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A bstrac t

This study is an interpretation of mathematics knowing in action, from an enactivist 

perspective. It is a perspective that views cognition as perceptually-guided action in which a 

person brings forth a world of significance with other people. The dissertation consists of 

accounts and enactivist interpretations of the mathematics knowing of parents and children 

who participated in an extra-curricular mathematics program.

Enactivism is introduced as a possible means of reconceptualizing mathematics as 

knowing in action. Cases of parents and children engaging in mathematical activity together 

are used to illustrate how shifting one’s view of mathematics knowing, from knowing as 

simply problem solving to knowing as bringing forth a world of significance, has useful 

and significant implications for mathematics educators. In particular, such a shift in focus 

suggests that students are more than problem solvers; they are fully embodied knowers.

In the discussion, I begin by making a distinction between understanding behaviour 

as caused by features in the environment to thinking about it as occasioned by the person’s 

interactions with the environment. I then consider various sites and sources of 

perturbations for mathematics knowing: the interaction among people, interaction with the 

physical environment, interaction with one’s own thoughts, and interaction with the 

interactions of others. From this, I develop a model which illustrates the roles of interaction 

in bringing forth a world of significance. Finally, I explore how the knower is observed to 

be brought forth in his or her mathematics knowing.

My research suggests that when people engage in mathematical activity, our activity 

intersects with the personal, social and cultural domains of our lives. In action, we bring 

forth worlds of significance with others; and in doing so, we bring forth ourselves. In each 

act of bringing forth a world of significance and our “selves”, we anticipated the future as 

our spheres of behavioural possibilities expand making possible our next utterance,
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movement, action, and thought. And, because we bring forth worlds of significance with 

others, what we do, what we say, and what we know makes a difference, not only for 

ourselves, but for the other.
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In tro d u c t io n

One night as I was going through the papears my son had brought home from  

school, I  came across a worksheet. I barely glanced a s  it because it was just another one o f  

many sheets o f  paper that he brings home. On it vwas a typewritten paragraph with a 

number o f  the words circled in pencil. As I  went to a d d  it to the week’s paper stack, I  was 

struck by a notation made on the right hand comer o f  the sheet. Written in ink, in what 

must have been the teacher’s hand, was my son’s nam e with a question mark. Obviously, 

the student who completed the worksheet had forgotten to put his or her name on it. I  

looked at the circles that the child had put around the selected words and wondered, “How 

did the teacher know this was my son’s work? ’’—any child could have drawn those circles. 

There were no hints on the page that it was Kevin, who with pencil in hand and great 

contemplation, identified the words he understood to be nouns.

I  was reminded o f  the many times I  had to (determine which student forgot his or 

her name on a piece o f work he or she handed in to  me. The first clue was always the 

handwriting. It never took long before I  could identify many o f the teens as easily by their 

handwriting as by the sounds o f their voices or the  shapes o f their faces. Sometimes, 

however, I  would have to read the student’s response and ask myself i f  what was written 

was something that this person might say. But with m any o f the tests I  gave my students, I  

would not be able to tell one student from another based  on the pencil marks on the sheet o f  

paper. Those were the forced response tests where th e  only indication o f a student was the 

circle drawn around the “best response. ”  Now I  look, back and wonder what I  was doing 

when I used such means to assess what my students knew about mathematics.
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Knowledge which can be turned into words or pictures can be ‘objectified’ in 
various ways for communication purposes. Some part of knowledge, however, 
must be left behind in the body that gathered it, felt it, stored it and massaged it. 
Only abstractions (print, ideographs) and models can be objectified and made into 
machine-readable representations. Indeed, ‘representations’ is just the word to use 
(Neill, 1990, pp. 11 -12).
When writing, it is hard to know what to say first. In the case of my dissertation, it 

would be so much easier to discuss my understanding of mathematics knowing in action if 

I could offer the reader some examples first. However, when the examples come first, the 

reader might ask me why I am offering those particular examples since I have said nothing 

about the nature of my inquiry or why I am offering those particular examples. If only I 

could say everything I need to say all at once. Alternatively, it would be helpful if the 

reader could tell me where a good place to begin might be. Since that cannot happen, I must 

make a choice— actually, the choice has already been made. The first thing has already 

been said. The reader has already been oriented before turning a page. The reader has 

already been pointed in the direction of my study.

Umberto Eco (1983/1984), in the postscript to his novel, The Name o f the Rose, 

reminds us that for the reader a title is a key to interpretation; the reader cannot escape the 

notions prompted by the title. So what about my title, Mathematics Knowing in Action: A 

Fully Embodied Interpretation—where does it point?

One of my graduate students, for whom English is a second language, asked me to 

clarify how the words mathematics and mathematical are used in English. She said she 

understood that mathematics was a noun and mathematical was used to modify a noun or a 

verb. Therefore, shouldn’t one say mathematical knowing rather than mathematics 

knowing and doesn’t one more commonly speak of mathematical knowledge rather than 

knowing? My choice of a noun for an adjective and a verb for a noun is deliberate. If I had 

used the phrase mathematical knowing, then the reader might be oriented to interpret my 

work as a study about a particular mode of thought (Davis, 1996). On the other hand, if I 

had used the word knowledge,  the reader might have thought my work was about some

9
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commodity that is dispensed to children in schools (von Foerster, 1981) or some socially 

inert information that has a material existence independent of the knower (Davis, 1996).

The word action is also an interesting choice—a noun used to define verbs. “Verbs 

are action  words,” I was told by my one of my language arts teachers. I use the phrase “in 

action” because the view that mathematics is something done with minimal action and/or 

minimal interaction is all too common. When I ask prospective teachers to describe a 

mathematics classroom, an image of students working independently at desks with 

textbooks opened and scribbling things in notebooks is frequently offered. Mathematics 

teachers whose classes are noisy and active are likely to explain the situation for me; I 

assume they do not want me to leave with the impression that their students were “off- 

task.”

Finally, what might the phrase “fully embodied interpretation” mean? It seems to 

me that it is all too common for researchers, educators and policy makers to separate 

themselves from the mathematics knowers they serve by scratching at disembodied 

surfaces (like standardized forced-response tests) when making decisions that have a 

profound impact on those knowers, our children and youth. There is a belief that our 

analyses and interpretations can be “objective,” independent of who we are and who the 

mathematics knowers are. They could be about “anybody.” It is as though who the 

“bodies” are does not matter.

The purpose of this dissertation is to offer accounts of mathematics knowing in 

action and interpretations of those accounts. In the context of my research, my observing 

and listening has served three purposes: to create a curriculum for a mathematics program 

for parents and children; to interact with parents and children and their mathematics 

knowing; and to create models for listening and observing mathematics knowing in action. 

I explored the questions: How might I  characterise the mathematics knowing that is brought 

forth in the actions and interactions o f the parents and children in this mathematics

3
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program? How might I  understand the knowers’ activity that brings forth mathematics? 

How might I  understand the knowers that are brought forth when doing mathematics? I 

believe in responding to these questions, I provide mathematics educators possibilities for 

observing and listening for mathematics knowing in their interactions with others.

The very act of writing this dissertation is itself an act of knowing. It is at once my 

knowing in action and an expression of my knowing in action. It is important to me to 

acknowledge that, by posing statements of my intentions and research questions in some 

polished form, I am making explicit in this writing that which was not at all explicit for me 

until I came to the last stages of this dissertation. Merleau-Ponty (1962) helps me 

understand this.

The process of expression, when it is successful, does not merely leave for the 
reader and the writer himself a kind of reminder, it brings the meaning into 
existence as a thing at the very heart of the text, it brings it to life in an organism of 
words, establishing it in the writer or the reader as a new sense organ, opening a 
new field or a new dimension to our experience (p. 182).

Finally, I offer this dissertation with the understanding that there are traditional ways to 

write, traditional features to seek out, traditional responses to expect; but because the path I 

wandered along swayed from the traditional from time to time, the reader may have to read 

my work differently than other dissertations. I begin with a story about how the research 

developed from my experiences facilitating an extra-curricular mathematics program for 

parents and children. In the second chapter, I discuss the research and research methods as 

they developed in conjunction with the parent-child mathematics program. In  the third 

chapter, I offer an illustration of the mathematical actions and interactions of two parent- 

child pairs and then interpret their activity from a number of theoretical perspectives found 

in mathematics education research. Enactivism, the theoretical perspective from which I 

interpret mathematical activity, is introduced in chapter four. In chapter five, I distinguish 

between understanding behaviour as caused by features or constraints in the environment to 

thinking about it as occasioned by the person’s interactions with the environment. In the 

sixth chapter, I discuss sites of interaction where I distinguish mathematical knowing and

4
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sources of perturbations for mathematical activity. Chapter seven is an exploration of the 

ways in which the knower is brought forth in mathematics knowing. In the last chapter, I 

explore the spaces of my research knowing and, in doing so, address the question of 

mathematics knowing in action yet one more time.

5
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Chapter One  

A STORY OF A RESEARCH STUDY

Teachers are people with a desire to transform.
Scientists are people with a desire to explain.

Vignette 1-1. The Math Connection: a mathematics program for parents and children1

“  Welcome to The Math Connection. I 
am Elaine Simmt, and I  will be facilitating 
this program fo r  you. Before we get into 
doing some mathematics, let’s introduce 
ourselves to each other. ”  I  approached a 
boy that I  knew from  a previous program 
and put out my hand. “Hi, Joss. How are 
you today?" I  said as we shook hands.

“Good."
“What grade are you in now?" I  

asked.
“Three."
“This is your mom? " I  offered her my 

hand.
“Desie. Desie Merten.’’ She 

introduced herself.
“Since we are going to be working 

together, maybe everyone could get up, 
introduce yourself to the others and shake

1 Photograph is used with permission.

hands." I  suggested. “Don’t forget to 
shake hands," I reminded them....

“Great, now that you all have met, I 
would like each o f you to think o f  the last 
mathematical thing you did today. Sean, 
will you start? ”

“My math homework, ’’ Sean replied.
“What about your dad? What was the 

last mathematical thing you did today?" I 
asked Sean’s father.

His dad thought fo r  a brief moment 
and then responded, “I  guess it was 
figuring out when I  would have to leave 
in order to get here on time. ”

In the same way, the other people in 
the room told the rest o f us what the last 
mathematical thing they did was. For the 
most part, the adults said something 
about money, and the children said either 
math class or math homework. In the 
voices o f  a few, 1 could hear either some 
enthusiasm fo r mathematics or some 
anxiety about it. My initial goal would be 
to encourage the enthusiasm towards 
mathematics and to try to help settle the 
anxiety. To do that, we would begin by  
considering the number o f handshakes 
that just happened.

“I  have a problem fo r  you. We just 
shook hands with each other. There are 
11 o f  us here tonight. Well, how many 
handshakes were there? It looks like

6
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everyone has a pencil or something to 
write with. Here is some paper. So let’s 
get started. Try to figure out how many 
handshakes there were when we all 
shook hands with each other. Everyone 
has to think about this—adults too. ”

I  walked towards Joss and his 
mother. “Any ideas Joss? ’’

“One each?’’
“Yeah. One handshake among us—  

each, ” I said.
“With each person once, ’’ Desie 

repeated “So there is how many?" She 
asked Joss.

“Um, I think 22. ’’
“You think so?" Desie did not sound 

convinced.
“Yeah."
“I f  I  shook hands with everybody in 

this room?"

“‘Cause one plus one is two and 10 
plus 10 is 20. So 22, ” Joss explained.

“Okay, so you shook hands with 
everybody in this room ? ”

“Uh huh. ” Joss agreed.
“You would have shaken 11 times—  

you would have shaken 10 times right?
“Oh, um. ’’
“So then each person would shake 

hands how many times? ” Desie asked.
“Ten."
“Ten. Right. So there’s 11 people, 

and each one shakes hands how many 
times?"

“Ten, ” Joss followed his mom’s line 
o f reasoning.

“So how many would there be?" she 
asked again.

“Um. 101. ’’

This vignette was created from transcripts and my recollections of the first and the 

subsequent times an extracurricular mathematics program for parents and children, called 

The Math Connection, was offered. It is a program I developed in conjunction with a local 

school board in response to a need expressed by some parents in my neighborhood who 

were looking for ways to supplement their children’s mathematics education. The intent of 

the program was to encourage and challenge students, between 8 and 14 years of age, and 

their parents to engage in mathematical thinking and problem solving and, at the same time, 

to educate parents to help their children with school mathematics.

The parent-child mathematics program was designed to consist of 10 sessions, each 

90 minutes in length. As noted in Appendix A, the program ran as such 4 times since 1994. 

These sessions were held in a predominantly middle-class suburb of Edmonton, Alberta.

On two other occasions, low enrollments resulted in the program being held at the 

University of Alberta campus. Both times the program consisted of only 5 sessions. In a

7
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third instance, two parent-child pairs were invited on campus for a single session. The 

purpose of this session was a to conduct a clinical interview in which the two parent-child 

pairs worked on a prompt. (See Appendices B and C for more information about the 

participants.)

Each session began with a short opener such as a number game, a game of strategy, 

or a puzzle which took the first 10-15 minutes. Then, for the rest of the evening parents 

and children worked together in response to a mathematical prompt (see Appendix D). In 

this part of the session, the participants might be thought of as doing problem-solving 

although I believe some of them (adults and children alike) saw themselves as playing with 

mathematics rather than solving problems. I have come to think of their activity as 

“bringing forth a world of mathematics.” I will discuss what I mean by this later in the 

dissertation.

I have begun this dissertation by introducing the parent-child mathematics program 

because it was my primary source of data for my exploration and study of mathematics 

knowing in action. At the time when the program was first offered, it was simply an 

extracurricular mathematics program, not a site for my doctoral research. But, as the weeks 

went by, I began to understand how this program had the potential to be a valuable research 

site. Reflecting on the program and my research, it becomes evident that my doctoral 

research co-emerged2 with the parent-child mathematics program. I brought forth a research 

study wrapped around and, hence, fully complicit with the mathematics program for 

parents and children.

In this chapter, I look back over the course of events from the conception of the 

program and identify some of the key moments in the development of my research 

program. I explain how, in the first year, I was making sense of what might constitute 

appropriate activities for the program and how I became sensitized to the variety of

2 The notion o f co-emergence is central to my research. I will discuss it later in this dissertation.
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emotions and issues that, for some of the participants, were tied up with doing 

mathematics. In the second year, I began to use the site for researching mathematics 

knowing in action. A fellow researcher (Gordon Calvert, 1999) and I documented our 

experiences in this setting through the use of a research response journal. By the third term, 

I was collecting more extensive data from the site as I focused on the interactions between 

parents and children and the mathematical activity in which they engaged. For four years, 

the parent-child mathematics program was both a site for parent-child mathematical activity 

and a site for research into mathematics knowing

A M athem atics Program and  a R e se a rc h  Site

The math club is different from  the clinical interview we3 were doing in our other 
research projects....[Further], I  do not view the math club as an experiment. It 
provides us with a place to do research but its true intention was, and is, to have 
parents do mathematics with their children. (Simmt, Journal Entry, 1995)

Imagining the Parent-child Mathematics Program

I want to tell my story of research by first elaborating on the origins of the parent- 

child mathematics program. The program was first conceived in a conversation I had with a 

neighbor. Knowing I was at the university and studying mathematics education, she asked 

me if I could recommend some interesting books that she could purchase for her son—a 

nine year old with a real interest in things mathematical. She told me that he and his dad 

would often discuss things like infinity and googols. I knew of a few books that had 

interesting mathematical problems, usually historical problems—Theoni Pappas’s Joy o f  

Mathematics and Martin Gardener’s books, for example. I checked out a high quality 

children’s bookstore to see what was available. Unfortunately, I did not find anything else 

appropriate. My neighbor and I talked a little more, and the possibility of a mathematics 

program for children who liked doing mathematics came up. In our community, there are

3 We refers to the members o f  the enactivist research group: Tom Kieren, Lynn Gordon Calvert, David Reid 
and myself.
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plenty of opportunities for children to participate in sport, drama and music; but there was 

nothing for children who liked doing mathematics. While investigating the possibilities of a 

parent-child mathematics program, I came across Family Math, a program developed in 

California (Stenmark, Thompson, Cossey, Hill, 1986). In the Family Math program, 

teams made up of parents, children and teachers facilitate sessions in which families are 

encouraged to do mathematics together. Family Math has published a set of videos and 

workbooks that offer suggestions based on the everyday activities of the home that can be 

used to foster mathematical thinking and teach mathematics: cooking, sewing, building, 

painting, and the like.

Based on the conversations with my neighbor and my research into mathematics for 

parents and children, I proposed a program in which parents and children would do 

mathematics together. At first, I anticipated that the program would involve taking 

opportunities that present themselves in the children’s and the parents’ experiences and 

thinking about them mathematically. For example, in what way do children’s toys and 

games present opportunities for mathematical thinking? Instead of providing workbooks 

that the parents could give their children to do at home, it made sense to provide a program 

in which I might help parents and children start seeing the world mathematically and asking 

questions that are mathematical. As I came to learn, offering recreational mathematics 

problems is a great place to begin. The use of games, common household activities and so 

on were offered as suggestions, but they never did become the primary prompts for 

mathematical thinking in the sessions; rather they become extensions I offered as 

suggestions to parents and children for when they returned home.

As I contemplated the program I asked myself: Who could participate? and What

might the sessions involve? I did not want this program to replicate the mathematics activity

that students likely had already experienced or would experience in school. Nor did I want

my program to become tutoring sessions (these were already available). It struck me that

one of the things I might do that was different from the other activities already available in
10
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the community was to insist that parents participate with their children. (I can see how even 

this feature of my program grew out of the conversation with my neighbor. She was 

looking for something that her husband and son could do together.)

Recognizing a Potential Site fo r  Research

Part way through the first term of the parent-child mathematics program, I began to 

recognize how rich the parent-child site was for studying persons’ mathematical 

understanding. Frequently, I would return to the university from one of my parent-child 

sessions with examples to share with my colleagues of how a parent and child interacted 

with each other and how their mathematical understanding of some situation developed. I 

was excited by my observations of the ways in which the interactions between the parents 

and children sustained their mathematical activity. At the same time I wondered: Why are 

the participants able to engage in mathematics in this program when they say that this is not 

the case at school? What is it about the kinds of questions that I ask that is fostering rich 

mathematical activity?

The second time the program ran, I kept a research journal; it was important to my 

growing understanding of the parent-child program as a research site. The journal provided 

me with the opportunity to pay attention to my observations and how I was interpreting 

those observations.

Is this confidence a key factor in doing mathematics? I  really think so. It seems to 
me that “knowing" you are capable o f doing things is an important aspect o f one’s 
structure. I f  we are structure-determined creatures, then it is this kind o f structure 
that acts on the “problem triggers" (prompts) in a meaningful way (with respect to 
mathematics).
Language usage could be another whole story. By removing the textbooks, by 
including adults (not just any adult but a parent in particular), by using problems, 
etc., there may be more room fo r  talk atvd non-mathematical language. This is an 
issue fo r  me because I ’m not sure how much formal [technical] language I should 
use. I  don’t want to 1) turn people off; 2) generate anxiety; 3) nor do I want to 
trivialize the mathematical language. I have to think more about this. (Simmt, 
Journal Entry, 1995)
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It became evident to me that the parent-child mathematics program could provide the 

experiential basis for my doctoral study. It was a site from which I could collect data that 

would help me explore the nature of mathematics knowing in action.

Facilita ting th e  M athem atics P rogram

For the most part, my responsibility in the program was to bring to the group 

different prompts with which the participants could work during the session. I tried to vary 

these prompts such that the parents and children worked in different areas of mathematics 

over the course of the program. I also tried to come up with activities that tied into their 

school work or related to the school curriculum but did not look like typical school 

mathematics. In order to facilitate the diversity among participants (in terms of their ages, 

background knowledge, and experiences in mathematics), I  used what I have come to call 

variable-entry prompts. These are prompts which open a space for a variety of actions and 

mathematical activities at varying levels of mathematical sophistication. Variable-entry 

prompts are such that the participants do not require specific background knowledge or 

specific mathematical skills; however, the prompts must be intriguing, and they should lead 

to important mathematical ideas, concepts and processes (Lampert, 1991; Schoenfeld,

1994). The handshake prompt referred to in the opening vignette has turned out to be a 

particularly good variable-entry prompt. (I will discuss variable-entry prompts more fully 

later in this chapter.)

My role in the math program was different from my role in previous teaching 

experiences. I did less explaining, and I usually did not provide answers to the problems 

participants worked on (although I offered some of my solutions after we had exhausted 

the participants’ solutions). After I provided an initial prompt for activity, I would circulate 

among the participants, listening to them, asking them to explain what they were doing and 

sometimes requesting that they share their thinking with the rest of the group by putting 

their work up on the board. Early in the term, the participants (sometimes children,

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sometimes parents) were likely to ask me what they might do next or if what they were 

doing was right. I responded to their requests either with direct answers to their questions 

or with questions that pointed them in a suitable direction for exploring or answering their 

own questions. I found that the more sessions in which they participated, the fewer 

questions they had for me. I often found myself wandering around looking over shoulders, 

listening to the interaction between the parents and the children or to explanations they 

offered and talking to parents and children about school mathematics. I wrote in my 

journal:

I try to leave people to work—not because I  am trying to be a non-intrusive 
observer but because I want them to work in directions that seem appropriate to 
themselves. (Simmt, Journal Entry, February 7, 1995)

For the most part, the children and the parents made sense of the activity together (and 

sometimes apart) and, in doing so, learned new mathematics. It is the case, though, that I 

had to provide more guidance to some participants than others. For some pairs, I had to 

generate many small tasks within the general prompt. This was the case for Greg and his 

mom.

Vignette 1-2. Facilitating mathematical activity

When Greg participated in the 
program, he was in grade four. He said 
he found math hard and boring. It was 
not surprising to me that he did not like 
mathematics. He indicated his goal in the 
program was to “speed up". Greg’s 
mother said she hoped that the program 
would help Greg understand and enjoy 
mathematics.

After working with Greg fo r  just a 
few  weeks, I  could imagine what he 
might be like in math class at school—  

fidgeting in his desk and imagining the 
greatest adventures with the simplest o f  
things that cross his desk. When I 
brought in any kind o f  manipulative fo r  
the evening, he would spend much o f his 
time playing with it. Whether it was Lego 
or straws, bingo chips or dice, Greg 
could find some creative way o f using the

items that was different from  the way I 
had intended they be used. In the 
beginning, this annoyed his mother so I  
spent a little time each night talking to her 
about school mathematics and what I  
observed Greg’s strengths to be as he 
played with the toys. His playing around 
bothered her less once she was able to 
recognize the mathematical things he did.

Greg was very good at seeing 
patterns but not so good at defining a task 
fo r  himself. The prompts that I  offered in 
the sessions had a specific question to be 
answered but, in most cases, the 
participants had to structure and define 
the task fo r  themselves. Greg was not 
very good at that. His mother tried to 
encourage him to think o f  more to do 
with the initial prompts I  offered but he 
resisted her suggestions and would play
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until I  posed specific tasks or problems 
fo r  him.

One night I  brought in Lego. The 
participants were instructed to take five  
pieces, each o f  a different colour, and 
determine the number o f  different towers 
could be built from just five pieces. I  
demonstrated how a tower, from the 
ground up, might be ordered red, blue, 
yellow, green, and white and suggested 
that it was to be considered different from  
a tower that was ordered red, white, blue, 
green, and yellow. After giving the 
prompt, Greg eagerly started building the 
different towers. It did not take long fo r  
him to ask fo r  more blocks, but there 
were no more. I  encouraged him to think 
o f another way he could figure out the 
answer without having to build all o f the 
towers o f height five. I  suggested that he 
consider towers that weren’t so tall. 
Simplifying the problem was a general 
strategy I tried to encourage and had 
suggested before.

He did what I  suggested and took 
three blocks. That was simple enough fo r  
him and a few  minutes later, he showed 
me the 6 different towers he made. Again

he sal back as though this is all he could 
do. I  asked his mother to keep track o f  
his towers on a piece o f  paper. “When 
there are 3 tiles, ”  I  said, “you can make 6 
towers. Now why don’t you try 2 
blocks. Don’t forget to write it down. It 
will help you look fo r  a number pattern. ”

Only then, once I  specifically asked 
him to look fo r  a pattern, did he do so. 
By the time he worked through the cases 
fo r one, two, three and four tiles he was 
able to correctly predict the number o f  
towers he could build with 5  tiles.

The last night o f  the program, Greg’s 
mom commented that she was glad they 
had come. She had gotten to know her 
son in a way that she had newer known 
him before. As cryptic as her comment 
was, I  interpreted it to mean that doing 
mathematics with Greg was a new 
experience fo r  her and, like all new 
experiences, it offered her an opportunity 
to reflect and to come to understand her 
son's high activity level as something that 
could be appreciated rather than dreaded

As much as I tried to leave the participants alone to make sense of the activities, if 

they paused for too long or got distracted, like Greg did, I found myself interrupting them 

and/or pushing them in one direction or another—my old classroom behaviour “reared its 

ugly head” (Simmt, Journal Entry, 1995). I used this description of my behaviour in my 

journal after a session in which I directed participants to “move on” from a warm-up 

activity in which they were still actively engaging so that they could get on to the main 

activity planned for the evening. In reading the journal entry, I realize how I bring my 

history as a classroom teacher and my desires as a teacher with me to the parent-child 

mathematics program. Just like when I taught, in this new setting I also found myself 

wanting to keep the “students” on task.
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/  find  myself making sure they are doing something—I  think Ralph [a fellow grad 
student] would have something to say about the students’ autonomy. [On one hand] 
I want them to be taken up and engaged by the mathematics; but [on the other hand] 
I do step in quickly to point them in certain directions. [I need to have more] wait 
time. They [the participants] need to learn how to persist. (Simmt, Journal Entry,
1995)

I also considered it my responsibility to teach parents how they might interact with 

their children in the context of mathematical activity. For the most part, this meant both 

modeling the kinds of questions that parents might ask their children when doing 

mathematics and making explicit those questions. I used questions like: “How did you do 

that?”; “Why did you do that?” ; “Are you sure about that?”; and “Explain that to me, 

please.” It usually takes a few classes to convince some of the parents they do not need to 

tell their children “the answer”  but, rather, they might simply pay attention to their 

children’s thinking. When it came to new and unfamiliar mathematics or prompts on which 

the parents had never worked before (which was frequently the case), I suggested that one 

of the best strategies for parents to help children is simply to do mathematics together with 

them. Finally, I tried to recommend books (see Appendix D) and activities that the children 

and parents might find interesting to do at home.

Although my role in the program in some ways remained the same over the years, 

the changes it underwent were a  result of my growing understanding of the participants and 

how I could interact with them.

Creating a Curriculum

All organized learning programs or events have a curriculum, and my parent-child 

mathematics program also needed to be “about something.” It needed a “topic of 

conversation” (Gordon Calvert, 1999). However, the parent-child mathematics program 

had no prescribed curriculum or mandated program of studies, just a promise of providing 

mathematical spaces for parents and children and identifying ways for parents to help their 

children with school mathematics. Such a promise is already a curricular act. That is, it 

anticipates what might occur, and it is an historical act which pre-figures later actions.
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Rather than challenging various notions or conceptions of curriculum, I work from the 

assumption that the curriculum is not “distinct (but coherent) knowledge bits” but has to do 

with the existential qualities of participating in the program. Curriculum “is conceived as 

the interpretation of lived experience” and from a reconceptualist perspective, it “can only 

be discussed in retrospect, as the path that was taken, in all of its experiential richness” 

(Davis, 1996, p. 90-91). I will elaborate my view of curriculum by discussing the 

curriculum of this program through recounting it as a lived experience—my lived 

experience.

There is privilege in working in a context where the curriculum (by almost anyone’s 

definition) is not prescribed—a rule of action written by others— but ascribed—authored by 

the participants in action. In my work, I am suggesting that curriculum is a space—a space 

that is defined in action and one that co-emerges with the mathematical knowing of the 

participants who are acting and interacting within it and to form it. In the parent-child 

mathematics program, the curriculum involves adults and children paired together and 

myself (the facilitator), and it includes the prompts and questions that I bring to the 

sessions as well as those generated by the parents and children who participate.

In the following section, I tell about three important lessons in which I learned 

about the curriculum of this program and show how my learning contributed to the ongoing 

creation of the curriculum. The first lesson suggests to me that when needs are not satisfied 

there is no curriculum. The second lesson I learned was that avoiding prompts that look, 

sound, or feel like school mathematics encourages new behaviours rather than old patterns 

of behaviour to emerge. My third lesson was that variable-entry prompts are needed so that 

everyone can participate and contribute in the emergent curriculum.

Participant needs

Each time the program ran, I asked the participants why they were participating in

the program and what they hoped to get out of it. (See Appendix E for comments made by
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the participants to which I explicitly refer in this dissertation.) The participants had different 

histories and motivations for participating in the program; hence, it was not surprising that 

they had different expectations. A few children indicated they wanted to improve their math 

grade in school. Cathy, for example, expressed her desire. “I hope I can bring my grades 

up and understanding of what the question is asking.” Others wanted to make math easier. 

“I want to find shortcuts and hints to make it [school math] easier,” Carly, a grade 8 girl, 

wrote. Remy’s comment was similar. “I hope it can give me a better view of math and 

explain problems clearly.” The children’s writing sometimes tied emotive reasons to 

cognitive ones for coming to the math program. “Let me understand so that I won’t be 

frustrated,” Sharon wrote. “I hope to be faster so my mom won’t annoy me about being 

slow,” wrote Brad. “Let me speed up,” said at least one primary school student each time 

the program ran. Obviously, some primary teachers were having children do timed tests of 

basic computational skills—Mad Minutes, as the children called them. There were a few 

students who came to the program because they wanted to learn more advanced 

mathematics or because they liked doing mathematics and wanted more time to do it. Kerri 

explained to me that she wanted to learn new things that she won’t learn in school until a 

higher grade.

The parents’ comments generally fell into one of four themes: they wanted to learn 

more about what their children were learning at school; they wanted some “tools” to help 

their children with school math; they wanted to foster positive experiences with 

mathematics so that their children would grow up to find mathematics enjoyable; and there 

were a couple of parents that simply wanted to spend time with their children. One mom 

said it this way: “I want to spend quality time with my daughter, and this seems like a 

unique opportunity to do this.”

As I envisioned a curriculum for the parent-child mathematics program, I wanted 

one that would address the participants’ expressed needs, but it was also to be a 

mathematical space— as I defined mathematics. Reflecting on the selection of prompts and
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the design of the structure of each session, I can observe how what I valued in mathematics 

strongly influenced the “curriculum.” Although participants came to the program with 

specific needs in mind, and many of the participants left the program satisfied that their 

needs had been met (at least in part), I suppressed some of their expressed needs by 

convincing the participants to do what I thought was important. It was only in reflecting on

the “curriculum” that I realized the discrepancy 

understood them.

Vignette 1-3. A lesson about satisfying needs

When invited to express their ideas o f  
what we should do in the program, one 
pair, a woman (Roberta) and a 13 year 
old girl (Kristina), indicated they would 
like to do problem solving. “Great," I 
told them, “this is exactly what we do in 
the program." Four weeks passed, and 
each week they came and participated 
very actively in the session; but on a few  
occasions one o f them would ask, “When 
are we going to do problems?". For the 
fifth session Roberta and Kristina arrived 
a few  minutes early. Kristina had her 
textbook with her. She asked i f  I  could 
help her with a problem. Since there were 
a few  minutes before the session was to 
begin, I  agreed. The question came from  
the review exercises at the end o f a 
chapter about fractions:

The journey from Calgary to Toronto takes
3 1/2 d by train and 4 1/5 h by airplane.
How many times faster is the airplane than
the train? (Journeys, 1987, p.288)

It is not surprising that Kristina found  
this word-problem difficult. It involves 
mixed fractions, mixing time in days with 
hours, an unusual fraction fo r  time (1/5 
o f an hour), and proportional thinking.

I first suggested that they might begin 
by simplifying the problem. This is a 
strategy that I  had encouraged many other 
times over the course o f  the program and 
one that seemed reasonable to me in this 
context. By the time they began to work 
on the problem, other participants had

between their felt needs and their needs as I

arrived and we were ready to begin the 
session. I  made a decision to break my 
“rule" about doing school mathematics 
and asked everyone to think about 
Kristina’s problem. Each pair worked at 
the problem fo r  the next twenty minutes. 
All o f the parent-child pairs came up with 
strategies fo r  thinking about the problem 
even though it was clearly “content" that 
the younger children may or may not 
have “covered ”  in math class.

When Roberta and Kristina finished 
the problem, I  talked to them about it and 
problem solving. I  had already learned 
that Kristina was not Roberta’s daughter 
but the daughter o f  a friend. What I had 
not yet learned was that it was Roberta 
who asked Kristina to come to the 
program with her. Roberta explained that 
it is her dream to become an police 
officer, but she had failed one o f the 
requirements o f the preliminary screening 
— the math test. She told me she “just 
can’t do problems. ” When I pointed out 
that we do problems every week, she 
indicated that it was problems like the one 
we worked on this night with which she 
had difficulties. She wondered i f  we 
could do more o f these. I explained that 
she could always simplify a given 
problem; this is a generic skill that would 
likely help her do the kinds o f word 
problems that appeared on the screening 
test. Instead o f contemplating her request 
any further, I told her that I did not 
anticipate doing any more o f the textbook
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problems. Roberta responded that, answer. She said she needed help to leam
although she was learning to do problems to do problems (like the train problem)
like I  offered in class, s:he correctly more quickly. Although Kristina and
pointed out that on a timed test there is Roberta had fully participated in all o f  the
not time to figure out hov~v to do the activities up until that week, they did not
problem; there is only time t o  calculate an come back fo r  the last five sessions.

My view of the mathematical activity that was important for the participants of the 

program did not always coir.ncide with what they viewed as important. In the case of 

Roberta and Kristina, I had frailed to demonstrate how mathematics requires a certain kind 

of thinking in which, in fact, they were engaging. The experiences I set up for the program 

had the potential to make a difference to the participants; but Roberta was right—for her, 

problem solving took time, and the police screening test did not give her the time she 

needed to solve problems. Slue would not be able to finish the math test in the time allocated 

if she had to reason about amd approach the problems in the way she was doing in our 

classes. Roberta knew what sshe needed; hence, it is reasonable that she never came back. 

The program I offered w ould  not satisfy her needs. Although their withdrawal was 

disappointing to me, in retrospect, it is also gratifying in that Roberta understood her 

situation and acted in a way that, I assume, kept her on her path towards who she wants to 

be. As Davis (1996) reminds. us, the curriculum is part of who we are.

The notion of curricinlum, then, involves more than a study of particular ideas; it 
becomes an integral p«art of the constantly emerging text of our existence as enacted 
in the relatedness of the classroom. Issues of knowledge and understanding are 
thus woven into and cannot be considered apart from the notion of identity (p. 99).

Choosing p ro m p ts

Roberta and Kristina (the pair discussed in the vignette above) participated in the 

program the second time it w;as offered. By that time I had already generalised from some 

of my experiences in the first term and formulated a “rule” about the prompts that I would 

use in the program—they w ere  not to resemble school mathematics. Each time through the 

program I worked at trying to understand the needs of the participants and selecting 

appropriate activities for th e  parents and children. It is a task I know well, being a
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secondary school teacher, but one upon which I never spent quite as much time reflecting 

as I had to do in the context of this extracurricular program. For this program, I needed 

prompts that were appropriate for children between the ages of 8 and 14 and for which 

there are few specific prerequisite mathematical skills required. Further, I believed that the 

prompts should come from a variety of areas in mathematics. However, just as 

importantly, I learned that for some participants the extracurricular program should not 

look, feel, or sound too much like school mathematics. I did not come to the program with 

this belief; it emerged out of my experiences with the parents and children. One event in 

particular stands out for me.

Vignette 1-4. Learning that worksheets can provoke school-like behaviour

Dan and his daughter Kerri worked 
on the same permutation prompt that 
Greg and his mother worked on. They, 
too, were given Lego and asked to 
determined how many towers could be 
built from  5 different colours. They 
responded to the prompt by simplifying 
the problem and considering the cases o f  
towers o f  height 1, 2, 3. They built a 
tower fo r  each case and made a record o f  
each tower they built. By the end o f  the 
session they had determined that they 
could generate 120 towers with the five  
colours.

Because I wanted to help parents help 
their children on an ongoing basis, I  
decided I  would offer suggestions o f  
things they could do at home together. A t 
the end o f  this particular session, I  passed 
out a worksheet that I  had found in a 
teaching magazine and one that was 
specifically designed to be taken home. It 
involved a permutation problem similar to 
the one with the blocks. It asked how 
many different cones could one make 
from  three different flavors o f  ice cream.

I  indicated to the participants that they 
might want to work together on this 
problem sometime over the next week at 
home.

I  thought nothing more o f  the 
“ homework”  until the next week when I 
was preparing fo r  the session. I  had 
planned fo r  the participants to construct 
some polyhedra from  straws. As I passed 
out the straws, Dan took the worksheet, 
from the previous week out o f  his bag, 
and he and his daughter turned their 
attention to it. When I went to put some 
straws on their desk, Dan picked them up 
and passed them back to me indicating 
they hadn ’t finished the homework from  
the previous week. After Dan and Kerri 
worked on the sheet fo r  about 20 
minutes, I  returned to their desks with the 
straws in hand and offered them to them 
once more. This time Dan turned to Kerri 
and asked her i f  she thought they should 
move on to the new activity. With a 
smile, Kerri nodded her head and her dad  
put away the worksheet.

In the setting of the parent-child mathematics program, it was not unusual for the

parent to take on the role of ‘teacher’. I neither explicitly encouraged this nor discouraged it
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(although I always encouraged parents to do mathematics with their children rather than 

watch their child “do the work”). I respected this father’s decision to complete the 

worksheet, but I was bothered by it. * It immediately struck me that this pair were not 

engaging in mathematics in this setting as much as they were engaging in school 

(Bauersfeld, 1995b; Voigt, 1995; Berieter, 1990). After all, worksheets, pages of 

exercises, word problems and homework are common experiences in school and constitute 

one of the most persistent manifestations of mathematics that many, if not all, of these 

people had experienced in their lives.5 It bothered me that a view of mathematics so deeply 

saturated with ‘schooled’ expectations might restrain the possibilities for parents and 

children to leam mathematics together. From that point forward, I deliberately attempted to 

use activities that did not look, sound, and feel much like school mathematics. It is clear 

that my actions were based on an interpretation of the situation and one that I, as the 

facilitator, might interpret differently than the children, parents or another teacher. 

However, it seemed to me that worksheets and textbook exercises were too school-like. In 

the end, it was these forms that I avoided using in the program, not necessarily topics or 

concepts which are usually developed in school mathematics. I did continue to make 

suggestions for things they might do at home, but I never handed them out on paper.

Promoting m athem atical behaviour

The decision to offer this program to children between the ages of 8 and 14 had 

significant implications for the kinds of activities and prompts I was able to choose for use 

in the program. Teaching in the parent-child math program is unlike teaching school 

mathematics. In school settings, it is usual to teach students at a particular grade level and

4 This posed an interesting dilemma for me. In school math classes, teachers direct student activity. In this 
situation, I felt as though I did not have any authority over the parent to justify asking him to put away the 
worksheet and do the new activity. As teachers in the usual classroom setting, we have the institutional 
authority to do just that. In my situation, I was faced with sharing my authority or having the parent grant 
me the authority to direct his and the child’s activity.
s I am reminded o f the day, when asked what he had done in math class, my son replied, “copy and 
completes,” referring to the structure o f his exercises rather than the mathematics he had done.
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in cases where there is more than one grade level in the classroom, it is common to teach 

with differentiated curricula. In the mathematics program I had designed, I intentionally 

chose to have children of different grade levels participate and to use the same basic 

prompts. Of course, with the children came adults who had just as varied mathematical 

experiences. Thus, the activities I chose for the program had to be appropriate for this 

diverse group of participants. The fact that parents and children were to work together was 

one of the reasons I felt this strategy could work. I anticipated that, when a child needed 

some form of assistance, either the parent or I would be able to provide it. On the other 

hand, when a parent needed some assistance, either the child or I would be able to provide 

it. Activities were selected from a variety of resources and on the basis of whether the 

children in the program could enter into activity with very litde direction. I was successful 

in selecting appropriate prompts most of the time, but not always. (A complete list of 

prompts used in the program can be found in Appendix D.)

Vignette 1-5. Struggling to identify qualities of good prompts

For one session, I  had the participants 
play a game that involved directed 
magnitude. The game, called “Walk the 
Plank," (Lovitt and Lowe, 1993) uses a 
number line taped to the floor to represent 
the plank on a pirate ship. Players roll 
two dice to determine the moves along the 
plank. The first die denotes the direction 
the player is to move, and the second die 
indicates how fa r the player is to move. 
The game is either won or lost based on 
the players getting back to the ship or 
falling into the sea. The object o f playing 
the game in the session was to come up 
with an ideal size o f plank; that is, a plank 
fo r  which the game lasted an appropriate 
length o f time. I f  the plank was too short, 
the game ended too quickly; i f  it was too 
long, the game took too long.

One o f  the younger children in the 
group, Cathy had difficulty working out 
that she needed both a direction and a 
magnitude to make a move, and her father 
had trouble clarifying fo r  her how the 
moves worked. Another child, Brian, 
found it difficult to determine how long 
the plank should be. He could make this 
judgment on a case by case basis— this 
one is too long, this one is too short—but 
he did no t have a basis from which to 
make this decision in general. This was 
not as difficult fo r  some o f the adults and 
older children who used the notion o f  
average to determine a more general 
solution.
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I selected the prompt for its potential to foster mathematical thinking. In particular, 

it involved some significant mathematics concepts including directed magnitude, integers, 

and average; further, it required participants to reason about what they were doing. Finally, 

there was the possibility that the parents and children could play the game at home. In spite 

of the positive attributes of the game, from my point of view, it did not turn out to be a very 

good prompt for the younger (8 to 10 year olds) participants and a few of the adults in the 

group. I commented in my journal:

The class didn ’t go as well as I  expected it to. Although everyone played the game. 
I ’m not sure they had any idea as to how they could determine which was the best 
length fo r  the game... The activity was too complex, complicated, sophisticated, 
difficult (what is the word that best fits) fo r  many o f  the participants. (Simmt, 
Journal Entry, 1995)

My research partner responded:
I  didn't see the activity o f  finding the best length too difficult—except when there 
wasn ’t a negotiation going on and exclusionary methods were used. I  wasn ’t with 
the other groups but I  think this was something that made them stop and think—and 
it wasn’t immediately obvious to them. Is this your thing again about feeling a need 
to jump in quickly? I  really think that even Calvin would have come up with 
something eventually. (Gordon Calvert, Journal Entry, 1995)

As I reflect back on the prompt and the reflections in my journal of what the participants did 

given the prompt, I am struck by how many of the participants could not make a judgment 

about the “optimal” plank. In as much as all the participants could play the game (it took a 

few minutes for most participants to understand the directed magnitude part of the game), 

in my view, little mathematical thinking was prompted by it. On the other hand, when this 

same group of people were offered the “handshake problem” (described at the beginning of 

this chapter), they worked for an extended period of time, and even the youngest of 

children were able, with their parents, to either act the situation out, make tables or draw 

pictures and note number patterns. Another example of an activity into which even the 

youngest participants were able to enter and sustain mathematical activity (from my point of 

view) involved the construction of a fractal-like object and the search for number patterns 

that could be noted from that object. Unlike the game, these two activities seemed much 

more accessible to all the participants, not just a few. I noted in my journal:
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Fractal cards6—A  much better activity fo r  the math club. More o f a  variable-entry 
one I would say. (Simmt, Journal Entry, February 21, 1995)
The prompts that I chose for the sessions needed to be accessible to all of the 

participants at some level—and I wanted that level to be mathematical. Thus, I began to 

select and develop prompts that I believed could lead to significant mathematical activity 

even though the participants might enter into that activity by means of different actions and 

strategies. At the same time, my research colleague’s comments continued to resonate. 

Mathematics problems are truly problems when the means to the end is not obvious (Polya, 

1962; 1980). I needed prompts (a curriculum) that challenged participants and encouraged 

them to develop new strategies for doing mathematics at the same time as building their 

confidence so that they believed they could solve the mathematics problems they might 

encounter, whether in school or in other aspects of their daily lives. I found myself asking, 

what are some of the features of prompts that encourage all the participants to engage in 

mathematical thinking?

Variable-entry  P rom pts

Schoenfeld (1994) and Lampert (1991), who both use problem-tasks in their 

research, have articulated the features of what they believe are good problems. Lampert 

suggests that good problems are ones which provoke discussion, reveal how students are 

thinking, are a safe domain in which to solicit student’s participation, and have the potential 

to lead students into “unfamiliar and important mathematical territory” (p. 126). Schoenfeld 

has what he calls a problem aesthetic which consists of five criteria. Problems should be 

accessible; should be solvable; should illustrate important ideas; should not have trick 

solutions (something you haven‘t seen before and are not likely to use again); and should 

be extendible and generalisible (p. 44).

6 A description o f this activity can be found in Simmt and Davis (1998).
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Polya’s (1980) articulation of what constitutes a problem: "If the end by its simple 

presence does not instantaneously suggest the means, if, therefore, we have to search for 

the means, reflecting consciously how to attain the end we have to solve a problem" (pg. 

1); what it means to solve a problem— "Solving a problem is finding the unknown means 

to a distinctly conceived end" (pg. 1); and the heuristics involved in problem solving—  

understand the problem, devise a plan to solve the problem, carry out the plan and look 

back to examine the solution—are regarded as standard in educators’ discussions of 

problem solving.7

Because each of the participants who came to the sessions has a unique lived 

history, it was important that the prompts for the parent-child mathematics program were 

perturbations on which each person could act. At the same time, it was important that the 

prompts were perturbations on which the participants with significantly more experience in 

mathematics were motivated to act. The label, variable-entry, points to two essential 

features of the prompts. The first is that they are triggers to prompt mathematical activity. 

That is, some features of the prompts could be selected and considered by each of the 

participants in a way that an observer identifies as mathematical. In this way, variable-entry 

prompts are prompts, not problems per se. Secondly, variable-entry prompts have multiple 

and varied entry points into mathematical activity. Given a prompt, there are a variety of 

actions a learner might take to enter into activity that the observer might identify as 

mathematical.

The distinction between variable-entry prompts and open-ended problems is 

significant. With variable-entry prompts, the intent is that the students will have a 

beginning place; that is, entry into suitable activity—mathematical activity. However, the 

prompt may be such that the students converge on a solution. The term open-ended, on the 

other hand, suggests something about the solution is relevant, in particular that the ending

7One only needs to note the frequency with which these heuristics are cited and treated as skills to be learned 
in many mathematics texts to recognize the impact Polya’s (1957, 1962, 1980) conception of problem
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is open. This usually means there is more than a singlle solution path, or there is more than 

one solution. For example, the question, “Show m e  how you can make 10”, might be 

thought of as open-ended. In contrast, the question, “How many ways can you arrange 3 

children in a line?” is not open-ended. There are o»nly 6 distinct ways. However, it is 

variable-entry. Young children could act the question, out or draw a picture to come to the 

solution, older children might manipulate symbols representing the 3 children and older 

children yet might recognize this as a combination problem and use factorials to solve the 

problem. The basis on which I select prompts is not: on the possibility of many solutions 

but with the understanding that there are many possible ways in which to approach the 

question or task and to formulate some solution. T he  problems defined by the students in 

acting on the prompt may have many solution strategies (which is consistent with open- 

ended problems), but this is not a necessary feature. Variable-entry prompts are similar to 

Bauersfeld’s (1995b) open tasks which he describes as tasks that open the chance for 

students to employ and develop their own interpretations (p. 281).

Kieren and Pirie (1992) found that it is the strident’s answer which determines the 

question to which the student responded. That is, whi le it is easy to classify questions and 

suggest that they carry some inherent meaning, Pirie= and Kieren’s research suggests that 

the student’s responses point to the question’s meaning for that student. As teachers, we 

pose a question to a student anticipating a particular kind of response, only to listen and 

hear that the question was something quite different from what we intended. Bloom’s 

(Bloom et al., 1956) taxonomy may tell us that we can  categorize educational objectives at 

different cognitive levels (knowledge, comprehension, application, analysis, synthesis, and 

evaluation), but it is more appropriate to categorize time students’ responses if you want to 

understand the nature of their knowing. Thinking abont mathematical knowing in this way 

demands we observe the student’s mathematical actions. Thus, mathematical knowing and 

understanding are thought of not in acquisition terms but in behavioural ones. We are

solving has had on mathematics education.
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unable to specify in advance of the student acting that there even exists a perturbation that 

might occasion a problem for the student. It is only in observing the individual’s behaviour 

that we can say she or he has a problem or is working on a problem. Furthermore, it is 

only once we observe the student acting in some way that we recognize as problem solving 

or mathematics that we can make such a claim. I return to the ways in which prompts are 

implicated in a person’s mathematical knowing throughout the thesis.

I distinguish my notion of variable-entry prompts from either Schoenfeld’s or 

Lampert’s based on the assumption that I cannot pose problems for students; I can only 

provide a task or a prompt which has the potential to occasion their mathematical 

understanding. Hence, I operate under the assumption that I do not (because I cannot) pose 

problems for my students: I can only trigger their actions. Thus, in the context of studying 

mathematical understanding, even if we admit that people solve problems given 

perturbations in the environment, it is not appropriate to call the perturbations problems in 

advance of the person’s actions.

Learning from E x p erien ce

My understanding of my role of facilitator and what constituted worthwhile tasks 

and curricula changed as I experienced the parent-child mathematics program. New 

awarenesses arose for me throughout the experience and as I reflected on that experience. 

Roberta and Kristina taught me that diverse motivations are part of people’s acts of 

knowing mathematics and, thus, are part of the curriculum that is lived in classrooms. Dan 

and Kerri taught me that one’s patterns of behaviour are triggered by familiarity and that the 

activities in the program could not be so similar to activities they did in school that they 

treated the program like school. Finally, I learned to distinguish between open-ended 

problems and variable-entry prompts; that is, there is a difference between tasks that one 

can enter into meaningful activity and tasks that have many possible solutions. As I have 

described, the curriculum was not prescribe but co-emerged with the mathematics knowing
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of the participants and myself. Thus, I might say that the parent-child mathematics program 

itself emerged in action.

So, too, did my research program. Making sense of the curriculum of the parent- 

child mathematics program was just one aspect of my research activity. As I indicated 

earlier, I found myself returning to discussions about the nature of mathematics knowing 

with illustrations and questions from my observations of the parent and child actions and 

interactions. As a researcher, I found within myself and my experiences a phenomenon to 

be explained—a question that I desired to answer (Maturana, 1991, p. 36).

How might I  characterise the mathematics knowing that is brought forth in the 

actions and interactions o f the parents and children in this mathematics program?
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Chapter Two 

RESEARCHING MATHEMATICS KNOWING

For decades, researchers have been attempting to find models for various problems 

in education, from human thinking and development to the study of classrooms as social 

systems. Mathematics is an interpretive framework that helps us understand various 

phenomena in our world, including educational phenomena. Although linear, exponential 

models and more recently probabilistic models have dominated educational research, 

recently educational researchers have begun to consider complexity and chaos theories 

(both of which involve the study of dynamical systems) to help understand teaching, 

learning, curriculum and educational research itself (Davis and Sumara, 1997; Robinson 

and Yaden, 1993; Cziko, 1989; Doll, 1988). As is the case with any interpretative 

framework, our understanding is both restrained and liberated by the tools and metaphors 

offered by the framework. Thus, new theories and interpretive frameworks offer theorists 

and researchers new “tools” for understanding “old problems” and for generating new 

interests.

In my research, I have meandered along a landscape that is well defined by 

traditions of what counts as research. At the same time, the landscape is continually 

changing. It is changing under the influence of those who walk through it, those who are 

curious about unexplored areas and those who have notions of how they might travel 

differently than those who have gone before them. The dissertation is a feature of this 

journey. Like a piece of art, the dissertation is an expression of who the researcher is and 

what she feels—it is a representation of her knowing in action. But, unlike the novel that 

tells a story of love or betrayal, that attempts to provoke an emotional response such as joy, 

fear and hope, a dissertation assumes that those reading it bring to the reading a shared 

emotion— the desire to explain.
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Maturana(1991) claims that the desire to explain is the very emotion that specifies 

the domain of actions in which science takes place as a human activity. Historically, 

research in mathematics education has used scientific models, involving experimental or 

quasi-experimental designs which explore factors and relationships implicated in the 

mathematical education of our children and youth. Statistical treatment of data lends itself 

well to the traditional dissertation format. It is presumed that the analysis will demonstrate 

the causal factors related to the particular problem one was studying. From such studies, it 

is hoped that various aspects and problems of education can be predicted and controlled. 

Further, statistical analyses are useful for describing various behavioral patterns involving 

large numbers of people and global phenomena. However, individual behaviour and local 

phenomena resist statistical treatment; hence, they are not well understood through such 

studies (Capra, 1996; Cohen and Stewart, 1994; Glieck, 1987). If educational research is 

to be used to understand local phenomena or the behaviour of individuals, then we need to 

take seriously alternative forms of research—forms that have the potential to shape 

experience and enlarge understanding of the particular (see van Manen, 1990; Pinar, 1988; 

Eisner and Peshkin, 1990).

As modes of inquiry change so do the ways in which the research is disseminated. 

The dissertation is just one example of a research report that is undergoing a 

metamorphosis. The research community is trying to understand in what ways new forms 

of inquiry and/or reporting research satisfy academic standards. My work is not a theory of 

causes and effects, nor is it theory to explain statistical findings from a particular 

population. Rather, it is an interpretation of people’s mathematical knowing in action. 

Through my interpretations, I offer models for observing mathematics knowing in action. 

This dissertation is an expression of my knowing for others within an academic tradition. It 

is, in the first place, my expressed knowing and, in the second, a representation of my 

knowing.
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One might ask, “Is my work replicable? Is it generalisable to other populations? 

Does it have predictive power?” These are questions for which scientific research has 

traditionally been required to respond. Can research for which we cannot answer these 

questions affirmatively still be called educational research? Kessels and Korthagen (1996) 

suggest it can. In fact, they argue that accounts of the particular have an important place in 

educational research. They point out that quantitative research which has claimed to answer 

these questions “lacks flesh and blood,” the very substance that helps us understand the 

human condition. My work, in contrast, is highly contingent. Who the people are and what 

they do in a particular moment matters.

Following the lead of the constructivists in mathematics education research (e.g. 

Pirie and Kieren, 1992; Steffe, 1990, Confrey, 1990), my work focuses on particular 

people’s mathematics knowing in action or, as Davis (1996) distinguished, the 

mathematical. The mathematical includes ways of thinking which involve actions such as 

counting, comparing, pattern noticing, and reasoning. In contrast to the mathematical is 

mathematics—that which is commonly thought of as the object(s) of those processes or the 

objects that arise from mathematical thinking. Mathematics is commonly understood to 

include things like number, variable, function, and geometrical forms, for example. Rather 

than attempt to fully define mathematics knowing in action (which, I would argue, is not 

possible), I will use the concept throughout the dissertation and explore its meaning in use 

by investigating mathematics knowing that is brought forth in action.

In the illustrations I offer as part of my explanation of mathematics knowing in 

action, I describe and interpret the actions and interactions of parents and children who 

participated in my mathematics program by engaging in mathematical activity. I take into 

account the objects of their activity and focus on their actions and interactions which bring 

forth those objects and the implications of that bringing-forth (Maturana, 1988; Blumer, 

1969). Thus, one component of this dissertation is the development of an explanation of

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the ways in which people bring forth mathematics through actions and interactions that I 

view as mathematical.

Experience, E x p lan a tio n s  and  C o n c ep tio n s

Maturana (1991) suggests that any explanation must satisfy two general conditions 

to be accepted as an explanation. First of all, an explanation must present an experience 

(phenomenon) to be explained in  terms of what an observer must do in order to experience 

the phenomenon. Secondly, the explanation must offer a reformulation of the phenomenon 

in terms of a generative mechanism such that, if the mechanism were to operate the way 

described, the observer would experience the phenomenon that is being explained (pg. 32). 

Maturana suggests that all explanations must satisfy these two criteria in order to be 

accepted as explanations (in contrast to a description or algorithm, for example); however, 

explanations may also have to satisfy other criteria within a particular discourse or 

community. For example, scientific explanations must satisfy criteria specified by the 

scientific community and specific to the domain of science. In contrast, if the explanation is 

in another domain, Christianity, for example, then the explanation must satisfy the 

constraints placed by the community in which it is offered, in this case the community of 

Christians. In other words, explanations are not independent of the humans that are posing 

the explanations and the humans that are listening for the explanations. Explanations do not 

describe a reality independent of the human observer, but, rather are a phenomenon of the. 

human domain. Therefore, explanations are relational phenomena (Maturana, 1991). If one 

accepts the explanation of another then one accepts the other as a member of the community 

in which the explanation is offered. On the other hand, if the explanation offered is not 

accepted by the listener then, in the same act, the explainer is not accepted as a member of 

the community (presuming the explainer does not accept the criteria of acceptance). 

Understood this way, explanations exist in communities in which the members of the
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community remain in relation to each other by means of their criteria for acceptance of an 

explanation.

Understanding scientific explanations in this way means that science is not validated 

by its correspondence to an objective world. Maturana (1991) writes:

[0]ntologically, in its manner of constitution as a cognitive domain, science is no 
different from other cognitive domains because it is defined and constituted as all 
cognitive domains are, namely as a domain of actions defined by a criterion of 
validation or acceptability used by an observer or by the members of a community 
of observers to accept those actions as valid in a domain of actions defined by that 
very same criterion of acceptability (p. 39).

This statement implies that scientific explanations are not valid because they explain an 

objective (observer independent reality), but they are valid because they meet criteria of the 

scientific community which were developed by the scientific community

Blumer’s (1969) explanation of the functions a concept serves in science is similar 

to Maturana’s articulation of the criteria of validation of scientific explanations. Blumer 

proposes that a scientific concept serves three functions: “(1) it introduces a new orientation 

or point of view; (2) it serves as a tool, or as a means of transacting business; (3) it makes 

possible deductive reasoning and so the anticipation of new experience” (p. 163).

In both Maturana’s (1991) and Blumer’s (1969) proposals, our attention is turned 

to the role of the explanation in the former case and concept in the latter in our 

understanding or meaning making. Certainly, in educational research, this is key. Ongoing 

debate as to what counts as research in education (Donmoyer, 1996) has led to a 

multifaceted view of how our understanding is elaborated in education. Eisner (1997) 

argues that whatever form educational research takes, its goal is to be generative. 

Descriptions, explanations and conceptions all are forms that have the potential to shape 

experience and broaden understanding of the particular. The explanations and concepts I 

propose are offered with the intention to further our understanding of mathematics knowing 

in action. Developed out of my interpretations of mathematics knowing in action, their
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value lies in their potential to occasion the knowing of members of the mathematics 

education community.

The O b se rv e r

Von Foerster (1992) believes that scientists have adhered to that principle of the 

independent observer for fear that “paradoxes would arise when the observers were 

allowed to enter the universe of their explanations” (p. 10). However, in some areas of 

scientific study (cybernetics, computer science, and biology, for example), the study of 

systems in which the observer is a part of the system is afforded by the use of powerful 

conceptual tools such as circularity, reflexivity and self-reference.

A conception of observer-dependent research results in explanations that are no 

longer of reality independent of the observer but, rather, a reality that includes the observer. 

Work in cognitive science and neuroscience suggest that there are no qualities of things 

that exist independendy of a perceiver. Lakoff and Johnson (1999) note, “the quality of 

things as we can experience and comprehend them depend crucially on our neural makeup, 

our bodily interactions with them, and our purposes and interests” (p. 26). Von Foerster 

(1992) also notes that the demand in scientific discourse to separate the observer from the 

observed wherein the idea that “the properties of the observer shall not enter into the 

descriptions of his observations” is problematic (p. 10). If I, as observer, am independent 

of the universe, then I observe it from a distance watching it unfold. In contrast, if I am 

part of the universe, then whenever I act I am changing both it and myself. As a teacher and 

a researcher in the domain of human science, I find myself asking: “Am I an observer of a 

world independent of myself? Or, am I, as von Foerster asks, part of that which I am 

observing?” This is not a trivial distinction. If I am independent of the world I am 

observing, then my actions and my explanations of it make no difference to it. However, if 

I am part of that which I am observing then my actions and my explanations change the 

world in which I participate.
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The study of human cognition, Maturana (1988) believes, is the study of the 

observer. When we explain human cognition, we explain the observer.

Observing is both the ultimate starting point and the most fundamental question in 
any attempt to understand reality and reason as phenomenon of the human domain. 
Indeed, everything said is said by an observer to another observer that could be 
him- or herself, and the observer is a human being (Maturana, 1988, p. 27).
I wish to make it clear that I understand myself (as observer) to be fully complicit in 

the research. I am part of the interactions and the mathematics knowing that co-emerged 

among the participants in the parent-child mathematics program. Through my various 

actions such as selecting prompts, talking to participants, making (or not making) 

suggestions when participants asked for help (or saying nothing), I am implicated in their 

mathematics knowing, and they are implicated in my mathematics knowing, and none of 

this is separate from my research and my knowing about mathematical cognition. There lies 

complicity.

Maturana’s (1988) asserts that “scientific explanations do not explain an 

independent world, they explain the experience of the observer, and that is the world that 

he or she lives” (emphasis added, p. 38). As von Glasersfeld (1999) describes, “What is 

observed are not things, properties or relations of a world that exists as such; but rather the 

results of distinctions made by the observer him or herself’ (http://www.oikos.org. 

vonobserv.htm, p. 3). I do not believe this is the same as the claim made by ethnographers 

who recognize their participation in a culture or situation may have an impact (intended or 

not) on that culture. Maturana’s point is that I am implicated not simply because I am 

another variable in the situation or culture that I am studying but because my knowing and 

my explanations constitute the worlds I bring forth with others (Maturana, 1980, 1988, 

1991; Maturana and Varela, 1991; von Forester, 1981; Merleau-Ponty, 1962). Thus, I 

believe the ethnographer’s concern of changing the culture or situation is a different one 

than that to which I am pointing in my work when I suggest that my observations are not 

independent of me, the observer.
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The domain of languaging (acting in language) and explaining is also the domain in 

which mathematics knowing exists and, because this is the domain I am studying, I am 

fully complicit in the phenomena my observations and explanations participate in shaping. 

Merleau-Ponty (1962) explains that although a phenomenon may be expressed in terms of 

some internal law:

[the] law must not be considered as a model on which the phenomena of a structure 
are built up. Their experience is not the external unfolding of a preexisting reason. 
It is not because the ‘form’ produces a certain state of equilibrium solving a 
problem of maximum coherence and, in the Kantian sense, making a world 
possible, that it enjoys a privileged place in our perception; it is the very appearance 
of the world and not the condition of its possibility; it is the birth of a norm and is 
realized according to a norm; it is the identity of the external and the internal and not 
the projection of the internal in the external (emphasis original, p. 60).
In the next section, I describe my role as the observer whose distinctions and 

explanations are being offered in this work. I describe how I conducted my research (made 

observations) so that the reader can make sense of the domain in which I am making 

explanations.

The Methods

In this section, I provide an account of the research as it pertains to issues of 

methodology. I discuss the methodology in retrospect as though it were all thought through 

in advance and carefully planned to “mine” the rich data that existed in the site. Research 

belongs to the human domain and, therefore, exists as an act of languaging among 

observers after the fact, not prior to its occurrence. Had I written this section without the 

story of the co-emergence of the parent-child mathematics program and the research study,

I might create the impression that the research methods were clearly conceived prior to the 

research rather than in conjunction with the research. This is not the case. (However, 

having conducted qualitative studies prior to my doctoral study, I was familiar with 

qualitative data collection and analysis methods and used a variety of these in my research.)
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This is also true of the research questions. They were not specified in advance but arose in 

action as my understanding transformed with my experiences.

In human science research, a tradition of statistical studies and a recent history 

which includes diverse qualitative methods leave the researcher with many choices in terms 

of research methodology; but the complexity of the phenomena we study and our 

complicity (that is, our co-implications) as researchers often mean any single method will 

not do. The researcher must be able to develop research methods specific to her search and 

the questions she is posing. Since I am posing the question of how I might explain my 

observations of mathematics knowing in action, and since I am implicated both in the action 

and the explanation, I need methods that allow for the observation of non-linear, complex, 

and interactive events and processes all at once; as well, I need methods that take advantage 

of my participation.

Fractal Research Cycles

As is often the case when teachers research their teaching practices in the context of 

their own classes, I found myself in the midst of research without a series of pre-specified 

research questions to be explored. Rather, I had various experiences within a particular 

situation (parent-child mathematics program) that I was trying to develop and understand 

and out of which questions emerged. In chapter one, I discussed how questions about the 

nature of the curriculum for the parent-child program arose in action and were addressed in 

action. Although I began with a general question of what the curriculum of this program 

should entail, the specific questions that guided my inquiry co-emerged with the inquiry. In 

this chapter, I will discuss how questions of how to study mathematics knowing in action 

co-emerged in the context of living the parent-child mathematics program and living the 

research.

Each chapter of this dissertation explores questions that arose for me throughout

various stages of the research. In the beginning, these were questions about the nature of
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the activities I might use in the program and, by the end of the research, these were 

questions about the concepts and models that I used to observe mathematics knowing in 

action. My research questions co-emerged with developing the program and with my 

understanding of it. In other words, my research involved asking the question: what 

questions arise when I  observe mathematics knowing in action?

As I reflect on the first chapter, it suggests to me a research cycle, particularly as it 

pertained to the ongoing development of the curriculum of the parent-child mathematics 

program. While immersed in the activity of the program, I was constantly reflecting on the 

situation I was in: making observations, analysing them, and formulating questions which 

guided my subsequent observations. I want to describe this reflective process as an action 

research cycle because it happened in action, yet I am well aware that this phrase is more 

commonly understood to involve research that is intended to have an impact on 

participants’ social conditions. Hence, I will refer to it as a research-in-action cycle (Figure 

2 - 1) .

O bserve
activity

*
i______________________  i

Analyse & i r — ~ \ 1
Interpret j  . _Q uestjon;

 t ;   f P o s e  new  j 4
' '  ^ I question ;

Figure 2-1. Research-in-action cycle demonstrating reflective process used in both the 
program development and research

An example of my research in action is the selection and development of the

prompts I used in the sessions. My initial problem (question) was to identify a set of

prompts suitable for the parent-child mathematics program (Figure 2-2, 1). Recall from the

opening vignette that, on the first day of the program, I used a classical prompt from

mathematics, the “handshake problem.” I observed that all of the participants responded

with activity which I interpret as mathematical (Figure 2-2, 2). My reflection on their
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activity validated my assumption that there are such prompts suitable for the parent-child 

mathematics program (Figure 2-2, 3). Over the next few weeks, the prompts I selected for 

the program were quite appropriate for the participants in that the parents and children 

engaged in mathematical activity together; hence, my observations and analyses led me to 

continue to seek out more prompts. However, in the fourth week of the program, when I 

used the activity, “Walk the Plank,” the cycle was interrupted because not all of the parents 

and children were able to engage in what I viewed as appropriate activity. Upon observing 

and reflecting on the participants’ actions and utterances, I made the judgment that this 

particular prompt was not suitable for all the participants, and my original question, “Does 

there exist a set of suitable prompts for the parent-child mathematics program?” changed to, 

“What are the features of such prompts?” (Figure 2-2, 4). At this point, the original 

question loses some significance, and a cycle builds around the new question (Figure 2-3). 

I propose, then, that a fractal is a much better image for the research cycle than a circle or a 

spiral. (See Appendix G for a discussion about fractals.)

2 ---------------^
; Observe ;

activity f \
/  '

^  Suitable *.
Prompts 1

3  f  Analyse & 1  LQ uestion ?
v Interpret j j P o se  new  T4  

question J

Figure 2-2. Cyclical model for observing the development of research questions about 
suitable prompts
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[ Observe ; 
/ activity I

/  v  - ..... —

Analyse 'S  U it3b le  ,
_  .  P  ro m p ts

-Question

Observe
Pose new 
question

Features of [ Question
Variable-entry 

Prompts A

Analyse

Figure 2-3. Fractal model for observing research process where new questions call 
previous ones forward into consideration
The development of the concept of a variable-entry prompt is an example of a product of 

the research cycle in which I engaged. As I selected prompts, I reflected on the ways in 

which they were played out in the program. From that information, I was able to generate a 

set of features of variable-entry prompts. Once this set of features was part of my 

understanding of variable-entry prompts, I understood the specific prompts differently.

Figure 2-2 and Figure 2-3 are models for observing the research cycles I 

experienced in developing my notion of variable-entry prompts and explicating their 

features. This example demonstrates one of the aspects in my research which I can explain 

using a fractal model; the development of my research questions, for example, can also be 

described with such a model. This points to one of the recurrent themes in my dissertation: 

the representations or artifacts of my interpretation of the recursive, dynamic and co- 

emergent nature of human knowing in action, be it mathematical, curricular, pedagogical, 

or relational, are fractal-like images. If I zoom out on my interpretive activity, I notice how 

the particular research cycles noted above are only two of many in the project but, more 

than that, they are implicated in other domains and cycles of the research. No cycle is 

independent of another; in this way, the various cycles can be thought of as complicit. I 

cannot separate my knowing in terms of variable-entry prompts from the way in which I 

understand parent-child interaction, or their understanding of a particular concept, or, in
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fact, how I am understanding the nature of mathematics cognition. Figure 2-4 is offered as 

an illustration of my observations of my research knowing. I understand the fractal cycle to 

be present throughout my research even though I delineate it by writing about it in 

language. Understanding the research process as dynamic, which includes ongoing 

recursive interpretation and the fractal form, is a methodological feature of the inquiry used 

in this study.

✓ '  
I i

O c c a s io n in g ',

R e s e a r c h

Q u e s t io n

(Analyse)"'  "n.

, 'F e a t u r e s \
, o f V E  =

■r - -  ̂\  P r o m p t s  ' ' suitable > _
. U — . f  n _________________ I. ,

✓ v P r o m p t s  /

Question
P a r e n t -c h Il d

P r o g r a m

'  T r i p l e -  * \  
E m b o d im e n t,1

Observe
t ,

s -    O b j e c t i v i t y ,

/  R ese a r c h  
’ Me t h o d s

Figure 2-4. Illustration of Fractal Research

Data Collection and Analysis

My task is to explore the general question: How might I  characterise and explain the 

mathematics knowing that is brought forth in the actions and interactions o f people? 

However, I do so with the understanding that I am offering an explanation of mathematical 

knowing based on my experiences observing and interacting with the parents and children 

who participated in the program. Further, I understand my offering as a social act 

(interacting with others) in a community of mathematics education researchers who might
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be thought of as “like-minded” observers. 1 My approach is necessarily interpretive because 

it assumes that any explanation is a human act of understanding the coherences of one’s 

experiences. I have described the parent-child mathematics program but I will repeat a few 

details here in order to move on to describe the ways in which it was treated particularly as 

a research site.

Over the course of the research, artifacts were created out of two kinds of activity: 

1) through developing and observing particular events in which parents and children 

engaged in mathematical activity together; and 2 ) by analysing and interpreting data (this 

includes sharing data and interpretations at conferences and through interactions about 

publications) (see Figure 2-5). In terms of the first type of activity, data was collected in 

some (but not all) of these forms: video and audio tapes of parent-child pairs engaging in 

mathematical activity together, field notes, researcher response journals, participants’ 

working papers (see Appendix A). I will call these first-order data. From the first-order 

data, other research artifacts were created (second-order data). In particular, all audio tapes 

were transcribed (verbal utterances), and still photographs were taken from the video tapes 

at a rate of 1 shot/min to produce non-verbal transcripts (I call these body language traces). 

Mathematical activity traces (Reid, 1995) were produced by viewing the video tapes and 

making note, in chronological order, of the various mathematical activities that were 

observed. These second-order data were integrated with the field notes, questionnaires, 

journal entries and participants’ working papers to create a data file for each parent-child 

pair in each session.

1 Like-minded does not mean the observers agree with the explanation perse; rather, they share a common 
set o f criteria by which they judge such explanations.
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Figure 2-5. Data creation, analysis and interpretation
The data files are used in conjunction with my research journal and the

questionnaires that participants complete at the beginning of the term. As part of the

ongoing data analysis, the artifacts in each file are studied from a number of perspectives

and at different times throughout the research. For example, I made two distinct uses of the

files when I developed the concept of variable-entry prompt. (1)1 studied all of the parent-

child files which involved a particular prompt, and (2) I studied the files of particular

parent-child pairs for their responses to various prompts used in the program. Of course, I

also studied the ways in which other researchers and mathematics educators conceived

prompts (Schoenfeld, 1994; Lampert, 1991; Polya, 1957).

The development of research papers, professional papers, and presentations is yet 

another transformation of data which results in new artifacts that further inform the study. 

Often these are created by two or more researchers who together analyse and interpret the 

first-order and second-order data from their own perspectives (understandings of 

mathematics knowing). Because these papers are part of the researchers’ ongoing research
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programs, they are rarely 'thought of as end products but, rather, as research journeys. 

These research papers (ancfi notes from presentations at conferences or conversations) are 

also research artifacts and, aas such, they have the potential to become new data (third-order 

data) for further research.

I wish to be explicit here. All research artifacts form the corpus of data for my 

ongoing analysis and interpretations of mathematics knowing in action. This is particularly 

important since much of thee “data” that I present here I have written about elsewhere (see 

Appendix E). The writing o f  papers about various aspects o f the parent-child program are 

as much part of the research as setting up the video tapes and the taking of field notes. 

When any researcher returns to the first- and second-order data, the research papers and 

presentations are then part o f  the researcher’s history and, thus, are necessarily implicated 

in subsequent data analysis and interpretation. This is why I understand them as data 

(information). Hence, research done the way I have described is a recursive2 process just 

as all knowing acts are (Matturana and Varela, 1992).

Reflecting back on Che development of the research methodology, I note two things: 

the first is that the methodollogy was not laid out in advance of the study, and the second is 

that I can make distinctions of phases of the research and identify various forms of artifacts 

and layers of interpretation within each phase. The phases are not distinct or separated as 

they are lived but, upon refl*ection, I am able to make distinctions and think about the work 

as having phases. Layers of'interpretation are developed as phase upon phase of research is 

distinguished.3 Each phase aof the research and each layer of interpretation provide a certain 

kind of artifact which, in tunm, becomes data for further research.

2 Recursion is used here in a way» similar to the way Kieren and Pirie (1991) use it to explain children’s 
mathematics knowing. It is not j*ust that previous data, results, papers, etc. are iteratively the inputs for 
new papers or activities. Rather, • these new activities at once call and alter the nature o f the past activities 
which exist in both the internal a and external artifacts and memory o f  the researcher.
3 This layered research knowing iis conceptually similar to the pedagogical knowing I have already discussed 
and the mathematics knowing thsat I discuss in the forthcoming chapters.
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Research Accounts an d  Interpretations

The “results” of my inquiry and research of mathematics knowing (this dissertation) 

include both accounts o f my experience of people’s knowing in action and semantic 

descriptions (Maturana and Varela, 1992, p. 211) of the cognitive mechanisms observed 

when parents and children engage in mathematical thinking. Through the use of illustrative 

cases, I pose and reflect on a series of questions about mathematics knowing in action:

• How might we understand the actions and inter-actions o f children and parents engaged 

in mathematical activity if we interpret them using theories of cognition commonly 

articulated in the mathematics education research?

• What does the enactive perspective of cognition offer the analysis and interpretation of 

these same phenomena?

• What questions do we ponder when we study cognition from an enactivist perspective?

• How is mathematics knowing triggered? How might we explain the relationship between 

the person and his or her environment?

• Where is mathematics knowing observed, and what are the sources of perturbations for 

mathematics knowing?

• In what ways is the knower brought forth by doing mathematics?

• In what ways do we observe mathematics knowing as a fully embodied phenomenon?

In each chapter, illustrative cases are offered not only to shape a context from which 

meaning can be created but also to suggest that knowing is brought forth by someone in 

relation with another (the other may be oneself) in a particular situation. Each of the 

illustrations involves a different kind of distinction whether it is one between a parent and a 

child or between parent-child pairs or between prompts. In this work, I am constantly 

reinterpreting various levels of activity, trying to make sense of the whole by focusing in
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on details which are in themselves whole pieces, only to discover that there is integrity at 

many levels of interpretation.4 As these examples are analysed and interpreted, they are 

transformed into what I call illustrative cases of mathematics knowing in action. Beginning 

with the activity itself and followed by multiple readings of the transcript and multiple 

interpretations the illustrative cases are constituted. In chapter three, the cases are used as 

the site of multiple interpretations of a mathematics knowing from a variety of perspectives 

on knowing. In chapter five, the illustrative cases are used to develop and elaborate on the 

concept of structural determinism, structural coupling and occasioning and, in chapter six, 

the case is used to explore the sites and sources of perturbations for mathematics knowing. 

In chapter seven, an illustrative case is used as a place around which I try to understand 

how the knower is brought forth in his or her mathematical actions and interactions. Finally 

in chapter eight, I bring together the conceptions, models and interpretations I developed in 

my study of mathematics knowing in action. However, even the drawing together of my 

utterances cannot form a summary in the traditional sense but occasion my knowing yet 

again. As I discuss throughout this dissertation, every act of knowing makes possible 

further acts of knowing. Research always involves re-searching.

4 I come back to this notion in the last chapter.
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Chapter Three

EXPLAINING MATHEMATICS KNOWING FROM A VARIETY

OF PERSPECTIVES

Traditionally, people have viewed mathematics as an individual activity centered in 

one’s head. Consider the stereotypic image of a mathematician—he (and I mean he, not 

she) is one who works alone in an office, solving problems using only paper and pencil, 

writing proof after theorem in abstract symbols meaningful to only a few others who live 

and think like he does . 1 There exists a similar view of children’s mathematical activity. A 

common image is a child sitting at a desk working alone with pencil in hand solving 

problems; the only evidence of the child’s mathematical understanding is the marks on a 

sheet of paper.

In spite of fairly widespread agreement among mathematics educational researchers 

when it comes to identifying knowledge or an act of cognition as mathematical2 there are 

quite diverse explanations for that knowledge or act. Much of the research in mathematics 

education over the past 25 years (see Steffe and Kieren, 1994) has focused on children’s 

mathematical cognition from a constructivist theory of knowing. This theory can be traced 

back to the work of Piaget (1970/1971) and is one that tries to understand what is going on 

“in the child’s head” when he or she constructs mathematical knowledge. More recently, a 

number of researchers have been focusing on the importance of the social interaction in the 

development of a child’s mathematical understanding (Yackel and Cobb, 1996; Lerman, 

1996, Bauersfeld, 1995a). Vygotsky’s (1934/1986) social theory of development provides 

a basis for much of this work (Lerman, 1996; Smagorinsky, 1995; Bauersfeld, 1995a). At

1 For a discussion o f mathematicians and their work, see Davis and Hersh’s hook The Mathematical 
Experience (1981).
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the same time, there is some discussion that what the field needs is a reformulated theory of 

cognition (Cobb and Bauersfeld, 1995b, Confrey, 1995b; Bruner, 1996). In mathematics 

education, there are a number of researchers attempting to do just that (Confrey, 1995b: 

Cobb, 1994; Cobb and Bauersfeld, 1995a; Davis, 1996; Kieren, Gordon Calvert, Reid and 

Simmt, 1995).

In this dissertation, I build on the research that uses enactivism as a theoretical 

framework for studying mathematics knowing by using this theory to interpret the actions 

and interactions of parents and children who engage in mathematical activity together. 

Enactivism,3 as articulated by Varela, Thompson and Rosch (1991) and in the work of 

Maturana and Varela (1980, 1992), provides a biological account for the social behavior of 

humans at the same time as explicating the inter-personal and the intra-personal nature of 

human knowing. Unlike theories that view cognition as information processing 

(input/output model) and suggest its goal is problem solving (Fodor, 1975, 1983; 

Guilford, 1967), an enactivist theory of cognition is based on the premise that cognition is 

embodied action that brings forth a world of significance.

However, prior to elaborating on enactivism, I review the literature by considering 

a multiplicity of perspectives from which mathematics knowing is studied. To do this, two 

cases which illustrate mathematics knowing in action are viewed through the lenses of 

theories of knowing that are prevalent in the current mathematics education literature. Then, 

some of the key concepts articulated in enactivism are introduced in the context of the same 

two cases.

2 This is one o f the critiques Confrey (1999a) makes about studies o f  mathematics knowing; that is, the 
“mathematics” o f mathematics knowing often goes unquestioned. It is assumed to be o f a certain kind— a 
kind that is consistent with Eurocentric views.
3 1 briefly outline the theory here in order to offer an illustration from my research. Following the 
illustration, I further develop the discussion o f functionalist, constructivist and socioculturalist theories o f  
cognition and end with a more detailed introduction to the “language” o f  enactivism that I use throughout 
the dissertation.
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Two C a s e s  of M athem atics Knowing

The two cases around which this chapter is developed are both taken from a 

particular session of the parent-child mathematics program. They involve a father and his 

11 year old daughter and a mother and her 9 year old daughter. In this section, pieces of the 

transcripts from that session are used to illustrate the nature of the mathematical activity of 

each pair and of each person in each pair. The transcripts are not complete; the participants 

did much more than is stated here. However, the transcripts and samples of participants’ 

working papers should be sufficient to begin a conversation about the participants’ 

mathematical thinking. In order to facilitate this conversation, I will begin by situating their 

activity that night.

On the particular night from which these transcripts were taken, the participants 

were given some graph paper, pencils, a box of dominoes (which have the property of 

being rectangular with sides in the ratio of 2:1) and the following prompt (Figure 3-1). The 

participants worked in pairs, each consisting of a child and her parent. Dan and Kerri had 

participated in the parent-child mathematics program for two terms ( 2 0  sessions) prior to 

this session. The second parent-child pair, Rebecca and Cathy, had participated for one 

term. Although Dan and Kerri regularly participated in the mathematics program together, 

Cathy did not always come to the sessions with her mother as she did on this occasion; 

more than half of the time she attended with her father.

Given a set o f dominoes, how many different ways can you tile a path that 
can be at most two tiles wide?

1 tile 1 way 2 tiles 2 wavs 3 tiles 3 ways
How many ways for n tiles?

Figure 3-1. The tiling prompt
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Dan and Kerri

When working together, it was common for Dan and Kerri to take specific and 

distinct roles and work on the task together. This night was no different. Immediately after 

the prompt was given, Dan turned to his daughter and asked, “What do you think we 

should do?” Her reply, “As we do it, we should look for a pattern” [emphasis added], 

foreshadows the nature of their interaction throughout the session and the kind of 

mathematical activity and mathematics they developed as they worked together.

Transcript 3-1. Dan CD) and Kerri’s (K) inter-action occasioned by the tiling prompt

Dan and Kerri began by redoing the examples given in the prompt. Kerri manipulated the 
dominoes and arranged them on the table in front of her. Ay she did that, Dan kept track o f  
the tile patterns she made in a table where he also kept track o f the number of patterns for  
each set o f tiles (Figure 3-2).

Z> Okay. So 3 [tiles].
K: Next 4 [tiles].
D  Four seems like a good number. Good as any to do next.
K: If I am right about this, then, if 4 follows my theory — Okay, let’s see. Do

5 this. [Kerri pointed to the set of tiles in front of her that she had just
arranged. ]

D. Do that? Okay. 1,2,3,  4. Okay, got it. [Dan drew | | | \]
K: Okay, le t’s see. You can do that. [She made a new arrangement.]

10 D. Okay. I, 2, 3, 4. [Dan recorded the pattern | | = in his table.]
K: Do that.
D  Okay, 1, 2, 3, 4. [He drew = | \.J

It’s good that we are being consistent. Like if we are treating those as being 
different ones then. Okay, now what do we do— Oh, I think that I can see 

15 another way.
K: [Kerri moved the tiles around and stopped when she had another tiling.]
D  Oh! Yeah. I didn ’t see that one. That’s not the one I was thinking of.

That’s 1, 2, 3, 4. Yep, that’s good. [He drew = = .]
K: What’s the one you were thinking of?

20 D  Oh, see if  you can get it.
K: Hum. [She moved the tiles around and then looked at her dad’s sheet.]
Z> Yeah, we have that one.
K: Yeah, I know. [She started moving the tiles about again.]
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25 Z> Oh, you ’re good. That's the one I was thinking of. Okay, so we Jiave 1, 2,
3, 4. [  \ = \ ]

K: Okay, I don’t think there’s any others.
T: I think that’s a neat one. I t’s kind of a frame—a picture frame. [T'. Kieren

(another researcher present) pointed to one of the patterns.]
30 Z> [  \=\ ] It’s kind of symmetrical isn ’t it?

T: Oh, i t’s really nice.
D: So how many do we have ?
D K [Together, they counted.]  1, 2, 3, 4, 5.
K: Shoot! That doesn ’t follow my theory. See I thought, 1 - 1, 2 - 2_ 3 - 3, 4 -

35 [her voice fades].
Z> No. So fa r it just blew it out o f  the water. It looked pretty close. T  guess we

can’t stop yet, but we might find a pattern yet. Okay — one with five . 
Unless you want to try something else?

K: 1, 2, 3, 4, 5. [She counted out five dominoes.]
40 Z> Okay.

K: Okay, you could do this one.[ | = | | ]
Z> Okay. What is that one? Okay, 1—.
K: 1, going, going.
Z> 1, going, going, going, going. Okay. [  | | = | ]

45 Z> Okay, you got your going, going. Yeah, that’s the same as your other one,
just turned around.

Z> Okay, so what do you have ?
K: 1, 1, 1 -
Z> 1,1,  1 -

50 K: 2 sideways.
Z> Blip blip. [  | 11 = ]
D: Okay, what do you call the one sideways or something else?
K: Blip blip.
Z> Okay, the blip, blips.

55 K: Blip blip, 1, 1, 1.
D: Blip, blip, 1, 1, 1. [  = \\ \ ]
K: Comma.
Z> Comma. Thanks. That’s a good recording technique. What are w e  doing

now?
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Figure 3-2. Dan and Kerri’s Table

I begin an analysis of their interaction and their mathematics knowing by 

considering the implications of keeping a record in the form of a table (Figure 3-2). By 

constructing a table and placing it within eyesight, Dan and Kerri had the opportunity to see 

the numbers and notice patterns— which, in fact, Kerri did almost immediately. She said 

out loud, but apparently to herself, “If I am right about this, then—  If four follows my 

theory” (Transcript 3-1, line 4). Although Kerri did not articulate her “theory” out loud, she 

had already noticed a pattern from the records they were keeping and predicted that the 

number of tiles would equal the number of arrangements.

From the transcript it can be demonstrated that their mathematical cognition emerged 

together with their verbal interaction. Notice the rhythm in their conversation (Kieren, 

Simmt, Gordon Calvert and Reid, 1996) (Transcript 3-1, lines 4-12) and how it was
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disturbed once the number of tiles on which to report grew to five (Transcript 3-1, lines 41- 

51). No longer could Dan understand what Kerri was reporting with her utterances of 

“one” and “going-going” (to indicate the vertically and horizontally laid tiles, respectively). 

He had to look over to the arrangements Kerri had made in order to record what she called 

out. This break in rhythm became an occasion for the creation of a new word and language 

for reporting the arrangements. After Dan struggled to record Kerri’s tilings, he asked her, 

“What do you call the one sideways?” He was asking that she name the horizontal tiles 

differently than upright tiles. Once they named the tile placement, then he was able to more 

easily record the arrangements for five tiles as she called the patterns out to him. The 

horizontal pair of tiles from then on were referred to as “blip-blip,” and the rhythm of their 

conversation was reestablished (Transcript 3-1, lines 53-57). It is important to note here 

that not only did Dan and Kerri have a new word added to their vocabulary, but the creation 

and the use of that word changed the world for them in that it changed their sphere of 

behavioral possibilities. The new word not only made it possible for them to communicate 

more fluently, but it changed the world with which they were interacting and, in doing so, 

new possibilities for acting mathematically were opened up.

Their need for new label was an immediate one; it provided Dan and Kerri with a 

means of communicating the arrangements. However, the new label also served to steer 

their mathematical thinking in a particular direction—which was evident a little later in the 

session. Dan and Kerri’s reasoning took a ‘deductive turn’ as they tried to demonstrate 

why the number of arrangements was growing the way it was (note the table in the bottom 

right hand comer of their working paper reproduced in (Figure 3-2). Having a move 

defined as a blip-blip occasioned them to consider two kinds of legal moves in this task: the 

single vertical tile and the double horizontal tile (blip-blip). They noted that only these two 

moves are possible when constructing new arrangements from previously found ones. 

Although they did not come up with a proof for their conjecture of how to predict the
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number of tilings of a particular set, their activities could be seen as satisfying a need to 

prove (Reid, 1995).

Here I would like to explore how Dan’s and Kerri’s actions might be seen as related 

to the body of mathematics in terms of knowledge and practices. From their table making 

acts, we can see how Dan and Kerri take what can be viewed as a geometrical situation 

(covering a space in a regular way) and develop numerical patterns to describe the number 

of patterns that can be formed. This leads me to observe that they were looking for a 

function to portray the relationship between the numbers they were generating. That is, 

they wanted a “rule” that could be used to predict how many patterns are possible for n tiles 

without making all of those patterns. In this way, their actions were connected and 

contribute to a well defined area of mathematics—that of functions and relations. In itself, 

the connection is not much more than a distinction of their behavior in a very local context, 

made by the researcher (an observer of their behavior). However, if their activity is viewed 

in a more global context, then we note that Dan and Kerri are using a functional way of 

thinking—one that places one thing in relation to another. This, in turn, perpetuates a 

particular form of thinking (functional) within the community; thus, the actions of parents 

and children (and more commonly mathematics students in general) can be seen to be 

implicated in the perpetuation of the mathematical culture of the community. Another 

practice of the mathematics culture is noticeable in Kerri’s actions. At the very beginning of 

their activity, Kerri made a conjecture given a very limited number of cases and then refuted 

her own conjecture a little later with a counter example. As is the case in the mathematics 

community, the generation of negative instances or counter examples are fundamental to the 

act of conjecturing and proving (acts in the construction of mathematical objects). Dan’s 

and Kerri’s acts are mathematical not simply because they use shapes and symbols related 

to mathematics, but, because both conceptually and as a matter of practice they make 

distinctions which would be accepted as part of the historical concern and practices of 

mathematicians.
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Rebecca and Cathy

The second illustration involves a mother (Rebecca) and her 9 year old daughter 

(Cathy) who worked with the same prompt as Dan and Kerri but whose mathematical 

activity was quite distinct from that described above. Immediately after the prompt was 

given, once again, we see the parent ask the child how they should begin. In this case, the 

daughter, Cathy, responded that she wanted to look for the patterns for 4 tiles (Transcript

3-2, lines 1-4). Rebecca misunderstood what Cathy meant and also began to arrange 4 

dominoes. When Cathy noticed her mother was working on arrangements for 4 tiles, she 

blurted out, “Four, too!” (Transcript 3-2, line 18) and then convinced her mom to work 

with 5 tiles instead of 4 (Transcript 3-2, lines 21-23).

Transcript 3-2. Rebecca (R) and Cathy (C) respond to tiling prompt_________________

R: Okay, so we are going to work on this starting from 4 ?
T: Check 3. [T. Kieren]
C: I want to do 4.
R: You want to do 4?

5 C: Yeah, I want to do 4.
R: Okay, you can actually take these [dominoes] out and see what you are

doing. So there's your 4. 1,2,3,4.
C: Cool. This is obviously one way. It is obviously — Are you taping us

here?
10 T: Uh hum.

C: Let's see.
R: It doesn't matter if  I use a pencil or a pen, I guess. Okay, so we will draw

it on our graph paper? Follow Cathy.
C: What are you doing mom?

15 R: Okay, well. I'm doing this one.
C: Which?
R: This one.
C: Four too!
R: Yeah. 1,2,3,4— see. Look two up and two this way.

20 C: Oh, so you are doing 4 too?
R: Oh! You want me to do 5, and you do 4 ?
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C: Yeah, that's what I was thinking. So you are doing 5.
R: Okay. 5 tiles....

[Later in the session] Rebecca just finished finding 7 tilings for 5 tiles, and 
25 Cathy has drawn the arrangements for 4 tiles.

C: I ’m doing 7 you can do 6.
C: I couldn ’t think o f any other possible ways. [She looked up to the

researcher who was looking over her shoulder. ]
R: Oh, wait a minute. Two on this side. Two up and—you know what I

30 mean, Cath ? You know what I mean.
C: I know what she means.
R: Yeah. Mirrored. Reversed. Do I have the mirror of this one?
C: There is no mirror of that one.
R: [After checking] No, there isn 't.

35 C: You can’t mirror it. I can’t remember what—
R: Yeah, sure. One up and then the four the other way.
C: You can't mirror that one I mean [pointing to another picture].
R: No. That’s the one you can’t mirror. That’s right. 'Cause it’s a mirror of

itself. ’Kay. So, that’s a mirror o f that and that can’t mirror and that can’t 
40 mirror and then that’s the mirror of that one. Ah ha! So that’s what you

look for too. It’s mirror patterns. If you can mirror them.
[A couple o f  minutes passed as they drew more images.]

C: Hey! I know. [Writes-Look for miror patterns (sic)].

4 5  Later in the session I asked them if they could predict a pattern between the
number o f tiles in a set and the number of tilings that set would produce.

E  Cathy can you guess how many there are going to be for 7 [Elaine]
R: [mumbling] 5 plus 8
C: There could be 20 of them.

50 R: Well, that’s what we are trying to do. We ’re trying to figure out some kind
of—

C: 7, 8, 9, 10, 11, 12, 13, 14, 15. So far I count 15.
E  ‘Kay. You know how many there are for—Yeah. Yeah. There is that

section up there.
55 R: For 6 you mean?

E  Yeah. So 6  has 13 and I am wondering if you guys can figure out how
many ahead of time, before you do them all. How many do you think 7 
will be if you look at what has happened already for the number of tiles and 
the number o f ways. Have you written that anywhere in one place?

60 C: Nope.
R: 5 tiles, 8 patterns. [She writes the number 8 beside the drawings for 5

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£

65 R:

70

75

C: 
£

R: 
C: 
R: 
£  
R: 
C:

R.
C

80 R

C:
£
C:
£
R:
C:

85

tiles.] 4 tiles—What did we put? 5 patterns.
[Another researcher Gordon Calvert, who had been looking on prompts 
Rebecca to make a list] Do you want to write it on a list sort of?
Okay. [She takes another sheet of paper and writes as she calls out.] 1-1,
2— What was it? 2. 3-3, 4-5, 5-8, 6-13. Okay. And Elaine says there is a 
pattern here?
I am the one that predicted 5 for 5 and 3— I mean 6 for 6 and 7 for 7—
Right. But as it turns out this is not the case. So, what if you look at what 
happens —
has 5 and 5 has 3—
But i t’s 8.
5 has 8— [mumbling] Shoot!
Show your mom how this works Cathy.
Yeah. Show your mom.
[She has been working on her own table.] 1 fo r  1, 2 for 2, 3 for 3, 4 fo r
4—
4 fo r 5. 5 fo r 8 6 fo r 13—
6. Hold on. [mumbling]
Oh! Wait a minute. Would this be because this adds up to 8? And 5 is 8. 
Add up to— So this would be 21. [laughing]
[unclear] 8 would be— 8 would be what?
What would 8 be Cathy ?
It would be [unclear]
Cathy, you have a few to look at fo r 7. D on’t you!
[laughs]
I think I am running out of ideas. ‘Kay people. There is supposed to be 21 
for 7. This is going to be ugly.

By separating the task in the way that they did, Cathy and Rebecca’s pattern of 

interaction did not lead to a back and forth weaving of ideas and building on each other’s 

work. In contrast, I note that they work in parallel—each on her own task. Not observable 

from the transcripts here are the many silent spaces in which mom and daughter each 

quietly worked on their own tilings and each keep their own records (Figure 3-3). This is 

not to say that they did not interact but most of their interaction, instead of being a way of 

working together to build on each other’s efforts, was a way of checking up on the other
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person’s activity and progress (Transcript 3-2, lines 13-15 for example), or confirming 

something for the other person (Transcript 3-2, lines 32-34 for example).
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Figure 3-3. Cathy’s (right) and Rebecca’s (left) sketches

There were times in the session when Rebecca and Cathy did work off each other’s 

thinking, and I note in these instances how their mathematics knowing co-emerged with 

their interaction. The possibility for creating different mathematics is fostered by the 

interaction and, not surprisingly, this made a difference to both Rebecca and Cathy. For 

example, Rebecca, in trying to explain how she found one of the patterns she was missing,
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described the pattern as a mirror image (Transcript 3-2, line 32). Both she and Cathy began 

to use this way of talking about the arrangements (Transcript 3-2, lines 32 - 43). There is, 

at least for a short period, a consensual coordination4 of their actions through the use of 

language. They both begin to seek out these mirror images and start to work together—if 

only for a few minutes. Although Cathy was very active in looking for mirror images, a 

couple of minutes elapsed between the moment when her mother mentioned mirror images 

and the moment when she is observed to mark her own noticing by saying out loud, “Hey, 

I know” (Transcript 3-2, line 43) and then writing on the top of her sheet, “Look for miror 

patterns” [sic].

Throughout the session, Rebecca and Cathy asked about each other’s progress and 

shared ideas with each other. Because they were not sharing the task in a way that meant 

they had to communicate continuously and efficiently with one another, they often had to 

rephrase comments and show what they meant with the dominoes or a picture. They did 

not have an efficient verbal language (other than the word “mirroring”) to discuss their 

patterns. Although they both made some arrangements with the dominoes when they first 

began the task, Cathy stopped using them and did not use them again until trying to show 

her mom something. Then she used the tiles simply to demonstrate to Rebecca what she 

was trying to say with words.

The mathematical world of significance that Rebecca and Cathy brought forth was 

geometrical rather than functional. Their use of symmetry to explore a situation, for 

example, is a common practice in mathematics.5 Regardless of the area in which a 

mathematician may work, symmetry is often a key concept in building an understanding of 

a mathematical object (Stewart and Golubitsky, 1992). Rather than focusing on the number

4 The consensual coordination o f their actions is not in the sense that they agree to act in a particular way 
but in the sense that their actions fit together, overlap and interact to form a pattern discernible to this 
observer.
s Note how one o f the researchers (Tom Kieren) commented to Dan and Kerri that he liked a tiling that was 
symmetric (Transcript 3-1, line 28). Neither Dan nor Kerri were prompted to consider the symmetry even 
with Kieren’s comment.
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of tilings, Rebecca and Cathy focused instead on the dlings themselves and the geometry of 

those tilings. After the first couple of arrangements, both of them stopped using the tiles 

and drew from their imagination; frequently, Cathy would look up and sketch a pattern in 

the air before she committed it to paper. It is interesting to note that Rebecca’s sketches of 

the tilings look almost art-like (Figure 3-3). Notably, neither Rebecca nor Cathy kept track 

of how many arrangements they made for a set of tiles until I prompted them to do so; and, 

when they did, they each kept their own table noting the same thing (Figure 3-4).
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Figure 3-4. Rebecca’s (left) and Cathy’s (right) tables

They were far less interested than Dan and Kerri were in the potential relationship between 

the number of tiles in a set and the number of arrangements that could be made. 

Interestingly, Rebecca does not view herself as very apt in mathematics, yet this self- 

employed woman was not only excited by the way in which symmetry could be used to 

determine if she had a complete set of tilings but also understood that it was a means of 

solving this problem.6

5 I am reminded here o f a comment that David Henderson (1996), a geometer, made about his own history 
with mathematics. “I have always loved geometry... but I did not realize that the geometry I loved was 
mathematics” (p. 27). A couple o f  times each year I too am reminded o f some people’s narrow conception
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O bserving  for Mathematical Thinking

To the observer watching these parents and children, it is obvious that they are 

unique individuals with distinct talents and skills; after all, each person has a different lived 

history—biologically, phenomenologically, and socially. Hence, it is not surprising that 

they came up with quite distinct solutions to the problem. On the other hand, some 

observers may note that they were given the same prompt and had very similar interactions 

with the researchers therefore, it is not surprising that both pairs solved the problem and 

had the same solution. In this section, I explore multiple interpretations of their activities 

and the mathematics knowing that was made evident in their actions.

When we consider Dan and Kerri’s and Rebecca and Cathy’s responses to the tiling 

prompt, we note that they engaged in quite different mathematics (Rebecca and Cathy— 

geometry and Dan and Kerri— function). How could this be the case if they shared a 

common environment and were given the same prompt and instruction? How do we 

explain the nature of their activity, their mathematics knowing? What is the role of the 

prompt and their interaction in their mathematics knowing? If their actions are different, 

then why is it that at least part of the “product” of these distinct actions is so similar?

The intent of presenting these two cases side by side and discussing them is not to 

evaluate and rate Dan and Kerri’s mathematical knowing with Rebecca and Cathy’s; rather, 

it is done to provide an opportunity to observe some of the features of mathematics 

knowing in action and to facilitate a discussion of various perspectives from which one can 

study mathematics knowing: information processing (Anderson, Reder and Simon, 1996a; 

1996b), representational constructivist (Spiro, et al., 1995), radical constructivist (Steffe,

1988), sociocultural (Wetstch and Toma, 1995); and interactionist (Bauersfeld, 1988, 

1995b).

o f mathematics when students come to my office to discuss their programs. After failing a required 
geometry course for the second time, a student came to me and tried to make a case for a program 
exemption by explaining, “I am good at mathematics, but I am not good at geometry.”
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D iffering Perspectives o f  M athem atics Cognition

The question of how we come to know and how we create knowledge is studied in 

a variety of disciplines: philosophy, cognitive psychology, linguistics, neuroscience and 

artificial intelligence. Today, these contribute to an interdisciplinary area of study called 

cognitive science (Varela et al., 1991). From my perspective, educational research about 

cognitive processes and the nature of cognition constitutes an applied cognitive science. It 

is taking the theories and results of studies from the interdisciplinary field of cognitive 

science and using them to inform the study of mathematics knowing in an educational 

context. Focusing my attention on this applied cognitive science, I distinguish between a 

number of theories of cognition that are common in the mathematics education research 

literature.

In this section, I discuss theories of cognition that inform mathematics education by 

interpreting the two cases presented above from these various perspectives. It is important 

to note that I am interested in theories as conceptual tools for observing people engaging in 

what I expect to be mathematical thinking. (I am assuming that each of the perspectives I 

introduce is suitable for such a task.) With this kind of analysis, it is easy to fall into the 

trap of pointing out what a theory cannot do rather than recognizing a theorist’s deliberate 

choice to do one thing rather than another, given his or her values and beliefs about the 

nature of knowledge and the purpose of mathematics education. Hence, things which I 

point out a theory cannot do may be better stated as that which it does not do. At the same 

time, when I point to these things, I am pointing to that which is important to me; thus, my 

pointing says as much about my beliefs and values as it does about (what may be 

interpreted as) deficiencies in the theories.

Information P rocessing Models o f Mind

One of the representationalist theories from cognitive science that has had a great 

deal of influence in cognitive science is Putnam’s “functionalism.” Putnam (1991) was one
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of the first philosophers in the 1960s to advance the “thesis that the computer is the right 

model for the mind” (pg. xi). In this view of mind, thinking is understood as “symbol 

manipulation according to rules.” From a strictly functionalist point of view, symbolic 

computation can be carried out by any device that can support and manipulate discrete 

functional elements. It follows that it doesn’t make any difference who or what is doing the 

thinking; providing the machine (human or otherwise) has the ‘right’ representation, it will 

be able to solve the problem (Putnam, 1995). In this view, thinking is analogous to 

running a program. If you want to understand cognition, you need to understand the 

program (Churchland, 1995, p. 22 - 23). This has been called the cognitive science of the 

disembodied mind (Lakoff and Johnson, 1999). Although Putnam himself has changed his 

mind and no longer understands thinking in functionalist terms, the computational 

metaphor he proposed some time ago continues to permeate cognitive science (see Bom,

1989) and is implicated in some educational research (Anderson et al., 1996a).

Functionalism is one of a number of theories (see also Fodor, 1995; Newell and 

Simon, 1971) that form a broad category known as “information processing” theories of 

cognition (Varela et al., 1991). From the information processing perspective, it is assumed 

that we can leam to teach humans better by studying computer models. This work involves 

trying to develop computer programs which can solve human problems of perception, 

pattern recognition and problem-solving (Dreyfus, 1989), and then taking what is learned 

from building the computer models to create learning tasks and instructional sequences that 

can be used with humans. These are theories “of the ways in which knowledge is 

represented internally, and the ways in which such internal representations are acquired” 

(Anderson, Reder and Simon, 1996b, http://act.psy.cmu.edu/personal/ja/misapplied.html, 

p. 12). Interestingly, the history of information-process models of mind indicate that, at 

first, human features of human intellect were ascribed to computers. They were said to 

“have memories”, “retrieve information”, and “solve problems” (von Foerster, 1981). 

Today, these human properties are understood in terms of what they mean for computers,
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and information-processing theories of mind take that understanding and apply it back to 

human knowing.

Computational models of mind understand cognition as the successful solution of a 

problem given to the system by the manipulation of symbols which represent features of an 

objective (or pre-given) world (Varela et al., 1991, p. 42-43). Fodor (1995) explains that 

the mind (because it is rational) must be a mechanism that has “representational capacities— 

mental states that represent states of the world—and that can operate on these mental states 

by virtue of its syntactical properties” (p. 8 8 ). Said differently, there exists information in 

the environment (mathematical knowledge in our case) which the individual (or device) is 

able to take in via sensory organs and process in the mind to generate a representation 

(symbolic structure), which is stored in memory to be accessed, retrieved, and, if 

necessary, modified, when a problem is encountered (Guilford, 1967) (Figure 3-5). 

Sawada (1991) suggests that the information-processing model is based on an input/output 

metaphor—a metaphor that is “deeply and tacitly embedded in the very texture of our 

language and culture” (p. 351).

Input 1 Perceived Processed Represented Stored

Problem involving 
Input 1

Retrieve stored 
representatbn

m k

P rocess Solution to 
problem

Figure 3-5. Input/Output Model of Problem Solving

Three assumptions of the computational view of mind are can be explored given our 

illustrative cases:

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  knowledge can be decomposed into units and their relations (Anderson, Reder and 

Simon, 1997)

•  it doesn’t make any difference who (or what) is doing the thinking; providing it has the 

“right” representation, it will be able to solve the problem (Putnam, 1995)

•  a one-to-one mapping between one individual’s mental states and another individual’s 

mental states is possible (Putnam, 1995).

E will discuss these points by going back to the two illustrations offered earlier in the 

chapter and thinking about the mathematics knowing that is observed in the actions of the 

( t w o  parent-child pairs from the perspective of the information-processing model.

Anderson et al. (1997) suggest that task analysis— reducing a problem down into 

i ts  units and relations—is one of the valuable contributions of an information-processing 

view  of mind to education. From this perspective, I as the teacher must understand the 

demands of the task environment and observe the student’s behaviour for departures from 

tlhe perfectly rational approach which an expert would use to solve the problem (Newell and 

Simon, 1971). Prior to observing Dan and Kerri and Rebecca and Cathy, I understood the 

tiling prompt as one that involves the relation between the number of tiles in a particular set 

an d  the number of tilings that were possible from that set. In fact, when I offered the 

prompt, I did so by showing that there was only one possibility with one tile, two 

possibilities with two tiles, and three possibilities with three tiles. I drew each of the 

possible arrangements on the board, and then I asked the participants to figure out how 

m any different arrangements were possible for any given number of tiles. The number 

pattern that should be found if the task is done correctly (as per my task analysis) is 

E,2,3,5,8,...an where the an = an., + a,,., (a Fibonacci sequence).

This task requires that the student is able to arrange the tiles in the appropriate way, 

find  various tilings and deduce if all the tiling patterns have been found. I anticipated that
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the student would do this for a number of sets of tiles and then, using the cases generated, 

generalize the pattern from the particular cases. Finally, the student would formalize the 

generalization by stating a mathematical relationship that predicts the anm term of the 

sequence.

An alternative task analysis is based on a deductive approach to the problem. Given 

the first three terms of the sequence, the student deduces there are only two possible 

“moves”— a single vertical tile and two horizontal tiles. Then the student can show that 

there are only two possibilities for generating the arrangements for 4 tiles. That is, take the 

set of arrangements for 3 tiles and add a vertical tile to the right of each tiling; this generates 

3 arrangements. Now to make the arrangements with the 2 horizontal tiles, you must take 

the arrangements for 2 tiles and add the 2 horizontal tiles to the right of each. The 3 tilings 

from the first set of moves and the 2  tilings from the second set of moves produces all 

possible arrangements. This can now be done for 4 + 1  tiles and then 5 + 1  tiles and so on. 

Of the dozens of people that I have seen do this problem, not one person initially solved it 

this way or through this form of reasoning (Figure 3-6).
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Figure 3-6. Deductive Explanation of the Growth in the Number of Tiling Patterns

Focusing first on Dan and Kerri’s work (Transcript 3-1, Figure 3-2), it can be seen 

that their thinking resembles what I expected from my task analysis. As I suggested by my 

example, they used the tiles to create patterns, took note of those patterns in a table, and 

then looked for a pattern among the patterns. From their table of values, they noted that 

each term was the sum of the two previous terms—they “found” the Fibonacci sequence. 

From their activity I make the following assessment: (1) my instructions were appropriate; 

(2) they recovered the needed data from the environment; (3) they had and used appropriate 

mental processes to solve this problem; and (4) they now had a mental representation for 

the Fibonacci sequence.

In contrast, an analysis of Rebecca and Cathy’s actions indicates a poor fit with my 

task analysis. Although both pairs listened to the same instructions and were given the 

same examples, these instructions were not as instructive for Rebecca and Cathy as they 

were for Dan and Kerri. Note that Rebecca and Cathy did not even focus on the functional
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features of the problem. They did not use the tiles to create multiple patterns, nor did they 

construct a table until they were explicitly asked to do so late in the session. For most of the 

session, their thinking about this tiling problem was geometrical; it focused on the 

symmetry and possible transformations of the arrangements rather than on the relationship 

between the number of tiles and the number of arrangements formed.

Proponents of an information-processing view would agree that there is more than 

one way to solve this problem (which I already knew). Hence, another task analysis based 

on Rebecca and Cathy’s geometrical strategy is needed. I concur, but I add that any 

“knowledge” of the task is only knowable once someone knows it. The knowledge is not 

inherent in the task. I was unable to come up with the task analysis for the geometrical 

strategy until I knew it. Hence, I did not consider it prior to observing Rebecca’s and 

Cathy’s actions. Therefore, I am caught in a bind. Of what value is a task analysis to direct 

the student’s learning when there exists more than one adequate way of solving a problem, 

and the person doing the task analysis neither knows all the ways in which the problem can 

be solved nor which students (given their existing representations) will favor a particular 

strategy?

Further, from an information processing perspective, I cannot account for the fact 

that Rebecca and Cathy were not focused on the problem that I intended to pose with my 

prompt. That is, I intended this to be a problem about the Fibonacci Sequence rather than a 

problem of the geometry of the tilings. This perspective assumes that recovery of features 

(data) in the environment is non-problematic (Dreyfus, 1989) and that the problem is in the 

environment (Searle, 1992). That is, given my instruction, examples, the tiles, and so on, 

one would expect the student to interact with the tiles, keep a record and then recover the 

patterns inherent in the tiles and the record by using the strategy I modeled to solve the 

problem. For Rececca and Cathy, the features of the data that were relevant for them 

involved the geometrical symmetry of the tilings rather than the sequential growth of the

number of tilings possible. They attended to the spatial rather than the numerical.
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Newell and Simon (1971) suggest that one way to deal with this problem in the task 

analysis when it is caused by the problem solver’s capabilities or inabilities is to redraw the 

boundaries of the task. The solution involves viewing the problem solver’s abilities as part 

of the task environment rather than as a property o f  the problem solver (p. 81). Their 

solution is not without its own problems. Newell and Simon suggest caution when using 

such a strategy.

We must exercise caution, however, in shifting the boundary between problem 
solver and environment. If we remove particular operators and classify them with 
the task environment, there is a danger that the problem solver will disappear 
entirely, and that there will be no room at all for a theory of him. For example, how 
shall we treat the problem solver’s capabilities and (and inabilities) for doing 
arithmetic? Is it a description of the problem solver that he can do mental 
multiplications at a certain speed in solving the problem? Or is this a specification of 
the environment (as we might want to regard it if there were a question of the 
availability of paper and pencil or desk calculators)? And how shall we treat the 
problem solver’s capacity for attempting goals? If we follow the path of assigning 
all means to the environment, there will be nothing left of the problem solver: he 
will do what he does because all that he is— being means— is specified by the 
environment.

These examples suggest that a suitable way to fix the boundary is to regard 
possibilities of actual physical actions as part o f the description of the environment, 
but to regard the information processing activities of the problem solver—the 
processes for searching through his internal problem space—as describing him. We 
must now consider more carefully whether such a strategy provides at least a usable 
and pragmatically tenable boundary between EPS [information processing system] 
and environment, (p. 81)

A disregard for the “body” has been one of the fundamental problems with the information- 

processing models of mind. The issue of embodiment is one of the persistent problems in 

artificial intelligence (Varela et al., 1991).

One of the strongest criticisms of informational-processing theories involves the 

issue of extracting meaning from the environment and is pronounced in the failures of early 

artificial intelligence to build machines that could recognize patterns and solve problems 

(Dreyfus, 1989; Putnam, 1989). Human beings (in context) specify (moment by moment) 

the problems that we observe them to solve. Dreyfus (1989) comments that “our sense of 

the situation we are in determines how we interpret things, what significance we place on 

the facts, and even what counts as facts for us at any given time” (p. 44). How does one
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determine in advance the features of the environment that will be selected by the cognizing 

agent? How does a teacher predict to what the student will attend or what the student will 

select? How does the teacher know what problem the student will define? Our body both 

places us in the world and faces the world (Merleau-Ponty, 1962).

I do not want to lose sight of the fact that eventually Rebecca and Cathy did come 

up with the Fibonnaci sequence. When they did not seek out the relationship between the 

number of tiles in a set and the number of tilings that could be produced, I explicitly asked 

them to do so. They quickly did what I asked. They compiled a table, noted the sequence 

and could predict the next term. A final question with respect to the information-processing 

view comes to mind. At this point, have Rebecca and Cathy acquired the same mental 

representation of the Fibonacci sequence as Dan and Kerri? That is, are there essential 

features of the situation that all four people must have extracted now that they are all able to 

predict a next term in the sequence or to explain how the sequence works? Given that they 

have come to this point from a very different route, I don't think their understanding of the 

sequence could be the same although it may share some features. It seems to me that it is 

unlikely that these four people share the same representation. Not only did the pairs come 

to the solution in very different ways but, individually, their histories are so distinct that 

even acting in a similar fashion like Rebecca and Cathy did is very unlikely to lead to the 

same representation. This observation is a serious problem for those with a computational 

view of mind (Dreyfus, 1995; Bruner, 1990). When human beings are provided with non­

trivial problems such as this one (and it is not nearly as complex as much of our daily 

experience, nor does its representation here capture its complexity), it is very difficult to 

predict the features to which they will attend—and if we could, such success is probably 

because we have simplified or trivialized the problem to such an extent that there is only 

one possible path (von Foerster, 1981). Such a problem is not very interesting for 

computer programmers let alone for educational and cognitive researchers.
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Finally, I want to point out that from the information-processing point of view there 

are things in the parents’ and children’s activity, for example, the creation of the word 

“blip-blip,” for which I am unable to account (Transcript 3-1, lines 52-58). Why did they 

create this term? How did it come about? What function did it serve? As far as I know, 

there are no computer models of cognition that account for the creation of ways of 

interacting with other computers. Computational theories do not address questions about 

the role of social interaction in the processing of information (Cicourel, 1995; Anderson et 

al., 1996a), nor do they ask questions about how culture is involved in shaping mind 

(Cicourel, 1995, Bruner, 1990). Further, information-processing models of mind tend to 

focus on solving a particular problem; hence, from these perspectives there is little to say 

about any diversions that the parents and children took up.

In summary, the information-processing or computational view of mind offers the 

educator notions of mental representations and task analysis. Both of these are useful when 

trying to understand a particular task and to plan for instruction. On the other hand, this 

perspective does not address issues of embodiment and lived history, intentionality, social 

interaction and cultural influence (Maturana and Varela, 1992, Dreyfus, 1995; Fodor, 

1995; Searle, 1992).

Representational Constructivism

One might argue that human knowing cannot be understood without taking into 

account who is doing the knowing, the way the person perceives the problem, and his or 

her intentionality. Such thinking is indicative of constructivism— albeit there are many 

forms of constructivism (see Steffe and Gale, 1995). Constructivism is based on the 

premise that knowledge is not passively received from the environment but actively built 

up. Knowledge is a matter of interpretive construction on the part of the knower. It is a 

process by which the subject’s experiential world is organized rather than a process by 

which an objective world is discovered (von Glasersfeld, 1995).
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From a constructivist perspective, I would argue that it is not surprising Rebecca 

and Cathy and Dan and Kerri came up with different responses; after all, they have 

different histories and know different things. Hence, their construction of the Fibonacci 

sequence is a process of integrating the experiences with the tiles into the cognitive 

schemata they already have by either accommodation or assimilation (Piaget, 1970/1971). 

Ernest (1995) observes that there are some theorists who operate on the principle that there 

exists objective knowledge which is actively built by the cognizing agent (for example, 

Spiro, Feltovich, Jacobson and Coulson, 1995). Such knowledge can be taught and 

evaluated in terms of the correspondence between the subject’s knowledge and the 

objective knowledge. In the case of our example, the Fibonacci sequence is the objective 

knowledge.

I distinguish a form of constructivism that views knowing as subjective but 

knowledge as objective. The educational task involves teaching that facilitates the students’ 

construction of pre-existing knowledge. This form of constructivism has been called trivial 

constructivism7 to signal the distinction between it and radical constructivism (Ernest, 

1995; Kilpatrick, 1987). Kieren (personal correspondence) believes that the use of the 

adjective trivial is unfortunate since the distinction between the two forms of constructivism 

is based on a distinction between representationalist and non-representationalist views of 

reality. Both forms of constructivism assert that “knowledge is not passively received either 

through the senses or by way of communication”; rather, “knowledge is actively built up 

by the cognizant subject” (von Glasersfeld, 1995, p. 51). However, only radical 

constructivists assert that “cognition serves the subject’s organization of the experiential 

world, not the discovery of an objective ontological reality” (p. 51). The labeling of a 

representationalist form of constructivism seems apt.

7 Ernest (1995) points out that there are multiple forms of trivial constructivism. Not all would correspond 
to the distinction I have made.
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Representational constructivism offers a more satisfying explanation of Rebecca 

and Cathy’s geometrical activity.8 From this point of view, both Dan and Kerri’s and 

Rebecca and Cathy’s actions and interactions are appropriate and fit with the constraints of 

the prompt. From a representational constructivist view, I am not surprised by alternative 

conceptions; however, as a teacher, I would be expected to provide experiences that would 

lead to the correct conception as I understood it.9

In the case of the tiling problem,10 I note my own behaviour as facilitator could be 

interpreted as fitting with representational constructivism. It is evident by my actions that I 

brought my understanding of the mathematics of the problem to the session. Seeing Dan 

and Kerri working on the problem as I expected, I left them free to pursue that path of 

thinking. In contrast, after observing Rebecca and Cathy work on the geometry of the 

problem for most of the session, I specifically requested that they look for a pattern that 

would help them predict how many tilings would be generated for a given set of tiles 

(Transcript 3-2, lines 45 - 83). I expected them to “construct” the Fibonacci Sequence, and 

I was confident that they would find this sequence once I offered an appropriate instruction 

or scaffold. As I intended, my prompt turned out to be a perturbation that resulted in 

Rebecca and Cathy constructing a table and finding the Fibonacci sequence—the “solution” 

to the “problem.” If one makes the assumption that knowledge is out there and must be 

perceived and internalized vis a vis some constructive process, then the observations 

developed thus far are adequate. However, if one denies that there are facts independent of 

a knower, then we are left with trying to account for the mathematics knowing that was 

observed in the two cases given.

8 The use of an emotion here is intentional. It points to the notion that one’s perspective on cognition and 
its nature is an emotional choice, not a rational one (Maturana, 1988). This will be discussed in more detail 
in chapter seven.
9 For the moment, I am not arguing that this is an inappropriate stance for teachers.
10 The use o f the word problem fits better than prompt with a representational perspective.
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Radical Constructivism

Students as constructors of knowledge has been a prevalent theme in mathematics 

education research since the 1980s (Steffe and Kieren, 1994); however, its radical form 

(von Glasersfeld, 1995), which challenges the view that cognition is representation and the 

underlying belief that reality is independent of personal interpretations, is not as widely 

embraced. Radical constructivists (Steffe, 1988; Confrey, 1990, 1993; Cobb, Wood and 

Yackel, 1990; Pirie and Kieren, 1992) give up an observer-independent account of reality. 

“[C]ognition serves the subject’s organization of the experiential world, not the discovery 

of an objective ontological reality” (von Glasersfeld, 1995, p. 51). Radical constructivism 

rejects a “picture theory of knowledge (that we are processing toward an increasingly 

accurate view of the ‘way things really are’)” and asserts that “to know something is to act 

on it, so that all knowledge consists of actions and reflection on those actions” (Confrey, 

1995c, p. 195). From a radical constructivist perspective, knowledge is not thought to be 

passively received either through perception or by way of communication; rather, 

knowledge is actively built up by the cognizing subject (von Glasersfeld, 1995). Further, 

the function of cognition is adaptive, in the biological sense of the term, tending towards fit 

or viability (Piaget, 1974/1980). Finally, cognition is understood to serve the subject’s 

organization of the experiential world, not the discovery of an objective ontological reality 

(Piaget, 1970/1971; von Glasersfeld, 1995). Piaget (1970/1971) concludes from his 

studies:

On the one hand, knowledge is never derived exclusively from sensation or 
perception but also from schemes of action or from operatory schemes of various 
levels, both irreducible to perception alone. On the other hand, perception itself 
does not consist in a mere recording of sensorial data but includes an active 
organization in which decisions and preinferences intervene and which is due to the 
influence on perception as such of this schematism of action or of operations (p. 
87).
Observing mathematics knowing from a radical constructivist perspective, one 

would not make a claim about knowledge (the mathematics of the situation per se) 

independent of a knowing agent because the knowledge does not exist independent of the
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knower. It is constructed in action and, as a result, is a phenomenon of the mind. Piaget 

(1970/1971) explains,

The logico-mathematical experience, on the other hand, consists in acting on 
objects, but with abstraction of knowledge based on action and no longer on objects 
themselves. In this case, action begins by conferring on objects characteristics they 
did not have (and which moreover retain their previous characteristics). In this 
sense, knowledge is abstracted from action as such and not from the physical 
characteristics of the object (p. 71).
Let us return to the two cases once again and consider them from a radical 

constructivist perspective. Kerri arranged the tiles with her fingers attentive to the fact that 

she was arranging them into patterns. At some point, once the set of tiles was all used up, 

she distinguished a pattern. Once she had done this, she and her father compared it to other 

arrangements she had already made which had been recorded with iconic representations on 

a sheet of paper placed in front of them (see Figure 3-2). The images committed to paper 

were then compared. This involved counting the arrangements for a set of tiles and keeping 

track of how many they generated for each set. Then Dan and Kerri compared the number 

of tilings for one set with the number of tilings for the next set.

From an objectivist perspective, one would argue that the pattern is given—it exists 

in the materials and the rules of the prompt independently of the Dan and Kerri whereas the 

radical constructivist would explain that the pattern is a construction of Dan and Kerri’s 

mental experiences that is viable given their experiences with the tiles and their previous 

knowing. The radical constructivist claim is that the pattern is not in the materials but is a 

mental experience. From this perspective, the subject’s experience and reflection of the 

experience is primary—not the thing in itself.

From a Piagetian perspective, the pattern is a construct not drawn from the external 

objects but one that arises from “internal logico-mathematical activity engendered by the 

coordination of the individual’s action. By serving as an assimilatory framework, then, 

these structures are added to the properties of the external object, but without being 

extracted from it” (Piaget, 1974/1980, p. 80). Von Glasersfeld (1995) elaborates, “[T]he
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sensory material in the agent’s perceptual field can supply clues as to the action required at 

a given po in t.... in the re-presentational mode, however, attention cannot focus on actual 

perceptual material and pick from it cues about what to do next, because the sensory 

material itself has to be generated. A re-presentation—at least when it is a spontaneous 

one—is wholly self-generated” (von Glasersfeld, 1995, p. 97).11

From a radical constructivist view it is neither surprising nor bothersome that, as an

observer, I distinguished very different mathematical activity between Dan and Kerri and

Rebecca and Cathy. This is expected. Von Glasersfeld (1995) writes:

knowledge does not mean knowledge of an experiencer-independent world. From 
this perspective [Piaget’s], cognitive structures—action schemes, concepts, rules, 
theories, and laws—are evaluated primarily by the criterion of success, and success 
must ultimately be understood in terms of the organism’s efforts to gain, maintain, 
and extend its internal equilibrium in the face of perturbations (p. 73 - 74).

On the other hand, the similarities in Dan and Kerri’s and Rebecca and Cathy’s actions 

might be explained as the result of coming to the session with similar schema and 

encountering common perturbations.

From a radical constructivist perspective, we note that the Fibonacci Sequence is 

not in the tiles and discovered rather each knower constructed the sequence for him or 

herself.12 Put simply, there is no privileged information (the Fibonacci sequence) in the 

tiles themselves to be assimilated into the parents’ and children’s cognitive structures, only 

energy-rich matter (tiles in 2:1 ratio and arranged tiles) with which the participants 

interacted. Through those interactions, the energy-rich matter was transformed and 

integrated into the participants’ structures, and pattern was imposed on the tiles (see Figure 

3-7).

11 This example also demonstrates a key cognitive mechanism described by Piaget called abstraction (see 
Von Glasersfeld, 1995). Piaget proposed that there are a variety o f forms o f abstraction. One is called 
empirical because it abstracts sensorimotor properties from experiential situations. The first of the three 
forms o f reflective abstraction projects and reorganizes, on another conceptual level, a coordination or 
pattern of the subject’s own activities or operations. The next is similar in that it also involves patterns o f  
activities or operations, but it includes the subject’s awareness o f what has been abstracted and is thus called 
reflected abstraction.
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Figure 3-7. Summary o f actions observed from a radical constructivist perspective
Historically, in mathematics education, the task of a number of radical constructivist

researchers has been to identify mechanisms which explain cognitive processes related to 

mathematical thinking and mathematics (Steffe, 1988; Confrey, 1993; Kieren and Pirie, 

1991; see also discussion in Steffe and Kieren, 1994). The activity of our two parent-child 

pairs might be observed and explained in these terms. For example, Dan and Kerri’s 

behaviour demonstrates function mechanism at work—one which enables them to construct 

the Fibonacci sequence from the table of values they created. With respect to Rebecca and 

Cathy’s actions, we might distinguish a symmetry mechanism; that is, a mechanism by 

which Rebecca at first and Cathy later used to check for and generate unique tilings based 

on the geometrical property of symmetry. Observing the parents and children working 

together in pairs does not change the interest of the radical constructivist. He or she 

continues to be focused on the individual’s cognitive mechanisms rather than the interaction 

between the two or the negotiated meaning, for example.

It is claimed that one of the problems with radical constructivism is that it has 

allowed the role of the environment to slip into the background and go unexamined 

(Kieren, 1995). However, another problem with constructivist research is that the unit of 

analysis has not been the student at all but, instead, the student’s cognitive schema. Some

12 Understanding it as the Fibonacci sequence is another act o f knowing, one that is related to having some
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researchers have suggested that the unit of analysis could (others say should) be the class 

(teacher and students) rather than the student or the student’s cognitive structures 

(Bauersfeld, 1995a; Driver, Asoko, Leach, Mortimer, Scott, 1994; Lerman, 1996). A 

change of perspective from the individual’s mental structures to a concern with the context 

in which learning takes place and the discursive practices that bring it about distinguishes 

sociocultural theories from constructivist theories (Davis, 1996).

Sociocultural Perspectives

Just as there are a variety of theories that might be grouped under the banner of 

information-processing and constructivism, so too are there a variety of sociocultural 

perspectives of the way knowledge is constructed/acquired (see discussion in Cobb and 

Bauersfeld, 1995a; Ernest, 1995). Unlike those theorists who view knowing as an 

individual phenomenon, sociocultural theorists view knowing as a social phenomenon, one 

that emerges from the interaction of individuals in a social group (Lerman, 1996; Werscht 

and Toma, 1995). In sociocultural research, “[m]ental functioning is assumed to be 

inherently situated with regard to cultural, historical and institutional contexts” (Wertsch 

and Toma, 1995, p. 159).

A number of sociocultural theorists trace their intellectual origins back to the work 

of Vygotsky13 (1934/1986, 1978). Their perspectives include the following: situated 

cognition (Lave and Wenger, 1991; Nunes, Schiemann and Carraher, 1993; Seely Brown, 

Collins and Duguid, 1989), interactionism (Bauersfeld, 1995a; 1995b) and social 

constructivism (Lerman, 1994; Ernest, 1991; Driver, Asoko, Leach, Mortimer, and Scott, 

1994; Driver, 1995). Vygotsky’s (1978) oft quoted passage suggests why proponents of 

sociocultural theories focus on the social plane to explain human knowing.

Every function in the child’s cultural development appears twice: first, on the social
level, and later, on the individual level; first between people (interpyschological),

prior experience to the cultural artifacts o f mathematics. This is further discussed in chapters six and seven.
13 Note that Vygotsky’s thinking might be viewed as a cultural artifact.
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and then inside the child (intrapyschological). This applies equally to voluntary 
attention, to logical memory, and to the formation of concepts. All the higher 
functions originate as actual relations between human individuals [emphasis 
original] (p. 57).

Wertsch and Toma (1995) suggest that Vygotsky’s claim is more radical than many realize.

It does not simply mean that mental functioning in the individual somehow emerges 
out of participation in social life. Instead it entails a redefinition of the very notion 
of a mental function.... A fundamental assumption [of most psychological 
theories]... is that, unless otherwise marked, terms such as cognition and memory 
automatically apply to the individual and individual alone. In contrast... Vygotsky’s 
formulation ... presupposes that mental function such as memory and thinking 
occur on both the intermental and intramental planes, (p. 162)
A second feature of Vygotsky’s theory that has been used to shape recent 

sociocultural theories of cognition is his notion that human mental functioning is mediated 

by tools and signs (with language playing a significant part) (Wertsch and Toma, 1995). In 

fact, he claims “that the kind of mental functioning that makes us human inherently 

involves the use of mediational means as well as the person (intramental functioning) or 

persons (intermental functioning) using them” (p. 163). This is an instrumental function of 

language (Bauersfeld, 1992). For our purposes, Vygotsky’s work on higher concept 

development and the acquisition of adult speech (language) is of particular relevance in 

mathematics education research (Vygotsky, 1978).

Social interactionism, another of the theoretical bases being used by mathematics 

educational researchers (Cobb and Bauersfeld, 1995a) uses Vygotsky’s work and 

Blumer’s (1969) symbolic interactionism (which is built on the work of George Mead). 

Social interactionism rests on three premises: (1) human beings act toward things on the 

basis of the meanings that the things have for them; (2) the meanings of such things is 

derived from or arises out of the social interaction that one has with one’s fellows; (3) these 

meanings are handled in and modified through an interpretative process used by the person 

in dealing with the things he encounters. (Blumer, 1969, p. 2).

Rather than discussing the many forms of sociocultural research into human 

knowing, I briefly describe a selection of research perspectives that are found in the
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mathematics education literature and comment on some of the features of those perspectives 

by doing yet another analysis and interpretation of the illustrative cases I have been 

developing.

Situated cognition involves the study of people (‘just plain folks’ as Lave and 

Wenger (1991) called them) in their day to day situations. In the case of adults this has 

included studying the way people leam and use mathematics in their employment and their 

business interactions (Lave and Wenger, 1991; Chaikin and Lave, 1993). In the case of 

children, this has included the study of children both inside and outside of the school 

situation (Nunes, Schiemann and Carraher, 1993; Saxe, 1995). Such research has 

observed that members of a particular culture participate in the activities of that culture first 

as “legitimate peripheral participants” (Lave, 1988) restricted to at first observing and later 

assisting. In doing so they acquire the cultural tools and skills of the group until they are 

skilled enough to participate fully (Lave and Wenger, 1991; Cole, Gay, Glick, Sharp, 

1971). Many of these studies have focused on the individual’s mathematical knowledge in 

the context of his or her activities outside of institutionalized schooling. For example, Saxe 

has explored the development of mathematical understandings linked to economic exchange 

in Brazilian child candy sellers. Nunes et al. studied what they call street mathematics of 

both children and adults. The common thread in these studies is that mathematics knowing 

is situated in the context in which it is developed and used and cannot be understood except 

in the context in which it emerges (Seely Bown, Collins and Duguid, 1989).

Other sociocultural theories study children’s mathematical understanding in school

where school is defined as the situation or context (Cobb and Bauersfeld, 1995b; Saxe,

1995). The work of Bauersfeld (1992; 1995a; 1995b) and his colleagues (Voigt, 1995;

Krummheuer, 1995) is notable. Using an interactionist perspective (c.f. Blumer, 1969),

they focus their attention not on the mathematical practices institutionalized by wider society

but on the classroom microculture and mathematical practices constituted by the teacher and

students in the course of their interactions (Cobb and Bauersfeld, 1995b, p. 9). From this
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view, “[s]tudents arrive at what they know about mathematics mainly through participating 

in the social practice in the classroom, rather than through discovering external structures 

existing independent of the students” (Bauersfeld, 1995a, p. 151). This work has resulted 

in better understandings of interaction patterns and the development of sociomathematical 

norms (Voigt, 1995) such as taken-as-shared understandings (Yackel and Cobb, 1996).

Yet other theorists and researchers study the relationship between what the 

individual knows and what is known in the culture in more general terms. These theorists 

offer explanations of the ways in which subjective knowledge becomes both objectified and 

a goal of school. The work of Ernest (1991; 1995) and Driver et al. (1994) provide two 

examples of theories that attempt to understand knowledge as both personal and social. 

Driver et al. (1994) comment:

[Ejven in relatively simple domains of science, the concepts used to describe and 
model the domain are not revealed in an obvious way by reading a ‘book of nature’. 
Rather, they are constructs that have been invented and imposed on phenomena in 
attempts to interpret and explain them, often as results of considerable intellectual 
struggles... Scientific knowledge as public knowledge is constructed and 
communicated through the culture and social institutions of science.... the view of 
scientific knowledge as socially constructed and validated has important 
implications for science education. It means that learning science involves being 
initiated into scientific ways of knowing, (p. 6)

Drawing on both this social view of the construction of knowledge and Piaget’s theory of 

individual knowing, Driver et al. conclude that learning science involves both “personal 

and social processes” (p. 8) and that “an important way in which novices are introduced to 

a community of knowledge is through discourse in the context of relevant tasks” (p. 9). 

With respect to mathematics, Ernest (1991) elaborates, with arguments similar to Driver’s, 

a social constructivist philosophy of mathematics. “A central thesis of social 

constructivism,” he claims, “is that the unique subjective meanings and theories constructed 

by individuals are developed to ‘fit’ the social and physical worlds” (p. 105) and then that 

knowledge is objectified in the mathematics community. He explains how subjective 

individual mathematics knowledge becomes objectified social knowledge.
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The social constructivist view is that objective knowledge of mathematics is social, 
and is not contained in tests or other recorded materials, nor in some ideal realm. 
Objective knowledge o f mathematics resides in the shared rules, conventions, 
understanding and meaning of the individual members of society, and in their 
interaction (and consequently, their social institutions). Thus objective knowledge 
of mathematics is continually recreated and renewed by the growth of subjective 
knowledge of mathematics in the minds of countless individuals, (p. 82)

For the social constructivists, the construction of knowledge requires social engagement in 

conversation and activity. “Making meaning is thus a dialogic process involving person-in- 

conversation, and learning is seen as a process by which individuals are introduced to a 

culture by more skilled members” (Driver et al., 1994, p. 7).

The work of Walkerdine (1990) and Gergen (1995), for example, suggests yet 

another sociocultural perspective. Both emphasize the role of language; hence, they are said 

to fit within a sociolinguistic tradition. “Language acquires both its social value and its 

meaning largely from the way it is used by people in specific contexts” (Gergen , 1995, p. 

35). From this perspective, the knower does not have (knowledge) but participates in it. 

‘Knowledgeable and rational statements are not external expressions of the internal mind, 

but are integers in the ongoing flow of communal interchange” (p. 33). Walkerdine 

explicitly identifies school mathematics as a discursive practice into which children are 

initiated. She argues that “the purpose of doing mathematics in school is to produce formal 

statements that do not signify anything beyond themselves” (c.f. Cobb and Bauersfeld, 

1995b, p. 6).

I do not claim to have exhausted the many distinct sociocultural theories of 

knowledge; however, I think from the ones offered, the features of these theories that are 

most prevalent are noted—in particular, the significance of cultural knowledge, social 

interaction and context. Also important for understanding mathematics knowing is the 

assumption that it is the adult who knows and who teaches the child. In other words, 

childhood involves initiation into the adult social practices of the community; thus, there is 

an explicit need for the child to be in interaction with adult members of the culture for this 

to be possible. The delimitations of my research (the study of parent-child pairs in an
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extracurricular mathematics program) and the particular cases I have used to illustrate the 

ideas in this chapter preclude me from interpreting the cases from all of the distinct 

sociocultural perspectives that I have introduced. I will, however, briefly consider a couple 

of key events in the cases to demonstrate the social nature of the knowing that emerged in 

the parent and child interactions and how the concepts developed from social constructivist 

theories might feature in interpretations and in explanations of these mathematical knowing 

events.

It is clear that I served as the adult (the expert) member of the community. That is, I 

offered the cultural artifacts (the prompts) and my understanding of the mathematical 

practices of the community to the parents and children (the novices). In almost all of the 

sessions, the prompts were novel to both parents and children; hence, the parent was not in 

an especially privileged position of “knowing” the mathematics of the particular situation. 

On the other hand, the parents have background knowledge that may have been relevant 

with respect to doing mathematics in general.

Vygotsky (1978) suggests that we analyse adult-child interaction to study the

child’s concept development and acquisition of cultural tools. An exchange between

Rebecca and Cathy provides a nice example. Recall, yet again, when Rebecca checked for

geometric reflections to see if she had all the possible images for the relevant tilings. Recall

that after interacting with her mom, Cathy also began looking for the reflections. This

action and her comment, “Hey I know. Look for mirror patterns,” is evidence of the impact

that the interactions between her mother and herself were having on Cathy’s thinking. The

mirror images strategy could be understood as a tool that mediates Cathy’s thinking, her

mother’s thinking, and the interaction between the two. Because the notion of mirror

images (reflections) could be understood as part of the mother’s cultural tool kit, one

might, after observing their behaviour, make a claim about Cathy acquiring or possibly

constructing this cultural tool. From a constructivist perspective, we are interested in

symmetry as a mechanism constructed by the child; from a sociocultural perspective, our
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interested is focused on symmetry as an important cultural tool or possibly a cultural artifact 

of mathematics. Note that features of both points of view can be used to comment on 

Rebecca and Cathy’s mathematics knowing. It appears Cathy does ‘appropriate’ the 

cultural artifact of symmetry offered by her mother in their interaction. Yet Cathy’s 

comment suggests that she has constructed a way of looking for patterns which she labels 

with her mother’s language.

In the case of Dan and Kerri, we note that the father leads and encourages his 

daughter. For example, although it is Kerri who says, “We should keep a table”, it is Dan 

who does so. It is he who not only keeps track of the actual tilings but also counts and 

checks to see that they have all the patterns for a set of tiles. He is not only modeling a very 

disciplined approach to working but, through these actions, the records are available to 

Kerri for her consideration. Not included in the transcript is a diversion where Dan and 

Kerri try to explain why the pattern is working in the way it is. This is Dan’s idea, and 

although Kerri could follow his logic, she did not initiate it. It seems to me that it is 

unlikely she would have come to this point on her ow n.14

From yet another sociocultural perspective, I might note that Dan and Kerri and 

Rebecca and Cathy had established ways of working together. Both parents encouraged 

their children to suggest what first should be done— in this case, each child offered a 

strategy that involved specializing. I might also note that both parents frequently deferred 

decision-making to their daughters. 15 What might this imply about the distribution or 

influence of power in their relationships? Are the decisions the children make serious or 

minor ones? Do these interaction patterns extended into other situations? These are 

questions that might interest socioculturalists, like Walkerdine, who focus on discursive

14 Vygotsky (1978) defines a zone o f proximal development; that is, the difference between what a child 
could do unassisted and what the child can do in the presence o f an adult or capable peer.
15 In a subsequent session, I observed Dan trying to direct Kerri away from a strategy that he appears to have 
viewed as inappropriate (this was my assessment o f her strategy). She refused even though he gently tried to 
persuade her a number o f times. Ultimately, he let her continue in a ‘wrong-headed’ direction.
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social practices. In my study, I am not addressing these questions directly, but I do 

acknowledge their significance.

I think it is evident that there are a number o f sociocultural theories from which we 

might analyse and interpret the interactions and mathematics knowing that emerged in the 

parent-child sessions. The sociocultural perspectives described give us lenses different 

from information-processing lenses, representational constructivist ones and radical 

constructivist ones.

Many Theories, Many Interpretations

Looking back over the various perspectives from which we can analyse the 

mathematics knowing of the parent-child pairs in this study, each perspective provides a 

particular view, emphasizes certain things and, at the same time, allows yet other features 

to slip into the background. The radical constructivists (von Glasersfeld, 1995; Steffe, 

1990; Kieren and Pirie, 1992; Pirie and Kieren, 1994) have a history of investigating and 

explaining cognition as a function of an individual’s mental structures and mechanisms. 

The sociocultural cognitivists (Lerman, 1996; Chaiklin and Lave, 1993) point to the 

primacy of social interaction and cultural context for cognition. Cobb (1994) describes the 

polarization between the constructivist and the sociocultural trends:

Two major trends can be identified in mathematics education research during the 
past decade. The first is the generally accepted view that students actively construct 
their mathematical ways of knowing as they strive to be effective by restoring 
coherence to the world of their personal experience.... [This] can be contrasted with 
a second trend that emphasizes the socially and culturally situated nature of 
mathematical activity, (p. 13)

Among the theories I reviewed, the distinctions are not simply between focusing on 

the social or focusing on the individual but, in a number of cases, a more fundamental 

division exists; that is, a distinction between how the theorists view reality and, 

consequently, the nature of the explanations that they make. There is, as I observe it, a
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distinction between representationalist and non-representationalist explanations of reality, 

knowledge and knowing.

Viewing Reality

Maturana (1988) suggests that there are two possible views of reality that can be 

taken when one develops an explanation. He calls these stances ‘objectivity-without- 

parentheses’ and ‘objectivity-with-parentheses’. Those theories of cognition that I have 

classified as representationalist involve explanations that assume objectivity-without- 

parentheses or a transcendental reality. Such theories suggest that objects exist 

independently of the cognizing person regardless of whether or not a person can know 

about those objects through perception or reason (Maturana, 1988, p. 28-29). These 

theories are based on the assumption that there exists an objective and independent reality 

which can be constructed and represented in the mind in such a way there is a 

correspondence between that pre-given reality and the individual’s mental state. Although 

this assumption is rarely stated explicitly (hence, it is an assumption), Von Glasersfeld 

(1995) comments it is a persistent view of knowledge in Western thought.

For some 2500 years the western world has manifested an overwhelming tendency 
to think of knowledge as the representation of a world outside and independent of 
the knower. The representation was supposed to reflect at least part of the world’s 
structure and the principles according to which it works. Although the picture might 
not yet be quite perfect, it was thought to be perfectible in principle, (p. 113)
We note from an objectivity-without-parentheses perspective that the Fibonacci 

Sequence exists in the tilings independently of the patterning and generalizing in which the 

parents, children, and the researcher engaged. In contrast, in the path of objectivity-with- 

parentheses, existence of the object is constituted with what the person does. The person 

“brings forth the object that he or she distinguishes in a recursive act of distinguishing 

distinctions of distinctions in language” (Maturana, 1988, p. 30). Hence, from this path, I 

note that Dan and Kerri’s and Rebecca and Cathy’s actions with the tile arrangements 

progressed from manipulating the tiles, to distinguishing a set of patterns for a given
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number of tiles, to a generalization about the number of possible tilings for any given set of 

tiles, to an explanation of h-ow the pattern worked. In this view, the Fibonacci sequence 

was brought forth (from this; observer’s observations) by perceptually guided action and in 

social intercourse in language (Figure 3-8).161 believe this to be a subtle point but one that 

is fundamental to understanding the enactivist perspective. I will develop an argument to 

clarify my point.

“one, one, blip-blip, one, one”

11= II
“com m a”

11 =  11,

Figure 3-8. Pattern with tiles, uttered in language, and noted pictorially

16 Maturana (1988, 1998) calls thris languaging and explains it as such:
Language is a manner o ff living together in a flow o f consensual coordination o f  coordinations o f  
consensual behaviors, a n d  it is as such a domain o f coordinations o f coordinations o f doings. So, 
all that we human beings do we do it in language; the different worlds that we live arise as 
manners o f coordination o f our doings in language; the different domains o f doings that we live as 
different kinds of hum an activities, be those in concrete or abstract, manipulative or imagined, 
practical or theoretical, ooccur as the domains of consensual coordinations o f coordinations of 
doings in the different doomains o f doing that arise in our living in language. So languaging is our 
manner of existence as hiuman beings (Maturana, 1998 http://www.inteco.articulos/metadesign- 
partel.html).
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If we take a transcendental path of objectivity, then, we should be able to identify 

where precisely the Fibonacci Sequence is located or what precisely it is, and both of these 

will be independent of a human agent (be it observer or actor). The word ‘Fibonacci’ is 

clearly a human construction; thus, I will back up and call it simply a sequence. However, 

a sequence is a label in human language used to refer to a particular kind of pattern, of 

numbers in this case. Labels are human constructs. To avoid this problem with the human 

label, let us refer to the number pattern that was identified as ‘it’ and agree that ‘it’ refers to 

the number pattern prior to its labeling. Now I might ask, ‘T o what extent is ‘it’ 

independent of the human observer?” To find a number pattern requires a human agent so 

let us move one step prior to the number pattern to the numbers and suggest that the pattern 

is in the numbers. However, the numbers are nothing more than labels (a languaging act) to 

denote how many tilings were generated for particular sets of tiles, and labeling has already 

been marked as a human action. We are caught in a loop or infinite regress. From one 

perspective, this loop is at the level of making a distinction in language, so the way out is to 

move away from languaging.

Let us move away from the set of observations that are about language and 

languaging to the level of sensorimotor actions. The task posed to the participants included 

the question, “How many patterns can one make with a set of n tiles?” n tiles are just that— 

some number of tiles in a pile with no order. Kerri put order to those tiles through 

manipulating them with her fingers until such a point that she realized (made real) 

something that satisfied the constraints of the prompt. She made all of the arrangements, 

her dad recorded them on the paper, and together they counted them. Then they compared 

the results from one set of tiles to the others. Even beginning from sensorimotor activities, 

clearly ‘it’ is not independent of human action, and if we admit that the task itself is a social 

one, hence, not independent of the human beings, then there is no level at which I can 

observe ‘it’ to exist independently of human action. The Fibonacci Sequence does not exist 

independently of human action; thus, a path of objectivity-without-parentheses cannot
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account for ‘it’ even if one says that the pattern at which one eventually arrived matches a 

pre-given physical reality that there is to match. Suppose, instead, that one says the prompt 

and the patterns are pre-given by the teacher and form an external reality in that sense. It 

seems that the differences in actions, thoughts, and explanations between pairs counter any 

such claim.

In the previous example, it is tempting to make the objectivity-without-parentheses 

claim that the sequence is there to be discovered rather than brought forth in the actions of 

humans; after all, the Fibonacci Sequence is a well-known result. However, this is not so 

obvious if we think about the ‘blip-blip’ that Dan and Kerri brought forth in their actions. 

This word first arose when Dan drew two marks to represent a pair of horizontal tiles and 

uttered, “Blip, blip.” Blip-blip was then assigned meaning (a pointing function) when Dan 

and Kerri explicitly discussed and decided that this word would be used to denote a pair of 

horizontal tiles. How might we think about the emergence of the blip-blipsl Was it a social 

construction that was first intermental (that is between people on the social plane) and then 

transformed to become intramental (internal knowing for each person) for both Dan and 

Kerri as a Vygotskian perspective might suggest? Does it exist independently of Dan and 

Kerri?

A tiled path is observed to consist of horizontal and vertical tiles where the 

horizontal tiles need always be placed in groups of two to satisfy the restraints of the 

prompt. Dan and Kerri’s actions must satisfy the conditions of the prompt, but even those 

are part of the interactive domain among participants in the session. Blip-blip is Dan and 

Kerri’s invention; it co-emerged with their activity and satisfied a need that they had—a 

more efficient way of communicating with each other because of their highly interactive 

approach to the task. Blip-blip is a label which was created in the social interaction between 

this parent and child and thus, is social; but it is not a cultural convention that the more 

knowing participant introduced to the less knowing participant—a common focus of social
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constructivism.17 Clearly, blip-blip is an object that was brought forth in Dan and Kerri’s 

interaction; thus, it is difficult to understand it as part of a transcendental objective reality. 

On the other hand, blip-blip did not arise on the social plane from nothing. Dan uttered it as 

he made two strokes of his pencil. In the subsequent instant, Dan expressed a need for a 

label; Kerri, having heard this utterance, uttered it back; and a label (object) was created— 

an illustration of objectivity-with-parentheses. Maturana calls this inter-objectivity to 

suggest that we observe objects arise in the interaction among humans.

Vygotsky (1978), in contrast, suggests that knowledge exists first on the social 

plane (intermentally) and then that which is external is internalized and becomes 

intramental. This is not an adequate explanation of what I observed to be knowing on both 

the inter- and intramental planes at once. An en.activist interpretation involves the notion of 

co-emergence (Kieren, 1994) or codependent arising (Varela et al., 1991). The utterance 

Dan made was at once intermental and intramental. Intermental in that Dan uttered it and in 

doing so it became energy-rich matter in the sphere of possibilities from which Kerri could 

select and integrate into her own structure. Its dual nature is evident by noting that Dan and 

Kerri worked for a few minutes using the word communicatively, thus demonstrating a 

taken-as-shared meaning (Yackel, 1995) for blip-blip. This is its social nature. However, 

the taken-as-shared meaning broke down when Dan, reading the pattern [==] back to 

Kerri, said, “Four blips". (This is not in the transcript.) Kerri immediately respondedto his 

utterance with, “No. Blip-blip, blip-blip.” I interpret their actions as indicating she saw a 

blip-blip as an unit whereas Dan was using the term to mean two horizontal tiles. If blip- 

blip existed only on the social plane, we wouLd not have seen Kerri make the distinction 

she did. An enactivist explanation observes the social and personal knowing (inter- and 

intramental) as co-emergent. Blip-blip is not a bit of knowledge in the social plane to be 

acquired or even reconstructed on a mental plane; rather, it is part of an act of knowing that

17 Vygotsky’s work was focused on adult-child interactions in which the adult has the social or cultural 
knowledge that is to be passed on or constructed by the child.
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was brought forth in the actions and interactions of Dan and Kerri within a set of 

environmental constraints.

From a path of objectivity-without-parentheses or representationist perspectives, 

there appears to be confusion about knowledge and information. Von Forester (1981) 

claims, “It has become matter of fact to confuse process with substance, relations with 

predicates, and quality with quantity” (p. 193). In particular, “information” and 

“knowledge” are “persistently taken as commodities, that is as substance” rather than 

process (p. 193). He explains:

Information is, of course, the process by which knowledge is acquired, and 
knowledge is the processes that integrate past and present experiences to form new 
activities, either as nervous activity internally perceived as thought and will, or 
externally perceivable as speech and movements. Neither of these processes can be 
“passed on” as we are told in phrases like “...Universities are depositories of 
Knowledge which is passed on from generation to generation”... for your nervous 
activity is just your nervous activity and, alas, not mine. (p. 193 - 194)

Instead of asking how can we get x (some knowledge of some object in the environment) 

into y (some learner), we might instead ask, “What is the relationship between x and y (the 

person and the environment) and, how is that person able to select from the energy rich 

environment and transform it into his or her own structure for his or her own use?”

A distinction between observer independent and observer dependent views of

knowledge is an important one to be made when researching human cognition. If there is

objective knowledge, then it follows that there is something for the students to acquire.

This easily leads to the notion of transmission of knowledge rather than the construction of

knowledge. Recall my insistence that Rebecca and Cathy make a table and look for a

pattern. My actions are part of a discursive practice which children experience early in their

schooling. Within such discursive practices it is clear to everyone that there is something to

be obtained—the Fibonacci Sequence in this case. Again, we need only look at the

activities of the two parent-child pairs in our illustrative case to understand why these

discursive practices are detrimental in that they alter and constrain mathematics knowing.

When I act as though what is known (in this case the Fibonacci Sequence) exists
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independently of the actions of the knowers (Dan and Kerri and Rebecca and Cathy), then I 

am treating the knowers as “trivial machines” (von Foerster, 1981)— ones in which the 

input (tilings, instructions or some other ‘pre-given’) will produce similar output in these 

people independent of their context and their histories.18 Humans are not trivial machines 

precisely because they operate in light of their histories. 19 Their actions are not invariant 

(from event to event), nor are they caused by the environment; rather, they are co­

determined by the person’s (ever changing) structure and the energy-rich environment from 

which they select and integrate into their structures (von Foerster, 1981). This is the 

principle of structure determinism20 (Maturana and Varela, 1992) which is a key 

explanation in an enactivist theory of cognition.

In this section, I discussed the development of Dan and Kerri’s blip-blip and 

commented on how Vygotskian or social constructivist perspective do not address the co- 

emergent features of human knowing. Now, I would like to comment on some problems 

with a purely radical constructivist account. From my readings, I suggest the radical 

constructivist account allows the social features of the knowing to slip into the background. 

This leads to a serious omission in terms of understanding the reflexive relationship 

between knowing on the social plane and the implications of such knowing. That is, 

experience not only contributes to the person’s knowing, but it changes one’s personal 

sphere of behavioural possibilities at the same time as it potentially changes the spheres of 

possibilities of others. If  we assume that mathematics knowing arises in interaction 

between a person and his or her environment, then we must acknowledge the implications 

this has for others (because they are a significant part of the environment). With the 

illustrative cases, it simply is not possible to account for the creation of blip-blip except by

18 None o f the perspectives I have mentioned in this chapter would be satisfied with such a treatment, yet it 
is easy to find educational practices which promote this view o f the human learner.
19 The machine metaphor for the human body has been common in medicine for centuries. As I have already 
discussed, the human mind as a information-processing machine is a metaphor that has arisen with the 
emergence of computers (see discussion in von Foerster, 1981).
20 Structure determinism is elaborated in the next chapter.
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studying both the individual knowing and the knowing in the interaction between parent 

and child. Varela (1992) comes to a similar conclusion that “cognition cannot be properly 

understood without common sense, and this is none other that our bodily and social 

history, the inevitable conclusion is that knower and known, subject and object, stand in 

relation to each other as mutual specification: they arise together” (p. 253)

Enactivism is a theory of cognition which studies the social and individual features 

of knowing in action within a non-objectivist perspective. Thus, enactivism precludes 

neither neo-Piagetian theories nor neo-Vygotskian theories; however, by taking seriously 

the claim that knowing is at once both social and personal, different explanations and 

mechanisms may be generated that could not have been from simply adding the two 

theories together. This is why Cobb’s (1994) suggestion to bridge these two perspectives 

by offering joint interpretation which includes both radical and social constructivist views 

of the mathematics understanding will not result in an adequate theory of knowing. Such an 

additive approach may enlarge our understanding of mathematics understanding, but it 

cannot transform our understanding because it does not offer conceptual tools to help us 

understand the phenomenon differently. Although this additive approach might be thought 

of as bridging the radical and social constructivist theories of mathematics knowing, I do 

not think this would satisfy calls for more inclusive and comprehensive theories of 

mathematics knowing.

Lerman (1996) makes an important observation when he argues that the two 

perspectives cannot be merged because they are different in kind; that is, “Vygotsky’s and 

Piaget’s programs have fundamentally different orientations, the former placing the social 

life as primary and the latter placing the individual as primary” (p. 133). These different 

orientations lead to distinct views of the source of meaning. “The difference is encapsulated 

in their identification of the source of meaning, the one identifying the cognizing individual 

(Piaget’s view) and the other cultural and discursive practices” (p. 147).
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Maturana (1988) makes a point that Lerman fails to recognize (however, one that 

Vygotsky makes and then lets slip into the background); that is, human beings are first and 

foremost biological beings. It is because: of our biology that we are social beings.21 

Confrey (1995b) has suggested that we should draw on the complementary features of 

Piaget’s and Vygotsky’s theories of intellectual development to forge a revised theory (p. 

44). As I asserted, simply adding the tw o  theories together by joint interpretation is 

inadequate. Such an approach will not address points I have raised through my illustrative 

examples. Neither will it address some o f  the key issues that Confrey has pointed out 

which have been largely overlooked by current studies of intellectual development in the 

context of mathematics education: 1) Hum an development depends on the environment; 2) 

The self is both autonomous and communal; 3) Emotional intelligence is acknowledged; 4) 

Diversity and dissent are anticipated; 5) Abstraction is reconceptualized and placed in a 

dialectic; 6) Learning is viewed as reciprocal activity; 7) Classrooms are studied as 

interactions among interactions (Confrey l ‘995b, p. 36).

Rather than merging or bridging these two perspectives, the premise of my work is 

that new theoretical underpinnings are needed. Those thfcuietical underpinnings can be 

found in complexity theory22 (Gliek, 1987), biology (Lewontin, 1991; Maturana, 1980, 

1988, 1991), second-order cybernetics (von Foerster, 1981), cognitive linguistics (Lakoff, 

1987) and enactivism (Varela et al., 1991).

Cognition is a complex phenomenon. It is dynamic; anything of interest may be 

noted in the instant but is unrecoverable after it has occurred. This is not to say that it is 

haphazard, but it cannot be predicted in th e  sense of a prior event causing a proceeding

21 In Maturana and Varela’s (1991) theory o f cognition, we find a complete and biological explanation for 
social behavior (language included).
22 Recent work in chaos theory (Kellert, 1993; Prigogine and Stengers, 1984) and complexity theory 
(Cohen and Stewart, 1994; Stewart and Cohen, 199*7; Kauffman, 1995; Waldrop, 1992) makes a distinction 
between complicated systems, which can be understood in terms o f their parts and the casual relationship 
among the parts and complex systems which are b est  understood holistically (Cohen cited in Waldrop,
1992) or contextually (Stewart and Cohen, 1997) and  in action (Kellert, 1993; Varela et al., 1991). As
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event. Of particular significance is that cognition cannot be reduced to the sum of its parts. 

Thus, our understanding of mathematics knowing and how to prompt or trigger 

mathematics knowing cannot be understood by considering only those studies that attempt 

to control and factor out variables in order to deal with the complexity of the teaching 

and/or learning processes. Also problematic is that much of the research in mathematics 

education implicitly assumes that cognition is problem solving, and the criteria for 

mathematical understanding is the successful representation of an external world, which is 

pre-given, usually as a problem-solving situation. Varela (1992) argues that such an 

assumption is incomplete. He suggests that “precisely the greatest ability of all living 

cognition is to pose, within broad limits, relevant issues to be addressed at each moment of 

our life. They are not pre-given but enacted or brought forth from a background” (p. 250). 

Because cognition is a process for which “the relevant issues that need to be addressed at 

each moment are posed and enacted from a background of action” (Varela et al., 1991), we 

need to consider the individual, the environment, and the interaction between the two in our 

attempts to understand human understanding.

Cicourel (1995), a cognitive sociologist strongly influenced by psychology, 

comments, “When you take for granted culture and the way it is reflected in a local social 

ecology, you eliminate the contexts within which the development of human reasoning 

occurs” (p. 50-51). In mathematics education, researchers such as Kieren (1999), Confrey, 

(1995b; 1999a) and Cobb (1994) challenge us to pay attention to both that which we allow 

to fade into the background and that which has for so long has gone, if not unnoticed, then 

certainly unmentioned.

Enactivism, the alternative proposed and elaborated on throughout this dissertation, 

has been called a way in the middle (Varela et al., 1991; Kieren, 1995; Davis, 1996) 

because it demands a move away from understanding various phenomena as either one

Poincare (see Klien, 1985) noted 100 years ago, dynamical systems can be understood if we consider their 
phase space.
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thing or another (individual/social, mental/physical) to understanding them as mutually 

specified or codependent. Enactivism understands human lived experience of the world as a 

phenomenon of world-and-mind where mind and world co-emerge out of the interactions 

of humans (Varela et al., 1991; Kieren, Gordon Calvert, Reid, Simmt, 1995; Davis,

1996). In the next chapter, I develop enactivism as an explanatory proposition for human 

cognition in the particular case of doing mathematics and engaging in the mathematical.
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Chapter Four 

ENACTIVISM: AWAY IN THE MIDDLE

All knowing is incomplete, Tom Kieren (personal correspondence, 1998) claims—  

incomplete in at least two ways. (I call this Kieren’s incompleteness theorem.) In the first 

place, knowing is incomplete in that as humans who live in language we exist in a 

multiverse (not a universe) whereby each act of knowing brings forth a world of 

significance—one world of the multiverse. Therefore, each act of knowing is incomplete in 

the many other worlds in which it is not yet (and likely never will be) realized (made real in 

an act of knowing). For Kieren this has two immediate consequences. A notion of 

multiversal incompleteness prompts humility and openness to other world views, and it 

promotes a research method of re-tuming to and re-searching the artifacts of our research 

seeking different aspects or layers of mathematics knowing in action. The second way in 

which act of knowing is incomplete is in the moment of knowing further acts of cognition 

are made possible. Kieren refers to this as “occasionally” incomplete; that is, every 

cognitive act occasions further knowing. To elaborate, each act of knowing brings forth a 

world of significance and in doing so expands the sphere o f behavioural possibilities in 

which the knower exists. This makes possible new acts of cognition. Methodologically, 

this is a second reason why returning to the research artifacts is useful; because the 

researcher is changed, new possibilities for understanding arise. Paradoxically, in as much 

as each act of knowing is incomplete, each act of knowing is fully complete in the first 

order domain of experience, i.e., in the temporal moment of the experience. “Moment by 

moment new experiences happen and are gone” (Varela, Thompson and Rosch, 1991). An 

act of knowing is necessarily complete, if from moment to moment we continue living.

I would like to invoke ‘Kieren’s incompleteness theorem’ in thinking about my 

own acts of cognition with respect to trying to understand mathematical knowing. In
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chapter three, I offered two vignettes of people engaged in mathematical activity. In those 

vignettes, we saw a father and his daughter and a girl and her mother engage in actions and 

interactions which many researchers would agree are mathematical, even though the 

explanations of the mathematics knowing offered by various theorists might differ. 

Theorists, whose explanations suggest computational views of mind, propose that 

knowing involves taking information from the environment and processing it to create 

mental representations which match a pre-existing reality. In representational forms of 

constructivism, knowing is thought to involve assimilating and accommodating 

environmental stimuli into existing and newly constructed schemata and structures. Such a 

view suggests that the knowing of the child becomes more like that of those people who 

know or more closely match features of or objects in the environment. Radical 

constructivism suggests that, through experience in an environment, schemata and 

structures are constructed in such a way that they fit the personally constructed constraints 

of the environment rather than match features of it or objects in it. That is, the person acts 

to maintain the coherence of his or her thinking in the face of experience. The socio-cultural 

theorists explain that knowledge is constructed first on the social plane (or in social 

interaction), and then knowledge is internalized by the individual. Yet others, like the 

critical theorists, view coming to know as enculturation into the discursive practices of 

society. As I suggested in chapter three, each of these theories can be used to interpret the 

vignettes of the two parent-child pairs in order to come to an understanding of mathematics 

knowing and mathematical actions. The multiple interpretations in the previous chapter are 

an example of the first part of Kieren’s incompleteness theorem. That is, the particular 

community (mathematics education research), in which the those interpretations are 

offered, has criteria which must be met by the interpretations offered within it; but, these 

same interpretations may not address all the criteria required by other communities, since 

the interpretations were not offered with any other community in mind.
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Studying the actions and interactions of the two parent-child pairs from these varied 

perspectives and studying enactivism (a theory of cognition), expands my cognitive domain 

and occasions further knowing acts (Kieren’s incompleteness theorem part 2). Therefore, I 

return to the vignettes from yet another perspective and ask how might we think about 

Dan’s and Kerri’s and Rebecca’s and Cathy’s mathematics knowing if we understand 

knowing as a co-emergent phenomenon; that is, something which co-dependently arises 

with the embodied actions of these people in their environments.

In this chapter, I elaborate on notions central to enactivism. In doing so, I propose 

that enactivism offers a perspective from which we might observe mathematics knowing in 

action and interaction. The discussion involves a distinction of the person in interaction 

with his or her environment, and the ways in which a world of significance including 

mathematics is brought forth in that interaction. I use the two illustrative cases developed in 

the previous chapter to explicate the explanatory proposition for cognition, articulated in the 

work of Maturana and Varela (1992) and Varela et al. (1991), which has become known as 

enactivism.

A Theory of Human Knowing

Enactivism, as interpreted in education, is related to radical constructivism (see von 

Glasersfeld, 1995; Steffe and Kieren, 1994), in that it examines the embodied structural 

dynamics of individuals, and is related to social constructivism (Ernest, 1995), in that it 

explores the ways in which knowing is a social act. It differs from both forms of 

constructivism in its emphasis on co-determination; that is, knowing is, at once, 

structurally determined and environmentally constrained (Varela, 1992, p. 254). Further, 

enactivism explicidy rejects representational views of knowing that are assumed in 

cognitivist and other information-processing models of the mind. Observations made from 

an enactivist perspective are explained as belonging in the domain of the observer, and 

hence, reflect a view of constructed realities (or objectivity-in-parentheses). Enactivism is
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similar to interactionism, the perspective promoted by the research of Bauersfeld and his 

colleagues in the mathematics education community (see Bauersfeld and Cobb, 1995a), in 

that both perspectives explain knowing as a phenomenon which arises when people interact 

with each other and emergent cultural artifacts. Enactivism differs from the constructivist 

perspectives in that rather than focusing on “constructions” and “constructive” 

mechanisms, we turn our attention to knowing as it is enacted and the knower/known 

relationship that is brought forth in acts of knowing.

From an enactivist perspective, mathematical cognition is not merely a property of 

the individual nor is it simply a product of environmental influence; instead, it is a 

phenomenon which co-emerges in the interaction between the two (Varela et al., 1991; 

Davis, Sumara and Kieren, 1996). According to Varela et al., cognition is neither the 

recovery of a pre-given world nor is it the projection of a pre-given inner world. Both of 

these positions are based on representationalist views of mind. Rather, the world and 

perceiver specify one another, i.e., co-emerge (p. 182). When an observer points to the 

person in an environment, the person is noted in a temporal relation which is distinguished 

by the observer and not a pre-existing reality.

In enactivist explanations of cognition, it is assumed that cognition is not simply a 

process by which representations of facts or objects from the environment are stored in our 

head. Rather, enactivism explains human knowing as enaction or embodied action, 

whereby a world of significance is brought forth in our doings. “The experience of 

anything out there is validated in a special way by the human structure, which makes 

possible ‘the thing’ that arises in the description” (Maturana and Varela, 1992, p. 26). 

Cognition is embodied action which brings forth a world of significance.

Varela et al. (1991) use the notion of embodiment as Merleau-Ponty (1962) does, 

where the body is understood as both a lived, experiential structure and the context of or 

milieu of cognitive mechanisms (pg. 238). “[W]e are in the world through our body, and in
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so far as we perceive the world with our body” (Merleau-Ponty, 1962, p. 206). 

Embodiment, Lakoff and Johnson (1999) assert, is a feature of human knowing that has 

been repeatedly demonstrated by cognitive science yet continuously denied in “mainstream 

Western philosophy” where “human reason and human concepts are mind-, brain-, and 

body-free and characterize objective, external reality” (pg. 22). Lakoff and Johnson argue 

that:

Reason is not disembodied, as the tradition has largely held, but arises from the 
nature of our brains, bodies, and bodily experience. This is not just the innocuous 
and obvious claim that we need a body to reason; rather, it is the striking claim that 
the very structure of reason itself comes from the details of our embodiment. The 
same neural and cognitive mechanisms that allow us to perceive and move around 
also create our conceptual systems and modes of reason, (pg. 4)

The enactivist perspective explicitly embraces the notion that human knowing is a fully

embodied phenomenon, and describes cognition as perceptually guided action in which a

world of significance is brought forth. In other words, perception is not the grasping of an

external reality, but rather, the specification of one (Maturana and Varela, 1981, p. xv) in

the actions and interactions of our bodies (Merleau-Ponty, 1962). Zaner (1983) reminds us

that Merleau-Ponty understood our bodies as our general means of having a world.

[T]o be embodied, and thus to be sensuously perceptive of objects, and to be able 
to act on them, is to belong the world in the sense of being engaged in a body 
which places me at things themselves, with no intermediation, no ‘representatives’ 
or ‘representations’ of them (p. 183).

Varela, Thompson and Rosch (1991) elaborate on what they mean by embodied action.

By using the term embodied we mean to highlight two points: first, that cognition 
depends on the kinds of experience that comes from having a body with various 
sensorimotor capacities, and second, that these individual sensorimotor capacities 
are themselves embedded in a more encompassing biological, psychological and 
cultural context. By using the term action we mean to emphasize once again that 
sensory and motor process, perception and action are fundamentally inseparable in 
lived cognition. Indeed, the two are not merely contingently linked in individuals; 
they have also evolved together, (p. 173) [emphasis added]

If, as enactivism suggests, “cognition is not the representation of a pre-given world 

by a pre-given mind but is, rather, the enactment of a world and a mind on the basis of a 

history of the variety of actions that a being in the world performs” (Varela, Thompson and
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Rosch, 1991, p. 9), then I come back to a key question, for me. How does mathematics 

knowing arise0. Further, if cognition is the enactment or bringing forth of a world by a 

viable history of interaction with the environment (Varela, Thompson and Rosch, 1991, p. 

27), then the study of mathematics knowing must involve the study of the individual-in-its- 

environment or, in other words, the individual and his or her environment as they co- 

dependently arise in interaction (Figure 4-1).

s
Person

1 cospecify 
* --------* World

\

) J

Figure 4-1. Person and world are co-specified in action

For my study of mathematics knowing in action, I distinguish a knower, a human being 

who lives in language with other human beings and who engages in mathematical activity, 

and I observe the knower in that activity. The study of mathematics knowing in action, 

then, becomes a meaning making activity for me, the observer. The claims I make about 

mathematics knowing in action are those which make coherent my experiences as an 

observer of the individual-in-its-environment. My claims exist in the domain of the 

observed rather than the first order domain of experience.

Structure Determinism

Human beings (like all living things) are characterized by their autopoietic 

organization (Maturana and Varela, 1992). As autopoietic entities they are fully 

autonomous and closed systems which interact with a medium but are self-referencing, 

self-organizing, and self-producing. Human beings differ from each other in their structure 

(the components and relations that actually constitute a particular human being), but are 

alike in their organization (those relations that must exist among the parts of a system for it 

to be a human being). Autopoietic organization is a key notion because it means that the
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being and doing of the human are inseparable— “their only product is themselves, with no 

separation between producer and product” (Maturana and Varela, 1992, pg. 49).

Following from the assertion that human beings are autopoietic is the notion that we 

are structurally determined systems: that is, systems in which all structural changes are 

made possible by the system itself as its components interact and it interacts with its 

medium (or environment). Like all living systems, humans are changeable (some changes 

are observed as learning), and change (learn) as a result o f their interactions (Figure 4-2). 

In other words, a person participates in interactions if his or her structure is such that he or 

she can participate. At the same time, the person’s structure is modified in those 

interactions. “The notion of structure is composed on three key ideas; the idea of 

wholeness, the idea of transformation and the idea of self-regulation” (Piaget cited in Casti, 

1994, pg. 212).

determines \
----------------------- ► f  Action }

modifies

Figure 4-2. Structure determinism suggests that a person can only participate in actions 
which are permitted by his or her structure

There are two triggers for ongoing structural change: interactions with the environment in 

which it [the learner] exists and the structure’s own internal dynamics (Maturana and 

Varela, 1992, pg. 74). As long as a human being continues to live, he or she undergoes 

structural change as a result of his or her interactions.

All knowing is determined, but not fixed, by a person’s structure. ‘This means that 

nothing external to a structure determined system can specify the structural changes that it 

undergoes as a consequence of an interaction. An external agent that interacts with a 

structure determined system can only trigger in it structural changes determined in it” 

(Maturana, 1988, p. 36). However, any changes the system undergoes must be viable
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given the nature of the environment. If a change occurs that is not viable for the system, it 

will cease to interact in that environment. 1

Knowing is inferred by the observer when he or she notes a behaviour, which may 

be an utterance (written or spoken), gesture, movement or other bodily response (like the 

blushing of one’s face) which arises in the interaction. Because I am interested in the 

human mathematics learner, I find it useful to think of structure as that which is formed 

through ongoing personal2, social and cultural interactions. Those are the domains of 

human interaction that I observe (Varela et al., 1991).

M em ory
Dewey said every experience lives on in further experiences (1933). In enactivist 

terms, our bodies both make possible our experiences and are marked by them. With each 

experience (which involves spatial, temporal and relational dimensions), our whole being is 

modified because our structure is modified. We are changed physically, mentally, and in 

our relations to things (and people) in our environment. Our bodies shape our experiences 

and are marked by our experiences. In this way, our knowing is fully embodied. I might 

represent the historic nature of human knowing, in such a way, to show that the human 

learner brings his or her history of experiences into the moment of the present experience 

(Figure 4-3).

1 Because I am dealing with mathematics knowing, I am not talking about the death o f the person but his or 
her metaphoric death in the realm o f  mathematics.
2The personal includes both physiological and the phenomenological. Because I am interested in 
mathematics knowing, I will not focus on the neurological level. However, I will discuss the personal at 
the levels o f the sensorimotor and the phenomenological.
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I  Structure (t,)
j determines interaction
V which alters
\  . Structure ( tj

ines interaction.-■ 
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Figure 4-3. One’s history of experiences is marked by changes in his or her structure
A human being’s history of interaction is incorporated into his or her structure

which constrains, moment by moment, how he or she acts in a given setting and under 

various perturbations. This might be thought of as a structure-determined understanding of 

memory (von Foerster, 1981). As von Glasersfeld (1995) suggests, memories are re­

presentations, in the sense that they are re-constructions of our past experiences in the 

moment. Thus, our memories, like all of our experiences, are experienced in the moment.

When humans do mathematics we note that their structure, which embodies their 

mathematics “memory” (history of structural changes as a result of experiences), both 

constrains and makes possible the mathematics knowing that is observed. At the same time, 

a person’s actions, and the consequences of those actions, are recursively implicated in his 

or her structure and result in a change to it (and hence memory). Varela (1992) tells us that 

our “cognitive capacities are inextricably linked to a history that is lived, much like a path 

that does not exist but is laid down in walking” (p. 255). Merleau-Ponty (1962) suggests 

that “to remember is not to bring into the focus of consciousness a self-subsistent picture of 

the past; it is to thrust deeply into the horizon of the past and take apart step by step the 

interlocked perspective until the experiences which it epitomizes are as if relived in their 

temporal setting. To perceive is not to remember” (p.22). Hence, the enactivist perspective 

asserts that present experiences are determined by one’s living and lived body (which is 

made up of the traces left by a history of interactions); at the same time, one’s interactions 

in the present change one’s body in the moment of knowing.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This view of structural change offers an alternative to the view which suggests 

knowing is constructing representations of a pre-existing world which are “stored” in 

memory, to be retrieved when needed to solve a problem posed by the environment. In the 

non-representationalist, structure-determined view of knowing I am offering here, knowing 

is understood to be acting and interacting in the present moment within a sphere o f  

possibilities which is jointly defined by the person and his or her environment. Individuals 

may be observed to be present together in a shared physical setting and be part of the social 

interaction of that setting, however, a person’s range of possible behavior in the moment is 

co-determined by his or her history of interactions, and the context in which he or she is 

embedded.

One’s embodied history specifies the realms of interaction possible for the person 

(Maturana and Varela, 1992, pg. 171), although it does not pre-determine a particular 

action.

[Memory is] a field which is always at the disposal of consciousness and one 
which, for that very reason, surrounds and envelops perceptions, an atmosphere, a 
horizon, or if, you will, given ‘sets’ which provide it [consciousness] with a 
temporal situation, such is the way in which the past is present, making distinct acts 
of perception and recollection possible. To perceive is not to experience a host of 
impressions accompanied by memories capable of clinching them; it is to see, 
standing forth from a cluster of data, an immanent significance without which no 
appeal to memory is possible (Merleau-Ponty, 1962, pg. 22).

Returning to the two cases discussed in the previous chapter, I note that, although the 

parents and children were offered the same prompt (to tile a 2 x n path with dominoes) the 

two pairs were observed to respond differently. Kerri’s and Dan’s response was to make a 

table. This is very consistent with what I observed when Kerri was given a variety of other 

prompts throughout the course of the parent-child mathematics program. Other observers 

might propose that the reason she responded this way could be explained by suggesting it 

was the most appropriate way to respond, given the prompt she was offered. This is a 

plausible explanation, given it was a reasonable way to proceed, in this particular situation. 

However, in another session, Kerri tried desperately to make sense of a situation by using
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a table to help her find a function to describe the situation, when by my assessment it was a 

very poor strategy. Given this evidence, I am more likely to believe that the strategy she 

used had as much to do with Kerri and what she knew (her history of interactions) as it had 

to do with the prompt which she now encountered.

Finally, when I suggest that a person’s knowing is structurally determined, I am 

not saying that the person’s actions are predetermined. Rather, I am saying that a person 

can only act/think in ways that fit with his or her history of biological, social and cultural 

experiences. For example, if one does not have a history that includes multiplying, then a 

teacher’s instructions (perturbation) to a student to find the square a number by multiplying 

a number by itself cannot cause the student to know how to square a number (in a way that 

has meaning for the student). In the same way, if a student has poor fine motor 

coordination and cannot draw a straight line, a pencil in his or her hand and a sheet of paper 

will not cause the student to draw a straight line. In both of these examples, the person’s 

structure limits what is and is not possible in that moment. However, this does not explain 

how certain affordances or conditions in the environment can be observed to make a 

difference in the person’s actions. For example, the student who is unable to draw a 

straight line free hand might be able to do so given a straight edge. (The word might is 

intentional since I have seen a number of children who even with a ruler do not draw a 

straight line.) Or, the student who cannot multiply could find the square of a number if an 

adult (for example) provided adequate scaffolding for the student by suggesting, let’s say, 

the student draw a square on graph paper and count the unit squares from which it is 

composed. As Vygotsky (1978) suggested, there is a zone of proximal development in 

which a child, in interaction with a more knowledgeable person, is able to answer 

questions the child could not answer on his or her own. Hence, these examples suggest 

structure determinism is only part of an explanation of human knowing; the role of the 

environment also needs to be considered.
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Environment

When a human observer distinguishes a living system (in this case a human 

learner), at the same time he or she distinguishes the environment with which the system 

interacts. An alternative way of approaching the study of knowing has been to focus on that 

with which the learner interacts—the information in the environment, for example. 

Nprretranders (1991/1998) explores the role of information (or lack of it) in meaning 

making. His thesis is that in any communication between people there is informing without 

full information in the environment. The missing “bits” in the environment are what he calls 

ejcformation. He illustrates his point with the following story.

Victor Hugo— famous for writing The Hunchback o f Notre Dame—had gone on 
holiday following the publication of his great novel Les Miserables. But Hugo 
could not restrain himself from asking how the book was doing. So he wrote the 
following letter to his publisher: “?”
His publisher was not to be outdone and replied fully in keeping with the truth: “ !” 
(N0 rretranders 1991/1998, p. 91)

Nprretranders goes on to suggest that there are very few “bits” of information in this 

correspondence; however, the communication was successful.

It was not the number of bits transmitted that was decisive, but the context of that 
transmission.... Both messages represent many considerations,—thoughts 
feelings, and facts— which are not present yet nevertheless are. Information that is 
not there yet nevertheless is. The correspondence refers to a plethora of 
information— otherwise it would not be full of meaning....
Hugo’s question mark is the result of an explicit discarding of information. Not 
merely a discarding of information: He has not simply forgotten it all. He refers 
explicitly to what he has discarded, but from the point of view of the 
correspondence it is still discarded. For the purposes of this book, we will call such 
explicitly discarded information exformation (pg. 92).

As it appears for observers of Hugo’s interaction with his publisher, it may seem as though 

the environment contains information (the message in the correspondence) prior to a 

person’s realization of it. However, as Merleau-Ponty (1962) explained and Nprretrander’s 

example suggests, the world appears to be there before reflection begins but that world is 

not separate from the person (Varela et al., 1991, p. 3).
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While the word environment commonly is used to mean everything outside of the 

organism (person), this “everythingness” is precisely what some theorists critique 

(Maturana and Varela, 1992; Lewontin, 1991). The environment with which the organism 

can interact is not everything outside of itself. Rather, the organism’s environment is 

precisely that with which the organism can interact. The environment is a relational 

phenomenon which consists of “an organized set of relationships among bits and pieces of 

the world which is selected by the individual him- or herself’ (Lewontin, 1991, pg. 8 6 ). 

Varela et al. (1991) explain that the “local situations constantly change as a result of the 

perceiver’s activity, the reference point for understanding perception is no longer a pre­

given perceiver independent world but rather the sensorimotor structure of the perceiver” 

(p. 173). For any living organism, its environment is not pre-specified but is specified by 

the organism itself as it acts; this is, for Varela et al., enaction.3

That which “exists” in the environment only exists for a person in so far as the 

person enacts it. In other words, perturbations that an observer distinguishes in the 

environment are part of the environment precisely because the observed person brought 

them forth in action. Varela et al., (1991) elaborate :

This insistence on the co-determination or mutual specification of organism and 
environment should not be confused with the more commonplace view that 
different perceiving organism simply have different perspectives on the world. This 
view continues to treat the world as pre-given; it simply allows that this pre-given 
world can be viewed from a variety of vantage points. The point we are making, 
however, is fundamentally different. We are claiming that organism and

3 Lewontin (1991) tells the story o f  a Mars exploration in which the scientists were trying to determine if 
there was life on the planet. They designed an experiment in which some dust from the surface was placed 
on a radioactive medium. “Everyone was convinced that there was life on Mars when radioactive carbon 
dioxide was produced. But were confused when abruptly the production o f the compound ceased. Lewontin 
says, the problem of this experiment arises precisely from the fact that organisms define their own 
environment. How can we know whether there is life on Mars? We present Martian life with an 
environment and see if  it can live. But how can we know what the environment o f Martian life is unless we 
have seen Martian organisms?... We may know the temperature, the gas content o f  the atmosphere, the 
humidity and something about the soil on Mars, but we do not know what a Martian environment is like 
because the environment it does not consist o f temperature gas, moisture and soil. It consists o f an 
organized set o f relationships among bits and pieces o f the world, which organization has been created by 
living Martian organisms themselves. ... It is not that organisms find environments and either adapt 
themselves to the environments or die. They actually construct their environment out o f bits and pieces” 
(p.85 - 86).
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environment are mutually enfolded in multiple ways, and so what constitutes the 
world of a given organism is enacted by that organism’s history of structural 
coupling (p. 2 0 2 ).

As a number of researchers (Lakoff and Johnson, 1999; Varela et al., 1991; Maturana and 

Varela, 1992, Capra, 1996) note, it is the relationships between the human being and his or 

her environment that are of significance to our understanding o f human cognition.

When observing the environment and the unity I have distinguished from the 

environment, I note that the environment also is involved in interactions. In the same way 

that a structure changes by virtue of its interactions, so does its environment (Figure 4-4). 

Just as it is for the human learner, each time an environment is involved in an interaction 

there is potential for change in that environment. In this way, the environment is observed 

to have a “structural dynamics independent of the systems that it contains although it is 

modulated through its encounters with them” (Maturana, 1998, http://www.inteco.cl/ 

articulos/ metadesign_partel.html).

" constrains
interaction J «----------------------

modifies

Figure 4-4. Environment constrains interaction and is modified by it

Returning to the illustrations in chapter three, the prompt, the dominoes, the sheet

of paper on which Dan was keeping track of the tilings, the drawings of the tilings and the

numbers recorded in the table were all part of Dan and Kerri’s environment. Take for

example, the tiles. Their arrangement underwent a number of transformations over the

course of the evening as a result of Kerri moving them about on the table. Thus, the

positions of the tiles changed constantly, and Dan and Kerri noted various patterns. Those

patterns were co-specified by Dan and Kerri and the tiles themselves. The piece of paper on

which Dan was writing was also changed but in a more permanent way. Each time Dan put

his pen to the paper it left a mark which became part of Dan and Kerri’s environment
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because it had significance for them. Not only did physical features of the environment 

undergo constant change because of the interactions of which it was a part, but so too did 

the relational features of the environment. The environment was transformed in terms how 

Dan and Kerri related to it and the perturbations it generated for them. Once they 

distinguished a pattern, both their own knowings and the environment were altered such 

that there were more patterns to distinguish (Piaget, 1974/1980). Kerri and Dan’s actions 

changed as the environment was modified in their interactions with it. Further, in as much 

as Dan is part of the environment for Kerri, and Kerri for Dan, any changes in each of them 

resulted in a changed environment for the other. Knodt (1995) describes how further 

possibilities for meaning are constructed in interaction.

No longer grounded in an external reality—as a representations or mirroring of that 
reality—meaning resides in the self-referential structure of a consciousness that 
consists solely in and through its autopoietic operations and that, in selecting from a 
self-generated horizon of surplus references, reproduces that horizon without ever 
exhausting its possibilities or transgressing its boundaries (p. xxvii).
When the individual (human learner) is in ongoing interaction with his or her 

environment, both the learner and the environment are observed to change together. Thus, 

the study of the learner must involve the study of the learner in interaction with his or her 

environment. Maturana and Varela (1992) posit the notion of structural coupling to explain 

the relationship between a living organism and its environment.

Structural Coupling

In the previous sections, I suggested that all interactions involving a human being 

may be viewed as structure-determined and as constrained by the environment, both of 

which are brought forth in that interaction. The enactivist view asserts that the environment 

does not instruct nor specify particular changes in an individual; rather, the person’s 

interactions with the environment act as perturbations to trigger potential changes that are 

co-determined by the living being’s structure. When a person and his or her environment
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are seen by the observer to co-dependently arise through mutual specification and ongoing 

interaction, the observer notes structural coupling (Figure 4-5).

S __________ _
I EnvironmentPerson

co-determine

modifies modifiesinteraction

Figure 4-5. Structural coupling arises as recurrent interaction between person and 
environment
Maturana and Varela (1992) explain.

[EJach living being begins with an initial structure. This structure conditions the 
course of its interactions and restricts the structural changes that the interactions 
may trigger in it. At the same time, it is bom in a  particular place, in a medium that 
constitutes the ambiance in which it emerges and in which it interacts. This 
ambiance appears to have structural dynamics of its own, operationally distinct 
from the living being... We have thus distinguished two structures that are going to 
be considered operationally independent o f  each other: living being and 
environment.... In the interactions between the living being and the environment 
within this structural congruence, the perturbations of the environment do not 
determine what happens to the living being; rather, it is the structure of the living 
being that determines what change occurs in it.... The same holds true for the 
environment: the living being is a source of perturbations and not of instructions. 
(Maturana and Varela, 1992, p. 95 - 96)
Structural coupling occurs when, in the history o f interaction, an individual and its 

environment interact as independent systems but systems that provide triggers for structural 

change in the other. Structural coupling is a phenomenon that takes place whenever an 

individual undergoes “recurrent interactions with structural change but without loss of 

organization [class identity], and which also includes changes in the environment or 

domain of interactions” (Maturana, 1981, p. xxi). This is useful in the case of observing 

the interaction among people.

[W]hen two or more structure determined systems interact recurrently with each 
other in a particular medium, they enter in a history of congruent structural changes 
that follows a course that arises moment after moment contingent on their recurrent 
interactions, to their own internal structural dynamics, and to their interactions with 
the medium, and which lasts until one or both o f  them disintegrate, or they separate 
(Maturana, 1988, p. 46).
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Our interactions are made possible by our structures, and will continue in so far as those 

interactions are viable. Varela et al. (1991) invoke a proscriptive logic to explain how 

cognition does not involve an optimal match between the system’s action and the 

environment; rather, cognition involves satisfactory or viable action within broad 

environmental or contextual constraints such that anything that is not forbidden is allowed. 

Hence, there are many adequate actions that maintain structural coupling. Structural 

coupling will be destroyed however, by forbidden actions.

In as much as, human knowing is not the recovery of a pre-given world but viable 

action which realizes a world, knowing is adequate conduct or viable action in a co- 

emergent context. Therefore, knowing is better understood in terms of a proscriptive logic 

rather than a prescriptive one (Varela et al., 1991; Kieren, 1995). There is no particular 

thing that must happen in order for an observer to say that the learner knows; rather, there 

must a viable action within the sphere of behavioral possibilities that the observer 

understands as adequate conduct (Maturana, 1987). There are some actions that are 

forbidden (actions outside o f the sphere of behavioural possibilities) and other actions that 

are judged, by the observer, as inadequate conduct.

Another way to think about this is to imagine that at each moment there is a sphere

of behavioural possibilities for each of Dan and Kerri. Given his or her state of being

(structure) in an environment at any particular moment, there are many things he or she

could do next (within the sphere) and some things that he or she could not do next (outside

of the sphere). As Dan and Kerri interact, not only do they personally undergo change

(their structures change), but, their spheres of behavioural possibilities undergo

transformations because of their interactions and the changes to their structures. In this

way, their mathematics knowing co-emerges, not within, but with the context of their

activity. Hence, we speak of the changing sphere of behavioural possibilities. Further, as

context and structure change for one person, there is potential change for the other because

the two people are interacting. Kieren (1995) cautions that, “if one is thinking about the
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sphere of possibilities in solely environmental terms then one looks at properties per se in 

isolation of the individual’s action in it. [However] if one looks at the “sphere of 

possibilities” in ecological terms, then such isolated viewing is inappropriate. That is not to 

say that the sphere of possibilities does not have properties, but simply that the properties 

of interest manifest themselves in the interactions with the individuals and further that these 

properties are seen by the observer as properties of the relationship”.

Structural coupling can be used to explain the distinction we observers (teachers in 

particular) call learning (structural change)4. The interaction between a person and the 

person’s environment (including other people) creates perturbations which have the 

potential to trigger knowing—embodied action. When an observer notes a relation between 

the individual’s mathematical behavior and a perturbation (or feature) in that individual’s 

environment, we say that the perturbation in the environment occasioned the student’s 

mathematical cognition (Simmt, 1996b). (I discuss this further in chapter five.)

The Social Domain
There is a fundamental circularity (Varela, 1984) in the mutual specification

between the organism and its environment. This has deep implications for social organisms 

such as humans. For humans, it is through recurrent interactions (structural coupling) with 

other human beings, in language, that the social domain emerges (Figure 4-6).

Person 1 I 
V- ----------- J

r  -  -  -
i' Person 2
d-----  ^

nn-r1e> t& rm in(*

* w

modifies ™ d‘fies

Figure 4-6. A special case of structural coupling: social interaction

4 Learning as structural change does not involve an evaluative stance. That is, any structural change, 
whether an observer would call it learning or misunderstanding is learning from the enactivist perspective. 
Of course, in teaching situations, teachers teach towards particular outcomes, and observe for behaviours 
that indicate those outcomes. On the other hand, the students’ structures are changed in many ways that may 
or may not be related to the teacher’s intended outcomes, and may not be observed by the teacher at all.
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In the case of humans, structural coupling is the mechanism which makes possible social 

behavior and the social domain. That is, our recurrent interactions with other human beings 

are part of our living. This form of living is what we, as observers, distinguish as social.

What is peculiar to us as human beings though, is that we exist as such in language 
as the operational space in which we realize our living as such. That is, we exist in 
the flow of living together in the recursive coordinations of behaviour that language 
is (Maturana, http://www.inteco.cl/articulos/metadesign.html).

As Maturana and Varela (1992) explain, the social domain expands our cognitive domain.

Biology also shows us that we can expand our cognitive domain. This arises 
through a novel experience brought forth through reasoning, through the encounter 
with a stranger [not ourselves], or more directly, through the expression of a 
biological interpersonal congruence that lets us see the other person and open up for 
him room for existence beside us. This act is called love, or, if we prefer a  milder 
expression, the acceptance of the other person beside us in our daily living. This is 
the biological foundation of social phenomena: without love, without the acceptance 
of others living beside us, there is no social process and, therefore, no humanness, 
[emphasis original] (pg. 246)
When, humans interact with others, the worlds brought forth in that interaction

have the potential to overlap with each other and with others. Hence, each time a person’s

world is modified by an interaction there is the possibility of change in, not only her world,

but, the world of another as well. This was observed when Rebecca and Cathy iateracted

and Dan and Kerri interacted. When Dan uttered “blip-blip,” this utterance became part of

Kerri’s environment, thus changing her sphere of behavioral possibilities. O r, when

Rebecca described to Cathy how she was looking for the mirror images of the tilings her

description changed the sphere of behavioral possibilities for Cathy. It is not as though

Rebecca’s actions changed Cathy; instead Rebecca’s utterances become energy-rich matter

from which Cathy selected. Note that, a few minutes passed before Cathy blurted out (as

though it were her idea), “Hey I know” (and wrote) look for mirror patterns. Further,

consider how Dan’s utterances were energy-rich matter from which Kerri selected. At first

the words, blip blip, were used as a recording and conversational tool. However, w e later

see Kerri use blip-blip (one word for her new concept) as a tool for mathematical thought.

The blip-blips emerged as two distinct objects or two different actions, within the

constraints of the prompt. It is in the recursion (Kerri’s selecting of her selection) that we
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see an illustration of the social domain as it is complicit with the person’s knowing. In the 

structure determined act of selecting blip-blip, and integrating it into her knowing, Kerri’s 

embodied knowing was changed but further changes (from the point of mathematics 

knowing) were indicated when she used blip-blip differently from her father. Her 

utterances and actions suggest a transformation of blip blip (two horizontal tiles) into blip- 

blip (a unit consisting of two horizontal tiles).

An enactivist perspective, which asserts knowing is embodied action, encourages 

the observer to consider both the individual’s structure and the environment (and the special 

case of other human beings) with which the individual interacts when interpreting 

mathematical activity. Once I do this, I begin to understand how the complexity of 

cognition arises. Our interactions are in language and include personal, social and cultural 

dimensions of knowing, all at once. Our bodies are both the source and the intersection of 

those multiple dimensions.

Bringing Forth a World o f  Significance

Although it has been useful in the study of children’s mathematics to focus on either 

the individual (as radical constructivists do) or the social features of human knowing (as the 

socio-cultural theorists do), such approaches tend to lead to a polarization, whereby we 

observe for one thing or for another. This was, in part, Confrey’s (1994, 1995a, 1995b) 

concern when she called for a reformulated theory of mathematics knowing which includes 

both the theories of Piaget and Vygotsky. Enactivism offers some possibilities in this 

regard. Its view of cognition as embodied action which brings forth a world of significance 

is a way in the middle that suggests knowing is at once individual and social.

In summary, enactivism explains mathematics knowing as perceptually guided 

action in language in which people bring forth intertwined worlds of significance which 

includes mathematics (see Figure 4-7).
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► | tnvironmeni| 4^ } Human

WORLDS OF SIGNIFICANCE
| Human" I Environment | 4

[ Human ] Environment 
I co-determine 1

/^inter-actior^N 
brings - 

forth

Figure 4-7. A model for observing cognition as bringing forth intertwined worlds of 
significance with others

The organism and the environment are observed to co-emerge in the world that is 

brought forth. Hence, in enactivist inquiry, not only is cognition studied as a feature of the 

individual, but, it is also studied in the inter-actional dynamics of the person in an 

environment. While the person’s structure determines any world building actions which he 

or she takes, it is the coupling with the environment (inter-action) which constitutes the 

space for such actions and provides the possibilities for them—it creates a sphere of 

behavioural possibilities. Because we are social beings, the worlds we bring forth are 

intertwined with the worlds of others. When we act, our actions have the potential to alter 

the sphere of behavioural possibilities of others. Hence, an enactivist perspective of 

cognition has ethical implications. (These are further discussed in chapter eight.)

In the enactivist view of cognition, the environment is not thought to instruct or 

specify particular changes in an individual; rather, the person’s and environment’s inter­

actions act as perturbations to trigger potential changes in both the organism and its 

environment. With respect to humans, cognition is an act of specifying (moment by 

moment) the relevant features of the environment with which the person interacts; and in
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doing so, the person creates or brings forth a world. At the same time, the person is 

brought forth in that world—the person is changed by his or her own cognition. As is the 

case with complex phenomena, complexity breeds transformation and further complexity. 

But even in complex phenomena, the human observer can distinguish patterns. Hence, in 

studying mathematics knowing in action, there is no need to reduce the phenomenon of 

cognition to simpler parts; an enactivist perspective provides us conceptual tools for 

observing human knowing in all of its complexity.

The task of the observer is multifaceted: on one hand, as an observer I need to 

explore the ways in which the environment constrains the knower, and the ways these 

constraints are specified by the sensorimotor structure of the knower him or herself. On the 

other hand, I also need to explore the relationship between the knower and the known, both 

of which are brought forth in interaction. Further, there is a need to consider the 

implications of a perspective, such as enactivism, which is necessarily ecological. The 

purpose of the remaining chapters is to use the enactivist principles developed in this 

chapter and the model posed in this chapter to observe and interpret mathematics knowing 

in action so that I might characterise it.
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Chapter Five 

OCCASIONING MATHEMATICS KNJOWING

When an observer notices that a student acts in a particular way when a specific 

event or feature of the environment is present, it is not uncommon for the observer to 

suggest that the event or feature of the environment caused the p-erson’s behaviour. After 

all, it is common sense that knowing does not arise from nothimg; it must be provoked. 

“Thinking is not a case of spontaneous combustion,” Dewey said. “There is something that 

occasions and evokes it” (Dewey 1933, pg. 15).

When I think about some “thing,” that thing arises as am object for me to think 

about. An enactivist perspective resists the temptation of looking faor that which comes first: 

the thing or the thought about the thing. Instead, the thing and the thought about it are 

understood as co-emergent phenomena—they co-dependently arise in action. It follows, 

from an enactivist perspective, that one avoids seeking ‘causes’ fi*>r a person’s thinking in 

favor of exploring the relationship between the person and his or haer environment.

When we watch a child listening to a teacher who is offering a strategy for solving a 

problem and the student solves a subsequent problem, it appears to  us as though the teacher 

caused the student’s learning. In fact, we distinguish teaiching and learning as 

complementary activities that take place between teachers and learners. However, if this is 

the case, then why is it that teaching does not necessarily result in a student’s learning? 

Why is it that given 30 children in the same classroom, apparently offered the same 

instruction and educational opportunities, that some students “leann” what is “taught,” and 

some of their peers do not “learn” what is “taught”?

Maturana’s and Varela’s (1992) explanations of structure determinism and 

structural coupling are useful for understanding this question. The y have demonstrated that 

all knowing is both made possible and constrained by the person’: s structure and provoked
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through interactions with their environments (which includes other human beings). Hence, 

the person Ieams (changes) through his or her lived experiences— biological, social and 

cultural. Given this explanation, in what ways can we characterise the observed 

relationship between a person and his or her environment? How do we interpret the 

interactions between a person and his or her environment? In this chapter, I elaborate on 

those interactions among people and with physical and conceptual “objects,” that are 

observed to co-dependently arise with mathematics knowing.

O cc a s io n in g

The old saying, “you can lead a horse to water but you can’t make him drink,” is 

worth pondering over. Von Glasersfeld (1995) asks, “Is it the horse’s thirst or is it the 

water that “causes” the horse to drink?”. We might respond that the presence of water and 

the nature of water are responsible. Or we might respond, that it is the horse’s thirst that is 

responsible for the horse drinking water. A response from an enactive perspective is that 

the water and the horse’s thirst are co-responsible for the horse drinking water. Rather than 

discuss the mathematical activity in terms of its causes and effects, I wish to re-frame the 

way in which we might observe actions and interactions by inquiring about the significance 

of co-responsibility. How does it happen that a person comes to act mathematically? In 

particular, what does it mean “to occasion" mathematical cognition?

The word occasion is commonly used as a noun to refer to a special event. It is less 

common to use the word as a verb; but when it is used in this way, it means to cause in a 

subsidiary manner. Heidegger (1977), in contrast, takes up the verb, “to occasion”, and 

uses it in a more primary way. He invokes the four senses of causality (of being 

responsible for something coming about) the early Greeks spoke about: the causa materialis 

(the matter from which something is made); the causa fonnalis (the form or shape which 

the material eventually takes); the causa finalis (the end or purpose for which the thing is
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created); and the causa efficiens (that which brings about the effect) . 1 Occasioning, he 

claims, has to do with causing in the sense of starting something on its way or in the sense 

of co-responsibility.

I first heard the term, occasion, used as a verb by Kieren. “A person’s mathematical 

knowing [is] determined by that person’s structure, yet co-emergent with and occasioned 

by the environment in which this active knowing is done” (Kieren, 1994, p. 134). Also 

intrigued by Kieren’s use of the verb ‘to occasion,’ Sumara (1996) explored the notion of 

occasioning. He began by tracing the etiology of the word. “According to the Oxford 

English Dictionary... the original Latin meaning of occasion (occasion-em) has more to do 

with an opportunity arising from “a falling of things towards each other”—something that 

presents itself in the middle of a set of circumstances (Sumara, 1996, p. 200-201). Sumara 

offers this interpretation. “Occasion, understood in this way, is more like a hap— more like 

the kind of situation that is not predictable but which if taken up, can lead to a new and 

previously unknown path of understanding” (p. 2 0 1 ).

I offer occasioning as an explanation of the coherences of experiences of the person 

who observes another person and his or her environment as co-responsible for the 

mathematical knowing that emerges in the interaction between them. This notion of 

occasioning returns us to action. Occasioning exists in the realm of the observer. It is an 

explanation of the observer’s experience of seeing a person and his or her environment in 

relation, not of the learner’s immediate experience with the environment. (However, the 

learner can observe him- or herself, and ask about what causes his or her thinking.) The 

observer distinguishes an occasion, when the observer sees a behavior and a corresponding 

feature of the environment. From the perspective of the learner, she or he is simply acting 

in a way which preserves her or his relation to the environment. In other words, an 

observer says something occasions a person’s action just when the observer observes that

1 In modem science when we speak o f cause we generally are speaking about the causa efficiens.
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the thing exists in the person’s presence, the person selects elements of or features of it, 

and the person acts on those features. Because this selection from and action on the thing 

potentially changes the person, the thing and the person’s action itself, we say that the 

person, the thing and the person’s action are co-emergent phenomena.

Occasioning is a conceptual tool which points to the relationship between the 

knower and the “observable” triggers for his or her knowing. It helps the observer 

understand a person acting on and with what the observer infers as energy-rich matter.

[Heinz von Foerster] coined the phrase “order from noise” to indicate that a self- 
organizing system does not just “import” order from its environment, but takes in 
new energy-rich matter, integrates it into its own structure and thereby increases its 
order (Capra, 1996, p. 84).

From an enactivist perspective, it is important to emphasize that the individual does not 

simply receive objective information from outside itself as a stimulus to which it responds 

(Brier, 1992). Rather, a person is “informed” by something in the environment, if his or 

her structure is such that it can “perceive” the perturbation and change in order to maintain 

itself given the perturbation. One might suggest, as Nqrretranders (1991/1998) did, that all 

knowing is informed by the exformation which is part of the interaction, or suggest as Von 

Foerster (1981) did, “the environment contains no information; the environment is as it is” 

(p. 263). Information is not something outside of the person existing in the environment; it 

is a phenomenon created by individuals in interaction with their environment at a particular 

moment under particular circumstances2 (p. 193-194). Occasioning is like information, in 

von Foerster’s sense. However, occasioning is as an explanation for observing a person’s 

knowing in action rather than an explanation of how knowledge is acquired. How, then, 

does occasioning come about?

From an enactivist perspective, one could think about the question of occasioning in 

terms of structural coupling. That is, if two systems are structurally coupled, then the

2 The statement about information assumes objectivity-in-parenthesis (see chapter three). It is a radically 
contingent statement. (Kieren, personal correspondence, October, 1999).
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observer would note a pattern of recurrent inter-action in which there are modifications to 

the interacting systems; hence, there is co-occasioning. In the previous chapter, I illustrated 

the structural coupling between a person (structurally determined system) and his or her 

environment (which, for the purpose of discussion may be restricted to another person) 

with the diagram which I have reproduced here (Figure 5-1).

Person! — ► Person.,
V J

co-determine
modifies

■ Q
interaction > modifies

Figure 5-1. Structural coupling

In this chapter, I use this model for observing mathematics knowing in action: both to 

interpret and to represent my observations of people engaged in what I distinguish to be 

mathematical activity. I add to the diagram bubbles which represent the bringing forth of a 

world of significance (Figure 5-2). In each bubble, I point to that which is brought forth 

and that which I subsequently observed to occasion further knowing. Of course, as human 

beings our interactions are complex; one may observe many things brought forth, in any 

interaction, simply by looking for knowing in a variety of domains or from various 

perspectives. At the same time, there are many features of knowing in action that cannot be 

observed. Only knowing that is made evident in some behaviour can be observed.

rmme

WORLD OF SIGNIFICANCE
Person or other 

features in 
environment'

“Person or otner 
features in 

environment

(^"Interaction^)
—  brings forth r fz :

Figure 5-2. Diagram to illustrate the process of bringing forth a world of significance 
through action with and in one’s world of significance
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O bserv ing  M athem atics Knowing in Action

In this section, I offer a set of examples to illustrate how the participants in the 

parent-child mathematics program were occasioned to engage in mathematical thinking. I 

show how, for a small group of parents and children, a variable-entry prompt occasioned a 

wide range of responses. For me, these examples nicely illustrate how the differences in 

people’s structures result in very different actions given what appears to be the same 

prompt. I also use the examples to show how one’s mathematical thinking develops 

through recurrent interactions and ongoing occasioning. In other words, I will show how 

the variable-entry prompt is just one feature of the environment that propels mathematical 

actions.

One evening, I offered the following prompt (Figure 5-3), which I will refer to as 

the diagonal intruder (Stevenson, 1986), to four parent-child pairs participating in my 

extracurricular mathematics program.

Mark off a rectangle on your graph paper. Now draw in a diagonal. The object of 
this activity is to determine how many unit squares the diagonal passes through. 
For example, in this 3 by 5 (3x5) rectangle the diagonal passes through 7 unit 
squares.

Figure 5-3. The diagonal intruder prompt

As usual, after I introduced the prompt to the group, the parent-child pairs were invited to 

work on it together. Each pair worked independently of the other pairs until the end of the 

evening when they were asked to explain what they had learned.3

J On this particular night, I audio taped only one pair, Jake and Cathy. I will discuss their activity in the 
next chapter. For the other pairs, I am reconstructing the events based on field notes in my research journal 
and the participants’ working papers.
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Dan and Kerri

Dan and Kerri, the father daughter pair introduced earlier, had more experience 

doing mathematics together than did the other pairs who responded to this prompt. These 

two often began by specializing (Mason, Burton and Stacey, 1982), and systematically 

building a set of cases. This method worked quite well for them, most of the time. In this 

session, Dan and Kerri generated a list of cases by beginning with a rectangle of area one 

square unit, then, considered all the rectangles of area two square units, and so on. They 

investigated the rectangles for the areas from 1-16  units2 (Figure 5-4; Figure 5-5, a).
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Figure 5-4. Dan and Kerri’s record
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^ — ' World of significance '—
which includes Dand and Kerri 

and artifacts of their mathematics knowing f

records

y^ransform ingr\ 
patterning, delimiting

brings forth

prompt

^"specializing^ 
— brings forth _

Figure 5-5. Mathematical actions were occasioned and from them a world of significance 
was brought forth

Using their records, Dan and Kerri looked for patterns (Figure 5-5, b) and conditions for 

the patterns, and were able to make some generalizations (Figure 5-5, c). For example, 

they noted that the diagonal of all of the 1 x n rectangles would pass through n unit 

squares. They also noted that, if the area of the rectangle was not a prime number, then, 

there would be at least one rectangle for which there would be at least one other distinct 

quantity of unit squares intersected by the diagonal.

From the many cases they generated, they were able to state some generalizations, 

explain to others, and sometimes support their generalizations with deductive reasoning. 

Because they had participated in the parent-child mathematics program for some time prior 

to this session and because I know they had acted this way many times before, I am 

suggesting that specializing could be viewed as a structurally determined action. But at the 

same time, it was triggered by the diagonal intruder prompt. In other words, their 

specializing activity was occasioned by the prompt. Their actions brought forth a world of 

significance which included their own actions (thinking) and the artifacts of that thinking.
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My observations suggest that their actions were viable in the context and therefore made 

possible further mathematical activity (Figure 5-5).

Roberta and Kristina

A second pair, Kristina (a 13 year old) and Roberta worked more slowly than did 

Dan and Kerri, and investigated only rectangles of size 3 x  n.i (The example worked was a 

3 x 5  rectangle.) Roberta and Kristina each kept their own records. They would mark off a 

rectangle, draw in the diagonal and record the number of unit squares through which the 

diagonal passed (Figure 5-6).

U m  grid

Figure 5-6. Roberta’s rectangles

4 This pair had less experience in the program (and with this type o f  inquiry) than did Dan and Kerri.
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After they each filled up a sheet of graph paper with a number of cases for 3 x. n rectangles, 

Roberta asked me what they should do next. I suggested she consider alternative ways to 

represent her data. We talked about this, and I offered her some suggestions. Roberta 

decided to construct a graph that compared the number of squares the diagonal passed 

through with the length of the variable side (Figure 5-7). She set up her graph (with my 

assistance), and then realized that she didn’t have the 3 x 1 case and the 3 x 2  case. So she 

added them to her graph paper (see right hand comer of Figure 5-6). She, then, was able to 

plot the points for all of the 3 x 1  through 3 x 12 rectangles.
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Figure 5-7. Roberta’s graph of the relationship between length of variable side and number 
of rooms entered

While Roberta constructed the graph, Kristina continued to generate more cases of 3 x n 

rectangles. Roberta called me back a while later to show me her graph. She was excited by 

it, and so was I. The pattern was striking. I asked her if the graph could help her predict the 

number of squares the diagonal would pass though for other rectangles. She confidently 

responded that she could and proceeded to mark points on the graph for rectangles she had
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not drawn by repeating the pattern she had noticed. It is interesting to note that the rectangle 

she drew for the 5 x 12 has the diagonal marked across only through 11 columns of unit 

squares. Yet, her graph correctly shows the diagonal intersecting 12 unit squares.

This series of actions and inter-actions might be illustrated as follows (Figure 5-8).

Robertas Pattern

R o b e rt^

record of 3xn 
 cases .

p ro rrp t
3x5

sp ed a fz in g  

brings forth

Figure 5-8. Observing Roberta’s actions and interactions that brought forth her world of 
significance

Notice how Roberta (and Kristina) began by specializing (Figure 5-8, a); they considered a 

set of cases involving rectangles whose dimensions were 3 x n. Like Dan and Kerri, 

Roberta and Kristina’s actions were occasioned by the prompt; but, unlike Dan and Kerri, 

Robert and Kristina placed significance on the dimensions of the particular example 

offered. Their actions suggest that they defined the task to be the construction of a set of 3 

x n rectangles. Once they had completed that task, no further mathematical actions were 

occasioned for them (even though they each had a set of records in front of themselves) 

until I further interacted with them (Figure 5-8, b). Roberta asked me what should they do
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next. In the inter-action between us, a number of possibilities for further mathematical 

activity were proposed. Roberta choose, from that set of possibilities, to make a graph. In 

that process, she transformed her record of the number of rooms (unit squares), for each 

rectangle, into an ordered pair and plotted it on a coordinate system (Figure 5-8, c). (This is 

my explanation of what she did. I doubt she would have explained her actions this way at 

all.) The graph occasioned her patterning (Figure 5-8, d), from which she subsequently 

generalized (Figure 5-8, e) and predicted the number of squares on the diagonals of 

rectangles she had not yet (and would not) draw (Figure 5-8, f). It needs to be said that 

although Roberta could predict how many unit squares the diagonal intersected, given her 

actions, I do not think she considered why the pattern worked. Finally, it is worth knowing 

that the interactions could have been analysed by focusing on my interactions with Roberta 

(Figure 5-9). That is, I was occasioned to suggest that Roberta could proceed by making a 

table or drawing a graph.

I  (Elaine
recor<

Robert a2 cases

(^interaction^ 
brings forth

World of Significance

Roberta
record of 3xn 

casesElaine,

Figure 5-9. Researcher’s world of significance included Roberta and the artifacts of her 
work
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Jolene and Calvin

Whereas the prompt was the first in a series of triggers which occasioned the two 

pairs, we have seen so far, to look for either number patterns or a relationship between the 

dimensions of the rectangle and the number of unit squares the diagonal passed through, 

Calvin and Jolene, a mother-son pair, spent most of the evening trying to determine if, in 

fact, the diagonal passed through any particular unit square or through the point where four 

unit squares met (therefore not passing through any one of them). Their actions were 

constrained by Calvin’s difficulty with drawing a straight line, and their need for a straight 

line to carry out the task. Inhibited by Calvin’s fine motor skills, he and his mother, with 

the help of Lynn Gordon Calvert (a fellow researcher), spent most of their time that night 

developing a strategy to determine how they could be sure of where exactly the diagonal 

was to be placed. The technique they developed involved the rectangle’s symmetry. They 

began by identifying the midpoint of the diagonal by counting unit squares both vertically 

and horizontally to find the centre of the rectangle. Calvin would mark that point and then 

they would look for the mid-point between the center and the comer of the rectangle 

(Figure 5-10).

Figure 5-10. Calvin and Jolene’s technique for finding the position of the diagonal 

Once they had identified that point, Calvin marked it and then turned his sheet upside down 

to find the corresponding point on the other side of the centre point. Lynn encouraged 

Calvin and Jolene to use properties of the symmetry to find the corresponding point rather 

than turning the paper upside down and this became a key feature of the way in which they 

acted that night. Using symmetry Calvin and Jolene were able to determine which of the 

unit squares the diagonal passed through and which of those it missed. This mother and
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son pair never did look for the relationship between the dimensions of the rectangle and the 

number of unit squares the diagonal passed through. However, they did try to understand 

both how and why the symmetry worked, not just that it worked.

exploring
symmetry

case

drawing a 
case

Figure 5-11. Calvin’s interaction with prompt, materials and researcher
Tracing their activity we observe that, like the others, they began by drawing a

specific case (Figure 5-11, a). Immediately, however, their activity was constrained by

Calvin’s difficulty drawing a straight line. Hence, when they tried to read the diagram (that

is, count the number of unit squares that the diagonal passed through) they could not decide

whether the diagonal was passing through the point between four squares or one of the

squares itself (Figure 5-11, b). Lynn, occasioned by Calvin’s actions, interjected with a

suggestion which in turned occasioned Calvin (and Jolene) to explore the symmetry each

time they considered a new example (Figure 5-11, c).

Explaining O ccasion ing

In each of the examples above, what could be said to occasion and sustain the 

mathematics activity that was observed? To what is their mathematical understanding 

indebted? Von Forester (1981) says that the environment is a source of energy-rich matter 

from which the individual can select, transform, and integrate into his or her structure. 

Given that all the participants worked on this prompt for more than an hour, we can assume
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that the environment was indeed energy-rich. However, the environment did not appear to 

contain the same matter for all the individuals; or if it did, that matter was taken up and 

transformed in very different ways. That is, each pair and in some cases each person in 

each pair was occasioned, by what was for them energy-rich matter, to bring forth different 

mathematical knowing. Each person integrated some matter into their unique structures and 

transformed it through their actions and inter-actions. This is knowing in action, or 

perceptually guided action that brings forth a world of significance which includes 

mathematics.

The way in which structure determinism played out, in the occasioning of 

mathematics knowing, was made evident to the observer by the participants’ variety of 

actions and inter-actions given the prompt. Dan and Kerri’s structures (we don’t know 

whichs) were such that this prompt was a problem about rectangles with common areas and 

involved number patterns. In contrast, for Calvin and Jolene, the mathematics was in the 

creation of patterns of symmetry from the geometry of the rectangles. For Dan and Kerri, 

patterns were created from relationships between numbers. Roberta6 distinguished visual 

patterns in a graph. Although there were a range of activities in response to the prompt 

offered that evening, from my perspective, all of the participants’ actions were 

mathematical and brought forth “objects” that constitute mathematics. Their mathematical 

knowing was occasioned, initially by the prompt and then by a variety of inter-actions 

throughout the session: some involving the artifacts of their thinking, others, the 

conversations with their partner or the facilitator (myself and fellow researcher). As an 

observer, I noted that each person solved problems that were created, moment by moment, 

in inter-action with features of the environment and their own thinking.

5In some of the cases, it is very difficult to distinguish who did what. Therefore, I am attributing the 
mathematical understanding to the pair.
6 1 am unable to say how Kristine’s thinking was involved because I don’t have adequate records of the 
interaction between Roberta and Kristine.
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When I further consider the role the environment played in people’s mathematical 

understanding, I note that the environment, or more specifically, features of it were 

necessary for all of the mathematical activity that occurred. Clearly, without the prompt the 

participants would not have thought about such a question. But, it is also clear that there 

were a number of interactions which people had with each other that also propelled their 

activity and thinking in one direction or another. One might ask, “If the prompt played such 

a significant role, why do I insist on denying that it caused their thinking?” My answer is 

that the prompt (like other events and things in the environment) triggered their thinking 

but, they, themselves brought forth significance out of the prompt as they interacted in this 

particular context. (In fact, I observed them pose and “solve” quite distinct problems and in 

doing so brought forth several different but potentially intersecting worlds.) Hence, I think 

it makes better sense to suggest that the prompt did not cause their thinking but occasioned 

it. The explanation of my observations is more coherent when I understand the person and 

the environment as co-responsible for the mathematics knowing that emerged in interaction 

rather than understanding the environment or the individual as being solely responsible.

As was observed in the illustrations offered in this chapter, when a person engages 

in mathematical activity, the world (multiverse) changes. It changes as the person brings 

forth his or her world o f significance, and the worlds of others change because the 

person’s world is interlaced with their worlds.

An Ecological P e rsp ec tiv e

Throughout this chapter, I have claimed that the primary mechanism for human 

knowing is co-dependent interaction (structural coupling) with one’s environment. The 

environment is not simply the place where cognition takes place nor is cognition action on 

the environment. Rather, my claim is that the person and the environment are, at once, 

brought forth in their recurrent inter-actions and bring forth those same inter-actions. This 

is knowing in enactivist terms.
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As already alluded to, enactivism invokes an ecological logic where knower and 

known are seen to exist in relationship (see Davis, 1996). There are two immediate 

implications of this logic for my work. The first is that the enactivist perspective requires 

we reconsider using the person as the unit of analysis for studying mathematics knowing. 

Although cognition has traditionally been studied by psychologists as an individual 

process, enactivism suggests that cognition is better understood if we study the person-in- 

an-environment (see also the work of Bauersfeld and Cobb, 1995a; Lave, 1988; and 

Bruner, 1996; Confrey, 1995b). I propose we should consider the following sites of 

interaction when we study mathematics knowing in action: a person interacting with his or 

her own thoughts, two (or more) people interacting with each other, and a person 

interacting with the interactions of others. When we attempt to understand cognition, not in 

terms of the individual learner, but, in terms of the person-in-an-environment, we observe 

that any change to the person or the environment has the potential to change to the system. 

Hence, it is important to study mathematics knowing in ecological terms. In the next 

chapter, I develop an illustrative case of one parent-child pair who were also offered the 

diagonal intruder prompt by interpreting their knowing in these various sites of interaction.
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Chapter Six 

SITES OF INTERACTION AND SOURCES OF 

PERTURBATIONS

Perception does not present itself in the first place as an event in the world to which 
the category of causality, for example, can be applied, but as a recreation or re­
constitution of the world at every moment. In so far as we believe in the world’s 
past, in the physical world, in ‘stimuli’, in the organism as our books depict it, it is 
first of all because we have present at this moment to us a perceptual field, a surface 
in contact with the world, a permanent rootedness in it, and because the world 
ceaselessly assails and beleaguers subjectivity as waves wash round a wreck on 
shore. All knowledge takes its place within the horizons opened up by perception. 
Merleau-Ponty (1962, p. 207).
A person’s mathematics knowing has the potential to be occasioned, when the 

person is interacting with aspects/features of his or her world. As Merleau-Ponty (1962) 

taught us, knowing happens in action as our percepts interact with those features of the 

environment that they can experience. Recognizing that cognition is perceptually guided 

action which brings forth a world of significance, I find myself asking: Where does one 

locate such action, and how does it come about? Where might I focus my observing, if I 

want to understand the relationship between knower and known? The purpose of this 

chapter is to identify and describe the sites (situations) which co-emerge with mathematics 

knowing using an illustration from the parent-child mathematics program, and to 

investigate the relationship between the person and his or her environment to better 

understand the ways in which mathematics knowing comes about.

I am specifically interested in the ‘micro-sites’ of mathematics knowing, and how, 

in the local situation, mathematics knowing is triggered, propelled and sustained. This is in 

contrast to researchers who study situated cognition, which involves the either the micro­

culture of the classroom (Bauersfeld, 1995a), or what might be thought of as the macro­

culture; that is, in the context of well established communal or societal routines in which 

people participate such as work or school (Lave, 1988; Nunes, Schliemann and Caraher,
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1993). Through multiple analyses of parent-child interaction, I have identified four 

categories of sites of interaction wtiiich appear to afford opportunities for mathematics 

knowing. They include interaction uvith other people, interaction with physical material, 

interaction with cultural artifacts and interaction with one’s own thoughts. As suggested by 

the enactivist conception of environrment, sites of interaction arise for me, the observer, as 

distinctions of my coherences of experience. Like knowing itself which is observed in 

action, sites of interaction arise and tretreat in spaces created through people’s knowing in 

action. This is a circular phenomenom, in that, knowing points to interaction which points 

to knowing. I, personally, see no reasson to simplify the circularity or to reduce it to a linear 

phenomenon; instead, I see potential in acknowledging the circularity and embracing it. 

However, in order to discuss matthematics knowing, sites of interaction, or even the 

knower (as I do in the next chapter)*, I must jump in and begin talking about something. 

Hence, I do so with the proviso nthat these are mutually dependent or co-dependent 

phenomena that co-emerge in action a n d  exist in relationship.

Observing th e  S ites  o f  Mathematics K nowing in Action

Where might I fix my gaze rin order to observe mathematics knowing in action? 

Where will I find it? Varela et al. (19*91) offer some direction. They suggest that knowledge 

is “found in the interface between mimd, society and culture rather than in one place or all of 

them. “Knowledge, ” they say, “doecs not exist in any one place or form but is enacted in 

particular situations" (emphasis addend, pg. 179). Hence, I look for mathematics knowing 

or mathematical behaviours in particuular situations. Once I locate what I understand to be 

mathematics, then, I can step back and ask, “What is the nature of the interaction that 

brought the mathematics forth?”.

Mathematics knowing is enacrted in particular situations; it arises when one interacts 

with others, when one thinks about cone’s own thoughts, when one interacts with material 

features of the physical environment;, and when one interacts with cultural artifacts which
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may be physical or conceptual or patterns of behaviour enacted with others. These sites are 

potential sources of energy-rich matter for mathematics knowing. When I speak of the 

learner’s sphere of behavioural possibilities, it includes all of these dimensions because it is 

in interaction, in all of these modes, that a person enacts mathematics knowing. I must be 

cautious however. By distinguishing, hence separating, the sites of interaction and sources 

of energy-rich matter in the way that I am in the process of writing about it, I may occasion 

the belief that these sites are distinct from one another, are hierarchical or occur in a linear 

way. I do not wish to suggest this. In fact, my observations lead me to understand the sites 

of interaction as fractal spaces in which mathematics knowing at any particular moment 

involves interaction in all of these spaces at once .1 The distinctions I make are made for 

explanatory purposes; it is simply too difficult to speak of all of the dimensions of 

mathematics knowing at once. When I distinguish a particular form of interaction, I must 

keep in mind that the interactions in the other dimensions are co-implicated (complicit) in 

the person’s knowing at that moment, even though I am not articulating that complicity.

Sites are identified, when I observe some expression or behaviour that I understand 

as mathematics knowing. In other words, when I distinguish a mathematical action, I can 

identify the interactive space with which it co-emerged. These interactive spaces both orient 

the knower and are orientations of the knower. Hence, when I observe a particular action it 

is often just as sensible to distinguish it as a site of interaction as it is to distinguish the 

interaction that brings forth the site.

Social interaction

The mathematics knowing and mathematical activity of parents and children in my 

research always involved the parents and children interacting with each other; that is, they 

shared tasks, talked to each other, asked questions, posed conjectures and expressed their

1 I will elaborate on this further in chapter eight.
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thinking for the other. I refer to this form of interaction among people, in language and 

other purposeful communicative action, as social interaction, and I claim it is a site of and 

for mathematics knowing (Figure 6-1).

P e r s o n ^ J

Figure 6-1. Interactions with another person a site of mathematics knowing

Social interaction includes body language and verbal utterances; anything that coordinates 

people’s actions. Therefore, in my study of mathematics knowing in action, social 

interaction is not restricted to the verbal domain; however, it is primary. Of course, social 

interaction happens in a physical domain but I allow physical features of the verbal 

interaction to slip into the background (but I do not want to dismiss them). Any interaction 

distinguished as social necessarily involves a physical component (sound, image, 

movement, etc.); but by distinguishing it as social, I mean to highlight the significance of 

the interaction that keeps the people in relationship with each other, and how this plays a 

role in the people’s mathematics knowing in action.

Clearly, the parent-child mathematics program was designed to take advantage of 

social interaction. As was intended, children and parents did mathematics together, there 

was also some interaction among the pairs (for example, when I asked them to put their 

results up on the board). There was also the interaction between the participants and myself 

which can be classified as social.

The Interactions o f  Others

A second source of energy-rich matter, for a person, is the interaction among other 

people. There are times when, although I am not interacting with another to maintain our 

relationship, his or her actions and interactions are realized in my environment, and 

subsequently occasion my knowing. Consider overhearing a conversation or reading a 

book. I do not want to call these interactions social, since I am keeping that term to refer to
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interaction in which two, or more, people intend to offer and respond to each other in a 

particular situation and maintain a relationship. Yet, the interactions of others, whether they 

are in the moment, as they would be in a classroom discussion, or they are artifacts o f  past 

interactions of others, such as a book, a worksheet or a piece of someone’s work, are all 

forms of interaction which have the potential to occasion the mathematics knowing of a 

third person.

When a person overhears a conversation or a snippet of a conversation among 

others, this person is not in social interaction with the people he or she overhears in  the 

same way that he or she is interaction with others when conversing with them. Further, a 

person reading a book is not in interaction with the author, as he or she would be if talking 

to the author directly. Neither is that person in interaction with the physical environment in 

the way that he or she might be when manipulating physical objects, like dominoes or 

algebra tiles. Yet over hearing a conversation, reading a book or studying the artifacts of 

someone else’s work all have the potential to occasion a person’s knowing. I diagram these 

forms of interaction in the following ways (Figure 6-2).

artifacts
of

another’s
thinking

E J H 5 J

^ P e r s o n J ^ P e n s o n J

Figure 6-2. The interactions of others is a source of energy-rich matter whether that 
interaction is with a) the artifacts of someone’s thinking or b) the interactions of others 
themselves

The interactions of others is an important site for mathematics knowing. We know, 

from experience, the possibility of learning from reading a book or studying a diagram or 

someone else’s proof without that person present. Although the mathematics program for
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parents and children did not build on the interactions of others as much as it could have, 

this site of interaction was evident in the parents’ and children’s knowing in action.

Physical materials

The fact that people can act with and on physical materials in their environments, as 

well as produce physical materials with their actions, is obvious. Although it is easy to 

observe the objects students manipulate with their bodies, it is not so easy to observe how 

the manipulation is a co-ordination of perception, movement, and thought and is itself a 

mathematical act and mathematics knowing. Further, it is easy to forget that physical 

features of the environment are just like all other features of the environment in that they do 

not exist for all people. Rather, the physical environment is understood in relationship to a 

particular person and develops as it is brought forth in action.

The physical environment, then, becomes a third site of interaction with which 

mathematics knowing co-emerges. A person’s mathematics knowing can be observed to be 

occasioned by features and/or objects in his or her physical environment. Thus, I reason 

that the physical environment is a source of energy-rich matter from which the person 

selects, and this energy-rich matter is transformed (through the creation of signs and tools 

for example) and integrated into the person’s structure. My understanding of the physical 

environment as site of interaction and source of energy-rich matter is represented with the 

diagram below (Figure 6-3).

Figure 6-3. Physical materials are a source of energy-rich matter

O ne’s own thoughts

It is obvious, just by reflecting on our own thinking, that things can “come to 

mind” or we can “call things to mind” without their immediate presence. Think about the

P e r s o n !

V + ( Physical ).Environment
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internal conversations we have with ourselves, remembering something or the flashes of 

insight that come to us seemingly from nowhere. Because we are able to think about our 

own thinking, one site of interaction is our own thoughts. 2 This is not to say that one’s 

own thoughts are separate from one’s interactions with others, physical materials, and 

cultural artifacts. Rather, it is to say that in the moment (because indeed one has had other 

interactions) one can think about “something” quite independently of an interaction with 

something or someone outside of one’s self. I illustrate a person acting on his or her 

thoughts in this way (Figure 6-4).

Persô T̂

Figure 6-4. Person’s knowing can be occasioned by his or her own thoughts

I have found this to be the most difficult of the sites of interaction to observe in 

others. Yet it seems obvious when I observe myself. There are multiple reasons for this. 

The first reason is that when one’s thinking is occasioned and propelled by one’s own 

thoughts there may not be any external behaviours that can be observed. Secondly, one’s 

thoughts may be triggered by the unconscious (Hadamard, 1945/1954) and the interaction 

is not observable, even to the knower him or herself. The third reason is that all thinking 

constitutes what we observe as one’s own thoughts, regardless o f what occasions the 

thought. Hence, it is difficult to isolate fragments of a person’s knowing and say this is 

precisely when the person is interacting with his or her own thoughts.

Human beings exist in social and cultural relations; thus, even when we observe a 

person thinking about his or her own thoughts, in what appears to be isolation from others, 

the social and cultural dimensions of his or her knowing is called into the moment. One’s

2 Von Foerster (1981) reminds us that there are more neurons in contact with each other than there are
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history of social and cultural relations are co-responsible for the person’s structure, at the 

moment he or she is observed. This is the nature of structure determined living beings.

When I point to an observation and suggest that this is where I see a person’s 

knowing occasioned by his or her own thoughts, I am suggesting that there are no other 

physical, social or cultural interactions observed to have occasioned the thought. On this 

basis, I infer that the expressed thought was triggered by the person thinking about his or 

her own thinking.

C on tex t

As human beings, we observe ourselves and others, and in doing so we make 

distinctions that our thinking is: personal— “It’s just the way I think about it;” physical—“I 

found the pattern in the numbers;” social— “I got that idea from Tom;” or cultural— “That is 

a problem about relatively prime numbers.” The distinctions that I have made about these 

sites of interaction, or that which triggers an idea, occur not in first order experience (the 

interaction itself) but in the ordering of my experiences through languaging. I propose that 

the distinctions I have made can be used for observing mathematics knowing in action 

because they point to where we can look to find mathematics knowing in action. In this 

way, the “sites of interaction” can be viewed as a model for observing mathematics 

knowing in action (Figure 6-5).

sensory neurons connecting us with our environment.
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P e rs o nw m j

w
(  Physical 
I  Environment

Figure 6-5. A model for observing interaction in context
In the following section, I offer illustrations of these four sites of interaction. It is

important to note that usually when observing mathematics knowing in action we do not 

observe a person acting in the physical domain at one moment, then, in the -cultural at the 

next. Human knowing is a complex phenomenon which happens all at once. We might 

observe these sites as braided together, in that complexity which is commonly called 

context. Context is very similar to the notions of environment and world. Ho-wever, in the 

third chapter where I discussed environment, I did not suggest that one’s ow n thoughts 

constitute a feature of one’s environment. Here, I explicitly include one’s ow n thoughts 

and suggest that, in as much as they are something with which one can interact, they can 

occasion mathematics knowing. Hence, they are part of the context.

Context, then, is co-emergent with human knowing. Both are manifested in action, 

in the temporal now and are historical phenomena. Context co-dependently aaises with the 

human knower through a series of recurrent interactions in an environment. Thus, when a 

person interacts in an environment and with his or her own thoughts, the person himself or 

herself has a history which makes possible those thoughts. This is true of a ll interactions. 

Whenever a person interacts with the objects and features of his or her environment, the 

person brings into the moment of interaction a lived history of interactions-, and context 

arises as a complex of the person-in-an-environment.
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When two or more people interact, they bring their lived histories of interacting into 

the moment and site of interaction and context arises. Context both makes possible cultural 

knowledge and includes culture. Without context, new members of the social group would 

not have an interactive space in which the cultural knowledge is present in the form of 

energy-rich matter from which he or she could select. In other words, culture is made 

possible by interacting with others who interact and have interacted with others. The 

interactive space is precisely where mathematics knowledge exists. Mathematics knowledge 

is as Davis (1996) describes, “our established and mutable patterns of acting.... Our 

mathematical knowledge... is neither ‘out there’ nor ‘in here,’ but exists and consists of 

our acting” (pg. 79).

In te rp re tin g  and Illustrating  S ites  o f In teraction

In the next section, I offer the case of Jake and Cathy as a means of illustrating the 

various sites of interaction. I discuss how this father and his daughter’s mathematical 

actions are observed to co-emerge with the personal, physical, cultural and social 

interactions in which they participate.

Using artifacts from the activity of a father-daughter pair who considered the 

diagonal intruder prompt introduced in the last chapter, I elaborate on the sites of their 

interaction. In order to portray the complexity of their activity, I offer a narrative 

constructed with a lengthy transcript and a commentary based on my observations and 

interpretations of this pair’s activity. For organizational purposes, I have broken the 

relevant pieces of the transcript into chunks and have interspersed my comments.

Jake and Cathy

Jake and his daughter, Cathy (whom was first introduced in chapter two), were part 

of the group described in the last chapter who responded to the diagonal intruder prompt 

(see Chapter Five). Jake and Cathy began by working together using a single sheet of
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paper. Cathy acted as the scribe. However, differences in the way they desired to proceed, 

and the offer of a second sheet of paper had the effect of their joint activity falling apart 

only ten minutes into the session. For the rest of the session, they worked separately but 

interacted to check on what the other was doing or to share something that one of them had 

noticed.

Transcript 6-1. Jake and Cathy respond to diagonal intruder prompt

For the first ten or so minutes that they worked 
together, Cathy drew the rectangles on a sheet o f  
paper and Jake instructed her and kept track of 
what she was doing.

5 You've got to draw your diagonal yet. Comer 
to comer. ‘Kay, ” Jake directed Cathy.

“Everyone— ” Cathy did not complete her 
sentence.

“There’s two. It should go right through the 
10 middle. ‘Kay. If this was drawn properly, it 

would go right through the middle. Like this, ” 
Jake indicated. “Okay ? ”[see Figure 6-6, a]

These actions are social. 
Working together, Jake offered 
directions and Cathy 
responded with actions that 
resulted in physical artifacts of 
their acting and interacting.

Jake’s comment to Cathy 
(social) appears to have been 
occasioned by what were 
discrepancies, for him, in the 
material artifacts Cathy had 
created. Her diagonal line was 
not straight. The notion of 
‘straight’ can be observed as a 
cultural distinction.
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\ a

\ b

c.■a
2x2, 3x3 and 4x4  

squares
3x5 and 4x 6 
recatangles

Figure 6-6. Reconstruction Cathy and Jake’s first records

“Okay, ” Cathy responded.
“So, it would be two. Okay, this was two by 

15 two. Let's go to three by three. " Jake directed.

“Here you can use another space, ” Cathy said.

“Three by three, ” they said in unison.
“It will go [through] three, ” Jake noted. [Figure 

6-6, b]

20 “Okay.”
“—equals four by four. You are through the 

middle, so you can only go 1,2,3,4. ” [Figure 6- 
6, c]

“How many— ” Cathy started to say.

25 “Just a minute. Just a minute. You go two by 
two, you go through two. Three by three is 
three. Four by four is four, ‘cause you just have
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Social interaction is maintained 
as Jake continued to direct 
Cathy.
Cathy acted within the 
affordances of the physical 
materials.

Jake commented on his 
observation of the physical 
properties of the diagram, 
which was drawn on the page 
in front of him. His utterance 
seems be more for himself than 
for Cathy.

Jake continued to talk out 
loud, seemingly for his own 
thinking; but the utterances are 
part of the physical space in 
which Cathy is also 
interacting.
Cathy began to interject but 
she was interrupted by her 
dad.
Jake articulated his personal 
reasoning out loud. Once he 
understood what was
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to go the middle one, cross diagonally each one. happening he turned his 
Okay?" actions back toward Cathy.

Jake and Cathy began by specializing, as is evident by their working papers (Figure 

6 -6 ). They first considered 3 examples of perfect squares. Although Cathy had trouble 

drawing a straight line, this did not seem to be problematic for them since Jake was able to 

deduce where the diagonal should go if it were straight. As seen in the illustrative case 

involving Cathy and her mother in chapter three, Cathy had a tendency to work with 

geometric images. Her acute visualization skills meant that she did not need to be convinced 

by a very accurate drawing to know where the diagonal passed; like her dad, she could 

imagine it. Cathy and Jake generated only three examples of squares before their activities 

were diverted away from the special case of squares; however, they did appear to have 

generalized from those cases (Transcript 6-1, lines 18, 25-28).

Transcript 6-2. Tension arises between father and daughter

30

35

40

"Can I just show you something?" Cathy asked 
as she began to draw another rectangle on the 
graph paper. [Figure 6-6, d]

“Yeah. Let’s not do one too big," Jake said. 
“Let’s do this step-by-step. Okay?" Again the 
line Cathy drew for the diagonal wasn’t very 
straight.

“That doesn ’t work. Let's use a straight line. ’’ 
Jake commented. He redrew the diagonal on the 
three by five rectangle Cathy had constructed.

When he finished Cathy counted under her 
breath, “—Seven. ”

“That’s ... a rectangle," Jake commented. 
“That’s two, four, five by three. ”
Cathy mumbled.
“Okay, this is [five] by three. You want one,

Cathy acted in the social space.

Jake and Cathy were in social 
interaction and with the 
physical space. But this 
context also includes the 
cultural. I can interpret Jake’s 
‘step-by-step’ comment as 
pointing to a systematicity that 
is highly valued in 
mathematics.

Cathy acted on the physical 
artifacts their thinking.

Jake addressed Cathy.
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45

50

55

60

65

two, three, four, five, six? Okay. ”
Cathy began to draw a bigger rectangle on 

another part of the paper.
“Cathy. Just wait a minute. Cathy. Cathy.” 

Jake said trying to stop her from continuing. 
“Don't go all over the place. What we want is to 
go one over the top of the other one and just keep 
expanding and it’ll still be the same thing, 
because otherwise we will not have enough 
room. Okay. What do you have here?" [Figure 
6-6, e]

Cathy was not pleased to be drawing the four 
by six rectangle on top o f the three by five. On 
the audio tape she can be heard to whisper, “This 
can be our ugly sheet, an ugly sheet, our rough 
copy or something. ” She took a fresh sheet o f  
paper and started to draw a rectangle. “This isn ’t 
as complicating. ”

“Let’s count this back. One, two, three, four, 
five, six, seven, eight. Three by six. ’’ Jake 
noticed Cathy drawing on a new sheet o f paper. 
“Don’t start on that. You can still get lots on 
here, ” he said pointing to the sheet they had been 
using. “Okay?”

Cathy acted in the physical 
space.
Jake’s actions were occasioned 
by his observation of Cathy’s 
actions.

Cathy’s actions here are 
complex. In response to her 
dad’s request, Cathy erased the 
rectangle; but under her breath 
she expressed her 
dissatisfaction with the quality 
o f the records that she was 
producing. On one hand, we 
might observe her utterances 
about the records to be 
personal, or for herself. On the 
other, hand she uttered this 
loud enough to be heard; 
hence, her comments had the 
potential to heard by her father.
Cathy turned her actions 
inward (personal domain) and 
removed herself from the 
social space; however Jake 
kept her in the social domain 
by asking her to work on the 
common record they were 
keeping.

It was about ten minutes into the class when I stopped to look at the records they 

were keeping. I immediately noticed that the rectangles they had drawn were superimposed 

on one another. Unaware of the conversation Cathy had been having with her dad about 

saving space on the graph paper, I gave her another sheet of paper on which to write. She 

happily accepted it. Once Jake and Cathy each had their own sheet of paper, they no longer
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worked together in the same way ;3 instead, they each carried out their own inquiry, and 

referred to each other’s work to see what the other was doing or to compare results.

As the transcript of their conversation indicates, Cathy likes to keep neat and 

orderly records (Transcript 6-2, lines 55 - 58). Once offered her own sheet of paper, she 

immediately wanted to recopy all of the work she had done and throw out the “ugly” 

copies. I suggested she not do that but, instead, continue on from where she w as .4 She 

took the new sheet and carefully drew the 4 x n rectangles, each on their own part of the 

paper. Then, she noted the size of each rectangle and the number of squares the diagonal 

passed through just under the corresponding diagram (Figure 6-7). In her words, this was 

not nearly as “complicating” (Transcript 6-2, line 61).

3 This is something that we have seen many times in our research. Often when people have only one sheet 
of paper between them, they work together but the same people when given two sheets o f paper work in 
alone or in partial isolation of the other.
4 Interestingly, she did throw the messy working papers out that night in spite o f my suggestion. Thus, I 
do not have those records.
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Figure 6-7. Cathy’s working paper

Cathy’s emotions (likes, dislikes and frustrations) played an important role in her 

actions (and hence her knowing) that night. Not only were they part of the reason she and 

her father worked separately, but her emotions were fully implicated in her mathematics 

knowing. Her desire for neatness, for example, was manifested in her mathematics 

knowing. When her working papers were messy, she found them complicating. Hence, 

she simply did not draw rectangles and count squares but she drew them neatly and erased 

any, of what she viewed, as extraneous marks. She kept a track of the number of squares 

the diagonal passed through, under each rectangle, and refused to make a table of them on a
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sheet of scrap of paper (Transcript 6-2, lines 50 - 55). Working on her own meant, she 

was able to keep her records the way she liked them, and in a way that made sense to her.

Transcript 6-3. Prompting Cathy to look for a pattern in the numbers she was generating

“If you just wrote those numbers down 
[squares on diagonal]. Just write them down 
here, ” I pointed to the side o f Cathy's sheet. She 

70 hesitated “You don’t like doing that," I 
acknowledged. “Just write them on this piece o f  
paper, ” I said as I offered her a scrap.

75 “Hm, ” she uttered as she wrote the numbers 
down in a list on the side o f her sheet (Figure 6- 
7).

“Four, six, eight, eight, ten, eight. Is that what 
they are? " I asked. “You and your dad are getting 
different answers, ” I said as I looked over his 
records. “Oh. He didn ’t do a four by two. ”

80 “He didn’t do a four by two? But I bet he did a 
two by four, ” Cathy said looking over at his 
sheet. “Not that either! "

“Oh, I did it. But I just looked at it, so I could 
see it. Four by two ? Cathy, I got one, two, three, 
four, ” he said as he counted.

“The answer is four, six, eight. It is like you 
are counting by twos. But it is four, six, eight. 
Two, four, six, eight, ” she skip counted. “Four, 
six, eight. ”

“But then look. Four, six, eight, eight," I 
responded.

“Yeah," Cathy knew her pattern did not 
continue. “But in the beginning."

85

90

95
“Yeah, in the beginning." I agreed.
“Four, six, eight, eight, ten, eight, ” Cathy read 

the numbers out loud.

“Okay, how about a four by nine?" I prompted 
her to generate some more cases. “Do you have 
enough room?"

I entered into social interaction 
with Cathy as I tried to 
convince her to keep a table.

I continued to interact with 
Cathy but drew her attention to 
her father by observing what 
he had been doing. In this way 
I interacted with the artifacts of 
his actions.
Cathy too interacted with the 
artifacts of his actions.

Jake interacted with Cathy and 
me in the social domain which 
then included the three of us.
Cathy was trying to reason 
about the numbers she had just 
written down.

I interacted with her and her 
artifacts and noted my 
observation.
Cathy expressed her personal 
thought in the social domain.

The utterance put forth her 
thinking into the physical 
domain; hence, it had the 
potential to occasion an other’s 
actions.
In spite of where her thoughts 
were directed or to whom they 
were intended, I responded to 
them with a suggestion she do
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another example.
100 Cathy went to erase the table of numbers she Cathy put order to the physical

had just made. space.
“Keep your table there. That’s a good thing to Social interaction was

have, ” I told her. sustained as I directed her to
keep her table.

When I saw the way in which Cathy was keeping track of the numbers, I worried 

that she would find it difficult to find a relationship between the dimensions of the rectangle 

and the number of unit squares the diagonal passed through. (I did not notice that her 

diagrams were pointing to other possible relationships.) So, I encouraged her to work with 

the number of unit squares the diagonals passed through, rather than the ratio of the sides, 

for example. That record is on the side of her sheet (Figure 6-7). As was the case when she 

and her mother were working on the tiling prompt (Chapter Three), Cathy only made a 

table after I requested she do so. It was just as unlikely for Cathy to construct a table as it 

was likely for Dan and Kerri to begin with one.

Jake, on the other hand, had been looking for a number pattern all along. He 

worked at the task quickly and intensely. His working papers (Figure 6 -8 ) demonstrate 

how systematically he worked. Notice, however, that as orderly as he was, he was not 

bothered by turning his paper upside down to make more space. Furthermore, his records 

indicate to me that he imagined the sides of the rectangles since he did not draw them. 

Obviously, this method was not complicated for him like it was for Cathy.
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Figure 6-8. Jake’s record of the rectangles he considered

I might interpret Jake’s actions as simply trying to conserve paper but this was likely only 

part of the reason he worked the way he did. The rectangles he drew were (primarily) a 

preliminary step towards resolving the problem that he was investigating. Although he 

drew the diagonals for many rectangles (Figure 6 -8 ), his records suggest, to me, that his 

pattern noticing was based on the tables he was generating on a separate sheet of paper 

(Figure 6-9) not on his drawings. (This is quite a contrast to the attention his wife and 

daughter paid to the geometry of the tiling situation they investigated—see chapter three). 

At least in the beginning, Jake’s drawings were not the focus of his search for pattern, his 

number tables were. Later in the session, however, Jake did refer back to his diagrams as 

he attempted to relate the generalizations he made about the numbers in the table to the 

geometry of the situation. It was then that his diagrams became significant again.
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Figure 6-9. The records of the tables Jake used to understand the number of unit squares a 
diagonal passed through for each distinct rectangle

Over the course of the evening, Jake generated many instances as he studied the 

results for the 1 x n cases, then the 2 x n cases, then 3 x n and so on. He would generate 

examples just until he could formulate a generalization based on some pattern he noticed. 

For example, after just three cases he noted that for the n x n rectangles the diagonal 

crossed through n squares and went on to another type of rectangle. Working much more 

quickly than his daughter, he found many patterns, and realized that rectangles of different 

k x n (where k is constant) generated different patterns, and that these patterns were related 

if k and n had a common factor. It also is interesting to note that, although he used 

conventional notation for his records, he did not use the notation conventionally. His table 

looks like a list of multiplication equations; yet, these are not products. The way he used 

the notation would make it very difficult, if not impossible, for a person who did not 

understand the context of Jake’s activity to know how 2 x 2  = 2 or 3 x 4  = 6 . On the other 

hand, his notation was clear to me, as I had been interacting with him and the artifacts of 

his thinking. His artifacts were part of my context; hence, they had meaning for me.
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Transcript 6-4. Jake formulates a rule

105 “This works the same as the other one: four Jake offered his explanation to 
plus eleven minus one. I go back to this pattern. ’’ me. This was within the social

space.
“So, the fifteen you are going to throw away 

because it just follows the one pattern?” I asked.

“Multiply and subtract one?’’ I mixed up his 
110 pattern. It was to add the dimensions and then 

subtract one.
“Well, I am going to do it. But you have to 

add. ” Jake corrected me.

Cathy was unable to keep up her father’s pace but she was influenced, at least in 

part, by his work. Figure 6-10 illustrates the way in which Cathy tried to made sense of the 

numbers she was generating from the rectangle pictures. Although I had instructed her to 

make a table, neither I nor Jake told her to compare the numbers by adding or subtracting— 

not directly in any case. However, Cathy was present when Jake explained, to me, the 

pattern he found for rectangles whose dimensions were relatively prime (Transcript 6-4). 

His rule was to add the dimensions of the width and the length and then subtract one. It 

was immediately after Jake explained to me what he had found that Cathy further reflected 

on her numbers by constructing a second chart (Figure 6-10) in which she added the 

consecutive pairs of the numbers from her first chart (Figure 6-9).

Figure 6-10. Cathy’s record of her search for a number pattern
Her chart suggests to me that her focus shifted from the number of unit squares on the 

diagonals of the rectangles to a pattern in the numbers themselves. Her manipulation of the

Well—
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numbers and her comment “don’t count” are nice examples of how a person orders the 

world for oneself. Her comment “very ODD” both uttered and written suggests to me that 

her emotions are implicated in her act of ordering. An exchange between Cathy and her dad 

nicely demonstrates the way in which her patterning developed, and how her mathematics 

knowing was laden with emotion.

Transcript 6-5. Cathy showing her work to her father

“I think I just figured something out, ” Cathy Cathy offered her observation
115 sa^ partly to me ^ut °bvi°usly intended for her in the social space.

father who had been working on his own.
“ Dad. Do you see a pattern in here?” She asked 

as she showed him her list (Figure 6-10).

“It goes up by two every time, " Jake offered.

120 “Well, ten and eight is eighteen anyway. Next
one just goes up by ten, eight— eighteen, ” she 
said. “And then I will do eight and twelve. Eight 
and twelve. Twelve— ” Cathy counted from 
twelve up to twenty to herself. “Okay dad don't 

125 count that one, ” she said as she pointed to the
second set often and eight. “See if there is a 
pattern in these. ”

“Yeah, ” Jake replied after glancing at her sheet.
“Cool! I just figured something out,” Cathy 

130 said excitedly.
“Well, you keep going like that because that is 

very good, " Jake commented.
Cathy continued to connect the numbers on her 

list with lines (Figure 6-10). “And then eight and 
135 eight is sixteen. Okay, and six and eight is 

something that I haven't got to yet. And then 
eight and eight is something I haven’t got to yet 
and ten and eight is something that I haven’t got. 
Eight and twelve is something I haven’t got to 

140 yet. ” She paused as if  in thought. “Very odd, ” 
she said as began to work quietly on something.
“—two, four, six, eight, ten. It works! It actually 
works! Six, seven, eight, nine, ten. I ’m right.
Yes it works! There is a pattern in here. That 

145 solves my problem to all the fours. And then it 
would be equal to twenty-four. Cool. And what
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Cathy worked with her own 
(personal) thoughts and the 
(physical) records of her 
activity.

When her dad did not respond, 
she specifically asked him to 
interact with her.
Jake read from the artifacts of 
Cathy’s thinking and 
expressed his knowing to her. 
In doing so he maintained their 
social interaction.
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ever this one is, it would equal to twenty-four, 
which is how many blocks?” She paused and 
then commented, “eight, six, ten. I can’t figure 

150 out how this works.”

Sites o f  interaction and sources o f  perturbations

With this case, I have illustrated how Cathy and Jake were occasioned by the 

prompt, my comments and each other to act mathematically. Also illustrated was how, at 

the same time, their mathematical actions were very much influenced by their personal 

dispositions and histories of experiences both within the domain of mathematics and 

outside of it—in other words, by their structures. From an enactivist perspective, it is 

assumed that Cathy and Jake’s distinct histories of interaction with mathematics (and in 

general) meant that they would act differently in the circumstances. However, because they 

worked closely together and were able to see and hear what the other was doing their work 

shared many similarities. Notably, their working papers and actions looked more like each 

others’ than those of the other parents and children in the room. Like the others, they 

specialized by taking particular cases. Because they did this systematically, and because 

they reflected on their own thinking, they were able to make some generalizations about the 

relationship between the dimensions of a rectangle and the number of unit squares its 

diagonal would pass through. Jake sought a generalization from the beginning. However, 

Cathy was prompted to do so only after certain interactions with me and her father; first 

when I suggested she make a table and then when she “noticed” her father’s records and 

overheard him explain his thinking to me. She did not “copy” her father’s thinking but was 

occasioned by it and the artifacts of it.

It is evident, from the examples provided throughout the transcript, that social 

interaction was a significant site of interaction and, hence, source of perturbations for Jake 

and Cathy as mathematics knowers, in spite of the fact that they worked somewhat
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independently of each other. In the transcript, there are many instances of how the social 

domain was a site for interaction that occasioned their mathematical knowing.

A social act, as simple as my suggesting to Cathy that she record her numbers in a 

table (Transcript 6-3, lines 6 8  - 74), occasioned a predictable (student) response— she 

made a table. The table she constructed made possible her skip counting. (At once, she and 

the world were transformed by her actions.) Making, and then having, a table changed 

Cathy’s sphere of behavioural possibilities. As simple as this seems, constructing a table 

was a significant action in her context because it made possible some acts of knowing and 

prevented others. It needs to be acknowledged that my directions prevented her from acting 

on the records she, on her own, had begun to generate. That is, Cathy’s interest in the 

features of the geometry of the rectangles and their diagonals suggest that other 

mathematics was possible for Cathy. This situation did not need to be about the number 

pattern that was generated. Cathy’s working papers suggest that she had begun to make 

distinctions about the different ways in which the diagonal crossed the unit squares creating 

“subrectangles”. It appears that there were mathematics that went unexplored because I did 

not observe the distinctions Cathy was making.

In the parent-child mathematics program, social interaction sometimes involved

“telling” another person what to do, as just discussed, but it also involved checking what

the other was doing or explaining one’s thinking for the other. Such interaction expands the

person’s sphere of behavioural possibilities, by transforming the context of interaction

through the addition of energy-rich material. As noted in the transcript, both Cathy and

Jake expressed their knowing for themselves, each other, and me in verbal utterances (as

well as with markings on their working papers). For example, Jake explained to me how

he could predict the number of squares on the diagonal for any rectangle whose sides are

relatively prime (Transcript 6-4, lines 105 - 111). My mathematics knowing was

occasioned in this interaction with Jake. I might describe our interaction as coming to a

taken-as-shared understanding (Yackel, 9995) or, using the model I have developed, I
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could describe his and my worlds of significance intersecting (Figure 6-11). This 

intersection does not imply some objective “reality” but instead suggests the generation of 

energy-rich matter (utterances, working papers, relationships, etc.) from which we 

selected, based on our own structures.

Elaine Jake

explains his 
thinking tojp
.  brings forth

Figure 6-11. When Jake explains his thinking for me our worlds of significance have the 
potential to be expanded; and at the same time our worlds of significance overlap

Recall that Cathy and her father worked quite independently of each other yet 

Cathy’s expression of her knowing about the cases she generated (Figure 6-7, Figure 6-10) 

bears a resemblance to Jake’s. It appears that, up until the point when Cathy overheard her 

dad explaining his rule to me, she had not looked for a way of predicting, in advance of 

drawing the rectangles, how many squares the diagonal would pass through. Occasioned 

by the social interaction between her dad and me and the presence of her table on the side of 

her working paper (Figure 6-7), Cathy selected from all that was happening and 

transformed the energy-rich material and integrated it into her own structure, as we see in 

her meaning making activity (Transcript 6-5, Figure 6-12). She used the table she had 

already made and studied it to make some “thing” out of the numbers in it. I conjecture that 

overhearing her father was a significant perturbation for Cathy. However, without the table 

she had constructed at my request, it is unlikely that she would have done what she did. 

(As I have already noted, it appears she was on to something that I did not notice but I 

inadvertently blocked that activity.) She took her list of unit squares that the diagonals 

passed through for the 4 xn  rectangles and subtracted the results of one rectangle from the
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next in an attempt to see if she could predict the next unknown case. This is not exacdy 

what Jake had done but his comment to me included the utterance, “Four plus eleven minus 

one. I go back to this pattern.” Unlike the situation where social interaction with others 

triggers the mathematics knowing of those interacting together, this example seems to 

suggest that the work of others (their actions and interactions) is potentially energy-rich 

matter for a third person even when that third person is not part of the “social” interaction 

per se.

Elaine Jake

tableCathy

ElaineCathy,

make a table 
brincp forth:

Figure 6-12. Cathy made a table at my suggestion which was present for her to act on and 
with when she overheard her father’s rule

Cathy and Jake created and transformed the unit squares on the diagonals through a 

process of action, perception, representation and re-presentation. Specifically, I know Jake 

noticed (perceived) a pattern in the number tables he was keeping because he reported it to 

me. Once a pattern is re-presented in an utterance or markings on paper, the representations 

which become something as a result of action, at the same time, become a potential source 

of energy-rich matter which can be acted with and on. The physical environment is changed 

in the interaction and now present is a new bit of matter which can be perceived, 

transformed and integrated into a person’s knowing.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I observed Jake acting wnth his table in meaning making activities. He counted the 

unit squares on the diagonals b e  constructed for each rectangle, he systematically kept 

records, he looked for patterns im  his lists of numbers, and he articulated his generalization 

in the form of a rule. In this wayv, the record Jake produced could be understood to expand 

his sphere of behavioural possibilities (and had the potential to do the same for Cathy’s 

sphere of behavioural possibilitries). Without “holding in memory” all of the patterns he 

found, Jake was able to use the rrecords as a memory of the patterns, and articulate the more 

general pattern “add the sides an* d subtract one”. The energy-rich matter originally from the 

physical environment was transformed and became part of their mathematics knowing. 5

Extending this discussiom further, I note that the interaction among people provides 

the basis for cultural phenomenal. (That is, the behaviours that persist from one generation 

to the next. Or, in other words, those behaviours that continue to be noted as particular 

members of the group are repolaced.) Much of the energy-rich matter for propagating 

knowledge from one generation rto the next depends on artifacts of the interactions of others 

(e.g. books, video and televisiom programs, pictures etc.) and are brought into the sphere 

of possibilities for students by otlhers (generally teachers).

The prompt, that I offere*d the parents and children in the large group setting, turned 

out to be a significant perturbation and one that implicated the cultural dimensions of 

knowing in a number of ways. Inn the first place, both the selection and the offering of the 

prompt were constrained by rmy history of experiences which included mathematics 

knowing and patterns of acting with students (Figure 6-13). It was an act in which the 

body of mathematics was “pulleod through” (Gordon Calvert, 1999) me into the moment as 

part of my interaction with Cathny and Jake. In the second place, it was a deliberate act 

which, since it was taken up by the participants, set us in relation to one another

5 Vygotsky suggests, “Even such comgparatively simple operations as tying a knot or marking a stick as a 
reminder change the psychological strmcture o f the memory process. They extend the operation o f memory 
beyond the biological dimensions o f thne human nervous system and permit it to incorporate artificial or 
self-generated stimuli, which we call s-igns" (P. 39).
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(teacher/student, expert/novice, etc.). I claim that, in my role as the “mathematics teacher,” 

my act of bringing the prompt into their context and distinguishing their actions as 

mathematical, facilitated our collective patterns of acting—those that are understood as 

mathematics.

Interactions of 
others

My own Others
though

Physical
materials

Elaine

y X  prompt ^

Physical
materials Other 

Interactions p eop le  
of others

Physical 
Other materials 

people Interactions 
of others

Figure 6-13. Researcher offers a prompt based on her history of experiences teaching 
mathematics, interacting with students, selecting prompts, etc.

However, the prompt was not a static thing; it too only existed only to the extent 

that it was realized and transformed in action. Returning to the transcript of Jake and 

Cathy’s activity, one can observed how the prompt itself evolved throughout the night. 

Early in the evening, Cathy and Jake drew rectangles and diagonals. A little later Jake 

began to organize his rectangles in a very specific way (as did Cathy), and then began to 

keep records which compared the dimensions of the rectangle to the number of unit squares 

on the diagonal. Still later, he noted a pattern within the lists of the unit squares. As Jake 

and Cathy acted, their knowing made possible further actions and ongoing reformulation of 

the prompt. Although we might say that the prompt changed over the course of the 

evening, we could just as well say that the prompt addressed them differently throughout 

the evening as their knowing changed.
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In the case of the parent-child mathematics program, I selected prompts for the 

participants, and I offered suggestions to them in terms of how they might proceed at 

various times in our sessions. Through my actions, the culture of mathematics (our patterns 

of acting) was brought into the moment as site for interaction. The diagonal intruder prompt 

and my suggestion to make a table are two examples of how the body of mathematics was 

present in the moment of interaction. If I were to ask Jake and Cathy, they might agree that 

in fact they were doing mathematics, since they were drawing rectangles, diagonals and 

counting unit squares. They would understand this as mathematics from their personal 

histories of interaction within a particular culture which identifies mathematics with certain 

practices and/or a body of knowledge. For most of us, mathematics includes rectangles, 

diagonals, and unit squares. But, Jake’s instance on proceeding in a step-by-step manner 

and both his and Cathy’s systematic generation of examples can also be seen as part of the 

culture of mathematics. Where did they leam to act in such a way except by interacting with 

others and with the artifacts of other’s activities in spaces that we define as mathematics?

In the first chapter, I discussed the Maturanian and interactionist views that objects 

arise in our interactions with them. Now I elaborate. To the extent that the object which has 

arisen from the student’s interaction is changed, it potentially changes for all of us in the 

community. Because human beings are historical, our actions in the present always call our 

interactions of the past in and to the moment. Further, because our mathematics knowing is 

part of the social domain, the history of interactions of the persons with whom we interact 

are implicated our interactions with them. Two people in conversation may not even know 

they have been overheard but the world is changed because their conversation was 

overheard by someone. An author may not know when her work is read but the world is 

changed by its having been read. To the extent that people live in community with others, 

human culture is changed as objects arise in the interaction among people that brings forth 

their worlds of significance.
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As an enactivist perspective anticipates, the worlds of significance that are brought 

forth in our actions and interactions have the potential to expand and overlap with the 

worlds of others hence complexifying the space of the possible (Stewart and Cohen, 

1994). Jake and Cathy’s coordinations of actions in the social domain, which involved 

verbal utterances and gestures, occasioned and sustained their mathematical thinking. In 

this chapter and the previous one, I elaborated on enactivism, an ecological theory of 

cognition, by illustrating how people interact to bring forth worlds of significance which 

includes mathematics and how they themselves are brought forth in those worlds. 

Enactivism suggests that people leam (their structures’ change) through perceptually guided 

action in language with others. I have demonstrated that there are a variety of sices for 

interaction: people can interact with physical materials in the environment; they can interact 

with their own thoughts; two or more people can interact with each other; and people can 

interact with the interactions of others. My conjecture, from my observations and 

interpretations of Jake’s and Cathy’s actions and interactions, is that mathematics knowing 

in action is at once personal, social and cultural.

Over the last two chapters, I explored the relationship between the knower and the 

known, and I identified the various micro-sites of interaction where I observed mathematics 

knowing emerged. I noted that a person’s actions in the moment made possible subsequent 

actions by changing the person and the environment hence transforming the person’s 

sphere of behavioural possibilities. But these observations still are not sufficient for an 

enactivist account of mathematics knowing because as enactivism suggests knowing and 

knower are co-emergent phenomena. In the next chapter, I turn my attention to the knower 

that is brought forth in mathematics, and explore the ways in which mathematics knowing 

is at once personal, social and cultural.
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Chapter Seven  

BRINGING FORTH THE KNOWER

Our bodies are shaped by the world that they participate in shaping; they render 
mind-and-body, subject-and-object, individual-and-collective, mental-and-physical 
inseparable (Davis, 1996, p. 78).
An enactivist perspective views knower and known as phenomena which co- 

emerge from embodied action. In my research of mathematics knowing in action, I have 

distinguished a knower who co-emerges with his or her knowing, and I have explored the 

ways in which this is observed to happen when people interact with each other and other 

features of their environment. However, I have said little about the knower that co-emerges 

with the mathematics knowing. Davis (1996) claims that “the issue of who we are is not 

separate from where we are, what we are doing, who we are with and what we know” (p. 

236). In this section, I turn my focus to the knower, and the implications of mathematics 

knowing on the body as it is understood as the node of existence not only in the 

physiological domain but in the human domain as well.

Merleau-Ponty’s (1962) profound recognition that not only do we shape the world 

but the world shapes us is a key premise of an enactivist perspective. Knowledge does not 

simply emerge out of a person’s actions or in the person’s interactions but co-emerges with 

the knower him or herself who gives significance to his or her acts of knowing. An 

enactivist account of mathematics knowing in action prompts me to take a reflexive turn, 

and consider the ways in which the knower is brought forth from a world of action and 

interaction. In other words, I ask the question, “In what ways is the person transformed by 

knowing mathematics? ”

Maturana (1998) suggests the “bodyhood” is the condition of possibility of the 

living system. “The manner of its constitution and continuous realization is itself 

continuously modulated by the flow of the living of the living system in the domain in
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which it operates as a totality.” (Maturana, 1998, http://www.inteco.cl/articulos/ 

metadesign.htm). For human beings, embodiment encompasses emotions and language—  

or, in Maturana’s terms, emotioning and languaging (c. f. Maturana, 1988). For Maturana 

(1988), languaging is the consensual coordination of consensual coordinations of 

behaviours among humans (refer to chapter three); emotions are “dynamic body 

dispositions for actions” which specify, moment by moment, the domains of the person’s 

actions (p. 49). When observing for the knower that is brought forth in mathematics 

knowing, I attend to his or her languaging and emotioning as not only acts of knowing but 

manifestations of the knower him or herself.

Merleau-Ponty (1962) describes the body (the knower) as that which arises in our 

living—our knowing.

[The body] is not a collection of particles, each one remaining in itself, nor yet a 
network of processes defined once and for all— it is not where it is, nor what it is—  
since we see it secreting in itself a ‘significance” which comes to it from nowhere, 
projecting that significance upon its material surrounding, and communicating it to 
other embodied subjects. It has always been observed that speech or gesture 
transfigure the body... The fact was overlooked that, in order to express it [speech 
or thought], the body must in the last analysis become the thought or intention that 
it signifies for us. It is the body which points out, and which speaks (p. 197).
Maturana suggests that we are part of many conversations (where conversation is 

understood as the flow of coordinations of actions and emotions that we observers 

distinguish as taking place between human beings that interact recurrently in language). 

When human beings are in conversation, their bodyhoods change in a congruent manner. 

Maturana’s use of the word bodyhood rather than body is deliberate. With it he points out 

that, as humans, our social and cultural interactions are as much a part of our living as our 

interactions in the physiological domain, and that interactions in all of these domains are 

fully complicit.

Maturana (1988) describes the bodyhood as the node of our conversations. This is 

useful to me for understanding how knowers are brought forth in their mathematics 

knowing.
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Changes in the bodyhoods of the participants follow a path contingent on the co­
ordinations of actions and emotions that take place along the conversation, and the 
co-ordinations and actions and emotions that constitute the conversation follow a 
path contingent on the bodyhood changes that occur in the participants along it 
while generating it (p. 51).

This suggests (once again) a reflexive relationship whereby, at once, the bodyhood 

determines the conversation and the conversation determines the bodyhood. Since in a 

conversation the bodyhood is changed, it follows that there are implications for subsequent 

conversations—whether or not they are with the same people and in the same domain. The 

bodyhood is the node in which all conversations intersect, and each conversation leaves its 

trace in the bodyhood (Figure 7-1).
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triggers
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which alters
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Figure 7-1. The reflexive relationship between conversation and emotions and structure1

In order to investigate the ways in which the bodyhood, or the knower, arises and

is transformed by knowing in our multiple domains of existence (or in Maturana’s terms,

transformed in our multiple conversations), I do as I have done throughout the thesis, and

offer an illustration of mathematics knowing in action. I discuss how the bodyhood is

1 In the diagram, I note both emotions and structure. I do not mean to suggest that emotion is distinct from 
structure; however, because I wish to emphasize the role o f emotion I am noting it separately. One 
possibility would be to contrast emotion with cognition however, I think this also is problematic, since
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observed to be the node of the many conversations of which the person is a part. As I 

interpret the mathematics knowing of yet another parent-child pair, I do not simply use 

distinctions which I have made previously but enact them in this new interpretation as I 

attempt to understand how the body is brought forth in knowing; the conceptions and 

distinctions that I previously made are transformed as I begin to understand that which 

emerges from interaction as not simply knowing but as knower and knowing in relation to 

the other.

In the illustration that follows, I discuss how Desie and Joss (a mother-son pair), 

after listening to a story, engaged in mathematical activity, which included an exploration of 

big numbers, an introduction to exponents, a discussion of the conventions of mathematical 

notation and much more that might be viewed as mathematics knowing. I use narrative 

passages created from the transcripts of that evening. They demonstrate how this parent- 

child pair worked for an extended period of time trying to solve the problem posed in the 

story that was read to them. However, it is also evident that much of their activity was 

more than that. If we only observe their actions from the point of view that they were 

solving a particular problem (in this case, the problem as it was developed in the story), 

then we risk missing out on the complexity, complicity and contextuality of their activity 

and the fully embodied nature of their knowing. Hence, I follow my initial interpretation of 

their activity as problem solving with a detailed account of their activity, broken into 

fragments, and interspersed with interpretations of the ways in which they, as human 

knowers, were brought forth in their mathematical activity. I conclude the chapter with a 

discussion of how they were transformed in multiple dimensions of their existence. By 

doing this, I observe how this mother and son’s mathematics knowing can be understood 

as implicated in and implicating their relationship with each other, school mathematics, the

behaviour is often portrayed as either emotional or cognitive. I wish to emphasis that all knowing is both 
cognitive and emotional at once.
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boy’s school teacher and friends, and the mother and son’s views of themselves as 

mathematics knowers.

Doing M athem atics T oge the r

The night this event took place, we read from a children’s story, The Token Gift, 

written by Hugh William McKibbon and illustrated by Scott Cameron (1996). It is a story 

about how the game of chess (Chaturanga as it was called in the story) was invented, and 

the pleasure it brought the king and his people. In the story, the king was so grateful for the 

game that he offered the man who created it whatever in the kingdom he wished. The man 

humbly declined a gift but the king wouldn’t hear of it, and insisted the man name his 

reward. The children, in the class that night, suggested they thought money, jewels or a 

house might make a suitable reward—one child thought a golden chess game would make a 

great reward. But, the man had a different request.

In the centre of the court, built into the floor, was a Chaturanga game 
board made up of sixty-four ceramic tiles. As his eye fell upon the game 
board he had an idea. He said, “Your majesty, I ask only for a token. Give 
me one grain of rice to represent the first square of the Chaturanga board, 
two for the second, four for the third, eight for the fourth and so on, 
doubling each time until all of the sixty-four squares have been accounted 
for.”

Then the king made a mistake. “Is that all?” he asked. ‘That does not 
seem like much of a reward to me.”

“It is all I wish for Your Majesty.”
So the king sent for a bag of rice and ordered a servant to distribute it on 

the ceramic tiles of the game board according to the Rajrishi’s request.
The Token Gift, Me Kibbon and Cameron (1996)

At this point in the story, the children and parents were asked to figure out how much rice

the king would need to fulfill the request. Each participant had a sheet of 2 cm x 2  cm graph

paper. I suggested they mark off an 8 x 8 grid to represent the chess board, select a square

as the first one and begin.

“So the first one is — How many grains o f rice go here?” the mother asked 
her son as she pointed to the square at the top left comer o f their ‘chess board’.
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“One, ” replied the boy.
“Okay. How many go here, if we are doubling it?" She asked pointing to the 

5 next square.
“Two. ”
“So what is doubling two? ”
“Four. ”
“ What’s doubling four? ”

10 “Eight."
“Double of eight? ”
“Sixteen. ”
“Double of sixteen ? ”
“Um, thirty-two. ”

15 “Good. And double of thirty-two ? ”
“I have this idea. ” Their rhythm was interrupted.
“Oh. Are you trying to figure something out, ” his mom responded.
“Sixty-four, ” said the boy after just a brief pause.
“Good! And the double of that? ”

20 “We are in the hundreds. ”
“We are. We are, " his mom nodded.
The boy hesitated, “Do you have a calculator? ”

As just described, Desie and her son Joss worked together, each making 

contributions as they considered the prompt offered by the story. They shared the task quite 

simply; to begin with, Desie asked Joss for the number that should be written on each of 

the squares, he quickly computed each double (mentally) and she recorded it on the graph 

paper (Figure 7-2). It only took a few doublings and the numbers grew big enough that 

Joss asked for a calculator to do the computations. It didn’t take long and the doubling was 

even too much for the calculator. Desie and Joss spent the next 40 minutes trying to make 

sense of big numbers and the nature of the big number that would be needed for the 64th 

square.
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Figure 7-2. Desie and Joss’s working paper of the chess board

Mathematics Cognition and Solving Problems

Polya’s (1980) conception of what makes a problem a problem is commonly used 

by mathematics educators. He says, “Solving a problem is finding the unknown means to a 

distinctly conceived end. If the end by its simple presence does not instantaneously suggest 

the means, if, therefore, we have to search for the means, reflecting consciously how to 

attain the end, we have to solve a problem” (p.l). When I think about Desie and Joss’s 

actions and interactions in terms of solving the king’s problem, it appears that neither the 

king in the story. Joss, nor his mother had any difficulty at all in knowing what to do (to 

find a way where no way is known) in the circumstances with which they were faced. 

Begin with one grain of rice (the king’s solution) or the number one (Joss and Desie’s 

solution) and double. Thus, at first glance I might say that there wasn’t a problem at all but 

rather a task or some computations to carry out. Of course, the king in the story has a very 

real problem since he cannot fulfill the request; but what was the problem that arose for 

Desie and Joss in their interactions? Tracing their activity from the point when the king’s 

problem was read to them, I find a set of embedded problems and solutions that suggests
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this problem is not what it first appeared to be. On the surface, I might note that Desie and 

Joss did find an answer to the king’s problem but, by observing their activity closely, I see

that there was much more to this problem than this answer. Figure 7-3 is a trace of the

questions on which Desie and Joss’s activity over the course of the evening was oriented.

I. How much rice is needed to fill the chess board? (lines 1 - 384)
1. What are the doubles for numbers < 100? (lines 1 - 22)
2. What are the double for numbers > 100? (lines 1 - 379)

a) How does the calculator work? (lines 23 - 36)
b) How do you double a number by multiplying? (lines 29 - 

36)
3. What are the doubles for numbers too big for the calculator? (lines

65 - 379)
B. Is there a relationship between the rows of the chess board? (lines 121 -

312)
1. Wfiiat are the so called magic numbers? (line 169 - 275)
2. Is there a relationship between rows for different sizes of squares?

(lines 183 - 275)
a) Why is there a relationship between rows for the different

sizes of squares? (line 185)
C. How can we express big numbers? (lines 285 - 312, lines 355 - 385)

1. What are powers? (lines 280 - 312)
2. How big is 263? (lines 377 - 379)

Figure 7-3. An illustration of the embedded problems that arose for Desie and Joss

Many of the questions noted above were embedded in other questions. Inner level 

questions were triggered by outer levels ones. In some instances, there was a need to solve 

inner level questions before the outer level questions could be answered, and in other cases 

inner questions remained unanswered. An important feature of this embeddedness is that 

when Desie and Joss returned to outer-layer questions after considering inner-layer ones 

they did so with new understandings of not only the questions still to be answered but also 

to questions they had already answered. New understanding (of possibly quite different 

things) had the potential to alter previous understandings thereby changing the “problem” 

Desie and Joss considered. For example, at one point in the evening, Desie and Joss began
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to explore what we called magic numbers. This took them away from their problem of 

finding the value of the number that would go in the last square on the chess board but it 

also changed the possibility of how that number could be found and the form that number 

might take. This move to magic numbers was a change in the mathematics they were doing. 

For example, at first Desie and Joss were simply doubling numbers either by adding a 

number to itself or by multiplying by 2. However, when they turned to the magic numbers 

they began to consider relationships between the rows for various squares.

Tracing the questions Desie and Joss explored, begins to suggest how an 

explanation constructed by noticing fractal features (self-similarity, recursion, scale) of the 

knower’s activity is useful to our understanding of mathematics cognition. Each problem 

was not simply a new problem distinct from those already posed by Desie and Joss nor 

was it a sub-problem, in the sense that once solved they were one step closer to solving the 

original problem. A fractal metaphor helps us see that, at once, the problems which arose in 

the interaction were part of Desie’s and Joss’s knowing but they also represent whole 

pieces of their knowing: creating various sized squares and finding the ratio between the 

rows; the doubling rice problem; and the need for a way of finding and expressing large 

numbers. This brief analysis, of the problems that were brought forth in Desie and Joss’s 

activity, suggests that studying any one of a number of small parts of their activity has great 

potential to inform us about their knowing that co-emerged over the course of the evening. 

I would like to suggest that this is not a reductionist argument. That is, I am not suggesting 

that Desie and Joss’s mathematical activity can be reduced to some basic level. Rather, each 

layer of mathematical activity has its own unique features at the same time as demonstrating 

some forms of similarity.

Again an enactivist interpretation suggests we go further than just studying the

problems that Desie and Joss investigated or solved because knowing and knower co-

emerge as a world of significance is brought forth. Hence, enactivism requires that we

think about Desie and Joss’s actions and interactions as they occurred in relation to the
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ways in which their knowing is embodied—how it forms and transforms their bodies. In 

order to think about the knower that is brought forth in knowing, I return to the transcript 

of their activity and study it in much more detail.

Layering Interpretations o f  D esie’s and Joss’s A ctivity

Returning to lines 1 - 22 of the transcript of Joss and Desie’s activity, it appears as 

though they did not have a problem with respect to doubling numbers, at least in the 

beginning. However, when the numbers got into the hundreds Joss hesitated (line 20). 

What was his hesitation? One interpretation might be that Joss couldn’t compute the 

doubles of the larger numbers. It is unlikely that this is a strong constraint for him since it 

appears as though he was more than capable of doing the computations (if not in his head 

then with a paper and pencil). Another interpretation might be that Joss did not want to 

compute the numbers in is head anymore; he wanted a more efficient means of computing. 

This raises a question. In what ways are one’s desires implicated in his or her mathematics 

knowing? As will become evident, throughout the session Desie too was constantly 

looking for a better way of doing what she was already doing. It could be that one’s desire 

to find an simpler (often described as more elegant) way of doing something is an emotion 

prompted by mathematical knowing .2 In any case, we note that Joss’s mathematics 

knowing provokes a bodily response which orients his and his mother’s subsequent 

actions.

Doubling as multiplying by two or adding a num ber to itself

Using a calculator triggered Joss's first difficulty with the task. His mom’s 
response was to explain the difference between how to multiply with a calculator 

25 and how to add with one.
“Times? ” Joss frowned as he examined the calculator.

2 The mathematician, Leibniz , is quoted as saying, “I am not satisfied with algebra because it does not give 
the shortest method or the most beautiful construction in geometry.” (Kliener and Movshovitz, 1997, p. 
18).
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“Times 2 ’’ she replied.
“I don’t know what a times looks like. ”
“This one right here, ” she said as she reach over and touched the calculator. 

30 “You haven’t started times in school yet have you ? ”
“No, ” said Joss as he pressed the keys and continued. “I 2 8 times 1 2 8— ”
“No, no, sweety. If you are doing— It can’t be  that. It has to be 128 times 2 

or 128 plus 128. ” She turned the calculator toward herself and pressed the keys.
“That’s what I had. ”

35 “You didn’t times though. ” Without laboring the point she continued to
compute the sums, “256plus 256 is 512. So 512 plus 512... ”

Joss leaned over his mom to watch her operate the calculator. “This is a neat 
calculator. If I had something like this I would carry it everywhere. ’’

Once Desie began doubling with the calculator, they moved along quite quickly. 

Joss watched intently as his mom used the calculator. It was a small four function model 

but Joss admired it just the same. “This is a neat calculator,” he said. “If I had something 

like this I would carry it everywhere.” I am struck by his desire to carry a calculator 

everywhere. Why would he want to do that? What is it about this tool that Joss finds so 

desirable? One interpretation is that Joss thought this device would allow him to do many 

computations very quickly. After all, this is what he was witnessing as he watched his 

mother. From this perspective, I note that the calculator is a tool with which Joss could 

expand his computational power. However, if I interpret his utterances this way, I am led 

to question, “Why an eight year old boy would want or reed  this kind of computational 

power?” Consider his world: his home, the front street and backyard, hockey arenas 

(possibly), and school. Although Joss said he would carry the calculator everywhere, I do 

not think that he would find much need for it in his backyard, on the front street, or in a 

hockey arena—at home, maybe—at school, definitely. I believe it is only at school where 

he would require computational power and speed exceeding his own ability.

This interpretation makes more sense to me when I integrate it with what I know 

about Joss. He and his mom came to the program because Joss was having difficulties with 

school mathematics. Being a third grader in the province of Alberta means that, he will
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write a provincial achievement test at the end of the year; part of that test includes a timed 

set of number facts. One of the first things he told me when he began the program was that 

he was not good at the timed tests. Knowing this about Joss, it is easier to understand why 

he might have been so taken with the calculator. Using a calculator would enable him to 

compute sums (and differences) quickly and efficiently— a school task.

Base ten and rapid growth

“We’re in the thousands, ” Joss wiggled in his chair and laughed. “And soon 
40 we will be in the millions!”

“16 384 plus 16 384 is 32 768. ”
“I can wait until we get right there, ” he giggled as he pointed to the last

position on the calculator display.
When they did get to a million it was Desie who commented, “We just hit a 

45 million. ”

When Joss went to double 64 he hesitated and commented, “We are in the 

hundreds” (line 20). In this passage, once again, we hear him mark the magnitude of the 

numbers they were computing. Although Joss was no longer calculating the doubles, it is 

clear that by following along as his mother did the computations his understanding of big 

numbers and rapid growth was engaged. He did not sit back and wait for his mom to print 

the numbers on her sheet instead he followed along watching the calculator closely to catch 

sight of the numbers as they appeared on screen. As the number grew, he called out, “we 

are in the thousands.” There was excitement in his voice. His understanding was 

unformulated and anticipatory; it was expressed in his body and his utterances. His 

knowing was enacted in a giggle, a gesture and his utterance, “I can’t wait until we get 

right there.” Desie too got caught up in the excitement of the rapid growth, “we are in the 

millions,” she commented before Joss had a chance to shout it out.

Also of note is the fact that neither Desie nor Joss commented on the magnitude of

just any number. There were no responses marking the number 512, for example. Rather,

their voices revealed excitement when the numbers were ones which we distinguish with
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and in our language and our mathematics. Their utterances reflect the based ten number 

system and those powers of ten for which English has specific names. Desie and Joss’s 

actions suggest to me that cultural forms are implicated in the personal knowing Joss and 

Desie brought forth in their activity. In as much as Desie and Joss responded the way they 

did to these numbers, I suggest that this can be understood as the cultural forms bringing 

forth the knowers. In other words, this suggests that the culture (body of mathematics) 

occasions mathematics knowing in action.

M athem atical Conventions

“Do you think there is some other way we can do this?" Desie asked Joss as 
she looked over the numbers she had been writing.

They both could see that the numbers were getting bigger and bigger—in fact 
too big for the calculator—but Joss did not want to stop. He suggested to his 

50 mom that she continue in the same way. So Desie worked on the next one. As 
she was writing [13, 1072] she realized she had put the comma in the wrong 
position.

“No. One hundred and thirty-one thousand, ’’ she said out loud as she marked 
the comma in the correct place.

55 Joss crawled up on his chair to get a closer look over his mom's shoulder.
“Mom, we don’t use those,’’ he said as he pointed to her number written with a 
comma. “The teacher told us not to use marks like that. ’’

“But they make it easier to tell what you are doing, ” she replied.
60 “I know, but that is what the teacher said. She said, ‘if you see your mom and

dad doing it. They are just old fashioned’. ’’ Joss giggled again.
“Yea, but if  you didn’t divide the numbers then it is hard to tell what you are 

looking at. ’’
“No. I think they put—like— Instead they use spaces, ” he said as he sat back. 

Joss’s ongoing engagement in the activity and his joint action with his mother is 

evident in his attention to her comments, actions and written notes. When she corrected 

herself and uttered, “No. One hundred thirty-one thousand,” Joss was well aware of what 

happened. Even though he would not have written the number the way she did, he 

understood what she wrote, and why she wrote it in the way that she had. When he saw 

her use a comma, he was reminded that his teacher had told him that in the old days, when 

his parents went to school, numbers were written differently. Joss learned to write large
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numbers with spaces separating the hundreds from thousands rather than commas. His 

comment reveals that his mathematics is different than his mother’s and he recognizes this. 

“You’re old fashioned mom.”

On being smart

65 With only a few  more computations Desie and Joss came up against the
calculator’s capacity for displaying numbers and they were left trying to figure 
out how they might proceed.

“If we had [the numbers computed] up to there," Desie pointed to the 32nd 
square, “we would have half o f  it right?" She conjectured that if  she knew the 

70 values for the first half of the chess board she could multiply by some number
and she would be able to compute with just one computation the 64th square. 
However, she realized she was still stuck—the 64th number would still be too 
large to compute.

Desie asked Joss again if  he had any ideas how to proceed. But Joss did not 
75 respond with a strategy, instead he said to his mom. “Know what? Chris [by 

Joss’s assessment the smartest boy in his class at school] taught us this math 
question that is a regular math question. Chris said, ‘You think this is hard. I 
think this is easy. ’ I'm like, ‘Chris. We might think it is easy too. ’ Then he 
writes down, 2 times 24. I ’m like, ‘Chris that is easy.

80 “So he thought you didn’t know it, hey?" Desie replied.
“I t’s 48 Chris! He's like, ‘Oh. ’ ” Joss said with a grin.

The experiences of this particular night and now the interruption of their progress 

because of the need for a new way to proceed occasioned Joss to comment on an event that 

took place at school. He told his mom a story about how he demonstrated his mathematical 

prowess to a smart friend at school. His mathematics knowing is not separate from who he 

is at school, what he does, and with whom he interacts. As Joss develops as a 

mathematical knower, he changes as a classmate and a student. Maybe this is why Joss 

expressed the desire to carry a calculator everywhere. There is some indication that for Joss 

being good (fast) at mathematics changes who he is in relation to his peers. What might it 

mean to a boy who has trouble beating the clock to have a tool which would enable him to 

finish ahead of the clock and maybe even ahead of Chris, “the smartest kid in the class”? 

Joss might imagine himself interacting differently with the smart children in his class (on 

their terms) thus, altering his social position in the class—all by virtue of having a
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calculator. Or, it simply may be that he imagines himself being better at tests. In either case, 

Joss’s comment about Chris and the calculator helps me understand how his mathematical 

knowing is woven into other aspects of his life.

Being m athem atical

Desie smiled but only for an instant. The concentration on her face was evident 
as she continued to think about another way o f working on this problem. Joss 

85 leaned over the papers and took a closer look. Desie reviewed out loud what they
had found out thus far. “So each one of these is the number before it. ’’

“Uh um. ”
“So two of these makes this. So would it be four o f these that make this?" She 

asked herself out loud as she looked at the relationship between every second 
90 number.

Joss yawned.
“Because four o f these make this, ” she looked at Joss.
“Uh huh, ’’ he agreed
“So then it would be sixty-four. ’’ Desie continued to utter her unformulated 

95 thinking. "What’s this? So this number here Joss, this number here is two of this 
number right? And it is four of this number and eight o f this number, And 16 of 
this number and 32 o f this number and 64 o f this number and 128 o f this 
number—”

Joss was watching his mom attentively and giggled at her finding.
100 "Boy, I just don't know, ” she said as she sat back in her chair.

“A calculator can't fix  this one. Unless it is this long, ’’ he gestured with his 
hands.

“Yeah, i t’s a lot, eh. But if we had up to here then we would have half o f it. 
Right?"

105 “Uh huh. ’’
“So if we had half o f it we still couldn ’t do it. Desie turned to Joss who 

seemed to be concentrating on something. “Boy I don't know what you are 
thinking. Are you thinking of something mathematically? " she asked him.

“I’m not mathematical. ’’
110 “You are too! You showed me that last weekend when you showed me the

circle and how to get the handshakes. So you are mathematical too. ”

It is not obvious why Joss denied being mathematical at this point in the evening.

Even though Joss had just bragged about his cleverness at school, here he acknowledged

that he does not see himself as mathematical. Clearly, he was able to make plenty out of the

activity in which he and his mother were engaged. He even giggled when he recognized
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that his mom had found the same doubling pattern they had begun with: 2, 4, 8 , 16, 32 ... 

On the other hand, it may be that he was responding with, what in the past had been, an 

acceptable reply to a request to do something difficult in mathematics. What ever the case, 

it took his mother’s reminder of his clever solution to the problem they had considered the 

previous week before he generated a new idea as to how they might proceed.

Knowing you  can know

Joss suggested they calculate half the table and then add all the numbers from  
half and put the sum in the 64th square. When his mom noted that would be a lot 
of big numbers. Joss responded with yet another strategy to take half o f the table 

115 and then another half o f it then add it together, ’’Thirty-two half o f it, half o f  it
and then add all those numbers together and then that big number and put it in the 
bottom, ” Joss giggled at his own suggestion.

“Let’s say we did just half of it which is up to here. ” Desie contemplated Joss ’ 
suggestion.

120 “Yep. So then we would know—
“Then we would only know half o f it, ’’ his mom said. “[We] still couldn’t say 

half this and this together. It wouldn’t work. Every single number is twice as 
much as the one before it. So this would be lined up just hugely. ’’

“That’s what I mean. If we take a big number and add it together then da, da, 
125 da.”

“What's that, ” she said laughing at Joss’s sound effects. “Yeah, but this one 
here. Say we have 67 million. So the next one is double of 67 million. One 
trillion. I don't even know what it is. One billion definitely— So I don’t even 
know. ”

130 “Six something,” Joss offered.
“It would be a billion two hundred million or— You know. I don’t even 

know. I don't even know those numbers. ”
“It would be something, ” Joss reasoned.
“Well, yeah. It would be something, ” Desie agreed.

135 “If we get high enough we’ll end up going billion, something after that,
something after that, something after that— And I don’t even know. ’’

“We could write the number though, ” Desie said. “Because it doesn’t matter if  
we know the name or not. We could still write the number. Right?" She thought 
fo ra  moment, “Maybe, if we break it down to a four by four square" (Figure 7- 
4).
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Figure 7-4. The 4 by 4 case is an example of how Desie and Joss specialized

The back and forth exchange of ideas helped keep both Desie and Joss motivated to 

stay in the activity. In this passage, Desie and Joss come to realize that they will end up 

with a number so large that they won’t know “what it is” although they admit they would 

be able to write it. This is a significant problem for them; not only are they struggling to 

find a method to compute the number that belongs in the 64th square, but if they find it they 

will not even know what to ctill it. They do not have names for numbers so large. It is 

interesting that this does not stop them from seeking the large number. They are aware that 

the number exists and they know they could write it but as will be demonstrated later, even 

once they have a way to “write'’ the big number, this does not satisfy their desire to know 

what the big number is.

A new strategy

140 “I ’ve got an idea!" Joss interjected. “If we finish off this row [the third row o f  
the 8x8 chart] and erase that [numbers in the fourth rowJ, we can add these 
numbers [the numbers from the end of the previous rows] and look at the next 
number— da, da. ” Joss said as he taped the squares at the end o f two rows.
“Then we go like that—da, da, dum. ” He suggested they add 128 to 32 768 to 

145 obtain the value for the last square in the third row.
“You and your da, da, dums. So what you are thinking is, if  we had this 

number and figured how many times it went into this number and see how many
182
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times in went into this number—” Desie, used Joss’s idea but realized that she 
would have to multiply rather than add.

150 “Yea. There. There. There. ” He said as he touched the last square in each o f
three consecutive rows.

“I don’t know if it’s going to work; but we can try it out down there,’’ she 
pointed to the 4 x 4 grid she just made. “1,2,4,8,16,32,128,256. Divide by 8. 
You’ve got something buddy. See how it works on this?" Desie laughed and 

155 reached over to give Joss a quick squeeze. “You are smart. Let’s see if  it works 
up here [on the 8x8 board]. Eight hundred, 8 388 608 divided by 32 768 equals 
256. But it’s much smaller. 32 768 divided by the number above it, right? ”

“Uh-huh."
“128."

160 “No. It is supposed to be down, down, down, ” Joss tried to explain what he
meant but Desie was busy dividing to find the common ratio so she could 
compute the next number.

“No, it’s working out. 256. So then we can take this and multiply by 256 and 
get this." She said as she pointed to the 8 388 608 and the end o f the next row. 

165 “But my calculator still can’t do it." She sat back. “But, 256, what kind o f  
number is that? 256? ’’

“I thought it was 16, ’’ Joss tried to figure out what his mom just did.
“16 is this little bitty one. ” She pointed to the 4x4 square and then to the 8x8 

square. “See this is 64 squares. But wait—” Desie picked up her pencil and 
170 pointed to the 4 x 4  grid. “This is only 16 squares. ’’ She moved her pencil to the 

16 x 16 grid. “But this is not 256, or is it 256 squares. So how does it— I 
wonder why it is 16 and this is — "

Joss continued to make suggestions as to how they might proceed. I could take this 

opportunity to observe this interaction between his mother and him with the models I 

developed in the last two chapters. There is ample evidence of how Desie’s requests for 

Joss’s participation occasioned his suggestions as to how they might proceed, for example. 

Or, I could demonstrate how Joss’s suggestions, although somewhat unformulated, 

occasioned his mother actions. However, as I indicated earlier in this chapter, I believe 

there is a need to purposely make different distinctions, ones that suggest the 

transformation of the knower rather than just the known. In the previous chapter, I might 

have used a diagram like Figure 7-5.
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Figure 7-5. Joss, in interaction with his mother, utters the suggestion that they consider 
what happens between rows of the chess board.

The records Joss’s mother had been keeping and her requests for his participation 

occasioned his thinking. He used his mother’s records to explain how his new idea 

worked. As he explained it, he touched the end of each row and chanted, “da-dum, da- 

dum, da-dum.” There was rhythm in his pattern making. When his mother realized she 

could do something with Joss’s suggestion, she laughed and hugged him. Her knowing, 

like his, was laced with emotion. In order to highlight the rhythm in Joss’s utterance and 

the emotional qualities of it, I model it differently than I have been (Figure 7-6). Rather 

than simply note that Joss makes a suggestion in the interaction between him and his 

mother and with the records she was keeping, the new addition to the model I have been 

using attempts to illustrate how Joss is brought forth in the conversation. Recalling 

Merleau-Ponty’s (1962) words, “In order to express it, the body must in the last analysis 

become the thought or intention that it signifies for us” (p. 197), I am pushed to think about 

how Joss’s bodily response, his utterances, gestures and emotions, for example, are his 

thoughts—they are his knowing in action.
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Figure 7-6. Joss is brought forth as he chants, gestures and utters his mathematics 
knowing

Explaining their new strategy

I approached their table to listen in on their conversation but I interrupted 
them instead.

175 “What did you discover? ” I asked Joss.
“We added these together, ” he tried to explain.
“We divided, ” Desie corrected him. Then she explained what they had noted.
“That is interesting. ” My curiosity had been aroused. What were these ‘magic 

numbers ’ they were playing with. I had used prompts like this one many times 
180 before but I had never seen anyone consider the ratio between the lines for the 

different size boards. I wasn 't sure what to make of it but my general strategy for 
working with these kinds o f problems is to try another case. So, I suggested they 
generate some more cases. Desie made up a 2x2 grid and found the magic 
number of 4.

185 “This had got 16 squares and 16. Four is four. So how come?" Desie looked
at me.
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Figure 7-7. Two more cases to explore magic numbers

“Well, I don’t know, ’’ I said. “I ’ve never thought of this problem in my whole 
life."

“But that’s what we are wondering, ” Desie said.
190 “This is interesting. No— I’ve never thought o f this problem, ” I replied.

“He’s got a strange mind, this one. A very different mind. ” Desie smiled at her 
son who had been listening to us.

I commented how he was acting like a mathematician and then talked about the 
ratio, 7L Then suggested they find the magic number for a few more squares.

195 Desie and Joss worked out the magic number for a three by three grid and then
reflected on their records.

“Look at that. Something is different here. ” For third time Desie was repeating 
the patterns o f the four by four and the eight by eight grids.

“This is getting boring. ’’
200 “Well this is what she asked us to figure out. ” Desie persisted with the task.

“Here the magic number is 8, but how many squares are there? 
1,2,3,4,5,6,7,8,9. So it doesn’t fit. Just like this one with 64 squares, but the 
magic number is 256. So it’s different, hey?”

“That one is not right, ’’ Joss said referring to the three by three grid.
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205 “They are right. We just don’t understand why they work that way. So we did
a 2, we did a 4, we did a 3 .”

“I think I know. ”
“Yea, what’s that sweety?"
“That has to be a six or under—maybe, ’’ Josh hesitated.

210 “Should we try a jiver? ’ ’[ 5x 5 square]
“— ’cause like sixty, the answer is 64. So it probably has to have a 64 in it? ’’
“We should try a fiver. 1,2,4,6,16,32— ”
“What time is it. ’’
“—64, 128, 256. ’’

215 “ What time is it mom ? ’ ’
“I'm not sure. ” Desie replied without looking up from the sheet o f  paper.

When Joss doubled, he took the number given and added it to itself. I first saw this

when, Joss tried to double on the calculator by taking the number pressing the

multiplication key and then entering the number again rather than multiplying by two (lines

25-34). Throughout the session, his understanding of doubling strongly constrained the

ways in which he was able to think about the king’s problem. Joss’s attempt at an

explanation of what he and his mother were doing (line 176) reflects that he continued to

use an additive strategy late into the evening when thinking about this problem. Although

he was following his mom’s actions very closely, it seems that Joss’s knowing was net

growing (his structure was not changing) in such a way to include the multiplicative and

proportional reasoning that geometric growth involves. Yet, his actions and utterances

suggest that he was able to anticipate the rapid growth (as I already indicated) and he was

caught up in the magic numbers they were generating. Hence, in some way, his knowing,

albeit unformulated, was occasioned. Further, his mother’s actions must have had enough

significance for him that he thought he understood and was willing to explain. Therefore, I

might expect that the potential to expand his cognitive domain was increasing. However, as

will become evident, as rich as these interactions were, Joss’s structure was such that over

the course of this evening he did not come to engage in explicit multiplicative or
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proportional thinking. I anticipate there were other changes to Joss’s structure but as an 

observer I did not note them.

More problem s

“We have another problem, ” said Joss.
Desie didn ’t respond
“What time is it? " Joss tried again.

220 “We don’t care. They will tell when our time is up. Let’s find out what our
magic number is on this one [5x5]. 167 772 316 divided by 542 288. The magic 
number is 32. ”

“What’s this?" Joss asked.
“So, 5224 288 divided by 16 384 is 32. We’ve got a magic number o f 32 out 

225 o f this one. 16 384 divided by 512 is 32. ’’
“25? ’’ Joss did not follow what his mom was up to.
“5 times 5 is 25. So that’s wacko too, eh? ‘cause here’s the 9 and the magic 

number is 8 and here there are 25 and the magic number is 32. ” Desie was 
comparing the number o f unit squares with the magic number. It worked for the 

230 2 x 2  square (magic number of f )  and the 4 x 4  square (magic number o f 16) but
it did not work for the 3 x 3  and the 5 x 5  squares.

“Four, sixteen. ”
“We could figure like if we had a big huge calculator we could figure this out. 

Like we could just multiply this by 256 to get this and so on. ” Desie explained
235 how the technique Joss suggested would work. “But we don’t and that’s the

problem. ’’
“I got to go the bathroom. ”
“We’ve got a half an hour. Is it an emergency?" Without waiting for his 

response she added, “You better hurry back though. ”

In contrast to my growing excitement, by this point in the evening Joss appeared to

be losing interest (Figure 7-8, 1). Because Joss has a poorly developed concept of

multiplication he was not developing a taken-as-shared understanding with his mother (or

me) and his engagement in their joint activity is wavering. For the first time Joss said to his

mom, “This is getting boring” (Figure 7-8, 2). He was no longer able to make sense of

what his mother was doing. Although he tried to follow along, and he did make some

distinctions, he did not put them together in a meaningful way for himself. Desie and Joss

began to uncouple as the mathematical interactions between them became less meaningful

for Joss. Notice how Joss repeatedly asked his mother for the time, and when she finally
188
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responded with, “We don’t care,” he tried to get back into the mathematical activity but 

with little success. Eventually, he asked to go to the bathroom, and he physically removed 

himself from the room and the mathematics. Joss and Desie’s world’s of significance 

overlapped less (with respect to mathematics) as their taken-as-shared meanings collapsed 

and the mathematical interactions between them ceased.

2  • boredom \
• multiplicative J______________

understanding 1 • losing interest
is not growing

•in the ‘ 
moment)

• weak 
multiplicative 
understanding

□esies 
actions and 
utter aances

brings forth

ortents

triggers co-detemi ines :

the trace o f  
which alters

,in the • 
/moment

f  Hesitatingly he participates^ 
but soon utters, “this is boring" 

Conversation is no longer 
mathematics

Figure 7-8. Joss’s structure is such that he did not bring forth a world of significance 
which included his own multiplicative thinking.

Another Pattern

240 While Joss was out o f the room Desie and I looked at the squares and magic
numbers she found.

“Those numbers you are coming up with are very interesting numbers, ” I said 
to Joss when he came back. “Do you see how they are interesting? ”

Desie answered for him. “No. He says he is bored. ”
245 “But wait until you see what these numbers do. ” I said excited to show them

what I had noticed. “Because when you have a 1 by 1, well that is not very
215 interesting —it is just one. But you did a 2 by 2, right, and when you did the 2

by 2 your number was 4. And then— Where’s your 3 by 3? When you did a 3
by 3 your magic number was 8 and when you did a—” As I spoke I constructed

250 a table. (Figure 7-9)
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7-9. My rendering of the patterns I observed in Desie’s and Joss’s magic squares

“4 by 4, ’’ said Desie.
“And what was your magic number? ”
Joss was following along, “16. ”
“Oh, this is interesting isn’t it, ” Desie said.
“4 by 4 is 16, ” I continued. “Then you did— Did you do a 5 by 5? ”
“Yep, ” said Joss.
“What was your magic number? ”
“24. No. 32. ’’ Joss corrected himself.
“Now let me show you something, I've never seen this before. N o t  in my 

whole life. This is new. When you did a 2 by 2 it was 4, then it was 88, then it 
was 16, then it was 32. Do you know what the next one is going to be?’" I asked 
Joss.

“Do you have a guess for a 6 by 6? ” his mom asked.
Joss looked at the sheet on which I was keeping a column of these nurmbers. 
“Where are we moving here?" his mom prompted him.
“64?” he said tentatively.
“You see, these numbers are doubling for some reason. ” I said to him.:.
“Isn ’t that cool. ” Desie said.
Joss was still thinking. “128”
“Yes, 128 for a 7 by 7. ’’ Desie had it figured out.
“Right and guess what? ” I prompted them.
“We know what our 8 by 8 is already, ’’ said Desie.
“Well, I guess the magic number would help us. ” Desie was still cconcemed 

with finding an easy way of computing the number for the 64th squcare. “We
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275 would only have to multiply it that many times, ” she said as she pointed down 
the rows.

Joss picked up the calculator.
“Except our calculator won’t do that. ” Desie said as she put her pencil down. 

Although Joss seemed to have lost interest in doing mathematics prior to leaving the 

classroom, when he returned to the classroom, I was anxious to show him the pattern I had 

noticed in their magic numbers. As the teacher, my responsibility to the participants was to 

find ways to help them stay engaged with mathematics over the course of the evening. So I 

expressed my knowing (that was occasioned by interacting with Joss and Desie and the 

artifacts of their interaction) for them, anticipating that they might be occasioned to continue 

on with their investigation after seeing this new pattern. I showed them how when the 

magic numbers were ordered from smallest to largest they also formed a doubling pattern. 

Even though there is plenty of evidence to suggest that Joss did not reason multiplicatively 

(in general), he was able to work with the special case of doubling. Once again, Joss 

followed along with description, and Desie admitted that maybe their magic number could 

help them. Joss picked up the calculator again, as if he thought it might now be useful, but 

Desie realized that even with the magic number the calculator would be of little use. For her 

the doubling patterns formed a general case, and it did not matter that this was a new 

situation—their problem was with the large numbers that arise very quickly when 

doubling.

I might also demonstrate how the knower is brought forth in the interactions by

talking about my actions in this situation. Based on the last three pieces of transcript, it is

quite clear that Desie’s and Joss’s difficulties late in the evening brought forth me, the

teacher (Figure 7-10). Earlier in the evening, I was brought forth as a mathematics knower

excited by the potential for exploring the rice problem by specializing with these things we

called magic numbers (Figure 7-10, 1). However, later in the evening, it became clear to

me that Joss was no longer acting as “mathematically” as he had been early. My response

was to Joss’s disinterest more so than to the mathematics he had been exploring with his
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mother (Figure 7-10, 2). I had recognized the doubling pattern with the magic numbers and 

saw it as a way to bring Joss back into the activity (here my desire to teach oriented my 

behaviour). Later, when I notice that exponents could be used to express the magic 

numbers I thought that this might be a way to engage Joss once again.
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Figure 7-10.1 am brought forth as “teacher” in my interactions with Desie and Joss and the 
artifacts of their knowing

Teaching Powers o f  2

But I noticed something else in the magic numbers.
280 “Now I am going to show you something really neat about this. Remember

the big squares that you made? This was a 2 by 2 square. ” I point to the square 
and then to my table where I had written 22. “This was a 3 by 3 square and look 
at this 3. ” I pointed to the exponent o f 23. “This was a 4 by 4," I pointed to the 
exponent of24. “This was a 5 by 5 and this was a 6  by 6. ”

285 I left but Desie carried on. “So then it would be 2 to the what power? 2 times
2 time 2 times 2 times 2 times 2. Two to the what power, would be this one? ”

“6, ” Joss said.
“Yea. Our eighth square would be 2 to the eighth power. Look at that. ” Desie 

smiled.
290 “I don't get it though. ”

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



“Well i t ’s not getting it right now, ” she said referring to the problem o f  
finding the 64th square. “We just know that 256 is 2 times 2 times 2 eight times. ”

“I just don't understand. I think it makes no sense. ”
“You understand that 4 is 2 times 2 ? ”

295 “Right.”
"So that 8 is, 2 times 2 is 4 and 4 times 2 is 8. ”
“Uh um. ”
“So this is the same thing. So instead o f writing all those twos, we end up 

being able to write it like this. This means two to the eighth power. ”
300 Joss picked up his empty bottle and tried to get more pop out of it. “So, I

don’t know what power means.’’
“It just means— It means that—” Desie started again. “Let’s say that I wrote 

[4x4x4x4x4x4x4=] and this would be 4 and the little number would be?"
“ 6”

305 “Is that how many fours there are ? ”
“I was counting the xs, ” Joss explained.
“Ah, you are supposed to count the numbers. So you know what I have 

written there is 4 to the seventh power. ’’
“But how much is that?”

310 “I would still have to go 4 times 4 is 8 and 8 times 4 is— I would still have to
do it all the way to find out what 4 to the seventh power means. But maybe there 
is a computer that does that kind of thing. ’’

“They have a calculator over there." Josh said as he pointed to the people at 
another table.

315 “I don’t know if theirs does it or not. ”
Joss picked up the instructions to his mom’s calculator. “The power is by 

solar. ”
“That just means the sun powers it, ” she told him as she tried to use the 

exponent key.
320 “Why are there so many ambulances?, ’’ asked Joss who was distracted by the

sound o f a siren.
“Well there's a hospital near here. ’’

Whereas Desie and Joss seemed to have come to a halt again, I could see a

relationship between the size of the square and its magic number; but I needed to use

exponential notation to express the relationship. I was excited by this thought because I

realized it was one way they could write the value that fit in the 64th square. My

interaction with them involved my intentions as the teacher. I decided to show Joss (I

assumed Desie knew) how to write the powers of two in exponential form. However, Joss
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did not get it, and he repeatedly said so. When his words went unheard, he said it with his 

actions. He tried to drink from his empty pop bottle; he pointed out that someone else in the 

room had a calculator; he began reading the instructions for his mother’s calculator, and he 

was distracted by an ambulance siren. Compared to earlier in the evening when he 

understood what was happening, he now was easily distracted and not fully participating. 

Not knowing altered him—he behaved quite differently.

Back to the story

Just then Ingrid, the other researcher, called for the attention of the group. 
Okay, le t’s look back to the book. ’’

325 Joss and the others listened attentively as Ingrid finished reading the story. In
my view, the solution offered by the story-tellers was brilliant in the way it tamed 
big numbers. The king called for his royal mathematician who explained that after 
covering 16 squares twice 32 768 grains o f rice (one full bag) would be needed 
for the 17th square. Then the mathematician doubles bags o f rice until the 32nd 

330 square at which point a whole shipload would be needed fo r  just the 33rd square. 
And the shiploads o f rice are doubled until the 48th square at which point the 
49th square would need all the rice that could be grown in the kingdom in a year 
and so on (Figure 7-11).

“You may be interested in reading the piece at the end o f the book about the 
335 game of chess. ” said Ingrid as she closed the book and gave it to Desie.

“Do you want me to read this to you? ” Desie asked Joss.
“Yea ’’
Desie read and Joss listened. A minute or two into her reading he put his head 

on the table.
340 “What are you doing? ” she asked as she put the book down.

“I’m just tired. ’’
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Figure 7-11. Illustration taken from the Token Gift showing the solution presented in the 
story (used with permission from Annick Press)

Throughout the night, Desie and Joss’s mathematical thinking involved big 

numbers. Their activities were focused, not only, on finding the number which represented 

the amount of rice needed on the 64th square of the chess board but on trying to make 

sense of that number. The story tellers handled the big numbers beautifully. Although I 

found their solution most satisfying, I am not certain that Desie did, and I am quite certain 

that their resolution was quite unremarkable for Joss. As animated as he was throughout 

the night he barely responded to the story. It is hard to tell from the transcripts and video if 

his body is uttering his loss of engagement or intense involvement. The story itself is
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interesting as stories go but the mathematician’s solution did not spark a visible response in 

Joss.

However, Joss was willing to listen to his mother read him the postscript to the 

story. It discusses what little is known about the history of the game of chess. Just as he 

has probably done hundreds of times before, Joss put his head down and closed his eyes 

as his mother read to him. The bedtime story is likely very familiar to Joss. I wonder if, as 

his mother read to him, his body embraced the familiarity of the experience—he closed his 

eyes and rested. Joss, the son, was brought forth in this very familiar interaction with his 

mother.

Reflecting on their thinking

“Seven minutes left" Desie said trying to encourage him. “Hey, we did some 
fancy thinking tonight. Yes we did. But we still have no idea what this number 
is," she pointed to the 64th square. “We know how we could get it easily, hey? 

345 Multiply this number by 2 to the 8th, this number by 2 to the 8th, this number by 
2 to the 8th, this number 2 to the 8th." She pointed to the empty squares at the 
end o f each o f the last four rows o f the chart. "We don't have a calculator that 
would do it. But if  I did, at least you wouldn 't have to do every single one along 
the way, would you ? "

350 “Uh um. ” Joss had begun to doodle.
I approached their table, “Are you still learning more here ? ”
“H e’s drawn a hairy beast. I  don’t know why. "
“What’s your beast about, ” I asked.
“I don’t know. "

Desie reflected on what they had done. As she had done in all of the sessions, she 

made the most of her time with Joss to build his confidence. On this night, when she 

reviewed what they had done, Joss began to doodle. He was no longer engaged in a 

mathematics conversation with his mother or with me. When asked what his beast was 

about, he simply replied, “I don’t know.” This was the same response he had for the 

questions posed about exponents. Clearly, Joss was no longer interacting with his mother 

and the artifacts of their thinking with the attentiveness that he had for most of the evening.
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Taming big numbers

355 I turned to Desie. “I think it was an interesting transition, when in the story
the numbers got too big for them they changed it to a bag full o f  rice and then
they—”

“And then the bags kept going by the same numbers, then that many 
shiploads, then that many years. They were using that same number— our 

360 number. ”
“Grains, bags, shiploads— ”
“Years."
“Which is a very neat way of making the numbers doable, ” I asserted.
“Yea, understandable with the same number. Decreasing the bulk o f it. ”

365 “Yea, when numbers get very big they get very hard to imagine. ”
“Well, that’s with us. We just couldn’t even— Once it was too big for our 

calculator—” she pointed to the 64th square again. “Joss said we still don't know 
what this number is. ”

“We don’t, ” I agreed. “All we know is that—”
370 “32 768 years to grow. ’’ Desie had understood it from that point o f view.

“Years to grow that much rice in all the rice fields of India. ”
“He was trying to understand what that meant, though and he couldn’t 

understand it. I was like trying to explain, who would want to write 2 times 2 
times 2... But what does 2 to the 8th mean. How would you every know what 

375 the number is? And then we looked at the calculator and it had some weird way
of pushing all those strange buttons. ”

“Well we know what two time two is until we have 256 right? Well we know 
that this number right here is 2 to the 63. The number is just too big to compute. ”
I explained.

380 “Well, I ’m the same as him. Like me, I don’t know— Like this [47]  would be
4 to the 7th power. To me that is not a number. It doesn ’t mean anything. ”

“Yea, true. But powers do mean something. When we are measuring space, 
out to the stars, these begin to mean something. Because the numbers are so big 
that we have to make them small again to understand them. ”

385 “Understandable, okay. Well scooter time to go?" Desie gave Joss pat on the
arm and stood up. She picked up the book and handed it to Ingrid.

Desie explained Joss’s difficulty with the exponential notation to me. However,

when I talked about why we might use exponential notation she turned away. Although she

was willing to discuss her son, it appeared as though she no longer wanted to talk

mathematics. By this point in the evening, even she found it simpler to suggest that she just

didn’t get it than to persist with trying to understand the magnitude of a number as big as

263. Although I was still trying to interact with her about mathematics, Desie no longer had
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the emotion which oriented her to act mathematically. Hence, she severed herself from the 

conversation she had been actively engaged in over the course of the evening with 

disinterest.

A Head For Math

“You’re welcome to take the book home if  you would like to borrow it." 
Ingrid said.

“That’s okay. I ’ll definitely keep it in mind the next time I want to have a new 
390 story.’’ Desie is a professional story teller. “Especially for the story telling. That 

would be really interesting to bring it into— What grade did you say it was for? ’’
“It says ages 7 and up. ’’

375 “Okay, right from grade two. Wow. "
“I could bring it into my class, ” Joss said eagerly.

395 “Oh, I know you could. But I could come and tell it at your class, which
would be fin . ”

Likely, feeling confused himself, Joss grinned, “I ’ll confuse the teacher. ”
Desie turned to me, “Every week we come here and he really impresses me 

with the way he thinks. I t’s pretty weird. I never had a head for math myself. ’’

With a connection made back to Joss’s mathematics class at school, he became

animated again. The thought of bringing the book to school pleased and excited Joss. As he

had done with his classmate, Chris, Joss could see that the book offered a possibility for

him to show off his new found mathematical skills. It excited him that he could confuse his

teacher with a problem as difficult as the one posed in the story. As we saw earlier in the

transcript, Joss’s mathematics knowing in action brought into the moment his relationships

with peers at school and with his teacher.

M athem atics: C onversation  That B rings Forth Knowers

Reflecting on this mother and son’s actions and interactions, provided me with an 

opportunity to understand mathematics knowing as a fully embodied phenomenon. In my 

exploration of Desie and Joss’s mathematics knowing, I was struck by the prominence of 

the body as both a physical structure as well as an experiential one. The tone of their
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voices, their utterances, their giggles and laughter, the position of their bodies, and the use 

of their hands to point and gesture reveal the significance of their physicality. At the same 

time, Desie and Joss’s references to others, the invitations to each other to participate, and 

their respect for the actions and utterances of the other suggest to me that their mathematics 

knowing is not separate from them as social beings. Finally, the ways in which their 

behaviours are co-referenced to the patterns of acting that we call mathematics indicate that, 

as knowers, they are brought forth as members of a culture at the same time as they bring 

forth that culture. Through observing their various mathematical actions and interactions, I 

am beginning to understand that doing mathematics is much more than simply “doing 

mathematics”; doing mathematics involves emotioning and languaging braided together in a 

conversation (Maturana, 1988). Mathematics is that conversation; it intersects in our 

bodyhoods in such a way that our being is permeated with the experiences of doing 

mathematics and reflexively that conversation is brought forth by our interacting 

bodyhoods.

To conclude this chapter, I summarize the ways in which Desie and Joss’s 

mathematics knowing was brought forth from perceptually guided actions and the ways in 

which their knowing intersected in their bodyhoods, thereby bringing them forth as 

knowers. I observe that they have ideas, emotions, social relationships and culture—not in 

the sense of having property but in the sense of a relationship which the person bears to the 

term into which he or she projects him or herself (Merleau-Ponty, 1962, p. 174). From 

observing their actions and interactions, I distinguish their knowing as enacting personal 

thought, social relationships and cultural forms. Each of these dimensions of their 

experience, at once, constrain and make possible their knowing, at the same time, as the 

dimensions come together in their bodies and transform them. Further, as I discussed in the 

previous chapter, any change in the knowers changes the context of which they are a part; 

hence, potentially transforming the world they bring forth with others.
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The Knower: Gesture, Utterance and Emotion

Maturana (1988) explains that emotions, not only make possible all our actions, but 

emotions specify the domains in which we take part (p. 48). “Emotions,” he claims are 

“kinds of relational behaviours in that they guide moment after moment our doings by 

specifying the relational domain in which we operate at any instant” (Maturana, 1998 

http://www.inteco.cl/articulos/metadesign_partel.html, p. 7). As I have tried to 

demonstrate, there were many instances in the session where Desie and Joss’s emotions are 

visible in their actions and interactions and can be seen to orient their actions. For example, 

when the numbers appearing on the calculator got large, Joss expressed his delight with 

their magnitude. As the numbers grew, he called out, “we are in the hundreds,” “we are in 

the thousands.” His delight was not only a response to the growing numbers but altered his 

bodyhood and orientated his subsequent interactions. For example, tied up in Joss’s delight 

was his anticipation of the rapid growth of the numbers. He did not sit back and wait for 

his mom to print the numbers on her sheet; instead he followed along, watching the 

calculator closely to catch sight of the numbers as they appeared on screen. Watching these 

numbers grow and anticipating their growth was an emotional experience for Joss—one 

that I suggest leaves a trace in his bodyhood, and, hence will be implicated in Joss’s 

knowing acts in the future.

Pondering on Joss’s comments and the excitement in his voice, I might ask “Which 

came first, his cognitive understanding of the magnitude of the numbers or the excitement 

he felt about what he was experiencing? Or, is it possible that his noticing was the outcome 

of his excitement?” In this instance, it appears that his excitement arose in the moment of 

distinguishing the magnitude of the numbers. His emotion is, what we might regard as, 

local yet fully implicated in his knowing. In the moment of knowing, Joss’s emotion 

readies his being and guides his perceptions so that some actions are made possible 

whereas others are made impossible.
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I also notice Joss’s emotional state is tied to his structure in another way. It depends 

on his history of experiences. Specifically, I am referring to the fact that Joss does not get 

excited about just any response; rather, he gets excited over numbers (hundreds, 

thousands) which in his experience, as a student of mathematics and speaker of English, 

are special. In Figure 7-1, Figure 7-6, Figure 7-8, and Figure 7-10 I illustrate my 

observation that in conversation Joss’s mathematics knowing, moment by moment, 

triggers his emotions and leaves a trace on his structure which in turn, moment by moment, 

readies and determines his languaging and emotioning (conversation).

Not only is the model o f interaction I proposed useful for observing mathematics 

knowing in action, but it can also used to explain situations when the knower’s 

understanding is not good enough to maintain mathematical interactions. Take for example, 

when Joss repeatedly told both his mother and myself that he did not get it. Looking back 

in the transcript to where I was trying to show Joss how exponents worked for the table of 

magic numbers, I note that, although his and my actions were coordinated, there is no 

evidence to suggest that we were languaging (coordinating the coordinations of our 

behaviours) even though our actions were in language. There was no recursion on the 

interaction. In other words, at no time did it appear that Joss thought about that which we 

were doing as repeated multiplication, likely because he did not have an adequate 

understanding of multiplication with which to reflect. Thus, he did not have the opportunity 

to reflect on repeated multiplication as a process that leads to the big numbers in which he 

was interested. Neither did he reflect on the exponential notation as a way of representing 

the process or the product of the process. It is not surprising that he “did not get it.” 

Without the coordination of the coordinations of our behaviours, there was nothing (no­

thing) for Joss “to get” (Blumer, 1969). Furthermore, without a history of actions and 

interactions (structure) which included multiplication, a coordination of our coordinations 

was not possible.
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We might also notice how Joss’s emotional orientation changed in the events 

described here. Up until this point in the evening, Joss was quite involved with all of the 

activity. He watched, chatted, pondered, and questioned. However, once I began the 

“lesson” on exponents, his behaviour changed abruptly. He responded to my prompts with 

silence. Once I trivialized my questions, he obediently responded but those responses were 

no longer animated, and when he did speak it was little more than parroting what I said. 

The smiles and giggles subsided. He did not ask questions. He stopped making 

connections to the mathematics he already knew, to the events in his life and to the people 

with whom he interacted. This response was not like Joss’s behaviour earlier that same 

evening. These two examples suggest, to me, that emotions are, at once, bodily 

orientations for action (knowing) and products of acts of knowing— and they co-emerge 

with structure determined behaviours.

The Knower: Social Relationships

Desie and Joss’s mathematics knowing in action point to yet another dimension of 

their knowing; that is, as social beings in relationship with others. In particular, from the 

transcript of Desie’s and Joss’s activity, we note how their relationship served to help 

maintain their mathematical interactions and was maintained in doing mathematics together. 

Further to that, their mathematical knowing brought them forth as knowers in multiple 

dimensions throughout the evening. Joss (in particular) was brought forth as a student, 

classmate and son in his mathematics knowing. The social relationship, like most things we 

note from an enactivist perspective, is double-sided. On one hand, we might refer to the 

person’s relationship with the other as a co-participant and the way in which the social 

interactions within that relationship trigger, foster and propel mathematics knowing in 

action. On the other hand, we might explore the way in which the person’s mathematics 

knowing in the moment intersects in the bodyhood thus potentially impacting the person’s
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social relationships, both inside and outside of the moment of action. I point to both with 

my comments, first with respect to the former and then the latter.

When two people are in relationship, they are coupled and their actions serve to 

maintain that coupling until such point as the coupling breaks down. Throughout the 

transcript of Desie and Joss’ activity, there is evidence of how their actions served to 

maintain their relationship as well as to foster mathematics. For example, although Joss did 

not compute the doubles, magic numbers, or maintain the records they kept, he did follow 

along with his mother’s actions, utter comments and offer suggestions. In doing so, he 

maintained a relationship with his mother as a co-participant as they did mathematics 

together. Of course, on the other side of this relationship is Desie who offered her thinking 

out loud, made public her records and repeatedly asked her son for his contributions. Joss 

could have lost interest in doing mathematics as his role became somewhat passive but he 

did not. He maintained a very active role both through his own volition and with his 

mother’s invitations for ongoing participation. One further comment is needed here. One 

might suggest that Desie acted, as the teacher, and kept her son in the game (so to speak). 

There is some evidence that she did this, for example, at the very end of the session; but for 

the most part, Desie and Joss were co-participants in this activity. When she asked Joss 

what they might do next she was doing so not so much as mother, or teacher but as co­

thinker or co-participant. She asked for suggestions because their (both his and her) 

mathematical thinking needed to be prompted, not simply because she was trying to keep 

Joss on task or to teach him what to do. Hence the interactive space created from their 

relationship was used to do mathematics and in doing mathematics they maintained their 

relationship.

Within their activity we also observe how other social relationships were implicated

in their mathematics knowing and how their mathematics knowing had the potential to

affect those relationships. For example, I am struck by how throughout the evening Joss’s

relationships with classmates and his teacher were called into the moment triggered by his
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mathematics knowing. Recall, how Joss commented about his interaction with Chris at 

school, when Joss demonstrated his cleverness by knowing 24 times 2 or recall when Joss 

speculated he could confuse his teacher by bringing in the book, The Token Gift. Both of 

these moments suggest, to me, that the mathematics Joss does with his mother in the 

parent-child mathematics program intersects with other conversations of which he is/was a 

part, and that have left traces. As Maturana (1988) suggests, Joss’s multiple conversations 

intersect in his bodyhood therefore a conversation in one domain has the potential to impact 

a conversation in another domain.

The Knower: Cultural Worms

As human knowers interact within the constrains and possibilities of their own 

structures, they, at the sam e time, are bounded by the environment and others who have 

engaged in mathematics as part of their history of experience. Maturana (1998) notes:

[T]he culture in which we live constitutes the medium in which we are realized as 
human beings, and w e become transformed in our bodyhoods in the course of the 
history of our culture according to the human identity that arises and is conserved in 
that culture, (http://www.inteco.cl/articulos/metadesign_partel.html)

Hence, our actions are also constrained and made possible by what we observe as 

culture—“the way of life and  thought that we construct, negotiate, institutionalize and 

finally end up calling “reality” to comfort ourselves” (Bruner, 1996, p. 87).

Again, Desie and Jo ss’s actions and interactions provide us with a number of 

examples of the ways in which we observe cultural forms to be implicated in their knowing 

and their being. It is significant, to my interpretation of mathematics cognition, that Joss 

commented when the numbers reached the hundreds and then again when they reached the 

thousands, that his mom made a remark when the numbers reached the millions, and that 

neither Joss nor Desie both-ered to comment on the magnitude of just any numbers. As I 

already discussed, their actions help us understand the ways in which mathematics and the
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English language are implicated in the personal knowing Joss and Desie brought forth in 

their activity, and the ways in which mathematics is embodied.

Recall too, how Desie had some difficulty when she tried to read out a large 

number. After placing the comma in the wrong position she confused thirteen 13 000 and 

131 000. This triggered an interesting interaction between her and Joss— one that 

implicates and was implicated in culture (cultural forms) quite explicitly, and their inter- 

generational relationship somewhat implicitly. Joss noticed his mom’s form for the 

numbers, and made a comment that revealed he is embedded in mathematics differently 

than she. Joss has learned to write large numbers with spaces instead of commas. He and 

his mother use different representations. Even more significantly, he sees that his knowing 

is different from his mother’s and this is implicated in their relationship not only as 

collaborators but also as mother and child. He told her, “you’re old fashioned mom”—the 

culture has changed—I am different than you.

But at the same time, as human beings that live in conversations we are reflective 
beings that can become aware of the way they [sic] live and of the kind of human 
beings that they become (Maturana, 1998, http://www.inteco.cI/articulos/ 
metadesign.htm).
The interaction, occasioned by Desie’s form for writing a large number, offers 

some interesting insight into the reflexive nature of mathematics knowing. Joss’s knowing 

is both replicative, in that he is engaging an established pattern of acting, and generative, in 

that it changes the culture of mathematics for those around him. When he writes numbers 

differently than his mother, he changes mathematics for her. This is more than teaching her 

mathematics (in the usual sense); he is practicing mathematics differently, and this opens 

different possibilities for both himself and his mother. In practicing mathematics 

differently, he is brought forth as a different mathematics knower than his mother.

Finally, I must speak of Joss’s desire to have a calculator and to carry it 

everywhere. Joss’s possession of a calculator permeates mathematics, in that his use of a 

calculator reshapes mathematics. Paper and pencils changed the nature of computing. Now
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computation is going through another revolution with the widespread use of electronic 

computing devices. One hundred years ago, there was a need in commerce and industry for 

people that were very good at computing. Thus, it was sensible, that in school, students 

would learn efficient algorithms, and practice them until they became fast and accurate. 

However, how do we explain a grade 3 class today that continues to operate on outdated 

needs and contexts? Joss’s desire to carry a calculator everywhere is, not only, insightful 

and useful given his situation but it has a formative role in the culture of mathematics as 

well. Mathematics itself changes in light of Joss carrying his calculator. Mathematics is 

different today (for Joss), than it was at the turn of the century (for the clerk), at least, in 

part, due to electronic technologies. Those same technologies that contribute to a different 

mathematics for Joss also contribute to the changing face of professional mathematics 

(Borwein et al., 1996).

U n d e rs ta n d in g  D iffe re n tly

The night that this vignette is drawn from is only one night out of ten in which Joss 

and his mom did mathematics together. Pausing to make this observation is useful because 

we are reminded that their activity in any particular session is only a small part of their 

interacting together in general and interacting together with mathematics in the particular. In 

this case, I am reminded that Desie brought her son to the program to provide him with an 

opportunity to engage in mathematical thinking; but in doing this, she ended up engaging in 

mathematical knowing with him, and bringing forth a world of significance with her son 

that included mathematics.

With the examples in the previous sections, I have tried to demonstrate that we can 

think about Desie and Joss’s mathematical cognition as problem solving, and that is useful 

in some ways; but, when we do this, other features of their knowing and of them as 

knowers go unnoticed and unexplored. We can note a “problem with big numbers” which 

is woven throughout their activity and interaction, over the course of the whole session.
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However, I have shown that their knowing is much more than that. There are many layers 

of their knowing, and although not seen are present none the less. Only on the surface is 

their activity about finding out how many grains of rice the king will need for the token 

gift. Looking back over the transcript, it is surprising to note that Desie and Joss did not 

make any reference to rice as they worked that evening. Maybe the king’s problem was not 

a problem for them at all. It is clear, their activity wasn’t just about finding out how much 

rice the king needs to cover the chess board.

If we simply view mathematical cognition as problem solving, then how do we do 

to account for the emotions, such as desire and curiosity, that seem to be present in this 

situation? What about the persons’ hunches and technical difficulties? How are they 

implicated in the mathematics knowing that co-emerged-emerges in action? What about the 

language Desie and Joss use and their use of mathematical notation? What about the 

relationship between this mother and her son, to what extent is it implicated in their 

mathematics knowing? I assert that it is inadequate simply to talk about Desie and Joss’s 

activity as problem solving per se. If mathematics knowing is simply viewed as problem 

solving, then the human knower is nothing more than a problem-solver. However, if 

mathematics knowing is fully embodied action then the mathematics knower is brought 

forth in multiple dimensions of his or her living as she or he brings forth a world of 

significance with other people.

An enactivist interpretation would suggest that Desie and Joss were not solving

problems in as much as they were acting, constrained by their own knowing (in all of its

dimensions) and restrained by their environment, to bring forth a world of significance

which this night included: a story of chess, big numbers, a mother and a son, a researcher,

school, calculators, and classmates. If we interpret Maturana’s (1988) assertion that

emotioning and languaging are braided together to form our conversations, then with

respect to mathematics knowing, we might suggest that mathematics is the conversation

that arises from the braiding of mathematical actions (languaging) and the bodily
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dispositions (emotions) that propel those actions. Mathematics is not emotion free and 

neither is emotion independent of mathematics. Ass human beings, languaging and 

emotioning constitute our actions and interactions in ouir moment by moment living—our 

conversations—and it is through our interactions the sp ace  of the possible is expanded and 

the human knower transformed (Simmt andKieren, 19S99).
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Chapter Eight 

THE FRACTAL SPACES OF KNOWING

I sit, trying to write this final chapter after many starts and stops. I have spent days 
trying to understand why it is not working. Talked and talked some more, to 
anyone who would listen, trying to understand myself, trying to make sense of 
what I need to do to write the last chapter.
Today I think I shall write it. I have decided its purpose—to reflect on my research, 
my knowing in action. I am content with that. And so I write a new outline.
I return to my last version of this final cluxpter and begin to mine substance from the 
things that I have already written, classifying my utterances in terms o f my new 
outline. I make a few markings, then blurt out a string o f  comments down the side 
of a page.

d escrib es  w h a t  I 
m ea n b y  o rd er in g  

one's o rd er in g

do i t  to s a y  "Ikn ow "
4

th in k in g /  
kn ow

4
I am  th in k in g /

I k n o w  
4

I am  in r e la  tionsh  ip
4

l a m  c o u p l e d

4
i t  is  p a r t  o f  me

4
in tim a  cy

4
I k n o w

The memory o f a mother’s words interrupt my stream o f thought. “I now know my 
son in a way I never knew him before. ’’ Tears well up in my eyes.
Why does this mom’s comment move me like it does? After all o f my work— 
interpretation, diagrams, transcripts, models, explanations... Why did this 
particular comment emerge when I uttered, “I know ” ?
Tears of profound recognition.
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Thought is no internal thing and does not exist independently of the world and of 
words... ‘Pure’ thought reduces itself to a certain void of consciousness, to a 
momentary desire. The new sense-giving intention knows itself only by donning 
already available meanings, the outcome of previous acts of expression. The 
available meanings suddenly link up in accordance with an unknown law and once 
and for all a fresh cultural entity has taken on an existence. Thought and expression 
then are simultaneously constituted, when our cultural store [language] is put at the 
service of this unknown law, as our body suddenly lends itself to some new 
gesture in the formation of a habit. The spoken word is a genuine gesture, and it 
contains its meaning in the same way the gesture contains it (Merleau-Ponty 1962, 
p. 183).

Writing this thesis has been an act of research, not a report of research or a research 

report (although some could choose to read it that way). Each word uttered, each diagram 

drawn, and of course the many words and drawings that were changed or deleted were acts 

of knowing (determined by my history of interactions and oriented by my emotions) which 

brought me forth as a knower. Consequently, as I write this last chapter, I find I am unable 

simply to summarize what I have said. First of all, I am no longer the same knower that 

said those things. My own words are not transparent for me; they need to be enacted in my 

reading to be meaningful even to me. I must interpret my own utterances. Hence, in re­

viewing my thoughts (now the artifacts of my thoughts), I am transformed yet again, and a 

new world of significance co-emerges with me. Secondly, this dissertation was (in the first 

instance) my interaction with questions that emerged for me over the course of my study. I 

hesitate to offer an abstraction of my experience by ending this thesis with some concise, 

clear and linear summary of what I did, and with ‘answers’ to my research questions. I fear 

that this may be read without any experiences of the particular from which the abstractions 

emerged. This chapter, as all the others were, is my knowing in action. Hence, I will use it 

to continue to research by interacting with the artifacts of my own thinking as I look back 

on writing this thesis.
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Re-membering t h e  R e sea rc h

I am stuck by my awareness that I did not set out to do research when I began the 

parent-child mathematics program. Rather, there was a sequence of events which, in 

retrospect, I distinguish as occasioning me to research, to explore mathematics knowing in 

action. (See chapter one).

Questions emerged, guided first by the demands of the parent-child mathematics 

program, then, by an interest in how I might understand the ways in which the person and 

the environment interact to bring forth what I observe to be mathematical activity, and, 

finally, by conversing about my observations of the parents’ and children’s mathematics 

knowing in action. There were questions about prompting mathematical behaviours, 

identifying sites of interaction and sources of perturbations, and exploring the relationships 

among cognition, emotion, body and mind. My interest grew to include trying to 

understand how personal thought, collective processes and cultural forms were implicated 

in mathematical knowing in action. Eventually, I formulated the question that permeated my 

interactions in the spaces of research: How might I  characterize the mathematics knowing 

that is brought forth in the actions and interactions of the parents and children in this 

mathematics program? Further questions arose, for me, and were articulated my in writing 

about mathematics knowing in action. How might I understand the knowers’ actions and 

interactions that bring forth mathematics? How might I understand the knowers that are 

brought forth in mathematics? Exploring those interactive spaces, the questions opened up 

for me, and I found complexity and complicity. There were many actions that I pointed to 

as mathematics knowing; but the actions (spoken o r written utterance, gesture, tone, facial 

expression or body position) were not simply mathematics knowing. They suggested more 

than that to me.

Reflecting back on my role in terms of the prompts selected, the questions I posed, 

the participants’ mathematical understanding that I validated by my comments, and what I
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have selected to include in this thesis, say more about my understanding about what counts 

as mathematics than I think we can know about the participants’ understanding about 

mathematics. Although I have indicated this elsewhere, I will repeat it; this study is based 

on the premise that any of the explanations I offer make coherent the my (the observer’s) 

experiences and observations. The explanations are not of the things in themselves; rather, 

they point to the relationship between the observer and the observed. Hence, as scientific 

explanations they must account for the observation but not the thing itself. The explanations 

that I have offered in this thesis, then, are offered as tools for observing and interpreting 

mathematics knowing in action.

Consistent with the enactive premise that our day-to-day knowing is not centred on 

problem solving but living, and in doing so bringing forth our lives and the world we live 

in, my research co-emerged with my experiences as a teacher (facilitator) of an 

extracurricular mathematics program for parents and children. It is not surprising, to me, 

that this unconventional site became a valuable site for researching mathematics knowing. 

Although few people are likely to conjure up an image of parents and children doing 

mathematics together1 as a wonderful place to study mathematics knowing, it is in such an 

unfamiliar place that well-established patterns of behaviour are disrupted. The parents and 

children who participated in the mathematics program had impressions about what counts 

as mathematics, and what one does in a math class. Hence, this site was valuable in that in 

its novelty the parents’ and children’s understanding of what it means to do mathematics 

had the potential to be suspended, if only briefly. The setting worked to encourage rich and 

complex mathematical activity among the participants.

A problem, for me, doing this research was (still is) to develop ways to think about 

mathematics cognition all at once. An enactive interpretation, through the use of a fractal

1 Interestingly, biographies o f many female mathematicians indicate that as children and teens those women 
had a significant person in their lives who encouraged their mathematical thinking outside o f the traditional 
school (Perl, 1993).
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metaphor, opened up possibilities to point to the minute and particular in the participants’ 

complex interactions without having to reduce mathematical knowing to fundamental 

components of one sort or another (if one could). Fractal geometry provided me with a way 

of layering interpretations o f  the complex phenomena I was observing, based on different 

“scales” of interactions to produce self-similar layers of understanding. I have found it 

useful to think of multiple interpretations as layers that fit together (fractal-like structure) to 

form explanations o f mathematics knowing in action. Between these layers are permeable 

boundaries that allow interaction among the layers; thus, each layer has the potential to 

affect another, which affects yet another layer and so on. (Maturana and Varela’s (1992) 

explanation of cognition provides an interesting example of layered interpretation which 

shows self-similarity at the same time as growing complexity and complicity.)

I suspect that the real value of using a fractal metaphor has been that it opened up 

space for considering dimensions of mathematics knowing that are not often discussed in 

research reports about mathematics cognition (chapter three). In my work, I used the fractal 

metaphor to interpret mathematics cognition as bringing forth a world of significance that 

includes personal, social and cultural dimensions of knowing all at once. As an interpretive 

device, the fractal metaphor helped me understand those instances where something 

appeared to be one thing (personal mathematical thought, for example) and, at the same, 

time was observed to be of another kind (cultural or social).

In some ways, transcripts and vignettes are the best interpretation of people’s 

mathematical activity because such forms offer context, and create a site of interaction for 

the reader to imagine (in our case) a parent and child doing mathematics and the many 

things that might involve. At the same time, it is only through a close reading of the 

vignettes and a discussion among educators and researchers that the many fractal layers of 

interpretation are created, and an understanding of mathematics cognition is brought forth.
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Ordering One’s Orderings

Throughout this thesis, I have been putting order to my observations of people’s 

mathematics knowing in action by offering cases (specializing), drawing distinctions and 

making generalizations from patterning those distinctions to create models for further 

observations of the particular cases. As I discussed in the second chapter, my method of 

studying mathematics knowing in action involved an iterative and recursive process, which 

I described and displayed as a fractal research cycle. The method was iterative in that the 

cycle was engaged repeatedly, and it was recursive in that with each cycle, new 

understanding had the potential to change previous knowing hence creating different 

possibilities for understanding prior distinctions and understanding and potentially 

transforming the process of understanding itself.

Although I have described some of the ways in which my understanding was 

transformed by doing research, the changes in my understanding are not easily noticed in 

my writing. It may be that, the only way in which they appear is as contradictions or 

unmarked distinctions in the way I express or use a concept. For the most part, however, 

the many passages, sentences and words that were removed or replaced from the early 

chapters as I wrote new chapters and rewrote the older ones as part of my growing 

understanding cannot be seen; therefore, the reader can only take my word (given his or her 

experience) that indeed the research process was, not only iterative, but recursive; as new 

understandings were enacted previous ones were transformed. Writing and rewriting was 

(is) my knowing in action and even as I write this word I observe my own knowing 

changing.

A striking example of observing my own knowing change was in the process of 

trying to understand the relationships between the personal, social and cultural dimensions 

of knowing and one’s bodyhood (Maturana, 1988). Recall the case of Desie and Joss who 

had engaged in activity around doubling. Prior to writing chapter seven, I had already
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worked with the transcripts and other artifacts of their activity when I wrote about Joss’s 

knowing as triply-embodied (Simmt, 1998). Six months later, I wrote about the ways in 

which Joss’s emotions were implicated in his knowing (Simmt, 1999). When I came to 

work with the transcript (and other artifacts of their activity) for the purposes of the 

dissertation, the case addressed me differently than it had in either of the two previous 

encounters; although I still understood the case in those terms. I began to understand Joss’s 

and Desie’s actions as enacting their “selves.” Up until this point, I understood my study as 

one about mathematics knowing in action. However, with this third “reading”, I began to 

understand my research as trying to make sense of the knower and the knowing as co- 

emergent or bringing each other forth in action. My understanding was transformed in a 

recursive act of ordering my orderings.

A similar phenomenon was observed repeatedly in the mathematical actions and 

interactions of the people with whom I interacted in the mathematics program. Mathematics 

knowing in action seems to be full of such activity. Recall how Dan and Kerri (from 

chapter three) put order to sets of tiles, kept a record of the arrangements, and then ordered 

those arrangements with a table of values. Using the numbers from the table, a 

generalization for anticipating the number of arrangements without actually constructing all 

of them was created in another act of ordering. With each ordering, new understanding was 

brought forth. Another example of this is illustrated by Cathy’s construction of a table in 

response to the diagonal intruder prompt and interactions with her father and me (chapter 

six). She took her table (an ordered list of the number of unit squares the diagonal passes 

through for the 4 x  n rectangles) and transformed the information in it to a set of 

differences. She deliberately brought order to her table of differences when she preserved 

the counting-by-two pattern by marking the exception with “don’t count.” Ordering is a 

very deliberate act. Similarly, in chapter five, Roberta’s move from the iconic 

representations of the rectangles she had constructed, in response to the diagonal intruder 

prompt, to a graph of the relationship between the variable dimension of a 3 x n rectangle
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with the number of unit squares the diagonal passes through is another example of 

ordering. In this example, we observe how Roberta generalized from her ordering by being 

able to predict values for cases she had not drawn, and by noticing that she marked the 

correct ordered pair for the 3 x 12 rectangle even though she had incorrecdy drew it, and 

recorded the wrong count on her drawing. Engaged in noticing her own thinking, rather 

than the artifacts of her previous thinking, Roberta did not appear to observe the mistake or 

the contradiction between the graph and the count from the drawing of the 3 x 12 rectangle.

The case of my research knowing and each of these examples from parent-child 

activity suggests to me that one of the characteristics of the knowing in action that I have 

been observing is ordering one’s ordering.

Variable-entry Prompts

In the parent-child mathematics program, the need to provide suitable prompts was 

an occasion for me to listen more carefully to the participants, as I created a curriculum with 

them that was worth living. In reflecting on my choice of the word prompt, I realize that the 

choice was pragmatic. That is, I knew that the participants had quite distinct histories in 

mathematics: they were of different ages, they had different interests and so on. On the 

other hand, what I did not realize, except in reflection, was that variable-entry prompts 

were my means of establishing a relationship with the participants and addressing their 

needs (in a broad sense) as well as the opportunity for them to reformulate, moment by 

moment, the nature of the questions they were exploring.

The first half of this chapter suggests to me that doing the research involved a 

similar form of activity. I would like to suggest that the parent-child mathematics program 

was a variable-entry prompt for me. It was a place I could enter into research with my 

history of experiences but without a specific research question. As a prompt for my 

research, the site and my interest in the participants mathematical understanding was 

sufficient to generate and sustain my research program. In much the same way that the
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prompts were transformed by the participants in the mathematics program, the prompt for 

my research evolved and was transformed throughout the process of doing research as I 

reformulated questions, adjusted my focus, reinterpreted bits of interaction and so on.

In the examples of both mathematics knowing and research knowing, the ways in 

which the variable-entry prompt was taken up by participants in the former case, and the 

researcher in the latter instance, suggest how knowing is co-determined by the knower and 

his or her environment. That is, these examples of knowing in action demonstrate how in 

interactive spaces that were enriched by the variable-entry prompts many actions were good 

enough to sustain and propel the persons’ knowing. Had the initial prompts been very 

narrow and the environmental constraints very strict, the participants would have had to 

engage in specific actions in order to foster mathematical thinking. Variable-entry prompts 

contribute to an “enactivist” environment for knowing in that they invoke a proscriptive 

logic in which what ever is not forbidden is allowed. Given adequate actions and 

interactions, the sphere o f behavioural possibilities opens up and there is potential for 

further acts of mathematics knowing. This is quite different from the prescriptive logic that 

is often found in school mathematics; where the student’s action must match a prescribed 

one in order to keep the student’s sphere of behavioural possibilities from constricting very 

rapidly or even collapsing totally (with respect to mathematics).

O ccasioning

Of particular interest, early in my research, was what “caused” these parents and 

children to do what they did. In part, this question was triggered by my search for 

appropriate prompts but, more so, it was occasioned when I studied various artifacts of the 

parent’s and children’s mathematics knowing. It seemed obvious to me that what I did, the 

prompts I offered, the questions I asked, and the comments I made were implicated in the 

actions and interactions of the parents and children in the sessions. However, it was also 

clear that although the participants’ actions and interactions shared similarities, what the
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participants did with the prompts could also be quite distinctive between parent-child pairs 

and to some extent within each parent-child pair. Maturana’s and Varela’s (1992) notions 

of structural determinism and structural coupling were useful to me; their notions 

suggested, to me, that I must consider the interactions among the participants to observe 

how the prompt was taken up and transformed by them.

I suggest that, in part, the very distinctive behaviours (and those that share 

commonalties) can be attributed to the multiplicity of dimensions in which a perturbation 

can be taken up. What might be viewed by an observer as a unitary perturbation can be 

taken up in many ways by the knower. For example, when Desie took out the calculator to 

compute the doubles of the large numbers, Joss saw the calculator as something more than 

a tool to solve the problem immediately in front of him. He also was occasioned to imagine 

how he would like to carry it everywhere. Although Desie and Joss’s use of the calculator 

could be viewed in the moment as electronically assisted computation, Joss’s comment 

reveals that such activity is permeated by and permeates other dimensions of his existence. 

In examples like this, I find it useful to invoke a fractal image because it helps me to 

understand how, at once, Joss can be doing calculations with a calculator to satisfy the 

constraints of the prompt and his own desire for a quicker way to compute the doubles and, 

at the same time, be thinking about how the calculator is a neat thing to carry around 

everywhere. If we observe knowing as complex and having a fractal structure, then even 

when a prompt is offered with the intention of focusing knowing in possibly just one of 

these dimensions we observe that it is the knower that takes it up and integrates it into his 

or her experience. Therefore, the prompt can occasion knowing in a dimension that was 

unanticipated or in more than one dimension, all at once.

Further to this, another layer of interpretation suggests that we can understand the

prompt, itself, as a occasioning multiple interactive spaces for the person who offers the

prompt. That is, the one offering the prompt does so with intent. In the case of the parent-

child mathematics program, I offered the prompts as a way of inviting parents and children
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into mathematical activity; but, immediately, that put us in relation to one another and it 

occasions the social interactional dynamics between us. At the same time, the prompt is an 

expression of my mathematics knowing and implicates the broader mathematical 

community in the actions and interactions in the parent-child mathematics program. The 

culture of mathematics is brought forth in the prompts I offer, the questions I ask, the 

responses I acknowledge, and the practices and explanations I validate in my interactions 

with the participants.

The occasioning of mathematical understanding is not unidirectional from parent to 

student (which is obvious in any of the illustrative cases discussed in my thesis) or from 

facilitator or teacher (researcher) to participant; it is reciprocal. The mathematical actions 

and interactions of the participants and the artifacts of their knowing occasioned my 

mathematics knowing. In those conversations which were occasioned and sustained by the 

participants’ mathematics knowing in action, the culture of mathematics was brought forth.

Interaction

I have spoken at length now about the role the prompt played in the mathematical 

actions and interactions of the participants. I noted that, in fact, it is one of the ways in 

which the parents and children were occasioned to participate in collective patterns of 

behaviour that I understand as mathematics. However, this was only one part of the 

interaction that occasioned and sustained their mathematical activity. The participants 

selected energy-rich matter from their environments and proceeded to engage in 

mathematical activity as they were occasioned, moment by moment, in their interactions 

with the prompt, each other, me, their own thoughts, and the interactions of others. I 

observed the interaction between the parent and the child as significant to the mathematics 

knowing that emerged in action. In this section, I discuss three patterns of interaction 

(Kieren, Simmt, Gordon Calvert, Reid, 1996).
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Parallel action

In the case of parallel action there are few opportunities for occasioning between 

people because if there is any interaction between participants, it involves little 

mathematics. There were very few instances in the parent-child mathematics program 

where the adult and child worked strictly in parallel, not even referencing each other’s 

work. The parent-child mathematics program was not a situation conducive to strictly 

individual activity.

C o-referencing

I use the term co-referencing (Simmt, Kieren, Gordon Calvert, 1996) to refer to 

those situations in which the participants do not work together on the task but do interact, 

particularly to reference the other’s work or to ask a question that satisfies a need of one of 

them. This is illustrated in the case of Roberta and Kristina (chapter five). Although they 

did talk to each other, for the most part each of them simply checked to see if her records 

matched with the other’s. As a result, there was little evidence that their interaction 

occasioned each other’s thinking in any remarkable way; for example, their interactions did 

not serve to sustain their mathematical activity. One might also interpret a good portion of 

Cathy’s and Jake’s (chapter six) interaction or Cathy’s and Rebecca’s (chapter three) 

interaction as co-referencing. In the case of Cathy’s interaction with her father, we notice 

that they work quite independently of each other, likely because of different understandings 

of the situation, the different skills that each of them bring to the task, and the ways in 

which they prefer to work. However, it is interesting to note that Cathy’s actions bear a 

resemblance to her father’s; hence we might conclude that in fact she was occasioned by 

interacting with the artifacts of his interactions. In contrast, Cathy and her mother also were 

observed to co-reference but Cathy and her mother’s ways of working are quite similar. 

This may be why Cathy and Rebecca are seen to be occasioned by each other even though
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they do not work together. In this case, we might say they co-occasioned each other’s 

knowing.

C o-occasion ing

When two people interact in such a way that their mathematical knowing is both 

propelled and sustained by interacting with the other, we call this co-occasioning (Simmt, 

Kieren, Gordon Calvert, 1996). Rebecca and Cathy demonstrate this at times in their 

interaction but not to the extent that Desie and Joss do. Throughout the session, in which 

Desie and Joss consider the doubling problem (chapter seven), we observe the back and 

forth nature of their conversation, and the many times when Desie’s comments or questions 

(for example) occasioned Joss’s knowing which in turn occasioned Desie’s knowing and 

vice versa. In my opinion, one of the remarkable features of co-occasioning is that we 

witness reciprocal learning— both Desie and Joss leam from their interactions. When two 

(or more) people interact so intensely, there are many opportunities to enlarge their spheres 

of behavioural possibilities; hence, they have more energy-rich matter from which to select 

to transform their mathematical understanding. Dan and Kerri are another parent-child pair 

with whom we note a great deal of co-occasioning (see chapter three and five). In their 

case, there were times when their interactions were so tightly braided that it is difficult for 

me to ascribe the mathematics knowing that emerged to one of them or the other.

Fully Embodied Knowing

What do I mean then when I suggest that mathematics knowing is fully embodied? 

In the first place, I am suggesting that mathematics knowing is the utterance or gesture that 

co-emerges with the knower (Merleau-Ponty, 1962). It is that which arises in the actions 

and interactions of people in language. What ever else mathematics is, I work from the 

perspective that mathematics is human activity and as such exists in the phenomenal domain 

that arises for humans in languaging. Mathematics knowing is fully embodied in that it is
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an act of the bodyhood, the braiding of Ianguaging and emotioning. At the same time, 

mathematics knowing in action embodies personal thought, social relationships and cultural 

forms and practices. In other words, an act of mathematics knowing is at once personal, 

social, and cultural (Davis, 1996: Simmt, 1998) and it involves interactions among the 

interactions of these dimensions.

Social relationships

Much is being said about the social dimensions of mathematics knowing (see for 

example, Lerman, 1996; Confrey, 1995a; Cobb, 1995). Interestingly, however, most of 

those discussions are focused on the role of social interaction in learning mathematics. 

When I say that mathematics knowing is social, I am certainly supporting such claims. 

However, I am also suggesting that mathematics knowing involves social or interpersonal 

relationships which co-emerge with mathematics knowing. I pointed to this view of the 

social domain of mathematics knowing in chapter seven in my discussion of Desie and 

Joss’s mathematics knowing in action. Specifically, I  discussed this in terms of Joss’s 

relationship with his mother, his peers at school and his teacher as they co-emerged with 

his mathematics knowing in action. Here, I will elaborate with a different example.

Dan and Kerri (chapters one, three and five) participated in more sessions (26) than 

did any of the other pairs. When they first came to the program, Dan was very likely to take 

a “teacher-like” role in their interactions, and he asked Kerri very pointed questions which 

served to controlled her actions. However, Dan and Kerri’s interaction patterns changed 

quite remarkably over the course their participation. Rather, than controlling her actions, 

Dan encouraged Kerri to take the lead in responding to the prompts, and then he supported 

her actions in a number of ways: he often kept records, he asked questions that he thought 

would help them better understand the problem, he asked her to explain her thinking, and 

he explained his thinking to her. There are likely a number of reasons for this change. One 

reason might be that many of the prompts were novel to him; as Kerri had to, he also had to

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



work through the prompts in order to understand them. With the changes in the way they 

interacted, their relationship as co-participants developed and replaced the teacher/student 

relationship that was first enacted in their interactions. By the second and third set of 

sessions, Dan and Kerri’s patterns of interaction had become quite stable; they interacted 

intensely, each playing a role in the mathematics knowing that emerged. Dan and Kerri 

provide a wonderful example of how a relationship contributed to joint mathematical 

activity and how doing mathematics played a part in forming patterns of behaviour and, 

indeed, the relationship between two people.

Cultural form s and practices

With an example taken from Joss and Desie’s interaction, we can note the ways in 

which their interactions are interactions not only in the local activity but how they fit with 

community practices. Recall, Joss commenting to his mother about her use of a comma to 

write a large number and then how he teased her. In that very brief exchange, many 

dimensions of Joss’ knowing were triggered: his relationship with his mother, his 

relationship with the culture; and his relationship with his teacher. Further, that which is 

observed as the culture of mathematics was implicated in his act of knowing. Even as a 

child, his practices potentially change the culture of mathematics by changing the world in 

which he lives and, therefore, potentially changing the worlds of others.

Another example of the multiple dimensions of knowing and the way in which 

these play out as interactions among interactions involves Cathy and Jake. Recall how Jake 

insisted Cathy proceed in a step-by-step manner when she drew rectangles for the diagonal 

intruder prompt. At first, I saw this interaction as social, in that it facilitated their joint 

action (and kept them in relationship as co-participants in mathematical activity). I also 

interpreted Jake’s directions as being about saving paper. On one hand, his concern may 

have been economical or possibly relational (in terms of father teaching and directing 

daughter). However, maybe his comment was more about mathematics than I first thought
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it was. That is, Jake anticipated the need to order their results from the first stage of their 

inquiry, and doing the task in a step-by-step fashion would order the results, in the first 

place. I might observe his actions as a feature of his personal knowing; however, I 

conjecture his actions are more than a local act in that they have the potential to propagate a 

pattern of behaviour noted among mathematicians. Such systematicity is a common practice 

in mathematics, and when Jake insists that his daughter act this way he is ensuring she act 

within the practice of mathematics (as he understands it).

Personal thought

It is common in constructivist research to ask questions that are focused on the 

personal knowing of the individual, particularly as it is understood in relation to the 

schemata the child is constructing (see Steffe and Gale, 1995). In my work, I considered 

personal thought from a somewhat different perspective and found myself asking a 

different question than the constructivists have been asking: In what ways is the knower 

brought forth (transformed) by knowing mathematics? In this exploration, I observed for 

their utterances and gestures, and I explicitly considered how their knowing was oriented 

by their emotions, at the same time, as their knowing triggered those emotions. For 

example, when Kerri, after generating a number of tiling patterns with dominoes, realized 

that she had refuted her conjecture she uttered, “Oh shoot! That doesn’t follow my theory.” 

She was disappointed (but not frustrated) and persisted, looking for another relationship. 

On the other hand, when Joss was unable to make sense of my explanation of the number 

pattern I saw in his magic numbers, he became frustrated and lost interest in both 

mathematics and maintaining our relationship, and eventually removed himself from the 

room. The personal knowing that was brought forth in action and interaction was observed 

in terms of the knower’s utterances, gestures, and emotions.
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All at once

Because I have separated the personal, social and cultural dimensions of human 

mathematics knowing in the previous passages, I need to observe that my research 

suggests that each of these is fully complicity with the others. In other words, just as I 

speak about certain actions or interactions that suggest mathematics knowing is personal 

(for example), I am able to see how it is also cultural. Desie and Joss’s excitement at the 

doublings hitting the hundreds, thousands and millions marks is an example of how 

something is at once personal and cultural. The fractal image has been most useful to me in 

this regard (Figure 8-1). It reminds me that whenever I observe a particular action or 

interaction as personal, social or cultural, I am likely to see the other dimensions of that 

knowing act by making distinctions at a differently level or by attending to different 

features of the interaction. This suggests, to me, that this is why the radical constructivists, 

social constructivists and the socio-cultural theorists all are able to observe the same 

interactions and make different distinctions. Knowing is at once personal, social and 

cultural.

Figure 8-1. Knowing is observed as personal, social and cultural all at once

Bounding Observations and Interpretations

In this study, I considered mathematics knowing in a very local context and 

discussed why I view it as fully embodied. However, the enactive perspective and a fractal 

analysis requires that we think about self-similarity, and ask questions that involve making 

distinctions at different levels. I have demonstrated one way of doing that with the fractal
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interpretations. There are other possibilities, as well. Rather than focus on the individual, 

what if we focus on a group— like a mathematics class? In what ways can we say that the 

mathematics knowing of the class is brought forth through perceptually guided action? 

How might we characterise the interactions o f the group? Kieren (1999) has provided 

leadership in this area as he studies mathematics knowing from an enactivist perspective 

with students in mathematics classes. Bauersfeld (see Cobb and Bauersfeld, 1995a) and his 

colleagues also have been studying knowing in the context of the classroom as a 

microculture. This, too, has been a very generative area of study, and is very closely 

related to the work done from an enactivist perspective. I expect it would be very useful to 

compare the enactivist and interactionist theories of mathematics knowing.

Further to the suggestions above, I think there would be great value in developing 

methods of enactivist inquiry or at least studying the methodological implications of an 

enactivist perspective. Currently, this is a weakness in the field. Although there are a 

number of people who are using (what I observe to be) enactivist notions of cognition to 

inform their work (Kieren, 1999; Davis, 1996; Reid, 1995; Gordon Calvert, 1999; 

Confrey, 1999; Bauersfeld, 1995b; Mason, 1999), there has been little published (Davis, 

1996; Kieren, 1999) in terms of theoretical discussions that develop the implications of 

enactivism as a mode of inquiry in mathematics educational research. Without those 

discussions, it is difficult to situate one’s work and to further develop enactivism.

The enactivist perspective occasioned me to attend to the personal, social and

cultural layers of mathematics knowing in action but I was not exhaustive in my exploration

of the fractal filaments of any one of these layers. For example, I did not study the parent-

child relationship in any depth. Nor did I study the participants’ histories with mathematics,

even though structure determinism points to the significance of their histories. Finally, I did

not study the political or economic dimensions of mathematics knowing in action. All of

these would be well worth considering in future studies as they would help us better

understand the multiple dimensions of mathematics knowing. Given my work did not
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address these areas but instead focused on the mathematics knowing of some parents and 

children in a very particular context, I will restrict the discussion of the implications of my 

study to two points: making space for the other and living the implications of our knowing.

Implications of Fully Embodied Knowing

In my study, I used an enactivist perspective of cognition which takes into account 

the complex, contextual and co-emergent mathematics knowing that is demonstrated when, 

in this case, a parent and child interacted with each other in mathematical activity bringing 

forth mathematics knowing in the moment. This enactivist perspective views mathematics 

knowing as highly contingent (Kieren, 1999); it makes a difference who is doing the 

thinking, where and with whom the thinking occurs, when it happens, and why it is 

happening.

Making Space fo r  the Other

If we understand mathematics knowing as emerging from a person’s actions and 

interactions, then we reason that those actions and interactions are implicated in one’s 

mathematics knowing by co-determining it. This is what I wrote about in chapters three 

through seven. Reflecting on my interpretations expressed in those chapters, I come to 

understand that by asserting that mathematics knowers co-emerge with mathematics 

knowing, I am suggesting mathematics is not inside or outside of us but about us (Davis, 

1996, p. 235). It is at once our thoughts, our relationships, and our cultural forms.

Why do mathematics? Because mathematics is an opportunity for self-realization in 

communion with others. Not in the sense of getting to know one’s self or uncovering one’s 

potential (so to speak), but “to realize” in the sense of making real, by bring forth a world 

of significance, which includes mathematics, with other people. Mathematics should be 

part of growing up (Kieren, in press); it is a feature of our humanity.
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What does it take to know mathematics? My interpretations of mathematics 

knowing suggest that it co-emerges with us (knowers) in our conversations (languaging 

and emotioning) with others. In general terms, in order to know mathematics we must live 

in community with others because knowing mathematics involves interaction in the 

personal, social and cultural dimensions of our humanity. That interaction requires love (in 

Maturana’s and Varela’s sense (1992)); that is, making space beside ourselves for others.

I do not think it is a coincidence that within the parameters of the mathematics 

program for parents and children we were able to engage in and observe mathematics 

knowing that was different from many of the participants’ experiences with school 

mathematics. The parents and children came to the program with the intention of being 

together and were willing to do mathematics together. This is not to say that everyone who 

came found the experience satisfying or educational. For example, in spite of the fact that 

Roberta was able to engage in mathematical thinking and work through some good 

mathematical “problems,” the program did not satisfy her needs. The community with 

which she was hoping to interact required she could quickly respond to “word problems”. 

That was not the form of mathematical activity that I encouraged with the math program; I 

was not making a space beside myself for Roberta, and neither did she make space for me. 

On the other hand, there were many parents and children who managed to make space 

beside themselves for the other, and, in doing so, they engaged in mathematics knowing 

together. Dan and Kerri, Rebecca and Cathy, Jake and Cathy, Calvin and Jocelyn, Greg 

and his mother (and many more I have not mentioned) all made space beside themselves for 

each other and for me. With my prompts, questions and comments I invited them to exist 

beside me, in a space that included mathematics. They responded to my invitation by 

engaging in mathematics. They reciprocated my invitation by asking me questions and 

offering their explanations. They shared in their humanity through mathematics.
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Living the Implications o f  Knowing

When the parents, children and I engaged in mathematical activity, our activity 

intersected with the personal, social and cultural domains of our lives. In action, we 

brought forth worlds of significance with others, and in doing so we brought forth 

ourselves. In each act of bringing forth a world of significance and our “selves,” we 

anticipate the future as our spheres of behavioural possibilities expand, making possible 

our next utterance, movement, action, and thought, and this happens in interaction with 

others. What we do, what we say, what we know makes a difference not only for 

ourselves but for others. As Davis (1996) suggests:

Knowledge, rather than being understood in objective or subjective terms— 
whereby persons and their understandings are regarded as essentially isolated and 
autonomous—is recast as those patterns of acting that allow our structures to be 
coupled, thus entangling us in one another’s existence and implicating us in one 
another’s knowing.

This was certainly witnessed in the very local actions of the children and parents in the 

program. I speculate that in mathematics classes where the teacher encourages interaction 

among students by having them investigate together, pose questions to each other, and 

offer their explanations in the community, the teacher facilitates an environment in which 

the students’ mathematics knowing has consequences for others, not just themselves. Not 

only does this form of teaching allow for growth in mathematical understanding (as has 

been well demonstrated in the work of Bauersfeld (1995a), Yackel and Cobb (1996), and 

Pirie and Kieren (1992)—just to name a few), but with this kind of teaching our children 

and youth will have opportunities for understanding how one’s knowing is not without 

consequence for others (Kieren, 1999).

I return now to two events (involving a parent and a child) that played a significant 

role in my understanding of mathematics knowing in action, by triggering emotions which 

oriented my knowing in a difficult moment while doing this research. The first event is 

recounted in the preface. It involved finding the sheet with my son’s name on it in his 

teacher’s handwriting. Annoyed with the exercise she had him do, I wondered how she
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could have determined with nothing more than circles around typewritten words that it was 

my son’s worksheet. Then I recognized myself. I thought about my own assessment 

practices, which included the use of multiple choice tests; and I began to understand what 

such a form of testing was (or was not) about and pangs of guilt struck me. The second 

event I want to return to is the one in which the mother told me she was glad she had come 

to the math club because she got to know her son in a way she had not known him before. 

On one hand, her comment pleased me but, on the other, it aroused my curiosity; I began to 

think about what it means to know someone in the context of mathematics. In what way 

does the teacher know my son by the response he circles on a test? In what way does the 

mother know her son differently by doing mathematics with him? What does it mean to 

say, “I know?”

One thing my research has taught me is that when I say I know, it is much more 

than knowing some “thing.” It is the profound understanding that we live with the 

implications of our knowing, and because we live with others, our knowing has 

implications for them. That it is why, when I hear a mother say I know my son better, I am 

moved to tears. I hear her utterance as her recognition that she understands better how to 

make space for him to exist beside her. It is why, when I reflected on my choice to use a 

multiple choice test for the purpose of getting to know what my students knew, that I feel 

guilt. I now understand the implications of my knowing in action.

The pedagogical implications of my research are simply stated but not so simple. 

Mathematics knowing is a human activity. Hence, it requires we make space for others to 

exist beside ourselves. How do we do this? The parents and the children in my study are 

good examples. We must make space for the other in two ways: the first is to listen for the 

domain in which the other is acting, and the second is to invite him or her to listen for the 

domain in which you are acting. The listening I am speaking of is not evaluative listening 

but hermeneutic listening (Davis, 1996).
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[Hermeneutic listening] is an action that locates her [the teacher] in a complex web 
of existence— caught in intertwining and evolving lines of text from which one 
cannot extricate oneself. The teacher is not guiding a sight-seeing tour through a 
thoroughly mapped-out region but is dwelling in, with, and through the complexity 
and ambiguity of emergent knowings A full participant in the learning that is 
occurring, the teacher is part of the simultaneous transformation of knower and 
known, culture and mathematics (p. 264).

My research has transformed me. I know that I must live the implications of my knowing.
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Appendix A
Summary of S essions

Term Locati
on

Participants Forms o f Data Collected

Colla­
borators

# o f 
sess­
ions

#  o f  
child­
ren

Boy to
Girl
ratio

Dad to
Mom
ratio

Field
notes

Participant
working
papers

Audio
tapes

Video
tapes

Pre- 
session 
informatio 
n sheet

Fall 19941 
(Reid)

School
(10)

8 2:6 5:3 yes no no no yes

Winter
1995
(Gordon
Calvert)

School
(10)

5 1:4 3:2 dialogue
journal

selected selected no yes

Fall 1995 
(Kieren)

School
(10)

8 3:5 2:6 yes selected selected no yes

Fall 1995
(Kieren,
Reid,
Gordon
Calvert)

Uni­
versity
(1)

2 0:2 1:1 yes yes yes yes yes

Winter
1996

Uni­
versity
(5)

3 2:1 1:2 yes yes yes yes yes

Winter
1997
(Johnston)

Uni­
versity
(5)

7 6:1 0:5 yes yes yes yes yes

Fall 1997 School
nn\

10 3:7 1:8 yes selected no selected yes
( 10)

Total 43 17:26 13:27

' Simmt participated in all sessions.
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Appendix B 
P artic ipan t inform ation

p a r t ic ip a t io n  by  g e n d e r  a n d  g r a d e

grade
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A ppendix  C

Number of S e s s io n s  in w hich Parent-child P a irs  P artic ipa ted

Pair Number of Sessions

Dan and Kerri 26

Rebecca (Jake) and Cathy 1 1

Desie and Joss 5

Roberta and Kristina 5

Jolene and Calvin 1 0
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Appendix D

List of prompts used  in the sessions

Although I have used all of these prompts in parent-child sessions, I have not used all of 

them each term. Some of the prompt have been used frequently (I have marked these with a 

*) whereas others have been used only once or twice.

Handshakes*

How many handshakes would there be if twenty people were in this room and each person 

shook hand with each of the others just once?

Tiling Paths:*

How many paths can you tile with a given number of dominoes (2x1 tiles) if the path must 

be two units wide. There is one path for one tile, two paths for two tiles and three paths 

for three tiles.

jOio.:
‘oioj

T60•«o-*r

<2 . ^ — 7-~JN

so::5 iiifol
ItepfQjjP-

f e p s i i j
:.PrQisi5=Syi;

oss:
SPjrA.* — S

iosfw

1 tile 2 tiles 3 tiles

1 way 2 ways 3 ways

Rectangular Numbers*

Using bingo chips find the numbers which form rectangles. For example, 5 tiles can only 

form a 1x5 line whereas 6  bingo chips can be arranged in a 2x3 or 3x2 rectangle as well as

the 1x6 line. We will call those numbers of chips for which we can form a rectangle— 

other than the lx  case—rectangular numbers.
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Square numbers

This is a variation of rectangular numbers and is done either with bingo chips or on graph 

paper. For which areas (numbers) can you produce a square on graph paper. For example, 

4 chips can be arranged in a square.

■t-'i'S

Triangular numbers

For which quantities of bingo chips can you form a triangle? For example, six chips can be 

arranged into a triangle but five cannot.

Pentominoes

Using graph paper, you are to make as many shapes as you can using five squares. The 

squares must be touching another square on at least one edge.

m Kmm IS A-..C !§

this is an example this is not an example
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Common Letters

Which do you think is the most common letter used in the English language? Using a 

book, newspaper or magazine, try to determine the most common letters.

Halloween Statistics

Without showing each other your candy bag, find a way to show the rest of us how much 

candy you collected on Halloween and the various kinds of candy you collected.

M obius Bands

Take a strip of adding machine tape and tape the ends together. Now trace the path an ant 

would take walking along that path. How many sides does the band have? Cut the band 

along the ant’s path. How many bands do you have now? Now do the same thing but put 

a twist in the band before you trace and cut the ant’s path. Can you predict what will 

happen? What if the number of twists increases? What happens then?

Square Take-away (Mason, Burton and Stacey, 1982):

Cut a rectangle (not a square) from a sheet of graph paper. What is the largest rectangle 

that can be cut from your rectangle? How many rectangles can you cut before you are left 

with a  square? Try this for a number of different rectangles. What do you notice?

7̂7
m
m -.•V

B
I

□
Diagonal Intruder (Stevenson, 1992)

Mark off a rectangle on a piece of graph paper. Draw in one of the diagonals. How many 

squares does the diagonal pass through?
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Fractal Cards (Simmt and Davis, 1997)

The students construct a fractal card and then investigate the growth patterns. See reference 

for instructions.

Fraction Kits (Kieren, Davis, and Mason, 1996)

Using a fraction kit the students investigate equivalency, and addition and subtraction of 

fractions. See reference for description of activity.

Hexaflexagons (Dubiel, 1994)

Students are given a pattern from which they construct a hexagon which folds into itself. 

This activity is related to Mobius Bands.

Straw constructions

Students are given scissors, tape and straws and instructed to construct a three dimensional 

polyhedron.

R osettes*

Mark a set of points on a circle. How many lines will it take to connect all of the points to 

each of the others? Do this for different numbers of points on the circle.
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Lego® towers*

Take five pieces each of a different colour o f Lego. How many different towers can you 

build from those five pieces? For example, a tower from the ground up might be ordered 

red, blue, yellow green, and white. We will call that different from a tower that is ordered 

red, white, blue, green, and yellow. How many different towers could you build if you 

had more colours?

Rings of pennies

Begin with a penny and place a row (or circle) of touching pennies around it. How many 

pennies are there in this row, now build another row around the row you just built. How 

many pennies did that take? How many pennies would the 10th row take? By the 10th row 

how many pennies would it take in all?

Rice bowl

A greedy land owner was approached by a peasant who asked for the opportunity to work. 

The greedy land owner offered the peasant a single bowl of rice for a day’s work. The 

peasant declined the bowl of rice and instead asked for just a single grain after his first day 

of work and if the land owner was happy with the peasants work then the peasant 

requested that he be given double that on his second day, just two grains of rice, and on
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each day thereafter twice as much as the day before. The greedy landowner rubbed his 

hands in delight and agreed to the wage.

If you were the peasant which would you take? You might begin by thinking about how 

much rice do you think there is in a bowl and how much rice the peasant have eaten by the 

end of one week, two weeks and so on.

Number of squares on a chess board

How many squares are there on a chess board (8 x8 ) ? (I say there are more than 64.) 

Walk the Plank

Students pretend they are walking the plank on a pirate ship. They use two dice to instruct 

their movements, one to indicate direction and the other to indicate magnitude. The purpose 

of the activity is to find the optimal plank length in order to play the game for a suitable 

amount of time.

Pattern tiles

Students are offered a bucket of pattern tiles which include: regular hexagons, equilateral 

triangles, trapezoids and squares. They are instructed to make patterns with the tiles. The 

tiles are such that 2 trapezoids or 6  triangles form the hexagon. The length of the side of the 

square is congruent to the length of the side of the triangle.

Halloween candy count

Students bring their bag of Halloween treats to class. Their task is to report to the group 

about the kinds and number of treats they collected without showing us every treat in their 

bag.

Stars

Participants were asked which stars could be drawn without lifting their pencil from the 

paper or going over the same line twice.
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3-D drawings

Participants were given building blocks and isometric diot paper and instructed to produce 

three dimensional drawings of objects they built with thne blocks. Once they had a drawing 

they switched with each other and tried to reproduce th e  objects from each other’s 

drawings.

Prompts taken from children’s picture books

McKibbon, H and S. Cameron (1996). The Token Gifts. Buffalo, NY: Annick Press.

Friedman, A and K. Howard. (1994). A Cloak for the Dream er. New York: Scholastic 

Inc.

Anno, Masaichiro and Anno, Mitsumasa (1983). Anno ’s mysterious multiplying jar. New 

York: Philomel Books.

Anno, Mitsumasa. (1992). Anno’s magic seeds. New “York: Philomel Books.
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Appendix E: P a re n t  and  Child R e sp o n se s  to  Q u e s t io n s  Concerning 
M athem atics  (com pleted in firs t s e s s io n )

(Note participants' spelling and punctuation has been preserved.)

A n n e G reg

Do you like doing mathematics? Why 
or why not?

Yes. M ost of it m akes sense. No. It's  h a rd  a n d  boring.

What is your favorite  mathematical 
activity?

n o t sure M ony. I like to sp e n d  it

What is your least favorite activity? 

P ay  bills. Its h a rd  to m ake ends meet. D ovison I t  is h a rd

Is mathematics easy or hard? Why do 
you think that?
Easy. In m ost p a rts  I  u n d e rs tan d  it. Both som eth ings a re  h a rd  so are not.

What do you hope this class can do 
for you?

H elp me to help  m y  son  a n d  others to let m e sp ed  u p . 
u n d e rs tan d  an d  en joy  m ath  and  see 
the im portance of it.
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R o b e rta K ris tin a

Do you like doing mathematics? Why
or why not?

N o. I 'm  very  poor a t m ath  so it's  No, because I am  horrible at it  and  I
a lw ays been  a fear of m ine. d o n 't a lw ays u n d e rs tan d  it (catch on

quickly).

What is your favorite mathematical 
activity?

A dding , m ultip lication, fractions and  G eom etry because  it is easy and  fun.
percentages.

What is your least favorite activity?

M ath  p rob lem s that have tw o  trains E verything b u t  geom etry, (eg.
travelling  in  different d irections a t m easu rem en t, fractions)
d ifferen t speeds and  k now ing  how  far 
they  w ill bo th  get in  2 1 /2  hrs.

Is mathematics easy or hard? Why do 
you think that?

M y m in d  d o esn 't w ork  th a t w ay—but Some are easy  a n d  som e are hard ,
hey, g ive m e a com puter & I'll soar. h a rd = m e a su re m e ru

easy=geom etry

What do you hope this class can do 
for you?
I 'd  like to elim inate m y fear of N ot to be b a d  a t m ath  and  learn  and
m athem atica l calculations a n d  u n d e rs tan d  it.
p rob lem s.
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D a n K erri

Do you like doing mathematics? Why
or why not?

Yes. I like the challenge. I like the Yes, because I like figu ring  th ings out.
feeling of "O h Yea" w hen  you  think 
of som ething in  a new  w ay  or gain a 
fresh  insight.

What is your favorite mathematical 
activity?

Puzzles. I enjoy find ing  solutions. Fractions because th ey  are fun  to do
and  figure out.

What is your least favorite activity?

D oing processes such  as long  +/ _ X/ ^  because they  are boring,
d iv ision , add ition , m u ltip lica tion— 
it's  good to know  in  an  em ergency b u t 
w hy  bother if you  have a calculator?

Is mathematics easy or hard? Why do 
you think that?

Easier than I th ink  m ost people  do. It depends on  the type  of m ath , but
But there is alw ays room  to find a they are in  the m idd le ,
challenge.

What do you hope this class can do 
for you?

Look a t some basic concepts To learn  new  things th a t I w o n 't  learn
differently, b u t m ost im portan tly  see in  school un til a h ig h er g rade, 
the "oh  yea" su rp rise  or insigh t on 
m y daugh ter's face.
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R e b e c c a C a th y

Do you like doing mathematics? Why
or why not?

N o t p a rticu la rly / N o t en o u g h  grey Yes, because you  can  learn  lots.
areas.

What is your favorite  mathematical
activity?
S pending  m oney . Art. I n eed  to th ink.

What is your least favorite activity?
G rocery sh o p p in g / Too m ay  b ran d I d o n 't  have one.
nam es and  in g red ien ts  to establish
best bang for buck.

Is mathematics easy or hard? Why do
you think that?

Som ew hat d ifficu lt if too m any H ard  because you  have  to think very
variables. hard .

What do you hope this class can do
for you?

Q uality  tim e w ith  C athy . M y m ath  skills.
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J o ie n e C a lv in

Do you like doing mathematics? Why
or why not?

N ot really, because I alw ays found it I like it  because I like w orking  w ith  
difficult. n u m b e rs .

What is your favorite  mathematical 
activity?

N o response. M y favorite  is decim als because I like
ro u n d in g  a n d  a d d in g  them .

What is your least favorite activity?

I guess geom etry, algebra. M y least favorite  is fractions because I
find it h a rd  to understand .

Is mathematics easy or hard? Why do 
you think that?

Very hard . I a lw ay s found  m ath  I find  som e easy  an d  some hard ,
difficult in  school a n d  I have been o u t Som eth ings I can do  easily an d  others
of school for m an y  years. are h a rd  to do.

What do you hope this class can do 
for you?

N ew  up  to date  stra teg ies so I can help  I hope  to lea rn  m ore about m ath , 
m y ch ild ren  m ore  a t hom e.
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D e s ie Joss

Do you like doing mathematics? Why
or zvhy not?

N o. I d o n 't  feel very  good  a t it so I fear because I m ight g e t very  h igh  answers 
failure  & em barassm ent.

What is your favorite mathematical 
activity?

Playing  games tha t include  som e add ition  becaus m y  m om  show s me
m ath. The gam e aspect m akes it fun. lost of tricks

What is your least favorite activity?

I th ink  any m ath  is hatefu l. Because I su b trac tio n  m y  becaus m y  I d on 't
am  n o t confident. w ork  th a t m uch  o n  it

Is mathematics easy or hard? Why do 
you think that?

H ard . I developed w h a t I th ink  of as a easy
block w hen I w as very  y o u n g  so I've 
a lw ays found it hard .

What do you hope this class can do 
for you?

I hope to stop this sam e block from  a good agecation
develop ing  in  m y  son  so tha t he  can 
feel confident an d  do well.
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A ppendix

Term on which 
paper is based
Fall 1994 

Fall 1995

Fall 1995

Fall 1995

Fall 1995

Winter 1996 

Winter 1997

Winter 1997 

Winter 1997

Winter 1997

: R esearch  and professional papers  based on parent 

child  m athem atics program

Title of paper

Simmt, E. (1995). The Math Club. Unpublished paper, University of 
Alberta.

Simmt, E. (1996a). Parents and children doing mathematics:
bringing forth a world of significance. Paper presented at the 
International Council of Psychologists Annual Convention, 
Banff, AB.

Simmt, E. (1996b). Parents and Children and Mathematics:
Occasioning in Mathematical Cognition. Paper presented at the 
American Educational Research Association Annual 
Conference, New York.

Simmt, E. (1996c). {Children}n{Parents}r>{Mathematics}:
Researching the Intersection. In Y. Pothier (Ed.) Proceedings 
of the Canadian Mathematics Education Study Group Annual 
Conference, Halifax, NS.

Simmt, E., Luce Kapler, R., Johnston, I. and Gordon Calvert, L. 
(1997). The Texture of Research. Paper presented at the Annual 
Conference of the American Educational Research Association, 
Chicago, IL.

Simmt, E. (1997). Math Connections: A Program for Parents and 
Children. Delta-K, xxx.

Simmt, E. (1998). The fractal nature of a mother and son’s 
mathematical activity. Paper presentated at the Annual 
Conference of the American Educational Research Association, 
San Deigo, CA.

Simmt, E. (1998). The fractal nature of a mother and son’s
mathematical activity. Journal of Curriculum Theorizing, xxx.

Simmt, E. (1999). The complicit nature of mathematics knowing and 
emotion. Paper presented at the American Educational Research 
Association Annual Conference. April 20, 1999.

Simmt E. (1999). Fractal spaces of mathematics knowing: Collecting 
personal thought, collective process and cultural form as events 
of cognition. Paper presented at the American Educational 
Research Association Annual Conference. April 20, 1999.
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A p p e n d ix  G 

Fractals: T h e  G eo m etry  o f C om plexity  and C h ao s

Mathematics is an interpretive framework that for centuries has helped us 

understand various phenomena in our world. As is the case with any interpretative 

framework, our understanding is restrained by the tools and metaphors offered by it. A 

recent contribution from mathematics is the notion of fractal. A fractal is a geometric 

structure that is not easily defined. The term was coined by Benoit Mandelbrot (1982) to 

name geometrical objects that demonstrate some form of self-similarity and fractional 

dimension. In his early writings, Mandelbrot provided many examples of fractals but did 

not explicitly define the term fractal— other than to say that fractals have fractional 

dimension. As one writer after another used the term it took on more explicit meaning; but, 

a rigorous definition for ‘fractal’ continued to be elusive. Falconer (1990) like others 

defined the notion by the properties and features of fractals: fractals have a fine structure; 

i.e., detail on arbitrary small scales; fractals are too irregular to describe in traditional 

geometric language; fractals have some form of self-similarity; fractals have fractional 

dimension; fractals are usually defined recursively. Finally, fractal structures are often 

found in assoication with dynamical systems and have been called the geomtry of chaos 

(Glieck, 1987).

Consider a couple of simple examples of fractals. Take a line segment and remove 

the middle third, leaving the endpoints. Now do this again for the remaining line segments 

ad infinitum. In the structure remaining (Figure G-l), notice the self-similarity at various 

levels of the recursion.

Figure G-l. Cantor Set after two recursions 
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Recall the process by which the object was defined—a simple rule that was repeated on the 

object itself numerous times. In nature, many examples of fractals can be found: clouds, 

mountains, and waves, to name a few. Consider a head of broccoli. Break off a piece, and 

the piece looks like the head. Break off a piece from the piece, and it still retains the same 

features of the head of broccoli except that it is smaller. The broccoli has fine detail and is 

self-similar at many levels of scale.

The Cantor Set and broccoli provide two illustrations of fractals and the properties 

of fractals that make them an interesting metaphor for understanding mathematics knowing 

itself. Fractals are irregular yet, at the same time they are self-similar; they have fine detail 

on arbitrary small scales; and they are usually defined by recursive processes. In the same 

way that one might study the Cantor Set or broccoli by taking just a piece of either, I hope 

to show that we can take a “piece” of a person’s mathematics knowing and analyze it to 

inform our understanding of the person’s mathematics knowing.

The fractal metaphor is useful for a few reasons. In the research I do, interpreting 

and explaining mathematics knowing-in-action, there is a need to be able to “handle” 

complex data. This is not a desire to “reduce” to fundamental elements in an attempt to 

understand how the whole works. Rather, I am suggesting that by taking a small chunk 

that is in itself as complex as the whole, we have a better opportunity to attend to the 

features of the phenomenon without being overwhelmed by the “data.” The fractal 

metaphor provides us with a way of thinking about a phenomenon that has at any one level 

other levels within it. The fractal metaphor is particularly useful in an enactivist 

interpretation of cognition because enactivism assumes complexity and requires a non- 

reductive approach.
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