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Abstract

For decades, scientists from every discipline have struggled to understand the

mechanism of biological self-assembly, which allows proteins and nucleic acids to

fold reliably into functional three-dimensional structures. Such an understanding may

hold the key to eliminating diseases such as Alzheimer’s and Parkinson’s and to effec-

tive protein engineering. The current best framework for describing biological folding

processes is that of statistical mechanical energy landscape theory, and one of the

most promising experimental techniques for exploring molecular energy landscapes

is single molecule force spectroscopy (SMFS), in which molecules are mechanically

denatured. Theoretical advances have enabled the extraction of complete energy

landscape profiles from SMFS data. Here, SMFS experiments performed using laser

optical tweezers are analyzed to yield the first ever full landscape profile for an

RNA pseudoknot. Further, a promising novel landscape reconstruction technique is

validated for the first time using experimental data from a DNA hairpin.
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Chapter 1

Introduction

Of all the specialized abilities evolution has cultivated in living organisms, biomolec-

ular self-assembly is perhaps the most crucial and remarkable. Proteins and nucleic

acids, molecules that carry out the host of functions that sustain life—from digesting

food to generating nerve impulses to preserving and packaging genetic material

for new generations—exist in a wide array of specialized three-dimensional struc-

tures which dictate their specific functions [1]. Biomolecules are synthesized as

polymer chains—comprised of nucleotides and amino acids in the case of nucleic

acids and proteins, respectively—that subsequently fold, or self-assemble, into three-

dimensional structures. Problems surrounding understanding biological folding have

plagued scientists for over forty years [2], and the possible applications of a more

comprehensive understanding of biological folding are extensive, ranging from the

design of novel proteins to accomplish specific tasks [3] to developing treatments

for human diseases caused by malfunctions in protein folding; such diseases include

Alzheimer’s and Parkinson’s disease [4] and Type II Diabetes [2]. Folding mecha-

nisms thus continue to be an active area of research, and Science magazine listed

prediction of how proteins fold as one of 100 major scientific questions in 2005 [5].

Only twenty amino acids and five varieties of nucleotide bases exist in nature,

and all the information about the global structure of a biopolymer is contained in

the particular sequence of its constituent monomers. The fact that proteins require
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no additional, external biological mechanisms to fold, but rather contain all neces-

sary information in their one-dimensional amino acid sequences, was demonstrated

definitively by Anfinsen in 1961 [6]. The decades since have seen scientists across

disciplines—physicists, chemists, biologists, and mathematicians—struggling to

understand how folding is encoded.

Anfinsen’s seminal work not only demonstrated that protein structure is encoded

by monomer sequence; it also established that protein folding is usually a reversible

process, confirming the so-called “thermodynamic hypothesis” [7], which states

that a protein folds to a native conformational state that minimizes the system’s

free-energy under “proper” conditions [8]. The free-energy, not the internal energy, is

the relevant quantity in protein folding, as folding is driven by the interplay between

entropy, which favours the denatured, disordered state, and enthalpy, which favours

the folded state. In light of the astronomical number of possible configurations of the

residues comprising a protein, the method by which a protein reliably locates its native

conformation on the timescales typical of protein folding, milliseconds to minutes [9],

puzzled scientists in the wake of Anfinsen’s discovery. Noting that a random search

through configuration space would lead to folding times in excess of the age of the

universe [10], Cyrus Levinthal postulated the existence of specific “folding pathways”

that would guide proteins through a series of well-defined intermediate states as

they progressed to their native conformation [11]. Each intermediate state along the

pathway represented a particular arrangement of the residues, or monomer subunits,

of a protein in three-dimensional space. Levinthal’s argument created a “paradox”:

on one hand, Anfinsen’s thermodynamic hypothesis implies that regardless of initial

conformation, proteins find a unique native state corresponding to a global free-

energy minimum; on the other hand, the existence of kinetic pathways facilitating

fast folding would imply that the native state is not necessarily a global free-energy

minimum, but rather the endpoint of a well-defined sequence of conformations along

a pathway [12, 13].

Studies of protein folding subsequent to Levinthal’s proposal couched experiments
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in the language of folding pathways and attempted to chart the various intermediate

stages of protein folding [13]. Scientists hoped that characterizing intermediates

would yield insights into how nature’s conformational search algorithms function [2],

so observed reaction rates were fit to various phenomenological schemes involving

both “off-pathway” and “on-pathway” intermediate states [14, 15]. The folding

discourse quickly grew confusing, as Levinthal’s “paradox” remained unresolved

and the question of how protein folding could be both pathway-independent—as

implied by Anfinsen’s thermodynamic hypothesis—and pathway-dependent—as

necessitated by biologically relevant folding timescales —remained unexplained [13].

In the 1980s, a simplifying picture emerged that today forms the basic framework for

scientific understanding of biological folding. Bryngelson and Wolynes pioneered the

conceptual energy landscape formalism through several papers that cast the protein

folding problem into the language of statistical mechanics [16, 17, 18].

In the statistical mechanical viewpoint, protein folding is not interpreted as a

sequential movement through a series of well-defined conformations along a pathway;

instead, it is seen as a diffusive process across an energy landscape. Essentially, an

energy landscape is a hyper-dimensional surface representing the free-energy of a

protein as a function of the values of its conformational degrees of freedom, such as

the dihedral angles describing the orientation of each amino acid. If such a surface

has a single minimum but is otherwise flat, as in Levinthal’s picture, finding the native

state via a random search—that is, via diffusive Brownian motion driving random

conformational shifts—would not occur on the timescales observed for protein

folding. This “paradox” disappears, however, when one introduces an energy bias

favouring conformations nearer to the native state; Zwanzig demonstrated that such a

bias would vastly accelerate the search and lead to adoption of the native conformation

on biologically-relevant timescales [10]. If moves that produce a conformation closer

to the native state are energetically favourable, they will preferentially be accepted.

The energy landscape, then, is shaped like a funnel that guides the protein to its native

conformation. Instead of a single, definite path from unfolded state to folded state,
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there exist on the energy landscape a multiplicity of paths; the folding process is

redefined in terms of ensembles: an ensemble of denatured states, an ensemble of

transition states, and an ensemble of intermediate states [13].

The energy landscapes of proteins are not expected to be strictly smooth fun-

nels: the interactions that drive protein folding—hydrogen bonding, the tendency

of hydrophobic residues to cluster to reduce exposure to solvent, and electrostatic

interactions, to name a few—are also apt to compete with one another and induce

substructures that are inconsistent with the native fold [12]. In other words, a protein

trying to fold is a frustrated system, and this frustration manifests itself in many

local minima strewn throughout a protein’s energy landscape. Indeed, a random

sequence of amino acids will not fold reliably to a native structure, in general [19];

the majority of naturally-occurring proteins have been selected by evolution to be

minimally frustrated, and this “principle of minimal frustration” is what lends an

overall funnel shape to the energy landscape. The complete picture of a landscape,

therefore, is a multi-dimensional funnel riddled with local minima across which a

protein diffuses. The “bumpiness” of the energy landscape directly affects the diffu-

sive motion on the landscape, and thus, reaction rates [12]. Figure 1.1 illustrates a

hypothetical energy landscape for a naturally-evolved protein, and Figure 1.2 presents

a comparison between a number of the different types of landscapes alluded to above.

The rich new language of statistical mechanics and the energy landscape formal-

ism eliminated Levinthal’s paradox and provided clarification of many experimental

protein-folding results [13]; it can be used to explore aspects of the folding reaction,

including transition states, folding rates, effects of sequence mutation on the folding

process, protein phase diagrams, and the “misfolding” that results when proteins

become trapped in non-native free-energy minima. Indeed, the energy landscape

effectively contains all the useful information about the protein folding process [20].

In order to fully realize the potential of the formalism, however, more quantitative

development is needed. At present, most of the applications of the theory are qualita-
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Figure 1.1: Hypothetical energy landscape for a protein. The vertical coordinate is
free-energy, and the two horizontal coordinates are measures of protein conformation
(in reality there are far more than two such coordinates). The rim of the funnel
represents the ensemble of unfolded, or denatured, states of the protein, wherein it is
an unstructured chain of amino acids. As the protein diffuses across the landscape and
down the slope of the funnel, it acquires a structure increasingly closer to its native
conformation and increasingly lower in free-energy. The native state of the protein is
represented by the bottom of the funnel; it is a global minimum in the free-energy.
The peaks and valleys riddled throughout the landscape are local free-energy minima
and maxima, and represent barriers and metastable intermediate states for the protein,
respectively. Figure taken from Dill and MacCallum, 2012 [2].

tive and non-comprehensive; more experimental data is needed before the theory has

substantial predictive power [2]. Specifically, the principles underlying the “folding

mechanism,” or way in which amino acid sequence shapes the landscape and propels

the folding reaction, must be elucidated before quantitative predictions can be derived

from the landscape framework [2]. To shed light on these principles, landscapes for
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(a) (b)

(c) (d)

Figure 1.2: Illustration of the various types of landscapes discussed in the text; all
images are hypothetical landscapes. Part (a) displays what the energy landscape
would look like if the search for the native conformation were random and unbiased.
Part (b) is a depiction of Levinthal’s “pathway” idea. Part (c) shows a perfectly
smooth funnel; this would correspond to a totally unfrustrated system. Part (d) is
representative of what a landscape for a naturally-evolved protein looks like: it is a
minimally-frustrated system, so the landscape is “bumpy” and contains many local
minima. Figure adapted from Dill and Chan, 1997. [13].

real proteins need to be measured. What is ideally required is a picosecond-scale

measurement of the structures acquired by a protein as it traverses the entire pathway

from the unfolded to the folded state. Unfortunately, the main experimental challenge

in monitoring protein-folding reactions is achieving this very fine time resolution in

structural measurements [21], and no current experimental techniques allow for this

type of comprehensive measurement to be performed. Instead, complete landscapes
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must be developed through computational and theoretical methods; the predictions of

these methods can then be constrained by experiments.

Protein folding has been computationally explored since the 1960s [22]. Strate-

gies vary, ranging from simplified lattice models [23] and Monte Carlo energy-

minimization techniques that lack atomic detail, including the Gō model [24], to

full atomistic molecular dynamics (MD) simulations [25]. The latter have improved

vastly since their first implementation. Advances in computational power now allow

folding simulations that are stable on millisecond timescales [2], and distributed-

grid computing projects, which make use of the idle computer power of hundreds

of thousands of users, have allowed for increased sampling of folding events [26].

Further, computational modelling of the interactions involved in folding, namely

the force field surrounding the protein-solvent complex, has improved [26]. These

advancements have enabled the successful prediction of stable states for a few small

proteins [27, 28]. The theoretical energy landscape framework has developed in

tandem with computational advancements; landscapes can be directly constructed

from knowledge of entropic costs of bringing different regions of the protein together

alongside the energies associated with the formation of native configurations [29].

Features on predicted landscapes such as the transition state ensemble (a collection

of states that act as a folding bottleneck), and the predicted kinetics associated with

diffusion on the landscape can be compared with experiments [30]. Current land-

scape theory is founded upon postulating funnelled landscapes; it has yet to explain

proteins that violate the principle of minimal frustration—whose landscapes are not

funnelled, but involve many minima—and still cannot describe exactly how funnelled

landscapes are shaped by sequence [29]. Between computational and theoretical

folding models there is much that is testable, however, particularly for the folding of

small proteins [29].

Experimental techniques for studying protein folding provide crucial constraints

on Theoretical and Computational studies. The main experimental challenge in

monitoring protein-folding reactions is achieving very fine time resolution in struc-
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tural measurements, since folding occurs on such short timescales [21]. The general

method is to induce the folding or re-folding reaction and then attempt to chart its

structural progress. To accomplish the former goal, chemical denaturants, sudden tem-

perature changes, or mechanical force can be used [21, 31]. Probes of time-resolved

structure include nuclear magnetic resonance, small angle X-ray scattering, fluores-

cence studies, and hydrogen exchange experiments, to name a few [21, 32]; however,

such methods enable measurement of ensemble averages only and do not yield much

information about the landscape itself. More detailed landscape data is required, as

scientists still do not have a good understanding of the folding mechanism for many

proteins [2]. The most promising candidates to date for providing measurements that

approach the ideal mentioned above, the complete path of a protein on a landscape as

it folds, are single molecule (SM) techniques. SM studies provide excellent resolution

of the folding process [33] and provide insight into the rare trajectories, transient

states, alternate conformations, and mis-folded minima that are obscured in bulk

measurements. The advent of single-molecule folding studies thus brings much

promise for further experimental elucidation of the full energy landscapes of folding

proteins, necessary for comparison to, and refinement of, theory.

Monitoring the fluorescence emission from single molecules as they fold is

one such single-molecule technique. Proteins are labelled with two sites, one that

“donates” fluorescence to an “acceptor” site; because transfer efficiency depends

on protein conformation, structural changes during folding can be monitored. This

technique is known as Förster Resonance Energy Transfer (FRET), and it has proven

a highly successful means to study single-molecule folding kinetics [34, 35]. Even

more effective from a landscape study perspective, however, are single molecule force

spectroscopy (SMFS) experiments [34, 36, 37], effected by laser optical tweezers

(LOTs), magnetic tweezers, or atomic force microscopes (AFMs) [38]. In these

experiments, a single molecule is tethered and manipulated; the forces applied act

as a mechanical denaturant, inducing folding and re-folding. Recent theoretical

advances have enabled the extraction of a full energy landscape profile—along a
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single coordinate—from these experiments [39, 37, 40, 41, 42]. SMFS experiments

thus constitute an exciting frontier in science of biopolymers, one that promises

to yield a wealth of new data to complement developing landscape theory and

computational investigation, as well as the first truly quantitative tests and applications

of landscape theory.

This work aims to explore, apply, and refine techniques for extraction of energy

landscapes from single molecule force spectroscopy experiments. Chapter 2 begins

with a detailed treatment of how SMFS experiments are conducted and the ways in

which they can recover energy landscapes, and kinetics on those landscapes, for bio-

logical systems. While originally developed to study protein folding, the theoretical

framework and experimental tools aforementioned are applicable to other biological

molecules that attain three-dimensional folds from one-dimensional sequences of

monomers, such as nucleic acids: DNA and RNA [43]. Nucleic acid systems are

much simpler than proteins, and thus provide a platform to test out landscape analysis

ideas; this work focuses for that reason on nucleic acids rather than proteins. Chapter

3 explores the folding of a RNA pseudoknot that figures in viral propagation. The

full energy landscape for this system, never before computed, is presented, alongside

refinements for folding kinetics results presented by other authors [44]. Chapter 4

explores a novel theoretical approach to reconstructing energy landscape profiles from

SMFS experiments, presenting the first experimental confirmation of its viability.

The work closes with a section briefly examining the future steps that should be taken

toward the advancement of the research presented herein.

9



Chapter 2

Methods for Energy Landscape

Extraction from Force Spectroscopy

Experiments

As described in the previous chapter, SMFS experiments offer an exciting glimpse

into the energy landscapes of biomolecules. Such experiments afford control of which

region of the energy landscape is explored; the mechanical control can cause a single

folding pathway to be traversed repeatedly and studied [36]. Further, they allow

for observation of molecular states that are obscured by ensemble measurements,

such as rare alternate conformations and intermediates, and for characterization of

transition states [36]. Mechanical denaturation also offers improved resolution for

measurements of molecular motion, since applied force usually increases molecular

stiffness and this in turn decreases positional fluctuations, as encapsulated by the

equipartition theorem [33]. There are multiple experimental realizations of SMFS,

compared in Figure 2.1 [45, 33].

Magnetic tweezers feature a superparamagnetic bead suspended in the field of

an external magnet [45, 33]. The molecule of interest is attached at one end to the

bead and at the other end to a surface; both connections are made via a “handle”—

comprised, for instance, of DNA. The bead experiences a force proportional to the
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(a) Magnetic Tweezers (b) Optical Tweezers

(c) AFM

Figure 2.1: Illustration of three experimental realizations of SMFS. In all cases,
the molecule of interest is normally attached to molecular linker handles (a) Mag-
netic tweezers feature a paramagnetic bead suspended in an external magnetic field,
which can be manipulated to apply linear forces and torsion. Figure adapted from
Greenleaf et al. 2007 [33]. (b) Optical tweezers feature one or more focused laser
beams, which exert harmonic restoring forces on dielectric beads. The bead can be
suspended between laser and a surface (top), laser and a micropipette tip (middle),
or two lasers (bottom). Figure adapted from Woodside and Valentine 2009 [46].
(c) AFM experiment. The molecule of interest is attached at one end to a flexible
cantilever which can exert harmonic restoring forces. The other end of the molecule
is attached to a surface; in this figure, the surface is a piezoelectric moveable stage.
The molecular extension is measured by deflecting a laser from the cantilever tip to a
PSD. Figure adapted from Greenleaf et al. 2007 [33].
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gradient of the magnetic field; this is approximately constant for magnetic tweezers,

and they are thus used to perform constant force experiments. Because a dipole

moment is induced in the bead by the external field, it is possible to apply toarques to

molecules using magnetic tweezers [45, 33]. Atomic Force Microscopes (AFM) can

also be used to perform SMFS experiments. The biological molecule of interest is

again tethered at both ends by handles, often short DNA or peptide chains, but in this

case one end is affixed to a surface and the other to the AFM tip on a cantilever, which

behaves as a spring [45, 33]. By moving the cantilever or the surface, the amount of

force applied to the molecule can be adjusted. The applied force can be kept constant

through the action of a feedback loop, constituting constant-force experiments, or it

can be changed, as in force-ramp experiments [45, 33].

A third apparatus used for SMFS experiments is that of Laser Optical Tweezers

(LOT), relevant to the current work. LOT employ one or more highly focused laser

beams, in which dielectric beads are suspended. An electric dipole moment is induced

in the beads by the electromagnetic field of the laser, and since an electric dipole

experiences a force in a non-uniform electric field, the bead consequently experiences

a force proportional to the intensity gradient of the laser light, i.e.,

F = α∇I, (2.1)

where α is a constant that depends on properties like the bead size and index of

refraction and the wavelength of light used [47]. This force will tend to maintain the

bead in an equilibrium position at the transverse focus of the laser beam, but slightly

axially displaced from the focus due to scattering forces exerted by the light [47].

For small enough displacements of the bead from equilibrium, the laser traps behave

as Hookean springs [47]. Several LOT setups are possible; in each, one end of the

molecule is tethered via a DNA handle to a bead suspended in a laser beam. The other

end can be tethered to a surface, to a micropipette, or to a bead in a second laser beam.

The dual-beam setup, while the most complicated to implement, is advantageous
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in that it avoids the mechanical noise generated by the coupling of the laser to a

surface or a micropipette. The data included in the present work were collected on

a dual-beam setup which has been described previously [44]. In this configuration,

applied forces are manipulated either by adjusting the intensity of the laser light

or by moving the laser traps and thus altering the displacement of the beads from

their equilibrium position. Molecules can be held under constant tension via force

clamp feedback loops or through a passive, all-optical clamping mechanism like that

developed by Greenleaf et al. [48], which eliminates the time delay associated with

feedback loops. Force-ramp experiments can also be performed: by moving the laser

traps apart at a constant velocity, a steadily increasing force is applied to the molecule.

In yet a third scenario, forces can be increased and decreased suddenly, or “jumped”;

the molecule is allowed to equilibrate at one force, then the tension is discontinuously

changed to induce denaturation or renaturation [42]. During LOT SMFS experiments,

the separation between beads, which is the molecular extension plus handle length, is

measured, as is the force exerted on the molecule. One method to achieve this is by

deflecting laser light from the dielectric beads and using a position-sensitive diode

(PSD) to record bead position as the experiment progresses [47].

Any attempts to study the multidimensional folding energy landscape using SMFS

experiments are necessarily limited by the fact that the many degrees of freedom on

which the folding landscape depends are not measureable in experiments. Conse-

quently, in most single-molecule experimental studies, one-dimensional (1D) models

are used in which the full energy landscape is projected onto one reaction coordi-

nate, such as the molecular extension [49] (see Figure 2.2). Because this projection

amounts to averaging over many other degrees of freedom, the 1D energy landscape

profile is a potential of mean force (PMF) [50]. While landscape reconstructions from

SMFS experiments assume folding dynamics can be captured by studying diffusion

on the 1D PMF [37, 41, 51], it is not clear that a 1D projection along the reaction

coordinate accurately recaptures the full folding landscape [49]. Indeed, some au-

thors have already identified potential pitfalls of assuming 1D projections are reliable
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representations of the full landscape, noting that the folding barrier can be obscured

in 1D projections [49, 52]. The 1D landscape projection has successfully reproduced

observed folding dynamics for a prion protein system, however [20], suggesting the

validity of the approach in some cases. There is by no means a consensus on this topic,

and choice of reaction coordinate and the effects of simplifying the multidimensional

free-energy landscape are active areas of research. In this and subsequent chapters,

this caveat must be kept in mind.

This chapter will explore techniques for extracting information about energy

landscapes from SMFS experiments; it will couch these techniques in the language

of dual-trap LOT studies, as these are of relevance for the current work. There

are essentially three angles of approach when studying landscapes through LOT

SMFS experiments. First, free-energy profiles can be reconstructed from equilib-

rium measurements; these include constant-force experiments, in which molecular

extension at constant tension is monitored, and constant position measurements, in

which a constant separation between the laser traps is maintained and extension

fluctuations are measured. Second, free-energy profiles can be reconstructed from

non-equilibrium measurements; these include force-ramp experiments, in which the

laser traps are moved at a constant velocity to either increase or decrease applied

tension, and force jump experiments, in which the force is discontinuously ramped up

or down. Finally, landscape parameters can be extracted from SMFS experiments by

assuming particular models for the shape of the free-energy landscape. The following

sections examine these techniques in greater detail.

2.1 Landscape Reconstructions from Equilibrium Force

Measurements

As explained above, equilibrium SMFS measurements can be carried out in two

different ways: first, by maintaining a constant force and measuring the molecular

extension as a function of time, and second, by maintaining a constant separation
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Figure 2.2: In SMFS experiments, wherein a single reaction coordinate is normally
measured, the full multi-dimensional energy landscape is projected onto one axis,
becoming a PMF; this is illustrated by the red arrow. Here, E represents free-energy,
and Q and P are arbitrary degrees of freedom describing molecular conformation.
The units are arbitrary. Figure adapted from Dobson et al. 1998 [21].
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between laser traps and monitoring fluctuations in force. The former technique

lends itself to straightforward extraction of landscape profiles along the reaction

coordinate x, which is molecular extension, provided that the constant tension is

maintained through passive clamping [48] rather than through a feedback loop. This

is because active feedback loops have a finite inherent response time, so the force is

not truly kept constant and the extension changes do not all occur at the same force

value. To extract landscapes from passively-clamped constant-force data, extension-

versus-time traces are collected and binned to compile probability histograms, P(x).

Because the molecules are in equilibrium, the extension distributions are expected to

be Boltzmannian, and the free-energy G(x) can be constructed by inverting:

P(x) = exp
(
−G(x)

kBT

)
(2.2)

where kB is the thermal energy. The landscape profile is thus given by

G(x) =−kBT lnP(x). (2.3)

This method was successfully implemented by Woodside et al. on DNA hairpins mea-

sured with LOT [37]; Figure 2.3 summarizes the procedure. In 2.3(a) the extension-

time traces are shown. The reconstructed landscape profile G(x), along with the P(x)

histogram, is shown in 2.3(b).

A similar procedure can be applied to equilibrium measurements taken at constant

probe position (fixed separation of the laser traps); Gebhardt et al. demonstrated this

successfully for a protein system [40]. In this case, when the molecule undergoes the

folding transition and its extension changes, the force on the molecule will vary in

accordance with the changing displacement of the bead from its equilibrium position.

Position histograms can still be constructed, but must be corrected for these changing

forces before landscapes can be extracted [40].

One of the major limitations of any landscape reconstruction attempted using LOT

experiments is instrumental distortion. The DNA handles are a source of additional
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(a) Extension-Time Trace

(b) Probability Histogram and Reconstructed Landscape

Figure 2.3: Illustration of the landscape reconstruction method from constant-force
data. (a) Molecular extension is monitored as the molecule is held at constant
tension, resulting in an extension-time trace. The oscillation visible in the trace
corresponds to the molecule unfolding and refolding. To the right of the trace is the
experimental P(x) histogram; U refers to the unfolded state, at larger extension, and
F refers to the folded state. (b) The free-energy profile G(x) is constructed from the
experimental P(x) histogram according to Equation (2.2). In black are the raw results;
red represents results after deconvolution. Green is the residual from devonvolution,
and blue represents a theoretical model to which the authors were comparing their
landscape. Figure adapted from Woodside et al. 2006 [37].

compliance, as is the finite stiffness of the trapping lasers. Rotations of the beads

in the traps can further complicate the matter. In effect, the instrument response

introduces a point-spread function (PSF) that is convolved with the intrinsic response

of the molecule. If the intrinsic molecular extension distribution is p(x) and the

instrumental PSF is S(x), the measured extension distribution is P(x) = (S ∗ p)(x).
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To overcome this issue, some form of deconvolution is required. Woodside et al. [37]

implemented the non-linear deconvolution algorithm of Jansson [53], obtaining the

instrumental PSF empirically by repeating measurement protocols with a molecule

that remained folded in the relevant force range. Gebhardt et al. [40] employed a more

complicated position-dependent empirical PSF to account for the changing force in

their constant probe measurements. Another approach is to derive a theoretical model

for the instrumental PSF; this was successfully implemented using experimental data

by Hinczewski et al. [51]. There is a limit, however, to the landscape resolution

obtainable where deconvolution is necessary [53]; to combat this, instrumental effects

can also be mitigated by introducing shorter [54] or stiffer DNA handles, such as

DNA origami beams [55].

2.2 Landscape Reconstructions from Non-Equilibrium

Force Measurements

For many systems, equilibrium landscape reconstructions are unfeasible due to

very slow folding dynamics, caused by a large barrier or slow diffusion or both.

Complex RNA systems, such as the one examined in this work, provide an example

of slow folding that is impractical to measure using equilibrium techniques [56].

An alternative, non-equilibrium approach must be employed for such systems: viz.

force-ramp or force-jump experiments. Such experiments must be interpreted through

the lens of non-equilibrium statistical mechanics.

Two decades ago, a theoretical framework relating measurements arbitrarily far

from equilibrium to equilibrium thermodynamic quantities did not exist. In 1997,

Jarzynski changed this with a revolutionary equality [57]. Previously, it was known

that the work dissipated in a non-equilibrium process obeys

W ≥ ∆G, (2.4)
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where ∆G is the free-energy difference between two states of a system and W denotes

the ensemble average of work required to effect the change in system state. The

equality holds only for reversible processes. Jarzynski demonstrated that:

e−βW (z) = e−β∆G(z), (2.5)

where the overbar indicates an average taken over the ensemble of all possible

measurements of the work done in altering the state of the system by continuously

changing the value of some control parameter, z. Here, β = 1/kBT is the reciprocal

of the thermal energy. Essentially, this equality demonstrates that, while on average,

the work done on a system over the course of a non-equilibrium trajectory will

exceed the equilibrium work in accordance with Equation (2.4), occasionally, one

“gets out more than one puts in” in the sense that the non-equilibrium work is less

than the equilibrium value [58]! The exponential average of Equation (2.5) exactly

balances these low-work trajectories with the excess work trajectories to recover the

equilibrium free-energy difference. This remarkable result was verified by Liphardt et

al. [59] for single-molecule pulling experiments carried out on an RNA molecule.

In its above form, Jarzynski’s equality cannot be used to extract intrinsic free-

energy profiles from LOT experiments. The reason for this is that the free-energy

difference given in the identity (2.5) is between two different values of an external

control parameter, z, not between two different values of some internal reaction

coordinate for the system, such as the pulling coordinate that is measured in LOT

experiments. The control parameter in LOT experiments is the time, or equivalently,

the separation between laser traps, which is increased monotonically in force-ramp

experiments to induce fluctuations in the pulling coordinate: molecular extension.

Hummer and Szabo [39] have addressed this issue, providing a formalism for extrac-

tion of G(q)—the free-energy profile along molecular extension q—which is based

on the Jarzynski equality.

The idea behind the procedure is that the ensemble of non-equilibrium trajectories
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of a system behaves the same as the equilibrium ensemble provided each state

is weighted with the exponential of the external, non-equilibrium work required to

establish it from some reference state [60]. In their approach, Hummer and Szabo [39]

use a derivation of the Jarzynski equality based on the Feynman-Kac theorem [61] to

obtain the following expression for free-energy as a function of pulling coordinate q:

βG0(q) =− ln
〈
δ (q−qt)e−β∆Wt

〉
, (2.6)

where δ is the Dirac delta function, q is the molecular extension coordinate, qt is

its value at a particular time, t, and β = 1/kBT . Note that we must subtract from

external work done on the system the instantaneous bias potential of the laser traps:

∆Wt =
∫ t

0
∂H
∂ t ′ (xt ′, t ′)dt ′− kξ 2/2, where k is the spring constant for the system. For

force-ramp LOT experiments, ξ is the displacement of the beads from equilibrium

position; in the setup illustrated by Figure 2.4, where the laser traps are moved apart

at constant velocity v, this displacement is ξ = z(t)−q(t) = z(0)+ vt−q(t), where

z(0) indicates the initial trap separation, and z(t) and q(t) are the time-dependent trap

and bead separations, respectively. The angled brackets in Equation (2.6) indicate an

ensemble average over all possible pulling trajectories. The Hamiltonian describing

the LOT system is given by

H(x, t) = H0(x)+ k
(

z(0)+ vt−q(t)
)2

/2, (2.7)

where H0(x) is the Hamiltonian of the system in the absence of applied tension and

(k/2)
(
z(0)+ vt−q(t)

)2 is the energy stored in the displacement of the beads from

their equilibrium positions (k again is the spring constant for the system). Given this

Hamiltonian, ∆Wt becomes after evaluating the integral:

∆Wt = kv
[vt2

2
+ z(0)t−

∫ t

0
q(t ′)dt ′

]
− k

2

(
z(0)+ vt−q(t)

)2
(2.8)
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One can now write Equation (2.6) as:

βG0(q) =− ln

〈
δ (q−qt)e

−β

[
kv
[

vt2
2 +z(0)t−

∫ t
0 q(t ′)dt ′

]
− k

2

(
z(0)+vt−q(t)

)2
]〉

(2.9)

In principle, the free-energy profile along q can be computed directly from the

Figure 2.4: Setup for LOT measurements. When determining the external work done
on the system, the displacement of the beads in the spring potential is considered.
This displacement is z(t)−q(t). Figure adapted from Woodside et al. 2008 [36].

ensemble average in Equation (2.9), taken at one particular moment in time t. In

practice, however, given the finite number of trajectories sampled in an experiment,

the full range of q values will not be sampled in one single time slice [39]. Indeed,

most q values will cluster about the location of the equilibrium in spring potential,

z(t), at any given time t. To solve this problem, snapshots from many time slices must

be combined; Hummer and Szabo [39, 62] adapted the Weighted Histogram Analysis

Method (WHAM) of Ferrenberg and Swendsen [63] for this purpose. The situation

is similar to that of umbrella sampling; an unbiased energy profile is derived by

sampling many different biased profiles and combining these in a weighted average

that minimizes statistical error [64]. In the end, the biases are removed from the

weighted average. In the present case, each time slice acts as one umbrella sampling

“trial” featuring a particular value of the time-dependent spring potential bias. When

these trials are combined, the observations must be unbiased not only with respect

to the spring potential, but also with respect to the non-equilibrium work [62]. This
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results in the following expression for G0(q):

G0(q) =
∑t
〈δ (q−q(t))e−βWt 〉

〈e−βWt 〉

∑t
e−βV (q,t)

〈e−βWt 〉

(2.10)

Here, the summations are over all time slices. V (q, t) is the bias energy stored in the

traps, and Wt is the non-equilibrium work. The angled brackets again denote ensemble

averages. Since in real experiments a finite number of trajectories are available, the

ensemble averages have to be approximated, necessitating further binning. A typical

Figure 2.5: A typical data set from a LOT force-ramp experiment. The displacement
of beads from equilibrium is measured and used to compute the tension and the total
system extension. For folding experiments, FECs exhibit a characteristic sawtooth
pattern; the ‘rip’ represents the sudden increase in extension and decrease in force
consequent on molecular unfolding. These curves were collected from a DNA hairpin;
see Chapter 4 for further details.

data set collected during LOT force-ramp experiments consists of Force-Extension

Curves (FECs), depicted in Figure 2.5. As the laser traps are moved at a constant

speed, the beads are deflected from their equilibrium position. By measuring the bead

position, it is possible to derive values for system extension (molecule plus handles)
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as well as force. To implement Equation (2.10), first, the non-equilibrium work

for the ith time bin and kth pulling trajectory is computed via trapezoidal numerical

integration:

Wi,k = kv
[vt2

i
2
−

i

∑
j=1

(t j− t j−1)(q j,k +q j−1,k)
]
. (2.11)

Next, 〈e−βWt 〉 is approximated for every time bin:

〈e−βWti 〉 ≈ 1
N

N

∑
k=1

e−βWi,k , (2.12)

where N is the total number of pulling curves collected in the experiment and i

indexes the relevant time bin. The top of the numerator in Equation (2.10) is then

approximated for the lth extension bin as follows:

〈
δ
(
ql−q(ti)

)
e−βWi,k

〉
=

1
N

N

∑
k=1

e−βWi,kΘl(qi,k) (2.13)

Here, N is again the total number of pulling trajectories collected. Wik is the work

corresponding to the ith time bin and kth pulling curve, l is an index referring to the

extension bin, and Θ is a function that is 1 if qi,k falls into the lth extension bin and 0

otherwise. The top denominator of Equation (2.10) is computed for each time bin

using the average separation between laser traps at that time:

V (q, t) =
k
(
z(t)−ql

)2

2
, (2.14)

where ql is the midpoint of the lth extension bin.

The WHAM method was validated on a system of DNA hairpins by Gupta et

al. [41]. Free-energy profiles obtained via the above procedure were “tilted” to ap-

proximate their appearance at some constant force value, F ; this allows the landscape

to be compared to one collected during a constant-force equilibrium experiment. The

“tilting” is effected by subtracting a term representing the work done by the constant
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force from each point on the profile:

GF(q) = G0(q)−Fq. (2.15)

This tilted landscape was then compared to the results of an equilibrium landscape

reconstruction performed for the same DNA system; the two landscapes agreed very

well with one another [41].

The main difficulty with Jarzynski-based methods is that many trajectories are

required to ensure adequate statistics. Equation (2.5) is exact only if the average is

taken over the entire ensemble of possible trajectories, yet experiments can sample

only a finite number of trajectories. The farther from equilibrium a measurement

is taken, the greater the amount of data necessary to accurately reconstruct the free-

energy [59]. This problem is exacerbated by the necessity to bin data for WHAM

reconstructions; coarse binning is often required to produce adequate statistics for

the work distribution in each bin, and this decreases the resolution of the landscape.

Further, Jarzynski’s equality is predicated upon all trajectories being drawn from

an identical initial equilibrium distribution; instrumental drift over the course of

many pulls may compromise the identity of initial conditions. Thus, the demand

for many experimental trajectories likewise increases the instrumental stability re-

quirements [59]. Often, it is not experimentally feasible to procure the volume of

data required, and entire portions of the landscape remain unresolved, as illustrated

by Harris et al. [65]. An alternative Jarzynski-based reconstruction method may

somewhat alleviate these issues; Hummer and Szabo proposed a procedure based

on a mathematical Weierstrass transform, which does not have the same stringent

requirements on experimental statistics [66]. Chapter 4 provides a detailed treatment

of this method.

The formalism outlined above is not applicable to the analysis of force-jump

experiments, because Jarzynski’s equality is valid only for processes wherein a

control variable is continuously changed [57]. In force-jump experiments, the force is
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discontinuously switched between two different values to induce folding or unfolding.

Zhang et al. [67] developed a method for determining the free-energy profile by

inverting the non-equilibrium stationary probability density from a set of force-jump

trajectories. While this method has been used on experimental data [42], it has not

yet been validated on a system for which the landscape is known. The force-jump

method is not employed in the current work.

2.3 Model-Dependent Landscape Formalisms

Full reconstructions of the landscape profile are experimentally and analytically

demanding. Alternative approaches aim to characterize a few parameters that dictate

the shape of the landscape—such as barrier height and distance from the folded well

to the barrier—by making certain assumptions. In these approaches, a form for the

dependence of the folding reaction rate on force is first assumed. Next, distributions

of observables implied by the assumed form are derived and fit to experimental data

to extract landscape parameters, like the ones shown in Figure 2.6. The most basic

such method is due to Evans and Ritchie [69], who expanded upon an expression for

force-dependent rates originally derived by Bell [70] on the basis of earlier work done

by Zhurkov [71]. In his treatment, Bell assumes that the only effect of an external

force, such as that applied by an harmonic pulling spring, on a smooth, double-well

energy landscape is the lowering of the barrier by an amount F∆x‡, where ∆x‡ is the

distance from the well minimum to the barrier along the reaction coordinate x. Bell

then inserts this effect on the barrier height into the phenomenological Arrhenius law

to obtain the following force-dependent reaction rate:

k(F) = k0eβF∆x‡
, (2.16)

where k0 is the unperturbed reaction rate. Evans and Ritchie extend this treatment to

derive expected force rupture distributions for SMFS unfolding experiments [69]. A
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Figure 2.6: A hypothetical linear-cubic energy landscape. The ordinate is free-
energy, and the abscissa is a reaction coordinate, like molecular extension. Several
key parameters characterize the landscape: k0, the rate of escape from the ‘folded’
well; ∆G‡, the height of the barrier, and ∆x‡, the distance to barrier. Figure adapted
from Dudko et al. 2006 [68].

force rupture distribution is simply the collection of forces at which the characteristic

“rip” in FECs occurs; this sudden change in extension and force represents the

folding⇔ unfolding transition. Because the process of escape over a barrier on the

folding energy landscape is stochastic, the force at which this rip occurs varies from

trajectory to trajectory; the total collection of rip forces from all trajectories in an

experiment forms a distribution, like the one shown in Figure 2.7. While the Evans

26



and Ritchie approach has been widely and successfully applied to experiment [72],

their assumption that the only effect of force is barrier height adjustment is invalid.

Indeed, the larger the perturbing forces, the more significantly the distance between

the folded well and the barrier, ∆x‡, is altered [68].

Figure 2.7: A sample rupture force distribution for 800 curves collected during a
riboswitch aptamer experiment. The force at which the ‘rip’ in each FEC occurs is
binned to compile a histogram. The red curve represents a fit using the theory of
Dudko et al.; see Equation (2.19). Figure adapted from Greenleaf et al. 2008 [73].

Expanding upon the work of Garg [74], Dudko et al. [68] developed a framework

that treats perturbations in barrier height and position by external forces. First, a

shape for the landscape is assumed; Dudko et al. treat linear-cubic and cusp-like

energy landscapes. Next, these profiles are substituted into Kramers’ expression for

escape rate across an energy barrier [75] to yield the following force-dependent rate
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expression:

k(F) = k0

(
1− νF∆x‡

∆G‡

)1/ν−1
e

β∆G‡
[

1−(1−νF∆x‡/∆G‡)1/ν

]
, (2.17)

where k0 is the escape rate in the absence of force; F is the applied force; ∆x‡ is the

distance to the barrier on the unperturbed landscape; ν parametrizes the shape of the

landscape, and is 1/2 for a cusp-like landscape, 2/3 for a linear-cubic landscape, and

1 to recover the phenomenological Bell-Evans theory; and ∆G‡ is the barrier height

on the unperturbed landscape. Dudko et al. [68] derive a general expression for the

distribution of rupture forces:

p(F) =
k(F)

Ḟ
exp
(
−
∫ F

0
[k(F ′)/Ḟ ]dF ′

)
, (2.18)

where k(F) is the force-dependent reaction rate and Ḟ is the loading rate. In LOT

experiments, the applied force is equal to F(t) = kvt, where k is the spring constant

for the laser traps and v is the pulling speed, which implies Ḟ = kv1; in this context,

and given the above expression for k(F), the expected force rupture distribution

is [68]:

p(F) =
1
kv

k(F)ek0/∆x‡kve−
[

k0/∆x‡kv
][

1−(νF∆x‡/∆G‡)
]1−1/ν

. (2.19)

This expression has been successfully fit to experimental data [73] and was actually

verified against a full landscape reconstructed via the WHAM method by Yu et

al. [20].

In order to fit Dudko et al.’s theory to force rupture distributions, it is necessary

to bin the forces in extension due to limited experimental data (see Figure 2.7). An al-

ternative approach is to integrate Dudko et al.’s expression for p(F), Equation (2.19),

1Actually, in the presence of the molecular linkers that normally tether the molecule of interest
to the beads suspended in LOT experiments, this is not quite correct. Dudko et al. [76] provide
an expression for determining the loading rate in the presence of molecular handles; however, it is
experimentally unfeasible to implement a loading rate clamp, and in practice the average loading rate
just before the rip in FECs is used.
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and fit this integral to experimental data. Specifically, in a given experiment, the

observed rupture forces can first be sorted in increasing order. The ith point in this

distribution is then assigned the value i−0.5
N , where N is the total number of points;

this ensures a normalized distribution. When these assigned values are plotted against

the corresponding force, the result is a sigmoidal curve, as shown in Figure 3.7 in

Chapter 3. The integral of Equation (2.19) is given by:

P(F) =
∫ F

0
p(F ′)dF ′

= 1− e
1
kv
∫ F

0 k(F ′)dF ′

= 1− ek0/∆x‡kve−
[

k0/∆x‡kv
][

1−(νF∆x‡/∆G‡)
]1−1/ν

.

(2.20)

Fitting the data to this form avoids the necessity of binning, which is an undesirable

and somewhat arbitrary procedure, by assigning equal weight to each rupture force

observed in the experiment. This particular application of Dudko et al.’s theory has

not heretofore been implemented; the present work endeavours to remedy this.

Dudko et al. also demonstrated how the results of constant-force SMFS experi-

ments can be related to the results of force-ramp experiments [76]. Equation (2.18)

is first inverted to yield an expression for the expected lifetime of, for instance, the

folded state if the molecule is held at some constant force F :

τ(F) =
1

Ḟ(F)p(F)

∫
∞

F
p(F ′)dF ′, (2.21)

where τ(F) is the force dependent lifetime, p(F) is the rupture force distribution,

and Ḟ is the loading rate. This relation can be used to transform data collected in

force-ramp experiments into the lifetimes expected to be observed in constant-force

experiments. Force-ramp data can then be plotted alongside lifetimes measured in

constant-force experiments; both sets of data should lie along a master curve [76] fit
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by the inversion of Equation (2.17):

τ(F) = τ0

(
1− νF∆x‡

∆G‡

)1−1/ν

e−β∆G‡
[

1−(1−νF∆x‡/∆G‡)1/ν
]
, (2.22)

where τ0 is the expected lifetime at zero force and the other parameters retain their

above definitions. This relation was verified by Dudko et al. [76] for DNA hairpins

and for a protein. The curvature of the master curve in log space illustrates that the

dependence of rates on force is greater than exponential.

The formalism developed by Dudko et al. [68, 76], in addition to being easier

to implement than full landscape extraction methods, may also have the advantage

of being valid for cases in which the pulling coordinate in LOT experiments is not

a good reaction coordinate [49]. By this, it is meant that the landscape projection

onto the pulling coordinate, or the PMF, is not “good” in the sense that the dynamics

on the full, multi-dimensional landscape are obscured in the projection. Dudko et

al. demonstrated for simulated data that their formalisms for extracting ∆x‡ and ∆G‡

yield correct values even when the folding barrier is hidden in the PMF projection [49].

Nonetheless, model-dependent methods are not as detailed or as general as the

formalisms outlined in Sections 2.1 and 2.2, which do not assume a priori a shape

for the landscape. In practice, therefore, multiple approaches should be implemented

together to obtain the richest possible description of the energy landscape for a

biomolecule. In Chapter 3, such a combination of approaches is employed to study a

RNA pseudoknot.
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Chapter 3

Realization of Free-Energy

Landscape Extraction for a RNA

Pseudoknot

3.1 RNA Pseudoknot

RNA is comprised of constituents similar to those of DNA; the only differences are

the inclusion of an additional OH group in the pentose sugar and the substitution of a

uracil nucleotide for thymine. In contrast to DNA, however, it normally occurs in

the cell as a single strand, which typically forms more complex structures through

various tertiary interactions. RNA performs a variety of functions in the cell, from

transcribing and translating DNA to enzymatic activity, and is used by viruses to

encode genetic material that goes on to infect host cells. One of the processes

in which the structure of RNA is important is the phenomenon of programmed

−1 ribosomal frameshifting (−1 PRF), which figures in viral propagation. During

protein synthesis, the ribosome reads a strand of messenger RNA—or mRNA—in

three-nucleotide segments called codons; each codon represents a particular amino

acid [77]. Eventually, the ribosome reaches a particular set of three nucleotides that

signals completion of the protein and reading ceases. In −1 PRF, the ribosome halts
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and is forced backward one nucleotide; this alters the particular codon sequence

originally being read and can cause the ribosome to bypass the stop signal [78]. A

protein may thus be synthesized that is entirely distinct from the one that would

have resulted from the original reading frame of (or pattern of codons interpreted by)

the ribosome [78]. Efficient frameshifting maximizes the utility of a gene sequence,

since a single strand of genetic material can encode multiple proteins. Many viruses,

including HIV [79] and SARS [80], undergo tightly-regulated frameshifting that

produces alternate protein products in a definite ratio [78, 81], which enables them to

carry out myriad functions, such as replication of the viral genome [82]. While the

mechanism of −1 PRF remains controversial [44], the basic ingredients are known

to be (a) a sequence on the strand of mRNA that the ribosome can easily slide across

and (b) a complex structure a few nucleotides upstream of this “slippery” sequence

that promotes the stalling of the ribosome [78, 81]. Most often, this latter structure is

a pseudoknot.

The simplest secondary structure a strand of RNA can generate is a hairpin,

consisting of a stem of complementary base pairs and a loop. A pseudoknot is formed

when a “hairpin loop base-pairs with a complementary sequence outside of that

loop” [83], giving rise to a complex tertiary structure containing at least two stem

regions and at least two loop regions. The structure’s name derives from the fact

that, while it is complex, it is not a true knot in the topological sense (since it can be

continuously deformed into a linear strand). It has been suggested that a pseudoknot’s

mechanical resistance to unfolding is responsible for stimulating frameshifting; in this

scenario, the ribosome slips backwards as it attempts to unravel the pseudoknot [84].

In their survey of pseudoknots from a variety of viruses, however, Ritchie et al. found

that mechanical resistance is uncorrelated with frameshifting; instead, frameshifting

appears to be related to a pseudoknot’s tendency to fold into alternate structures [44].

The specific mechanism of frameshifting remains nevertheless elusive, and Ritchie et

al.’s results invite a more in-depth look at the complete folding landscapes of RNA

pseudoknots.
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Figure 3.1: The sequence of RNA pseudoknot ScYLV. The pseudoknot contains 28
nucleotides and is divided into 2 stem structures (blue) and two loops (red). The solid
grey line indicates the backbone of the RNA chain, whereas dotted grey lines denote
base-pairing interactions. Some nucleotides are also involved in triplex bonds. Figure
taken from Ritchie et al. 2012 [44].

A valuable strategy for studying frameshifting mechanisms, and particularly,

how they may be related to energy landscapes, is to examine a system and a well-

characterized mutant whose frameshifting efficiency is markedly different from that

of the wild-type. The comparison of wild-type and mutated landscapes can then

shed light on the determining factors of frameshifting efficiency. One candidate for

such a study is the Sugar Cane Yellow Leaf viral pseudoknot (ScYLV), whose C27A

mutant has been well-characterized, structurally and thermodynamically [85]. The

two pseudoknots, both 28 nucleotides long, differ only by a single nucleotide in the

sequence—which in the wild-type is cytosine and in the mutant is adenine—and

are structurally similar [85]. Their frameshifting efficiencies are quite different,

however: the wild-type has a 15% −1 PRF efficiency, whereas the C27A mutant has

2% [44]. In the present work, a full landscape profile is constructed for the wild-type

pseudoknot, shown in Figures 3.1 and 3.2. Future studies characterizing its mutant

can build on the results detailed herein.
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(a)

(b)

Figure 3.2: Structure of RNA pseudoknot ScYLV. The pseudoknot is 28 nucleotides
in length and contains 2 stems (yellow and blue) and 2 loops (purple/red and green).
In (a), the nucleotides are represented by sticks, while in (b), the ribose (5-carbon)
sugar rings are explicitly depicted. Figures created using MacPyMOL.
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Figure 3.3: Simplified representation of the experimental setup. Pseudoknots were
attached to long linker handles, of lengths ∼840 and ∼2200 nucleotides, which were
then attached to dielectric beads of average sizes 600 nm and 820 nm. Figure courtesy
of M.T. Woodside.

3.2 Experimental Methods

A simplified experimental schematic is shown in Figure 3.3. The apparatus used is

similar to ones detailed previously [86, 41, 44]. It is a custom-built, dual-beam optical

trap in which two laser traps are created from orthogonally-polarized 1064-nm beams.

The intensity and position of each trap are manipulated independently with acousto-

optic deflectors (AODs). Motion of the dielectric beads in the traps is detected by

measuring changes in the amount of light scattered by the beads from an 830-nm

detection laser onto PSDs. Long wavelengths are used for laser light to minimize

damage to biological samples [46]. Data are sampled at 20 kHz, and an 8-pole

Bessel filter is used to filter data online at the Nyquist frequency, 10 kHz. The trap

is located in a low-vibration, isolated environment that is temperature-controlled to

remain at 20.0◦C. Trap stiffnesses are normally calibrated via three different methods:

first, by measuring the power spectrum of the beads in the trap and fitting it to a

Lorentzian function; second, by measuring the variance of the bead displacements

and employing the equipartition theorem; and third, by measuring the bead response

to fluid motion and fitting it to predictions based on Stokes drag [47]. Trap positions
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are calibrated using the known motions of a piezoelectric stage; nanometer stage

motions are translated into pixels on a CCD camera; then motion of the laser traps is

used to translate AOD frequency changes into nanometers. Laser traps are moved

apart at definite rates by adjusting the frequencies of the AODs to perform force ramp

experiments. Further details regarding optical tweezers configuration and calibration

are available in published reviews [47, 46].

The pseudoknot constructs were prepared and measured by Dustin Ritchie; see

Ritchie et al. for details [44]. The pseudoknots were flanked by linker handles that

were hybrids of ssDNA and RNA; the handle lengths were approximately 840 and

2200 nucleotides. The handles were attached to 600 nm and 820 nm beads to form

dumbbells, which were placed in a buffer. The dumbbell solution was then deposited

on a plasma-cleaned microscope slide for trapping.

In total, 15 separate sets of data were collected and analyzed, comprising 9

different molecules. The data were collected over the course of 17 months, from

May 2011 to October 2012. Results from four of the data sets, collected in 2011,

have been previously published [44], but the analysis was repeated for the current

work. The trap stiffnesses for these data sets were 0.58–0.63 pN/nm for one trap and

0.43–0.45 pN/nm for the other. Most of the data sets contain 100–200 pulling curves,

collected at pulling speeds ranging from 100 nm/s to 267 nm/s. Between each curve,

the traps were held at near-zero force for 3–10 seconds to allow the pseudoknot to

refold before mechanically unfolding it again.

3.3 Results and Analysis

3.3.1 WLC Fits

Typical pulling curves for the pseudoknot are shown in Figure 3.4. The FECs rise

nonlinearly at low forces as the linker handles are stretched out. An abrupt increase

in extension and decrease in force signals unfolding of the pseudoknot; this generates

a characteristic sawtooth-shaped “rip”. The curved regions before and after this
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unfolding rip reflect the elastic behaviour of the linker handles and are well-described

by worm-like chain (WLC) polymer theory [87, 88]. In WLC theory, dsDNA is

modelled as an elastic rod, which bends rather than kinking as a freely jointed chain

would. WLCs are parametrized by their contour length Lc, or total length along the

polymer backbone; their persistence length Lp, which describes the flexibility of the

rod, or tendency for different segments to align; and their elastic modulus K, which

measures the polymer’s resistance to longitudinal stretching [88]. The interpolation

formula generally used to fit FECs is [88, 46]:

F(x) =
kBT
Lp

[
1
4

(
1− x

Lc
+

F
K

)−2

− 1
4
+

x
Lc
− F

K

]
(3.1)

Here, F(x) is the force as a function of end-to-end extension x, Lp and Lc are the

persistence and contour length of the polymer, respectively, and K is the elastic

modulus. At low forces, the polymer behaves as an entropic spring, while at high

forces, the stretching of bonds in the polymer backbone is the dominant effect [46].

Individual FECs were first aligned to correct for the instrumental drift that occurs

over the course of a measurement. The low force region of the FECs (below the

unfolding rip) was then fit to Equation (3.1), thereby obtaining the WLC parameters

describing the elasticity of the handles. An additional fitting parameter was included

to account for any offset in force arising from the force calibration, since F = 0 at

x = 0 is required physically. Typical values of the persistence length for dsDNA are

40–50 nm, and typical values for the elastic modulus are 1000–1200 pN [88]. The

experimental fits yielded persistence lengths somewhat lower, at 14–30 nm. This is

likely due to the fact that the linker handles are DNA/RNA hybrids, which have been

known to have smaller Lp than dsDNA due likely to imperfect annealing [89]. We

next fit the high-force region above the unfolding rip to two WLCs in series: one

for the handles, using the same parameters found by the first fit, and the other for

the unfolded RNA pseudoknot. In the second fit, the persistence length and elastic

modulus of the unfolded RNA were fixed at typical values: 1 nm and 2000 pN,
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Figure 3.4: Raw FECs for a particular data set of 99 curves. The WLC fits represented
in green (WLC with folded pseudoknot) and blue (WLC with unfolded pseudoknot)
have a handle persistence length Lp of 27 nm, a handle contour length Lc of 919 nm,
a handle elastic modulus of 1716 pN, a contour length change upon unfolding of ∆Lc
= 11.8 nm, and a force offset of 1.2 pN. This force offset is subtracted from all force
values prior to further analysis. The persistence length and elastic modulus for the
unfolded RNA were fixed at 1 nm and 2000 pN, respectively.
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respectively [90, 91]. The unfolded RNA contour length was thus the only parameter

free to vary in the fit, yielding the contour length change upon unfolding, ∆Lc. From

fits like the ones shown in Figure 3.4 (green: RNA folded; blue: RNA unfolded), we

found ∆Lc=12.2±0.5 nm, similar to the result found earlier (13±1 nm) [44]. This

value is slightly lower than what is expected from the high-resolution structure of this

pseudoknot (13.4 nm), determined by subtracting the distance between the ends of

the folded pseudoknot (1.92 nm) from the Lc of 28 nucleotides of RNA (16.52 nm),

but it is still consistent within error.

3.3.2 Model-Dependent Analysis

After the FECs were aligned and adjusted using the force offset value derived from

the WLC fits outlined in Section 3.4.3, the model-dependent methods of Dudko et

al. [68, 76] were employed to study the folding landscape of the pseudoknot. First,

force rupture histograms like the one in Figure 3.5 were compiled for each of the

15 data sets. The average unfolding force for each depends on the pulling speed,

and faster pulling rates will induce folding at higher forces (see Equation (5) from

reference [68]), but the shape of each distribution is similar. The distributions are

then fit to Equation (2.19), allowing for the extraction of the barrier height ∆G‡,

distance to barrier ∆x‡, and escape rate from the folded well k0. In Figure 3.5, the

red curve is a fit performed under the assumption of a linear-cubic landscape like the

one in Figure 2.6, where ν = 2/3, and the black curve is a fit performed under the

assumption of a cusp-like barrier, where ν = 1/2. For most distributions, there was

little difference between these models and the parameters they produced, and stability

for different ν values suggests the parameters returned by the fits are meaningful [76].

As an alternative way of looking at the same information, we transform the force-

rupture distributions into force-dependent lifetimes according to Equation (2.21),

and lnτ(F) was fit in the least squares sense with multiple values of ν as per the

suggestion of Dudko et al. [76]. Figure 3.6 illustrates a sample lifetime curve along

with fits; the fit range excluded points on either end of the distribution corresponding
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Figure 3.5: A force-rupture distribution representing 100 pulling curves for which the
average force loading rate Ḟ was 44.3 pN/s. The red curve is for a fit with ν = 2/3;
the landscape parameters it produced are k0 = 6×10−5 s−1, ∆G‡ = 165 pN·nm, and
∆x‡ = 0.98 nm. The black curve is for a fit with ν = 1/2; the landscape parameters it
produced are k0 = 8×10−4 s−1, ∆G‡ = 152 pN·nm, and ∆x‡ = 1.0 nm. The average
unfolding force for this distribution was 39 pN. Errors are standard

√
N counting

errors, but the fits are not weighted.

to force bins with very few counts.

Finally, the data are examined from yet another angle by compiling plots repre-

senting the cumulative probability of finding the pseudoknot unfolded as a function of

force, P(F); this is simply the integral of the force-dependent unfolding probability

distributions. P(F) is computed according to the method outlined in Section 2.3, and

the resulting sigmoidal curve is then fit using Equation (2.20). We finally averaged

the results from the three fitting methods, to obtain our best estimate of the true

values. Errors on final values are standard errors of the mean. Final average values

are displayed in Table 3.1, along with the previously reported values of Ritchie et

al. [44]. Values for both models, linear-cubic and cusp-like, are fairly close to one

another, lending weight to the results. The average between the results for ν = 1/2

and ν = 2/3 is ∆G‡
F=0 = 59±6 kJ/mol.
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Figure 3.6: Force-dependent lifetimes, τ(F), from 99 pulling curves for which
the average force loading rate Ḟ was 54.4 pN/s. The red curve is for a fit with
ν = 2/3; the landscape parameters it produced are τ0 = 1677 s, ∆G‡ = 68 pN·nm,
and ∆x‡ = 1.5 nm. The black curve is for a fit with ν = 1/2; the landscape parameters
it produced are τ0 = 7120 s, ∆G‡ = 76 pN·nm, and ∆x‡ = 1.8 nm. The average
unfolding force for this distribution was 32.9 pN.

Table 3.1: Summary of results from model-dependent fits to the pseudoknot data.
Parameters obtained by assuming both cusp-like (ν = 1/2) and linear-cubic (ν=2/3)
landscape shapes are shown. Results from Ritchie et al. (marked Previous Value) are
displayed for comparison [44].

Parameter logkoff (s−1) ∆x‡ (nm) ∆G‡ (kJ/mol)
ν = 1/2 −4.5±0.2 1.8 ± 0.1 64 ± 5
ν = 2/3 −5±1 1.7 ± 0.1 54 ± 4
Previous Value −5.0±0.3 1.7 ± 0.1 60 ± 4

3.3.3 Full Landscape Reconstruction

We next analyzed the pseudoknot FECs to reconstruct the shape of the landscape pro-

file without assuming any particular model, by using the WHAM method described in

Section 2.2. Landscape profiles were calculated using a custom C++ implementation

of the WHAM procedure. Note that 4 of the 15 data sets had insufficient statistics

for a reliable reconstruction: in order for the Jarzynski-based WHAM method to
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Figure 3.7: An integrated probability distribution representing 199 pulling curves
for which the average force loading rate Ḟ was 52.8 pN/s; the data are shown in
red. The blue curve is for a fit with ν = 2/3; the landscape parameters it produced
are k0 = 7× 10−6 s−1, ∆G‡ = 67 pN·nm, and ∆x‡ = 2.4 nm. The black curve is
for a fit with ν = 1/2; the landscape parameters it produced are k0 = 8×10−6 s−1,
∆G‡ = 70 pN·nm, and ∆x‡ = 2.5 nm. The average unfolding force for this distribution
was 30.2 pN.

work properly, the rare trajectories with low unfolding forces that represent the tail

of the work distribution must be adequately sampled. The landscape profile was

reconstructed for 11 data sets, containing 1217 curves. The system stiffness k used

in the calculation of work in Equation (2.11) was determined by combining the two

laser trap stiffnesses k0 and k1, treating them as springs in series:

k =
(

1
k0

+
1
k1

)−1

. (3.2)

The result of Equation (2.10) is a free-energy landscape profile at zero force, G0(q);

a sample of such a landscape from one data set comprised of 199 curves is shown

in Figure 3.8. As would be expected, the landscape is dominated by the energy of

stretching the linker handles [41], and the unfolding barrier is only a small blip in the

landscape around 890 nm. In order to more clearly see the details of the barrier, it is
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desirable to “tilt” the zero-force landscape to a constant force value, simulating the

result that would be obtained in a constant-force experiment:

GF(x) = G0(x)−Fx. (3.3)

The effect of tilting the landscape to various forces is shown in Figure 3.9. The

landscape was ultimately tilted to F1/2, the force at which the folded and unfolded

minima are at the same free-energy and the molecule has a 0.5 probability of being

in either state. Landscapes from the 11 data sets were each tilted to their F1/2

value, which varied from landscape to landscape, then combined to form an average

landscape (black curve in Figure 3.10. The average F1/2 was 30 ± 2 pN. The barrier

height of the average reconstruction is 14 ± 2 kJ/mol and the distance between

folded well and barrier on the average reconstruction is 5.0 ± 2 nm. There is a fairly

wide spread of results in the barrier region of the profiles, similar to previous work

applying the WHAM analysis to a protein molecule [20] and reflecting the variability

of exponentially-weighted averages.

3.3.4 Estimates of Free-Energy Difference between Folded and

Unfolded States

There are two methods for determining the intrinsic free-energy difference between

the folded and unfolded states (this is not equivalent to the barrier on the free-energy

landscape, which contains not only the intrinsic energy difference between states, but

the reaction activation energy, as well) which were pursued for this work. Firstly,

the WLC fits to the FECs can be integrated; since they are force-distance curves, the

integral of the WLC fits corresponds to the free-energy invested in stretching the

linker handles. The WLC integrals are then overlaid on the zero-force free-energy

landscape; see Figure 3.11. Clearly, as aforementioned and noted in other work [41],

the zero-force free-energy landscape contains contributions from the stretching of

the linker handles. The difference between the y-intercepts of the two integral curves
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Figure 3.8: Free-energy landscape at zero force constructed using the WHAM
method of Hummer and Szabo [39] for a data set comprising 199 FECs. A clear
feature of the landscape is the energy of stretching the linker handles (regions of
broad curvature) [41]; the barrier to unfolding is the small blip visible at 890 nm.
The extension bin size is 2.0 nm and the time bin size is 0.008 seconds. There are an
average of 358 points per extension bin.

Figure 3.9: Landscape shown in Figure 3.8, smoothed for clarity and tilted to a
variety of constant forces. The black curve at the bottom represents the landscape
tilted to F1/2. The barrier to unfolding is visible at 890 nm.

44



Figure 3.10: Final, average WHAM-reconstructed landscape for the ScYLV pseudo-
knot, tilted to an average force of 30 ± 2 pN. Errors are standard errors on the mean.
Eleven data sets were combined, comprising a total of 1217 FECs. The bin size is
1.8 nm.

represents the difference in free-energy between the folded and unfolded states of the

pseudoknot. WLC integration and overlaying onto the G0 energy profile was pursued

for 13 of the 15 sets of FECs; for the other two sets, the WLC integrals did not match

the G0 profile well. The free-energy differences thus obtained were averaged; the

final result for free-energy difference between folded and unfolded states is ∆Gfold =

135 ± 11 kJ/mol.

Another estimate for the energy difference between for folded and unfolded states

can be determined as follows:

1) Multiply the average F1/2 for the tilted landscape by the distance between

the unfolded well and the folded well to derive the total work required to bring

the molecule from the folded to the unfolded state. This inter-well distance can be

determined using the black curve in Figure 3.10 and is 11 nm ± 2 nm. The average

F1/2 is 30 ± 2 pN, so F1/2×∆x = 330 ± 64 pN·nm.

2) Subtract from this value of work the portion of the energy that goes into
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stretching the pseudoknot once it’s unfolded. To determine what this is, a WLC

corresponding to the unfolded strand of RNA is plotted and integrated out to the

extension it would have at F1/2. When this is done, the stretching energy is found to

be 83 pN·nm. The error in the stretching energy can be estimated to be ∼10%, or

8 pN·nm.

3) Subtracting 2) from 1) yields an estimate for the free-energy difference between

folded and unfolded states: 330 ± 64 pN·nm - 83 ± 8 pN·nm = 247 ± 64 pN·nm, or

146 ± 38 kJ/mol.

The two estimates, 135 ± 11 kJ/mol and 146 ± 38 kJ/mol, are in agreement

with one another. Because these estimates are both derived from the landscape

reconstruction for ScYLV, this agreement is encouraging; the landscape is self-

consistent.

3.3.5 Comparison of Results

Several different characterizations of the free-energy landscape were detailed above,

and it is valuable to compare the various parameter results reported to ensure con-

sistency. In order to compare the zero-force ∆G‡ value derived in Section 3.4.2

with the barrier height of the reconstructed landscape in Figure 3.10, we must first

transform the former estimate to the constant-force regime. That is, given a bar-

rier height of ∆G‡ at F = 0, we would like to know what that barrier height is at

F = F1/2 = 30±2 pN. To perform this transformation, it is necessary to (a) add to

∆G‡ the energy required to stretch the portion of the pseudoknot that is unfolded at

the midpoint of the energy barrier; and (b) subtract from ∆G‡ the work done by the

constant force F1/2 = 30 ± 2 pN. For the estimates performed here, the average of

the ν = 1/2 and ν = 2/3 results is used.

The stretching energy can be found by integrating a WLC with Lc equalling the

amount of RNA unfolded at the midpoint of the barrier. We can crudely estimate this

Lc as the one that yields an extension of 1.8 ± 0.1 nm—the barrier position from the

model-dependent fits—at a force of F1/2 = 30±2 pN. This length is 2.2 nm. Integrat-
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Figure 3.11: The WLC fits for the unfolded and folded states are integrated, and
the results are overlaid on the zero-force free-energy reconstruction. The landscape
profile contains contributions from the free-energy of the handles in both the folded
(red) and unfolded (blue) states. The difference in y-intercept between the curves
represents the change in free-energy due to the molecular transition from the folded
to the unfolded state. For this data set, this difference is 62 kBT,or149 kJ/mol.

ing a WLC with this contour length out to a force of 30 pN yields a stretching energy

of ∼11 pN·nm, or ∼6.5 kJ/mol. Again, we can estimate the error on this stretching

energy to be about ∼10%: 6.5 ± 0.7 kJ/mol. The work done by the constant F1/2 can

be found by multiplying F1/2 by ∆x‡. Using the ∆x‡ value from Section 3.4.2 (1.8 ±

0.1 nm), this work is 54 ± 5 pN·nm, or 32 ± 3 kJ/mol. The model-dependent value

for barrier height adjusted to constant force is thus:

∆G‡
F1/2

=∆G‡
0−F1/2x‡ +Estretch

= 59± 6 kJ/mol - 32 ± 3 kJ/mol + 6.5 ± 0.7 kJ/mol

= 34± 7 kJ/mol.

(3.4)

Thus, we see that the result from the model-dependent fit, 34 kJ/mol, does not within
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error match the barrier height on the reconstructed landscape of Figure 3.10, 14 ±

2 kJ/mol. One expects that the WHAM-reconstructed landscape will feature a barrier

that is lower and broader than the true barrier; this is due to the convolution of the

intrinsic landscape with the PSF of the beads, handles, and traps [51]. Indeed, Yu et

al. present a reconstructed landscape for a protein with a barrier height that increases

by a factor of ∼3 upon deconvolution, bringing the value from the WHAM landscape

into agreement with the model-dependent fit value [20]. Further, Woodside et al. [37]

found that the barrier heights on deconvolved DNA hairpin landscapes were a factor

of ∼2 higher than the heights on the undeconvolved landscapes, consistent with

discrepancy in the present work, which is slightly larger perhaps due to the longer

handles used here (a larger Lp
Lc

ratio leads to more severe blurring [51]).

We can also compare the barrier position result from the model-dependent fits,

∆x‡=1.8 ± 0.1 nm, with the value from the landscape reconstruction, 5 ± 2 nm.

Even though the former value is for F = 0, tilting the landscape with applied force

will only move the barrier closer to the folded well (in accordance with expected

Hammond behaviour [92]); thus 1.8 ± 0.1 nm is an upper limit on the ∆x‡ value

at F1/2. Convolution with PSF tends to “smear” barriers out horizontally as well,

moving them more towards the central point between wells; this effect was observed

by Woodside et al. [37] for several DNA hairpins. The above comparisons and the

evidence of previous work thus highlight the need for deconvolution of the pseudoknot

landscape. Such a deconvolution is not straightforward, however; because of the

larger range of forces involved in pseudoknot unfolding (10–50 pN), deriving an

empirical, position-dependent PSF following the treatment of Yu et al. [20], where

the force range was only 8–12 pN, would be extremely difficult. More promising

would be a theoretical PSF derivation in the spirit of Hinczewski et al. [51], but which

is valid for arbitrary ranges of force.

The estimates for ∆Gfold from Section 3.4.4 can be interpreted in the context of the

unfolding barrier height estimates discussed above. Our estimated ∆Gfold values (135

±11 kJ/mol and 146± 38 kJ/mol) can firstly be compared with independent estimates
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for the stability of other type-H pseudoknots: the values derived by Cao and Chen [93]

for pseudoknots similar to ScYLV are around ∼40 kJ/mol at 20◦C. This is rather too

low for consistency with the ∆Gfold implied by the WHAM reconstruction; further,

the unfolded state appears to lie above the barrier at zero force, ∆G‡ = 59 ± 6 kJ/mol.

While some have argued that barrierless folding at zero force is possible [94], it does

not seem to be a common phenomenon, and is usually the case for folding that occurs

much faster than is observed for pseudoknots. We consider, then, the possibility that

the ∆Gfold values derived using the WHAM method are inaccurate. A possible source

of this inaccuracy is the bias associated with the Jarzynski estimator.

Equation (2.5)—and by extension, Equation (2.10)—is only exact in the limit

of an infinite set of pulling trajectories. For finite N, the Jarzynski estimator is a

biased one; this is because the trajectories that contribute most to the exponential

average are the rare ones with negative dissipated work found in the tail of the work

distribution. The accuracy of Jarzynski-based methods is predicated upon efficient

sampling of this region. Lack of sampling of the tail will lead to inflated estimates

for equilibrium free-energy difference [59, 95]; for a given number of trajectories N,

this overestimate is more severe the larger the amount of dissipated work. That is,

the farther from equilibrium an experiment is carried out, the more trajectories will

be required to adequately sample the tail of the work distribution; see Figure 3.12.

Gore et al. [95] propose the following expression for the Jarzynski bias for Gaussian

work distributions:

B(N) = 〈∆Ĝ(N)〉−∆G =
Wdis

Nα
, (3.5)

where B(N) is the bias for N trials, ∆Ĝ(N) is the Jarzynski estimate for free-energy

difference, ∆G is the true free-energy difference, Wdis is the average dissipated work,

the angled brackets indicate an average over all trajectories, and α is an exponent

chosen according to a method outlined by Gore et al. [95]. Bias is thus more severe

for experiments carried out far from equilibrium, where Wdis is large.

In previous studies of DNA hairpins, there was no noticeable disagreement

between the free-energy difference obtained using the landscape reconstruction and
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Figure 3.12: As the mean and variance of the dissipated work distribution increases—
that is, as measurements become farther and farther from equilibrium—the area of
the tail, or region below 0, decreases. This means that more trajectories are needed
to efficiently sample the negative-work trajectories which are so heavily weighted
by the Jarzynski average. Inadequate sampling leads to bias and overestimation of
free-energy differences. Figure taken from Gore et al. 2003 [95]

.
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independent estimates [41]; however, these hairpin measurements were carried out

much closer to equilibrium, so the bias would correspondingly have been smaller

and potentially negligible within error. This is not the case in the present work.

Figure 3.13 shows a folding and refolding curve for the ScYLV pseudoknot. It is

clear that the hysteresis is very severe; the pseudoknot appears to refold along a

completely different path. The RNA system is thus far from equilibrium, and a

large number of trials N would be required to bring estimates into the regime where

statistical error, and not inherent bias, is the dominant source of noise [95]. If the

landscape in Figure 3.10 is indeed biased, the bias would be most severe in the

barrier region, where the folding reaction takes place. If all the points on the G0(q)

landscape barrier of Figure 3.8 were lower, F1/2 would be lower and the vertical

distance between the WLC integrals in Figure 3.11 would decrease. This could

bring the estimates of ∆Gfold into agreement with the value 59 ± 6 kJ/mol from the

model-dependent fits and into the ballpark of the estimates of Cao and Chen [93].

A crude estimate of the bias in the WHAM results can be made as follows: first,

Wdis can be estimated by multiplying the force midway between where re-folding

occurs (∼5 pN) and where unfolding occurs (∼30 pN) with the distance between the

folded well and the unfolded well (11 ± 2 nm): this yields Wdis ∼ 135 pN·nm. Next,

an appropriate value for α taken from Gore et al. [95] (∼0.1) can be plugged into

Equation (3.5) to yield B(N) for a typical sample of 100 curves: ∼85 kJ/mol. Such

a substantial bias could easily account for the seemingly large ∆Gfold values. The

manifestation of bias in the theories of Hummer and Szabo employed here [39, 66]

has not yet been theoretically explored; future work should be aimed at understanding

and correcting for the influence of finite sample sizes in WHAM reconstructions.

In spite of the likely bias inherent in the Jarzynski-based landscape reconstruction

pursued here and the need for deconvolution, the landscape in Figure 3.10 is notable

in being the first complete landscape profile computed for an RNA pseudoknot.

Further, it accurately recaptures the greater proximity of the folding barrier to the

folded rather than the unfolded well, and it thus may be possible to glean useful
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information from a comparison of the landscapes of this pseudoknot and its C27A

mutant, whose frameshifting efficiency is much smaller.

Figure 3.13: A folding curve (red) and a corresponding refolding curve (black) for
ScYLV. Severe hysteresis is clear; this system is being driven far from equilibrium.
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Chapter 4

Method of Inverse Weierstrass

Transform

The Weighted Histogram Analysis Method (WHAM) of Hummer and Szabo [39] con-

tinues to be used to extract full free-energy landscape profiles from single-molecule

force-ramp pulling experiments. Recently, however, Hummer and Szabo proposed an

alternative framework for landscape reconstruction, predicated upon a mathematical

integral transformation [66]. While their method accurately reproduces free-energy

surfaces from simulated RNA unfolding optical tweezer experiments, up until now it

has not been validated against experimental data. Here, such a validation is pursued,

and the method is used to reconstruct free-energy landscapes for a DNA hairpin

and a RNA pseudoknot. The landscapes for the systems studied have already been

characterized using established analysis techniques, and the results of the Weierstrass

analysis can be compared against these other reconstructions. As will be shown, the

Weierstrass transform method, though much simpler to implement than the WHAM

method, in practice only works for systems possessing a sufficiently stiff energy

barrier in comparison to the stiffness of the pulling spring.
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Figure 4.1: Optical tweezers set-up. Here, q represents the extension of the molecule
of interest plus linker handles, while z(t) represents an experimental control parameter,
the trap separation. Figure adapted from Gupta et al. 2011 [41].

4.1 Theory

The goal of any landscape reconstruction procedure is to produce a free-energy

profile as a function of a relevant reaction coordinate for the system of interest. In

the LOT experiments considered here, this coordinate is the molecular extension

of the system, which in practice includes the molecule of interest plus the linker

handles attaching it to the apparatus applying force [39, 66, 51]. As mentioned in

Section 2.2, the difficulty in using Jarzynski’s equality to accomplish this aim is that

it yields free-energy as a function of an experimental control parameter; in the LOT

experiments carried out for this thesis, this is the inter-trap distance. In Figure 4.1,

z(t) is this control parameter, while q(t) is the system extension, which is the desired

abscissa in free-energy profiles. Hummer and Szabo have proposed two ways to

transform the FECs obtained in LOT experiments to free-energy profiles as a function

of system extension, G(q): the first, the WHAM method, moves directly from FECs to

G(q) [39], while the second, the Weierstrass transform method, first uses Jarzynski’s

relation to derive A(z), the free-energy profile as a function of the experimental

control parameter, then transforms this into G(q) [66]. Figure 4.2 establishes these

two procedures pictorially. The explanation in the following paragraphs follows the

work of Hummer and Szabo in their 2010 paper.

The first step in the Weierstrass transform procedure is obtaining A(z), the free-
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(a) WHAM method (b) Weierstrass method

Figure 4.2: Illustration of two landscape extraction methods. The WHAM method is
shown in (a); FECs are translated directly into the free-energy landscape as a function
of molecular extension coordinate q: G0(q). The Weierstrass method, shown in (b),
involves first constructing the free-energy as a function of the experimental control
parameter, A(z), then using an inverse Weierstrass transform to extract G0(q). Figure
adapted from Hummer and Szabo 2010 [66].
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energy profile along the experimental control coordinate. This is simply given by

Jarzynski’s equality:

e−βA(z) = 〈e−βW (z)〉, (4.1)

where W (z) is the experimental work performed on the system as a function of the

trap separation; this work is given by:

W (z) =
∫ z(t)

z(0)
Fdz. (4.2)

The angled brackets in Equation ( 4.1), indicate an average over all pulling trajectories.

Now, consider the definition of A(z):

A(z) =−kBT lnQ(z). (4.3)

This is the free-energy as a function of the distance between traps, where β = 1
kBT ,

where kB is Boltzmann’s constant, and T is the temperature, and Q is the partition

function of the system. The partition function Q is defined by:

Q(z) =
∫

dxe−βE(x). (4.4)

Above, x is a vector of coordinates in the phase space of the system; these could be,

for instance, configurational degrees of freedom. E(x) is the energy of the system in

configuration x; the integral runs over all of phase space. For single-molecule pulling

experiments, we consider the relevant phase space coordinate to be the reaction

coordinate, molecular extension q. Now, consider the energy function for a molecule

suspended in a harmonic laser trap as a function of molecular extension q and trap

separation z:

E(q,z) = G0(q)+V (q,z) = G0(q)+
1
2

k(q− z)2. (4.5)

Where G0(q) is the intrinsic free-energy function for the molecule as a function of
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its extension, and V (q,z) = 1
2k(q− z)2 is the spring potential energy of the system

with spring stiffness k; the displacement of the beads from the centre of the trap is

z−q. Substituting this expression for energy into the partition function, noting that

the phase space differential dx becomes dq, and exponentiating Equation (4.3), we

have

e−βA(z) =
∫

e−βG0(q)−β
1
2 k(q−z)2

dq . (4.6)

Now, the definition of the generalized Weierstrass integral transform of a function

f (y) is [96]

F(x) =
1√
4πt

∫
∞

−∞

f (y)e−
(x−y)2

4t dy . (4.7)

Here t is some positive number. The generalized Weierstrass transform is just the

convolution of a function f (y) with a Gaussian function of variance t. Looking

again at Equation (4.6), we see that it has the same form as a generalized Weierstrass

transform with x 7→ z, y 7→ q, Gaussian variance t = 1
2βk , F(x) 7→ e−βA(z), and f (y) 7→√

8πβke−βG0(q). We can thus obtain an expression for G0(q), the desired free-

energy as a function of molecular extension, by inverting this generalized Weierstrass

transformation. Applying one such inversion formula [96] yields

e−βG0(z) =
βk
2π

∫
∞

−∞

e−
βkξ 2

2 −βA(z+iξ )dξ , (4.8)

where ξ is an auxiliary variable. Next, the argument of the exponential is Taylor-

expanded to second order about a stationary point to render the integral tractable.

This stationary point is ξ0 = − iȦ(z+iξ0)
k . An expansion about this point to second

order leads to the integral

e−βG0(z) ≈ βk
2π

e
−kβξ 2

0
2 −βA(z+iξ0)

∫
∞

−∞

e−
ξ 2
2 (kβ−β Ä(z+iξ0))dx . (4.9)

After integration, this becomes

e−βG0(z) ≈
√

βk√
2π(k− Ä(z+ iξ0))

e
−kβξ 2

0
2 −βA(z+iξ0) . (4.10)
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or, with ξ0 =− Ȧ2(z+iξ0)
k2 ,

e−βG0(z) ≈
√

βk√
2π(k− Ä(z+ iξ0))

e
β Ȧ2(z+iξ0)

2k −βA(z+iξ0) . (4.11)

Now we have arrived at an expression for the desired quantity: the intrinsic free-

energy A of the molecular system. We need only evaluate the free-energy of the

system (trap plus molecule) and its derivatives at the point z + iξ0. To rid the

expression of complex quantities, we write z = z+ iξ0− iξ0 = z+ iξ0 +
Ȧ(z+iξ0)

k =

z′− Ȧ(z′)
k . The argument of A and Ȧ is then z′, and the argument of G0 is z′− Ȧ(z′)

k :

e−βG0(z′− Ȧ(z′)
k ) ≈

√
βk√

2π
(
k− Ä(z′)

)e
β Ȧ2(z′)

2k −βA(z′) . (4.12)

Taking the logarithm of both sides, dropping the primes, and further simplifying, we

are left with

G0
(
q = z− Ȧ(z)

k

)
≈ A(z)− Ȧ(z)2

2k
+

1
2β

ln
(
1− Ä(z)

k

)
. (4.13)

All that remains at this stage is to obtain A(z) and its derivatives. As Hummer and

Szabo point out, there are two ways to do this: directly from A(z) via numerical

differentiation or using work-weighted trajectory averages, as shown below:

Ȧ(z) =−k〈〈q− z〉〉= 〈〈F〉〉 (4.14)

1− Ä(z)
k

=
β

k
(〈〈F2〉〉−〈〈F〉〉2) . (4.15)

Here, the double angle brackets 〈〈. . .〉〉 represent 〈(...)e−βW (z)〉/〈e−βW (z)〉, where the

single angle brackets indicate that averages are taken over all trajectories. It is worth

noting that in the implementation of the Weierstrass method pursued herein, the work
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values W (z) are computed by integrating in bias position z:

W (z) =
∫ z

0
Fdz. (4.16)

This is in contrast to the external work integration detailed in the description of the

WHAM method found in Chapter 3; there, the independent variable was time, not

bias. The method of using an inverse Weierstrass transform to extract the molecular

free-energy landscape now detailed, it will be implemented on real datasets in the

following sections. Two systems will be studied: first, a DNA hairpin, as it constitutes

a simple model system that possesses only secondary structure, and second, an RNA

pseudoknot system, more complex as it contains tertiary structure.

4.2 Data Collection

FECs were collected for a DNA hairpin, a simple structure containing a stem and a

loop. The hairpin was attached to handles comprised of 1000 base pairs of double-

stranded DNA. Such systems have been extensively studied in the past, and the

landscape profiles for this particular hairpin have been measured by two different

methods [37, 41]. The data were collected in force-ramp experiments, wherein the

laser traps are pulled apart at constant velocity. Hairpin 30RS0T4 (henceforth Hairpin

A) is 30 base pairs long [97]. Data for Hairpin A were collected at several different

pulling speeds, ranging from 10 nm/s to 300 nm/s. The optical tweezer apparatus

used to collect hairpin data is similar to the one outlined in a previous chapter, but

uses electro-optic deflectors instead of acousto-optic deflectors to manipulate the

laser traps. The data were collected between the months of February and May 2010,

prior to the start of this thesis work; interested readers can consult reference [41] for

further details regarding the collection of the hairpin data.

The pseudoknot data is a subset of the data described in Chapter 3, containing 300

curves taken at pulling speeds ranging from 240–250 nm/s. The data were collected
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Figure 4.3: Representative FECs for Hairpin A, taken at a pulling speed of 10 nm/s,
along with the WLC fits to the folded (blue) and unfolded (green) states. The black
curve is a particular FEC, and the red dots represent the FECs of multiple curves.

between the months of July and September 2012 on the optical tweezer apparatus

outlined in Chapter 3.

4.3 Data Analysis and Results

4.3.1 DNA Hairpin

The individual FECs for the hairpin was first aligned and fit to a WLC model in order

to determine the force offset, as explained in Section 3.3.1. Representative FECs,

along with the WLC fits to the folded and unfolded states, are shown in Figure 4.3.

Next, the WHAM landscape reconstruction method, described in earlier chapters,

and Weierstrass method, described above, were applied to the data. For this molecule,

10 data sets—comprising 894 curves—were analyzed using the Weierstrass method,

and 9 separate data sets—comprising 818 curves—were analyzed with the WHAM

method; one of the 10 data sets produced an unusable landscape when analyzed with
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Figure 4.4: Average reconstructed landscapes for Hairpin A derived from the WHAM
method (black), Weierstrass method using work-weighted averages (green) and finite
differences (red) to compute A(z) and its derivatives. The WHAM curve represents
the average over 9 reconstructions, and the Weierstrass curves represent the average
over 10 reconstructions. Errors are standard errors of the mean. The average F1/2
to which the WHAM landscapes are tilted is 11 ± 1 pN; for the two Weierstrass
landscapes, it is 11.8 ± 0.6 pN

the WHAM method, likely due to poor statistics in the low force rip region, and was

rejected.

The Weierstrass method was implemented in two different ways: first, using

the central difference method to calculate the derivatives of A(z), and second, using

work-weighted averages [Equations (4.14) and (4.15)]. Figure 4.4 shows the results

of the various methods of landscape extraction; it contains three landscapes, each

tilted to F1/2, the force at which there is a 0.5 probability of the hairpin being folded

or unfolded. The average F1/2 for the WHAM landscapes is 11 ± 1 pN; for the
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Weierstrass landscapes, it is 11.8 ± 0.6 pN. The discrepancy is likely due to subtle

differences in the implementation of “tilting” the landscapes to a force. In the WHAM

procedures, the tilt is applied at the very end of the analysis; a term Fx is subtracted

from the free-energy at each point x. In the Weierstrass procedures, because the work

is calculated directly from the force [see Equation (4.2)], it is possible to “tilt” the

experiment to a new force value earlier in the procedure, when work is calculated,

by subtracting the constant F from each force value. The difference amounts to

subtracting a constant from an average in the former case, and in the latter case,

subtracting the same constant from individual terms, then averaging these individual

terms. The reason these formulations differ in the present work is that extensions

are binned, and Fxc, where the subscript c denotes “bin centre,” has a different value

than 1
N ∑

N
i=0 Fxi.

Qualitatively, it is clear that the Weierstrass method (green and red curves) is able

to reproduce the barrier to unfolding, but the barrier is lower and less sharp than it

is in the WHAM reconstruction. Further, the Weierstrass reconstructions accurately

recapture the fact that the barrier is closer to the unfolded state than to the folded

state, which is expected for this hairpin [41, 97]; this skew is also visible in the

WHAM landscape reconstruction. The slope of the handle region in the Weierstrass

reconstructions is not as high as in the WHAM reconstruction; this deviation is

especially pronounced in the unfolded well, though given the error bars, it may not be

statistically significant. Between the Weierstrass reconstructions, the work-weighted

trajectory averages method for calculating A(z) and its derivatives seems superior,

and recaptures the height of the WHAM barrier more accurately.

In principle, the stiffer the trap in which the molecule is caught, the more accu-

rately the Weierstrass method reproduces the free-energy landscape; in fact, Hummer

and Szabo suggest that the Weierstrass method is incapable of resolving any land-

scape barriers whose curvature exceeds the stiffness of the trap [66]. Figure 4.5

illustrates the trap stiffness compared to the barrier curvature. In black is the WHAM

landscape, tilted to an average of F1/2 of 11 ± 1 pN. In violet is a quadratic function
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Figure 4.5: Average reconstructed landscapes for Hairpin A derived from the WHAM
method (black) and tilted to an average F1/2 of 11 ± 1 pN, along with a fit to the
curvature of the barrier (blue) and a curve representing the stiffness of the laser trap
(violet). The curvature of the barrier is 0.26 pN/nm, and the stiffness of the laser trap
is 0.24 pN/nm.
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Figure 4.6: Average reconstructed landscapes for Hairpin A derived from the WHAM
method (black) and tilted to an average F1/2 of 11 ± 1 pN, along with a fit to the
curvature of a sharp feature on the barrier (blue) and a curve representing the stiffness
of the laser trap (purple). The curvature of this sharp barrier feature is 0.83 pN/nm,
and the stiffness of the laser trap is 0.24 pN/nm.

with a curvature equal to the stiffness of the laser trap, 0.24 pN/nm. The blue curve

is a quadratic fit to the barrier region; its curvature is 0.26 pN/nm. Because the trap

stiffness is comparable to the barrier curvature, the Weierstrass method is able to

capture the presence of the barrier; see Figure 4.4. However, Figure 4.6 illustrates

a quadratic fit to the sharp barrier feature near the unfolded well. This feature has

greater curvature than the entire barrier, at 0.83 pN/nm, and it is clear that the laser

trap is far “softer” than this feature. As a result, the Weierstrass method is unable

to reproduce this feature; see again Figure 4.4. As a caveat, the large standard error

for the points along this sharp feature shed doubt on any statistically significant

difference between the Weierstrass and WHAM reconstructions.
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Figure 4.7: Average reconstructed landscapes for RNA pseudoknot derived from
a subset of 300 curves from the data shown in Figure 3.10. The result of using the
WHAM method is shown in black, the Weierstrass method using work-weighted
averages in green, and the Weierstrass method using finite differences in red. Errors
are standard errors of the mean. The average F1/2 to which the WHAM landscapes
are tilted is 34 ± 8 pN; for the two Weierstrass landscapes, it is 33 ± 8 pN.

4.3.2 RNA Pseudoknot

DNA hairpins exhibit secondary structure only; for the purposes of characterizing

the usefulness of the Weierstrass analysis method, it is desirable to test it on a more

complex structure. The RNA pseudoknot studied in Chapter 3 is such a system.

The Weierstrass method was implemented on three data sets, comprised of 300

curves, collected for the analysis in Chapter 3. As can be seen in Figure 4.7, the

Weierstrass method fails to reproduce the barrier evident in the WHAM landscape

(black), regardless of whether the finite-difference method (red) or the work-weighted

averages method (green) is used. The latter Weierstrass landscape does exhibit a low

barrier, but it is clear this level of resolution is insufficient for practical applications:

it gives a barrier that is in the wrong location and that is 5–10 times too low.

65



Figure 4.8: Average reconstructed landscapes for RNA pseudoknot ScYLVWT
derived from the WHAM method (black) and tilted to an average F1/2 of 30 ± 2 pN,
along with a fit to the curvature of the barrier (violet) and a curve representing the
stiffness of the laser trap (red). The curvature of the barrier is 2.33 pN/nm, and the
stiffness of the laser trap is 0.26 pN/nm.

The failure of the Weierstrass method to resolve the barrier in the case of the

pseudoknot landscape can be understood in terms of the effects of the probe stiffness

on the reconstruction, as described in the previous section. The barrier curvature for

the pseudoknot is 2.33 pN/nm, while the stiffness of the laser trap used to collect

these data is 0.26 pN/nm. The probe stiffness is nearly ten times lower than that of

the barrier, and because the Weierstrass method is incapable of resolving any features

with curvature exceeding the stiffness of the trap in which the data is taken, one does

not expect the pseudoknot landscape, with its sharp barrier, to be reproducable using

the Weierstrass analysis. These notions are illustrated in Figure 4.8.

Based on the above results, it can be concluded that the Weierstrass method is

indeed capable of reproducing energy landscapes for real systems provided the trap

stiffness is equal to—or, preferably, greater than—the system’s barrier curvature. A

great advantage of the Weierstrass method is that it does not demand as extensive a

volume of data as the WHAM method does, since the WHAM method necessitates
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binning data multiple times [98]. The Weierstrass method is thus a valuable analysis

tool that is most appropriate for data collected using stiff force probes, such as

AFM microscopes [66], which tend to have cantilever stiffnesses in the range 10–

100 pN/nm [33]. Indeed, the WHAM landscape reconstruction method has been

problematic when used with AFM data [65], and the Weierstrass could provide a

valuable alternative. The method is also applicable to data collected in laser optical

tweezers apparatus for systems with “soft” landscape barriers.
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Chapter 5

Future Work

The advent of SMFS studies has allowed exploration of the statistical mechanical

energy landscape of biomolecules in unprecedented detail. This work presents an

application of energy landscape theory to a never-before characterized system—the

ScYLV pseudoknot—and contributes to the growing body of knowledge surrounding

biological folding processes. It verifies and demonstrates the viability of a promising

new technique for extracting energy landscapes of biomolecules from SMFS based

on an inverse Weierstrass transform. As always, however, much work remains to be

done.

The apparent overestimates of pseudoknot stability presented in Chapter 3 invite

further analysis. To shed light on this issue, other stability measurements can be

calculated and compared to the values from the WLC integrals; for instance, another

value for ∆Gfold can be derived directly from the Jarzynski equality:

∆G(x) =−kBT ln〈e−
W (x)
kBT 〉 (5.1)

Here, W (x) is the total non-equilibrium work performed in a particular trial and

angled brackets indicate an average over all trajectories. This characterization of

stability will also be inflated, however, if the bias of the Jarzynski estimator is an

issue for the pseudoknot as we suspect. Independent bulk experiments aimed at
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characterizing the stability of ScYLV should therefore be performed. While the

issue of bias needs to be addressed, the precise manifestation of bias in the WHAM

method [39] has not yet been established, and theoretical work is needed before

possible bias correction schemes in the spirit of Gore et al. [95] or Palassini et al. [99]

can be applied to WHAM reconstructions.

The need for deconvolution of the pseudoknot landscape was highlighted by the

comparisons between the landscape parameters and the results of model-dependent

fits. An empirical deconvolution would be difficult, however, considering the wide

range of forces over which a PSF would need to be measured. One possible approach

to the deconvolution problem is to derive a theoretical PSF for the traps in the spirit

of Hinczewski et al. [51], who present an approach applicable to constant-force data.

An adaptation of their method valid for wide ranges of forces would be very useful

for systems for which constant-force studies are not ideal and for which empirical

deconvolution is impractical due to broad force distributions, as in the present work.

Future work, therefore, should concentrate on expanding the promising methods of

theoretical correction for instrument distortion.

The landscape analysis performed here for ScYLV is novel and interesting, but

should be applied to the C27A pseudoknot as well to explore the source of the

disparity in the frameshifting efficiencies between wild type and mutant. Some

force-ramp data has already been collected for the mutant [44], but more data will be

needed to acquire sufficient statistics. It is likely that for such a comparative study

to be useful, refinements of the pseudoknot landscape presented in Chapter 3 are

needed. For example, the error in each bin can be more accurately characterized using

a bootstrapping analysis similar to the treatment of Gupta et al. [41]. Additionally,

landscape statistics for the pseudoknot could be improved by tweaking the WHAM

technique of Hummer and Szabo [39] such that FECs collected at different pulling

rates can be combined and analyzed as a single data set. Minh et al. [100] detail

such an approach, which replaces time bins with bias bins. It would be relatively

straightforward to adapt the WHAM tools developed for this work to this strategy.
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A comparison between the landscape reconstruction method presented here and

the Boltzmann transform method of landscape reconstruction has not been done

for pseudoknot systems as it has been for DNA hairpins [41] (indeed, this work

constitutes the first-ever landscape reconstruction for an RNA pseudoknot). To

attempt this comparison, constant-force experiments should be performed on the

pseudoknot. A potential problem with this tactic is the pseudoknot’s high F1/2;

the system will not survive long at such a high tension, and a lengthy observation

would be required given the slow folding dynamics stemming from the system’s

high free-energy barrier [44]. Nevertheless, such studies could illuminate transition

times (which could be compared to results derived from FECs using the approach

of Yu et al. [20]). Further, while other work has demonstrated that extension is a

reasonable reaction coordinate for DNA hairpins [101], it has not been tested for a

complex tertiary structure like a pseudoknot. The goodness of extension as a reaction

coordinate for pseudoknots and other systems possessing tertiary structure could be

explored with constant-force experiments by testing whether the splitting probability

is indeed 0.5 at the top of the energy barrier [102].

The promising new landscape reconstruction method of Hummer and Szabo [66]

validated experimentally here for the first time is vastly simpler than the WHAM

method to implement. In the immediate future, landscapes for other systems can

be constructed with the Weierstrass method and validated against earlier results. A

good starting place is Hairpin B studied by Gupta et al. [41], since large amounts

of FEC data have already been collected for this system and since an independent

landscape characterization exists. The free-energy barrier for Hairpin B is somewhat

sharper than that of Hairpin A [41], so it may however be necessary to increase the

stiffness of the LOT system—by increasing the laser power, for instance—and collect

more data. The Weierstrass method can also be widely employed to reconstruct

landscapes from SMFS AFM studies, since AFMs exhibit high stiffness. Future work

can explore the possibility of increasing the number of terms retained in the expansion

used in the derivation of the Weierstrass method; this would relax the constraints
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on system stiffness. These higher-order terms include higher derivatives of A(z),

however, which may not be recoverable from experimental data [66]. Nevertheless,

the potential benefits of increasing the applicability of the Weierstrass method to

“soft” systems render such expansions worthy of further study.

In the long term, questions about the goodness of reaction coordinates and 1D en-

ergy landscape projections, multiple barriers on energy landscapes, and the alteration

of landscape barriers with force invite investigation. The study of energy landscapes

of biomolecules is a broad and multifaceted field that promises to remain dynamic in

years to come.

71



Bibliography

[1] Berg, J.M., Tymoczko, J.L., and Stryer, L. Biochemistry. New York: W H

Freeman, 5th edition, 2002.

[2] Dill, K.A. and MacCallum, J.L. The Protein-Folding Problem, 50 Years On.

Science, 338:1042–1046, 2012.

[3] Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T.B., Montelione, G.T.,

and Baker, D. Principles for designing ideal protein structures. Nature, 491:

222–229, 2012.

[4] Chiti, F. and Dobson, C.M. Protein Misfolding, Functional Amyloid, and

Human Disease. Annu. Rev. Biochem., 75:333–366, 2006.

[5] So much more to know... Science, 309(5731):78–102, 2005.

[6] Anfinsen, C.B., Haber, E., Sela, M., and White Jr., F.H. The Kinetics of For-

mation of Native Ribonuclease During Oxidation of the Reduced Polypeptide

Chain. Proc. Natl. Acad. Sci. USA., 47(9):1309–1314, 1961.

[7] Anfinsen, C.B. Principles that Govern the Folding of Protein Chains. Science,

181(4096):223–230, 1973.

[8] Ben-Naim, A. Pitfalls in Anfinsen’s thermodynamic hypothesis. Chem. Phys.

Lett., 511:126–128, 2011.

[9] Wales, D.J. Energy Landscapes. Cambridge University Press, 1st edition,

2003.

72



[10] Zwanzig, R., Szabo, A., and Bagchi, B. Levinthal’s paradox. Proc. Natl. Acad.

Sci. USA., 89:20–22, 1992.

[11] Levinthal, C. Are there pathways for protein folding? J. Chem. Phys., 65:

44–45, 1968.

[12] Bryngelson, J.D., Onuchic, J.N., Socci, N.D., and Wolynes, P.G. Funnels, Path-

ways, and the Energy Landscape of Protein Folding: A Synthesis. PROTEINS:

Structure, Function, and Genetics, 21:167–195, 1995.

[13] Dill, K.A. and Chan, H.S. From Levinthal to pathways to funnels. Nature

Struct. Biol., 4(1):167–195, 1997.

[14] Ikai, A. and Tanford, C. Kinetic Evidence for Incorrectly Folded Intermediate

States in the Refolding of Denatured Proteins. Nature, 230:100–102, 1971.

[15] Tsong, T.Y., Baldwin, R.L., and Elson, E.L. The Sequential Unfolding of

Ribonuclease A: Detection of a Fast Initial Phase in the Kinetics of Unfolding.

Proc. Natl. Acad. Sci. USA., 68(11):2712–2715, 1971.

[16] Bryngelson, J.D. and Wolynes, P.G. Spin glasses and the statistical mechanics

of protein folding. Proc. Natl. Acad. Sci. USA., 84:7524–7528, 1987.

[17] Bryngelson, J.D. and Wolynes, P.G. Intermediates and barrier crossing in a

random energy model (with applications to protein folding). J. Phys. Chem.,

93:6902–6915, 1989.

[18] Bryngelson, J.D. and Wolynes, P.G. A simple statistical field theory of het-

eropolymer collapse with application to protein folding. Biopolymers, 30:

177–188, 1990.

[19] Onuchic, J.N., Luthey-Schulten, Z., and Wolynes, P.G. Theory of Protein

Folding: The Energy Landscape Perspective. Annu. Rev. Chem., 48:545–600,

1997.

73



[20] Yu, H., Gupta, A.N., Liu, X., Neupane, K., Brigley, A.M., Sosova, I., and

Woodside, M.T. Energy landscape analysis of native folding of the prion

protein yields the diffusion constant, transition path time, and rates. Proc. Natl.

Acad. Sci. USA., 109(36):14452–7, 2012.

[21] Dobson, C.M., Sali, A., and Karplus, M. Protein Folding: A Perspective from

Theory and Experiment. Angew. Chem. Int. Ed., 37:868–893, 1998.

[22] Dill, K.A., Ozkan, S.B., Shell, M.S., and Weikl, T.R. The Protein Folding

Problem. Annu. Rev. Biophys., 37:289–316, 2008.

[23] Lau, K.F. and Dill, K.A. Lattice statistical mechanics model of the confor-

mational and sequence spaces of proteins. Macromolecules, 22:3986–3997,

1989.
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