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ABSTRACT

The central aim of this paper is to extend the main results of Morel [15] to fields of char-

acteristic 2. In particular we will show that the n-th graded component of the Milnor-Witt

K-theory, KMW
n (F ), is the pull-back of the following diagram:

KM
n (F )

��

In(F ) // In(F )/In+1(F )

with KM
n (F ) denoting the n-th graded component of the Milnor K-theory and In(F ) denoting

the n − th power of fundamental ideal in the Witt ring of symmetric bilinear forms. Our

results depend on a presentation of In(F ) due to Arason and Baeza [1] which in turn relies

on the characteristic 2 version of the Milnor conjecture proven by Kato [10].
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CHAPTER 1

Introduction

A classical result in commutative ring theory due to Serre [18] asserts that if R is a com-

mutative Noetherian ring of Krull dimension n and P is a projective R-module of rank m

then m > n implies there exists a projective R-module P0 such that

P ∼= P0 ⊕Rm−n, i.e. P splits off a free summand.

However, if rank(P ) = dim(R) this is not always the case. To tackle this problem, several

attempts have been made to construct an obstruction class similar to the Euler class in

topology. One construction by Barge and Morel [3,4] uses the Milnor K-Theory of a field F

denoted by

KM
∗ (F ) = TensZ(F

×)/(u⊗ (1− u)), u ∈ F×

and the n− th power of the fundamental ideal I(F ) in the Witt ring of symmetric bilinear

forms of F denoted by In(F ). Assuming X is a smooth integral scheme over a field F of

characteristic 6= 2, they considered the following complexes of groups due to Kato (1.1) and

Rost-Schmid (1.2):

Cr(X) : 0 −→ KM
r (F (X)) −→

⊕

x∈X(1)

KM
r−1(κ(x)))) −→

⊕

x∈X(2)

KM
r−2(κ(x)) −→ · · · (1.1)

Dr(X) : 0 −→ Ir(F (X)) −→
⊕

x∈X(1)

Ir−1(κ(x)) −→
⊕

x∈X(2)

Ir−2(κ(x)) −→ · · · (1.2)

with X(i) denoting the set of points in X of codimension i and κ(x) the residue field of

the local ring OX,x. The complexes Cr(X) and Dr(X) are considered as cohomological
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complexes with

⊕

x∈X(i)

KM
r−i(κ(x))))

resp.

⊕

x∈X(i)

Ir−i(κ(x))))

in degree i and the associated cohomology groups are denoted byH i(Cr(X)) respH i(Dr(X)).

There is a natural map of complexes

Ck(X) −→ Dk(X)/Dk+1(X)

such that one can consider the diagram:

Dk(X)

��

Ck(X) // Dk(X)/Dk+1(X)

(1.3)

with Gk(X) denoting the pull-back of (1.3). The k − th Chow-Witt group, or the oriented

Chow group is then defined as

C̃H
k
(X) := Hk(Gk(X))

where H i(Gk(X)) is the i− th cohomology group of Gk(X).

Assuming X is a smooth affine variety of dimension m, Barge and Morel associated

a class

e(P ) ∈ C̃H
m
(X)

to a projective module P of rank m over X, called the Euler class of P . They showed if

m = dim(X) = rank(P ) = 2 then

e(P ) = 0 ∈ C̃H
m
(X) ⇐⇒ P splits off a free summand.
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The theory developed by Barge and Morel has been worked out as well as extended

by Fasel in his thesis [7,8]. It has been successfully applied by several mathematicians to

splitting problems for projective modules. A particularly impressive application of this the-

ory, in our opinion, is the following theorem by Fasel, Rao and Swan [9]:

Theorem: Let R be a d-dimensional normal affine algebra over an algebraically closed

field k such that char(k) = 0. If d = 3, suppose moreover that R is smooth. Then every

stably free R-module P of rank d− 1 is free.

There is another approach to Euler classes of projective modules by Morel using the

A1-homotopy theory introduced by himself and Voevodsky [17]. In this theory, there arises

a Nisnevich sheaf, KMW
n called the sheaf of Milnor-Witt K-theory in weight n such that

Morel was able to associate a class

e(P ) ∈ Hn
Nis(X,KMW

n )

to every vector bundle P of rank n over a smooth n-dimensional affine scheme. He then

showed:

Theorem [16]: Assume n ≥ 4. If X = Spec(A) is a smooth affine scheme over F of

dimension ≤ n and ξ is an oriented algebraic vector bundle of rank n with an associated

Euler class e(ξ) ∈ Hn
Nis(X;KMW

n (F )) then

e(ξ) = 0 ∈ Hn
Nis(X;KMW

n (F )) ⇐⇒ ξ splits off trivial line bundle.
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In collaboration with Hopkins, Morel discovered a presentation of

KMW
∗ (F ) =

⊕

n∈Z

Γ(F,KMW
n )

and using this he showed the following result:

Morel’s Theorem: Assume F is a field of characteristic 6= 2 then KMW
n (F ) = Γ(F,KMW

n )

is the pull-back of the following diagram for every n ∈ N:

KM
n (F )

��

In(F ) // In(F )/In+1(F )

As a consequence, it follows that the i − th cohomology group of Gn(X) is equal to

H i
Nis(X;KMW

n ) whenever X is a smooth scheme over F .

The aim of this thesis is to extend Morel’s Theorem to fields of characteristic 2. As

Morels proof in characteristic 6= 2 relies on a presentation of In(F ) discovered by Arason

and Elman in [2] we similarly rely heavily on a presentation of In(F ) discovered by Arason

and Baeza in [1]. In particular, these results depend on the Milnor conjecture proven by D.

Orlov, V. Vishik, and, V. Voevodsky [20] in characteristic 6= 2 and Kato in characteristic 2.

In Chapter 1 we outline all of the important notions in the theory of symmetric

bilinear forms over fields of characteristic 2 which are necessary to the development of our

main result. In particular we will follow Arason and Baeza in showing that isometry implies

chain p-equivalence for anisotropic symmetric bilinear forms. We refer to the book [6] by

Elman, Karpenko, Merkurjev for a standard exposition of the theory of symmetric bilinear

forms in any characteristic.
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In Chapter 2, following Morel, we introduce the Witt K-theory of a field and develop

all the significant relations needed to provide a presentation of the Witt K-group KW
n (F )

using the work of Arason and Baeza in [1]. In particular we will prove both the commuta-

tivity of symbols and Witt relation in KW
2 (F ) which will be used to apply a trick due to

Suslin in [19] to show that

KW
2 (F ) = I2(F )

The last section of this chapter will be used to demonstrate

TensW (F )(I(F ))/(<< u >> ⊗W (F ) << 1− u >>) = ⊕n≥0K
W
n (F )

which has been shown by Morel in characteristic 6= 2 in [15].

In Chapter 3, again following Morel, we introduce both the Milnor-Witt K-theory

of a field and the Milnor K-ring KM (F ) due to Milnor in [13]. The main result uses the

ideas established in Chapter 2 to show that

KMW
−n (F ) = W (F ) for every n ≥ 1, KMW

0 (F ) = Ŵ (F )

and KMW
n (F ) is the pull-back of the diagram:

KM
n (F )

��

In(F ) // In(F )/In+1(F )

for every n ≥ 1. The last section of this chapter will be used to demonstrate

TensKMW

0 (F )(K
MW
1 (F ))/([u]MW ⊗KMW

0 (F ) [1− u]MW ) = ⊕n≥0K
MW
n (F )
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CHAPTER 2

Preliminaries

2.1 Symmetric Bilinear Forms

Definition 2.1.1: Let V be a finite dimensional vector space over the field F . A symmetric

bilinear form on V is a map b : V × V −→ F satisfying the following properties for all

v1, v2, w1, w2 ∈ V and c, d ∈ F :

• b(v, w) = b(w, v),

• b(cv1 + dv2, w1) = cb(v1, w1) + db(v2, w1).

We denote a finite dimensional vector space V equipped with a symmetric bilinear form b

by (V, b) or b when appropriate.

Definition 2.1.2: A bilinear form b is called non-degenerate if b(v, w) = 0 for every w ∈ V

implies v = 0.

All symmetric bilinear forms will be assumed to be non-degenerate. The following propo-

sition is a classical result in linear algebra which characterizes Definition 2.1.2 in several

different forms:

Proposition 2.1: The following are equivalent:

(1) (V, b) is non-degenerate,

(2) l: V −→ V ∨ given by v −→ lv : w −→ b(v, w) is an isomorphism,

(3) The associated matrix (b(ei, ej)) is invertible with e1, · · · , en a basis of V.
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Definition 2.1.3: An isometry is a linear isomorphism φ : V −→ W such that

b(v, w) = d(φ(v), φ(w))

for all v, w ∈ V . If b and d are isometric we write b ∼= d.

Let us consider the symmetric bilinear form defined by

b(x, y) = axy

with a ∈ F×. We denote b by < a >b and remark that by Definition 2.1.3,

< a >b
∼=< d >b

whenever d ∈ D(b)× with D(b) = { b(v, v) | v ∈ V − {0} }.

2.2 Hyperbolic and Metabolic Bilinear Forms

In this section we introduce two classes of symmetric bilinear forms which will play an im-

portant role in the development of the Witt ring.

To begin, we consider a finite dimensional vector space V and its associated dual

space V ∨ consisting of all linear functionals on V .

Definition 2.2.1: We define the hyperbolic form on V to be the map bH(V) such that

bH(V )(v1 + w∗
1, v2 + w∗

2) = w∗
2(v1) + w∗

1(v2)

with v1, v2 ∈ V and w∗
1, w

∗
2 ∈ V ∨.

It follows by construction that bH(V ) is a symmetric bilinear form. In particular we note

that char(F ) = 2 implies

bH(V )(v1 + w∗
1, v1 + w∗

1) = 2w∗
1(v1) = 0. (2.1)
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To define a metabolic form let us first consider (V, b) with v ∈ V −{0} such that b(v, v) = 0.

If such a vector exists we call it an isotropic vector and say b is isotropic, otherwise we say

b is anisotropic. In this sense we define a subspace W ⊂ V to be a totally isotropic subspace

of V if

b|W = 0.

It follows by Proposition 2.1 and dimension considerations that

dim(W ) + dim(W⊥) = dim(V ) (2.2)

with W⊥ = {v ∈ V | b(v, w) = 0 for all w ∈ W }. Therefore, a totally isotropic subspace

W is contained in W⊥ and by (2.2) we conclude that dim(W ) ≤ 1
2dim(V ).

Definition 2.2.2: We call (V, b) a metabolic space equipped with a metabolic form b if

there exists a totally isotropic subspace W ⊂ V such that dim(W ) = 1
2dim(V ).

It follows immediately by (2.1) that bH(V ) is a metabolic form so a natural question to

ask is whether or not hyperbolic forms and metabolic forms are equivalent since it is well-

known that this is indeed the case in characteristic 6= 2, see [6].

Assume dim(V ) = 2: If v ∈ V is an isotropic vector then Definition 2.1.2 implies that there

exists w ∈ V − F · v such that b(v, w) 6= 0, which after scaling is equivalent to b(v, w) = 1.

Therefore (V, b) is a 2-dimensional space with basis {v, w} and

b(v, v) = 0, b(v, w) = 1, b(w,w) = x.

If x 6= 0 then we let {w, xv + w} be another basis for (V, b) such that

b(w,w) = x, b(w, xv + w) = 0, b(xv + w, xv + w) = x.
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We denote this b by < x, x >b. It follows by (2.1) that b ∼= bH(F ) implies every w ∈ V is an

isotropic vector in b ∼=< x, x >b which is clearly a contradiction. Therefore,

< x, x >b � bH(F ).

If x = 0 then we have a linear isomorphism from V −→ F ⊕ F∨ defined by

w 7→ 1, xv + w 7→ 1∗

with 1∗ denoting the standard basis vector in F∨. This implies

b ∼= bH(F ). (2.3)

Therefore, if b is a 2-dimensional metabolic form then

b ∼= bH(F ) or b ∼=< x, x >b

with x ∈ F×. In particular if b(v, v) = 0 for every v ∈ V then b is a hyperbolic form by (2.3).

2.3 Orthogonal sum and Kronecker product

In this section we construct the orthogonal sum and tensor product of symmetric bilinear

forms.

Let (V, b1) and (W, b2) be vector spaces with associated symmetric bilinear forms

over F . We define the orthogonal sum of b1 and b2, denoted by b1 ⊥ b2, to be the map

b1 ⊥ b2 : V ⊕W × V ⊕W → F

defined by

(b1 ⊥ b2)((x1, x2), (y1, y2) = b1(x1, y1) + b2(x2, y2)
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and b1 ⊥ b2 is clearly a symmetric bilinear form such that (b1 ⊥ b2)(V,W ) = 0.

Similarily we define the Kronecker product or tensor product of b1 and b2, denoted by b1⊗b2,

to be the map

b1 ⊗ b2 : V ⊗W × V ⊗W → F

defined by

(b1 ⊗ b2)(v1 ⊗ v2, w1 ⊗ w2) = b1(v1, w1) · b2(v2, w2) for every vi ∈ V, wi ∈ W.

2.4 Witt ring

In this section we introduce the Witt Cancellation Theorem and define the Witt ring of

symmetric bilinear forms.

The following two results are well-known and can be found in [6]:

Theorem 2.4.1 (Bilinear Witt Decomposition Theorem): If b is a non-degenerate

symmetric bilinear form on V then there exists subspaces U,W ⊂ V such that

b = b|U ⊥ b|W

with b|U anisotropic and b|W metabolic. Moreover, b|U is unique up to isometry.

Theorem 2.4.2 (Witt Cancellation Theorem): Let b0, b1 and b2 be nondegenerate

symmetric bilinear forms over F . If b1 and b2 are anisotropic then

b1 ⊥ b0 ∼= b2 ⊥ b0

implies b1 ∼= b2.

To define the Witt ring of symmetric bilinear forms we first remark that the isometry

classes of nondegenerate symmetric bilinear forms over F , denoted by M(F ), form a semi-
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ring under orthogonal sum and tensor product. The Witt-Grothendieck group of F , denoted

by Ŵ (F ) is defined by a relation ∼ on M(F )×M(F ) such that

(b1, b2) ∼ (d1, d2) (2.4)

if and only if there exists λ ∈ M(F ) such that

b1 ⊥ d2 ⊥ λ ∼= d1 ⊥ b2 ⊥ λ (2.5)

with b1, b2, d1, d2 ∈ M(F ).

To avoid confusion we denote the equivalence class of (b1, b2) in Ŵ (F ) by b1 − b2. It turns

out Ŵ (F ) has the structure of a ring where we define addition in Ŵ (F ) by:

(b1 − b2) + (d1 − d2) = (b1 ⊥ d1)− (b2 ⊥ d2)

and multiplication in Ŵ (F ) by:

(b1 − b2)(d1 − d2) = ((b1 ⊗ d1) ⊥ (b2 ⊗ d2))− ((b1 ⊗ d2) ⊥ (b2 ⊗ d1)).

This is clearly well-defined, associative and commutative.

It follows by (2.4) and (2.5) that

b1 − b2 = d1 − d2 ∈ Ŵ (F ) (2.6)

if and only if there exists a nondegenerate symmetric bilinear form λ over F such that

b1 ⊥ d2 ⊥ λ ∼= d1 ⊥ b2 ⊥ λ. (2.7)

To construct the Witt ring of F we need to quotient out the ideal (H) consisting of all

hyperbolic forms over F in Ŵ (F ).

Definition 2.4: The quotient W (F ) = Ŵ (F )/(H) is called the Witt ring of nondegenerate

symmetric bilinear forms over F.
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In particular, the structure of the Witt ring implies < x, x >b= 0 inW (F ) since by definition

this is equivalent to showing that

< x, x >b ⊥ < x >b
∼= bH(F ) ⊥< x >b . (2.8)

Following [6] we consider the basis {u, v, w} of b =< x, x >b⊥< x >b such that

b(u, u) = x, b(v, v) = x, b(w,w) = x.

If we apply a change-of-basis to {u, v, w} such that

{u+ w,
1

x
v +

1

x
w, u+ v + w}

forms a new basis we can conclude (2.8).

The following classical result will play an important role in Chapter 3 and can be found in

[6]:

Theorem 2.4.3: The Witt ring W (F ) is generated by nondegenerate 1-dimensional sym-

metric bilinear forms < u >b with u ∈ F× subject to the following defining relations:

(1) < uv2 >b − < u >b= 0

(2) 2 < 1 >b = 0

(3) < u >b + < v >b + < u+ v >b + < uv(u+ v) >b = 0 if u+ v 6= 0

with u, v ∈ F×.

2.5 Fundamental Ideal and I∗(F )

In this section we will introduce the notion of the fundamental ideal of symmetric bilinear

forms and give a presentation for In(F ) for every n > 0 due to Arason and Baeza [1].
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In Section 2.4 we denoted every element in Ŵ (F ) by the formal expression b1 − b2

where b1, b2 are nondegenerate symmetric bilinear forms over F . Let us consider the map

dim : Ŵ (F ) −→ Z

defined by

dim(b1 − b2) = dim(b1)− dim(b2).

Assume there exists d1, d2 ∈ M(F ) such that

b1 − b2 = d1 − d2.

Then (2.6) and (2.7) imply there exists b ∈ M(F ) such that

b1 ⊥ d2 ⊥ b ∼= d1 ⊥ b2 ⊥ b

and dim(b1 ⊥ d2 ⊥ b) = dim(d1 ⊥ b2 ⊥ b) implies

dim(b1 − b2) = dim(d1 − d2)

and we conclude that dim is well-defined.

Let Î(F ) = ker(dim : Ŵ (F ) −→ Z). It follows that

dim(< u >b − < v >b) = dim(< u >b)− dim(< v >b) = 0

implies < u >b − < v >b ∈ Î(F ). Moreover,

< u >b − < v >b= (< 1 >b − < v >b)− (< 1 >b − < u >b) ∈ Ŵ (F )

which implies < 1 >b − < u >b with u ∈ F× generate Î(F ) as an abelian group. These

results can be carried over to W (F ) by the following observation:

Î(F ) ∩ (H) = 0 (2.9)
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which follows immediately by definition given every element in (H) is of the form

(b1 − b2)· bH(F ) (2.10)

with b1, b2 ∈ M(F ). The multiplication operation in Ŵ (F ) implies (2.10) is equivalent to

(b1 ⊗ bH(F ))− (b2 ⊗ bH(F ))

which by ([6], Lemma 2.1 ) is equal to

(dim(b1)· bH(F ))− (dim(b2)· bH(F ))

with dim(b1)· bH(F ) denoting bH(F ) ⊥ · · · ⊥ bH(F )︸ ︷︷ ︸
dim(b1)

. Since (dim(b1)· bH(F )) − (dim(b1)· bH(F ))

is the additive identity we conclude

dim((b1 − b2)⊗ bH) = 2dim(b1 − b2) 6= 0

whenever dim(b1) 6= dim(b2) or (b1 − b2)⊗ bH is non-trivial

Definition 2.5.1: The fundamental ideal over F denoted by I(F ) is the image of Î(F )

under the projection map Ŵ (F ) −→ W (F ).

We then have that (2.9) implies Î(F ) ∼= I(F ) which under the projection Ŵ (F ) −→ W (F )

maps

< 1 >b − < u >b 7→ < 1, u >b .

Moreover the remarks preceeding (2.9) imply that I(F ) is generated by the Pfister forms,

< 1, u >b := << u >>b with u ∈ F×. Consider the map d : Ŵ (F )
dim
−→ Z −→ Z/2 then

d(H) = 0 implies by the universal property of quotient map that

dim : W (F ) −→ Z/2

is well-defined. This allows us to formulate the following proposition which is a direct

consequence of Theorem 2.4.1, Definition 2.5.1 and

< x, x >b ⊥ < x >b
∼= bH(F ) ⊥< x >b .

14



Proposition 2.5: The commutative diagram

Ŵ (F )
dim

//

��

Z

��

W (F )
dim

// Z/2

is a Cartesian square.

We define In(F ) to be the n-th power of the fundamental ideal I(F ) over F and note that

In(F ) is generated by

<< u1 >>b · · · << un >>b

which we call the n-fold Pfister form and denote by

<< u1, · · · , un >>b

with ui ∈ F×. The main result of this section is the following:

Theorem 2.5: For every n ≥ 1 we define In(F ) to be the abelian group Z[(F×)n] modulo

the subgroup generated by the following relations:

(1) (u1, · · · , un) where (u1, · · · , un) ∈ (F×)n such that << u1, · · · , un >> = 0 in W (F ).

(2) (a, u2, · · · , un) + (b, u2, · · · , un) − (a + b, u2, · · · , un) − (ab(a + b), u2, · · · , un) with

(a, b, u2, · · · , un) ∈ (F×)n+1 and a+ b 6= 0.

(3) (ab, c, u3, · · · , un) + (a, b, u3, · · · , un) − (ac, b, u3, · · · , un) − (a, c, u3, · · · , un) with

(a, b, c, u3, · · · , un) ∈ (F×)n+1 and n ≥ 2.

(4) (u1, · · · , un) − (v1, · · · , vn) with (u1, · · · , un, v1, · · · , vn) ∈ (F×)2n whenever

<< u1, · · · , un >>∼=<< v1, · · · , vn >>.

Then In(F ) ∼= In(F ) with (u1, · · · , un) 7→ << u1, · · · , un >>b for every n ≥ 1.

Proof: The proof is due to Aarson and Baeza in [1] and uses the characteristic 2 version

of the Milnor conjecture which was proven by Kato in [10].
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Definition 2.5.2: Let I∗(F ) be the Z-graded W (F )-algebra ⊕n∈ZI
n(F ) with In(F ) =

W (F ) if n ≤ 0 and In(F ) is the n-th power of the fundamental ideal I(F ) over F whenever

n > 0.

2.6 Chain p-equivalence

In this section we will define the notion of chain p-equivalence and following Aarson and

Baeza in [1] we will provide a theorem which relates chain p-equivalence to isometry.

Definition 2.6.1: Two Pfister forms << u1, · · · , un >>b and << v1, · · · , vn >>b with

ui, vi ∈ F× are said to be simply p-equivalent, denoted by

<< v1, · · · , vn >>b∼<< v1, · · · , vn >>b

if there exists i, j ∈ [1, n] such that << ui, uj >>b
∼= << vi, vj >>b and uk = vk whenever

k 6= i, j.

The definition of chain p-equivalence follows naturally:

Definition 2.6.2: Two Pfister forms << u1, · · · , un >>b and << v1, · · · , vn >>b with

ui, vi ∈ F× are said to be chain p-equivalent, denoted by

<< u1, · · · , un >>b≈<< v1, · · · , vn >>b

if there exists << w1,i, · · · , wn,i >>b with wj,i ∈ F× such that

<< u1, · · · , un >>b=<< w1,1, · · · , wn,1 >>b

<< v1, · · · , vn >>b=<< w1,m, · · · , wn,m >>b

16



and << w1,i, · · · , wn,i >>b ∼ << w1,i+1, · · · , wn,i+1 >>b for every i ∈ [1, · · · ,m− 1].

Consider

<< u1, · · · , un >>b=< 1 >b⊥< v1, · · · , v2n−1 >b

with vi ∈ F×, we say < v1, · · · , v2n−1 >b is the pure subform of << u1, · · · , un >>b and

denote it by << u1, · · · , un >>◦
b .

Lemma 2.6.1: Let << u1, · · · , un >>b with ui ∈ F× such that

v ∈ D(<< u1, · · · , un >>◦
b)

×

Then there exists v2, · · · , vn ∈ F× such that << u1, · · · , un >>b≈<< v, v2, · · · , vn >>b .

Proof: We proceed by induction on n:

Let n = 1 then we have << u1 >>b=< 1 >b⊥< u1 >b and

v ∈ D(< u1 >b)
×

implies v = u1x
2 with x ∈ F×. Then,

<< u1 >>b=< 1 >b⊥< u1 >b
∼=< 1 >b⊥< u1x

2 >b
∼=< 1 >b⊥< v >b

with < 1 >b⊥< v1 >b=<< v >>b.

Assume n > 1, v ∈ D(<< u1, · · · , un >>◦
b)

× is equivalent to

v ∈ D(<< u1, · · · , un−1 >>◦
b⊥ un << u1, · · · , un−1 >>b)

×

which implies v = x+ uny with x ∈ D(<< u1, · · · , un−1 >>◦
b) and

y ∈ D(<< u1, · · · , un−1 >>b).

If y = 0 then v = x and by induction we have that

<< u1, · · · , un−1 >>b≈<< v, v2, · · · , vn−1 >>b
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with v2, · · · , vn−1 ∈ F× which implies

<< u1, · · · , un >>b≈<< v, v2, · · · , vn−1, un >>b .

To proceed with our proof we will first need to show the following claim:

Claim: Let << u1, · · · , un >>b with ui ∈ F× and w ∈ D(<< u1, · · · , un−1 >>b)
× then

<< u1, · · · , un−1, un >>b≈<< u1, · · · , un−1, wun >>b.

Proof of Claim:

Let w ∈ D(<< u1, · · · , un−1 >>b)
× = D(< 1 >b⊥<< u1, · · · , un−1 >>◦

b)
× which implies

w = x2 + y with x ∈ F and y ∈ D(<< u1, · · · , un−1 >>◦
b).

If y = 0 then w = x2 and << unw >>b
∼=<< un >>b.

If y 6= 0 then we proceed by induction assumption of Lemma 2.6.1 which implies

<< u1, · · · , un−1 >>b≈<< y, y2, · · · , yn−1 >>b (2.11)

with y2, · · · , yn−1 ∈ F×. Therefore

<< u1, · · · , un >>b≈<< y, y2, · · · , yn−1, un >>b .

However Lemma A.1 (1) implies

<< y, un >>b
∼=<< y, un(x

2 + y) >>b=<< y, unw >>b .

Hence,

<< u1, · · · , un−1, un >>b≈<< y, y2, · · · , yn−1, unw >>b

and by (2.11) this implies

<< u1, · · · , un−1, un >>b≈<< u1, · · · , un−1, unw >>b .

�
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Resuming where we left off, assume that y 6= 0. It follows by Claim that

y ∈ D(<< u1, · · · , un−1 >>b)
×

implies

<< u1, · · · , un−1, un >>b≈<< u1, · · · , un−1, uny >>b . (2.12)

If x = 0 this gives

<< u1, · · · , un−1, un >>b≈<< v, u1, · · · , un−1 >>b .

Assume x 6= 0, then x ∈ D(<< u1, · · · , un−1 >>◦
b)

× implies by induction that

<< u1, · · · , un−1 >>b≈<< x, x2, · · · , xn−1 >>

with x2, · · · , xn−1 ∈ F×. Therefore,

<< u1, · · · , un−1, uny >>b≈<< x, x2, · · · , xn−1, uny >>b

which along with a result by Lemma A.1 (2):

<< x, uny >>b
∼=<< x+ uny, xuny >>b=<< v, xuny >>b

and (2.12) implies

<< u1, · · · , un−1, un >>b≈<< v, x2, · · · , xn−1, xuny >>b .

�

Lemma 2.6.2: Consider << u1, · · · , un >>b with ui ∈ F×. Then

w ∈ D(<< u1, · · · , un−1 >>b)
×

implies << u1, · · · , un−1, un >>b≈<< u1, · · · , un−1, wun >>b.

Proof: This was shown in the proof of Lemma 2.6.1.
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Lemma 2.6.3: Consider << u1, · · · , un >>b, << v1, · · · , vm >>b with ui, vj ∈ F×. Then

w ∈ D(<< u1, · · · , un >>b · << v1, · · · , vm >>◦
b)

×

implies there exists w2, · · · , wm ∈ F× such that

<< u1, · · · , un >>b · << v1, · · · , vm >>b

is chain p-equivalent to

<< u1, · · · , un >>b · << w,w2, · · · , wm >>b .

Proof: We proceed by induction on m.

If m = 1 then w ∈ D(<< u1, · · · , un >>b · < v1 >b)
× implies w = xv1 with

x ∈ D(<< u1, · · · , un >>b)
×.

However by Lemma 2.6.2 this implies

<< u1, · · · , un, v1 >>b≈<< u1, · · · , un, xv1 >>b=<< u1, · · · , un, w >>b .

Assume m > 1 then w ∈ D(<< u1, · · · , un >>b · << v1, · · · , vm >>◦
b)

× =

D
(
<< u1, · · · , un >>b · (<< v1, · · · , vm−1 >>◦

b ⊥ vm << v1, · · · , vm−1 >>b)
)×

implies

w = e1 + vmd1 with

e1 ∈ D
(
<< u1, · · · , un >>b ·(<< v1, · · · , vm−1 >>◦

b)
)

and

d1 ∈ D
(
<< u1, · · · , un >>b ·(<< v1, · · · , vm−1 >>b)

)
.

If e1 = 0 then w = vmd1 which by Lemma 2.6.2 and d1 ∈ F× implies

<< u1, · · · , un, v1, · · · , vm−1 >>b · << vm >>b
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is chain p-equivalent to

<< u1, · · · , un, v1, · · · , vm−1 >>b · << vmd1 >>b

with w = vmd1.

Similarily, if d1 = 0 then w = e1 and by induction assumption

<< u1, · · · , un >>b · << v1, · · · , vm−1 >>b

is chain p-equivalent to

<< u1, · · · , un >>b · << e1, w2, · · · , wm−1 >>b

which implies

<< u1, · · · , un >>b · << v1, · · · , vm−1, vm >>b

is chain p-equivalent to

<< u1, · · · , un >>b · << e1, w2, · · · , wm−1, vm >>b .

If e1, d1 6= 0 then the above considerations show

<< u1, · · · , un >>b · << v1, · · · , vm >>b (2.13)

is chain p-equivalent to

<< u1, · · · , un >>b · << e1, e2, · · · , em−1 >>b · << vmd1 >>b (2.14)

with e2, · · · , em−1 ∈ F×. It follows by Lemma A.1 (2) that

<< e1, vmd1 >>b
∼=<< e1 + vmd1, e1vmd1 >>b

which by (2.13) and (2.14) implies

<< u1, · · · , un >>b · << v1, · · · , vm >>b
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is chain p-equivalent to

<< u1, · · · , un >>b · << w, y2, · · · , ym >>b

with w = e1 + vmd1 and y2, · · · , ym ∈ F×.

�

Theorem 2.6: Consider << u1, · · · , un >>b and << v1, · · · , vn >>b with ui, vi ∈ F× :

(1) If << u1, · · · , un >>b is isotropic then

<< u1, · · · , un >>b≈<< 1, w2, · · · , wn >>b

with wi ∈ F×.

(2) If << u1, · · · , un >>b and << v1, · · · , vn >>b are anisotropic then

<< u1, · · · , un >>b
∼=<< v1, · · · , vn >>b

if and only if

<< u1, · · · , un >>b≈<< v1, · · · , vn >>b .

Proof:

(1) It suffices by Lemma 2.6.1 to show 1 ∈ D(<< u1, · · · , un >>◦
b))

×. We proceed by

induction on n:

If n = 1 then << u1 >>b is isotropic implies u1 = x2 with x ∈ F× and

1 ∈ D(< x2 >b)
×.

Assume n > 1 and consider << u1, · · · , un >>b which can be written as

<< u1, · · · , un−1 >>b⊥ un << u1, · · · , un−1 >>b .

We consider two cases: << u1, · · · , un−1 >>b is isotropic and << u1, · · · , un−1 >>b is

anisotropic.
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If << u1, · · · , un−1 >>b is isotropic then by induction we are done.

If << u1, · · · , un−1 >>b is anisotropic we have that << u1, · · · , un >>b is isotropic implies

there exists c1, c2 ∈ D(<< u1, · · · , un−1 >>b) such that

c1 = unc2.

To apply this we first observe that

<< u1, · · · , un >>◦
b

is equal to

<< u1, · · · , un−1 >>◦
b⊥ un << u1, · · · , un−1 >>b

and Lemma A.2 implies

ci << u1, · · · , un−1 >>b
∼=<< u1, · · · , un−1 >>b (2.15)

with i = 1, 2. It follows by the above that

<< u1, · · · , un >>b

is isometric to

<< u1, · · · , un−1 >>◦
b⊥ c1 << u1, · · · , un−1 >>b .

However by (2.15) this is isometric to

<< u1, · · · , un−1 >>◦
b⊥<< u1, · · · , un−1 >>b .

Therefore,

1 ∈ D(<< u1, · · · , un−1 >>◦
b⊥<< u1, · · · , un−1 >>b)

×

implies

1 ∈ D(<< u1, · · · , un >>◦
b)

×.
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(2) We begin by first showing the following claim:

Claim: Consider the anisotropic n-fold Pfister forms<< u1, · · · , un >>b and<< v1, · · · , vn >>b

with ui, vj ∈ F×. Assume << u1, · · · , un >>b
∼=<< v1, · · · , vn >>b. Let 1 ≤ m ≤ n then

there exists wm+1, · · · , wm ∈ F× such that

<< u1, · · · , un >>b≈<< v1, · · · , vm, wm+1, · · · , wn >>b

Proof of Claim: We proceed by induction on m:

If m = 1 then by Lemma 2.6.1,

v1 ∈ D(<< u1, · · · , un >>◦
b)

× = D(<< v1, · · · , vn >>◦
b)

×

implies there exists w2, · · · , wn ∈ F× such that

<< u1, · · · , un >>b≈<< v1, w2 · · · , wn >>b .

Assume m > 1 then by induction assumption on m− 1, there exists wm, · · · , wn ∈ F× such

that

<< u1, · · · , un >>b≈<< v1, · · · , vm−1, wm, · · · , wn >>b . (2.16)

It follows by our initial assumption that we can apply Theorem 2.4.2 to

<< v1, · · · , vn >>b
∼=<< v1, · · · , vm−1, wm, · · · , wn >>b

such that

<< vm, · · · , vn >>b
∼=<< wm, · · · , wn >>b .

Therefore,

<< v1, · · · , vm−1 >>b · << wm, · · · , wn >>◦
b
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is isometric to

<< v1, · · · , vm−1 >>b · << vm, · · · , vn >>◦
b

which implies

vm ∈ D(<< v1, · · · , vm−1 >>b · << wm, · · · , wn >>◦
b)

×

which by (2.16) and Lemma 2.6.3 implies

<< u1, · · · , un >>b≈<< v1, · · · , vm−1 >>b · << vm, bm+1, · · · , bn >>b

with bm+1, · · · , bn ∈ F×.

�

Applying Claim to the case m = n implies

<< u1, · · · , un >>b≈<< v1, · · · , vn >>b .

�
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CHAPTER 3

Witt K-Theory

The aim of this chapter is to introduce the Witt K-Theory of a field F, due to Morel in [15]

and establish some elementary facts and relations which will be of great importance in the

next chapter.

3.1 Definition and Facts

Definition 3.1.1 The Witt K-ring of F is the free and graded Z-algebra KW
∗ (F ) generated

by the symbols [u] (u ∈ F×) of degree 1 and one symbol η of degree −1 subject to the

following relations:

(W1)•: For each a ∈ F× − {1} : [a][1− a] = 0,

(W2)•: For each (a, b) ∈ (F×)2 : [ab] = [a] + [b]− η[a][b],

(W3)•: For each u ∈ F× : [u]η = η[u],

(W4)•: η[−1] = 2.

Theorem 3.1: In char(F ) = 2 we have that (W4)• is equivalent to:

(W4) : η[1] = 0 = 2

Moreover, KW
∗ (F ) is a Z/2-graded algebra.

Proof: Indeed we have by (W2)•

[1] = [(−1)(−1)] = [−1] + [−1]− η[−1][−1]

which by (W4)• implies

[1] = [−1] + [−1]− 2[−1] = 0.
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Hence, [−1] = [1] = 0 and

2 = η[−1] = η[1] = 0.

Therefore, (W4)• =⇒ (W4) and (W4) =⇒ (W4)• follows trivially.

�

The following reformulation of Definition 3.1.1 will be used henceforth:

Definition 3.1.2: The Witt K-ring of F in characteristic 2 is the free and graded Z/2-

algebra KW
∗ (F ) generated by the symbols [u] (u ∈ F×) of degree 1 and one symbol η of

degree −1 subject to the following relations:

W1: For each a ∈ F× − {1} : [a][1 + a] = 0,

W2: For each (a, b) ∈ (F×)2 : [ab] = [a] + [b] + η[a][b],

W3: For each u ∈ F× : [u]η = η[u],

W4: η[1] = 0 = 2.

Following Morel, for any u ∈ F× we define

< u >= 1− η[u] = 1 + η[u] (3.1)

with < u >∈ KW
0 (F ). The following elementary relations follow as a direct consequence of

Definition 3.1.2.

Proposition 3.1: Let (a, b) ∈ (F×)2. Then the following relations hold in KW
∗ (F ):

(1) [ab] = [a]+ < a > [b],

(2) < ab >=< a >< b > ,

(3) < −1 >= 1 and [1] = 0 ,

(4) < a > is a unit in KW
0 (F ) and < a >−1 = < a−1 >,

(5) [a
b
] = [a]− < a

b
> [b],
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(6) < a > [b] = [b] < a >,

(7) η[a][b] = η[b][a].

Proof:

(1) [ab] = [a] + [b] + η[a][b] = [a] + (1 + η[a])[b] = [a]+ < a > [b].

(2) < ab > = 1 + η[ab] which by (W2) implies

1 + η([a] + [b] + η[a][b]) = 1 + η[a] + η[b] + η[a]η[b].

Applying the definition < u >= 1 + η[u] to the above:

1 + (1+ < a >) + (1+ < b >) + (1+ < a >)(1+ < b >) =< a >< b > .

(3)

< 1 >=< −1 >= 1 + η[−1] = 1

by (W4)• and [1] = 0 follows by the proof of Lemma 3.1.

(4) < a >< a−1 >=< (a)(a−1) >=< 1 >= 1 by (2) and (3).

(5) The following set of equalities follows directly by (1) and (3):

0 = [1] = [b−1b] = [b−1]+ < b−1 > [b]

which implies

[b−1] =< b−1 > [b]

and we conclude

[
a

b
] = [ab−1] = [a]+ < a > [b−1] = [a]+ < ab−1 > [b].

(6) (W2) implies

[ab] = [a] + [b] + η[a][b]
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and

[ba] = [b] + [a] + η[b][a].

Therefore if [ab] = [ba] then η[a][b] = η[b][a] and

< a > [b] = (1 + η[a])[b] = [b] + η[a][b]

which by (W3) implies

[b] + η[b][a] = [b](1 + η[a]) = [b] < a > .

(7) This follows directly by observing that

[ba] = [ab]

and using (W2).

�

We can now show following non-trivial set of relations which will be used in the next section

extensively:

Corollary 3.1: Let (a, b) ∈ (F×)2. Then the following relations hold in KW
∗ (F ):

(1) [a][−a] = [a][a] = 0,

(2) [a2] = 0, [ab2] = [a] and < b2 >= 1.

Proof:

(1) Assume without loss of generality that a ∈ F× − {1} then −a = 1−a
1−a−1 implies

[a][−a] = [a][
1− a

1− a−1
]

which by Proposition 3.1 (5) implies

[a][
1− a

1− a−1
] = [a]([1− a]+ < −a > [1− a−1]).
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However by (W1)• we know that [a][1− a] = 0 hence

[a]([1− a]+ < −a > [1− a−1]) = [a] < −a > [1− a−1].

However Proposition 3.1 (1), (3) implies

0 = [1] = [aa−1] = [a]+ < a > [a−1]

which gives us

[a] =< a > [a−1]. (3.2)

Therefore,

[a][−a] = [a] < −a > [1− a−1]

= (< a > [a−1]) < −a > [1− a−1] by (3.2)

= < a >< −a > [a−1][1− a−1] by Proposition 3.1 (6)

= 0 by (W1).

(3.3)

(2) (W2) implies

[a2] = [a] + [a] + η[a][a]

which by (1) implies

[a2] = 2[a] + η[a][−1] = 0.

Similarily, (W2) and [b2] = 0 imply

[ab2] = [a] + [b2] + η[a][b2] = [a].

Lastly,

< b2 >= 1 + η[b2] = 1

by [b2] = 0.
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3.2 Witt relation and Commutativity of Symbols

In this section we will establish some deeper results in the Witt K-ring KW
∗ (F ).

Proposition 3.2 (Witt relation): Let (a, b) ∈ (F×)2 such that a+ b 6= 0. Then

[a][b] = [a+ b][ab(a+ b)]

in KW
2 (F ).

Proof: Let us consider the right-hand side:

[a+ b][ab(a+ b)] = [a+ b]([ab] + [a+ b]− η[ab][a+ b]).

Proposition 3.1 (7) implies

[a+ b][ab(a+ b)] = [a+ b][ab] + [a+ b][a+ b]− η[ab][a+ b][a+ b]

which by Corollary 3.1 implies

[a+ b][ab(a+ b)] = [a+ b][ab].

If we rewrite (a+ b) as a(1 +
b

a
) and use the equality [ab] = [ab(a−2)] by Corollary 3.1 (3)

we have

[a+ b][ab] = [a(1 +
b

a
)][

b

a
].
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Letting [a(1 +
b

a
)] = [a]+ < a > [1 +

b

a
] by Proposition 3.1 (1) allows us to conclude:

[a(1 +
b

a
)][

b

a
] = ([a]+ < a > [1 +

b

a
])[

b

a
]

= [a][
b

a
]+ < a > [1 +

b

a
][
b

a
]

= [a][
b

a
] by (W1)

= [a][ab] by Corollary 3.1 (3)

= [a]([a] + [b] + η[a][b]) by (W2)

= [a][b] by Corollary 3.1 (1) and (W3)

(3.4)

and

[a+ b][ab(a+ b)] = [a][b].

�

The Witt relation will be an important tool in allowing us to determine the structure of

KW
2 (F ) in the next section. We conclude with the following corollary which implies the

commutativity of symbols in KW
∗ (F ).

Corollary 3.2: Let (a, b) ∈ (F×)2 then [a][b] = [b][a] in KW
2 (F ).

Proof: This is a direct consequence of Proposition 3.2 :

[a][b] = [a+ b][ab(a+ b)] = [b+ a][ba(b+ a)] = [b][a].

�

3.3 Generators and Relations in KW
n for n ∈ Z

In this section we will establish some facts regarding KW
n (F ) which will be of great impor-

tance in the next chapter.
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Proposition 3.3: The following hold:

(1) For n ≥ 1, KW
n (F ) is generated as an abelian group by the product of symbols

[u1] · . . . · [un]

with ui ∈ F×.

(2) For n ≤ 0, KW
n (F ) is generated as an abelian group by

ηn < u >

with u ∈ F×.

Proof: Following the construction of KW
∗ (F ) we have that any element in KW

n (F ) is

of the form ηm[u1] · · · [uk] with k − m = n. The result follows inductively by applying

η[a][b] = [a] + [b]− [ab] to ηm[u1] · · · [uk], reducing it to (1) if k > m and (2) if k ≤ m.

�

Corollary 3.3.1: Let a, b ∈ (F×) then the following relations hold in KW
−m(F ) for m ≥ 0:

(1) ηm < ab2 > +ηm < a >= 0,

(2) 2ηm < 1 >= 0,

(3) ηm < a > +ηm < b > +ηm < a+ b > +ηm < ab(a+ b) >= 0 if a+ b 6= 0.

Proof: It is enough to consider the case m = 0.

(1) This follows immediately by Proposition 3.1 (2) and Corollary 3.1 (2).

(2) This follows by Proposition 3.1 (3) .

(3) Let us consider
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< a > + < b > = (1 + η[a]) + (1 + η[b])

= η([a] + [b]) by 2 = 0 in KW
∗ (F )

= η([ab] + η[a][b]) by (W3)

= η([ab(a+ b)2] + η[a][b]) by Corollary 3.1

= η([ab(a+ b)2] + η[a+ b][ab(a+ b)]) by Proposition 3.2

= η([a+ b] + [ab(a+ b)]) by (W3)

= (1 + η[a+ b]) + (1 + η[ab(a+ b)]) by 2 = 0 in KW
∗ (F )

= < a+ b > + < ab(a+ b) > .

(3.5)

Therefore,

< a > + < b >=< a+ b > + < ab(a+ b) >

and adding < a+ b > + < ab(a+ b) > to both sides implies

< a > + < b > + < a+ b > + < ab(a+ b) >= 0.

�

Corollary 3.3.2: Let a, b ∈ (F×) then the following relations hold in KW
1 (F ):

(1) [1] = 0,

(2) [ab2] + [a] = 0,

(3) [a] + [b] + [a+ b] + [ab(a+ b)] = 0.

Proof:

(1) This was established in Proposition 3.1 (3).
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(2) Similarly this follows by Corollary 3.1 (2).

(3) The Witt relation implies

[a][b] = [a+ b][ab(a+ b)].

Applying (W2) to [ab] = [ab(a+ b)2] (which follows by (2)) implies

[a] + [b] + η[a][b] = [a+ b] + [ab(a+ b)] + η[a+ b][ab(a+ b)].

By Proposition 3.2 we can cancel common terms such that

[a] + [b] + [a+ b] + [ab(a+ b)] = 0.

�

Corollary 3.3.3: Let a, b, c, d ∈ F× then the following relations hold in KW
2 (F ):

(1) [a][b] = 0 whenever << a, b >>b= 0 in I2(F ),

(2) [ab][c] + [a][b] + [ac][b] + [a][c] = 0,

(3) [a][b] + [c][d] = 0 with << a, b >>b
∼=<< c, d >>b.

Proof: The idea for this proof is due to Suslin [19].

Consider the map δ : I(F ) −→ KW
2 × (F×/(F×)2) defined by

<< u >>b 7−→ (0, u)

where addition in KW
2 × (F×/(F×)2) is defined by

(x, r) + (y, s) = (x+ y + [r][s], rs).

It is easy to see that KW
2 × (F×/(F×)2) is an abelian group by Corollary 3.2. The additive

identity is

(0, 1)
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and the additive inverse of (x, r) is given by

(x, r).

It suffices to show that δ is well-defined by checking the relations of I(F ) in Theorem 2.5 :

(1) δ(<< 1 >>b) = (0, 1).

(2) δ(<< uv2 >>b + << u >>b) = (0, uv2) + (0, u) = (0, u)+(0, u) = (0, 1) by Corollary

3.1.

(3) δ(<< u >>b + << v >>b + << u+ v >>b + << uv(u+ v) >>b)

is equal to

([u][v], uv) + ([u+ v][uv(u+ v)], (u+ v)(uv(u+ v)))

which by Witt relation and Corollary 3.1 is equal to

([u][v], uv) + ([u][v], uv) = 0.

Therefore we have shown that δ is well-defined.

Claim: δ(I2(F )) ⊂ KW
2 (F )× {1}.

Proof of Claim: This follows from the following fact:

<< u, v >>b=<< u >>b + << v >>b + << uv >>b .

Indeed,

δ(<< u, v >>b) = (0, u) + (0, v) + (0, uv)

which is precisely

([u][v], uv) + (0, uv).

However ([u][v], uv) = ([u][v] + [uv][1], uv) = (0, uv) + ([u][v], 1) which implies

([u][v], uv) + (0, uv) = ([u][v], 1)
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and δ(I2(F )) ⊂ KW
2 (F )× {1}. If we consider the projection

KW
2 (F )× {1} −→ KW

2 (F )

and apply Theorem 2.5 we are done.

�

Corollary 3.3.4: Let ui, vi ∈ F× then the following relations hold in KW
n (F ) whenever

n ≥ 3:

(1) [u1] · · · [un] = 0 whenever << u1, · · · , un >>b= 0 in In(F ),

(2) [u1] · · · [un]− [v1] · · · [vn] = 0 whenever << u1, · · · , un >>b
∼=<< v1, · · · , vn >>b .

Proof: We will begin by first showing the following:

Claim: If << u1, · · · , un >>b is simply p-equivalent to << v1, · · · , vn >>b then

[u1] · · · [un] = [v1] · · · [vn].

Proof of Claim: It follows by assumption that there exists i, j ∈ [1, n] such that

<< ui, uj >>b
∼=<< vi, vj >>b (3.6)

and uk = vk whenever k 6= i, j. Then Corollary 3.2 implies

[u1] · · · [un]− [v1] · · · [vn]

is equal to

([ui][uj ]− [vi][vj ])[w1] · · · [wn−2]

where wk takes on the values of vk whenever k 6= i, j.

It follows immediately by Corollary 3.3.3 (3) and (3.6) that

([ui][uj ]− [vi][vj ])[w1] · · · [wn−2] = (0)[w1] · · · [wn−2] = 0.
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We can now proceed to prove the lemma:

(1): Theorem 2.6 (1) implies that

<< u1, · · · , un >>b≈<< 1, w2, · · · , wn >>b

with wi ∈ F×. However by induction on Claim this implies

[u1] · · · [un] = [1][w2] · · · [wn] = 0

by Proposition 3.1 (3).

(2): Theorem 2.6 (2) implies

<< u1, · · · , un >>b≈<< v1, · · · , vn >>b

which by induction on Claim implies

[u1] · · · [un] = [v1] · · · [vn].

�

3.4 KW
∗ (F ) and I∗(F )

In this section we will construct an isomorphism of W (F )− algebras between KW
∗ (F ) and

I∗(F ).

Proposition 3.4: The map α : KW
∗ (F ) −→ I∗(F ) defined by

η 7→< 1 >b∈ W (F ) = I−1(F )

and

[a] 7→<< a >>b∈ I(F )

with a ∈ F× is well-defined.

Proof: It suffices to check relations (W1), (W2), (W3) and (W4) hold:
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W1 : α([a][1 + a]) =<< a >>b · << 1 + a >>b= 0 in I2(F ) since

<< a >>b · << 1 + a >>b

is isotropic implies by Theorem 2.6 (1) that

<< a >>b · << 1 + a >>b
∼=<< 1, u >>b

with u ∈ F× and

<< 1, u >>b=< 1, u, 1, u >b= 0 ∈ W (F ).

W2 : α([ab] + [a] + [b] + η[a][b]) is equal to

<< ab >>b + << a >>b + << b >>b + << a, b >>b

which can be rewritten as

< 1, ab >b⊥< 1, a >b⊥< 1, b >b⊥< 1, a, b, ab >b= 0 ∈ W (F ).

W3 : α([a]η − η[a]) =< 1 >b · << a >>b − << a >>b · < 1 >b= 0 ∈ W (F ).

W4 : α(η[1]) =< 1 >b · << 1 >>b= 0 ∈ W (F ).

�

Therefore we have that α is well-defined.

Theorem 3.4: α : KW
∗ (F ) −→ I∗(F ) is an isomorphism of W (F )-algebras

Proof: α is clearly surjective following the construction of I∗(F ) in Definition 2.5.3.

Thus it suffices to show that the map τn : In(F ) −→ KW
n (F ) defined by

<< a >>b 7→ [a]

and

< 1 >b∈ I−1(F ) 7→ η
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is well-defined. This follows immediately by Theorem 2.5, Corollary 3.3.1, Corollary 3.3.2,

Corollary 3.3.3 and Corollary 3.3.4. Therefore,

KW
n (F ) −→ In(F ) −→ KW

n (F )

is the identity map which is equivalent to

τn ◦ αn = idKW
n (F )

and we conclude that αn is injective for every n ∈ Z which implies α is injective.

�

3.5 I∗(F ) and TW
∗ (I(F ))

In this section we will construct the Z/2-graded algebra TW
∗ (I(F )) containing the tensor

algebra of I(F ) modulo the Steinberg relations and use the structural results in the prior

sections to define an isomorphism between TW
∗ (I(F )) and I∗(F ).

Definition 3.5.1: We define TW (I(F )) to be the tensor algebra of the W (F )-modules

I(F ) modulo the ideal generated by << u >>b ⊗W (F ) << 1− u >>b with u ∈ F×.

TW (I(F )) = TensW (F )(I(F ))/(<< u >>b ⊗W (F ) << 1− u >>b).

Proposition 3.5: The map TW
n (I(F )) −→ In(F ) defined by

b1 ⊗W (F ) · · · ⊗W (F ) bn 7→ b1 · . . . · bn

with bi ∈ I(F ) is well-defined.

Proof: There is a canonical W (F )-multilinear map

I(F )× · · · × I(F )︸ ︷︷ ︸
n times

−→ In(F )

defined by

b1 × · · · bn 7→ b1 · · · · · bn
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with bi ∈ I(F ) which by the universal property of tensor products of W (F )-modules extends

to a well-defined map

I(F )⊗W (F ) · · · ⊗W (F ) I(F )
︸ ︷︷ ︸

n−times

−→ In(F ). (3.7)

To prove Proposition 3.5 it is enough to show that

(<< u >>b ⊗W (F ) << 1− u >>b) ∩ Tn(I(F ))

factors through (3.7), which follows immediately by the presentation of In(F ) in Theorem

2.5 and the fact that

<< u >>b · << 1− u >>b= 0 ∈ I2(F )

for all u ∈ F×

�

Let us consider TW
∗ (I(F )) = ⊕n∈Z TW

n (I(F )) with TW
n (I(F )) = W (F ) for n < 0. We define

an action of

< 1 >b∈ TW
−n(I(F )) = W (F ) (3.8)

on TW
m (I(F )) with m,n ≥ 1 by showing the following:

Lemma 3.5: For every n ≥ 1 there exists a unique homomorphism of W (F )-modules

εn : TW
n (I(F )) −→ TW

n−1(I(F ))

defined by

b1 ⊗W (F ) b2 ⊗W (F ) · · · ⊗W (F ) bn 7→
(
b1 · b2

)
⊗W (F ) · · · ⊗W (F ) bn

with bi ∈ I(F ).

Proof: We begin by considering the map

ζn : I(F )× · · · × I(F )︸ ︷︷ ︸
n times

−→ TW
n−1(I(F ))
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defined by

b1 × b2 × · · · × bn 7→
(
b1 · b2

)
⊗W (F ) · · · ⊗W (F ) bn

with bi ∈ I(F ) then ζn is clearly W (F )-multilinear and the universal propety of tensor

products implies that we have a map

ζn : I(F )⊗W (F ) · · · ⊗W (F ) I(F )
︸ ︷︷ ︸

n−times

−→ TW
n−1(I(F ))

where ζn is a homomorphism of W (F )-modules.

Therefore all that remains to show is that

ζn

(
(<< u >>b ⊗W (F ) << 1− u >>b) ∩ TW

n (I(F ))
)
= 0 ∈ TW

n−1(I(F )).

However this is an immediate consequence of the following:

Claim: ζn(<< u1 >>b ⊗W (F ) · · · ⊗W (F ) << un >>b) = 0 ∈ TW
n−1(I(F )) if ui + ui+1 = 1

for some i ≥ 1.

Proof of Claim: If i ≥ 3 the result follows immediately since

(
<< u1 >>b · << u2 >>b

)
⊗W (F ) << u3 >>b ⊗ · · · ⊗W (F ) << un >>b

is an element of (<< u >>b ⊗W (F ) << 1− u >>b) ∩ TW
n−1(I(F )).

Assume i = 2, then

(
<< u1 >>b · << u2 >>b

)
⊗W (F ) · · · ⊗W (F ) << un >>b

is equal to

<< u1 >>b ·
(
<< u2 >>b ⊗W (F ) << u3 >>b

)
⊗ · · · ⊗W (F ) << un >>b

which is an element of (<< u >>b ⊗W (F ) << 1− u >>b) ∩ TW
n−1(I(F )).

If i = 1, then

(
<< u1 >>b · << u2 >>b

)
⊗W (F ) · · · ⊗W (F ) << un >>b= 0
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since << u1 >>b · << u2 >>b= 0 ∈ I(F ).

�

It follows by the universal property of quotient maps that εn is well-defined and

ζn : I(F )⊗W (F ) · · · ⊗W (F ) I(F )
︸ ︷︷ ︸

n−times

−→ TW
n (I(F ))

εn−→ TW
n−1(I(F )).

�

To show that TW
∗ (I(F )) has the structure of Z/2-graded algebra ofW (F )-modules we define

the multiplication

< 1 >b · << u1 >>b ⊗W (F ) · · · ⊗W (F ) << um >>b

with < 1 >b∈ TW
−n(I(F )) = W (F ) by

εm−n+1 ◦ · · · ◦ εm

(
<< u1 >>b ⊗W (F ) · · · ⊗W (F ) << um >>b

)
.

The right multiplication of < 1 >b ∈ TW
−n(I(F )) = W (F ) is defined mutatis mutandis. If

< u >b∈ TW
−n(I(F )) and < v >b∈ TW

−m(I(F )) then

< u >b · < v >b=< uv >b ∈ TW
−(n+m)(I(F )).

We can use the above structural results on TW
∗ (I(F )) to define a map:

θ : KW
∗ (F ) −→ TW

∗ (I(F ))

by

[u] 7→<< u >>b∈ TW
1 (I(F ))η 7→< 1 >b∈ TW

−1(I(F ))

which is well-defined.

Theorem 3.5: The natural map β : TW
∗ (I(F )) −→ I∗(F ) defined by

<< u >>b 7→ [u]
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is an isomorphism of W (F )-algebras.

Proof: It is easy to see by Proposition 3.5 that β is a well-defined surjective homomorphism

of W (F )-algebras and the above remarks along with Theorem 3.4 imply

TW
∗ (I(F ))

β
−→ I∗(F )

∼=
−→ KW

∗ (F )
θ

−→ TW (F )

is the identity map and β is injective.

�

Corollary 3.5: The map

TensW (F )(I(F ))/(<< u >>b ⊗W (F ) << 1− u >>b) −→ ⊕n≥0I
n(F ) (3.9)

defined by

<< u >>b 7→<< u >>b

is an isomorphism of W (F )-algebras.

Proof: This follows immediately by Theorem 3.4 and Theorem 3.5.

�
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CHAPTER 4

Milnor-Witt K-Theory

In this chapter we will establish the main results of this thesis extending the work of Morel

in [15] to fields of characteristic 2.

4.1 Definitions and Facts

Definition 4.1 The Milnor-Witt K-ring of F is the free and graded Z-algebra KMW
∗ (F )

generated by the symbols [u]MW (u ∈ F×) of degree 1 and one symbol ηMW of degree −1

subject to the following relations:

MW1 : For each a ∈ F× − {1} : [a]MW [1− a]MW = 0,

MW2 : For each (a, b) ∈ (F×)2 : [ab]MW = [a]MW + [b]MW + ηMW [a][b],

MW3 : For each u ∈ F× : [u]MW ηMW = ηMW [u]MW ,

MW4 : ηMW (ηMW [−1]MW + 2) = 0.

Let us denote h = η[−1]MW + 2 such that (4) can be rewritten as

ηh = 0.

Again following Morel, for any u ∈ F× we let < u >MW= 1 + η[u]MW .

We have the following relations in KMW
∗ (F ):

Lemma 4.1.1: Let (a, b) ∈ (F×)2. Then the following relations hold in KMW (F ):

(1) [ab]MW = [a]MW+ < a >MW [b]MW ,

(2) < ab >MW=< a >MW< b >MW ,

(3) < 1 >MW= 1 and [1]MW = 0.
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Proof:

(1) This follows as in Proposition 3.1 (1).

(2) This follows as in Proposition 3.1 (2).

(3) ηMW (ηMW [−1]MW + 2) = 0 implies

[1]ηMW (ηMW [−1]MW + 2) = (< 1 >MW −1)(< 1 >MW +1) = 0

which upon expanding implies

< 1 >MW= 1.

Hence [1]MW = [(1)(1)]MW = [1]MW+ < 1 >MW [1]MW = 2[1]MW and [1]MW = 0.

�

We can reformulate (MW4) in the characteristic 2 case as follows:

Lemma 4.1.2: (MW4) is equivalent to

(MW4•) : 2ηMW = 0 = [1].

Proof: By (MW4) and Lemma 4.1.1 (3)

2ηMW = ηMW (ηMW [−1]MW + 2) = 0

which implies h = 2 and ηMWh = 2ηMW = 0. The reverse implication is trivial.

Lemma 4.1.3: The following hold:

(1) For n ≥ 1, KMW
m (F ) is generated as an abelian group by the product of symbols

[u1]MW · . . . · [um]MW

with ui ∈ F×,

(2) For m ≤ 0, KMW
m (F ) is generated as an abelian group by

ηmMW < u >MW
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with u ∈ F×.

Proof: The proof is identical to the one of Proposition 3.2.

�

Lemma 4.1.4: The map π : KW
∗ (F ) −→ KMW

∗ (F )/(h) defined by

[u] 7→ [u]MW + (h)

and

η 7→ ηMW + (h)

is a well-defined morphism of Z− algebras.

Proof: This is immediate by Definition 3.1.2.

�

Lemma 4.1.5: The map µ : KMW
∗ (F ) −→ KW

∗ (F ) sending [u]MW 7→ [u] and ηMW 7→ η is

a well-defined morphism of Z− algebras.

Proof: This is immediate by Definition 4.1.

�

If we consider µ we see that KMW
∗ (F ) · h ⊂ Ker(µ). Therefore µ factors through π and

moreover

µ ◦ π : KW
∗ (F ) −→ KW

∗ (F )

is the identity map on KW
∗ (F ) with µ defined by

µ : KMW
∗ (F ) −→ KMW

∗ (F )/(h)
µ

−→ KW
∗ (F ).

We can conclude that

πn : KW
n (F ) −→ KMW

n (F )/((h) ∩KMW
n (F ))

is an isomorphism.
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Proposition 4.1: The map ω : KMW
∗ (F ) −→ I∗(F ) defined by

[u]MW 7→ − << u >>b

and

ηMW 7→< 1 >b∈ I−1(F )

is well-defined and surjective.

Proof: It follows by Lemma 4.1.5 and Theorem 3.4 that ω is well-defined and surjectivity

follows by definition.

�

4.2 Milnor K-theory of a field F

In this section we will define the Milnor K-theory of a field F, originally introduced by J.

Milnor in [13].

Definition 4.2: The Milnor K-theory of a field F is given by

KM
∗ (F ) = TensZ(F

×)/(u⊗ (1− u))

where (u⊗ (1− u)) is the ideal generated by u⊗ (1− u) in TensZ(F
×) with u ∈ F× −{1}.

It follows easily by Definition 4.2 that KM
∗ (F ) has the structure of a graded Z-algebra.

Lemma 4.2.1: The map φ : KMW
∗ (F ) −→ KM

∗ (F ) defined by

[u] 7→ u, η 7→ 0

is a surjective morphism of Z-algebras.

Proof: It suffices to check that θ is well-defined. Therefore, by Definition 4.1 we only need

to check the following corresponding relations hold in KM
∗ (F ):
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MW1 : For each a ∈ F× − {1} : [a]MW [1− a]MW = 0,

MW2 : For each (a, b) ∈ (F×)2 : [ab]MW = [a]MW + [b]MW + η[a][b].

(1) follows immediately by Definition 4.2.

(2) follows by the group structure of F×.

�

Lemma 4.2.2: The induced homomorphism φ : KMW
∗ (F )/(η) −→ KM

∗ (F ) is an isomor-

phism.

Proof: Indeed consider the map

KM
∗ (F ) −→ KMW

∗ (F )/(η)

defined by

u 7→ [u]MW .

To show that this map is well-defined it is enough to check:

u⊗ (1− u) 7→ 0

with u ∈ F× − {1} which follows immediately by Definition 4.1. Therefore

KMW
∗ (F )/(η) −→ KM

∗ (F ) −→ KMW
∗ (F )/(η)

is the identity on KMW
∗ (F )/(η) and we can conclude that φ is an isomorphism.

Moreover this implies that

φn : KMW
n (F )/((η) ∩KMW

n (F )) −→ KM
n (F )

is an isomorphism of groups.

�
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4.3 Main Result

In this section we will combine the results of the prior sections to construct an exact se-

quence between KW
n+1(F ), KMW

n (F ) and KM (F ).

We begin by considering the map corresponding to multiplication by ηMW :

ηMW : KMW
n+1 (F ) −→ KMW

n (F ) (4.1)

defined by

ηmMW [u1]MW · · · [uk]MW 7→ ηm+1
MW [u1]MW · · · [uk]MW

with k − m = n + 1. Definition 4.1 implies that ηMW is well-defined in this sense. The

universal property of quotient maps and (4.1) imply ηMW defined by

ηMW : KMW
n+1 (F ) −→ KMW

n+1 (F )/((h) ∩KMW
n+1 (F ))

ηMW−→ KMW
n (F )

is a well-defined map.

Proposition 4.3: KW
n+1(F )

ηMW ◦πn+1
−→ KMW

n (F )
φn

−→ KM
n (F ) −→ 0 is an exact sequence

with

ηMW ◦ πn+1 : K
W
n+1(F )

πn+1
−→ KMW

n+1 (F )/(h)
ηMW−→ KMW

n (F )

and

φn : KMW
n (F ) −→ KM

n (F ).

Proof: It is easy to see that φn(K
MW
n (F )) = KM

n (F ) by definition so it enough to check:

ηMW ◦ πn+1(K
W
n+1(F )) = Ker(φn).

However we know that ((η) ∩KMW
n (F )) = η·KMW

n+1 (F ) and by Lemma 4.2.2 we have that

Ker(φn) = η·KMW
n+1 (F ).
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It follows by definition of ηMW and (4.1),

ηMW ◦ πn+1(K
W
n+1(F )) = ηMW (KMW

n+1 (F )/(h)) = ηMW ·KMW
n+1 (F ).

�

Theorem 4.3.1: KMW
n (F ) is the pull-back of the diagram:

KM
n (F )

��

In(F ) // In(F )/In+1(F )

for every n ≥ 1.

Proof:

For every n ≥ 1 consider the following diagram:

KW
n+1(F )

ηMW ◦πn+1

//

αn+1

��

KMW
n (F )

φn

//

ωn

��

KM
n (F ) //

λn

��

0

0 // In+1(F ) // In(F ) // In(F )/In+1(F ) // 0

with the map λn : KM
n (F ) −→ In(F )/In+1(F ) defined by

u1 ⊗ · · · ⊗ un 7→<< u1, · · · , un >>b +In+1(F ).

and it follows easily that λn is well-defined and surjective. The commutativity of the above

diagram is then given by Proposition 4.3, Theorem 3.4 and Proposition 4.1. The result

follows immediately by Lemma A.3.

�

Corollary 4.3: KMW
0 (F ) is the pull-back of the canonical projection λ0 : Z −→ Z/2 and

W (F ) −→ Z/2.

Proof: This follow identically to Theorem 4.3.1.

�
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Let us define Gn(F ), for every n ≥ 0, to be the the pull-back of

KM
n (F )

��

In(F ) // In(F )/In+1(F )

Consider G∗(F ) = ⊕n∈ZGn with G−n = W (F ) whenever n > 0 then Corollary 4.3 and

Proposition 2.5 imply

KMW
0 (F ) ∼= Ŵ (F ) = G0(F )

Moreover, the following theorem will show that G∗(F ) is a Z-graded algebra isomorphic to

KMW
∗ (F ):

Theorem 4.3.2: The natural homomorphism Ω : KMW
∗ (F ) −→ G∗(F ) defined by

[u]MW 7→ (<< u >>b, u)

ηMW 7→< 1 >b∈ G−1(F ) = W (F )

is an isomorphism.

Proof: It follows by Proposition 4.1 and Lemma 4.2.1 that Ω is well-defined and surjective.

Additionally, Theorem 4.3.1 and Corollary 4.3 imply that it is enough to show

KMW
−n

∼= G−n(F )

for every n > 0. Assume n > 0 and consider the map

Γ−n = ηMW ◦ π−n+1 ◦ α
−1
−n+1 : W (F ) −→ KMW

−n (F ).

This is well-defined and

KMW
−n (F )

Ω
−n

−→ W (F )
Γ
−n

−→ KMW
−n (F )
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is the identity map. Therefore we conclude that for every n > 0:

KMW
−n (F ) ∼= W (F ).

�

4.4 KMW
∗ (F ) and TW

∗ (KMW
1 (F ))

Definition 3.4: We define TW (KMW
1 (F )) to be the tensor algebra of the KMW

0 (F )-

modules KMW
1 (F ) modulo the ideal generated by [u]MW ⊗KMW

0 (F ) [1 − u]MW with u ∈

F× − {1}.

TW (KMW
1 (F )) = TensKMW

0 (F )(K
MW
1 (F ))/([u]MW ⊗KMW

0 (F ) [1− u]MW ).

Let TW
∗ (KMW

1 (F )) = ⊕n∈ZT
W
n (KMW

1 (F )) with TW
−n(K

MW
1 (F )) = KMW

−1 (F ) for every n ≥

1. We define the multiplication operation on TW
∗ (KMW

1 (F )),

ηMW < 1 >MW ·[u1]MW ⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) [um]MW

with m ≥ 1 by introducing the following lemma:

Lemma 4.4: The map χm+1 : T
W
m+1(K

MW
1 (F )) −→ TW

m (KMW
1 (F )) defined by sending

y1 ⊗KMW

0 (F ) y2 ⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) ym+1

to

(
ηMW · y1 · y2

)
⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) ym+1

with yi ∈ KMW
1 (F ) is well-defined.

Proof: There is a canonical KMW
0 (F )-multilinear map

χ : KMW
1 (F )× · · · ×KMW

1 (F )︸ ︷︷ ︸
m+1 times

−→ TW
m (KMW

1 (F ))

defined by sending

y1 × · · · × ym+1
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to

(ηMW · y1 · y2)⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) ym+1

which by the universal property of tensor products of KMW
0 (F )-modules extends to a well-

defined map

KMW
1 (F )⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) K
MW
1 (F )

︸ ︷︷ ︸
m+1−times

−→ TW
m (KMW

1 (F )).

To conclude it suffices to show,

χ
(
([u]MW ⊗KMW

0 (F ) [1− u]MW ) ∩ TW
m (KMW

1 (F )
)
= 0

which is identical to Lemma 3.5. Therefore we have by the universal property of quotient

map that χ satisfies

χ : KMW
1 (F )⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) K
MW
1 (F )

︸ ︷︷ ︸
m+1−times

−→ TW
m+1(K

MW
1 (F ))

χ
−→ TW

m (KMW
1 (F ))

and χ is well-defined.

�

We identify the multiplication operation on TW
∗ (KMW

1 (F )) by

ηkMW < 1 >MW ·[u1]MW ⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) [um]MW

with

χm−k+1 ◦ · · · ◦ χm

(
[u1]MW ⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) [um]MW

)

and if < u >MW∈ KMW
0 (F ) and ηnMW < v >MW∈ KMW

−n (F ) with n ≥ 1 then

< u >MW · ηnMW < v >MW= ηnMW < uv >MW∈ KMW
−n (F )

and we conclude that TW
∗ (KMW

1 (F )) is a Z-graded KMW
0 (F )-module.

Proposition 4.4: The map TW
m (KMW

1 (F )) −→ KMW
m (F ) defined by

y1 ⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) ym 7→ y1 · . . . · ym
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is well-defined.

Proof: There is a canonical KMW
0 (F )-multilinear map

KMW
1 (F )× · · · ×KMW

1 (F )︸ ︷︷ ︸
m times

−→ KMW
n (F )

defined by

u1 × . . .× um 7→ u1 · . . . · um

with ui ∈ KMW
1 (F ) such that the universal property of tensor products ofKMW

0 (F )-modules

extends this to a well-defined map

KMW
1 (F )⊗KMW

0 (F ) · · · ⊗KMW

0 (F ) K
MW
1 (F )

︸ ︷︷ ︸
n−times

−→ KMW
m (F ). (4.2)

To prove Proposition 4.4 it is enough to show that

([u]MW ⊗KMW

0 (F ) [1− u]MW ) ∩ TW
m (KMW

1 (F ))

factors through (4.2), which follows immediately by Definition 4.1.

�

Theorem 4.4: The map ∆ : TW
∗ (KMW

1 (F )) −→ KMW
∗ (F ) defined by

[u]MW 7→ [u]MW

and

ηMW < 1 >MW 7→ ηMW

is an isomorphism of KMW
0 (F )-algebras.

Proof: Consider the map KMW
∗ (F ) −→ TW

∗ (KMW
1 (F )) defined by

[u]MW 7→ [u]MW

and

ηMW 7→ ηMW < 1 >MW .
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It is easy to check that the relations of Definition 4.1 are satisfied which implies the map

is well-defined. It follows by Proposition 4.4 and considering

TW
∗ (KMW

1 (F ))
∆
−→ KMW

∗ (F ) −→ TW
∗ (KMW

1 (F ))

that ∆ is well-defined and injective. Therefore it is enough to show that ∆ is surjective,

which follows by definition.

�
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CHAPTER 5

Appendix

In this section we will establish some results that are necessary to Section 2.6 and Section

4.3 but did not seem suitable to be addressed in the main text.

Lemma A.1: The following hold:

(1) << a, b >>b
∼= << a, bd >>b with d ∈ D(<< a >>b)

×,

(2) << a, b >>b
∼=<< a+ b, ab >>b if a+ b 6= 0.

Proof:

(1) << a, b >>b = < 1, a >b ⊗ < 1, b >b = < 1, a, b, ab >b which is equal to

< 1, a >b⊥ b < 1, a >b .

However bd = bx2 + bay2 with x, y ∈ F implies

b < 1, a >b
∼=< bd, abd >b

∼= bd < 1, a >b

and we can conclude

< 1, a >b⊥ b < 1, a >b
∼=< 1, a >b⊥ db < 1, a >b

or equivalently,

<< a, b >>b
∼=<< a, bd >>b .

(2) << a, b >>b
∼= << a, ab >>b since by (1) we have a = 02 + a(1)2. Clearly

<< a, ab >>b
∼=<< ab, a >>b
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and applying (1) again to

<< ab, a >>b

with a−1(a+ b) = 1 + b
a
= 12 + ab(a−2) implies

<< ab, a >>b
∼=<< ab, a(a−1(a+ b)) >>b

∼=<< ab, a+ b >>b .

�

Lemma A.2: For every d ∈ D(<< u1, · · · , un >>b)
× with ui ∈ F×

d << u1, · · · , un >>b
∼=<< u1, · · · , un >>b

Proof: We proceed by induction on n.

If n = 1 then d ∈ D(<< u1 >>b)
× implies d = x2 + u1y

2. Hence

d << u1 >>b=< d, u1d > .

However d2 = d(x2 + u1y
2) = dx2 + du1y

2 ∈ D(d << u1 >>b)
× implies

< d, u1d >∼=< d2,−u1d
2 >∼=< 1, u1 >=<< u1 >>b .

If n = m then d ∈ D(<< u1, · · · , um >>b)
× = D(< 1, u1 >b ⊗ << u2, · · · , um >>b)

×

implies

d = x+ u1y

with x, y ∈ D(<< u2, · · · , um >>b).

If x = 0 then d = u1y implies

d << u1, · · · , um >>b= u1y << u1, · · · , um >>b

is equal to

(u1 << u1 >>)(y << u2, · · · , um >>b)
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which by induction assumption and the n = 1 case is equal to

<< u1, · · · , um >>b .

If y = 0 then d = x which implies

d << u1, · · · , um >>b=<< u1 >> (x << u2, · · · , um >>b)

which is equal to

<< u1, · · · , um >>b

by induction assumption.

If x, y 6= 0 then

<< u1, · · · , um >>b= (<< u2, · · · , um >>b⊥ u1 << u1, · · · , um >>b)

which by induction assumption is equal to

<< u2, · · · , um >>b⊥ u1x
−1y << u1, · · · , um >>b)

or

<< u1x
−1y >>b<< u2, · · · , um >>b .

However by the base case 1 + u1x
−1y ∈ D(<< u1x

−1y >>b)
× hence

<< u1, · · · , um >>b= (1 + u1x
−1y) << u1, · · · , um >>b

and x << u2, · · · , um >>b
∼=<< u2, · · · , um >>b implies that

<< u1, · · · , um >>b
∼= (1 + u1x

−1y)(x) << u1, · · · , um >>b

with (1 + u1x
−1y)(x) = x+ u1y.

�
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Lemma A.3 Let R be a commutative ring. Consider the following commutative diagram

of R-modules:

A
f1

//

h1

��

B
f2

//

h2

��

C //

h3

��

0

0 // X
g1

// Y
g2

// Z // 0

If h1 is an isomorphism and h3 is surjective then B is a pull-back.

Proof:

It follows from the universal propety of pull-back that it is enough to show for any R-module

Q such that the following diagram commutes

Q
k1

//

k2
��

C

h2

��

Y
g2

// Z

there exists a unique µ : Q −→ B such that

f2 ◦ µ = k1 and h2 ◦ µ = k2. (5.1)

Let q1 ∈ Q such that

(h3 ◦ k1)(q1) = (g2 ◦ k2)(q1). (5.2)

In particular we have that k1(q1) ∈ C implies by exactness that

k1(q1) = f2(b1 + f1(ai))

with b1 ∈ B and ai ∈ A. Therefore,

(h3 ◦ k1)(q1) = h3(f2(b1 + f1(ai))).

However h3 ◦ f2 = g2 ◦ h2 by commutativity of the diagram implies

h3(f2(b1 + f1(ai))) = (g2 ◦ h2)(b1 + f1(ai)))
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and combining this with (5.2) implies

(g2 ◦ h2)(b1 + f1(ai))) = (g2 ◦ k2)(q1)

which is equivalent to

g2(h2(b1 + f1(ai))− k2(q1)) = 0.

It follows by exactness that there exists unique xi ∈ X such that

g1(xi) = h2(b1 + f1(ai))− k2(q1) (5.3)

and h1 is an isomorphism implies there exists unique a∗i ∈ A such that

h1(a
∗
i ) = xi

which by (5.3) gives the following equation:

(g1 ◦ h1)(a
∗
i ) = h2(b1 + f1(ai))− k2(q1).

The commutativity of the diagram implies (g1 ◦ h1)(a
∗
i ) = (h2 ◦ f1)(a

∗
i ) so we can conclude

(h2 ◦ f1)(a
∗
i ) = h2(b1 + f1(ai))− k2(q1)

which is equivalent to

k2(q1) = h2(b1 + f1(ai − a∗i )).

Then by (5.1) we let

µ(q1) = b1 + f1(ai − a∗i )

and all that remains to show is the uniqueness of µ. Assume there exists µ2 : Q −→ B such

that

f2 ◦ µ2 = k1 and h2 ◦ µ2 = k2
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then by the above,

µ2(q1) = b1 + f1(aj − a∗j )

and f1(ai − a∗i ) = f1(aj − a∗j ) since

h2(b1 + f1(ai − a∗i )) = h2(b1 + f1(aj − a∗j ))

implies

h2(b1) + (h2 ◦ f1)(ai − a∗i )) = h2(b1) + (h2 ◦ f1)(aj − a∗j ))

which by (h2 ◦ f1) = (g1 ◦ h1) and injectivity of g1, h1 implies

ai − a∗i = aj − a∗j .

�
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