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Abstract

A substantial class of chemical manufacturing processes are operated in a transient manner
and cannot be considered to reach a steady-state. The optimization of such processes re-
quires determination of optimal time-varying trajectories for the manipulated variables. A
dynamic optimization problem thus needs to be solved that, in majority of cases, involves
differential-algebraic constraints on the manipulated and state variables. In general, such
optimal control problems are difficult to solve and solution schemes are based on approxi-
mate and computationally demanding discretization methods.

This thesis proposes a new method to solve a class of dynamic optimization problems
in which the nonlinear differential-algebraic process model is flatz. The method exploits, as
appropriate, the differential flatness or orbital flatness of dynamics of the process model to
explicitly eliminate the differential state equations from the dynamic optimization problem.
This enables the representation of the optimization problem in a set of new coordinates of
flat outputs, in which the problem is purely algebraically constrained. This transformed
optimization problem is then shown to be readily solvable using one of many available
optimization codes.

The proposed Normalized Dynamic Optimization (NDO) approach is shown to obtain
accurate and efficient solutions to a range of benchmark problems taken from dynamic
optimization literature. In view of the encouraging results obtained from the application of
the algorithm to off-line dynamic optimization problems, the thesis also makes a preliminary
attempt to investigate the applicability of the proposed algorithm to real-time optimization.

Finally, the algorithm is summarized and evaluated in terms of its efficiency to solve
the class of benchmark optimization problems. Noting that the application area of this
algorithm is presently restricted to flat process models, further research directions are also

identified that may broaden the applicability of the general concept.
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Chapter 1

Introduction

Mothers are the necessity of invention. — Bill Watterson, “Calvin and Hobbes”

There is a constant drive towards improving the economic performance of process plants.
Many of the recent developments in the chemical engineering literature have focused on
determining the optimal steady-state operation of continuous processes. However, there
are a number of important chemical engineering processes that are operated in a transient
manner and cannot be considered to reach a steady-state. Of particular interest, among
this class, is that of batch processes. Batch processing. because of its enormous flexibility
and diversity, is extensively used for production in a variety of industries including specialty
chemicals, pharmaceuticals, steel, polymers and so forth. Even in continuous operations.
there are situations where the process is intentionally operated in a transient manner (e. g-.
grade transitions). In such transient processes, steady-state optimization approaches cannot
be applied and operations optimization needs to be considered within a dynamic framework.
In addition, many of these transient processes are characterized by highly nonlinear models
that increase the mathematical complexity of any optimization problem. These factors
have contributed to the situation that the operation of these processes is, in general, seldom
optimized. The processes are then carried out to a defined recipe which may have been
arrived at during development and is never changed. This type of operation however. in most
cases, is sub-optimal considering that the system is always subject to some disturbances.

Recognizing the need for optimization of transient processes, this thesis focuses on find-
ing an accurate and efficient solution to the dynamic optimization problems posed by batch
processes. A key characteristic of dynamic optimization problems is that the process model
consists of differential equations. Numerical solution techniques for such problems (e.g..
dynamic programming, collocation on finite elements and so forth), which are currently
in widespread use, are usually based on discretization schemes and can be computation-
ally prohibitive. Furthermore, the techniques may require accurate initial estimates of the
optimal process operation, before a satisfactory answer is obtained. This thesis proposes
an alternative method to solve the dynamic optimization problems for processes whose



nonlinear process model is flat. The approach exploits, as appropriate, either the differen-
tial flatness or orbital flatness of the process model, to explicitly eliminate the differential
equations from the optimization problem. The resulting optimization problem is a simpler,
algebraically constrained problem that can be solved using readily available optimization
codes.

The following sections describe the difficulties associated with the operation of batch
processes!, as well as define the associated dynamic optimization problem. An overview of
the widely used techniques to solve such dynamic optimization problems is also presented
before proposing the new technique.

1.1 Batch Process Characteristics

Batch processes are operated in a diverse array of situations (i.e., production scales may
range from thousands of tonnes to a few kilograms per year, products and raw materials may
be extremely valuable or extremely cheap, limited availability and costs of energy or other
resources such as manpower may be dominating or negligible, etc.). The processes may be
ill-defined, which refers to the variability, uncertainty and lack of knowledge very commonly
encountered in the design and operation of batch reactors. To compound the already difficult
problem, processing facilities have to cope with many different products. In multi-product
batch processing facilities, operation requires control strategies that can operate over a
wide range of conditions. This diversity implies that separate optimal operating schemes
have to be determined for these processes under different situations. The control of batch
operations, thus, can have widely differing immediate objectives. These may consist simply
of damping out the effects of small perturbations from known standard conditions, as in
conventional control of continuous processes. In other cases, however. it would be required
to develop a complete operating strategy on-line in response to observed system behaviour.
Increasing competition in the process industries, however, presses for optimal operation in
all situations. In other words, the problem of determination of optimal plant operations (or
setpoint trajectories) for these so-called dynamic processes, gains a new importance.
Recognizing the need and importance, research in the area of batch process optimization
has been rich and has centered around the following two lines of investigation: 1) The
optimal servo control problem, which refers to the computation of optimal input trajectories
that lead the system from certain initial conditions to final specified conditions; and 2) The
optimal regulatory control problem that deals with selection of control strategies which
reduce the effects of undesirable disturbances on process conditions. The servo problem has
been studied under the following two subdivisions: 1) Chemical control, where the optimal
policies are developed in order to keep some variables, such as compositions or reaction

!The techniques discussed in this thesis apply to batch processes. as well as a class of transient prucesses
that may include start-up/shut down control schemes for continuous processes. However. all these processes
will be collectively referred to as batch processes in this thesis.



rates, constant throughout the batch; and 2) Optimal control, which refers to the design of
optimal trajectories that optimize certain objective functions. The regulatory problem, on
the other hand, has been studied under the framework of on-line or real-timme optimization
and/or differential game theory. The common feature of all these optimal control methods
is that they incorporate the knowledge of the dynamic and nonlinear process model to
determine the optimal operating conditions for the process. The detailed reaction models
for batch reactor problems are generally constituted by a set of highly coupled nonlinear
ordinary differential and/or algebraic equations. The solution to the optimization problem
with this dynamic model thus requires a considerable computational effort. The solution
is further complicated by the effect of batch-to-batch variations (e.g., due to raw material
impurities or up-stream disturbances and so forth), that needs to be properly represented
in the solutions [Terwiesch et al., 1994].

Real-Time Optimization (RTO) is a concept that combines the above strategies. In
RTO, the optimization of a detailed mathematical model of the process is performed on-
line. The optimization function is usually economic, and the optimization problem consists
of determination of set-points for the process controllers such that a objective function is
optimized. The optimization is carried out in real-time, implying that information about
the process is acquired during its operation in order to determine the current state of the
process. The process model is optimized taking the collected on-line data of the process into
account and the optimization result is implemented into the process changing the current
operating set-point. The core of any RTO system is an algorithm that is used to solve the
optimization problem several times during the process operation. For continucus steady-
state optimization problems, the model complexity is not as critical, and hence a variety
of algorithms are able to achieve this. For differential/algebraic nonlinear models, however,
this problem becomes a lot more difficult and sometimes impossible to solve. This thesis
takes a step in this direction by proposing an algorithm to solve a specific class of these
problems efficiently. This algorithm is shown to give an accurate and efficient solution to
several benchmark dynamic optimization problems from literature. The characteristics of
the algorithm seem to make it particularly suited for en-line applications that require fast
and accurate solution to the updated optimization problem at every optimization interval.

1.2 Optimization Problem Formulation

In dynamic optimization problems, an objective function is optimized with respect to dy-
namic model equations and other constraints. The class of processes considered in this
thesis can be generically modeled with the following dynamic equation:

x(t) = £(x(t), u(t))  tE€ [to.t/] (1.1)

where x(t) € M C R is the vector of state variables and u(t) € 4P the vector of control
variables that has to be chosen optimally over an admissible set of controls. The boundary

3



conditions generally depend on the physical nature of the problem. For example, specifica-
tion of the composition of initial charge in a batch reactor would take the form:

x(to) = xo. (1.2)

If the initial condition, such as the above, was to be fixed only, the result would be a
straightforward initial value problem. In other practical systems, the final state may be

constrained:
x(tf) =xg (1.3)

(e.g., the requirement that the final product be of a given composition); then the result is
a two-point boundary value problem. The final state constraints represented above, along
with other constraints such as the transversality conditions: ¥(x(tf)) = 0 etc., can be
studied under the following general representation of constraints:

g(x(t),u(t)) < 0 (1.4)

c(x(t),u(t)) = 0. (1.5)
In addition, constraints in the form of upper and lower bounds on the variatles are common:

xp < x(t) <xy (1.6)
u, < ut) <uy (1.7)

where the subscripts, L and U refer to lower and upper bounds respectively?. In order to
specify what is meant by optimal, an objective function:

S(x(t), u®) = Gx(ty) + [ Flx(t), ult))dt (18)

to
is defined that has to be maximized or minimized. This formulation of the objective function
is sufficiently general that it allows the treatment of a wide class of batch optimization

problems.
With the above discussion, and by the collection of Equations (1.1) through (1.8), the
differential-algebraic optimization problem (DAOP) can be stated as:

x(th)l};lf(Lt) ®(x(t), u(t)) t € [to. ty]

s.t.:
x(t) = £(x(t),u(t)) x(to) = xo0
g(x(t),u(t)) <0 (1.9)
c(x(t), u(t)) = 0
xr < x(t) < xp
ur <u(t) <uy

*In this thesis, the constraints such as: xr < x(t) € xy represent individual element-to-elemment bounds
of the vector x.



where, ® represents the objective function, g and c are vectors containing functions in
the algebraic constraints, x are the process states and u are the process inputs®. The
solution to such a dynamic optimization problem is usually some trajectory for the decision
variables of the optimization problem. Such decision variables could include set-points for
the manipulated process variables (i.e., input variables) or measured process variables (.e.,
output variables). It is then the task of process controllers to track or implement these
optimal trajectories.

Dynamic optimization problems, as given in Problem (1.9), can be very difficult to solve
analytically and numerical solution techniques are typically used. Conventional Nonlinear
Programming (NLP) techniques cannot be directly applied to Problem (1.9) due to the
presence of differential equality constraints. Optimal control methods, on the other hand,
will deal with continuous control profiles but normally cannot handle general algebraic
constraints (such as the ones represented by g or ¢). Thus, special numerical techniques
have to be employed in order to solve these problems. The next section presents the key
characteristics of some of the techniques that have been reported in literature to solve
problems of this type.

1.3 Solution Techniques

The DAOP stated in Equation (1.9) cannot be usually solved directly by typical nonlinear
programming techniques or optimal control methods and analytical solutions are seldom
available. Thus, when a DAGCP (with or without uncertainty) is to be solved using a
digital computer, it is typically necessary to first find a suitable numerical representation for
candidate strategies. In this context, a variety of different representations and corresponding
solution approaches have been suggested in the literature. The techniques most commonly
employed to solve the differential-algebraic end-point optimization problem such as the one
in DAOP (1.9) can be broadly classified into two classes: 1) methods that rely on some
form of approximation of the differential equations in order to pose the problem as an NLP
(e-g., collocation based techniques, etc.); and 2) methods that embed a differential equation
solver in the optimization strategy (e.g., CVI, CVP, IDP, etc.).

Transformation of Problem (1.9) into an NLP form via discretization has been studied
by a number of researchers (e.g., Biegler [1984] ; Cuthrell and Biegler [1989]; Logsdon and
Biegler [1989], and Villadsen and Michelsen [1978] , etc.). In these approaches to solving
the DAOP, the state and manipulated variables are parameterized in terms of some set
of basis functions (e.g., simple polynomials [Villadsen and Michelsen, 1978] or Lagrange
interpolation polynomials [Logsdon and Biegler, 1989] in t) and the optimization horizon
(t.e., [to, ty]) is discretized in some fashion (e.g., via orthogonal collocation [Cuthrell and
Biegler, 1989]). As a result of discretizing the optimization time horizon, the number of

*This is a simplified version of the formulation given by Cuthrell and Biegler {1988’ but contains all the
characteristics necessary for the developments and discussions of this thesis.



equality constraints is inflated by the fineness of this discretization. Thus, increasing the
accuracy of the solution via a finer discretization of the optimization horizon can drastically
increase the computational requirements of this approach.

Examples of methods that embed differential equation solvers within the optimization
technique include: Control Vector Iteration (CVI) [Ray, 1981}, Control Vector Parameter-
ization (CVP) [Hicks and Ray, 1971] and Iterative Dynamic Programming (IDP) [Luus,
1991; Dadebo and McAuley, 1995 ]). In CVI, the input vector u(t) is assumed to be piece-
wise constant and at each iteration of the optimization algorithm the state equations are
integrated forward in time, then the results of the forward integration are used to integrate
a set of adjoint equations backward in time to provide a correction to the current iterate
for the input vector ug(t). CVP eliminates the need for backward integration of the adjoint
equations by expressing the input variable u(t) in terms of some predefined basis functions.
IDP is a refinement of the general dynamic programming approach wherein at every itera-
tion of the optimization algorithm: 1) a set of discrete input variable profiles u(t) are used
to integrate the state equations forward in time; 2) the grid is refined during a backward
pass; 3) the grid is contracted around the best input profile identified during the backward
pass; and 4) the procedure is repeated until convergence. In each of these approaches, at
least one integration of the state equations is required at every iteration of the optimization
algorithm, which can be computationally expensive. Further, the accuracy of the solution
depends upon the discretization chosen for the optimization time horizon.

Other Dynamic Programming [Bellman, 1957] approaches to such optimal control prob-
lems are usually based on the sclution of the Hamilton-Jacobi-Bellman (HJB) equation,
which is a set of nonlinear partial differential equations in the state variables. Many tech-
niques have been applied to solve these equations. Lukes [1969] and Al'Brekht [1961] pro-
posed perturbation methods to sequentially solve equations of increasing complexity. Lu
(1993] proposed cost function transformation techniques that lead to simplifications of the
HJB equation. Dolcetta [1983] and other researchers have considered the solution of the
HJB equation using standard numerical techniques like finite element and finite difference
methods. In a related approach, Beard [1998] has considered the solution of the HJB equa-
tions by successive Galerkin approximations. The resulting method is simple and can be
used to generate approximate solutions that are optimal over a set of user-defined basis func-
tions. Unfortunately, like other methods based on the HIB equation, and despite significant
developments in the field of optimal control theory, the solution of this equation remains a
formidable task that limits the use of nonlinear optimal control methods in practice.

1.4 Comparative Discussion

In all the methods discussed, the algorithmic solution procedures for DAOPs are parameter-
izations in one form or another. Thus, the problem complexity can be reduced enormously if
it is known or assumed a priori that the class of candidate profiles can be restricted to sim-
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ple parameterizations without losing significant optimization potential. In this framework,
the issue of accuracy of the problem formulations chosen by different algorithms becomes
important. Also, for the practical application of any of these techniques, the issues of so-
lution convergence and computation time need to be analyzed. These issues become even
more important for applications that need to be optimized in real-time or on-line.

The CVI approach converges relatively well for nonsingular problems, especially when
used with a more sophisticated optimization technique than steepest descent, and yields
results of high accuracy due to its relatively fine discretization. However, the computational
cost of using a reliable integrator may be high. For singular problems, CVI may take longer
to converge, as the gradient of the Hamiltonian depends indirectly on the control. As CVI
is based on a condition of optimality that is only necessary but not sufficient, the user
needs to numerically verify the optimality by introducing small perturbations. Moreover,
state constraints or a large number of end-point constraints can significantly slow down
the computations, although input constraints can be enforced with high accuracy. IDP
requires a certain amount of tuning as far as region contraction factors and discretization
fineness are concerned. The method handles constraints on control variables easily, but is
not directly suitable for handling equality or inequality terminal constraints. Modifications
to the IDP method, such as use of penalty functions or a use of an outer loop to optimize
the parameters have to be done for different problem types, like minimum time problems.
Nevertheless, IDP has been shown to be accurate with good convergence properties for
small examples. However, depending on the process nonlinearities and the “stiffness” of
the optimization problem, relatively fine level discretization at each instant is required and
can substantially increase the computational effort. CVP does not have any significant
advantages compared to other approaches, except that for some problems it might be faster
than IDP, with /without a trade-off in accuracy. The convergence properties of CVP for the
case of feedback parameterization are better, but with an increase in problem complexity.
The collocation method on finite elements [Biegler, 1984; Cuthrell and Biegler, 1989] is a
good candidate for solving even complex problems. However, the method requires a certain
level of expertise in choosing an adequate number of finite elements and collocation points.
Moreover, for large systems it may result in a large number of equations and constraints,
thus dramatically increasing the size of the decision variable vector. Also, the collocation
and optimization approach converges to a local optima, especially when successive quadratic
programming is used from a poor starting point.

A comparison of major characteristics of the commonly used solution techniques for
DAOPs is presented in Table 1.1. Specifically, the methods are compared on the basis
of the following: 1) whether the control profile and/or the dynamic equations have to be
discretized; 2) whether the problem formulation requires integration of differential equations
at every iteration; 3) the overall problem complexity in terms of the number of decisions to
be made; and 4) the computational effort required by different methods to solve the same



size and type of problem.

Table 1.1: Comparison of Algorithms for Solution to DAOPs.

Algorithm Discretization Integration Complexity Computation
Cvl v Vv LOW HIGH
IDP v Vv MEDIUM 'HIGH
CVP v v LOW HIGH
collocation on v HIGH MEDIUM

finite elements

Looking at Table 1.1, it is clear that three out of four existing methods require inte-
gration of differential equations at every iteration, which increases the computation time
dramatically. Collocation based technique, on the other hand, approximates the differential
equations and hence eliminates the need for integration at every iteration. Although, this
takes care of some of the computation time issues, the problem complexity is increased
because of the large number of decision variables introduced by approximations. Moreover,
the NLP method used to solve the approximated problem may converge to a local optima
if the initial conditions for all these decision variables are not chosen properly. Gener-
ally, numerical approaches can produce solutions that are arbitrarily close to the optimum
via increasingly fine discretization of time grid used in the problem by: 1) increasing the
order of the approximating polynomials and/or; 2) choosing appropriate basis functions,
etc.. However, this usually increases the computational requirements for solving the same
problem. This trade-off between solution accuracy and computational requirements is due
to the differential equations contained in Problem (1.9). If these could be transformed
to algebraic equations, then conventional algebraic techniques (i.e., Linear Programming
(LP), Quadratic Programming (QP) and Nonlinear Programming (NLP)) could be used
to efficiently and accurately solve the problem. Such a transformation is possible for flat

nonlinear control systems.

1.5 Thesis Contributions

The central theme of this thesis is the optimal control trajectory generation for finite-
time nonlinear dynamic systems, or in other words the solution to finite-time dynamic
optimization problems. Recognizing the inefficiencies associated with existing techniques to
solve such problems, an algorithm is proposed that simplifies (in some cases) the solution
strategy. In some cases, existing numerical methods for the solution to such problems
guarantee convergence and accuracy. However, their main drawback is that the problem
formulations are composed of many decision variables, especially for large nonlinear dynamic
systems. In these cases, the solution computation time becomes a serious concern, and hence



none of these techniques may be implemented in real-time without some modifications
(except for the simplest of problems).

The main contribution of this thesis is the transformation of the dynamic optimization
problem into a form that deals with some of these issues effectively. Using the concept of
flatness and dynamic time scaling from nonlinear systems theory, an algorithm is proposed
that transforms Problem (1.9) into an algebraic optimization problem (<.e., LP, QP or NLP)
when no path constraints exist, and to a semi-infinite optimization problem in the presence
of path and input constraints. In other words, the algorithm permits the transformation of
differential equations into algebraic ones, hence eliminating the need for integration to solve
the optimization problem. This addresses the important issue of computation time for these
problems. Moreover, it is shown that the issue of problem complexity (i.e., the number of
decision variables) is also addressed properly in such a formulation. The proposed scheme
is illustrated on several nonlinear dynamic optimization problems reported in the chemical
engineering literature.

Another contribution is the preliminary investigation performed on the applicability of
this algorithm in a real-time trajectory generation framework. Although the investigations
are performed with the most simplifying assumptions, they still lay the groundwork for
further research in this area. The results reported in Chapters 3 and 4 provide a sufficient
motivation for a careful look at the trajectory generation problem in the framework of this
algorithm.

1.6 Thesis Organization

A brief overview of some of the techniques used for the analysis of nonlinear systems is
presented in Chapter 2. The chapter focuses on the relatively recent differential geometric
approaches that have been successfully applied for the analysis, design and control of non-
linear dynamic systems. In particular, the concepts of differential flatness and its direct
extension, viz., orbital flatness for dynamic systems are introduced. The algorithm pro-
posed in this thesis concerns itself with optimization of finite-time dynamic processes that
may be represented as flat systems, and hence this chapter lays the groundwork for the
following chapters.

Chapter 3 proposes and describes the Normalized Dynamic Optimization (NDO) algo-
rithm. The algorithm uses the concepts discussed in Chapter 2, to transform the differential
equations in the DAOP to equivalent algebraic ones. The application of the algorithm is
illustrated on four examples of differing complexity. Simulations are carried out to study
the validity of this algorithm to solve the optimization problems, as well as to analyze the
improvement in computation time compared to other techniques. In this context, the opti-
mization results obtained are compared with the ones reported by the application of other
techniques and algorithms.

Chapter 4 attempts to put the algorithm in a real-time trajectory generation framework,



in view of the encouraging results (especially in terms of computation time) reported in
Chapter 3. The chapter focuses on the investigation of the proposed algorithm in a dynamic
real-time optimization (DRTO) framework described by various researchers (e.g., Ruppen
et al. [1998], Loeblein et al. [1999], etc.). In particular, by formulating real-time estimation
and optimization problems using this algorithm and the most simplifying assumptions,
the chapter provides a motivation for further research in the area of real-time trajectory
generation using this algorithm.

Chapter 5 summarizes the main contributions of this thesis and identifies areas where
further research would be the most beneficial. The chapter also identifies some issues with
the use of this algorithm in an off-line and/or on-line optimization application, and suggests

some directions for future research.
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Chapter 2

Nonlinear Dynamic Systems

This one’s tricky. You have to use itmaginary numbers, like eleventeen... — Bill
Watterson, “Calvin and Hobbes”

Many common chemical manufacturing processes present challenging control problems,
including nonlinear dynamic behaviour (e.g., high purity distillation columns, highly exother-
mic chemical reactions, pH neutralizations, batch reactors, etc.). These processes may be
required to operate over a wide range of conditions due to large process upsets or setpoint
changes [Bequette, 1991]. In spite of this knowledge, the common approach in process
control has been to neglect these nonlinear effects by locally linearizing the nominal model
around the operating conditions and then to apply linear theory to design linear controllers.
The technique may work well for mildly nonlinear continuous processes; the error introduced
by locally linearizing around the steady-state being small enough so that it can be rejected
easily by a sufficiently robust linear regulator. However, for severely nonlinear chemical
processes such as batch reactions, control based on linear models may exhibit extremely
poor performance in terms of robustness. The difficulties in applying linear theory for non-
linear processes are aggravated in servo control problems such as start-up/shut-down of
continuous processes or optimal trajectory generation for batch processes where there is no
appropriate point for local linearization [Kravaris and Chung, 1987]. A major reason to rely
on linear control in such cases then, is that the theory is particularly rich and a wide variety
of algorithms and methods exist for control design. Though linear control may result in
undesirable control system performance, the theory is relatively easy to understand and
computationally simple to implement.

In the past decade, however, the control of nonlinear systems has received considerable
attention in both academia and industry {Henson and Seborg, 1997 |. The recent interest
in the analysis and design of nonlinear control systems is due to several factors: 1) linear
controllers usually perform poorly when applied to highly nonlinear systems or even to
moderately nonlinear systems that operate over a wide range of conditions; 2) significant
progress has been made in the development of model-based controller design strategies for
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nonlinear systems. These techniques use the nonlinear model directly, without the need for
local linearization about an operating point; and finally 3) the development of inexpensive
and powerful computers that have made on-line implementation of these nonlinear model-
based controllers feasible. A detailed discussion of nonlinear control theory and analysis
tools can be found in Isidori [1989] and Nijmeijer and van der Schaft [1990]. In the process
control area, Kravaris and Kantor [1990a;b] and Bequette [1991] provide notable papers
which include a tutorial and a detailed review of nonlinear process control systems.

The chapter provides an overview of the recent differential geometric approaches, that
have been successfully applied to the analysis of nonlinear dynamic systems. In particular,
the techniques of feedback linearization are discussed. The first section defines the terms
and techniques used in studying dynamic control systems in a mathematical framework. In
this framework, the systems are separated as being linear or nonlinear and this definition
of nonlinear systerhs is used in the following sections!. The next section provides a brief
overview of the differential geometric approaches as they are applied to nonlinear systems.
Here, a brief description of the commonly used methods of feedback linearization, wviz.,
state feedback linearization, input-output linearization and approximate linearization is
presented. In the next section, differential flatness, which defines a special type of feedback
linearization and which forms the basis for the optimization strategy proposed in this thesis,
is defined. An overview of a few algorithms which may be used to identify the flat outputs
for specific classes of nonlinear systems is also given, with the more involved definitions and
theorems forming Appendices A and B, respectively. To extend the class of differentially
flat systems, a suitable time scaling may be chosen and a section following that describes
orbital flatness for time scaled nonlinear control systems. The concepts of differential and
orbital flatness, both are illustrated on typical control examples. Towards the end of the
chapter, these concepts are summarized and discussed with regard to their applicability
in the following chapters. Throughout this chapter, in order to preserve continuity, the
descriptions are brief and just provide a glimpse into the various existing techniques. The
interested reader is encouraged to look at the relevant references, as well as Appendices A

and B for a broader overview of any of these concepts.

2.1 Dynamic Control Systems

Most dynamic control systems (lumped parameter) can be mathematically described as
systems of under-determined ordinary differential equations (ODEs):

x = f(x,u,t) (2.1)

!1t should be noted that any control system is a dynamic system. In order that the definitions presented
here relate themselves directly to the following chapters, the dynamic systems are presented as control
systems, i.e. with manipulated variables u. The results, however, are equally applicable to dynamic systems
that do not differentiate between the state and manipulated variables, i.e., z and u.
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where t € R is time, x € M C R" the states and u € UYP are the manipulated variables or
inputs for this system, respectively. This system is then under-determined by p equations,
which is also the number of inputs for this system. Usually, in control applications, not all
states can be measured. Only a portion of the state information is available through a set

of measured outputs:
y = h(x,u,1) (2:2)

where y € ™ (m < n). The basic problem in control theory is to choose the control u in
such a way that a certain desired behaviour is established. Considering chemical processes,
for example, the most common problem is that of determination of a control scheme that
would take the system from a given initial condition to a given final condition in some given
time, or that some desired quantity gets optimized while satisfying some constraints. Two
types of control are generally considered: 1) open-loop control where a function u = u(t)
is chosen (specifying u = u(?) in Equation (2.1) reduces the problem to one for which the
dynamics are determined); and 2) closed-loop control where the control function depends
on the past and/or instantaneous values of the state, i.e., u = u(x). For the case: m < n
in Equation (2.2), the control problem is more difficult; considering that only m out of n
states can be observed. In this case, a feedback of the form: u = u(y,t) is sought. This
control structure will be discussed in Chapter 4 in the application of real-time optimization
to batch process trajectories.

A classification of control systems distinguishes the following types. A control system
is called linear if the system (2.1) can be represented in the form:

%X = Ax+ Bu (2.3)

More specifically, linear systems are called time-invariant or time-varying depending on
whether the matrices A and B are constant matrices or functions of time, t, respectively.
Nonlinear systems, on the other hand, have the general representation given by Equation
(2.1) where f is 2 mapping (x,u) — f(x,u). A specific class of these nonlinear systems,
called control-affine systems are widely encountered in chemical engineering (e.g., feed rate
problems), and have the following form:

x = f(x) + g(x)u. (2.4)

where, the term f(x) is called the drift vector field since it develops independent of the
input to the system. These nonlinear control-affine dynamic systems are the focus of this
study and are analyzed in the following sections.

2.2 Differential Geometric Approaches

A number of papers have provided insight into operational problems created by nonlinear-
ities in chemical processes [Ray, 1982; Uppal et al., 1974; Fox et al., 1984; Morari, 1983;
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Sieder et al., 1991]. Initial solutions consisted primarily of hardware modifications such
as equal-percentage valves, square-root extractors or other nonlinear control elements to
remove major nonlinearities [Shinskey, 1962; Jones et al., 1963], some of which are still
in use today. More recently, controller design methods that provide exact linearization of
nonlinear models have been developed. Unlike conventional linearization via Taylor series
expansion, these techniques produce linearized models that are independent of the oper-
ating point. This general approach has been used in several analysis and design methods
(e-g., Variable Transformations [Skogestad and Morari, 1988; Georgakis, 1986] and Internal
Model Approaches [Garcia and Morari, 1982], etc.). Bequette [1991] provides an excellent
review in the area of nonlinear process control and should be referred to for more details.

One of the important techniques that has enjoyed considerable attention in the study of
nonlinear systems is that of differential geometry. An overview of geometrical methods for
process control is given by Hunt et al. {1987]. Henson and Seborg review geometric control
methods [1990] and present a general (unified) approach [198¢! . Kravaris and Kantor
[1990a;b] provide a tutorial for many of the details of differential-geometric-based control
system design. McLellan et al. [1990] review error trajectory techniques and place them in
the context of differential geometric approaches.

The problem of exact linearization of nonlinear systems by coordinate transformations
and feedback has been an active area of research over the last 20 years (Isidori, 1989]. It is
widely recognized, however, that linearizability is not a generic property of nonlinear control
systems, meaning that the class of feedback linearizable nonlinear systems forms a subset of
all nonlinear systems [Rouchon, 1993; Tchén, 1994]. Moreover, no robust theory or results
exist for their characterization, except for some special classes. However, for systems that
are somehow identified to be feedback linearizable, a number of applications have appeared
in the literature that demonstrate the usefulness of this concept ( e.g., Henson and Seborg
[1997], Rathinam and Sluis [1995], etc.).

State feedback transformations are characterized by a special class of transformations

given by:
{t,x,u} — {t, $(x), % (x, )} (2.5)

where, the states and the manipulated variables in the original coordinates: x and u,are
mapped to a different set of coordinates: ¢(x) and (x, u), respectively. The time, ¢, is
considered to be a given physical entity and hence is not transformed in the usual case.
More general feedback transformations have also been considered where equivalences of
nonlinear systems under transformation of time scale have been shown to be useful (Guay,
1999; Martin, 1992]. This case: {t,x,u} — {7(x,t), (%), ¥(x, u)} will be considered in
a following section of this chapter, where orbital flatness is discussed.

In engineering practice as well as in analysis, the control system given by Equation (2.1)
is often modified by adding a feedback. This is illustrated in F igure 2.1. The block marked f
refers to the control system that has the states x as its outputs. The block marked ¢ can be
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Feedback System

Figure 2.1: Depiction of Feedback of Control Systems.

thought of as the feedback or an operator that maps a set of reference inputs v = (v1, ..., vp)
and the states x to the nominal controls: u = (u;, ...;up). This feedback is called a static
state feedback when the operator ¢ is given by a map + : R**P+! — RP in the form:

u(t) = y(¢, x(t), v(t)) (2.6)

The feedback itself may involve some dynamics that can be represented as:

z(t) = a(t, x(t), z(t), v(t))
u(t) = B(¢, x(t), z(t). v(¢))

where z = {z;,...,zn} are called the new states. The composite system may be thought
of as a control system with v as its p inputs and {x.z} as its n + m states. This type of
feedback is called a dynamic state feedback. When m = 0 the dynamic feedback becomes a
static feedback and hence static feedback is just a special case of dynamic feedback.

After a static feedback and a possible nonlinear transformation of the state variables

(2.7)

some control systems may be expressed in the linear form:
£=A¢+Bv (2.8)

where £ = §(x) are the new coordinates for the states. Such systems are said to be feedback
linearizable via static state feedback and have been completely classified in literature [Isidori,
1989]. Systems that are not static state feedback linearizable may still be dynamic state
feedback linearizable in the sense that after a dynamic feedback and a diffeomorphism of
the states £ = §(x, z) they take the linear form of Equation (2.8). Classification of dynamic
feedback linearizability is still an open problem though classification results exist for special
classes of systems. For instance in the case of p = 1 dynamic feedback linearizability has
been shown to be equivalent to static feedback linearizability [Shadwick, 1990 |.

2.2.1 State Feedback Linearization

A state feedback compensator law, such as the one in (2.6) or (2.7). is found so that after
a coordinate transformation, £ = T;(x) and v = T2(x,u), the relationship between the
reference input, v, and the dynamic state equation is linear [Hunt et al., 1983]. The system
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can then be equivalently written as:
£ = Af +Bv.

Brockett [1978] and Jakubczyk and Respondek [1980] provide algorithms for feedback lin-
earization of single-input and multi-input systems respectively. Charlet et al. [1989] provide
a detailed description of dynamic feedback linearization. A major disadvantage with this
method is that a set of partial differential equations must be solved to determine the variable
transformations and an analytical solution is only available in special cases.

2.2.2 Input-Output Linearization

In this type of linearization, a state compensator feedback law is found such that the rela-
tionship between the reference input, v, and the output, y, is linear {Isidori, 1989; Kravaris
and Chung, 1987 ]. Any linear design technique can then be used for the controller. It was
shown that for control-affine nonlinear control systems, the state feedback compensator law

under PI control results in a closed-loop transfer function:

y(s) ),,ysp(S)- (2.9)

_ 1
T (s +1

where r is the relative order. A number of important chemical processes have a relative order
of 1, thus yielding a first-order closed-loop response using this approach. A disadvantage of
this method is that it can only be used for minimum-phase systems, though some extensions
to non-minimum phase systems have been proposed [Wright and Kravaris, 1990].

2.2.3 Approximate Linearization

The problem of approximate linearization was first treated by Krener [1984] . The technique
consists of finding feedback and state space transformations which are polynomials of order
K in the states and k — 1 in the inputs, such that an order k approximate linear system is

obtained
€ = A£ +Bv + 9(x,u)~+!

where § = Ti(z) and v = Ta(x,u) are the transformed states and inputs respectively.
Guzzella and Isidori [1993] and Hunt and Turi [1993] extended this approach to multi-
input systems using simplified approaches. Using these techniques, it is relatively easy to
find coordinate transformations and feedbacks which linearize a system. Although not an
issue in most of these developments, such techniques are approximate and validity of the
approximations must be checked.

The above linearization approaches, though useful in some situations, impose serious
restrictions on the structure of the nonlinear control system that are seldom met in prac-
tice. To overcome this problem, new approaches to the problem have been presented in
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control literature that have led to new generalizations of the standard feedback lineariza-
tion techniques. New definitions of feedback linearizability have emerged to relax some of
the restrictions originally imposed by the requirement of the state-feedback case. Charlet et
al. [1989] introduced the concept of dynamic feedback linearization and derived conditions
for linearizability under dynamic state feedback transformations. It was shown that the
problem of dynamic feedback linearization amounts to the design of a precompensator that
can be coupled with the original process model to yield a linearizable structure. Fliess et
al. [1995] generalized the dynamic feedback linearizability using the concept of differential
flatness. This important concept equates the dynamic feedback linearizability of nonlinear
systems by endogenous feedback to the existence of flat (or linearizing) outputs. These flat
outputs are such that they summarize the entire dynamics of the process (i.e., every state
and input of the system can be expressed as some function of the linearizing outputs and a
finite number of their time derivatives). A detailed description of this concept follows.

2.3 Differential Flatness

Differential flatness was originally introduced by Martin [1992] and studied further by
Fliess et al. {1995] and van Nieuwstadt et al. [1995]. It refers to the existence of so-called
flat or linearizing outputs that summarize the dynamics of a nonlinear system. It is closely
related to the general ability to linearize a nonlinear system by an appropriate choice of
endogenous dynamic feedback. An endogenous feedback is a dynamic feedback of the form
given in Equation (2.7) with the added requirement that z and v be uniquely determined
as functions of ¢,x,u and a finite number of their derivatives. They have the useful prop-
erty that there is a one-to-one mapping between trajectories in this flat output space and
trajectories in state space. Trajectories can thus be planned in the lower dimensional flat
output space and then lifted to the state and input space, through an algebraic mapping.
A variety of examples have been shown to be differentially or approzimately flat. These ex-
amples include chemical systems (e.g., Rothfuss [1996]), mechanical systems (e.g., Rouchon
[1993] and Murray [1995]) and aircraft systems (e.g., Martin et al. {1994]). This thesis also
exploits differential flatness, but with an emphasis on the solution to optimal control prob-
lems as well as to the real-time trajectory generation for nonlinear differentially or orbitally
flat chemical processes. Orbital flatness, a more general concept for nonlinear systems, was
introduced by Fliess [1993]. This property refers to the linearizability of systems subject
to an endogenous state feedback transformation and a state dependent time scaling trans-
formation. It was shown by Fliess et al. [1997] and Guay [1999] that this concept can be
viewed as a generalization of the differential flatness property for weakly locally accessible
nonlinear systems.

Differential flatness is a concept that applies to under-determined system of ordinary
differential equations (ODEs). As discussed earlier, a control system with n states and p
inputs can be written as a system of under-determined differential equations represented by
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Equation (2.1). Differential flatness for this system is then defined as follows:

Definition 1 (Rathinam, 1995) The system given by equation (2.1) is said to be differ-
entially flat or simply flat if there exist variables y = {y1,...,yp} given by an equation of
the form:

y= h(t7 X, X(l), === x(‘rn)’ u, u(l)v hde u(m)) (2'10)

such that the original variables x and u may be recovered from y (locally) by equations of
the form:

x =gi(t,y,y, ..,y")
2.11
u=g(t,y,y,...y") (2.11)

The variablesy = (y1,...,Yp), are referred to as the flat outputs. Flatness may be regarded as
a (local) bijective correspondence between the solutions x(t) of Equation (2.1) and arbitrary
curves y(t) in RP that is given by the maps h, g, and go of the Equations (2.10) and (2.11).

It must be noted that not all nonlinear systems possess flat outputs. In the following
example, the property of differential flatness is illustrated on a 4-state, 2-input example.

2.3.1 Iliustrative Example

Consider the control-affine system of Charlet et al. [1989,1991]

T) = T2 + T3us
To = 3 + T1Us
T3 = Uy + Tous
.’f4 = Uu3.

(2.12)

This control system with x1,z2,z3 and x4 as its states and u; and us as its inputs can be
considered as a system of ODEs which is under-determined by two equations. For control,
when the two inputs u; and us are set to some arbitrary functions of time (or states), a
fully determined system of ODEs is obtained, which can be solved to find the instantaneous
value of the states. In general, from a mathematical point of view, this system of ODEs
may be solved by specifying any two variables. The set of solutions of this resulting system
may then depend on some initial conditions. For instance specifying u; and us, a system
whose solution depends on four constants, which are initial conditions for z;, 22, z3 and z,
is obtained. Thus the entire set of solutions {z;(t),z2(t), z3(t), z4(t), uv1(t),u2(t)} can be
considered to be parameterized by two arbitrary functions (which specify u;(t) and ua(t))
and four arbitrary constants (which specify the initial conditions for z,(t), z2(t), z3(¢t) and
z4(t))-

Differential flatness of systems such as the one in Equation (2.12) permits a choice of
the free variables (the ones that are assigned to arbitrary functions) such that no constants
are required to parameterize the solution set. For the system in Equation (2.12), no pair of
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variables from the set {z,Z2, %3, Z4,u;,us} would achieve this property. However, pseudo
outputs: y; and yo, defined as functions of the original variables such as the following:

would parameterize the entire set of solutions without the need for additional constants.
This is evident from the solution of the variable set {z1,z2,Z3,Z4,u1,u2} as functions of y;
and y» defined in Equation (2.13). The resulting expressions are given by>:

— . [ G2t+9iy2
I = 0 (m"_—l) — Y2

z3 = B2 = f(5),5) (2.14)
4 =

u = I3—Tous = fo(F1,72)

U2 = Y1

The variables y; and y» in the above example are called flat outputs. In this example the
flat outputs were functions of the original variables 1, zs, Z3, T4, u; and us. In general these
can be functions of finitely many derivatives of the original variables.

Flatness of the dynamics given in Equation (2.12), thus enables the representation of
the system in terms of two pseudo-variables called flat outputs. Once these flat outputs
are assigned to arbitrary functions of time, the system is fully defined, without the need
for any initial conditions on the variables. Further, the trajectories for the system states
can be calculated without the need for integration of differential equations that would have
been required if the input variables: u; and us were defined as arbitrary functions of time.
This powerful concept is illustrated in the next chapter, where optimal state trajectories
are determined using a suitable parameterization of the flat outputs in time.

2.4 Orbital Flatness

For the treatment of so-called non-flat systems, Fliess et al. [1993] have considered a more
general definition of linearizability called orbital flatness. Roughly speaking, orbital flatness
refers to differential flatness of a system that has been transformed to some other time
coordinate. Time coordinate transformations or time scalings, hence form an integral part
of orbitally flat systems. Respondek [1998] developed a set of necessary and sufficient con-
ditions for the orbital feedback linearization of single-input systems. The orbital flatness of
a simple reactor model due to Kravaris and Chung [1987] was demonstrated in Guay [1999].

*In the expressions for z3 and w1, only the functional dependence is shown because the resulting expres-
sions are quite large. The outputs y:,y2 and their derivatives up to the fourth order have been collected in
71 and §2 respectively, i.e. §1 = {y1,91,---, ¥ 1} and §2 = {y2,%2,.-. . ¥ 2}.
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In this thesis, the algorithm of Guay [1999] is used to identify the time-scale transformations
(if possible) that make the non-flat systems orbitally flat. The discussion o orbital flatness
in this section is organized as follows. First, an overview of time scaling transformations
for nonlinear systems is given followed by a definition of orbital flatness. M he next section
illustrates the algorithm of Guay [1999] on a batch non-isothermal reactor and identifies
the time scaling and the flat output for this system.

2.4.1 Time Scaling Transformations

In the analysis of any continuous time system, the time scale £ is assumed to be specified
and independent. For many analysis tasks, it is often cumbersome to resstrict dynamics
to evolve with respect to respect to the actual time ¢. In a number of apyproaches, a new
time scale T is introduced to facilitate the analysis. This is the case im most singular
perturbation methods [Kokotovic, 1986] where the time scale of the slow dynamics are
adjusted to facilitate stability analysis. Hollerbach [1984] used a new tzime scale r for
trajectory planning of robots, but his work is restricted to robots and r is introduced as a
function of ¢, i.e., r(t). Sampei and Furuta [1986] defined a new time scales 7 using a time
scaling function 0 < s(x) < oo as dt/dT = s(x). A time scaling of this type iis convenient for
system analysis because the state differential equation can be easily rewri.tten in the new
time scale 7 and ordinary methods for analysis can be applied for the rewr-itten system.

Consider a smooth nonlinear control system of the form:

dx
i f(x,u) (2.15)
where x € M C R”, u € UP. A general time scaling transformation 7 can boe defined as:
dt
.d_'l: = s(x, u): Tlto =To0. (2.16)

where t is the actual time. The function s(x,u) is assumed to be smootln such that 0 <
s(z,u) < oo and is called a time scaling function. The system in Equation (2.15) can then
be rewritten in the new time scale T as:

dx

dr
In Equation (2.17), g(x, u) is well-defined because s(x, u) # 0. The restriction 0 < s(x,u) <
oo is very important to ensure that new time 7 is a strictly monotone, incmeasing function
with respect to the actual time ¢. This guarantees that stability and the rstate trajectory
of the system is preserved by the transformation of time scale. Moreover, tthe time scaling

= g(x,u) = s(x, u)f(x; u). (2.17)

function s(x, u) is required to be continuous with respect to x and u in omder to preserve
the smoothness of vector fields.

For single-input systems, necessary and sufficient conditions for the feesdback lineariza-
tion of control-affine nonlinear systems under state-dependent time scalings functions were
first derived by Sampei and Furuta [1986]. These conditions were later refinerd by Respondek
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[1998] and Guay [1999]. The algorithm presented by Guay [1999] identifies the linearizing
outputs for single-input control-affine nonlinear systems using an exterior calculus setting,
which simplifies some aspects of the computations required.

Orbital flatness, the more general concept of flatness, that allows time scaling transfor-

mations such as (2.16), is defined next.

Definition 2 The nonlinear control system given by Equation (2.17) is said to be orbitally
flat if there exist variables y(T) = {y1(7), .-, yp(T)} given by an equation of the form:

Y(7) = h(7,Xmm, Gm)
_ dx d?x Q}

Xm = $ X, E_’, F’..- *drm (2.18)
Wy, = ’dT’ dT2’-“’dTm

such that the original variables x and u may be recovered from y(7) (locally) by equations
of the form:

x=g1(7‘,)71)
u= ‘..7-7)7
yl:{y’g’ﬁ""’ﬁ}

The variables y(7) = {y1(7),...,yp(T)}, are referred to as the flat outputs. The new time
scale T is obtained as a solution to the differential equation (2.16).

A system that is orbitally flat need not be flat in the actual time £. It is meaningful to
consider orbital flatness because a transformation of time scale preserves stability. Also, it is
useful because differential flatness can then be extended to an even greater class of nonlinear
systems. thus making the analysis tasks for these systems easier. In this thesis, differential
flatness in the new time scale is shown to facilitate the solution of differential-algebraic

optimization problems.

2.4.2 Illustrative Example

Consider the dynamics of the batch non-isothermal chemical reactor from Kravaris and
Chung [1987], in which the following consecutive reaction takes place:

AL Bk, (2.20)

It is assumed that A % B has second-order kinetics whereas B —2, C has first-order
kinetics. The system dynamics are then modeled as:
¢s = —ki(T)A
ég = ki (T) — ka(T)es (2.21)
T = vk(T) — Y2k2(T)ep + (a1 + aoT) + (by + b2T)u
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where c4 and cg are the molar concentrations of species A and B, T is the reactor tem-
perature, u is the manipulated variable which is a dimensionless quantity related to the
heating and cooling capacity of the reactor jacket, k; and k> are the reaction rate con-
stants assumed to be functions of temperature by an Arrhenius type relation. The variables
Y1.72,@1.a2,b; and bs are treated as constants. As discussed in Kravaris and Chung [1987],
this system is not feedback linearizable. However, as shown in Guay [1999] . this system is
orbitally feedback linearizable (orbitally flat) with the following choice of the time scaling
transformation:

dt _ CcR

dr ~ k(DS (2.22)

and c4 as the flat output. For illustration purposes, the system dynamics (2.21) are written
in the new time scale as:

id%_i = —cp (2.23)
o o, kD 22
g% = 71C8 72 :iggiiﬁi = (cf:Z?)ci [(a1 + a2T) + (b1 + 52T (2.25)
Now, choosing the flat output as:
y(1) =ca (2.26)

the system states c4,cp,T and the system input u are uniquely described as functions of
this flat output and a finite number of its derivatives. Using Equations (2.23) and (2.26), it
follows:

cg = —y(T) (2.27)

Now substituting Equations (2.26) and (2.27) in Equation (2.24) yields an expression for
the temperature3, T :

T = a(y(7),y(7),4(r)) (2.28)

The function for u can then be solved for by the substitution of Equations (2.26), (2.27)
and (2.28) into Equation (2.25) which yields:

u = B(y(7),9(7).§(7)) (2:29)

Thus c4 indeed forms an orbitally flat output for the system (2.21).

3Here, and in the expression for u, only the functional dependence is shown because the resulting expres-
sions are quite large.
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2.5 Characterization of Flatness

In differential algebra, a system is viewed as a differential field generated by a set of variables
(states and inputs). The system is said to be differentially flat if a set of variables, called
the flat outputs can be found, such that the system is (non-differentially) algebraic over
the differential field generated by the set of flat outputs. Differential flatness can also be
characterized using tools from exterior calculus?. In the beginning of this century, the
French geometer E. Cartan developed a set of powerful tools for the study of equivalence
of systems of differential equations [Cartan, 1953]. It was pointed out in the paper that
equivalence need not be restricted to systems of equal dimensions. It was discussed that a
system can be prolonged to a bigger system on a bigger manifold, and equivalence between
these prolongations can be studied. Two systems that have equivalent prolongations were
called absolutely equivalent. Differentially flat systems were then interpreted as being
those systems which are absolutely equivalent to the trivial system, i.e., having no dynamic
constraints on the free variables [Sluis, 1992].

Nieuwstadt et al. [1994] interpreted flatness in an exterior calculus setting, using the
tools offered by Cartan [1953] . In this setting, a fully nonlinear system can be seen to
be defined on a manifold of dimension 1 + n + p (n and p are the number of states and
inputs, respectively) and defines in particular a Pfaffian system. For system (2.1) it would

be generated by
dzy — fi(z,u,t)dt,... ,dz, — Sn(z,u, t)dt

and the dynamics of the control system will then be described by integral curves. This
approach gives an explicit treatment of time dependence. A complete characterization of
flatness for single-input systems was also given in Shadwick [1990].

Differential flatness of a nonlinear system is very difficult to prove in general. There are
no necessary and sufficient conditions for the existence of linearizing outputs. As a result,
one can only prove differential flatness when a carefully chosen set, or a subset, of linearizing
outputs can be found. In this direction, for single input systems, Shadwick [1990] showed
that flatness is equivalent to static state-feedback linearizability. In this special case, it is
relatively easy to uncover the linearizing outputs by using the well-known GS algorithm
[Gardner and Shadwick, 1992]. For systems where the number of states exceeds the number
of inputs by one, Charlet et al. [1991] demonstrated that dynamic feedback linearizability
(i.e., flatness) is assured if the system is locally strongly accessible. In Martin and Rouchon
(1995] , it was demonstrated that any driftless nonlinear system with n states and n — 2
inputs is flat.

In general, the multi-input case is difficult because one has to prove, at least partially, the
dynamic feedback linearizability of the nonlinear system by endogenous feedback. To avoid

4 An overview of exterior calculus including the definition of the commonly used terms (including the ones
in the following discussion) is provided in Appendix A.
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this problem, Rathinam and Sluis [1995] showed that, for flat systems, the computation of
flat outputs can be reduced to a one-dimensional problem. By a judicious parameterization
of the state space, multi-input integrability condition can be reduced to a single integrability
condition similar to the single-input situation. Application of the GS algorithm provides the
remaining linearizing outputs. Unfortunately, this elegant result can be difficult to apply in
situations where a suitable subset of flat outputs cannot be found. An alternative approach
was developed by Guay et al. [1997] who considered the problem of dynamic linearization
by endogenous dynamic feedback. Using an exterior calculus approach, they developed a
set of necessary and sufficient conditions for dynamic feedback linearizability applicable to
a large class of linearizable systems with arbitrary precompensators. Assuming a specific
structure for the dynamic precompensator, these conditions yield an algorithm to identify
linearizing outputs of control-affine systems.

In general, the conditions for linearizability by static or dynamic state feedback can
be quite restrictive. These restrictions can be relaxed somewhat by considering state-
dependent time scaling transformations along with a state feedback and a local change
of state coordinates. In any case, a complete characterization of flatness for multi-input
systems is not yet available; algorithms that aid in the identification of flat outputs exist for
specific cases only. It is clear from the above discussion that the characterization of flatness,
although difficult, is important and has been studied by various researchers. Although none
of the techniques promise a guaranteed solution to the characterization, a variety of results
have been reported, some of which are: 1) Rathinam and Sluis {1995] Algorithm based on the
reduction of the multi-input problem to a single-input one; 2) Gardner and Shadwick [1992]
(GS) Algorithm which defines the necessary and sufficient conditions for linearizability of
nonlinear systems; 3) Guay et al. [1997] Algorithm that provides the necessary and sufficient
conditions for dynamic feedback linearizability by endogenous feedback for control-affine
nonlinear systems; and 4) Guay [1999] Algorithm for orbital feedback linearization of single-
input control affine systems. In this thesis, one of the latter two algorithms, depending on
the problem, is used to identify the flat outputs for the nonlinear control systems. The
important details including the relevant theorems and references for the above algorithms
are given in Appendix B. In the following discussion, a brief overview of these techniques

is presented.

2.5.1 Reduction of System Codimension

System codimension is essentially one plus the number of equations by which the system is
under-determined (i.e., for control systems the system codimension will be 1+ p, where p is
the number of inputs). The method of reduction of system codimension, generally speaking,
refers to the technique of guessing all but one independent variable, thus ending up with
a system of codimension 2. This technique was proposed by Rathinam and Sluis [1995]
considering the fact that a complete characterization of flatness for single-input systems
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(codimension 2 systems) is known. For systems with codimension greater than two, no
complete characterization of flatness exists, except for some verifiable necessary conditions.
A scheme was proposed that involved making a guess for all but one of the flat outputs
(i.e., setting all but one flat outputs to arbitrary functions f7(t)), after which the problem
reduces to a single-input problem. The last flat output was then characterized using existing
algorithms. With the aid of the theory of absolute equivalence, the validity of the method
was demonstrated [Rathinam and Sluis, 1995]. The method was also illustrated on two
examples, one of which was non-trivial and was not known to be flat before. The algorithm
and the relevant details are summarized in Appendix B. The major disadvantage with this
approach is the fact that a suitable structure for all but one flat outputs has to be guessed,
which might not be possible for most nonlinear systems.

2.5.2 The Gardner and Shadwick (GS) Algorithm

The Brunovsky normal form is the standard linear representation of controllable linearizable
systems. In many applications, including that of characterizing flat outputs, it is necessary
to compute the explicit formula for the feedback transformations which take a linearizable
nonlinear system into its standard Brunovsky normal form. The GS algorithm [Gardner
and Shadwick, 1992} utilizes the minimum number of integrations required for the exact
linearization of nonlinear systems to Brunovsky normal form under nonlinear feedback and
hence provides a necessary and sufficient condition for feedback linearizability under any
kind of dynamic state feedback. The algorithm thus adapts itself well to the problem of
characterization of differential flatness (which is just a special case of dynamic feedback
linearization). The tools involved in the algorithm [Gardner and Shadwick, 1992] are based
on classical constructions appearing in the theory of exterior differential systems, and is
algebraically and computationally attractive. The algorithm, particularly the necessary
and sufficient condition for linearizability of nonlinear systems utilized in the development
of the approach, is summarized in Appendix B. The following two algorithms build on this
GS algorithm to adapt themselves well to the problem of exact linearization by endogenous
dynamic feedback (differential flatness).

2.5.3 Linearization by Endogenous Dynamic Feedback

Guay et al. [1997] present a necessary and sufficient condition for dynamic feedback lin-
earizability by endogenous feedback of control-affine nonlinear systems. In other words, the
algorithm provides a test for differential flatness (i.e., it determines whether a system is
flat or not) and also enables the identification of the flat output, if the system is indeed flat.
The necessary and sufficient condition is based on a modified derived flag of the Pfaffian
system that takes into account the presence of a precompensator. As for the GS algorithm,
it is shown that the generators associated with this modified derived flag must satisfy a
number of congruences. The congruences ensure that the conditions for the GS algorithm
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are satisfied for the prolongated system and thus provide an algorithm to calculate the
required feedback and state space transformations. It was shown how linearizing outputs
can be identified by studying the derived flag of the Pfaffian system associated with a non-
linear system [Guay et al., 1997]. Appendix B presents a more detailed description of the
algorithm and the terminology.

2.5.4 An Algorithm for Orbital Feedback Linearization

For cases where linearizability conditions cannot be met, Fliess et al. [1993] considered a
more general definition of linearizability called orbital flatness. In this definition of flatness,
some of the conditions of dynamic feedback linearization by endogenous feedback have been
relaxed. Respondek [1998] developed a set of necessary and sufficient conditions for the
orbital feedback linearization of single-input systems. Guay [1999] considered the problem
of orbital feedback linearization using an exterior calculus approach. A necessary and
sufficient condition for orbital flatness for single-input control-affine systems was presented.
A simple algorithm computes the state-dependent time scaling that yields state-feedback
linearizable systems [Guay, 1999]. This algorithm and the relevant details are presented in
Appendix B.

2.6 From Flatness to Trajectory Generation

This chapter summarizes some of the recently reported techniques for the analysis and design
of nonlinear dynamic systems. In particular, the differential geometric approaches to the
analysis of nonlinear dynamic systems have been reviewed. The stress is on the concept of
feedback linearization, which provides for a way to “linearize” nonlinear dynamic systems.
In this context, differential and orbital flatness are briefly described. These concepts are a
direct extension of the general feedback linearization approach, and form the basis for the
optimization strategy proposed in the following chapter. The chapter also introduces the
reader to a number of algorithms that may be used to characterize the flatness of a given
system. These algorithms, though providing different approaches to the characterization
problem, yield the so-called flat outputs for a dynamic system (if they exist). Among
these approaches, the ones proposed by Guay et al. [1997] and Guay [1999] provide for
a systematic look at the flatness characterization problem, and are applicable to a wide
variety of systems.

Differential flatness is a very desirable property, since the knowledge of the linearizing
(or flat) outputs provides an algebraic parameterization of the dynamics of the system. In
other words, flatness of a system enables an algebraic mapping of any trajectory in the
flat output space to the corresponding system variable trajectories. The need for explicit
integration of the system differential equations is thus eliminated. Many researchers have
identified the usefulness of this concept, and have applied it to answer some questions
posed by the trajectory tracking problems. Fliess et al. [1993] have given a number of
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applications of differential flatness in the control of trailer systems. The approach has also
been considered by Rothfuss et al. [1996], where trajectories for differentially flat chemical
reactors were assigned. Using flatness, van Nieuwstadt and Murray [1996] have considered
the problem of assigning trajectories in real-time for various mechanical systems. Some
of the more recent work has investigated the application of flatness to optimal trajectory
generation for real-time applications [Agrawal et al., 1999]. The approach, however, focused
only on linear controllable time-invariant systems. In the area of orbital flatness, recent work
presented by Murray [1999] considered the use of time scale transformations to handle the
problem of rate and magnitude saturations in trajectory generation and tracking problems.

This thesis provides an approach to solve the optimal trajectory generation problem for
the special class of flat nonlinear dynamic processes. The approach is an easier and more
widely applicable extension to the one proposed by Agrawal et al. [1999]. The following
chapters provide the more detailed explanations, as well as the description of the algorithm
as applied to off-line and on-line trajectory optimization problems.
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Chapter 3

Trajectory Optimization

“I have yet to see any problem, however complicated, which, when you looked at
in the right way, did not become still more complicated.” — Poul Anderson

The determination of optimal setpoint trajectories is an important control problem
for many chemical processes [Terwiesch et al., 1994] (e.g., process start-up or shutdown,
batch process control, etc.). The importance of these problems in chemical engineering
can be gauged by the numerous research publications which deal with the solution to such
problems. Rippin {1983] and Soroush and Kravaris [1993] provide exhaustive surveys on
batch optimization with a perfect model and Terwiesch et al. [1994] gives a review of batch
optimization with imperfect modelling. Nowadays, many of these chemical engineering
process control applications have very tight specifications, due to market demands and/or
environmental regulations, that cannot be satisfied by linear control methods [Fikar et al.,
1998]. One of the reasons for the failure of linear control in these applications is that the
models of these processes are usually described by systems of highly nonlinear dynamic
differential and algebraic equations in the state and manipulated variables. Additionally,
complexities in the form of constraints on both the control and state profiles are also often
present. This has led to increased activity in the development of nonlinear optimal control
methods.

Among many methods, nonlinear predictive control has been particularly successful for
some control applications [Michalska and Mayne, 1993]. The determination of optimal con-
trol trajectories for batch processes, however, are somewhat beyond the scope of standard
predictive control schemes, mainly because of the large computation load [Fikar et al., 1998].
This is mainly due to the differential-algebraic nature of the resulting optimization problems
for which numerical techniques involving parameterization, discretization and/or forward
integration of differential equations at every iteration, have to be employed. Chapter 1
provided a brief overview of some of these techniques used to solve Differential-Algebraic
Optimization Problems (DAOP). This chapter builds up on Chapter 2 and introduces an
alternative method to solve such DAOPs. Using concepts discussed in Chapter 2, the differ-
ential equations are eliminated from the optimization problem. The property of flatness is
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exploited to transform the dynamic system into an equivalent dynamic system characterized
by algebraic equations only. This transformed system presents an algebraic equivalent of
the DAOP, which will be referred to as a Normalized Dynamic Optimization (NDO) prob-
lem in this thesis. The NDO problem is shown to facilitate optimal trajectory generation
tasks for a class of nonlinear DAOPs.

The chapter is organized as follows. Starting from the statement of the DAOP, an algo-
rithm is presented that exploits the flatness of the dynamics to transform the optimization
problem into a problem formulation that is more easily solved. The following sections pro-
vide descriptions of the steps in the algorithm and illustrate them on specific examples. The
step-wise application of this algorithm is illustrated on four DAOPs from mechanical and
chemical engineering literature. The section also makes a comparison between the solutions
obtained by this technique to the ones reported by the application of other techniques. The
chapter ends with a discussion of the computational issues associated with the proposed
algorithm, and some areas of further research. The chapter, by way of the algorithm, gives
a basis for the real-time optimal trajectory generation problem which is the subject of next
chapter.

3.1 Trajectory Optimization Problem

In batch processes, transient behaviour dominates and usually no steady-state is reached.
Hence, the objective function needs to be optimized with respect to a dynamic model. The
objective in the optimization of batch processes is the determination of input trajectories,
that lead to the optimization of some objective function (e.g., minimization of cost, maxi-
mization of product yield, etc.). This problem, as discussed in Chapter 1 can be represented
as the following general differential-algebraic optimization problem (DAOP):

min  ®(x(t),u(t)) t € [to, tf]
x(¢),u(t)

s.t.:
x(t) = £(x(t), u(t)) x(to) =xq
g(x(t),u(®)) <0 (3.1)
c(x(t),u(t)) =0
xr < x(t) < xp
ur < u(t) <uy

where, & represents the objective function, g and ¢ are vectors containing functions in the
algebraic constraints, x are the process states and wu are the process inputs. The subscripts
L and U indicate lower and upper bounds, respectively.

The DAOPs such as the one in Problem (3.1) are very difficult to solve with conventional
analytical or numerical techniques. Moreover, these problems cannot be solved directly by
typical nonlinear programming (NLP) techniques or optimal control methods [Cuthrell and
Biegler, 1989]. Even when the profiles are discretized and treated as decision variables,
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repeated, and often expensive, solution of the DAE model (with a large number of sensi-
tivity equations) is still required. Optimal control methods, on the other hand, deal with
continuous control profiles but normally cannot handle general algebraic constraints, such
as the ones represented by the functions ¢ or g [Cuthrell and Biegler, 1989]. Thus, special
numerical techniques have to be employed in order to solve these problems. An overview
of some of these methods with their advantages/disadvantages was preseried in Chapter
1. In general, for large DAOPs (with many states and inputs), most of these methods can
result in problem formulations that are computationally prohibitive (because of the large
number of decision variables). Consequently, some form of decomposition or exploitation
of problem structure is required to solve them efficiently. This problem becomes even more
acute for real-time applications. In this thesis, an alternative algorithm is introduced which
can solve a class of these optimization problems efficiently. In the proposed method, the
concept of flatness (see Chapter 2) is used to express the system dynamics algebraically. In
other words, the differential equations are eliminated from the optimization problem, hence
making the problem completely algebraic.

3.2 Normalized Form Optimization

In this section, the Normalized Dynamic Optimization (NDO) algorithm is presented. This
algorithm transforms the dynamic optimization problem to an algebraically constrained
problem, which is more readily solved. The algorithm is enumerated in the following steps.

Algorithm: Normalized Dynamic Optimization (NDO)

1. Identification of Flat Outputs: The flat outputs (y(t)) for the differential equation
system, x(t) = £(x(¢),u(t)) are identified using the algorithm of Guay et al. [1997]
or Rathinam and Murray [1999] . In case the system is not differentially flat in
the original time scale ¢, the orbital flatness of the system is checked. For orbital
flatness, a suitable time scaling is determined from the solution to equation: d—j =
s(x(t),u(t)), Tlt=0 = To [Sampei and Furuta, 1986] and, if possible, the flat outputs
(y(7)) for the transformed system are identified!.

2. System Variable Transformation: The original system variables x(t) and u(t) are
written as functions of these flat outputs (y(t) or y(7)) and a finite number of their

derivatives:

x(t) = a(y(t),yM (1), ..y B (t)) = a(3(t)) (3.2)
u(t) =By ),y (@), ...y*(t)) = BF ()
* Differential or orbital flatness of a system cannot be guaranteed. In fact, differentially flat systems form

a small subset of all nonlinear systems. Time scaling merely expands this subset by accomodating a larger
set of nonlinear systems in the flatness framework. See Chapter 2 for further details.

30



for the case of differentially flat systems. Here y()(t) stands for the it* derivative of
y(t) with respect to t and k is the number of derivatives of y(t) required to represent
the system in the form given in Equation (3.2). The flat output ¥(t) and its derivatives
up to order k£ have been collected in the vector ¥(¢). For the orbital flatness case, which
incorporates time scaling, the equivalent expressions take the form:

x(t) = a(y(r),y (1), ..y* (1)) = a(¥(r) 33)
u(t) = a(y(r),y(r), ...y ® (1)) = B(F(1))
where, the terminology is the same as in Equation (3.2), except that ¥ is now a
function of 7,¥(7) instead of t. In this case, the new time scale T is obtained as a
function of ¢ from an analytical solution of the differential equation:

% = s(x(t),u(t)), Tl=0=To (3.4)

For the case when an analytical solution is not possible because of the complex nature
of the problem (e.g., complex time scaling function or the nature of the parameteri-
zation of the flat outputs, etc.), the equation (3.4) is solved numerically?.

3. Problem Transformation: The functions o« and B are substituted for x(t) and
u(t) in the original optimization problem. The differential equations in this model
are already accounted for in the calculation of flat outputs, and hence are eliminated
in this new form. The normalized form of the optimization problem can then can be
represented as:

min (a(y(7)), B(7(7))) T € [70, 7]
s.t.:
a(¥(70)) = xo
g(a(¥(r)).B(¥(1))) <0 (3.5)
c(a(3(1)), B(F(1))) =0
xL < a(y(r)) < xy
ur <B(F(7) S uy

Note that the Problem (3.5) contains only algebraic constraints, yet is equivalent to

Problem (3.1). Problem (3.5) will be referred to as the Normalized Dynamic Opti-
mization (NDO) in the following discussions.

4. Parameterization: The flat outputs are parameterized by suitable functions of time
(e.g., simple polynomials, Lagrange polynomials, etc.). In this thesis, simple polyno-
mials (i.e., y(7) = a+b7+cr2+...) are used to represent the flat outputs. Given an

*The differential flatness case (flet outputs, y(t)) can be considered as just a special case of orbital
flatness (flat outputs, y(7)) by setting T = ¢. Hence, in the following steps and the discussion to follow, all
the expressions and formulations are given in terms of y(7) with the assumption that for differentially flat
systems. T =t and for orbitally flat systems. T as a function of ¢ is given by the time scaling equation (3.4).
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assumed structure for the flat outputs, the optimization problem is reduced to values
for the parameter vector @ = [aT,b7,c?,.. |T. Thus, Problem (3.5) becomes3:

mein v(,T) T € [0, Ty]

s.t.:
£x(70) = x0
fe(6,7) <0 (3.6)
fe(6,7) =0

XL S fx(e: T) S XU
ur < fu(6,7) <up

The Problem (3.6) is an equivalent form of Problem (8.1), yet it is only algebraically
constrained. The parameter set, 6 forms the decision variable vector for this trans-
formed optimization problem*. The choice of the optimization technique used for
solving Problem (3.6) depends on the specific type of inequality constraints that are
present in the problem. If the inequality constraints represent restrictions on the
path that trajectories may follow within the optimization interval, i.e., path con-
straints, the problem is a one-parametric Semi-Infinite Optimization problem [Jongen
and Stein, 1997] , which is a sub-class of Semi-Infinite Optimization [Polak, 1997;
Hettich and Kortanek, 1993} problems that are relatively easy to solve. On the other
hand, when there are no path constraints in Problem (3.6), it is a conventional alge-
braic optimization problem that may be solved using standard LP, QP or NLP codes,

as appropriate.

5. Optimal Trajectory Determination: Determination of the optimal trajectories
from Problem (3.6) is a two step procedure. In the first step, the NDO Problem (3.6)
must be solved numerically. The second step consists of substituting the calculated
values of the parameter vector 6 into the expression for the flat outputs y, which are
in turn substituted into the expressions given in Equations (3.2) or (3.3) to determine
the trajectories for the state and input variables.

3.3 Steps in the NDO Algorithm

This section gives a more detailed explanation of the NDO algorithm steps discussed in
the previous section. The section is divided into three sections. The first section provides
references to the relevant algorithms which have been used to characterize the flatness of
the example systems. Also, it combines Steps 1 and 2 of the algorithm and illustrates the

3The functions are not explicitly stated here, but can be easily calculated. Here, the functional depen-
dency of the variables on 8, T will be shown with the relevant subscript to f. For example, the constraint g
in the original {x, u} space will be represented as f; in the {y} space and similarly for others.

*The choice of the order of polynomial is dictated by the problem constraints and objective function
value. The polynomial order, in general, has to be such that there is at least one degree of freedom for
optimization. The parameter set can be further inflated to achieve better results from the algorithm.
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application of flat output identification algorithms on both classes of systems, wviz., differ-
entially and orbitally flat. The next section illustrates, via an example, the normalization
of DAOP to an NDO problem. The next section discusses the method for the solution to
hence obtained NDO to determine the optimal trajectories for the system.

3.3.1 Flatness and System Transformation

This section discusses the first two steps of the NDO algorithm: 1) the identification of
flat outputs for the system; and using these flat outputs, the 2) system transformation to
the flat output space. In the following discussion, the identification of the differentially flat
and orbitally flat outputs via these algorithms is illustrated on examples. The next step of
representing the system variables as functions of these flat outputs® and a finite number of
their derivatives, is also illustrated for both differential and orbital flatness cases.

Exzample 3.3.1 - Differentially Flat System

Consider the system of Charlet et al. [1989; 1991] , which was previously discussed in
Chapter 2:

Iy = T + T3us
Iy = z3 + Tius
I3 = uy + Tous
.’i‘4 = Uus.

(3.7)

The flat outputs for this system were found to be: y; = z4 and y» = zaus —z; in Chapter 2.
Here, the steps of the Guay et al. [1997] algorithm are illustrated on this example to obtain
the same flat outputs. The steps have been taken directly from a previous publication [Guay,
1996] with minor modifications, and are presented here just for illustration purposes. The
following symbolic computations have been performed in MapleT™ using the “Liesymm®
package. The Pfaffian system (see Appendix A for details) associated with the system given
in Equation (3.7) is given by:

d(z1) — (z2 + T3us)d(t) wl

_ | dlz2) — (z3 + .’E1’l£2)d(t) 1l w2
T= 1 a(zs) = (ur + zoun)d(t) | = | w3 (3.8)

d(z4) — u2d(t) w4

where d(.) stands for the exterior derivative. In the following steps, A stands for the wedge
product and mod for modulo. An introduction to the language of exterior calculus is given
in Appendix A, which should be referred for details about any of these. Also, Bryant et al.
[1991] provides a comprehensive source of information for exterior differential systems. From
the definitions of exterior derivatives, wedge products and modulo, the following condition

*In this thesis, flat systems will be assumed to encompass both differentially flat and orbitally flat systems.
From hereon, flat will imply differentially flat or orbitally flat, depending on the context.
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is obtained:

d(w1) 0

d(ws) | _

d(ws) | d(t) A —1 d(ui)mod I,d(us) (3.9)
d(ws) 0

From the above, the first derived flag for this system, I{1) = [w;,ws, w4} is hence constructed.
Proceeding with the derived flag, the following is obtained:

d(wl) Uus
l:d(wg) J =d(t) A [ 1 ] d(z3)mod IV, d(us) (3.10)
d('UJ4) 0

To choose the next derived flag, I® for the system, a new generator, ws is defined as a
linear combination of the first two generators, w; and ws as: w; = w; /us — wo. With this
definition, the following condition is obtained:

d(ws) = 0mod IV, d(us) (3.11)

that permits the definition of the second derived system as: I?) = {wg, ws]. The following
condition is then obtained:

d(ws) 2w

0
[ d(w,) ] = d(t) A [ 1 J d(z1)mod I, d(us) (3.12)

which implies that the bottom derived system, I?) is integrable. Hence, the system fulfils
the conditions given by Guay et al. [1997] and is therefore dynamic feedback linearizable
(or differentially flat). The generators of the bottom derived system, I are given by:

w1 | d@a) —uadt)
e A2 ) + (-2 + myu)d(t) (3:13)

implying that the linearizing output functions (flat outputs) for this system are:

B = zy (3.14)
- I
Y2 = ——x

U2

which can be converted to the ones reported in Chapter 2, with the following transformation:

V1 = 1=z (3.15)
Y2

=192 = —Ualjs = ToUa — I1

With this set of flat outputs {y1,y2} = {z4,zous — 71}, as shown previously in chapter 2,
the system variables can be written as functions of these flat outputs and a finite number
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of their derivatives as:®

i it ( Y2 +Yiye ) — ]
xy ﬁl .—Fy? : 1 )
o _ "y?';:glw_ i ui - I3 — Touz = f‘l(glng) (3 16)
3 . ity -1 T u N ]

] — T2 _
z4 — = fi(#, %)
u2
L L3¢ J

The example illustrates how the algorithm of Guay et al. [1997] can be applied, sys-
tematically, to generate the flat oufputs for a given dynamic system.
Ezample 3.8.2 - Orbitally Flat System

Consider the tubular chemical reactor problem that has been studied by several researchers
[Ray, 1981; Biegler, 1984; Logsdon and Biegler, 1989;1992; Dadebo and McAuley, 1995] in
which the following reactions take place:

A, B,

A=

Assuming that z; = C4/C4y and zy = Cg/Cly, the system dynamics can be represented

as:
dzl ux lu":z:
T T TuIr —DuTnh)
t 2
it (3.17)
= ur;
dt

where the control u = k1 L/v (L is the reactor length and v is the space velocity within the
reactor). This system is not differentially flat, but can be shown to be orbitally flat with
the time scaling:

dt (x, u) 1
_—= (X — ..—’
dr ’ u2

The system, in the new time scale 7 can be represented as:

dz; T 1

Tlt=0 =0 (3.18)

R
& (3.19)
dr  u

Now, using the transformed dynamics in Equation (3.19), the Pfaffian system is given by:

d(z) - (-2 — Lz))aer) wl
= u 2 = .
7| e - (ZH)d(r) [ w2 J @20

®In the following expressions, only the functional dependence is shown because the resulting expressions
are quite large. Further, the outputs y;,y2 and their derivatives upto the second order have been stacked in
%1 and 2 respectively, i.e. 71 = {y1,91,%1} and 72 = {y2, 92, F2}-
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With this definition of the Pfaffian, the following condition is obtained:
T

[ ZEZ;; ] =d(T) A [ ;125 :l d(u)mod I (3.21)

To define the first derived flag for this system, a new generator that is a linear combination
of wy and we is defined: w3 = w; +wse. With this definition and the condition that d(:w3) =
Omod I, the first derived flag for this system, I 1) = [ws] is hence constructed. Proceeding
with the derived flag, the following is obtained:

[ d(ws) | =d(r)A[ =3 ] d(z2)mod I (3.22)

which implies that the bottom derived system, I(!) is integrable. Hence, the system fulfils
the conditions given by Guay [1999] and is therefore orbitally flat. The generator of the
bottom derived system, I(1) is given by:

(—uzl — $ulz1) z

wy =d(z1) +d(z2) — ") + -

d(r) (3.23)

implying that the linearizing output function (flat output) for this system is:

Y=z +I (3.24)

The fact that the output (3.24) does form a flat output for the system (3.19) is illustrated
by writing the system variables as functions of this flat output and a finite number of its
derivatives. As a first step, the flat output y is differentiated with respect to 7 (it must be
noted that y is a function of 7 which in turn is related to ¢ by Equation (3.18)) to obtain:

dy _dzy  dzy 1
dr  dr dr 2!
which can be rearranged to obtain:
T = —2y (3.25)

By substituting Equation (3.25) into Equation (3.24) and simplifying, the following expres-
sion for x» is obtained:

Ty =y + 24 (3.26)
Equations (3.25) or (3.26) can then be substituted into either expression in Equation (3.19)
and simplified to yield an expression for the input variable:

)

- 3.27
G+ 25 (3.27)
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Hence, y = z; +z2 does form a flat output for the system. The system variables as functions
of the flat output and its derivatives are given by Equations (3.25), (3.26) and (3.27). The
new time scale 7 is obtained as a solution to the differential Equation (3.18):

gt _ 1 (y(T)+2s7(T))' (3.98)

ar w2(t) " —24(r)

It is thus clear that the algorithms of Guay et al. [1997] and Guay [1999] can be
applied systematically to characterize the flatness of dynamic systems as well as identify
the flat outputs for them. The two examples are presented here for illustration purposes
without giving many other details of the algorithms. The reader should consult the original
publications for further reference.

3.3.2 Normalization of the DAOP Problem

Normalization consists of mapping the optimization problem for the original system (in
terms of original system variables x and u) to one in the flat output (y(7)) space. Putting
it simply, it refers to the process of substituting the expressions in Equation (3.3) in the
DAOP (3.1). The technique is illustrated on the tubular reactor example in the following

section.

Example 3.3.3 - Parallel Reaction Problem
The dynamic optimization problem for the orbital flatness example (cf., Example 3.3.2) is:

m(%'z: .‘L‘Q(tf); ty=1; te [O, 1}
s.t.;
#1(2) = —u(t)zy (2) [1 + %u(t)]

3.29
j;?_(t) = u(t):z:l (t) ( )

0<u(t) <5
231(0) =1
:272(0) =0

It was shown in Example 3.3.2 that the flat output for this system is given by Equation
(3.24). It was also shown in Equations (3.25), (3.26) and (3.27) that the system variables
can be written as functions of this flat output and its derivatives. Substitution of the
expressions for z;,z and u into Problem (3.29) and simplifying, yields the NDO problem:

maz  y(7s) +2y(t5) T €[0,7y]
y(m)y(7).#(7)
s.t.:
. -7
y(1) > ﬁy(T) (3-30)
y(1) <0
y(0) =1
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where T is obtained as a function of ¢ from the solution of Equation (3.28) and final time
Ty corresponds to ¢ = 1. The next section discusses how this problem can be solved by a
suitable parameterization of the flat output.

3.3.3 Parameterization and Trajectory Determination

In order to solve the NDO Problem (3.5), a suitable parameterization of the flat outputs
is carried out. As discussed in the algorithm, the parameterization can take one of the
many forms without affecting the basic solution scheme. In this thesis, the flat outputs
are parameterized in time as: y(T) = a+ bt +¢m2 4+ ... , with the parameter vector
denoted by 8 = [a”,b7,cT,...]T. With this type of parameterization, the NDO Problem
(3.5) is equivalent to the form in Equation (3.6). This problem can then be solved using
available nonlinear (or linear) Semi-Infinite Optimization Codes. This step is illustrated on
the tubular reactor example ( cf., Example 3.3.2) in the following example.

Example 3.3.4 - Parallel Reaction Problem
Consider the NDO problem formulation of Equation (3.30). For illustration purposes, sup-
pose y(T) in (3.30) can be represented in quadratic form:

y(7) =a+br+cr? (3.31)
Then, the expressions for its derivatives up to the second order are given by:

(T) =b+2
Z(T) o cr (3.32)

and the time scaling can be determined via the analytical solution of Equation (3.28) to be:

T 2c

t=——

4 b4 2ecr

—In(b + 2¢1) (3.33)

Substituting Equations (3.31), (3.32) and (3.33) into the NDO Problem (3.30) yields:

maz a+(2+7f)b+ (47 +T?f')c

a,b,c
s.t.:
a=20
7 7
—b+2(1 + — >
150 T2 FgT)e=0 (3.34)
b+2er <0
2_6_1n(b)=
be 2¢
——t ————In(b+2 =1
1 T oroe, b F2ery)

where the final two equations in Problem (3.34) represent the initial and final conditions
on the solution to the time scaling problem given in Equation (3.18). Problem (3.34) is
an NLP problem in two decision variables, as the parameter a is required to be zero, and
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can be solved using available nonlinear Semi-Infinite Optimization codes. If the system had
been differentially flat, then Problem (3.34) would reduce to a simple linear Semi-Infinite
Optimization problem.

The solution of Problem (3.34) required solving a differential equation for the time
scaling, which was a result of the systems orbital flatness. Differentially flat systems will
not require the solution of any such differential equations. In this example, the differential
equation could be solved analytically; however this will not be the general case. When an
analytical solution is not possible, a numerical differential equation solver must be embedded
within the optimization problem formulation. The additional computation load that results
from embedding a numerical differential equation solver within the problem formulation is
comparatively small however, as the time scaling differential equation is scalar.

An appropriate Semi-Infinite Optimization Technique, as discussed above, yields the
optimal value of the parameter vector 6. This solution thus defines the flat output trajectory
(y(7)) as well as the trajectories for its derivatives (y(7), #(7),...) from the parameterization
information. The optimal input and state trajectories are hence obtained uniquely from
Equation (3.2) or (3.3). This step will be illustrated in the next section, where optimal
trajectories for a number of benchmark case studies taken from literature would be obtained

using this technique.

3.4 Illustrative Examples

In this section, the proposed NDO scheme is illustrated on a number of benchmark case
studies from the dynamic optimization literature. These examples are intended to provide
a comparison of the proposed NDO method to the more established approaches. The
comparison will be made in terms of accuracy of the solution and the size of the optimization

problem to be solved.

3.4.1 Single Integrator System

Consider the single integrator system studied by Goh and Teo [1988], Luus [1991] and
Dadebo and McAuley [1995]. The optimization problem for the system can be written as:

min za(tr)i tr=1
s.t.:
£1(t) = u(t)
B9(t) = 22(t) + u2(2) (3.35)
:Dl(O) =1
1122(0) =0
1:1(1) =1

This system can be thought of as having a flat output: y(¢) = z:(t), since the initial
condition for z5(t) is known. Thus, an expression for z,(t) can be obtained as an integral
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of a function of y(t) = z;(¢t) and its first derivative. The system variables can then be
expressed as functions of the flat output y(t) as follows:

z1(t) = y(2) (3.36)
z2(t) = / [v2(t) +52(t)] dt (3.37)
u(t) = 3(t) (3.38)
Parameterizing y(t) as:
y(t) = a+bt + ct? + dt3 + et? (3.39)

and collecting the coefficients of the parameterization in a vector: 8 = [a,b, ¢, d, e]T enables

the dynamic optimization Problem (3.35) to be written as: ‘
min 6THO
s-t.c (3.40)

where:

(=21 B8 i1 {2 NN [ITSRTRNUT P

G2t o
00| T Frslnnionn
Aemlgitonwi-

Ot O =0 b

The problem in Equation (3.40) does not contain any path constraints and is an equality
constrained QP problem, which can easily be solved either analytically or using a number of
readily available optimization codes. The quadratic programming solution to the Problem
(3.40) is 6 = [1, —0.4621,0.4996, —0.0749, 0.0375]7, which yields an objective function value
of z2(1) = 0.9242343146. The analytical solution to this problem is found to be identical to
ten significant figures. Figure 3.1 gives a comparison between the state and input trajectories
determined using the optimal parameter values in Equations (3.36) through (3.38) and the
trajectories determined analytically. The analytical solution can be found by reformulating
Problem (3.35) as a finite time optimal control problem. Problem (3.35) is equivalent to:

m(zt'gz Iy [z3(8) +w2(t)] dt

s.t.:
() = u(t) (3.41)
II(].) =1

The problem in Equation (3.41) can be solved via least squares optimal control theory
[Brockett, 1969], which involves the solution of a Riccati differential equation. The proposed
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Figure 3.1: Comparison of Trajectories for the Single Integrator System.

method converted an optimal control problem into an equality constrained QP problem in
only five decision variables (i.e., the coefficients in the polynomial representation for the
flat output), which yielded very high solution accuracy despite the low order approximation.
This example may thus have some interesting implications for the solution of linear optimal

control problems.

3.4.2 Parallel Reaction Problem

This problem, with bounds on the control variable, has been studied by several researchers
including Ray [1981], Biegler [1984], Logsdon and Biegler [1989;1992] and Dadebo and
McAuley (1995]. In this example, a tubular reactor makes two products according to the
parallel reaction scheme: A 5. B VA *2, C. The optimization problem for this system can

be represented as:

maz  za(ts); ty=1; te(0,1]
u(t) i
s.t.:

1() = —u(®)z(t) |1+ %u(t)]

. (3.42)
2(t) = u(t)z.(t)

0<u(t) <5

2:1(0) =1

:L'Q(O) =0

where the manipulated variable is defined as u(t) = k;L/v (L is the reactor length and v
Is the space velocity), the first state variable is defined as z; = C4/C4s and the second
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state variable is defined as zo = Cp/C4y. One choice of linearizing output for this system
is y(t) = z1(¢). The system variables can be expressed in terms of the linearizing output
y(t) and its derivatives as follows’. The first state ODE is stated in terms of y(t) and y(t):

%uz(t) u(t) + z—% —0 (3.43)
which specifies:
y(t)
u(t) = —1+ /1 — 2= (3.44)

Next, the substitution of Equation (3.44) into the ODE for the second state yields:

a(t) = <—1 +/1— 2-‘1@) y(2) (3.45)
y(2)

Representing the linearizing output y(¢) in quadratic form:
y(t) = 1 + at + bt> (3.46)

and substituting in Equation (3.45) yields:

b+ 2ct 5
La(t) = [ =14+, /1 — 2———— | (a + bt + ct2). 3.47
Ea(2) ( \/ a+bt+ct‘3)(a ) (3.47)

Integrating using the initial condition z2(0) = 0 gives:

zs(t) = / (—1 + \/1 - 2-—6-'+-2—CU—-)-> (a+bo + CO‘Q)dO'. (3.48)

A a + bo + co?

which can be solved by quadrature. Collecting the coefficients in a vector 8 = [a,b, T
enables the dynamic optimization Problem (3.42) to be written as:

1
b+2co o
meaz /0 (_1 * \/1 - 2a+bcr+cg-2) (a + bo + co )dO’
s.t

(3.49)
a=1

b+-2ct
0S(—1+\/1—2m’ <35

Problem (3.49) does contain input path constraints and is a Semi-Infinite Optimization
problem. Using one of the readily available Semi-Infinite Optimization codes, the ob jective
function value obtained for the optimal solution to this problem is z3(1) = 0.57189 and the
optimal polynomial coefficient values are 8 = [1, —1.03180,0.081453]T. The optimal state
and input trajectories determined using this technique are shown in Figure 3.2.

It must be noted that the system dynamics were identified as being orbitally flat in Example 3.3.2. In
this example, however as shown, the system is differentially flat because of the given initial conditions for
the differential equation constraints.
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Figure 3.2: Optimal Trajectories for the Parallel Reaction Problem.

The simple, quadratic approximation produced accurate results with very few compu-
tations. Further the solution to the NDO Problem (3.49) required, only the integration of
the objective function and was computationally inexpensive. Increasing the order of the
polynomial used to represent the flat output to tenth order, produced an optimum solution
with an objective function value of x2(1) = 0.57304 and optimal polynomial coefficients of:

0 = [1,-1.06433,0.15822,0.022151,0.15497, . — 0.097468, —0.16193,
—0.093541, —0.19312, —0.10974, 0.41606]7

which is slightly less than the reported literature values.

3.4.3 Consecutive Reaction Problem

Consider the batch reactor problem given in Ray [1981], in which takes place the consecutive
reaction:

AfLpr ¢

The operating objective for this reactor is to obtain the reactor temperature progression
that maximizes the intermediate product for a fixed batch time. The optimization problem
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for the system can be stated as:

m(cgz: za(ty); tr=1
s.t.:
1 (t) = —u(t)zi(t)
£9(t) = —0.03875u>(t)z2(t) + u(t)z2(t) (3.50)
:L‘]_(O) =1
2:2(0) =0

0.9092 < u(t) < 7.4831

where the manipulated variable is defined as u = 4000e~2 " ., and the state variables are
defined as z; = c4 and > = cp, respectively.
This system can be shown to be orbitally flat using the time scaling transformation:

dt 1 N

A flat output for the transformed system be defined as y(7) = z; (t) + z2(t). Then, repre-
senting the output y(7) in the cubic form:

y(T) = a + br +cr? +dr3, (3.52)

allows the system variables to be expressed as:
1

zi(t) = y(7) * 503759 (")
zo(t) = —'@3187532(7') (3.53)

(—y(7) = srmzv(7))’
Y(7) + gomesi(T)

u(t) =

Note that b = 0 ensures that z2(0) = 0 and a = 1 ensures that z; (0) = 1. Collecting the
remaining coefficients in a vector § = [c,d] enables the dynamic optimization Problem
(3.50) to be written as:

max —-———1 1(T¢)
5 0.038757V" 1
s.t.:

,
. 1_ = <
g=[amme g 50

—y(7) gz v(M)”

_ N 1 _7; 2

0.9092 < (¥ —mmmmi) 7 a0,
y(T)+555=59(7)

0<t<1

The transformed optimization problem requires the integration of one differential equation,
which is needed for the synchronization of the two time scales. The computational advan-
tage of the proposed approach is that it only requires the integration of a scalar ordinary
differential equation, regardless of the underlying dimension of the optimization problem.
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Problem (3.54) can be solved via Semi-infinite optimization; however the final time
in the new time scale (7f) becomes an additional decision variable in the optimization
problem. The optimal objective function value for the solution is z2(1) = 0.610203 and
optimal parameter values are 8 = [—0.12919,0.03883]7 and 77 = 6.00053. The calculated
system trajectories are shown in Figure 3.3.
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Figure 3.3: Optimal Trajectories for the Consecutive Reaction Problem.

3.4.4 Crane Container Problem

In this complex problem, containers are to be optimally transferred from a ship to a cargo
truck using a crane. This problem has posed significant challenges in the optimal control
literature and has been considered in Sakawa and Shindo [1982], Goh and Teo (1988], Luus
(1991], Teo et al. [1991] and Dadebo and McAuley [1995]. The optimization problem for
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this system can be represented as:

min
u(t)
s.t.:

2 I3 [0 + 23] at

.’tl (t) = 91‘4 (t)

Z2(t) = 9zs(t)

Z3(t) = 9ze(t)

Z4(t) = 9fu1(t) + 17.25656x3()]

Z5(t) = Guo(t) (3.55)
b (t) = —9[u1 (t) +27.0756z3(¢)]  18z5(t)xe(2)
R0 0
x(0)=[0 22 0 0 -1 0

x(1)=[10 14 0 25 0 0T

—2.834 < u;(t) < 2.834
—0.809 < us(t) < 0.713

|z4(£)] < 2.5 lzs ()| < 1.0

where u; (t) and u»(t) are the torque of the hoist and the trolley drive motors, respectively.
The objective function represents the swing of the container during the transfer, and is to

be minimized for safety reasons.
This problem is normalized with the following choice of flat outputs:

y1(t) = z2(t)
y;(t) = z3(t) (3.56)

The state and input variables expressed in terms of the flat outputs are:

z5(2)
z(2)
uy(2)
us ()
z4(2)

) (t)

()

9
y2(t)
9
= —27.075632(t) - 91 (92() — g1 (5200
n@®)
81
= / 9 [u1(0) +17.25656z3(0)] do
0

(3.57)

= ‘/0 t 9z4(0)do

Note that this system is not flat, as defined in Martin and Rouchon (1995]. The system can
be considered partially flat by concentrating on the subsystem:

Zo(t) = 9z5(¢)
I3 (t) = Oz¢ (t)
Z5(t) = Yua(t)

zg(t) =

—9[u1(t) + 27.0756z3(¢)] —18z5(t)z6(t)
T2 (t) zo (t)
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which is flat and independent of z;(t) and z4(t). The state variables z;(t) and z4(t) can
be recovered by integrating appropriate expressions in the other state and input variables.

In this case, it is still possible to express the optimization problem in an algebraic form
by choosing an appropriate parameterization of the output trajectories. For this problem,
the two chosen outputs are parameterized as high-order polynomials:

y1(t) = ao + a1t +ast? + ... + agtd (3.58)
y2(t) = bo + b1t +bat? + ... + batB ;

Then, the integrals for z1(t) and z4(t) can be solved analytically by symbolic computation.

To solve this problem, the coefficients can be collected into the vector 8 = [ag, ay, ... ,as,
bo, b1, ... ,bs]T. From the initial and final time constraints, ag =22, a; = -9, 60 =0, 6; =0
to ensure that z;(0) = 22, z5(0) = —1, z3(0) = 0, z6(0) = 0. The dynamic optimization
problem is transformed to a semi-infinite optimization problem in the general form:

min J(6)

s.t.:
w(6) =0 (3.59)
p(6,t) <0
t €[0,1]

where the objective function: J(8) is a quadratic (87 H@) that can be simplified to:

53 502,, 13 1346 383 9 89 95
- 23 Tobsbs + T5o-bs bo + 22 2
J(6) Z505ba + 9708 + Tbsbs + Tizzbsbr + Tbsbs + Zbobo + —beb + == bobs
23 331 151 ., 65 197 10 197 320
23 beb b bebr + —2L b brb
+m%%+2mﬁ4+2%6+636'*wfﬁy%g 1+ 750702 + g7 07bs
208 , 145 905 2303,, 26, 61 5 9. 9
0 e+ 2 b 4
58507 T 142075 T gor 82 * Zogpte + 355 60b3‘b8+3l’°b3+2(’0+ boby
9 9 3 9 85 86
boba -+ 2bobs + =bgbs + “bobs -+ <bobr + bobg + ~2p2 4 95y o 86, 4
+3bgb2 + °3+504+20°+80b7+ 08+9 1 36 1bv+45b13
% ‘a1 263 .,
22 L b b + 28552
+1861b4+ 502 8 + 57002
[ fr; (1(0),92(0),:1(0),92(0),%2(0))
yl(o) -
y2(0)
Sz, (41(0), y°(0) ¥1(0),92(0), 72(0))
a0 4 g
yz(O)
w(0) = N .
O =1 £ @1(0),9200),5:0),92(1), G2(1)) — 10
yi(1) — 14
y2(1)
f::4(y1(1): y2(1)3y1(1)7)y2(1):y‘2(1)) —-235
(1
X 5 |
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and:

[ (—27.0756y2(t) — 291(t)92(2) — 5791(8)d(2)) —2.834
— (—27.0756y2(t) — g 91(t)g2(t) — 3791(8)F(2)) —2.834
52) —oms3
~ (&%) —0.809
p(8,t) = AR
Fzo (W1 (1), 92(2), 91(2), 92(2), §2(2)) — 2.5
-fI4. (yl (t): y2(t),'£7(1 )(t):il]z (t)~ y'.’(t)) —25
ny 4
9

| () |

Solving this Semi-Infinite Optimization problem yields a value of J(6) = 0.0057644 for the
objective function, which is slightly larger than the one reported in literature (e.g.. Goh
and Teo [1988]). The optimal coefficient values are:

- 29 7 ( 0 \
-9 0
0.81203323219291 —1.48789265701876
—8.22718558451132 4.52513247820709
[a:] = | 28.99533109212470 | ; (b = { —0.65126268499532 (3.60)
—30.46132916124124 —7.62467243615438
—18.61265676009112 ~2.15838245360171
47.89170516480613 16.09752766200006
| —19.39789798328008 _ | —8.70045046140724

These results differ from those reported by Dadebo and McAuley {1995, where relax-
ations of the final state constraints were used to allow solution of the problem. The lower
values of the objective functions reported by other researchers, in general, result from the
infeasibility of their solutions. Using the coefficient values obtained given in Equation (3.60),
the final states are:

z1(1) = 10.00007224
z2(1) = 13.99999999

z3(1) = —0.00000055
z4(1) = 2.50000312
z5(1) = 0

z6(1) = —0.00000061

Further, Figure 3.4 shows that the path constraints were respected. Thus, the proposed
method produced a feasible solution to Problem (3.55), which has an objective function
value that is very close to the results reported in the literature. Also, the resulting Semi-
Infinite Optimization problem was solved using initial values of zero for the coefficients.
This result contrasts with other methods where, accurate initial estimates of the entire
input trajectories were required to arrive at a satisfactory answer.
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Figure 3.4: Constrained Trajectories for the Crane Container Problem.

3.5 Summary

The results obtained using the proposed NDO approach are compared with those reported
in literature are reported in Table 3.1. In general, the proposed method produced similar
or better results to those from literature, while being computationally more efficient.

3.6 Conclusions

This chapter presented a new approach for calculating optimal trajectories for flat and
partially flat systems. The proposed approach produced similar or better results than
currently available methods based on discretization schemes or dynamic programming for
a range of benchmark problems. Although the benchmark problems solved in this chapter
were all fixed time problems, it may be possible to extend the method to solve minimum or
variable time problems. In the consecutive reaction problem of §3.4.3, a fixed time problem
was converted into a variable time problem in the new time scale and solved using the
proposed method.

The power of the approach arises from the transformation of a dynamic optimization
problem into a simpler and lower-dimensional form. It appears that the method may be
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Table 3.1: Comparison of objective function values for illustrative examples.
Integrator Parallel RxIN Series RxN Crane

Proposed Method 0.92423 0.57189 0.610203 0.00576
CVvI — 0.5734902l — —

CVP 0.925188! 0.56910(2! — 0.0054003!

0.92428! ] @ 0.005020

IDP 0.99441 (4 0.57353 0.610775(1 0.00493L1]
Collocation based schemes — 0.573530! 0.610775 —

(HDadebo and McAuley{1995]; (2! Biegler [1984]; B/Goh and Teo [1988]; “Luus [1991}; 5/Logsdon
and Biegler [1989].

able to produce arbitrary precision for sufficiently smooth problems,; with small additional
computational cost. Note that the computational complexity for the NDO approach scales
with the number of coefficients in the expressions used for representing the flat outputs
and not the underlying model size or the fineness of the discretization; whereas. in other
dynamic optimization methods computational complexity scales with model size, discretiza-
tion fineness and so forth.

The computational advantages offered by the proposed approach arise because the
method exploits the geometry of the system’s dynamics to provide co-ordinate transfor-
mations, which greatly simplifies the optimization calculation. The determination of these
transformations require a substantial analysis stage prior to optimization. Thus, the NDO
approach requires more pre- and post-optimization analyses than the conventional ap-
proaches, to gain the computational advantages that are promised by the method.

The additional pre-optimization analysis, however, is similar to that required for con-
troller design in a differential geometric framework and the results could be used in formu-
lating the trajectory tracking controller, which would implement the optimization results.
Thus, the method seems to be particularly suitable for real-time trajectory generation appli-
cations; however, the problem that must be addressed is to ensure that a trajectory tracking
controller can be synthesized to enforce the calculated optimal trajectories. This is true,

regardless of the method used to determine such trajectories.
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Chapter 4

Real-Time Trajectory Optimization

“Never let a computer know you’re in a hurry.” — Anonymous

4.1 Introduction

Increasing global competition combined with tightening product quality requirements and
high operating costs, provides a sufficient economic incentive for the optimal operation of
process plants. Among other things such as plant scheduling, operations optimization may
require the determination of optimal trajectories for the manipulated variables, such that
a desired objective is achieved. Chapter 3 discussed a solution to this problem where a
method to determine optimal set-point trajectories was proposed. If the process model and
all future disturbances were known perfectly (i.e., if the optimization Problem (3.1) would
be applicable, in toto, for the duration of the process), then the solution to this problem
would lead to an optimal operation of the process. In reality, however, processes are al-
most always subject to time-varying behaviour or disturbances (e.g., catalyst deactivations,
changing stream compositions, etc.). In such cases, the originally determined optimal set-
point trajectory ceases to be optimal as soon as a disturbance enters the process. In some
cases, the trajectory might even become infeasible in the sense that it would violate process
constraints (such as valve capacity, coolant availability, etc.). Hence for these processes, a
scheme is required which is able to update the trajectories on-line so as to remain optimal.

Real-Time Optimization (RTO) is one of the techniques that aims to optimize the
steady-state operation of a process [Cutler and Perry, 1983; Darby and White, 1988 R
Generally speaking, the RTO system provides the bridge between plant scheduling (which
considers long-term inventory, process feeds and product shipments), and the control system
(which considers very short-term product quality and process operations safety) [Forbes et
al., 1994] (see Figure 4.1).

The purpose of an RTO system is to maintain an economically optimal operations policy
for processes with time-varying behaviour! [Forbes et al., 1994]. In addition to ensuring the

! This chapter provides only a very brief introduction to RTQ. For a detailed overview of RTO (the system
structure, the major components and applications to process industries), the reader is encouraged to look
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Figure 4.1: Plant Decision-Making Hierarchy.

feasible operation of the process, there are economic benefits to be had when the process is
operated so as to compensate for such process changes [Cutler and Perry, 1983]. The degree
to which these benefits are realized, however, depends on the design of the RTO system [de
Hennin, 1994; Forbes et al., 1994]. Most of the current literature on RTQO has focused on
what is called model-based steady-state on-line optimization. Such RTO systems are closed-
locp, model-predictive control systems that determine the best short-term plant operations
policy based on a model and other process information [Forbes, 1994]. The components or
subsystems of such an RTO system are: data validation, process model updating, model-
based optimization and optimizer command conditioning [Darby and White, 1988.. Figure

4.2 shows this structure.

plant and controllers

Figure 4.2: Typical model-based RTO system [Forbes, 1994].

The major characteristic of the RTO system depicted in Figure 4.2 is that the plant data
(z) is gathered once the plant operation has reached steady-state. This steady-state plant
data is validated (2’) to avoid gross errors in the process measurements, and is then used
to estimate the model parameters (3) at the current operating point. Then, the optimum

elsewhere [Cutler and Perry, 1983; Darby and White, 1988; Forbes et al.. 1994 .
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controller setpoints (x};,) are calculated using the updated model, and after checking by
the command conditioning subsystem, are transferred to the controllers. Such an RTO
system has been studied extensively by several researchers [Forbes et al., 1994; Krishnan et
al., 1992; Fraleigh et al., 1999; Forbes and Marlin, 1996] and only applies to the currently
employed steady-state RTO schemes.

On the other hand, research in the area of Dynamic Real-Time Optimization (DRTO)
has been comparatively scarce. DRTO refers to the optimization of processes that are mod-
eled using differential equations and/or algebraic equations with time varying parameters.
More specifically, the optimization block in the RTO structure depicted in Figure 4.2 is a
dynamic optimization routine, which uses the dynamic process model for optimization (in
contrast to a steady-state model used by steady-state optimization routines). The obvious
application of this is in the optimization of finite-time processes. Some examples of this
type were discussed in Chapter 3.

The major difficulty with the application of DRTO arises because of the very nature of
the processes that it can be applied to. Most finite-time processes are modeled by highly
nonlinear differential-algebraic equations making trajectory optimization a non-trivial task.
Some recent papers have looked at this problem, and provided partial solutions to these
problems. Tierno et al. [1997] have provided an algorithm that provides a means of eval-
uating the performance of a nonlinear system in the presence of noise, real parametric
uncertainty, and unmodeled dynamics. Nieuwstadt and Murray [1996] have considered
the problem of generating a feasible state space and input trajectory in real-time from a
reference trajectory. Agrawal et al. [1999] proposed a method to determine trajectories
of dynamic systems that steer between two end points while satisfying linear inequality
constraints arising from limits on states and inputs. Rhee and Speyer [1991;1992] have con-
sidered the disturbance attenuation problem over a finite-time interval in the game theoretic
approach. In this approach, the control, restricted to a function of the measurement history,
plays against adversaries composed of process disturbances and the initial state. One of the
few contributions to the dynamic real-time optimization of process control systems is that
of Loeblein et al. [1999], where operating policies for batch processes subject to parameter
uncertainty are determined on-line.

This chapter is concerned with dynamic real-time optimization of finite-time processes,
and focuses only on the parameter estimation, model updating and the optimization prob-
lems in this framework. The main idea of the chapter is to investigate RTO for dynamic
systems using developments of Chapter 3. It must be noted, however, that the discussion to
follow is a preliminary attempt of applying NDO algorithm to DRTO, and is not a compre-
hensive study. The chapter is built up on the scheme proposed by Loeblein et al. [1999] for
dynamic on-line optimization of batch processes. In the framework proposed by them, the
parameter estimation and optimization problem formulations are written as Estimation-
Optimization-Tasks (EOTs). The chapter shows the transformation of these formulations



to a normalized form, such that the NDO algorithm can be subsequently used to solve the
estimation and optimization problems in real-time. This formulation and the solution in
normalized space is illustrated on three examples of differing complexity:.

4.2 Real-Time Optimization of Batch Processes

The most frequently used approach to solve batch process optimization problems is to
compute the solution using the nominal process model without taking into account any
uncertainties. However, as discussed earlier, when deviations from the nominal model occur
(because of disturbances or time-varying model parameters), nominal optimization may no
longer be satisfactory. In addition to the nominal model, the objective function formulation
then needs to take into account the time-varying characteristics that disturbances introduce
to the system. To account for these uncertainties, researchers have primarily looked at the
batch optimization problems from two different points of view.

The first approach to the economically optimal and feasible operation of batch pro-
cesses is based on robust optimization strategies where an uncertain model is assumed for
the nominal optimization. In this approach, an optimal operating policy is determined
off-line, by optimization of a general objective function of the form: ®(x,u, E(n)) that
depends on the expected value of the uncertain parameters 7). Related to this approach are:
1) ezpected value optimization, where the expected value of the objective function under
uncertainty is optimized, i.e., E(®(x,u,n)) [Ruppen et al., 1995; Terwiesch et al., 1994};
2) risk-conscious optimization [Terwiesch et al., 1994], where the probability of making
off-spec product is minimized, or equivalently the probability of satisfying the product con-
straints is maximized; and 3) risk threshold optimization [Terwiesch et al., 1994], where
an economic objective function is optimized with a threshold on the risk of violating a
constraint. However, all these strategies do not make use of information from the process
during its operation, and hence can lead to suboptimal performance when the input profile
determined off-line is applied to the time-varying process.

The second approach, dynamic real-time optimization or dynamic on-line optimization,
provides an interesting alternative for the optimal operation of these processes. With the
assumption that disturbances entering a process are captured by the time-varying param-
eters of the process model, the off-line optimization method can be applied repeatedly to
determine the remaining control trajectory during a batch run. In this approach, the model
parameters are updated using the information gathered on-line by measuring one or more
process variables. The major difficulty, however, is that the dynamic optimization algorithm
used to determine trajectories at every optimization interval needs to be robust as well as
computationally fast. This chapter proposes the use of the NDO approach of Chapter 3 for
the solution of DRTO problems. This method facilitates the application of one of the many
readily available optimization algorithms (e.g., QP, LP, NLP, Semi Infinite Programming,
etc.) to determine an improved operating policy for the rest of the batch in a receding
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horizon manner. This approach may provide improvements over the robust optimization
strategies, which in most cases, are suboptimal [Eaton and Rawlings, 1990] . The basic idea
of this approach and its similarities to model predictive control (MPC) [Garcia et al., 1989]
is summarized in the following section.

4.2.1 MPC and Dynamic Real-Time Optimization

Model predictive control, more commonly referred to as MPC, has been particularly success-
ful for process control applications because of its ability to incorporate constraints directly
into the solution of the control law [Garcia et al., 1989]. The basic idea behind MPC [Gar-
cia et al., 1989; Ricker, 1991; Rawlings et al., 1994; and Morari and Lee, 1997] is depicted
in Figure 4.3. Using a model of the process, the behaviour of the system with respect to

A
past future desired gutput value
: ¢ > . j .
T e N G- mmeenn

. man..ipulated iriput
Jr trajectory, u

N4

v

k-1 k k+1 k+2 time

Figure 4.3: Depiction of the General Approach to MPC.

changes in the manipulated variables is predicted at the present time k over some time
horizon into the future. Based on this prediction, the manipulated variable moves are de-
termined such that some desired response of the system is achieved as closely as possible.
Since MPC is based on the moving time horizon approach, the first part of the calculated
input trajectory is applied to the process and the resulting output of the plant is fed back
to the controller in order to repeat the procedure at time k + 1 [Garcia et al., 1989]. The
desired response of the system is commonly formulated in terms of a quadratic objective
function which penalizes the deviation of the controlled output variables from their set
point. Additionally, excessive control actions are prevented by weighting the rate of change
of the manipulated variables in the objective function.

The dynamic real-time optimization problem (DRTO) adapts itself particularly well to
the above discussed approach to MPC. The DRTO problem can be stated as a form of MPC
with the objective function formulation of the desired response and the constraint handling
capacity of MPC being directly analogous to the objective function and the differential-
algebraic constraints of the DAOP (3.1) respectively. The times k and k + 1 in MPC are
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analogous to the times when the optimization of DAOP is performed in DRTO. The slight
difference between MPC and DRTO of batch processes is in the prediction horizon. Batch
processes are finite time processes (i.e., their behaviour is only important up to a certain
specified final time), and so the time horizon over which the predictions have to be made is
shrinking after every optimization interval.

In this framework, Thomas et al. [1997] proposed a batch variant of the shrinking-
horizon model predictive control (SHMPC) [Joseph and Hanratty, 1993] featuring a control
horizon that shrinks with the well-defined batch run end. The SHMPC strategy accepts
nonlinear process models, that are corrected on-line using available on-line secondary mea-
surements, to correct for model errors and effects of unmeasured disturbances. The SHMPC
strategy involves the use of a NLP based algorithm to solve the updated problem posed at
every optimization interval. The paper illustrated the application of the strategy to predict
and control the end product quality of composite laminates produced by batch autoclave
curing. A similar approach is that of Loeblein [1997], where the concept of Estimation-
Optimization-Tasks (EOTs) for formulating the dynamic real-time optimization problem
under parametric uncertainty was proposed. This approach, similar to above, involves solv-
ing the optimization problem using NLP based techniques. The following section summa-
rizes the approach, and gives the formulations for the estimation and optimization problems

proposed in Loeblein [1997].

4.2.2 DRTO - Problem Formulation as EQTs

Loeblein et al. [1999] referred to dynamic real-time optimization as the two-step procedure
depicted in Figure 4.4. The process is subject to parameter uncertainty and disturbances,
and hence an operating policy is determined on-line. In the first step, the process model

uncertainty/
disturbances
Process —>
past and present past and present
inputs measurements
Estimation
parameter/state (E)sti[rn?;:) n-
estimates ptimization-
Task, EOT

future inputs

Optimization

Figure 4.4: Structure of a Dynamic Real-Time Optimizer [Loeblein, 1997].

is identified or updated by estimating the state variables and/or a set of parameters using
past and present process measurements. The updated model is then optimized with respect
to the manipulated variables and a new optimal input trajectory over the remaining time
horizon is determined. The first part of the calculated input trajectory is applied to the
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process until the procedure is repeated at the next optimization interval. This sequence of
an estimation and optimization step at every optimization interval was referred to as an
Estimation-Optimization-Task (EOT)> by Loeblein [1997].

In the DRTO framework, the process model used to predict the future behaviour of the
plant is assumed to be given by the following modified version of the DAOP (3.1):

x(t).u(t)

s.t.:

x(t) = £(x(t), u(t),n) x(to) = %o

g(x(8), u(t),n) <0 (4.1)

c(x(t),u(t),n) =0

xr < x(t) < xy

ur <u(t) <uy
where, as in previous chapters, the state and manipulated input trajectories are denoted
by x and u, and 7 is the vector of the time-varying or uncertain parameters in the model3.
In DRTO, the dynamics of the system x(t) = f(x(t),u(t),n) are taken into account for the
parameter estimation and optimization steps. The optimization results (optimal manipu-
lated variable trajectories) are applied following the concept of moving time horizon shown
in Figure 4.3.

In this framework, Loeblein {1997] identified the parameter estimation problem as cal-
culating a set of parameters (1) at the present time (), using the process measurements
collected at discrete times over the past time horizon: z(f — jAT;), 7 = 0,..., N;. Here,
z represents the states that can be measured (z C x), AT; refers to the time difference
between two measurements in the past time horizon and N; is the number of intervals at
the present time t, counted from the start. The parameter estimation problem was then
stated as:

N,
min Z “zmeas(tj) - Zmod!‘l(tj)”2

n(t) 7=0
st.: Estimation (4.2)

X = f(xgt), u(t),n)

xo = x(t — M;AT;)
where Zmeqs and Z;o4c denote the measured and the model values of the states z, and
Zmodel i assumed to be described by the expression: Zmeqei(t;) = h(x(t;), u(t;),n). The
past time horizon ¢; is given by the expression: t; = t —jAT;. This differs from steady-state
optimization in the sense that the process need not be at steady-state when measurements
for parameter estimation are taken.

*This thesis uses the definitions and terminology (e.g., the term EQOT) used in Loeblein {1997' to frame
the real-time optimization problem in the normalized form. The difference here is that the NDO algorithm
is used to solve the estimation and optimization problems, compared to the NLP based techrique proposed
in the publication.

3This chapter looks at only the case of parametric uncertainty in the models. In other words, the plant-
model mismatch is assumed to be completely represented by the uncertain parameter values. The case of
structural mismatch of models is beyond the scope of this thesis.
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The second step is the dynamic optimization of the updated model to find an input
trajectory over the future time horizon which maximizes/minimizes an objective function
subject to constraints. This trajectory optimization problem for the DAOP (4.1) can be

stated as:
Tlfll(?gl ®(x(t5), ults),n) teft.ty] )
s.t.:
(x(t),u(t),n) <0
f(,):(t), u(t),n) =0 ? Optimization (4.3)
x(t) =£(x(t),u(t).n) x(0) = x(?)
xr < x(t) <xp
ur <u(t) <uy )

It should be noted that the optimization problem in (4.3) differs from the one proposed in
the reference publication. The problem here refers to the calculation of time-varying control
trajectories, compared to the piecewise approximations that were sought in Loeblein [1997:.
The NDO algorithm facilitates the calculation of trajectories, without the need for piecewise
approximations, and hence the EQTs are formulated in this manner.

In this framework, only the first part of the calculated input trajectory is applied to the
process initially. Hence, the strategy is similar to the moving or receding horizon principle
of MPC. The difference is, however, that the size of the prediction horizon during the on-
line optimization of the batch process shrinks at each EQT because its operation is only
considered until the final batch time. In the next section, the transformation of these
problems to the normalized space is presented, and the solution method of the normalized
problem discussed.

4.3 EOTs in the NDO Framework

This section focuses on the transformations of the EOTs to the normalized form, so that
the NDO algorithm may be used for the DRTO of problems represented by DAOP (4.1).
More specifically, this section shows the transformation of the estimation and optimization
Problems (4.2) and (4.3) to the normalized form. It must be noted that the problem
transformations to follow are valid only under the assumption that the differential equation
dynamics: x = f(x(t), u(t), (t)) of the optimization problem DAOP (4.1) are flat. In other
words, it is possible to represent the system dynamics as functions of fat outputs (y(t))
and a finite number of their derivatives ({y(t), #(t),... , y™)}.

With this underlying assumption, and collecting the parameters used to parameterize
the flat outputs in the vector 6, the following transformed expressions for system variables
can be written:

x(t) = £(.,6,%) (4.4)
ut) = fu(n,6,t) (4.5)
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The measured vector of states: z (z C x) can then be specifically represented as:
z(t) = £:(n,0,t) (4.6)

The estimation Problem (4.2) can then be equivalently represented in the following nor-

malized form:

. - .
_ A Normalized
t;) — &)1
mgn Jé:o Zmeas (25) — Zmoder (£)|l } Estimation (.7)

where, Zmoqei(t;) = £2(n,0,t;) are the values of the measured states calculated from the
model at time ¢;. The definition of ¢; is the same as in the previous section. It must be noted
that this formulation does not have the differential state equation constraints of the original
estimation problem, the same information being obtained from the transformed algebraic
constraint of Equation (4.6). The estimation problem formulation in Equation (4.7) uses the
current as well as the previously measured values of the states z, to carry out the estimation
in a least squares sense. In this thesis, however, it is assumed that only one of the states
is measured, i.e., dim(z) = 1, which is used to estimate only one uncertain parameter, i.e.,
dim(n) = 1. Further, in the examples that follow, only the currently measured value of the
state is used to back-calculate the uncertain parameter value. With these assumptions, the
estimation problem in Equation (4.7) can be simplified to the following form:

Normalized

MIN  Zmeas (E) — Zmodel (f) } . .
n Estimation

(4.8)

where, as defined earlier, £ is the present time, and z,,,q4¢:(f) = £2(n. 8, t).
With the same assumptions, the normalized optimization problem can be stated as:

mém @(n,e,tf) te [E. f[] )

s.t.:
fe(n,0,t) <0 Normalized (4.9)
f.(n,0,t) =0 ( Optimization ;
XL S fx(TI’G’ t) < Xy
uy < fu(naoat) <uy J

where, the uncertain parameter 77 is a scalar and the definitions of other variables are as
defined earlier.

The real-time trajectory optimization problem consists of solving the Problems (4.8)
and (4.9) at every optimization interval in the receding horizon framework of MPC. For
example, at time ¢ = 0, the first optimization is carried out with the nominal value of
the uncertain parameter, to obtain optimal trajectories for the batch (up to tf). At the
next optimization interval (say 1), i.e. when the measurement for 2 becomes available, an
estimation of 7 is carried out. This value is used to update the optimization problem, which
is used for the determination of input trajectory from ¢; till the end of the batch, ¢;. This
procedure is repeated until the end of the batch is encountered. The concept is illustrated
on three examples in the next section.
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4.4 Illustrative Examples

This section illustrates the application of the normalized EOTs, formulated in the previous
section, to the real-time optimization of three transient processes taken from literature.
The method is evaluated in terms of the ability of NDO to perform the estimation and
optimization for the time-varying system of equations accurately. The issue of time required
for these computations is also addressed. The major assumptions made for the solution to
these problems are described in the following section.

4.4.1 Problem Scope and Solution Assumptions

1. The plant-model mismatch is assumed to consist only in one uncertain parameter with
no structural mismatch in the model.

2. It is assumed that at least one state, in which the uncertain parameter appears, can
be measured. The uncertain parameter is then estimated by a direct comparison of
the measured and the model state values at the current time.

3. To simplify the discussion of the solution scheme, the estimation and optimization is
carried out at equally distributed optimization intervals.* At these points in time,
measurement is taken to estimate the uncertain parameter. The process is then op-
timized using the updated model, and a new optimal input trajectory is determined
over the remaining time horizon. This scheme is applied at every optimization interval
until the end of the batch is encountered.

4.4.2 Single Integrator System

The following problem is the modified version of the first example presented in Chapter 3.
The system consists of a single integrator, and the uncertainty in this model is represented
by 7 (the parameter that will be updated on-line). The modified system is represented as:

m(ztgz za(tf) tr=1.0

s.t.:
21(t) = u(t) 21(0) = 1 (4.10)
Ea(t) = 22(t) +nu(t) z(0) =0
zi(tf) =1

The nominal value of 7 is 1.0, on substitution of which the problem structure of §3.4.11is
obtained. The parameter estimation and the trajectory optimization steps (EOTs) are first
presented in the original system space. The parameter estimation step for this problem, in-
line with the formulation discussed in § 4.3 and with the assumption that the measurement

*The algorithm, however, poses no restrictions to this: different optimization intervals can be chosen at
different stages of the optimization without affecting the applicability of the algorithm.
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for x5 is available, can be formulated as:

m#'n Z2,meas(t5) — T2 modet ()
s.t.:
il(t) = u(t)
Ea(t) = z2(t) + nu(t) (4.11)
T10 = z1(t — N;AT;)
T20 = T2(t — NM;AT;)
tj =1— ]Aﬂ.
where 7 is the uncertain parameter, z10 and Z g are the states at the present time £, N; is
the number of discrete time intervals from the start, at which the measurements are being
made and AT; is the width of the time interval. For example, in this problem the RTO
interval is chosen as 0.1 time units and hence AT, = 0.1, and at the first RTO interval,
N; =1, and so on. Also, Z3 meqs(t;) and Z2 modet(t;) represent the measured (actual) and
predicted (model) value of the state z» at time tj. The trajectory optimization problem in
this framework can then be stated as:

m(ztv)'z z2(1.0) telt,1]

s.t.:
1(t) = u(t) z1(0) = z:1(f) (4.12)
£2(t) = 21(t) +muP(t) z2(0) = za2(F)
(II]_(l.O) =1

For DRTO, the estimation and optimization problems represented by Problems (4.11) and
(4.12) respectively are to be solved at every time interval (AT; = 0.1). It is evident that
the solution to both these problems would require a forward integration of the differential
equations, unless collocation based schemes are employed to discretize the whole system.

As in § 3.4.1, the flat output for the system is chosen to be y(t) = z;(¢t) and is pa-
rameterized as: y(t) = a + bt + ct? + dt3 + et*. The parameters are collected in a vector
6 = [a,b,c,d,e]T, and with this definition, the system variables can be represented as:

zi(t) =[1 ¢ 2 £ 4]0

z2(t) =6TH(n,t)8 (4.13)
ut) =[0 1 2t 32 4°]6

where:
t t2 243 144 245
- 2
0 mt+ie s 2m7t3 2nt*
H(n,t)=| 0 2nt2 ind+ 1 i % 47
0 %P 3nt? It + 147 {4
0 §t6 %Gntf) 4T]t6 L—?‘TItT + étg

Making use of the relationships in Equation (4.13), the parameter estimation Problem (4.11)
is equivalently represented as the following unconstrained optimization problem:

Min o meas(£) — 6TH(n, D)6 Estimation
: 2,meas (%) (n,) Problem (4.14)
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The equivalent trajectory optimization formulation in Problem (4.12) can be represented
as:

mgn 6TH(np = n(ty — AT, t =t5)0 )

Jo-[1]

0 0
11
1T 822 ttle=3

6TH(n =n(f — N:AT}),t =)0 =z, |

Optimization

10
11 Problem (4.15)

=

where, ¢y = 1 and Z;,Z- represent the values of the states at time f that were calculated
(or measured) at the previous optimization interval. These added constraints are required
in order to obtain continuous trajectories for the states at the optimization intervals.

The dynamic real-time optimization problem stated above, in the form of estimation
and optimization Problems (4.14) and (4.15), is solved using a readily available NLP based
optimization code. The optimization interval chosen is 0.1 time units, implying that a total
of 9 estimation and optimization solutions are evaluated (at 0,0.1,0.2,...,0.8,0.9 time
steps). The random disturbance is assumed to be in the form of a normally distributed
measurement noise® in z» with a standard deviation of 0.01.

The results of real-time optimization on this example, viz., the optimization parameters,
estimated parameter values for the on-line optimization case, and the nominal and on-line
optimized values for the state z; are presented in Table 4.1.

Table 4.1: Results of Real-Time Optimization on the Single Integrator System.

Time, t Estimated n AT, N; t; Z2.optimal T2 nominal

0 1.00000 0 0 0 0.0000 0.0000
0.1 0.99973 01 O 0 0.1049 0.1095
0.2 1.00068 0.1 1 0,01 0.2239 0.2149
0.3 0.99928 01 2 0.0.1,0.2 0.2879 0.3038
04 0.99979 01 3 0,0.1,...,0.3 0.3795 0.3752
0.5 0.99979 01 4 0,0.1,. 0.4 0.4590 0.4540
0.6 1.00027 0.1 5 0,0.1,...,0.5 0.5457 0.5449
0.7 1.00113 01 6 0,0.1,...,0.6 0.6402 0.6284
0.8 0.99998 0.1 7 0.,0.1,...,0.7 0.7126 0.7027
0.9 099971 01 8 0,01,....08 08086  0.8249
1.0 — 01 9 0,01,...,0.9 09231 0.9394

In Chapter 3, the true process optimum for this system was found to be 0.9242. Thus,
it is clear that the on-line optimization scheme performs better than the nominal in the

*The choice of standard deviation of 0.01 for the random measurement error is based on the assumption
that it is a standard choice for assuming 1% noise in the measured variable for the evaluation of RTO schemes
(see. Loeblein et al. {1999]).
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presence of disturbances, the deviation from optimum being —0.11 compared to 0.52 for the
nominal case.

Figure 4.5 shows the nominal and the on-line optimized (for the disturbance case) input
trajectories along with the grid points at which optimization is performed. Using the NDO
formulations, the estimation and optimization tasks at the 10 grid points for the above
example took approximately 20 seconds, which is an insignificant amount of time even for
a reaction scheme of 1 hour (although batch reaction problems may generally be 4-5 hour
or even up to 2-3 day schemes).

In the next example, the NDO method is illustrated on a larger scale problem, and is
shown to provide a very efficient algorithm to implement RTO on more complex nonlinear

systems.

Input, v
Q

Nominal input
0.1 b Trajectary

Qn-line Optimized
input Trajectory

Figure 4.5: Comparison of Input Trajectories for the Single Integrator System.

4.4.3 Crane Container Problem

This example shows the application of dynamic real-time optimization on a larger scale
problem. The problem discussed here is the nonlinear crane container system presented in
§ 3.4.4, the only change being the incorporation of an uncertain parameter 77 in the state
equation for z4 (the nominal value of 7 in this case is 17.25656). The optimization problem
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for this system can then be represented as:

min 3 [} [0 +z3(0)]
s.t.:
.‘i:l (t) = 9.’1:4(t); :f‘:g(t) = 9175 (t)
3(t) = 9z¢ (); T4(t) = 9[u1 (t) +nz3 (t)j
Z5(t) = ua(t)
) _ —Oua(t) +27.0756z5(t)]  18z5(t)zs(t) (4.16)
Folt) = 2200 T T )
x(0)=[0 22 0 0 -1 QT
x(1)=[10 14 0 25 0 0
za(®)] <25 |zs(t) < 1.0
—2.834 < uy(t) < 2.834
—0.809 < ua(t) <0.713

where u;(t) and us(t) are the torque of the hoist motor and the trolley drive motor respec-
tively. The objective function represents the swing of the container during and at the end
of the transfer, which has to be minimized for safety reasons. With the same choice of the
flat outputs (yi(t) = z2(%); y2(t) = z3(t)), the subsequent parameterization:

yi(t) = as+ait+ast® +...+ast’ +agts
ya(t) = bo+bit +bot® +... +bot7 + bgt®
and the definition: 8 = [ao, ... as, by, . .. , bg]T, the system variables {z1, ... , ¢, ui, us} can

be written as functions® of 6,7 and t. Now, with the assumption that the state z4 is
measured, together with the knowledge of the functions representing the system variables
(see Chapter 3 for further details), the following normalized parameter estimation problem
is obtained:
min T £:) — 6,n,t. Estimation
ph 4,meas( ]) f-’t.x( :+ 7 J) } Problem (4'17)
In the same framework, the corresponding normalized optimization problem for this example
can be represented as:
n%in J(9)
s.t.:
w(8,n7) =0

p(6,n,t) <0 teltt;=1]

Optimization

Problem (4.18)

®The functions are not stated explicitly here, but can be calculated from the differential equations as
shown in Chapter 3. Here, the functional dependence of the variables on 8.n and t will be shown with the
relevant subscript to f. For example, the relation for z; will be shown as fz.(0.7.t) and similarly for others.
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where the objective function J(0) is a quadratic (§7 HO) that can be simplified to:

J(@) =

53 502., 13 1346 383 9 89 25

Z05bs + g 08 + Tbsbs + Tyz=babr + obsby + Zbsbo + ~bebi + aobobs
ﬂ-ngsbg + 22,176664 + ;:ébs + ggbsb + ig;bf;bg lgob by + EZb by + Z;gb-b3

gggbj’ + 14Zb,b3 + 28568&; Zgggbs + §gb3 + gobgbg + 3bobs + gbo + gbob1
+3bobs + gbgbg + gb0b4 + 2bob + :bob + bobg + 361 + g%blb ¥ -Z—gblbs
+i—gb1b4 + g—%b]_bg + gggb2

and constraints have the following form:

and:

fIl(B!T]at = O)
f1'2(9:77:t = 0) — 22
fz3(6,7,t =0)
fr4(0,77,t = 0)
fzs(aan:t = 0) +1
w(8) = fz6(8,7,t=0)

fr,(0,m,t=0)—-10 |’
fr2(6,7m,t =0) — 14
fz4(0,7,t=0)
Jz,(8,m,t=0) —2.5
fxs(9=W:t=0) +1
f16(9377=t=0) J

[ fu,(0,7m,t) —2.834 7
—fu,(8,m,t) — 2.834
Jus(0,m,t) —0.713

- _fuz (0' 'fl,t) — 0.809
PO = g.nt)—25
_f-‘l'4 (97 "I,t) —235

fl's(e:nvt) -1

L —f.‘rs(o: 777t) -1

[ f2,(6,n(t — N;AT;),8) — 2
fI'.’(g’ T](t._ NlAfZ;):a —Z
fes(8,1(F — N;AT:), 7) — 23
fI4(07 77({— NiAﬂ)*ﬂ —Z4
f:L‘s (07 Tl(t-_ NzAﬂ)7E) - iS

| Feo(6.0(F — NiAT:). ) — 7o

Here, the notation is the same as in previous example. For this example, the measurement

error is assumed to be in z4, that is normally distributed with a standard deviation of 0.01.
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Under the assumptions discussed earlier, the estimation and optimization problems (4.17)
and (4.18) are solved at the 10 optimization intervals. The results of real-time optimization
on this example, viz., the optimization parameters, estimated parameter values for the on-
line optimization case, and the nominal and on-line optimized values for the state z, are
presented in Table 4.2.

Table 4.2: Results of Real-Time Optimization on the Crane Container Problem.

Time, £ Estimatedn AT, N; ¢, T4 optimal  Td.nominal
0 17.25656 0 0 0] 0.0000 0.0000
0.1 17.25652 01 0O 0] 0.33164 0.32385
0.2 17.25641 0.1 1 0.0.1 0.41337 0.40865
0.3 17.25570 01 2 0,0.1,0.2 0.49257 0.48174
04 17.25792 01 3 0,0.1,...,0.3 0.67042 0.68401
0.5 17.35500 01 4 0,01,...,04 1.01554 1.02523
0.6 17.44096 0.1 5 0,0.1,...,0.5 1.41194 1.41676
0.7 17.40953 0.1 6 0,0.1,...,0.6 1.74207 1.73170
0.8 17.30458 01 7 0,0.1,...,0.7 1.89730 1.88591
0.9 17.31318 01 8 0,01,...,0.8 1.04834  1.95906
1.0 — 01 9 0,0.1,...,0.9 2.49436 2.50000

The objective function values obtained for the nominal and on-line optimized cases are
0.005323 and 0.005496 respectively. The optimum for this problem was calculated to be
0.005764. The on-line optimal solution achieves a objective function value that deviates by
—0.000268 compared to the —0.000441 deviation achieved by the nominal trajectory. Figure
4.6 shows the nominal and on-line optimized input trajectories obtained by the solution to
these problems.

It must be noted in Figure 4.6 that the trajectories for the on-line optimized u; and u»
are not continuous. Physically, the discontinuity in u> can be regarded as a sudden change
in torque of the trolley drive motor, though undesirable, is physically possible to implement. -
In practice, care should be taken to ensure smooth transitions between operating regimes.

Using the NDO formulations, the total time for the repeated solution to estimation and
optimization problems at the 10 grid points of ¢ = 0,0.1,0.2,...0.9 was approximately
100 seconds. This amount of computation time is insignificant for all practical purposes
in the operation of the crane. This shows that even for a complex system like above, the
computation time may not be an issue with the NDO problem formulation.

4.4.4 Continuous Stirred Tank Reactor

The following continuous stirred tank reactor (CSTR) model comprised of 4 state variables
and 2 control inputs, based on realistic physical and chemical assumptions, was proposed by
Klatt and Engell [1993]. This reactor model has been further studied by several researchers
(e.g., Chen et al. [1995]; Klatt et al [1995]; Rothfuss et al. [1996] etc.). The CSTR is
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Figure 4.6: Comparison of Input Trajectories for the Crane Container Problem.

comprised of the following material and enthalpy balances:

€4
¢B
T
T.

= ralca.t) +[cm —caluy

= rp(ca,cs,T) —cpu;

= h(ca,cs, T) + a[Tc — Tj -+ [I;n — T]'ll.l

= BT —T]+yus

(4.19)

where, c4(t),cp(t) are the concentration of chemical species A,B and T'(¢t) and T.(t) are

the temperatures in the reactor and cooling jacket respectively. The constraints: u;(t) > 0

and us(t) < O represent the normalized flow rate through the reactor and the cooling power

applied in the cooling jacket respectively. As given in Klatt and Engell [1993], the inputs
are constrained as: 3 h™! < u; < 35 A~! and —9000 kJ.A~! < us < 0. The reaction rates
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T4 and rp and the contribution to enthalpy k due to the reaction are described by:

Talca,t) = —ki(T)ea — ko(T)G (4.20)
re(ca,c,t) = ki(T)[ca —cp] (4.21)
h(ca,c5,T) = —6[ki(T)[caAH4p +cpAHpcl + ka(T)cAAH 4 p] (4.22)

with functions k; (T") and k2(T') of the Arrhenius type:

—E; .
Bu(T) = o exp (77 i) =L (4.23)

All other symbols denote constant parameters and are tabulated here from the values given
in Rothfuss et al. [1996].

Table 4.3: Model parameters of the CSTR [Rothfuss et al., 1995

o = 30.828 A~! 8 = 86.688 A~!

) = 3.522x107* mi.KkJ ! 4 = 0.1 KkJ!

T; = 1049 °9C Cin = 5.1 x10% mol.m™3

k1o = 1.287 x 1012 p~! kag = 9.043 x 10% m3.(mol.h)~!
E; = 9758.3 E, = 8560.0

AH g = 42 kJmol™! AHge = —11.0 kJ.mol™!

AHs,p = —41.85 kJmol™!

It was shown in the paper by Rothfuss et al. [1996] that the above nonlinear model of
the CSTR model is differentially flat with a choice of the following flat outputs:

nt) =T (4.24)

ya(t) = Jn= 4 (4.25)
CB

The system variables were then written as functions of these flat outputs as’:

T = Y1
cg =% — K () 3}2+\/[y2—k1(yx)y%]z-r:4cmyzk2(yz)[§~z—k1(yx)yz.‘
v2 2k2(y1) 2y5ka(y1)
_ k1(y1) 3}2+\'/[§l2—k1(y1)y§]2+46iny2k2(y1)[yz—kx(yl)yzl 9
CA = ~Y25g,(y) T 2yaka(y1) (4.26)

T = ¥1(y1: Y2, 91,92, §2)

u = Yo (Y1, y2:91,92,52)

uz = Y3(Y1,¥2, 91,92, §1, %2, ¥2)
The control problem for the CSTR studied in the paper by Rothfuss et al. [1995] consisted
of changing the operation scheme along suitable desired trajectories, such as to obtain a
maximal concentration cg of the intermediate product B. The design of suitable trajectories

“The expressions for Tc,u1 and u2 are not stated explicity here because of their complexity, but can be
calculated using equations (4.19) through (4.25).
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was based on the explicit stationary solution of the problem, i.e., the one corresponding
to cp,s : ¢g = 0. The stationary concentration cg g was calculated explicitly as a unique
function of the stationary flat outputs (i.e., the one corresponding to y = 0):

cps = Gn_ Fal) | VEEIE leah@kE) |, @27
y2  2ko(y1) 2yaka(y1)

The operation scheme considered in their paper was: starting from a stationary point yg,
while keeping the temperature T = y; constant, y» was increased in order to reach the
maximal cg s corresponding to yg-. Then the temperature was increased while staying at
the maximal concentration to reach the steady concentration corresponding to y%. They
argued that such an operation may be of practical interest, and studied the resulting control
problem (see Rothfuss et al. [1995] for further details).

In their discussion, ¢;, was identified to be uncertain, but was assumed to be a constant
parameter with the assumption that it was varying very slowly. The optimization problem
that is considered in this thesis, however, will take into account this uncertainty to analyze
the applicability of the proposed real-time optimization scheme. The optimization prob-
lem considered is to find the optimal trajectories that take the system under uncertainty
from omne steady-state to another in a fixed amount of time. More specifically, the opti-
mization problem can be described as: starting from a steady-state concentration of cB,
cp,s = 1007.12 mol.m~3, optimal trajectories are sought that can steer the system to the
maximal possible steady-state concentration of cp in a specified amount of time. Such an
optimization problem may be of practical interest, for e.g., in grade change transitions in
a multi-product plant. Further, the inflow concentration, ¢, is assumed to be uncertain
and the random disturbance introduced by this uncertainty is assumed to be in the form
of randomly distributed measurement noise in c.4 with a standard deviation of 100. In the
following, cin is represented by the uncertain parameter, n in the problem formulations.
The nominal value for this parameter (from Table 4.3) is 5100 mol.m=3.

The above discussed optimization problem can be formulated as:

maz cg(ty = 0.5) te [0,tf = 0.5
u(t)
s.t.:
éa = T‘_.l(c_;\, t) + [’I] — cA]'u.l CA(O) = 2884.33
¢g =1g(ca,cp,T) — cpu cg(0) = 1007.12 (4.28)
T =h(ca,cp,T) + o[Te — T} + [Tin — Tlu; T(0) = 110
Te = B[T — Te] + yus T.(0) = 105.54
3<u; <35 —9000 <us <0

where, the reaction rate functions, r4,75 and h are described by the Equations (4.20)
through (4.22), and the parameter values are given in Table 4.3. As discussed above, the
differential equation model for this system is flat. The flat outputs for the system were
given in Equations (4.24) and (4.25). Here, they are parameterized using the following
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polynomials:

y1 = T =ag+ait+at? (4.29)
Yo = T byt bt (4.30)
CB
The optimization parameters are collected in a vector § = [ag, ... ,a2,b0,...,b2]T. Now

using Equations (4.29), (4.30) and the expressions in Equation (4.26), together with the
knowledge that ¢;,, is a uncertain parameter represented by 7, the system variables can be
written as the following functions:

Cq = fc_.; (97 n t)

Cg = ch (91 n, t)

T= fT(07 7, t)

T. = f7.(6,7,1 (#:31)
Uy = fu1 (97 UB t)

Uz = fu'z (07 , t)

In a real-time framework, the optimization Problem (4.28), using transformations in Equa-
tion (4.31), can be formulated as the following normalized estimation and optimization

problems:

M Ca.meas(ts) = fei(0,1.1)) } Estimation (4.32)

and:

maz  fo5(0,m,tf = 0.5)

u(t)

s.t.:
fe, (6,m,t =0) = 2884.33
feg(8.m,t =0) = 1007.12
fr(6,n,t =0) =110
fr.(6,n7,t =0) =105.54
ch((e,ﬂ(f— N;AT;), %) =&, r Optimization (4.33)
ch (6, ﬂ(t_— MAI’I):E) =__6B
fr(6,7(F - N.AT), 8 = T
fr.(6, T](t__ N;AT;), E) =T
3 < fu,(0,7m,t) <35
—9000 < fu,(0,7,t) <0
t€[t,tf =0.5] J

The Optimization Problem (4.33) is solved using a Semi-Infinite Optimization scheme. The
optimization of the system at the 5 grid points (0,0.1,...,0.4) took approximately 50
seconds. The results are given in Table 4.4.

The solution obtained by the on-line optimization scheme compares favourably with
the one obtained from the nominal scheme, the objective function values being cg foptimar =
1254.68 mol.m™3 and cpy,, ., = 1236.30 mol.m=3, respectively. Figures 4.7 and 4.8 depict
the comparison of nominal and on-line optimized input and state trajectories obtained from
the solution.
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Table 4.4: Results of Real-Time Optimization on the CSTR System.

Optimization Time, ¢ Estimatedn AT; N; ¢; CA.nominal  CA.optimal

0 5100.00 0 0 0 2884.33 2884.33
0.1 5127.78 0.1 0 0 2673.73 2673.73
0.2 5106.90 0.1 1 0,0.1 2400.02 2444.14
0.3 5453.36 0.1 2 0,0.1,0.2 2300.61 2337.43
0.4 5747.16 0.1 3  0,01,...,0.3 174321  1889.01
0.5 ~ 01 4 0,01,...,04 98554 1221.83
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Figure 4.7: Comparison of Input Trajectories for the CSTR System.

4.5 Summary of Results

This chapter presented the preliminary investigations performed for the dynamic real-time
optimization using the NDO algorithm presented in Chapter 3. In the framework of EQTs
for DRTO proposed by Loeblein {1997}, the estimation and optimization problems are for-
mulated in the normalized form. These NDO suited problem formulations allow easy and
fast computations of the DAOP. Using this technique, the on-line optimal input profiles at
every discrete time interval are calculated as continuously varying trajectories. This is a
major improvement in terms of accuracy from the approximated piecewise constant control
actions chosen in other optimization techniques. The potential of this technique has been
illustrated on three examples of widely differing complexity.
The results reported in this chapter show considerable promise in the application of
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Figure 4.8: Comparison of State Trajectories for the CSTR System.

NDO to complex but flat nonlinear systems, where other techniques might fail because of
the computational load involved. However, there are several issues which need to be studied
in greater detail. First and foremost is the applicability of NDO in a DRTO framework, for
which the basic structure of the DRTO system has to be understood properly. This is true,
independent of the choice of the algorithm used for estimation and optimization. The design
decisions associated with steady-state optimization in addition to the interaction among
these components, viz., data validation, parameter estimation, command conditioning, etc.,
need to be adapted to the dynamic case. One of the major hurdles with DRTO of complex
nonlinear systems has always been the large amount of computation time required to solve
these problems. In this direction, a new and efficient approach to solve these problems is
proposed. It is the hope that with a detailed understanding of the DRTO structure and the
interaction among the subsystems, this algorithm will permit the application of DRTO in
the batch process industry. Some research directions have been identified in this context,
and are discussed in the next chapter.
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Chapter 5

Summary and Research Directions

It isn’t that they can’t see the solution. It is that they can’t see the problem. — G. K.
Chesterton

5.1 Summary of Results

The optimization of plant operations has been, and continues to be, of considerable interest
to academia and industry. The majority of developments in this area have focused on de-
termining the optimal steady-state operation of continuous processes, with little research in
the area of dynamic optimization of transient processes. The key characteristic of transient
processes is the presence of differential equations in the models. These problems are hence
more complex compared to the algebraic optimization problems posed by steady-state pro-
cesses. The presence of nonlinearities further aggravates the complexity of the problems.
The problems rarely possess an analytical solution and computationally expensive numerical
solution techniques based on discretization schemes have to be employed to solve them.

This thesis recognized the need for a more efficient and accurate method to solve the dy-
namic optimization problems posed by these processes. It proposed an alternative method
that is applicable to processes whose nonlinear process model is flat. Borrowing the con-
cept of flatness and dynamic time scaling from the nonlinear systems theory, the method
transforms the general dynamic optimization Problem (1.9) into an algebraic optimization
problem (i.e., LP, QP or NLP) when no path constraints exist, and to a Semi-Infinite
Optimization problem in the presence of path and input constraints. In other words, the
method permits the transformation of differential equations into algebraic ones, hence re-
ducing or eliminating the number of equations that need to be integrated to solve the
optimization problem. This addresses the important issue of computation time for these
problems. Moreover, it was shown that the issue of problem complexity (i.e., the number of
decision variables) is also addressed properly in such a formulation. The proposed approach
produced similar or better results than currently available methods based on discretization
schemes or dynamic programming for a range of benchmark problems.
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The power of the approach arises from the transformation of a dynamic optimization
problem into a simpler and lower-dimensional form. The computational complexity for the
NDO approach scales with the number of coefficients in the expressions used for representing
the flat outputs and not the underlying model size or the fineness of the discretization;
whereas, in other dynamic optimization methods computational complexity scales with
model size, discretization fineness and so forth. The computational advantages offered by
the proposed approach arise because the method exploits the geometry of the system’s
dynamics to provide co-ordinate transformations, which greatly simplifies the optimization
calculation. The determination of these transformations, however, requires a substantial
analysis stage prior to optimization. The additional pre-optimization analysis, however,
is similar to that required for controller design in a differential geometric framework and
the results could be used in formulating the trajectory tracking controller, which would
implement the optimization results.

In some cases, the presently employed numerical methods for the solution to such prob-
lems guarantee convergence and accuracy. However, they suffer from a drawback that the
problem formulations are composed of many decision variables, especially for large nonlinear
dynamic systems. This makes the solution computation time a matter of major concern,
and hence none of these techniques may be implemented in real-time without some modifi-
cations (except maybe for the simplest of problems). In view of the underlying simplicity of
the transformed optimization problem, the thesis also investigated the applicability of the
proposed method in a real-time framework. In addition to the fast computations that the
algorithm allowed, the on-line optimal input profiles at every discrete time interval were
calculated as piecewise continuous trajectories. This is a major improvement in terms of
accuracy from the approximated piecewise constant control actions chosen by other opti-
mization techniques.

The results reported in Chapters 3 and 4 show considerable promise in the application
of NDO to complex but flat nonlinear systems, where other techniques might fail because of
the computational load involved. However, there are several issues that need to be studied

in greater detail. Some of these issues are presented in the next section.

5.2 Future Research Directions

The normalized dynamic optimization (NDO) algorithm proposed in this thesis paves way
for two major research directions: 1) a more detailed analysis of the algorithm and its
applicability; and 2) the issues associated with the real-time formulation of the normalized
optimization problem. Each of these areas are discussed in the following sections.

5.2.1 NDO Algorithm Issues

The following issues are a direct result of the way the algorithm formulates the optimization
problem in the transformed coordinates. The issues need to be analyzed in greater detail
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to make the method viable as well as more widely applicable.

Parameterization of Flat Outputs

In this thesis, low order polynomial structures were used to parameterize the flat outputs.
The results obtained using these simple structures were sufficiently accurate for the illus-
trative examples. However, both the choice of basis functions as well as the approximation
order needs to be carefully analyzed. In this direction, the effect of choosing other kinds of
flat output parameterizations (e.g., by Legendre polynomials, etc.), and their corresponding
convergence properties, need to be addressed as well.

Extension to Non-Flat Systems

In §3.4.4., the NDO algorithm was used to solve the optimization problem for the crane
container system that was partially flat. It was shown, however, that the algorithm was
still applicable to the problem and yielded excellent results. The applicability of the algo-
rithm needs to be analyzed for such non-flat systems. With a careful analysis, the method
may (with or without modifications) be applicable to a larger class of nonlinear dynamic

optimization problems.

Free Final-Time Problems

The benchmark problems solved in this thesis were all fixed final-time problems. However,
the method (with some minor modifications) may be applied to free final-time optimization
problems (e.g., processes that need to minimize the reaction time, etc.). The solution
scheme of the consecutive reaction problem in §3.4.3 provided an example of this concept.
In the example, a fixed time problem was converted into a variable time problem in the new
time scale and solved using the proposed method. The method, however, requires a much
more careful analysis, before it can be applied to any general case.

5.2.2 Real-Time Implementation Issues

The real-time implementation of the proposed NDO algorithm is dependent on a better
understanding of the interaction of the subcomponents of the RTO loop. The research in
this area has been relatively scarce, and it is expected that a efficient algorithm such as
the proposed one, should provide renewed interest in this area. Some of the issues that are
identified in this area are presented in the following sections.

Measurements and Uncertain Parameters

The real-time optimization examples of Chapter 4 assumed that the plant-model mismatch
consisted only of the uncertain parameters in the model, with no structural mismatch
present. This assumption, however, limits the type of processes that can be handled. Fur-
ther, it was assumed that only one parameter in the model was uncertain, which was
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updated using a single state measurement. Future research should look into the problem
formulations for the cases where more than one parameters are updated using the corre-
sponding number (or more) of measurements. Also, in a real process, the measurement
of the desired state might not be possible (e.g., if the state represents concentration, and
there are no analyzers available). In such a case, a secondary state related to this state may
be measured, when the estimation problem would have to be changed. This case was not
discussed in the thesis, but should provide an interesting subject for further study.

RTO System Structure

A detailed study needs to be performed on the RTO system for the dynamic case, which
should look at the interactions among the subcomponents of the loop. Several results for
steady-state optimization exist, and these could be extended to the dynamic case. If the
chosen path for dynamic RTO is similar to steady-state RTO, the design decisions associated
with steady-state optimization in addition to the interaction among these components, viz.,
data validation, parameter estimation, command conditioning, etc., need to be adapted to
the dynamic case.

Characterization of Disturbances

This thesis investigated the applicability of the algorithm with the simplest possible distur-
bance structure. The disturbances were assumed to be random measurement errors in one
of the states. Moreover, the plant-model mismatch was assumed to be only in the uncertain
parameter value with no structural mismatch present. Considerable amount of work needs
to be done to analyze the problems with other disturbance characterizations.

Trajectory Tracking Controller

The NDO algorithm calculates the optimal continuous trajectories for the problems analyzed
in the real-time framework. The problem, however, is to ensure that a trajectory tracking
controller can be synthesized to enforce the calculated optimal trajectories. This is an issue
with any optimization technique, and needs a detailed analysis.
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Nomenclature

Included in the following list are common symbols employed throughout the thesis. Other,
more specific symbols are defined as used.

a, b, c...
A,B.C
c

C;
f(=)
£(z)
fz

ﬂuuwmﬁgagggg.zwmwggmw

Il

If

li

[

It

Parameters used to describe the dependence of flat outputs on time
Chemical species or time invariant matrices in Equation (2.3)
Vector of equality constraint functions

Concentration of chemical species i

Function of =

Vector of functions of z

Function defining the variable =

Time dependent component of the objective function

Vector of inequality constraint functions

i'" inequality constraint function

Final time dependent component of the objective function

Vector of measured output functions for a system

Matrix defining the quadratic objective function

Pffafian system (see Appendix A)

ith derived system of the Pffafian (see Appendix A)

Past time horizen in the RTO problem formulation

Function defining the objective function

Rate constant for the it reaction

Number of measured outputs for a system

Number of states for a system

Number of time intervals from start in the RTO problem formulation
Number of inputs for a system

Time scaling function

Time

Present optimization time in the RTO problem formulation
Temperature

Vector of functions transforming states x to a set of new states, £
Vector of functions transforming inputs u to a set of new inputs, v
Time difference between two measurements in the past time horizon
i*" input

Vector of inputs

Space where inputs u are defined

Pseudo input vector for the dynamic state feedback

i*® generator for a Pfaffian system (see Appendix A)

Vector of states
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X = Collection of vectors, x,X,X, ...
Z = Measured or model value for the variable z.
yi = 1 flat or measured output
Y = Vector of flat outputs or measured outputs for a system
z = Vector of states that can be measured
Symbols
o = Function relating states to the flat outputs
B = Function relating inputs to the flat cutputs
¥ = Static state feedback function
6 = Function describing the coordinate transformation for state feedback
m = Vector of uncertain parameters
6 = Vector of parameters used to characterize the flat output
¥ = Error function for the approximate linearization case
& = Order of the error function
£ = States in the new coordinates after state feedback
o = Variable used to represent the state vector in illustrative examples
7 = New time scale
R = Space of real numbers
¢ = Function of states
¥ = Function of states and inputs
® = Objective function for optimization problem formulations
Operators
— = mapping
A = Wedge product operator (see Appendix A)
z = First derivative of = with respect to ¢
z = Second derivative of = with respect to ¢
z = Third derivative of z with respect to ¢
d(z) = Exterior derivative of z (see Appendix A)
dim = Dimension
mod = modulo (see Appendix A)
E(x) = Expected value of
s = Laplace transform operator
Superscripts
" = Number of states in a system
P = Number of inputs in a system

0

Order of polynomial
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Subscripts

S =)
Il

!

sp
U

Initial conditions
Final conditions
kth iteration

ith'

variable

Lower bound on variables
Setpoint
Upper bound on variables

List of Abbreviations

CSTR
CVvl
CvPp
DAE
DAOP
DRTO
EOT
HJB
GS
IDP
LP
maz
min
MPC
NDO
NLP
ODE
QP
PDE
RTO
s.t.

I

f

Continuous Stirred Tank Reactor
Control Vector Iteration

Control Vector Parameterization
Differential-Algebraic Equation
Differential-Algebraic Optimization Problem
Dynamic Real-Time Optimization
Estimation Optimization Task
Hamilton-Jacobi-Bellman
Gardner and Shadwick

Iterative Dynamic Programming
Linear Programming

maximize

minimize

Model Predictive Control
Normalized Dynamic Programming
NonLinear Programming
Ordinary Differential Equation
Quadratic Programming

Partial Differential Equation
Real-Time Optimization

subject to
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Appendix A

Language of Exterior Calculus

Why, a four-year-old child could understand this. Someone get me a four-year-old child. —

Groucho Marz

This appendix gives a brief introduction to the language of exterior algebra and exterior
calculus. Control systems are represented as Pfaffian systems in exterior calculus, and this
representation forms the basis for the algorithms used to identify the flat outputs for this
thesis. This appendix is meant to be a starting point for a reader who is interested in under-
standing the algorithms presented in Appendix B. The material has been summarized from
a number of references [Nieuwstadt et al, 1995; Guay 1997], which should be consulted for
specific details. Other research publications [Bryant et al., 1991; Rathinam, 1997; Shad-
wick, 1990; Sluis, 1992] should be referenced for a broader overview of the inter-relationship

of exterior calculus and control systems.

A.1 Exterior Algebra

Let V be an n-dimensional vector space! of the field of real numbers R. The wedge
product between two vectors v,w € V is a non-commutative product which satisfies the

following conditions:

(avy + Bu2) Aw = a(vy AW) + B(us A w) distributivity
VA (cw; + Bwa) = a(v Awy) + B(v A wa) bilinearity
VAW =—-WAYV = VvAv=0 skew — commutativity

The result of the wedge product of p (one-)vectors is called a p-vector. The space of p-vector
on V, AP(V), is given by the set of all wedge products of the form:

Zai(vli/\vgi/\.../\vp,-), vl,-,...,vp,-EV and «o; € R.
7

LA vector space is a space made up of elements called vectors along with the operations of addition and
multiplication by scalars.
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The space AP(V) has dimension n!/p!(n—p)!. Let {e,, ... ,e,) be a basis for V. The n!/pl(n—
p)! elements:

fex Ao ey}, 1<i<...<i,<n

form a basis for AP(V'). Let V* be a covector space of V, where a covector mapsv € V to R.
By defining an exterior algebra on V*, the space of p-covectors given by (P (V) = AP(V™)
is defined. If {e],... ,€;) is a basis for V*, then {e;, A... A€}, 1<% <... <ip<n,is
a basis for QP(V), the exterior algebra on the covector space of V.

A.2 Differentiable Manifolds

An n-dimensional differentiable manifold M is an abstract set of points which has the
following properties: 1) the notion of a continuous function is defined on M :2) M is the
union of a collection of open sets U;. M C U;,i € A where A is an indexing set; 3) for
each 7 € A, there exists a continuous equivalence between U; and R” (or, there exists a
diffeomorphism ¢; : U; — R™ called a coordinate chart of M); and 4) for any intersecting
coordinate charts U;NUj, the change of coordinate map expressed as the composition ¢io¢;1
is a smoothly differentiable map. Conceptually, a differentiable manifold is an abstract space
that locally looks like a Euclidean space. Using local coordinate representations, familiar
operations from differential calculus can be directly applied to abstract manifolds.

At each point p € M, a tangent space T,M can be attached to M. The differentiable
structure (property 4) allows the concept of a tangent space on a manifold to be related to
the familiar concept of a tangent space in ®*. For a point = € R", the tangent space T, R"
is the set of tangent vectors to ®” at z. The natural basis for T,R" is denoted by:

ER
O0z1. " OznLf”
The corresponding basis for I,M is given by the set of vectors:

0 7]

a¢'¢p e a—"’;w(p)
where M is a manifold of dimension n, p € M and the image of v € Ty, )R" in T, M is
defined as:

-1
6.0 =2 sop

A vector field v on M is a mapping that assigns a tangent vector v(p) € T,M toeachp €
M. A vector field is smooth if for each p € M there exists a coordinate chart (U, ¢) around
p and smooth functions vy, ... ,v, on M such that for all 5 € U,v(p) = > i1 vi(D)8/0¢;;5,
t.e., v can be expressed in terms of the basis vector fields with smooth coefficient functions.

87



A.3 Differential Forms

The cotangent space, T3;M. of M at p is defined as the space of linear mappings of TpM. Its
elements are linear maps w : T,M — R. The elements of I5;M are called cotangent vectors
at p. If w € T M, the value of w at v € T, M is denoted by w(v). Letting {vy,... .Un} be a
basis of T, M at p, the unique basis {w1,... ,w,} which satisfies w;i(v;) = 6i5,1 < 14,5 < n,
is called the dual basis of T,y M with respect to {vy,... ,Un}.

Given a coordinate chart (U, ¢) around p, the dual basis to:{%p, cees -ag—np} is given by:
{d¢1p seen s d¢>np} - A differential one-form (or covector field) w on M is a mapping that

assigns to each p € M a cotangent vector w(p) € I7;M. A differential one-form is smooth
if for each p € M there exists a coordinate chart (U, ¢) around p and smooth functions
Wi,... ,wn on M such that for all p € U, w(p) = > 7 ; wi(P)dd;|s-

A.4 Exterior Derivative and Differential Systems

Letw = Zil <<y i,...i,dZi; A...Adz;, be a smooth p-form on M where @i, .. ;, are smooth
functions of z;;- The exterior derivative of w is the (p + 1) form:

d(w) = Z da;, ,dzi A ... Ndz;,

11 <...<ip
where, da;;,_;, =3 gzgf'."ﬂdxi. The operator d() has the following properties:

d(wy +w2) =d(w1) + d(w2)
d(w Av) =d(w) Av + (=1)P(w A d(v))
d(d(w)) =0
An exterior differential system is given by a homogeneous ideal I ¢ Q(M ) that is closed
under exterior differentiation. More specifically, I satisfies:
ael,BeQM)=aNnBeI
ca€l,a= Ziaiwi,wi (S Q(M) = w; €7
acel =dla)erl

A.5 Pfaffian and Control Systems

An algebra V is called a ring if and only if the following conditions are satisfied:

v, 2 EVui+va=wv +
v1,v2,03 € Vv + (v2 +v3) = (v1 +v2) + 13
OeViveV,v+0=w
veV,—-veV,u+(-v)=0
V1, V2,03 € V,v1(vou3) = (viv2)v3

A commutative ring is such that:

V1,02 € V,v1v0 = vaov;.
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A module for the algebra V is a vector space W over the field K along with a binary
product V x W into W mapping (v,w),v € V,w € W to vw € W such that:

v(w; + wo) = Vw1 + vws

(v1 +v2)w = V1w + vow

a(vw) = (aw)w = v(aw)
(vive)w = v1(vaw)

foralveV,w e W and a € K.
A submodule U of a module W is a subspace closed under the composition by elements

of the algebra.

Definition 3 (Pfaffian System). A Pfaffian system P on a manifold M is a submodule of
the module of differential one-forms Q'(M) over the commutative ring of smooth functions
C>=(M). A set of one-forms w',...,w", generates a Pfaffian system P = {wi,ywn} =
{Z Few®|fr € C=(M )} A Pfaffian system defines an exterior differential system:

I = ({P,d(P)}) = Ideal generated by P,d(P).

Definition 4 (Control System). A control system of the form: x = f(x,u,t) where
z € M CR™ and u € R? defines a Pfaffian system on the manifold M= = M x RP x R with

local coordinates (x,u,t) generated by the one-forms:

I'={wn,...wn} = {d(z1) — fi(%, 0, 0)d(t), ... d(zn) — fu(x, u, t)d(t)}
The integral curves c(s) € M* of the control system are the solutions of: w(c(s))c (s) =
0,w € P, where c (s) is the velocity vector tangent to c(s).

A.6 Integrability and Congruence of Forms

Theorem 5 (Frobenius) A k—dimensional codistribution I = span{wy, ... ,wi} is locally
integrable if and only if there exist one-forms 0;; such that:

k
d(wi) = Zeij /\w_,-.

=1

A closed one-form is such that d(w) = 0.

Let I = {w!,...,w™} be an exterior differential system. Two forms, w and £ € Q(M) are

congruent modulo I, written:
w=Emod I
if there exists 4 € I such that w = £ + p. If I is a Pfaffian system then:

n=€fmod I <= n=§+ Zei/\w,-
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for 8; € Q(M). It follows that:
n=0mod I <= nAwiA... \wr =0.

As a result, from Frobenius theorem it follows that a Pfaffian system I is integrable if and
only if

d(w;) =0mod I

A.7 Derived Systems and Differential Flatness

Definition 6 (Derived System). The derived flag of a Pfaffian system I, is a filtering
resulting in a sequence of Pfaffian systems such that I D IV) 5 ... > Ik, The system I
is called the i** derived system of I defined by {I®) =~ € I~V|dy = 0mod I6=ny.

Corollary 7 (Bottom Derived System). If the system is regular, i.e.,

1) the system and all its derived systems have constant rank; and

2) for each k, the exterior differential system generated by I*) has a degree 2 part with
constant rank,

the derived flag is decreasing, so there will be an N such that I(Y) = J(V+1)  This [(N) 4s
called the bottom derived system.

Theorem 8 (Differential flatness for Single Input Systems). A Pfaffian system I
of constant codimension 2 is flat if and only if

(1) dim IY = dim I*=1) — 1, for i =0, ...,n = dimI. This implies I(®) = {0}.

(2) The system IV + span{dt} is integrable for each i =0,...,n.
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Appendix B

Algorithms for Characterization of
Differential Flatness

This appendix gives the relevant details of the algorithms of Rathinam and Sluis [1995],
Gardner and Shadwick [1992] and Guay et al [1997] discussed in Chapter 2. The flat
outputs for the illustrative examples presented in this thesis have been identifie-d using the
algorithm of Guay et al. [1997]. The application of the algorithm was illustraated on the
4-state, 2-input example in Chapter 3.

B.1 Reduction of Systemmn Codimension

This technique was proposed by Rathinam and Sluis [1995] considering the fact t=hat a com-
plete characterization of flatness for single input systems (codimension 2 systemss) is known
and is given by Theorem 1. For high codimension systems, no complete charaecterization
of flatness exists, except for some verifiable necessary conditions. A scheme wa_s proposed
that can determine whether a system has flat outputs of a particular form. Fosr a system
with p inputs, the technique is enumerated in the following 3 steps:

Step 1. Guess for p — 1 flat outputs Y1:---»Yp—1- This guess often will involue express-
ing the flat outputs as a parameterized family.

Step 2. Set these guessed flat outputs to free functions of time: y; = Yi(t),i=1,...,p — 1.
Solve for (some of) the variables z in terms of the free functions Y;(t), and substitute
them in the system equations. This leads to a system for which Theorem 1 applies. Note
that the resulting system is often time dependent. The resulting system, called thhe reduced
system, is under-determined by 1 equation as opposed to p in the case of the origimal system.

Step 3. Check whether the conditions of Theorem 8 are satisfied. In the case tha-t they are,

a flat output z for the reduced system can be calculated. In general, this flat output will
depend on {¢,z} and the free functions Y;(t), but in order that z is the final flat output for

91



the original system, it is necessary that z = h(t, z), which might be true for some values of
the parameters used in choosing the flat outputs. The test fails if for some parameter value
the conditions of Theorem 1 are not satisfied and hence the flat output z for the system
cannot be identified. In this case, the p— 1 flat outputs in Step 1 are guessed again and the
technique is applied again to this new set.

B.2 Gardner and Shadwick (GS) Algorithm

This section presents the necessary and sufficient condition for linearizability of nonlinear
systems utilized in the Gardner and Shadwick [1992] Algorithm.
The general form of the systems with n states and p inputs considered here have the

form:
z = f(z,u)
Associated with this system is a Pfaffian system given by:
I ={d(z1) — fi(z,w)d(t), .., d(zn) — fulz,u)d(t)}

For a system in Brunovsky normal form, there exist Kronecker indexes ki 2 ks > ...2k,
and independent functions:

ty Y115 -4 yl,k1 2 Y215 vy y?,k'z 3 vy yp.la sy yp,kp s U1, V2, .- vp

which give the following generators for its associated Pfaffian system:

wir = d(y11) —y1.2d(t), .., Wik, = d(y1x,) — v1d(t)
w1 = d(y2.1) —y2.2d(t), ..., Wak, = d(yasx,) — v2d(2)
Wp1 = d(ypl) - yp,?-d(t)r ---; Wpk, = d(yp-kp) - vpd(t)

The structure equations for these generators are given by:

d(w;,;) = d(t) Aw;j+1
1= 1:-"7p1 j = 17 ---:ki -1 (B.l)
d(w; k) = d(t) A d(v;)

This yields the following structure for the derived flag of this Pfaffian system:

w11 W12 ... Wik - e Wpl Wp2 ... Wp, kp
wp?2
'wp,1
wi,1 w2
w11
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where the first row is formed by the generators of the system I and each subsequent row j
is formed by the generators of the corresponding jt* derived system I().
For control systems, the equalities (B.1) are modified to:
(w1 k,—5) = d(E) Awi gy -1
mod U+
AW ko —7) = (L) A W, ko 1
where m; is the number of towers with at least 7+ 1 rows.
Using the above generators as initiators of the towers, the new generators are found
which establish the congruences. The linearizing coordinates are then simply obtained as
the functions multiplying d(t) in each generator.

B.3 Linearization by Endogenous Dynamic Feedback

A nonlinear control-affine system of the form:

& = f(z) + g(@)u(t) (B.2)
where z € M C R" and u € RP, defines a Pfaffian system on the manifold M* = M x RPxR
with local coordinates (z,u,t) generated by the one-forms:

I ={wi,...,wn}
- o) S sata, )
d(zr) — (fa(z) + gn(z)w) d(2)
Theorem 9 Gardner and Shadwick [1992] A control system I is static state feedback
linearizable if and only if
(1) the k** derived system is trivial
(2) I is generated by wi (i=1,...,p, j = 1,...,v;) that satisfy congruences:

dw: = dt Adu; mod I

K4

dw: = dtAduj.; mod IV

When considering dynamic state-feedback linearization, dynamic precompensators are
incorporated that have the form:

£ =a(@,6) +b(z, & (B.3)
u =c(z,§) +d(z,&)v
where the precompensator states £ € R? are smooth functions of the system states, inputs
and a finite number of their time derivatives (= ¢(z,u,u,... ,u®)). Dynamic feedback
linearizability implies that the combined system (B.2) and (B.3) fulfils the conditions of
Theorem 9 and is therefore equivalent to a linear controllable form:

) = oy

yr) = Up
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where } °; v; = n 4 ¢ are the controllability indices of the system (B.2),(B.3).

The dynamic precompensator (B.3) proposed by Guay et al. [1997] generally have a
prescribed structure. It can be constructed from either differentiation of the original system
variables or algebraic functions of them, i.e.:

v; = vfl)
i)gn _ vlgz)
(B-4)
5o = ylerd)
v = ¢(z,u)
for 1 < i < p, or where the indices {o,... ,a,} give the degree of precompensation of each

input channel. In its most general form, a dynamic precompensator can be taken from a
combination of differentiation and algebraic functions like:

@ = ul

O u®

111(-‘3*) = u1<'3‘+1) for1<i<p
v = w(x’ ul? .3 u§_31+1)’ e k St uéap-é_l))
’i}j = ’U.g»l)

A1 _ (@)

;T = vy

1);7’) = v](.7’+1) for1<j<p.

Having defined the structure of the precompensator to be used, the conditions for the
dynamic feedback linearizability of control systems can be derived. For simplicity, only
the first class of precompensators based on pure differentiation of the system inputs or of a
static state-feedback transformation are considered. The structure of these precompensators
is completely defined by the degree of precompensation of each input channel. Arranging
the indices {ai,...,0p}, Y ;i = gsuch that oy > ... > @p, a precompensator is defined

by the indices:
LY O SN S SR
(k1 = ap, ... ,km = ap) with multiplicities
{s1,---,sm}.

Next, a filtering of the original Pfaffian system that takes into account the presence of this
precompensator is defined.
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Definition 10 Consider a control-affine system with n states and p inputs, its correspond-
ing Pfaffian system, I, and a precompensator based on the nonlinear feedback v = p(z,u)
and indices {ki, ..., km} with multiplicities {sy, ..., sm}. The first derived system associated
with the precompensator, I(1), is given by the set of forms, w'l), which satisfy

dw™) = 0mod I, dvy, ...,dvp_s, .

The second derived system associated with the precompensator is given by the set of forms,
w?, which satisfy

dw® = 0mod IV, duy, ..., dup_, s,
ifko —ky > 1, or

dw® =0mod IV, du, ..., dvp_s, s,
if ka — k1 = 1. By induction we get

dw*=F179) = gmod I —F1+3=1) gy, . dup_s, - _,

for1 <j<kiyy —ki, 1 <i<m—1. The number Q for which I\®tY) = [(Q) is called the

derived length associated with the precompensator.

As pointed in Guay et al. [1997] and Sluis [1995], the class of precompensators admissible
for dynamic feedback linearization is bounded. There are restrictions on the structure of
the precompensator that are necessary for dynamic feedback linearization. The following
lemma defines the class of admissible precompensators of this form for dynamic feedback
linearization.

Lemma 11 Consider a control-affine system with n states and p inputs and define a pre-
compensator by ordering the inputs according to the indices {ki, ..., km} with multiplicities
{s1,-.-,sm}. Dynamic feedback linearization requires that n — (km — k1)s1 — ... — (km —
kn_1)sm—1 > 0.

This Lemma has the following important consequence which is stated as a Lemma.
Lemma 12 Assume that the last non-trivial derived system of a dynamic feedback lineariz-
able (in the sense of previous Lemma) control system I*m+k+1) contains w(< p) generators

and that the structure equations of I*=+1) are the first from the bottom of the derived flag
to depend on du. Then there exist p integers {v1,...,vp} defined by

vy =k+1 1<i<sp,

Vi=kn —kn-1+k+1 sp+1 <1< Sm + Sm—1

'Ui=kq—kq_1+k+1 Z?l:qu'-%-].SiSE?:q_lsj(z'/r)
Ui = kq_l - kq_2 +k ;'n=q-1 Sj +1<1< z_;-n:q_z_) S5

v;=kos—k; +k p—s1+1<i<p.
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The above Lemma indicates that dynamic feedback linearizable systems are associated
with a set of generalized controllability indices that must add to the dimension of the orig-
inal state-space. A generalized normal form suitable for the analysis of dynamic feedback
linearization has been identified. Next the conditions under which a nonlinear system can
be transformed to such a generalized normal form are stated.

Theorem 13 A control-affine nonlinear system is dynamic feedback linearizable by dy-
namic extensions of state feedback transformations v = @(z,u) if and only if there erists
a set of generators adapted to the derived flag associated with a precompensator, P, that
belongs to the class described in Lemma 11 such that

(1) the bottom derived system is trivial

(2) the generators satisfy the congruencies

g+l _ q+1
dqu_j =dt A Wt

: mod IU+Y) duy, ...  dy, (B.5)
dwl _c=dtAuf
r

’Um] —]+1

where m; = dim(I9) /IU+1)Y) is the number of towers with at least j +1 rows for 1 < j <
kn—ki+k+1,and q=p—s; — ... — s; with

kiy—ki+1<j<kn—k
when 1 <l <m and
kb —k1+1<j<kn—-k+k+1
when | =m.

Theorem 13 provides a test for dynamic feedback linearizability for control-affine non-
linear control systems. The application of this theorem to identify dynamic feedback lin-
earizability was illustrated on the 4-state, 2-input example in Chapter 3.
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