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Abstract

We present an algorithm for simultaneously demosaicing digital images, and

correcting chromatic aberration, that operates in a latent space of spectral

bands. Light refraction by a camera lens system depends on the wavelength

of the light, causing relative shifting, and blurring, between intensity patterns

in different wavelengths on the image sensor. The effect on the image is called

chromatic aberration, and appears as colour fringes around edges in the image,

and blur.

Chromatic aberration depends not only on the camera’s optical system,

but also on the spectral characteristics of the light entering the camera. Pre-

vious works on calibrating chromatic aberration produce models of chromatic

aberration that assume fixed discrepancies between image channels, an as-

sumption that is only valid when the image channels capture narrow regions

of the electromagnetic spectrum. When the camera has wideband channels,

as is the case for conventional trichromatic (RGB) cameras, the aberration

observed both within and between channels can only be accurately predicted

given the spectral irradiance of the theoretical, aberration-free image.

We develop a physically-correct chromatic aberration calibration procedure

for RGB cameras. Using bandpass-filtered light, we calibrate a model of chro-

matic aberration as an image distortion that is parameterized by both image

position, and light wavelength. To correct chromatic aberration, we estimate

a spectral image that corresponds to the RGB image by solving a global nu-

merical optimization problem. We include our model of chromatic aberration
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in the data-fitting term of the optimization problem that models the transfor-

mation from the spectral image to the captured RGB image. We also include

regularization terms in our optimization problem to enforce smoothness in

the output image. Whereas the captured RGB image is mosaiced, meaning

that each pixel senses only one colour channel, our algorithm does not require

a demosaicing preprocessing step to recover all colour channel intensities at

each pixel. Therefore, we avoid introducing bias from demosaicing algorithms,

which is important because chromatic aberration and demosaicing are known

to interact.

Since we model within-channel chromatic aberration, our reconstructed im-

ages are sharper than those obtained by previous works on calibrated warping

of colour channels. In contrast to explicit deblurring algorithms, our algo-

rithm leaves defocus blur intact, separating it from chromatic aberration. We

also avoid introducing artifacts, such as ringing, that are commonly produced

by deblurring algorithms. Nevertheless, recovering spectral images from RGB

images is an ill-posed problem, and this ill-posedness is the major limitation

of our approach. We determined that our spectral images have higher accu-

racy than measurements made using a consumer-grade spectrometer. Still, we

recommend further research on RGB-to-spectral reconstruction, especially in

relation to chromatic aberration, which may serve as useful constraint.
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Glossary

Blind Deconvolution

The process of reversing the effect of a point spread function, while si-
multaneously estimating the point spread function. Blind deconvolution
attempts to correct images for optical aberrations without any prior cal-
ibration of the point spread function.

Chromatic Aberration

The image artifacts produced by spectral dispersion. To correct chro-
matic aberration means to produce an image that would be formed if
light of all wavelengths propagated through the optical system in the
same way as light of a reference wavelength.

Chromatic aberration is often decomposed into two non-physically based
components: Lateral (transverse) and longitudinal (axial) chromatic
aberration. Lateral chromatic aberration is modelled as image distor-
tion, whereas longitudinal chromatic aberration is the chromatic aberra-
tion that remains after lateral chromatic aberration has been corrected.
Longitudinal chromatic aberration is often modelled as a change in blur
with the wavelength of light.

Chromatic aberration is discussed in detail in Section 1.1.2.

Colour-Filter Array

The pattern of colour filters covering the sensor of a single-sensor colour
camera. Colour-filter arrays allow an image sensor to imitate human
colour vision by producing a multi-dimensional response to incident light,
instead of a one-dimensional intensity measurement. The Bayer pat-
tern [8] is a common colour-filter array pattern (Section 2.1).

Crosstalk

(Pixel/Sensor) crosstalk, also called Sensor Interpixel Correlation, en-
compasses all physical effects that cause neighbouring pixels to respond
to a stimulus that should have been registered only at the current pixel [69].
Crosstalk appears as colour desaturation and blur in images [126].

Deconvolution

The process of reversing the effect of a point spread function. Decon-
volution produces an image which is more similar to the ideal pinhole
camera image of a scene than the input image produced by a real op-
tical system. All real imaging systems have optical aberrations, which
authors usually model as point spread functions.
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Demosaicing

The process of converting a single-channel colour-filter array image to a
full-colour image (Section 2.1)

Demosaicing Criterion (DMC)

Our heuristic criterion for selecting regularization weights, computed as
the mean squared error with respect to the Green channel of the input
image, demosaiced by bilinear interpolation (3.24)

Filter mosaic

The pattern of colour filters covering the sensor of a single-sensor colour
camera.

Goodness of Fit coefficient (GOF)

The cosine of the angle between two vectors (4.6) used as a measure of
error between spectral quantities such as spectral irradiances

Hyperspectral Image

An image recording intensities as a function of wavelengths of light —
specifically an image sampled at finely-spaced wavelengths. Hyperspec-
tral images are spectral images with high spectral resolution.

Mean Relative Absolute Error (MRAE)

Mean of the absolute deviations between true and estimated values,
where each deviation is expressed as relative to the true value (Equa-
tions (4.3) and (4.10))

Mean Squared Error Criterion (MSEC)

Our reference criterion for selecting regularization weights, computed as
the mean squared error with respect to the true image (3.23)

Metamer

A spectral irradiance which produces the same response in a set of colour
channels of a camera, or the same colour perception in human colour
vision, as a different spectral irradiance.

Our definition of metamers follows the definition of sensor metamers by
Prasad and Wenhe [95]. Prasad and Wenhe [95] discuss other uses of the
term.

Metamerism

The undesirable property of a light sensing system wherein it produces
the same responses to different spectral irradiances

Minimum Distance Criterion (MDC)

A heuristic criterion proposed by Song et al. [108] for selecting regular-
ization weights. Our version is provided in (3.22)

Monochromatic

The property of having approximately a single degree of freedom of spec-
tral information. A monochromatic image is an image captured by a sen-
sor having a single spectral sensitivity function. Monochromatic light is
light with a narrow distribution about a single mean wavelength.
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Multispectral Image

An image recording intensities as a function of wavelengths of light —
specifically an image sampled at few wavelengths, or at a relatively low
spectral resolution that is still higher than the spectral resolution of
conventional colour (RGB) images.

Point Spread Function

The impulse response of an optical system. The image which would be
formed by a single light source of infinitesimal size [112]. Point spread
functions vary with position on the image plane [37, 58], and with the
distance between the light source and the lens [112], among other factors.

RGB Image

An image formed by a trichromatic camera (after post-processing by de-
mosaicing, if necessary). The acronym “RGB” stands for “Red, Green,
and Blue”. Red, green, and blue represent the three spectral response
functions of the camera. In most trichromatic cameras, these are func-
tions that have global maxima in the long (red), medium (green) and
short (blue) wavelengths of visible light, respectively.

Root Mean Squared Error (RMSE)

Square root of the mean of the squared Euclidean distances between true
and estimated values (Equations (4.4), (4.5), or (4.11), depending on the
interpretation of a “value”)

Spectral Reflectance

The reflectance, or bidirectional reflectance distribution function [92],
of an object, measured as a function of the wavelength of light. Spec-
tral reflectance is the constant of proportionality between the irradiance
received by a surface from a particular incoming direction, and the re-
flected radiance emitted in a particular outgoing direction, as a function
of wavelength. The dependency of spectral reflectance on the incoming
and outgoing directions is usually ignored, because the context is usually
that of a single light source illuminating a scene captured by a camera
with a fixed viewpoint.

Spectral Irradiance

Light irradiance measured as a function of the wavelength of light. Iradi-
ance is the energy per unit time received by an infinitesimal area from all
directions, accounting for foreshortening [92]. Irradiance is the quantity
measured by an image sensor, and is proportional to the radiance of the
scene being imaged [48].

Spectral Dispersion

A dependency of light propagation on wavelength. Under the paradigm
of geometric optics, spectral dispersion is the deviation between the paths
of light rays having different wavelengths.

A dispersion region, in the context of an image, refers to the finite area
that may receive light from the same point in the scene because of spec-
tral dispersion.

We may refer to dispersion as a displacement between images formed by
light of different wavelengths, using terms such as “dispersion vector”.
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We model dispersion in this work as displacements, although its effect is
more general, and is only approximated in terms of displacement vectors.
For futher discussion, refer to Section 6.2.

Spectral Image

An image recording intensities as a function of wavelengths of light, with
a higher spectral resolution than colour images (e.g . RGB images). Spec-
tral images may contain either spectral reflectance or spectral irradiance
information.

Spectral Radiance

Light radiance measured as a function of the wavelength of light. Ra-
diance is the energy per unit time passing through an infinitesimal area
perpendicular to the propagation direction of interest, per unit solid an-
gle [92].

Spectral Response

A function describing the variation in the constant of proportionality
between the irradiance incident on the camera lens and the output of
the image sensor (in a given colour channel) with the wavelength of light

Spectral Sensitivity

A function describing the variation in the constant of proportionality be-
tween the irradiance received by an image sensor and the output of the
image sensor with the wavelength of light. The term “spectral sensitiv-
ity” is used to characterize the sensor itself, whereas the term “spectral
response” describes the relationship between light incident on the cam-
era and the sensor’s output. The spectral response of a camera therefore
depends on the lens, and all components along the optical path preceding
the image sensor [72]. In contrast with Manakov [72], we consider the
colour filters in a colour-filter array to be part of the sensor, therefore
determining the spectral sensitivity functions of the sensor, not only the
spectral response functions of the camera.

Spectral Reconstruction

The estimation of spectral irradiances or other high-spectral resolution
data corresponding to the signals recorded by an imaging device. Spec-
tral reconstruction attempts to recover the spectral characteristics of
the light incident on the imaging device, despite the many-to-one map-
ping of spectral irradiances to device responses. For example, RGB-to-
spectral reconstruction refers to estimating either spectral irradiances
corresponding to the colour vectors of an RGB image, or to estimating
the spectral reflectances of the objects in the scene being imaged.

Structural Similarity index (SSIM)

A similarity metric between two intensity images (monochromatic im-
ages), proposed by Wang et al. [123]

Trichromatic

The property of having three degrees of freedom of spectral informa-
tion. A trichromatic image is an image captured by a camera having
three spectral response functions, such as camera having a sensor with a
colour-filter array composed of three different types of filters. (Normal)
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human colour vision is trichromatic because the eye has three types of
photoreceptor cells, and each type has a different spectral sensitivity.
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Chapter 1

Introduction

With higher image sensor pixel densities, optical aberrations become more

noticeable [107]. Of these, we argue that chromatic aberration is the most

objectionable. The eye is accustomed to seeing objects at varying degrees of

defocus as part of accommodation. Therefore, the eye can interpret image

blur, the visual manifestation of most optical aberrations, as sub-optimal ac-

commodation. Unless the blur is severe, the viewer perceives the same scene

in the image as if the blur was absent. They assume that the blur is part

of the imaging process, not the scene. Chromatic aberration produces false

colours around image edges, something to which the visual system is not ac-

customed. The false colours in an image give the impression that either the

image is not a direct perception, but has been recorded by a camera, or that

the scene contains the false colours. Yet the eye has its own chromatic aber-

ration [127], which must be perceived at a level beneath conscious awareness.

Whereas chromatic aberration is usually considered to be a nuisance in lens

design, in the visual system, in contrast, it may provide information about the

spectral properties of the scene, as researched in the context of colour-blind

animals [109].

We develop our thesis around the connection between chromatic aberration

and spectral information. Chromatic aberration arises because light propaga-

tion through an imaging system depends on the wavelength of the light. Sup-

pose the chromatic aberration of an imaging system is calibrated in terms of

wavelengths. Then the captured image can be corrected for chromatic aber-
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ration only if the intensity of the light as a function of wavelength, its spectral

radiance, is known.

In conventional digital cameras, however, the spectral radiance of light

reaching the image sensor is unknown. Pixels respond to light regardless of its

wavelength, such that image sensors are only capable of generating monochro-

matic images. Colour images are made possible by placing filters that have

non-uniform spectral transmittance over pixels. The Red, Green, and Blue

colour channels of consumer colour cameras are implemented using filters with

three different spectral transmittances. These filters are not selective in the

wavelengths of light that they transmit, meaning that multiple spectral radi-

ances will produce the same colour [86]. Such collections of spectral radiances

are called metamers. Furthermore, in most colour cameras, each pixel is un-

der only one type of filter, but neighbouring pixels are under different types

of filters [8], producing a filter mosaic, or colour-filter array. Therefore, de-

termining the colour of the image —the set of filtered light intensities at each

pixel —is a challenging process, known as demosaicing.

We hypothesize that the ambiguity in the spectral radiances corresponding

to the colour image is small enough to allow for adequate correction of chro-

matic aberration upon recovering an approximate spectral image. We note

that there are constraints on the spectral image beyond the spectral sensi-

tivities of the colour channels, such as the physical constraint that spectral

intensities are non-negative, and the statistical constraint that neighbouring

locations in natural scenes have similar spectral radiances. In addition, chro-

matic aberration itself may serve as a cue for spectral image recovery, much

like its possible role in biological vision systems mentioned above. Therefore,

we develop a new method for correcting chromatic aberration in colour images,

in which we recover a spectral image that projects to the captured image ac-

cording to a calibrated model of chromatic aberration, colour channel spectral

sensitivity, and mosaicing. In other words, we perform simultaneous demo-

saicing and chromatic aberration correction through spectral reconstruction.
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1.1 Image Formation

In this section, we review key concepts in the study of imaging systems, and

explain the physical nature of chromatic aberration.

1.1.1 The Point spread function

In computer vision, cameras are most commonly modelled as pinhole cam-

eras [112]. Assuming we want to study the scene being imaged, not the image

itself, a pinhole camera is the ideal camera, because the image it produces can

be modelled as a simple projection of the scene from three to two dimensions.

From the image, we can directly measure geometric and radiometric properties

of the scene.

Real cameras do not conform to the pinhole imaging model, because each

point on the image sensor receives light from multiple points in the scene,

and because the pixels of the image sensor have finite area. The relationship

between a real image, and the image that an ideal pinhole camera would have

produced, can be expressed using a point spread function. A point spread

function is the image which would be formed of a dark scene containing a

single light source of infinitesimal size [112]. The point spread function is often

approximated by a two-dimensional Gaussian distribution of intensity, but for

large amounts of blur, a more general model must be used [73]. Aside from

their dependence on the camera’s optical design, point spread functions vary

with the angular position of the light source relative to the camera’s optical

axis [37, 58], and with the distance along the optical axis between the camera

and the light source [112]. Calibrated point spread functions can be used to

transform the image into an image which is more similar to the image from

a pinhole camera. This process is called deconvolution, because each local

region of the captured image is modelled as the convolution of the pinhole

camera image with the point spread function for that region. Alternatively,

without calibration, both the point spread function and the ideal image can

be estimated simultaneously in blind deconvolution [112].
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1.1.2 Chromatic Aberration

Spectral dispersion is the dependence of light propagation on its wavelength.

In imaging systems, spectral dispersion causes chromatic aberration. Formally,

chromatic aberration is the difference between an image and the image that

would have been formed in the absence of spectral dispersion. This definition

is problematic because dispersion relates different wavelengths of light. If an

image was taken under monochromatic light, would the image exhibit chro-

matic aberration? We think of chromatic aberration as depending only on the

imaging system, not on the lighting conditions, nor on the scene. Therefore,

we can instead define chromatic aberration as the difference between an image

and the image that would have been formed if light of all wavelengths had

the same propagation as light of a chosen reference wavelength. According to

this new definition of chromatic aberration, a monochromatic image formed

by light with a wavelength other than the reference wavelength would exhibit

chromatic aberration.

Chromatic aberration is usually classified as longitudinal (axial) or lat-

eral (transverse): The former produces a wavelength-dependent defocus effect,

whereas the latter shifts image position with wavelength [45]. This distinc-

tion is relevant to methods for correcting chromatic aberration, which usually

target one effect more than the other. There is no physical basis for the dis-

tinction, because spectral dispersion gives rise to both lateral and longitudinal

chromatic aberration. At first glance, correcting lateral chromatic aberration

appears simpler, because it appears to require only warping the images formed

under different wavelengths relative to each other. In contrast, correcting lon-

gitudinal chromatic aberration requires deblurring. In camera with wideband

colour filters, however, lateral chromatic aberration also manifests as blur, be-

cause the sensor measures intensities across broad ranges of wavelengths. Only

if the image sensor responded to narrowband portions of the spectrum could

lateral chromatic aberration be corrected by image warping. For wideband

colour filters, one can correct lateral chromatic aberration after calibrating

per-colour channel point spread functions that incorporate both warping and
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blurring [101]. Unfortunately, these point spread functions are only valid for

the spectral radiance of the light used during calibration.

To develop some intuition about chromatic aberration, consider Figure 1.1,

which shows light from a point light source passing through a lens. Spec-

tral dispersion causes the angle of refraction of the light rays to depend on

wavelength. Consequently, light focuses at different distances behind the lens

(longitudinal chromatic aberration), and forms images with different magni-

fications (lateral chromatic aberration), as a function of its wavelength. The

diagram represents a geometric optics idealization, and neglects optical effects

such as diffraction. Furthermore, the optical designs of real camera lenses

are normally much more complex. Regardless, the diagram correctly predicts

that, for radially-symmetric lens systems, lateral chromatic aberration is a

phenomenon with a strong radial dependence on image position. Lateral chro-

matic aberration is minimal near the principal point (the optical centre of the

image) [75]. Light focused near the principal point originates from light sources

along the optical axis of the lens, and propagates in a radially-symmetric pat-

tern about the optical axis that makes the position of highest intensity in

the image independent of wavelength. As a consequence of the spatial non-

uniformity of chromatic aberration, chromatic aberration correction methods

must tolerate aberration of varying severity within the same image.

In refractive imaging systems, spectral dispersion arises from a change

in refractive index with wavelength. The dependence of refractive index on

wavelength can be described by the Sellmeier equation [11]:

n (λ)2 − 1 = a+
∑
k

bk
λ2 − λ2

k

(1.1)

where n is the refractive index, and a and bk are empirical constants.

For SCHOTT N-BK7 glass, a common lens material, the Sellmeier equation

is1

n (λ)2 − 1 =
1.03961212λ2

λ2 − 0.00600069867
+

0.231792344λ2

λ2 − 0.0200179144
+

1.01046945λ2

λ2 − 103.560653
(1.2)

1https://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT
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Light Lens Sensor

Figure 1.1: A simplified visualization of chromatic aberration from a sin-
gle biconvex lens. A white point light source produces an image with
a wavelength-dependent blur (longitudinal chromatic aberration) and a
wavelength-dependent position (lateral chromatic aberration). The Red,
Green, and Blue rays in the diagram represent long, medium, and short-
wavelength components of the light’s radiation. They do not represent colour
channels, which do not correspond to single wavelengths of light.

We plot the refractive index of SCHOTT N-BK7 glass, according to Equa-

tion (1.2), in Figure 1.2. Figure 1.2 demonstrates that chromatic aberration

likely has a smooth dependence on wavelength, but that this dependence is

nonlinear. Whereas Figure 1.2 shows a monotonic function of wavelength,

dispersion in compound lens systems is not necessarily monotonic with re-

spect to wavelength [11]. We observed non-monotonicity of lateral chromatic

aberration in our experiments (Figure B.4).
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Figure 1.2: A plot of the refractive index of SCHOTT N-BK7 glass as a
function of wavelength, based on the Sellmeier equation (1.2).
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1.2 Contributions

Historically, lens designers were responsible for minimizing chromatic aberra-

tion, but performing the correction in software has the advantage of maintain-

ing image quality while allowing for more compact, inexpensive lenses [42].

Furthermore, such an approach lets chromatic aberration be used for interest-

ing applications such as depth from defocus [118, 117] or extended depth of

field [21].

Yet lens designers work in terms of wavelengths of light, whereas colour

image processing algorithms have been formulated in terms of colour channels.

Each channel has internal chromatic aberration that varies with the spectra of

light arriving from the scene. In this work, we assess whether working in the

spectral domain can improve chromatic aberration correction in colour images,

even though colour images represent highly lossy compressions of spectral in-

formation. We attempt to create, in software, a process analogous to the more

physically-principled approach taken by lens designers.

We make the following contributions:

(i) We present the first study of RGB-to-spectral reconstruction directly

from raw colour-filter array images for correcting chromatic aberration.

(ii) We make our method easy to use by basing it on physical constraints,

such that it has a small number of interpretable parameters, and a sim-

ple calibration procedure. We do not require that the user collects large

volumes of training data. Furthermore, we present criteria for automat-

ically choosing parameter values for our method.

(iii) We demonstate improved correction of chromatic aberration relative

to methods which operate in three-dimensional colour spaces, such as

RGB. Our results show reduced colour fringes, and correction of within-

colour channel blurring from lateral chromatic aberration. In contrast,

monochromatic aberrations, such as defocus blur, which sometimes are

deliberately used for visual effect, are preserved.
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In the following chapters, we first review related works on image processing

(Chapter 2), and then present our approach (Chapter 3). Subsequently, we

discuss how we evaluated our approach in Chapter 4. We present the results of

our evaluation in Chapter 5, and make some global remarks about our results

in Chapter 6, which leads us to discuss possible directions for future work

(Chapter 7). Finally, we summarize our findings in Chapter 8.
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Chapter 2

Related Work

We draw inspiration from works in several areas, including demosaicing, spec-

tral reconstruction, chromatic aberration correction, and image restoration.

In this section, we survey research in these areas. We discuss works that we

evaluated as part of our experiments in additional detail in Section 4.6.

2.1 Demosaicing

Demosaicing computes missing intensities in the colour channels of a colour-

filter array image. In the camera we used for our experiments, the sensor has

the pattern of colour filters shown in Figure 2.1.

This pattern (Figure 2.1) is known as a Bayer pattern, after its inventor [8].

In a Bayer pattern, there are twice as many pixels with Green colour filters as

there are with Red or Blue colour filters. The increased sampling rate of the

Green colour filters is justified by the human visual system’s greater sensitivity

to wavelengths in the middle of the visible spectrum [65]. The Green colour

Figure 2.1: The Bayer colour-filter array pattern [8] used in our BlackFly Flea3
colour camera.
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filters always cover the diagonal pixels of the 2× 2 repeating pattern of colour

filters. There are four variations of the pattern, distinguished by the colour

filters that cover the top left and second from top left pixels of the image. If

the pixels in the the 2× 2 pattern units are ordered from left to right, top to

bottom, the variations are: GBRG, BGGR, RGGB, and GRBG.

A colour-filter array is a more convenient solution for colour sensing, from

a hardware and optics perspective, than the primary alternative, which was

to have a separate image sensor for each colour channel [65]. Unfortunately,

by using a colour-filter array, the image captured by the sensor is no longer

directly interpretable by human viewers. Demosaicing is required to recover

an interpretable, full-colour image.

At first, demosaicing was treated as an interpolation problem. Bilinear or

bicubic interpolation were selected for efficiency [125]. Later solutions interpo-

lated transformations of the colour channels, such as the differences between

colour channels, or the ratios of different colour channels [59]. More recently,

Kiku et al. [59] introduced residual interpolation, in which the other colour

channels are initially demosaiced by guided upsampling [40], using a prelimi-

nary interpolation of the Green channel. The residuals of the filtering result

are then interpolated, and are added to the filtering result to produce the new

demosaiced channel.

The key insight motivating residual interpolation is that interpolation meth-

ods perform best when the samples to be interpreted have minimum Laplacian

energy [59]. The Laplacian energy of an image is defined as:

E (I) =
1

N

∑
(x,y)

(
∆I(x,y)

)2
(2.1)

where ∆I(x,y) is the image Laplacian evaluated at position (x, y), and N is the

number of pixels in the image. Interpolation therefore performs well when the

image is smooth, as interpolation enforces smoothness on the result.

Demosaicing can also use an explicit smoothness constraint, as done by

Menon and Calvagno [77], who formulated a global optimization problem with

a quadratic data-fitting term, and quadratic penalties on high-frequencies of

each colour channel, and on the differences between the gradients of the colour
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channels. While the cross-channel penalty terms are only reliable when colour

channels have similar intensities, they have the advantage of allowing for a

least-squares solution. Still, quadratic penalties tend to oversmooth strong

edges, so Menon and Calvagno use the gradient of their initial solution to

downweight their smoothing terms, in a subsequent round of global optimiza-

tion that, for efficiency, recovers only the luminance of the image. Specifically,

they lighten the smoothing penalties on image edges having a similar magni-

tude and direction as the edges in their initial solution, therefore performing

anisotropic, spatially-adaptive regularization [77].

Tan et al. [115] present a different approach to adaptive regularization, by

incorporating many different prior terms into their global optimization prob-

lem. The flexible Alternating Direction Method of Multipliers method [12],

which we also use in our work, even allows them to incorporate priors that

do not have closed-form expressions [115]. Obtaining a good result is then a

matter of selecting appropriate global weights on the different prior terms, as

opposed to local, adaptive weights. In their article, they do not explain how

to select the optimal weights [115].

Unfortunately, all demosaicing methods that use constraints between colour

channels assume that values in different colour channels are correlated. Cor-

relation cannot be assumed for highly saturated colours, as highlighted by Wu

and Zhang [126], who use a set of training images to learn a Bayesian-type

classifier to distinguish saturated colours from more “pastoral” colours. Their

demosaicing algorithm then adapts to the classification result at each pixel.

The approach of Wu and Zhang [126] combines ideas from both signal

processing-based demosaicing methods, and fully data-driven demosaicing meth-

ods. The latter category of methods learn to produce demosaicing results di-

rectly based on training data. For example, Wu et al. [125] learn a regression

model, based on the A+ superresolution method [116], that can improve the

output of an initial demosaicing algorithm. More recently, other authors, such

as Tan et al. [114], have used neural networks as their regression models. Data-

driven methods are difficult to evaluate, unfortunately, because they cannot

be trained on images from cameras with colour-filter arrays, yet it with these
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cameras that they must be used.

While data-driven approaches to demosaicing can be adapted to arbitrary

images, they cannot overcome artifacts which are present in the training im-

ages. One such artifact is crosstalk, wherein, for example, light passes through

the colour filter covering one pixel to irradiate adjacent pixels for different

colour channels [46, 96]. More generally, crosstalk, or sensor interpixel cor-

relation, encompasses any physical effect which causes neighbouring pixels to

respond to a stimulus that should have been registered exclusively at the cur-

rent pixel [69]. Most demosaicing methods ignore crosstalk, including our own.

Those which do account for crosstalk during demosaicing may be useful refer-

ences for further improving the performance of our method on high-resolution

cameras [126], and on cameras with multispectral colour-filter arrays [24].

Unfortunately, to our knowledge, Dijkstra et al. [24] presented the only

straight-forward method for calibrating crosstalk. They had the advantage of

using a multispectral camera, with known spectral sensitivity in each channel.

In a multispectral camera, one can assume that crosstalk manifests as a de-

viation of the actual spectral sensitivities from idealized spectral sensitivities

that are Gaussian functions with the same peak locations in the spectrum [24].

Demosaicing methods for RGB cameras have instead relied on known point

spread functions representing crosstalk [46, 126], rather than attempting to

calibrate crosstalk.

2.2 Chromatic aberration correction

Like crosstalk, chromatic aberration is also present in any set of training images

for demosaicing methods. Demosaicing and chromatic aberration correction

are intimately related problems, as shown in simulation by Wang et al. [122],

such that there are works on solving the two problems jointly.

Schuler et al. [101] presented one of the earlier works on simultaneous

demosaicing and chromatic aberration correction. Their method treats chro-

matic aberration correction as a deblurring problem, where the point spread

function is both spatially-varying, and colour channel-specific. They express
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the corrected image as the solution to a global optimization problem, which

allows them to perform demosaicing implicitly, by including mosaicing in the

data-fitting term of their optimization problem. While recovering the im-

age takes hours, their optimization-based spatially-varying deconvolution al-

gorithm gives better results than a faster Fourier-domain approximation [101].

A few later works have built on their approach by testing different regular-

ization terms. Whereas Schuler et al. [101] used the YUV colour space to

regularize chrominance more strongly than luminance, Heide et al. [42] de-

veloped a cross-channel prior to better model the relationships between the

original colour channels:

∇xyIj,(x,y)

Ij,(x,y)

≈
∇xyIk,(x,y)

Ik,(x,y)

(2.2)

where j and k are two different colour channels. Their prior has the advan-

tage that it can be applied not only to colour channels in RGB images, but

also to the spectral bands of multispectral images. On the other hand, (2.2)

complicates the optimization algorithm because of its nonlinearity [42].

More efficient methods for performing both demosaicing and chromatic

aberration calibrate forward transformations, and do not attempt to satisfy

optimality criteria. Usually, they treat the two tasks as sequential operations.

Lluis-Gomez and Edirisinghe [70] use block-matching to calibrate displace-

ment vectors between the three colour channels for individual image patches.

They then warp the raw colour channels of the image prior to demosaicing,

noting that attempting to correct chromatic aberration after demosaicing will

produce suboptimal results, because demosaicing has been affected by chro-

matic aberration [70]. To our knowledge, the state-of-the-art in calibrated

chromatic aberration correction by image warping is the method of Rudakova

and Monasse [99]. First, Rudakova and Monasse use a calibration pattern of

black disks on a white background to obtain highly robust and accurate mea-

surements of relative displacements between colour channels. We repurposed

their calibration technique for spectral dispersion measurement, as described

in Section 3.2.1. Next, Rudakova and Monasse fit bivariate polynomials to

the disk displacements to model very general patterns of aberration across the

13



image [99]. Their global model is in contrast to the method of Lluis-Gomez

and Edirisinghe [70], who lack a mechanism to reduce noise in their image

block warp vectors. Many works preceding Rudakova and Monasse [99] did

leverage global models of colour channel displacements, but typically relied on

simple radial [75], or radial and tangential models [71], which Rudakova and

Monasse demonstrate are suboptimal.

In our view, warping is equivalent to demosaicing, because warping requires

interpolating image pixels, and interpolation reconstructs a continuous version

of the image, where each colour channel is defined at all locations, not only at

locations corresponding to its colour filters. Therefore, methods which correct

chromatic aberration by warping raw image data are performing sub-optimal

demosaicing, by failing to leverage correlations between colour channels. A

promising approach that does not have this limitation was developed by Ko-

rneliussen and Hirakawa [60], who propose a chromatic aberration-tolerant

demosaicing algorithm, and then correct the demosaiced image for chromatic

aberration by warping its low-frequency components. Next, they update the

high-frequency components of the Red and Blue channels based on those of

the Green channel. Their method is derived from a Fourier domain analy-

sis of chromatic aberration, and uses a luminance-chrominance colour space

where the effect of chromatic aberration can be better isolated [60]. Unfortu-

nately, none of the above efficient methods account for within-channel blur, or

between-channel relative blur, caused by chromatic aberration. They use the

Green channel as a reference for the Red and Blue channels, assuming that it

is not affected by chromatic aberration.

In many applications, the input image for chromatic aberration correction

is a full colour image, as the original raw image is no longer available. More-

over, the properties of the camera are often unknown, motivating researchers

to propose methods which restore images solely based on prior assumptions of

ideal image properties. For instance, Sun et al. [111] model images as having

ideal colour channels related by second-order Taylor series expansions. They

also assume that colour channels are related by spatially-varying blur, therefore

accounting for longitudinal chromatic aberration. They formulate an alternat-
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ing optimization algorithm that enforces their Taylor series approximation,

and corrects relative blur between colour channels [111]. In comparison, most

earlier works tended to optimize simple criteria, such as encouraging match-

ing gradients between colour channels, and sharp edges (e.g . [18, 93]). Sing

[107], in contrast, derived a more rigorous approach from optics and digital

signal processing principles. They used a small number of parameters to model

magnification change and (spatially-invariant) blur from chromatic aberration,

and estimated values for these parameters from sharp edges in the image. Fur-

thermore, they also corrected in-camera sharpening, which can amplify noise,

and produce ringing artifacts in the image [107]. Still, their method is lim-

ited by its need for sharp edges in the image, and by its reliance on a model

of chromatic aberration with few parameters. More generally, uncalibrated

chromatic aberration correction methods cannot adapt to the peculiarities of

individual cameras and lenses, and may produce spurious results if the scene

being imaged contains colour features which resemble chromatic aberration

artifacts.

While Korneliussen and Hirakawa [60], and other works, acknowledge that

chromatic aberration is a spectral phenomenon which cannot be perfectly cor-

rected in the RGB domain, it seems that chromatic aberration correction in

the spectral domain has only been attempted in systems which capture spec-

tral images directly. In a series of articles, J. Brauers and their collaborators

studied filter wheel spectral cameras, which capture images through different

narrowband optical filters to produce multispectral images. They first cor-

rected distortion between spectral bands using an affine transformation cal-

ibrated using patch-wise image registration with mutual information as the

image similarity criterion [15]. Concurrently, they also proposed correcting

for relative blurring, using point spread functions calibrated between spectral

bands [13]. Finally, in their later work, they improved on their mathemati-

cal models for image distortion, such as showing how conventional geometric

camera calibration procedures, which return pinhole camera models and lens

radial and tangential distortion parameters, are sufficient for correcting the

distortion induced by the different filters in a filter wheel [14].
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Among methods for correcting chromatic aberration, our work on spec-

tral correction of chromatic aberration in colour images is related to that of

Cossairt and Nayar [21], who used a lens with severe longitudinal chromatic

aberration to obtain extended depth-of-field RGB (or monochromatic) images.

While they examined point spread functions for light with different spectral

characteristics, they did not attempt to use spectral information to correct

chromatic aberration. Instead, they assumed white light when deblurring im-

ages [21]. We also calibrate chromatic aberration as a spectral phenomenon,

but then we account for spectral variation throughout the image when cor-

recting chromatic aberration.

2.3 Spectral Reconstruction

To use spectral information for correcting chromatic aberration, we must per-

form spectral reconstruction. A spectral image measures intensities at fine

resolution in the spectral domain, whereas a conventional image sensor cap-

tures images at low spectral resolution, because it responds to light across

a broad range of wavelengths. We define spectral reconstruction as the pro-

cess of recovering high-resolution spectral information from the responses of

conventional image sensors.

2.3.1 Physically-Based Approaches

Post-processing can recover high-spectral resolution images if optical elements

preceding the image sensor convert spectral information into spatial or tem-

poral information. The simplest spectral imaging systems use filters to isolate

different portions of the electromagnetic spectrum. Filter wheel systems, as

mentioned in Brauers and Aach [14], for example, capture series of images

through different optical bandpass filters, therefore encoding spectral infor-

mation using temporal information. Alternatively, spectral information can

be encoded as spatial information, as when a multispectral filter array covers

the sensor (e.g . the sixteen-channel camera mentioned in Dijkstra et al. [24]).

Assuming the filters have narrow passbands, there is little ambiguity in the
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wavelengths of the light recorded by the sensor in either design. Unfortunately,

the spectral resolution of these systems is fixed, and is generally coarse. Fur-

thermore, the limited temporal or spatial resolution of filter wheels or filter

arrays, respectively, reduces image quality. Note that wavelength selection can

also be applied to the light source (e.g . as in Goel et al. [36]), instead of the

camera, but controlling the light source is only possible in lab environments.

More sophisticated spectral imaging systems rely on dispersion to provide

a flexible tradeoff between spatial and spectral resolution. Coded aperture

snapshot spectral imaging (CASSI) systems, for example, create a patchwork

of spectral and spatial information on the sensor by masking light after it

passes through a dispersive optical element [35, 66, 119, 121]. In optimization-

based approaches to snapshot spectral imaging, a modulation matrix, relating

the spectral image and the captured image, must be calibrated before spec-

tral reconstruction can be performed [66]. The modulation matrix serves as

the data-fitting term of the optimization problem, and represents imaging as

a rank-deficient linear mapping. To compensate for the rank-deficient data-

fitting term, Lin et al. [66] used a learned sparse representation of spectral

images to constrain the output images. In contrast, Choi et al. [19] used a

convolutional autoencoder model of spectral images, in addition to regular-

izing the gradient of the spectral image. As an alternative to optimization,

which is computationally expensive [66], Wang et al. [121] moved the compu-

tation to an offline step by training a convolutional neural network for spectral

reconstruction.

Of greater interest to us are spectral reconstruction methods also based on

dispersion, but in a form more similar to chromatic aberration. Cao et al. [16]

placed a triangular prism in front of a camera, and masked the light incident

on the prism to create separated dispersed spectra on the image sensor. Their

reconstruction process is therefore very simple, but they cannot achieve high

spatial resolution. Subsequently, Baek et al. [7] omitted the mask, such that

the spectra from adjacent points overlap on the camera sensor. They solved

an optimization problem to recover the image, relying on isolated sharp edges

in the image to provide good cues for spectral reconstruction. We adapt their
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method by omitting the prism, such that chromatic dispersion in the image

arises only from the camera’s lens. After describing our method and its em-

pirical behaviour, we elaborate on the differences between our work and theirs

in Section 6.4.

2.3.2 Data-Driven

The primary disadvantage of the methods described in Section 2.3.1 is their

reliance on specialized equipment. Therefore, a separate class of spectral re-

construction methods operates on the images taken by ordinary RGB cameras.

At first glance, the problem seems unsolvable, because the space of spectral

radiance is infinite-dimensional, whereas colour cameras have three dimensions

of spectral sensitivity. Yet metamers, which are different spectra that produce

the same RGB values, seem to be rare in natural images [33, 95].

Therefore, as investigated empirically by Jia et al. [53], one can reason-

ably assume that spectra lie on a three-dimensional manifold. Alternatively,

as done by Arad and Ben-Shahar [4] and Wu et al. [124], one can learn a

sparse dictionary of spectral signatures. Aside from explicit constraints on the

mapping from RGB to spectral information, researchers have also implicitly

learned well-behaved mappings for RGB-to-spectral reconstruction. A variety

of learned representations have been tested, including radial basis function

networks [84], Gaussian processes [44], and neural networks [3, 85, 104].

Data-driven spectral reconstruction methods are usually computationally-

efficient, and cost-effective. The may not even require the spectral response

functions of the camera as input (e.g . Shi et al. [104]). On the other hand,

metamerism remains an obstacle of unknown importance, especially given that

the performance of data-driven methods outside of spectral image datasets is

poorly-characterized. We revisit these concerns later in Section 3.3.2.

18



Chapter 3

Image Reconstruction

3.1 Overview

We strive to find a spectral image which corresponds to an observed colour-

filter array (raw) image. Using a maximum a posteriori approach to image

estimation, we seek to minimize an objective function of the form:

I∗ = argmin
I
‖M (Ω (Φ (B (I))))− Iraw‖2

2 +
N∑
j=1

wjSj (I) , I ≥ 0 (3.1)

Graphically, problem (3.1) is summarized in Figure 3.1. Our method is con-

ceptually simple, as it consists of a single optimization problem. Each term

in problem (3.1) encapsulates a substantial amount of information, as we will

describe in detail in this chapter.

The latent spectral image, B (I), is a hypothetical image that would be

formed by a spectral camera with a lens free from the lateral chromatic aber-

ration of the real camera’s lens that we have calibrated. B represents a change

of basis, allowing us to estimate the spectral image in a finite-dimensional space

of control bands, as opposed to the infinite dimensional space of wavelengths.

From the spectral image, we can obtain a colour image, also corrected for

lateral chromatic aberration.

The first term of (3.1) approximates the image formation process that

results in the observed raw image: Φ is an operator describing the lateral

chromatic aberration of the real camera lens. Ω is an operator that converts

the spectral image to intensities in the colour channels of the camera, according
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Figure 3.1: A visual overview of our image reconstruction method, showing the
elements of our image reconstruction optimization problem (3.1). Numbers in
parentheses refer to section numbers in this chapter.

to the camera’s known spectral response functions. Lastly, M is an operator

which forms the raw image by subsampling the full colour image according to

the camera sensor’s colour-filter array.

The summation in (3.1) represents a weighted sum of prior terms, which

we also refer to as regularization operators, because we have limited our ex-

periments to smoothness priors. In contrast to our model of image formation,

which is derived from principles of optics and digital imaging, we selected our

prior terms by empirical validation. To do so, we experimented with a range

of priors, as described in Chapter 5. We tested different gradient operators,

different norms applied to the gradients, and different methods for selecting

the weights (wj) multiplying the prior terms.

The final element of the optimization problem (3.1) is a non-negativity con-

straint, which follows from the nature of light as power. Adding a constraint

makes solving the optimization problem more challenging, however, and we

evaluate in Section 5.2.2 whether it is warranted.
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3.1.1 Terminology

We use the term “spectral” to refer to quantities which vary as a function of

the wavelength of light, and the term “spectral domain” to refer to the space

of visible wavelengths of light. In contrast, we will use the term “frequency”

to refer to the rate of oscillation of a signal, regardless of whether we are

considering the signal as a function of space (e.g . in the image plane) or as

a function of wavelength. We will avoid using the term “frequency” to refer

to the rate of oscillation of light intensity with respect to time, and will avoid

using the term “spectral” in relation to Fourier analysis.

3.2 Modelling Dispersion

There are two key challenges we face in modelling how image formation changes

with wavelength. First, calibrating a model may require specialized equip-

ment, and existing datasets normally do not provide data that could be used

for calibration. Second, we need to choose a model that can be calibrated

with sufficient sensitivity to capture small differences between images without

being sensitive to noise. We based our method on the work of Rudakova and

Monasse [99], and therefore model only lateral chromatic aberration —spatial

warping between the images formed under different wavelengths of light. We

describe our method for modelling lateral chromatic aberration in this section,

but later elaborate on our rationale for selecting lateral chromatic aberration

as the form of wavelength dependence to measure, in Section 6.2.

3.2.1 Keypoint Localization

To calibrate the slight shifts between the images in different colour chan-

nels, Rudakova and Monasse measure the displacements of black disks in a

printed calibration pattern of black disks on a white background. They use

the Levenberg-Marquardt algorithm to find disk positions in each colour chan-

nel with high precision, and robustness to noise and blur. Next, they pair the

disk positions in the Green channel with those in the Red and Blue channels

based on proximity, to obtain a sparse map of lateral chromatic aberration
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vectors [99].

We follow their approach, but as we are interested in lateral chromatic

aberration as a spectral phenomenon, we find displacements between disk key-

points in images taken under different bandpass-filtered illuminations. Since

we can assume there is no aberration between colour channels in these im-

ages, we can therefore use all channels together to find each disk’s position.

We compute keypoint displacements between colour channels, in images taken

under unfiltered illumination, only for comparison with our models of spectral

dispersion.

We detect disk keypoints in an image taken of a disk pattern by first com-

puting grey level thresholds with Otsu’s method [88], applied separately to

each colour channel. By fusing the thresholded versions of the colour chan-

nels, we obtain a binary image, which, after postprocessing with morphological

opening and closing operations, provides connected components of white pix-

els which are candidate disks. We filter the candidate disks to those which

are within two standard deviations from the mean area, to remove spurious

detected disks.

To refine a disk keypoint’s position, we minimize the sum of squared differ-

ences in intensity between a synthetic disk image, and the image pixels in the

neighbourhood of the keypoint. Our synthetic disk image is constructed from

the following parameters, which we optimize using the Levenberg-Marquardt

algorithm:

Lightnesses: A set of intensity values for the interior and exterior of the disk,

for each colour channel. We initialize the interior and exterior lightnesses

from the modes of the image intensities in the detected disk and non-disk

regions, respectively.

Axis lengths: The lengths of the major and minor semi-axes of the ellipse,

initialized by fitting an initial ellipse to the connected component in the

binary image

Orientation: The angle of the ellipse’s major semi-axis with respect to the

image x-axis
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Centre: The coordinates of the ellipse centre

Edge width: The slope of the assumed linear intensity transition between the

interior and exterior of the ellipse. We use an initial value determined

empirically by observing the sharpness of edges in the image.

After obtaining refined disk centres, we build a sparse map of spectral

dispersion by finding the displacements between mutually nearest-neighbour

centres, paired between the image for the reference bandpass-filtered illumi-

nation, and the images for each of the other illuminations. Alternatively, to

create a map of lateral chromatic aberration between colour channels, we fit

refined disk keypoints to individual colour channels within an image, and then

pair keypoints between the Green channel and the other colour channels sim-

ply by associating the keypoints corresponding to the same disk. Note that

disk keypoints are more robustly estimated in bandpass-filtered images than

between colour channels in images taken under unfiltered illumination, because

smaller numbers of pixels are used to refine each keypoint in the latter case.

3.2.2 Vignetting correction

The disk keypoint model described in Section 3.2.1 assumes that each disk

has a uniform intensity within its perimeter, and that the intensity outside of

its perimeter is also uniform. Vignetting in the camera lens system, and non-

uniformity in the illumination, may violate this assumption. To test whether

these phenomenon invalidate our disk keypoints, we corrected images for inten-

sity variation using bivariate polynomial models of intensity, and observed a

slight improvement in the symmetry of the resulting dispersion pattern (Fig-

ure B.1). Therefore, we correct intensity variation as a preprocessing step

before fitting disk keypoints to the image, although doing so is usually not

necessary.

Our vignetting correction method takes as input a binary image indicating

a region of the image which should have uniform intensity. We extract pixels

from the Green channel of the raw image within this region, and use them

to fit a bivariate polynomial model of image intensity, I, in image x and y
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coordinates:

Î(x,y) =

p∑
i=0

p∑
j=0

aijx
iyj (3.2)

To find the polynomial coefficients, {aij}, we minimize the squared error,

{aij} = argmin
{aij}

∑
(x,y)

∥∥∥∥∥Iraw, (x,y) −
p∑
i=0

p∑
j=0

aijx
iyj

∥∥∥∥∥
2

2

(3.3)

which is an overdetermined linear least squares problem. We select the degree

of the polynomial, p, from among the set of values {0, 1, . . . , 5}, by tenfold

cross-validation [39].

For numerical stability, we must normalize the image coordinates [99].

Given the set of image pixel coordinates from the user-marked region, {(xk, yk)},

we compute an affine homography, Txy, a 3× 3 transformation matrix, which

centers the coordinates such that they have zero mean, and gives them vari-

ances of unity along each of their principal component directions. We also nor-

malize the image intensities
{
Iraw, (x,y)

}
to have zero mean and unit variance,

using a 2 × 2 affine transformation matrix TI . As we solve for the polyno-

mial coefficients given the normalized image intensities and normalized spatial

coordinates, our polynomial model must be evaluated on image coordinates

subject to the transformation Txy, and then its output must be transformed

by T−1
I . For simpler presentation, we have omitted these transformations from

the equations in this section.

To correct the image for vignetting and non-uniform illumination, we divide

the captured image by its polynomial approximation:

Icorrected, (x,y) =
Iraw, (x,y)∑p

i=0

∑p
j=0 aijx

iyj
(3.4)

Note that we apply the same correction model to all channels of the raw im-

age. For images captured under bandpass-filtered illumination, we can assume

that the colour channels are approximately related by scaling factors given by

the relative sensitivities of the colour channels to wavelengths within the fil-

ter passband, as discussed further in Section 4.2.4. Consequently, the same

intensity correction can be applied to all colour channels, and our per-channel
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disk lightness parameters described in Section 3.2.1 will accommodate for the

scaling factors between colour channels. In contrast, for images captured un-

der unfiltered illumination, our use of a single correction model for all colour

channels rests on the additional assumption that the intensity non-uniformity

is spectrally-invariant.

3.2.3 Image registration

Rudakova and Monasse proposed their disk keypoints as a method to find

shifts between the colour channels of an image with high precision [99]. The

disk keypoints are described by a parametric model that accommodates affine

distortion between the calibration pattern and the captured images, therefore

allowing for ellipses in the image, instead of circles. Affine distortion is only

an approximation to the geometric distortion induced by the lens, and lens

aberrations that cause spatially-varying blur might further degrade the accu-

racy of keypoint localization under the affine distortion model. Therefore, we

sought to evaluate disk keypoint detection. Rudakova and Monasse did so

only in simulated images, as they could compare their results with the syn-

thetic ground truth keypoint positions. We choose to perform the assessment

in real images, where ground truth positions are not available. Consequently,

we performed a relative assessment, by comparing the disk keypoints with an

alternative method for calibrating displacements between image channels, or

between images captured under unfiltered illumination. The results of our

assessment are provided in Section B.2.

Our alternative keypoint generation method is based on the work of Brauers

et al. [15], who used mutual information as an image similarity criterion for

patch-wise registration of the images taken under the different filters of a

filter-wheel multispectral camera. We divide the image plane into patches,

and then compute patch-specific translations between images taken under dif-

ferent bandpass-filtered illuminations or between image colour channels (de-

pending on whether we want to calibrate dispersion in the spectral domain, or

the colour domain). We use the image registration routines from MATLAB’s

Image Processing Toolbox [74] to estimate the translations. Specifically, we

25



selected mutual information as the similarity criterion [76, 97], and an evo-

lutionary optimization method [110] to find the translations maximizing the

similarity criterion. The result is a grid of keypoints that quantify dispersion

across the image plane.

Dispersion keypoint generation by image registration has the advantage

of being able to process any images with sufficient texture, in contrast to

disk keypoint localization, which requires images of calibration patterns. The

primary disadvantage of image registration, in our application, is the need to

demosaic the input images. While images can be registered by sampling a

sparse set of pixels to compute the similarity metric during optimization, in

order to estimate the registration transformation with subpixel accuracy, pixels

must be interpolated, which is a form of demosaicing. We try to minimize

errors from demosaicing when registering images taken under different filtered

illuminations by only registering the Green channels of the images. We select

the Green channel because it has the highest sampling density in conventional

colour-filter arrays. We chose bilinear interpolation for demosaicing the Green

channel because filtered illumination may violate the inter-channel correlation

assumptions built into more sophisticated demosaicing algorithms.

3.2.4 Dispersion Interpolation

From the sparse map of dispersion, constructed as described in Sections 3.2.1

or 3.2.3, we create a map of dispersion at arbitrary locations by smoothed

interpolation, on the assumption that dispersion varies smoothly throughout

the image. Furthermore, we also interpolate dispersion in the spectral domain,

which is justified by the smooth change in the indices of refraction of lens

materials with wavelength (Section 1.1.2).

We tested two interpolation methods: The first is based on the bivariate

polynomials used by Rudakova and Monasse [99]. Their approach is also the

inspiration for our vignetting correction method (Section 3.2.2). The differ-

ence between their procedure and our vignetting correction procedure is that

they use separate polynomial models for each of the x and y components of

the dispersion vectors between the Green and Red channels, and between the
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Green and Blue channels. We use their approach to model dispersion be-

tween colour channels in calibration images taken under unfiltered light, for

comparison with our spectral models of dispersion.

For our spectral models of dispersion, we fit trivariate polynomials in x,

y, and λ (wavelength), instead of computing bivariate polynomials in x and

y. The trivariate polynomials model the dispersion measured between the

images for each bandpass-filtered illumination and those for the reference fil-

tered illumination. As a consequence of their dependence on wavelength, our

polynomial models are globally optimized over all filtered illuminations.

The procedure we use to fit the trivariate polynomials is analogous to the

one we use for bivariate polynomials, but differs slightly in how we preprocess

the data used for fitting. Specifically, we normalize the λ values of the image

pixels, given by the center wavelengths of the filter passbands, to have zero

mean and unit variance. We compute the wavelength normalization transfor-

mation separately from the normalization transformation for the image (x, y)

coordinates. Note that, when fitting either bivariate or trivariate polynomial

coefficients, we use x and y-components of dispersion vectors that have been

normalized jointly, not separately.

To select the degrees of the fitted polynomials, whether bivariate or trivari-

ate, we use cross-validation. For bivariate polynomials, we use tenfold cross-

validation, as done for vignetting correction (Section 3.2.2) [39], but we choose

the degree from a larger set of possible values, {0, 1, . . . , 12}. For trivariate

polynomials, we allow for a different degree in x and y from the degree in

λ. We evaluate the cross-validation error over all possible values of the two

degrees (dxy, dλ) from the set of pairs {0, 1, . . . , 12} × {0, 1, . . . , Nλ − 2}. The

upper limit of Nλ−2, where Nλ is the number of bandpass filters, is necessary

because all of our datapoints are sampled at only Nλ different wavelengths, so

we cannot fit polynomials of degree in wavelength higher than Nλ−1. The dis-

crete set of values for λ also prevents us from applying tenfold cross-validation

to select the degree of the polynomial in λ, as we will naively choose a degree of

Nλ − 1. Such a degree is too high, and results in instability of the polynomial

between the center wavelengths of the filter passbands, but will be selected
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because there are no datapoints at intermediate wavelengths at which to mea-

sure cross-validation error. Therefore, we use the modified cross-validation

algorithm given in Algorithm 1.

Algorithm 1 partitions the dispersion keypoints into training and validation

sets first by illumination centre wavelength, then by random selection among

keypoints. Consequently, each candidate polynomial model is evaluated on

keypoints from an illumination on which it was not trained. All candidate

models are trained on the illuminations with the smallest and largest pass-

band centre wavelengths, however. If these illuminations were instead used

for validation, the standard deviations of the cross-validation errors (sdb in

Algorithm 1) would be inflated by the poor extrapolation behaviour of poly-

nomials, and the “one-standard error” rule from Hastie et al. [39] would lose

its utility.

In comparison with our use of cross-validation to select the degrees of

polynomial interpolants, Rudakova and Monasse selected a polynomial degree

of 11 in both x and y. They state that the error should stabilize for degrees 7

to 11 [99], but do not explain what error they are referring to.

The second interpolation method we tested is thin-plate splines. For mod-

elling dispersion between colour channels, we use two-dimensional thin-plate

splines in the image (x, y) coordinates, whereas for modelling dispersion be-

tween the images for narrowband regions of the spectrum, we use three-

dimensional thin-plate splines. (The three dimensions are the image coor-

dinates and wavelength, λ.) We compute one thin-plate spline for each of

the x and y-components of the dispersion vectors. For numerical stability, we

apply the same normalization transformations to the disk keypoints data that

we used prior to fitting polynomials.

The theory of thin-plate splines is presented by Wahba [120], for instance,

whereas we used David Eberly’s Geometric Tools library as the reference

for our implementation [26]. A regularized thin-plate spline modelling the

j ∈ {x, y} component of dispersion vectors minimizes the following cost func-
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Algorithm 1 Trivariate polynomial degree selection for dispersion interpola-
tion

Require: A maximum spatial degree, Dxy

1: Dλ ← Nλ − 2 . Nλ is the number of filtered illuminations
2: for d← 0, Dxy do
3: for b← 0, Dλ do
4: for i← 2, Nλ − 1 do
5: Create a set, Vi, of datapoints for the i-th illumination
6: Create a set, Ti, of the remaining datapoints
7: for j ← 1, 10 do
8: Select a tenth of the points in Ti and unite them with Vi to

form the set Vij
9: Select the rest of the points in Ti to form the set Tij

10: Train a trivariate polynomial model of dispersion with a de-
gree of d, in x and y, and a degree of b, in λ, on the data in Tij

11: eij ← prediction error of the model on the data in Vij
12: end for
13: end for
14: edb ← 1

10(Nλ−2)

∑Nλ−1
i=2

∑10
j=1 eij . Sample mean

15: sdb ←
√

1
10(Nλ−2)−1

∑Nλ−1
i=2

∑10
j=1 (eij − edb)2 . Sample standard

deviation
16: end for
17: end for
18: emin ← min ({edb}).
19: s← element of {sdb} corresponding to emin

20: Set the degree in λ to the smallest value of b such that edb − emin ≤ s
21: Set the degree in x and y to the smallest value of d such that edb−emin ≤ s,

where b is the degree in λ chosen in Line 20

Figure 3.2: Cross-validation for selecting the degrees in the image x and y-
coordinates, and in wavelength, λ, of trivariate polynomial models of disper-
sion. Rather than choosing the degrees minimizing the cross-validation error,
we use the “one-standard error” rule mentioned in Hastie et al. [39].
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tion [120]:

C (fj) =
∑
k

‖f (pk)− djk‖2
2 + w

∫ ∥∥D2f
∥∥2

2
(3.5)

where djk denotes the j = x or j = y component of dispersion for the k-th

disk keypoint, and D2f denotes the matrix of second-order derivatives of f

with respect to its vector argument, p. The regularization penalty,
∫
‖D2f‖2

2,

has a null space that, in our problem, is spanned by linear functions [120].

These linear functions describe the behaviour of fj far from the sample points

{pk}, whereas Green’s functions, radial functions erected around each sample

point, describe the behaviour of fj close to the sample points. Therefore,

with thin-plate splines, we can generate models of dispersion which are well-

behaved outside the region of the image plane in which the disk keypoints lie.

In contrast, polynomial models of dispersion tend to vary rapidly with position

outside of the region occupied by the disk keypoints.

In practice, if we can cover the image plane with disk keypoints, polynomi-

als are suitable for interpolating dispersion. While they give inaccurate results

near the image borders, they have the advantages relative to thin-plate splines

of being more computationally efficient to fit and to evaluate. We compare the

two approaches for smoothly interpolating dispersion on experimental data in

Section B.3.

As with the degree of the polynomial models of dispersion, we must se-

lect the thin-plate spline smoothing parameter, w in (3.5). We choose w

which minimizes the generalized cross-validation objective [120], according to

the procedure given in Algorithm 2. Algorithm 2 is a grid search (using a

one-dimensional grid), inspired by the method of Song et al. for selecting reg-

ularization parameters [108]. We start with a grid of 15 values, rather than

using 4 values at every iteration of the grid search, in order to avoid getting

stuck in local minima of the generalized cross-validation objective function.

A final clarification of our dispersion interpolation methods concerns the

image coordinates used to fit our parametric models of dispersion: We can

use our models of dispersion in two ways: To correct images for dispersion by

image warping, or as constraints for solving image estimation problems (3.1).
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Algorithm 2 Thin-plate spline smoothing parameter selection

1: a← machine epsilon (e.g . 2.2× 10−16) . A lower bound on w
2: b← 1010 . An upper bound on w
3: Generate logarithmically-spaced values w1, w2, . . . , w15 from w1 = a to
w15 = b

4: Evaluate the generalized cross-validation objective, V (w) [120] at
w2, w3, . . . , w14

5: Find the index k of the value wk minimizing the objective
6: a← wk−1

7: b← wk+1

8: w∗ ← wk
9: eprev ← V (wk)

10: s← 2 . Iteration counter
11: loop
12: Generate logarithmically-spaced values w1 = a, w2, w3, w4 = b
13: Evaluate V (w) at w2 and w3

14: Find the index k of the value wk minimizing the objective
15: ecurrent ← V (wk)
16: if ecurrent ≤ eprev then
17: w∗ ← wk
18: if |ecurrent−eprev|

eprev
< tolerance and s ≥ smin then

19: return w∗

20: end if
21: eprev ← ecurrent

22: end if
23: s← s+ 1
24: if s ≥ smax then
25: return w∗

26: end if
27: a← wk−1

28: b← wk+1

29: end loop

Figure 3.3: Thin-plate spline smoothing parameter selection by generalized
cross-validation [120], minimizing the generalized cross-validation objective,
V (w) [120], using a grid search strategy based on the method of Song et al.
[108]
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In the second case, dispersion projects the ideal image onto the dispersed

(aberrated) image. In both cases, we need to express dispersion vectors as

functions of positions in the images that are created by applying our dispersion

models, as we will explain in Section 3.2.5. When using dispersion to correct

images, we must express models of dispersion in terms of coordinates in the

ideal image —the reference colour channel, or the image for the reference

bandpass-filtered illumination. In contrast, when using dispersion for image

estimation (3.1), we must express models of dispersion in terms of coordinates

in the aberrated image —the non-reference colour channel or spectral band of

the image captured by the camera.

In concrete terms, suppose we have a disk keypoint in the reference image

or colour channel, with its centre at location pi = (xi, yi). In the image for

a different bandpass-filtered illumination, or in a different colour channel, the

same disk keypoint has its centre at location pj = (xj, yj). The dispersion

between the two positions is dij = pj − pi. For image warping, we want to

model dispersion as depending on the position pi and having a value of dij.

In contrast, for image estimation, we want to model dispersion as depending

on the position pj and having a value of −dij.

3.2.5 Image Warping

Our models of dispersion across the image plane, described in Section 3.2.4,

express dispersion as a continuous vector field. Such representations of dis-

persion are not directly usable for two reasons: First, they do not account for

the discrete nature of digital images. Second, our image estimation algorithm

is iterative (Section 3.7), and it is too time-consuming to sample complex

dispersion functions each iteration.

We address both concerns by creating discrete representations of dispersion:

matrices that map vectorized images to their dispersed or corrected versions.

To construct a dispersion matrix operator, Φ, we iterate over all pixel loca-

tions in the output image, Iout = Φ Iin. For a given pixel in the output image,

in a given colour channel or spectral band, we evaluate the dispersion function

to find its corresponding position in the input image. As the corresponding
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position is pair of real-valued coordinates, we use bilinear interpolation of the

surrounding pixels to sample the input image at the position. Therefore, the

elements of Φ giving the value of the output pixel as a linear combination of

the pixels of the input image are the weights computed for bilinear interpo-

lation. Such an approach follows from related works on correcting images for

chromatic aberration by image warping [14, 99].

While we described how our dispersion model accommodates for spatial dis-

cretization, the reader may wonder how we have treated spectral discretization.

Our optimization problem (3.1) includes an operator, B, converting spectra

represented in an arbitrary basis to spectra represented using a discrete sam-

pling of the visible spectrum. As we will discuss in Section 3.3.2, we presently

use a representation for spectral images which is already very close to a discrete

sampling of the visible spectrum. Therefore, we could use the same spectral

sampling for our dispersion operators. Instead, however, we have chosen to de-

fine the spectral resolution of the dispersion operators partially-independently

of the spectral sampling of the input image. Doing so allows us to change our

spectral basis representation without reducing the quality of our dispersion

operators.

Given a rectangular region of the image plane, for which we want to select a

spectral resolution at which to sample dispersion, we divide the rectangle into

quadrants. We evaluate the dispersion function at the centre of each quadrant,

for the minimum and maximum wavelengths (λmin, λmax) at which the camera

has a non-negligible sensitivity in any colour channel (e.g . 5% of the peak

sensitivity in the same colour channel). We avoid sampling dispersion at the

centre of the rectanglular region, or at its edges, because dispersion tends to be

minuscule at the centre of an image, and because our models of dispersion are

less accurate towards the edges of the image. We take the mean length, l, of the

eight sampled dispersion vectors (one vector for each of λmin and λmax for each

quadrant) to be the scale of dispersion for this region. Next, we calculate the

number, n, of dispersion sampling wavelengths as the maximum of the number

of spectral basis vectors represented in B and the value d l
0.1
e + 1. (0.1 is the

value we have chosen to control the spectral resolution, as described below.)
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When generating our dispersion matrix operator, Φ, we will sample dispersion

for the n equally-spaced wavelengths in the interval from the minimum to the

maximum wavelengths used above (λmin, λmax).

Consequently, we will always sample dispersion such that the shift between

consecutive spectral bands at which dispersion is sampled is approximately no

greater than 0.1 pixels on average. We chose this limit of 0.1 pixels as it was

determined by Rudakova and Monasse to be the lower limit at which dispersion

is perceivable [99]. Also, by ensuring that our spectral sampling of dispersion

is at least the dimension of the spectral basis represented by B, we will not

lose information by spectrally-undersampling the image when applying Φ.

3.3 Image Representation

We introduced the problem of image sampling in Section 3.2.5 with respect

to evaluating models of dispersion. As digital cameras capture discretized

images, we must convert our estimated images to discrete samples in order

to evaluate the data-fitting term in problem (3.1). To take full advantage of

the image sensor’s pixel resolution, we have chosen to use the same spatial

sampling (i.e. pixel representation) for our estimated images as the captured

images. In the following sections, we explain our choice of spectral sampling,

after first providing some background information.

3.3.1 Converting Spectra to Colour

If we assume the camera sensor has a linear response to light irradiance, and

that there is no crosstalk between pixels, then the spectral irradiance, S(x,y) (λ),

of light reaching the pixel at image coordinates (x, y), determines the pixel’s

value as follows:

I(x,y,c) =

∫
λ

G(x,y) (λ)Qc (λ)S(x,y) (λ) dλ, c ∈ {Red, Green, Blue} (3.6)

In (3.6), we assume that the spectral irradiance of the light is independent of

time. G(x,y) (λ) is a term which encapsulates the ISO sensitivity setting of the

camera, the exposure time, the size of the lens aperture, and the dependence
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of light attenuation on the position of the pixel. We assume G(x,y) (λ) = 1.

Qc (λ) represents the spectral response of the camera, which accounts for the

spectral transmittance of the lens, the colour filter for colour channel c, and

the quantum efficiency of the sensor. (The latter two quantities are referred

to as the “spectral sensitivity” of the camera, which is independent of the

lens system [72].) Equation (3.6) is only an approximation —For a more

sophisticated model of raw image responses, see Qiu and Xu [96], for example.

In practice, we express the integral in (3.6) as a summation over the discrete

spectral bands at which Qc (λ) and S(x,y) (λ) have been sampled, and use the

trapezoid rule for numerical integration.

Accurate estimation of the camera’s colour channel spectral response func-

tions, Qc (λ) for c ∈ {Red, Green, Blue}, requires professional optical equip-

ment [30]. Methods for camera spectral calibration using lower-cost equipment

usually still require knowing the spectral power distribution of the light enter-

ing the camera [30, 96], and so are still impractical. In constrast, methods that

can accommodate unknown light spectral power distributions rely on strong

assumptions, such as that the camera spectral sensitivities are well-described

by an empirical basis [54], or that they can be approximated by linear combi-

nations of the CIE tristimulus functions (known as the Luther condition) [94].

We show the CIE tristimulus functions in Figure 3.4.

In our work, we have used three sets of spectral response or spectral sen-

sitivity functions. The first are the CIE 1931 Standard 2◦ Observer spectral

tristimulus functions (Figure 3.4), approximating the colour vision of a human

observer. We use these functions to convert spectral power distributions to the

CIE 1931 XYZ colour space, by following the ASTM E308 standard [6]. From

the CIE 1931 XYZ colour space, we can produce colours in the sRGB colour

space that are suitable for visual inspection when sent to a display device.

For the details of colour space conversions, we refer the reader to the online

resource created by Bruce Lindbloom1.

We use a second set of spectral sensitivity functions for our simulated

experiments. In our simulated experiments, we simulate raw colour-filter array

1http://brucelindbloom.com/
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Figure 3.4: The CIE 1931 Standard 2◦ Observer spectral tristimulus functions,
used to convert spectral power distributions to the CIE 1931 XYZ colour space

images from spectral images. We selected the spectral sensitivities of the Nikon

D5100 consumer DSLR camera (Figure 3.5), measured by Darrodi et al. [22],

because their small dataset of camera spectral sensitivities is both recent and

accurate.

Finally, in our real experiments, we use spectral sensitivities measured by

FLIR for the Sony ICX655, 2/3” image sensor (Figure 3.6) [32], as our Point

Grey BlackFly Flea3 camera uses this sensor. While spectral sensitivities may

vary across individual cameras, and while the data from FLIR does not account

for our lenses, we believe that it is still a more accurate characterization of our

camera than we could obtain using our available equipment. We justify our

use of FLIR’s data in Figure 4.12.

3.3.2 Spectral Image Representation

Having described all of the scene-independent quantities in (3.6), we now focus

on the spectral irradiance of light reaching the pixel, S(x,y) (λ). In works on

data-driven reconstruction of spectral images from RGB images (e.g . Nguyen

et al. [84]), spectral irradiance is sometimes decomposed into the product of
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Figure 3.5: The spectral sensitivities of a Nikon D5100 camera, measured by
Darrodi et al. [22]
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Figure 3.6: The spectral sensitivities of a Sony ICX655, 2/3” image sensor,
measured by FLIR [32]
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the spectral reflectance R(x,y) (λ) of the material being viewed, and the spectral

power distribution of an illuminant L (λ):

S(x,y) (λ) = R(x,y) (λ)L (λ) (3.7)

One reason for doing so is that datasets may provide effective reflectance im-

ages. Effective reflectance images are obtained from spectral irradiance im-

ages by dividing the spectral signal at each pixel by the spectral signal of a

reference object in the image, and then multiplying by the known reflectance

of the reference object [33]. Effective reflectance images are approximately

illuminantion-invariant.

The decomposition in (3.7) may seem problematic. For one, the illumi-

nation may not be constant over the scene. For another, spectral reflectance

is only indirectly related to the captured image. The advantage of the de-

composition in (3.7) is that separately estimating the two quantities may be

simpler than directly recovering the spectral irradiance: Illumination estima-

tion from RGB images is a well-studied problem [57], whereas the reflectances

of real objects are well-approximated by a low-dimensional manifold [53], and

so can be approximated using a small set of basis spectra. In practice, many

data-driven spectral reconstruction methods neglect the illuminant and learn

illuminant-specific mappings from RGB images to spectral irradiance images,

where the spectral irradiance images are part of a dataset generated using a

spectral camera, and the RGB images were simulated from the spectral irra-

diance images [3, 2, 4, 104]. The limited variety of illuminants used in the

datasets [4, 17, 19, 84, 128] may be critical to the success of such techniques.

For instance, Jia et al. [53] concentrate on images taken under outdoor illu-

mination, and acknowledge that the complexities of indoor illumination may

violate their assumption of low-dimensional spectra.

We choose to express spectral images in terms of spectral irradiances,

rather than factoring spectral irradiance into reflectance and illumination (3.7).

While spectral reflectances may allow us to leverage a useful low-dimensional

basis for accurate spectral reconstruction, we do not want the accuracy of our

method to be limited by the relevance of the training data used to create such
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a basis. Moreover, we are unable to collect high-quality spectral images to

experiment with training data of our own. We also cannot adequately test our

method on datasets of spectral images because they do not provide images

that are ideal for calibrating dispersion.

Nevertheless, working with spectral irradiance still leaves open the question

of a basis representation, because the visible spectrum is a continuous space,

whereas our optimization problem (3.1) recovers discretized images. An ob-

vious choice of spectral basis is simply to sample spectra at evenly-spaced

wavelengths. For instance, Baek et al. [7] use 23 bands, spaced 10 nm apart,

but do not explain how they selected this number of bands. We also use an

evenly-spaced sampling of the visible spectrum, but we propose criteria for

selecting the appropriate number of bands.

The first criterion is to use only three bands, because the camera has three

colour channels, and so our optimization problem (3.1) would be well-posed if

we use strong regularization terms that properly demosaic the image. As we

show in Section 5.4.3, however, three bands are insufficient for modelling the

full range of colours in an image.

Second, we can use a set of known spectral measurements to find a set of

bands which optimizes the spectral reconstruction error. While this approach

has empirical validity, it may be expensive to obtain high-quality reference

measurements. Furthermore, the evaluation will focus on spectral reconstruc-

tion accuracy in textureless regions of the image, because equipment for mea-

suring spectral power distributions, such as point spectrometers, average light

from non-negligible areas. Dispersion is only visible in textured regions, so

the spectral reconstruction accuracy in textured regions may be different from

that in textureless regions.

Third, and last, we can use the spectral response functions of the camera

to find a reasonable spectral sampling for the estimated image. The spectral

response functions of any trichromatic camera are approximately bandlimited:

They can be accurately approximated using a small number of samples rela-

tive to the sampling resolution at which they were measured. For example,

Figure 3.7 shows that the spectral sensivitities of the Nikon D5100 camera [22]
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satisfy this assumption. For the Nikon D5100 spectral sensitivities, if we define

their bandlimit as containing 95% of their signal power, then we need a sam-

pling period of 35.5 nm in the visible spectrum to capture all of the spectral

information that falls within this bandlimit. The number of samples needed is

further reduced by the limited region of high sensitivity of the camera —We

do not need to sample spectral images at wavelengths to which the camera

is insensitive. In practice, we restrict spectral samples to the interval of the

visible spectrum where any colour channel responds with at least 5% of its

peak sensitivity. Combining both the domain and frequency constraints, for

the Nikon D5100 spectral sensitivities, we use a set of 8 equally-spaced spectral

bands in the range from 418 to 667 nm to represent our spectral images.

3.3.3 Spectral irradiance computation

From the discrete, constant-spacing sampling representation of our spectral

images, we can derive the change of basis operator, B, in problem (3.1) after

choosing an interpolation kernel, K. The spectral irradiance at a wavelength of

λ, given the basis coefficients, {vi} , i ∈ {1, 2, . . . , b}, of the estimated spectral

image, is:

S(x,y) (λ) =
b∑
i=1

K (vi − λ) I(x,y,vi) (3.8)

Usually, we are only interested in sampling the spectral irradiance at a

finite set of equally-spaced wavelengths, {sj} , j ∈ {1, 2, . . . , N}. Further-

more, our interpolation kernel is always a function with even symmetry (i.e.

K (−x) = K (x)). Therefore, we can erect the interpolation kernel around

each wavelength sj in the sampled representation of the spectral irradiance:

S(x,y,sj) =
b∑
i=1

K (sj − vi) I(x,y,vi) (3.9)

From (3.9), we obtain B:

B =


K (s1 − v1) K (s1 − v2) · · · K (s1 − vb)
K (s2 − v1) K (s2 − v2) · · · K (s2 − vb)

...
...

...
K (sN − v1) K (sN − v2) · · · K (sN − vb)

 (3.10)
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Figure 3.7: Cumulative power distributions of the spectral sensitivities of a
Nikon D5100 camera. The cumulative power distributions are the cumulative
sums of the squared moduli of the discrete Fourier transforms of the spectral
sensitivities. We exclude the power at the zero frequency from the sum. The
right edge of the plot is the Nyquist frequency corresponding to the 5 nm
sampling period of the sensor spectral sensitivities. Note that the cumulative
power distributions in the figure are expressed relative to their peak values.
(The spectral sensitivities of the camera were measured by Darrodi et al. [22],
and are shown in Figure 3.5.)
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If we were to use the sinc function, sinc (x) = sin(πx)
πx

, as the kernel K, then

K would perform ideal bandlimited interpolation [37]. In the case where the

output spectral irradiance has a lower sampling frequency than our spectral

image, we compute B as the product of two interpolation matrix operators:

B = Bb→NBb→b (3.11)

where Bb→b will interpolate the image to the same sampling frequency, and is

needed in case K (0) 6= 1. Bb→N is a downsampling operator that uses the sinc

function as the interpolation kernel to remove frequencies above the Nyquist

limit of the sampling space {sj} , j ∈ {1, 2, . . . , N}, therefore preventing alias-

ing artifacts in the result.

Aside from spectral downsampling (3.11), we do not use the sinc function

as an interpolation kernel because it may produce negative values between

sampling locations, violating the non-negativity constraint in problem (3.1).

Instead, we chose a Gaussian kernel, because it produces smooth interpolated

spectral irradiances, while preserving non-negativity:

K (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
(3.12)

We selected the σ parameter of the Gaussian kernel K (x) such that 95% of

the power of the kernel is carried by frequencies within the Nyquist frequency

of the estimated spectral image. In other words, we match the bandlimit of

the Gaussian kernel to that of the estimated spectral image.

As discussed in Section 3.3.2, our estimated images are sampled at loca-

tions which lie within the portion of the visible spectrum where the camera

spectral sensitivities are non-negligible. Real spectral signals are defined over

the entire electromagnetic spectrum, however, and we need to extrapolate to

points slightly outside of our sampling domain to convert estimated images

to colour, or to compare them with reference spectral data. We calculate B

as though our spectral images are padded with large numbers of samples at

shorter and longer wavelengths. These short-wavelength and long-wavelength

samples have values equal to the values of the images at the shortest and
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longest wavelengths of their actual sampling domains, respectively. This ap-

proach gives our estimated images approximately constant extrapolation con-

ditions, which is more physically plausible than using values of zero outside of

the sampling domain, for example.

3.4 Mosaicing

Mosaicing refers to the subsampling of colour information in a conventional

single-sensor colour camera, in which each pixel senses light filtered according

to a single colour channel. Most colour cameras use a Bayer pattern of colour

filters [8], which is a repeating pattern of 2 × 2 squares of pixel filters hav-

ing one Red colour filter, one Blue colour filter, and two Green colour filters

(Section 2.1).

We implement mosaicing, M in problem (3.1), as a sparse matrix with

elements equal to one where the corresponding pixel measures the correspond-

ing colour channel. Mosaicing introduces effects which we presently do not

account for, however. In particular, the colour filters affect crosstalk between

pixels [46, 96]. Our image formation model assumes that all pixels respond

only to the light directly incident upon them, although crosstalk may have an

important effect on our results, as we discuss in Section 4.2.4.

3.5 Regularization Penalties

Having described our image formation model, we have explained the data-

fitting term in problem (3.1), and now change our focus to the second term,

which is a weighted sum of prior terms:

N∑
j=1

wjSj (I) (3.13)

There is a wide variety of image priors proposed in literature, and some

authors, such as Tan et al. [115] use many priors in an attempt to combine

their strengths and compensate for their weaknesses. We selected image priors

that were widely-used in literature, that do not directly rely on training data
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Table 3.1: The summations of image prior terms that we tested in our image
estimation experiments. Aside from varying the prior terms in our image
estimation problem (3.1), for each combination of prior terms, we tested image
estimation with, and without, a non-negativity constraint on the image.

Condition

Prior terms
Spatial gradient Mixed gradient Spatial Laplacian
S1 (I) = ‖∇xyI‖pp S2 (I) = ‖∇λ∇xyI‖pp S3 (I) =

∥∥∇2
xyI
∥∥p
p

p = 1 p = 2 p = 1 p = 2 p = 1 p = 2
L1 3

L2 3

Lap1 3

Lap2 3

L1L1 3 3

L2L2 3 3

L1SpatialLap2 3 3

L1SpectralLap2 3 3

(but that may be inspired from statistical studies of images), and that incur

a reasonable computational cost during image estimation. We list the com-

binations of prior terms we tested in Table 3.1. We express our prior terms

as sparse matrix operators applied to the vectorized form, I, of the spectral

image I.

The first prior, also used by Baek et al. [7] (with p = 1), penalizes the

spatial gradient of the image:

S1 (I) = ‖∇xyI‖pp (3.14)

where the image spatial gradient is defined as

∇xyI
∣∣
(x,y,λ)

=

[
I(x+1,y,λ) − I(x,y,λ)

I(x,y+1,λ) − I(x,y,λ)

]
(3.15)

This penalty on the image spatial gradient is often used in image restoration,

where p = 2 allows for a simple least squares optimization, whereas p ≤ 1

enforces sparsity (p = 1 is a common choice) [64]. We have tested p = 2

(the L2 norm) and p = 1 (the L1 norm), although natural images are best

modelled by p ∈ [0.5, 0.8] [106]. Note that the L1 norm penalty is anisotropic,

in contrast to the closely-related isotropic total variation norm proposed by
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Rudin et al. [100], ∫
(x,y)

√(
∂I(x,y,λ)

∂x

)2

+

(
∂I(x,y,λ)

∂y

)2

(3.16)

We have tested the anisotropic L1 norm penalty, rather than the total variation

norm, for closer comparison with Baek et al. [7].

The second prior, proposed by Baek et al. [7] (with p = 1), penalizes the

spectral-spatial mixed gradient of the image, with the intention of aligning

edges between spectral bands:

S2 (I) = ‖∇λ∇xyI‖pp (3.17)

The image spectral gradient is defined by

∇λI
∣∣
(x,y,λ)

= I(x,y,λ+∆λ) − I(x,y,λ) (3.18)

with ∆λ equal to the spacing between adjacent spectral bands in the spectral

image. As with the first prior, we tested both L2 (p = 2) and L1 (p = 1) norm

regularization with the spatial-spectral prior.

Finally, the third prior we tested is a prior on the image Laplacian, and

was used by Song et al. [108] (with p = 2):

S3 (I) =
∥∥∇2

xyI
∥∥p
p

(3.19)

The image Laplacian is a second-order derivative operator defined by the equa-

tion:

∇2
xyI
∣∣
(x,y,λ)

= 4I(x,y,λ) − I(x+1,y,λ) − I(x−1,y,λ) − I(x,y+1,λ) − I(x,y−1,λ) (3.20)

We tested both L2 (p = 2) and L1 (p = 1) norm penalties on the image

Laplacian for comparison with the L2 and L1 versions of our other priors.

The Laplacian is used in edge detection [113], and so can serve as an effective

smoothness prior. Moreover, we have also selected it because it is related to

demosaicing. As discussed by Kiku et al., bilinear interpolation can perfectly

demosaic images with Laplacian magnitudes of zero [59] (as mentioned in Sec-

tion 2.1), suggesting that a penalty on the image Laplacian may favour some

of the desirable properties that could be obtained by bilinear interpolation.
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Many authors use penalties on the spectral gradients of images during spec-

tral image reconstruction (e.g . [27, 108]). Spectral radiances originate from

diverse phenomena, however, and many real-world spectra, such as fluorescent

light spectral power distributions, or atomic emission spectra, are not smooth.

We also note that spectral smoothness penalties would need to be stronger

at wavelengths which typically carry less power, as variability at these wave-

lengths would be smaller on average, assuming the light incident on the sensor

has Poisson noise characteristics [41]. Furthermore, integrating both spatial

and spectral regularization terms into the same cost function is challenging

because spatial roughness and spectral roughness are incomparable in magni-

tude. In light of these issues, we have used only prior terms which operate

primarily on spatial information. We have avoided explicit spectral regular-

ization, but have implicitly enforced spectral smoothness by representing our

spectral images with a limited number of spectral bands (Section 3.3.2).

Note that, as shown in Table 3.1, we have not tested the spectral-spatial

gradient prior (3.17) except in combination with the other prior terms. Pre-

liminary experiments showed that this prior cannot demosaic the image on its

own, such as shown in Figure 3.8.

3.6 Weights on Regularization Penalties

Selecting the values of the weights wj in (3.1) is challenging. The true spectral

image is unknown, so it is not possible to choose weights which result in the

most accurate estimate of the spectral image. Even if ground truth data was

available for a set of training images, the weights selected for the training

images may not be optimal for images outside the training set. Finally, any

procedure that tests different values for the weights can become intractable

because the optimization problem (3.1) is high-dimensional.

It is not surprising that many authors working with similar optimization

problems have given values for regularization weights without indicating how

they chose the values [7, 19, 115]. In contrast, Fang et al. used a fixed-point

algorithm to select their regularization parameter [27], based on a balancing
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Figure 3.8: A sample result obtained with only a prior on the L1-norm of the
spectral-spatial image gradient (3.17), and a non-negativity constraint. The
high-frequency, gridded patterns of colours in images regions that should be
smooth (e.g . the background, which should be a uniform white) indicate that
the image is not fully demosaiced.

principle that constrains the data-fitting term to have a magnitude that is a

constant multiple of the magnitude of the regularization penalty [20]. Unfortu-

nately, the approach depends on meta-parameters which must be set manually,

and is limited to a single regularization weight.

We follow the approach of Song et al. [108], who proposed an iterative

grid search for one or more regularization weights. They demonstrated the

effectiveness of their approach by comparing it against the L-curve method of

Belge et al. [9] and generalized cross-validation [34], neither of which can be

applied when the regularized optimization problem includes a non-negativity

constraint. Song et al. use the Minimum Distance Criterion (MDC) to select

regularization weights, which is defined in terms of the response surface. In

our problem (3.1), the response surface is a surface of dimension N , defined

by the following set of points in N + 1-dimensional space:

{(
‖M (Ω (Φ (B (I∗))))− Iraw‖2

2,S1 (I∗) ,S2 (I∗) , . . . ,SN (I∗)
)}

(3.21)

where I∗ is the solution to problem (3.1), and depends on the values assigned

to the regularization weights wj.
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The MDC is the Euclidean distance between a point on the response sur-

face and the ideal point where all terms in the optimization problem are si-

multaneously minimized. We find the first coordinate of the ideal point by

setting all weights to very low values (the machine epsilon), and evaluating

‖M (Ω (Φ (B (I∗))))− Iraw‖2
2. Each subsequent coordinate, the j + 1-th coor-

dinate, j ∈ [1, n], is the value of Sj (I∗) obtained when all weights are set to

very low values, but wj is set to a very high value of 1010.

We find the MDC as proposed by Song et al. [108] problematic, because

it gives equal importance to all terms in the optimization problem. In our

implementation, we have normalized the displacement from the ideal point by

the approximate range of each coordinate:

MDC (I∗) =

(
‖M (Ω (Φ (B (I∗))))− Iraw‖2

2 − p0

α0

)2

+
N∑
j=1

(
Sj (I∗)− pj

αj

)2

(3.22)

In (3.22), p0, p1, . . . , pN are the coordinates of the ideal point. α0 is equal

to ‖M (Ω (Φ (B (I∗)))) − Iraw‖2
2 − p0, where I∗ is the image obtained with all

weights set to the maximum value, 1010. αj, j ∈ [1, N ] is equal to Sj (I∗)− pj,

where I∗ is the image obtained with all weights set to the minimum value (the

machine epsilon).

Aside from our MDC, which in practice lead to oversmoothing (Section 5.2.4),

we tested two other criteria for selecting regularization weights. The first is the

mean squared error with respect to the true spectral image, the Mean Squared

Error Criterion (MSEC) and therefore can only be used in simulations:

MSE (I∗) =

∑
x

∑
y

∑
i

(
I(x,y,λi) −B (I∗)(x,y,λi)

)2

M
(3.23)

where M is the product of the number of pixels and the number of spectral

bands in the true spectral image.

The second additional criterion, which we label the Demosaicing Criterion

(DMC), is the mean squared error with respect to a demosaiced version of the

raw image, ID:

DM (I∗) =

∑
x

∑
y

(
ID,(x,y,Green) −ΩGreen (Φ (B (I∗)))(x,y)

)2

N
(3.24)
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where N is the number of pixels in the image. The DMC can be thought of

as a cross-validation error, with the colour channel values missing from the

colour-filter array used as the validation set. We evaluate the error of the

Green channel only, because of its higher sampling density in a conventional

Bayer colour-filter array.

With the DMC, we can set the smoothness of our estimated images based

on the latest demosaicing algorithms. We are not constraining our estimated

images to exactly match demosaicing results, however, and therefore we do not

introduce artifacts from demosaicing algorithms into our estimated images.

Presently, we use bilinear interpolation as the demosaicing algorithm, because

it relies only on the assumption of spatial smoothness, and therefore is unlikely

to fail catastrophically in peculiar conditions we would like to test, such as

narrowband-filtered illumination.

We find values for the regularization weights that minimize a given cri-

terion (MDC, MSEC, or DMC) using the grid search method presented in

Algorithm 3. Algorithm 3 is based on the grid search method used by Song

et al. [108]. Song et al. used 6 iterations, whereas we use a minimum number

of 6 iterations, and a maximum number of 19 iterations, the latter number

being set such that the relative error with respect to the ideal weights is at

most 5%. In-between the minimum and maximum number of iterations, the

algorithm terminates if the weight selection criterion improves by less than a

convergence tolerance (we used a tolerance of 10−6).

While we use Algorithm 3 for all of our weight selection criterion, the al-

gorithm might not converge to the ideal weights for the MSEC and DMC, as

these criteria may not be unimodal, depending on the image content. The

MDC, in contrast, is unimodal [108]. In practice, we have observed that Algo-

rithm 3 may select very low weights when using the MSEC and DMC, but the

extreme values of these weights makes them easily identifiable. Running the

algorithm on different image content is sufficient to obtain more reasonable

weights. A statistical analysis of how frequently these failures arise is unfor-

tunately very computationally-intensive, and the findings may not generalize

to different cameras, nor to different image subjects.
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Algorithm 3 Grid search for regularization weight selection

Require: A criterion Cr (I) evaluated on the image I estimated under a given
assignment of weights wj, j ∈ [1, N ]

1: for j ← 1, N do
2: aj ← machine epsilon (e.g . 2.2× 10−16) . A lower bound on wj
3: bj ← 1010 . An upper bound on wj
4: end for
5: eprev ←∞
6: s← 1 . Iteration counter
7: loop
8: for j ← 1, N do
9: Generate logarithmically-spaced values wj1 = aj, wj2, wj3, wj4 = bj

10: end for
11: Evaluate Cr (I) for each tuple in the set {w12, w13}×{w22, w23}×· · ·×
{wN2, wN3}

12: ecurrent ← minimum value of Cr (I) encountered in Line 11
13: if ecurrent ≤ eprev then . The criterion improved
14: for j ← 1, N do
15: w∗j ← wjk, where wjk minimized Cr (I)
16: end for
17: if |ecurrent−eprev|

eprev
< tolerance and s ≥ smin then

18: return w∗1, w
∗
2, . . . , w

∗
N

19: end if
20: eprev ← ecurrent

21: end if
22: s← s+ 1
23: if s ≥ smax then
24: return w∗1, w

∗
2, . . . , w

∗
N

25: end if
26: for j ← 1, N do
27: k ← index of the value wjk minimizing Cr (I) in Line 11
28: aj ← wj,k−1

29: bj ← wj,k+1

30: end for
31: end loop

Figure 3.9: The grid search strategy, based on the method of Song et al. [108],
that we use to select the regularization weights wj in our image estimation
optimization problem (3.1). Note that this algorithm is similar to the al-
gorithm we use for selecting the smoothing parameter of a thin-plate spline
(Algorithm 2).
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3.7 Optimization Algorithm

To solve problem (3.1) for the latent spectral image, B (I), we structure

the problem according to the Alternating Direction Method of Multipliers

(ADMM) framework described in Boyd et al. [12]. We note that Baek et al.

[7] also used ADMM to solve their optimization problems. ADMM can easily

accommodate our non-negativity constraint, and our L1 or L2 regularization

penalties, facilitating experiments with different objective functions. Further-

more, all terms in our optimization problem, and the non-negativity constraint,

satisfy the assumptions required for convergence, presented in Section 3.2 of

Boyd et al. [12].

ADMM has a disadvantage of being slow to converge in practice [12], and it

often fails to converge, to within our tolerance settings, within 1000 iterations.

Poor convergence is more common as the number of L1-norm regularization

penalties increases. Other optimization algorithms may be worth exploring in

the future, to obtain better convergence. For now, while we are experimenting

with different regularization penalties, we value the flexibility of ADMM more

than fast convergence.

Alternating Direction Method of Multipliers (ADMM) is a useful frame-

work for solving optimization problems by splitting them into pieces which

depend on separate variables. A general ADMM problem has the form [12]:

argmin
x,z

f (x) + g (z) , such that Ax +Bz = c (3.25)

The ADMM algorithm for solving such a problem is given as Algorithm 4.

In our problem, we have up to two penalty terms (Table 3.1). We also

use a non-negativity constraint, which we can express as the following cost

function:

v (I) =

{
∞ if ∃Ii ∈ I Ii < 0

0 if ∀Ii ∈ I Ii ≥ 0
(3.26)

v (I) is an indicator function that is zero if and only if all elements of I are

non-negative, and an infinite positive value otherwise.

We can reformulate (3.25) for our problem as follows: First, we set x to

be the estimated image, x = I. We set f (x) to be the sum of the data-fitting
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Algorithm 4 The canonical Alternating Direction Method of Multipliers
(ADMM) algorithm

Require: A positive penalty parameter, ρ
1: Initialize k = 0 and u0 = 0
2: Initialize x0 and z0 to starting guesses
3: repeat

4: xk+1 ← argmin
x

f (x) +
ρ

2

∥∥Ax +Bzk − c + uk
∥∥2

2

5: zk+1 ← argmin
z

g (z) +
ρ

2

∥∥Axk+1 +Bz− c + uk
∥∥2

2

6: uk+1 ← uk + Axk+1 +Bzk+1 − c
7: k ← k + 1
8: until convergence

Figure 3.10: The scaled form of the ADMM algorithm for solving a problem
of the form (3.25), given in Section 3.1.1 of [12]

term, ‖M (Ω (Φ (B (I)))) − Iraw‖2
2, and any penalty terms subject to the L2

norm. Next, we set z to be a vector formed by stacking the arguments of the

L1-norm in all L1-norm penalties and the image itself (which is the argument

of v in (3.26)). Finally, we formulate the constraint Ax +Bz = c by setting A

to be a stack of regularization operators corresponding to the L1-norm penalty

terms, and the non-negativity constraint.

In the following discussion, we will present ADMM algorithms for two

cases:

Case (i) L1-norm penalties on the spatial and spectral-spatial gradients of the

image (L1L1 in Table 3.1), and a non-negativity constraint

Case (ii) L2-norm penalties on the spatial and spectral-spatial gradients of the

image (L2L2 in Table 3.1), and a non-negativity constraint

For Case (i), z =
[
z1 z2 z3

]T
=
[
∇xyI ∇λ∇xyI I

]T
, and g (z) is the

sum g (z) = w1 ‖z1‖1 +w2 ‖z2‖1 + v (z3). The linear equality constraint in this

case has A =
[
∇xy ∇λ∇xy IM×M

]T
, where I is the identity matrix, and M

is the number of elements in I. B = −
[
IM×M IM×M IM×M

]T
, and c = 0.

For multiple L1-norm penalties and/or a non-negativity constraint, we ex-
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press g as a sum of terms, and can minimize g with respect to each term

separately, as described by Afonso et al. [1]. As in Baek et al. [7], however,

we use one penalty parameter per element of the sum, instead of setting one

global penalty parameter. The resulting algorithms are given as Algorithm 5,

for Case (i), and Algorithm 6, for Case (ii). Note that the I-minimization steps

in Lines 7 and 4 of Algorithms 5 and 6, respectively, are linear least squares

problems, which we solve using the conjugate gradient method. We initialize

the conjugate gradient method with the result from the previous iteration, Ik,

such that it converges quickly.

We have used the convergence criteria discussed in Section 3.3.1 of [12] to

determine when to terminate the ADMM iterations. Refer to Algorithms 7

and 8 for Case (i) and Case (ii), respectively. Convergence is determined using

a relative tolerance, εrel, and an absolute tolerance, εabs. The relative tolerance

prevents the algorithm from stopping until the primal and dual residuals are

smaller than a given fraction of the corresponding state variables. The abso-

lute tolerance prevents the algorithm from stopping until the primal and dual

residuals are smaller than a given fraction of the magnitude of a typical value

in the problem. In our problem, a typical value is a typical spectral intensity

in the estimated image. We fix the relative tolerance to 10−3, whereas the

absolute tolerance depends on the imaging environment. Instead of manually

setting an absolute tolerance for each imaging environment, we automatically

estimate an absolute tolerance from the relative tolerance and the input data,

as shown in Algorithm 9.

Algorithm 9 uses a loose bound on the values of the estimated latent image

to compute the absolute tolerance, εabs. If the output of image estimation was

a raw image, then a suitable absolute tolerance would be a given fraction of

a typical intensity value in the raw image. We take the median as a typical

intensity value, and the fraction as the relative tolerance, and so would ar-

rive at an absolute tolerance of εrel · Median (Iraw). To find a typical value in

the estimated latent image, however, we note that the raw image is formed

by integrating the product of the spectral image and the camera spectral re-

sponse (3.6). We approximate the spectral image with a uniform intensity
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Algorithm 5 ADMM for L1-norm penalty terms (Case (i))

Require: Positive penalty parameters ρ1, ρ2, ρ3

1: Initialize k = 0, u0
1 = 0, u0

2 = 0, and u0
3 = 0

2: Initialize I0 to zero
3: z0

1 ← ∇xyI
0

4: z0
2 ← ∇λ∇xyI

0

5: z0
3 ← I0

6: repeat

7: Ik+1 = argmin
I

 ‖M (Ω (Φ (I)))− Iraw‖2
2 +ρ1

2

∥∥∇xyI− zk1 + uk1
∥∥2

2

+ρ2
2

∥∥∇λ∇xyI− zk2 + uk2
∥∥2

2

+ρ3
2

∥∥I− zk3 + uk3
∥∥2

2


8: zk+1

1 ← SoftThreshold(∇xyI
k+1 + uk1, w1

ρ1
)

9: zk+1
2 ← SoftThreshold(∇λ∇xyI

k+1 + uk2, w2

ρ2
)

10: zk+1
3 ← max(0, Ik+1 + uk3)

11: uk+1
1 ← uk1 +∇xyI

k+1 − zk+1
1

12: uk+1
2 ← uk2 +∇λ∇xyI

k+1 − zk+1
2

13: uk+1
3 ← uk3 + Ik+1 − zk+1

3

14: k ← k + 1
15: until convergence or k > kmax

16: procedure SoftThreshold(yn×1, t)
17: yt ← 0n×1

18: for i← 1, n do
19: a← i-th element of y
20: if a > t then
21: Set the i-th element of yt to a− t
22: else if a < −t then
23: Set the i-th element of yt to a+ t
24: end if
25: end for
26: return yt
27: end procedure

Figure 3.11: The variation of the ADMM algorithm used for L1-norm penalty
terms, and a non-negativity constraint (Case (i)). Soft thresholding for mini-
mizing the L1-norm is described in Section 5.2 of [12]. Projecting the solution
onto the non-negative orthant in Line 10 enforces the non-negativity constraint
(Section 6.3 of [12]).
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Algorithm 6 ADMM for L2-norm penalty terms (Case (ii))

Require: A positive penalty parameter, ρ3

1: Initialize k = 0 and u0
3 = 0

2: Initialize I0 to zero
3: repeat

4: Ik+1 = argmin
I

 ‖M (Ω (Φ (I)))− Iraw‖2
2 +ρ3

2

∥∥I− zk3 + uk3
∥∥2

2

+w1 ‖∇xyI‖2
2

+w2 ‖∇λ∇xyI‖2
2


5: zk+1

3 ← max(0, Ik+1 + uk3)
6: uk+1

3 ← uk3 + Ik+1 − zk+1
3

7: k ← k + 1
8: until convergence or k > kmax

Figure 3.12: The variation of the ADMM algorithm used for L2-norm penalty
terms, and a non-negativity constraint (Case (ii)). Line 5 enforces the non-
negativity constraint, as discussed in Section 6.3 of [12].

across the spectrum, let the spectral change-of-basis operator, B in (3.1), be

an identity mapping. Under these conditions, we obtain a lower bound on a

typical value in the latent image by dividing a typical value in the raw image

by the highest area under the curve of the camera’s spectral response. This

operation is given as Line 8 in Algorithm 9.

3.8 Implementation

3.8.1 Patch-Wise Image Estimation

Our prototype implementation is written in MATLAB, and is designed for

ease of modification as opposed to computational efficiency. We use sparse

matrices to represent the latent image to raw image conversion operator, and

the image gradient operators, in the ADMM algorithms (Algorithms 5 and 6).

Matrices can be precomputed, as can the products of constant matrices, so

the ADMM iterations need only evaluate matrix-vector multiplications. An

alternative approach would be to create functions that compute the results of

applying the matrix operators to the ADMM state variables. Functions could

be used because the conjugate gradients method (used in Lines 7 and 4 of
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Algorithm 7 ADMM convergence test for L1-norm penalty terms (Case (i))

1: procedure ConvergenceTest(Relative tolerance εrel, Absolute toler-
ance εabs)

2: r1 ←
∥∥∇xyI

k+1 − zk+1
1

∥∥
2

3: r2 ←
∥∥∇λ∇xyI

k+1 − zk+1
2

∥∥
2

4: r3 ←
∥∥Ik+1 − zk+1

3

∥∥
2

5: s1 ←
∥∥ρ1∇T

xy

(
zk+1

1 − zk1
)∥∥

2

6: s2 ←
∥∥∥ρ2 (∇λ∇xy)

T (zk+1
2 − zk2

)∥∥∥
2

7: s3 ←
∥∥ρ3

(
zk+1

3 − zk3
)∥∥

2

8: ε1,pri ← εabs

√
M + εrelmax(

∥∥∇xyI
k+1
∥∥

2
,
∥∥zk+1

1

∥∥
2
) . M is the number of

elements of I
9: ε2,pri ← εabs

√
M + εrelmax(

∥∥∇λ∇xyI
k+1
∥∥

2
,
∥∥zk+1

2

∥∥
2
)

10: ε3,pri ← εabs

√
M + εrelmax(

∥∥Ik+1
∥∥

2
,
∥∥zk+1

3

∥∥
2
)

11: ε1,dual ← εabs

√
M + εrel

∥∥∇T
xy

(
ρ1u

k+1
1

)∥∥
2

12: ε2,dual ← εabs

√
M + εrel

∥∥∥(∇λ∇xy)
T (ρ2u

k+1
2

)∥∥∥
2

13: ε3,dual ← εabs

√
M + εrel

∥∥ρ3u
k+1
3

∥∥
2

14: if ∀i (ri < εi,pri and si < εi,dual) then
15: return Converged
16: else
17: return Not converged
18: end if
19: end procedure

Figure 3.13: The convergence criteria used in the ADMM algorithm for L1-
norm penalty terms, and a non-negativity constraint (Case (i)), based on Sec-
tion 3.3.1 of [12]
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Algorithm 8 ADMM convergence test for L2-norm penalty terms (Case (ii))

1: procedure ConvergenceTest(Relative tolerance εrel, Absolute toler-
ance εabs)

2: r3 ←
∥∥Ik+1 − zk+1

3

∥∥
2

3: s3 ←
∥∥ρ3

(
zk+1

3 − zk3
)∥∥

2

4: ε3,pri ← εabs

√
M + εrelmax(

∥∥Ik+1
∥∥

2
,
∥∥zk+1

3

∥∥
2
)

5: ε3,dual ← εabs

√
M + εrel

∥∥ρ3u
k+1
3

∥∥
2

6: if r3 < ε3,pri and s3 < ε3,dual then
7: return Converged
8: else
9: return Not converged

10: end if
11: end procedure

Figure 3.14: The convergence criteria used in the ADMM algorithm for L2-
norm penalty terms, and a non-negativity constraint (Case (ii)), based on
Section 3.3.1 of [12]

Algorithm 9 Computation of the absolute convergence tolerance for ADMM

Require: Relative tolerance εrel, raw image Iraw, and discretized camera spec-
tral response Qc, c ∈ {Red, Green, Blue}

1: qmax ← −∞
2: for c ∈ {Red, Green, Blue} do
3: q ←

∑
λ Qc

4: if q > qmax then
5: qmax ← q
6: end if
7: end for

8: εabs ← εrel
Median(Iraw)

qmax

·
9: return εabs

Figure 3.15: Determination of the absolute tolerance, εabs, for ADMM, from
the relative tolerance, εrel, and the input raw image, Iraw
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Algorithms 5 and 6, respectively) does not require the matrices themselves,

only the results of their application. Unfortunately, to achieve the equivalent of

matrix multiplication precomputation with functions, we would need to design

monolithic functions to replace simpler functions implementing the individual

operators M, Ω, etc., in the optimization problem (3.1). Consequently, our

prototype would be difficult to modify.

The primary disadvantage of using matrix as opposed to function represen-

tations of our operators is that matrices consume large amounts of memory.

Nevertheless, we need our program to process high-resolution images. Our so-

lution is to divide the image into patches, with some overlap between patches

to eliminate border artifacts. Consequently, we can process very large im-

ages, and we can also compute the solutions for individual patches in parallel.

We have not noticed visible artifacts at the boundaries between patches, ex-

cept when the regularization penalties are given too much weight. As such,

visible boundaries between patches is a useful indicator to the user that the

regularization weights need to be reduced. Therefore, we do not blend values

from different patches in their overlapping regions when combining the results

from individual patches to form the output image. By simply discarding the

overlapping regions, we eliminate the need for coordination between threads

processing neighbouring patches.

While we originally implemented patch-wise image estimation for compu-

tational efficiency, we since realized several other benefits from doing so. In

particular, regularization weight selection (Section 3.6) is prohibitively time-

consuming to perform when evaluating regularization weight selection criteria

on the entire image. We can therefore select regularization weights on one

image patch, or on a small number of patches, provided that each patch is

large enough to contain a good sample of image features, such as edges. Alter-

natively, for very high-quality results, we could select regularization weights

that are specific to each patch of the image being estimated, provided that the

large computational cost is acceptable. Another major benefit of patch-wise

image estimation is adaptive sampling of the dispersion model. Specifically,

we choose a spectral resolution at which to compute the dispersion operator,
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Φ, for each patch. Therefore, we save time sampling our model of dispersion in

patches with little dispersion, whereas in patches with significant dispersion,

we still generate high-quality dispersion operators.

3.8.2 Running Time Comparison with Other Systems

The running time of our method is comparable to the running times of similar

global optimization approaches [7, 19], although comparisons are only approx-

imate because of differences in computer hardware. Choi et al. provided an

implementation of their method [19], and we observed that it has performance

limitations similar to those that we resolved using a patch-wise decomposi-

tion. Specifically, their TensorFlow2 implementation consumes high amounts

of memory when processing large images. We note that other authors down-

sample the input images used for global optimization-based spectral image

estimation [7], or report results on small images, such as 512 × 512 [108],

600× 860 [7], or 256× 256 [27] pixels.

We have performed a speed comparision with the prototype of Choi et

al., after refactoring it so that it estimates images in patches (sequentially,

but the solution for each patch is computed using our GPU). The refactoring

was necessary in order to run it on the high-resolution images from their

dataset. We also replaced their modulation matrix (defined in Section 2.3.1)

with one representing basic spectral-to-colour conversion and colour-filter array

sampling, in order to compare our system with theirs under the same image

formation model. (We did not include dispersion in the modulation matrix,

because their dataset does not allow for dispersion calibration.) Our modified

version of their prototype required 20 hours to compute a 2018×3072 spectral

image with 31 bands, given their default number of 20 ADMM iterations. Our

method does not use GPU acceleration, but processes four patches in parallel

on our current hardware. When estimating the same image at a resolution of

8 control bands, in the worst case, we performed 1000 ADMM iterations, and

500 conjugate gradients iterations within each ADMM iteration. Under these

2https://www.tensorflow.org/
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conditions, our system required 112 hours to process the image3. Assuming

linear scaling with the number of ADMM iterations, the number of spectral

bands being estimated, and the inverse of the number of parallel processing

units, our system performed approximately 1000
20
· 8

31
· 1

4
= 3.22 times as much

work, and so may have taken at most 35 hours to perform 20 ADMM iterations.

The comparison is inconclusive because of the differences in the scale and

number of iterations of optimization, and in the parallelization methods (GPU

vs. CPU-based multithreading)

Our method has regularization terms which are much simpler than the

convolutional autoencoder-based image prior of Choi et al. [19], so we expect

that our method can run faster in general, depending on how it is implemented.

In contrast, we have added a non-negativity constraint relative to the first

stage of the method of Baek et al. [7]. As Baek et al. have two further global

optimization stages in their method, however, our method is likely faster than

theirs overall. We leave in-depth analysis of running time, accounting for

the number of iterations required to obtain the same accuracy as comparison

methods, to future work.

3.9 Algorithm Variants

The preceding sections described our complete image estimation algorithm,

including calibration. We presented several different regularization penalties

(Section 3.5), and noted that we tested our algorithm with and without a non-

negativity constraint on the latent spectral image. In addition to these minor

variations, we tested the following alternative models of image formation.

3.9.1 Direct Colour Image Estimation

In direct colour image estimation, we model the latent image I as an image

in the camera’s raw colour space, and estimate it by solving the simpler opti-

3 In this case, we used the L1SpatialLap2 combination of penalty terms (Table 3.1),
with a non-negativity constraint on the estimated image. The weights on the penalty terms
were selected using the MDC, and were very large, leading to poor convergence.
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mization problem:

I∗ = argmin
I
‖M (Φ (I))− Iraw‖2

2 +
N∑
j=1

wjSj (I) , I ≥ 0 (3.27)

In (3.27), the dispersion operator, Φ, models shifts between colour chan-

nels. In this case, we have not simulated Φ from a spectral model of dispersion,

but have approximated lateral chromatic aberration with colour channel warp-

ing, in keeping with previous works (specifically Rudakova and Monasse [99]).

We calibrate dispersion by modelling shifts between colour channels in images

of disk patterns captured under wideband illumination. The procedure is the

same as described in Section 3.2, but is less robust because of the colour-filter

array. As noted in Section 3.2.1, if we use disk keypoints to measure disper-

sion, we must fit them separately to individual colour channels. For dispersion

estimation by patch-wise image registration (Section 3.2.3), we would need to

demosaic all image channels to register them with the Green channel, thus

introducing additional error from demosaicing.

3.9.2 Image Estimation without Dispersion

Another simpler optimization problem disregards dispersion, treating Φ in (3.1)

as an identity mapping. After image estimation, we then warp the image to

correct lateral chromatic aberration.

Ignoring dispersion during image estimation has two clear disadvantages.

First, dispersion may serve as a useful constraint to improve spectral image

estimation [7], so the image may be less accurately-estimated. Second, taking

dispersion correction outside of our global optimization algorithm may remove

benefits of global optimization, such as the slight deblurring effect caused by

bilinear interpolation in the dispersion operator (Section 3.2.5). We illustrate

the deblurring effect later in Figure 5.13.

On the other hand, there are advantages to separating image estimation

from dispersion correction. In particular, any errors in the model of dispersion

will not affect image estimation. Also, the optimization problem (3.1) is easier

to solve because the data-fitting term has a higher degree of sparsity. Dis-

persion reduces sparsity by increasing the number of pixels in the estimated
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image on which a given pixel in the simulated raw image, M (Ω (Φ (B (I)))),

depends.
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Chapter 4

Experimental Design

Experimental validation of algorithms for spectral reconstruction from RGB

images is extremely challenging. To evaluate a reconstructed spectral image,

one would need an imaging system that can capture RGB and spectral images

(high spectral resolution images) using the same physical pixels. Furthermore,

such a system should generate RGB images with the same noise characteris-

tics, crosstalk, chromatic aberration, and other non-idealities as consumer-level

digital cameras.

4.1 Approaches to Image Reconstruction Eval-

uation

4.1.1 Spectral Reconstruction Evaluation

Other researchers have approached experimental validation of spectral image

reconstruction in two ways. First, they have collected spectral images using

line-scanning spectral imaging systems [4, 17, 84], or using monochromatic

cameras behind narrowband optical filters, such as liquid crystal tunable fil-

ters [19, 80, 128]. From these images, they have simulated RGB images using

the spectral sensitivity functions of trichromatic cameras, or the CIE spec-

tral tristimulus functions. We refer to experiments of this type as simulated

experiments, because the RGB images are not affected by realistic imaging ar-

tifacts. Simulated artifacts are usually those which the image reconstruction

algorithms are designed to be robust against, and the resulting RGB images
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lack complex interactions that would occur between these artifacts and other

artifacts not simulated. For example, the NTIRE 2018 challenge on spectral

reconstruction from RGB images included images with simulated JPEG com-

pression and quantization, but spectral reconstruction algorithms performed

well to the point where the organizers suggested that other sources of image

noise be simulated in future challenges [5].

The second major approach to image evaluation starts from captured RGB

images instead of captured spectral images. Spectral information from the

scene presented to an RGB camera is collected separately, such as with a

point spectrometer. Typically, data-driven spectral reconstruction algorithms

show poorer performance relative to the reference spectral information than

when tested on simulated RGB images [4, 53], although some authors report

comparable performance on both simulated and real images [2]. The major-

ity of works on data-driven spectral reconstruction algorithms do not report

results on real RGB images.

While using captured RGB images as input helps assess how a spectral

reconstruction algorithm will perform in practice, such evaluations are far from

conclusive. It is unclear how much of the error is attributable to uncertainty

in the camera’s spectral response functions, if they are used by the image

reconstruction algorithm. The evaluations are also less reliable because of

the small number of spectral measurements that can be reasonably acquired

manually. Unfortunately, spectrometers can only characterize relatively large,

textureless patches on objects in the scene. As such, spectrometry data is

unavailable at strong edges in the image, even though edges reveal chromatic

aberration, and test the limits of demosaicing algorithms. Lastly, spectrometry

measurements are often relative to a reference object, rather than giving the

absolute spectral radiance incident on the camera.

4.1.2 Chromatic Aberration Correction Evaluation

Evaluating chromatic aberration correction is even more challenging than eval-

uating spectral reconstruction. Chromatic aberration is difficult to simulate,

although a few authors have added simulated chromatic aberration to images
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from spectral image datasets [60, 122]. Korneliussen and Hirakawa provide

few details concerning their simulations other than stating that they mod-

eled chromatic aberration according to the principles of Gaussian optics, but

applied a modulation transfer function to account for diffraction [60]. Wang

et al. [122] describe their simulation pipeline in more detail, showing that it

approximates chromatic aberration by applying geometric distortion (lateral

chromatic aberration) and blurring (longitudinal chromatic aberration and

other optical aberrations) separately.

Other authors, working on chromatic aberration correction in the RGB

domain, have approximated chromatic aberration by magnifying and/or blur-

ring colour channels [18, 111]. Sun et al. appear to have simulated chromatic

aberration as per-colour channel blurring, despite using images from a spectral

image dataset as input [111]. While RGB-based simulated chromatic aberra-

tion can be accurately restored by RGB-based chromatic aberration correction

algorithms, these experiments are not well-grounded in the principles of optics.

As for chromatic aberration simulation in spectral images, the simulated

chromatic aberration may be physically-realistic, but it is applied on top of

any existing chromatic aberration in the spectral images. Other artifacts in

the images may be very different from the typical artifacts in RGB images. In

particular, line-scanning systems likely do not produce images with the same

signal characteristics as images captured by conventional consumer cameras

with single-frame 2D image capture. In Figure 4.1, we show an example of

spectral dispersion in the image from a line-scanning system that would inter-

fere with added synthetic chromatic aberration.

Spectral images captured using narrowband optical filters and monochro-

matic cameras are more closely-related to images taken by RGB cameras than

are spectral images from line-scanning systems. Unfortunately, optical filters

introduce spectral dispersion into the captured images, regardless of whether

they are tunable filters [7], or regular filters in a filter wheel [14]. Figure 4.2

shows an example of colour fringes in an image from a filter-based spectral

imaging system.

Given the lack of suitable input images for simulating chromatic aberra-
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Figure 4.1: A portion of the bgu 0403-1511 image from the ICVL hyperspec-
tral image dataset [4], showing colour fringes from spectral dispersion or other
imaging artifacts. Colour fringes are clearest on the thin horizontal window
frames around the door shown in the image. Images in this dataset were
captured using a line-scanning spectral camera. The RGB image shown was
provided with the dataset.

Figure 4.2: A portion of the scene04 image from the KAIST hyperspectral
image dataset [19], showing colour fringes from spectral dispersion or other
imaging artifacts. Images in this dataset were captured using a monochromatic
camera equipped with an apochromatic lens and a liquid crystal tunable filter.
The RGB image shown was provided with the dataset.
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tion, and the complexity of realistic simulation, we have evaluated chromatic

aberration correction only in images reconstructed from captured RGB im-

ages. Unfortunately, we lack ground truth aberration-free images to compare

against. Our evaluation relies on being able to measure residual chromatic

aberration in a single image, as we discuss in Section 4.4.3.

4.2 Real Experiments

4.2.1 Apparatus

The primary objective of the apparatus we used for our real experiments is

to generate realistic RGB images. Therefore, we use a BlackFly Flea3 colour

camera (Point Grey, model FL3-GE-50S5C, pixel resolution of 2448 × 2048),

as opposed to a monochromatic camera, or a spectral camera. We tested two

lenses with the same camera, a Computar 07I lens, and a Fujifilm Fujinon

1:1.4/12.5 mm lens. We calibrated spectral dispersion of both lenses, but

only used images captured using the Computar 07I lens for our image recon-

struction experiments, because both input image capture, and spectral image

reconstruction, are time-consuming. In order to calibrate spectral dispersion,

we need to capture images under narrowband illuminations. To do so with-

out altering the spectral dispersion affecting the captured images, we filtered

the illuminant, rather than placing a filter between the camera and the scene.

Alternatively, we could have lit the scene using narrowband illumination, but

narrowband illumination is generally more expensive than a limited number

of optical bandpass filters.

Our experimental apparatus is shown in Figure 4.3. A large box with a

single hole provides a controlled-illumination environment into which we place

the camera and scene. The light source is a DLP projector (Optoma EP739)

that has had its colour filter wheel removed to provide high-intensity, broad

spectrum light. When we capture conventional RGB images, we illuminate

the scene using unfiltered light from the projector, configured to project a

white test pattern. To capture images under narrowband-filtered illumination,

we use seven bandpass filters, having 10 nm full-width half-maxima, optical
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Figure 4.3: The experimental apparatus we used to collect real RGB images
and bandpass-filtered images of static scenes, consisting of a light-proof box,
a DLP projector, a camera, and a row of optical bandpass filters. The disk
calibration pattern we used to estimate dispersion is also visible at the back
of the box.

densities of 4, and 50 mm diameters, from Edmund Optics. The filters are

supported by a sliding aluminum bar between the projector and the box, and

filter the illumination to narrow ranges around 400, 450, 500, 550, 600, 650,

and 700 nm, respectively.

We note that our apparatus is not suitable for highly-accurate imaging ex-

periments, although we would need access to much higher-quality spectrometry

equipment to quantify the accuracy it allows. There are two major sources of

error: The first is the instability of the projector’s spectral power distribution.

The second is the lack of proper collimation of the light passing through the

optical bandpass filters. As our filters are intereference filters, their passbands
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will change depending on the angle of the incident light.1 Fortunately, we

roughly verified that the filtered light has the appropriate spectral power dis-

tribution by conducting an experiment with just the filters and the projector,

at the Core-Net Spectral Laboratory.2 With the assistance of Dr. Jilu Feng,

and the permission of Dr. Benoit Rivard, we manually held each filter in front

of the projector, and measured the spectral power distribution of the light

reflected from a white calibration tile, relative to the light reflected from the

tile without any filter. The resulting relative spectral radiance measurements,

taken using an Analytical Spectral Devices point spectrometer, are shown in

Figure 4.4. Aside from the 450 nm filter, which seems to have an additional

transmission peak close to the transmission peak of the 400 nm filter, all filters

conformed to the sample transmission curves provided by Edmund Optics. In

our actual experimental setup, however, the filtered light will deviate from the

measurements shown in Figure 4.4, because of the different optical environ-

ment surrounding the filters.

A final detail of our apparatus visible in Figure 4.3 is the pattern of black

dots on a white background which we used to calibrate lateral chromatic

aberration of the camera lens, by finding disk keypoints as described in Sec-

tion 3.2.1. The pattern is a high-quality matte print mounted on a foam core

board 711 × 457 mm in size. Each disk has a radius of approximately 2 mm,

and the disks are arranged in a grid with a side length of approximately 9.4

mm. During image collection, we placed the disk pattern at a distance between

30 and 50 cm from the camera.

4.2.2 Image Collection

In hindsight, our experimental apparatus should have included an additional

hole in the sliding bar shown in Figure 4.3. In this hole, we would have in-

serted a neutral density filter, to reduce the intensity difference between the

broad-spectrum light from the projector and the narrowband-filtered light.

Even then, the narrowband-filtered illuminations still cover a large dynamic

1https://www.edmundoptics.com/resources/application-notes/optics/optical-filters/
2http://coresensing.net/index.html
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Figure 4.4: Spectral radiance of the light from the Optoma EP739 DLP pro-
jector (without a colour wheel), filtered by the 400, 450, 500, 550, 600, 650,
and 700 nm centre wavelength optical bandpass filters. Spectral radiance is
expressed relative to the unfiltered light from the projector. The measure-
ments were taken with an Analytical Spectral Devices point spectrometer,
sensing the light reflected from a white calibration tile. (More details on the
spectrometer are in Section 4.6.1.)
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range, given the variation in the camera’s spectral response with wavelength

(Figure 3.6), and the non-uniform spectral power distribution of the projector.

We developed the high-dynamic range imaging procedure presented in Algo-

rithm 10 in order to create properly-exposed images under these challenging

conditions.

Algorithm 10 uses multiple exposure times to capture images which, when

combined, allow every colour channel to be properly exposed at every point

in the scene. For our BlackFly Flea3 colour camera with a Computar 07I

lens at an aperture of f/4, for instance, we selected exposure times of 3, 6,

and 12 ms for unfiltered light, and 25, 50, 100, 250, 500, 2000 and 3916 ms

for filtered light. To further improve our images, Algorithm 10 takes multiple

replicates of each image, which can then be averaged to reduce noise. We set a

higher number of replicates for images taken under unfiltered light, because the

variability in the shutter time is larger in relation to the shorter exposure times,

and because these images are more sensitive to fluctuation in the projector’s

spectral power distribution.

4.2.3 High-Dynamic Range Image Synthesis

The images we capture as described in Section 4.2.2 are mosaiced low-dynamic

range RGB images captured under a variety of shutter times. The images

contain raw pixel values. In other words, the images have not been subject

to post-processing such as white-balancing, or gamma adjustment. Our high-

dynamic range (HDR) image synthesis procedure aims to map all images to

a reference exposure time, and then blend them together to produce high-

dynamic range images with little noise, and without artifacts from clipping or

blooming.

To begin, we average together the 5 or 15 replicates of each image, and then

subtract the corresponding average dark frame image from each average image.

Assuming an ideal image sensor, but with some thermal noise, the resulting

images should be linearly related to the irradiance of the sensor. Therefore,

to map the images to a common exposure, we could divide each image by

its exposure time [98]. The assumption of linearity seems justified, as shown
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Algorithm 10 Image collection procedure

1: Set the DLP projector to display a uniform white pattern.
2: Adjust the camera lens to focus on typical distances in the scene.
3: Adjust the aperture of the lens so that images of a white panel are properly

exposed at short shutter times, under the full intensity of the projector’s
light.

4: Select several exposure times at which to capture images under the full
intensity of the projector’s light. The exposure times must collectively
allow each colour channel to be properly exposed.

5: Filter the light from the projector with each of the optical bandpass filters
(with passbands centered at 400, 450, 500, 550, 600, 650, and 700 nm).
Select several exposure times which collectively allow for properly exposed
images, in each colour channel, for each filtered lighting condition.

6: Cover the hole in the box through which light enters from the projector.
Capture dark frames for dark frame subtraction, at all of the exposure
times determined previously. For the exposure times from Step 4, capture
15 dark frames, whereas for the exposure times from Step 5, capture 5
dark frames.

7: for each scene to be imaged do
8: Capture 15 images at each of the exposure times determined in Step 4

under unfiltered light from the projector.
9: Capture 5 images at each of the exposure times determined in Step 5

under light from the projector filtered by each of the optical bandpass
filters.

10: end for

Figure 4.5: Our exposure bracketing procedure for capturing images of real
scenes in our experiments with our controlled light environment (Figure 4.3).
For all combinations of camera lenses and lens settings, we included the disk
pattern used to calibrate chromatic aberration as at least one of the scenes.
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Table 4.1: A comparison of exposure blending scaling factors fitted between
dark-subtracted images taken under different exposures with the scaling fac-
tors predicted from the exposure times under which the images were taken.
Scaling factors computed for different colour channels (last three columns)
agree well with each other, and with the predicted scaling factors (second
column), suggesting that the BlackFly Flea3 camera’s image sensor is highly
linear.

Shutter time, t Ratio tmin/t Red Green Blue
25 1 1.0000 1.0000 1.0000
50 0.5 0.5057 0.5090 0.5097
100 0.25 0.2558 0.2574 0.2598
250 0.1 0.1049 0.1053 0.1050
500 0.05 0.0555 0.0542 0.0537
2000 0.0125 0.0147 0.0146 0.0141
3916 0.00638 0.0080 0.0078 0.0074

in Figure 4.6, but we do not want to assume known exposure times, so we

calibrate scaling factors relating different exposures, following the approach of

Darrodi et al. [22]. For each consecutive pair of exposures, we select pixels with

values under both exposures that are at least 2%, but no greater than 95%, of

the saturation value. We compute the first principal component of the pixels to

find the scaling factor relating the two exposures. By multiplying the scaling

factors relating different pairs of consecutive exposure times, we then obtain

scaling factors relating all exposures to the highest exposure, which we selected

as our reference exposure. As a precaution, we repeated the calibration process

for each colour channel separately, but found that there was little difference

between colour channels (Table 4.1). We use the shortest shutter time as the

reference exposure, so that all pixels in the high-dynamic range image will have

values less than or equal to the saturation value. Note that we do not calculate

scaling factors between all exposures simultaneously, but do so between pairs

of exposures, because there are very few pixels that are properly exposed at

all exposures. In practice, we found scaling factors which agreed well with the

shutter times, as shown in Table 4.1.

When calibrating scaling factors to map images to the reference exposure,

we can leverage the large number of pixels for improved precision and ro-
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Figure 4.6: A scatterplot of pixel values for the BlackFly Flea3 camera under
two different exposures, for images of the disk pattern captured under unfil-
tered light from the DLP projector. The strongly linear relationship between
the values at the two exposures suggests that the image sensor responds lin-
early to incident light. The deviation from linearity at high pixel values is
caused by saturation.
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bustness. In contrast, blending the scaled images is more difficult because

it involves pixel-level decisions. Lindstrand noted that sensor crosstalk, or

interpixel correlation, can be highly detrimental at this stage [69]. Unfor-

tunately, crosstalk is very difficult to calibrate in general, so Lindstrand fo-

cused exclusively on sensor bloom, and experimented with different exclusion

neighbourhoods around saturated pixels to prevent bloom from affecting the

exposure-blended image [69]. We also focus on eliminating bloom in our ex-

posure blending procedure, but did not experiment with different exclusion

neighbourhoods. More generally, we do not claim that our high-dynamic range

image synthesis procedure is state-of-the-art, especially as high-dynamic range

imaging is not the main focus of our research.

In detail, our exposure blending procedure takes as input a set of images

scaled to a common exposure, with values in the range [0, 1], where 1 is the

saturation value. The output image is a weighted average of the images, com-

puted using per-pixel weights. Each pixel in each image is assigned a blooming

weight, computed using a polynomial function inspired by the discussion in

Reinhard et al. [98]

wbloom (p) =

{
1− (2p− 1)12 , if p > 0.5

1, otherwise
(4.1)

To remove blooming, the blooming weights are subject to greyscale erosion

using a disk structuring element of radius 1. The greyscale erosion will down-

weight pixels near saturated pixels, on the assumption that their values are

corrupted, even if they are not saturated. Each pixel is also assigned a local

weight, again computed based on the discussion in Reinhard et al. [98]

wlocal (p) = p
(
1− (2p− 1)12) (4.2)

The final weight for each pixel is the minimum of the two weights. Pixels

having weights of zero in all images are given a weight of one in the image taken

under the shortest exposure time. The weights are renormalized, and then used

to compute the exposure-blended image. We restate our high-dynamic range

image synthesis procedure for reference in Algorithm 11.
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Algorithm 11 High-dynamic range image synthesis

Require: All images {Ik} taken for a given scene, under the same lens settings
and illumination conditions (e.g . same optical bandpass filter), where k
indexes exposure times. Images have been averaged across replicates, dark-
frame subtracted, and scaled to a reference exposure. Intensities at the
reference exposure range from 0 to 1.

1: for k ← 1, K do . Iteration over exposures
2: for each pixel in Ik, having intensity Ikx do
3: Calculate wkx,bloom (Ikx) (4.1)
4: Calculate wkx,local (Ikx) (4.2)
5: end for
6: Update {wkx,bloom} for all pixels in Ik by greyscale erosion
7: for each pixel in Ik at index x do
8: wkx ← min(wkx,bloom, wkx,local)
9: end for

10: end for
11: H ← 0 . Initialize the output image
12: for each pixel in H, at index x do
13: if ∀k wkx = 0 then
14: Hx ← I1x . Copy pixel from the shortest exposure image
15: else

16: Hx ←
∑K

k=1 wkxIkx∑K
k=1 wkx

17: end if
18: end for
19: return H

Figure 4.7: Our procedure for synthesizing high-dynamic range images from
the images collected by exposure-bracketing (Algorithm 10)
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4.2.4 Multispectral Image Synthesis

Given that our dataset of high-dynamic images contains images captured un-

der both wideband and narrowband-filtered illuminations, one might suppose

that we have collected ground truth spectral images corresponding to the RGB

images captured under wideband illumination. Unfortunately, the two sets of

images are not comparable, primarily because we have a small set of filtered

illuminations that do not adequately sample the visible spectrum. There are

other, subtler discrepancies between the filtered and unfiltered imaging con-

ditions, however. First, we observed that each bandpass filter has a different

vignetting effect on the transmitted light. It is difficult to correct this vi-

gnetting in the captured images, except if the scene being imaged was planar,

because of parallax between the camera and the projector. In other words,

the vignetting effect, as seen by the camera, depends on the depth of objects

in the scene. The second issue is that crosstalk is nonlinear, and spectrally-

varying [69], and so its effect on the unfiltered-light image is not equivalent to

the sum of its effects on the filtered-light images.

Therefore, we create two datasets of input images for spectral reconstruc-

tion and chromatic aberration correction. The first is the set of high-dynamic

range images corresponding to the images taken under unfiltered illumination,

shown later in Figure 4.15. The second is a set of synthetic RGB images cre-

ated from the images for all filtered illuminations. The synthetic RGB images

do not have the same properties as images captured under unfiltered light, but

at least they have a known relationship with the filtered-light images, allowing

us to quantitatively evaluate spectral reconstruction at the level of individual

pixels.

Naively, we could sum over the filtered-light images to compute synthetic

mosaiced RGB images. If we then demosaic such an image, the result would

appear as in Figure 4.8b. While this image is visually acceptable compared

with the true RGB image, Figure 4.8a, it is not clear what the corresponding

multispectral image represents, because we used a trichromatic camera. In

Figure 4.9a, we show the high-dynamic range, mosaiced image captured under
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(a) (b) (c)

Figure 4.8: A comparison of different methods for producing RGB images from
our experimental setup: (a) An image captured under unfiltered light, demo-
saiced by bilinear interpolation. (b) An image created by summing over the im-
ages captured under each filtered illumination, and then demosaiced by bilinear
interpolation. (c) An image created by using bilinear interpolation to demosaic
the Green channel of the images captured under each filtered illumination, and
then collapsing the Green channel images to an RGB image by applying the
calibrated relative spectral sensitivities of the Red and Blue channels. (c) is
our preferred approach for simulating RGB images from narrowband-filtered
illumination images. Note that all images have been colour-corrected (as de-
scribed in Section 4.5).

the 550 nm optical bandpass filter. The intensity of light in the spectral

band around 550 nm depends on which colour channel is used to measure it.

In contrast, real RGB images are formed from spectral irradiances that are

colour channel-independent.

To obtain more appropriate spectral band images, we studied the relation-

ships between individual colour channels in textureless regions of the image.

Under the assumption that the sensor responds linearly to light, and that there

is little crosstalk between pixels, we calibrate best-fit scaling factors between

colour channels, as detailed in Algorithm 12.

In most cases, we observed fairly linear relationships between different

colour channels in our high-dynamic range images, such as shown in Fig-

ure 4.11a, but sometimes the relationships were highly nonlinear, as shown in

Figure 4.11b. Some of the nonlinearity may be caused by sensor crosstalk, but

it may have been exacerbated by our high-dynamic range image synthesis pro-

cedure. We doubt that the sensor itself is nonlinear, irrespective of crosstalk,

based on the linear relationship we observed between exposure time and pixel
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(a) (b) (c)

Figure 4.9: A comparison of different methods for producing spectral band
images from our experimental setup: (a) The raw image captured under light
filtered by the 550 nm optical bandpass filter, showing the Bayer filter pattern.
(b) The same image divided by the best-fit scaling factors computed between
colour channels, showing that the scaling factors do not adequately model the
relationships between colour channels (otherwise, the image would be smooth).
(c) A dense version of the Green channel of the image, obtained by bilinear
interpolation.

values (Figure 4.6). We also doubt that the nonlinearity is a result of improper

filtering of the light, as our optical bandpass filters seem to be operating as

intended (Figure 4.4).

In the future, we may consider calibrating the scaling factors between

colour channels from the original low-dynamic range images, to see whether

the nonlinear relationships between colour channels were caused by our high-

dynamic range image synthesis procedure. We may also consider a more gen-

eral relationship between colour channels that can accommodate crosstalk.

Nevertheless, our pairwise scaling factors between colour channels agree rea-

sonably well with the scaling factors predicted from the spectral sensitivities

measured by FLIR [32] for the Sony ICX655, 2/3” image sensor (Figure 3.6),

as shown in Figure 4.12.

Using the scaling factors we calibrated between colour channels, we can

approximate values in the Green channel at the Red and Blue pixels in an im-

age, in order to synthesize multispectral images, such as shown in Figure 4.9b.

Unfortunately, the nonlinear relationships between colour channels produce

poor-quality spectral band images. Instead, we synthesize multispectral im-

ages for spectral reconstruction evaluation by demosaicing the Green channels

79



Algorithm 12 Camera multispectral sensitivity calibration

1: Load a set of images for calibrating scaling factors between colour channels.
. We used all of our images.

2: Compute the magnitude of the gradient of each image, and find its median
value. Retain only pixels with gradient magnitudes less than the median.

3: Further reduce the set of pixels to those with values less than 95% of the
saturation value

4: for pixels from each narrowband-filtered illumination do
5: Create a set of pairs of Green pixels and their adjacent Red pixels
6: Use the first principal component of the pairs of pixels (computed from

the pixels expressed as points in Green-Red space), to obtain a best-fit
scaling factor between the Green and Red colour channels for the spectral
band corresponding to the narrowband-filtered illumination

7: Repeat Steps 5 and 6 for the Green and Blue channels
8: end for

Figure 4.10: Our procedure for calibrating the relative sensitivities of different
colour channels to light filtered by each optical bandpass filter. The images
used for calibration are high-dynamic range images, produced as described in
Section 4.2.3
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Figure 4.11: We observed wide variations in the relationships between different
colour channels in textureless regions of our images. (a) A scatterplot of
intensities in neighbouring Red and Green pixels in images captured under
light filtered by the 650 nm optical bandpass filter. The two colour channels
show a linear relationship. (b) A scatterplot of intensities in neighbouring Red
and Green pixels in images captured under light filtered by the 550 nm optical
bandpass filter. In this setting, the relationship between the two channels is
highly nonlinear. Scatterplots such as shown in this figure are the basis for
the scaling factors computed in Line 6 in Algorithm 12.
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Figure 4.12: A comparison of the spectral sensitivity of a typical Sony ICX655,
2/3” image sensor measured by FLIR [32] (dotted lines) with our measure-
ments of the relative spectral response between colour channels of our Point
Grey BlackFly Flea3 camera with a Computar 07I lens (solid lines). We cali-
brated our relative spectral responses as described in Algorithm 12.
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of the images captured under bandpass-filtered illumination. Doing so results

in spectral band images with less noise, such as shown in Figure 4.9c. Unfortu-

nately, these multispectral images no longer have a simple linear relationship

with RGB images produced by directly summing mosaiced images from the

different filtered illuminations (e.g . Figure 4.8b). Therefore, if we used them

to evaluate spectral reconstruction results from such images, we would not be

able to distinguish error introduced by the different image formation model

from spectral reconstruction error.

To allow for quantitative evaluation of spectral reconstruction, although at

the expense of using an oversimplified image formation model, we synthesize in-

put images for spectral reconstruction algorithms by collapsing our demosaiced

Green channel images (Figure 4.9c) to RGB. We use the spectral sensitivities

in Figure 4.12, which are normalized relative to the spectral sensitivity of the

Green channel, to synthesize the Red and Blue channels. As the Green chan-

nel spectral sensitivity is unity at all wavelengths, the Green channel of the

synthetic raw images is simply the unweighted sum of the demosaiced Green

channel images.

We restate our multispectral and corresponding RGB image synthesis pro-

cedure for reference in Algorithm 13. An example of a synthesized RGB image

is provided in Figure 4.8c. It is visually similar to Figure 4.8b, illustrating that

interesting behaviours in the spectral domain are not visible in RGB images.

As presented in Algorithm 13, we use bilinear interpolation to demosaic the

Green channel of the images captured under filtered light. We chose to use

bilinear interpolation as the demosaicing method, because the Green channel

has a high sampling density, so even a naive demosaicing approach will pro-

duce a reasonable result. Furthermore, sophisticated demosaicing algorithms

were designed to operate on images captured under wideband illumination,

and leverage relationships between colour channels that may not exist under

narrowband-filtered illumination.
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Algorithm 13 Multispectral and RGB image synthesis

1: for each scene in the dataset do
2: Load the images for all bandpass-filtered illuminations
3: Compute values for the Green channel at all pixels in each image by

bilinear interpolation
4: Output the resulting set of Green channel images as a multispectral

image
5: Compute Red and Blue channels for each Green channel image by

applying the scaling factors calibrated using Algorithm 12 (shown in Fig-
ure 4.12)

6: Sum these RGB images to produce the output RGB image
7: Subsample the output RGB image according to the sensor’s colour-filter

array to produce an output raw image to be input to image reconstruction
algorithms

8: end for

Figure 4.13: Our procedure for generating multispectral images and corre-
sponding synthetic RGB images from images captured under narrowband-
filtered illuminations. The images loaded in Line 2, which are converted into
multispectral and RGB images, are high-dynamic range images, produced as
described in Section 4.2.3
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4.3 Synthetic Experiments

In our synthetic experiments, we follow the approach of other authors, de-

scribed in Section 4.1.1: We take true spectral images, and convert them to

mosaiced RGB input images for image reconstruction algorithms, according

to the model of RGB image formation discussed in Section 3.3.1. We have not

added noise or blur to the images, because the spectral images already contain

such artifacts, and because we feel that experiments on real RGB images are

better tests of robustness to imaging artifacts.

4.3.1 Datasets

KAIST Dataset

We used two datasets of images for our synthetic experiments. The first is the

KAIST spectral image dataset [19], which we selected because its images were

captured by a monochromatic camera, not by a line-scanning spectral camera,

and so should have properties more similar to those of natural RGB images.

Furthermore, as mentioned by the authors, the images are of higher-resolution,

and have less blur, relative to images from many other datasets. The KAIST

dataset contains 30 images of size 3376 × 2704 pixels, with 31 spectral bands

at 5 nm intervals from 420 nm to 720 nm. All scenes were illuminated using

a Xenon light source, and spectral band images were captured using a liquid

crystal tunable filter. Although the camera had an apochromatic lens, chro-

matic dispersion is visible in the images (Figure 4.2). We suspect that the

colour fringes are primarily caused by the tunable filter, because they are ver-

tically oriented, whereas most lenses will produce chromatic aberration with

radial symmetry about the image centre.

The images are provided as reflectance images, having been normalized by

the reflectance of a Spectralon white reference, whereas we wish to evaluate

spectral radiance reconstruction. Therefore, we convert the images to spectral

radiance images by multiplying them with the spectral power distribution

of a D65 illuminant, which we retrieved from the colour resource website of

Lindbloom [68]. Next, to convert the spectral radiance images to RGB, we
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(a) (b)

(c) (d)

Figure 4.14: A subset of the images from the KAIST dataset, cropped to
exclude some of the dark background. We used these images for our synthetic
experiments on the KAIST dataset.

use the spectral sensitivities of a Nikon D5100 DSLR (Figure 3.5), measured

by Darrodi et al. [22], as the simulated camera.

While Choi et al. were careful to capture a wide variety of spectral re-

flectances in their dataset [19], the dataset is devoid of objects with mid-

frequency textures. As such, the scenes are ideal for evaluating spectral ra-

diances of small regions, but cannot give us a clear idea of how our method

performs on image structures with a variety of spatial frequencies and edge

strengths. In addition, large portions of each image are occupied by dark

background drapery. Consequently, we feel there is little value in processing

all images in the dataset, and that image-wide error statistics are not very

meaningful. Instead, we chose a subset of four images from the dataset, and

cropped them to remove some of the background drapery. The resulting small

dataset that we used for our simulated experiments is shown in Figure 4.14.

We selected the four images in an attempt to capture the variety present in

the dataset, while keeping our experiments manageable in duration.
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Our Dataset

The second dataset we used for synthetic experiments is our own dataset of

multispectral images, created as described in Section 4.2.4. While our multi-

spectral images have low spectral resolution, they are relatively sharp, have

high spatial resolution (2448 × 2048 pixels), and include a variety of texture

frequencies. More importantly, we captured images of a disk pattern in order

to calibrate models of lateral chromatic aberration, so we can evaluate residual

chromatic aberration in reconstructed images.

In total, we captured images of seven scenes, shown in Figure 4.15. Two

scenes (Figures 4.15a and 4.15e) contain only the disk pattern used for cali-

brating lateral chromatic aberration. We pooled disk keypoint locations from

both scenes when fitting models of lateral chromatic aberration. Doing so

proved to be important for robust cross-validation or estimation of the spline

smoothing parameter (Section 3.2.4), because it provided multiple keypoints

in each local region of the image plane.

Two other scenes contain the X-Rite 24-patch ColorChecker CLASSIC

colour calibration chart, the patches of which have standard tristimulus val-

ues that are used for colour correction. We also used the patches for spectral

reconstruction evaluation, according to the method described in Section 4.4.1.

Finally, there are three scenes for evaluating algorithm performance on

challenging imaging scenarios. The scene in Figure 4.15d tests recovery of

fine details, such as the images on the book cover, and is especially useful for

evaluating demosaicing algorithms. The scene in Figure 4.15f is an interesting

challenge for chromatic aberration correction algorithms, because it contains

refractive objects whose spectral dispersion effects should be preserved when

the spectral dispersion of the camera lens is corrected. The scene in Fig-

ure 4.15g contains both sharply focused regions and defocused, or refractively

distorted regions. This last image can be used to evaluate deblurring algo-

rithms and the robustness of other algorithms to blur, and to unusual light

propagation through the scene.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.15: Our dataset for image reconstruction evaluation that we col-
lected using our experimental apparatus, described in Section 4.2.1, with our
BlackFly Flea3 colour camera, and a Computar 07I lens. The high-dynamic
range images shown here were captured under unfiltered light, and have been
colour-corrected with respect to the ColorChecker chart in (e) using a colour
homography [28, 31]. The RGB images we simulated from images captured
under narrowband-filtered illuminations appear similar to these images, but
have different colour casts owing to the spectrally-varying vignetting effect of
the optical bandpass filters. We use the former set of images for real experi-
ments, as they were captured directly (although they were subject to exposure
blending). We use the latter set of images for synthetic experiments, as they
correspond directly to multispectral images that can be used for spectral re-
construction evaluation.
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4.3.2 Limitations

Simulated images always differ from natural images, but there is value in

determining the most important differences to understand how they might

affect image reconstruction algorithms. We believe the greatest difference

arises from assuming that RGB images are linearly related to spectral im-

ages. We base this conjecture on the nonlinear relationships between colour

channels that we observed in images taken under narrowband-filtered illumi-

nation (Section 4.2.4). Unfortunately, the assumption of linearity is built into

our spectral reconstruction algorithm. The same assumption is also the basis

for the simulated spectral-RGB image pairs used to train most data-driven

spectral reconstruction algorithms in literature, such as in the NITRE chal-

lenge [5]. Therefore, we might expect most spectral reconstruction methods

to have inflated accuracy on synthetic input images, which has been observed

by other authors in practice, as mentioned in Section 4.1.1.

With respect to chromatic aberration correction, our experiments are lim-

ited by the presence of chromatic aberration in all sources of data: both images

we captured under narrowband-filtered illumination, and images from other

datasets (e.g . Figures 4.1 and 4.2). Moreover, published datasets do not con-

tain images of disk patterns for high-precision calibration of chromatic aber-

ration (Section 3.2.1). In fact, spectral image datasets, including the KAIST

dataset [19], tend to focus on objects with large textureless regions, so it would

also be difficult to calibrate models of chromatic aberration using image reg-

istration (Section 3.2.3).

4.4 Quantitative Evaluation

Our experiments provide us with several points for evaluation: We can eval-

uate spectral images reconstructed from the input images, or we can evaluate

RGB images, whether they were reconstructed directly, or are projections of

reconstructed spectral images. In both cases, we can evaluate similarity with

respect to reference images, or we can specifically evaluate chromatic aberra-

tion correction. Previous works have proposed a variety of different evaluation
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metrics for these purposes, which we compare with the evaluation metrics we

selected.

4.4.1 Spectral Error

Spectral radiances can be represented as vectors in a high-dimensional space of

wavelengths, and therefore distance measurements can be computed bewteen

them to quantify spectral reconstruction error.

Mean Relative Absolute Error (MRAE) is perhaps the most strongly-

favoured error metric, because it was used in the NTIRE 2018 challenge [5]. If

b indexes spectral bands, x indexes pixels, and M is the number of values (the

product of the number of pixels, N , and the number of spectral bands, B) in

the image, then the MRAE of the estimated image Î with respect to the true

image I is defined as [5]:

MRAE =

∑
x

∑
b

∣∣∣ Ix,b−Îx,bIx,b

∣∣∣
M

(4.3)

MRAE is intended to weight relative errors in intensity equally, regard-

less of the absolute intensity values. The human visual system roughly senses

proportional differences in light intensity, not absolute differences [102], which

lends credibility to the MRAE metric. On the other hand, MRAE is problem-

atic in cases where the denominator, Ix,b, becomes arbitrarily small.

In contrast with MRAE, mean spectral Root Mean Squared Error (RMSE)

gives equal weight to absolute differences in intensity [5]. While it may be

less perceptually-relevant, it corresponds to a measure of likelihood from an

isotropic Gaussian noise model, and so is meaningful from a signal processing

perspective:

RMSEpixel =

∑
x

√∑
b(Ix,b−Îx,b)

2

B

N
(4.4)

Rather than computing the RMSE between individual spectral radiances,

we can also express it as a global measure, comparing two images as though

they were single high-dimensional quantities. This alternate method of calcu-
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lating RMSE was presented by Nguyen et al. [84]:

RMSEglobal =

√√√√∑x

∑
b

(
Ix,b − Îx,b

)2

M
(4.5)

Nguyen et al. [84] also describe the spectral Goodness of Fit coefficient

(GOF):

GOF =
1

N

∑
x

∣∣∣∑b Ix,bÎx,b

∣∣∣√(∑
b Îx,bÎx,b

)
(
∑

b Ix,bIx,b)

(4.6)

The inverse cosine of the GOF is the Spectral Angle Mapper metric [62].

In our evaluations, we use the GOF instead of the Spectral Angle Mapper,

because the GOF is conveniently in the interval [0, 1]. The GOF has the same

limitation as MRAE: It becomes unreliable at very low intensities.

Lastly, treating spectral images as stacks of greyscale images, instead of as

collections of spectral vectors, we can compute the mean Structural Similarity

index (SSIM) [123] across spectral bands:

SSIMmean =

∑
b SSIM

(
Ib, Îb

)
B

(4.7)

Image Spectral Registration

For synthetic experiments, where we have reference spectral images from which

the input images for spectral reconstruction were created, the above error

metrics can be computed immediately between the reference and reconstructed

images. For real experiments, in contrast, if we have reference spectral data,

it has been obtained using a sensor other than the camera used to capture the

input raw RGB images. In this case, we need to register the reconstructed

images with the reference data before computing spectral error metrics.

The most obvious spectral registration procedure follows from the most

common form in which spectral data is expressed: As relative to some reference

spectral radiance. By dividing an image by the measured spectral radiance

of a reference object, and then multiplying the image by the known spectral

reflectance of the object, one converts a spectral radiance image into an effec-

tive reflectance image [33]. Effective reflectance images can be compared, even
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when generated by different spectral imaging devices, as they are independent

of the spectral sensitivities of the devices, and of global illuminants.

Unfortunately, the assumption of a constant illuminant means that shad-

ing changes are indistinguishable from spectral reflectance changes in effec-

tive reflectance images [33]. This ambiguity is especially problematic for the

multispectral images we created using our apparatus, as they are subject to

spectrally-varying spatial illumination non-uniformity. Also, spectral recon-

struction error in the reconstructed reference patch used to compute the effec-

tive reflectance image will be propagated to the rest of the image.

To avoid the problems associated with effective reflectance images, we use

a different spectral registration procedure. We apply band-wise scaling factors

that globally align two sets of spectral measurements. (The sets of measure-

ments could represent spectral images, or pointwise spectral measurements.)

Specifically, we solve the following optimization problem:

S∗ = argmin
S

∑
x

∑
b

(
Ix,b − SbÎx,b

)2

(4.8)

where x indexes spectral measurements or pixels, b indexes spectral bands, and

Î is the reconstructed (estimated) data corresponding to the reference data,

I. S∗ is the vector of scaling factors for individual bands which minimizes the

root-mean-squared error between the reference and estimated spectral data.

Problem (4.8) has the solution:

S∗ =



(∑
x Ix,1Îx,1

)(∑
x Îx,1Îx,1

)−1(∑
x Ix,2Îx,2

)(∑
x Îx,2Îx,2

)−1

...(∑
x Ix,B Îx,B

)(∑
x Îx,B Îx,B

)−1

 (4.9)

4.4.2 Colour Error

In addition to spectral error metrics, we computed RGB error metrics. In

the following error metric formulas, c denotes an image colour channel (Red,

Green, or Blue), and N is the number of pixels. I and Î denote the true and

estimated colour images, respectively.
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MRAE,

MRAEc =

∑
x

∣∣∣ Ix,c−Îx,cIx,c

∣∣∣
N

(4.10)

RMSE,

RMSEc =

√√√√∑x

(
Ix,c − Îx,c

)2

N
(4.11)

SSIM [123],

SSIMc = SSIM
(
Ic, Îc

)
(4.12)

The above RGB error metrics are analogs of the spectral error metrics given

in Section 4.4.1. They are by no means a complete list of error metrics, how-

ever. In particular, we omitted peak signal-to-noise ratio (PSNR) and colour

peak signal-to-noise ratio (CPSNR), popular error metrics in demosaicing lit-

erature [79]. In our view, PSNR and CPSNR are redundant because they are

closely-related to RMSE. PSNR is problematic, because it is difficult to define

an appropriate peak value when evaluating high-dynamic range images. We

find CPSNR even more problematic, as, while it is convenient to obtain one

number for all colour channels, different colour channels are incomparable.

A better way to evaluate error across colour channels would be to use error

metrics defined in standard colour spaces. Error metrics such as CIE ∆E are

designed to be perceptually relevant [31]. Unfortunately, our evaluation ac-

cording to such metrics would be affected by errors in colour space conversion.

Therefore, we evaluate our RGB error metrics in the colour space of the raw

camera responses, not in standard colour spaces.

4.4.3 Residual Chromatic Aberration

Motivation

The preceding error metrics are useful for synthetic experiments, where ground

truth images are available. Unfortunately, they do not indicate whether the

estimated images have been adequately corrected for chromatic aberration, es-

pecially if the ground truth images contain chromatic aberration. To evaluate

chromatic aberration, we need metrics that do not require reference images.
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If we had a metric for measuring chromatic aberration without a reference

image, such as the image quality metric of Lamb and Khambete [63], presum-

ably we could perfectly correct chromatic aberration by using the metric as an

objective function. We argue that no such metric is valid, however, because if a

scene contained rainbow patterns, they could be mistaken for chromatic aber-

ration. The same problem would arise if one captured an image of a display of

an image containing chromatic aberration. In general, we cannot rely on the

image data alone to assess or correct chromatic aberration. We should instead

say that we are interested in correcting images for physical chromatic aber-

ration, as opposed to correcting colour fringes in images. In contrast to our

method, uncalibrated (purely image-based) methods for correcting chromatic

aberration do not distinguish between the two tasks.

To measure chromatic aberration, not colour fringing, we need a way to

determine which colour fringes are caused by chromatic aberration. We can

do so given some knowledge of the scene being imaged. In other words, in-

stead of an image that provides pixel-level ground truth, we infer approximate

ground truth from known scene characteristics. The most common approach

used in literature is to take images of achromatic scenes, and then measure

achromaticity in the image. For example, Chang et al. [18] use the Variance of

Colour Differences metric, which is the mean squared difference between Red

or Blue intensities and their corresponding Green intensities. We have not

followed their approach, as achromaticity is a perceptual property of colours,

and does not have a well-defined spectral analog, given that human vision

has low spectral resolution. We seek a metric that applies to both colour im-

ages and spectral images. On this point, Rudakova and Monasse [99] took a

more flexible approach by measuring the spreading of colours in a local image

region away from a local achromatic line in RGB space. Their approach is

valid for any regions that contain only mixtures of two spectral power distri-

butions. One example of such a region is a single spectral reflectance subject

to illumination with varying attenuation from shading. Another example is an

edge blending two different spectral reflectances, under a constant illuminant.

Combinations of two or more spectral reflectances with varying illumination

93



will produce a colour distribution which deviates from a line in RGB space or

in the space of spectral power distributions, however, so their evaluation tech-

nique will not work in general. Furthermore, their evaluation technique does

not account for errors in the local colour line itself, and so will not penalize

chromatic aberration correction methods which make global changes to image

colours, such as desaturating colours.

Aside from colour analysis, chromatic aberration can be measured using

geometrical information. For instance, Helou et al. [45] designed a calibration

pattern with a slanted edge for measuring longitudinal chromatic aberration

using edge spread functions. From edge spread functions, they obtained point

spread functions by assuming the point spread functions have symmetrical

Gaussian forms. They then compared point spread function radii between

colour channels as the calibration target was moved to different depths relative

to the camera. In contrast, Rudakova and Monasse [99] measured longitudinal

chromatic aberration using residual misalignment between disks detected from

their disk calibration pattern. Their evaluation approach is therefore much

simpler, and is also more relevant to our work, as we have not yet included

longitudinal chromatic aberration in our image formation model. Unfortu-

nately, as we use the disk calibration pattern approach from Rudakova and

Monasse [99] to calibrate our models of chromatic aberration, our optimization

problem (3.1) is directly minimizing such a measure of chromatic aberration.

We need an evaluation criteria which is independent of our method.

Edge-Based Measurement of Residual Chromatic Aberration

Our proposed method for evaluating chromatic aberration correction relies on a

scene with sharp edges bordering homogenous regions. In contrast to the works

mentioned above [45, 99], it does not require a specific calibration pattern,

and can operate on colour images or spectral images. It uses a synthetic

image to provide ground truth pixel intensities for the regions bordering the

edges, created by sampling pixels deeper inside the homogenous regions. In

our experiments, we used our X-Rite ColorChecker chart as a scene suitable

for creating the synthetic image.

94



Our evaluation procedure consists of several steps. First, we sample the

colours in the centers of the ColorChecker patches in a captured image of the

scene. As we assume the centers of the patches have little colour variation, we

can sample their colours without demosaicing. From these samples, we create

a synthetic colour image in which each colour sample is replicated to the entire

area of the corresponding patch. We also measured the spectral reflectance of

each patch (Section 4.6.1) to create a synthetic spectral image.

The contours of each patch in the synthetic images are those that we

marked by hand, which was possible given the simple geometry of the im-

age. We took care to use the appropriate images for labelling the contours,

to account for dispersion: For evaluating direct colour image estimation (Sec-

tion 3.9.1), we marked the contours in the green channel of the image captured

under unfiltered light. For evaluating spectral image estimation, we marked

the contours in the image captured under light filtered by the 600 nm band-

pass filter. In either case, the edges we marked are in the locations that they

should be after chromatic aberration correction, because we chose the Green

channel, or the 600 nm spectral band, as zero dispersion points in our colour

or spectral models of dispersion, respectively.

Next, to quantitatively evaluate residual chromatic aberration, we measure

the error between estimated images and the synthetic images in narrow regions

(12 pixels wide) inside the patches, abutting the hand-marked contours. We

use the same error metrics as listed in Sections 4.4.1 and 4.4.2. When comput-

ing spectral error metrics, we first register the true and estimated images in

the spectral domain using per-spectral band scaling factors which best align

the images. To treat all ColorChecker patches equally, we compute the scaling

factors using a modified version of (4.8):

S∗ = argmin
S

∑
x

∑
b

wx

(
Ix,b − SbÎx,b

)2

(4.13)

where wx is a weight with a magnitude inversely proportional to the num-

ber of pixels in the ColorChecker patch containing the pixel with position x.
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Problem (4.13) has the solution:

S∗ =



(∑
xwxIx,1Îx,1

)(∑
xwxÎx,1Îx,1

)−1(∑
xwxIx,2Îx,2

)(∑
xwxÎx,2Îx,2

)−1

...(∑
xwxIx,B Îx,B

)(∑
xwxÎx,B Îx,B

)−1

 (4.14)

Note that we optimize problem (4.13) over the entire area of all patches, not

only over the patch border regions.

In our evaluation, we do not assess regions outside the patches, because

these regions do not have standardized colours, in contrast to the patches of

the ColorChecker. We do assess the central regions of the patches, however,

to verify that the error is lower far from image edges, as expected. As another

sanity check, we can evaluate the chromatic aberration present in the captured

colour image, to see if it is higher than the chromatic aberration present in our

reconstructed images. Note that we can evaluate the captured colour image

without demosaicing, by evaluating each colour channel at the appropriate

locations in the colour-filter array.

The colour and spectral errors we measure account for both lateral and

longitudinal chromatic aberration, as well as other image estimation artifacts,

such as oversmoothing or ringing. Furthermore, they also flag chromatic aber-

ration correction methods which tightly match colour channels or spectral

bands, but do so at the cost of colour desaturation. Of course, the error mea-

surements are also affected by our having synthesized the reference images.

Therefore, to make the synthetic images as realistic as possible, rather than

assuming the ColorChecker patches are perfectly homogenous, we apply a non-

uniform shading pattern that we calibrate from the Green channel of the colour

image of the scene. We fit the model of shading variation to the homogenous

portions of the frame surrounding the colour checker patches, using the same

process as described in Section 3.2.2.
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(a) (b) (c)

(d) (e)

Figure 4.16: An image region subject to different colour processing methods:
(a) The raw colour channel responses of our BlackFly Flea3 colour camera
to a scene lit by our Optoma EP739 DLP projector, reinterpreted as sRGB
colours. (b) The image subject to the sRGB gamma correction. (c) The image
subject to white-balancing, followed by sRGB gamma correction. (d) Colours
obtained by the root-polynomial regression technique of Finlayson et al. [29].
(e) Colours obtained by the colour homography technique of Finlayson et al.
[31].

4.5 Visual Evaluation

When correcting chromatic aberration to reduce the perceivable artifacts of

an imaging system, human observers must evaluate the results. A formal user

study would provide the most comprehensive evaluation, but is beyond the

scope of our work. We would need a significant number of participants to

evaluate results on a wide variety of cameras and lenses before suggesting a

particular algorithm be used as a general method for image quality enhance-

ment, because image quality depends on many physical, computational, and

perceptual processes. As an example showing why visual assessment is chal-

lenging, consider Figure 4.16.

In Figure 4.16, the same image is presented using different colour mapping

algorithms. The original image (a) contains colour fringes from chromatic

aberration, but they are barely visible. After gamma correction (b), colour

97



fringes are visible, but the colours of the image are unnatural. With both

white-balancing, using a Bradford cone response model [67], and gamma cor-

rection, in (c), the colours of the image seem more natural, but are desaturated.

White balancing only corrects achromatic portions of the scene, however, in

contrast to full colour balance methods [57]. In (d) and (e), we show the results

of the full colour balance methods of Finlayson et al. [29] and Finlayson et al.

[31], respectively, both of which improve colour saturation, but consequently

exaggerate the colour fringes.

The colour processing applied to the image, which depends on scene illumi-

nation, the spectral response of the camera, and user preferences, affects our

choice of image restoration algorithm. Referring again to Figure 4.16, with a

stronger gamma correction, we might favour algorithms which perform well in

the darker regions of an image. If the colour correction increases saturation,

then small differences between colour channels are amplified, and we might pre-

fer algorithms which penalize misregistration between colour channels, even if

they cause some colour desaturation, or oversmooth edges.

To produce colour-corrected results in this work, we selected the colour

homography full colour balance method of Finlayson et al. [31]. There are

many full colour balance methods, but we chose their method because it is

recent, and because its results differed only slightly from those of the popular

root-polynomial method of Finlayson et al. [29]. To experiment with both

methods, we used the implementations provided by Han Gong.3 While white-

balancing may yield colours with a simpler relationship with the camera’s raw

responses, we prefer full colour balancing because it would be used to produce

images for human observers. We rely on our quantitative evaluation metrics

to assess image reconstruction accuracy in the physically-relevant raw colour

space of the camera, so there is no need to show viewers a compromise between

raw and perceptually-corrected colours.

Although we used Han Gong’s implementation of the colour homography

method, we still needed to set up its input data, and then post-process its out-

put. First, whereas a colour homography can be computed without correcting

3https://github.com/hangong/ch
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the colours in the image for non-uniform shading, we used the RANSAC-

based variant of the method which takes shading-corrected colours for vali-

dation [31]. For shading correction, we used a polynomial model of intensity

variation (Section 3.2.2), calibrated from the frame surrounding the patches of

our ColorChecker colour chart. We then used the patches of the ColorChecker

chart to fit the colour homography, excluding the white patch, because it was

saturated at all exposures. Rather than using the standard XYZ colours of the

ColorChecker chart as the target colours for homography computation, we syn-

thesized XYZ colours for the patches from the measured spectral reflectances

of the patches, according to the ASTM E308 standard [6]. (The measured

spectral reflectances are those we obtained using an Analytical Spectral De-

vices spectrometer, mentioned in Section 4.6.1.) Following colour balancing,

we apply a chromatic adaptation step to convert the XYZ colours, which were

effectively measured under an equal energy radiator, to the D65 whitepoint,

before computing sRGB colours for display [67].

All colour correction methods that operate on colour channels are approx-

imate, since true colours can only be generated from spectral images. Re-

gardless, we obtain colour-corrected images corresponding to our estimated

spectral images by first converting the spectral images to the raw colour space

of the camera, and then applying the same colour correction that we use on

RGB images. We do not synthesize corrected colour images from spectral im-

ages by directly mapping spectral radiances to the XYZ colour space, for three

reasons: First, we do not have a uniform reflectance standard to provide an

accurate estimate of the illuminant whitepoint to use during XYZ to sRGB

colour space conversion. Second, we wish our colour-corrected results to re-

flect accuracy in the raw colour space of the camera, as our image estimation

algorithms attempt to minimize error in this colour space. Third, using the

same colour processing pipeline for both RGB and spectral images facilitates

visual comparisons between the two types of images.
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4.6 Comparison Methods

We compare the results generated by our algorithm with data from several

other sources. In our real experiments, we relied on spectrometry to provide

additional spectral data for validation. In all of our experiments, we also ran

image reconstruction algorithms developed by other authors to compare our

work with the state-of-the-art.

4.6.1 Spectrometry

Analytical Spectral Devices point spectrometer

We measured the spectral reflectance of each of the 24 patches of our X-

Rite 24-patch ColorChecker CLASSIC colour calibration chart at the Core-Net

Spectral Laboratory,4 with the assistance of Dr. Jilu Feng, and the permission

of Dr. Benoit Rivard. An Analytical Spectral Devices point spectrometer

with a fiber optic probe captured the spectral reflectance of each patch under

illumination from a quartz halogen lamp. Each spectral reflectance is the

average of 40 measurements, taken relative to a Spectralon tile that served as

a white reflectance standard. The spectrometer has a spectral resolution of 1

nm and a range from 350 to 2500 nm. Given its high accuracy, we used it as

ground truth data for evaluating chromatic aberration correction at the edges

of the ColorChecker patches, as described in Section 4.4.3, and for evaluating

spectral accuracy at the centers of the patches.

GoSpectro mobile spectrometer

The GoSpectro device, produced by Goyalab,5 can be placed over a smart-

phone camera to disperse light entering a slit into a rainbow on the image

sensor. The GoSpectro mobile software application can then extract spectral

measurements from the images, after calibration. Calibration consists first of

wavelength calibration, in which the user must manually mark the positions of

the four strong spectral peaks of a fluorescent light. Second, spectral intensi-

4http://coresensing.net/index.html
5https://www.goyalab.com/product/hand-spectrometer-gospectro/
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ties can then be calibrated from broad-spectrum light (e.g . sunlight) reflected

from a white target. For our intensity calibration, we used the light from a

halogen lamp reflected by the white patch of our ColorChecker chart, because

sunlight produced overexposed images (even with autoexposure enabled in the

GoSpectro app).

As the GoSpetro spectrometer is portable, we thought of using it to mea-

sure the spectral signatures of identifiable locations in the scenes we imaged

inside our light-proof box (Section 4.2.1). Unfortunately, even though we used

a fiber optic probe attached to the spectrometer to facilitate measuring the

spectra reflected by small objects, we still could not hold the probe steady

within the confines of our apparatus, without interfering with the light propa-

gating throughout the space. Moreover, we measured the spectral reflectances

of our ColorChecker’s colour patches under a halogen light, for comparison

with the Analytical Spectral Devices spectrometer’s measurements. By com-

paring the two sets of measurements (Section 5.4.2), we determined that the

GoSpectro setup does not have the accuracy or precision necessary to provide

ground truth spectral measurements for our experiments.

4.6.2 RGB-to-Spectral Algorithms

Compact single-shot hyperspectral imaging using a prism

Our spectral reconstruction algorithm is inspired by the first stage of the

method of Baek et al. [7]. They calibrated the spectral dispersion produced

by a triangular prism attached to the front of the camera lens, and then for-

mulated a three-stage global optimization algorithm to reconstruct spectral

images from the RGB image captured by the camera.

We compare our method with elements of their method. To simulate the

first stage of their method, we use its prior terms in our optimization problem,

and omit our non-negativity constraint. The resulting optimization problem

corresponds to the L1L1 condition in Table 3.1, and is provided below:

I∗ = argmin
I
‖M (Ω (Φ (B (I))))− Iraw‖2

2 +w1 ‖∇xyI‖1 +w2 ‖∇λ∇xyI‖1 (4.15)
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We selected the weights in problem (4.15) automatically, as described in

Section 3.6, whereas they used fixed values of w1 = 1×10−5 and w2 = 1×10−1.

In evaluating their prior terms, it is important to note that there are key

differences in our data-fitting term. First, our data-fitting term projects the

spectral image to a raw mosaiced image, whereas it is unclear whether they

demosaiced the image as a preprocessing step. They would have needed some

form of demosaicing, assuming their image sensor had a colour-filter array,

in order to shrink their images to the 600 × 860 resolution they used for im-

age reconstruction, as this resolution is not related to the original resolution

by integer scaling factors (therefore precluding pixel subsampling for image

downscaling). Second, they estimate images with 31 spectral bands, at 10

nm increments from 400 nm to 700 nm, whereas, in our synthetic experi-

ments, we use 8 equally-spaced spectral bands in the range from 418 to 667

nm (Section 3.3.2), and use Gaussian interpolation between spectral bands

(Section 3.3.3).

Our intention was to determine if their spectral-spatial prior term, the

second prior term in (4.15), benefits spectral reconstruction. Unfortunately,

we can conclusively evaluate the prior term only in simulated experiments, by

selecting the weights w1 and w2 that minimize the error with respect to the

true spectral image.

High-quality hyperspectral reconstruction using a spectral prior

Another prior term we chose to evaluate is the data-driven prior term devel-

oped by Choi et al. [19]. Their prior term is a convolutional autoencoder,

trained on spectral images from published datasets [17, 128]. We retrieved

their trained model, and the implementation that they provided of their al-

gorithm.6 We then modified their implementation so that it performed RGB-

to-spectral reconstruction as opposed to spectral reconstruction from coded

aperture snapshot spectral imaging data, as described in Section 3.8.2. With

respect to their parameters, we used a weight of 1 × 10−8 on their spatial

regularization term, following their description of using their method for de-

6https://github.com/KAIST-VCLAB/deepcassi
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mosaicing, and left their other parameters with default values.

We wanted to compare our method with data-driven spectral reconstruc-

tion methods, and selected their method among others because their convolu-

tional autoencoder serves as an image prior, in contrast to the learned map-

pings from low- to high-spectral resolution images presented in other works.

The advantage of their approach is that their autoencoder does not need to be

re-trained following changes to the relationship between spectral images and

RGB input images [19]. Furthermore, their method can be adapted to ac-

cept mosaiced RGB images as input. For these reasons, their method may be

more useful in practice than many data-driven spectral reconstruction meth-

ods. Nevertheless, we could only evaluate their data-driven prior in synthetic

experiments, because it is trained on reflectance data. In synthetic exper-

iments, we can include an illuminant spectral power distribution mapping

spectral reflectances to spectral radiances in the data-fitting term of their op-

timization problem, whereas in our real experiments, we did not have the

equipment needed to characterize the scene illumination.

4.6.3 Demosaicing Algorithms

While plain demosaicing was not our primary objective, it is useful to compare

our results with those of demosaicing algorithms to determine whether our

method results in similar artifacts and comparable image sharpness.

Bilinear interpolation

Bilinear interpolation is one of the most basic demosaicing algorithms men-

tioned in literature. Missing pixel values in a given colour channel are com-

puted by bilinear interpolation of the four nearest known pixels. In a multi-

channel image, bilinear interpolation normally produces suboptimal results

by ignoring correlations between colour channels [125]. When these corre-

lations are absent, however, such in areas of highly saturated colours [126],

demosaicing algorithms that rely on them fail. Therefore, we selected bilinear

interpolation as a robust baseline algorithm for demosaicing.
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Adaptive Residual Interpolation (ARI)

Adaptive Residual Interpolation [79] is the most recent demosaicing algorithm

in the family of residual interpolation algorithms for demosaicing. We selected

this method for its demonstrated high performance on standard demosaicing

datasets, and also because it does not rely on training data, so it may perform

well on unusual images, such as the RGB images we simulate from multi-

spectral images (Section 4.2.4). In fact, the authors have evaluated Adaptive

Residual Interpolation on multispectral colour-filter arrays [79], suggesting

that the algorithm has the flexibility we desire. We use the authors’ imple-

mentation of Adaptive Residual Interpolation,7 with their default parameter

settings, in our experiments.

4.6.4 Chromatic Aberration Correction Algorithms

Precise correction of lateral chromatic aberration in images

Rudakova and Monasse [99] described the technique for modelling lateral chro-

matic aberration using disk keypoints interpolated by bivariate polynomials

that we adapted to model spectral dispersion (Section 3.2). We implemented

their technique for correcting lateral chromatic aberration, which is similar

to our direct colour image estimation algorithm (Section 3.9.1), except that

it warps the image channels as opposed to reconstructing them by solving a

global optimization problem. Their description of their method does not spec-

ify the type of interpolation they used to resample the image during warping,

although the interpolation method is important, as it determines the effective

demosaicing algorithm applied to the input mosaiced image. Therefore, we

tested demosaicing with either of the two demosaicing methods listed above

(bilinear interpolation, and adaptive residual interpolation) before image warp-

ing. We hypothesize that bilinear interpolation is closer to their intent, as bi-

linear interpolation for demosaicing followed by bilinear interpolation during

image warping is equivalent to a single bilinear interpolation step when directly

warping the mosaiced image to compute the full-colour warped image.

7http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html
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Cross-channel information transfer (CCT)

Sun et al. [111] presented an image-based method for correcting both lat-

eral and longitudinal chromatic aberration. In contrast, our method, and the

method of Rudakova and Monasse [99], both require calibration, and both

correct only lateral chromatic aberration. We selected the method of Sun et

al. [111] in order to compare our results with those from a recent, calibration-

free, chromatic aberration correction method. Additionally, we chose their

method because it does not rely on training data. Therefore, it may perform

well regardless of the imaging environment we are using, as suggested by their

high-quality results for both diffractive, and refractive, imaging systems [111].

Their method combines a blind deblurring preprocessing step [61], applied

to the Green channel of the image, with subsequent alignment and deblur-

ring of the Red and Blue channels with respect to the Green channel [111].

The resulting algorithm has many parameters, although only a subset of the

parameters require tuning. For the blind deblurring step [61], we used the im-

plementation provided by Krishnan et al.,8 and left all parameters with their

default values, except for the λ weight in their blur kernel estimation proce-

dure, which we set to 850, and the blur kernel size, which we set to 9. We

set the blur kernel size to be an upper bound on the displacements between

spectral bands caused by spectral dispersion.

We selected the value of the λ parameter that minimized the residual

chromatic aberration measured as described in Section 4.4.3. Specifically, we

cropped the image of our ColorChecker chart (Figure 4.15e), captured under

unfiltered light from our DLP projector, to contain only the ColorChecker

chart. We corrected the image for vignetting (Section 3.2.2), calibrating the

vignetting model using the ColorChecker chart’s frame, and then used Adap-

tive Residual Interpolation [79] to demosaic the image. We then ran the blind

deblurring algorithm on the Green channel of the resulting colour image, and

evaluated the MRAE between its result, and the ideal image created by copy-

ing colours from the centers of the ColorChecker patches to their edges. (We

8https://dilipkay.wordpress.com/blind-deconvolution/
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Figure 4.17: Residual chromatic aberration of the Green channel of an image
processed by the method of Krishnan et al. [61], evaluated in terms of MRAE
with respect to reference Green channel values. We selected 850 as the value
of the λ parameter (of their blur kernel estimation step), corresponding to the
“knee” of the plot, in our subsequent experiments.

only evaluated the MRAE within 12-pixel wide strips inside the borders of

the patches.) The value of λ corresponding to the “knee” of the MRAE plot

(Figure 4.17) was approximately 850. In other words, our method for choosing

the λ parameter’s value is inspired by the L-curve method [38].

Similarly, for the subseqent cross-channel information transfer step [111],

we used the implementation provided by the authors.9 In this case, there

were two parameters to tune: The size of the overlapping windows used for

inter-channel point spread function estimation, and the size of the overlapping

windows used for cross-channel transfer. We used the same evaluation tech-

nique as described above to select values for these parameters, except that the

MRAE is now evaluated over three colour channels, instead of only the Green

channel.

As shown in Figure 4.18, the method of Sun et al. [111] performs best for a

small cross-channel transfer window size, and a somewhat larger point spread

function estimation window size. In fact, the rapid deterioration of perfor-

mance with increasing cross-channel transfer window sizes suggests that the

9https://github.com/evanypeng/ICCV2017 RevisitCCIT code
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Figure 4.18: Residual chromatic aberration of an image processed by the
method of Sun et al. [111], evaluated in terms of MRAE with respect to refer-
ence colours. From the evaluation, we selected a cross-channel transfer window
size of 5 pixels, and a point spread function estimation window size of 0.17
times the larger dimension of the image. In this experiment, the image has
dimensions 1455×2257 (cropped from a 2048×2448 image). The window sizes
labelled in the figure are expressed as fractions of the largest of the (cropped)
image’s dimensions.

cross-channel transfer algorithm itself is sub-optimal. Their method is rela-

tively insensitive to the point spread function estimation window size, whereas

larger values of the cross-channel transfer window size result in colour desat-

uration, as they discuss in their article [111]. We are pleased that our eval-

uation technique detects this colour desaturation, rather than allowing it as

a side-effect of chromatic aberration correction. Based on the results of our

parameter tuning experiment, we chose a cross-channel transfer window size

of 5 pixels, and a point spread function estimation window size of 0.17 times

the larger dimension of the image sensor (usually on the order of 400 pixels).
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Unfortunately, chromatic aberration varies with position on the image

plane, whereas the implementation of the method of Krishnan et al. [61] es-

timates a spatially-invariant point spread function. When we ran the blind

deblurring program on whole images, it tended to estimate very sharp point

spread functions, suggesting that the average chromatic aberration over the

entire image is negligible, likely because of the symmetry of lateral chromatic

aberration, and because the Green channel is usually given priority during

camera focusing. Rather than reimplement the blind deblurring algorithm to

perform spatially-varying deconvolution, we simply omitted blind deblurring

of the Green channel when running the cross-channel information transfer

algorithm on whole images. For visual evaluations of small image patches,

however, we show results both with and without the blind deblurring step.

When generating results for small patches, we provide only the patches as

input to the blind deblurring algorithm, so that it can compute an optimal

point spread function for each patch individually.
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Chapter 5

Results

5.1 Overview

In this chapter, we present the results of our image reconstruction exper-

iments, on both synthetic and real input raw mosaiced RGB images. We

compare image reconstruction algorithms, and suggest explanations for the

differences between their results. We also evaluate our techniques for mod-

elling dispersion. While we briefly review the context of each experiment, we

focus on critical assessment of our experimental results, having described our

experimental methods in detail in Chapter 4.

To our knowledge, we are the first to synthesize multispectral images using

an RGB camera in combination with optical bandpass filters. Other authors

have implemented multispectral imaging with either controlled illumination

(e.g . Goel et al. [36]) or by filtering light entering the camera (e.g . Choi et

al. [19]), but in either context, they have used monochromatic cameras. The

novelty of our experiments warranted a more detailed description of our exper-

imental methods, which we placed in a separate chapter from our results, to

give our discussion a modular structure. The experiments we present in this

chapter draw on different, but overlapping, content from the previous chap-

ter (Chapter 4). For clarity, we now review the connections between the two

chapters, and summarize the flow of ideas in this chapter.

Our first experiment relies on third-party spectral images, from the KAIST

dataset (Section 4.3.1). We use this dataset to compare our image estimation

method against other works tested on this dataset, specifically the method of
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Choi et al. [19], and also to validate our image estimation method indepen-

dently of our own dataset of images. As the images from the KAIST dataset

are of higher spectral resolution than the images which we can obtain using

our apparatus, we use the KAIST dataset to evaluate which variations of our

method result in the highest spectral reconstruction accuracy.

The KAIST dataset lacks information concerning spectral dispersion, so

our remaining experiments focus on our own captured images, where we can

evaluate chromatic aberration correction. We then must evaluate both our

models of spectral dispersion, and our image reconstruction method. In Sec-

tion 5.3, we validate our models of dispersion by assessing whether they are

robust to variations in our calibration procedure. In Section 5.4, we qual-

itatively and quantitatively assess chromatic aberration correction in RGB

images captured under broadband illumination. We also evaluate spectral re-

construction accuracy relative to spectrometry data. Our novel experimental

apparatus provides us with a more conclusive evaluation: Not only can we

evaluate spectral reconstruction from RGB images, but we can also compare

our multispectral images to the spectrometry data to provide a practical upper

bound on spectral reconstruction accuracy.

Unfortunately, spectrometry data is only available in homogenous patches,

but we seek to better understand how our method treats edges in the im-

age, where we observe colour artifacts. Therefore, in Section 5.5, we evaluate

chromatic aberration correction and spectral reconstruction in synthetic RGB

images created from our multispectral images. In this setting, while the input

images differ from true RGB images, we can evaluate spectral reconstruction

at all image locations. We can also compare chromatic aberration correction

using only our model of dispersion, in combination with the true multispectral

images, to chromatic aberration correction from the synthetic RGB images

using both our model of dipsersion, and our image reconstruction algorithm.

In Figure 5.1, we present a graphical summary of the preceding overview,

explicitly showing the dependencies of our experimental results on portions of

our experimental methods.
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High-dynamic range image
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Figure 5.1: A graph of connections between our experimental methods (Chap-
ter 4, orange shapes) and our experimental results (green shapes). Arrows
indicate dependencies between topics.

5.2 Reconstruction of Images from the KAIST

Dataset

In our first experiment on synthetic input images, we selected images from the

KAIST dataset, as described in Section 4.3.1. We tested a large number of

algorithms, including the method of Choi et al. [19], during the development

of which Choi et al. created this dataset. Our intention was to narrow the

selection of algorithms to be tested in subsequent experiments. As the dataset

does not allow for reliable calibration of spectral dispersion, however, we were

conservative in excluding algorithms from subsequent experiments, given that

a model of dispersion may affect image estimation accuracy. Recall that,

without a model of dispersion, our image estimation algorithms operate as

described in Section 3.9.2.

5.2.1 Comprehensive Evaluation

In this section, we compare our image estimation algorithm with those of

other authors, and show quantitative results for all variants of our algorithm.
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In subsequent sections, we make finer comparisons between individual variants

of our algorithm.

Spectral Error

Spectral evaluation metrics, averaged over the four images in our subset of the

KAIST dataset, are provided below in Table 5.1.

Table 5.1: Spectral error metrics averaged across images from the KAIST
dataset. Rows are sorted by MRAE. The first column identifies the combina-
tion of penalty terms used in our algorithms, as listed in Table 3.1. The second
column indicates whether or not we imposed a non-negativity constraint on
the estimated image. The third column identifies the criterion used to select
regularization weights (Section 3.6).

MRAE RMSEpixel RMSEglobal GOF SSIMmean

Penalties NNeg Criterion
L1L1 yes MSEC 0.229 1.81×10−4 2.43×10−4 0.850 0.99950

L2 yes MSEC 0.230 1.89×10−4 2.61×10−4 0.833 0.99942
L1 yes MSEC 0.231 1.85×10−4 2.57×10−4 0.852 0.99946

L2L2 yes MSEC 0.232 1.84×10−4 2.50×10−4 0.834 0.99947
L2L2 no MSEC 0.244 1.89×10−4 2.58×10−4 0.835 0.99943

L1 no DMC 0.245 1.87×10−4 2.56×10−4 0.849 0.99943
L2 no MSEC 0.248 1.94×10−4 2.69×10−4 0.834 0.99939
L1 no MSEC 0.254 1.91×10−4 2.65×10−4 0.844 0.99941

L1L1 no MSEC 0.257 1.88×10−4 2.59×10−4 0.839 0.99942
L1 yes DMC 0.259 2.11×10−4 3.13×10−4 0.843 0.99917

L1L1 yes DMC 0.260 2.12×10−4 3.12×10−4 0.837 0.99915
L2 yes DMC 0.298 2.17×10−4 3.12×10−4 0.834 0.99916

L2L2 yes DMC 0.298 2.17×10−4 3.13×10−4 0.834 0.99916
Choi et al. [19] 0.304 2.32×10−4 3.62×10−4 0.829 0.99888

L2L2 yes MDC 0.322 2.19×10−4 3.07×10−4 0.835 0.99919
L1L1 yes MDC 0.330 2.19×10−4 3.03×10−4 0.837 0.99916

L2 yes MDC 0.350 2.45×10−4 3.70×10−4 0.831 0.99885
L2L2 no MDC 0.352 2.13×10−4 2.92×10−4 0.833 0.99927

L1 yes MDC 0.362 3.23×10−4 6.26×10−4 0.811 0.99707
L1L1 no MDC 0.375 2.20×10−4 3.01×10−4 0.832 0.99917
L1L1 no DMC 0.377 2.17×10−4 3.09×10−4 0.830 0.99915
L2L2 no DMC 0.394 2.23×10−4 3.08×10−4 0.829 0.99918

L2 no DMC 0.394 2.23×10−4 3.09×10−4 0.829 0.99918
L2 no MDC 0.426 2.39×10−4 3.39×10−4 0.829 0.99902
L1 no MDC 0.632 3.15×10−4 5.25×10−4 0.829 0.99785

Note that none of the algorithms listed in Table 5.1 used a penalty on the
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image Laplacian, and so the results do not include all combinations of penalty

terms listed in Table 3.1. Unfortunately, penalties on the image Laplacian

exhibited poor convergence. Since they were time-consuming to optimize,

we only evaluated them on the first image from the dataset (Figure 4.14a).

Results on the first image, for all combinations of penalty terms, are provided

in Table A.1 (Appendix A).

From the spectral evaluation results, we observe that the method of Choi

et al. [19] performs well, but, depending on the penalty terms we include,

has inferior performance to our algorithms. Differences in the numbers of

iterations each method performed, and the lack of an automatic procedure in

Choi et al. [19] for selecting weights on their prior terms make the comparison

inconclusive. Regardless, our experiment suggests that a data-driven prior is

not necessary to obtain good results.

Our version of the first stage of the method of Baek et al. [7] (discussed in

Section 4.6.2), corresponding to the L1L1 condition without a non-negativity

constraint in Tables 5.1 and A.1, does not perform as well as when we augment

it with a non-negativity constraint. Overall, regardless of whether we use it

with or without a non-negativity constraint, its performance is not significantly

different from that of a single penalty term, on the spatial gradient of the image

(i.e. the L1 or L2 conditions).

Since the intention behind their mixed-gradient penalty term was to align

edges between spectral bands, it is difficult to assess their penalty on this

dataset. In the absence of a model of spectral dispersion, but with input

images such as these containing some spectral dispersion, the data-fitting term

will discourage full alignment between spectral bands. Therefore, the mixed-

gradient penalty will be in conflict with the data-fitting term, and will not

be as effective. The spectral dispersion in the KAIST dataset is reasonably

small, however, especially in comparison to the experimental setting of Baek

et al., where a prism was in front of the lens [7]. Therefore, we conjecture that

it is possible to achieve good performance without the spectral-spatial image

gradient penalty, regardless of whether dispersion from a lens is accounted for

in the data-fitting term.
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Colour Error

When evaluating colour image reconstruction, we can now include results from

a larger set of algorithms, such as demosaicing algorithms. Using a format

analogous to our presentation of spectral reconstruction results, Table 5.2 dis-

plays error metrics averaged over the four images from the KAIST dataset,

whereas Table A.2 (Appendix A) displays error metrics for the first image

(Figure 4.14a), but includes results for penalties on the image Laplacian.
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Table 5.2: RGB error metrics averaged across images from the KAIST dataset. Rows are sorted by MRAE in the Green channel
(MRAEG). The first column distinguishes spectral image estimation algorithms from colour image estimation algorithms. The
second column identifies the combination of penalty terms used in our algorithms, as listed in Table 3.1. The third column
indicates whether or not we imposed a non-negativity constraint on the estimated image. The fourth column identifies the
criterion used to select regularization weights (Section 3.6).

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

no ARI [79] 0.0118 0.00506 0.0107 0.00105 0.00069 0.00131 0.99963 0.99982 0.99958

no Bilinear interpolation 0.0113 0.00509 0.0110 0.00121 0.00099 0.00147 0.99955 0.99978 0.99951

no L2 no DMC 0.0143 0.00511 0.0133 0.00149 0.00100 0.00188 0.99932 0.99978 0.99924
no L2L2 no DMC 0.0152 0.00511 0.0140 0.00163 0.00099 0.00208 0.99920 0.99978 0.99913
no L2 no MSEC 0.0149 0.00516 0.0137 0.00158 0.00100 0.00201 0.99926 0.99978 0.99917
no L1 no DMC 0.0151 0.00521 0.0139 0.00164 0.00099 0.00210 0.99921 0.99978 0.99913
no L2L2 no MSEC 0.0146 0.00535 0.0124 0.00155 0.00108 0.00181 0.99924 0.99971 0.99926
no L2 yes MSEC 0.0424 0.00607 0.0418 0.00175 0.00102 0.00232 0.99877 0.99977 0.99786
no L1L1 no MSEC 0.0150 0.00608 0.0131 0.00128 0.00092 0.00163 0.99946 0.99980 0.99942
no L1 no MSEC 0.0174 0.00631 0.0149 0.00160 0.00096 0.00206 0.99922 0.99979 0.99914
no L2L2 yes MSEC 0.0157 0.00635 0.0202 0.00131 0.00098 0.00174 0.99943 0.99978 0.99922
yes L1L1 yes DMC 0.0168 0.00735 0.0142 0.00171 0.00128 0.00249 0.99910 0.99954 0.99882
no L2 yes DMC 0.0627 0.00736 0.0622 0.00182 0.00101 0.00248 0.99823 0.99976 0.99626
no L2L2 yes DMC 0.0679 0.00753 0.0677 0.00180 0.00099 0.00248 0.99806 0.99977 0.99578
yes L2L2 yes DMC 0.0186 0.00759 0.0149 0.00181 0.00123 0.00209 0.99900 0.99967 0.99918
yes L2 yes DMC 0.0186 0.00759 0.0149 0.00181 0.00123 0.00209 0.99900 0.99967 0.99918
yes L2L2 no DMC 0.0185 0.00760 0.0149 0.00181 0.00123 0.00209 0.99900 0.99967 0.99917
yes L2 no DMC 0.0185 0.00760 0.0149 0.00181 0.00123 0.00209 0.99900 0.99967 0.99917
yes L1 yes DMC 0.0198 0.00804 0.0152 0.00260 0.00163 0.00334 0.99802 0.99871 0.99770
yes L2L2 no MSEC 0.0182 0.00963 0.0206 0.00192 0.00172 0.00275 0.99834 0.99851 0.99755
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Table 5.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes L2L2 yes MSEC 0.0195 0.01032 0.0196 0.00155 0.00150 0.00230 0.99912 0.99923 0.99861
yes L1L1 yes MSEC 0.0232 0.01114 0.0221 0.00208 0.00301 0.00529 0.99864 0.99642 0.99483
yes L1L1 no MSEC 0.0230 0.01114 0.0173 0.00193 0.00185 0.00302 0.99891 0.99930 0.99867
no L1L1 no DMC 0.0247 0.01191 0.0192 0.00145 0.00089 0.00182 0.99917 0.99974 0.99912
no L1L1 yes MSEC 0.0206 0.01258 0.0180 0.00187 0.00113 0.00238 0.99894 0.99959 0.99890
no L1L1 yes DMC 0.0273 0.01260 0.0222 0.00342 0.00142 0.00497 0.99758 0.99950 0.99704
yes L1 yes MSEC 0.0294 0.01352 0.0286 0.00380 0.00410 0.00737 0.99636 0.99355 0.99058
yes L2 no MSEC 0.0317 0.01437 0.0332 0.00347 0.00242 0.00420 0.99418 0.99528 0.99273
yes L2 yes MSEC 0.0301 0.01448 0.0299 0.00232 0.00204 0.00345 0.99773 0.99761 0.99583
yes L1 no DMC 0.0348 0.01523 0.0220 0.00203 0.00185 0.00387 0.99862 0.99897 0.99757
yes L1 no MSEC 0.0293 0.01556 0.0308 0.00256 0.00483 0.00867 0.99786 0.99033 0.98730
yes L1L1 no DMC 0.0355 0.01726 0.0211 0.00165 0.00139 0.00263 0.99894 0.99944 0.99881
no L2 yes MDC 0.0342 0.01956 0.0295 0.00347 0.00326 0.00467 0.99713 0.99841 0.99683
no L2 no MDC 0.0343 0.01957 0.0296 0.00347 0.00326 0.00467 0.99713 0.99841 0.99683
no L2L2 yes MDC 0.0337 0.01970 0.0292 0.00341 0.00329 0.00461 0.99722 0.99838 0.99690
no L2L2 no MDC 0.0337 0.01970 0.0293 0.00341 0.00328 0.00462 0.99721 0.99838 0.99690
no L1 yes MSEC 0.0391 0.02054 0.0298 0.00288 0.00169 0.00373 0.99755 0.99922 0.99740
no L1 yes DMC 0.0444 0.02405 0.0333 0.00293 0.00170 0.00377 0.99725 0.99905 0.99710

yes Choi et al. [19] 0.0459 0.03321 0.0358 0.00204 0.00289 0.00336 0.99754 0.99515 0.99579

yes L2L2 no MDC 0.1128 0.05851 0.0661 0.00883 0.00927 0.00936 0.98365 0.98904 0.98883
yes L2L2 yes MDC 0.1131 0.05855 0.0662 0.00884 0.00928 0.00937 0.98362 0.98901 0.98881
yes L2 yes MDC 0.1154 0.05948 0.0673 0.00919 0.00947 0.00970 0.98288 0.98863 0.98832
yes L2 no MDC 0.1154 0.05955 0.0674 0.00920 0.00948 0.00971 0.98286 0.98862 0.98830
yes L1 yes MDC 0.1224 0.06342 0.0713 0.00945 0.00822 0.00902 0.97799 0.98351 0.98416
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Table 5.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes L1L1 yes MDC 0.1279 0.06853 0.0751 0.00916 0.00830 0.00891 0.97856 0.98336 0.98442
yes L1 no MDC 0.1450 0.07371 0.0798 0.00943 0.00847 0.00923 0.97808 0.98316 0.98376
yes L1L1 no MDC 0.1425 0.07697 0.0801 0.00924 0.00840 0.00899 0.97814 0.98301 0.98415
no L1 no MDC 0.3929 0.19792 0.2389 0.01292 0.01080 0.01403 0.94610 0.96648 0.95699
no L1 yes MDC 0.3932 0.19810 0.2391 0.01293 0.01082 0.01407 0.94606 0.96646 0.95696
no L1L1 no MDC 0.3228 0.26205 0.1922 0.01112 0.01517 0.01253 0.94804 0.95333 0.96446
no L1L1 yes MDC 0.3333 0.27273 0.2026 0.01166 0.01545 0.01276 0.95654 0.95140 0.96329
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Regarding the algorithm variants listed in Tables 5.2 and A.2, recall that

the colour versions of our algorithm recover latent images in the space of colour

channels, rather than the space of spectral bands. We explained the difference

between our colour and spectral image estimation algorithms in Section 3.9.1.

In the tables, when we indicate that a colour image estimation algorithm uses

a “spectral” prior (e.g . L1SpectralLap2), we mean that there is a penalty

on the cross-channel gradient of the image spatial gradient. Specifically, we

calculate the cross-channel penalty by subtracting the Red channel’s spatial

gradient from the Green channel’s spatial gradient, and the Green channel’s

spatial gradient from the Blue channel’s spatial gradient. For spectral image

estimation, such a “spectral” penalty is truly spectral, because it is on the

spectral gradient of the image spatial gradient. We reused the label of the

penalty term, “spectral”, for colour image estimation algorithms, because the

penalty term has the same mathematical form, although it has a different

physical interpretation.

The colour versions of the dataset images are recovered with much higher

accuracy than their spectral versions, as is evident when comparing the errors

reported in Tables 5.1 and A.1 to the errors reported in Tables 5.2 and A.2.

This result is to be expected, because colour image estimation is a better-

posed problem than spectral image estimation. We observe that algorithms

that operate in the space of colour channels often perform better than spectral

image estimation algorithms, possibly indicating that regularization penalties

should be applied in the same space (i.e. colour channels or spectral bands)

in which the image reconstruction error will be evaluated.

Comparing our algorithms to those of other authors, we draw the same

conclusions as for the spectral error results. The method of Choi et al. [19]

yields higher error than most variants of our algorithm in Table 5.2, again sug-

gesting that simple smoothness priors with appropriate weights can be more

effective than data-driven priors. With respect to the image spectral-spatial

gradient prior of Baek et al. [7], we again observe that it offers no advantage.

In contrast, demosaicing algorithms are clearly superior for colour image esti-

mation. While Adaptive Residual Interpolation [79] does not perform as well
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as some variants of our algorithm in Table A.2, most of these variants used

the true image for regularization weight selection. Moreover, the results in

Table A.2 are only for one image from the dataset, and may not reflect perfor-

mance in general. On the other hand, bilinear interpolation performs almost

as well as Adaptive Residual Interpolation, suggesting that these images are

not challenging inputs for demosaicing algorithms. We note that the images

from the KAIST dataset contain mostly diffuse edges, and so the results of

different interpolation-based demosaicing algorithms will be similar.

5.2.2 Non-Negativity Constraint

In Table 5.3, we present a subset of the results from Table 5.1 to more clearly

compare spectral image estimation with and without a non-negativity con-

straint on the estimated image. A non-negativity constraint improves the

MRAE, often by a significant margin, for all algorithms, except for the L1

condition with the DMC for regularization weight selection. A similar con-

clusion can tentatively be drawn from the results in Table A.1, for algorithms

which used a penalty on the image Laplacian.

The same findings apply to colour error, as shown in Table 5.4, although

for direct colour image estimation, a non-negativity constraint usually worsens

the MRAE. For spectral image estimation, a non-negativity constraint likely

reduces error by making the problem better posed, whereas for colour image

estimation, a non-negativity constraint may worsen the bias introduced by the

regularization penalties.

We note that Choi et al. [19] decided against using a non-negativity con-

straint because it would complicate their optimization algorithm and slow

convergence. In our experiments, a non-negativity constraint sometimes im-

proved convergence, such as for the L1L1 spectral image estimation condition.

We conclude that a non-negativity constraint is necessary because it improves

spectral image estimation accuracy, and that its computational burden is jus-

tifiable.

Evaluating images with negative values can be done in several ways. On

one hand, as negative intensities are not physically possible, our error met-
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Table 5.3: MRAE averaged across images from the KAIST dataset, compar-
ing algorithms with and without a non-negativity constraint. Rows are sorted
by MRAE. The first column identifies the combination of penalty terms used
in our algorithms, as listed in Table 3.1. The second column identifies the
criterion used to select regularization weights (Section 3.6). Bold values in-
dicate the better errors between the algorithm variants with or without a
non-negativity constraint.

MRAE (NNeg) MRAE (without NNeg)
Penalties Criterion

L1L1 MSEC 0.229 0.257
L2 MSEC 0.230 0.248
L1 MSEC 0.231 0.254

L2L2 MSEC 0.232 0.244
L1 DMC 0.259 0.245

L1L1 DMC 0.260 0.377
L2 DMC 0.298 0.394

L2L2 DMC 0.298 0.394
L2L2 MDC 0.322 0.352
L1L1 MDC 0.330 0.375

L2 MDC 0.350 0.426
L1 MDC 0.362 0.632

rics are too tolerant of negative values. We might instead simply reject any

algorithm that produces images with negative values. Alternatively, we could

be more lenient, by thresholding images to remove negative intensities prior

to evaluation. Thresholding would be a necessary post-processing step in a

real application, for any algorithm that may produce negative intensity values.

Thresholding after image reconstruction is similar to applying a non-negativity

constraint, except without a guarantee of global optimality. Therefore, we

prefer to incorporate a non-negativity constraint directly into our global opti-

mization algorithm.

5.2.3 Selection of Image Priors

Different regularization penalties are each suited to different image textures,

so it is difficult to make universal judgements concerning which penalties are

appropriate. Selecting regularization penalties is also a matter of personal

preference, as we illustrate by showing image patches later in Section 5.4.2.
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Table 5.4: RGB MRAE averaged across images from the KAIST dataset,
comparing algorithms with and without a non-negativity constraint. Rows
are sorted by MRAE in the Green channel (MRAEG). The first column dis-
tinguishes spectral image estimation algorithms from colour image estimation
algorithms. The second column identifies the combination of penalty terms
used in our algorithms, as listed in Table 3.1. The third column identifies
the criterion used to select regularization weights (Section 3.6). Bold values
indicate the better errors between the algorithm variants with or without a
non-negativity constraint.

with NNeg constraint without NNeg constraint
MRAE MRAE MRAE MRAE MRAE MRAE

Red Green Blue Red Green Blue

Sp. Pen. Crit.

no L2 DMC 0.0627 0.00736 0.0622 0.0143 0.00511 0.0133
no L2L2 DMC 0.0679 0.00753 0.0677 0.0152 0.00511 0.0140
no L2 MSEC 0.0424 0.00607 0.0418 0.0149 0.00516 0.0137
no L1 DMC 0.0444 0.02405 0.0333 0.0151 0.00521 0.0139
no L2L2 MSEC 0.0157 0.00635 0.0202 0.0146 0.00535 0.0124
no L1L1 MSEC 0.0206 0.01258 0.0180 0.0150 0.00608 0.0131
no L1 MSEC 0.0391 0.02054 0.0298 0.0174 0.00631 0.0149
yes L1L1 DMC 0.0168 0.00735 0.0142 0.0355 0.01726 0.0211
yes L2L2 DMC 0.0186 0.00759 0.0149 0.0185 0.00760 0.0149
yes L2 DMC 0.0186 0.00759 0.0149 0.0185 0.00760 0.0149
yes L1 DMC 0.0198 0.00804 0.0152 0.0348 0.01523 0.0220
yes L2L2 MSEC 0.0195 0.01032 0.0196 0.0182 0.00963 0.0206
yes L1L1 MSEC 0.0232 0.01114 0.0221 0.0230 0.01114 0.0173
no L1L1 DMC 0.0273 0.01260 0.0222 0.0247 0.01191 0.0192
yes L1 MSEC 0.0294 0.01352 0.0286 0.0293 0.01556 0.0308
yes L2 MSEC 0.0301 0.01448 0.0299 0.0317 0.01437 0.0332
no L2 MDC 0.0342 0.01956 0.0295 0.0343 0.01957 0.0296
no L2L2 MDC 0.0337 0.01970 0.0292 0.0337 0.01970 0.0293
yes L2L2 MDC 0.1131 0.05855 0.0662 0.1128 0.05851 0.0661
yes L2 MDC 0.1154 0.05948 0.0673 0.1154 0.05955 0.0674
yes L1 MDC 0.1224 0.06342 0.0713 0.1450 0.07371 0.0798
yes L1L1 MDC 0.1279 0.06853 0.0751 0.1425 0.07697 0.0801
no L1 MDC 0.3932 0.19810 0.2391 0.3929 0.19792 0.2389
no L1L1 MDC 0.3333 0.27273 0.2026 0.3228 0.26205 0.1922
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With respect to spectral image estimation error, L1-norm penalties gener-

ally had an advantage for spectral image estimation when their weights were

selected using the DMC (Table 5.1). In contrast, L2-norm penalties performed

better than L1-norm penalties for the other weight selection criteria. There-

fore, L2-norm penalties seem to be reliable over a broader range of weights.

The spectral reconstruction error under penalties on the image Laplacian seems

to be much higher than for penalties on other image gradients (Table A.1),

while the penalty on the spectral-spatial image gradient does not significantly

increase accuracy with respect to only a penalty on the spatial gradient (as

discussed in Section 5.2.1).

Regarding colour image error, penalties on the image Laplacian perform

well (Table A.2), perhaps because they are more flexible than first-order gradi-

ent penalties. It is not clear from the results whether L1 or L2-norm penalties

produce better colour error.

Aside from image reconstruction accuracy, there are practical reasons for

selecting certain regularization penalties over others. Most notably, image es-

timation is much faster with L2-norm penalties, which allow for least-squares

optimization. First-order gradient penalties are also easier to optimize than

second-order gradient penalties, because the former penalties induce constraints

on smaller neighbourhoods of pixels than the latter penalties.

A second practical consideration is the difficulty selecting a regularization

weight for the spectral-spatial gradient penalty of Baek et al. [7]. Tuning

weights for this prior requires images without spectral dispersion, because the

prior penalizes misalignment between spectral bands. In contrast, priors on

the image spatial gradient penalize spatial roughness, and the desired level of

spatial roughness can be set by examining aberrated images, as done by the

DMC (Section 3.6).

We also note that the spectral-spatial gradient penalty is not sufficient for

demosaicing, as it does not enforce smoothness between neighbouring pixels

(Figure 3.8). As it must be used in combination with a spatial gradient penalty,

image estimation becomes computationally expensive. We recommend against

using the spectral-spatial gradient penalty, as its disadvantages outweigh its
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slight benefit to image estimation accuracy.

5.2.4 Weights on Regularization Penalties

Whereas different regularization penalties often resulted in similar image re-

construction error, there is a clear distinction between criteria used to select

weights for the regularization penalties. The results presented in Section 5.2.1

show that the MDC produces higher spectral and colour error than other crite-

ria, by a large margin. The MSEC generally leads to the most accurate images,

although the DMC sometimes gives comparable accuracy, and performs well

with respect to colour error, even if spectral images are being estimated. That

the MSEC, which minimizes the image reconstruction error, does not always

outperform the DMC happens for two reasons: First, we only select regular-

ization weights from a single patch in each image, whereas we evaluate image

reconstruction error across the entire image. Second, as mentioned in Sec-

tion 3.6, the grid search we use to optimize regularization weight selection

criteria may not find a global optimum.

Consistent with the second explanation, we observed that the MSEC yielded

highly variable regularization weights across images, whereas the MDC, for

which there are proven convergence results [108], yielded the most stable regu-

larization weights. It may be that the MDC is simply insensitive to the image

data, however. The type of regularization penalty also determined how vari-

able the weights were, with the spectral-spatial gradient penalty having the

most variable weights (including in our experiments on other image datasets).

Overall, our results reflect the conjecture by Song et al. that “the choice of

the differential operator is not so crucial since the criterion also includes the

data fitting term and the trade-off between the data fitting and regularization

terms is controlled by the regularization parameters.” They assert that “only

the choice of the regularization parameters really matters” [108].

We can verify their statement by examining colour versions of reconstructed

spectral images (Figure 5.2). The MDC selects high weights, resulting in severe

oversmoothing (Figure 5.2a). In contrast, the MSEC sometimes selects weights

which are too low. As such, undersmoothing is apparent in Figure 5.2b. Colour
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(a) (b) (c)

Figure 5.2: A comparison of images estimated under different criteria for se-
lecting weights on regularization penalty terms (introduced in Section 3.6): (a)
Regularization weight selection using our version of the MDC [108]. (b) Regu-
larization weight selection using the MSEC, which minimizes the mean squared
error with respect to the true spectral image. (c) Regularization weight selec-
tion using our DMC, which minimizes the mean squared error with respect to
the Green channel of the demosaiced input image. All images were estimated
with an L1-norm penalty on the image spatial gradient, and a non-negativity
constraint. The image patches shown here are sRGB versions of the estimated
spectral images, computed using the CIE 1931 colour matching functions, as
described in Section 3.3.1. The input image is the scene shown in Figure 4.14d.

desaturation indicates that intensities in the colour-filter array are not being

propagated to neighbouring pixels, as can be seen directly by magnifying the

figure to observe a residual colour-filter array pattern. On this image, the DMC

selects an appropriate level of smoothness, producing a reasonable demosaicing

result (Figure 5.2c). Note that, despite the undesirable visual artifacts, the

spectral MRAE and global RMSE (4.5) are lower for the MSEC result relative

to the DMC result. If this were not the case, then the MSEC would not have

been properly optimized during regularization weight selection. The visual

artifacts reflect the higher colour MRAE and RMSE, for all colour channels,

of the MSEC result relative to the DMC result.

Our comparison between the MSEC and DMC serves only to validate the

DMC. We cannot recommend using the MSEC, as it cannot be used in practice,

since the true image is unknown.

5.3 Models of Dispersion

While synthetic experiments help validate different image priors, we did not

have realistic simulations of spectral dispersion to validate our methods for
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modelling dispersion. We relied instead on real data, specifically images of a

pattern of black disks printed on a white board, described in Section 4.2.1,

to calibrate models of spectral dispersion. Although we do not know the

true dispersion, we can still validate our methods for modelling dispersion.

We do so by showing that we obtain consistent models of dispersion across

image capture conditions, and between variants of our calibration methods

(Appendix B).

For the Computar 07I lens, under light filtered by the optical bandpass fil-

ters, we obtain the patterns of dispersion shown in Figure 5.3. By comparison,

without filtering the light, and calibrating dispersion between colour channels,

as done by Rudakova and Monasse [99], we obtain the patterns shown in Fig-

ure 5.4. The images we used to calibrate the spectral and colour channel-based

models of dispersion are the filtered-light and unfiltered-light versions, respec-

tively, of the images shown in Figures 4.15b and 4.15c. For the filtered-light

images, we used the high-dynamic range images produced under each optical

bandpass filter, not individual band images from our multispectral images, as

the latter images have been subject to further processing that is not necessary

for calibrating dispersion.

The model of dispersion in terms of colour channels does not capture the

full range of spectral dispersion: Figure 5.4 shows a peak displacement be-

tween the Blue and Red channels of approximately 2.5 pixels, whereas Fig-

ure 5.3 shows a peak displacement between the 400 and 700 nm bands of

approximately 5 pixels.

To better illustrate the limitations of modelling dispersion between colour

channels, in Figure 5.5, we show the models of dispersion between colour

channels obtained from the high-dynamic range images captured under our

450 nm centre wavelength optical bandpass filter. Under the filtered light, we

measure very little dispersion between the different colour channels, showing

that models of dispersion between colour channels are specific to the spectral

characteristics of the light reflecting from the calibration pattern.

We also note that the models in Figure 5.5 support our assumption that

the optical filters in our experimental apparatus are properly filtering the light
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Trivariate polynomials in x, y, and λ modeling dispersion for a
Computar 07I lens mounted on a Point Grey BlackFly Flea3 camera. From
left to right, top to bottom, the plots show aberration relative to 600 nm for
spectral bands centered at 400, 450, 500, 550, 650, and 700 nm, respectively.
Positive dispersion magnitudes indicate that the dispersion vectors point away
from the image center. Arrows in the figures show the dispersion direction.
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(a) (b)

Figure 5.4: Bivariate polynomials in x and y modeling dispersion for a Com-
putar 07I lens mounted on a Point Grey BlackFly Flea3 camera. The aberra-
tion of the Blue channel relative to the Green channel is shown in (a), whereas
that for the Red channel relative to the Green channel is shown in (b). Pos-
itive dispersion magnitudes indicate that the dispersion vectors point away
from the image center. Arrows in the figures show the dispersion direction.
Note that dispersion is a spectral phenomenon, so measuring it between colour
channels in this manner (as in Rudakova and Monasse [99]) only approximates
the results shown in Figure 5.3.

from our DLP projector to narrowband ranges of wavelengths. If the filters

transmitted large amounts of light outside of its specified passband, we would

have obtained larger dispersion vectors, resulting in patterns more similar to

those in Figure 5.4.

In both Figure 5.3 and Figure 5.4, the dispersion patterns are approxi-

mately radially symmetrical, as we expected based on literature (e.g . Mat-

suoka et al. [75]). The magnitude of dispersion is not monotonic with respect

to distance from the image center, however. We investigated several possi-

ble explanations for this phenomenon, to determine if it is an artifact of our

method for calibrating dispersion.

Our findings, provided in Appendix B, suggest that the non-monotonicity

is a physical property of the lenses we used, because it is present in the models

of dispersion generated by different variants of our calibration method. There-

fore, in our subsequent experiments with spectral and colour image estimation,

we presume that any artifacts we observe in our results are unlikely to orig-
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(a) (b)

Figure 5.5: Bivariate polynomials in x and y modeling dispersion for a Com-
putar 07I lens mounted on a Point Grey BlackFly Flea3 camera. The models
were calibrated from images of a dot pattern captured under light filtered by
our 450 nm optical bandpass filter. The aberration of the Blue channel relative
to the Green channel is shown in (a), whereas that for the Red channel relative
to the Green channel is shown in (b). Positive dispersion magnitudes indicate
that the dispersion vectors point away from the image center. Arrows in the
figures show the dispersion direction.

inate from our models of dispersion. Rather, artifacts more likely arise from

our optimization method and its associated regularization penalties.

5.4 Image Reconstruction from Raw RGB Im-

ages

Our initial synthetic experiment on spectral images from the KAIST dataset

(Section 5.2) evaluated spectral reconstruction, but not chromatic aberration

correction. In this section, we use captured RGB images to evaluate chromatic

aberration correction, and to a lesser extent, spectral reconstruction.

5.4.1 Experiment Details

Our input images, shown in Figure 4.15, were captured using our BlackFly

Flea3 colour camera with a Computar 07I lens. With this camera and lens

combination, we used the model of spectral dispersion shown in Figure 5.3

for spectral image estimation, and the model of colour dispersion shown in

Figure 5.4 for direct colour image estimation. Our reconstructed spectral
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images have 8 control bands, with centre wavelengths from 386 nm to 707 nm

(inclusive), spaced 45.9 nm apart. We selected this spectral sampling scheme

as described in Section 5.4.3.

Selection of Algorithms Evaluated

Based on the results of our simulated experiment (Section 5.2.4), we dropped

the MDC (3.22) for regularization weight selection, and used only similarity

with bilinear interpolation (3.24), the DMC, as our criterion for regularization

weight selection. We also excluded the spectral-spatial gradient penalty (3.17),

for the reasons discussed in Section 5.2.3.

As we had images for calibrating models of dispersion in our dataset (Fig-

ures 4.15b and 4.15c), we were able to compare image reconstruction with,

and without, a model of dispersion. For a more conclusive comparison, we se-

lected regularization weights in the absence of models of dispersion, and then

used these regularization weights for image estimation both with and without

a model of dispersion.

In fact, there are advantages of selecting regularization weights without a

dispersion model, even when incorporating the dispersion model into the op-

timization algorithm during image reconstruction. First, as we select regular-

ization weights only from a single image patch, the regularization weights will

not depend on the magnitude of dispersion predicted by a dispersion model.

Therefore, the regularization weights are likely to generalize better to patches

with other magnitudes of dispersion. Second, selecting regularization weights

is faster in the absence of a model of dispersion, because the data-fitting term

of the image reconstruction optimization problem is simpler to evaluate (as

discussed in Section 3.9.2).

5.4.2 Image Estimation Evaluation

While our dataset of captured raw RGB images is small, it has a sufficient

variety of image features to visually differentiate image estimation algorithms.

In Figures 5.6, 5.7, 5.8, and 5.9, we compare our spectral image estimation al-

gorithm to the image estimation algorithms from the related works mentioned
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in Section 4.6.

Figure 5.6 shows a patch with sharp black and white edges, serving as a

typical test case for deblurring and chromatic aberration correction algorithms.

We observe that this patch is challenging for demosaicing algorithms ((a) and

(f)), which leave some pixellation artifacts visible at edges, in particular in

the white ’+’ symbol near the top left of the patch. The plain demosaicing

results also preserve strong colour fringes from chromatic aberration, as shown

in the inset. These fringes are muted by the CCT algorithm of Sun et al. [111]

((b) and (g)), but are not eliminated completely. Unfortunately, when the

Green channel is pre-processed by the blind deconvolution method of Krishnan

et al. [61], before the CCT algorithm, the image is sharpened, but colour

fringes become more vibrant, and ringing appears around image edges ((c)

and (h)). In contrast, colour channel warping using the method of Rudakova

and Monasse [99] preserves both image blurriness, and demosaicing artifacts,

but reduces colour fringing more effectively ((d) and (i)). Our method, with

the Lap2 penalty term, (e), slightly sharpens the image, and leaves subtle

colour fringes which are opposite in hue to the original fringes from chromatic

aberration. In contrast, our method with the L1 penalty term, (j), produces an

image which is sharper, and has less fringing. The image in (j) appears sharper,

and with reduced colour artifacts, than the images (d) and (i) produced by the

method of Rudakova and Monasse [99]. Note that neither of our algorithms

((e) and (j)) produce artifacts resembling those of the demosaicing algorithms.

For a less conventional visual test, we present an image patch with bright

colours and a specular highlight in Figure 5.7. Whereas demosaicing algo-

rithms lose the edges of the small red dots, and blind deconvolution [61] with

CCT [111] alters the colour of the dots, our method restores their edges with-

out altering their colour. Our method also sharpens the specular highlight

with minimal ringing, especially with the L1 penalty term in (j), in contrast

to the method of Krishnan et al. [61] ((c) and (h)), which introduces strong

ringing into the highlight.

Aside from the ringing artifacts it may introduce, deblurring may also un-

desirably sharpen an image. Consider Figure 5.8, which shows an image patch
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(a)

(f)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

(j)

Figure 5.6: A comparison of our image estimation algorithm with related
works, on a patch from the image shown in Figure 4.15a. (a) Demosaicing by
bilinear interpolation; (b) Demosaicing by bilinear interpolation followed by
CCT [111] without blind deconvolution of the Green channel; (c) Demosaicing
by bilinear interpolation followed by blind deconvolution of the Green chan-
nel [61] and then CCT [111]; (d) Demosaicing by bilinear interpolation followed
by colour channel warping [99]; (e) Our spectral image estimation algorithm
with the Lap2 combination of penalties (Table 3.1) and a non-negativity con-
straint; (f)–(i) Same as (a)–(d), but with ARI [79] as the demosaicing method;
(j) Our spectral image estimation algorithm with the L1 combination of penal-
ties (Table 3.1) and a non-negativity constraint.

(a)

(f)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

(j)

Figure 5.7: A comparison of our image estimation algorithm with related
works, on a patch from the image shown in Figure 4.15d. The different condi-
tions shown in the figure are the same as those in Figure 5.6.
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Figure 5.8: A comparison of our image estimation algorithm with related
works, on a patch from the image shown in Figure 4.15g. The different condi-
tions shown in the figure are the same as those in Figure 5.6.

containing both sharper (black and white) and blurrier (green) regions. In

photography, defocus blur is often introduced for visual effect. Our method

supports such an intention, by only eliminating blur caused by lateral chro-

matic aberration. In Figure 5.8 (j), for example, the entire image patch is

noticeably sharper compared to (a) and (f). One can observe the sharpening

effect in the inset, and also along the edge between the green region and the

black and white region in (j). Yet our method preserves the defocus of the

green region. In contrast, blind deconvolution [61] with CCT [111] forcibly

sharpens the green region, attempting to remove all blur, not only blur caused

by chromatic aberration.

In Figure 5.9, we differentiate image-based from calibrated chromatic aber-

ration correction algorithms using an image patch containing rainbows from a

dispersive object. There is little colour fringing from chromatic aberration in

this image, as can be seen from the edges of the black dot in the demosaicing

results ((a) and (f)). Our method, and that of Rudakova and Monasse [99],

produce images similar to those from demosaicing, but alter colour fringing

and sharpness at the edges of the dot. In contrast, the method of Sun et al.

[111] introduces colour artifacts in both the edges of the dot, and in the rain-

bows ((b) and (g), and especially (c) and (h)). As their method is image-based,

it treats the rainbows as chromatic aberration.
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Figure 5.9: A comparison of our image estimation algorithm with related
works, on a patch from the image shown in Figure 4.15f. The different condi-
tions shown in the figure are the same as those in Figure 5.6.

In Figures 5.10 and 5.11, we compare different versions of our algorithm.

Regardless of the regularization penalties chosen, direct colour image estima-

tion (Section 3.9.1) produces blurrier images than spectral image estimation,

and also shows some pixellation artifacts reminiscent of demosaicing artifacts

((a)–(e)). We attribute the sharpening effect of spectral image estimation

to correction of within-channel chromatic aberration. Therefore, spectral im-

age estimation has advantages over colour image estimation that warrant the

more complicated calibration procedure. We note that such a deblurring effect

would be difficult to achieve with conventional deblurring techniques, as they

would not distinguish between defocus blur and chromatic aberration.

Comparing the different regularization penalties, in Figures 5.10 and 5.11,

we observe that a penalty on the image Laplacian tends to produce some

noise in the result, especially when the penalty is subject to the L1-norm ((g)

compared with (f), (h), (i), and (j)). A penalty on the first-order spatial

gradient, in contrast, smoothes edges when subject to the L2-norm (i), but

preserves sharp edges, without introducing noise, when subject to the L1-norm

(j). Our preferred combination of image priors is therefore the L1 condition

in Table 3.1, an L1-norm penalty on the image spatial gradient. The Lap2

condition, an L2-norm penalty on the image spatial Laplacian, also produces

reasonable results, although they are slightly blurrier.
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Figure 5.10: A comparison of variants of our image estimation algorithm,
on a patch from the image shown in Figure 4.15a. The top row shows the
results of direct colour image estimation (Section 3.9.1), whereas the bottom
row shows the results of spectral image estimation. The columns compare
different regularization penalties (from the list in Table 3.1), all of which were
used with a non-negativity constraint on the estimated image: L1SpatialLap2
((a) and (f)), Lap1 ((b) and (g)), Lap2 ((c) and (h)), L2 ((d) and (i)), and L1

((e) and (j))
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(b)

(g)
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(h)

(d)

(i)

(e)

(j)

Figure 5.11: A comparison of variants of our image estimation algorithm, on a
patch from the image shown in Figure 4.15d. The different conditions shown
in the figure are the same as those in Figure 5.10.
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Table 5.5: Spectral MRAE and RMSE (4.4) in the 12 pixel-wide regions within
ColorChecker patch edges, averaged across patches. Entries are sorted by
MRAE. All of our methods used a non-negativity constraint.

Dispersion-aware Penalties MRAE RMSEpixel

yes L1 0.31156 0.10466
yes Lap1 0.31417 0.10428
yes Lap2 0.31426 0.10467
yes L1SpatialLap2 0.31430 0.10466
no Lap2 0.31827 0.10602
no L1SpatialLap2 0.31831 0.10600
yes L2 0.32566 0.10261
no L2 0.32693 0.10464
no L1 0.33265 0.10651
no Lap1 0.33414 0.10539

The image patches shown in this section illustrate the strengths of different

algorithms, but lead to subjective conclusions about which algorithm is most

effective. To objectively evaluate chromatic aberration correction, we used

our technique described in Section 4.4.3, and obtained the spectral and colour

error results shown in Tables 5.5 and 5.6, respectively. Note that chromatic

aberration correction by blind deconvolution [61] followed by CCT [111] is not

listed in Table 5.6, because we only performed blind deconvolution on image

patches, as discussed in Section 4.6.4.

Table 5.5 presents residual chromatic aberration in the spectral domain.

From the results, we observe that the “dispersion-aware” methods, which in-

cluded a model of spectral dispersion in the data-fitting term of the opti-

mization problem (3.1), outperform their variants which excluded a model of

dispersion from the data-fitting term (described in Section 3.9.2). Therefore,

attempting to correct chromatic aberration does reduce the residual chromatic

aberration as measured by our evaluation technique.

To compare our method with previous works on chromatic aberration cor-

rection, we must evaluate images in the RGB domain, as presented in Table 5.6.

The comparison is more interesting than in the spectral domain, because we

can also compare our spectral image estimation algorithm to its colour equiv-

alent (described in Section 3.9.1). Spectral image estimation algorithms have
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Table 5.6: MRAE and RMSE in each colour channel in the 12 pixel-wide
regions within ColorChecker patch edges, averaged across patches. Entries
are sorted by error in the Green channel, then in the Red channel. Note
that Rudakova and Monasse [99] and Sun et al. [111] (without Krishnan et
al. [61] as a preprocessing step) do not alter the Green channel, and so have
the same error in Green as the demosaicing methods they follow. All of our
methods used a non-negativity constraint. The non-spectral variants of our
method (Section 3.9.1) reconstruct colour images directly, instead of estimating
spectral images.

MRAE × 102 RMSE × 102

Dispersion-
aware

Spec-
tral

Penalties Red Green Blue Red Green Blue

yes yes L1SpatialLap2 8.82 8.13 8.77 1.069 1.912 0.846
yes yes Lap2 8.82 8.13 8.77 1.069 1.912 0.846
yes yes L2 8.93 8.26 8.92 1.074 1.920 0.848
yes yes L1 8.85 8.36 8.60 1.083 1.936 0.840
yes yes Lap1 8.88 8.41 8.76 1.066 1.933 0.851
no no L1 9.26 8.54 10.07 1.245 2.153 1.241
yes no L1 9.21 8.57 8.65 1.226 2.161 1.005

ARI [79] 8.49 8.65 9.38 1.073 2.137 1.116

ARI [79] & warping [99] 9.12 8.65 8.49 1.175 2.137 0.925

ARI [79] & CCT [111] 9.18 8.65 9.47 1.146 2.137 1.056

no no L1SpatialLap2 9.05 8.66 9.94 1.175 2.145 1.191
no no Lap2 8.66 8.66 9.61 1.094 2.134 1.130
yes no Lap2 9.05 8.66 8.58 1.163 2.134 0.930
no no Lap1 9.04 8.68 9.79 1.131 2.145 1.141
yes no Lap1 9.18 8.68 8.63 1.178 2.145 0.938
yes no L1SpatialLap2 9.18 8.70 8.70 1.201 2.156 0.977

Raw input image 8.51 8.77 9.49 1.081 2.148 1.140

Bilinear 8.73 8.77 9.62 1.098 2.147 1.130

Bilinear & CCT [111] 9.26 8.77 9.59 1.163 2.147 1.060

Bilinear & warping [99] 9.29 8.77 8.70 1.182 2.147 0.938

no no L2 9.96 8.78 10.71 1.193 2.149 1.181
yes no L2 9.40 8.82 8.92 1.188 2.158 0.956
no yes L1SpatialLap2 8.58 9.46 10.94 1.023 2.359 1.316
no yes Lap2 8.58 9.46 10.94 1.023 2.359 1.317
no yes L2 8.84 9.55 11.31 1.050 2.366 1.299
no yes Lap1 8.83 9.56 10.97 1.060 2.376 1.307
no yes L1 8.90 9.62 11.39 1.122 2.399 1.309
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a clear advantage over colour image estimation algorithms, although the com-

parison may also be affected by the need to mark different ideal edge locations

for spectral vs. colour image evaluation, as mentioned in Section 4.4.3. As in

Table 5.5, accounting for dispersion during image estimation yields better re-

sults, but primarily only in the Green channel, and primarily only for spectral

image estimation algorithms. Comparing our method to algorithms created

by other authors, we find that Adaptive Residual Interpolation for demosaic-

ing [79] performs well, even though this algorithm is not designed for chromatic

aberration correction. Surprisingly, post-processing demosaicing results with

cross-channel information transfer (CCT) [111] or colour channel warping [99]

worsens results in the Red channel, but does improve results in the Blue chan-

nel.

We note that our results in tables 5.5 and 5.6 reflect performance on one

image, and, while we sampled 24 patches from the ColorChecker in that image,

our conclusions are only tentative because of the limited amount of test data.

In particular, we can draw distinctions between broad classes of algorithms,

but feel that there is insufficient data to recommend a particular combination

of regularization penalties over others. For now, we recommend selecting reg-

ularization penalties based on personal preferences concerning the appearance

of the estimated images.

Residual Colour Fringes

A subtle defect in our results, such as shown in Figures 5.6e and 5.6j, is

the presence of residual colour fringes. Typically, the fringes are opposite to

those in the input images, in that the blue and red portions of a residual

fringe are swapped relative to the fringe in the input. The residual fringes

are less intense than the colour fringes in the input image, and we note that

colour correction has accentuated their saturation (as demonstrated earlier in

Figure 4.16). Still, their presence suggests that our algorithm has not properly

corrected chromatic aberration.

One may suppose that the residual colour fringes arise from our simpli-

fied model of chromatic aberration. Specifically, we have neglected changes
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in focusing distance with wavelength, and have modelled dispersion only as

a wavelength-dependent spatial warp of the image. If that were the case,

we would expect our results to look more like the results of colour channel

warping [99] (e.g . Figures 5.6d and 5.6i), in which there are somewhat purple

fringes that extend on both sides of thin structures. In contrast, our results

have red and blue fringes on opposite sides of thin structures. We also refute

this explanation based on further experiments, in Section 5.5.

Another possible explanation for the residual fringes is that our regulariza-

tion penalties have different effects on different spectral bands. Consider the

diagrams shown in Figure 5.12, and the explanation in the caption.

The diagrams in Figure 5.12 convey the idea that regularization may pro-

duce spectra which are metamers of the true image. Moreover, the diagrams

predict that this problem may occur regardless of whether or not dispersion is

taken into account during image estimation, because the model of dispersion

simply shifts the spectral bands, and does not change their spatial gradients.

Therefore, regularization will have the same effect before as after dispersion is

applied to the spectral bands.

We were able to verify this prediction in practice, as shown in Figure 5.13.

In Figure 5.13, we find that images estimated without a model of dispersion,

then corrected for dispersion by warping, are almost identical to images esti-

mated with a model of dispersion as part of the optimization algorithm. The

only difference is that the images estimated without a model of dispersion are

slightly blurrier. We suggest their relative blurriness comes from image warp-

ing with bilinear interpolation for resampling, whereas, when image warping

is part of the data-fitting term of the optimization problem (3.1), the bilin-

ear interpolation is inverted (as in deconvolution), sharpening the estimated

image.

Residual colour fringes are symmetrical about thin structures in the results

from direct colour image estimation ((a), (b), (e), and (f)), and are asymmetri-

cal about thin structures in the results from spectral image estimation ((c), (d),

(g), and (h)), regardless of whether or not dispersion was included in the image

estimation optimization problem. Therefore, the residual fringes must not be
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Figure 5.12: A thought experiment to explain the appearance of residual colour
fringes in estimated spectral images. The diagrams show image intensities in
two spectral bands (red and blue) ((a), (b), (e) and (f)), or one colour channel
(black) ((c) and (d)). Intensities are plotted along a line in an image. The
plots on the left show intensities in the ideal image (a), or in the chromatic
abberration-corrected image (f). The plots in the middle and right columns
show intensities in the aberrated ((b) and (c)) and uncorrected ((d) and (e))
versions of the image. In (a), the ideal image is shown, with sharp edges per-
fectly aligned between spectral bands. (b) shows the light reaching the sensor,
which has been altered by spectral dispersion in the lens. (c) is the pattern
of intensity recorded by the sensor, which responds to light in both spectral
bands. (c) is the input image for the image reconstruction algorithm. The im-
age reconstruction algorithm produces an image, (d), which corresponds to a
smoothed version of the original intensity pattern. Smoothing is applied in the
space of spectral bands, however, and has produced the spectral band image
shown in (e). While (e) projects to (d), and (d) matches the input image (c)
reasonably well, (e) deviates substantially from the actual spectral intensities
in (b). The reason for the difference between (e) and (b) is that, in (b), the
spectral band with higher intensity (blue) also has larger spatial gradients. In
an image with strong edges, there will be very low intensity regions with simi-
lar intensities across spectral bands, and high-intensity regions with intensities
that generally differ between spectral bands. The spectral bands with higher
intensities will have larger gradients at the strong edges. The image estimation
algorithm, in minimizing gradients, will therefore find a metamer which has
more similar intensities in different spectral bands in the high-intensity regions
of the image. The redistribution of intensities between spectral bands appears
as a spatial spreading of image edges when chromatic aberration is corrected
(f) (i.e. a residual colour fringe).
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Figure 5.13: A comparison of correcting for dispersion at different times, on
a patch from the image shown in Figure 4.15a. The first two columns show
the results of direct colour image estimation (Section 3.9.1), whereas the last
two columns show the results of spectral image estimation. The columns also
compare two different regularization penalties (from the list in Table 3.1), all
of which were used with a non-negativity constraint on the estimated image:
L1 ((a), (d), (e), and (h)), and Lap2 ((b), (c), (f), and (g)). The images in the
top row were obtained by estimating the image without a model of dispersion
(Section 3.9.2), and then correcting for dispersion afterwards by warping the
image. The images in the bottom row were estimated with models of dispersion
included in the data-fitting term of the optimization problem (3.1), as usual.

caused by an interaction between the dispersion model and the optimization

process. Instead, they likely arise from either our regularization penalties, or

from limitations in our models of dispersion, but we needed to perform further

experiments to determine which explanation is correct (Section 5.5).

Spectral Reconstruction Evaluation

Aside from assessing spectral reconstruction near edges, as a measure of resid-

ual chromatic aberration (Table 5.5), we can assess spectral reconstruction in

the centres of the ColorChecker patches. Doing so allows us to compare our

method with the GoSpectro spectrometer, which we used to measure the spec-

tral reflectances of the ColorChecker patches as described in Section 4.6.1. We

use the Analytical Spectral Devices data (Section 4.6.1) as ground truth spec-
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Table 5.7: Spectral MRAE and RMSE (4.4) in the centres of ColorChecker
patches, averaged across patches. Entries are sorted by MRAE. All of our
methods used a non-negativity constraint. The “filtered” result is the multi-
spectral image created using images captured under narrowband optical filters
(Section 4.2.4). We show two replicates for the GoSpectro spectrometer, which
was re-calibrated in-between replicates.

Penalties MRAE RMSE
Filtered 0.19437 0.06682
Lap2 0.25760 0.09120
L1SpatialLap2 0.25762 0.09121
L2 0.25790 0.09091
Lap1 0.25920 0.08755
L1 0.26056 0.08656
GoSpectro-1 0.46633 0.10451
GoSpectro-2 0.53425 0.12325

tral reflectances, and registered the measurements obtained by other methods

to this data as described in Section 4.4.1. Note that we did not correct spectral

images for intensity non-uniformity (e.g . vignetting), because in an arbitrary

scene, there would not necessarily be a suitable object for calibrating intensity

non-uniformity. For the GoSpectro spectrometer, we captured two replicates

of the spectral measurements, re-calibrating the device in-between replicates.

The results are shown in Table 5.7. Interestingly, the GoSpectro spectrom-

eter has lower accuracy than our spectral image estimation algorithm. The

multispectral image created using narrowband optical filters has the best accu-

racy, even though it has spectrally-varying intensity non-uniformity across the

image plane. We may consider our multispectral image as the highest quality

spectral data that we can collect using our RGB camera. Therefore, there is

room for improvement, but our image estimation algorithm is approaching the

best spectral reconstruction accuracy we can expect in practice.

Sample plots of spectral reflectances, for patches 13, 14, and 15 of the

ColorChecker, representing the primary colours Blue, Green, and Red, are

shown in Figures 5.14, 5.15, and 5.16, respectively. In Table 5.7 and in the

figures, it is evident that the regularization penalties we use only have a small

influence on the spectral reconstruction accuracy. Of course, our regularization
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Figure 5.14: A comparison of spectral reflectances measured using spectrome-
ters, or extracted from spectral images, for Patch 13 (Blue) of our X-Rite 24-
patch ColorChecker CLASSIC colour calibration chart. “ASD” refers to the
Analytical Spectral Devices spectrometer ground truth data (Section 4.6.1),
whereas “Filtered” refers to our multispectral image synthesized from images
captured under narrowband optical bandpass filters. All of our spectral image
estimation algorithm variants have overlapping curves on the plot.

penalties operate on the image spatial gradient, and so would have similar

effects in homogenous image regions, such as the ColorChecker patch centres

being evaluated.

In summary, our spectral image estimation method performs remarkably

well, as it operates on images from an unmodified RGB camera, yet it outper-

forms the GoSpectro spectrometer, which modifies an RGB camera to increase

spectral resolution.

5.4.3 Spectral Image Representation

One detail we have glossed over until now is why we selected 8 spectral con-

trol bands for our estimated spectral images. We tested varying numbers of
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Figure 5.15: A comparison of spectral reflectances measured using spectrom-
eters, or extracted from spectral images, for Patch 14 (Green) of our X-Rite
24-patch ColorChecker CLASSIC colour calibration chart. The curves on the
plot have the same interpretation as those in Figure 5.14.
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Figure 5.16: A comparison of spectral reflectances measured using spectrom-
eters, or extracted from spectral images, for Patch 15 (Red) of our X-Rite
24-patch ColorChecker CLASSIC colour calibration chart. The curves on the
plot have the same interpretation as those in Figure 5.14.
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Table 5.8: Spectral MRAE and RMSE (4.4) in the centres of ColorChecker
patches, averaged across patches, for spectral images having different sets of
control bands. Entries are sorted by MRAE. The “filtered” result is the multi-
spectral image created using images captured under narrowband optical filters
(Section 4.2.4). For our spectral image estimation algorithm, all sets of control
bands had equally-spaced centre wavelengths, with the first band centered at
386 nm, and the last band centered at 707 nm. We show two replicates for
the GoSpectro spectrometer, which was re-calibrated in-between replicates.

Condition MRAE RMSE
Filtered 0.19437 0.06682
12 bands 0.33525 0.12911
10 bands 0.34141 0.13233
8 bands 0.34643 0.13674
6 bands 0.36850 0.14479
4 bands 0.42854 0.17843
3 bands 0.45908 0.18113
GoSpectro-1 0.46633 0.10451
GoSpectro-2 0.53425 0.12325

spectral bands, in combination with the L1 set of regularization penalties (Ta-

ble 3.1), and a non-negativity constraint. The results are listed in Table 5.8,

which is analogous to Table 5.7. All sets of spectral control bands that we

tested had equally-spaced centre wavelengths, with the first band centered at

386 nm, and the last band centered at 707 nm. The first and last band cen-

tre wavelengths were chosen by finding the extreme wavelengths at which any

colour channel of our Point Grey FL3-GE-50S5C camera had at least 5% of its

peak sensitivity. (The spectral responses of the sensor are plotted in Figure 3.6

for reference.)

In this experiment, we did not observe any degradation in spectral recon-

struction accuracy at higher numbers of bands, which is surprising given that

the data-fitting operator of our optimization problem (3.1), M (Ω (Φ (B (I)))),

is a rank-deficient matrix when there are just two or more spectral control

bands. It is also surprising because our regularization penalty in this experi-

ment, a penalty on the image spatial gradient, does not enforce any smoothness

in the spectral domain. As shown in Figures 5.17, 5.18, and 5.19, estimated

spectra are still smooth at the highest number of control bands we tested.
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Figure 5.17: A comparison of spectral reflectances measured using spectrome-
ters, or extracted from spectral images, for Patch 13 (Blue) of our X-Rite 24-
patch ColorChecker CLASSIC colour calibration chart. “ASD” refers to the
Analytical Spectral Devices spectrometer ground truth data (Section 4.6.1),
whereas “Filtered” refers to our multispectral image synthesized from images
captured under narrowband optical bandpass filters. Our spectral image esti-
mation algorithms differ based on their numbers of spectral control bands in
the range 386 to 707 nm.

These figures plot the spectral reflectances for patches 13, 14, and 15 of the

ColorChecker, representing the primary colours Blue, Green, and Red, respec-

tively, and are analogous to Figures 5.14, 5.15, and 5.16.

We chose 8 bands in our other experiments as a compromise between accu-

racy and resource consumption (computation time, and computer memory and

storage). We hypothesize that spectral reconstruction accuracy will eventually

plateau at high numbers of control bands, and then may possibly degrade.

At low numbers of control bands, we obtain poor results, both in terms

of spectral reconstruction accuracy (Table 5.8), and visually. As shown in

Figures 5.20 and 5.21, low numbers of bands produce some pixellation artifacts
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Figure 5.18: A comparison of spectral reflectances measured using spectrom-
eters, or extracted from spectral images, for Patch 14 (Green) of our X-Rite
24-patch ColorChecker CLASSIC colour calibration chart. The curves on the
plot have the same interpretation as those in Figure 5.17.
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Figure 5.19: A comparison of spectral reflectances measured using spectrom-
eters, or extracted from spectral images, for Patch 15 (Red) of our X-Rite
24-patch ColorChecker CLASSIC colour calibration chart. The curves on the
plot have the same interpretation as those in Figure 5.17.
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Figure 5.20: A comparison of images produced using our spectral image es-
timation algorithm with the L1 combination of penalties (Table 3.1) and a
non-negativity constraint, for different numbers of spectral control bands in
the range 386 to 707 nm: (a) 3 bands, (b) 4 bands, (c) 6 bands, (d) 8 bands,
(e) 10 bands, and (f) 12 bands.

in black and white regions of the image. In contrast, in regions with saturated

colours, low numbers of bands produce severe colour distortion, as shown in

Figure 5.22. Even though 3 control bands provides the same number of degrees

of freedom as a (demosaiced) colour image, such a small number of bands does

not allow for adequate colour reproduction, perhaps because the estimated

image is non-negativity constrained.

Interestingly, Oh et al. [87] determined the space of colour channel sensi-

tivity functions across cameras to be approximately 8-dimensional. Therefore,

by choosing an eight-control band spectral image representation, we are using

the highest-dimensional representation of spectral radiances that is likely to

be recoverable from RGB cameras (although, technically, from multiple RGB

cameras simultaneously imaging the same scene to provide at least 8 colour

channels) [87].
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 5.21: A version of Figure 5.20 for another image patch with fine black
and white image details

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5.22: A version of Figure 5.20 for an image patch with saturated colours
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5.4.4 Weights on Regularization Penalties

Another pertinent question about our experiments is whether or not our regu-

larization weights should be fixed. We illustrated in Section 5.2.4 that different

regularization weight selection criteria produce significant differences in image

estimation accuracy. Is it feasible, however, to select regularization weights in

advance, rather than from the current image’s content?

Unfortunately, we do not have a clear answer to this question, because of

the limited number of images in our experiments, with regularization weights

selected from one patch for each image. An experiment in which we select

regularization weights from many patches across many images, and then eval-

uate image estimation under each set of regularization weights, is prohibitively

time-consuming.

In Figure 5.23, we show that regularization weights vary significantly, po-

tentially with both the input image patch, and with image capture conditions

that differ between datasets (e.g . image sensor resolutions). The variability of

regularization weights depends on the regularization penalties for which the

weights are being selected, as we see by comparing Figures 5.23a and 5.23b.

5.5 Image Reconstruction from Synthetic RGB

Images

While the experiments in Section 5.5 illustrate how our method may perform

in practice, our quantitative evaluation was limited because we did not have

ground truth spectral images. In this section, we evaluate chromatic aberration

correction and spectral reconstruction on our dataset of multispectral images,

which we synthesized as described in Section 4.2.4. We use our multispectral

images as ground truth, and use raw colour images that we simulated from

them as input to the image estimation algorithms. We then configured the

operators in our data-fitting term in our optimization problem (3.1) to match

the ones used to simulate the raw input images. For the spectral control

bands of our estimated spectral images, we use the same 7 spectral bands as

the multispectral images (400, 450, 500, 550, 600, 650, and 700 nm).
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Figure 5.23: A comparison of regularization weights selected using our DMC
between the KAIST dataset, and our own dataset of mosaiced RGB input
images. (a) Regularization weights selected for the L1 set of regularization
penalties (Table 3.1), in combination with a non-negativity constraint. (b)
Regularization weights selected for the L2 set of regularization penalties (Ta-
ble 3.1), in combination with a non-negativity constraint. The bars in the
graphs illustrate the mean weights across the 4 images for the KAIST dataset,
or the 7 images from our dataset, where each weight was selected using one
128× 128 patch per image. Error bars are one standard deviation in length.

Given that our multispectral images are still of relatively low spectral res-

olution, and were captured under illumination conditions that we are unable

to fully validate (as discussed in Section 4.2.1), we feel that our results on

RGB images captured under unfiltered light (Section 5.5) better character-

ize real-world performance. In this section, we instead strive to understand

the numerical behaviour of our method, now that we can clearly observe it

under a known spectral-to-colour image formation model. In particular, our

input images are unaffected by image sensor nonlinearity and pixel crosstalk,

effects that we do not account for in our image estimation algorithm. For

studying performance under these ideal conditions, we felt it is unnecessary

to examine all variants of our algorithm. We selected only the L2 set of regu-

larization terms (Table 3.1), in combination with a non-negativity constraint,

as this variant of our algorithm runs relatively quickly, and the effect of its

regularization term is simple to interpret. We used two criteria for selecting

regularization weights: Error with respect to the true spectral or colour image,

MSEC (3.23), and similarity with bilinear interpolation, DMC (3.24).
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5.5.1 Ideal Chromatic Aberration Correction

For our models of dispersion in this experiment, we used the same models as in

Section 5.4, shown in Figures 5.3 and 5.4, for spectral image and colour image

estimation, respectively. While the spectral-to-colour conversion component of

colour image formation is known in this experiment, the true spectral disper-

sion is unknown. Moreover, the model of colour channel warping (Figure 5.4)

was calibrated from images captured under unfiltered light, not from colour

images simulated from the multispectral images. We decided against calibrat-

ing the model of colour channel warping from simulated colour images, to avoid

artifacts from the non-uniform illumination present in the spectral bands of

the multispectral images.

We need to justify that both our colour and spectral models of disper-

sion are appropriate for our multispectral image dataset. In Figure 5.24 (b)

and (d), we show image unwarping using the colour and spectral models of

dispersion, respectively. The colour model of dispersion produces reasonable

results with barely visible purple fringing, but the spectral model of disper-

sion produces the sharpest edges, and does not leave any colour fringes. The

same observations are reflected in our quantitative evaluation of chromatic

aberration correction, shown in Tables 5.9 and 5.10 (analogous to Tables 5.5

and 5.6, respectively, presented in Section 5.4.2). In Table 5.10, correction us-

ing the colour model of dispersion (“True image, colour-unwarping”) reduces

the error relative to the original image, but not as much as does correction us-

ing the spectral model of dispersion (“True image, spectral-unwarping”). We

are pleased that our visual evaluation agrees with our quantitative evaluation,

and that our spectral model of dispersion outperforms our colour model of

dispersion. Moreover, because our colour model of dispersion does not leave

significant colour fringes (Figure 5.24 (b)), we feel that it has been properly

calibrated. In summary, our results validate our method for calibrating disper-

sion, in particular by showing that dispersion is best calibrated in the spectral

domain. Our results also validate our method for quantitatively evaluating

residual chromatic aberration, because it leads to the same conclusions as our
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(a) (b) (c) (d) (e)

Figure 5.24: A comparison of our image estimation algorithm with chromatic
aberration correction by warping the true image. We perform the comparison
on a patch from the image shown in Figure 4.15g. (a) The input colour image
(before mosaicing); (b) Unwarping colour channels in the true colour image
using the colour channel-based model of dispersion shown in Figure 5.4; (c)
Direct colour image estimation (Section 3.9.1) with the regularization weight
selected using the DMC (3.24); (d) Unwarping bands in the true spectral image
using the model of spectral dispersion shown in Figure 5.3; (e) Spectral image
estimation with the regularization weight selected using the DMC (3.24)

Table 5.9: Spectral MRAE and RMSE (4.4) in the 12 pixel-wide regions within
ColorChecker patch edges, averaged across patches. Entries are sorted by
MRAE.

Condition MRAE RMSEpixel

True image, spectral-unwarping 0.3328 0.1021
True image, uncorrected 0.3400 0.1080
DMC 0.4467 0.1588
MSEC 0.4768 0.1727

visual evaluation.

5.5.2 Image Estimation Evaluation

As shown in Table 5.10, our colour image estimation algorithm (“Colour,

MSEC”) and (“Colour, DMC”) corrects chromatic aberration almost as well

as when the model of colour dispersion is applied to the true colour image

(“True image, colour-unwarping”). The similarity between the two results

holds across all colour channels.

In contrast, while our spectral image estimation algorithm, with regulariza-

tion weights selected using the DMC (“Spectral, DMC” in Tables 5.9 and 5.10)

does restore the Green channel, its errors on the other two colour channels are

high, as is its spectral error (Table 5.9). With the MSEC, it performs even
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Table 5.10: MRAE and RMSE in each colour channel in the 12 pixel-wide
regions within ColorChecker patch edges, averaged across patches. Entries are
sorted by error in the Green channel, then in the Red channel. Note that
Rudakova and Monasse [99], and Sun et al. [111] (without Krishnan et al. [61]
as a preprocessing step) do not alter the Green channel, and so have the same
error in Green as the demosaicing methods they follow. The colour variant
of our method (Section 3.9.1) reconstructs colour images directly, instead of
estimating spectral images.

MRAE × 102 RMSE × 102

Condition Red Green Blue Red Green Blue

True image, spectral-unwarping 10.16 7.92 8.88 0.297 0.700 0.274
Spectral, DMC 23.58 8.15 14.46 0.543 0.723 0.353

ARI [79] 10.29 8.55 9.98 0.317 0.816 0.372
ARI [79] & warping [99] 10.75 8.55 9.16 0.342 0.816 0.311
ARI [79] & CCT [111] 11.73 8.55 10.93 0.357 0.816 0.378

Colour, MSEC 10.86 8.59 9.31 0.342 0.816 0.318
True image, colour-unwarping 10.68 8.62 9.25 0.338 0.817 0.313

Bilinear 10.49 8.62 10.19 0.323 0.817 0.378
Bilinear & warping [99] 10.87 8.62 9.34 0.343 0.817 0.318
Bilinear & CCT [111] 11.53 8.62 10.60 0.351 0.817 0.369

Colour, DMC 10.99 8.65 9.31 0.345 0.819 0.320
Simulated raw image 9.15 8.84 10.27 0.303 0.825 0.400

True image, uncorrected 10.21 9.34 11.58 0.294 0.894 0.452
Spectral, MSEC 16.57 18.58 21.05 0.398 1.341 0.435
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worse, even though this criterion is designed to minimize the error with respect

to the true spectral image. It is possible that the regularization weight search

converged on a non-global minimum of the MSEC, or that other image patches

would have produced better regularization weights, but such explanations do

not adequately explain why the MSEC performed poorly in all images, not

only on the image evaluated in the tables.

With both regularization weight selection criteria, we observe residual

colour fringes and residual colour-filter array patterns in the output images,

as shown in Figure 5.25. The regularization weights selected using the MSEC

were higher than those selected using the DMC, and the residual fringes for the

MSEC tend to be thicker than those for the DMC. Our experiment supports

our hypothesis from Section 5.4.2 that residual colour fringes are artifacts from

regularization, for two reasons: First, different weights on the regularization

terms alter the thickness of the fringes. Second, we are using the ground truth

spectral-to-colour image conversion model during image estimation, and our

models of dispersion produce good results on ground truth images (Figure 5.25

(a) and (d)). In other words, there are no sources of error in the data-fitting

term of our optimization problem (3.1) that could account for the residual

fringes.

To illustrate how the residual fringes arise, in Figure 5.26, we plot the

spectral intensities of an image along a line passing from white to black, and

then to white again. In Figure 5.26a, we observe that the largest error is an

underestimation of intensity in the 500 nm band, which is the band to which

the Green channel is most sensitive compared to the other colour channels. All

other spectral bands are given higher intensities to compensate. As a result,

our algorithm has recovered spectra that are metamers of the true spectra.

Dispersion reveals the metamers through colour fringes, because redistribu-

tion of spectral intensities between bands changes the spatial distribution of

intensity in the dispersion-corrected image. The residual fringes are visible

as a shift to the right of the estimated Red channel relative to the ideal Red

channel in Figure 5.26b.

Aside from the global metamerism in Figure 5.26, the image edges have
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 5.25: A further comparison of our image estimation algorithm with ideal
image warping, on a patch from the image shown in Figure 4.15d. (a) Unwarp-
ing colour channels in the true colour image using the colour channel-based
model of dispersion shown in Figure 5.4; (b) Direct colour image estimation
(Section 3.9.1) using the MSEC, or (c) the DMC, for selecting regularization
weights; (d) Unwarping bands in the true spectral image using the model of
spectral dispersion shown in Figure 5.3; (e) Spectral image estimation using
the MSEC, or (f) the DMC, for selecting regularization weights.
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been oversmoothed by the regularization term, because of its excessive weight.

The degree of smoothing is intensity-dependent, unfortunately, which further

exacerbates the residual fringes that appear in the image.

The results shown in this section, for the L2 set of regularization terms (an

L2-norm penalty on the image spatial gradient) illustrate how regularization

of the image spatial gradient produces predictable artifacts in the estimated

spectral image: First, high-intensity spectral bands are underestimated, be-

cause lower intensities tend to yield lower image gradients, favoured by the

regularization penalty. Second, sharp edges are oversmoothed. The estimated

spectral image still approximately projects to the input image, but the esti-

mated spectral image a metamer of the true spectral image. Unfortunately,

even though we understand how the metamers differ from the true spectral

radiances, and could predict what metamers would occur given the true spec-

tral radiances, nothing in the structure of the metamers allows us to do the

reverse and predict what the true spectral radiances should be. To overcome

metamerisms, we would need some additional information, such as known

structure in the scene serving as a reference for edge locations in the image.
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Figure 5.26: Image intensities produced by our spectral image estimation al-
gorithm (dashed curves), compared with the true multispectral image (solid
curves). The true image was corrected for chromatic aberration using the
model of spectral dispersion shown in Figure 5.3. Our algorithm used the L2

regularization penalty (Table 3.1), as well as a non-negativity constraint. The
MSEC (3.23) was used to select the weight on the penalty. Image intensities
are plotted for a line which crosses from a white background to a black disk,
and then back to the white background. (a) Spectral intensities for the seven
spectral bands in the multispectral image (corresponding to the seven optical
bandpass filters); (b) The corresponding colour channel intensities.
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Chapter 6

Discussion

In Chapter 5, we presented experimental results to validate our method for

simultaneous demosaicing and chromatic aberration correction through spec-

tral reconstruction. Our analysis focused on specific details of our method,

whereas in this chapter, we discuss some broader questions pertaining to our

approach.

6.1 Chromatic Aberration and Image Quality

An important question to revisit is whether there is value in attempting to

correct chromatic aberration. There are two parts to this question. First,

is chromatic aberration detrimental to image quality to the point where it

should be corrected? The effect of chromatic aberration depends on both the

scene being viewed, and on the imaging system. The lenses we tested had a

moderate amount of chromatic aberration, which produced highly noticeable

colour fringes, depending upon the location in the image plane (e.g . Figure 5.6

(a) and (f)). For colour fringes to be observed, however, the scene must possess

strong edges, and the image resolution must be sufficiently high. Finally, the

image must be viewed by a human observer, or processed by a machine vision

system, at the level of its smallest details. Otherwise, chromatic aberration is

unimportant. Additionally, for human observers, the colour correction applied

to the image determines whether chromatic aberration appears more as blurred

edges, or as colour fringes, as we demonstrated in Figure 4.16. We consider

colour fringes to be the more objectionable artifact.
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Given the conditions under which chromatic aberration should be cor-

rected, we can consider the second part of the question: Does our algorithm

for correcting chromatic aberration achieve a sufficient benefit in relation to its

drawbacks? Our algorithm is computationally expensive, because it uses global

optimization. There is little benefit in relation to the time spent running it on

large images that are to be used at low magnification, because chromatic aber-

ration is not visible under these conditions. Moreover, for our spectral image

estimation algorithm, the final image may have a global colour cast because of

slight colour misestimation caused by our regularization terms (Section 5.5.2).

When images are to be used under high magnification, however, we argue that

our method is worthwhile, as it improves visual quality both by deblurring

slightly, and by reducing colour fringing. Our results are also free from arti-

facts such as zippering, common to demosaicing algorithms [79], and ringing,

common to deblurring algorithms [111]. Moreover, the computational cost will

be reasonable if only small portions of the image are to be reconstructed for

further processing or for display.

6.2 Alternative Models of Dispersion

We chose to model only lateral chromatic aberration, which is a spatial warp

between images formed under different wavelengths of light (Section 1.1.2).

Therefore, we ignore longitudinal (axial) chromatic aberration, which encom-

passes all other optical aberrations that depend on wavelength, but which

is usually modelled as a relative blur between images formed under different

wavelengths [45].

There are several reasons why we chose to ignore longitudinal chromatic

aberration. First, in contrast to lateral chromatic aberration, longitudinal

chromatic aberration depends on the lens aperture, and a small aperture will

reduce it considerably [60]. Second, lateral chromatic aberration also manifests

as blur, because of the superposition of wavelengths within each colour channel,

so modelling longitudinal chromatic aberration is not necessary to correct some

of the blur in the image. Third, we consider longitudinal chromatic aberration
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to be much more difficult to model and calibrate. Fourth, it is also difficult

to remove the effects of blur from an image (such as blur from longitudinal

chromatic aberration), without introducing artifacts such as ringing [81].

With respect to our third reason above, calibrating blur requires point

spread function estimation, which is an ill-posed problem [82].1 Blur is, in

general, spatially-varying, and arises from longitudinal chromatic aberration,

other aberrations [10], and geometric defocus [73]. Even if one could calibrate

longitudinal chromatic aberration independently of other sources of blur, to

correct longitudinal chromatic aberration, one would need to sample it at

arbitrary locations in the image. To do so, one would need a model of how

the point spread function varies in space. To be well-behaved, such a model

would require choosing a parametric form for the point spread function [50],

therefore introducing representation bias.

We note that our present algorithm must sample the model of chromatic

aberration at arbitrary wavelengths, not only at arbitrary positions in space,

to accommodate any spectral basis we use to represent our estimated images.

Our models of lateral chromatic aberration are well-behaved under sampling

at arbitrary spatial-spectral positions, because the x and y-components of

dispersion vectors are smooth functions of spatial-spectral coordinates, as we

showed in Section 5.3. Achieving likewise with a model of longitudinal chro-

matic aberration would require designing a smooth spatial-spectral parametric

representation for point spread functions. Finding such a representation that

also adequately models the aberrations of a variety of lenses may be a chal-

lenge.

6.3 Spectral Response Calibration

We highlighted the difficulty of camera spectral response calibration in Sec-

tion 3.3.1. An important question is how sensitive our method is to errors in

the camera spectral response functions. We distinguish between two types of

1Delbracio et al. [23] argued that it is a well-posed problem, given an appropriate calibra-
tion pattern, but Mosleh et al. [82], and Jemec et al. [51] respectively observe that noise, and
moderate amounts of blur, render the calibration pattern of Delbracio et al. [23] ineffective.
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errors:

(i) Incorrect relative spectral responses between colour channels at a given

wavelength.

(ii) Incorrect scale of all colour channel response functions at a given wave-

length. In other words, all colour channels response functions are scaled

by the same factor relative to their true values.

Error of type (i) will severely degrade our results, because our algorithm

will shift intensities between wavelengths in the estimated spectral image,

changing the chromatic aberration correction. Unfortunately, type (i) error

is quite common, because camera spectral response functions are often deter-

mined only up to a per-channel unknown scaling factor. Such is the case, for

example, for the spectral sensitivities measured by Darrodi et al. [22] (Fig-

ure 3.5). While we used the Nikon D5100 spectral sensitivities measured by

Darrodi et al. [22], our results are fortunately not affected by the scale un-

certainty, as we only used these spectral sensitivities to simulate RGB images

from known spectral images (Section 4.3.1).

Error of type (ii) is less detrimental. If the channel response functions are

all scaled by a given factor at a given wavelength, the spectral image can be

scaled by the inverse factor at that wavelength in order to produce the same

colour image as without any error in the channel response functions. While

the spectral image will now be less accurate, there will be no change in the

colour version of the estimated image. Chromatic aberration correction will

be the same as without the error, because it depends only on the product of

the camera’s spectral response with the intensity of the spectral image at each

wavelength, rather than depending directly on the spectral image.

In reality, error of type (ii) will affect our estimated colour images, because

the action of our regularization terms depends on the relative intensities of

the spectral image across the visible spectrum. Specifically, spectral bands

with higher intensities tend to have larger spatial gradient magnitudes, and

therefore are smoothed more aggressively by our regularization terms. We

would want the spectral image to have a uniform intensity across the spectrum
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in order for our penalties on the image spatial gradient to penalize edges

equally in all spectral bands.2 We might therefore want to express the spectral

image as relative to a reference spectral intensity, such that the spectral image

is maximally uniform across the spectrum. One approach is to compute the

average RGB colour of the input image, and set the reference spectral intensity

to be a smooth spectral intensity projecting to this RGB colour. For example,

we might solve the following optimization problem:

argmin
s
‖Ω (s)− c‖2

2 + w∇λs , s ≥ 0 (6.1)

where s is the reference spectral intensity, c is the mean RGB colour of the

image, and w is the weight on the spectral regularization penalty term. We

leave a detailed evaluation of this approach to future work.

6.4 Comparison with “Compact single-shot hy-

perspectral imaging using a prism”

In Section 2.3.1, we mentioned that our algorithm is inspired by the work of

Baek et al. [7], who reconstructed spectral information from an RGB image

distorted by a triangular prism. Their method has five stages:

(i) Estimate an initial spectral image, by solving the following global opti-

mization problem using the Alternating Direction Method of Multipliers

method [1]:

I1 = argmin
I
‖Ω (Φ (I))− Iraw‖2

2 + w1 ‖∇xyI‖1 + w2 ‖∇λ∇xyI‖1 (6.2)

where Φ is an operator modelling the effect of dispersion from a prism

placed in front of the camera lens, and Ω is an operator converting

spectral radiances to the raw colour space of the camera. It is not clear

from their article whether the input image, Iraw, has been demosaiced.

(ii) Obtain a colour version of the estimated image, Ω (I1), and detect edges

in the colour image using the method of Dollár and Zitnick [25].

2Setting per-band weights on the spatial gradient penalties would be an alternative so-
lution.
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(iii) Solve an optimization problem to reconstruct the spatial gradient of the

spectral image from the spatial gradient of the input image:

gxy = argmin
gxy

‖Ω (Φ (gxy))−∇xyIraw‖2
2 + w3 ‖∇λgxy‖1 + w4 ‖∇xygxy‖2

2

(6.3)

Only pixels in the edges identified in Step (ii) have their spectral gradi-

ents reconstructed. As in Step (i), they solve the optimization problem

using the Alternating Direction Method of Multipliers method [1].

(iv) Reconstruct the spectral image from its spatial gradient, by solving a

third optimization problem:

I4 = argmin
I
‖Ω (Φ (I))−Iraw‖2

2 +w5 ‖Wxy � (∇xyI− gxy)‖2
2 +w6 ‖∆λI‖2

2

(6.4)

where ∆λI is the spectral Laplacian gradient of the image, and Wxy

is a matrix of confidence weights that depends on the image gradient

magnitude, and on the direction of dispersion. As (6.4) is a least-squares

problem, they solve it using a conjugate gradient method.

(v) Produce the final spectral image by guided filtering [40] of the result

from (6.4) with Ω (I1) as the guidance image.

Baek et al. [7] present excellent results, but unfortunately did not provide

their implementation of their method. Our image reconstruction algorithm

solves a problem similar to (6.2), but we tested a variety of prior terms (Sec-

tion 3.5), as well as a non-negativity constraint on the estimated spectral

image. Had we incorporated the remaining steps of their method, we might

have achieved better results, such as without the residual colour fringes that

we discussed in Section 5.4.2.

There are several reasons we decided against testing their full method. For

one, the time required to implement and run their method would have been

considerable, given the number of global optimization steps it entails. More

importantly, their method is severely challenged by images that either lack

strong edges, or have edges that are separated by less than the spatial extent
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of dispersion [7]. They also mention that fine structures in the image tend to

be lost during the optimization steps —They included the final guided filtering

step (v) in an attempt to restore image details [7]. We are more interested

in restoring high-frequency content in the image than in evaluating spectral

reconstruction in broad patches of colour, so we consider this last problem

with their method to be a severe limitation.

Regardless, their approach remains inspiring, because they made spectral

reconstruction from RGB images a better-posed problem. In particular, they

did so in a more flexible way than a spectrometer, or the system of Cao et al.

[16], for example, which are “brute force” methods that prevent the spectra

of different regions in the scene from overlapping on the light sensor. Instead,

Baek et al. use edge locations (Step (ii)) to obtain a one-to-many mapping

from edge pixels in the ideal spectral image to pixels in the dispersion region

around the edge in the input image. This one-to-many mapping compensates

for the many-to-one mapping of spectral radiances to RGB colours, therefore

making spectral reconstruction well-posed.

In our view, the primary disadvantage of their edge-based spectral recon-

struction is the need to make hard decisions about which pixels belong to edges.

A second disadvantage is the need to reconstruct images in multiple stages,

which may accumulate error in comparison to a single joint optimization [43,

115]. We wonder if a careful choice of image priors, or of a representation

for the spectral image, may make explicit edge identification unnecessary, and

allow for a single stage algorithm. For instance, Pan et al. [89] presented a

method for blind deblurring that uses L0-regularization to avoid relying on

sharp edge detection.
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Chapter 7

Future Work

In this chapter, we continue our discussion, from Chapter 6, of ideas for future

work, but extend it from ideas closely-connected with our algorithm to more

general research directions.

7.1 Calibration

7.1.1 Camera Spectral Response Calibration

We mentioned in Section 3.3.1 that camera spectral response functions are

difficult to calibrate, especially without professional equipment. Calibration

methods which allow broadband illumination to be used are limited in accuracy

because the space of spectral reflectances of real objects is approximately six-

to nine-dimensional [30]. Whereas the visible spectrum is infinite-dimensional,

we use low-dimensional representations of spectral images, as discussed in Sec-

tion 3.3.2. Therefore, we recommend experiments to calibrate camera spectral

response functions only to the spectral resolution required for reliable correc-

tion of chromatic aberration by our image estimation algorithm. Recovery

of spectral response functions with six to nine degrees of freedom, matching

the dimensionality of real-world reflectances, should be sufficient, as we used

a number of spectral bands in this range (as justified in Section 5.4.3). We

believe that many calibration methods should be able to do so without sophis-

ticated equipment. Such low-cost camera response calibration methods will

allow our image estimation algorithms to be used more widely.

Aside from reducing the equipment and time required for camera spectral
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response calibration, we might also want to augment spectral response calibra-

tion by also calibrating crosstalk. As we mentioned in Section 2.1, correcting

crosstalk is an under-studied problem, and calibrating crosstalk is even less-

commonly discussed in computer vision literature. Still, modelling crosstalk

may be important for accurate spectral reconstruction from RGB images, and

warrants further investigation.

7.1.2 Dispersion

Generalization across Imaging Conditions

In our experiments, we were careful to use the same focus and aperture settings

to capture all images. Light propagation through the lens depends on all

geometric and material properties of the lens, and therefore changes to the lens

settings will alter dispersion. Future work is needed to quantify the sensitivity

of dispersion to variation in lens settings, and to create models of dispersion

which can accommodate different lens settings.

The point spread function estimation method of Shih et al. [105] might be

adapted to produce flexible models of dispersion. Provided they had access

to the lens design, they calibrated the point spread function of the lens at

one lens setting, and used the point spread function to adjust the parameters

of the lens design to better model the physical lens. From the adjusted lens

design, they could then simulate point spread functions for other lens settings.

Generalization across Scenes

Aside from lens settings, dispersion is also affected by the depth of objects

in the scene. We conducted preliminary raytracing experiments, outside the

scope of this thesis, to model the effect of depth on dispersion in a simple lens.

Based on the results of these raytracing experiments, we conjecture that the

dependence of lateral chromatic aberration on depth weakens rapidly at depths

beyond a few focal lengths. Similarly, Baek et al. [7] showed that dispersion

caused by a triangular prism, which is much more severe than the dispersion

in most lenses, is effectively constant with respect to depth at depths larger

than 70 cm, and changes significantly with respect to depth only up to depths
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of around 20 cm. Therefore, we doubt it is necessary to account for depth

when modelling dispersion, except in applications, such as microscopy, where

objects are very close to the lens.

Low-Spectral Resolution Calibration

As with camera spectral response calibration (Section 3.3.1), our dispersion

calibration procedure also relies on specialized equipment, specifically a sys-

tem to filter light to narrowband illumination (Section 4.2.1). As a lower-cost

alternative to optical bandpass filters, we recommend testing LEDs, which

others have used for inexpensive spectral imaging [36, 90]. As the illuminants

become more broadband in spectrum, however, modifications to our disper-

sion calibration procedure may be necessary. We recommend calibrating point

spread functions under each illuminant, from which one can likely extract the

ranges of dispersion vectors corresponding to the spectral ranges of the illumi-

nants. Any single vector, such as measured using a disk keypoint displacement

(Section 3.2.1) will poorly characterize the dispersion pattern produced by a

broadband illuminant. Unfortunately, mapping point spread functions to spec-

tral dispersion vectors may be difficult because of variations in the direction of

dispersion with wavelength. As we illustrated in Figure B.4, the projection of

dispersion vectors along a given direction may be non-monotonic with respect

to wavelength.

7.2 Spectral Reconstruction

7.2.1 Regularization

Adaptive Regularization

We cited the optimization-based demosaicing algorithm of Menon and Cal-

vagno [77] in Section 2.1 in particular for their use of adaptive regularization.

Presently, our regularization terms are given global weights across the image,

although regularization which adapts to local image content may give better

results. Whereas Menon and Calvagno [77] used the result of their first iter-

ation to calculate local regularization weights, we might be able to set local
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regularization weights in advance, using our models of dispersion. For example,

we could try penalizing image gradients more strongly in the direction perpen-

dicular to the direction of lateral chromatic aberration, with the strength of

the penalty depending on the magnitude of the aberration. Adaptive regular-

ization may also improve computational efficiency, by allowing us to achieve

good results with L2-norm penalty terms, which simplify optimization relative

to L1-norm penalty terms.

Alternative Image Priors

In our work, we used simple L1 and L2-norm priors on the image gradients

(Table 3.1), but there is a large variety of possible priors that could be tested,

including cross-band priors [42], L0-norm priors [89], and normalized sparsity

priors [61]. Most of these priors would make the image estimation optimization

problem more difficult to solve, unfortunately.

An approach that would potentially allow us to improve our results under

our simple image priors may be intrinsic image decomposition, which has re-

cently been extended to spectral images [49, 55, 56]. Presently, we apply our

smoothness priors to the combination of reflectance and shading that forms the

reconstructed spectral image. Yet the statistical properties of reflectance and

shading differ [103], so the two should be subject to different regularization

penalties, or to the same regularization penalty, but with different weights.

Therefore, it may be beneficial to separate reflectance from shading by inte-

grating intrinsic image decomposition into our method. In fact, our suggestion

in Section 6.3 of expressing the spectral image as relative to a reference spec-

tral intensity is equivalent to decomposing the image into a reflectance image,

and a global illumination spectral power distribution, where the latter is given

by the reference spectral intensity.

Alternative Image Representations

Our estimated images are represented in terms of pixels, and we use smooth-

ness priors on the image spatial gradient to encourage continuity between pix-

els. In contrast, in the spectral domain, we have embedded smoothness into
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our image representation by using a basis of Gaussian functions to represent

spectral radiances (Section 3.3.2). As such, we do not need a regularization

term penalizing spectral roughness, provided that we choose a low-dimensional

or sparse basis.

We recommend experimenting with spatial basis representations as well as

spectral basis representations. For example, Parmar et al. [91] used a 2D Haar

wavelet basis to represent spatial information, and a learned KSVD basis to

represent spectral information [91]. Their separate representations for spatial

and spectral information might be reasonable considering that the spatial and

spectral dimensions are incomparable. Still, combined spatial-spectral bases

may also be worth investigating, such as the 3D sparse dictionary representa-

tion of Lin et al. [66].

7.2.2 Data-Driven Spectral Reconstruction

Aside from using training data to create representations of spectral images for

regularization (Section 7.2.1), we may want to leverage learned mappings from

RGB colours to spectral signatures. We note that data-driven spectral recon-

struction algorithms (Section 2.3.2) are often single-pass algorithms, rather

than iterative optimization algorithms, so integrating them could lead to a

faster image reconstruction method.

One fast approach to chromatic aberration correction would be to use a

data-driven spectral reconstruction method to obtain a spectral image, and

then correct chromatic aberration in the spectral image by warping the image

according to a model of dispersion. In addition to the difficulty of obtaining

adequate training data, which we discussed in Section 3.3.2, such an approach

would face two further challenges: First, the input image is a colour-filter

array image, whereas most data-driven RGB-to-spectral reconstruction meth-

ods require full-colour images as input. If we used a demosaicing method

as a preprocessing step, we would introduce artifacts from demosaicing, and

potentially complicate chromatic aberration correction, as we discussed in Sec-

tion 2.2. Alternatively, we could train the RGB-to-spectral mapping to operate

on mosaiced images, but it may be difficult to learn a well-behaved mapping,
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because colour-filter array images have significant high-frequency content.

Second, chromatic aberration mixes spectral radiances from neighbour-

ing points in the scene. Consequently, at edges in the image, the corre-

sponding spectral intensities no longer satisfy the assumptions made by many

RGB-to-spectral methods that spectral radiances are well-modelled by a low-

dimensional manifold [53] or by a sparse representation [4]. A possible solution

may be to use a chromatic-aberration-corrected image as the input to the RGB-

to-spectral mapping. We envision an iterative approach, wherein the output

image of each iteration of chromatic aberration correction is the input to the

next iteration. Alternatively, we could incorporate the RGB-to-spectral map-

ping within a global optimization algorithm, as done by Choi et al. [19], but

then the computational cost may be significant (as discussed in Section 3.8.2).

A more efficient approach may be to use the initial output of the RGB-to-

spectral mapping as a fixed prior in our existing optimization algorithm, but

weighted so that it has less influence at image edges.

7.3 Multispectral Imaging

Different image priors or learned mappings for spectral reconstruction all make

implicit or explicit assumptions concerning the true spectral information. They

will fail when these assumptions are violated. More generally, they cannot

make the problem of spectral reconstruction well-posed, in contrast to im-

provements to the spectral resolution of the imaging system.

While we have formulated our approach in the context of conventional RGB

cameras, it can be easily extended to multispectral cameras. Our method may

prove useful in this area, as multispectral demosaicing algorithms are still

under active research [78].

Another area where our algorithm may perform well is in multiple aper-

ture imaging, assuming each aperture has unique colour channels. On this

topic, Oh et al. [87] demonstrated spectral imaging by combining the images

from multiple RGB cameras. The primary challenge with multiple aperture

systems is that the images from each aperture or camera must be accurately
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registered. While there are algorithms for image registration in multiple aper-

ture settings [47, 52, 83], we could try to incorporate image registration into

our image estimation algorithm, instead of performing image registration as a

pre-processing step. Doing so would be novel, as we are not aware of image reg-

istration methods that account for chromatic aberration, and may potentially

give improved results.
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Chapter 8

Conclusion

We have shown that modeling lateral chromatic aberration in terms of wave-

lengths of light, and then estimating a spectral image consistent with our

model, accurately corrects chromatic aberration in the corresponding colour

image. We formulated image estimation as an optimization problem, and the

algorithm we use to solve the optimization problem is guaranteed to converge

towards a global optimum. Furthermore, solving an optimization problem

instead of designing a direct algorithm for chromatic aberration correction

eliminates demosaicing of the input colour-filter array image. In direct algo-

rithms, demosaicing is either explicit, as a preprocessing step, or implicit, as

in colour channel warping methods for chromatic aberration correction.

No previous works have relied on spectral information to correct chromatic

aberration in colour images, even though chromatic aberration is elegantly

modelled in the spectral domain. To illustrate this point, we show simulated

patterns of lateral chromatic aberration in Figure 8.1. When modelled as

warping between colour channels (top row), lateral chromatic aberration is

calibrated with respect to the spectral characteristics of the calibration scene,

and does not vary with the spectral characteristics of the scene for which the

image is to be corrected. In contrast, when modelled as warping between

spectral bands, lateral chromatic aberration appears as a spectrally-varying

point spread function (bottom row).

To illustrate the spectral variation of lateral chromatic aberration more

clearly, we show the Green channel point spread functions corresponding to
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Figure 8.1: A comparison of point spread functions simulated from models
of dispersion. The columns contain point spread functions simulated for the
spectral radiances of patches 10 (purple), 13 (blue), 14 (green), 15 (red), 16
(yellow), and 19 (white), of our XRite ColorChecker Classic colour chart, lit
by a CIE D65 illuminant. For reference, we provide samples of these colours in
the large squares to the bottom right of each point spread function. In the top
half of the figure, we show point spread functions generated using the colour
channel-based model of dispersion from Figure 5.4, which ignores spectral
variability. In the bottom half, we show point spread functions generated
using our spectral model of dispersion (Figure 5.3). Note that the point spread
functions shown in this figure have different overall intensities because they
are not normalized to account for the differences in intensity of the different
light sources.
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Figure 8.2: A comparison of point spread functions for the Green channel
simulated from models of dispersion. The point spread functions shown are the
Green channel components of those shown in Figure 8.1. For easier comparison
between columns in the figure, the point spread functions have been normalized
by their peak intensities.

Figure 8.1 in Figure 8.2. As the spectral radiance of the scene changes, the

appropriate point spread function for correcting lateral chromatic abberation

also changes. When operating in the colour domain, adequately correcting

lateral chromatic aberration is therefore a nonlinear problem. In contrast, in

the spectral domain, the point spread function is independent of spectral im-

age intensity, so there is a linear relationship between the input raw image

and the spectral image. Therefore, our spectral-domain approach to correct-

ing chromatic aberration has the advantages of both physical validity, and of

computational simplicity.

While chromatic aberration should be evaluated visually when designing

algorithms for photography applications, visual evaluation is influenced by

the colour correction that mapped the images to a standard colour space. To

strengthen our conclusions, we therefore validated our correction of chromatic

aberration quantitatively, using a novel evaluation technique that measures

colour error without the need for demosaicing. Additionally, we validated our

estimated spectral images, against a state-of-the-art spectral reconstruction

method [19], in simulated experiments, and against inexpensive spectrometry

equipment, in real experiments.

The many-to-one mapping from spectral radiances to colour image inten-
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sities (i.e. metamerism) poses a challenge that warrants future investigation.

Still, the slight residual fringes from metamers in our output images are accept-

able, in comparison to the fringes or blur left by other methods for chromatic

aberration correction. We have not added heuristics or post-processing steps

to our algorithm to directly suppress residual fringes. Instead, we hope that

our method may serve as a general, interpretable algorithm for others to build

upon in further research into demosaicing, spectral reconstruction, and chro-

matic aberration correction.
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spread function measurement using a virtual point-like source,” Inter-
national Journal of Computer Vision, vol. 121, no. 3, pp. 391–402, 2017.
doi: 10.1007/s11263-016-0948-8.

[52] D. S. Jeon, S.-H. Baek, I. Choi, and M. H. Kim, “Enhancing the spatial
resolution of stereo images using a parallax prior,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

182

https://doi.org/10.1145/2661229.2661260
https://doi.org/10.1145/2661229.2661260
https://doi.org/10.1109/TIP.2018.2820839
https://doi.org/10.1109/TIP.2018.2820839
https://doi.org/10.1109/ICIP.2018.8451377
https://doi.org/10.1109/ICIP.2018.8451377
https://doi.org/10.1109/ICIP.2008.4711845
https://doi.org/10.1109/ICIP.2008.4711845
https://doi.org/10.1109/TIP.2014.2383315
https://doi.org/10.1109/TIP.2014.2383315
https://doi.org/10.1109/TIP.2016.2539685
https://doi.org/10.1109/TIP.2016.2539685
https://doi.org/10.1007/s11263-016-0948-8


[53] Y. Jia, Y. Zheng, L. Gu, A. Subpa-Asa, A. Lam, Y. Sato, and I. Sato,
“From RGB to spectrum for natural scenes via manifold-based map-
ping,” in IEEE International Conference on Computer Vision (ICCV),
Institute of Electrical and Electronics Engineers Inc., 2017, pp. 4715–
4723. doi: 10.1109/ICCV.2017.504.

[54] J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral
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Appendix A

Additional Results on the
KAIST Dataset

In Section 5.2, we presented spectral and colour error metrics for variants of

our algorithm on four images from the KAIST spectral image dataset. In this

appendix, we present the same error metrics for only the first image from the

dataset (Figure 4.14a), but we include results for variants of our algorithm that

incorporate a penalty on the image Laplacian. For brevity, these results were

not included in Section 5.2. As mentioned in Section 5.2, we only tested the

penalty on the image Laplacian on the first image from the KAIST dataset

because the penalty greatly increased the running time of our optimization

algorithm.

In Table A.1, we provide spectral image evaluation results for the first

image from the KAIST dataset (analogous to Table 5.1).

Table A.1: Spectral error metrics evaluated on the first image from the KAIST
dataset (Figure 4.14a). Rows are sorted by MRAE. The first column identifies
the combination of penalty terms used in our algorithms, as listed in Table 3.1.
The second column indicates whether or not we imposed a non-negativity
constraint on the estimated image. The third column identifies the criterion
used to select regularization weights (Section 3.6). Algorithms with empty
rows failed to converge within 1000 ADMM iterations, with 100 conjugate
gradient iterations per ADMM iteration.

MRAE RMSEpixel RMSEglobal GOF SSIMmean

Penalties NNeg Criterion
L2 yes MSEC 0.249 1.89×10−4 2.59×10−4 0.817 0.99941
L1L1 yes MSEC 0.266 1.81×10−4 2.37×10−4 0.831 0.99951
L1 yes DMC 0.269 2.04×10−4 2.98×10−4 0.821 0.99923
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Table A.1: (continued)

MRAE RMSEpixel RMSEglobal GOF SSIMmean

Penalties NNeg Criterion
L2L2 yes MSEC 0.270 1.82×10−4 2.34×10−4 0.817 0.99951
L1 yes MSEC 0.279 1.77×10−4 2.30×10−4 0.835 0.99953
L2 no MSEC 0.279 1.84×10−4 2.33×10−4 0.814 0.99950
L1 no DMC 0.285 1.82×10−4 2.29×10−4 0.823 0.99951
L2L2 no MSEC 0.291 1.84×10−4 2.30×10−4 0.812 0.99951
L1 no MSEC 0.309 1.86×10−4 2.40×10−4 0.821 0.99948

Choi et al. [19] 0.341 2.02×10−4 2.89×10−4 0.800 0.99927
L2 yes DMC 0.344 2.12×10−4 2.93×10−4 0.805 0.99923
L2L2 yes DMC 0.344 2.12×10−4 2.93×10−4 0.805 0.99923
L1L1 yes MDC 0.353 1.93×10−4 2.41×10−4 0.812 0.99947
L1L1 yes DMC 0.362 2.32×10−4 3.43×10−4 0.799 0.99894
L1L1 no MSEC 0.364 2.03×10−4 2.70×10−4 0.781 0.99936
L1 yes MDC 0.365 2.69×10−4 4.73×10−4 0.785 0.99820
L2L2 yes MDC 0.383 2.06×10−4 2.61×10−4 0.808 0.99939
L2 yes MDC 0.404 2.33×10−4 3.23×10−4 0.803 0.99908
L1L1 no MDC 0.433 2.02×10−4 2.45×10−4 0.791 0.99944
Lap1 yes MSEC 0.440 2.68×10−4 3.86×10−4 0.644 0.99865
Lap1 yes DMC 0.440 2.68×10−4 3.86×10−4 0.643 0.99865
Lap2 no MSEC 0.441 2.69×10−4 3.86×10−4 0.640 0.99864
Lap2 yes MDC 0.441 2.68×10−4 3.85×10−4 0.641 0.99866
Lap2 yes DMC 0.441 2.68×10−4 3.85×10−4 0.641 0.99866
L1Spectral-
Lap2

yes DMC 0.442 2.68×10−4 3.85×10−4 0.641 0.99866

Lap2 yes MSEC 0.442 2.68×10−4 3.85×10−4 0.641 0.99865
L1Spatial-
Lap2

no MSEC 0.444 2.69×10−4 3.86×10−4 0.641 0.99864

Lap2 no DMC 0.444 2.69×10−4 3.86×10−4 0.641 0.99864
Lap1 no DMC 0.444 2.69×10−4 3.86×10−4 0.641 0.99864
L1Spectral-
Lap2

no DMC 0.444 2.69×10−4 3.86×10−4 0.641 0.99864

Lap2 no MDC 0.444 2.69×10−4 3.86×10−4 0.641 0.99864
Lap1 no MSEC 0.444 2.69×10−4 3.86×10−4 0.641 0.99864
L1Spatial-
Lap2

yes DMC 0.445 2.73×10−4 4.14×10−4 0.670 0.99845

L2L2 no MDC 0.446 2.11×10−4 2.60×10−4 0.796 0.99938
L1Spatial-
Lap2

no MDC 0.447 2.70×10−4 3.87×10−4 0.640 0.99864

L2L2 no DMC 0.500 2.22×10−4 2.83×10−4 0.790 0.99927
L2 no DMC 0.500 2.22×10−4 2.83×10−4 0.790 0.99927
L1Spatial-
Lap2

no DMC 0.511 2.75×10−4 3.96×10−4 0.635 0.99858
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Table A.1: (continued)

MRAE RMSEpixel RMSEglobal GOF SSIMmean

Penalties NNeg Criterion
L2 no MDC 0.535 2.38×10−4 3.08×10−4 0.793 0.99915
L1Spectral-
Lap2

no MDC 0.611 2.75×10−4 3.48×10−4 0.554 0.99887

L1L1 no DMC 0.680 1.66×10−4 3.72×10−4 0.778 0.99874
L1 no MDC 0.715 2.85×10−4 4.45×10−4 0.780 0.99840
L1Spectral-
Lap2

no MSEC 6.997 1.76×10−3 6.05×10−3 0.535 0.96451

L1Spatial-
Lap2

yes MDC — — — — —

L1Spectral-
Lap2

yes MSEC — — — — —

L1Spatial-
Lap2

yes MSEC — — — — —

Lap1 yes MDC — — — — —
L1Spectral-
Lap2

yes MDC — — — — —

Lap1 no MDC — — — — —

Similarly, in Table A.2, we provide colour image reconstruction error met-

rics, in the same format as Table 5.2.
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Table A.2: RGB error metrics evaluated on the first image from the KAIST dataset (Figure 4.14a). Rows are sorted by
MRAE in the Green channel (MRAEG). The first column distinguishes spectral image estimation algorithms from colour
image estimation algorithms. The second column identifies the combination of penalty terms used in our algorithms, as listed
in Table 3.1. The third column indicates whether or not we imposed a non-negativity constraint on the estimated image. The
fourth column identifies the criterion used to select regularization weights (Section 3.6). Algorithms with empty rows failed to
converge within 1000 ADMM iterations with 100 conjugate gradient iterations per ADMM iteration.

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes Lap1 no MSEC 0.00855 0.00354 0.00785 0.00031 0.00021 0.00040 0.99994 0.99997 0.99991
no Lap2 no MSEC 0.00873 0.00354 0.00829 0.00033 0.00020 0.00042 0.99994 0.99998 0.99989
no Lap1 no MSEC 0.00880 0.00370 0.00834 0.00034 0.00021 0.00043 0.99994 0.99998 0.99989
yes L1Spatial-

Lap2
no MSEC 0.00844 0.00371 0.00785 0.00031 0.00021 0.00039 0.99994 0.99997 0.99991

yes Lap2 yes MSEC 0.00846 0.00372 0.00786 0.00031 0.00021 0.00039 0.99994 0.99997 0.99991
yes Lap1 no DMC 0.00991 0.00396 0.00866 0.00039 0.00027 0.00046 0.99991 0.99996 0.99987
no L1Spectral-

Lap2
yes MSEC 0.01114 0.00407 0.00822 0.00069 0.00026 0.00088 0.99983 0.99996 0.99972

no L1Spectral-
Lap2

no MSEC 0.00884 0.00415 0.00833 0.00036 0.00024 0.00045 0.99993 0.99997 0.99989

no L1Spatial-
Lap2

yes MSEC 0.00983 0.00425 0.00928 0.00042 0.00023 0.00052 0.99991 0.99997 0.99986

no ARI [79] 0.01043 0.00437 0.00874 0.00037 0.00025 0.00046 0.99991 0.99996 0.99986

yes Lap1 yes DMC 0.01116 0.00438 0.00939 0.00084 0.00037 0.00114 0.99971 0.99994 0.99954
yes Lap1 yes MSEC 0.01123 0.00446 0.00941 0.00059 0.00036 0.00070 0.99983 0.99994 0.99979
no Lap2 yes MSEC 0.00953 0.00447 0.00892 0.00039 0.00024 0.00050 0.99992 0.99997 0.99987
no L2L2 no MSEC 0.01246 0.00449 0.00988 0.00064 0.00041 0.00075 0.99977 0.99993 0.99975
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Table A.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes Lap2 no DMC 0.00955 0.00460 0.00853 0.00036 0.00024 0.00042 0.99993 0.99997 0.99990

no Bilinear interpolation 0.01042 0.00464 0.00941 0.00055 0.00044 0.00067 0.99924 0.99996 0.99946

no L1Spatial-
Lap2

no MSEC 0.00991 0.00465 0.00914 0.00040 0.00025 0.00050 0.99992 0.99997 0.99987

no L2L2 no DMC 0.01397 0.00466 0.01181 0.00085 0.00044 0.00103 0.99967 0.99993 0.99959
no L2 no DMC 0.01343 0.00467 0.01143 0.00074 0.00044 0.00089 0.99973 0.99992 0.99965
no L1Spatial-

Lap2
no DMC 0.01394 0.00469 0.01175 0.00084 0.00043 0.00101 0.99968 0.99993 0.99960

no L2 no MSEC 0.01425 0.00475 0.01195 0.00087 0.00045 0.00104 0.99966 0.99992 0.99958
no L1 no DMC 0.01412 0.00480 0.01187 0.00085 0.00044 0.00102 0.99967 0.99993 0.99959
no L2 yes MSEC 0.02965 0.00493 0.02858 0.00093 0.00046 0.00117 0.99951 0.99992 0.99915
no L2L2 yes DMC 0.04816 0.00520 0.04753 0.00099 0.00044 0.00138 0.99921 0.99992 0.99795
no Lap2 yes DMC 0.01032 0.00535 0.00951 0.00040 0.00029 0.00050 0.99992 0.99996 0.99986
no L1Spectral-

Lap2
yes DMC 0.01025 0.00535 0.00945 0.00040 0.00029 0.00050 0.99992 0.99996 0.99986

no Lap2 no DMC 0.01026 0.00535 0.00945 0.00040 0.00029 0.00049 0.99992 0.99996 0.99987
no L2 yes DMC 0.04747 0.00540 0.04666 0.00102 0.00045 0.00139 0.99921 0.99992 0.99798
no L1Spectral-

Lap2
no DMC 0.00996 0.00542 0.00929 0.00038 0.00030 0.00048 0.99992 0.99996 0.99987

no L1Spatial-
Lap2

yes DMC 0.01069 0.00546 0.00958 0.00041 0.00029 0.00051 0.99991 0.99996 0.99986

yes L1Spectral-
Lap2

yes DMC 0.01107 0.00572 0.00945 0.00044 0.00032 0.00048 0.99990 0.99995 0.99987

yes Lap2 yes DMC 0.01108 0.00573 0.00946 0.00044 0.00032 0.00048 0.99990 0.99995 0.99987
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Table A.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes L1Spectral-
Lap2

no DMC 0.01108 0.00573 0.00946 0.00044 0.00032 0.00048 0.99990 0.99995 0.99987

yes Lap2 no MDC 0.01179 0.00623 0.00989 0.00048 0.00036 0.00051 0.99988 0.99994 0.99986
no L2L2 yes MSEC 0.01428 0.00623 0.01600 0.00069 0.00046 0.00081 0.99973 0.99991 0.99962
yes L1 yes DMC 0.01486 0.00641 0.01060 0.00098 0.00054 0.00122 0.99964 0.99990 0.99958
yes L1L1 yes DMC 0.01685 0.00651 0.01166 0.00114 0.00050 0.00125 0.99948 0.99987 0.99944
no Lap2 no MDC 0.01159 0.00665 0.01043 0.00046 0.00039 0.00057 0.99989 0.99993 0.99983
no L1L1 no MSEC 0.01523 0.00666 0.01153 0.00058 0.00036 0.00070 0.99981 0.99994 0.99977
no Lap2 yes MDC 0.01159 0.00666 0.01044 0.00047 0.00039 0.00058 0.99989 0.99993 0.99983
no L1 no MSEC 0.01802 0.00680 0.01337 0.00078 0.00037 0.00096 0.99970 0.99994 0.99962
yes Lap2 no MSEC 0.02310 0.00684 0.01923 0.00110 0.00079 0.00197 0.99931 0.99943 0.99841
yes Lap2 yes MDC 0.01277 0.00691 0.01048 0.00054 0.00041 0.00056 0.99985 0.99993 0.99983
no Lap1 yes MSEC 0.01666 0.00726 0.01313 0.00341 0.00078 0.00477 0.99736 0.99971 0.99630
no Lap1 yes DMC 0.01692 0.00772 0.01316 0.00321 0.00077 0.00445 0.99770 0.99972 0.99692
yes L1Spatial-

Lap2
no DMC 0.01650 0.00838 0.01159 0.00041 0.00029 0.00047 0.99989 0.99995 0.99986

no Lap1 no DMC 0.01663 0.00857 0.01233 0.00043 0.00026 0.00053 0.99988 0.99995 0.99982
yes L2L2 no DMC 0.02173 0.00866 0.01499 0.00134 0.00074 0.00120 0.99923 0.99982 0.99947
yes L2 no DMC 0.02173 0.00866 0.01499 0.00134 0.00074 0.00120 0.99923 0.99982 0.99947
yes L2 yes DMC 0.02191 0.00867 0.01500 0.00134 0.00074 0.00120 0.99923 0.99982 0.99947
yes L2L2 yes DMC 0.02191 0.00867 0.01500 0.00134 0.00074 0.00120 0.99923 0.99982 0.99947
yes L1Spatial-

Lap2
yes DMC 0.01753 0.00914 0.01213 0.00042 0.00030 0.00048 0.99988 0.99995 0.99986

no L1L1 yes DMC 0.02326 0.00920 0.01726 0.00176 0.00073 0.00212 0.99896 0.99982 0.99876
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Table A.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes L2L2 no MSEC 0.02010 0.00940 0.01610 0.00106 0.00102 0.00152 0.99927 0.99952 0.99899
no L1L1 yes MSEC 0.01829 0.00953 0.01391 0.00107 0.00061 0.00128 0.99951 0.99985 0.99945
yes L2L2 yes MSEC 0.02009 0.00978 0.01555 0.00100 0.00092 0.00135 0.99939 0.99955 0.99922
yes L1L1 no MSEC 0.02160 0.00991 0.01455 0.00146 0.00134 0.00178 0.99905 0.99931 0.99896
no L1L1 no DMC 0.02196 0.00995 0.01536 0.00063 0.00034 0.00077 0.99974 0.99993 0.99967
yes L1 no MSEC 0.02160 0.01035 0.01890 0.00125 0.00354 0.00538 0.99922 0.99483 0.99449
yes L2 yes MSEC 0.02055 0.01139 0.01667 0.00124 0.00111 0.00169 0.99920 0.99931 0.99886
yes L2 no MSEC 0.01814 0.01162 0.01434 0.00096 0.00107 0.00117 0.99950 0.99935 0.99935
no L1 yes MSEC 0.02841 0.01386 0.02007 0.00172 0.00100 0.00200 0.99897 0.99973 0.99886
yes L1L1 yes MSEC 0.03237 0.01550 0.03430 0.00201 0.00492 0.00774 0.99818 0.99055 0.98970
yes L1Spectral-

Lap2
no MDC 0.03408 0.01689 0.02194 0.00100 0.00101 0.00136 0.99908 0.99923 0.99885

no L2 yes MDC 0.03492 0.01896 0.02628 0.00219 0.00186 0.00255 0.99812 0.99909 0.99814
no L2 no MDC 0.03498 0.01896 0.02630 0.00218 0.00186 0.00255 0.99812 0.99909 0.99814
no L2L2 yes MDC 0.03492 0.01899 0.02629 0.00219 0.00187 0.00255 0.99812 0.99908 0.99814
no L2L2 no MDC 0.03504 0.01900 0.02634 0.00219 0.00187 0.00255 0.99811 0.99908 0.99813
no L1 yes DMC 0.03692 0.01980 0.02468 0.00177 0.00098 0.00204 0.99876 0.99964 0.99869
yes L1L1 no DMC 0.03956 0.02079 0.02497 0.00102 0.00056 0.00114 0.99931 0.99965 0.99919
yes L1Spatial-

Lap2
no MDC 0.03347 0.02122 0.02257 0.00201 0.00192 0.00193 0.99821 0.99880 0.99863

yes L1 no DMC 0.04787 0.02163 0.02191 0.00105 0.00080 0.00145 0.99921 0.99962 0.99930
yes L1 yes MSEC 0.04722 0.02349 0.04297 0.00209 0.00468 0.00692 0.99796 0.99124 0.99072
yes L1Spectral-

Lap2
no MSEC 0.10908 0.03523 0.05193 0.00296 0.00155 0.00286 0.98980 0.99811 0.99539

197



Table A.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes L1L1 yes MDC 0.11489 0.04417 0.05359 0.00463 0.00285 0.00367 0.98820 0.99614 0.99444
yes L1 yes MDC 0.12124 0.04598 0.05690 0.00588 0.00390 0.00469 0.98456 0.99397 0.99218
yes L1L1 no MDC 0.11787 0.04623 0.05543 0.00463 0.00287 0.00367 0.98805 0.99600 0.99439

yes Choi et al. [19] 0.06522 0.04683 0.04000 0.00135 0.00195 0.00224 0.99833 0.99686 0.99736

yes L1 no MDC 0.13349 0.05459 0.06087 0.00530 0.00352 0.00428 0.98709 0.99480 0.99321
no Lap1 no MDC 0.11959 0.06937 0.07600 0.00457 0.00395 0.00488 0.98798 0.99246 0.99002
no Lap1 yes MDC 0.11959 0.06938 0.07596 0.00456 0.00395 0.00488 0.98800 0.99247 0.99003
yes L2L2 yes MDC 0.16799 0.07204 0.07825 0.00820 0.00730 0.00683 0.97914 0.99008 0.98952
yes L2L2 no MDC 0.16780 0.07227 0.07833 0.00820 0.00730 0.00683 0.97914 0.99005 0.98950
yes L2 yes MDC 0.17209 0.07499 0.08125 0.00874 0.00776 0.00744 0.97797 0.98912 0.98857
yes L2 no MDC 0.17200 0.07500 0.08125 0.00874 0.00776 0.00744 0.97797 0.98912 0.98857
no L1Spectral-

Lap2
yes MDC 0.28369 0.10015 0.13209 0.00996 0.00630 0.00912 0.95112 0.97444 0.95864

no L1 no MDC 0.47642 0.21258 0.24840 0.01031 0.00744 0.01037 0.93855 0.97202 0.95999
no L1 yes MDC 0.47686 0.21285 0.24851 0.01031 0.00744 0.01037 0.93850 0.97200 0.95998
no L1L1 no MDC 0.45159 0.23732 0.23445 0.00985 0.00871 0.00958 0.94297 0.96668 0.96351
no L1L1 yes MDC 0.45204 0.23757 0.23462 0.00985 0.00872 0.00959 0.94293 0.96667 0.96348
no L1Spectral-

Lap2
no MDC 0.61718 0.61397 0.61015 0.05610 0.08113 0.06504 0.68096 0.59548 0.55584

no L1Spatial-
Lap2

no MDC 1.12919 0.66826 0.56533 0.02924 0.02732 0.02919 0.84900 0.87880 0.88884

no L1Spatial-
Lap2

yes MDC 1.17809 0.72118 0.58092 0.03148 0.03010 0.03121 0.84517 0.87070 0.88632
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Table A.2: (continued)

MRAE MRAE MRAE RMSE RMSE RMSE SSIM SSIM SSIM
Red Green Blue Red Green Blue Red Green Blue

Spectral Penalties NNeg Criterion

yes L1Spatial-
Lap2

yes MDC — — — — — — — — —

yes L1Spectral-
Lap2

yes MSEC — — — — — — — — —

yes L1Spatial-
Lap2

yes MSEC — — — — — — — — —

yes Lap1 yes MDC — — — — — — — — —
yes L1Spectral-

Lap2
yes MDC — — — — — — — — —

yes Lap1 no MDC — — — — — — — — —
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Appendix B

Supplemental Experiments on
Dispersion Model Calibration

In this appendix, we describe supplemental experiments on spectral disper-

sion calibration. These experiments follow our initial calibration experiments

presented in Section 5.3. We conducted these supplemental experiments for

two reasons: First, we sought to validate our calibration method by testing

whether different variants of our method produced similar models of disper-

sion. Second, we needed to determine whether the non-monotonic change in

the magnitude of dispersion with respect to distance from the image center,

in Figures 5.3 and 5.4, is an artifact of our calibration method.

B.1 Vignetting Correction

In our first supplemental experiment, we tested if disk keypoint locations were

sensitive to non-uniform shading, by applying a vignetting correction to the

images of the disk pattern. We calibrated the vignetting correction model,

as described in Section 3.2.2, from the white background of the disk pattern.

The left side of Figure B.1 shows the dispersion pattern obtained without first

correcting the disk pattern images for non-uniform shading. This dispersion

pattern is almost identical to the corresponding pattern obtained with correc-

tion for non-uniform shading, shown on the right side of Figure B.1. The only

observable differences are a slight improvement in the overall symmetry of the

dispersion pattern, especially towards the image edges, with shading correc-
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tion. While our dispersion calibration is insensitive to non-uniform shading, we

chose to correct for non-uniform shading by default (as in Figures 5.3 and 5.4).

B.2 Image Registration vs. Disk Keypoints

While correcting the calibration image for non-uniform shading indicated that

disk keypoint detection is robust to non-uniform shading effects, it is possi-

ble that there are other sources of bias in disk keypoint locations that are

not related to shading. To conclusively validate our dispersion keypoints, we

compared disk keypoints to keypoints obtained by patch-wise image registra-

tion (described in Section 3.2.3). For patch-wise image registration, we used

a patch size of 64 × 64 pixels. We sampled patches in a grid of partially-

overlapping patches, with horizontal and vertical offsets of 32 pixels between

neighbouring patches. The models of dispersion we obtained using the two

types of keypoints are compared in Figure B.2. Since the two algorithms for

generating keypoints are very different, and since they lead to similar models

of dispersion, then it is likely that both are unbiased estimators of dispersion

vectors.

B.3 Polynomial vs. Thin-Plate Spline Interpo-

lation

After validating the keypoints used to fit our models of dispersion, we as-

sessed whether the non-monotonic change in the magnitude of dispersion with

distance from the image center was an artifact of polynomial fitting. As poly-

nomials are typically unstable outside the domain of the data to which they

are fitted, we reasoned that the reversal in dispersion direction towards the

edges of the image was exacerbated by underconstrained polynomials. We

experimented with thin-plate spline models of dispersion as an alternative to

polynomial models, fitting trivariate thin-plate splines in x, y, and λ as de-

scribed in Section 3.2.4. As shown on the right side of Figure B.3, spline

models are comparable to polynomial models, but can be more sensitive to

local noise, which worsens near the image edges.
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Figure B.1: Trivariate polynomial models of the dispersion of the image for 450
nm light with respect to the image for 600 nm light, for a Computar 07I lens
mounted on a Point Grey BlackFly Flea3 camera. In the left column, the heat
map colours show the magnitude (a) and angle (c) of the dispersion vectors
in the absence of vignetting correction prior to disk keypoint localization.
The right column shows the magnitude (b) and angle (d) of the dispersion
vectors computed with vignetting correction prior to disk keypoint localization.
The magnitudes of dispersion vectors shown in the top row are their signed
magnitudes in the direction of the image centre, with positive magnitudes
chosen for vectors pointing away from the image centre. The arrows in all
plots shown the direction of dispersion.
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(a) (b)

(c) (d)

Figure B.2: Trivariate polynomial models of the dispersion of the image for
450 nm light (top row) or 700 nm light (bottom row) with respect to the
image for 600 nm light, for a Computar 07I lens mounted on a Point Grey
BlackFly Flea3 camera. The left column shows the model fit to keypoints
obtained by patch-wise image registration between spectral bands. The right
column shows the model fit to keypoints obtained by disk centre detection in
individual spectral bands. Positive dispersion magnitudes indicate that the
dispersion vectors point away from the image center. Arrows in the figures
show the dispersion direction.
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Figure B.3: Alternative models of the dispersion of 450 nm light with respect
to 600 nm light, for a Computar 07I lens mounted on a Point Grey BlackFly
Flea3 camera. On the left, the model is a thin-plate spline model in x, y, and
λ, showing that thin-plate spline models are more flexible, but may be unstable
at the image borders. On the right, the model is a trivariate polynomial in x, y,
and λ. The top row of plots shows the magnitudes of the radial components of
dispersion vectors, with positive magnitudes chosen for components pointing
away from the image centre. Note the different scales of the colour axis between
the two plots. The bottom row of plots shows the angles of the dispersion
vectors. The arrows in both rows of plots follow the direction of dispersion.
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The same conclusions can be drawn by looking at the behaviour of spline vs.

polynomial models across the visible spectrum, as shown in Figure B.4. The

two different dispersion keypoint interpolations agree well except at the edges

of the image, where the spline model fits more closely to the keypoints. The

polynomial model will exhibit poorer extrapolation behaviour at wavelengths

at the extremes of the visible spectrum than the spline model. The difference

arises because the polynomial model relies on calibration data to constrain

its behaviour everywhere in its spectral-spatial domain, whereas the spline

model approaches a more stable linear model in regions far from calibration

data. Fortunately, the camera spectral response falls off at the extremes of the

visible spectrum, so the inaccuracy of the polynomial model in these regions

is tolerable. As the two methods for interpolating dispersion keypoints give

similar results, but since thin-plate splines are computationally expensive, both

to fit, and to evaluate, for large numbers of keypoints, we normally prefer

polynomial models of dispersion.

B.4 Comparison of Dispersion between Lenses

Lastly, we investigated whether dispersion was also non-monotonic with re-

spect to distance from the image center in a Fujifilm Fujinon 1:1.4/12.5 mm

lens, exchanged for the Computar 07I lens on the same Point Grey BlackFly

Flea3 camera. Representative results from our experiment are shown in Fig-

ure B.5. As we did not collect as many images to calibrate dispersion for this

lens, there are fewer keypoints available for fitting models of dispersion. As

such, our polynomial fitting algorithm selected low degree polynomials, hiding

non-monotonicity near the image borders (Figures B.5a and B.5c). In con-

trast, our thin-plate spline models show this monotonicity, at the expense of

retaining more of the noise in the keypoints extracted from the images (Fig-

ures B.5b and B.5d). The patterns of dispersion for the two different lenses

(Figures B.5 vs. 5.3) are qualitatively similar. Therefore, we suggest that, at

high viewing angles, real lens and camera combinations may not follow the

commonly-accepted notion that the image for longer wavelengths should be
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Figure B.4: Magnitudes of the radial components of dispersion vectors, with
positive magnitudes chosen for components pointing away from the image
centre. The magnitudes of dispersion vectors are plotted with respect to the
wavelength of the light. Over the figures, from left-to-right, top-to-bottom,
the image location at which the dispersion models are being evaluated moves
from the image plane’s top-left corner to the image center. The solid blue lines
in the figures represent polynomial models of dispersion, whereas the dotted
red lines represent thin-plate spline models of dispersion, both for a Computar
07I lens mounted on a Point Grey BlackFly Flea3 camera.
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(a) (b)

(c) (d)

Figure B.5: Trivariate polynomials (left column) or thin-plate splines (right
column) in x, y, and λ, modeling dispersion for a Fujifilm Fujinon 1:1.4/12.5
mm lens mounted on a Point Grey BlackFly Flea3 camera. The first and
second rows of plots show aberration relative to 600 nm for spectral bands
centered at 450 nm, and 700 nm, respectively. Positive dispersion magnitudes
indicate that the dispersion vectors point away from the image center. Arrows
in the figures show the dispersion direction.

magnified relative to the image for shorter wavelengths. Exploring possible

physical causes for the observed dispersion patterns would be an interesting

future project.

B.5 Summary

During our experimentation with different variants of our dispersion calibra-

tion method, we obtained consistent models of dispersion, suggesting that our

calibration methods are reliable. We also note that the strong radial pattern

in our models of dispersion conforms to our expectations. The radial pattern
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follows from basic principles of optics (Section 1.1.2, Figure 1.1), and is often

assumed in literature on chromatic aberration correction [75].
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