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Abstract

The advent of the internet and the World Wide Web has made vast amounts of

information accessible at our fingertips. It is said that an average person living in

the modern society is exposed to as much information in a day as a person who

lived 100 years ago would have seen in a whole year. But how do we search and

find what we want from this giant heap of information dumps? Search engines have

solved this problem for us. Numerous search engines such as Yahoo, AltaVista, MSN

and Google were created over the years to access the billions of information on the

internet effectively. Some failed to keep up, while the others have grown exponentially

in terms of its collection of data and effectiveness in providing the best answers to

our questions.

Despite its usefulness in filtering through the internet, search engines pose a threat

to its users, who are mostly unaware of it. Popular search engines receive over a

billion search queries every single day. These search queries can reveal a lot of private

information about an individual or a group of individuals at scale. Hence, modern

search engines contain sufficient data obtained through invading the user’s privacy

that could, in the worst case, be used for manipulative purposes.

This project aims to understand the working of modern search engines and to

propose a local alternative with the help of various machine learning and natural

language processing techniques. Through the process, different machine learning

approaches will be studied, implemented and analyzed to provide the best solution

to the information retrieval problem.
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Chapter 1

Search Engine - Architecture and
Concepts

1.1 Introduction

Search engines are the most common examples of information retrieval systems that

we interact with daily and they aid us with information on any topic under the sun

and beyond. But, this seemingly simple system is comprised of a number of complex

components and techniques that make it possible to gather and store colossal amounts

of information and provide the most relevant answers to the queries posted against it

in a matter of milliseconds time. In this chapter, we look at the necessary components

that make up a typical search engine and also a few fundamental techniques that are

used in all search engines.

1.2 The Search Engine Architecture - Overview

The components that comprise a typical search engine can be broadly classified into

three categories based on their individual functions - Crawling and data gathering,

Content repository or database and a Query engine and results page.

• Crawling and data gathering - A crawler discovers and adds the content of

the Web to the search engine’s data repository. Most crawlers find information

by beginning at one page and then follow the outgoing URL links on that page.
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Figure 1.1: Basic search engine architecture.

Therefore, if a page is not linked to, from another page, this page may never be

found by a search engine. In some cases, a search engine may acquire content

through private data feeds from other companies. All of the information that a

web crawler retrieves is stored in a data repository, which provides a foundation

to build an online index search-able by users[1].

• Content repository or database - The information scraped from a myriad

of web pages is pre-processed and stored in a database in a form that makes

it easy to search through and retrieve the contents when a query is posted.

Indexing is a technique used to efficiently store and manage documents in order

to facilitate fast searching and retrieval. A more profound understanding of the

pre-processing and indexing techniques is described in the following sections.

• Query engine and results page - The query engine module, usually a web

service, takes user inputs, processes them and returns the most relevant results

on the results page that match the query[1]. Multiple approaches have been

employed to find the most matching documents for a particular query and this

document aims to understand and compare the performance of a few of them.

2



The user’s interaction with the results may be logged by the search engine to

record the behaviour and utilize it to improve the quality of results[1].

1.3 Crawling

Web crawling is the process of collecting and extracting information from the web

with the help of programs called crawlers or spiders. The primary function of a

web crawler is simple - select a URL from a set of candidate URLs known as the

URL frontier, download the associated web pages, extract the hyperlinks contained

in the web page, and add those URLs that have not been encountered before to the

candidate URLs list[2]. The objective here is to scan through as many web documents

as possible quickly and efficiently and return the scraped contents for storage[3].

1.3.1 Crawler Characteristics

The following key characteristics are important in any web crawler:

• Robustness: Some domains may have certain ’traps’ in their web pages that

lead to crawlers or spiders getting stuck trying to fetch an infinite number of

web pages in the domain[3]. One typical example of such a trap is infinitely

looping over a calendar web page. This causes the crawler to get stuck loading

useless information endlessly. Also, there could arise situations where the web

page may take a long time to respond or even fail to load. A well-written crawler

must be able to circumvent these problems and gather useful information while

discarding the others[1].

• Politeness: The main objective of a crawler is to access and fetch as much

information as possible from all kinds of web pages on the internet. However, in

doing so, the crawler may try to use up a significant chunk of the computing and

bandwidth resources of the webserver, thereby preventing the human users from

accessing the website[1]. There are policies in place that restrict the crawlers
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from making multiple requests to the same server at the same time or even

within short time periods. Hence, the crawlers will have to be designed in

such a way that it attains its peak throughput while abiding by the ’politeness’

policies.

1.3.2 Types of Crawler architectures

• Parallel Crawler. Crawling through millions of web pages on the internet

with a single instance of the crawler is a slow and inefficient task. Hence,

the parallel crawler architecture was introduced that runs multiple instances

of the web crawler simultaneously, scraping and downloading information from

the web in parallel. Each of these crawler instances, known as a C-proc or

Crawler Process, performs identical tasks - It retrieves pages from the world

wide web, stores those pages locally, filters the URLs of the pages retrieved,

and passes through these URLs[4]. Based on the location of these different

parallel crawlers, they can be classified into two categories - Intra-site parallel

crawlers (processes running on the same local network) or Intersite/Distributed

parallel crawlers (processing running on different networks communicating with

each other through the internet)[5]. Figure 1.2 shows the architecture of a

parallel web crawler.

• Incremental Crawler. Incremental crawlers are designed to visit and access

frequently updated web pages. Incremental crawlers update the stored content

of websites by visiting them often and storing the updated version of those

pages[4]. The objective of designing an incremental web crawler is to main

fresh and updated versions of the web pages in its local collection. Incremental

crawlers are composed of three sub-modules as shown in Figure 1.3 - the Ranking

Module, the Update Module, and the Crawl Module.

The crawler makes use of the data structure known as priority queues for choos-
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Figure 1.2: Parallel Web Crawler architecture [6]

ing the URLs that need to be revisited and updated. The AllURLs queue con-

tains all the URLs discovered by the crawler and the CollURLs queue contains

the URLS that will or have already be visited. It is the Ranking modules job

to rank and move URLs from the AllURLs queue to the CollURLs queue. If

it finds a URL that is not in CollURLs queue, it replaces the URL with the

least priority in the CollURLS queue with the new URL and assigns the highest

priority so that it will be crawled immediately.

Update Module’s primary work is to check whether or not the web page content

is updated. Update Module calculates the estimated frequency of change page

using a clustering algorithm[7] as the ruling function. The URL is placed in

the queue based on these calculations. The URL which is present closer to the

head of the queue will be visited frequently and hence the incremental crawlers

provide updated pages to the users[4].
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Figure 1.3: Incremental Web Crawler architecture [8]

• Focused/Topic-driven Crawler. Focused or topic-driven crawlers are de-

signed to be used for specialized searches that provide deeper results from a

particular domain. The crawler maintains the relevance of the web pages by

introducing a validator module as shown in Figure 1.4. The validator processes

the downloaded web pages and calculates the relevance to the topic using dif-

ferent machine learning algorithms like support vector machines and bayesian

networks that are out of scope for this project[4].

• Hidden Crawler. The world web is divided into “surface web” and “hidden

web” parts. Web content that can easily be accessed by general-purpose crawlers

is referred to as the surface web. Huge web content is hidden behind search forms

that are not accessible by any standard search engine, these hidden pages are

referred to as the hidden web[4]. Universities and government institutions are

examples of such private access content and maintain a private database that

cannot be publicly accessed over the internet, i.e., restricts access members or

subscribers only. Hidden web crawlers are looking for these search forms on

each web page visited and this form is automatically filled by a Label Value
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Figure 1.4: Focused Web Crawler architecture [4]

Set(LVS) manager in the hidden web crawlers and submitted to the web[4].

The form response is then parsed and the contents are stored in the database.

1.4 Content repository or database

The information scraped from the vast number of web pages is largely unstructured.

It contains words that have the same meaning in different forms, punctuation and

even ’stop’ words that do not add any particular meaning at all. If we were to

search through such unstructured data directly, it would use up a lot of time and

resources rendering the process highly inefficient. Hence we need to parse through

this raw information, process it into a defined structure in order to ease the searching

operation. The next few sections will describe some of the techniques used in the

processing of the raw data.

1.4.1 Tokenization

For a given input sequence, tokenization is the process of breaking down the sequence

into its constituent words or tokens while getting rid of certain characters like punc-

tuation[3]. These tokens are useful for indexing which will be described in the later
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section. The following is an example of tokenizing an input sequence:

Input: The quick brown fox jumps right over the lazy dog.

Output: The quick brown fox jumps over the lazy dog

Tokenization is fairly straightforward with the English language but it is not the

case with languages such as Arabic or Chinese where words are not clearly separated

by white spaces. In such cases, we use powerful natural language models to identify

words in a sentence[1].

1.4.2 Stop words

Stop words are those words in a sentence that do not add significant meaning towards

the sentence. Words like ‘the’,‘a’,‘for’ etc are a few stop words that do not contribute

any meaning to the topic in the document. These words should be removed before

moving on to indexing as indexing is expensive on storage and the goal is to identify

only the significant terms for indexing. However, it is incorrect to always remove these

‘stop’ words because some of these words do provide some context to the sentence in

certain situations. For example, WHO (World Health Organization) even though it

looks like a stop word, adds meaning and explicitly removing it from the documents

may affect the query results.

1.4.3 Stemming and Lemmatization

Words that impart the same meaning appear in different forms in the English language

due to the rules of grammar. The word ‘catch’, ‘catches’ and ‘catching’ are all different

forms of the verb ‘catch’. But it is not efficient to store all these words while indexing

as they provide the same context to a sentence even though they appear as different

words. Hence, we use what is called stemming to retrieve the original form of a word

that imparts the same meaning as the word in consideration.
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One of the most common stemming algorithms is Porter’s stemmer[9] algorithm.

Porter’s algorithm consists of five phases of word reductions, applied sequentially.

Within each phase, there are various conventions to select rules, such as selecting the

rule from each rule group that applies to the longest suffix[3]. The following is an

example of Porter’s stemming algorithms:

Input sequence: When glass breaks the cracks move faster than 3 000 miles per hour
Stemmed sequence: When glass break the crack move faster than 3 000 mile per hour

While stemming is just a crude processing on the sentences by removing the trailing

characters of words, lemmatization is a more advanced technique. The concept of

lemmatization is detecting semantically equivalent surface words written in different

syntactic forms and relates them to their canonical base representation or lemma[10].

Lemmatization can relate words that do not look the same syntactically, but have the

same semantic context. For example, the words ‘see’ and ‘saw’ look different but can

have the same meaning. Stemming would just produce ‘s’ in the case of the word ‘saw’

while lemmatization would return ‘see’ or ‘saw’ depending on the condition whether

the word was a noun or a verb[3].

1.4.4 Indexing

Once we have the document tokenized, stemmed and lemmatized, we can now index

them in the database. Indexing is simply a way of storing and organizing information

that enables fast responses while searching. There are different types of indexing

techniques, but we focus on the reverse index which is the most common type of

indexing in information retrieval.

A reverse index is formed by pairing each of the terms or words with the list of

documents where the word occurs. For example, if a document D1 contains terms

{a,b,a} and document D2 contains terms {b,c,e} then the reverse index on the col-

lection of these documents would look like[1]:
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a −→ {D1}, b −→ {D1, D2}, c −→ {D2}, e −→ {D2}

Additionally, the index could store more information about the term in the document

such as its frequency and position. For the same example above, such an index would

be as follows[1]:

a −→ {D1, 2, (1, 3)}, b −→ {D1, 1, (2), D2, 1, (1)}, c −→ {D2, 1, (2)}, e −→ {D2, 1, 3}

In the above representation, the term ‘a’ occurs twice in document D1 at positions 1

and 3. The benefit of using a reverse index can be seen while searching for documents

that contain particular terms as it occurs in a given search query. Each document

can be scored based on the number and position of occurrences of the search terms

in those documents.

1.5 Query engine and Ranking

The last and final stage of a search engine, the stage that interacts with the user to

provide responses to the queries is the query engine and the ranking algorithm. A

lot of research is going on in this area especially on techniques that employ Natural

Language processing[11] in order to precisely extract the meaning of the query and

provide the most matching result. We can classify the functions of this module into

three categories - query processing, document retrieval and result ranking[1].

1.5.1 Query processing

Similar to the methods mentioned in Section 1.4, the query from the user needs to be

processed in order to extract the real intent of the query. Search engines may re-write

the query and collect other information such as the user’s location in order to provide

the most relevant results[1]. Query re-writing includes and is not limited to removing

stop words as described in Section 1.4.2, case normalization, spell check etc.
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1.5.2 Document retrieval

The index data of a search engine is typically partitioned and distributed in many

machines at one or possibly multiple data centers. There are two ways to distribute

data to multiple machines: term-based or document-based[1].

• Document-based partitioning divides the index data among machines based

on document identifications. Each machine contains the inverted index only

related to documents hosted in this machine. During query processing, a search

query is directed to all machines that host subsets of the data[1].

• Term-based partitioning divides the index based on terms and assigns post-

ings of selected terms to each machine. This approach fits well for single-

word queries, but it requires inter-machine result intersection for multi-word

queries[1].

1.5.3 Result ranking

Once the documents that have the best match for the given query have been retrieved

from the index, it needs to be ranked in the order of decreasing relevancy before it can

be displayed to the user. Most users would not go beyond the first page of the results

page and hence it crucial to provide the best results first. There are a variety of

parameters involved in the calculation of a score for each document based on which it

is ranked. At the high level, they can be classified into two groups - Query-dependent

parameters and Query independent parameters[1].

• Query dependent ranking. As the name suggests the score for each docu-

ment is calculated based on factors that are directly or indirectly related to the

query in consideration. The matches for the terms in the query could be found

in different parts of a document. The hit would be of different types - It could be

the document title, anchor text( text in the hyperlinks to the page), URL etc[12].

Each of these hits would be treated differently and assigned a different weight.
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For example, the term “download” http://www.microsoft.com/enus/download/

is an important keyword for matching query “Microsoft download” and hence

the URL hit would have a higher weight and influence while ranking the pages[1].

• Query independent ranking. Query independent ranking is based on the

document itself without any relation to the query. Such a ranking mechanism

helps to classify and differentiate popular and legitimate web pages from the

less popular sources. Link popularity is one such factor used in most ranking

algorithms including Google’s PageRank[13]. The score is determined by the

number of links pointing to the web page and the number of links pointing out

of it.
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Chapter 2

Challenges of Web Search Engines

2.1 Introduction

Searching for information on the internet through web search engines has become the

most common online activity during the last decade. The impact of search engines

on the daily lives of the common internet user is massive and ever-growing with more

than 90% of all internet traffic coming through search engines. The success of these

information retrieval systems lies in providing the most accurate and personalized

results to each and every individual and such levels of accuracy and relevance can

only be achieved with the knowledge of the search history and trends of its users.

The following chapter discusses the privacy issues concerning modern search engines

and some of the approaches taken towards protecting user privacy.

2.2 Privacy Concerns

Continuous innovations in search engine functionality have led to new ways of an-

swering users’ queries, such as entity answers, currency conversions, and calculators.

These modern search engines combine information about users and their queries to

infer the intent of the query. Also, in addition to the ‘organic’ results from the queries,

the search engines also display advertisements that target the users’ queries and be-

haviour. The sequence of users’ queries gives away a lot more information than we

think[14]. The search and query history can reveal a user’s preferences, interests,
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location and also sensitive data like bank details and other embarrassing content.

In 2006, AOL released a set of user search logs and it showed that re-identification of

identities is possible by just using these search logs. Simple classifiers could accurately

identify the gender and age of the user from the queries. Moreover, these logs could

also reveal the demographics information at scale from these query logs[15]. With the

advancement in machine learning and artificial intelligence and integration of modern

search engines with email, personal assistants and cloud storage, there is an increasing

concern about the privacy and security of the web user.

2.3 Approaches to protecting privacy

2.3.1 Private Information Retrieval

The problem of submitting a query to a web search engine while preserving the users’

privacy can be seen as a Private Information Retrieval (PIR) problem. In a PIR

protocol, a user can retrieve a specific value from a database while the server, which

holds the database, gets no knowledge about the data requested by the user[16].

The trivial single database PIR solution is to fetch all the data from the database

server such that the server does not get any insight into the information that the

client intends to use. However, this naive solution is not computationally feasible in

the case of search engines that store peta bytes of information in their databases.

Another improved technique suggested in [16] is to shuffle queries among different

users before submitting them to the search engines in order to confuse the server and

present a distorted profile. There exists a central node that groups a collection of

users who want to submit a query and their corresponding queries. The node re-

assigns the queries to different individuals after cryptographically hiding the source

of the query in order to ensure the privacy of the user. As a result, each user submits

an entirely different query than what he/she intended to submit and thereby avoiding

profiling by the search engine[16].

14



However, there are certain assumptions that may not hold true in all cases. Each

of the users must not be able to decrypt and thereby link a query back to the original

user. Also, the central node must not store and profile any of the users based on their

query history. And finally, while shuffling queries among random users may provide

some privacy, it could lead to extreme profile distortion and affect the quality of the

search results for the queries.

2.3.2 Anonymous web browsing

Another way of ensuring the privacy of search queries is through anonymous web

browsing. The key idea of anonymous web browsing is to avoid direct communication

with the web server by relaying communication through intermediate points on the

internet.

• Web Proxies. A web proxy is an intermediate node on the internet through

which, when configured by the user, all the web requests pass through. A

browser configured to use a proxy sends all of its URL requests to the proxy

instead of sending them directly to the target Web server and the proxy relays

the requests to the target server. The proxies can handle both HTTP and

SSL/TLS encrypted HTTPS traffic[17].

Figure 2.1 shows the flow of traffic through the internet in cases where a proxy is

configured on the client and otherwise. The traffic from clients where the proxy

is not configured (green) is routed directly to the target web server through the

internet routers. Whereas, in the case of proxy configured users (red) the traffic

is routed to the web proxy which then forwards the requests to the target web

server and the response travels back to the user through the proxy. This method

avoids direct communication between the client and the web server, which in

our case, is the web search engine.

Although this may seem like a good alternative, it does not entirely eradicate
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the problems related to privacy but rather move the threat of privacy from the

search engines to the proxies themselves[16]. The proxies will have control over

the traffic and can monitor activities of the user while forwarding the requests

to the original target. The proxies are also in a position where it is possible

to perform active Man-in-the-Middle (MITM) activities such as modifying the

response from a web server in a way to retrieve information from the client.

Figure 2.1: The flow of internet traffic with proxy configured(red) and without a
proxy (green).

• The Onion Routing (Tor). Onion routing is an infrastructure that enables

anonymous communication between two entities over a public network like the

internet. The onion routing network or the Tor network is a collection of devices

on the internet voluntarily participating in the anonymous routing mechanism.

On the regular internet, IP packets have a source IP address and a destination

IP address that can be seen by any router to which the packet arrives. In

fact, the router needs to see the IP address in order to route the packet to the

destination. But this is not the case with onion routing where the key idea is

to route traffic from a source to a destination through a series of intermediary
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routers while preserving the identity of the source and the destination nodes.

In order to achieve the level of anonymity, the sequence of onion routers in a

route is strictly defined at connection setup and each onion router can only iden-

tify the previous and next hop along a route. Data passed along the anonymous

connection appear different at each onion router and therefore data cannot be

tracked en route[18].

Figure 2.2 shows the Tor infrastructure and the flow of encrypted data across

the onion routers that facilitate anonymous communication. In order to com-

municate anonymously to Bob, Alice sends the packets to an agent router that

resides at the edge of a Tor network. This router acts like a proxy server in

charge of setting up the routers through which data will pass through. The

agent router adds layers of encryption to the original packet with different en-

cryption keys such that an intermediate router accessing the packet can online

decrypt the outermost layer revealing its nearest neighbours. Each onion router

transmitting the package only knows the addresses of its former and latter onion

routers thereby preserving anonymity at the individual router level[19].

While using Tor may seem like a fairly secure alternative to protect user privacy

from search engines, it has its own problems. Configuring Tor on a client is not

straightforward and wrong configurations can pose security risks that may later

lead to attacks[16]. Secondly, the exit nodes or nodes from which the packet

leaves the Tor network on to the public internet can see the original packet and

the final destination. This leaves a risk of traffic being monitored and in some

cases the exit nodes are run by government agencies for surveillance purposes.

Lastly, HTTP traffic through Tor introduces significant delays due to the initial

connection phase and cryptographic overhead at each of its relay points [16].

• Virtual Private Networks (VPNs). Virtual private networks are originally

used to provide secure and private internet access over an insecure public net-
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Figure 2.2: The onion routing network

work. A VPN provides a secure and encrypted tunnel from the client to the

target private network. Figure 2.3 depicts the role of VPN in ensuring privacy

while browsing the internet.

The connection between the client and the VPN terminator is encrypted and is

impossible to eavesdrop on it and reveal the contents. The packets are securely

dropped on to the ‘trusted’ private network and then routed to the target over

the public internet. The traffic may be relayed through more than one VPN

networks before it reaches its target. The web server or the search engine can

track the request back to the most recent VPN network but it is difficult to

trace the request back to the original client who initiated the request. Hence

the identity of the user is protected behind the VPN network.

However, VPNs behave similarly to Web Proxies by acting as an intermedi-

ary between the user and the server. This leads to the problem of privacy at

the VPN terminator. The VPN provider has access to the traffic, can monitor

activities and analyze the browsing trends of the user. Further, some inter-

net services put a blockade on VPNs thereby preventing users on VPNs from
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accessing their content. Finally, VPNs tend to be slower due to the encryp-

tion/decryption overhead during the transit of packets.

Figure 2.3: Virtual Private Network
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Chapter 3

Machine learning techniques in
Web Search

3.1 Introduction

Machine learning techniques have created a significant impact on a variety of domains

over the last two decades. From basic linear regression problems to advanced deep

neural networks, there has been tremendous innovation and technological advance-

ment that has helped improve and optimize today’s services.

The Information Retrieval realm too has benefited from the development of ma-

chine learning and artificial intelligence. Crawlers use machine learning to classify

relevant pages and spam ones, predict how often pages are updated and optimize

their crawl rate. Query processing modules use language models to predict the con-

text of the query and the ranking module performs document matching and ranking

based on various deep learning techniques. This chapter provides an introduction

to a few key deep learning algorithms that were considered for the project such as

Recurrent Neural Networks and the Transformer network.

3.2 Neural Networks - Architecture and Learning

Neural networks are the basic architecture in most deep learning algorithms and are

inspired by the working of the human brain that is composed of billions of layers of

neurons firing and interacting with each other. The idea of a neural network is to
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make a decision based on different input parameters by processing these inputs over

a number of layers of nodes called artificial neurons. These individual nodes perform

a specific function on the input fed to it and provide the corresponding output.

The earliest model of an artificial neuron is a perceptron, developed in the 1950s

and 1960s by the scientist Frank Rosenblatt[20]. Figure 3.1 shows the working of a

perceptron node. The node takes multiple binary inputs x1,x2,x3,...xn and produces

a single output. Each input xi has a corresponding weight wi associated with it that

determines the influence of that input on the final output. The final output is either

a binary 0 or 1 based on a selected threshold value. If the weighted sum of all the

input to the perceptron node is greater than the threshold, the output is 1 and 0 if

otherwise. The same logic can be algebraically represented as[20]:

output =

{︄
0, if

∑︁n
i=1 xi.wi ≤ threshold

1, if
∑︁n

i=1 xi.wi > threshold

Figure 3.1: Individual perceptron node

However, there is an inherent problem with the above algebraic equation. Since
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the output values are discrete, i.e either a binary 0 or 1, a small change in the input

may cause the output to flip the output entirely. This change may cascade over the

next layers resulting in a completely wrong output. In order to solve this problem,

a new type of neuron called sigmoid neuron is introduced. Sigmoid neurons do not

produce discrete values as output but rather a range of values between 0 and 1[20] as

shown in Figure 3.2. The output of a sigmoid neuron can be expressed as:

σ(z) =
1

1 + e−z

where,

z =
n∑︂

i=1

xi.wi + b

Here b = –threshold is called the bias which is a measure of ease of producing an

output value of 1 by the neuron.

Figure 3.2: Sigmoid transfer function

A neural network is formed by combining multiple nodes like the perceptrons or

sigmoid neurons over different layers in order to provide an output based on multiple

input parameters as shown in Figure 3.3. The first layer is the set of input values
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known as the input layer and the final layer is the output called the output layer.

The middle layers are called hidden layers and the number of such hidden layers

determines the depth of a neural network.

Figure 3.3 is a classic example of a neural network in which the signal flows in

just one direction i.e from the input layer to the output layer through the hidden

layers. Such a neural network in which there is only one direction of propagation of

the signal is called a feed-forward neural network. Such networks can only determine

the relationship between the input values and the output without any historical in-

formation. However, there is another variation of the neural network where the signal

flows forward as well as backward in a temporal fashion. Such neural networks are

called Recurrent Neural Networks and will be discussed in detail in Section 3.3.

Figure 3.3: A neural network with two hidden layers[20]

A neural network does not initially perform the tasks given to it with perfect

accuracy, rather it needs to be trained on the related dataset in order to ‘learn’

and understand the problem. The network is fed with training examples whose real

outputs are known before hand and the final output from the network is used to

compute the difference in these two output values, also known as the loss function.

The goal of the training stage is to run the neural network over different example

data in order to minimize the loss function. The learning stage can be classified into

two different stages[21]:
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• Forward phase. The neural network is initialized with random values of

weights and biases and the inputs for a training instance are fed into the neural

network. The neural network computes the values over the different layers and

produces the final outputs. The loss function is calculated from the difference in

the outputs and the derivative of the loss function with respect to the outputs is

computed. The next stage is to adjust the neural network parameters in order

to minimize the loss[21].

• Backward phase. In the backward phase, the gradient of the loss function with

respect to the weights in each layer starting from the layer close to the output

layer is computed. The gradient of a function gives an idea of the direction

of the steepest slope of the function. Hence, using this gradient we can find

and adjust the weights in order to find the minimum value of the loss function.

Since, the gradient calculation and updating of weights occurs in the backward

direction of the network, it is called the backward phase or backpropagation[21].

3.3 Recurrent Neural Networks

Recurrent neural networks are a modification to the classical neural networks in a way

that the output of the previous time sequence is used as input to the hidden layers of

the network. This modification enables the RNNs to have ‘memory’ of the previous

outputs and is best suited for applications with sequential data like text sentences,

time-series, and other discrete sequences[21].

The architecture of Recurrent Neural Networks can be explained using Figure 3.4.

The output (yt) at a given time instance t, is calculated from the input xt and the

activation of the previous time instance a⟨ t-1 ⟩. The output of the hidden state at

time t-1, a⟨ t - 1 ⟩ is stored and used to calculate the activation at at time t[22].

The blue box in Figure 3.4 is the individual artificial neuron in the RNN and has

a similar function as explained in Section 3.2. The working of the individual node in
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Figure 3.4: Recurrent Neural Network Architecture[22]

Figure 3.5: Inside the RNN neuron[22]

the RNN can be mathematically described as below:

at = g1(Waaa
⟨t−1⟩ +Waxx

t + ba)

yt = g2(Waya
t + by

where Waa,WaxWay are the weights, ba,by are the biases and g1 ,g2 are the activation

functions.

The learning process in Recurrent Neural Networks can be a little trickier than

classical Neural Networks because of the temporal aspect of RNNs. The usual back-

propagation method does not work in this case because it assumes there are no loops

in the network and RNNs have multiple loops in their network. Hence, a modified
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version of the backpropagation algorithm known as the Back Propagation through

Time (BPTT) is introduced to help train the RNN[23]. The key idea of BPTT is to

unfold the looped network in time so as to create multiple instances of a feed-forward

network and then use back propagation algorithm on these instances to adjust the

weights. Figure 3.6 shows the unfolding of an RNN into a loop-free feed forward

network.

Figure 3.6: Unfolded Recurrent Neural Network[24]

Recurrent Neural Networks can perform better than static networks but the train-

ing process of RNNs is complex due to the difficulty of learning long-term dependen-

cies. Back-propagating through the many layers may cause the gradients to shrink

exponentially if the weights are small but on the other hand grow towards infinity if

the weights are too large. Standard feed forward networks can deal with these expo-

nential effects because they only have a few hidden layers, but for a recurrent network

trained on a long sequence, the gradients can easily explode or vanish.[23]. An im-

provement to the traditional RNNs that preserves dependencies over long sequences

is called the Long Short Term Memory or LSTM networks.

3.4 Long Short Term Memory networks

Long Short Term Memory networks are an improvement over Recurrent Neural Net-

works by mitigating the problem of vanishing or exploding gradients discussed in the

previous section. In a long sequence of words, the influence of a word at the begin-

ning on a word towards the end of the sentence will be low in the case of Recurrent
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Neural Networks. For example, consider the sentence ‘Ulreich lived in Germany for

five years. He can speak fluent German’. In order to predict that German is the

language that the person is fluent in, we need to take the first sentence into account.

This provides context to the sentence based on which the prediction can be made.

LSTM network nodes contain what is called a ‘cell state’ that is carried through the

network so that correlations between words far apart in a long sequence can be made

possible. The cell state contains part of the information from the previous words

in a sequence that is retained over a number of cycles of ‘retaining’ and ‘forgetting’

information as it passes through different layers of the network[21]. Figure 3.7 shows

the working of a single node in an LSTM network. Unlike the RNN node, the LSTM

node has four neural gates inside it - three sigmoid gates and a tanh activation

function. Each of these gates plays a role in retaining, forgetting and adding new

information into the cell state.

The first gate is a sigmoid activation that combines the previous hidden state ht-1

and current input xt. The output of the first sigmoid (ft) is between 0 and 1, with a

value of 0 indicating that the cell state Ct-1 be completely forgotten, and 1 meaning

retaining the entire cell state information from the previous levels. The second and

Figure 3.7: LSTM network[24]

third gates determine the amount of new information from the input to let into the

cell state highway. The second layer combines the input and the previous hidden
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state over a sigmoid function (it) that decides the amount of new input information

to be allowed into the cell state while the third layer is a new activation function in

the form of a hyperbolic tangent function. A tanh function maps inputs into a value

between -1 and 1 as shown in Figure 3.8. The output of the tanh activation is the

new candidate cell state value C∼
t and is added to the previous cell state Ct-1 after

being conditioned on the output of the second layer it.

Figure 3.8: Hyperbolic tangent activation

Finally, the last sigmoid activation is called the output gate (ot) that determines

the amount of new cell state information Ct to be leaked into the hidden state of

the next level ht+1. Conceptually, the output vectors of each layer, ft, it and ot are

known as forget, input and output gates each with the role of forgetting the previous

cell state, adding new information to the cell state and leaking the new cell state

information to the next hidden state respectively. The cell state equation can be

mathematically expressed as[21]:

c⃗t = f⃗ .c⃗t−1 + i⃗.c⃗

From the above equation, the cell state information is continuously updated by forget-

ting previous cell state information and adding new information based on the newer
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inputs with the help of the gate vectors. This allows more control to find correlations

between words in a sentence in order to understand the context accurately.

However, even with the new architecture of LSTM networks, RNNs and LSTMs are

highly sequential in nature when it comes to language modelling and understanding

sentence context. It takes one word at a time into account while trying to connect

different words in a sentence together to extract its true intent. The sequential nature

comes with problems of high and inefficient computation that is time-consuming and

one that prevents parallelization[25]. A new and state-of-the-art technique based

on an attention model is discussed in Section 3.5 that overcomes the problems of

sequential RNNs and is widely researched on especially for language modelling.

3.5 Transformer Networks

The transformer network model was introduced with the goal of reducing computation

time in sequence modelling and translation as compared to RNNs and LSTMs. The

transformer model consists of different layers of encoder-decoder blocks that can be

run in parallel in order to speed up computation and reduce time. Figure 3.9 shows

the architecture of a single encoder-decoder block with its sub-layers as proposed

in[25].

The overall network consists of six layers of encoders and decoders, each with

identical architecture but varying inputs. The initial word input is converted into a

vector form known as the input embedding and is passed on to the first encoder block

along with positional encoding i.e the information about the positions of each word

in the sequence. The outputs from each encoder blocks are fed to the subsequent

encoder block and the final output from the last encoder is fed to all of the decoder

blocks

29



Figure 3.9: Transformer network architecture[25]

3.5.1 Encoder and Decoder blocks

• Encoder. The encoder block is composed of two sub-layers namely the Multi-

Head Attention layer and the Feed Forward neural network layer. The functions

of the Multi-Head Attention layer and the Feed Forward network is discussed in

the next sections. The main idea of the encoder blocks is to transform the input

sequence into a continuous sequence of vectors that contain information on how

each word in the sequence relates to the other words in the same sequence.

There is also a residual connection after each sub-layer in the encoder block

that adds and normalizes the input with the output of the sub-layer[25].
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• Decoder. The decoder stack works similar to the encoder with a Multi-Head

Attention layer and a Feed Forward network layer with residual connections

and layer normalisation functions. However, there is an additional sub-layer

known Masked Multi-Head Attention layer. This layer is introduced with the

purpose of preventing the decoder from gaining information on future words in

the sequence while decoding a particular word. The output from this sub-layer

passes on as input to the second attention layer, which also takes input from

the outputs of the encoder block.

Further, there is a Feed Forward layer and a Linear layer that processes the

encoded vectors before it is fed to a Classifier. The Classifier layer generates the

probabilities for each of the different sets of words and the word with the highest

probability is chosen as the predicted word. Finally, the output generated from

the previous steps of the decoder is fed as the input to the first decoder block[25].

3.5.2 Self Attention

The attention function in the encoder and decoder blocks is used to draw re-

lations between the word in consideration to other words in the sequence. For

example, in the sentence ‘John went to bed early because he was tired’, the

words ‘John’,‘he’ and ‘tired’ have a high correlation among them while words

like ‘bed’ and ‘tired’ have little relation between them. The attention function

uses three vectors, the Query vector (Q), the Key vector (K) and the Value vec-

tor (V) and all three vectors are derived from the input embedding of the words

in the sequence. The attention layer produces an output that is a weighted

sum of the value vectors, where the weight is a function of the correlation be-

tween the Query and Key vectors. The attention function here is a dot product

attention represented as below[25]:

Attention(Q,K, V ) = Softmax(
Q.KT

√
dk

)V
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where dk is the dimension of the queries and keys.

The attention function is performed on different values of Q,K and V matrices

so that it provides a different representational sequence and the final score is the

concatenation of these different representations. This would provide the model

with the ability to focus on different positions in the sequence and prevent the

word representation of a particular word from dominating on itself[25]. Figure

3.10 is a representation of the individual self attention layer and the combined

multi-head attention layer.

Self-attention based models are a notable improvement to sequential models

such as RNNs, LSTMs and GRUs in their ability to parallelize certain func-

tions, thereby reducing computational time. Since, each of the self attention

instances in the multi-head attention layer is independent of each other, they

can be executed in parallel. Further, learning long-range dependencies is a key

challenge in many sequence transduction models. The main factor affecting

the ability of these models to learn such dependencies is the length of the paths

forward and backward signals have to traverse in the network. Transformer net-

works have shorter paths between any combination of positions in the input and

output sequences and hence it is easier to learn long-range dependencies[25].
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Figure 3.10: Attention layer in a Transformer network[25]
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Chapter 4

Experimentation and Results

4.1 Introduction

In the last few chapters, we discussed the significance of web search engines in to-

day’s internet and the role it plays in our day-to-day activities. The architecture and

behaviour of search engines were explored to gain an understanding of the core work-

ing of all common search engines. Further, the major concerns around modern web

search engines with regard to user privacy were examined and approaches to mitigate

the problems were identified.

However, these approaches could not completely solve the privacy problem and

hence a local alternative to the web search engine is proposed. In order to create a

local search engine nearly as powerful as online search engines, we dived into various

machine learning techniques that could substantially improve the performance and

quality of search results. This chapter describes the approach to creating a local search

engine with varying search techniques, running on a single Linux virtual machine.

4.2 Methods and Procedure

The prototype search engine consists of three basic modules - a python-based web

crawler, a non-relational database and an interactive web app capable of collecting

user queries and displaying the search results. The engine runs on a virtual machine

with 2 CPU cores, 4GB of memory, 40 GB of disk space and Ubuntu 20.04 LTS (Focal

34



Fossa) operating system over a VMware hypervisor.

Due to resource constraints in the VM, the prototype search engine was limited

to gathering and searching information on a specific domain and not the entire web.

However, the same model can be scaled with sufficient hardware resources to widen

the scope of the search engine. A collection of cooking recipes was chosen as the

domain for the prototype with the python-based web crawler scraping over 36,000

recipes from the web. These recipes were processed and stored in a non-relational

database called Elasticsearch. Elasticsearch is an open-sourced database based upon

the famous search library Apache Lucene[26]. Finally, the query and search result

module is a Python web app running on the Flask web app framework on the same

virtual machine. Figure 4.1 describes the components and behaviour of the prototype

search engine.

Figure 4.1: Composition of the local search engine

To understand the impact of machine learning techniques in web information re-

trieval systems, an experiment is conducted to compare the performance of the proto-

type search engine in terms of relevant search results in different scenarios. Different
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techniques are employed to help the search engine retrieve relevant search results

namely - TF-IDF, Laser and BERT against a standard set of queries and the search

output quality is compared.

The traditional term search technique, Term-frequency Inverse document frequency

(TF-IDF) is an old but useful technique used for document retrieval against a query.

The method calculates the number of occurrences of each indexed term in each docu-

ment known as the term frequency of that term in that document. Also, we compute

a parameter that gives an indication of how rare a term is in the entire collection of

documents known as document frequency. Now, each term in the query is used to

compute the TF-IDF score for every document as per the following equation:

TF − IDF =
ft,d

log(N
nt
)

where ft,d is the number of occurrences of term t in document d, N is the total number

of documents in the collection and nt is the number of documents containing term t.

Those documents with the highest scores for the given query are picked and returned

to the user.

LASER or Language Agnostic SEntence Representation is a sentence representa-

tion model based on Bi-directional LSTM encoders described in Section 3.4. Bi-

directional encoders capture a better understanding of the sequence as they can

generate correlations between words that appear before and after the word under

consideration. The LASER model produces an output vector of dimension 1024[27].

BERT or Bi-directional Encoder Representations from Transformers is a language

model developed by Google and is based on encoders from the transformer network

described in Section 3.5. A pre-trained BERT model composed of 12 layers is used

and it produced an output vector of dimension 768.

All documents are pre-processed and the vector representations are stored in the

database for each document. Cosine similarity function is used to calculate the simi-

larity between the document and the query. Cosine similarity function aims to calcu-
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late how similar two vectors are based on the cosine of the angle formed by those two

vectors. Each web document is also scored based on query independent parameters

and is assigned a weight based on the content in its title, description and body.

4.3 Results and Discussion

In order to compare the different document matching techniques, the relevance of the

search results is evaluated with the help of Precision and Recall metrics. Precision is

the ratio of the number of relevant documents retrieved to the total number of the

documents retrieved][3]. Precision can be expressed as:

Precision, P =
# Relevant documents retrieved

# Documents retrieved

While precision gives an idea of how many relevant results are fetched, recall provides

information on the number of relevant documents missed. Recall is the ratio of the

number of relevant documents retrieved to the total number of relevant documents

in the entire document collection[3].

Recall, R =
# Relevant documents retrieved

# Relevant documents in collection

However, there is a trade-off problem associated with Precision and Recall. One can

achieve a recall value of 1 by fetching all documents from the collection irrespective

of the query. But this would mean a poor precision value. On the other hand,

precision can be improved by reducing the number of documents fetched but may

result in missing out on some relevant documents, thereby decreasing recall. In order

to mitigate this problem and to arrive at a balanced trade-off, the F measure is used

to evaluate search performance. The F measure is a single measure that trades off

precision versus recall, and is the weighted harmonic mean of precision and recall[3]:

F =
1

α 1
P
+ (1− α) 1

R

=
(β2 + 1)PR

β2P +R
, where β2 =

1− α

α

The test was conducted by running a set of 50 standard queries on the search

engine in three different cases, each with one of the above-mentioned techniques for
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document matching. A higher value of F meant that the search results were more

relevant, and a lower value indicated less relevant search results. Table 4.1 outlines

the results of the test for the three different techniques with α = 0.5 or β = 1. This

value of β = 1 provides a balanced emphasis on precision and recall. A value of β < 1

prioritizes precision over recall and vice-versa.

Table 4.1: Precision, Recall and F values for different document matching techniques

Method Precision Recall F measure

TF-IDF 0.252 0.370 0.150

LASER 0.374 0.441 0.201

BERT 0.410 0.554 0.237

From Table 4.1, it is inferred that the TF-IDF technique provides the least quality

search output with regard to relevancy. The TF-IDF technique does not account

for the semantic context of the query but rather retrieves those documents with an

exact word match. Documents that may contain relevant information on the query

may be missed out because it does not contain the search terms used in the query.

However, LASER and BERT in this case, perform better in providing relevant search

results because of these models’ ability to extract the context of the query rather

than merely matching words. There is a slight improvement in the performance of

the BERT model over LASER due to the fact that some of the queries were too long

for the LSTM model to predict the context accurately.

The vector representations of words and sentences that convey the same meaning

are closely related. Hence, their cosine similarity will be higher than those words

or sentences with a different meaning. Thus, mapping the text sequences onto the

vector space and correlating these vectors in order to identify similar information is

proved to improve the performance of information retrieval systems.
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Appendix A: Code Listing

A.1 New and modified code

This section describes the code snippets that were used to conduct the experiment in

Section 4.2. The code is written in Python 3.0 and is either written from scratch or

borrowed and modified from the respective cited sources. Modified code is labelled

with the author of the modification and reason for modification. The source code is

also published on Github in repositories [28] and [29].

Listing A.1: Vector mapping of text documents - vectorize.py
from e l a s t i c s e a r c h import E l a s t i c s e a r c h
from b e r t s e r v i n g . c l i e n t import BertCl i ent
import j s on
from l aserembeddings import Laser
import sys

au t h o r = "Bijin Benny"

ema i l = "bijin@ualberta.ca"

l i c e n s e = "MIT"

v e r s i o n = "1.0"

LASER = ’laser_vector ’

BERT = ’bert_vector ’

l a s e r = Laser ( )

#Elasticsearch DB client

es = E l a s t i c s e a r c h ( hos t s="http :// bijin:Samsung1!@localhost :9200/" )

#Client connection to local BERT server

bc = BertCl i ent ( ip=’localhost ’ , output fmt=’list’ )

"""

doVectorize () pulls entries from the database and maps the text sequences into the

vector space using either one of LASER or BERT based on the input parameter.

BERT produces 768 dimensional vector while LASER outputs a 1024 dimensional vector

Argument : vector_type (String) --> bert_vector or laser_vector

"""

def doVector i ze ( ve c to r type ) :
"""

Elastic search has a max search result limit of 10000 documents

Hence , loop through until all documents are fetched

"""
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while (True ) :

#Search query to fetch all documents with empty vector field

re sponse = es . s earch ( index="web -en" , s i z e =10000 ,body={
"query" : {

"bool" : {
"must_not" : {

"exists" : {
"field" : v e c to r type } } } }

})
print ( re sponse )
h i t s = response [ ’hits’ ] [ ’hits’ ]

#If length of hits list is 0, then all documents were fetched

if ( len ( h i t s ) == 0 ) :
break

data = [ ]
for h i t in h i t s :

doc map = {}
doc id = h i t [ ’_id’ ]
t ex t = h i t [ ’_source ’ ] [ ’title’ ]
if ( t ex t == ’’ or len ( t ex t )>200):

t ex t = ’N/A’

if ( v e c to r type is LASER) :
t e x t v e c t o r = l a s e r . embed sentences ( [ t ex t ] , lang=’en’ ) [ 0 ]

else :
t e x t v e c t o r = bc . encode ( [ t ex t ] ) [ 0 ]

doc map [ doc id ] = t e x t v e c t o r
data . append ( doc map )
source to update = {"doc" : { vec to r type : t e x t v e c t o r } }

#Update the document in the database with the new vector values

r = es . update ( index="web -en" , id=doc id , body=source to update )
print ( str ( doc id )+" "+ str ( r ) )

#Main function

def main ( ) :
e r ror msg = "**********************************\ nInvalid script usage !\n \

Usage : python vectorize.py <vector_type\nVector type : ’LASER ’ or ’BERT ’\n \

**********************************"

if ( len ( sys . argv ) < 2 ) :
sys . e x i t ( er ror msg )

vec to r = str ( sys . argv [ 1 ] ) . lower ( )
if ( not ( vec to r == ’laser’ or vec to r == ’bert’ ) ) :

sys . e x i t ( er ror msg )
vec to r = "" . j o i n ( [ vector , "_vector" ] )
doVector i ze ( vec to r )

if name == "__main__" :
main ( )

Listing A.2: Code to run tests and generate results - run tests.py
from ppr int import ppr int
from e l a s t i c s e a r c h import E l a s t i c s e a r c h
from b e r t s e r v i n g . c l i e n t import BertCl i ent
import pandas as pd
from l aserembeddings import Laser
import sys

au t h o r = "Bijin Benny"

ema i l = "bijin@ualberta.ca"

l i c e n s e = "MIT"
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v e r s i o n = "1.0"

#Client connection to local BERT server

bc = BertCl i ent ( ip=’localhost ’ , output fmt=’list’ )

#Instance of the LASER language model

l a s e r = Laser ( )

#Elasticsearch DB client

c l i e n t = E l a s t i c s e a r c h ( hos t s="http :// bijin:Samsung1!@localhost :9200/" )

"""

createScript function creates custom database queries based on the search type.

The search type includes basic TF-IDF term search , LASER vector and

BERT vector similarity searches. The function returns a unique query

for each of the scenarios.

Arguments :

query : Text form of the query

search type : Type of search , i.e term , laser or bert

query_vector : Vector form of the query for cosine similarity

"""

def c r e a t e S c r i p t ( query , search type , que ry vec to r ) :
if ( s ea r ch type == ’term’ ) :

return { "simple_query_string" : {
"query" : query ,
"fields" : [ "title" ] ,
"default_operator" : "and"

}
}

elif ( s ea r ch type == ’bert’ ) :
return {
"script_score" : {
"query" : {

"multi_match" : {
"query" : query ,

"type" : "best_fields" ,
"fields" : [ "title" ]
}

} ,
"script" : {

"source" : "cosineSimilarity(params.query_vector ,’bert_vector ’) + 1.0" ,
"params" : {"query_vector" : que ry vec to r }

}
}}

else :
return {
"script_score" : {
"query" : {

"multi_match" : {
"query" : query ,

"type" : "best_fields" ,
"fields" : [ "title" ]
}

} ,
"script" : {

"source" : "cosineSimilarity(params.query_vector ,’laser_vector ’) + 1.0" ,
"params" : {"query_vector" : que ry vec to r }

}
} }

"""

doRunTest function performs the tests based on the 50 standard queries.

The queries are loaded from the ’Recipes.csv’ file and run against the

search engine. The output is a csv file ’results_ <type >.csv’ containing

the top 10 results for each query item

Arguments :

search_type : Type of search technique to run
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"""

def doRunTest ( s ea r ch type ) :
#Load the input test queries

df = pd . r ead c sv ( ’Recipes.csv’ )

r e su l tMat r i x = [ [ ’N/A’ for i in range ( 5 0 ) ] for j in range ( 1 0 ) ]

#Loop through each query and collect the results

for i in range ( len ( df ) ) :
r e c i p e = df . l o c [ i , "Recipe" ]
que ry vec to r = ’’

#Generate the vector embedding of the query in case of laser or bert

if ( s ea r ch type == ’bert’ ) :
que ry vec to r = bc . encode ( [ r e c i p e ] ) [ 0 ]

elif ( s ea r ch type == ’laser’ ) :
que ry vec to r = l a s e r . embed sentences ( [ r e c i p e ] , lang=’en’ ) [ 0 ]

#Generate the database query based on the search type

q = c r e a t e S c r i p t ( r e c ipe , search type , que ry vec to r )

#Database query

re sponse = c l i e n t . s earch (
index="web -en" ,
body={

"size" : 10 ,
"query" : q ,
"_source" : {"includes" : [ "title" ]}
}

)

#Aggregate results and save to output csv file

r aw r e s u l t s = response [ ’hits’ ] [ ’hits’ ]
for j in range ( len ( r aw r e s u l t s ) ) :

r e su l tMat r i x [ j ] [ i ] = r aw r e s u l t s [ j ] [ ’_source ’ ] [ ’title’ ]

for i in range ( 1 0 ) :
df [ ’Result ’+str ( i +1)] = re su l tMat r i x [ i ]

d f . t o c sv ( ’results_ ’+search type+’.csv’ , encoding=’utf -8’ )

#Main function

def main ( ) :
e r ror msg = "**********************************\ nInvalid script usage !\n \

Usage : python interactive_query.py <Type > \nType : ’TERM ’, ’LASER’ or \

’BERT ’\n**********************************"

if ( len ( sys . argv ) < 2 ) :
sys . e x i t ( er ror msg )

param = str ( sys . argv [ 1 ] ) . lower ( )
if ( not ( param == ’laser’ or param == ’bert’ or param == ’term’ ) ) :

sys . e x i t ( er ror msg )
doRunTest (param)

if name == "__main__" :
main ( )

Listing A.3: Server code for search engine - index.py (Server)[30]
#!/usr/bin/env python

# -*- coding: utf -8 -*-

"""

The web server to handle requests from the clients to search queries

and handle requests for crawling new web pages. The server runs on the

python web -server framework called Flask. Incoming client requests are

handled and tasks are added to Redis task queues for processing.
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"""

au th o r = "Anthony Sigogne"

c o p y r i g h t = "Copyright 2017, Byprog"

ema i l = "anthony@byprog.com"

l i c e n s e = "MIT"

v e r s i o n = "1.0"

import re
import os
import u r l
import c rawle r
import r eque s t s
import j s on
import query
from f l a s k import Flask , request , j s o n i f y
from language import l anguages
from r e d i s import Redis
from rq import Queue
from mul t i p ro c e s s i ng import Process
from mul t i p ro c e s s i ng import Queue as Q
from tw i s t ed . i n t e r n e t import r e a c t o r
from rq . de co ra to r s import job
from scrapy . c rawle r import CrawlerRunner
from u r l l i b . parse import u r l pa r s e
from datet ime import datet ime
from e l a s t i c s e a r c h import E l a s t i c s e a r c h
from f l a s k r q 2 import RQ
import l o gg ing
from tw i s t ed . i n t e r n e t import r e a c t o r

#Initialize the flask application

app = Flask ( name )
with app . app context ( ) :

from he lpe r import ∗

"""

__author__ : Bijin Benny

__email__ : bijin@ualberta.ca

__license__ : MIT

__version__ : 1.0

Modification : The native Redis library used in the original reference is

outdated and is modified to use the new redis library specific

to Flask apps

Configure and intialize Redis task queue

"""

app . c on f i g [ ’RQ_REDIS_URL ’]=’redis :// localhost :6379/0 ’

r ed i s c onn = RQ(app )

"""

__author__ : Bijin Benny

__email__ : bijin@ualberta.ca

__license__ : MIT

__version__ : 1.0

Modification : The deprecated elasticsearch library elasticsearch_dsl is

removed and replaced with the new elasticsearch library for

ES clients

Load environment variables and create elastic search DB client

"""

host = os . getenv ( "HOST" )
user = os . getenv ( "USERNAME" )
pwd = os . getenv ( "PASSWORD" )
port = os . getenv ( "PORT" )
es = E l a s t i c s e a r c h ( hos t s="http ://"+user+":"+pwd+"@"+host+":"+port+"/" )
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"""

__author__ : Bijin Benny

__email__ : bijin@ualberta.ca

__license__ : MIT

__version__ : 1.0

Modification : Logging framework is added to the code to enable better debugging

through logs

Set logging information

"""

l o gg ing . bas i cCon f i g ( f i l ename=datet ime . now ( ) . s t r f t ime ( ’server_%d_%m_%Y.log’ ) ,
l e v e l=logg ing .DEBUG, format=’%( asctime)s %( levelname)-8s %( message)s’ )

l ogg ing . i n f o ( es . i n f o ( ) )

"""

__author__ : Bijin Benny

__email__ : bijin@ualberta.ca

__license__ : MIT

__version__ : 1.0

Modification : The DB mapping/schema used in the orginal code is specific to

the application the code was used for and needs to be modified

to store information specific to the project experiment

Database schema used to create the DB index if the server is running for

the first time. Ignores the schema if the index already exists.

"""

s e t t i n g s = {
"settings" : {

"number_of_shards" : 1 ,
"number_of_replicas" : 0

} ,
"mappings" : {

"properties" : {
"url" : {

"type" : "keyword"

} ,
"domain" :{

"type" : "keyword"

} ,
"title" :{

"type" : "text" ,
"analyzer" : "english"

} ,
"description" :{

"type" : "text" ,
"analyzer" : "english"

} ,
"body" :{

"type" : "text" ,
"analyzer" : "english"

} ,
"weight" :{

"type" : "long"

} ,
"bert_vector" :{

"type" : "dense_vector" ,
"dims" : 768

} ,
"laser_vector" :{

"type" : "dense_vector" ,
"dims" : 1024

}
}

}

}
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es . i n d i c e s . c r e a t e ( index=’web -en’ , i gno r e =400 ,body=s e t t i n g s )

"""

Server endpoint for crawl requests. Crawl requests with list of urls

to crawl is handled by this handler

URL : /explore

Method : HTTP POST

POST Data : url - list of urls to explore

Returns success or error message depending on the task being processed

in the Redis queue.

"""

@app . route ( "/explore" , methods=[’POST’ ] )
def exp lo r e ( ) :

data = dict ( ( key , r eque s t . form . get ( key ) ) for key in r eque s t . form . keys ( ) )
if "url" not in data :

raise Inva l idUsage ( ’No url specified in POST data’ )

l ogg ing . i n f o ( "launch exploration job" )
job = exp l o r e j ob . queue ( data [ "url" ] )
job . perform ( )

return "Exploration started"

@redis conn . job ( ’low’ )
def exp l o r e j ob ( l i n k ) :

"""

Explore a website and index all urls (redis -rq process ).

"""

l o gg ing . i n f o ( "explore website at : %s"%l i n k )

try :
l i n k = ur l . crawl ( l i n k ) . u r l

except :
return 0

def f ( q ) :
try :

"""

__author__ : Bijin Benny

__email__ : bijin@ualberta.ca

__license__ : MIT

__version__ : 1.0

Modification : The original code used CrawlerProcess class from

scrapy library to crawl web pages. However , CrawlerProcess class could

not run parallely in Redis tasks threads. CrawlerProcess was replaced by

CrawlerRunner class that could run parallely in multiple Redis tasks

"""

runner = CrawlerRunner ({
’USER_AGENT ’ : "Mozilla /5.0 (X11; Linux x86_64) AppleWebKit /537.36 \

(KHTML , like Gecko) Chrome /55.0.2883.75 Safari /537.36" ,
’DOWNLOAD_TIMEOUT ’ : 1 00 ,
’DOWNLOAD_DELAY ’ : 0 . 2 5 ,
’ROBOTSTXT_OBEY ’ : True ,
’HTTPCACHE_ENABLED ’ : False ,
’REDIRECT_ENABLED ’ : False ,
’SPIDER_MIDDLEWARES ’ : {
’scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware ’ : True ,
’scrapy.spidermiddlewares.httperror.HttpErrorMiddleware ’ : True ,
’scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware ’ : True ,
’scrapy.extensions.closespider.CloseSpider ’ : True
} ,
’CLOSESPIDER_PAGECOUNT ’ : 500 #only for debug

})
runner . crawl ( c rawle r . Crawler , a l lowed domains=[ u r l p a r s e ( l i n k ) . n e t l o c ] ,
s t a r t u r l s = [ l ink , ] , e s c l i e n t=es , r ed i s c onn=red i s c onn )
d = runner . j o i n ( )
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d . addBoth ( lambda : r e a c t o r . stop ( ) )
r e a c t o r . run ( )
q . put (None )

except Exception as e :
q . put ( e )

q = Q( )
p = Process ( t a r g e t=f , args=(q , ) )
p . s t a r t ( )
r e s u l t = q . get ( )
p . j o i n ( )

if r e s u l t is not None :
raise r e s u l t

return 1

"""

Server endpoint to handle search queries from the web -client.

Forwards the query to the Elasticsearch DB and return the top

relevant results.

URL : /search

Method : HTTP POST

POST Data : query - The search query

hits - The number of results to be returned

start - Start number for the hits (for pagination purpose)

"""

@app . route ( "/search" , methods=[’POST’ ] )
def search ( ) :

def f o rma t r e s u l t ( h i t , h i g h l i g h t ) :
#Highlight title and description

t i t l e = h i t [ "title" ]
d e s c r i p t i o n = h i t [ "description" ]
if h i gh l i g h t :

if "description" in h i gh l i g h t :
d e s c r i p t i o n = h i gh l i g h t [ "description" ] [ 0 ]+ "..."

elif "body" in h i gh l i g h t :
d e s c r i p t i o n = h i gh l i g h t [ "body" ] [ 0 ]+ "..."

#Create false title and description for better user experience

if not t i t l e :
t i t l e = h i t [ "domain" ]

if not d e s c r i p t i o n :
d e s c r i p t i o n = ur l . c r e a t e d e s c r i p t i o n ( h i t [ "body" ])+"..."

return {
"title" : t i t l e ,
"description" : d e s c r i p t i on ,
"url" : h i t [ "url" ] ,
"thumbnail" : h i t . get ( "thumbnail" , None )

}

#Analyze and validate the user query

data = dict ( ( key , r eque s t . form . get ( key ) ) for key in r eque s t . form . keys ( ) )
l ogg ing . i n f o ( "[search request data : "+ str ( data ) )
if "query" not in data :

raise Inva l idUsage ( ’No query specified in POST data’ )
s t a r t = int ( data . get ( "start" , "0" ) )
h i t s = int ( data . get ( "hits" , "10" ) )
if s t a r t < 0 or h i t s < 0 :

raise Inva l idUsage ( ’Start or hits cannot be negative numbers ’ )
groups = re . s earch ( "(site :(?P<domain >[^ ]+))?( ?(?P<query >.*))?" ,

data [ "query" ] ) . g roupd ic t ( )
l ogg ing . i n f o ( "Expression query : " + str ( groups [ "query" ] ) )

"""

__author__ : Bijin Benny

__email__ : bijin@ualberta.ca
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__license__ : MIT

__version__ : 1.0

Modification : The referenced code included searching web pages

based on their domains as well as search queries. Domain search was irrelevant

to the experiment use case and the code is modified to perform only query search

Send search request to Elastic search DB with the user query

"""

re sponse = es . s earch ( index="web -en" , body=query . exp r e s s i on que ry ( groups [ "query" ] ) )
l ogg ing . i n f o ( "Raw response" + str ( re sponse ) )
r e s u l t s = [ ]

#Process , sort and return the results back to the user

for domain bucket in re sponse [ ’aggregations ’ ] [ ’per_domain ’ ] [ ’buckets ’ ] :
for h i t in domain bucket [ "top_results" ] [ "hits" ] [ "hits" ] :

r e s u l t s . append ( ( f o rma t r e s u l t ( h i t [ "_source" ] ,
h i t . get ( "highlight" , None ) ) , h i t [ "_score" ] ) )

l ogg ing . i n f o ( "Before Sort Results :" + str ( r e s u l t s ) )
r e s u l t s = [ r e s u l t [ 0 ] for r e s u l t in −
sorted ( r e s u l t s , key=lambda r e s u l t : r e s u l t [ 1 ] , r e v e r s e=True ) ]
l ogg ing . i n f o ( "After Sort Results :" + str ( r e s u l t s ) )

t o t a l = len ( r e s u l t s )
r e s u l t s = r e s u l t s [ s t a r t : s t a r t+h i t s ]
l ogg ing . i n f o ( "Total results : "+ str ( t o t a l ) )

return j s o n i f y ( t o t a l=to ta l , r e s u l t s=r e s u l t s )

Listing A.4: Client side code for search engine - index.py (Client)[31]
#!/usr/bin/env python

# -*- coding: utf -8 -*-

"""

Client facing flask application that receives search requests from the user and

forwards the requests to the back -end server for processing. The results from

the back -end are received and displayed on the browser.

"""

au th o r = "Anthony Sigogne"

c o p y r i g h t = "Copyright 2017, Byprog"

ema i l = "anthony@byprog.com"

l i c e n s e = "MIT"

v e r s i o n = "1.0"

import os
import r eque s t s
from u r l l i b import parse
from f l a s k import Flask , request , j s on i f y , r ender template

#Initialize flask app and load environment variables

app = Flask ( name )
host = os . getenv ( "HOST" )
port = os . getenv ( "PORT" )

"""

End point for search requests. Receives search queries and forwards it to

back -end.

Method : HTTP GET

Request Parameters : query - The search query

hits - The number of results to be returned

start - Start number for the hits (for pagination purpose)

"""

@app . route ( "/" , methods=[’GET’ ] )
def search ( ) :
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#Parse and analyze HTTP GET request.

query = reques t . a rgs . get ( "query" , None )
s t a r t = reques t . a rgs . get ( "start" , 0 , type=int )
h i t s = reque s t . a rgs . get ( "hits" , 10 , type=int )
if s t a r t < 0 or h i t s < 0 :

return "Error , start or hits cannot be negative numbers"

#If valid query exists , create a request and forward to back -end server

if query :
try :

r = r eque s t s . post ( ’http ://%s:%s/search ’%(host , port ) , data = {
’query’ : query ,
’hits’ : h i t s ,
’start’ : s t a r t

})
except :

return "Error , check your installation"

#Get response data and compute range of results pages

data = r . j son ( )
i = int ( s t a r t / h i t s )
maxi = 1+int ( data [ "total" ] / h i t s )
range pages = range ( i −5, i+5 if i+5 < maxi else maxi ) if i >= 6
else range (0 ,maxi if maxi < 10 else 10)

#Display the list of relevant results

return r ender template ( ’spatial/index.html’ , query=query ,
r e sponse t ime=r . e l apsed . t o t a l s e c ond s ( ) ,
t o t a l=data [ "total" ] ,
h i t s=h i t s ,
s t a r t=s ta r t ,
range pages=range pages ,
r e s u l t s=data [ "results" ] ,
page=i ,
maxpage=maxi−1)

#Return to homepage (no query)

return r ender template ( ’spatial/index.html’ )

#Jinja Custom filters for presentation#

@app . t emp l a t e f i l t e r ( ’truncate_title ’ )
def t r u n c a t e t i t l e ( t i t l e ) :

"""

Truncate title to fit in result format.

"""

return t i t l e if len ( t i t l e ) <= 70 else t i t l e [ : 7 0 ]+ "..."

@app . t emp l a t e f i l t e r ( ’truncate_description ’ )
def t r un c a t e d e s c r i p t i o n ( d e s c r i p t i o n ) :

"""

Truncate description to fit in result format.

"""

if len ( d e s c r i p t i o n ) <= 160 :
return d e s c r i p t i o n

cut de s c = ""

cha ra c t e r c oun t e r = 0
for i , l e t t e r in enumerate ( d e s c r i p t i o n ) :

cha ra c t e r c oun t e r += 1
if cha ra c t e r c oun t e r > 160 :

if l e t t e r == ’ ’ :
return cu t de s c+"..."

else :
return cu t de s c . r s p l i t ( ’ ’ , 1 ) [ 0 ]+ "..."

cu t de s c += de s c r i p t i o n [ i ]
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return cu t de s c

@app . t emp l a t e f i l t e r ( ’truncate_url ’ )
def t r un c a t e u r l ( u r l ) :

"""

Truncate url to fit in result format.

"""

u r l = parse . unquote ( u r l )
if len ( u r l ) <= 60 :

return u r l
u r l = u r l [ : −1 ] if u r l . endswith ( "/" ) else u r l
u r l = u r l . s p l i t ( "//" , 1 ) [ 1 ] . s p l i t ( "/" )
u r l = "%s/.../%s"%(ur l [ 0 ] , u r l [−1])
return u r l [ : 6 0 ]+ "..." if len ( u r l ) > 60 else u r l

A.2 Omitted code

The following listings represent code snippets present in the actual reference ([30],

[31]) that were removed from the code base for the experiment because they were

either deprecated or irrelevant to the use case.

Listing A.5: Omissions from index.py (Client)[31]
#!/usr/bin/env python

# -*- coding: utf -8 -*-

au th o r = "Anthony Sigogne"

c o p y r i g h t = "Copyright 2017, Byprog"

ema i l = "anthony@byprog.com"

l i c e n s e = "MIT"

v e r s i o n = "1.0"

"""

The following function of referencing a website using the url and author email is

irrelevant to the search engine use case and is ommited from the working code.

URL : /reference

Request the referencing of a website.

Method : POST

Form data :

- url : url to website

- email : contact email

"""

@app . route ( "/reference" , methods=[’POST’ ] )
def r e f e r e n c e ( ) :

# POST data

data = dict ( ( key , r eque s t . form . get ( key ) ) for key in r eque s t . form . keys ( ) )
if not data . get ( "url" , Fa l se ) or not data . get ( "email" , Fa l se ) :

return "Vous n’avez pas renseigne l’URL ou votre email."

# query search engine

try :
r = r eque s t s . post ( ’http ://%s:%s/reference ’%(host , port ) , data = {

’url’ : data [ "url" ] ,
’email’ : data [ "email" ]

})
except :

return "Une erreur s’est produite , veuillez reessayer ulterieurement"
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return "Votre demande a bien ete prise en compte et \

sera traitee dans les meilleurs delais."

Listing A.6: Omissions from index.py (Server)[30]
#!/usr/bin/env python

# -*- coding: utf -8 -*-

au th o r = "Anthony Sigogne"

c o p y r i g h t = "Copyright 2017, Byprog"

ema i l = "anthony@byprog.com"

l i c e n s e = "MIT"

v e r s i o n = "1.0"

import re
import os
import u r l
import c rawle r
import r eque s t s
import j s on
import query
from f l a s k import Flask , request , j s o n i f y
from e l a s t i c s e a r c h d s l . connect i ons import connec t i ons
from e l a s t i c s e a r c h d s l import Index , Search , Mapping
from language import l anguages
from r e d i s import Redis
from rq import Queue
from rq . de co ra to r s import job
from scrapy . c rawle r import CrawlerProcess
from u r l l i b . parse import u r l pa r s e
from datet ime import datet ime

"""

connections module from the elastic_dsl.connections is a deprecated library used

to create client connections to the Elasticsearch database. It is replaced with

the new elasticsearch library

"""

c l i e n t = connect i ons . c r e a t e c onne c t i on ( hos t s=hosts , http auth=http auth , port=port )

"""

The native library to create Redis task queues is old and replaced with the newer

library that is suited for flask applications called flask_rq2

"""

r ed i s c onn = Redis ( os . getenv ( "REDIS_HOST" , "redis" ) , os . getenv ( "REDIS_PORT" , 6379))

"""

The following snippet creates multiple indices in the elasticsearch DB for different

languages. This use case not relevant to the experiment that uses text in English

language only and hence is removed

"""

for lang in [ "fr" ] : #languages :

# index named "web -<language code >"

index = Index ( ’web -%s’%lang )
if not index . e x i s t s ( ) :

index . c r e a t e ( )

"""

The following index mapping or database schema is applicable only to the original

reference. The experiment requires different types of data to be stored in the DB

and hence the original mapping is replaced with a custom mapping that is specific

to the experiment

"""

m = Mapping ( ’page’ )
m. f i e l d ( ’url’ , ’keyword ’ )
m. f i e l d ( ’domain ’ , ’keyword ’ )
m. f i e l d ( ’title’ , ’text’ , ana lyze r=languages [ lang ] )
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m. f i e l d ( ’description ’ , ’text’ , ana lyze r=languages [ lang ] )
m. f i e l d ( ’body’ , ’text’ , ana lyze r=languages [ lang ] )
m. f i e l d ( ’weight ’ , ’long’ )
#m.field(’thumbnail ’, ’binary ’)

#m.field(’keywords ’, ’completion ’) # -- TEST -- #

m. save ( ’web -%s’%lang )

# index for misc mappings

index = Index ( ’web’ )
if not index . e x i s t s ( ) :

index . c r e a t e ( )

# mapping of domain

m = Mapping ( ’domain ’ )
m. f i e l d ( ’homepage ’ , ’keyword ’ )
m. f i e l d ( ’domain ’ , ’keyword ’ )
m. f i e l d ( ’email’ , ’keyword ’ )
m. f i e l d ( ’last_crawl ’ , ’date’ )
#m.field(’keywords ’, ’text ’, analyzer=languages[lang])

m. save ( ’web’ )

"""

The index function is used in the original reference code to add a particular

web page into an index one at a time. Since , the experiment explores multiple

web pages at the same time parallely using the /explore API , this API is useless

and is removed.

URL : /index

Index a new URL in search engine.

Method : POST

Form data :

- url : the url to index [string , required]

Return a success message.

"""

@app . route ( "/index" , methods=[’POST’ ] )
def index ( ) :

# get POST data

data = dict ( ( key , r eque s t . form . get ( key ) ) for key in r eque s t . form . keys ( ) )
if "url" not in data :

raise Inva l idUsage ( ’No url specified in POST data’ )

# launch exploration job

i ndex job . de lay ( data [ "url" ] )

return "Indexing started"

@job ( ’default ’ , connect ion=red i s c onn )
def i ndex job ( l i n k ) :

print ( "index page : %s"%l i n k )

try :
l i n k = ur l . crawl ( l i n k ) . u r l

except :
return 0

proce s s = CrawlerProcess ({
’USER_AGENT ’ : "Mozilla /5.0 (X11; Linux x86_64) AppleWebKit /537.36 \

(KHTML , like Gecko) Chrome /55.0.2883.75 Safari /537.36" ,
’DOWNLOAD_TIMEOUT ’ : 1 00 ,
’REDIRECT_ENABLED ’ : False ,
’SPIDER_MIDDLEWARES ’ : {

’scrapy.spidermiddlewares.httperror.HttpErrorMiddleware ’ : True
}

})
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proce s s . crawl ( c rawle r . S ing l eSp ide r , s t a r t u r l s =[ l ink , ] , e s c l i e n t=c l i e n t ,
r ed i s c onn=red i s c onn )

proce s s . s t a r t ( ) # block until finished

"""

The following function of referencing a website using the url and author email is

irrelevant to the search engine use case and is ommited from the working code.

URL : /reference

Request the referencing of a website.

Method : POST

Form data :

- url : url to website

- email : contact email

"""

@app . route ( "/reference" , methods=[’POST’ ] )
def r e f e r e n c e ( ) :

# get POST data

data = dict ( ( key , r eque s t . form . get ( key ) ) for key in r eque s t . form . keys ( ) )
if "url" not in data or "email" not in data :

raise Inva l idUsage ( ’No url or email specified in POST data’ )

# launch reference job

r e f e r e n c e j o b . de lay ( data [ "url" ] , data [ "email" ] )

return "Referencing started"

@job ( ’default ’ , connect ion=red i s c onn )
def r e f e r e n c e j o b ( l ink , emai l ) :

print ( "referencing page %s with email %s"%(l ink , emai l ) )

try :
l i n k = ur l . crawl ( l i n k ) . u r l

except :
return 0

# create or update domain data

domain = ur l . domain ( l i n k )
r e s = c l i e n t . index ( index="web" , doc type=’domain ’ , id=domain , body={

"homepage" : l i nk ,
"domain" : domain ,
"email" : emai l

})

return 1
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