)

of which the solution is the Ritter solution

h(0)(x, t) =
1
9

(
2− x

t

)2
and u(0)(x, t) =

2
3

(
1 +

x

t

)
. (3.5)
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The first order system is

∂

∂t
h(1) +

∂

∂x

[
h(0)u(1) + h(1)u(0)

]
= 0

∂

∂t
u(1) +

∂

∂x

[
h(1) + u(0)u(1)

]
= Θ(x)

(3.6)

which is written in matrix form as

qt +Aqx = Bq + d (3.7)

where (dropping the ‘(1)’ super-scripts)

q =

(
h

u

)
, A =

(
u(0) h(0)

1 u(0)

)
=

(
2/3(1 + x/t) 1/9(2− x/t)2

1 2/3(1 + x/t)

)
,

B = −
(
u(0) h(0)

1 u(0)

)
x

=

(
−2/3t 2/9t(2− x/t)

0 −2/3t

)
, and d =

(
0

Θ(x)

)
.

(3.8)

The eigenvalues of A are

λ1 = x/t and λ2 = 1/3(4 + x/t), (3.9)

and the eigenvectors are

v1 =

(
−1/3(2− x/t)

1

)
and v2 =

(
1/3(2− x/t)

1

)
. (3.10)

Diagonalising the system using w = R−1q, we obtain

wt +

(
x/t 0
0 1/3(4 + x/t)

)
wx =

(
−1/t −1/3t

0 0

)
w +

(
Θ(x)/2

Θ(x)/2

)
(3.11)

with zero initial conditions. The w2 equation is decoupled from the w1 equation,
and is

∂

∂t
w2 +

4 + x/t

3
∂

∂x
w2 =

Θ(x)
2

. (3.12)

Characteristics, parameterised by σ, for the above are solutions to

dx

dσ
=

4 + x/t

3
,

dt

dσ
= 1, and

dw2

dσ
=

Θ(x)
2

. (3.13)

Solving the x and t equations, we obtain the characteristic ground curve

2σ2/3 − xσ−1/3 = C2 and t = σ. (3.14)
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Figure 3.5: Characteristic ground curves (3.14). The constant C2 =
−2,−1, 0, 1, 2, 3 from right to left.

Several of these characteristic ground curves are plotted in Figure 3.5. We note
that all of the curves pass through the origin in the x-t plane and eventually satisfy
x > 0.

Along the characteristic ground curves (3.14), the w2 equation becomes

dw2

dt
=

Θ(x)
2

=

1/2 if x > 0

0 if x < 0.
(3.15)

That is, w2 remains constant and equal to zero when x < 0, and grows linearly
with time when x > 0. Therefore

w2 =
t− t∗

2
(3.16)

where t∗ is the time at which the characteristic ground curve (3.14) crosses x = 0.
To determine t∗ we first note that C2 is determined by

C2 = 2t2/3 − xt−1/3. (3.17)

Furthermore, at t∗ we have x = 0 and hence

t∗ =
(
C2/2

)3/2
. (3.18)

The above is summarised by

w2(x, t) =

 t−t∗
2 if x > 0 and t > t∗

0 otherwise
(3.19)

where

t∗ = max
[
0,
(

2t2/3 − xt−1/3

2

)3/2]
. (3.20)

Note that x = 2t implies C2 = 0, and that t∗ = 0 for x ≥ 2t.
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Employing the solution for w2 (3.19) in the diagonal system for w (3.11) we obtain
two cases: t < t∗ and t > t∗.

Case 1: t < t∗

In this case, along the characteristic ground curve the equation for w1 becomes

dw1

dσ
= −1

t
w1 +

Θ(x)
2

. (3.21)

Solving the above, we obtain

w1(x, t) =

0 if x < 0

t/4 if x > 0.
(3.22)

Case 2: t > t∗

In this case, along the characteristic ground curve the equation for w1 becomes

dw1

dσ
= −1

t
w1 −

(
1
3t
t− t∗

2
+

1
2

)
Θ(x) (3.23)

subject to w1(t∗) = t∗/4 if C1 > 0. Solving the above, we obtain

w1(x, t) =

0 if x < 0

− (t−t∗)2

12t + t
4 if x > 0.

(3.24)

The height and velocity fields are reconstructed from the solutions for w1 and w2

through q = Rw.

In Figure 3.6 we have plotted the first order height and velocity corrections for a
particle-free dam-break flow over a sloping bottom according to (3.1) at t = 300.
The height correction in (i) shows an abrupt decrease in the height profile at x = 0
where the bed begins to slope downward, and a slight bulking up of the fluid in
the body of the flow closer to the front. The height correction is parabolic with
its maximum occurring over the sloping bed and behind the front. The height
correction falls to zero at x = 2t so that, to first order, the sloping bed does not
affect the front position. The velocity correction in (ii) shows that the fluid moves
faster everywhere over the sloping region of the bed, and it attains its maximum
at the front.

In Figure 3.7 we have plotted the height profiles of both the asymptotic and nu-
merical solutions for particle free dam-breaks flows over sloping beds according
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Figure 3.6: First order (i) height and (ii) velocity (ie, h(1) and u(1)) corrections of
the particle-free dam-break flow over a sloping bed at t = 300.
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Figure 3.7: Height profile of a particle-free dam-break flow over a sloping bed
at t = 300. Solid line shows numerical solutions. Dashed line shows first-order
asymptotic solutions. Parameter values used are CD = 0, β = 1.0 and s = 0.001.

to (3.1) at t = 300. The numerical solutions are consistent with the first-order
asymptotic solutions. The abrupt decrease in the height profile directly down-
stream of the dam and the bulking up of the fluid in the body of flow behind
the front present in the asymptotic solution, as exhibited in the asymptotic height
correction in Figure 3.6, are also present in the numerical solution. However, both
the slumping directly downstream of the dam and the bulking up in the body of
the flow behind the front are more pronounced in the numerical solution.
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Chapter 4

Numerical results

In this chapter we present numerical results for various configurations. We begin
with the simplest case of simple (β ≡ 1) particle-free (φ ≡ 0) dam-break flows over
flat beds, and subsequently make the configurations more complex by the addition
of drag and more complicated bottom topography.

4.1 Simple (β ≡ 1) dam-break flows

4.1.1 Particle free, without drag, flat bed

We solve the particle-free model equations (2.20) without basal friction (ie, CD ≡
0) over a flat bed (b ≡ 0). This is the classic dam-break flow for which the solution
(1.1) is well known. It is representative of flows with sufficiently low aspect ratio
and negligible basal drag whose dynamics are governed by the balance between
the fluid’s inertia and the horizontal pressure gradient. We consider it here as a
test case for our numerical scheme, and to establish the scales used in our non-
dimensionalisation scheme (2.30).

In Figure 4.1 we have plotted the height profiles of both the exact, well known
Ritter solution, and the numerical solution at two times. We note that the exact
and numerical profiles are almost indistinguishable. The excellent agreement be-
tween the solutions gives us confidence that our numerical scheme is producing the
correct solution. Finally, we note that the front speed here is constant and equal
to 2
√
gh0, and that, at t = 100 the flow extends to x = 2t = 200 non-dimensional

spatial units.
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Figure 4.1: Height profile for a simple dam-break flow. Two plots at t = 50 and
t = 100. Solid lines show numerical solutions, dashed lines show exact solutions.

These height profiles demonstrate the simple wave structure of the Ritter solution,
which connects the constant states of h = 1 and h = 0 with a rarefaction wave
that is a function of the similarity variable ξ = x/t. Adding hydraulic resistance
through the mechanism of basal drag will destroy this structure as the conservation
of momentum law becomes non-homogeneous.

4.1.2 Particle-free, with drag, flat bed

We solve the particle-free model equations (2.20) with drag included (ie, CD 6= 0)
over a flat bed (b ≡ 0). That is, following the approaches of Dressler [15],
Whitham [53, 54], and Hogg and Pritchard [26], we introduce a basal drag term
into the horizontal momentum equation in order to bring our model calculations
into closer accord with the experimental results of Dressler [15]. These flows are
representative of flows with sufficiently low aspect ratios whose dynamics are gov-
erned by the balance among the fluid’s inertia, the horizontal pressure gradient,
and basal drag. Our results can be directly compared with the asymptotic anal-
ysis of Hogg and Pritchard [26], and establish the effects of hydraulic resistance
through the mechanism of basal drag.

Basal drag acts over the full length of the flow but its effects are most prominent
in the vicinity of the tip where the unimpeded flow has a depth that falls to zero
in a continuous fashion. We do not impose any dynamic conditions at the front
as in [46, 47]; the front position emerges as part of the solution and corresponds
to where the height field vanishes. Thus, denoting the front position by xf (t) it
satisfies

h(xf , t) = 0 and
dxf
dt

= u(xf , t). (4.1)
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Figure 4.2: Height profile of a particle-free dam-break flow with basal drag. Two
plots at t = 10 and t = 50. Solid lines show numerical solutions, dashed lines show
Ritter solutions. Parameter values used are (i) CD = 0.001 and (ii) CD = 0.01.

All of the dynamic front conditions [41] are essentially of the form shown in (2.35)
and so would lead to a zero front speed when the depth field falls to zero.

In Figure 4.2 and Figure 4.3 we have plotted the height and velocity profiles,
respectively, for both the classic Ritter solution [45] and the numerical solution
of (2.20) including basal drag for two distinct times. We note immediately that
the presence of drag has significantly altered the shape of the depth profile in the
vicinity of the leading edge as well as the velocity structure of the flow near the
front. However, in agreement with the results of Hogg and Pritchard [26], and
in accord with the experimental results of Dressler [15], the bulk of the flow is
unaffected by the addition of this basal drag. The shape of the tip is significantly
altered compared to the Ritter solution such that rather than decreasing smoothly
to zero with a parabolic profile the depth of the flow decreases abruptly to form a
blunt snout at the leading edge. This increased role of the drag at the front reflects
the fact that because the depth of the flow there is small and since momentum
is the product of depth and velocity this reduced momentum enables the effect of
the drag to be accentuated at the front.

There are several further observations that can be made regarding Figs. 4.2 and 4.3
where the detailed profiles of both the depth of flow and the horizontal velocity are
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Figure 4.3: Horizontal velocity of a particle-free dam-break flow with basal drag.
Two plots at t = 10 and t = 50. Solid lines show numerical solutions, dashed
lines show Ritter solutions. Parameter values used are (i) CD = 0.001 and (ii)
CD = 0.01.
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Figure 4.4: Front position of a particle-free dam-break flow with basal drag. Solid
lines show the numerical solutions, dashed line shows the Ritter solution. Param-
eter values used are CD = 0.001 (middle profile) and CD = 0.01 (bottommost
profile).

displayed. First, given that the particle conservation equation has a source term
that is inversely proportional to the depth of the flow field means that changes in
this depth brought about by the inclusion of basal friction will have an influence
on how the volume fraction of particles in suspension evolves in space and time.
Also the fact that this basal friction impedes the flow by differing amounts accord-
ing to the values taken for the Chézy drag coefficient CD will be reflected in the
rate of erosion in a nonlinear fashion through the erosion model of equation (2.26).
These influences were not included in the model for sediment transport under dam-
break flow presented by Pritchard and Hogg [42]. Furthermore, in agreement with
the experimental results of Dressler [15] and the theoretical approach adopted by
Whitham [53], we note from the detailed profiles of the velocity field presented
in Figure 4.3 that the velocity is nearly uniform in the blunt snout. That is, in
the deformed tip basal drag retards the flow so that the velocity profile is approxi-
mately horizontal there. This observation that the velocity in the tip depends only
on time was the basis of Whitham’s asymptotic approach [53] to including basal
drag in the dam-break problem and serves to justify why studying the full depth
and velocity profiles is of importance.

In Figure 4.4 we have plotted the front position of both the classic Ritter solution
and the numerical solution with basal drag. We note that the flow with basal
drag is significantly retarded compared to the flow without basal drag. The front
speed of the Ritter solution is constant and equal to 2, while the front speed of
the numerical solution with drag is non-constant and decreases with time until the
effect of drag balances the fluid’s inertia.
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4.1.3 Particle laden, with drag, flat bed

In this subsection we shall explore the complex interactions between particles and
flow when basal drag, erosion, and sedimentation are taken into account. We will
demonstrate the role played by the critical bed velocity uc in the long term com-
petition between erosion and deposition and display the strong effect of basal drag
on the ultimate outcome of this competition. Inclusion of this frictional term in
models for suspended sediment transport via dam-break flows appears to be a new
addition to the literature [42] and the effect of its inclusion is often dominant over
other mechanisms in determining the efficacy of this mode for sediment transport.

We solve the model equations (2.19) with particles and basal drag. That is, we
consider particle laden dam-break flows with basal drag. These flows are represen-
tative of flows with sufficiently low aspect ratio whose dynamics are governed by
the balance between the fluid’s inertia, the horizontal pressure gradient, basal drag,
and the presence of a changing particle volume fraction or concentration through
the mechanisms of particle advection, deposition, and entrainment through bed
erosion.

Firstly, we consider particle laden dam-break flows with drag, an initial sediment
load, particle deposition, and particle entrainment through the mechanism of bed
erosion. We explore various parameter configurations to demonstrate the effect of
the relative balance between deposition and erosion. Secondly, we consider particle
laden dam-break flows with drag, particle deposition and particle entrainment
through bed erosion but no initial sediment load.

Throughout our study we noted that the presence of a dilute suspension did not
have a significant effect on the height or velocity profiles of the flows and the
overall shape of these profiles for flows with particles were essentially the same as
the analogous particle-free profiles. Generally, flows with particles where slightly
faster compared to analogous particle-free flows, but only by a few percent at most.
As such we have refrained from including plots of the height and velocity profiles
for brevity, and have instead focused on the dynamics of the volume fraction of
particles.

Initially laden, active sediment flows

In Figure 4.5 we have plotted volume fraction profiles of the numerical solutions to
the full model equations (2.19) with basal drag, an initial sediment load, particle
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Figure 4.5: Volume fraction of a dam-break flow with basal drag, an initial sedi-
ment load (φ(x, 0) = 1), particle deposition, and bed erosion. Profiles show vol-
ume fraction at various times t = 60, 120, . . . , 540, 600 with (i) CD = 0.01 and (ii)
CD = 0.001. Other parameter values used are φ0 = 0.01, γ = 2.5, ud = 0.005,
ue = 0.0015, uc = 0.5, and n = 2.0.

deposition, and particle entrainment through bed erosion for two different values of
the drag parameter CD. In plot (i) the drag parameter CD = 0.01 which is greater
than in plot (ii), where CD = 0.001. These plots highlight the importance of the
drag parameter in determining the dynamics of the volume fraction of particles.

As demonstrated in Section 4.1.2, where we studied particle-free dam-break flows
with basal drag, the presence of drag significantly retards the flow. The front speed
of the numerical solution with drag is non-constant and decreases with time until
the effect of drag balances the fluid’s inertia. The maximum horizontal velocity
occurs at the front, and the velocity is nearly uniform within the snout.

As the rate qe at which bed sediment is entrained into the flow is an increasing
function of the velocity u, the maximum rate of sediment entrainment occurs at
the front and is nearly uniform within the snout. However, as the height of the
fluid is non-constant within the snout and decreases sharply to zero at the front,
the volume of fluid into which the sediment is entrained is non-constant within
the snout, and decreases sharply to zero at the front. This results in the observed
peaks of the volume fraction of sediment, as seen in both (i) and (ii).
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Furthermore, increasing basal drag has the effect of slowing down the flow and
hence reducing the rate of particle entrainment as the entrainment rate is an
increasing function of the horizontal velocity. This can be seen by comparing plots
(i) and (ii), in which we note that the volume fraction of sediment in the snout is
higher in plot (ii) which has a smaller drag parameter than in (i).

Finally, we note that the peak particle entrainment is highest for short post-release
times since the velocity is also highest for short post-release times, and decreases
with time. As time increases the front speed decreases and hence the rate of
entrainment also decreases, resulting in a decreasing volume fraction of sediment
in the snout as particles settle out of suspension.

In Figure 4.6 we have plotted volume fraction profiles of the numerical solutions to
the full model equations (2.19) with basal drag, an initial sediment load, particle
deposition, and particle entrainment through bed erosion for two different values
of the drag parameter CD. In plot (i) the drag parameter CD = 0.01 which is
greater than in plot (ii), where CD = 0.001. In Figure 4.6 the critical bed velocity
uc above which the bed is eroded and particles are entrained into the fluid is higher
than in Figure 4.5. The profiles in Figure 4.6, when compared to the profiles in
Figure 4.5, highlight the importance of the critical bed velocity in determining the
dynamics of the volume fraction.

By increasing the critical bed velocity uc above which the bed erodes and particles
are entrained into the fluid we increase the cohesiveness of the bed and thereby
decrease the ability with which the flow can erode the bed. As such, a higher bed
shear, and hence velocity, is needed in order to erode the bed and entrain particles.
If the basal drag is strong enough so that the flow is kept from reaching this critical
bed velocity, then no particles will be entrained by the flow.

This interplay between the basal drag CD and the critical bed velocity uc is demon-
strated by comparing plots (i) and (ii) in Figure 4.6. In plot (i) the drag parameter
CD is high enough so that the flow does not reach speeds much higher than the
critical bed velocity, and hence the dynamics of the volume fraction are dominated
by deposition, and the volume fraction remains nearly horizontal throughout the
flow and decreases with time.

In Figure 4.7 we have plotted volume fraction profiles of the numerical solutions to
the full model equations (2.19) with basal drag, an initial sediment load, particle
deposition, and particle entrainment through bed erosion for n = 1/2, n = 1, and
n = 2.
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Figure 4.6: Volume fraction of a dam-break flow with basal drag, an initial sedi-
ment load (φ(x, 0) = 1), particle deposition, and bed erosion. Profiles show vol-
ume fraction at various times t = 60, 120, . . . , 540, 600 with (i) CD = 0.01 and (ii)
CD = 0.001. Other parameter values used are φ0 = 0.01, γ = 2.5, ud = 0.005,
ue = 0.0015, uc = 0.8, and n = 2.0.
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Figure 4.7: Volume fraction of a dam-break flow with basal drag, an initial sedi-
ment load, particle deposition, and bed erosion at t = 600. Above x = 200, the
power n = 1/2 for the bottommost profile, n = 1 for the middle profile, and n = 2
for the topmost profile. Other parameter values used are CD = 0.001, φ0 = 0.01,
γ = 2.5, φ(x, 0) = 1, ud = 0.005, ue = 0.0015, and uc = 0.5.

We recall that the mass entrainment flux qe is an increasing function of u, that the
dimensionless exponent n determines the concavity of the qe(u) curves (which are
concave up when (2n−1)u2/u2

c−1 > 0 and concave down when (2n−1)u2/u2
c−1 <

0 so that they are always concave up for n ≥ 1) and that the qe(u) curves, for
different n, intersect at u =

√
2uc.

For n < 1 we note that the volume fraction of particles φ in Figure 4.7 is increasing
and concave down, with relatively more particles per unit volume in suspension in
the bulk of the flow than the snout. For n > 1 we note that the volume fraction
of particles is increasing and concave up, with a peak at the front and relatively
more particles per unit volume in suspension in the snout than in the bulk of the
flow.

The dimensionless exponent n serves to differentiate between two types of flows;
the first where the volume fraction in the bulk is relatively high and the volume
fraction profiles do not have a peak at the front, and the second where the volume
fraction in the snout is relatively high, and the volume fraction profiles have a
peak at the front.

In Figure 4.8 we have plotted the particle flux qe − qd at the station x = 10 for
the numerical solution to the full model equations (2.19) with basal drag, particle
deposition, and bed erosion for two different values of the drag parameter CD. In
plot (i) the drag parameter CD = 0.01 which is greater than in plot (ii), where
CD = 0.001. In each plot, two curves are plotted for uc = 8/10 (> 2/3) and
uc = 5/10 (< 2/3).

For uc = 0.5 (topmost profile in both plots) the bed is eroded for short post-
release times and particles are entrained into the snout. In (i), once the front has
passed the flow does not continue to erode particles as the drag has slowed the
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flow appreciably so that the velocity in the bulk of the fluid is less than the critical
bed velocity uc and the particle flux is dominated by deposition. In (ii), once
the front has passed the flow continues to erode the bed and advect the entrained
particles downstream. As time progresses, the horizontal velocity u at the station
approaches its Ritter solution and qe approaches a steady value. However, as qd is
linearly proportional to the volume fraction of particles, the flux qe − qd decreases
with time as φ increases.

For uc = 0.8 (bottommost profile in both plots), once the front has passed, the net
particle flux remains negative since the flow is not flowing fast enough to overcome
the critical bed velocity uc.

In all cases, eventually the net particle flux qe − qd approaches zero, and two
scenarios result depending on the speed of the flow which is influenced by the drag
CD, and the critical bed velocity uc. For flows that are dominated by erosion,
when the net particle flux reaches zero the flow will continue to erode the bed and
entrain particles at the same rate that particles are deposited and the flow will
remain laden with sediment. For flows that are dominated by deposition, when
the net particle flux reaches zero the flow will no longer be laden with sediment as
all particles will have been deposited since the flow is not strong enough to erode
the bed as a result of either high bed cohesion, high basal drag, or both.

In Figure 4.9 we have plotted the net particle flux qe−qd and horizontal velocity u
at the station x = 10 for the numerical solution to the full model equations (2.19)
with basal drag, particle deposition, and bed erosion. These plots elucidate the
relationship between the horizontal velocity and the particle flux, and also show
the velocity approaching its long term Ritter solution u = 2/3.

In (ii), the critical bed velocity uc = 0.5 for the topmost profile which is less than
the long term Ritter solution u = 2/3, and hence the particle flux is dominated
by erosion and the flow will remain laden with sediment. The critical bed velocity
uc = 0.8 for the bottommost profile which is greater than the long term Ritter
solution u = 2/3, and hence the resulting particle flux is eventually dominated by
deposition so that all particles will eventually settle out of suspension.

Note that the time at which the particle flux profile corresponding to uc = 0.8
in (ii) becomes dominated by deposition (qe − qd ≤ 0) occurs before the velocity
reaches the critical bed velocity uc. That is, the bed continues to be eroded until
u reaches uc, but the particle entrainment rate qe becomes less than the particle
deposition rate qd before the bed ceases to be eroded.

40



−0.0005

0
q e
−

q d

0 10 20 30 40 50 60 70 80 90 100
t

(i) CD = 0.01

0.0025

0.0062

q e
−

q d

0 10 20 30 40 50 60 70 80 90 100
t

(ii) CD = 0.001

Figure 4.8: Source (qe−qd) at x = 10 of the numerical solution with basal drag, an
initial sediment load, particle deposition, and bed erosion. In each plot the critical
bed velocity uc is = 0.8 for the bottommost profile and 0.5 for the topmost profile.
The drag parameter is (i) CD = 0.01 and (ii) CD = 0.001. Other parameter values
used are φ0 = 0.01, γ = 2.5, φ(x, 0) = 1, ud = 0.005, ue = 0.0015, and n = 2.
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Figure 4.9: (i) Horizontal velocity u and (ii) net particle flux qe−qd of the numerical
solution with basal drag, an initial sediment load, particle deposition, and bed
erosion. In (i), the dashed line shows the long term Ritter solution u = 2/3. In
(i) the critical bed velocity uc is = 0.8 for the bottommost profile and 0.5 for the
topmost profile. Other parameter values used are CD = 0.001, γ = 2.5, φ(x, 0) = 1,
ud = 0.005, ue = 0.0015, and n = 2.
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Figure 4.10: Volume fraction of a dam-break flow with basal drag, particle de-
position, and bed erosion. Dashed line shows initially laden flow with n = 1.2
at t = 600, solid lines show initially clear flow with n = 1.2 at various times
t = 60, 120, . . . , 540, 600. Other parameter values used are CD = 0.001, φ0 = 0.01,
γ = 2.5, ud = 0.005, ue = 0.0015, and uc = 0.5.

Initially clear, active sediment flows

In Figure 4.10 we have plotted the volume fraction profile of the numerical solution
to the full model equations (2.19) with drag, particle deposition, bed erosion,
but without an initial sediment load. Again, the volume fraction is highest in
the snout of the flow where the height is small and entrainment is strongest. In
contrast to Pritchard and Hogg [42] where the concentration in the snout grew
until it reached its maximum and subsequently remained constant, we note that
the volume fraction in the snout here grows until it attains a maximum and then
decreases slowly. In the absence of drag the front speed is constant and particles
are entrained into the snout until the effects of bed erosion and particle deposition
reach an equilibrium. In the presence of drag the front speed is no longer constant
– the velocity of the front is fastest initially when the effect of gravity is stronger
than the effect of drag, resulting in strong erosion of the bed and an increasing
volume fraction profile in the snout. When the effects of gravity and drag reach an
equilibrium and the front speed becomes constant (and slower than the drag free
case), the particle entrainment rate due to bed erosion is slower than the drag free
case, and hence the balance between bed erosion and particle deposition occurs at
a lower volume fraction.

In Figure 4.11 we have plotted the horizontal velocity u and volume fraction of
sediment φ for the numerical solution to the full model equations (2.19) with
basal drag, particle deposition, bed erosion, but without an initial sediment load.
These plots elucidate the relationship between the velocity and volume fraction of
sediment entrained by the flow.

The volume fraction is highest in the snout of the flow where the height is small and
entrainment is strongest due to the high velocity of the flow there. The velocity
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Figure 4.11: (i) Horizontal velocity u vs x and (ii) φ vs x at various times t =
100, 200, 300, 400, 500, 600 with no initial sediment load (φ(x, 0) = 0). Dotted line
in (i) shows the critical bed velocity uc. Parameter values used are CD = 0.001,
uc = 0.5, φ0 = 0.01, γ = 2.5, ud = 0.005, ue = 0.0015, and n = 2.

in the snout is highest for short post-release times and decreases with time as the
effect of drag begins to balance the effect of gravity slowing the flow. As such,
particle entrainment is highest for short post-release times and decreases with
time. As the entrained particles settled out of suspension through the mechanism
of deposition the volume fraction of sediment will decrease until an equilibrium
between the rates of entrainment and deposition is reached. These result in the
high volume fraction for short post-release times that decreases with time.

In Figure 4.12 we have plotted the particle flux qe−qd at the station x = 10 for the
numerical solution with drag, particle deposition, and bed erosion for uc = 8/10,
uc = 5/10, and uc = 3/10. We note that the long term behaviour of the particle
flux is the same as the initially laden case, which is consistent with our analysis
done to determine the critical bed velocity below which the flow will continue to
erode the bed. At the onset the particle flux remains positive, in contrast to the
initially laden case, since the deposition term qd depends on the volume fraction φ
which is zero initially, and will remain small until enough particles are entrained
and a balance between particle entrainment and deposition is reached (if the critical
bed velocity is low enough).
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Figure 4.12: Source (qe − qd) of the numerical solution with basal drag, particle
deposition, bed erosion, but no initial sediment load. The critical bed velocity is
uc = 0.8 for the bottommost profile, uc = 0.5 for the middle profile, and uc = 0.3
for the topmost profile. Other parameter values used are CD = 0.001, φ0 = 0.01,
γ = 2.5, φ(x, 0) = 1, ud = 0.005, ue = 0.0015, and n = 1.

4.1.4 Sustained erosion

In all of our numerical simulations we have observed that, away from the tip of
the flow, the solutions for the height h and the horizontal velocity u of the particle
laden current are quite similar to those provided by the Ritter solutions [45] for
the particle-free model (with the gravity g replaced by the modified gravity ĝ). In
other words, after the front has passed, the height and horizontal velocity fields of
a dilute particle laden flow are well approximated by

u =
2
3

(x
t

+
√
ĝh0

)
and ĝh =

1
9

(
2
√
ĝh0 − x

t

)2
. (4.2)

This observation is confirmed in Figure 4.13, in which we have plotted the depth
and velocity profiles of both the Ritter solution and a typical numerical solution
of equations (2.19) corresponding to the initial value problem for the dam-break
flow. We note that the numerical solutions with drag and active sediment are well
approximated by the Ritter solution for ξ = x/t < 0.1.

Focusing our attention on a fixed station at x = a for some a, we note that
after a sufficiently long time the front of the flow will have passed the station
and the height and horizontal velocity fields will approach their Ritter solutions
given in (4.2) provided the drag coefficient is small enough so that the bulk is not
significantly retarded by the drag. That is, as t→∞,

u→ 2
3

√
ĝh0 and ĝh→ 4

9
ĝh0. (4.3)

Employing the long-term Ritter solutions (4.3) in the deposition and erosion mod-
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Figure 4.13: (i) Height and (ii) horizontal velocity vs x/t at t = 600. Solid lines
are numerical solutions, dashed lines are Ritter solutions. Parameter values used
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els (2.24) and (2.26), we obtain two cases. If

2
3

√
ĝh0 < uc (4.4)

then the flow is not sufficiently strong enough to erode the bed at the station x = a,
and eventually all particles will settle out of suspension. On the other hand, if the
critical bed velocity uc is small enough so that the flow continues to erode the bed
at the station, then the deposition and erosion fluxes will balance when qe = qd,
that is

ρpve

(
4
9
ĝh0

u2
c

− 1
)n

= ρpvsφ. (4.5)

This determines a critical volume fraction φc, below which erosion is stronger
than deposition so that the volume fraction increases, and above which deposition
is stronger than erosion so that the volume fraction decreases. Isolating φc, we
obtain

φc =
ve
vs

(
4
9
ĝh0

u2
c

− 1
)n

(4.6)

which, in terms of our non-dimensional variables, becomes

φc =
ue
ud

(
4
9

1
u2
c

− 1
)n

. (4.7)

The non-dimensional critical bed velocity below which the flow will continue to
erode the bed is uc ≤ 2

3 .

4.2 Modified (β > 1) dam-break flows

4.2.1 Particle-free, without drag, flat bed

We consider particle-free dam-break flows for which there is shear in the vertical
profiles of the velocity so that the shape factor β > 1. In general the shape factor
β is a function of the height and velocity of the flow so that β ≡ β(u, h).

For modified dam-break flows without basal drag (β > 1, CD ≡ 0) it is no longer
possible to locate the front of the flow unless β → 1 at the front [26]. This can
be seen by considering the characteristic form of the governing equations (2.20)
without basal friction (CD ≡ 0) or bottom slope (b ≡ 0). Following Hogg and
Pritchard [26] we consider a linear combination of (2.20) , with CD ≡ b ≡ 0, which
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results in the characteristic equation

dh
dt

+ γ±
du
dt

= 0 on
dx
dt

= c± (4.8)

to obtain

c± = βu+
u2

2
∂β

∂u
±
√
u2β(β − 1) + h+ u3

∂β

∂u

(
β − 1 +

u

4
∂β

∂u

)
+ u2h

∂β

∂h
(4.9)

and
γ± =

h(c± − u)

u2(β − 1) + h+ u2h∂β∂h
. (4.10)

Since β remains bounded as h→ 0 we note that the expression under the square-
root in (4.9) is greater in magnitude than u4

4 (∂β∂u )2 so that c+ ≥ βu > u for β > 1.
That is, if β exceeds unity at the front, then the characteristic velocity exceeds the
front velocity and it is no longer possible to impose a kinematic condition there.

To illustrate, we consider the case where β is constant. Following Hogg and
Pritchard [26], equation (4.8) is rewritten as

dh
du

= −
h
(

(β − 1)u+
√
u2β(β − 1) + h

)
u2(β − 1) + h

. (4.11)

and subsequently integrated to obtain an implicit solution for the height and ve-
locity fields

1 = h3(β−1)

[√
h+ β(β − 1)u2 +

(3− 2β)
2

u

]2β−3

·
[√

h+ β(β − 1)u2 + u
√
β(β − 1)√

h+ β(β − 1)u2 − u√β(β − 1)

]√β(β−1) (4.12)

for β > 1 and β 6= 9/8; and

1 =
1
8

exp
(

2u√
64h+ 9u2 + 3u

)
·
(√

64h+ 9u2 + 3u
)5/6 (√

64h+ 9u2 − 3u
)1/6

(4.13)

for β = 9/8; together with the expansion fan originating at x = 0 and t = 0 such
that

x

t
= βu−

√
h+ β(β − 1)u2. (4.14)

From (4.12) we note that h → 0 only as u → ∞, which is a manifestation of
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Figure 4.14: (i) Height and (ii) velocity profiles for a modified dam-break flow over
a level stable bed without basal drag and with β = 1.0, 1.1, and 1.2. Solid lines
indicate solutions with β 6= 1, dashed line indicates solution with β = 1.0.

the observation above that the characteristic velocity at the front is greater than
the front velocity. That is, in the absence of drag, it is not possible to locate the
position of the front for β > 1.

From (4.14) we note that when u = 0 and h = 1, x/t = −1, so the speed at which
the expansion fan propagates into the reservoir is constant and independent of β,
which is to be expected as the reservoir is at rest and has no momentum.

In Figure 4.14 we have plotted the solution for the height and velocity profiles for
various values of the shape parameter β. From plot (ii) we see that u → ∞ as
x/t → ∞ while h → 0 in (i) as expected. We also note that for β > 1 the most
significant departures from the Ritter solutions occur in regions where h is small
and u is greater than unity.

In Figure 4.15 we have plotted the height and velocity profiles for both the classic
solution [45] and the numerical solution of the pure initial value problem based on
(2.20) including basal drag with β > 1. We note that the effect of vertical shear
(β > 1) in the horizontal velocity profile is most dramatic in the immediate vicinity
of the leading edge where the depth, and hence momentum, of the flow is small
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Figure 4.15: (i) Height and (ii) velocity profiles of the particle-free modified dam-
break flow over a flat bottom with basal drag at t = 300. Solid lines show numerical
solutions with β = 1.0, 1.1, and 1.2 from left to right. Dashed line shows the Ritter
solution. Parameter value used is CD = 0.001.

allowing the effect of vertical shear in the horizontal velocity to be accentuated.
The shape of the tip in the absence of shear is blunt and falls to zero abruptly at
the front so that the surface of the flow intersects the bed perpendicularly. The
introduction of vertical shear alters this profile so that the surface of the flow no
longer intersects the bed at an oblique angle. Furthermore, the front position
for β > 1 is greater than in the case where β = 1 due to the reduced angle of
intersection between the surface of the flow and the bed, and the incompressibility
of the fluid.

4.2.2 Particle-free, with drag, sloping bed

In this subsection we will examine modified dam-break flows over sloping beds in
order to isolate the effects of the interplay between the bottom slope and basal
drag. This involves solving the initial value problem consisting of (2.20) together
with the initial conditions of equation (2.21). We shall take the bottom topography
to be specified by (3.1).

49



0

0.5

1

h
(x

,t
)

−100 0 100 200
x

(i) h

0

1

2

u
(x

,t
)

−100 0 100 200
x

(ii) u
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flow over a linear slope with drag. Solid lines show numerical solutions with slope
s = 0, 0.001, and 0.01 from left to right. Dashed lines show the Ritter solutions.
Parameter values used are CD = 0.01 and β = 1.

In Figure 4.16 we have plotted the numerical solutions for both the height and
velocity profiles of a particle-free dam-break flow over a sloping bottom with drag
for β = 1. We note that both the height and velocity profiles are nearly horizontal
in the bulk of the flow over the linearly sloping bed. Furthermore, in the presence
of a sloping bottom the blunt snout in the height profile has become more abrupt
and falls steeply to zero at the front. As demonstrated in previous sections, the
effect of drag is to retard the front and create a blunt snout, while the effect of a
sloping bottom is to draw out the fluid, reducing its height in the bulk of the flow
over the sloping bed, and slightly increasing its height directly behind the front.
The interplay between these two effects results in the profiles shown in Figure 4.16.

We also note that, in contrast to the drag-free case, the presence of a sloping
bottom has a significant effect on the front position of the flow. As one may
expect, the front position is greater for flows over steeper beds.

In Figure 4.17 we have plotted the numerical solutions for both the height and
velocity profiles of a particle-free dam-break flow over a sloping bottom with drag
for β > 1. The effect of vertical shear in the horizontal velocity here is similar to
its effect in the absence of a sloping bottom. The angle at which the surface of
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Figure 4.17: (i) Height and (ii) horizontal velocity for a particle-free dam-break flow
over a linear slope with drag. Solid lines show numerical solutions with β = 1.0, 1.1
and 1.2 from left to right. Dashed lines show the Ritter solutions. Parameter values
used are CD = 0.01 and s = 0.001.

the flow intersects the bed is no longer oblique, and the front position for β > 1 is
slightly greater than for β = 1.

4.2.3 Particle-laden, with drag, linear slope

In this subsection we will explore the complex interactions between particles and
flow when basal drag, bottom topography, erosion, and sedimentation are taken
into account. We will solve the full particle-laden model equations in the presence
of drag and a sloping bed. These flows are representative of flows with sufficiently
low aspect ratio whose dynamics are governed by the balance between the fluid’s
inertia, the horizontal pressure gradient, basal drag, bottom topography, and the
presence of a changing particle volume fraction or concentration through the mech-
anisms of particle advection, deposition, and entrainment through bed erosion.

In Figure 4.18 we have plotted the horizontal velocity u and volume fraction of
sediment φ for the numerical solution to the full model equations with basal drag,
particle deposition, bed erosion, and bed slope. These plots elucidate the rela-
tionship between the velocity and volume fraction of sediment entrained by the
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flow.

Since the velocity over the sloping region is nearly horizontal and particles are
advected downstream with the same velocity as the flow, particles entrained into
the flow maintain their relative position within the flow. As such, particles en-
trained into the flow directly behind the front are advected downstream with the
flow and remain in a position directly behind the front resulting in the volume
fraction profile shown in Figure 4.18 which attains its maximum directly behind
the front.

The linear nature of the volume fraction profile shown in Figure 4.18 is in contrast
to the flat case [19] in which the volume fraction was highest in the snout and de-
cayed in a non-linear fashion in the upstream direction. Furthermore, the physical
mechanisms that determine the observed volume fraction profiles in the flat and
sloping cases are different. In the flat case, the peak in the volume fraction profile
was due to the nature of the height and velocity profiles: the volume fraction was
highest in the snout of the flow where the height was small and entrainment was
strongest due to the high velocity of the flow there. The velocity in the snout was
highest for short post-release times and decreased with time as the effect of drag
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began to balance the effect of gravity slowing the flow. As such, particle entrain-
ment was highest for short post-release times and decreased with time. As the
entrained particles settled out of suspension through the mechanism of deposition
the volume fraction of sediment decreased until an equilibrium between the rates
of entrainment and deposition was reached. These effects resulted in a high volume
fraction for short post-release times that decreased with time. In the sloping case,
for sufficiently large slopes, the peak in the volume fraction is primarily due to ad-
vection coupled with the nearly horizontal velocity profile, and the peak increases
for all post-release times [5].

4.3 Varying bed topography

4.3.1 Passage through the critical Froude number

In this section we present a brief review of some of the results of [31] which pertain
to surface waves excited by small amplitude bed disturbances when the Froude
number of the flow is close to unity. We do so in order to motivate an essential
conclusion of their analysis: when the Froude number of a flow with a slowly
varying bottom topography passes through unity, surface disturbances are excited
by the bottom topography and amplify to form an N-wave of slowly increasing
wavelength.

For an arbitrary isolated bottom disturbance of order ε� 1 that moves upstream
with dimensionless speed F (the Froude number), [31] extend [53] to obtain Boussi-
nesq equations for shallow-water flows that incorporate high order terms related
to small disturbances in the height and bed profiles. These equations are given by

∂

∂t
h+

∂

∂x
(uh) = O(ν4), and (4.15a)

∂

∂t
u+ u

∂

∂x
u+

∂

∂x
(h+ εb) = −1

3
δ2hxtt − 1

2
δ2εbxtt +O(ν3) (4.15b)

where δ is the aspect ratio of the flow and ν is the (small) amplitude of free surface
waves. For a slowly varying Froude number F = F (εt) and bottom disturbance of
the form

b(x, t) = B(x+ t+) where t+ =
∫ t

0
F (ετ) dτ, (4.16)
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equation (4.15b) becomes

∂

∂t
u+ u

∂

∂x
u+

∂

∂x
(h+ εB)

= εFt − 1
3
δ2

(
F 2hxxx + 2Fhxxt + hxtt

)
− δ2

(
1
2
F 2Bxxx +

1
3
Fthxx

)
+O(ν3)

(4.17)

in a coordinate system fixed to the moving bed (that is, the actual depth-averaged
horizontal velocity of the flow is given by u(x, t) − F (εt)). Although [31] explore
various scenarios arising from different forms of the Froude number function F (εt),
we will focus our attention here on the case where the Froude number is constant
and close to unity. As in [31], the system (4.15) is re-scaled according to

F − 1 = ε1/2F ∗, ν = ε1/2, δ = ε1/4κ∗, and t∗ = ε1/2t (4.18)

where κ∗ measures the relative importance of dispersive and nonlinear effects (when
κ∗ = 0, nonlinear effects predominate); and multiple-scale expansions for u and h

of the form
u = 1 + ε1/2

(
F ∗ + u∗1(x, t, t∗;F ∗, κ∗)

)
+O(ε) (4.19a)

h = 1 + ε1/2
(
h∗1(x, t, t∗;F ∗, κ∗)

)
+O(ε) (4.19b)

are employed. Substituting the expansions (4.19) into (4.15a) and (4.17), [31] find
that u and h are given by

u(x, t; ε, F, κ) = 1 + ε1/2
(
F ∗ − 1

2
g(x, t∗;F ∗, κ∗)

)
+O(ε), (4.20a)

h(x, t; ε, F, κ) = 1 +
1
2
ε1/2g(x, t∗;F ∗, κ∗) +O(ε) (4.20b)

where g satisfies the evolution equation

∂

∂t
g +

(
F ∗ − 3

4
g

)
∂

∂x
g − 1

6
κ∗2

∂3

∂x3
g = Bx. (4.21)

This is a forced Korteweg-de Vries (KdV) equation which has been explored, an-
alytically and numerically, by several authors ([31, 12, 24]) and compared to ex-
periment by [33]. In Figure 4.19 we have plotted the numerical solution to (4.21)
which shows: (i) a region just downstream of the bump in which the height and
velocity profiles are slightly depressed (the magenta region); (ii) the formation of
small amplitude waves just downstream of this region (the green–magenta waves);
and (iii) the periodic creation of slightly larger amplitude solitary waves that travel
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Figure 4.19: Solution g(x, t) of the forced KdV equation (4.21). Parameter values
used are F ∗ = 0 (ie, F = 1), κ∗ = 1.0, B(x) = εe−x

2/2, and ε = 0.01. The solution
was obtained using a simple finite-difference scheme as in [31] (see Appendix B).

upstream (the red–cyan waves).

[31] go on to demonstrate that the upstream travelling waves in Figure 4.19 deceler-
ate as the Froude number increases through unity and eventually reverse direction
to interact with the bottom disturbance. As the Froude number increases beyond
unity this interaction gives rise to an N-wave with a slowly increasing wavelength
above the bottom disturbance.

We have observed the formation of surface N-waves in the current study for certain
combinations of parameters that result in both: (i) the formation of small bed
disturbances through erosion, and (ii) flows in which the Froude number is close
to unity. We believe the N-waves that we have observed are due to small bed
disturbances and evolve in the manner described by, in particular, [31] because:
(i) we do not witness them when erosion and deposition are suppressed (but all
other parameters are the same), (ii) only witness them when the Froude number
of the flow is unity, and (iii) the resulting bed disturbances travel slowly upstream
as required in (4.16). In other words, the setting under which we observe N-waves
in our simulations is exactly the same as in [31]. These flows will be explored in
more detail in Section 4.3.6.
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4.3.2 Predicting the Froude number of a dam-break flow prior to

release

In the preceding section we demonstrated that surface N-waves may be formed
above bottom disturbances when the Froude number of the flow passes through
unity. In this section we demonstrate that, in certain parameter regimes, the
Froude number of a dam-break flow can be predicted prior to release, and therefore
we can predict when surface N-waves will be formed.

If the initial bed profile is given by

b(x, 0) = s xΘ(x) +O(ε) (4.22)

where Θ is the Heaviside step function and s is the gross bed slope, then the
momentum source due to bottom topography in the absence of particles becomes
roughly ρf s g h for x > 0. When this balances the momentum source due to basal
drag, which is ρf CDu2 in magnitude, we obtain CDu2 ∼ sgh. Therefore, since the
Froude number of a shallow-water flow is given by F = u/

√
gh, we obtain

F =
u√
gh

=
√

s

CD
. (4.23)

In Figure 4.20 we have plotted the Froude number F = u/
√
h for several particle-

free dam-break flows with various different values of the drag (CD) and slope (s)
parameters in order to demonstrate that the Froude number of the flow does in
fact attain its predicted value. We note that for steeper slopes, the Froude number
attains its predicted value throughout a significant portion of the flow downstream
of the initial location of the dam. For shallower slopes, although the the Froude
number does not follow its predicted value as closely as for steeper slopes, it does
remain close. Ultimately the regimes in which the Froude number can be predicted
according to (4.23) are determined by the balance of the momentum source terms:
if the slope is too shallow the flow will primarily be driven by the balance between
the hydrostatic pressure gradient and drag instead of by the balance between the
gross bed slope and drag.

When the bed topography is allowed to change with time through the mechanisms
of deposition and erosion small deformations of the bed may be formed. If the
Froude number of the flow is close to unity then these deformations may excite
surface N-waves as was demonstrated in Section 4.3.1. As such, if we choose
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Figure 4.20: Froude number F (= u/
√
h) at t = 3000.0 for particle-free dam-break

flows with various values of the drag (CD) and bed slope (s) parameters. The x
coordinate has been normalised by xF , which is the first x coordinate at which
the Froude number attains its maximum or 3.5. That is, xF = min{x |F (x) =
min(3.5,maxF )}. The dotted horizontal lines are the predicted Froude numbers
(ie, F =

√−s/CD) for each flow. Other parameter values used are β = 1.

parameter values such that the predicted Froude number given by (4.23) equals
unity, then surface N-waves are likely to be observed.

4.3.3 Flat bed

In Figure 4.21 we have plotted the height h(x, t) and bed elevation b(x, t) for an
initially flat bed. These plots show the development of a scour pit at the original
position of the dam. We note that the pit is deepest slightly downstream from the
dam and that most of the sediment from the pit has been deposited downstream
of the pit. We also note a slight thickening of the height profile above the pit as
faster flowing fluid moving down and into the pit flows into slower moving fluid
flowing up and out of the pit (as is the case for a hydraulic jump).

The height profile of the flow in Figure 4.21 resembles the height profile of a
particle-free dam-break flow over a flat bed with drag ([26, 19]) except for the
thickening of the fluid depth above the scour pit. That is, the tail position recedes
into the reservoir at the speed

√
gh0 and the height profile decreases quadratically

from the tail position before thickening into a blunt snout and falling abruptly
to zero at the front. As we have observed in the previous sections, the presence
of dilute sediment in suspension does not have a significant affect on the flow
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Figure 4.21: Height and bed elevation for an initially flat bed. Parameter values
used were CD = 0.001, φ0 = 0.01, γ = 2.5, ud = 0.005, ue = 0.003, n = 1.0,
uc = 0.4, s = 0.0, and β = 1.0.
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dynamics: only a few percent at most. However, the effects of deposition and
erosion do have a dramatic effect on the bed.

4.3.4 Sloping bed

In Figure 4.22 we have plotted the height h(x, t) and bed elevation b(x, t) for an
initially sloping bed. These plots show the development of a scour pit at the
original position of the dam as was the case in the previous section for a flat bed.
However, no sediment has been deposited downstream of the pit (it remains in
suspension) since the fluid is accelerated by the sloping bed augmenting the effect
of erosion there. We also note that the height profile drops abruptly at the original
position of the dam and that the height profile is constant downstream of the dam
until it falls to zero at the front. This resembles the height profile of a particle-free
dam-break flow over a linearly sloping bed with drag ([20]). That is, the flow
upstream of the dam does not feel the effect of the sloping bed but the height
profile drops abruptly at the dam and the fluid downstream of the dam is drawn
out so that it has an almost constant depth until falling to zero at the front.

4.3.5 Momentum source balance

In Section 4.3.2 we demonstrated that the Froude number of a dam-break flow can
be predicted prior to release in certain parameter regimes. In this subsection we
will further analyse the magnitude of the various source terms in the momentum
equation (2.31b) in order to gain further insight into which physical phenomena
ultimately determine the evolution of a dam-break flow. Recall that the source
terms of the momentum equation are: (i) pressure gradient (− ∂

∂xΓ(φ)gh2/2), (ii)
drag (−CDu2), (iii) bed topography (−hΓ(φ) ∂

∂xb), and (iv) particle momentum
exchange (−φ0(γ + 1)u(qe − qd)).

In Figure 4.23 we have plotted various source terms in the horizontal momentum
equation for an initially flat bed and an initially sloping bed. For the initially flat
bed, we note that in the tail of the fluid the flow is driven primarily by the pressure
gradient (the height profile is roughly quadratic there) and slightly prohibited by
drag. Behind the front the pressure is balanced by drag and the net momentum
source is zero. For the initially sloping bed, directly behind the bed the pressure
and bed topography balance the drag and the net momentum source is also zero.
In the bulk of the flow between the front and the original position of the dam,
the momentum source due to pressure is zero and the constant slope of the bed
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Figure 4.22: Height and relative bed elevation for an initially sloping bed. Param-
eter values used were CD = 0.0005, φ0 = 0.01, γ = 2.5, ud = 0.005, ue = 0.003,
n = 1.3, uc = 0.6, s = −0.001, and β = 1.0.
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balances the drag. For very shallow slopes the evolution of the flow downstream
of the original position of the dam is governed by the balance between pressure
and drag. For modest slopes the evolution of the flow downstream of the original
position of the dam is governed by the balance between the bed slope and drag.

For both the initially flat and sloping beds a scour pit develops underneath the
original position of the dam and the resulting source balances are more complex as
compared to downstream of the dam. For the initially flat bed a hydraulic jump is
formed above the scour pit resulting in a positive pressure gradient and a negative
momentum source. For the initially sloping bed, although a scour pit develops
underneath the original position of the dam, the right side of the pit is missing
since the bed has a downward slope. As such, the height profile drops abruptly
above the dam instead of forming a hydraulic jump. This results in a negative
pressure gradient and a positive momentum source.

Finally, we note that for both the initially flat and sloping beds the momentum
gained or lost due to the exchange of sediment between the flow and the bed is very
small. This is consistent with how the particle momentum exchange term entered
the momentum equation (ie, through the Boussinesq approximation), and demon-
strates that the momentum exchanged between the bed and the fluid through
deposition and erosion does not play a significant role in the dynamics of the flow
or the sediment.

4.3.6 Critical Froude number

In this section we present results for the case where the predicted Froude number
is unity so that surface N-waves are produced as in Section 4.3.1.

In Figure 4.24 we have plotted the height and bed profiles for an initially sloping
bed with a small Gaussian bump centred at x = 600. The drag and slope pa-
rameters have been chosen so that the predicted Froude number is equal to unity
and hence surface N-waves are generated as outlined previously. A hydraulic jump
is formed immediately upstream of the bump shortly after the fluid overtakes the
bump. However, the bump is slowly eroded and eventually disappears leaving only
a slight depression in the bed which travels slowly upstream. While the bump is
being eroded it spreads spatially and also moves slowly upstream. Downstream
of the bump surface N-waves are generated by small bed disturbances created by
erosion. The N-waves and bed ripples are seen to travel slowly upstream.
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Figure 4.23: (i) Momentum source terms for an initially flat bed at t = 3000.
Parameter values used are CD = 0.001, φ0 = 0.01, γ = 2.5, ud = 0.005, ue = 0.003,
n = 1.0, uc = 0.4, and β = 1.0. (ii) Momentum source terms for an initially sloping
bed at t = 3000. Paramter values used are CD = 0.0005, φ0 = 0.01, γ = 2.5,
ud = 0.005, ue = 0.003, n = 1.3, uc = 0.6, s = −0.001, and β = 1.0.
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Figure 4.24: (i) Height profile and (ii) relative bed elevation for an initially sloping
bed with a small Gaussian bump at x = 600. Parameter values used were CD =
0.001, φ0 = 0.01, γ = 2.5, ud = 0.005, ue = 0.003, n = 1.0, uc = 0.3, s = −0.001,
and β = 1.0.
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In Figure 4.25 we have plotted height, bed, and velocity profiles for the same flow
as in Figure 4.24 at t = 12000. The surface N-waves are clearly shown in the
height profile. Aside from the N-wave structures the flow behaves roughly as it
would if deposition and erosion had been suppressed (ie, the front position and
‘average’ height, velocity, and volume fraction profiles are unaffected aside from
the N-wave structures). Focusing on the structure of the N-waves, we note that
each N-wave consists of relatively slow deep water transitioning into relatively fast
shallow water. As such, the myriad of N-waves could be considered as many small
hydraulic jumps. Furthermore, each N-wave has a corresponding bed ripple which
is deepest where the fluid transitions abruptly from faster to slower velocities. This
is consistent with the erosion model (2.26) in which the rate of erosion increases
with velocity. In other words, in the trough of each N-wave the velocity is highest
and hence the effect of erosion is strongest there so that the bed is eroded. Crossing
the jump into the peak of the next N-Wave, the velocity is lowest and hence the
effect of erosion of weakest there.

The N-waves observed in Figures 4.24 and 4.25 were also observed for initially
smooth sloping beds (ie, without bumps). As the bed is eroded small perturbations
in the bed excite the forced KdV waves as outlined in Section 4.3.1 since the
Froude number of the flow is critical. These KdV waves grow in amplitude until
they form slowly upstream-travelling N-waves, and the structure of velocity profiles
in these N-waves results in an erosion pattern that is reminiscent of bed ripples.
These ripples are coupled to the overlying N-waves so that they too travel slowly
upstream. The structure and coupling of the N-waves and bed ripples is sustained
for very long times.

4.3.7 Stepping

In this section we present results for the case where the predicted Froude number is
unity so that surface waves are likely to be produced as in Section 4.3.1, except we
have chosen parameters which result in slightly different flow and bed dynamics.

In Figure 4.26 we have plotted the bed elevation for an initially sloping bed. The
drag and slope parameters where chosen so that the predicted Froude number
was unity, but the critical bed velocity uc was chosen so that once surface waves
were produced, the velocity of the flow oscillated about the critical bed velocity.
That is, when producing Figure 4.25 we noticed that, roughly speaking, in each
N-wave the velocity oscillated between the non-dimensional values of 0.5 and 0.6,
and hence to produce Figure 4.26 the critical bed velocity uc was chosen to be
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Figure 4.25: (i) Height profile, (ii) relative bed elevation, and (iii) velocity profile
for an initially sloping bed with a small Gaussian bump at x = 600 at t = 12000.
Parameter values used were CD = 0.001, φ0 = 0.01, γ = 2.5, ud = 0.005, ue =
0.003, n = 1.0, uc = 0.3, s = −0.001, and β = 1.0.
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(i) bed elevation

0 100 200 300
x

−0.4

−0.3

−0.2

−0.1

0

b

Figure 4.26: Bed elevation for an initally sloping bed at t = 12000. Parameter
values used were CD = 0.001, φ0 = 0.01, γ = 2.5, ud = 0.005, ue = 0.008, n = 0.5,
uc = 0.55, s = −0.001, and β = 1.0.

0.55. The resulting bed topography exhibits step-like behaviour as compared to
the ripple-like behaviour seen previously. These steps are reminiscent of the cyclic
steps that developed in the bed of the laboratory flume of [32] in which water
flowed over fine gravel.
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Chapter 5

Numerical method

The numerical method used to solve the model equations (2.19) throughout this
work is a finite-volume scheme in which the flux and source terms are computed
based on Weighted Essentially Non-Oscillatory (WENO) reconstructions. The
scheme can be applied to systems of balance laws of the form

∂

∂t
q +

∂

∂x

(
f(q, x, t)

)
= ψ(q, x, t) (5.1)

where q = q(x, t) is a vector of unknowns.

All of the codes used to generate the data and figures in this work are available
online at:

http://www.math.ualberta.ca/~memmett/dambreak/

The codes are made available to others in the spirit of collaboration, openness,
and reproducibility. Further information on how to run the codes can be found on
the website listed above.

5.1 WENO reconstructions

For the sake of simplicity we will focus our attention on one-dimensional hyperbolic
balance laws of the form

qt +
(
f(q)

)
x

= 0. (5.2)
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Finite-volume schemes do not solve (5.2) directly; they solve its integrated version
instead. Integrating (5.2) over the interval [a, b] we obtain

d
dt
q(t) +

1
b− a

(
f
(
q(b, t)

)− f(q(a, t))) = 0

where

q(t) ≡ 1
b− a

∫ b

a
q(ξ, t) dξ

is the average value of q over [a, b]. This leads us to one of the central problems
in implementing a numerical scheme to solve (5.2): obtaining the values of q at
the boundaries a and b based on the averages q of q. This is the reconstruction
problem.

Before proceeding we will need to define notation regarding the spatial grid (dis-
cretisation).

5.2 Grid

We consider a grid over the interval [a, b] with N cells. We denote the N + 1 cell
boundaries by

xi−1/2 for i = 1, . . . , N + 1 (5.3)

so that
a = x1/2 < x3/2 < · · · < xN−1/2 < xN+1/2 = b. (5.4)

Subsequently, we denote the N cells by

Ci = [xi−1/2, xi+1/2] for i = 1, . . . , N ; (5.5)

the N cell centres by

xi =
xi−1/2 + xi+1/2

2
for i = 1, . . . , N ; (5.6)

the N cell sizes by

∆xi = xi+1/2 − xi−1/2 for i = 1, . . . , N ; (5.7)

and the maximum cell size by

∆x = max
i=1,...,N

∆xi. (5.8)

68



We denote the contiguous stencil around the cell Ci, containing k cells shifted to
the left by r cells, by

Sr,ki = Ci−r ∪ · · · ∪ Ci−r+k−1. (5.9)

Note that Sr,ki spans k cells and contains k + 1 cell boundaries.

5.3 One dimensional reconstruction for smooth func-

tions

Given the cell averages qj of a function f where

qj =
1

∆xj

∫ xj+1/2

xj−1/2

q(ξ) dξ (5.10)

we wish to find approximations to the function q at various points within each
cell. In particular, we might be interested in approximating the function at the
left cell boundary xi−1/2, the right cell boundary xi+1/2, or at any point ξ within
the cell Ci. If the approximations are computed using k cell averages, they should
be k-order accurate. The remainder of this section will be devoted to finding these
approximations and showing that they are k-order accurate. As it turns out, we
will show that there are constants cj (hereafter called reconstruction coefficients)
such that the reconstructed values are given by

q(ξ) ≈
k−1∑
j=0

cj qi−r+j . (5.11)

That is, given a stencil Sr,ki that spans the k cells Ci−r, . . . , Ci−r+k−1, the recon-
structed value of the original function at some point ξ in Ci can be obtained using
a simple linear combination of the averages qj over the cells Cj in the stencil Sr,ki .
In general, the reconstruction coefficients cj depend on the reconstruction point ξ,
order k, left shift r, and cell Ci, but not on the function q.

In order to obtain the reconstruction coefficients cj and prove accuracy, we will
find polynomials pri of degree at most k− 1 such that each pri is a k-order accurate
approximation to f inside Ci. That is, given the cell averages qj , we will find
polynomials pri such that

pri (x) = q(x) +O(∆xk) for x ∈ Ci.
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In order to find these polynomials, we consider the primitive function

V (x) =
∫ x

a
q(ζ) dζ. (5.12)

Using the cell averages qj we can compute V at the cell boundaries xi+1/2 through

V (xi+1/2) =
∫ xi+1/2

a
q(ξ) dξ

=
i∑

j=1

∫ xj+1/2

xj−1/2

q(ξ) dξ

=
i∑

j=1

qj∆xj . (5.13)

Focusing on a particular cell Ci and stencil Sr,ki , the unique polynomial P ri of order
k which interpolates V at the k + 1 points

xi−r−1/2 , . . . , xi−r+k−1/2

is given by

P ri (x) =
k∑
l=0

(
V (xi−r+l−1/2)

k∏
m=0,m 6=l

(x− xi−r+m−1/2)
(xi−r+l−1/2 − xi−r+m−1/2)

)
. (5.14)

This is the interpolating polynomial of V in Lagrange form. It can be shown that

P ri (x) = V (x) +O(∆xk+1) for x ∈ Sr,ki .

Therefore, the derivative pri of P ri satisfies

pri (x) =
d

dx
P ri (x) = q(x) +O(∆xk) for x ∈ Sr,ki

and pri is of order k − 1.

Furthermore, the cell averages of pri over the cells Cj that comprise the stencil Sr,ki
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Figure 5.1: Possible stencils for k = 3 corresponding to left-shifts of r = 0, 1, and
2. Each stencil can be used to build reconstructions at x = ξ in the cell Ci using
the cell averages within the stencil.

satisfy

1
∆xj

∫ xj+1/2

xj−1/2

pri (ξ) dξ =
1

∆xj

∫ xj+1/2

xj−1/2

P ′i (ξ) dξ

=
1

∆xj

(
P ri (xj+1/2)− P ri (xj−1/2)

)
=

1
∆xj

(
V (xj+1/2)− V (xj−1/2)

)
=

1
∆xj

(∫ xj+1/2

a
q(ξ) dξ −

∫ xj−1/2

a
q(ξ) dξ

)
=

1
∆xj

(∫ xj+1/2

xj−1/2

q(ξ) dξ
)

= qj for j = i− r, . . . , i− r + k − 1.

That is, the cell averages of the approximating polynomials pri match the cell
averages the original function in each of the cells Cj which comprise the stencil
Sr,ki .

So far we have constructed polynomials pri that approximate the original function
q on the stencils Sr,ki to k-order using only the cell averages qj for j = i−r, . . . , i−
r + k − 1. The possible left-shifts r are illustrated for k = 3 in Figure 5.1.

Now we consider the practical problem of finding the constants cj . Subtracting
V (xi−r−1/2) from P ri (x) and using

k∑
l=0

k∏
m=0,m 6=l

(x− xi−r+m−1/2)
(xi−r+l−1/2 − xi−r+m−1/2)

= 1
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and
V (xi−r+l−1/2)− V (xi−r−1/2) ≡ 0 for l = 0

we obtain

P ri (x)− V (xi−r−1/2) =
k∑
l=1

((
V (xi−r+l−1/2)− V (xi−r−1/2)

) k∏
m=0,m 6=l

(x− xi−r+m−1/2)
(xi−r+l−1/2 − xi−r+m−1/2)

)
.

Taking the derivative of the above, we obtain

pri (x) =
k∑
l=1

((
V (xi−r+l−1/2)− V (xi−r−1/2)

)
·
∑k

m=0,m 6=l
∏k
n=0,n6=l,m(x− xi−r+n−1/2)∏k

m=0,m 6=l(xi−r+l−1/2 − xi−r+m−1/2)

)
.

(5.15)

Employing (5.13), we obtain

pri (x) =
k∑
l=1

(( l−1∑
j=0

qi−r+j∆xi−r+j

)

·
∑k

m=0,m 6=l
∏k
n=0,n 6=l,m(x− xi−r+n−1/2)∏k

m=0,m 6=l(xi−r+l−1/2 − xi−r+m−1/2)

)
.

(5.16)

Rearranging, we obtain

pri (xi+1/2) =
k−1∑
j=0

k∑
l=j+1

∑k
m=0,m6=l

∏k
n=0,n 6=l,m(x− xi−r+n−1/2)∏k

m=0,m 6=l(xi−r+l−1/2 − xi−r+m−1/2)
∆xi−r+jqi−r+j .

Therefore, the reconstruction coefficients cj used to reconstruct the function f at
the point ξ are given by

cj =
k∑

l=j+1

∑k
m=0,m 6=l

∏k
n=0,n 6=l,m(ξ − xi−r+n−1/2)∏k

m=0,m 6=l(xi−r+l−1/2 − xi−r+m−1/2)
∆xi−r+j . (5.17)

Note that the the reconstruction coefficients cj depend on ξ, i, r, and k.
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5.4 One dimensional reconstruction for piece-wise smooth

functions

The solutions of hyperbolic balance laws may contain discontinuities, and therefore
we are interested in reconstructing piecewise smooth functions. A piecewise smooth
function q is smooth except at finitely many isolated points. At these points, q
and its derivatives (at least up to the order of the scheme) are assumed to have
finite left and right limits.

For such piecewise smooth functions, the order of accuracy herein referred to is
formal. That is, it is defined as the accuracy determined by the local error in the
smooth regions of the function.

The basic idea of WENO is to use a convex combination of several stencils to form
the reconstruction of q, and, if a stencil contains a discontinuity, its weight should
be close to zero. In smooth regions, using several stencils will also serve to increase
the order of accuracy.

Consider the k stencils

Sr,ki for r = 0, . . . , k − 1

that can be used to reconstruct the value of q at some point ξ in the cell Ci. These
stencils span 2k − 1 cells. We denote the k different reconstructions by

q(ξ) ≈ qr =
k−1∑
j=0

crj q̄i−r+j for r = 0, . . . , k − 1 (5.18)

where we have added the superscript r to the function f and the reconstruction
coefficients cj to make their dependance on the left shift r explicit.

A WENO reconstruction takes a convex combination of all qr defined in (5.18) as
a new approximation according to

q(ξ) ≈
k−1∑
r=0

ωri q
r (5.19)

where we require

ωri ≥ 0 and
k−1∑
r=0

ωri = 1. (5.20)
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In smooth regions where all k stencils that can be used to reconstruct q(ξ) in (5.18)
do not contain discontinuities, we could reconstruct q(ξ) to order 2k− 1 using the
stencil Sk−1,2k−1

i to obtain

q(ξ) =
2k−2∑
j=0

c∗j q̄i−(k−1)+j (5.21)

where we have added the superscript ∗ to the reconstruction coefficients cj to
highlight that they are optimal (ie, higher order). Combining (5.18), (5.19), and
(5.21), we obtain

2k−2∑
j=0

c∗j q̄i−(k−1)+j =
k−1∑
r=0

ωri

(
k−1∑
l=0

crl q̄i−r+l

)
. (5.22)

Rearranging, we obtain

2k−2∑
j=0

c∗j q̄i−(k−1)+j =
2k−2∑
j=0

 min(k−1,j)∑
l=max(0,j−k+1)

ω
k−(j+1)+l
i c

k−(j+1)+l
l

 q̄i−(k−1)+j .

Therefore, we have 2k − 1 equations

min(k−1,j)∑
l=max(0,j−k+1)

ω
k−(j+1)+l
i c

k−(j+1)+l
l = c∗j for j = 0, . . . , 2k − 2 (5.23)

at each i (and ξ) for the weights ωri . For non-uniform grids the systems (5.23) are
over-determined, and therefore we must use some kind of optimisation algorithm
in order to find the weights ωri . For uniform grids the systems (5.23) are no longer
over-determined, and the weights ωri can be found explicity (and are independent
of i).

The weights ωri defined by (5.22) and determined by (5.23) are called optimal
weights since they can be used to reconstruct a function to order 2k− 1 in regions
where the function is smooth. We will henceforth denote the optimal weights by
$r
i .

We now consider the practical problem of choosing the weights ωri . If we choose the
weights ωri sufficiently close to the optimal weights $r

i in regions where the function
is smooth, then we can achieve 2k − 1 order accuracy. In order to determine how
close to the optimal weights $r

i the weights ωri must be choosen we consider the

74



reconstruction

f(ξ) ≈
k−1∑
r=0

ωri q
r =

k−1∑
r=0

$r
i q
r +

k−1∑
r=0

(
ωri −$r

i

)
qr. (5.24)

If we choose
ωri = $r

i +O(∆xk−1) (5.25)

then each term in the last summation of (5.25) becomes O(∆x2k−1) and therefore
2k − 1 order accuracy is preserved by the reconstruction.

If we define
ωri =

αri
α0
i + · · ·+ αk−1

i

(5.26)

where
αri =

$r
i

(ε+ σri )p
for r = 0, . . . , k − 1; (5.27)

and ε is a positive real number used to avoid dividing by zero (usually ε = 10−6),
p is some power (usually 2), and σri is a measure of the smoothness of the function
v in the stencil Sr,ki ; with the smoothnesses σri chosen appropriately, then (5.25)
is satisfied.

Typically, the smoothness measurement presented by Jiang and Shu [29] is used.
They define the smoothness according to

σri =
k−1∑
l=1

∫ xj+1/2

xj−1/2

(∆xj)2l−1

(
dl

dxl
pri (x)

)2

dx (5.28)

which is the sum of the L2 norms of the derivatives of the approximating polyno-
mial.

5.5 Locating the wet/dry interface of dam-break flows

with drag

In this section we present the algorithm that is employed by our dam-break solver
in order to locate the wet/dry interface of dam-break flows directly. Throughout
the remainder of this section we will: call the cell which contains the wet/dry
interface the front cell, denote the index of the front cell by if , and denote the
position of the wet/dry interface by xf .

The wet/dry interface of a dam-break flow is a contact discontinuity since the
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characteristic speeds of the system are equal when h = 0 and no information from
the bulk of the fluid may be transported beyond the front. As such, the basic idea
of our method was suggested by Harten in [25]. The algorithm that we use to
locate the wet/dry interface is comprised of three main concepts:

1. Stretching : The front cell is adapted by contracting or stretching it. That is,
the front cell’s right boundary is moved to the front position xf . We allow
the front cell to be contracted arbitrarily, but do not allow it to be stretched
beyond a preset threshold (usually taken to be 140% of its original width).
As such, the wet/dry interface always occurs at a cell boundary so that no
cells are partially filled by the fluid. In other words, the contact discontinuity
always occurs at a cell boundary so that we can build reconstructions at the
front that are not polluted by it.

2. Re-averaging : The quantities in the front cell are re-averaged whenever the
front cell is adapted to reflect its new width.

3. Searching : A bi-section search is used to locate the point at which the height
field vanishes based on purely upstream reconstructions using the adapted
cell boundaries and re-averaged quantities as above. That is, the front po-
sition is moved and the height is subsequently reconstructed there. If the
reconstructed height is equal to zero, the search is terminated.

Throughout each of these steps it is often necessary to reconstruct one or more
of the unknowns at the front position xf . This is accomplished by computing the
reconstruction coefficients in (5.17) with ξ = xf and subsequently performing an
upwind reconstruction according to (5.11) with r = k − 1.

We now present our algorithm for locating the wet/dry interface of a dam-break
flow with drag. Initially, we locate the front position and front cell by searching
through the initial condition for the first cell with zero height. During subsequent
time-steps we locate the wet/dry interface by performing a bi-section search to
find the point at which the height vanishes. During each iteration of the bi-section
search the front position is moved and the height is reconstructed there. The
search is terminated when the reconstructed height is zero. In pseudo-code, the
algorithm is essentially:

1. high← xif−1/2

2. low← xif +1/2
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3. while |high− low| < tolerance do

4. xf ← (high + low)/2

5. adapt the front cell: xif +1/2 ← xf

6. re-average quantities in the front cell

7. compute new reconstruction coefficients

8. h← reconstructed height at xf

9. if h > 0 then

10. high← xf

11. else

12. low← xf

13. end if

14. end while

Finally, the index if of the front cell is advanced and all of the unknowns are
re-averaged if the front cell has been stretched too much. The algorithm presented
above is illustrated in Figure 5.2.

5.6 Numerical scheme

Integrating the balance law (5.1) over the grid cells, we obtain a set of evolution
equations for each of the cell averages given by

d
dt
qi =

1
∆xi

(
f
(
q(xi−1/2, t)

)− f(q(xi+1/2, t)
))

+
1

∆xi

∫ xi+1/2

xi−1/2

ψ(q(x, t)) dx.
(5.29)

In order to evaluate the right-hand-side, we need to reconstruct q at: (i) the left
edge of each cell, (ii) the right edge of each cell, and (iii) various quadrature points
within each cell. However, note that the right edge of the cell Ci coincides with
the left edge of cell Ci+1. As such, there are two different reconstructions for each
boundary, and the fluxes in (5.29) should in fact be computed with a Riemann
solver. That is, let q−i−1/2 be the reconstruction at the right edge of cell Ci−1 (ie,
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Figure 5.2: A few illustrative steps of the search algorithm. In each frame, the
thick curve is the reconstruction polynomial pri (x) for the height profile. (a) The
high and low markers are set to the front cell’s boundaries. (b) The front position
is set and the front cell is adapted. Note that the reconstructed height at the
front is too high. (c) The high marker is adjusted, the front position is set, the
front cell is adapted, and the height profile is reconstructed. Again, note that the
reconstructed height at the front is too high. (d) Eventually, the high and low
markers squeeze the front position. Finally, note that the reconstructed height
profile at the front is equal to zero, which is the desired result.
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the reconstruction at xi−1/2 from below), and q+
i−1/2 be the reconstruction at the

left edge of cell Ci (ie, the reconstruction at xi−1/2 from above). In general, q−i−1/2

and q+
i−1/2 are not equal, and so we use the simple Lax-Friedrichs numerical flux

given by

F (q−, q+) =
1
2

(
f(q+) + f(q−)− α(q+ − q−)

)
(5.30)

where α is the maximum wave speed of the system to compute the fluxes in (5.29).

The numerical scheme used through this work is as follows:

1. Given an initial condition q(x, 0) and a set of grid cells Ci, compute the
average value of q(x, 0) in each cell and store as qi.

2. Compute the smoothness indicators σri based on the cell averages qi.

3. Reconstruct the unknown q at the following points withing each cell: (i) the
left edge, (ii) the right edge, and (iii) quadrature points. For each recon-
struction point:

(a) Compute the weights ωri based on the smoothness indicators σri and the
optimal weights $r

i .

(b) Compute the low-order reconstructions qri based on the cell averages qi.

(c) Compute the higher-order reconstructions based on the reconstructions
qri and weights ωri .

4. Compute the numerical flux at each cell boundary using the Lax-Friedrichs
flux (5.30).

5. Compute the quadrature of the source terms.

6. Sum the flux and source terms to obtain updates to each cell.

7. Evolve the cell averages qi using a time-stepping scheme (such as a Runge-
Kutta scheme) based on the updates in Step 6.

8. Repeat until final time reached.

Again, at the front the reconstructions are based on purely upwind reconstructions
(ie, not WENO reconstructions).
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Chapter 6

Discussion

In Chapter 2 we developed a model to describe the transport of dilute sediment un-
der dam-break flows with basal drag and varying bottom topography. The model
developed includes a velocity dependent basal drag force, incorporates the effects
of a spatially dependent bed topography that changes with time, and allows the
variable concentration of suspended particles, through the mechanisms of deposi-
tion and erosion, to influence the flow dynamics. The model is unique from existing
models which do not couple the flow and sediment dynamics and do not include
basal drag [42] or bed topography. The numerical results show that this coupling
is especially important for the sediment dynamics and for critical Froude number
flows.

We considered the two-dimensional flow resulting from the sudden release of either
pure water or dilute suspensions initially held at rest behind a plane vertical barrier
of height h0. The bed was taken to be horizontal and it was assumed that there was
no water below the dam initially. The aspect ratio was assumed to be small in ac-
cord with experimental results and therefore vertical accelerations were neglected
and a hydrostatic pressure distribution was adopted [16, 48, 45, 26, 54, 49]. A basal
drag term was added to the horizontal momentum equation to account for the
blunting and retarding of the flow front as seen in experiments [16, 48, 53, 15, 26].
The effect of suspended particles entered the flow dynamics through the buoy-
ancy terms and both erosion and deposition of particles were accounted for in the
model so that the buoyancy effects varied in both space and time. The suspended
particles were assumed to be vertically well-mixed so that the volume fraction of
particles depended only on the stream-wise coordinate and time [7, 6, 8, 42, 26, 44].
The particles were assumed to have negligible inertia [40] and particle diffusion in
the stream-wise direction was assumed to be dominated by advection [44]. Four
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conservation equations were derived for the fluid mass, horizontal momentum,
particle mass, and bed material mass. Again, the flow and sediment dynamics
were coupled through the horizontal momentum, and the mechanisms of sediment
deposition and entrainment through bed erosion appeared as source terms in the
conservation of particle mass equation. The bed topography was allowed to change
with time through the mechanisms of deposition and erosion. However, the model
does not account for particle-particle interactions, and only couples the flow and
sediment dynamics through the momentum equation by changing the density upon
which gravity acts. As such, the model is limited to small volume fractions of sed-
iment so that particle-particle interactions are unlikely. This limits our choice of
input parameters to ones which result in flows that remain sufficiently dilute.

In Section 4.1.1 we considered a simple particle free dam-break flow without basal
drag. The numerical scheme produced results which were in excellent agreement
with the well known Ritter solution [45]. The height profiles demonstrated the
simple wave structure of the Ritter solution, which connects the constant states
of h = 1 and h = 0 with a rarefaction wave that is a function of the similarity
variable ξ = x/t.

In Section 4.1.2 we considered a particle free dam-break flow with basal drag.
Adding hydraulic resistance through the mechanism of basal drag [15, 53, 54, 26]
destroyed the simple wave structure present in the Ritter solution as the conserva-
tion of momentum law became non-homogenous. We did not impose any dynamic
conditions at the front. The effects of basal drag were most prominent in the vicin-
ity of the tip where the unimpeded flow had a depth that fell to zero in a continuous
fashion. The shape of the tip was significantly altered compared to the Ritter so-
lution such that rather than decreasing smoothly to zero with a parabolic profile
the depth of the flow decreased abruptly to form a blunt snout at the leading edge.
The addition of the Chézy drag term brought the solution into closer accord with
the experimental results of Dressler [15], and to a lesser extent the more recent
experimental results of Stansby, Chegini, and Barnes [48]. The front speed of the
solution with basal drag was non-constant and decreased with time until the effect
of drag balances the fluid’s inertia. The maximum horizontal velocity occurred at
the front, and the velocity was nearly uniform within the snout. In conclusion,
basal friction impedes the flow by differing amounts according to the values taken
for the Chézy drag coefficient. These changes are observed in experiments and
were reflected in the subsequent rate of erosion in a nonlinear fashion, and fur-
thermore, these influences were not included in the model for sediment transport
under dam-break flow presented by Pritchard and Hogg [42].
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In Section 4.1.3 we considered various particle laden dam-break flows with basal
drag whose particle volume fraction was dynamic and changed through the mecha-
nisms of particle advection, deposition, and entrainment through bed erosion. We
demonstrated the role played by the critical bed velocity uc in the long term com-
petition between erosion and deposition and displayed the strong effect of basal
drag on the ultimate outcome of this competition. Again, inclusion of a frictional
term in models for suspended sediment transport via dam-break flows appears to
be a new addition to the literature [42] and the effect of its inclusion is often dom-
inant over other mechanisms in determining the efficacy of this mode for sediment
transport. We noted that the presence of a dilute suspension did not have a signif-
icant effect on the height or velocity profiles of the flows and the overall shape of
these profiles for flows with particles where essentially the same as the analogous
particle free profiles. Generally, flows with particles were slightly faster compared
to analogous particle free flows, but only by a few percent at most.

The maximum rate of sediment entrainment occurred at the front and was nearly
uniform within the snout. Peaks in the volume fraction of particle profiles were
observed directly behind the front where the height of the fluid decreased sharply
to zero. These peaks in the volume fraction of particles where highest for short
post-release times since the velocity was also highest for short post-release times,
and decreased with time. As time increased the front speed decreased due to basal
drag and hence the rate of entrainment also decreased, resulting in a decreasing
volume fraction of sediment in the snout as particles settled out of suspension. By
increasing the critical bed velocity uc above which the bed erodes and particles
are entrained into the fluid a higher bed shear, and hence velocity, was needed in
order to erode the bed and entrain particles. If the Chézy drag coefficient CD was
large enough so that the flow was kept from reaching this critical bed velocity no
particles were entrained by the flow. We explored this complex interplay between
the basal drag and the critical bed velocity and showed that the volume fraction
of particles may approach a steady state in the bulk of the flow or fall to zero
depending on the values of the drag coefficient CD and the critical bed velocity
uc. Furthermore, for small values of the drag coefficient the numerical results
confirmed our asymptotic deductions regarding the long term behaviour of the
volume fraction of particles. Namely, that when uc < 2/3 the bed continued to be
eroded for all post-release times and the volume fraction of particles approached a
non-zero steady state after the mechanisms of deposition and erosion reached an
equilibrium.

The interplay between basal drag and the critical bed velocity was further demon-
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strated by examining the particle flux at a fixed station. Flows with high basal
drag did not continue to erode the bed and entrain particles once the front had
passed a given station. This was due to the fact that the drag slowed the flow ap-
preciably so that the velocity in the bulk of the fluid was less than the critical bed
velocity and the particle flux was henceforth dominated by deposition regardless
of the value of the critical bed velocity. Flows with a critical bed velocity above
2/3 were also dominated by deposition because the long term Ritter velocity is
less than 2/3 regardless of the presence of basal drag. Flows with low drag and
a critical bed velocity below 2/3 continued to erode the bed and advect entrained
particles downstream. As time progressed, the horizontal velocity at the station
approached its Ritter solution and the particle flux due to erosion approached a
steady value while the particle flux due to deposition increased with increasing
volume fraction until an equilibrium between erosion and deposition was reached.
We conclude that the presence and intensity of basal drag and its interplay with
the critical bed velocity determines the long term behaviour of sediment transport.
Flows can either sustain erosion for all post-release times and obtain a non-zero
steady load of sediment, or cease erosion at some post-release time and deposit
their sediment load.

We noted that the dimensionless exponent n differentiated the flow between two
types, where the volume fraction in the bulk is relatively high and the volume
fraction profiles do not have a peak at the front; and where the volume fraction in
the snout is relatively high and the volume fraction profiles do have a peak at the
front.

In Section 4.2.1 we considered particle free flows over flat, frictionless beds for
which there was shear in the vertical profiles of the velocity so that the shape
factor β > 1. Following Hogg and Pritchard [26] we showed that for modified
dam-break flows without basal drag it is no longer possible to locate the front of
the flow unless β → 1 at the front. We illustrated this, and presented implicit
plots, for the case where β was constant. In the case where β is constant and not
equal to unity we observed that the most significant departures from the Ritter
solutions occurred in regions where h was small and u was greater than unity.

In Section 3.2 we considered particle free dam-break flows over a linear slope in
order to isolate the effects of the source term relating to the bottom slope. By
considering linearly sloping beds with small slopes we were able to perform an
asymptotic analysis and obtained first order corrections to the Ritter solution.
The asymptotic height correction showed an abrupt decrease in the height profile
at x = 0 where the bed began to slope downward, and a slight bulking up of
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the fluid in the body of the flow closer to the front. The height correction was
parabolic with its maximum occurring over the sloping bed and behind the front.
The height correction fell to zero at x = 2t so that, to first order, the sloping
bed did not affect the front position. The asymptotic velocity correction showed
that the fluid moved faster everywhere over the sloping region of the bed, and it
attained its maximum at the front.

In Section 4.2.2 we considered modified particle free dam-break flows over linear
slopes in the presence of drag in order to isolate the effects of the source terms
relating to the bottom slope and basal drag. The resulting height and velocity
profiles differed significantly from previous results and foreshadowed subsequent
results pertaining to sediment dynamics. Both the height and velocity profiles were
nearly horizontal in the bulk of the flow over the linearly sloping bed. Furthermore,
in the presence of a sloping bottom the blunt snout in the height profile was more
abrupt and fell steeply to zero at the front. The effect of drag was to retard the
front and create a blunt snout, while the effect of a sloping bottom is to draw
out the fluid, reducing its height in the bulk of the flow over the sloping bed, and
slightly increasing its height directly behind the front. Again, the introduction of
vertical shear altered the height profile so that the surface of the flow no longer
intersected the bed at an oblique angle.

In Section 4.2.3 we considered dam-break flows over linearly sloping erodible beds
in the presence of drag, exploring the complex interactions between particles and
flow when basal drag, bottom topography, erosion, and sedimentation are taken
into account. We observed that, as in the previous case with flat beds, the inclusion
of particles did not have a significant effect on the height or velocity profiles of the
flows. Since the velocity over the sloping region was nearly horizontal and particles
are advected downstream with the same velocity as the flow, particles entrained
into the flow maintained their relative position within the flow resulting in nearly
linear volume fraction profiles that increased in the downstream direction, and
whose maximum continued to increase for all post-release times in contrast to the
flat bed case. The peak in the volume fraction occurred directly behind the front,
and is primarily due to advection coupled with the nearly horizontal velocity profile
over the sloping bed.

In Section 4.3.1 we reviewed some of the analysis done by [31] which pertained
to the generated of surface N-waves in shallow-water flows with small bed distur-
bances. When the Froude number of the flow is close to unity, small perturbations
in the height and momentum fields caused by bed disturbances travel through the
flow with a characteristic velocity that is the same as the physical fluid velocity, al-
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lowing the perturbations to grow according to a forced KdV equation. Eventually,
these perturbations interact with bed disturbance and turn into surface N-waves.

In Section 4.3.2 we developed a heuristic with which we could predict the Froude
number of the flow prior to releasing the dam. With this heuristic, we could
chose parameter values so that surface N-waves would likely be observed. We
also demonstrated that the Froude number heuristic developed performs well for
sufficiently steep gross bed slopes.

In Sections 4.3.3 and 4.3.4 we considered two relatively simple cases: flow over a
flat bed and flow over an initially sloping bed. In each case, a sour pit developed
under the original position of the dam. In the flat bed case, most of the sediment
removed from the scour pit was deposited just downstream of the pit resulting in
a net increase in the bed elevation there. In the sloping bed case, deposition was
not strong enough to overcome erosion just downstream of the scour pit, and a
net increase in the bed elevation was not seen. The dynamics of the height and
momentum fields for these two cases are not significantly altered by the presence
of sediment or changing bed topography as in our previous studies ([19, 20]).

In Section 4.3.5 we considered the relative strengths of the momentum sources
for the flat and sloping beds considered previously. For the flat bed, the flow is
primarily governed by the balance between the pressure gradient and drag. For the
sloping bed, the flow is primarily governed by the balance between the momentum
source due to the bed slope and drag. In each case, the momentum gained or lost
through the exchange of particles with the bed did not have a significant effect on
the flow.

In Section 4.3.6 we considered flows for which the predicted Froude number was
unity and surface N-waves were produced. Small bed perturbations due to erosion
excited surface N-waves which in turn resulted in the formation of bed ripples.
The N-waves and bed ripples were coupled, travelled slowly upstream, and were
sustained for very long times.

In Section 4.3.7 we briefly demonstrated that other bed patterns, like stepping, can
be formed by manipulating various parameters. In the absence of viscous terms
in the momentum equation (which are responsible for generating Roll waves as
in [3]), it seems that the only mechanism present in our model to generate wave
structured is the “critical Froude number” mechanism. Therefore, complex bed
formations such as those seen in Section 4.3.7 can only be formed by choosing
the drag and slope parameters so that the predicted Froude number is unity and
subsequently manipulating the remaining parameters.
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In conclusion, the coupling of flow and sediment dynamics and the inclusion of drag
and bottom topography, not present in other studies and in contrast to Pritchard
and Hogg [42], had significant effects on the dynamics of both the fluid and the
dilute sediment. We have demonstrated that a complex interplay between the in-
tensity of the basal drag, the bed topography, and the cohesiveness of the bed is
present and ultimately determines the long term behaviour of the fluid and sedi-
ment dynamics. For flows over initially flat beds, a flow can either be dominated
by deposition in which case the volume fraction of sediment eventually reaches
zero as all particles settle out of suspension, or continue to erode the bed in which
case the volume fraction of sediment eventually reaches a non-zero steady state
after the effects of erosion and deposition reach an equilibrium. For flows over
initially sloping beds, if the drag, bed cohesion, and slope parameters allow the
flow to begin eroding the bed, then the flow will continue to erode the bed for
all post-release times with the volume fraction of sediment growing linearly in the
downstream direction and attaining its maximum directly behind the snout for all
post-release times. Finally, if the Froude number of flow, which can be predicted
prior to release, is close to unity then surface N-waves may be excited by small
bed disturbances created by erosion. These surface N-waves interact with the bed
to form ripples and other more complicated bed formations.
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Appendix A

First order correction for small
drag

The following Python source was used to compute the first order correction in CD
for 0 < CD � 1 to the Ritter solution (see Section 3.1).

"""Integrate the inner height and velocity fields for dam-break flows

with drag.

The governing equations for the inner height and volicity fields

are given by (4.20) and (4.21) of ’The effects of hydraulic

resistance on dam-break and other shallow inertial flows’,

A.J. Hogg and D. Pritchard, JFM v501 pp179-212, 2004.

Throughout, q[0] is the height and q[1] is the velocity.

"""

import numpy

import sympy

import sympy.solvers

import scipy.integrate

import scipy.optimize

import struct

import matplotlib.pylab as plt

# have we found the governing equations yet?

equations = True

if not equations:

##

## symbolic

##

U, H, Up, Hp, eta, eta1 = sympy.var(’U H Up Hp eta eta1’)

eq420 = H/2 - eta*Hp + Hp - U*Hp - Up*H

eq421 = U/4 - eta*Up + Up - U*Up - Hp + 81/64/eta1**3/H

# solve 4.20 for H’ and substitute into 4.21

iHp = sympy.solvers.solve(eq420, Hp)[0]

# now, isolate U’

iUp = sympy.solvers.solve(eq421.subs(Hp, iHp), Up)[0]

# and subs back into iHp

iHp = iHp.subs(Up, iUp)

print ’DE’

print sympy.simplify(iHp)

print sympy.simplify(iUp)

alpha = H + 2*(U+eta) - (U+eta)**2 - 1

myHp = ( H*(1-eta-U/2)/2 + 1/eta1**3 ) / alpha
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myUp = ( ( 1/eta1**3 + H*U/4 ) * ( 1 - U - eta ) + H**2/2 ) / H / alpha

print sympy.simplify(iHp - myHp)

print sympy.simplify(iUp - myUp)

else:

##

## numeric

##

# derivative

def f(q, eta, eta1):

H = q[0]

U = q[1]

alpha = H - (U+eta-1.0)**2

Hp = ( 0.5*H*(1.0-eta-0.5*U) + 1.0/eta1**3 ) / alpha

Up = ( (1.0/eta1**3 + 0.25*H*U) * (1.0-U-eta) + 0.5*H**2 ) / H / alpha

return numpy.array([Hp, Up])

# backward euler

def backward_euler(q, q0, eta, eta1, h):

qp = f(q, eta, eta1)

return q - q0 - h*qp

## left half (from -infinity)

def left(eta1):

eta0 = -500.0

q0 = [1.0/16.0*(eta0 - 1.0)**2, 1.0/2.0*(1 - eta0)]

eta = numpy.hstack((numpy.array([eta0]), numpy.linspace(-20.0, -0.05, 1001)))

q, info = scipy.integrate.odeint(f, q0, eta, args=(eta1,),

printmessg=False, full_output=True)

# find the last time at which odeint was successful

last = 0

for i, n in enumerate(info[’nfe’]):

if n > 500:

last = i

break

eta_stop = (info[’tcur’])[last]

return (eta_stop, eta, q)

## right half (from 0)

def right(eta1):

eta = numpy.linspace(0.0, -2.0, 20001)

q = numpy.zeros((eta.size, 2))

q[0,:] = numpy.array([0.0, 1.0])

q0 = numpy.array([0.00001, 1.0])

eta_stop = 0.0

for n, t in enumerate(eta[1:]):

h = eta[n+1] - eta[n]

# first try solving backward euler

q[n+1,:], info, flag, mesg = scipy.optimize.fsolve(backward_euler, q0,

args=(q[n,:], t, eta1, h),

warning=False, full_output=True)

if not (flag == 1):

eta_stop = t

break

q0 = q[n+1,:]

return (eta_stop, eta, q)

## bi-section search to find eta1

tol_bisect = 0.0000001

high = -2.771101

low = -2.771100

left_eta_stop = 0.0

right_eta_stop = 0.0

while (abs(high - low) > tol_bisect):

eta1 = 0.5*(high + low)

(left_eta_stop, left_eta, left_q) = left(eta1)
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(right_eta_stop, right_eta, right_q) = right(eta1)

if (left_eta_stop > right_eta_stop):

high = eta1

else:

low = eta1

print "eta1 = ", eta1

# plot!

# left side

i = (numpy.nonzero(-20.0 <= left_eta))[0]

eta_l = left_eta[i]

h_l = left_q[i,0]

u_l = left_q[i,1]

i = (numpy.nonzero(eta_l < left_eta_stop))[0]

eta_l = eta_l[i]

h_l = h_l[i]

u_l = u_l[i]

# right side

i = (numpy.nonzero(right_eta_stop < right_eta))[0]

eta_r = right_eta[i]

h_r = right_q[i,0]

u_r = right_q[i,1]

# dump

eta = numpy.hstack((eta_l, eta_r[::-1]))

h = numpy.hstack((h_l, h_r[::-1]))

u = numpy.hstack((u_l, u_r[::-1]))

f = open(’hogg.dat’, ’wb’)

f.write(struct.pack("i", eta.size))

eta.tofile(f)

h.tofile(f)

u.tofile(f)

f.close()

# plot solutions

plt.plot(eta, h, ’-k’)

plt.plot(eta, u, ’-r’)

# outter solutions

eta = numpy.linspace(-2.0, 0.0, 201)

h = 1.0/16.0*(eta - 1.0) **2

u = 1.0/2.0*(1.0 - eta)

plt.plot(eta, h, ’--k’)

plt.plot(eta, u, ’--r’)

plt.show()
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Appendix B

Forced KdV solver

The following Python source was used to compute the solution to the forced KdV
equation (see Section 4.3.1).

"""Solve the forced KdV equation (for F=1) in Kevorkian & Yu.

"""

import math

import numpy as np

import scipy.io as sio

dx = 0.1

x = np.arange(-20.0, 80.0, dx)

N = x.size

dt = dx**3

t = np.arange(0.0, 24.0, dt)

M = t.size

g = np.zeros((M, N))

def bed(x):

"""Bed: d/dx e^{-x^2}"""

return -2.0*x*math.exp(-x**2)

ubed = np.frompyfunc(bed, 1, 1)

b = ubed(x)

for n in xrange(M-1):

for i in xrange(3, N-4):

g[n+1,i] = ( g[n,i]

+ 3.0/4.0 * dt * g[n,i] * (g[n,i+1] - g[n+1,i-1]) / (2.0*dx)

+ 1.0/6.0 * dt * (g[n,i+3] - 3.0*g[n,i+1] + 3.0*g[n+1,i-1] - g[n+1,i-3]) / (2.0*dx)**3

+ dt * b[i] )

sio.savemat(’kdv.mat’, {’x’: x, ’t’: t, ’g’: g})
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