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“Engineering is the art of organizing and directing m en and  

controlling the forces and m aterials o f nature for the benefit o f the 

hum an race. ”

-  Henry G. Stott, 1907
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Abstract

One of the most important challenges faced by control engineers is design and 

implementation of decision support systems that can assist operators to make 

supervisory control decisions. Operator failing to exercise the appropriate supervisory 

control decisions often has an adverse effect on product quality, process safety, 

occupational health and environmental impact. Thus, there exists considerable 

incentive in developing decision support systems that can provide automated operator 

assistance for complex plants.

Before design and implementation of decision support systems for process 

monitoring, one has to obtain a relatively accurate representation of the system 

under normal operating condition. This step is known as process modelling or 

system identification. It is widely regarded as a key step towards successful design 

of process monitoring systems. There are various approaches available in this area 

such as prediction error method (PEM), subspace identification method (SIM) and 

multivariate statistical regression method (MSRM). In this thesis, partial least squares 

(PLS) method was applied onto a bleached chemi-thermomechanical pulp (BCTMP) 

plant to obtain the process model with various considerations, e.g. nonlinear effects. 

Further, traditional canonical variate analysis (CVA) was extended to deal with ill- 

conditioned data via reduced Krylov space and Cayley-Hamilton theorem.

After the process model has been obtained through the above mentioned 

approaches, one can design process monitoring systems using variety of methods. 

However, the model quality, i.e. model plant mismatch (MPM), and unknown 

disturbances can affect process monitoring results significantly. By extending the
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Chow-Willsky ([19]) scheme, the effect of process uncertainties can be completely 

removed for sensor fault detection and diagnosis (FDD). For actuator FDD, the 

principle components of process uncertainties can also be eliminated so that FDD 

results are affected in the minimum manner.

A FDD method dealing with multiplicative faults is proposed by using data 

reconciliation (DR) and gross error detection (GED). The proposed method was then 

applied to a chemical tank inventory system and successfully identified the location 

and magnitude of a multiplicative sensor calibration error.

FDD problem under multirate situation is also investigated in this thesis. Using 

the well-known lifting technique, the multirate discrete time model can be obtained 

by extending subspace identification method. Once the multirate model is obtained, 

the structured residual vector approach is used for fault detection and diagnosis. An 

experimental case study proves the effectiveness of the proposed method.

The fundamental issue of fault detectability is also analyzed in order to provide the 

bases for FDD research. The general fault detectability problem can be categorized 

into two subproblems: fault detectability and strong fault detectability. The

conditions for both the subproblems are provided and proved.
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Introduction

1.1 Motivation

The filed of process control has made significant advances, in both theory and 
application, during the last few decades. This progress is achieved largely from the 
introduction of computer control systems, e.g. distributed control system (DCS) 
and model predictive control (MPC). Regulatory control, which is low-level control, 
is now routinely managed by a computer system running in an automated manner 
with little interruption from operators. The level above the regulatory control is 
called supervisory control. At this level, operators must make quick decisions based 
on complex reasoning about the control of abnormal process situations, start ups and 
shut downs, optimal control strategies, etc.

However, relying completely on operators to deal with abnormal events and 
emergencies is increasingly difficult in a complex and highly interconnected process. 
Modern chemical plants are usually equipped with hundreds of sensors, valves

1
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Sec. 1.1 Motivation
and complex processing units. Therefore, if even only one critical element of the 
entire plant malfunctions, the process performance and operation can degrade. The 
abnormalities have huge impact on process operation and safety. Table 1.1 shows 
the newsworthy incidents that have been reported due to such faults in the process 
industry in the United States in a one year period (1994-1995). In these 24 incidents, 
12 deaths occurred and hundreds of people were injured. In addition, more than 1 
billion dollars were lost with an estimated total impact of 10 billion dollars. Moreover, 
statistics show that about 70% of industrial accidents are caused by human error. 
Lack of appropriate tools to help operators deal with abnormal situations is the major 
cause of human error. It is estimated that the petrochemical industry in the United 
States incurs approximately 20 billion dollars in losses due to inadequate handling 
of abnormalities [90]. These statistics provide ample justification for implementing a 
scheme that can monitor the “health” of all the instruments and processing units.

Process abnormalities can be categorized into two classes according to the 
seriousness of the problem: fault and failure. The term fault usually refers to those 
abnormalities that will degrade the efficiency of the entire control system, generate 
less consistent products or consume more resources, but is not expected to result, in 
catastrophic problems such as an explosion or the shut down of the entire process. In 
contrast, the term failure is used more in the context of the “disasters”. To deal with 
various types of abnormalities, various requirements are needed. In the case of a fault, 
the requirement is to detect its occurrence with higher sensitivity and with as few false 
alarms as possible. In addition, the operator must be informed of the possible location 
and magnitude of the fault. This strategy is referred as fault detection and diagnosis 
(FDD) or process monitoring. In the case of a failure, the primary requirement is to 
predict the failure as soon as possible. However, the distinction between fault and 
failure can be ambiguous. In some cases, if a process abnormality is not handled 
appropriately, then a fault can progress to failure, with serious consequences. In this 
thesis, both fault and failure will be simply referred to as a fault.

FDD is an interdisciplinary technology that touches on modern control theory, 
system identification, applied engineering statistics, signal processing, etc. for its 
theoretical background. In the past three decades, FDD has attracted significant 
research attention and is viewed as the next major challenge for control engineers 
([125]). A typical procedure in FDD consists of two steps: (1) process modelling 
or system identification; (2) residual generation and evaluation for decision-making. 
However, in the context of the current status, the procedure of FDD cannot be totally 
automated in reality. One must include humans in the loop to enable people approve

2
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Sec. 1.1 Motivation

Table 1.1: Newsworthy incidents in the United States within the year 1994-1995
• Mobil, Torrance, CA explosion and fire, 10/94

• Conoco, Lake Charles, LA, cat cracker fire, 10/94

• Miles Chemical plant, Baytown, TX, acid leak, 11/94

• Koch, Corpus Christi, TX, separator explosion, 11/94

• Mobil, Paulsboro, NJ, chemical releases, 11/94

• Terra Industries, Sioux City, IA, explosion, 12/94

• Chevron, EL Segundo, CA, furnace fire, 1/95

• Mobil, Torrance, CA, gasoline spill, 2/95

• Unocal, San Francisco, CA, acid overflow/leak, 3/95

• Amoco, Cartere, NJ, depot leak/fire, 3/95

• Clark, Blue Island, IL, refinery fire/extended closure, 3/95

• Ultramar, Wilmington, CA, tank leak/fire, 3/95

• Conoco, Ponca City, OK, crude topping unit fire, 3/95

• Sun Oil, Philadelphia, PA, gas leak, 4/95

• Napp Technologies, Lodi, NJ, explosion and fire, 4/95

• Plione-Poulenc, Philadelphia, PA, granulator explosion and fire, 5/95

• Reichhold Chemical, Grundy Co, IL, rupture/fire/spill, 5/95

• BP, Lima and Toledo, OH, refinery fires, 5/95

• Ultramar, Wilmington, CA, crude unit fire, 6/95

• Unocal, San Francisco, CA, naptha tank fire, 6/95

• Tosco, San Francisco, CA, crude unit fire, 6/95

• Murphy Oil, New Orleans, LA, solvent extraction unit fire, 7/95

• Amoco, Texas City, TX, cat cracker explosion and fire, 7/95

• Conoco, Ponca City, OK, refinery fire, 7/95
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Sec. 1.2 Scope of Thesis

the final decision through a decision-support system.
The basic purpose of FDD or process monitoring is to compare the new measured 

process variables with the process model obtained under a fault-free situation. If 
there is a large deviation from what the model predicts, the presence of a fault or an 
event is detected. By further manipulating the deviation, the location of the fault 
can be determined by comparing it with the a priori knowledge of fault signatures.

FDD is closely related to system identification or process modelling. Identification 
of a process model under fault-free conditions is always the first step prior to FDD, 
no matter what approach is used. Without a precise representation of the system, 
one cannot draw a conclusion about the presence of fault. For most complex 
chemical processes, it is almost impossible to build a first principle model based 
on physical/chemical laws. Instead, one can apply system identification techniques 
to obtain an approximate model of the process. In most cases, even though they 
are nonlinear in nature, the process dynamics can be approximated by linear models. 
Throughout this thesis, it is assumed that the process under consideration can be 
represented by a linear model with acceptable accuracy. Since a majority of the 
processes are sufficiently well-regulated by linear PID controllers, for the purpose of 
this thesis, it is reasonable to consider such systems as locally linear.

The general set-up for FDD is shown in Figure 1.1. In this figure, three types 
of faults are considered: sensor (fy(k)),  actuator (fu(k)) and process (fp(/c)) faults. 
The differences between these faults are evident in Figure 1.1, and will be illustrated 
mathematically in Chapter 2.

1.2 Scope of Thesis

In this thesis, a wide range of process modelling and monitoring approaches are 
studied, and various problems within this field are tackled. In practice, the design 
and implementation of a FDD system require two steps:

1. System  identification or process modelling: Develop a highly accurate 
model for a process under consideration. The resulting model is usually an 
empirical one based on input-output data.

2. Process monitoring or FDD: Design a scheme that has a high level of 
sensitivity for the potential fault and a low false alarm rate.
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Figure 1.1: Signal block diagram of the FDD system

Thus, this thesis covers two major topics: process modelling and process 
monitoring. Process modelling is usually considered a prerequisite for process 
monitoring.

There are several ways of obtaining the process model for a given industrial 
situation. These include (1) first principle modelling from physical and/or chemical 
laws, (2) empirical modelling by using input-output data from a designed experiment, 
and (3) empirical modelling by using input-output data from normal operation. Data 
collected from industrial settings can be single-rate or multi-rate. The model obtained 
at this stage must be accurate compared to the normal behavior of the process.

At the process monitoring stage, one must attain a balance between high sensitivity 
and low false alarm rate. There is a trade-off between these two factors. In statistics, 
they are termed type I error and type II error respectively. In addition, one must 
be certain what type of fault is important in a given application. This is a relatively 
easy task when dealing with sensor/actuator faults as opposed to process faults. The 
reason for this is that when only sensor/actuator faults are considered, the way the}' 
affect the process is apparent. In the case of process faults, one must determine how 
they are affecting the process, which usually involves considerably more effort.
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Sec. 1.3 Research Objectives

1.3 Research Objectives

The research objectives of this thesis are described below:

Fault Detectability Analysis

Several fundamental issues of FDD in multivariate linear time-invariant dynamic 
systems are investigated. The systems are represented by state space models. Then 
fault detectability and strong fault detectability are defined. By using the parity 
space method as the universal way of designing residual generators, the conditions of 
fault detectability and strong fault detectability are provided and proved.

Robust FDD with the Presence of Process Uncertainties

A novel scheme of sensor/actuator fault detection and diagnosis (FDD) is proposed 
for multivariate dynamic systems in the presence of process uncertainties, including 
model-plant-mismatch (MPM) and process disturbances. Given an estimated model 
that can be biased from the true one, the primary residual vector (PRV) for detecting 
faults in output sensors can be made completely insensitive to process uncertainties 
under certain conditions. For detecting faults in actuators, the PRV can be made 
almost insensitive to process uncertainties. Numerical and experimental examples 
verify the effectiveness of the proposed scheme where comparisons with an existing 
robust FDD scheme are conducted.

Canonical Variate Analysis for Ill-conditioned Data

Canonical Variate Analysis (CVA) is widely acknowledged as one of the best 
latent variables-based techniques for multivariate regression. However, existing CVA 
algorithms will collapse completely if collinearity among the explanatory variables 
and/or the response variables exist. In such a case, the data are referred to as ill- 
conditioned. Increasing the complexity and instrumentation of industrial processes 
can result in generation of ill-conditioned data, thereby making the application 
of CVA difficult. In this thesis, the fundamental weakness of existing CVA is 
analyzed. Subsequently, a novel CVA algorithm that works for both static and 
dynamic processes is proposed. The key idea in the newly-developed CVA is to 
use a truncated Cayley Hamilton series to approximate the inverse of the covariance 
matrix of the inputs first. Then, the model parameter matrix for a considered process

6
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is estimated by means of a reduced Krylov controllability matrix. Furthermore, 
latent variables for inputs and outputs are directly calculated from the data and 
the Krylov matrix without identifying the weight vectors. The newly-developed CVA 
preserves all advantages of conventional CVA, but is insensitive to ill-conditioned 
data. Numerical examples and case studies are given to demonstrate the correctness 
and effectiveness of the theory. Comparisons among the novel CVA, conventional 
CVA, principal component regression (PCR), and partial least squares (PLS) have 
also been made.

Subspace Identification for FDD in Systems with Non-uniformly Sampled 

M ultirate Data

To perform FDD in a system with multirate sampled data, existing work assumes 
the existence of knowledge of a continuous-time (CT) model of the systems under 
consideration. Then, a discrete-time (DT) model of the system with multirate 
sampled data is generated by lifting the original CT model. Furthermore, based 
on the DT model, residual models are designed for FDD. This thesis proposes a novel 
subspace approach to direct identification of a residual model for FDD in a system 
with non-uniformly sampled multirate (NUSM) data without any knowledge of the 
considered system. From the identified residual model, an optimal primary residual 
vector (PRV) is generated for fault detection. Furthermore, by transforming the PRV 
into a set of structured residual vectors, fault isolation is performed. The proposed 
algorithms were applied to an experimental pilot plant with NUSM data for sensor 
FDI, where different types of sensor faults are successfully detected and isolated, fully 
supporting the correctness and effectiveness of the developed theory.

Industrial Applications

1. Softsensor development for a thermo-mechanical pulp m ill using Partial Least 
Squares (PLS) approach

In the pulp and paper industry, pulp bleaching is essential in order to meet 
the high quality standards demanded by the market. In this thesis, PLS-based 
softsensor models are developed for a Bleached Chemi-ThermoMechanical Pulp 
(BCTMP) process in order to estimate pulp quality variables -  brightness, 
tensile strength, etc. -  based on normal and fast sampled process measurements. 
This thesis provides a systematic softsensor development approach that has
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Sec. 1.4 Overview of the Thesis

been verified by practical applications. Nonlinear properties of the process 
are considered from process knowledge and put into the linear framework. In 
addition, to eliminate inputs that do not have significant effects on the estimated 
variables, the stepwise regression method is used. The results are in good 
agreement with the process knowledge. Currently, the developed softsensor 
models are running successfully online in the bleaching process.

2. Detection and diagnosis of sensor calibration error in an industrial chemical 
inventory system,.

According to one process engineer, “reconciliation of mass balances to monitor 
chemical tank inventories are a struggle even at the best of times.” This 
thesis addresses the design of offline and online fault detection and diagnosis 
monitoring system for the caustic tank inventory process at a pulp and paper 
company. Even with the presence of limited instrument redundancy, the offline 
monitoring analysis was able to correctly detect and diagnose sensor calibration 
errors. The scheme is currently undergoing online implementation tests.

1.4 Overview of the Thesis

As outlined in an earlier section of this chapter, this thesis deals with the design 
and implementation of process modelling and monitoring schemes. To provide a 
consistent foundation for the process modelling and monitoring problem, Chapter 
2 begins with the system description. The general tasks and set-up of FDD 
systems are reviewed. Thereafter, major existing process modelling techniques 
are briefly introduced, followed by the key concept of FDD -  process redundancy. 
Chapter 3 reviews existing approaches of FDD, including the parity space, observer- 
based, multivariate statistical based and data reconciliation/gross error detection 
approaches.

Chapter 4 discusses fundamental problems in FDD. By defining some commonly- 
used terminologies (such as residual generator) the issue of fault detectability is 
categorized into two levels: detectable fault and strongly detectable fault. Thereafter, 
the criteria for (strong) fault detectability are given and proved. A special case -  the 
output sensor fault detectability -  is considered and a simpler condition is achieved.

Chapter 5 presents an industrial example of modelling a complex chemical 
process in a closed-loop situation by using PLS method. During the development, 
several factors are considered -  including nonlinear transformation and input

8
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Sec. 1.4 Overview of the Thesis

variable selection. These considerations improved the performance of the softsensor 
significantly.

Chapter 6 proposes a novel CVA method that is insensitive to the ill-conditioned 
data. It is well known that the conventional CVA approach cannot handle data with 
collinearity. In this chapter, the Cayley-Hamilton theorem and Krylov space are 
used to obtain an approximation of the inverse of data matrix so that the problem 
of ill-conditioned data can be resolved. The newly-proposed CVA preserves the 
orthogonality of latent variables in an optimal manner. The proposed CVA approach 
is extended to the dynamic modelling case.

Chapter 7 proposes a robust fault detection and isolation method. In this method, 
process uncertainties -  including disturbances and model plant mismatch -  can be 
completely decoupled for the output sensor FDD. When detecting and diagnosing 
faults in actuators, the method can make the process uncertainties almost decoupled.

Chapter 8 deals with multiplicative faults by using data reconciliation and gross 
error detection. In contrast to the other chapters, the process considered in this 
chapter is modelled by mass balance. Thus, the process model is accurate. Then, the 
least squares optimization method is used to solve the fault isolation problem. The 
method is verified by an industrial application with satisfactory results.

Chapter 9 discusses the fault detection and diagnosis method in a multirate 
situation, i.e. different variables are measured at different sampling rates. Beginning 
with a continuous-time model of the considered system, a discrete-time model with 
multiple sampling rates can be obtained by using the lifting technique. Furthermore, 
the residual can be calculated from the the discrete-time model. Thereafter, FDD 
can be conducted.

The most significant contributions of this thesis are summarized in Chapter 10, 
and future research directions are suggested.

This thesis has been compiled in a “paper-format” form as defined in the Faculty 
of Graduate Study and Research guidelines. The different chapters are related as 
follows:

The modelling aspects of process systems with the end goal of FDD are discussed in 
Chapters 2, 5 and 6. Chapter 2 provides the introduction to currently used approaches 
for process modelling. An industrial modelling application, for softsensor based on 
Partial Least Squares (PLS), is given in Chapter 5. Canonical Variate Analysis 
(CVA) is another commonly used method for modelling. However, it has a major 
disadvantage - it cannot handle collinearity in input data set. A novel CVA approach 
which handles ill-conditioned data is proposed in Chapter 6.

9
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The monitoring aspects of process systems are discussed in Chapters 3, 4, 7 and 
9. Chapter 3 provides the introduction to currently used approaches in process 
monitoring. The fundamental issue of fault detectability is discussed in Chapter 
4. Further, a novel FDD approach dealing with process uncertainties is proposed in 
Chapter 7. It is common in industry to have process inputs and outputs sampled at 
different rates. Chapter 9 proposes a FDD approach that can handle such data.

Finally, an industrial application concerned with modelling, fault detection and 
diagnosis for a chemical tank inventory system is given at Chapter 8 .

10
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Problem Formulation and Process 

Modelling

2.1 System  Description

The systems described in this section are linear. For a nonlinear system, one can 
linearize the system around the normal operating condition. In most cases, providing 
that the system is not highly nonlinear, the obtained linearized model can represent 
the nonlinear process with acceptable accuracy. The systems described are also 
assumed to be time invariant.

2.1.1 Steady State Processes

In this thesis, the term “steady state process” refers to those processes whose outputs 
are only affected by its inputs at one point in time, i.e. y (t) = f(u(td)),  td < t

11
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Sec. 2.1 System Description

where /(•) represents a function of the argument. Implicitly, this definition includes 
processes with pure time delays.

Assume that the normal behavior of a multivariate linear steady state process can 
be represented by the following equation:

y(t) = M u ( t d) + e(t) (2 .1 )

where y(t) G 5£w is the true process outputs; u (td) G ^  is the true process inputs
with appropriate time delays, e(t) is the systematic error involved in the process
relationship, and M  G is a matrix representing the process relationship. Note
that even though Eqn. 2.1 is expressed in the continuous time domain, one can 
replace t  by k  to obtain the discrete time domain representation. This can be applied 
to the other equations in this section as well. With respect to most literatures, the 
argument t  is used to show the variable is a continuous signal, while k denotes the 
sampled signal.

By further manipulating Eqn. 2.1, one can obtain a simplified model 
representation:

M*z(i) =  e{t) (2 .2 )

where M* = T[Im -M ] and z (£) =  [y'(£) v!(td)]'. T  can be any nonsingular matrix 
with appropriate dimensions. ' denotes the transpose of a matrix.

The advantage of formulating a steady state process in the form of Eqn. 2.2 is 
that one does not need to distinguish all the process variables into “inputs” and 
“outputs”. In the complex industrial environment, categorizing variables as input or 
output can sometimes be difficult. By using this formulation, one can include all the 
available process variables in z (t) without categorizing them. The advantage of this 
formulation will be evident in Chapter 8 .

However, in most cases, the true process variables are not available for data 
analysis. They are usually measured by sensors, hence, corrupted by measurement 
noise. Therefore, we have

y*(t) = y{t) + o(t)

u* {t) =  u(t) + v(t) (2.3)

where y *(t) and u *(t) are measured process outputs and inputs under fault-free 
conditions; o (t) and v(£) are the zero mean normal distributed measurement noises
with covariance matrices R 0 and R„ respectively. Further, it is assumed that v(£)
and o(t) are mutually independent.
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Substituting Eqn. 2.3 for Eqn. 2.2, one can arrive at the following:

M V (i)  = M V (£)+e(£) (2.4)

where z*(t) = [(y*(£))' (u*(£d))']' and aft) = [o'(f) v'(£d)]'. Furthermore, M*a(t)

R n  0
follows normal distribution with zero mean and variance M*

2.1.2 Dynamic Processes

0 R,,

In contrast to “steady state process”, “dynamic process” refers to those processes 
whose outputs are NOT only affected by its inputs at one time instance. Dynamic 
processes are very common in reality. Many industrial processes can be better- 
represented by using dynamic processes.

Assume that the normal behavior of a multivariate dynamic process can be 
represented by the following continuous time linear state space model:

x(t) = Acx(£) +  Bcu(£) + E c<f)(t)

y(t)  =  Ccx(£) +  Dcu(£) + J c<f>(t) (2.5)

where x  € 3?" is the state, E is the unmeasured disturbance vector ([45]), 
and Ac, Bc, Cc, Dc, Ec and J c are system matrices with appropriate dimensions. 
The process is assumed to be observable.

Due to the advantages and popularity of digital control ([4]), one usually 
converts the process model from continuous to discrete by assuming the process is 
appropriately sampled. In this section, we assume the process inputs and outputs are 
sampled at the same rate Ts. The case of multiple sampling rates will be discussed 
in Chapter 9. From [4], we have the following discrete time dynamic model in forms 
of state space:

x(k  +  1) =  A x(k)  + Bu(fc) + E 4>(k)

y (k) = Cx(k)  + Du(fc) +  Jcj)(k) (2.6)

where A = eAcT, B =  JQT eActB cdt, C =  C c, D =  Dc, E = / Qr  eActE cdt and J = Jc.

We consider the case of errors-in-variables (EIV) ([122]), and denote the observed 
fault-free outputs and inputs the same as in Eqn. 2.3.

According to Eqns. 2.5 and 2.6, one can change the general set-up to a specific set­
up. For example, removing the items with disturbance f  gives a pure deterministic
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system. In this thesis, different chapters focus on different aspects of the system 
and thus deal with different formats of system representation. However, for dynamic 
systems, Eqns. 2.5 and 2.6 provide the most general expression.

2.1.3 Fault Representation

In this section, we will use the dynamic state space model as an example to identify 
different types of faults and their effects on the process. These types can also be 
applied to the steady state case.

Assume that the dynamics of a multivariate process can be represented by the 
following discrete time linear state space model with faults:

x(/c +  l) =  Ax(fc) +  Bu(fc) +  E0(fc) + Rif(fc)
(2.7)

y (k) = Cx(fc) +  Bu(k )  +  J0(jfc) +  R 2f (k)

where f (k) 6  is the fault vector and {Ri, R 2} are fault models with appropriate 
dimensions.

It has been proven by Chen and Patton ([15]) that the system shown in Eqn. 2.7 
can represent all possible additive faults, including component, parameter, sensor 
and actuator faults. Different types of faults correspond to different realizations of 
matrices Ri and R 2.

Sensor Faults

In a system, the process inputs and outputs are usually measured by sensors, which 
can be faulty. In Eqn. 2.7, for output sensor faults, Ri =  0 , R 2 =  Im and p = m. 
For input sensor faults, R i =  — B, R 2 = 0 and p = I. Thus, the sensor faults can be 
illustrated in the following way.

y{k) = y(k) + f(k), for output sensor faults
(2 .8)

u(k) =  u (k) + f (k), for input senor faults

Throughout this thesis, the symbols fu(k) and £y(k) will be used for input and 
output sensor faults respectively. More generally, the sensor faults can be denoted by

w
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A ctuato r F au lts

A controller’s output affects the process through a physical device termed an actuator, 
which can be malfunctioning for various reasons (for example, normal wear and tear). 
When the fault happens in actuators, it can be represented by letting R x =  B, R 2 = 0 
and p = I. Actuator faults are also represented by the symbol fu(k) in this thesis.

A dditive P rocess Faults

This type of fault can be mathematically represented as an additive item in the state 
space model (Eqn. 2.7). This fault represents the situation wherein a process running 
condition has been changed so that the process model is no longer valid. For example, 
a tank leakage fault can be categorized as this type of fault. In this case, R 2 =  0 and 
Ri can be any matrix which represents how the faults affect process dynamics.

M ultiplicative Process Faults

Multiplicative process faults are more complex compared to the above-mentioned 
faults. Multiplicative process faults are difficult to represent in the form of Eqn. 2.7. 
However, physically, they constitute changes of plant parameters. Such faults best 
describe the deterioration of plant equipment, such as partial or total loss of power, 
surface contamination, etc.

2.2 Tasks of FDD Systems

As mentioned above, different types of faults have different properties and affect the 
system in different ways. This makes the objective of FDD a very challenging one. 
To simplify the whole problem, one usually divides the issue into several small steps, 
each of which accomplishes a sub-task of the whole problem. Gertler defines the 
widely accepted tasks of FDD system in [38], which he calls “three layers of process 
diagnosis.”

Fault de tection  In this task, the FDD system must indicate whether something in 
the system is malfunctioning.

Fault isolation The FDD system must determine the location of the faults in this 
step.
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Fault identification The size of the faults will be determined by the FDD system.

Each task listed above is obviously not of equal importance. “Fault detection” 
provides the foundation for the whole FDD system. One must ensure that the 
fault can be successfully detected before attempting to determine its location and 
magnitude (fault isolation and identification). Likewise, without determining the 
fault location, estimation of fault size is useless to the plant personnel. The sequential 
relationships among these three tasks is illustrated in Figure 2 .1 . Fault detection is 
the most important task and is relatively easy. However, the other two tasks are also 
very important, and indeed become crucial in instances where a fault can potentially 
have a catastrophic impact on the plant’s operation.

/  Fault \  
identification

Fault isolation

Fault detection

Figure 2.1: Relationships among the three tasks in FDD system

2.3 General Set-up of FDD System

It is usually assumed that u (k) and y (k) are available for FDD analysis, because they 
are controller outputs and the observed process outputs respectively. The detailed 
process set-up is illustrated in Figure 1.1.

In this section, the elements and knowledge required for FDD system design are 
discussed in general. Two elements are essential for FDD: process model and process 
measurement.
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1. For process model, one must ensure the process model is accurate enough for 
FDD. Therefore, when the process measurement is not consistent with these 
models, one can easily infer that the instruments or the process equipment 
are abnormal without needing to consider the possibility of model inaccuracy. 
There are several physical laws that the process must always follow (for example, 
mass and energy balance). These physical relationships can be used in process 
modelling and insured to be accurate. However, access to these first principle 
models is usually a luxury. In the real world, one must live with models with 
some degree of model-plant-mismatch (MPM). Therefore, there is clearly a need 
for robust FDD technique.

2. Process measurement must be “redundant”. In other words, it is essential 
that each measured process variable can be inferred from the other measured 
variables as well as from the process model. This type of redundancy is also 
referred as “analytical redundancy” ([19]).

2.4 Process Redundancy

2.4.1 Physical Redundancy

Physical redundancy is aimed primarily at detecting and isolating sensor faults. In 
this case, measurements of the same variable from different sensors are compared. 
Any serious discrepancy is an indication of the fault of at least one sensor. The 
measurement that is likely to be correct may be selected in the voting system. Physical 
redundancy is widely applied in airplanes and space shuttles. Today, it is also applied 
in some chemical engineering plants. However, physical redundancy has a major 
disadvantage. One must purchase several identical sensors for one variable, thereby 
increasing the costs. This disadvantage limits widespread application of physical 
redundancy.

2.4.2 Analytical Redundancy

Analytical redundancy is achieved from the functional dependence among the process 
variables and is usually provided by a set of algebraic or temporal relationships among 
the variables within the system. Analytical redundancy can be classified into two 
categories ([19], [33]): direct and temporal.
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A direct analytical redundancy is associated with algebraic relationships among 
different sensor measurements. In other words, direct analytical redundancy allows 
computation of a theoretical sensor value from measurements of other sensors. The 
computed value can then be compared with the measured value for that sensor. A 
discrepancy indicates that a sensor fault may have occurred. In contrast, a temporal 
analytical redundancy is obtained from differential or difference equations among 
sensors.

The essence of using analytical redundancy in fault diagnosis is to compare the 
observed system behavior to the process model for consistency. A discrepancy can 
then be used for fault detection and diagnosis. In this thesis, the focus of research is 
on how to apply analytical redundancy to FDD.

2.5 Process Modelling

In order to build reliable models, several identification approaches are currently 
available and widely used. It is worth emphasizing that the modelling methods 
discussed in this thesis do not include first principle modelling. Because it is 
based on physical and/or chemical laws, first principle modelling is theoretically 
the most accurate approach. However, for most complex chemical engineering 
processes, this approach cannot be easily applied in reality. In this section, I will 
introduce the prediction error method (PEM), subspace identification method (SIM) 
and multivariate statistical regression method (MSRM).

As pointed out by Ljung ([72]), the application of process modelling is an interactive 
procedure involving several trial-and-error loops. The steps involved in process 
modelling are illustrated in Figure 2.2 (from [72]). The purpose of including Figure
2 . 2  in this thesis is to emphasize that process modelling is not an automated procedure 
wherein everything can be accomplished by computers. Human involvement is 
important in the most successful applications. This will be further illustrated in 
Chapter 5.

2.5.1 Prediction Error M ethod (PEM )

The prediction error method (PEM) represents a family of approaches that have the 
same design criterion. Assume that by giving a set of parameters 9 and a model 
structure, one can obtain an estimate of process outputs y (k, 9). Then the prediction
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C Construct the 
experiment and 

collect data

Data

Should data be 
filtered?

Polish and 
present data

Data

Fit the model 
to the data

Choice of model 
structure Model

Validate the 
modelData 

not OK
Model structure 
not OK

No
Can the model be 

accepted?

Yes

Figure 2.2: Identification cycle (from [72]). Rectangles: the computer’s main 

responsibility. Ovals: the user’s main responsibility
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error can be derived as:

e { k , 9 ) = y { k ) - y { k , 9 )  (2.9)

Let the prediction-error sequence be filtered through a stable linear filter L(q):

£F(k, 9) =  L(q)e(k, 6) (2.10)

where q is the back-shift operator.
Further, from a set of N  data, Z N, and hence of N  prediction errors, one can define 

a function of model parameter 9 and process data Z N:

1 N

k= 1

where l(-) is a positive scalar-valued function. The minimization of Vn (9 ,Z n ) with 
respect to 0 then yields the model parameter estimate:

dN = argmin Vn (9 ,Z n ) (2 .1 2 )

For the choice of /(•), the quadratic norm is widely used due to the convenience for 
both computation and analysis:

1(e) =  1 £ 2 (2.13)

It should be noted that the well-known ordinary least squares (OLS) method is 
a special case of PEM described above. In addition, PEM covers the maximum 
likelihood (ML) method and is also closely related to Akaike’s information criterion 
(AIC) ([2]). PEM can be applied to different model structures, such as Auto- 
Regression with eXogenous variables (ARX), Auto-Regression Moving Average with 
exogenous variables (ARMAX), Output Error (OE) and Box-Jenkins (BJ). Refer to 
Ljung ([72]) for more detail.

2.5.2 Subspace Identification M ethod (SIM)

The subspace identification method (SIM) has drawn a significant amount of attention 
in recent years. The most well-known methods in this area are canonical variate 
analysis (CVA) [67], numerical subspace state space system identification (N4SID) 
[95], and multivariable output error state space (MOESP) model identification [126].
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Sec. 2.5 Process Modelling

All of these methods are designed to establish a state space model representation of 
a dynamic process.

In SIM, first the state sequence of the dynamic system is directly determined 
from input-output observations, without knowing the model. Thus, an important 
achievement of the research in subspace identification was to demonstrate how 
the Kalman filter states can be determined directly from input-output data using 
linear algebra tools (QR and singular value decompositions) without knowing the 
mathematical model. Once these states are known, the identification problem 
becomes a linear least squares problem in the unknown system matrices which can 
be seen from Eqn. 2.6:

x(i + l) x(i + 2) 

y(i) y ( i  + 1)

x ( i + j )  

y( i  +  j - l )

A B

C D

+
E

J

x(i) x(i  +1) 

u (i) u(z + 1)

4>{i) <j){i + 1) •

x(i +  j  -  1) 

u(i +  j  -  1)

H i +  3 ~  1)

(2.14)

Even though the state sequence can be determined explicitly, Eqn. 2.14 can be 
solved “implicitly” as will become clear later without an explicit calculation of the 
state sequence.

After determining the process order n and the estimated state sequence x(k),  one 
can solve the least squares problem to obtain the state space matrices:

A 0 Bo
=  min

x(i  +  1 ) x(i + 2 ) • x.(i + j)

1

O o d o 1

A ,B,C,D y(*) y(* +  i) •• • y(* +  j - i ) _
(2.15)

A B 

C D

x(i) x(i +  l) 

ti(i) u(z +  l)

x(i + j  -  1 ) 

u{i + j  -  1 )

where || • \\p denotes the Frobenius-norm.
By substituting Eqn. 2.3 into Eqn. 2.6 and performing an algebraic manipulation, 

one can obtain

y *s(k) =  I\,x(fc -  s) + H.,u*s{k) -  Hav s{k) +  G s(f>s(k) + os(k) (2.16)
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Sec. 2.5 Process M odelling

where

r i ( * )  =

1
'C * 1

1 c

CA

y*(*)

G r s =

CAS

6  3?,m.s x n
?

D

CB D

J

CE J
h 6 =

CAS-1B D

, Gs —

CAS-1E J

G Km‘sXn,s

Further, m s = m(s + 1), ns =  n(s +  1) and ls = l(s +  1). The vectors os(k) G 3£m\  
4>s(k) G 5?ns, and u*(k) G have the same formats as y s(k). Note that after 
r s and H , are determined, the deterministic system matrices {A, B, C, D} can 
be determined accordingly. Refer Van Overschee and De Moor ([98]) for details 
concerning determination of Ts and H s. As they point out, all the SIM can be put 
into a unified framework, the only difference being that each algorithm uses different 
weighting matrices.

2.5.3 M ultivariate Statistical Regression M ethod (MSRM)

Differing significantly from PEM and SIM, MSRM was first proposed and applied 
in the statistics community to deal with the situation of high correlation among 
measured variables, where the conventional system identification techniques can result 
in severe numerical difficulties. The main purpose of MSRM is to compress the 
original variables into fewer latent variables, which are independent of each other and 
sufficient to characterize the information contained in the data.

In general, MSRM relates rows in the process input matrix U G 5RiVx/ and the 
process output matrix Y G 3t.Nxm. MSRM assumes that both data matrices U and 
Y  are linear functions of a smaller number (a, a <C min(Z, m)) of underlying latent 
variables:

U =  T P U +  EU ^

Y  = t p ;  +  e,,

where each column of T  G R Nxa is a latent variable defined as a linear combination
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Sec. 2.5 Process Modelling

of U, that is:

T  = UR, where R  e  $ xa (2.18)

P u and P y are the loading matrices for the inputs and outputs respectively, and E u 
and Fiy are error matrices. In reality, complex chemical processes are usually measured 
extensively, with an enormous number of sensors. However, these measurements are 
only driven by a limited number of independent variables/directions. Therefore, the 
space spanned by all the measurements can be similarly represented by a-dimensional 
space spanned by latent variables. Principal component regression (PCR), partial 
least squares or projection to latent structures (PLS) and canonical correlation 
analysis (CCA) are the commonly used MSRMs. They use different methods to 
identify the latent variables containing an optimal amount of information. Table 
2.1 is reproduced from Shi and MacGregor ([120]) to illustrate the differences and 
similarities among these MSRMs.

MSRM has been used to obtain dynamic models in Auto-Regression with 
eXogenous variables (ARX) or Finite Impulse Response (FIR) formats. The use 
of lagged variables in PCA/PCR for dynamic modelling was discussed by Jackson 
([56]). The use of lagged variables in PLS was first suggested by Wold et al. ([133]) 
and has been adopted in various applications ([75], [23], [65]).
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Table 2.1: Brief .summary of MSRMs

PCR PLS CCA

Objective 

{i  = 1 , 2 , • • • , a)

max pV U 'U p^, max r'U 'Y p^,

Ui = U

U f + 1 =  Uf -  t,-pV 

Pu.i =  t 'U i/ t 't i

m axr'U 'Y p^-

Constraints Pu,iPu,» =  1 r'r* =  1, p V p ,hi =  1 r'U 'Ur* =  1, PU Y 'Y Pjm. =  1

LV meaning Maximize variance of U Maximize covariance Maximize correlation

Calculation of LVs c  =  u Pnii =  Ur* 

r- =  r '(P ^R ) - 1

t, =  Ur,-

Loading vector is P  uA U

eigenvector of matrix U 'U U'-YY'Uj (U 'U )- 1U 'Y  (Y,Y )_1Y 'U

Orthogonality (i ^  j ) Pu,iPaj =  0

oilTF

t ' , t j  =  0

oil oII

Variance of LV Generally not unit Generally not unit Unit variance

Regression coefficient 

matrix

P u,fl(P :,aU 'U P u,a)-1P ' iaU 'Y r : ( ( r : ) 'U 'u r ; ) - ' ( R I ) 'u 'y RflRaU'Y

Note: tj, pUii, r, and r* arc the ath column vectors of T, P„. R  and R* respectively.
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Existing FDD Approaches

3.1 Overview

During the past three decades, many theoretical achievements and industrial 
applications have been made in FDD, and indeed it is still an active field of 
research. Each year, FDD is one of the active topics in many international 
conferences organized by IFAC (International Federation of Automatic Control), 
IEEE (Institute of Electrical and Electronic Engineers), AACC (American Automatic 
Control Council), and AIChE (American Institute of Chemical Engineers). Numerous 
prestigious journals in the areas of automatic control, electrical engineering, chemical 
engineering, mechanical engineering, and aviation publish articles on FDD, and 
several books are available ([49] [9] [39] [99] [102] [81]).

The pioneering work in FDD was done in the early 1970s. Beard (1971, [12]) and 
Jones (1973, [59]) used detection filter (a specifically structured observer) to detect 
and isolate faults. Mehra and Peschon (1971, [84]) first proposed the use of the

25

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Sec. 3.2 Parity Space Approach

Kalman filter for residual generation. Since then, the Kalman filter and various state 
observers have been used by many researchers in FDD. Early pioneers in FDD also 
include Deyst and Deckert (1975, [25]), Gustafson et al. (1975, [44]), Willskv (1976, 
[127]), Clark (1978, [21]; 1978, [20]). The first survey paper was published by Willsky 
(1976, [127]). Later, survey papers were published by Basseville (1983, [6 ]; 1988, [7]), 
Isermann (1984, [54]), Gertler (1988, [38], Frank (1990, [33]) and Wise et al. (1995, 
[129]).

3.2 Parity Space Approach

The parity space approach was originally proposed by Chow and Willsky (1984, [19]) 
to generate residuals for fault detection in a dynamic process represented by state 
space model (fault isolation is not discussed in their paper). Later, Li and Qin (1999, 
[105]) developed the structured residuals approach with the maximized sensitivity 
(SRAMS) approach based on Chow and Willsky’s work. Then, Li and Shah (2002. 
[70]) extended the SRAMS to the structured residual vector based FDD.

By multiplying (r^ ) ', the left null space of Fs, one can obtain the following residual 
vector from Eqn. 2.16 under fault-free conditions:

C(*) =  ( r f r ( y : ( k ) - u su ; ( k ) )

= ( T j y ( - H sv s(k) +  G s(f>s(k) +  o3(k)) (3.1)

where on the right hand side, the first line is the computational form of the residual 
£*(&); and the second line is the internal form showing what the residual contains 
under fault-free situation.

Under the assumption that the process is observable, rank(Ts) =  n, V s > n, 
where rank(-) denotes the rank of a matrix. Therefore, rank(Tf)  = m s — n, meaning 
the residual e*(k) has m s — n independent elements.

In Eqn. 3.1, £*s{k) is only a moving average of measurement noises and disturbances. 
Under the assumption that v(fc), o (k) and <j>(k) are Gaussian-distributed random 
vectors with zero mean and the process is fault-free, e*(k) is still a zero mean 
Gaussian-distributed random vector, i.e. £*s{k) ~  A7(0, R e) where R£ is the covariance 
matrix of £*s(k).

Under the fault situation, by using the representation in Eqn. 2.7, the residual can
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Sec. 3.2 Parity Space Approach

be shown in the following:

e.(fc) = (r iO'(y.(fc) -H»u,(*0 )
=  ( r f  )'W.f.(*0 +  ( r f ) '( -H .v .(k )  +  G  ,4>,(k) +  O.(*0) 
- ( T t Y H M k )  + ^.(k)

(3.2)

where

n 8 =

r 2

C R i

0

R2

0

0

r 2

e  9f ?
m „  xp , s

C A s-1Ri CA S- 2R X

Due to the deterministic property of the fault signal, the residual £s(k) is no longer 
a zero mean random vector, i.e. £s(k) ~  J\f [ ( T j y H J s(k). R e) . Therefore, the mean 
of vector £s(k) is only affected by the fault signal fs{k). es(k) is referred as a primary 
residual vector (PRV). Based on this fact, we define the following Squared Weighted 
Residual (SWR)

S W R (k )  = e'8( k ) R j 1£a(k)

for fault detection, which follows a chi-square distribution with a degree of freedom 
m s — n  under the fault-free situation, i.e. S W R(k)  ~  y 2 (ms — n). Thus, a fault 
can be detected by observing whether SW R(k)  exceeds a pre-determined confidence 
limit.

In order to further isolate faults, the primary residual vector es(k) can be 
transformed into a set of structured residual vectors (SRVs) as following:

(3.3)

The original concept of structured residuals comes from Gertler and his co-workers 
(1985, [36]; 1990, [37]). It was then extended to structured residual approach with 
maximum sensitivity (SRAMS) by Qin and Li (1999, [105]). Further the structured 
residual vector (SRV) based approach is proposed by Li and Shah (2002, [70]).

In order to design the matrices W*, one needs to determine the structure 
characterized by an incidence matrix for r i(k). An incidence matrix consists of binary 
codes “0” and “1”. The rows of incidence matrix correspond to different r i(k), while 
the columns correspond to different fault sources. Table 3.1 gives an example of 
designing an incidence matrix. Assuming that only a single fault can happen at each 
time, one can design an incidence matrix as depicted in Table 3.1.
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Sec. 3.3 Observer Based Approach

Table 3.1: Incidence matrix
m f2(k)  •• • fp( k)

iq (k) 0 1 1

r 2(fc) 1 0 1

rp (k) 1 1 0

In Table 3.1, “0” indicates the corresponding SRV is not affected by the 
corresponding fault and “1” denotes the SRV has maximum correlation with the 
fault. Therefore, by observing the behavior of the SRVs, one can correctly pinpoint 
the fault source. For example, if ri(fc) is not affected by a fault while all the other 
SRVs are, it can be concluded that f i(k)  is happening in the process. Interested 
readers can refer to [70] for the details.

3.3 Observer Based Approach

As indicated in Eqn. 2.6, the observer based approach uses the following architecture 
to generate the residual:

x(fc +  l) =  Ax(fc) +  Bu(/c) +  K(y(fc) -  y(fc))

y(Jfc) = Cx(ifc) + Du(fc) (3.4)

By introducing Eqn. 3.4 into Eqn. 2.7, one can obtain the following:

x(fc +  l) =  (A -K C )x(fc) + (R1- K R 2)f(A;) +  (E-K J)^(fc) 

e(Jfc) =  Cx(fc) +  R 2f(fc) + J(j)(k) 

where x(fc) =  x(fc) -  x(fc) and e(k) = y (k) -  y (k).
Therefore, the residual generated for FDD can be represented as

r(fc) = Qe(fc) (3-6)

where Q is the transformation matrix.
In the observer based approach, there are two design parameters: K and Q. 

The different designs within this category distinguish themselves on the basis of the 
different selection of these two design parameters. In order to illustrate the idea of 
the observer based method, Keller’s approach (1999, [61]) is introduced here.
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Assume the process can be represented by the following discrete time state space 
equation:

x(fc + l) =  Ax(fc) +  Bu(fc) + Rif(fc) +  w(ifc)

y (k) =  C x ( k ) + v ( k )  (3.7)

where the noise w (k) and v(k)  are zero mean uncorrelated random signals with 
W  0 

0 I
the following definitions from Liu and Si (1997, [71]):

covariance 

We have

Definition 3.1 The linear time invariant system 3.7 is said to have fault detectability 
indices p — {pi,P2 , • * • ,Pp} if  Pi — min{u : CA’u-1ri ^  0 ,u  = 1,2, •••} where 

R i  = r x • • • rp

D efinition 3.2 Assume that the system has finite fault detectability indices. 
The fault detectability matrix L is defined as L =  CT' with ’I' =
[ A ^ r x  AP2- 1r2 ••• App_1r p].

Denote b = max{p,,z = 1,2, • ,p} as the maximum value of fault detectability
indices. Accordingly, f  (k) and R i can be rearranged to f (k) = [£[(/.:) f^/c) • • • ilfk)}1 
and R i =  [R] Rf • • • Rj], where £f k )  represents the elements in f (k) which have 
detectability index p,. Therefore, the system shown in Eqn. 3.7 can be rewritten as:

x(fc +  l) = Ax(fc) +  Bu(fc) + Rif(fc) +  w k
(3.8)

y(k) = Cx(k)  +  v k 

Consequently, the detectability matrix is then given by:

L =  C ^ , ^  =  [R] AR? ••• A 6_1R5] (3.9)

An observer for fault detection and diagnosis can be mathematically expressed as: 

x(k  +  1) =  Ax(fc) +  Bu(k)  + K(k)(y(k) -  y(k))
( d . W )

y(k) = Cx(k)

where x(k)  and y(k) denote the state and output estimation vectors. From Eqns. 
3 . 9  and 3 .1 0 , the state estimation error x(k) — x(k) — x.(k) and the output residual 
e(fc) =  y(k) — y(k) have the following relationship:

x.(k + 1) =  (A — K(k)C)x(k)  + Rif(fc) — K(fc)v(fc) +  w(k) 

e(k) =  Cx(k) + v(k)

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.
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The output residual e(k) can be used for fault detection purposes. The problem 
is how to design the observer gain matrix K (k). The following theorem provides the 
solution.

T heorem  3.1 (From [61]) Under the assumption of rank(L) = p. solution of the 
algebraic constraint (A -  K(k)C)'f f  = 0  can be parameterized as

K{k) = w Q  +  K(fc)E (3.12)

with E =  a(Im — LQ), Q =  £1 and oj — A ^ , where K (k) € sfjnxfin-p) ,[s 
reduced gain describing the remaining design of freedom, L* is the generalized inverse 
or pseudo-inverse of L and a  € I i s  an arbitrary matrix determined so that 
matrix E  is of full rows rank.

At this stage, one must determine the reduced gain K (k). This reduced gain K(/c) 
can be designed by minimizing the trace of the estimation error covariance matrix, 
which is consistent with Kalman filter theory. The following theorem solves the 
problem of designing K (k):

Theorem  3.2 (From [61]) The fault detection filter can be described by the following 
relations:

x(/c +  1) =  A x(k) + B u (k) + ujr(k) + K(k)v(k)

P (k +  1) =  (A -  K(k)C)P{k){A -  K ( k ) C y  +  K ^V K ^fc) +  W

K (k) =  A P (k )C '(C P (k )C f + V ) " 1

where A  = A -  uQ C ,  C = EC, V  = EE', W  =  W  + cuQQV, f(k) =  Ee(k) and 
v(k) = Qe(fc). Therefore, r(fc) = Qe*(k) + [f'(A: -  1) f̂ (A: -  2 ) • • • fl(k -  b)}',
each element of which can only be affected by one fault. In addition, r (k) can also be 
regarded as a stochastic deadbeat observer of the fault magnitude.

3.4 M ultivariate Statistical Based Approach

The ideas of PC A and PLS were first introduced by Pearson (1901, [103]) and Wold 
(1966, [131]) respectively. The use of PCA/PLS to build reduced dimension models 
for the purpose of process monitoring and fault diagnosis has been well researched in 
recent years ([63] [130] [56] [134]). Since the approaches in this category are similar 
to each other, the PCA is selected to illustrate the concept of multivariate statistical 
based approach.
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The purpose of PC A is to explain the covariance structure through a set of 
orthogonal coordinates which are the combination of original variables in the reduced 
dimension space. Consider a properly scaled data matrix X G R Nxi  where N  is the 
number of samples and 7  =  m  +  I is the number of variables including inputs and 
outputs. Assume that all the variables are scaled to be zero mean and unit variance.

In PCA, the first principal component (PC) tq = Xpi, where pi is the coefficient 
vector for t i ,  is a linear combination of original process variables that accounts for the 
maximum variance of the data matrix. Mathematically, this optimization problem 
can be expressed as follows:

max cov(t\) — m axt'.ti = p'.X'Xp,
P1 (3.13)

s.t. p ;p i =  1

The constraint in Eqn. 3.13 is to avoid an infinite px to maximize the objective 
function. The solution of the above constrained optimization problem can be easily 
obtained by using the Lagrangian multiplier.

Pi =  the eigenvector associated with the largest eigenvalue of matrix X'X (3.14)

Therefore, the information unexplained by the first principal component (PC) in 
the data matrix is

E ! = X - t lPi (3.15)

where Ei G 97^* 7 is called the residual matrix. The next step is to find the second PC 
to explain the maximum variability in matrix Ei. The objective function is similar 
to Eqn. 3.13, but with the added constraint p'xP2 = 0, which ensures pi and p 2 are 
orthogonal. From this new optimization problem, the second loading vector p 2 can 
be obtained:

p 2 =  the eigenvector associated with the second

largest eigenvalue of matrix X 'X (3.16)

Similarly, 7  PCs can be obtained in order to capture all the information in the 
matrix. However, in most cases, due to the redundancy and noise in the data, na 
(na 7) PCs can capture most of the variability in X, and X  can be expressed in 
the following way:

X =  tiP i +  t 2p '2 4 b t„np(,a +  E = X +  E  (3.17)
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7

where X = ^  tjp 'an d  E = ^  t;p '.
i—Un+l

Ideally, n a is chosen in a way such that there is no significant process information 
left in E, where E  represents the random error. PCA models are formed by retaining 
only the loading vectors p 2 (i =  1 , • • • , n a) that describe the systematic variations in 
the data. It is important to note that properly scaling the original data is crucial in 
PCA. If the variables are not properly scaled, some trivial variables may dominate 
the variance-covariance information in matrix X due to the measurement units.

After a PCA model based on normal operating data is obtained using above 
algorithm, it can be utilized for the purpose of FDD. Denote x new £ 3ft1 X7 as the 
new observation from the process. Projecting it on to the latent PCA space gives the 
scores t new £ 3ft1 *71,1:

Hotelling T 2 and Q statistics (Sum of Prediction Error or SPE) are used to monitor 
the process. The T 2 statistic based on the first na PCs is defined as:

T)„ r»

where A, is the corresponding eigenvalue of the covariance matrix of X. The confidence 
limit of T 2 at confidence level (1 — a) is related to the ^-distribution as follows:

where F a(na, 7  -  n a) is the upper 100a% critical point of the F  distribution with n a 
and 7  — na degrees of freedom ([124]). The confidence limit of T 2 gives an ellipsoid 
in a n a dimensional space. 1 0 0 a% of the chance, the new score should be within this 
ellipsoid under fault-free situation.

However, variations in the process could be associated with the breakdown of the 
correlation structure among the measured variables while still within the confidence 
limit of T 2. Therefore, monitoring the process only with T 2 is not sufficient. The 
SPE chart is also used in conjunction with the T 2 chart. The SPE is defined as

■̂ne"new (3.18)

where P  =  [p, p . p„J.
Therefore, the model residual is:

t P ' =  xL n e w A  •A d xneJ P P '= x ne„ ( I - P P ')  (3.19)•new■new•new •new ■new

(3.20)

(3.21)

S P E  = ee' (3.22)
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where e 6  Klxi is the model residual. Jackson and Mudholkar (1979, [55]) provide 
the confidence limit of SPE:

Qa — @i
, C a W 2 © 2  , ©2^0 (ft-0 — 1)

”©7 ©f
ho

(3.23)

where 0* = ^  A], V i = 1 ,2,3, ho = 1 -  and cQ is the confidence limits for
j=7l„ +1

the I — a percentile in a normal distribution. When the SPE value based on a new 
observation is beyond the confidence limit, an abnormal event is detected.

On the other hand, in order to isolate the source of the abnormal event, fractional 
contribution of each process variables can be used:

QpjP
Qi = Jpi'  Vi  = 1>2’“ - ’7 (3-24)

where SPEi  denotes the square of the i th element of the error vector e. If the 
contribution from some process variables is significant, then these variables are most 
likely to be the cause of the abnormality ([85]). Although the contribution plots 
cannot unequivocally diagnose the cause, they do provide much greater insight into 
possible cause and thereby greatly narrow the search ([76]).

3.5 Data Reconciliation (DR) and Gross Error 

Detection (GED)

Based on Eqn. 2.3, the data reconciliation issue can be stated as the following- 
constrained optimization problem:

min (z* — z)/R “ 1 (z* — z)
Z

s.t. (3.25)

M*z =  0

If it is assumed that the measurement noises are normally distributed with covariance 
matrix R a, the resolution of Eqn. 3.25 gives maximum likelihood estimates of process 
variables.

The estimate of the process variables, z, can be determined as follows:

z =  z* -  R CT(M*)/(M*RCT(M*)/)_1M*z* (3.26)
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With nonlinear constraints (in which case the process model must be represented 
in nonlinear format), data reconciliation can also be conducted by introducing the 
nonlinear programming techniques in solving the weighted least squares problem with 
nonlinear constraints.

Based on data reconciliation, the technique of gross error detection (GED) is 
introduced to handle the case of non-Gaussian distributed errors in the measurements, 
such as sensor malfunction or process leaks. These errors are usually referred 
to as gross error. The presence of gross errors violates the statistical basis of 
data reconciliation. Thus, one must check for the presence of gross errors in the 
measurement data before performing DR.

Several works in the literature have attempted to deal with the problem of the 
location of gross errors. Mah et al. (1976, [78]) developed a series of rules based on 
graph-theoretical results. A serial elimination algorithm was first proposed by Ripps 
(1965, [110]) and extended by Nogita (1972, [91]). A more systematic approach was 
developed by Romagnoli and Stephanopoulos (1981, [112]) and Romagnoli (1983, 
[1 1 1 ]) to analyze a set of measurement data in the presence of gross errors. Survey 
papers of the available methodologies are given by Mah (1990, [79]) and Crowe (1996, 
[22]).

Denote the residual to be:

r  (k) = M*z (k) (3.27)

If the process variable z (k) is only affected by the measurement noise a(k), 
the residual r (k) follows a multivariate normal distribution with zero mean and 
covariance matrix Rr =  M*Rff(M*)', where R CT is the covariance matrix of a(k),  
i.e. r(k) A7(0,Rr). However, in the presence of gross errors, the residual r(k) does 
not follow the normal distribution. Therefore, one can conduct statistical tests to 
determine the presence of gross errors.

3.5.1 Global Test (GT)

The global test ([110], [3], [77]) uses SWR as the test statistic given by:

rj(k) = r ,(fc)Rr" 1r (k) (3.28)

Under fault-free conditions, r](k) follows a central chi-square distribution, i.e. 
r](k) ~  x 2 (ranfc(M*)). Therefore, with a pre-selected significance level a, one can 
determine the critical value xt{rank(M*)) .  If r/(k) > x l { ra n k (M*)), a gross error is 
detected.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 3.5 Data Reconciliation (DR) and Gross Error Detection (GED)

3.5.2 Constraint or Nodal Test (N T)

The Constraint or Nodal test ([108], [78]) define the test statistics as follows:

m = J n !. (3.29)
\ /R r (M )

where r2- represents the i th element of vector r (k) and R r(z, i) denotes the i th diagonal 
element of matrix R r . It can be proved that rji follows a standard normal distribution, 
i.e. rji ~  J\f(0,1) under fault-free conditions. If any of the statistics rji are beyond the 
pre-determined thresholds, a gross error is detected.

3.5.3 M easurem ent Test (MT)

From Eqn. 3.26, one can define the vector of measurement adjustments:

u{k) =  z (k) -  z{k) = R ff(M*)/R ; 1r (k) (3.30)

which follows a multivariate normal distribution under fault-free conditions.
The covariance matrix of u{k) is:

R„ = R CT(M N‘)/R “1M*R[r (3.31)

i.e. u{k) ^ A z ^ R ^ ) .
Therefore, the measurement test statistics can be defined as:

Vj = , ^  (3.32)
^/ET U T )

which follows a standard normal distribution, i.e. r]j ~  A/"(0,1 ), under fault-free
conditions. If any of the statistics ijj are beyond the pre-determined thresholds, a
gross error is detected. Refer to [123] and [80] for detail.

3.5.4 Generalized Likelihood R atio (GLR) Test

In contrast to other tests, the GLR test requires a process model in the presence of 
a gross error, i.e. the gross error model. The procedure is illustrated by Narasimhan 
and Mah (1987, [8 8 ]).

The gross error model for sensor faults can be represented as follows:

z(k) = z (k )+ a{k )  + f3{k) (3.33)
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More generally, the gross error model for process faults such as leakage can be 
illustrated by modifying the model constraints:

M*z( fc) -M/ f ( & ) = 0  (3.34)

where M / is a matrix representing the fault effects on the process correlation 
structure.

Using the above gross error models, it is possible to derive the statistical 
distribution of the constraint residuals when a gross error either in the measurements 
or constraints is present. It has been proved that under fault-free conditions, the 
residual follows a normal distribution with zero mean and covariance matrix R r. 
However, if a gross error is present, the residual will still follow a normal distribution 
with the same covariance matrix but with different expected value showing as below:

£{r(fc)} = M * f 2 (fc) or £{r(fc)} =  M f f(k)  (3.35)

where E{-} denotes the expected value.
Therefore, one can formulate the following hypotheses test for gross error detection:

H ° ' ^  “  °  (3.36)
H x \ fi = M*iz{k) or M'f(fc)

where //, is the unknown expected value of r.
In order to test these two hypotheses, one can use the likelihood ratio test. The 

likelihood ratio test statistic is given by

Pr{v\H\} ,,,
A =  sup-- (3.30

Pr{r\H0}

where -Pr{-|-} is the conditional probability.
Using the normal probability density function of r, one can rewrite Eqn. 3.37 as 

follows:

Because A is always positive, one can simplify Eqn. 3.38 by introducing another 
test statistic:

7] = 2 In A =  sup-jr 'R ^r -  (r -  n )  R " 1^  -  (P)} (3.39)

Then, the test statistic r] can be compared with a pre-determined threshold. A gross
error is detected if rj exceeds the threshold.
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Fault Detectability Analysis for Linear 

Systems1

4.1 Introduction

Before designing a FDD scheme for a linear system, one must determine whether the 
detectability conditions are satisfied for the system in question, i.e. whether a fault 
signal can be detected when analytical redundancy exists in the system.

As indicated in Chapters 2  and 3, a fundamental element of a FDD system is 
the residual generator. The generated residual must be small (ideally zero) under 
fault-free conditions and large (or non-zero) if a fault is present. Fault detectability 
concerns the question of whether it is possible to construct a residual generator that

xThe results in this chapter were presented at the 53rd Canadian Chemical Engineering 

Conference (CSChE), October 2003, Hamilton, Canada by Han and Shah.
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is sensitive to any type of fault.
The importance of analyzing fault detectability has only recently been recognized by 

FDD community. For example, Saberi et al. ([115]) raised a number of fundamental 
questions in FDD systems in 1999. Nyberg and Nielson (2000, [92]) conducted a fault 
detectability analysis for both discrete and continuous time systems through the use 
of transfer functions.

4.2 Problem Definition

The objective of the research described in this chapter is to identify a condition under 
which - no matter what model-based fault detection method is used - a specific fault 
cannot be detected even when the process dynamics are exactly known. Therefore, the 
determinate property of a system is more relevant to the research topic. In contrast, 
the stochastic aspect of a system can only affect the sensitivity and the false alarm 
rate (FAR) of fault detection. No matter what method is used, the stochastic part 
of the system only affects the determination of the residual threshold, that is, the 

inrlfl.rv betw een norm?

Assume that the dynamics of a multivariate process can be represented by the 
following discrete time linear state space model with faults:

x( fc+l )  =  Ax(fc) +  Bu(fc) +  Rif(fc) ^

y (k) = C x ( k ) + R 2i(k)

where {A, B, C, R i, R 2} are the known true system matrices with appropriate 
dimensions.

In Eqn. 4.1, process noises, disturbances and other stochastic properties are not 
considered. Only the deterministic part of the process is taken into account. The 
reasons for formulating the problem in this manner are as follows:

1 . This research is to determine how the system dynamics affect the fault 
detectability when the process dynamics are exactly known. Therefore, the 
model-plant mismatch (MPM) is not considered.

2. Residuals are generated for fault detection in most methods by using residual 
generators. If the residual is within some pre-determined threshold, no fault is 
present; otherwise, a fault is detected. If we eliminate the presence of noise and 
disturbance, the problem can be significantly simplified. This is so because,
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in this case, non-zero residuals imply the presence of a fault. Thus, there is 
no need to discuss how to choose thresholds, which can be determined using 
various approaches.

3. Similar to the system properties of controllability and observability, fault 
detectability is a system property. This was pointed out by Nyberg and Nielson 
(1997, [93]). Detailed analysis of this feature will be presented later in this 
chapter.

4.3 Definitions

In order to characterize the fault detectability problem more precisely, pertinent 
definitions must be provided at outset. In this section, the definitions of “parity 
equation”, “parity function” and “residual generator” are presented in preparation 
for further analysis. The terms “fault detectability” and “strong fault detectability” 
will then be defined mathematically.

4.3.1 Parity Equation and Parity Function

The terms “parity equations” and “parity function” are widely used within the field 
of “model-based fault detection”. The definitions are provided by Chow and Willsky 
(1984, [19]). For the sake of completeness, those definitions are included below:

Definition 4.1 (Parity Equation) A parity equation is an equation that can be 
written as

M(9)y(*0+N(9)u(fc)=O (4.2)

This equation is satisfied under the fault-free situation.

Definition 4.2 (Parity Function) A parity function is a function that can be 
written as

F(k) = M(q)y(k) + N{g)u(k) (4.3)

The value of this function is zero under fault-free situation.

where M (q) and N (q) denote matrices of polynomials in q. The left hand side of Eqn.
4.3 is also known as parity vector, which is non-zero if and only if a fault is present.
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4.3.2 Residual Generator

In the field of fault detection, residual is a signal that is equal to zero when no 
fault occurs and non-zero when a fault occurs. The fault is generated by a system 
referred to as Residual Generator. Based on Definition 4.2, parity function has a close 
relationship with the residual generator.

Before introducing the detailed procedure, it is necessary to provide definition of 
residual generator, which will be used frequently in this chapter. The definition is 
given in the following:

Definition 4.3 (Residual generator) A residual generator is a dynamic system  
that can be constructed in the following way:

r(k) = G y(q)y(k) + G u{q) u(k) 

where the residual signal r (k) is equal to null vector or 0  i f i (k)  =  0 .

(4.4)

Based on Definition 4.3, the generated residuals can be used for fault detection. In 
order to formulate such a residual generator, some mathematical manipulations must 
first be performed.

After performing a series of recursions on Eqn.4.1, one arrives at
k— 1

x(fc) = Asx(k  -  s) + J 2  [BGW + R if (*)] (4-5)
i = k -

and
k - 1

y(k) - C A ’x (k  -  s) + C Y i  A1"1" ' (Bu(t) +  R ^ft)] +  R 2f (k) (4.6)
i = k —s

where s is the order of the parity space defined by Chow and Willsky (1984, [19]). 
Further, by stacking, the following equation can be obtained:

ys(k) -  n su s(k) = T sx ( k  -  s) + H sfs{k) (4.7)

where
rs=[ (cy  (ca)' ••

is the extended observability matrix; and

R 2 0

(CAS)' ,771 .s x n

H s =
CRi R 2

0

0

C A s-1Ri CAs-2R i •• R 2
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is a lower triangular block Toeplitz matrix with m s = m(s  + 1 ) and ps — p(s +  1 ).
H.s G is  t h e  s a m e  a s  H s, e x c e p t  t h a t  R i a n d  R 2 a re  r e p la c e d  b y  B a n d  0
respectively with ls =  l(s +  1 ).

r i ;
In addition, y s (k)  =  y ( k  -  s)' ■■■ y (k)' G is the stacked output vector;

u s (k) G $ t 1* ,  i s (k)  G 9 ^  a r e  s im ila r ly  s ta c k e d  a s  y s {k).

One can select a transformation matrix W 0, which is located in the left null space
of T s, i.e. W 0T S =  0. Pre-multiplying both sides of Eqn. 4.7 by W 0, the unknown
state vector x(k  -  s ) can be removed from the equation, leading to the following
function:

r  (k) = W 0 (ys( k ) - H su s(k))

=  W 0 H s f s ( k ) (4.8)

On the right hand side of Eqn. 4.8, the first line is the computational form and 
the second line is the internal form. From the internal form, it is easy to determine 
that r (k) is non-zero only if a fault exists. According to Definition 4.2, Eqn. 4.8 is a 
set of parity functions that depend on the different selection of W Q and s. Eqn. 4.8 
has an attractive feature that shows up in the following theorem.

Theorem  4.1 Eqn. 4-8 gives all the possible residual generators defined by Definition 
4-3 for Eqn. 4-1 using the process inputs and outputs.

Proof: Firstly, we need to prove Eqn. 4.8 is a residual generator defined by
Definition 4.3.

From Eqn. 4.8, we can make the following manipulations: 

r (k) = W 0 (ys(k) — H siis(fc))

qsy(k) qsu(k)

Wo gs-1y(fc) - W 0H S

Co 1

q°y(k) q°u(k)

7 ;  ?‘W 0(:, (s -  i)m +  1 : (s -  i )m  +  m)  j y(k)
0 /

-  ( ^  (f W 0H S(:, (s -  i )m +  1 : (s — i )m + m)  | u(&) (4.9)
. i=0

where A(:,m  : n) represents the m th to nth columns of A matrix, which is consistent 
with the expression in Matlab®.
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S

Let G y(q) = ^  qlW Q(:, (s — i)m +  1 : (s -  i )m + m)  and Gu(q) = y ^ g ;H,s(:

, (s — i )m  + 1  : (s — i )m + m).  Comparing Eqn. 4.9 with Definition 4.3, it is 
readily concluded that Eqn. 4.8 has the same structure defined for residual generator. 
Moreover, it is evident from the second line of Eqn. 4.8 that r (k) can be non-zero 
only if fs(k) ^  0. Therefore, Eqn. 4.8 gives a residual generator.

The next step is to prove that any residual generator can be represented by Eqn.

Based on the definition of residual generator, the residual should be non-zero if 
and only if a fault exists. Suppose we have a residual generator r (k) = Gy(q)y(k) +  
G u(q)u(k), which is zero under fault-free conditions, i.e. r (k) =  0, V f  (k) = 0. The 
reason for the existence of such a generator is due to analytical redundancy.

Under fault-free conditions, one can arrive at

r(fc) =  G y{q)y{k) + G u(q)n{k) = B y 1(q)'Ny{q)y(k) + D u 1(q)Nu(q)u(k) = 0

diagonal transfer function matrix.
Hence, the terms in front of y (k) and u (k) are finite-order polynomials. Then, 

s can be defined as the maximum order of these two polynomials. Therefore, the 
residual generator under fault-free conditions can be written as follows:

i = 0

4.8.

i.e.

where D y(q) and Du(q), N y(q) and N„(g) are the denominators and numerators of 
transfer function matrices G y(q) and G u(q) respectively, and ~Dy(q) is assumed to be

where A* and B* are the coefficients of both polynomials.
We can also write the above equation in the stacking form:

A y  s(k) + B u s(k) = 0 (4.10)

where A =  As • • • Ai A 0 and B =  Bs • • • B x B 0 •
From Eqn. 4.7, under fault-free conditions the above equation can be rewritten as

A r sx (fc — s) +  (AHS +  B) u s(k) = 0
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In order for the above equation to hold true, the following two conditions must be 
satisfied simultaneously:

Ars = o
A H S +  B =  0

Since both A and W 0 are orthogonal to r s, we can let W Q =  A. Then, Eqn. 
4.10 is exactly the same as Eqn. 4.8. This proves any residual generator can be 
represented in the format of parity space. ■

4.3.3 Fault D etectability and Strong Fault D etectability

Before discussing fault detectability criteria, the definition of fault detectability must 
be given explicitly. This problem has been identified by many researchers. Chen 
and Patton (1994, [15]) provided definitions of fault detectability and strong fault 
detectability as properties of a residual generator. The definitions are quoted as 
follows:

D efinition 4.4 (Fault D etectability) A fault f  is detectable if the transfer 
function from the fault to the residual Grf(q) is non-zero:

O r M  *  0

D efinition 4.5 (Strong Fault D etectab ility ) A fault f  is strongly detectable if 
the transfer function from the fault to the residual Grf(q) satisfies:

Gr f { 1 ) j* 0

Nyberg and Nielson (1997, [93]) pointed out a system’s properties limit the 
possibilities for constructing a residual that is fault detectable and/or strongly fault 
detectable. Therefore, fault detectability must be regarded as a system property. 
Nyberg and Nielson gave their definitions of fault detectability and strong fault 
detectability as follows:

Definition 4.6 (Fault D etectability) A fault is detectable in a system if and only 
if  there exists a residual in which the fault is detectable according to Definition 4-4-

D efinition 4.7 (Strong Fault D etectab ility ) A fault is strongly detectable in a 
system if  and only if there exists a residual in which the fault is strongly detectable 
according to Definition 4-5.
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It is readily concluded that all the above definitions focus on the characteristics of 
the transfer function between residual and fault. However, because it is difficult to 
assume the shape of fault signal before hand, the property of the transfer function 
alone is not enough to provide the overall solution to this problem. The reason is 
illustrated in the following example.

Exam ple 4.1 Given a system 

x(k + 1 ) =

y(fc) =

2  1 1 0
x(k) +

0 0.5 0  1

1 o 

o 1
x(k)  + m

m

u(k)

where f (k) = 

considered in t

m

m
represents the output sensor fault, which is the only fault

lis example.
By selecting a parity space order that is equal to the process order, the matrices 

generated by stacking can be obtained as follows:

1 0 2 0 4 0

0 1 1 0.5 2.5 0.25
and U 2 =  16

Thus, the residual generator obtained from Eqn. 4.8 can be seen in the following:

r(fc )=W 0f2(/c)

, which is orthogonal to T2.where W Q = 
Using the a'

- 1 1 1 1  -0.25 -7 .5  
Dove definitions to check the detectability of this system, we can discover 

that this system should be not only detectable but also strongly detectable. However, 
up to now, there is no assumption about the shape of the fault signal. Therefore, 
we can make use of any type of fault. Thus, the following fault is assumed to be 
happening:

'  f  0  k < 0

2k k >  0
f \ k )  =

f 2(k) =  0  Vfc
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Therefore, when k > 2 ,  the following residual can be generated:

r  (k) = - 0 . 2 5 f l (k) + f 1( k - l ) - f ( k - 2 )

= -0.25 x 2k +  2k~l -  2k~2 =  0, V k > 2

Obviously, this system is not strongly detectable. It is only detectable. This is so 
because the residual will stay at zero after the second time instant, even though the 
fault is still present.

Although the above definitions are not entirely accurate, they are important in 
research on fault detectability for the following reasons:

1. Different levels of detectability can be distinguished through the use of these 
definitions. These definitions identified the phenomenon of residual decay ([15]). 
From a practical perspective, residual decay should be avoided because it will 
not generate a continuous alarm signal even with the presence of a fault.

2. The detectability of a fault depends not only on the residual generator design, 
but also on the system’s limitations. If a residual generator cannot detect a 
fault, it does not necessarily mean the fault is systematically undetectable. 
Lack of detectability may be due to poor design of the generator. Thus, from 
a system perspective, fault detectability should be defined as a property of the 
considered system rather than a residual generator.

In sum mary, Chen and Patton ([15]) pointed out the difference between fault 
detectability and strong fault detectability. Further, Nyberg and Nielson ([93]) defined 
(strong) fault detectability as a system property rather than the property due to the 
residual generator. However, both studies used the characteristic of the transfer 
function between the fault and the residual to make the decision. As illustrated in 
Example 4.1, nonzero static gain of Grf(q) cannot guarantee the final value of the 
residual to be nonzero for a fault signal other than a bias. This issue leads to the 
proposed definitions of fault detectability and strong fault detectability:

Definition 4.8 (Fault D etectability) A fault is detectable in a system if and only 
if  there exists a residual generator 1Z, whose output r (k) satisfies the following 
condition: if a fault occurs starting at ko, i.e. f(k) ^  0 V k > kQl there exists a 
finite ki > ko where r(fci) ^  0  regardless of the shape of the fault signal.
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D efinition 4.9 (Strong Fault D etectability) A fault is strongly detectable in a 
system i f  and only if  there exists a residual generator 7Z, whose output r(k) satisfies 
the following condition: if a fault occurs starting at ko, i.e. f  (A:) 7  ̂0  V k > ko, there 
exists a finite k\ > ko where r(k) ^  0 V k > k\ regardless o f the shape of the fault 
signal.

Definitions 4.8 and 4.9 define the properties of both levels of fault detectability by 
describing the behavior of the best available residual generator. If the residual turns 
to be non-zero after the presence of a fault, we can refer the fault as to be detectable. 
In contrast, if the residual turns and continues to be non-zero after the presence of a 
fault, then the fault is regarded as strongly detectable. Note that no assumption is 
made about the shape of fault signal. In the most cases, one cannot know the fault 
signal before it occurs. The purpose of (strong) fault detectability is to explore the 
following question: once one or more elements in the fault vector f (k) turn out to 
be non-zero, does the system structure limit the design of a residual generator that 
can guarantee detection of that fault? Based on Definitions 4.8 and 4.9, the following 
point must be made clear: if a fault is not (strongly) detectable, it does not mean 
one cannot design a residual generator that can (strongly) detect a particular type of 
fault; it only means one cannot design a residual generator that can (strongly) detect 
any type of fault.

4.4 Fault D etectability Analysis

Based on Theorem 4.1, it is clear that Eqn. 4.8 is equivalent to all the residual 
generators for a particular system. From this point onward in this chapter, Eqn. 
4.8 is used directly as the residual generator. The criteria of fault detectability and 
strong fault detectability are investigated separately.

4.4.1 Condition for Fault D etectability

Note that Ri(:, i) and R 2 O, i) cannot be zero vectors simultaneously for any 1 <  i < p. 
If both R i(:,i) and R 2(:, i) are zero vectors, then the ith component of fault vector 
f (k) cannot affect the system dynamics. Hence, because of its complete decoupling 
from the system of interest, the fault is harmless.

The problem of fault detectability will now be investigated based on Definition 4.8. 
Several pertinent results can be obtained through the analysis. The condition for
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fault detectability is shown in the following lemma and theorem. 

Lem m a 4.1 The ilh fault is detectable if and only if

Wons,i ±  0

R  2 (:,i) 0 ••• 0

CRiO.i) R2O+)

(4.11)

where Tts,i =

CAS~1R 1(:, i) C A s- 2R ,(:,*)

0

R 2(:, i)

Proof: From Eqn.4.8 , assume the i lh fault begins at time instant kQ, i.e. the 
remaining components of fault vector f(fc) stay at zero. One can then arrive at

r ( k ) = W 0H s, i m )  (4-12)

where fl(k) is the stacked vector of ith component of fault vector f (k).
If Eqn. 4.12 is rewritten in the polynomial format, the following relationship can 

be obtained by using the back shift operator q.
/  s  +  1

■(*) = f w (4.13)
\ j  = l

where f l (k) is the ith component of f (k).
If Eqn. 4.11 is satisfied, there must exist a vector that W 0Tis,i{:, a) ^ 0 ,  1 < a  < 

s +  1 and for any (3 >  a, W 07fs,i(:, P) = 0 , i.e., W 0TLs,i{'-,ot) is the last non-zero 
column of the matrix W 0Tis,i■ Then, when fc = fco + s +  l  — a, the residual can be 
expressed as:

r(fc) = ( ^ 9 * +1-lW .H SlI( : , j ) j / i(fc)=W 0HSlj(:,Q)?*+I- “/ i(fe)

= W.WM(:,a )/i(fc„)^0

Therefore, the ith fault is detectable and s +1 -  a  is the time delay for this residual 
generator to detect the fault.

Moreover, if the ith fault is detectable, i.e. 3/ci > /co, r(&i) matrix W 07fs,i
cannot be zero. ■

Two important questions become apparent as a consequence of the above: can one 
be certain that the matrix W 07-t.v never becomes zero under some condition? If so, 
is that condition related to the residual generator design or to the process limitation? 
The following theorem is given and proved to resolve these questions.
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Theorem  4.2 Any fault described in Eqn. f . l  is detectable.

Proof:
Assume i th fault begins at time instant kQ. From Lemma 4.1, the detectability of 

ith fault is equivalent to determining whether the condition W f Hs^ ^  0  is satisfied. 
It is already known that 7iSj  cannot be a null matrix, this detectability condition can 
be rewritten in another way: W 0 <£. 'Hfj.

Furthermore, the matrix W 0 is designed to be orthogonal to the extended 
observability matrix Ts, i.e. W 0 c  R h Therefore, it can be concluded that if 
and only if H s,i is not within the range space of Ts, i.e. H,%1 (f TZ(VS) where TZ(-) 
denotes the range space of a matrix, the corresponding fault then can be detected.

The matrix H s,i has the dimension of m s by s + 1 . However, the rank of this matrix 
varies under different situations. The following result can be obtained:

rank = s + 1 — di

where di is defined as

(  0  i f  R 2 (:,i) ^  0  
di — \

[ a +  1 i f  CA“Ri(:,z) ^  0 and CA^R](:,z) = 0 , \! (3 < a  &, a >  0

Physically, di is the time delay from the ith fault to the output.
Because it is assumed that the system itself is observable, the rank of matrix Ts 

is rank (Ts) =  n given that s > n. Therefore, by selecting proper parity space 
order s, one can design a residual generator such that rank (Hs,i) > rank (rs), which 
guarantees H s,i <£. TZ(TS). Thus, it is proved that any fault can be detected if the 
right residual generator is used. ■

For people working in the FDD area, it is exciting to know that any fault can 
be detected systematically. However, as pointed out by many researchers and as is 
evident in Definitions 4.8 and 4.9, knowing that a fault is detectable is not sufficient 
in real-world situations. The generated residual could decay to zero even though the
fault is still present. In order to avoid the problem of residual decay, it is important
to ensure a fault is strongly detectable. The condition for strong fault detectability 
will be discussed in the next section.

4.4.2 Condition for Strong Fault D etectability

In this section, the condition for strong fault detectability is discussed. This issue 
has been discussed by many researchers. Before analyzing strong fault detectability,
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Sec. 4.4 Fault D etectability Analysis

several manipulations must be done. For the sake of simplicity, define Hs<i as the 
matrix consisting of all non-zero columns of 7tyj, i.e. 7YSii € 9ffm*x(s+ i-di)) and fi(k) 
is the corresponding fault vector. Based on the proof of Theorem 4.2, the matrix 7-tyj 
has the following feature:

Lem m a 4.2 Rank (Hs,i) = s +  1 — di} where di is the time delay from the ilh fault 
to the process outputs.

Proof: See the proof of Theorem 4.2. ■
The following theorem is given as the condition for strong fault detectability:

T heorem  4.3 Fault f l (k) is strongly detectable if  and only if  at least one column 
in H s î cannot be expressed as a linear combination of remaining columns in matrix 

H st r s

Proof: The proof starts with the only-if aspect.
Assume that the fault f l(k) is strongly detectable. Based on Definition 4.9, a finite 

ki > k0 must exist so that r (k) ^  0, V k > kx. Without loss of generality, one can 
assume k\ > ko +  s.

Note the special property of vector f](fc) when k > kQ + s: each element in vector 
fj(fc) is non-zero. This differs from non-zero vectors and in this chapter this special 
vector is referred as to strict non-zero vector.

Because fault f ( k )  is strongly detectable, the residual r (k) = W 0f tSiif*(fc) 7  ̂
0, V k > ko T s. This can be rewritten as:

/B strict nonzero vector f ls(k) such that H s,iFs(k) % R { T S)

If the vector f\{k) can be any ordinary non-zero vectors, this problem has a straight­
forward solution: n S , l

is of full column rank. However, for strict non-zero

Kvectors, we may obtain a more flexible condition. That is to say, 
column rank is only a sufficient condition for f l (k) being strongly detectable.

of full

Assume K is not of full column rank. One can then find a non-empty
right null space that satisfies the following:

ft's. r s

I

M

N

= 0 (4.14)
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i.e.

I

M
= - r sN (4.15)

where 

I M ' N '

h ?) r is of full column rank, is the remaining columns in H s<i and
S ,Z  *  ^

/

is the right null space of H s

I  M ' v isTherefore, the original problem can be expressed as: V v ^ O ,  (1) 
not a strict non-zero vector, i.e. at least one element of the vector is zero, and (2 ) 
N v 7  ̂ 0. The first condition can be satisfied only when M v has at least one zero 
element for all strict non-zero vectors v. Hence, it concludes that M  has at least one 
zero row. The second condition can be easily proved if l i S)i is of full column rank.

By rearranging the rows of matrix M, it can be written as M  = Mi 0 . Then

matrix 7i f j  can be formulated as
/ ( l )   4 y ( 2 , l )

. From Eqn. 4.14, it is

readily determine that H SJ =  Hsf  Mi -f- r sN, i.e. H SJ can be expressed as a linear
Because H^2} r . is of full column rank,

H s i  r

combination of

cannot be expressed as a linear combination of remaining columns of 
The if aspect of the proof is as follows:
Assume at least one column of 1rlSyi cannot be expressed as a linear combination 

of remaining columns of H s i Ts • Thus, we can refer that column as h and the 
remaining columns in H s)f as h.

Therefore, it does not exist a vector vi vf,
/ - - Vi

such that h = h r sL v 2

That is, it does not exist vectors Vi and v 2 such that h h
1

Vl
= r > 2. Thus,

for any strict non-zero vector i ls  k, % T Z ( T S ) ,  which can guarantee that the fault
f l  is strongly detectable. ■

4.4.3 Strong Fault Detectability for Output Sensor Faults

Theorem 4.3 provides the general solution for the strong detectability criterion. 
However, if only certain special types of fault are considered -  that is, if special 
matrices Ri and R 2 are used -  one can arrive at simpler conditions. Therefore, we 
have the following corollaries for output sensor faults.
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Corollary 4.1 The i 1 output sensor fault is strongly detectable if and only if the

system {A, Q} is observable, where Cj = 

without i th row.

C (1  : z — 1 ,:) 

C(i +  1 : 77i,:)
i.e. the m,atrix C

Proof: Because only output sensor faults are considered, R i =  0 and R 2 = Im.
Therefore, the matrix H s,i can be denoted as

H sa =

where e* is the ith column of identity matrix I.
Thus, based on Theorem 4.3, to enable the ith output sensor fault to be strongly 

detectable, at least one column in 7l s,i cannot be expressed as a linear combination
of remaining columns in H a,i r  a Denote this column as the j th column, i.e. 
h =  [ 0  e! 0 ]', and the remaining columns as h. Hence, the condition of 
strong detectability is:

jB v 7  ̂0 , such that h =  [h r s]v (4.16)

where v =  [v( v^]', Vi =  [«i • • • a^]' £ 3?s and v2 G 5?".
That is, /3 v ^  0, in which case the following equations are satisfied simultaneously:

i.e.

0 =  Qie, +  Cv2 

0 — a 2e, T CAv2

e i =  C A j~ \ 2

0  =  a sei +  C A 3v2

- a i  e*

(4.17)

ef: = r sv2 (4.1S)

cTce.
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The left hand side of Eqn. 4.18 is a vector with at least ms zero elements. In 
addition, note that a*, V i = [1, s], can have any value. Therefore, the issue can be 
rewritten as:

,3 v 2 ^  0 , such that the following equations are satisfied simultaneously:

r Siiv 2 =  0 (4.19)

C(i, OA-^va ^  0  (4.20)

where t Sii = [C' (Q A 5)']'-
Based on the assumption that the original system is observable, i.e. rank(Ts) = n, 

if Eqn. 4.19 is satisfied, then there must exist a j  that satisfies Eqn. 4.20. Hence, to 
make the i th output sensor fault strongly detectable, a non-zero vector v 2 must not 
exist such that Eqn. 4.19 can be satisfied. One then can conclude that the matrix 
t S}i must be of full column rank. That is, {A, C;} must be observable. ■

Corollary 4.1 states that if one wants to confirm the strong detectability of an
output sensor fault, doing so is equivalent to confirming the remaining system’s 
observability. This conclusion is consistent with what one would intuit. If the 
remaining system is not observable, i.e. some states of the system cannot be observed 
by the fault-free output sensors, one cannot infer the right measurement of the i lh 
output. Thus, it is impossible to determine whether the measurement of the ith output 
sensor is faulty.

4.5 Numerical example

In the study by Chen and Patton (1994, [15]), an inverted pendulum example was 
used to show the difference between detectability and strongly detectability. This 
example is reinvestigated in this chapter by means of Theorems 4.2 and 4.3.

Exam ple 4.2

The system described by Chen and Patton (1994, [15]) was in a continuous time 
domain. The discrete time realization of the system with sampling rate Ts = O.Olsec 
can be represented as:

-9.584 x 10“ 5 0.009901

1.002 0.0003109 

-0.01911 0.9803

0.3683 0.06197

1

0

0

0

1.269 x n r 7 

0.009998 

-6.749 x 10~6 

1.0001
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B =

-1.592 x 1CT5 _ _

1 0 0 0
-5.077 x 10“ 5

C = 0 1 0 0
-0.003174

0 0 1 0
-0.01019

In this example, only output sensor faults are considered. Therefore, R j =  0 and 
R 2 = 1 3 . Because from Theorem 4.2 all the fault is detectable, we are more focused 
on the strong fault detectability criterion.

V i = [1,3], with respect to Theorem 4.3, 
y detectable but the other two output sensor

By examining the matrix ?i A i I 
the first output sensor fault is not strong' 
faults are.

Because in this example only an output sensor fault is considered, one can also use 
Corollary 4.1 to determine strong detectability. When i = 1, the remaining system 
cannot observe the first state. That is, the first output sensor fault is not strongly 
detectable. However, for i = 2,3, the output sensor faults are strongly detectable.

4.6 Conclusion

The fundamental problem of fault detectability was investigated in this chapter. This 
problem has been categorized into two levels: detectability and strong detectability. 
The definitions are explicitly given. Conditions regarding fault detectability and 
strong fault detectability are also given and proved. The condition of strong fault 
detectability for output sensors is also derived as a special case of the general condition 
of strong fault detectability. Further, the theorems obtained are applied to a well- 
known inverted pendulum example.
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Process Modelling for Pulp Bleaching
o

Process^

5.1 Introduction

In pulp bleaching processes, most of the final product qualities for example, brightness 
are measured in the laboratory. Laboratory analysis introduces time delays and non- 
uniform samplings. Due to lack of real-time measurements of product qualities, the 
entire bleaching process is usually under manual control. As a result, it is often 
difficult to provide reliable, fast, online measurements essential to control product 
quality, which in turn can lead to excessive deviation from acceptable standards,

2A version of this chapter is currently under review by the Nordic Pulp & Paper Research Journal 

with the title of “Softsensor development for a thermo-mechanical pulp mill using Partial Least 

Squares” authored by Han, Shah, Pakpahan, Patwardhan and Robson.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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especially when changing from one operating point to another. Therefore, a scheme 
to estimate these quality variables at regular sampling rates, in-between laboratory 
samples, is necessary for satisfactory quality control and process monitoring. The 
concept of softsensor (also known as inferential estimator) is proposed in this chapter 
to develop such a scheme without introducing expensive instrumentation. This 
scheme employs a mathematical model developed from the process of interest and 
historical process data to obtain realtime estimates of product quality variables.

The physio-chemical mechanics of pulp bleaching processes within the pulp and 
paper industry are poorly understood. Consequently, the bleaching process is often 
treated as a black-box. Considering the complexity of bleaching processes, the first 
principle modelling approach is not a trivial exercise. Alternatively, a data-based 
empirical modelling approach can be used to develop the process model. Multivariate 
statistical regression methods, such as Partial Least Squares (PLS, [35]), Canonical 
Variate Analysis (CVA, [52] & [53]) and Principal Component Regression (PCR, 
[87]), are frequently used for this purpose. Traditional identification methods, such 
as Prediction Error Method (PEM, [72]), Instrumental Variable Method (IVM, [121]) 
and Subspace Identification Method (SIM, [98]), are also widely used for dynamic 
modelling.

Identifying an industrial process by directly applying the above-mentioned 
technologies is not trivial for several reasons. The process under consideration is a 
time-delay dominant process with little dynamics and significant input nonlinearities. 
In addition, many process variables are measured for control or monitoring purposes. 
Nevertheless, due to the complexity of the process, one must determine the “optimal” 
set of variables to be used as model inputs. Identifying an industrial process is 
a difficult task involving various challenges. Those challenges are not addressed 
systematically in the literature.

This chapter outlines a procedure for building steady state softsensor models of 
quality variables such as brightness. The procedure employs the PLS method based 
on process data obtained from Millar Western Forest Products Ltd., Whitecourt, 
Alberta, Canada. The plant applies a Bleached Chemi-ThermoMechanical Pulp 
(BCTMP) process. The data used in this chapter are normal operating data 
readily available from plant historian databases. Process knowledge and correlation 
analysis are used to determine appropriate time delays for each process variable. 
Several nonlinear transformations are considered during the softsensor development 
stage to ensure that the overall model reflects the true relationship of the process. 
Further, the stepwise regression method is used to identify variables significantly
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impacting important quality specifications, and the results are consistent with 
process knowledge. High correlation coefficients between predicted qualities and real 
measurements have been achieved in this chapter.

5.2 Concept of Softsensor

Softsensor is a powerful and increasingly-applied methodology that enables one to 
infer important process quality variables from other readily-accessed process variables 
such as pressure, flow rate and temperature. In industry, several measurements are 
used to monitor and ultimately control and optimize processes in order to achieve 
product consistency. Automatic control and optimization require regular and reliable 
measurements at the appropriate sampling frequency. Difficulties in measuring 
quality variables inevitably result in poor (or even no) control. Measurement 
difficulties can be due to various reasons:

• Lack of appropriate online instruments. Therefore, normal process operation 
must depend on laboratory tests, which can result in irregular data and long 
analysis time delays. Depending on how the laboratory analysis is conducted, 
the data may also be unreliable.

•  Reliability of online instruments. Online sensors may be available but may suffer 
from long measurement delays (e.g. gas chromatographs) or may be subject to 
factors that affect the reliability of the sensor (e.g. drifts and fouling).

In either case, automatic control and optimization schemes cannot be implemented 
and process performance may be degraded as a result.

A softsensor is a mathematical model that describes the relationship between two 
blocks of variables: process variables and quality variables. After model has been 
developed, one can use measured process variables (softsensor inputs) to predict 
product quality variables (softsensor outputs). The softsensor design technique 
provides an easy and economical way to estimate quality variables as frequently as 
process variables are measured. The softsensor estimates can then be used for control 
and monitoring purposes. Softsensors can be developed based on various criteria. 
For example, there are dynamic vs. steady state softsensors, linear vs. nonlinear 
softsensors and so forth. One can decide what type of softsensors to develop based 
on the process characteristics and project requirements.
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Softsensor development differs from the traditional system identification for control 
purposes. The ultimate objective of a softsensor model is to estimate quality variables 
accurately. When building such a model, one must include as many softsensor inputs 
as possible to consider a maximum range of effects on quality variables. Nevertheless, 
the traditional system identification for control purposes usually only models the 
effects from the manipulated variables (MVs) and major disturbances to the controlled 
variables (CVs).

The softsensor technique offers a number of advantages:

• Easy to develop. There are various modelling algorithms available for developing 
softsensor models. One can choose the appropriate algorithm based on process 
characteristics and project requirements.

• Easy to implement. To implement a softsensor model online, only a computer, 
which can read and write realtime data, is required. No other hardware and/or 
software is required.

• Easy to maintain. To maintain a softsensor, one only needs to apply the 
algorithm by using the latest data, determine what changes are required, and 
implement the new or revised model in the computer.

•  Good estimation results. As will be shown in this chapter, the resulting 
estimates are highly consistent with laboratory measurements.

• Economical. Design and implementation of a softsensor model to provide 
realtime measurement of quality variables are usually more economical than 
installing complex hardware with similar performance.

5.3 System atic Approach for Softsensor Design

In this section, a systematic approach to developing a softsensor is outlined. During 
the design procedure, understanding the process and having design experience are 
very important. These enable one to find a satisfactory solution more quickly and 
efficiently.

The softsensor development procedure presented here is standardized and suitable 
for application to any bleaching process. This procedure is summarized in Figure
5.1. Note that the procedure is iterative: one usually must go through the procedure 
several times to arrive at a refined model that satisfies the requirements.
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No No
Is the model good?

Yes

NoNo

Yes

Is the performance 
good?

Online trial

Setup the 
estimation target(s)

Select appropriate 
input set based on 
process knowledge

End of softsensor 
design

Make a softsensor 
model

Input variable 
selection (IVS)

Consider nonlinear 
properties of the 

process

Figure 5.1: Softsensor development procedure
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5.3.1 M odelling M ethod Selection

To design a softsensor for a given process, one must first decide which modelling 
method is most suitable for a given project. To do so, one must begin by classifying 
the available methods into categories. Then, based on the projects requirements and 
the process characteristics, one can determine which method is most suitable:

• Linear vs. nonlinear approaches: Linear modelling methods are suitable for 
close-to-linear processes or nonlinear processes that can be transformed into 
a linear framework with a known transformation. Due to their simplicity, 
linear approaches are widely applied in various applications ([73] [26]). On 
the other hand, if the process is highly nonlinear and the nonlinearity is totally 
unknown, one must try nonlinear approaches such as neural networks ([48]). 
Applications through nonlinear identification approaches are also available ([13] 
[1]). However, the implementation of the developed nonlinear models may 
require additional software, which increases costs.

• Steady state vs. dynamic approaches: The choice depends on whether the 
process has a large time constant compared to the input sampling rate. If the 
process is fast, steady state modelling may be enough. Otherwise, dynamic 
modelling is likely to perform better as it allows one to introduce more 
parameters into the modelling procedure.

© Closed loop vs. open loop approaches: Under some conditions, closed loop 
approaches enable one to develop an open loop model by using closed loop 
data. The closed loop system must be excited by either the setpoint change or 
process disturbances. On the other hand, to apply open loop approaches, one 
must break all the control loops to run the experiment, and that may cause 
serious operation problems and off-specification products. Thus, the approach 
chosen depends on whether the plant is available for experiment. Usually, due 
to the specially designed experiment, the open loop approach provides a better 
model.

5.3.2 Quality Indicators

After a model has been developed, one must evaluate its effectiveness. In order to do 
so, evaluation benchmarks must be established first. In this chapter, two benchmarks 
are used to evaluate the model: Cross-correlation Coefficient (CC) and Mean Squared
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Error (MSE). Both are based on the estimated output (Y) and the measured output
(Y).

The cross-correlation coefficient can be derived by using the following equation:

CC(Y ,Y ) =  ^ 2 h M L =  (5.1)
y  var(Y)va,r(Y)

where cov(a, b) denotes the cross-covariance between vectors a  and b, and var(a) 
gives the variance of vector a. The CC value is between - 1  and 1. The higher the 
CC value, the better the prediction will match the measurement. The advantage of 
using CC as a benchmark is that the CC value has been scaled into the range of - 1  

and 1 , thereby enabling us to judge the model’s quality even without comparison to 
others. However, CC only represents the linear dependency between Y and Y. A 
high CC value does not mean the estimation error is small; it only indicates that the 
two variables are linearly dependent.

The MSE benchmark can be calculated as follows:

M S E {  Y, Y) = ^

N

Y i Y(i) -  Y (i) ) 2

  (5.2)Z=1

N

where N  is the length of the data set. MSE represents the average absolute value of 
the estimation error as a function of time. Therefore, the smaller the MSE, the better 
the model. In contrast to CC, the MSE value is not scaled; consequently, it is difficult 
to determine whether a model is effective based only on its MSE value. However, from 
the MSE value, one can assess the accuracy of model estimation directly rather than 
the linear dependency as CC benchmark.

As mentioned above, MSE and CC indicate different types of model performance, 
and have their own advantages and disadvantages. Therefore, one must use both 
benchmarks to obtain the most comprehensive evaluation possible.

5.3.3 Input Variable Selection (IVS)

To design softsensor models for a special industrial process, usually all the measured 
process variables are provided as inputs at the start of the project. However, the 
inclusion of more process variables does not necessarily result in better performance 
of the softsensor models. This is the case because not all variables are relevant to the 
estimation target, i.e. softsensor outputs. Instead, it is highly possible that when the
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irrelevant variables are removed, the model’s performance will improve. If irrelevant 
variables are kept in the model, the perturbation and noise within these variables 
can potentially reduce the estimation accuracy very significantly. Therefore, it is 
imperative to select only those process variables that are relevant to the estimation 
targets. Process knowledge is critical to the elimination of irrelevant variables. 
However, further investigation is required to determine the relevant variables.

The problem of variable selection has been investigated in regression analysis by 
Hocking (1976, [50]). The two most common methods of variable selection are:

o Forward selection. One starts the model building process with a small set of 
input variables, and adds more variables if they improve predictability.

• Backward selection. One starts building the model with all possible input 
variables included, and removes those that do not improve predictability.

Theoretically, the more input variables included in a model, the larger the 
prediction variance and the lower the prediction bias. Because in this project, we 
are most interested in accurate prediction that is lower prediction bias, a backward 
selection method -  stepwise regression - is used to determine the optimal input set.

The procedure of stepwise regression can be explained by the following steps:

1 . Existing Model A with I inputs and 1 output

2. From model A, remove the 1st input and build a new model based on the 
remaining inputs and the output

3. From model A, remove the 2nd input and build a new model based on the 
remaining inputs and the output

4........

5. From model A, remove the Ith input and build a new model based on the 
remaining inputs (i.e. the 1 st to the (I — l)f/l inputs) and the output

6 . Compare all the models obtained, determine which one is best based on either 
CC or MSE, and discard the corresponding input

7. Determine whether the best model has a satisfactory performance; if the answer 
is yes, stop; otherwise, continue

8 . Use the best model as the model A, and back to step (2)
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The stepwise regression method is iterative. After each iteration, the input set 
is reduced by one, resulting in a new model and its CC or MSE value. In order to 
further illustrate the idea of stepwise regression, a block diagram is shown in Figure
5.2.

The stepwise regression method gives a sub-optimal solution of the following 
combinatorial optimization problem:

min Q (Y ,/(S X)) (5.3)

where S is the set that includes all possible process variables, Sx is the subset of S that 
must be determined by the optimization problem, / ( Sx) gives the model prediction 
by using the variables from set Sx , and Q(-) represents benchmark function used to 
evaluate softsensor performance such as MSE or CC.

To obtain the optimal solution of Eqn. 5.3, 2l — 1 different scenarios must be 
considered theoretically, where I is the number of possible process variables. In 
practice, I is usually a large number that makes solving the problem very difficult. 
Nevertheless, by applying the stepwise regression method, the problem can be easily 
solved sub-optimally. At most, only ^  — 1 scenarios must be considered in the 
procedure of stepwise regression. For instance, if I =  20, i.e. 20 process variables 
need to be considered. One must try 2 20 — 1 =  1,048,575 cases in order to obtain the 
optimal solution. In contrast, using stepwise regression, only 2°2̂ 2-  — 1 =  210 cases 
need to be considered.

5.4 Process Description

In this application, softsensors for estimating pulp quality variables were developed. 
Pulp bleaching is a chemical process applied to cellulose material to increase its 
brightness, where brightness is defined as the reflectance of visible light from cellulose 
cloth or pulp fibres formed into sheets. Bleaching increases paper’s capacity to 
accept printed or written images, and thus increases its usefulness. It is also a 
mean of purifying pulp - thereby extending its application, increasing its stability 
and enhancing some of its properties.

Chemicals commonly used for pulp bleaching include oxidants (e.g., chlorine, 
chlorine dioxide, oxygen, ozone, and hydrogen peroxide) and alkali (sodium 
hydroxide). These chemicals are mixed with pulp suspensions, and the mixture is 
retained at prescribed pH, temperature, and concentration conditions for a certain
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Figure 5.2: Block diagram of “stepwise regression” method
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time period. Due to the complexity of lignin and the wide variety of reactive bleaching 
species present, bleaching reactions are highly complex. The progress of bleaching 
reactions is monitored by measuring pulp lignin content, pulp brightness, and residual 
chemicals. Because it is not possible to achieve sufficient removal or decolorization of 
lignin by the action of any one chemical in a single treatment or stage, bleaching 
chemicals are frequently applied sequentially with intermediate washing between 
treatments (stages).

To carry out these reactions, appropriate process equipment is required for mixing 
steam with pulp to control the temperature, mixing chemicals with the pulp, pumping 
or otherwise conveying the pulp, and washing the pulp after the reaction is complete. 
Reaction times for bleaching are generally in the neighborhood of several hours, 
requiring the construction of large towers (reactors) to provide an adequate retention 
time.

Wood is the prime substance for making pulp, the raw material from which paper 
is manufactured. Wood is composed of cellulose fibres, with lignin holding the fibres 
together. It also contains resins, gums, and sugars. The fibres must be separated and 
arranged alone or with other materials to manufacture paper product. Pulp is made 
from the cellulose fibres of wood chips.

Millar Western employs a chlorine-free process that uses a combination of mild 
chemical, heat and mechanical action to produce bleached chemi-thennomechanical 
pulp (BCTMP). BCTMP is referred to as high-yield pulp, because the manufacturing 
process produces more pulp per tree than traditional pulping methods.

The bleaching process at Millar Western uses hydrogen peroxide as a bleaching 
agent. During the bleaching process, the cleaned and filtered pulp is squeezed in 
presses and heated before entering the bleaching tower PI, where it stays in a hydrogen 
peroxide solution for about 1.5 hours. The resulting semi-bleached pulp is dewatered 
in another press, and additional hydrogen peroxide is added in a chemical mixer. 
The second stage of bleaching takes about three and a half to five hours. The pulp is 
washed and pressed to extract bleach solution, which is recycled to the first stage of 
bleaching. Figure 5.3 illustrates the Millar Western BCTMP process. Millar Western 
produces more than 2 0  different specifications (grades) of hardwood, softwood and 
blended pulps, with a production capacity of up to 280,000 Air Dried Metric Tonnage 
(ADMT) of pulp per year, using approximately 800,000 cubic meters of timber and 
residual chips.
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Figure 5.3: Millar Western Bleaching Process
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5.5 Softsensor Development

5.5.1 Objective

Five process quality variables are deemed important in plant operation, and are 
therefore selected as the variables that must be estimated by softsensors. They are 
brightness, tensile strength, bulk density, opacity and scattering.

Building reliable softsensor models for this bleaching process is challenging, several 
difficulties must be overcome:

• L ittle  process knowledge: Literature addressing bleaching process modelling 
is scarce. The first principle model, to my best knowledge, is not available yet.

• Irregular o u tpu t sampling: All quality variables are sampled irregularly. 
The interval can be from 10 minutes to more than 20 hours. Generally, most of 
the intervals are approximately 4 hours.

• Unknown nonlinear property : From limited process knowledge, it has been 
observed that the bleaching process is obviously nonlinear. However, the type 
of nonlinearity is still unknown.

5.5.2 Preliminary Variable Selection

In total, 13 process variables are initially identified to be important from the process 
knowledge perspective. All of them are assumed to have effects on the product quality 
variables. However, some may be important and others may not under the normal 
operating conditions. The selected process variables (U) and their descriptions are 
listed in the Table 5.1.

The time delays of these variables are determined based on the retention times 
of P I and P2 towers. However, the retention time is not always constant. It varies 
within a certain range. Even though retention time is not constant, using a constant 
time delay can dramatically simplify the problem of developing softsensor models. 
Therefore, in this study, the time delays shall be kept constant.

Due to the process property, i.e. time delay dominant system with little dynamic, 
it was decided to develop steady state softsensors using the PLS method. The detail 
of the PLS method can be found in the appendix. Using U  and Y as formulated 
above, the PLS method is applied in order to develop quality variable softsensors. 
The first 2/3 of the data is used for model development, and the remaining 1/3 is
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Table 5.1: Process variables
Name Description

PI PERO PEROXIDE ADD RATE @ PI

P 2 PERO PEROXIDE ADD RATE @ P2

PI CAUS CAUSTIC ADD RATE @ PI

P 2  CAUS CAUSTIC ADD RATE @ P2

PROD RATE PRODUCTION RATE

CONSIST CONSISTENCY CORRECTION

P2 TEMP P2 DISCHARGE TEMPERATURE

P 2  DISC P2 DISCHARGER CORRECTION

FLOW DIL FLOW HMW TO BACKEND DIL

ASPEN %ASPEN CHIPS

SULPHITE N a2S 0 3 ADD ON CHIPS

CAUSTIC CAUSTIC ADD ON CHIPS

PQM PQM FREENESS
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Figure 5.4: Preliminary results for Brightness versus time in sample periods

used for model validation. The preliminary result for brightness can be found in 
Figure 5.4. From this figure, it is obvious that the model does not have a satisfactory 
performance. More work must be done on this subject.

5.5.3 Nonlinear Consideration - Pseudo Varialbes

The bleaching process is known to be highly nonlinear due to the complex chemical 
reaction. The nonlinear property must be considered in this application. Because 
the linear modelling approach is being used here, one must create pseudo variables 
that are assumed to have a linear relationship to the quality variables. These pseudo 
variables are obtained based on the process knowledge. The pseudo variables in this 
study are listed in Table 5.2.

After considering these nonlinear properties of the process, a set of softsensors is 
developed based on the inputs - combining the original process variables and the
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Tabic 5.2: Pseudo variables
Names Descriptions

P2 RISE TEMPERATURE RISE @ P 2

TOTAL H202 TOTAL PEROXIDE

TOTAL NaOH TOTAL CAUSTIC

PI RATIO CAUSTIC-PER,OXIDE RATIO @ PI

P2 RATIO CAUSTIC-PEROXIDE RATIO @ P2

ENERGY SPECIFIC ENERGY

pseudo variables. The result for brightness softsensor is illustrated in Figure 5.5. The 
performance is dramatically increased compared to Figure 5.4.

5.5.4 Input Variable Selection

By applying the stepwise regression method to existing softsensor models, several 
interesting results can be obtained. In this study, MSE is used to evaluate model 
performance. Figure 5.6 shows the results for brightness.

The y-axis of Figure 5.6 is calculated based on the MSE value of the original model 
as follows:

r M SEj-M SEorff w  ( ^Performance! = ----- ——-------- x 100% (5.4)
Mohj0rg

where MSE* denotes the MSE value of the model after i th iteration and MSEors 
represents the MSE value of the original model before performing stepwise regression. 
If “Performance!” is negative, the new model has better performance than the original 
one. Otherwise, the new model is worse than the original.

The x-axis denotes the number of iterations, i.e. the number of inputs removed 
from the models. Since the y-axis and x-axis are defined in the above-mentioned way, 
the best model obtained during the iteration is the one with smallest “Performance!” 
on the y-axis. This best model is referred as the “optimal model” in this chapter.

Table 5.3 lists the inputs selected by the “optimal model” for each softsensor. In 
this table, “o” means the corresponding “Tag Name” is selected based on stepwise 
regression; “x ” denotes the input should be removed.

After selecting the input set of the “optimal” model and still using the PLS method, 
the softsensor models for each quality variable can be obtained. The result for
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Estimation without correction term
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Figure 5.5: Brightness estimation with nonlinear consideration versus time in

sampling periods
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Table 5.3: Input variables selected for the “optimal models”: o- selected; x - removed;
Names Brightness Tensile Strength Bulk Density Opacity Scattering

PIPE R O o 0 o 0 X

P2 PERO o o o o X

P I CAUS o o o o o

P2 CAUS o o o 0 X

PROD RATE X X X X X

CONSIST X o o X o

P2 TEMP X X X X X

P2 DISC 0 o o X X

FLOW DIL X 0 0 X X

ASPEN o X X X X

SULPHITE o o o 0 o

CAUSTIC o o o o o

P2 RISE o X o 0 X

PQM X X X 0 o

TOTAL H202 o o o o X

TOTAL NaOH o o o 0 o

PI RATIO 0 o o o o

P2 RATIO o X o X X

ENERGY X X X X X
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Stepwise regression result for Brightness
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Figure 5.6: Stepwise regression results for Brightness

Table 5.4: Comparisons between the preliminary and the “optimal” model
Model Brightness Tensile Density Opacity Scattering

CC (optimal) 0.9835 0.9612 0.9688 0.9777 0.9813

CC (preliminary) 0.9723 0.9345 0.9378 0.9742 0.9761

MSE (optimal) 0.0269 15.7620 0.0049 0.0717 0.1187

MSE (preliminary) 0.0687 41.5929 0.0148 0.1691 0.2874

brightness is shown in Figure 5.7.
Further, both CC and MSE are used to compare these new models with the results 

prior to stepwise regression in order to determine how the model quality improved 
after reducing the number of model inputs. Table 5.4 shows the comparisons.

From Table 5.4, it is obvious that the “optimal” model performs much better than 
the preliminary one regardless whether it is based on CC or MSE. At the same time, 
the “optimal” model has a simpler structure when compared to the preliminary one.
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Estimation without correction term
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Figure 5.7: “Optimal” model result for Brightness
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Brightness-Pre — - Brightness-mea
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Figure 5.8: Online result for Brightness

5.5.5 Online Implementation and Results

After successfully designing the softsensor model, I put the “optimal” model online 
to evaluate its performance in practice. The implemented softsensors have been 
successfully running for over a year. Figure 5.8 illustrates the online brightness 
softsensor results from April 20 2002 to May 14 2002. The “optimal” model’s 
performance is thus validated by these results. The softsensor models were running 
satisfactorily most of the time.

Note that all the results presented in this chapter are based on “feed forward” 
estimation, which is solely obtained from the process variable measurement. In 
contrast, “feed back” estimation uses the latest available laboratory measurements 
of the quality variables in addition to the process variable measurements to obtain 
the estimate. It is obvious that estimation with “feed back” tends to provide a 
more accurate performance. However, when evaluating model performance, it is 
preferable to use the “feed forward” approach. Doing so avoids the problem of lab
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measurement masking the predication error, which makes it possible to assess the real 
model performance. Nevertheless, when the softsensor models are implemented in the 
real world, the “feed back” approach can be used to increase estimation accuracy.

5.6 Concluding Remarks

In this study, five softsensor models for estimating five different quality variables 
were successfully developed by using the PLS method. These softsensor models have 
been implemented online and validated in the real world. The stepwise regression 
method was proven to be useful for eliminating unimportant inputs for the purpose of 
improving model’s overall performance. Nonlinear properties of the bleaching process 
at Millar Western were also considered in order to compensate for the nonlinear effect 
of the system.

The developed softsensors can be used for several purposes:

• Process monitoring: The softsensor gives the estimated inter-sample behavior 
of quality variables. Operators and control engineers can use this information 
to monitor the entire plant in operation. If the softsensor estimates is off target, 
one can infer that something in the process is not functioning properly.

• Inferential control: Because the softsensor provides the estimate at the same 
rate as the sampling rate of process variables, the softsensor estimate can 
be used as the feedback source to an advanced controller. Consequently, 
certain processes that were originally difficult to control due to measurement 
unavailability become controllable. Some applications have been made ([6 8 ]) in 
this area.

• Process optimization: Essentially, softsensor is a model that portrays the under 
relationship of the entire process. Not only does it identify the process variables 
that affect the process output - it also estimates the magnitude of the effects. 
One can then use this information to optimize the operation of the entire plant.
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5.7 Appendix: the Partial Least Squares (PLS) 

M ethod

The PLS method is a well-known multivariate statistical analysis method that allows 
one to capture the maximum relationship between two data blocks: Y G 9?‘Vxm and 
U  G 3?iVx/, where N  is the number of observations, m  and I are the number of 
dependent and independent variables, respectively. The technical details of the PLS 
method are provided by Geladi and Kowalski (1986, [35]), and Hoskuldsson (1988, 
[51]). Only a brief introduction of this method is presented here.

In a linear steady state process, Y and U can be related by the following linear 
equation:

Y  = U0 +  E (5.5)

where 0  G 5?ixm is the model parameter and E G is the process noise.
According to the ordinary least squares (OLS) theory, if the matrix U 'U is non­

singular, the best estimation in the least squares sense, provided E is a zero-mean 
white noise process, is: 6 =  (U 'U)_1U'Y. However, in practice, the matrix U is 
most unlikely to be of full rank or U 'U is unlikely to be well conditioned. In order to 
solve this problem, the PLS method was proposed to find the 9  which can provide the 
maximum covariance matrix between linear combinations of Y  and U. The problem 
can be described in the optimization framework as follows:

max cou(ti, hi) = t'xhi =  w xU 'Yqi
w i , q i

s.t. w xwi =  1 (5-6)

q'iqi = 1

where t i  =  Uwi and hi =  Y qx are linear combinations of U  and Y respectively.
cov{a, b) stands for the covariance between two vectors a and b.

Using Lagrangian multiplier and singular value decomposition (SVD), wq and
qi can be proven to be the first column of matrix L and Y  respectively, where
U 'Y  =  LSV' (Hoskuldsson 1988, [51]; Manne 1987, [82]). Once ti and hi are
obtained via ti  =  Uwi and hi =  Yqx, a linear relation between hi and t x can be

h 't
found to be: hq =  &iti, where b\ =  -y— is the linear regression coefficient. Thus

t i t i
the data blocks U  and Y  are indirectly related through the inner relation between 
hi and ti.
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Therefore, the remaining unexplained information in matrices U and Y  can be 
calculated as follows:

one. The above procedure is repeated until the useful information in matrix Y  can not 
be further explained by adding any more latent variables. Choosing a proper number 
of the latent variables na is a crucial issue in PLS. Wold (1978, [132]) suggests cross 
validation method to determine the proper nQ. In addition, Denham (2000, [24]) 
investigated the determination of the number of factors in PLS framework.

From a practical point of view, PLS can be considered as a technique that breaks up 
a multivariate regression problem into a series of univariate regression problems. The 
original regression problem is handled by constructing na inner relationship models 
(usually n a «  n). In matrix form, the prediction model can be expressed as:

where Y is the predictive output, B is a diagonal matrix with bo, • • • , bUa on 
the diagonal, T = [tlt t2, • • • , tnJ and Q = [qx, q2, • • • , q,J.

The iterative algorithm of PLS was developed by Hoskuldsson (1988), which can 
be briefly stated as follows:

1 . Set y  to a column of Y

2. Regress columns of U  on y: c =  TJ'y / 1 i Y112

3. Normalize c to unit length: c =  c /||c | |2

4. Calculate the scores: t  =  Uc

5. Regress columns of Y  on t: g =  Y 't / | | t | | 2

6 . Normalize g to unit length: g =  g /||g | | 2

7. Calculate new y vector: y =  Yg

8 . Check the convergence: if ||y -  yoW|| < convergence criterion to step 9; if not 
to step 2

9. U loadings: w = U/t / | | t | | 2

Ei = U — tip'j, Fi =  Y  — 6 i t xqi (5.7)

where pi is to ensure that the next score vector is orthogonal to the previous

Y  — fritxqi 4 b K a ^ n a ^ n a  ~~ TBQ' (5.8)
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10. Y loadings: q  =  Y 'y / ||y | | 2

11. Regression: b =  y 't

12. Deflation: U =  U — tw ' and Y = Y — 6tq '

13. To calculate the next set of latent vectors repeat; else, stop.

In addition, Kaspar and Ray (1992, [60]) give an excellent graphical interpretation 
of PLS, which makes PLS very understandable.
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Canonical Variate Analysis for 

Ill-conditioned Data3

6.1 Introduction

An Increase in the complexity and instrumentation of industrial processes has resulted 
in a proliferation of data consisting of large numbers of highly correlated variables. 
Examples of this activity include the fields of organic and analytical chemistry, process 
control, biotechnology, food science, pharmacology and environmental research ([14]). 
Sometimes, one is interested in uncovering, describing and summarizing structural 
relationships among the measured variables. However, in most applications, given 
a set of process variables, the objective is to relate a subset of variables, termed

3 A version of this chapter has been submitted for possible publication to the Journal of Process 

Control by Li, Han and Shah.
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the response variables or the outputs, to the remaining process variables, termed the 
explanatory variables or the inputs. This procedure is well known as multivariate 
regression. For instance, one may be interested in relating a set of quality variables 
of a product to another set of variables in the associated production process. Due to 
the high degree of correlation among variables in both the input and output spaces, 
multivariate regression techniques based on latent variables such as canonical variate 
analysis (CVA) (also termed canonical correlation analysis (CCA) in some literatures), 
principal component regression (PCR), and partial least squares (PLS) have been 
sought for this purpose ([14] [60] [128]).

Similarities and differences exist among various latent variables-based regression 
techniques. They are similar in that each of them uses latent variables transformed 
from the inputs, instead of the inputs themselves, to regress the outputs. However, 
each technique constructs its latent variables in a unique manner. While PCR is 
most effective at removing redundant variables in the inputs, CVA is the best at 
relating the inputs to the outputs. PLS is somewhere in between PCR and CVA, as 
graphically illustrated by Kaspar and Ray (1992, [60]). Furthermore, geometrically, 
the goal of CVA is to minimize the angle between each pair of latent vectors ([64]), 
which are transformed from the input and output data respectively. Nevertheless, 
PLS pursues minimization of the distance between each pair of latent vectors ([51]).

CVA has been extended to dynamic systems as well. For instance, Larimore 
([67] [6 6 ]) has developed the CVA-based subspace method of identification (SMI) 
for state space models of processes. Furthermore, the CVA-based SMI has been 
applied to process monitoring and fault detection ([117] [89]). Like PCR and PLS, 
CVA transforms the original inputs and outputs into two sets of latent variables. The 
latent variables can also be defined as canonical variables or scores. Subsequently, 
regression is performed between two latent variables with each pair. Every latent 
variable is a linear combination of its associated variables.

However, existing CVA algorithms have a fundamental weakness. Notice that in 
CVA, each latent variable is scaled to have unit variance. Because a latent variable is 
simply a linear combination of the original process variables, in order to ensure that 
each latent variable is of unit variance one must scale the original process variables by 
the square root of their covariance matrix. If collinearity exists in the inputs and/or 
outputs, process data are referred to as ill-conditioned. With such data, the covariance 
matrix of the original process variables has null eigenvalues. As a result, the inverse of 
the covariance does not exist, making the afore-mentioned scaling impossible. Because 
it fails to deal with collinearity either in the input and/or output variables, strictly
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speaking, in our viewpoint, existing CVA methodology cannot be categorized as a 
latent variable-based regression approach, while PCR and PLS definitely can.

This chapter proposes a novel CVA algorithm that is insensitive to ill-conditioned 
data while preserving all the advantages of conventional CVA algorithms. To treat the 
singularity in the covariance matrices of the input and/or output data, a truncated 
Cayley Hamilton series must first be employed to best approximate the inverse of the 
covariance matrix. Then, the model parameter matrix, which associates the inputs 
with the outputs, is estimated in terms of a reduced Krylov controllability matrix. 
The latent variables for the inputs and outputs can be directly calculated from the 
data and the Krylov matrix without calculating the weighting vectors.

Although Di Ruscio (2000, [113]) has pioneered the use of the above-mentioned 
reduced Krylov matrix for PLS regression, extension of the concept to CVA is a 
major contribution of this chapter.

6.2 Numerical Problem of Existing CVA

Why does a conventional CVA algorithm not work with ill-conditioned data? To 
answer this question in detail, let us first revisit the CVA-based multivariate regression 
method.

6.2.1 CVA-based M ultivariate Regression

It is assumed that the process can be represented by the following regression model:

y  (k) =  M u  (fed) (6.1)

Assume that a series of data {u(k) ,y(k)}  is collected from the above-mentioned 
process. If both u (k) and y (k) are corrupted by noise, one can represent them as 
follows:

u(k) =  u{k) +  v(fc), y(fc) =  y(k) + o(k) (6.2)

Since only u (k) and y(k)  are available, use of Eqn. 6.2 in Eqn. 6.1 gives:

y(k) = M u  (kd) +  e(k) (6.3)

where e(k) =  o(k) — M v (fc ) accounts for the effects of measurement noise in the 
inputs and outputs. From the assumed distributions of v(k) and o(fc), it can be
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inferred that e(k ) follows a multivariate Gaussian distribution with zero mean and a 
covariance of R e =  R 0 +  M R„M ' G S mxm ([58]).

Using N  samples of collected data, one can designate one input block U G DfpVx/ 
and one output block Y  G $tNy'm. In addition, we define another data block as 
E  G ?RNxm for e(k), which has a format similar to that of U  and Y. In each block, 
the rows correspond to samples, while the columns correspond to the variables. With 
these data blocks, one can transform Eqn. 6.3 into:

Y  =  UM ' +  E (6.4)

CVA does not use U to regress Y  directly. Instead, the objective of CVA is to find 
latent variable vectors t j = UPj from the column spaces of U to regress Y, or to 
regress the latent vectors hj =  Ywj of Y. Like their counterparts in PLS, pj and wj 
are defined as the j th weight vectors of U  and Y respectively. However, unlike PLS, 
the solution to pj  and w j  must be such that the resulting t ?- and hj are of highest 
correlation.

To calculate the first pair of latent variable vectors {t l5 hx}, the following objective 
function can be established:

max(Upx)/Yw 1 (6.5)
P l . W l

subject to (U pi/U px  =  1 and (Ywjj'Ywx =  1 .
Further, the successive pairs of latent variable vectors {tj. h,} are calculated by 

maximizing

(UpjO'Ywj- (6 .6 )

under these constraints:

( U p j / U p ^ l ,  (Yw^'Yw.,-=  1,

(U p ^ 'U p ^ O , (Ywj)'Ywj = 0, (Upj)7 Ywj =  0

where i j ,  1 < i < min{7, m}  and 2  <  j  < min{/, m}.
Suppose that 1 < n 0 < min{I,m} latent variables have been selected from U. It

follows from Burnham et al. (1996, [14]) that the estimate of M  in terms of na latent
variables of U is

M ' =  P n X 0Y (6.7)
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where P „ 0 =  [pi • • • pnJ  6  9ft/xn° are n0 weight vectors for U , and T „ 0 = [tj • • • t„ J  £
S f t N x n 0 are the associated latent variable vectors.

Applying Eqn. 6.2 to Eqn. 6.7, the predicted value y (k) of y (k) is as follows:

m  =  Y * T X " W  =  Y 'T not(fc) (6.8)

where t(k) = P „ 0u(A) e are the latent variables of u(A). Moreover, the prediction
error of y(A) is:

y (A ) =  y(A ) -  y (A ) =  y(A ) -  Y 'T „ .t (A )  (6 .9)

Finally, pre-multiplying Eqn. 6.9 by shows that

h(A) s  h(A) -  h(A) =  h (k) -  H ; 0T„„t(A) (6.10)

where H„„ =  Y W „„ = [hi---h„„] € $lNxn° are n 0 latent variable vectors of Y, 
h(A:) = W'noy(k)  £ 3?n° are latent variables of y(/c), and W no = [wi • • • wno] £ fflnxn° 
are n 0 weight vectors for Y. Note that H ^oT „ 0 £ is a diagonal matrix due
to the constraints imposed in Eqns. 6.5 and 6.6. Denoting Q no =  H'„oT no, one can 
rewrite Eqn. 6.10 as

h(fc) =  h(fc) -  h (k) = h (k) -  Clnot(k)  (6 .1 1 )

which is the CVA-based regression model of the process under consideration in terms
of latent variables.

6.2.2 Numerical Problem  with Ill-conditioned Data

As derived by Johnson and Wichern ([58]), { p i , - , - jP j } a n d { w i ,  ■ • • , w^} 

are the eigenvectors corresponding to j  largest eigenvalues of matrices 
( U 'U ) -1  U 'Y  ( Y 'Y ) -1  Y 'U  and ( Y 'Y ) -1  Y 'U  ( U 'U ) -1  U 'Y ,  respectively. That is

( U 'U ) -1  U 'Y  ( Y 'Y ) -1 Y 'U p j  =  XjPj  (6.12)

and

( Y 'Y ) -1  Y 'U  ( U 'U ) -1 U 'Y w j  =  XjWj (6.13)

for 1 < j  < n Q. The following remarks can be made on the basis of Eqns. 6.12 and
6.13. 
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R em ark  6.2.1 The non-trivial solutions to p7 and wj exist only if U 'U  and Y 'Y  
are non-singular.

R em ark  6.2.2 If U 'U and Y 'Y  are not singular but have very small eigenvalues, 
numerical problems may arise in calculating pj and w7. In this case, even slight 
perturbations in the eigenstructures of U 'U  and/or Y 'Y  can cause substantial 
variations in pj and/or wj. For example, a serious mismatch may exist between 
the earlier estimated process model M  and the newly sampled data, even in the 
presence of normal uncertainties in the process.

R em ark  6.2.3 Due to the inevitability of measurement noise in {y(&)}, the non­
singularity of Y 'Y  can be ensured in most cases, except in the extreme case where 
the number of samples is smaller than the number of variables, i.e. N  < m. As a 
result, one does not need worry about the existence of (Y 'Y)-1 . However, one may 
have to concern the singularity of U'U. In a closed loop control system, u (k) G 5R* 
are the outputs of controllers. If u(£:) are measured, the contribution of noise can 
guarantee the non-singularity of U'U. If u (k) are calculated, then U 'U  may be 
singular. The key to overcoming the weakness of existing CVA algorithms is to 
approximate the inverse of U 'U  using an optimal reduced Krylov matrix. This will 
result in the development of ill-conditioned data insensitive CVA.

6.3 CVA Insensitive to Ill-conditioned D ata

In this section, first it will be illustrated that the estimate M  of M  matrix in Eqn.
6.4 is a function of a Krylov controllability matrix. Subsequently, in the presence 
of singularity in U'U, optimal approximation of (U'U ) - 1  is investigated. Finally, a 
CVA insensitive to ill-conditioned data is developed by analyzing the structure of the 
Krylov controllability matrix.

6.3.1 Reduced Krylov Controllability M atrix

In order to introduce the concept of the Krylov controllability matrix, we will assume 
that at this moment U 'U  is not singular. Consequently, it is trivial to derive the least 
squares (LS) estimate of M as below:

M '=  (U 'U ) - 1  U 'Y (6.14)
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Assume further that the characteristic polynomial of matrix U 'U  is

Det  (AI/ — U'U) = Â -t- OjÂ  * +  • • • +  cq-iA + cq = 0,

where Det(-) represents the determinant of a matrix. A > 0 is an eigenvalue of 
the matrix U'U, and c t j  /  0 (j £ [1, Z]) is the j th coefficient of the polynomial. 
Consequently, from the well-known Cayley-Hamilton Theorem it follows that

(U 'U)' +  qi (U 'U ) ' - 1  + • • ■ +  <*,_! (U'U) +  ailt = 0 

Based on Eqn. 6.15, the following can be derived:

I, =  _ 1  ('(u 'U )< + a i(U 'U ) z" 1 +  --- +  a /_ i(U 'U  
0.1 \

(6.15)

(U 'U)' (U'U ) 1" 1 ••• U 'Ul-l
o \h

a \h

(6.16)

where a* is the i th element of vector 'lPi — ~ ^ l [ 1 0 \ • ■ • cq_o ai-i]* G 3  ̂for i G [1, /]. 
Hence, multiplying both sides of Eqn. 6.16 by (U 'U ) " 1 leads to

(U 'U )_1=  (U 'U ) 1" 1 (U'U)1-" . . .  U 'U  I,I - 1 / t t ' t  t \^~2

Finally, applying Eqn. 6.17 to Eqn. 6.14 results in:

o*lli

o \h

(6.17)

M' = (U 'U ) /_ 1  (U'U)1"" ••• U 'U  1/1—2

(U;U )'_1 U'Y U 'U U 'Y  U 'Y

a l l  i

of*

o^J.r

0[ Im

U 'Y

(6.18)

Denote

K, = (U 'U ) ' " 1 U 'Y  (U'U ) ' " 2 U 'Y  U 'U U 'Y  U'Y
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With such a definition, Eqn. 6.18 can be rewritten as

ajlm
M' =  K,

Oil Ijyj

indicating that the LS estimate of M  can be uniquely determined by the Krylov 
controllability matrix of pair {U'U, U'Y} and the coefficients of the characteristic 
polynomial of matrix U'U.

If U 'U  is singular, the inverse of U 'U no longer exists. However, as proved by Di 
Ruscio (2000, [113]), one can use the following truncated Cayley-Hamilton series:

Um,, =  [(U'U ) ' ” - 1 (U'U ) ' 0 " 2 • • • U 'U  I,] (6.19)

to obtain an optimal approximation of (U 'U )-1, where 1 < Iq < I is the rank of 
U 'U, 0* =  [0i 0 2  ‘ ' 0*o] / e a parameter vector to be determined later, and 
the subscript “tchs” is the abbreviation of “truncated Cayley-Hamilton series” . As a 
consequence, the estimate of M  is

M' =  [(U'U)‘0-i (U'U) I  /]

01* 1/

U'Y

(U 'U ) 10 -1  U 'Y (U'U)'0- "U 'Y  ••• U'YT̂tVo- 2 TT/1

01 In 

02%

v a

= K lo

where
K, =

01 Im

02 Im

0 /ô m

(U 'U ) ' 0 - 1  U 'Y  (U 'U ) ' 0 - 2  U 'Y  • • • U 'Y

( 6 .20)

g  S ^ / x ( ( 0m )
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is the reduced Krylov matrix of pair {U'U, U'Y} with order of l0.
Eqn. 6.20 indicates that an estimate of M  matrix can be achieved with the 

reduced Krylov controllability matrix K /0 and the parameters 0*. Since the former 
is composed of data matrices U and Y and is always available, all one must do to 
make such a pursuit possible is to estimate 0 *.

6.3.2 Optim al Estimation of Param eter Vector

According to the LS criterion, the parameter vector 0* must be determined such that 
the prediction error matrix

Y  -  UM' = Y -  UK/,

01 In 

0 o In

n x

(6 .2 1 )

will have a minimum squared Frobenius norm ([113]). We now introduce the column 
vector operator Vec(-). For example, Vec(Y) £  3RNm is a column vector constructed 
from the data matrix Y  by sequentially stacking each column of Y onto another. 
Consequently, minimizing the squared F-norm of error matrix Y — UM ' in Eqn. 6 . 2 1  

is equivalent to minimizing the squared 2-norm of the stacked vector, Vec(Y) — U l0* , 
where,

U, = Vec (U (U 'U ) ' 0 - 1  U 'Y) U ec(U (U 'U )'0- 2 U 'Y ) ••• Uec(UU'Y)

is an (Nm)  x Iq matrix. The LS solution to this minimization problem can be readily 
obtained:

0* = (U'LU L ) - 1  U',Vec(Y) (6 .22)

6.3.3 Calculation of Latent Variables

We have shown in Section 6.2.2 that the weight vectors for U and Y can be calculated 
from Eqns. 6.12 and 6.13, provided that (U'U ) - 1  and (Y 'Y ) - 1  exist.

When U 'U  is singular (as explained earlier Y 'Y  is assumed never to be singular), 
we use the truncated Cayley-Hamilton series, U tChs, to approximate (U 'U)-1 . Using 
such an approximation in Eqns. 6 .1 2  and 6.13 leads to

UtchsU'Y (Y 'Y ) - 1  Y 'U pj =  AjPj (6.23)
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and

(Y 'Y ) - 1  Y 'U U (cfcsU'Ywj =  Xj -wj (6.24)

Pre-multiplying Eqn. 6.23 by U gives

U U 4cAsU /Y (Y 'Y ) - 1 Y 'Upj =  AjUpj,

which can be simplified into

UUtcfcsU'PjyUpj =  XjUpj. (6.25)

by denoting
P y = Y (Y 'Y ) - 1  Y '.

Similarly, pre-multiplying Eqn. 6.24 by Y generates

PyUUtcfcaU'hj = Xjhj, (6.26)

where hj =  Yw,-.
Eqns. 6.25 and 6.26 represent eigenproblems for non-symmetric matrices. Because 

only eigenvectors of a symmetric matrix have useful features, e.g. orthonormality, we 
must transform the non-symmetric eigenproblem into a symmetric one.

We begin the investigation with the calculation of hj for j  £ [1 , no]. Noted that 
P y is a projection matrix. Therefore, =  Py, and we can rewrite Eqn. 6.26 as

It is a well known fact that for two arbitrary matrices Mi and M 2 with 
compatible dimensions, M iM 2 and M 2M X have identical eigenvalues. Thus, matrices 
P,yP yUU,c/lsU' and P y U U ^ U 'P ,, share eigenvalues.

Furthermore, since Pj/U U tCftSU'Pj/ is symmetric, any existing standard algorithms 
for a symmetric eigenproblem can be utilized to calculate the latent vectors hj. For 
example, as shown in Golub (1973, [42]), if

P;iyP?yUU)c/j,sU  h j — A jhj, (6.27)

P  y UUic/lsU P  yZj AjZj (6.28)

where Zj is the j th eigenvector of the symmetric matrix, then

hj — P>/Zj-
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Sec. 6.3 CVA Insensitive to  Ill-conditioned Data

Finally, the calculation of another set of latent vector t j  for U  is discussed. Because 
TJtchs is the best approximation of ( U 'U ) - 1 , we can express the product of U tc/ls and 
U 'U  as follows:

X J t ^ U 'U  =  Ii H- e ( U )

where e ( U )  represents the error caused by the approximation. Obviously, e ( U )  =  0  

when U ' U  is not singular.
The incorporation of I; =  U tch sU 'U  — e ( U )  into Eqn. 6 .25  tells us that

U U tc/lsU 'P „ U  ( U tc/iSU 'U  -  e (U ) )  Pj =  XjUpj

which, because tj  =  U p c a n  be rewritten as:

U U tcfcflU 'P „ U  ( U tChaU 'tj -  e (U )p j)  =  Xjtj,  (6 .29)

If we ignore the term e (U )p j  on the left hand side (L H S), Eqn. 6 .29  can be further 
simplified as follows:

U U tchaU 'PyU U tefcgU 'tj- =  Xjtj  (6.30)

In such a case, t  j is the j th eigenvector of the symmetric matrix U U i C/lsU 'P ,yU U <c/iSU '.

Having developed the algorithm to directly calculate latent vectors for U and Y, 
the following remarks can be made.

Remark 6.3.1 Because { t i , t 2 ••• , tj} are eigenvectors of a symmetric matrix, 
orthonormality among these latent vectors of U  are ensured. The same conclusion 
can be applied to {hi, h 2 • • • , hj}, the latent vectors of Y.

Remark 6.3.2 Due to the omission of e ( U ) ,  the orthogonality between tj and hj 
for % 7  ̂j  is lost. This is slightly different from the conventional CVA, and is the price 
paid for handling the collinearity among U . However, because the inverse of U 'U  is 
optimally approximated by TJtChs, tj and hj still have the highest correlation, while 
tj and hj have the least correlation when i ^  j.

Remark 6.3.3 The newly-developed CVA is reduced to conventional CVA if U 'U  is 
not singular. When this is the case, U ^  = (U 'U ) - 1 . Hence, the latter is in fact a 
special case of the former.

Assuming that Y 'Y  is non-singular, we can state the complete algorithm of the 
novel CVA developed in this section as follows:
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Sec. 6.4 Extension to Dynamic Processes

Step  1 With N  samples, construct data matrices U and Y, and scale each variable
in the data matrices into zero mean and/or unit variance.

S tep  2  Calculate the condition number (CN) of matrix U'U. If the CN is large, e.g. 
1010, go directly to Step 4. Otherwise, go to Step 3.

S tep  3 Perform conventional CVA on U and Y. Stop.

S tep  4 Calculate the rank, l0, of U'U. Subsequently, form the matrix UL and 
calculate 'ifr* according to Eqn. 6.22.

S tep  5 Calculate U tcils using Eqn. 6.19. Then calculate P^.

S tep  6  Calculate {tj,hj} using Eqns. 6.30 and 6.28, respectively, for j  € [l,n0] with
no = min

S tep  7 Using Eqns. 6 . 8  and 6.9, calculate the predicted value, y{k),  of y(k)  and the 
prediction error, y(k),  of y (k).

Step  8  If necessary, calculate h (k) using Eqn. 6.11. Note that f ino is no longer a 
diagonal matrix due to the lose of orthogonality between h, and tj for i , j  G [1, no 
and i ^  j.

6.4 Extension to Dynamic Processes

In this section, the newly developed CVA algorithm will be extended to dynamic 
processes. In accordance with Bauer and Ljung (2002, [11]), a linear time invariant
multi-input multi-output (MIMO) process can be represented by the following state
space equations in the discrete time domain:

x(Jfe +  l) =  Ax(fc) +  Bu(fc) + E<p(k)

y{k) =  C x(k) + (f>{k) (6.31)

The system under consideration is assumed to be stable, i.e. all eigenvalues of 
A lie inside the unit circle, and strictly minimum phase, i.e. the eigenvalues of 
Aa, =  A -  EC  are also assumed to be located inside the unit circle. It is further 
assumed that the inputs u (k) are known, as they are outputs from controllers.
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Having performed a series of algebraic manipulations on Eqn. 6.31, we can arrive
at

y„(fc) =  [P„ | H„] y/1 - 1  { k - n ) (6.32)

yM(fc) G SRm'1, € 3?”", G 9?^, and yM_i(fc-/x) G are
stacked vectors with nn(l =  m(yu +  1 ) and n/x =  n(ju + 1 ). yU is a positive integer that 
can be calculated through methods developed by Bauer (2001, [10]). The definition 
of a stacked vector is

z(r)

M r) = :
z(r + e)

where z is equal to u or y, r  to k or k — /i, and g to yu or n — 1 respectively. Moreover, 
in Eqn. 6.32

P„ =

C

CA

CA ,X

[A£_1B A r 2B ••• B | A£_1E A r 2E

H„ =

0

CB

CA,l_1B . 

I»

CE

0

0

CA/i-1E .. .  CE I n

CB

0

The detailed derivation of Eqn. 6.32 is provided in Appendix 6 .A.
In Eqn. 6.32, because has been assumed to be a Gaussian distributed

white noise sequence, it can be proved that (k) follows a zero mean Gaussian
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Sec. 6.5 Numerical Examples and Discussions

distribution with covariance (I^+i <g> R^) G^, i.e. G ^ e ^ k )  ~  J\f (0, R e),
where <8> is the Kronecker tensor product.

Furthermore, if we define the data matrices as follows:

Y rf =

y ^  +  i) 

y ^  +  2 )

y'a(M + n )

N x m , ,

V d =

y^-i(i) u ^ ^ /x  +  i) 

u^-i(2) y^_i (2) u^_i(^ +  2) G ^x((2l+m)n)

yi_! ( N )  vl^  +  N )

and denote Md =  [P^ | H^], then Eqn. 6.32 can be extended to

where

E„r =

Yd =  UrfM^ +  Erf

A4 +  2 )G^ 

0 >  +  lV)G'

(6.33)

N  x n ,,

In Eqn. 6.33, the subscript d in each matrix stands for dynamic.
Now, because Eqn. 6.33 has a format similar to that of Eqn. 6.3, the newly 

developed CVA algorithms can be directly applied to dynamic processes by simply 
replacing U and Y with Urf and Y d, respectively.

6.5 Numerical Examples and Discussions

In this section, numerical examples are provided to demonstrate the validity of the 
novel CVA algorithm and its advantages over PLS, PCR, and conventional CVA with 
respect to its predictive powers.
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6.5.1 Exam ple 1

In this example, we use real data from a pulp and paper mill. This set of data, which 
has 6  input variables (1 — 6) 2  output variables (m =  2 ) and 38 samples (N=38), is 
presented in Appendix E of Di Ruscio (2000, [113]).

The two output variables, y-i(k)  and y 2 (k) ,  are tensile and tear, both of which 
are important in describing paper quality. It would be highly beneficial to predict 
these variables from the inputs, { u i ( k ) ,  u 2 (k) ,  • • •  , u e ( k ) } .  Among the 6  inputs, 
U i ( k )  is the freeness, { u 2(k) ,  u z ( k ) ,  u 4 ( k) ,  u 5 ( k ) }  represent fiber length distribution, 
and ue(k) is the shive content of the pulp. When the length distribution is precisely 
measured, we have a linear dependency, u2(k) + u ^ k )  + u4(k) +  u$(k) =  1 0 0 .

We construct two data matrices, U  £ 9ft3 8 x 6 and Y  G lft3 8x 2  from the inputs and 
outputs. In these matrices, each column is scaled to be mean-centered and of unit 
variance. Moreover, we form the reduced Krylov matrix as follows:

K , = (U/U)4U /Y (U'U)3U 'Y  (U/U )2U /Y  (U'U)U'Y U 'Y 6 x10

where, because matrix U'U has rank 5, Iq =  5. Because min(/0, m )  — 2 , we choose 
no =  [1,2]. Two cases are presented.

Case 1

In this case, 30 data points from Sample 5 to Sample 34 in U and Y are used. First, 
we obtain the estimates of the parameter vector ip*, which is:

n /
15.0173 -77.2865 158.3347 -118.7903 26.7435

Then, we formulate U (c/,s based on U 'U  and the elements in xp . The latent vectors 
{ti, t 2 } and {hi, h2} are calculated directly.

After obtaining these latent vectors, we calculate the predicted values of Y  by

Y  _  t  T' Y1 no no

where n 0 =  1 or 2. The prediction error matrix is Y — Y, whose squared F-norm is 
listed in Table 6.1. For purpose of comparison, we apply other latent variable-based 
approaches (such as CVA, PLS, and PCR) to the calculation of Y. The resulting 
||Y — Y ||p corresponding to different approaches with different numbers of n0 are 
also listed in Table 6.1. Therein, note that, due to the singularity in U 'U, the 
conventional CVA is not applicable (N/A). In addition, although PLS and PCR are
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Table 6 .1 : ||Y —Y|||- calculated from 30 samples using various approaches in Example 

1 _________________________________________________________

n0 Novel CVA Conventional CVA PLS PCR

1 0.9893 N/A 1.0266 1.0422

2 0.9216 N/A 0.9923 1.0098

3 N/A N/A 0.9343 0.9895

4 N/A N/A 0.9236 0.9708

5 N/A N/A 0.9216 0.9216

workable, they give larger prediction errors. Thus, the novel CVA provides the best 
prediction. For PLS and PCR, the number of latent variables can be up to the rank 
of U 'U  (5 in this case). It is clear that, for predicting outputs, the use of 2 latent 
variables in the new CVA is equivalent to using 5 in PLS or PCR. Thus, the new 
CVA is much more efficient.

We have verified the orthogonality between any two latent vectors of { t1; to}, and 
between those of {hi, h2}. The correlations between {h;, tj} for i . j  = [1,2] are 
presented below:

Cor (ha, ti) Cor (hi, t 2) 0.91188573812187 -0.00000015956836

Cor( h 2 ,t i) Cor (h2 , t 2) -0.00000036889936 0.39443818209650

Clearly, the orthogonality between ti  and h 2 or t 2 and hi is almost preserved (their 
respective correlations are very small), although the inverse of U 'U  is approximated 
in terms of the truncated Cayley-Hamilton series.

Case 2

The remaining 8  samples are used for validation. As before, we calculate ||Y — Y \ \2F 
using the newly proposed CVA and other latent variable-based methods. The results 
are shown in Table 6.2. Once again, it can be concluded that the new CVA out­
performs other approaches.
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Table G.2 : ||Y — Y||^ calculated from the remaining 8  samples using various

approaches in Example 1______________________________________
n0 Novel CVA Conventional CVA PLS PCR

1 0.3360 N/A 0.3774 0.3782

2 0.3457 N/A 0.3964 0.4014

3 N/A N/A 0.3438 0.3974

4 N/A N/A 0.3465 0.3681

5 N/A N/A 0.3457 0.3457

6.5.2 Example 2

In this example, data are generated from a simulated continuously stirred tank reactor 
(CSTR) process, which is depicted in Figure 6 .1 . In this process, the reaction is 1 st

m

Figure 6.1: A simulated CSTR process

order and the reactor system involves heat transfer and heat of reaction. The process 
has (1 ) one feed stream, which is formed by merging solvent and the reactant, (2 ) one 
product stream, and (3) a coolant flowing to the coil. The flows of the feed stream and 
the coolant control the outlet concentration (C^) and temperature (T ). By assuming
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that (1 ) the tank is well mixed; (2 ) physical properties are constant; and (3 ) the shaft 
work is negligible, the material and energy balances can be described by the following 
differential equations with nonlinear terms ([83]):

dCA
dt
dT
dt

^ (C ao — Ca ) — fae rtCa

aF£+ 1(T -T c ) (6.34)

In Eqn. 6.34, F, C'ao and To are the mass flow, concentration, and temperature of 
the feed stream respectively. Fc and Tc are the flow and temperature of the coolant, 
while

{(Z, b, Cp, Cpc, E / R ,  Ag, AHrxn.i V) Pi Pc}

are process parameters. The values of these variables and parameters under normal 
operating conditions are given on pages 90 and 91 of Marlin (1995, [83]).

After linearizing Eqn. 6.34 around a steady operating point and omitting the 
deviation variables of F and To for simplicity, one can represent the CSTR process in 
the continuous-time domain as follows:

■k{t) -

m  =

-7.5763 -0.0935 1 0
x(t) +

854.9129 5.8153 0 -12.1661
u (t)

1 0  

0  1

(6.35)

x(t)

In Eqn. 6.35, the state variables x(t)  G 9£ 2 and the inputs u(t) G 5ft2 are the deviation 
variables of Ca , T, Cao, and Fc, respectively, at the aforementioned steady operating 
point. In addition, y (t) G 5ft2 are the noise-free outputs.

Discretizing Eqn. 6.35 with a sampling rate of Ts =  0.25mm provides the 
counterpart of Eqn. 6.35 in the discrete-time domain:

x(A +  1) 1 

y(k)  =

-0.83143 -0.01261
x(A) +

0.003698 0.02566

115.3000 0.97510 19.29000 -3.72100
u(A~)

1 0  

0  1

(6.36)

x(A)

Moreover, by introducing the measurement noise, 0(A), to the outputs, and
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disturbances to the process, one can eventually arrive at

x ( k  + l) =
-0.83143 -0.01261

x(k) +
0.003698 0.02566

115.3000 0.97510 19.29000 -3.72100

+

y(fc) =

where 4>{k) 

0.01 0

0 . 0 0 0 0  

- 0.0001 

1 0

0  1

- 0.0001 

0.0085

x(fc) +  4>{k)

u(k)

m (6.37)

is a Gaussian-distributed white noise vector with covariance

0 0.01
We generate 100 points of training data by means of Eqn. 6.37, where we use the 

following MATLAB functions:

x\ = idinput([N, lj/rfes', [0,0.1], [—0.1,0.1])

Xi — idinput([N, 1 ],'rbs', [0,0.1], [-1,1])

to simulate the two input sequences.
Assume that we have no a prior knowledge of the system order. Using the scheme 

developed by Bauer (2001, [10]), we determine it to be equal to 2 . Subsequently, we 
construct the two data matrices U rf G sft96x12 and Y G K96x6. We scale each column 
in Urf and into zero mean and unit variance.

The rank of U^Ud is 12. We use the first 70 samples in U d and Yd for model 
identification, and the remainder for validation. As we did in Example 1 , we calculate 
squared F-norm, | |Y  —Y d ||p , from the identification data with uq G [1, 6 ]. The results 
are presented in Table 6.3. For comparison purpose, in the same table, we also include 
|| Y —Ydllp calculated through the use of PCR and PLS, respectively, with no G [1,12], 
in the same table.

From the results provided in Tables 6.3 and 6.4, it can also be concluded that the 
newly proposed CVA performs better than PLS and PCR in a dynamic process.

6.6 Conclusion

A novel CVA algorithm has been proposed in this chapter. It preserves all the 
advantages of the conventional CVA, but has the additional advantage of being 
immune to linear dependency among input variables of a multivariate process.
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Table 6.3: ||Y -  Y d|||. F calculated from the first 70 data samples using various 

approaches in Example 2_____________________________

no Novel CVA PLS PCR

1 0.9993 1.2474 1.3096

2 0.6079 0.9336 0.9854

3 0.3882 0.6438 0.7866

4 0.3330 0.4692 0.6827

5 0.3128 0.3955 0.4814

6 0.3061 0.3535 0.4085

7 N/A 0.3411 0.3875

8 N/A 0.3313 0.3523

9 N/A 0.3237 0.3444

1 0 N/A 0.3173 0.3384

1 1 N/A 0.3090 0.3241

1 2 N/A 0.3061 0.3061
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Table 6.4: ||Y — Y,/|)jr F calculated from the remaining data samples using various 

approaches in Example 2_____________________________

n0 Novel CVA PLS PCR

1 0.5577 0.6660 0.6784

2 0.3973 0.6534 0.7279

3 0.2990 0.5876 0.7774

4 0.2631 0.5174 0.6050

5 0.2455 0.3148 0.3973

6 0.2391 0.2645 0.3114

7 N/A 0.2444 0.3039

S N/A 0.2552 0.2648

9 N/A 0.2447 0.2607

1 0 N/A 0.2422 0.2476

1 1 N/A 0.2405 0.2379

1 2 N/A 0.2391 0.2391
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The significant contributions in this novel CVA are two-fold. Firstly, calculation of 
the latent vectors of the inputs and outputs has been transformed into a symmetric 
eigenproblem, in the format of truncated Cayley Hamilton series and a reduced 
Krylov controllability matrix. Secondly, the novel CVA has been extended to dynamic 
processes.

We have applied the newly proposed CVA algorithm to both simulated and real 
data with respect to predicting outputs. In addition, comparisons with other latent 
variable based schemes such as PLS, and PCR have been made in both static and 
dynamic cases. Results supporting the theoretical claim have been acquired.

6.A Derivation of Eqn. 6.32

By recursions, from Eqn. 6.31 it turns that

i - 1

x(fe +  i) =  A*x(fc) +  Ar [Bu(fc +  r) + E0(fe +  t )}
r = 0

i — 1

y (k  + 1) =  CA’x(lc) +  C ^  A T [Bu(A: +  r) + E(f>(k + r)] +  <f>(k +  i \ 6 .A.l)
T = 0

where % =  [1, //]. Therefore, stacking the preceding equation immediately gives

y^fc) =  T Mx(k) +  H f j .u ^ ik )  +  G ^ ( f c )

where r „  = [C' (CA)' • • • (CA")']' e  Km"xn.
On the other hand, substituting the second line for the first line of Eqn. 6.31 leads

to
x . ( k  -I-1) =  A x ( k )  + B u ( k )  + Ey(fc) 

from which by recursion we can obtain

ii-i
x(fc) =  A /Jx(fc -  n )  +  A r [Bu(fc -  n  +  r) +  E y ( k  -  / /  +  t ) ]

r= 0
n-l

«  Y ,  Ar [Bu(& -  II +  r)  +  Ey(fc - f i  + r)] (6 .A.2 )
T = 0

= [A^_1B A^-2B • • • B | A ^ E  A/1“2E • • • E]
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Sec. 6.A Derivation of Eqn. 6.32

where A/Jx(/c — fi) «  0 for a large value of n, as pointed out by Gustafsson and Rao 
(2002, [46]).

Eventually, the combination of Eqns. 6.A.1 and 6 .A.2 shows

y„(A:) =  [P,|H ,]

which is identical to Eqn. 6.32.
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Sensor and Actuator Fault Detection and 

Diagnosis Under Process Uncertainties

7.1 Introduction

Early FDD methods assumed the availability of an accurate model of the monitored 
system. Because modelling errors, i.e. model-plant-mismatch (MPM), are always 
present in a complex system, in practice, such an assumption can be invalid.
Moreover, disturbances are inevitable in most cases. Herein, MPM and process
disturbances are referred as to process uncertainties, a term that will be used 
throughout this chapter. Process uncertainties can render most accurate model-based 
FDI schemes to be non-robust, making them unworkable in worst case.

4A version of this chapter has been published in Control Engineering Practice Vol. 15, pp.

587-599, 2005, by Han, Li and Shah.
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Sec. 7.2 Problem Formulation

Recently, robust FDD schemes that enable the detection and isolation of 
faults in the presence of process uncertainties have drawn increasing research 
attention. Basically, existing FDD schemes take process disturbances and MPM 
into consideration separately. Disturbances decoupling FDD methods include those 
developed by Frank in 1994 ([34]), and Patton and Chen in 1992 and 2000 ([100] [101]). 
FDD schemes with robustness against the modelling errors have been proposed by Lou 
et al. in 1986 ([74]), Frank and Ding in 1994 and 1997 ([32] [31]), Gertler and Kunwer 
in 1995 ([40]), Chen et al. in 1996 ([17]), Shen and Hsu in 1998 ([118]), Hamelin and 
Sauter in 2000 ([47]), Qin and Li in 2001 ([106]), and Li and Shah in 2002 ([70]). This 
has been accomplished in both time and frequency domains. However, unless some 
restrictive assumptions on the MPM are made ([136] [16]), very few FDD schemes 
have the capability of simultaneously working in the presence of both disturbances 
and MPM.

This chapter proposes an online and real time sensor and actuator FDD scheme that 
handles process disturbances and MPM simultaneously for a multivariate dynamic 
system. By extending the well-known Chow-Willsky approach ([19]), we generate a 
primary residual vector (PRV), which is a fault-accentuated signal for fault detection. 
To generate the PRV, one does not need a precise state space model of the system 
under consideration. A roughly estimated model is sufficient. To detect and isolate 
faults in the output sensors only, the PRV can be made totally insensitive to process 
uncertainties under some conditions. To detect and isolate faults in the actuators, 
the PRV can be made almost insensitive to process uncertainties.

7.2 Problem  Formulation

7.2.1 System  Description

Assume that the normal behavior of a multivariate dynamic process can be 
represented by the following discrete time linear state space model:

x(fc +  l) =  Ax(fc) -1- Bu(fe) +  E0(fc)
(7.1)

y(k) =  Cx(fc)

where <f>(k) E represents the unmeasured deterministic process disturbance vector 
([45]), which can be any unknown function of time. The process is assumed to be 
observable.
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Sec. 7.2 Problem Formulation

With the presence of sensor/actuator faults and instrument noise, the inputs to 
the process and the observed process outputs can be represented by:

u(k) = u (k) +  f u(k)
(7.2)

y (k) = y(k) + P(k)  +  o(k)

where f u(k) G Ul is the actuator fault; and i y(k) G is the sensor fault. It is 
assumed that o i s  a Gaussian-distributed white noise vector with covariance matrix 
R OJ and is independent of the initial state xo and the disturbances <p(k).

In the fault-free case, f “(fc) and f y(k) are null vectors. In cases where some 
sensors/actuators are faulty, the corresponding elements in f y(k) and fu(k) will be 
non-zero, while the other elements remain zero. For example, to indicate that the 
first output sensor is faulty, the first element in i y(k) is nonzero while other elements 
are zero. It is assumed that u (k) and y (k) are available, because they are controller 
outputs and the observed process outputs, respectively.

7.2.2 Process Uncertainties

In most cases, the true values of the system matrices {A, B} are never precisely 
known. However, an estimate {A0, B 0} of {A, B} can be available, and one has

(7.3)
A =  A 0 +  SA  

B = B 0 +  <5B

where {dA, <5B} is the difference between {A, B} and {A0, B0}, representing the 
MPM. We assume that C is precisely known, i.e. C =  C 0, because it is the sensor 
gain matrix. This is a widely accepted assumption in dealing with the problem of 
MPM ([136]).

The combination of Eqns. 7.1, 7.2 and 7.3 results in

x(fc -f 1) =  (A0 +  dA)x(A;) +  (B0 +  5B)u(A:) +  E</>(/c)

x{k)
= A 0x(fc) + B0 u(fc) +  [5A SB]

u{k)
+ E c/>(k)

(7.4)=  A 0x(&) +  B 0u(k) +  &(k) +  B 0fu(/r) 

y (k) =  C 0x(k) +o(k)  + f y(k)

where e(k) =  SAx(k)  +  5Bu(k) + E <j>(k) G is the process uncertainty vector 
accounting for the effects of the MPM and process disturbances. The following 
remarks can be made concerning Eqn. 7.4.
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Sec. 7.2 Problem Formulation

Remark 7.2.1 The gain matrix that links the process uncertainty vector e(k) and 
the state vector x(/c + 1) is an n x n identity matrix I„. With such a constant matrix, 
decoupling e(k) from the PRV is feasible, provided that certain conditions are met.

Remark 7.2.2 In the presence of actuator faults, e(k) = 5Ax{k)  +  <5Bu(fc) +  
5Bfu(fc) + E 4>{k). In this case, e(k) = e*(k) +e^(k) ,  where e*{k) = <5Ax(fc) + 
8Bu(k)  +  E <p(k) is the fault-free portion, and (k) =  5Bf"(fc) is the fault-related 
portion.

Remark 7.2.3 The assumption made on 4>(k) ([45])enables one to show that e*(fc) 
is a deterministic vector, if the initial state, i.e. x0, is not random. In addition, it is 
assumed that e*(k) is bounded, e.g. ||e*(fc)|| < Lm, where || || stands for the L2-norm. 
This means that process uncertainties only affect process dynamics to some extent. 
Note that e*(k) consists of three terms, and ||e*(fc)|| = ||5Ax(fc)-f 5Bu(/b)+E0(fc)|| <

+  ||E0(fc)||. If we further assume that each term has less energy 
acting on the system than the known input term ||B0u(fc)||, then we can determine 
Lm to be equal to max {3||B0u(fc)||}.

/ c € [ l v  ]

7.2.3 Problem  of FDD in the Presence of Process 

Uncertainties

With Eqn. 7.4, the problem of FDD for the system of Eqn. 7.1 can be stated as 
follows:

1 . From a set of training data, obtain an estimate {A0, B 0, C0} of the system 
matrices. This can be done by using any existing algorithm of SIM, e.g. the 
N4SID function in Matlab®]

2. In terms of the estimated system matrices, generate a PRV that is perfectly 
or almost perfectly independent of the process uncertainty vector e(k) for fault 
detection;

3. By manipulating the PRV algebraically, pinpoint the faulty sensors and/or 
actuators.
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7.3 Robust Sensor FDD

This section is devoted to the detection and isolation of faults in the output sensors 
of the system under consideration. To achieve this goal, one must generate a PRV. 
The key to PRV generation is the derivation of a stacked equation.

7.3.1 PRV Generation

Starting from the time instant k -  s, after performing a series of recursions on Eqn. 
7.4, one arrives at

k —s + i — I

x(/r — s + i) = A l0x(k  — s) + ^  a £- s+z~1-t [B0u (t ) +  e(r) +  B 0f “(r)]
T = k ~ s

and
k —s + i —1

y (k  — s + i) = C 0A‘x (fc -s )  +  C0 ^  A^~s+i_1_T [B0u(r) + e(r) +  B 0 fu(r)]
r=fc—s

+o(k — s + i ) + f y(k — s + i) (7.5)

where i £ [1 , s], s is the order of the parity space ([19]), and x(k  — s ) is the state
vector at time instant k — s. In the following text, s — n  is selected.

By stacking Eqn. 7.5, it follows that

ys( i - ) - H :u M (fc - i )  =  r ° M k - s )  + i!(k) + u . X - i ( k - i )

+G °es_i (k — 1) +  o  s(k) 

x(k  — s)
=  k i g : i

e s - i ( h  — 1) 

+ H °f“_1(/c — 1) +  os(k) (7.6)

where, ys(k) = y'(k  — s) ••• y '(k) G is the stacked output vector,

c'0 (c0A0y ••• (CcA;)' g $ ,m .s X n

is the extended observability matrix, and

h : =

0

C oB 0

0

0

C oA r'B o  C 0A r 2Bo

0

0

C 0B c
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Sec. 7.3 Robust Sensor FDD

and

Gs° =

0

Co

0

0

0

0

C o A r 1 CoA;s - 2

e  9fcm*X7

are two lower triangular block Toeplitz matrices with m s =  m(s  +  1). In addition. 
ua_!(fc -  1) € $ s, fy(k) € f^ (fc  - 1 )  G 9?fy es- i ( k  -  1) G 3?”s and os(k) G 3f?m’ 
are also stacked vectors similar to ys(fc). Note that in Eqn. 7.6, the stacked 
uncertainty vector es_i(k — 1 ) and the unknown state vector x(k — s ) have gain 
matrices G° and T° respectively.

7.3.2 Sensor Fault D etection

Because in this section we only consider the detection and isolation of faults in the 
output sensors, we can simplify Eqn. 7.6 into

Ys(k) ~  H°us_1(/c — 1) =  \&
x ( k  — s )

®s—i {k 1)
+  {V(k)  +  o s (k) (7.7)

where 'f?° =  [r° | G°] G sftm-'>x(n+7ls), We select a transformation matrix W0, which 
is located in the left null space of i.e. W 0$ °  =  0, and has maximized covariance 
with the gain matrix Im, of According to the algorithm proposed by Li and
Shah (2002, [70]), the solution to W0 is

W [ =  eigenvectors associated with the non-zero 

eigenvalues of matrix (^,°)±
(7.8)

where (’F ” ) 1  =  Im., — an<̂  (^s)* stands for the Moore-Penrose pseudo
inverse ([41]).

We assume that \I/° is of rank ns + n. This is the worst case with respect to 
uncertainty decoupling from the PRV. As a result, {'&0S)± has at least m s — ns — n 
non-zero eigenvalues, and W' are the associated m s — ns — n  eigenvectors.

Pre-multiplying both sides of Eqn. 7.7 by W0 leads to

e s (k) =  Wo [I -  H!
y 8 ( k )

Us_j(fc - 1 )  

=  W 0f?(fc) +  W 0os(k) G (7.9)
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Sec. 7.3 Robust Sensor FDD

where W Q$ °  =  0  has been employed. As a result, both the unknown state vector 
X(k — s) and the process uncertainty vector es- i ( k —l) have been removed from es(k). 
We define es{k) as a PRV for fault detection and make the following remarks:

R em ark  7.3.1 On the right hand side of Eqn. 7.9, the first line is the computational 
form, and W 0 [Im, | — H°] is referred to as the PRV model. In addition, the second 
line is the internal form showing how the output sensor faults affect the PRV.

R em ark  7.3.2 Without a fault, es{k) =  £*s(k) = W Qos(k), which is a moving 
average (MA) of measurement noise o (k). Prom the distribution of o(k), it can 
be concluded that £*{k) is also a zero-mean Gaussian-distributed random vector 
([58]) with covariance matrix R S£ = W 0R s,0W j, i.e. rsj Af(0,Ra,e), where
Rs,o =  Is+i <S> R 0 £ is the covariance matrix ofof ik).

R em ark  7.3.3 With the occurrence of faults,

where £{(k) = W 0i f (k)  is the fault-contribution term. In this case, £s(k) is 
a Gaussian-distributed random vector with mean £{{k) and covariance R Si£, i.e. 
e»(fc) ~  V (£{(fc),RSl £). Suppose that W 0fH(k) 0. Consequently, fault detection 
can be conducted by simply checking if the mean of e s(k) has deviated from zero.

as the fault detection index. In the fault-free case, £s(k) — £*(k), correspondingly 
r]s{k) follows a central chi-square distribution with m s — ns — n  degrees of freedom 
([58]), i.e. rjs(k) ~  ^{nris—n s—n). However, if any sensor is faulty, rjs(k) will no longer 
follow the central chi-square distribution ([8 ]). Therefore, fault detection can be 
carried out by comparing rjs(k) with a predetermined threshold x l ( m s—n s —n), where 
a  is a selected level of significance, e.g. a = 5%. Whereas 7)s(k) < Xa(m s — ns — n) 
indicates that no fault occurs in sensors, rjs(k) > Xa(m s - n s - n )  implies that some 
sensors are faulty.

7.3.3 Sensor Fault Isolation

After faults have been detected, one must identify the faulty sensors. To achieve 
this goal, the PRV must be transformed into a set of SRVs, where one SRV is made 
insensitive to a subset of sensor faults but most sensitive to the other sensor faults.

e .M  =£{(*•')+<(*) (7.10)

One can define the following scalar squared weighted residual (SWR)

rfc(k) = <(fc)R -‘e.(fc) (7.11)
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Table 7.1: Incidence matrix to characterize the isolation logic of sensor faults

m m M k )  • • f m(k)

rj(fc) 0 i 1 1

1 0 1 1

r3s(k) 1 1 0 1

rt(k) 1 1 1 1

r  ?(k) 1 1 1 0

In the considered system, there are m  sensors. Generally, to isolate faults in all m  
sensors, m  SRVs must be generated. Without loss of generality, we consider the case 
of isolating a single sensor fault at each time. Correspondingly, we choose an incidence 
matrix given in Table 7.1 to characterize the SRVs’ sensitivity and insensitivity to 
different faults. The selection of an incidence matrix is not unique. For detailed 
discussion, refer to Gertler and Singer ([36] [37]), and Li and Shah ([70]).

Denote

W 0,j =  [W0 (:,i) W 0(:,i + m) ■ ■ ■ W 0(:,i + ms)}, V i =  [l,m]

where W 0(:, j)  for 1 < j  < m s is the j th column of W 0. The stacked fault vector is 
f y (k) = [(fy(/c -  s)Y {fy(k — s +  1 ))' • • • (fy(k))']', and W 0)i contains the columns 
in W 0 associated with the stacked i th sensor fault [0 • • • 0 f f ( k  — s) 0 • • • 0 / f  (k — 
1) 0 • • • 0 f f (k)  0 • • • 0]' where f y(k — s) is the ith element of fv(k — s). In the 
incidence matrix given in Table 7.1, m SRVs are generated, where the ith SRV: r ls(k) 
is insensitive to the afore-mentioned i th stacked sensor fault, while it is most sensitive 
to all other faults. Further, a “0”/ ‘T” corresponding to one SRV and one fault in the 
incidence matrix indicates that the SRV is designed to be insensitive/most sensitive 
to the fault. With such an incidence matrix, each fault can be isolated by observing 
different behavior of the SRVs. For example, if r \(k) is not affected by a fault while 
all the other SRVs: r 2s(k) to r™(k) are, it can be concluded that a fault has occurred 
in the first sensor.

Mathematically, the i th SRV is calculated by multiplying a transformation matrix
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W j on both sides of Eqn. 7.9:

rl(k) =  W  i £ a ( k )  = W i W 0f»(k) +  WiWoO s(k) (7.12)

To ensure that r ls(k) is insensitive to the iih sensor fault, Wj must be orthogonal 
to W 0)j, i.e. W jW 0,j =  0 , V i = [1 , to].

In accordance with the algorithm given by Li and Shah (2002, [70]), one can 
calculate Wj as follows:

W,- =  eigenvectors associated with the non-zero
(7.13)

eigenvalues of matrix W L W 0W '

where WV =  Im,_ns_n — W 0ijW ^ . As a result, r \(k) has m s ~  ns -  n -  (s + 1) 
independent rows. Using r \(k), one can similarly calculate the isolation indices 
rfs{k) = (r*(&))'(R*]ir)- 1r*(&), Vi =  [l,m], where R* e =  W jR s,eW( is the covariance 
matrix of r ls(k). Concerning the sensitivity or insensitivity to a fault, ifs(k) is 
equivalent to r \(k).

In accordance with the isolation logic similar to that defined in Table 7.1, if 

r)l(k) < Xaim s - n s - n - s -  1 ), i e [ l , m ] ;

and
Vs(k ) ^  x l ( m s - n s - n - s -  1), V j  G [1, m] D { j  ±  i} 

then it can be concluded that the iih output sensor is faulty.

7 .3 .4  C o n d i t i o n  f o r  P e r f e c t ly  D e c o u p l in g  t h e  U n c e r t a i n t y  

V e c to r

As shown in Eqn. 7.9, the PRV is (ms — ns — n)-dimensional. To make the PRV 
perfectly uncorrelated with any process uncertainties, m s—n s —n  =  (m—n)(s+ 1 ) > 0 , 
i.e. m  — n > 0, must be satisfied for fault detection. Furthermore, to leave enough 
degrees of freedom for the design of the SRVs for fault isolation, a more restrictive 
condition must also be met. For example, to isolate a single fault at each time in 
accordance with the isolation logic summarized in Table 7.1, m s — ns — n — (s +1) =  
(to — n -  l)(s +  1 ) > 0 , i.e. m  — n — 1 > 0 , must be guaranteed. '

However, m  — n — 1 > Ois not an unreasonable condition. For example, since most 
industrial processes have redundant and/or duplicate sensors for critical variables,
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the number of sensors, i.e. m, is usually expected to be greater than the order of the 
model, i.e. n, in a chemical process. The model order, n, corresponds to the order of a 
reduced-complexity model that is able to capture the dominant dynamics of a process 
sufficiently well. In many industrial examples, model orders of n < 2 are sufficiently 
accurate and yet the process may have many more measurements, thus satisfying the 
inequality m  — n — 1 > 0. Even when m  — n — 1 > 0 cannot be satisfied, one can 
install redundant sensors on critical variables in order to increase m. This approach 
combines physical and analytical redundancy discussed in Chapter 2 to detect and 
also diagnose a fault.

7.4 Robust Actuator FDD

When there are faults in the actuators of a system under consideration, perfect 
decoupling of process uncertainties from the PRV is not achievable. This will be 
analyzed later. Nevertheless, decoupling the principal components of the uncertainties 
from the PRV is still feasible.

7.4.1 Difficulty in Com pletely Decoupling the Uncertainties 

from the PRV

For the sake of simplicity, we consider the actuator faults onfy, ignoring the sensor 
faults. Consequently, Eqn. 7.6 is reduced to

ys(fc) -  H °us_i(fc - 1) = [r° | G°]

where the fault gain matrix is H°.
Note that H° =  G° x {Is 0  B 0}. If we select a matrix W Q that is orthogonal to 

[r° | G°], i.e. W 0 [r° | G°] = 0 and pre-multiply Eqn. 7.14 by W 0, we will have the 
resulting PRV:

es(k) = W 0(ys(k) -  H X - #  -  1)) =  W 0o,(*) (7.15)

In the preceding equation, in addition to x (k  — s) and es_i (k — 1), the fault- 
contribution term H^ffy^/c—1) is also removed, indicating that the PRV is insensitive 
to both the faults and process uncertainties. Therefore, no fault is detectable.
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7.4.2 PRV Generation

To detect and isolate the actuator faults, one must compromise the design of the PRV, 
i.e. make the PRV insensitive to the principal components of the process uncertainties 
but sensitive to the faults as much as possible.

Performing the singular value decomposition (SVD) ([41]) on matrix G° results in

G° =  U gSgV g (7.16)

where Sg £ 5 is a diagonal matrix with singular values in decreasing order, 
and U g G and V g £ contain the left and right singular vectors,
respectively.

Eqn. 7.16 can be further separated into two parts, e.g.,

G: -  U gS gV'g =  U g.iSg .iV ^ +  U G,aSGl!1V Gi2 (7.17)

where S g,i € 9?n°x"° is the main submatrix of Sg containing ?i0 principal singular
values with 1 < no < ns, and { U g.i , V g,i } are the associated principal left and
right singular vectors in {U g ,  V q } .  In addition, S g ,2 £ gfj(™>-no)x(ns-n0) is the
remaining submatrix of Sg, and {Ug,2 , Vg,2 } are the associated remaining columns 
in { U g , V g}. The choice of no will be discussed later.

Substituting Eqn. 7.17 for Eqn. 7.14 gives

y s( k ) - H ° sus(k) =  T°ax{k  -  s) +  U ^ S ^ V ^ ^ A ;  -  1) +
U g ^ V g , ^ - ! ^  -  1) +  -  1 ) +  os (k)  (7.18)

Denote =  [T° | U g,i] 6  $ftm»x(n+n°). Following the method shown in Section 7.3,
we design a W 0 such that it is orthogonal to i.e. W 0 f °  j =  0 , while having a
maximized covariance with H°. Mathematically,

W{ =  eigenvectors associated with the non-zero
(7.19)

eigenvalues of matrix ( 4 r° 1)± H °(H °) '

where similarly ( 1$ ,° )1) 1  =  Im, — 1 ( ^ , 1 )^ As a consequence, the PRV is

e s (k)  =  W oH ftU tA : -  1) +  -  1)

+ W 0o,(A:) G (7.20)

where from Remark 7.2.2, es_ i(k — 1) =  e*_1(fc -  1 ) +  (Is ® <SB)f“_i(fc -  1), and 
e*s_ x( k  — 1 ) is stacked from e * ( k ) .

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 7.4 Robust Actuator FDD

The PRV can be further decomposed as

es(k) = e*s(k) + e{.(k) (7.21)

where e{(k) = [W0H° +  M(IS ® <5B)] fJLx(A: — 1) is the fault-contribution term, and 
£*(&) =  W 0os(k) +M e*_1(A; — 1) is the fault-free term with M = WoUc.oSg^V^o- 

It was mentioned in Remark 7.2.3 that e*(k) is deterministic. As a result, the 
stacked vector e*_j(/c — 1) is also deterministic. Due to the existence of the process 
uncertainty-related term Me*_1(fc — 1), the fault-free term e*(fc) in the PRV is no 
longer zero mean. Instead, its mean is E{e*s(k)} = Me*s_1(k -  1).

In the fault-free case, the fault detection index rjs(k) =  £'s (k)H~^£s(k) is reduced 
to r)*(k) =  (e*(fc))'R“]e*(fc), which follows a noncentral chi-square distribution with 
m s — n — no degrees of freedom and noncentrality parameter ||Me*_i (A~ — 1)||2, i.e. 
V*Ak) ~  X2{ms -  n -  n0, HMe^Cfc -  1 )||2) ([104]).

Denote the maximum eigenvalue of M 'M  by X^ax. From the Courant-Fischer 
Minimax Theorem ([41]), it can be inferred that — 1) | | 2 < ||e*_!(fc —
1)112^max- Furthermore, it follows from ||e*(/c)|| <  Lm that He^^/c — 1) | | 2 <  s2L2v 
indicating that the upper limit of the noncentrality parameter is s2L 2}\ ^ ax. Therefore, 
with a selected level of significance a, one can choose y;2 (ms—n —n0, s2L^nX^liax) as the 
threshold for rjs(k). Then fault detection can be similarly carried out by comparing 
T)s(k) with the threshold.

Eventually, to isolate faults, one can transform the PRV into a set of SRVs, as was 
done in Section 7.3.3. One can also use the isolation logic in Table 7.1 to determine 
the sensitivity and insensitivity of the SRVs in relation to a fault. Moreover, using 
the SRVs, one can construct the fault isolation indices rfs(k), i =  1, • • • ,/. After 
determining the thresholds for each 77* (fc), fault isolation can be performed in a manner 
similar to that in Section 7.3.3.

7.4.3 Conditions for Decoupling the Principal Components 

of Uncertainties from the PRV and Fault Detectability  

Selecting N um ber o f  PC s

Denote Ranfc{(1F°jl)-LH°(H°)/} =  q. From Eqns. 7.19 and 7.20, we can conclude that 
the dimension of the generated PRV is q, i.e. the PRV has q independent elements. 
To get a non-trivial solution to the PRV, at least, q > 1 must be guaranteed. Further, 
if one uses the isolation logic given in Table 7.1 to design a set of SRVs, each SRV will
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have q—s independent elements. Therefore, to ensure the isolation of a single actuator 
fault at one time, q — s > 1 must always hold. Finally, under the constraint q — s >  1 , 
a larger no is preferred. As a consequence, more components in the uncertainty vector 
e*_1 (A: — 1) will be removed from the PRV.

Fault Detectability with Process Uncertainties

It follows from Eqn. 7.21 that the mean of es(k) in the presence of actuator faults is

£ { e fl(fc)} = {W ,H | + M(IS ® -  1)} +  Me*_1(/c -  1 ) (7.22)

In this case, the fault detection index rjs(k) is a non-central chi-square distributed 
random variable with non-centrality parameter ||Me*_j(A: — 1 ) -f- [M(IS ® SB) + 

— 1)}||2. To ensure the detectability of actuator faults, HMe^^/c -  
1) +  [M(I. ® SB)  + W 0H2£{f?_, (k -  1) } | | 2 > s2L i  A " ,  must hold true.

To simplify the above detectability condition, we denote

p  . . .  = [M(I. ® SB) +  -  1)}

B D R (k )  =  S i"'

where FDR(k)  and BDR(k)  represent fault-to-disturbance ratio and boundary-to- 
disturbance ratio at time instant k , respectively. Thus, the detectability condition can 
be rewritten as ||lns +  F D R \\2 > \\BDR\\2, where lns is a one vector with dimension 
ns. Therefore, if the FDD system has been designed, i.e. the matrices M  and W 0 

are fixed, the detectability condition of actuator faults depends on the relationship 
between the fault-to-disturbance ratio and the boundary-to-disturbance ratio.

7.5 Numerical Example and Experim ental Case 

Study

In this section, a numerical example and a real experimental case study are provided 
to demonstrate the validity of the proposed robust FDD scheme. We begin with the 
numerical example first, which includes FDD of sensors and actuators faults.
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Figure 7.1: Process schematic of the simulated nonisothermal CSTR system

7.5.1 Numerical Exam ple 

T he Sim ulated CSTR Process

Consider a simulated nonisothermal continuous stirred tank reactor (CSTR) process 
([83]) as depicted in Figure 7.1. The process has (1) one feed stream, which is 
merged from the solvent and the reactant, (2) one product stream, and (3) a coolant 
flowing through the coil. The flows of the reactant (FA) and the coolant (Fc ) are 
used to control the residual concentration (Ca) and the outlet temperature (T), 
respectively. In addition, the reactant concentration in the solvent feed (C a s ) and 
the inlet temperature (T0) are simulated as unmeasured disturbances.

The simulation parameters and initial conditions are selected to be the same as in 
Yoon and MacGregor (2001, [134]). Note that variables in the CSTR process, e.g. T 
and Ca , are functions of time. We omit the argument of the process variables for the 
sake of simplicity.

After being linearized around a steady operating point, the simulated CSTR 
process is represented by a second order continuous-time state space model with 
two inputs, four outputs and two unmeasured disturbances. In the model, the state 
variables are x(f) =  [Ca T]1, the inputs are u (t) — [Fc Fa]1, and the disturbances 
are (f>(t) =  [Cas To]1.

The temperature T  and the residual concentration Ca  are controlled by two
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proportional controllers with unit gains. After discretizing the continuous-time 
system model using a sampling period Ts = 0.5 minute, the following discrete-time 
state space model is obtained:

x(fc +  1) =  Ax(fe) +  Bu(/c) +  E 4>{k) 

y(k)  =  C x ( k ) + o ( k )
(7.23)

where,

A =

C =

0.2828 -0.0005939 

1.258 

1 0  1 0  

0 1 0  1

0.04251
T

B =

E =

0.0002216 0.5398 

-0.1042 1.576

0.2844 -0.00032506 

0.68872 0.15287

In addition, x(/c), u (k) and tj>(k) are sampled values of x(f), u (£) and <£(£) at t = kTs, 
respectively, and o(fc) is a Gaussian distributed white noise vector with covariance 
diag([2.5 x 10~5, 4 x 10-4, 2.5 x 10“5, 4 x 10-4]). Note that in the preceding 
equation, there are four outputs (two sensors for Ca and T, and two additional 
sensors are introduced to satisfy the condition for perfect uncertainty decoupling).

We collected 400 samples of training data to identify the system matrices by means 
of the N4SID function in Matlab®, and obtain one estimate of A, B and C as follows:

, C 0 =  C

Notice that A 0 and B 0 are apparently biased from their true values. For example, 
the step response of the real system (solid line) and the estimated system (dashed 
line) shown in Figure 7.2 are different due to the MPM. As will be seen later, the 
presence of MPM may make the conventional Chow-Willsky method unworkable.

0.35548 -0.025014 -0.0084123 0.53482
A 0 = , B 0 =

1.3213 0.020207 -0.11132 1.5683

Sensor FD D  for th e  CSTR

Using A 0, B 0 and C0, we construct \P° E Sft1 2 x 6  and H° E 9?12x4. Subsequently, 
we calculate W 0 E 5R6x12 according to Eqn. 7.8, obtaining the PRV model 
W 0 [Im, | -  H°] E 9R6x16. Further, based on the isolation logic shown in Table 
7.1 ( m  = 4), we calculate four transformation matrices: Wj E 3?3x6, V i  =  [1,4] to 
generate four SRVs, respectively, for fault isolation.
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x 1 0 '3 From : u 1 (F c ) F ro m : u2(FA )

0 .5
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- 0.1

- 0.2
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0 .5

-1 0

- 0.2

Figure 7.2: Step responses from the true model and its identified model of the 

simulated CSTR process (Solid line: Real system step response; Dashed line: Model 

step response)
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Using the calculated PRV model and the same training data, we produce a sequence 
of PRV, from which the covariance matrices R se € 9£ 6 x 6  and R* e =  W jR SieW- <E 
9?3 x 3 , V i  = [1 ,4 ] ,  are estimated. Because the PRV is 6 -dimensional, the fault 
detection index rjs(k) =  e'(fc)R“*es(fc) in the fault-free case is a chi-square random 
variable with 6  degrees of freedom, i.e. rjs(k) ~  X2 (6 ). Given a specific level of 
significance, e.g. a  —  0 . 0 1 ,  the confidence limit for rjs(k) is Xo.oi(f>) = 1 6 .8 1 2 .  

Moreover, we compute four fault isolation indices 77* (fc), V i =  [1 ,4 ] .  With the same 
a, their confidence limits are X o.o i(3 )  = 1 1 .3 4 1 .

Four types of faults ([105]) -  bias, drift, complete failure, and precision degradation 
-  are simulated in this example. Due to the lack of space, only results for detection 
and isolation of a bias type fault is presented in this paper.

A bias / l(fc) = 0.05 is introduced to one of the four sensors from 500 to 700 sample 
instants. Prom the test data, rjs ( k)  for fault detection and 77* (fc), V i = [1,4], for 
fault isolation are calculated. For better visualization, r)s ( k )  and 77* (fc), V i  — [1,4],

have been scaled by their respective confidence limits, i.e. fjs (k)  = - and
X o.o i(6)

y f i k )
rfs(h) =  "2 7o\ ■ As a resu^> Vs{k)  and f) l (k)  have a common unit confidence limit. 

X0.01 (3)
The FDD results are presented in Figure 7.3, where FD stands for t]s ( k )  and 

FIj, V i = [1,4] for f j l ( k) .  As can be seen clearly in the figure, a fault is detected 
at k  = 500. In addition, the first fault isolation index 77] (fc) is within the confidence 
limit all the time, while the other isolation indices 77*(fc), V i =  [2,4], are all beyond 
the limit after the occurrence of the fault. This produces an incidence code [0111] ,  
from which one can correctly infer that the first output sensor is faulty.

In order to demonstrate the advantage of the proposed robust FDD method, a 
comparison with the original Chow-Willsky scheme ([19]) is made. The Chow- 
Willsky approach-based FDD results using the same test data and the same estimated 
state space model are given in Figure 7.4. In this figure, due to the effect of process 
uncertainties, the fault detection index and some of the fault isolation indices are 
outside their respective thresholds even after the fault has disappeared. For example, 
the first fault isolation index 77] (fc) is beyond the limit, producing an incidence code 
[1 1 1 1 ] that violates the pre-determined incidence code [0 1 1 1 ]; hence the fault is 
not isolated correctly.
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iW/JIA
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2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

2 0 0  4 0 0  600  8 0 0  1 000
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n: o .5

2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

2 0 0  4 0 0  6 0 0  8 0 0  1 000

2 0 0  4 0 0  6 0 0  8 0 0  1 000

Figure 7.3: Detection and isolation of a bias fault in the l si output sensor of the 

simulated CSTR process using the proposed robust FDD scheme

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 7.5 Numerical Example and Experimental Case Study

1000
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2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

Figure 7.4: Detection and isolation results of a bias fault in the l sl output sensor of 

the simulated CSTR process using the Chow-Willsky approach
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Table 7.2: Singular values of matrix G° and their cumulative percentages

# Singular Values Cumulative percentages

1 2.6811 42.86%

2 1.4352 65.80%

3 1.3936 88.08%

4 0.7460 1 0 0 %

Actuator FDD for the CSTR

Using this numerical example, we also carry out an actuator FDD. First, a PRV 
insensitive to the first left singular vector of G° i.e. no =  1 is designed. The singular 
values of G° are displayed in Table 7.2, where the first singular value accounts for 
42.86% of the total variance of the process uncertainty vector — 1). Therefore,
42.86% of the process uncertainties has been removed from the PRV. The dimension 
of the PRV in this case is 9. We choose Lm to be equal to 3max(||B 0u(fc)||) =  0.363. 
Consequently, the fault detection index is a non-central chi-square random variable 
with 3 degrees of freedom and noncentrality parameter 0.6756. With a — 0.01, the 
confidence limit for the fault detection index is 13.6104. Further, from the PRV, two 
SRVs are generated for actuator fault isolation, which are made insensitive to faults 
in the first and second actuators, respectively. Similarly, we can define two fault 
isolation indices: {rjl(k), rfs{k)} which are associated with the SRVs.

A bias fault f ( k )  — 1.3 is introduced to one of the two actuators. The FDD 
results are displayed in Figure 7.5, where the FDD indices have also been scaled to 
have unit confidence limits. As clearly shown in the figure, because the detection 
index is beyond its confidence limit after the occurrence of a fault, fault detection 
is successfully achieved,. Moreover, because the first isolation index is within its 
confidence limit and the second one is not, according to the pre-determined isolation 
logic we can conclude that the first actuator has a fault. Note that in the figure, FD 
stands for the scaled fault detection index, and FIj, j  = 1,2, stand for the scaled 
fault isolation indices.

Because we know the state and the disturbance vectors, we can check the validity 
of the detectability condition for actuator faults. In this simulation example, 
m axdlM e^^/c -  1)||) = 0.0598. Thus, the maximum boundary-to-disturbance ratio
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Figure 7.5: Detection and isolation results of a bias fault in the l si actuator of the 

simulated CSTR process using the proposed robust FDD approach
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is 13.7441. On the other side, ||l„s + F D R (k )|| =  13.8062. Therefore, we can verify 
that the detectability condition of actuator faults is satisfied.

7.5.2 Experim ental Case Study

In this experimental case study, a real continuous stirred tank heater (CSTH) 
is used for sensor FDD. The CSTH system is located in the Computer Process 
Control Laboratory, Department of Chemical and Materials Engineering, University 
of Alberta, Canada.

The CSTH system has (1) two inputs: cold water (CW)  and steam (S'); (2) four 
measured outputs: cold water flow rate (Fc), water level (L), and two outlet water 
temperatures (7\ and T2 ); and (3) one major disturbance: hot water (H W ). The 
cold water and hot water are mixed thoroughly in the tank while being heated by 
high pressure steam passing through a coil. The water level is controlled by a cold 
water valve using a PID controller. Two outlet water temperature sensors are located 
at different locations on a long outlet pipeline. Even though both sensors measure 
the same physical variable, their readings are not identical due to the different time 
delays and heat losses. The inputs and outputs vectors are u  =  [CW S’]' and 
y =  [L Fc Ti T2]' respectively, and are sampled every 5 seconds. The overall 
system is depicted as a block diagram in Figure 7.6.

Using this pilot plant arrangement, a training data set of 400 points is first 
generated. Subsequently, the following second-order discrete-time state space model 
is identified from the data by using the N4 SID function in Matlab®, where

A n  =
0 1 -0.1652 - 0 . 0 0 1 1

, Bo =
-0.7494 1.6504 -0.2727 0.0029

C 0 =

-1.1527 1.5935

0.6940 -3.8102 

1.0125 -0.0086 

1 0

Selecting s =  n  =  2 and using the same procedure as in the numerical example, 
we generate a PRV for fault detection and four SRVs for fault isolation, where the 
isolation logic in Table 7.1 is still used.

A bias type of fault /*(&) =  1.0 is introduced to a sensor between the 100th to 
200th sample instants. Figure 7.7 illustrates the relevant FDD result, where the fault
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Hot W ater

Cold
W ater

Steam

E lectrom agnetic
F low m eter

Steam
D rain

W ater
Drain

Figure 7.6: Process schematic of the experimental CSTH system

detection index and fault isolation indices are also scaled to have unit confidence limit. 
In the figure, because the fault isolation indices have an incidence code [110 1], the 
fault is detected immediately after it occurs. In addition, it can be inferred that the 
3 rd output, i.e. the first temperature sensor, is faulty.

The Chow-Willsky approach is also applied to this case study. The corresponding 
FDD result is shown in Figure 7.8, where due to the presence of the process 
uncertainties, the fault is incorrectly detected and furthermore erroneously isolated.

7.6 Conclusions

A robust scheme for the detection and isolation of sensor/actuator faults in dynamic 
processes has been proposed in this chapter. In the presence of sensor faults, this 
approach can perfectly decouple the effect of any process uncertainties, including 
MPM and unmeasured disturbances from the PRV, if the number of process 
uncertainties is less than the number of outputs. In the presence of actuator faults, 
the principal components of the process uncertainties can be removed from the PRV. 
Therefore, a robust actuator FDD can also be achieved.
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Figui'e 7.7: Detection and isolation of a bias fault in the 3rd output sensor of the 

experimental CSTH system using the proposed robust FDD approach
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Figure 7.8: Detection and isolation results of a bias fault in the 3rd output sensor of 

the experimental CSTH system using the Chow-Willsky approach
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This newly proposed method is applied to a simulated CSTR system and an 
experimental equipment. In both cases, satisfactory FDD results are obtained. In 
addition, in both cases comparisons between the newly proposed FDD method with 
the Chow-Willsky approach were made. It is demonstrated that the newly proposed 
FDD approach has acceptable robustness with respect to process uncertainties and a 
high sensitivity to faults.
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Detection and Diagnosis of Multiplicative 

Faults Using Data Reconciliation 5

8.1 Introduction

Data reconciliation (DR), which has been well studied in recent years ([22] [5] 
[114]), yields estimators of process variables that satisfy physical constraints of the 
process. However, to obtain accurate estimates, the influence of gross errors must be 
eliminated. Hypothesis testing has been extensively used for detection, isolation and 
identification of gross errors. Gross error detection (GED) is closely related to DR.

5 A condensed version of this chapter was presented at the 7th International Symposium on 

DYnamics and COntrol of Process Systems (DYC0PS7), July 2004, Boston, USA. It appears in 

the Proceedings of the conference under the title “Detection and diagnosis of data reconciliation 

problems in an industrial chemical inventory system” by Han, Shah, Narasimhan and Zaknoun.
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Literature surveys of GED can be found in Mah (1990, [79]), Madron (1992, [27]), 
Sanchez and Romagnoli (2000, [116]) and Narasimhan and Jordache (2000, [114]).

8.2 M ultiplicative Fault D etection and Isolation

Suppose the fault-free process measurement vector z(k) £ can be described by:

z(k)  =  z(k) + a(k) (8 .1 )

where z(k) £ $tm+l is the vector of true values at time k and a(k)  £ $tm+l is a 
zero mean normal distributed random vector representing the measurement noise, 
i.e. a(k) A f ( 0 , Rcr) where R CT £ 5ft(m+0x(™+0 js the covariance matrix of noise a(k). 
In most cases, the noises are mutually independent, i.e. R 0 is a diagonal matrix. 

Assume the process model can be represented by

M*z{k) =  0 (8 .2 )

where M * £ is a known matrix and w is the number of constraints.
If sensor(s) have calibration problems, their measurements may differ from z. 

Different types of calibration errors are illustrated in Figure 8.1. In this chapter, 
we consider the most general case -  bias plus slope error -  described mathematically 
as follows:

z i ( k )  =  O i i Z i { k )  +  P i  +  CTi(k)  (S -3 )

where a:; and Pi are two calibration parameters and zi denotes the i th element of 
vector z. In the fault-free case, on = 1 and Pi — 0.

To directly detect the sensor calibration error, one can apply the measured 
variables z(k) to the process constraints and thereby determine whether the residual 
r (k) =  M * z (k) is approximately zero. Obviously, if sensors do not have calibration 
errors, the residual is only related to the measurement noise, i.e. r (k) — M *a(k). 
Therefore, the residual must also be zero-mean random noise. However, if some of 
the sensors have calibration error, the residual is no longer zero-mean. Thus, one can 
detect the possible sensor calibration error by examining the mean of r (k).

Further, one must determine which sensor(s) are the problematic one(s). In this 
step, one must categorize the process variables into two sets: suspected z s(k) £ 3?mi 
and unsuspected zu(k) £ 9?m2. Thus, the process model M * can be rearranged as
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  slope error -  • -  bias plus slope error

Figure 8.1: Illustration of different types of calibration errors
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M* =  [Mi M^], where MJ and Mg correspond to zs and z u respectively. Therefore, 
Eqn. 8.2 can be rewritten as:

MJzs(/c) +  M*2z u(k) = 0  (8 .4 )

with the assumptions of

z s(k) = Azs(k) + A  + as(k) 

z u{k) = zu(k) + ou(k)

where A € 5RmiXmi is an unknown diagonal matrix and A 6  3?mi is an unknown 
vector.

When one applies the above assumptions to the process constraints as depicted by 
Eqn. 8.4, the following can be obtained:

r(fc) =  M l z u(k) + M*1A~1zs{k) -  M j A- 1  A

-  M*A" V(fc) + M *2au{k) (8.5)

Now, the entire problem can be formulated as a least-squares optimization problem:

J  = minr f(k)r(k) (8 .6 )

Note that only 2mi parameters must be determined by the optimization procedure, 
as A is a diagonal matrix. By observing the estimated value of the diagonal elements 
of A and A, one can determine which sensor(s) are mostly likely to have calibration 
errors by comparing the estimates with the fault-free case.

8.3 Chemical Tank Inventory Process

The process considered in this chapter is a caustic tank inventory system at Millar 
Western Forest Products Ltd., Whitecourt, Canada. This process serves as a buffer 
of supplying caustic usage for the entire plant. A simplified schematic of the process 
is illustrated in Figure 8.2.

In Figure 8.2, the caustic is delivered by trucks at various frequencies depending 
on the plant’s chemical usage. Thus, the inlet flow rate is not continuous. Moreover, 
it is not measured. There are 6  independent outlet flow control loops. Each pipeline 
supplies caustic to different parts of the plant, and the flow rate of each outlet pipe 
is controlled independently.
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Figure 8.2: Chemical tank inventory process schematics

The level of the tank is not controlled, but is measured. The tank is a vertical 
cylinder one with a diameter of 6 . 8  meters and a height of 6.0 meters. Thus the 
nominal volume is 216 cubic meters. The level sensor is located 0.45 meters above 
the tank bottom. Therefore, the measurable volume of the tank is about 200 cubic 
meters. All relevant measured variables are listed in Table 8.1.

From Table 8.1, it is evident that the six flow rate sensors are not using the same 
unit of measurement. Two of them (FI and F4) are volume flow sensors (L/min), 
while the other four are mass flow sensors (kg/min). In this chapter, we assume the 
delivered caustic has a constant density of 1.52 kg/L. Thus, one can convert each unit 
into the other.

All six valves are equal percentage valves, which are essentially nonlinear valves. 
The characteristics of equal percentage valve can be found in the literature ([109] 
[83]). The system is sampled once every 1 minute, i.e. Ts — 1 min.
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Table 8.1: Measured variables of chemical tank inventory system
Nam e D escription U nits

L Tank level %

FI Flow rate in outflow #1 L/min

F2 Flow rate in outflow #2 kg/rnin

F3 Flow rate in outflow #3 kg/min

F4 Flow rate in outflow #4 L/min

F5 Flow rate in outflow #5 kg/min

F6 Flow rate in outflow # 6 kg/min

PI Valve position of outflow #1 %

P2 Valve position of outflow #2 %

P3 Valve position of outflow #3 %

P4 Valve position of outflow #4 %

P5 Valve position of outflow #5 %

P 6 Valve position of outflow # 6 %

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 8.4 Monitoring System Design and Diagnosis Results

8.4 M onitoring System Design and Diagnosis 

Results

8.4.1 Process M odel Description  

Mass Balance

The relationships between the volume of the caustic in the tank and the inlet and 
outlet flow rates can be represented by the following equation:

= Fin(t) -  Foui(t) (8.7)

where V(t) is the chemical volume in the tank, and Fin(t) and Fout(t) are the inlet 
and outlet flow rates respectively.

In discrete time domain, the above equation can be written as:

rMB(k) = V(k) -  V(k  -  1) -  (Fin(k) -  Fout(k)) Ts = 0 (8 .8 )

where Tm s(^) is defined as “mass balance residual” . This discrete-time representation 
implies that the inlet and outlet flow rates do not change between samples. In this 
process, because the sampling interval is relatively large, this assumption usually 
cannot be fully satisfied. Therefore, when this discrete-time model is used, a small 
deviation from zero can be expected due to this systematic model-plant mismatch 
(MPM).

Fout{k) can be easily calculated by summing all the outlet flow rates. V ( k ) can 
be obtained from the tank level L and the a priori knowledge of the total volume 
of the storage tank, i.e. V(k) = 200 x L(k) m 3. However, Fin(k) is not measured 
in the process. Therefore, according to the essential elements of process monitoring 
specified in Chapter 2 , the process measurements are not redundant.

This does not mean we cannot design a monitoring scheme for the system under 
consideration. The operation can be categorized into two states -  “with delivery” 
and “without delivery” -  with different Fins as below:

{ 0 , without delivery
(8.9)

unknown, with delivery

Thus, during the period of “without delivery” , we know precisely without 
measurement. Therefore, when there is no delivery, the redundancy condition is 
satisfied. We can use this redundancy for the purpose of process monitoring. The 
details will be shown later in this chapter.
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Valve Characteristics

All the control valves in this project are equal percentage valves. Theoretically, the 
flow rate and valve position have the following relationship ([57]):

F = FminRs/Sma* (8.10)

Fmaxwhere R  — — is referred to as rangeability, Fmax and Fmin are the maximum and
* m i n

minimum flow rates respectively, F  is flow rate through the valve, and S  and Smax 
are the stem position and maximum stem position respectively.

By taking the logarithm for Eqn. 8.10, we can obtain:

log F  =  log R  • + log Fmin (8 .1 1 )
Umax

Doing so makes one to transfer the nonlinear equal percentage valve characteristic into 
linear framework. Both the flow rate F  and the valve position S / S max are measured 
in this system. Therefore, the measurements are redundant with respect to the valve 
characteristic. The unknown parameters log/2 and log Fmin can be estimated by 
applying least square estimation to collected data. Due to space limitations, the 
details of this procedure are omitted.

The models of control valves are different from the mass balance model in this 
project. Unlike mass balance, which holds true precisely at any point of time, valve 
characteristics change with wear and tear, and thus cannot be assumed true all 
the time. In addition, the unknown parameters such as log R  and log Fmin must 
be estimated from data, which can introduce estimation errors. Because of these 
differences, we must treat these two types of models differently in the subsequent 
analysis.

8.4.2 Offline Analysis for Sensor Calibration Error

After selecting data for “without delivery”, Eqn. 8 . 8  can be further manipulated into 
the following:

rMB(k) = V(k) -  V(k  -  1) +  F0Ut(k)Ts (8.12)

Thus, we can obtain the mass balance residual at each time instant illustrated as in 
Figure 8.3. Note that the residual is not stationary over time, and is usually negative. 
This problem may be due to flow sensor calibration. Our goal is to determine which 
sensor(s) have calibration problem and then to estimate the magnitude of the problem.
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Figure 8.3: Mass balance residual using the points without delivery

In order to confirm that a calibration problem exists, we assume that the level 
sensor is accurate, but that the flow sensors may have bias plus slope calibration 
errors, i.e. F/(k)  = oaF°(k) + Pi + Oi(k), V i =  1, • ■ • , 6 , where F f  (k) and F°(k) 
denote the i th measured and true flow rates respectively, o,; and Pi are constant 
coefficients, and o;(/c) are zero mean normal distributed measurement noise. If the i th 

flow rate sensor works properly, then ideally a, =  1 and Pi = 0. Therefore, the mass 
balance equation can be further written as

6 rp

rMB(k) = V ( k ) - V ( k - l )  + Y , f F , f (k)

- E ^  =  E | o « W  <8 ' 1 3 >
■ -I 1 1 12 =  1 2= 1

Because all the Pi are in the same summation operator, one cannot distinguish
6 P-between them. Thus, we define P = —. The estimated coefficients can be shown
—i

in Table 8.2.
The “Upper bound” and “Lower bound” provide the 95% confidence limits of 

these estimates in Table 8.2. The estimate of the second flow sensor does not behave
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Table 8 .2: Estimated calibration coefficients
a - i Q !2 Q '3 ft 4 « 5 ft6 ,8

Estimates 1.0410 1.7354 1.0437 1.0532 1.0084 1.0478 -0.2708

Upper bound 1.2808 2.0551 1.2129 1.3327 1.1965 1.3356 1.2430

Lower bound 0.8011 1.4157 0.8745 0.7737 0.8203 0.7600 -1.7846

normally because the 95% confidence interval of this estimate does not include 1. In 
contrast, other flow sensors are likely to be well calibrated because their ft, values are 
close to 1. The total bias-type calibration error (8 is negligible.

The afore-mentioned results were confirmed by the process control engineer at 
Miller Western. The flow rate sensor F2 was changed and calibrated in the range of 
0 - 1 5  L/min, However, the conversion range in the DCS system is maintained at the 
original 0 - 2 5  L/min. This yields the scaling factor of 25/15 =  1.67, which is close 
to our estimate 1.73.

8.4.3 Online M onitoring Design and Im plem entation

In order to provide an online monitoring scheme for the caustic tank inventory process, 
the following possible abnormal situations are considered:

• Sensor faults: The whole process is equipped with 13 sensors. Any (or all) of 
these sensors can malfunction during the operation.

• Process faults: This type of fault includes any malfunction of process equipment 
other than instruments, e.g. tank leakage.

To accurately detect and isolate the afore-mentioned faults, analytical redundancy 
must be used. In this project, there are a total of 7 equations representing the 
relationships among measured variables: one mass balance and 6  valve characteristic 
equations. For detection purpose, if one of these equations is not valid, one can 
infer that something in the system is malfunctioning, i.e. a fault is detected. For 
isolation purpose, because different types of faults affect different equations, one can 
determine which one is the root cause by observing which equations are affected. 
Table 8.3 illustrates how different faults affect different equations.

Concerning Table 8.3, the following remarks can be made:

• The rows denote the possible faults.
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Table 8.3: Fault isolation logic

M B  Vx V2 l/ 3 ^  V5 V6

L X

FI X X

F2 X X

F3 X X

F4 X X

F5 X X

F 6 X X

PI X

P2 X

P3 X

P4 X

P5 X

P 6 X

Process X

141

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Sec. 8.5 Conclusion

• The columns denote different equations. M B  stands for mass balance and V* 
represents the valve characteristic of valve i.

• If there is a x in the intersection, the corresponding fault affects the 
corresponding equation. If a blank exists, the fault has no effect on the equation.

• Different faults affect different combinations of equations. Thus, if one or more 
equations are not valid, one can consult Table 8.3 to determine the root cause 
of the fault.

• One cannot distinguish between level sensor fault and process faults because 
they affect the process model identically due to the limited degrees of freedom.

On May 29, 2003, one alarm was generated by the afore-mentioned monitoring 
scheme. Figure 8.4 depicts the 7 residuals that occurred around that period of 
time. From Figure 8.4, it can be determined that the valve characteristic equation 
of flow loop #5 is invalid as well as the mass balance residual. In contrast, the other 
valve characteristic equations are valid. Therefore, according to the fault isolation 
logic presented in Table 8.3, it appears that flow sensor #5  (F5) was affected by a 
measurement problem during that period of time. This online analysis result was 
confirmed by the process control engineer. Therefore, in this way, a fault in the tank 
inventory process cannot only be detected but also isolated online.

8.5 Conclusion

In this chapter, the detection and diagnosis of sensor calibration error is proposed 
and then applied to the caustic tank inventory monitoring project at Millar Western 
Forest Products Ltd. The proposed method uses a first order model to represent the 
calibration error and then applies an optimization procedure to solve the problem. 
The effectiveness of this method was proven through an application. In addition, an 
online monitoring scheme is designed and implemented by utilizing the process model 
structure presented in Table 8.3. The effectiveness of this online monitoring scheme 
is also proved.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
B

Sec. 8.5 Conclusion

-10h_
9250 9 3 5 09300

10

T—
>

— -10^= - - - - -
9350 925 0  9 3 0 0

- i o h .......................  - l o t j
925 0  9300  9350  9250 9 3 5 09300

-a->

--------------100L—
9300 9350  9250 9 3509350 925 0  9 3 0 09300

Figure 8.4: Residuals when an alarm is generated
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Fault Detection and Diagnosis with 

Multirate Data

9.1 Introduction

In most of the literature on identification, control and fault detection, the standard 
assumption is that in a given system all input and output data are sampled at a 
single and uniform, (regular) rate, i.e. all variables are sampled synchronously and 
the sampling intervals for each variable are equally spaced. In real-world industrial 
situations, this is often not the case. Frequently, input and output data are sampled 
asynchronously, and sampling is sometimes non-uniform (irregular). This is so

6A version of this chapter has been accepted for publication in Automatica under the title 

“Subspace Identification for FDI in Systems with Non-uniformly Sampled Multirate Data” by Li, 

Han and Shall.
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primarily because there are delays in sensors and laboratory analysis. For example, 
consider a polymer reactor in the chemical industry, where the composition, density, 
and molecular weight distribution measurements are typically obtained after several 
minutes of analysis, while the manipulated variables are often adjusted at relatively 
fast rates ([94], [43]). Common example of sampling at multiple and non-uniform 
rates is illustrated in Figure 9.1.

Totally g samples for the inputs

u
1 1

k T j k T  +  t j
ii
i

j k T  + 13
ii
i

• • •  k T  +  tg ( k  +  \ ) T

y

iiiii
1 1

iiiiij i
k T

i
k T  +  t\ -  k T  +  t;'2 ( k  +  \ ) T

 _ _  '

Totally p = n, + ... + ng samples for the outputs

Figure 9.1: Schematic representation of a process where variables are non-uniformly 

sampled at different rates

The primary reason for considering a non-uniform and multirate sampling 
framework for identification with or without fault detection is that all other uniformly 
sampled systems are special cases of this general framework. In addition to its 
practicality, non-uniform sampling preserves causality automatically, and is both 
controllable and observable under a non-strict condition in discretization ([119]).

While an enormous amount of research effort has been dedicated at fault detection 
and diagnosis (FDD) in systems with single rate data, only limited work has been 
reported for FDD in systems with multirate data ([29],[30], [28],[135], [69]).

Existing studies assume knowledge of a continuous-time (CT) model of the system. 
By lifting, a discrete-time (DT) model of the system is obtained from the CT model. 
Then, based on the lifted  DT model, residual models are designed and manipulated 
for FDD. Lifting transforms a time-varying multirate system into a time-invariant 
single rate system. Due to the work by Khargonekar et al. ([62]), lifting has become
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a standard tool for dealing with multirate systems.
A CT model of a physical system is typically obtained from a first principle 

model. Because establishing a first principle model for a system depends on fully 
understanding the mechanism of the system, such a model is not always easily 
achievable or practical for a complex industrial system. If a mechanistic model is 
unavailable, then one cannot derive the lifted model of the system. As a consequence, 
a residual model cannot be designed for FDD.

This chapter extends the Chow-Willsky scheme ([19]) - originally proposed for 
single rate data - to FDD in systems with non-uniform sampled multirate (NUSM) 
data. In particular, the chapter investigates direct identification of residual models 
from training data to generate a primary residual vector (PRV) for fault detection 
and a set of structured residual vectors (SRVs) for fault isolation.

Consider a physical system that is represented by a state space model in the CT 
domain. The multirate non-uniformly sampling technique proposed by Sheng el al. 
([119]) is used to collect data from such a system and then to obtain a lifted system 
represented by a state space model, e.g. {A ,B ,C ,D }. Conventionally, one first 
identifies {A, B, C, D} by means of SIM, and then calculates the residual models for 
FDD with the identified matrices.

SIM were initially proposed for the identification of state space models in single rate 
DT systems ([8 6 ], [96],[97], [18]), but have now been extended to uniform multirate 
systems ([6 8 ]). If the residual models are derived from the identified {A, B ,C ,D }, 
all errors in the identification step become lumped.

As will be shown later, to generate the residual models for FDD, one does not 
need the individual values of {A ,B ,C ,D }. Instead, one needs only an extended 
observability matrix, Ts, and a lower triangular block Toeplitz matrix, H s, both of 
which are functions of {A, B, C, D}. The objective of this chapter is to develop 
a subspace algorithm for direct identification of Ts and H s from NUSM data 
without identifying {A, B, C, D}. It is considered to be an important FDD-relevant 
identification step.

This chapter is organized as follows. The problem is formulated in Section 2. In 
Section 3, a novel technique is developed to derive a single rate linear time-invariant 
(LTI) model, i.e. a lifted model, for a system with NUSM data by integration. 
Identification of residual models for fault detection is investigated in Section 4, 
wherein the optimal design of a PRV is also outlined. In addition, a numerically- 
robust identification algorithm is developed. An FDD case study is given in Section 
5 , where we use data collected from an experimental pilot-scale plant to demonstrate
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the effectiveness of the proposed scheme. Design of residual models for SRVs is 
included. Concluding remarks are presented in Section 6 . Detailed derivations of 
several equations are provided in Appendices 9.A-9.D.

9.2 Problem  Formulation

Assume that a dynamic system in the fault-free case is represented by the following 
CT state space equation:

x(£) =  Acx(£) +  Bcu(£) +  4>(t), y (£) =  C cx(t) +  Dcu(t) (9.1)

where (1) u(i) G 3 and y (t) G are noise-free inputs and outputs respectively;
(2) x(t) G is the state; (3) <j>(t) G 5Rn is a Gaussian distributed white noise
vector with covariance R^; and (4) Ac, Bc, Cc and D c are unknown system matrices 
with appropriate dimensions. It is further assumed that (1) the pair (Ac, C c) is 
observable, (2) the pair (Ac, B CR ^ 2) is controllable, and (3) the stochastic portion 
of A c is asymptotically stable.

The non-uniform multirate sampling approach ([119]) is applied to obtain 
measurements from Eqn. 9.1. More specifically, for a given frame period, T, over 
the k th frame period [kT, k T  + T), we sample the inputs and outputs non-uniformly 
as follows.

• An input variable is sampled g times at time instants: {kT + t i , k T  + t 2, k T  + 
t$, • • ■ , kT  +  tg}. Without loss of generality, we arrange 0 = t\ < t 2 < ■ ■ ■ < 
tg < T.

• An output variable is sampled p times. Moreover, within the time interval 
[kT + ti, k T  + U+1), for i = [1,..., g], (> 0) samples of the output variable are 
taken at time instants: {kT + t} ,kT  + tf,- ■ ■ , k T  +  £”*}. Similarly, we arrange
ti <$<£■■■■< t?  < ti+1 , where tg+x = T. Note that p =  nx +  n 2 -|-------1- n g
can be larger/smaller than, or equal to, g. When n, =  0, no sample is taken 
within the interval [kT + U,kT + ti+i).

The sampling is repeated over the next frame period.
In the most general case, among the m  +  I inputs and outputs, each variable 

is sampled differently from the others. However, for simplicity of mathematical 
presentation and manipulation, without loss of generality we assume that (1 ) the 
I inputs, u(t), and the disturbances are sampled at one rate; and (2 ) the m  outputs,
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y (t), are sampled at another rate. Such non-uniform and multirate sampling is 
illustrated in Figure 9.2.

k T + T

kT+t" '  kT +t2
4/

kT+ tgg k T + Tk T + t1 k T + t  { "
k

kT+o ■

Y
n, samples n samples

Figure 9.2: Non-uniform and multirate sampling of inputs and outputs

Consider the case of errors-in-variables, and denote the observed fault-free  inputs 
at the time instant k T  + t i: for i = [1, by u (kT  +  tj) =  u (kT + U) +v(k,T + U). 
Similarly, at the time instant k T  +  t?, for j  = [l,...,nj], the fault-free outputs are 
denoted by y (kT+tj)  — y ( k T + t Ji )+o(kT+tj), where v and o are measurement errors 
and are assumed to be Gaussian distributed white noise vectors with corresponding 
covariance matrices and R 0. Further, it is assumed that v and o are independent 
of the initial state x(0), and are mutually independent.

If sensors are faulty, their measurements include fault-free  and fault-related  values. 
Therefore, the measured outputs with sensor faults, for j  — [1 ,..., ni\, can be 
represented by

y ( k T  + t f ) =  y  ( k T  + 1|)  +  o ( k T  + ij) +  t , { kT  +  tj) (9.2)

where fy(kT+tj)  £ is the fault magnitude vector with zero and non-zero elements. 
To represent a single sensor fault in the i ih output sensor, for % = [1, ...,m], the ith 
element of fy(kT  + tj) is non-zero, but all other elements are zero. Moreover, to 
represent simultaneous multiple sensor faults in the outputs, e.g. faults in the second 
and the fourth output sensors, the second and the fourth elements of fy(kT + 1{) are 
non-zero, but all other elements are zero. The measured inputs can be represented
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by

u(A:T +  tf) =  u(fcT +  tj) +  v(kT  -I- tf) + iu{kT 4 - tj) (9-3)

where fu(kT + tf) is the fault vector in the input sensors and structurally similar to 
fy(kT  +  tf).

In the case of the errors-in-variables, this chapter considers solutions to the 
following three problems:

• Given measured training data: {u(/cT + U)} and {y(kT  +  for i =  [1 , ...,</], 
j  = and k =  [1 , 2 , •••), which are collected while the considered
system is fault-free, residual models can be identified.

• With identified residual models and test data: {u( kT+f,-)} and {y( kT +£*)}, for 
the same i, j ,  and an identical or different k, fault detection can be performed, 
i.e. to indicate when fu(kT + tf) and/or fy(kT + $ )  are non-zero.

• After fault detection, the faulty sensors can be identified. This is referred to as 
fault isolation.

9.3 The Lifted M odel for the System w ith NUSM  

Data

When inputs and outputs in the CT system described by Eqn. 9.1 are non-uniformly 
sampled at multirates, the result is a time-varying system. However, if we group 
all g input measurements and all p output measurements together, we will have 
a single rate LTI model with an increased dimension for the system. Herein we
refer to u (k) = u(t)|t=A;r as a vectored-input measurement, and similarly we refer to
y (k) =  y(i)|t -kT as a vectored-output measurement. This terminology will be used 
throughout the chapter.

Sheng et al. ([119]) have shown the derivation of a lifted model for a system with 
NUSM data by using the conventional lifting technique. This chapter derives the lifted 
model in a novel way by means of integration. The fundamental concept of lifting a 
system is to approximate the integrals of functions of system variables within each 
frame period under certain assumptions. Such a derivation of a lifted model from 
an integration perspective is more natural, straightforward, and understandable than 
the conventional one.
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Post-multiplying the first line of Eqn. 9.1 by e Acl (assumed to be non-singular for 
any finite t) leads to e~Actx(t) = e~ActA cx(t) + e~Art [Bcu(t) +  </>(t)], or equivalently,

d [e Acix(t)]
dt

(9.4)

In Eqn. 9.4, we have employed e~Acix(t) — e-ActAx(t) =  d (e_A,,<x(t)) /dt, where 
d( )/dt  stands for the derivative of the argument with respect to t.

Integrating Eqn. 9.4 from t = kT  to t =  kT  + T  gives
p k T + T

e-Ac(kT+T)^k T  _|_ _ e- A-A:Tx(fcT) =  /  e~Act [Bcti(t) + 0(t)] dt,
J kT

Multiplying both sides by eAdkT+T) leads to

r k T + T

x{kT  + T ) = eAcTx(kT) + /  eA^ kT+T' ^  [Bcu(t) + (/)(t)}dt.
J kT

Introducing new conventions: x(k) = x(kT),  x (k  +  1) =  x ( k T  +  T), A =  eAcT, we 
can rewrite the preceding equation as

p k T + T
x (k  + 1 ) = A x(k) + / eAr.(kT+T-t) [gcu(t) +  0 (t)] dt (9.5)

J kT

By sampling u (t) for t G [kT, k T  + T), we obtain g samples of inputs. Similarly, 
we obtain g samples of disturbances by “sampling” 4>(t). Accordingly, we form two 
lifted vectors:

u  (kT + 1\) 4>(kT + 1\)

u ( fc )  =
u(kT  +  tg)

G 9^, 0(fc) =
<p(kT -f- tg)

e W 19

U (kT  +  tg) 4>(kT +  tg)

and arrive at the following lifted state space equation,

x(k  +  1) =  A x(k)  +  B u(k) + E  <p(k) (9.6)

The detailed derivation of Eqn. 9.6 is given in Appendix 9.A.
From the distribution of 4>, it can be inferred that 0(fc) ~  M(0, R^), where 

=  l g ® R^. One can argue that disturbances are usually not measurable, and 
as a result <£(&) can not be available. In the ensuing discussion we consider the use 
of only for the purpose of mathematical manipulation. As will be shown later, 
the disturbances will not affect the identification of the residual models.
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The lifted output equation can be similarly derived. Integrating Eqn. 9 .4  with 
t e  [kT, kT  +  r] and 0 < r  < T produces

r k T + r

x ( k T  + r) = eAcTx(k)  +  /  eA' {kT+r-V [Bcii(t) + d t  (9.7)
J  k T

where r  is a positive number. On the other hand, it turns out from the second term 
in Eqn. 9.1 that y (kT + r) =  Ccx [kT  +  r) +  D cu (kT + r). The use of Eqn. 9.7 in 
y (kT + t ) leads to

p k T  -I-r

y [kT + r) = CceA'rx(fc) +  Cc /  e Ae(fcT+T- 1) (Bcii(i) +  0(t)] dt
J  kT

+Dcu(kT  +  t)  (9.8)

After defining the lifted output vector as:

y ( k ) =  [ y ' ( k T  + t \ )  y ' (kT + t ? )  y '^ T  +  tJ) ••• y ' (kT  + t ? )  ] ' (9.9)

One can show that the lifted output equation is

y(fc) =  C x(ifc) + D u{k) + J 0(/c) (9.10)

The derivation of Eqn. 9.10 is provided in Appendix 9.B. Putting Eqns. 9.6 and 9.10
together, we eventually arrive at the lifted model of Eqn. 9.1:

x(k + l) = A  x(fc) +  B u(/c) +  E  0(fc)

y(k) = C x(fc) +  D u(fc) +  J  (j>(k) (9.11)

We assume that subsequently in this chapter, the frame period T  is non-
pathological relative to matrix A, i.e., the difference between any two eigenvalues
of A is not equal to a multiple of i2ir/T with i2 — —1. Under this assumption, 
the lifted system described by Eqn. 9.11 preserves the causality, controllability and 
observability of the original CT system represented by Eqn. 9.1 ([119]).

9.4 Identification of Residual M odels for Fault 

D etection

In this section, it is first shown that the residual models can be derived from two 
matrices, Ts and H s. Then, identification algorithms for the two matrices are 
proposed.
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9.4.1 Description of the Lifted M odel w ith Faults

We define a stacked vector: y g{k) =  [y'{k -  s) y'(fc — s + 1) . . .  y ’(k ) ]1 G , where 
m s = m(s  + 1), and for j  = [0,..., s], y (k -  j ) G 3?pm has a definition similar to y (k). 
Note that subsequently in this chapter, stacked vectors are defined analogously to

*.(*)■
Further, we define two more stacked vectors u s(k) and 4>s(k). Manipulation of 

Eqn. 9.11 in steps similar to those presented by Li and Shah ([TO]) yields the following 
stacked equation:

y g(k) = r sx(fc -  s) +  H su s(k) +  G s$ s(k) (9.12)

where s is the order of the parity space [19] and, for the sake of simplicity, is selected 
to be equal to n. Furthermore, in Eqn. 9.12, Ts =  [C' A 'C ' . . .  (A ^ 'C '] ' e  3?pm-,xn 
is the extended observability matrix;

D 0 J 0

C B

H,_!
G SRpm’xp!’ and Gs =

C E

G s_i

C A a~lB C AS-1E

are two lower triangular block Toeplitz matrices with n s = n(s + 1), ls =  l(s + 1), 
H 0 =  D, and G 0 =  J.

When the sampled inputs and outputs contain measurement noise and sensor faults, 
it follows from Eqns. 9.2 and 9.3 that the lifted vectors of measured inputs and outputs 
will be

u  (k) = u (k) + v(k)  + i u(k)

y  (k) = y { k ) + o { k ) + i y{k) (9.13)

In Eqn. 9.13, {u {k ) ,v (k ) , fu(k)} and {y(k) ,o(k) ,{y(k)} are structurally identical to 
u (k) and y(k)  respectively. In addition, o (k) ~  A/"(0, Ro), v(A:) ~  A/*(0, R;,,), with 
R 0 =  Ip ® R 0 G and R„ =  I3 ® R,, G 3T9'.

Stacking Eqn. 9.13 leads to the relationship between the stacked vectors:

us(k) = us(k) + v s(k) + f S'U(k) G 3lqla

y s(fc) -  y s(k) + os( k ) + i s , y ( k ) e W » °  (9.14)

Using Eqn. 9.14, one can rewrite Eqn. 9.12 as

y s(k) = r sx(A; -  s) +  H s [us(k) -  v s(/c) -  fSi1i(^)] +  G s<j>s(k) +  os{k) +  i Sty{k),
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which can be further manipulated into

y , ( k ) ~  H.UsM =  r ,x < f c - s ) -H «f„ (A O  +  f „ , M  +
G ,£ ( fc ) -H » v ,( i: )+ o s(i-) (9.15)

Eqn. 9.15 links the stacked faults, disturbances, measurements, noise, and the 
dynamics of the lifted model together. Three remarks are in order.

R em ark 9.4.1 Assuming that H s and Ts are available, one can extend the Chow- 
Willsky scheme ([19]) to generate a signal vector as follows

e,(*) =  W . [y^AO -  H ,u s(«0

=  W . [f,,„(fc) -  H.f„(fc)] +  W . [G .£(fc) -  H sv s(fc) +o,(A)] (9.16)

where, W 0 is a matrix selected from the left null space of matrix Ts, i.e. W or s =  0 . 
In addition, note that in Eqn. 9.16 the unknown state vector x(k  — s) has been 
completely removed from the PRV.

R em ark 9.4.2 Define es(/c) as a PRV for fault detection, based on the following 
facts:

• In the ideal case, es(k) = 0, because </> (k) = 0, os(k) =  0, vs(fc) =  0, 
L,u(k) = 0 , and i s^(k)  =  0 .

• In the fault-free case, es(k) =  Wo G s4>s(k) — H sv s(k) + os(k) , which 
is denoted by §*s(k), is a moving average process of disturbance and 
noise vectors: 4>{k), o (k), and v(fc), and follows a zero-mean multivariate 
Gaussian distribution ([58]), i.e. e*s(k) ~  A/" (0, R s e) with R sfi = 
W 0 (GSR S ^G s +  HSR S + Rs o) W 0. Note that R s  ̂ =  I,s+i ® R^, R , 0 = 
I.,+i ® R^, and Rsu =  Is+i ® R„ are covariances of 0 s(/c), os(k) and v s(k) 
respectively. As will be seen later, Rse can be directly estimated from the 
training data.

• In the presence of any sensor faults,

S»(fc) =Sj(fc)H-e{(fe) (9.17)

where e{(fc) =  Wo [fSl2/(^) — Hsfsu(fc)] is contributed by a fault(s). Clearly, 
es{k) follows a multivariate Gaussian distribution with mean efs (k) and 
covariance E s,ei i-e- §s(/c) -7V (e{(/c),RSie).
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R em ark  9.4.3 As shown in Eqn. 9.16, the PRV is

es(k) = W„ [Ipm„ | — H s]
y sW

us(&)

Therefore, the residual model for the PRV is M s = W Q [Ipm, | — H s]. Furthermore, 
M s can be uniquely determined from r s and H s as will be illustrated in the following 
sections. Hence, to obtain M s, one only needs and H s.

9.4.2 Identification of T s and Hs 

T he Sample-wise Stacked E quation

In the fault-free case, because fSM(k) = 0 and t s,y{k) =  0, Eqn. 9.15 is reduced to 

y s(k) -  H su s(fc) =  T ax { k - s )  + G 8£ a{ k ) - H av ll(k) + os(k) (9.18) 

Eqn. 9.18 can then be extended to

y (k +  1 +  s) -  H su s(k +  1 +  s) = T sx(k  + 1) + G s(f> (k + 1 + s)—S -—5
— H sy 5(/c +  1 +  s) +  o s ( k  +  1 +  s) (9.19)

by replacing the time instant k by k +  1 +  s. Also, from Eqn. 9.18 it follows that

x(fc - s ) =  I-J (y 5(t-) -  H sUs(fc) -  G A s{k) +  H * ( t ]  -  os(*)) (9.20)

where t stands for the Moore-Penrose pseudo inverse. Because the pair (A, C) 
preserves the assumed observability of (Ac, Cc) in the original CT system, Ts is 
of full column rank.

On the other hand, performing repeated recursions on the first line of Eqn. 9.11 
shows that

x(fc +  1) =  As+1x(fc -  s) +  [ASB • • • B] (us{k) -  v s(/c)) +  [A5E • • • E] £ (/c)

=  Epp (A:) +  Lwojs(/c) (9.21)

where Eqn. 9.20 has been employed. In addition, Ps(k) = y '(/c)
Sftpm-s+gls

Lp = [As+ 1  rj ([As B • • A B B] -  A s+ 1  rj H j ]  6  Knx(pm*+si«),
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Lw =  [ -L p ([As E • • • A E E] -  As+1 G s)] £ 3?n  x (pm., + g l s + g n a)

and uJa(k) =  o'(fc) v'(/c) 0'(fc) ^  S j f j p m , , + g n s

The incorporation of Eqn. 9.21 into Eqn. 9.19 yields

+  1 +  s) — H sug(/c + 1 +  s) =  r flLpPa( f c ) + r aLa,wJ(fc)

+ 1 +  s) (9.22)

where, L£ =  [IOT.,+P., | — H s | Gs], and ws(k + 1 + 5 ) is structurally similar to u>s{k). 
Eqn. 9.22 is a sample-wise stacked equation, which lays the foundation for the 
following derivation of the subspace algorithms.

T he Block-wise S tacked Equation

The following block Hankel matrix for the inputs can be constructed,

u(fc) u(fc +  1) 

u  (k + 1) u(k + 2)

u (k + s ) u (k +  s + 1)

u(fc + N -  1) 

u(fc +  N)

u(fc - f s +  IV — 1)

x N

where the first subscript of U fc s Ar indicates the time stamp of the (1,1) block element 
of the matrix, and A  is a large positive integer tending to 0 0 . The output and noise 
Hankel matrices have similar formats, which are denoted by Y fc s Ar £ x iV and 
Ofcgjv e sjj(pms+a/„+flns)xiv respectively.

Using the block Hankel data matrices, one can expand the sample-wise stacked 
equation (Eqn. 9.22) to the following block-wise stacked equation:

—l+s+i ,s,n h su l+s+1iSi7V t  r sLpP£ S ^  -t- Lw]

£ SR(p7n-,+5i-dx-/v,

— L ,s ,N (9.23)

where P L^ N V ' TT'± L , s , N  ± L l ,s ,N

Developm ent of Iden tification  Algorithm s

In order to obtain consistent estimates of Ts and H s, we remove the noise-related 
terms in Eqn. 9.23. With a choice of L = 2s + 2, post-multiplying Eqn. 9.23 by
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matrix [P'ô tv P's+ i ,s,jv] generates

jy¥-3s+3,s,N [ E o , ^  E s + l ,s , /v ]

1 1 
=  "5yrE I JpE2s+2,s,Ar [ E o , s , N  Es+l,s,jv] +  ^HsEs+S.s.Ar [E o ,s ,JV E s + 1 , s , n ]N

+ jf  [r.L. l ' ] — 2 s+ 2 ,s ,N

O i s + 3 , s , N

N

[ E o . s W  E s + 1 , s , / v ] (9.24)

For convenience, denote

U 0 — ArEs+3,s,./V [Eq,s,JV Es+l,s,jv] ) ~  j^^-3s+3,s,N [Eq.s.W E + 1,s,Jv]N
1

E o  — j y ' P .2 s + 2 , s ,N  [Eo,s,JV E s+ l,s ,A f]  > E

= ^  [r=L» La
— 2s+2,s,N  

^ 3 s + 3 ,s ,N
[Eo,.s,V Es+i,s,Ar] •

Based on Eqn. 9.24, the least square (LS) estimate of [rsLp Hs] is

-l

f f X „  H s l =  Y 0 [P (0 H 01
U „

[ e 0 m

=  [rsLp h s p0 + ed ] [Eo Eo] ( Eo— 0

_ E _ /  V _  Eo .

-1

[E!o E 0] 1(9.25)

where, as in Chou and Verhaegen ([18]), one can show that E 0 vanishes asymptotically. 
This is so because v(fc), o (k), and 4>(k) are white noise vectors. Hence, if

Eo

iL

-i

[Eo Eo]

exists, then [rsL„ h s] -> [rsLp h j  as N  —> oo.
The reasons for the choice of L = 2s +  2 are as follows. First, the minimum length 

of L  is equal to 2s+  2. If L < 2s+  2, it can be readily proved that E0 ^  0 as N  —* oo.

However, choosing a larger L can increase the probability that 

not invertible, as pointed out by Chou and Vergaegen ([18]).

Eo

XL
[Eo Eo] is
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To compute [r,Lp h ,j, one need an algorithm that is more efficient and 
reliable than Eqn. 9.25. Thus, the following orthogonal-triangular decomposition 
is performed:

Subsequently,

r Rn 0 0 0
£ 0

R 21 Pi to to 0 0
x 0 -

R 31 R 32 R-33 0

R4i R42 R 43 r 44

H s =  [R33 0] [R43 R44]f

Qi

Q2

Qs

Q4

(9.26)

(9.27)

can be obtained. The detailed derivation of Eqn. 9.27 is documented in Appendix 
9.C.

Furthermore,
performing a singular value decomposition (SVD) on [R3i R 32] [R4i R ^]1 gives 
[R31 R 32] [R4i R.12]1  = UiAV'r. Consequently, we can select the first n vectors of 
U; as the consistent estimate of (up to a column space), i.e. Ts =  Uj(:, 1 : n). The 
detailed derivation of the algorithm to compute is presented in Appendix 9.D.

9.4.3 Optimal Design of W 0

For the sake of completeness, the optimal design of W 0 is discussed now. Eqn. 9.17 
clearly shows that in a PRV the fault-contributed term is

Calculation of W0

The PRV should have maximized sensitivity to the stacked fault vectors, fSty(k) and 
i s tU{k). Geometrically, this means that besides satisfying Wor s = 0, WQ should have 
maximized covariance with matrix Hs. In accordance with the work of Golub ([42], 
cf. pp 319-320) and that of Rao ([107], cf. pp 331-332),

W' = the eigenvectors of r^H .sH(, corresponding to non-zero eigenvalues (9.28)
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Conditions for the Existence of a Non-trivial W 0

From its definition, it is evident that is a pma x n  matrix and has rank n. 
Accordingly, the rank of the left null space of is pms — n. Because W Q is located 
in such a null space, it has p m s columns and pms — n =  pms  +  pm  — n independent 
rows. Due to the choice of s = n  and pm > 1, pms -  n + pm  > 0 always holds. 
Consequently, a non-trivial solution to W 0 is always available. We define a new 
convention, Rank(W0) =  pms + p m  — n, which is the dimension of the PRV.

9.5 An Experimental Case Study

In this section, an experimental case study is conducted to test the effectiveness of 
the proposed scheme. We will demonstrate the detailed procedure for (1) identifying 
a residual model using NUSM data collected from an experimental pilot plant; (2) 
using the identified residual model to generate a PRV for fault detection; and (3) 
designing a set of structured residual vectors for fault isolation.

9.5.1 The Experim ental Pilot Plant

The experimental pilot plant is a continuous stirred tank heater system (CSTHS) 
located in the Computer Process Control Laboratory at the University of Alberta. 
As shown in Figure 9.3, the CSTHS has two inputs, the cold water and the hot water, 
which are well mixed. The ultimate purpose of the CSTHS is to control the level and 
temperature of the water, both of which are also chosen to be the outputs.

9.5.2 Preliminary Work for FDD

Identification of the Residual Model for Fault Detection

From this pilot plant, a set of training data with 1920 points and a frame period of 
T  =  5 secs was collected to identify the residual model. Within each frame period 
[kT, kT+T]  for k = 0,1,2, • • •, the two inputs are sampled at instants k T  and kT  +  2, 
while the two outputs are sampled at instants kT  and kT  +  3. Thus, the lifted input 
and output vectors are

u (k) =
u (kT) 

u (kT  +  2)
y(k) =

y  (kT)

y ( k T  + 3)
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i m m

Figure 9.3: Physical layout of the CSTHS system with the associated hardware

Based on the principles of mass and energy balances, the dynamics of the pilot 
plant can be represented by a second order system, i.e. the order of the model is 
n =  2. This resulted in two identified matrices: Ts G 5£12x2, Hs G 5?12x12, followed by 
a calculated matrix: W0 G 3?10x12, where a value of 2 is selected for s. Further, with 
r s, Hs, and W0, the residual model M s =  [W0| — W0HS] G 5? 10x24 is constructed. 
Furthermore, from the training data and M s, a sequence of PRVs are generated, from 
which the covariance matrix R s e G 3ft10xl° is estimated.

V alidation of th e  Identified R esidual M odel

In addition to the data used for identification, another sequence of data for the 
fault-free case was generated for model validation. From this data sequence and 
the identified residual model, i.e. M s, a sequence of PRVs, (e,(/c)}, is generated and 
depicted in Figure 9.4.

One can calculate FD(k) — e(,(fc)R“e§s(fc) as the fault detection index (an estimate 
of the covariance matrix Rse was given earlier). Previously mentioned, in the fault- 
free case, because es(k) ~  A/-(0 ,R s e), FD(/c) follows a chi-square distribution with 
degrees of freedom 10 ([58]). Therefore, at a level of significance a  — 0.01, the 
confidence limit for FD(fc) is Xo.oi(lO) =  23.209.

The calculated (FD(fc)} are plotted in Figure 9.5. Clearly, {FD(/c)} is within its 
confidence limit, indicating that the identified residual model is valid. .
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Figure 9.4: A sequence of PRVs generated from the validation data
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o  25LL
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Figure 9.5: The fault detection index generated from the validation data. The dotted 

line represents the threshold, 23.209, for the index.
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Table 9.1: Sensitivity and insensitivity of the 4 SRVs with respect to faulty sensors 

in the CSTHS system

1st output sensor 2 nd output sensor 1 st input sensor 2 nd input sensor

1st SRV 0 1 1 1

2nd SRV 1 0 1 1

3rd SRV 1 1 0 1

4th SRV 1 1 1 0

Calculation of the Residual Models for Fault Isolation

While we can use the PRV to conduct fault detection, we must transform the PRV 
into a set of SRVs to isolate each faulty sensor. Assume that at each time, only one 
sensor is faulty. Because 4 sensors (2 for the inputs, and 2 for the outputs) were 
installed in the CSTHS system, accordingly we must design 4 SRVs, each of which is 
insensitive to one faulty sensor but has maximized sensitivity to other faulty sensors.

More specifically, we design the ith SRV to be insensitive to any fault in the i th 
sensor, but to have maximized sensitivity to faults in other sensors for i G [1,.... 4]. 
This is termed fault isolation logic. The sensitivity and insensitivity of the 4 SRVs 
for the faulty sensors are summarized in Table 9.1. In the table, a ‘O’/ T  means the 
insensitivity/sensitivity of a SRV to a faulty sensor.

Mathematically, the i th SRV is

r , ii( A : ) = W fs , ( f c ) = W iM a
y s ( k )

Therefore, the model for the ith SRV is W j M s . With known M s and the isolation 
logic illustrated in Table 9 .1 ,  using algorithms similar to those presented by Li and 
Shah ([TO]), we can obtain 4 transformation matrices W; G 3ft4xl°, and consequently 
the structured residual models, W j M s G 5i4x24, V i G [1, . . . ,4 ] .

When designing the 4 SRVs for isolation, a question arises: What are the conditions 
to guarantee their existence? Similar to the analysis in [70], we can provide an answer 
to this question as follows.

Because the model for each SRV is W j M s , the existence of a SRV depends entirely
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on the existence of a non-trivial matrix W*, given M s. For each output sensor fault, 
p(s + 1) elements in y g(k) will be affected by the fault. Similarly, each input sensor 
fault will affect q(s +  1) elements in u s(/c). To make a SRV insensitive to one fault, 
one must design a W* such that it is orthogonal to the fault-related p (s+ l)  or q(s + 1 ) 
columns in M s. Keep in mind that the rank of M s is Rank(W0). Assuming that 
the aforementioned p(s + 1 ) or q(s + l) columns have a rank p(s + 1 ) or q(s +  1 ), it 
can be inferred that W* has at least Rank(W0) — p(s + 1 ) or Rank(W0) — q(s +  1 ) 
independent rows. If the number of independent rows in W* is equal to or larger than 
1 , the existence of a SRV is confirmed.

In this case study, we have Rank(W0) =  10, p(s +  1) =  2(2 +  1) =  6 , q(s +  1) = 
2 ( 2  +  1 ) =  6 . Therefore, each W* has Rank(W 0 )—p (s+ l) =  Rank(W0) — g(s +  l) =  4 
independent rows, V i G [1, indicating the existence of the 4 SRVs.

Decision M aking for FDD

For better visualization, we scale FD(k) to have unit confidence limit, resulting in 
a scaled fault detection index, FD(k) = FD(/c)/23.209. Consequently, for real-time 
sampled data, while FD(fc) < 1 indicates the fault-free case, FD(fc) > 1 triggers 
alarms for any faults in sensor (s) ([9]).

After fault detection, we can isolate the faulty sensor as follows. Because r s i (k) 
is a linear combination of es(k), in the fault-free case it can be inferred that 
r s# )  r\j (0 , WjRseW(:) ([58]). In addition, because r s i(/c) is insensitive to a fault 
in the i th sensor, rs i(h) (0, WjRseW') when the i th sensor is faulty but the other 
sensors are fault-free.

We define a fault isolation index Ffr(fc) =  r s i(A:)R~lrS)i(fc), where =
W ,R SeW(. Then in the afore-mentioned two cases, Flj(fc) ~  y 2 (4) ([58]). With 
a  = 0.01, the confidence limit for Fli(k) is 13.277. Similarly, we scale the fault 
isolation indices to have unit confidence limit, obtaining the scaled fault detection 
indices, Fli(k) = FIi(fc)/13.277.

After fault detection, if Ffr(/c) < 1 but FIj(k) > 1 for { i , j  e  [1,4]} and {i ^  j} ,  
it can be decided that the ith sensor is faulty. It must be noted that in the CSTHS 
system the i th sensor refers to the ith output sensor if % e  [1 , 2 ], or the (i -  2 )th input 
sensor if i 6  [3,4].
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9.5.3 FD D  Results

Although we have done FDD for many cases in the course of this study, FDD results 
for only two are presented here. In each case, a fault is simulated by introducing a 
drift or a noise to one of the 4 sensors at a time. Furthermore, note that in each case, 
a sequence of test data from t = 0 to t  =  1750 seconds is sampled in the same manner 
as the training data.

Case 1

A drift fault simulated by 0.001(i—t/)  is introduced to one sensor at t /  = 980 seconds. 
The FDD results are depicted in Figure 9.6. FD is the scaled fault detection index, 
and { F /i, F / 2 , F I 3 , F I 4} are the scaled fault isolation indices (the same conventions 
will be used in the second case). It is evident in Figure 9.6 that FD is beyond the 
unit confidence limit after the occurrence of the fault. Therefore, fault detection 
has been successfully achieved. F I  1 is unaffected by the fault, i.e. it is below the 
confidence limit (at few periods of time it is beyond the limit), while { F /2, F / 3, F I 4 } 

are affected, i.e. they are beyond the confidence limit. The sensitivity of the 4 fault 
isolation indices can be characterized by a binary code [0 1 1 1]. In accordance with 
the isolation logic described earlier, it can be inferred that the first output sensor has 
a fault. It must be pointed out that there is a delay in detecting and isolating the 
fault. This is so because the drift fault is an incipient fault that evolves with time 
very slowly.

Case 2

In this case, a zero mean Gaussian distributed noise with variance equal to 0.22 is 
introduced to a sensor at t f  = 780 seconds. This simulates the fault of precision 
degradation. The FDD results are depicted in Figure 9.7. Because the sensitivity 
of the isolation indices to the fault is [1 0  1 1], it can be concluded that the second 
output sensor has a fault.

To quantify the sensitivity of the proposed FDD scheme, we define the fault-to- 
signal ratio as follows ,

||fa(fc)|| is the 2 -norm of the lifted fault vector, |jy*(fc)|| is the 2 -norm of the fault-free 
lifted output vector at the k th frame period, kj is the frame period at which the fault
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Figure 9.6: Detection and isolation of a fault in the 1st sensor. The sensitivity of the 

isolation indices to the fault is [0 1 1 1]. The dotted line in each subplot represents 

the threshold, 1 , for the scaled detection and isolation indices.
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Figure 9.7: Detection and isolation of a fault in the 2nd sensor. The sensitivity of the 
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the threshold, 1 , for the scaled detection and isolation indices.
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occurs, and the N q is the number of frame periods in the test data. In this case, 
ks =  t f / 5 = 780/5 =  156, N q = 1750/5 =  250, and rf/s  = 11.05%.

9.6 Concluding remarks

A novel subspace approach to identification of residual models for FDD with NUMS 
data has been proposed. In comparison to the uniformly sampled multirate FDD 
work represented in the literature, this new approach is more generic and applicable 
to a wider class of processes. Using the identified model, a PRV is generated for fault 
detection by extending the Chow-Willsky method. For the PRV, sensitivity to any 
faults has been maximized.

This approach has been applied to an experimental pilot plant, i.e. the CSTHS 
system in the Computer Process Control laboratory at The University of Alberta, 
where the model’s validity was assessed. Various types of sensor faults in the 
CSTHS system, including drift and precision degradation, are successfully detected 
and isolated. Therefore, the practicality and utility of the proposed methodology 
have been demonstrated.

9. A Derivation of Eqn. 9.6

Over the period t £ [kT, kT  + T],

e ^ ( k T + T - t )  [B cu ( t)  +  0 ( f) ]  dt  =  /  ' e Ac{kT+T- t][Bcu(t)dt +  ((){t)dt}

where t\ = 0 and tg+ 1 1 T.

Assume that u(f) and are piece-wise constant within the interval [kT + tj, kT  + ij+i]

■kT+T

•kT+tz
eA^kT+T- t)[Bcn{t)dt +  (j){t)dt] +

kT+£2
rkT+tg+1

,A c(k T + T - t )

(9.A.1)
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for i — [1 , . . . , g ]. Eqn. 9.A.1 can be easily evaluated as

f k T + T  

IkT

[•ki + J.
/  e A c(kT+T-t )  p c - +  ^  dt  =

JkT
pkT+t 2
/  eMckT+T-i)B cdt + tj) + (j>(kT + ti)]

J  kT "f"£i
pkT+tz

+ / gA c(fcT+T [u(/cT + t%) + 4>(kT + fo)] + • • •
J kT +̂ 2

fkT+tg+l
+ /  eAc(fcT+T- t)Bcdf[u(A;T + f3) + 0(fcr + ^)]

J  kT 4-ta
(9.A.2)

D enote

pkT+ti+i rT—ti
B  i =  e A r.(kT+T - t ) B  c d t =  / eAci'Bcdt

JkT+ti J T —ti+l
rkT+ti^. 1 r T —ti

E  i =  eA^ kT+T~t)dt = /  eActdt. (9.A.3)
JkT^-ti J T —ij+i

Consequently, Eqn. 9.A.2 is equal to

rkT+ T
/  e - A c ( k T + T - t )  +  d t  =  [B l B 2 ... Bff]u(fc) + [Ex Eo • • • Eg]£(k)

J k T
= B  u(fc) +  E  0(fc) (9.A.4)

where, B  =  [B i B 2 • • • B fl], E  =  [Ei E 2 • • • E ff], and the definitions of u (k) and 0(/c) have 

been employed. Furthermore, using Eqn. 9.A.4 in Eqn. 9.5 gives Eqn. 9.6 immediately.

9.B Derivation of Eqn. 9.10

Evaluating Eqn. 9.8 at r  =  tj , where i =  [1, ....g] and for each i. j  =  [l,...,n ,;], it can be 

seen that

rKl 4*̂
y ( k T  + 1?) =  C ce Ac^x(/c) +  C c /  e Ac{kT+t\-t) [Bcu(t) +  0 (t )]  dt  +  D cu(fcT +  t j )

JkT
(9.B.5)

N ote that u (kT +  t() =  u ( k T  +  ti).
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Since

r kT+l\
Cc /  eA^ kT^ i~ ^ B cu(t) dt

J k T
rkT+t2 .

= Cc eA^ kT+ti - ^ B cdt u(kT)
J k T

r k T -K 3

+ Cc /  eA' (kT+ti -*>Bcdt ii{kT + t2) + • • • 
J  kT -\~t2

pkT+ti
+ Cc ^rXkT+i, -t)Bcdt u(kT  + ti)

' k T -f~ti 

rti t t - t 2
= [Ccj^ eActB cdtJ u ( k T ) + \ C c ^  eActB cdtJ u(kT + t2)

+ ' " ( c c I ' '  'e AetBcdtj u(jfer + ti) (9.B.6)

and

r k T + t i
Cc /  eAc(w,+tH )0(i) dt = 

J k T

+

+

Cc f tl eA^dt I 4>{kT)
k M - t*  J

CcIt{ heActdt ĵ ^ kT  + t >̂

^ eA' ld t j  4>{kT + ti) (9.B.7)

where u(i) = u(kT  + ti) and <fj(t) =  <p(kT + ti) for t e [kT + U, kT  + tj], the combination 

of Eqns. 9.B.5-9.B.7 show

' H kT  + t}) ' u (kT  + ti)

y(*r + t?)
= Ctx(fc) + [Dj,x • • • Di,j]

u (kT  + 12)

_ y (kT + t?) _ u (kT  + ti)

+  [Ji,

4>{kT + tx) 

<t>[kT + t2)

4>(kT + ti)

(9.B.8)
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where

Ci =

' CceActi " Cc / q1' eActBcdf + Dc '

1

O O O
^

.

CD > n sC r-+
.

1

CceActi
)  D y --

C d o 1 eActB cdt + Dc Ccj §  eAcidt

_ CceA^  _ _ Cc /o^ 1 eActBcdt + Dc _ _ Cc j f e ^ d t  _

and for j  = [1 , i — 1],

—

Cc/ | 7 J eA-lB cdtlj+ 1 ! J i,j —

r t J - U eArtdt
C ^ 4 Z ,

_  c c $ Z  eA-‘B<dt

Using Eqn. 9.B.8 in Eqn. 9.8 gives y (k) = C x(k) + D u (k) + J  <j>(k), where

C =

Cl

C2
, D =

Du  0

D2,i D2i2 0

0

Dg,l Dg,2 Dg,3 D9,9

J =

Ji,i 0  

J2,l J2,2 0

3  9,1 Jg,  2  * ^ 3 ,3  • • •

9.C Derivation of Eqn. 9.27

The use of Eqn. 9.26 in Eqn. 9.24 yields

•9,9

R-3 1Q1 + R32Q2 + R 3 3Q3 — r sL +
R 11Q1 

R21Q1 + R 2 2Q2 

Hs (R41Q1 H- R 42Q2 + R 4 3Q3 + R 44Q4 ) (9.C.9)
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% — J
N ote that QiQT — s , with I representing an identity matrix of appropriate

0 , i ^ j
dimension.

Post-multiplying Eqn. 9.C.9 by Q 3 e IR(2Pm-’+2.9 )̂xpm., anj  qT ^ s^(2pma+2gis)xgia  ̂

respectively, we arrive at [R 33 0] =  H s [R43 R 44]. Therefore, H s =  [R 33 0] [R43 R x.if.

9.D Derivation of the algorithm to compute Fs

Post-multiplying Eqn. 9.C.9 by Q f  e  K (2 p m .,+ 2 ff/ . , ) x P m s a n d  q T  e  ^ ( 2 p m s + 2 9 U ) x g l ^  

respectively, produces

[R31 R 3 2] =  r sLp
Rxi 0

R21 R22
+  H s [R41 R 42] .

Consequently,

[R31 R32] [R41 R42]"1" = r sL
R 11 0

R21 R22
[R41 R.•42]

where ( )-*- stands for the right null space of the argument, i.e. [R41 R 4 2 ] [R41 R4 2] = 0 .

Furthermore, performing a singular value

decomposition (SVD) on [R31 R 3 2] [R41 R4 2 ]1  gives [R31 R 32] [R41 R 4 2 ] 1  =  U j A v ; ,  

assuming that

[R41 R 42
iXRn 0

R21 R22

be of rank n. Finally, we select the first n  vectors of U; as the consistent estim ate of Ts 
(up to a column space).
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Concluding Remarks and Future Work

10.1 Concluding Remarks

The main contributions of this thesis are:

• A tutorial overview of existing system identification approaches -  including 
prediction error method, subspace identification method and multivariate 
statistical regression method -  is provided.

• Existing fault detection and diagnosis approaches and current research 
directions are reviewed. The key components of FDD, i.e process model and 
redundant measurements, are summarized and explained in detail.

• The concepts of fault detectability and strong fault detectability are defined, 
and criteria of fault detectability and strong fault detectability are proved. A 
special strong fault detectability condition for output sensor faults is given in
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an easily understood manner. The results are applied to an inverted pendulum 
example in order to illustrate the effectiveness of the conditions.

• A set of softsensors for a complex chemical process in an industrial environment 
is designed and implemented. The partial least squares (PLS) method is 
used in this application. Due to the complexity of the process, nonlinear 
transformation and input variable selection are considered -  resulting in a 
significant improvement in softsensor performance. Finally, the developed 
softsensors are used by Millar Western with a satisfactory level of performance.

• A new canonical variate analysis (CVA) for ill-conditioned data is developed. 
Using Cayley-Hamilton theorem and Krylov space, the new CVA method can 
handle data with collinearity, while still preserving the orthogonality among 
latent variables in an optimal manner. The new CVA method is extended to 
dynamic case.

• A robust sensor/actuator fault detection and diagnosis method dealing with 
the case of process uncertainties (including disturbances and model plant 
mismatch) is proposed. This method can completely decouple the effects 
of uncertainties for sensor fault detection and diagnosis. For actuator fault 
detection and diagnosis, the method can eliminate the major components of 
process uncertainties.

• An optimization procedure is applied to solve the multiplicative fault detection 
and diagnosis. The techniques of data reconciliation and gross error detection 
are used as theoretical bases for the procedure.

• A fault detection and diagnosis method dealing with multirate data is proposed, 
wherein different variables are measured at different sampling rates. Starting 
with a continuous time process, one can obtain its discrete time counterpart by 
using a lifting technique under multirate situation.

The new techniques were evaluated in several real and simulated situations:

• The detectability criteria were evaluated by a well-known inverted pendulum 
system under simulated conditions.

• A systematic approach for softsensor development was applied to Millar Western 
Forest Products Ltd., a plant that uses a bleached chemi-thermomechanical pulp 
(BCTMP) process at Whitecourt, Alberta, Canada.
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• Canonical variate analysis (CVA) for ill-conditioned data was evaluated with 
data from a pulp and paper mill for the static case and by a simulated 
continuously stirred tank reactor (CSTR) system for the dynamic case.

• The robust sensor/actuator fault detection and diagnosis technique was applied 
on both a simulated CSTR system and a laboratory continuously stirred tank 
heater (CSTH) system.

• Detection and diagnosis procedures for multiplicative faults were implemented 
on a chemical tank inventory system at Millar Western Forest Products Ltd., 
Whitecourt, Alberta, Canada.

• Multirate fault detection and diagnosis techniques were evaluated at a 
laboratory CSTH system.

10.2 Recommendations for Future Research

Problems that still need to be investigated include:

• Establish a set of criteria for fault isolability. As was achieved on fault 
detectability in Chapter 4, fault isolability should be a property of the system 
under consideration. In such a case, the criteria of fault isolability can be 
determined solely by the system matrices. The problem of fault isolability is 
essentially to determine under what conditions two different faults lie in different 
directions in the residual space.

• Analyze the effect of parity space order. From Chapter 4, it is known that the 
selection of s does not affect the detectability of output sensor fault provided 
s > n  — 1. However, the selection of s may affect the detectability of other 
types of faults. Consequently, one can determine the “optimal” selection of 
parity space order based on the results.

• Compare parity space and observer-based methods. The parity space method 
and observer based method have identical starting points, i.e. the state space 
representation of a system. Consequently, the following questions arise: are 
there any differences between these two methods? What are the advantages 
and/or disadvantages of each method? Are the methods equivalent under some 
conditions?
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• Explore detection and isolation of model-plant mismatch (MPM) in detail. As 
mentioned in Chapter 7, a high quality process model is crucial for accurate 
FDD. An index of model quality must be developed. Furthermore, it would be 
very useful to develop a method of isolating the major source of modelling error 
from a multivariate transfer function matrix.
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