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This 3]1("\15 concerns the rccogmtlon of isolated words oF a desigrated ~;w.ukor
using the General Instrument SP1000 chip. Prévidus research onsolated word recogni-
. tion is M@viewed. Digital signal procéssing concepts with an amphasis on linear predic-
tion techniques are surveyed. The SP1000 chlp which canrpérform linear predictive
analysis of an analog speech signal is examined in detail. Design and |mplom¢‘m .mon of
IWRT (Isohted Word Recogmzer Tralner) is dnsqusqed

’
.

" The hardware front-end used in ‘the - 1mp|ementa’tno‘ﬂ of “the IWRT i«

" MIGROMINT's LIS'NER 1060 -voice recognmon board designed around the SP1000

chlp The LIS’NER 1000 board is interfaced with modifications ta a Sun-2 Warkstation

~in the Department of Computing Science at the Um\(\ersnyv of Alberta and the voice
input device is a headset style mlcrophone

\ . !

The IWRT operates lg one of the two modes tr’umng mode and testjhg (recdgni-
ticn).mode. In training mode, the IWRT is used to create a \ocmbul.u-\ of words of

deslgnated speaker. In Lestmg mode, the IWRT (;hooses Lhc wor(l 1in tho reférence voca-

5
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‘Chapter 1 . _ ’

A} ) » v
Isolated Word Recognition (FWR) > R

‘The major objective of this thesis is to lay the foundations for further work' on
speech recognition by designing and implementing a speaker-dependent [WR system.
’ .

The field of speech recognition is #n interdis\plinary one and draws heavily upon com-

puter science, electrical engimeering, linguisticd\etc. The organization and content of

the paper reflect the interdiseiplinary nature of the field. ;

_Chapter 1 attempts to give a general yet far-from-comprehensive view of TWR
) ) . ' .

before delving into the more fundamental subjects that form the groundwork for IWR

.

_technology. Chupter 2 reviews the under]ying theory aund techniques of I\WR withy

, .
references to the particular hardware system which will be described in greater detail

{ . .
in Chapter 3. We will discuss the design and implementation of a speaker-dependent

N\VR system in ('h:xpt("r 4. The r(‘s{ilﬁ; of this project and further research topics will
be elaborated upon in the last ch;mpter.

'l‘h(-‘ hardware system used ia t.he implementation is MICROMINT s LIS'NER
1000 voice recognition board [12] designed around the General Instrument (GI) SP1000
chi;;. The LIS'NER 1000 board is interfaced with modiﬁc:xti’ons to a Sun-2 WorkstThort
running the Sun UE\IIXT 1.2 Release 3.2 opéral.ing system. The SP1000 chip is\(l(‘ﬁn(‘(l :1\';

a "speciad file” to UNIN and a driver ‘provides a high-level interface to the chip. The
. E

[WIR software is written in the C' programming language.

1]

+ Registered
.
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l‘.‘l. Introduction CP L - .

i
.

. " ‘
In this section we will roughly outline the operation of o typreal speaker-

v

S .
“
*dependent IWR system. The major logical components of such a system will be disne

L4

tion:

o

l.

cussed in the following sections, Most IWR aystems have two distinet modeseol aopera-

S

. !

Training: In this mode, a speakerssays the words in the vocabuliy to an input
A )

device, which'is a headset-style microphone in our implementation. Features are
; ( A

extracted from the input speech signal over short intervals (10-40 msec). Refer-

v

ence template(s) or pattern{s) for each word are created using the features

Ay
extracted, and saved so that they can be retrieved whm\vmlml in testing mode.
o . . . ’ s
Figure 1.1 illustrates the training mode.

-

a
]

[] .

speech Feature | . | Creation of | Reference Reference

— P . — e
signal Extraction Reterence Pattern(s) ¢ |- Fattern

. ) Pattern(s) Storage

—

Testing: In this mode, the speaker utters a ward, which is then analyzed, its

Figure 1.1 Training mode.

features are extracted, and a test pattern is creited. The component marked asx

pattern matching in Figure 1.2 computes the distance(s) between the test

pattern(s) and the reference pattern(s). The output of the decision rule may be a

list of candidates.
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:i(lv:mt;éxge to using t,hls feat._ure.

. o . : . [ .o A
- information, such as stress and intonation. - -

Some features that can be used to characterize the speech signal are described

below. - LT B ) : e

'Zero-croéfsing' density: This feature is sim»plf the number ol' zero crossi.ngs of thé
" speech’ ﬂlgn'll in a given time interval. It has been used e\(tensuely.m‘ earlw research on

.speech recognltlon The ease with whlch 1}L can‘be 1mplemented in hardware is the real

el

.
. £

Pltch ;Cﬂod be\ eral algorlthms have been developed for pltch e\(tractlon in both

- frequenc hnd fime domams The 1mportance'of pltch e\(tractlon stems fro@\ﬂf faet

%ﬁvthat fundamental frequencv -can be used to dlstmgmsh between voiced and umoxced

~
1

LSO\HI(]S. Equally 1mportant.ly', fun%zmental frejciuevncy ‘contours -also' carry prosodic

4 Lo . : L . LI

) a \ ) BT ' R
; : e - |
- o o T A | . Reference
v . S : S T P tter
‘-‘ . . - . ! . - A ‘ . ““ S o
‘ o . ‘ : ' * ‘ . ' . - ‘ ‘ {._’
) - ° B B 3
. . a4 ) ‘ - N . : -“J . - v
‘'speech | Feature.  °|- | Creationof | Test Pattern
_ Signai ™| Extraction % Test ~Pattern(s) ] . Matching -
R A Pattern(s) . | . : :
S [
' ..~ : candidate(s)’|" Decision | | distances 1
Rule = [ ——
‘ ‘ b L - '.,: \ .
’ . . ) ',\". . . ,
. : ‘ "‘ : , Figi;re 1.2 Testing mbde.
"+ 1.2, Feature Extraction - . )
' '. . . ) L o . .‘ i ’ @, #

~
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" Energy relatéd parameters: Total/energy can be used to determine the start of an

‘isolated word. In fact, energy’ Ievol% perhaps the most popular parameter cumployed-in
. . . K . . R . ‘ . . -

~ endpoint detection {see the follofing section). Pause, stop closure, or weak frictives

R ' . N

r . . ., ’ . . /i . . .,
can also be determined from Lbese parameters. : o, - X Raaieass
» ' = N . g . - :
/ _ K ' ' ‘ ° »

_ S . =
Spectral shage parametgrs: It has been shown that some of the specch events, such
a o . e N, . . .
as production of the fri/ﬁt.ives "md the onset of plosive releag, are best characterized
(s :
bv gross spectral whg{ﬁ/ Linear Predlctne C'odlng (LPC‘) coeﬂmcnw (see € h.l[)(l‘ ).
- ’ 2 . ] '
can be used to estnmate the qpectrum of the speech signal. A ,
R ¢ *
ST Forma.nt freqﬁgngles and tra.Jectones. The first three formants for vmwls c?rn

tmpottant 1nformatlon about the 'u'mculatory conﬁgumtlonj)f_nhﬂ_vac—ﬂl tract. Ste: l(l\-

state valqes of forman_t frequenc1es have feen used to classnfy vowels. .

* * In 'summary, at the end of the first step, “Lhe\"inpui speech signal is transformed
Ry ) L . . o ‘q" -
ihtvc}/a smaller set of information-carrying features which faithfully describe the salient,
yépertiqs of the input. The primary-features that are used-in our im[ilemon‘t,ut\ion are

/reﬂectzon coeﬁ?czenta (see G‘hapter '2; which mdlrectly determme the LP ; ﬁllo

: d ca
// coeﬁicxents and energy values since the $P100 can extract ,t.abx“;e fmturos from” mput

. v apeecb S L : :.. ‘ .
: vy .o 1 ey e . L P
As will be discussed in greater detail in Chapter 2, the shape ol vocal tract

. . RN c4
7 ~ e

s . L e ‘ >
S changes during the course of an utterance. However, due to the relatively small speed
el , ‘ ' : S . -

. at which the articulators can be moved, the vocal tract $hape can be considered fixed

o ' . ) 3y ) : : ’ .
. & for short time periods (10-40 msec), which are commonl%yalled Jrame periods. Frame
»  periods ¢ be over]apping in time. Therefore, the feature extru(‘tim} block can lw
' thought of as producmg a feature vector at each frame perm() Fmture vocroru are
- N

then-;,uﬁe(l in cxeﬂtrnv refereuce/teﬂt patterns. That process is discussed next .

, 3 v, S B o s . T
L L LI ' ¢ R »
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0, : )
1.3. Creation of Reference/Test Patterns

]

]

C e : . - . . ' .
Three important factors showld be considered in creating test/reference patterns:

‘I. Which frames belong to the utterance? .y

~

/ » 2. Thesize of patterns. ™~

- . .
. o

’l‘he{iu‘m ber of repetitions of a’word (in training mode) and the.scheme t.‘o&be used

i~

’ . - LN - X M
. to cluster the patterns obtained after cach repetition. . i\

The first of the three is known as endpoirqutection‘, and has been shown to be

. erucial to the pcrformance o"f a speech-recognitio,n system [21]. The size of patterns;

.',;(‘. the numbe‘ of fmmes in aa pattern has an lmp\%cb on Lhe de51gn of the pattern

m alrlmu block The same is 'xlso true for the third facmllsted above.

3 ;,1 3. l‘ Endpomt Detectlon .

.

N

l\\P systems asﬂume that an utterance is preceded "md followed by silence or
: 8 \ ' . * .
L \

~ other background noise. Non-speech_sounds ma’y be generated by the spea_ker (lip

S ‘sm:xckmgs, heavy breathing, -pops, etc.) or ‘the transmission system (t.ele.phone hne-,
ete.). Door slams’ 'md Lelephone ringing are also com&on sources of non- speech sounds

<

. 1f1he I\\R system’ 15 to operate IIl an office envxronmentyThe purpose of endpomt~
' o - B \ o

dc-!’d,ion is lo weed out. these non- \peech sounds and silent pontlons from the lnter\ al

Jwhichis supposed to contain the utterance. . ' .
N e

. Most I\WR systems use sound amplit.udeft-yo ﬁerform this task. However, difficulties o

due to leading and tr'ulmg weak® frlcatlves /f th, h/ ), weak ploswe buer% (/B t, l\/)
: .
an(l final u,as.nls ire w ell known 'md make the endpomt detectom which depend solely

¢

upon sound amplitude susceptlble to errors. However, due to the inherent re'dund:incy :

e

of the speech signal, an error of few frames in the location of endpoints does not usu-

On, , -
ally cause significant degradation in recognition accurdgy. L.
There are three approaches to the endpoint Yetection problem: . 2
v o ) .r‘) .
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1. « In the erplicit approach, the endpoint detection stage is isolated from the pattern
. . v . .

. .

.

matching and decisiop rule stages. A test/reference patterd copsists of the frimes |
- betwéen the estimated beginning and ending frames and this pattern is passed to

3

pattern matching stage of the system. - ‘ : .
q ' ’ . L ‘ . \

"2, In the impliey Vappro:}ch,. there is no separate endpoint dot’ect.ion .pr()c({ss-. lnd-
points karg eslimated by thvpat:tern matching and .deé-i.sion ru(@phus(;:ﬁ of (h;- Syse
K t-‘ex.n while making recognit-ion‘decisionéi[BS]. - N

3. The hybrid appxroa‘ch;cox.nbineé the explici.t, and implicit a;l);)'r'on.("h(,‘_ls such that a
“set of en‘c.lbpoinv_t‘pvairsv(begi’ﬁning.and endigg frames) are cst‘,imnt.qd based ;)n the

features extracted from input signal.‘Defiendi[.lg on theé ‘re(‘(‘)gn'itiou‘scmjos fx:gma -

NN L T : ‘
pattern matching and decision-rule stages, rewised éndpoint pairs can be chosen.
T :
‘A comparativé study of these approaches can be found.in fi3]. .
: - . .
ne the endpoints obtained by
<! _

‘e
’

.. ‘Features other than energy level are also used to'refi

¢ o / . .

enérgy-level measurements. Rabiner add Sambur [27] use zero-crossing density for this &

: e o . 7 o o ' .~ A

/purpos¢. ‘A novel approach is to utilize spectral information in addition to energy
i

3

2

. k\» P . .
ineasurements to estimate the endpopts of an utterance [28].

-

1.3.2. Size of_lPatter;ls

. ) . " e ,. - . X . e R
. . ‘l i] - . I3 . . R
. The number of frames in a pattern may be fixed or variable. Variable-size pat-

< a

" terns are,obtained by, saving the frames between the beginfiig and ending points

without further processing. Fixed-size patterns can be ‘gsnerated by means of adpro- -
ot . . . ’ N N 5 . . A . .
~. cedure'known as linear time normalization., , - R
) ! ) ‘ c . . N

- N . .

Intuitively, onefcan think that variable-size patterns repredfent the input utter-

ance more faithfully than fied-size patterns. On the other hand, in thecontext of pat-

tern matchyng, fixed-size patternsrlgave some implementational advantages. In particu- p
lar, Myers et al. (23] report improveménts in recognition performanee when fixed-size

4

-t Y v X -
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‘ K ' A . b
patterns are used with the dynamic time warping (DT\V) algorithm to perform pattern

]

“matcling, L 9 , » o

Y -~

1.3.3. Clusterirlg Patterns o - . s ‘- . | \

“ It is almost impossible for a human speaker to repeat a particular word exactly
‘q - B . . .

thie same way (i.e., to produce the same audio, signal), due to mechanism of speech pro-

'

diiction. There will always be slight variations from repetition to repetition, In the
N o : -
context of speaker-independent IWR, because of differences between speakers (vocal

. t_rrrct,'lerlgrh and shape, dialec.t, accent, etc.), thesle variations- will be much greater,
\\j " necessitating -a clustering scheme. The purboge ol cl'bstcring is to collect l'close enou%h"
& N . . ) . 1 ’
v V. I versions of art.ic’ularword together so that the salient features of that cluscer can l)e
. w\ . \
\replcscnt,e(l by one rcl'erence pattern Thls cluster representlng reference patternvcan

'

R l)e obtained as the mmzmaz cenber (i.e., the pattern whose‘maxnmum dlstance to all
other reference patternq in the clu;st(ef is mlnlmum) of the cluster or as an averaved

version of all the elements in the cluster Rabiner and Wllpon dlSCURS this subJec‘ in

gl'eatvcr(letti%in [31], ;T ' o ¢ " : ST
A o L . - . -

1

C‘luste‘ring techniques are not exc‘lu‘sively employed by the speaker-in(lcpen(lent .,

IWR systems '1lthough the zrbove discussion may su‘ggest otherque in [30] Rabiner

L and }\llpon show tlnt blgnlﬁcant 1mprovements in recogmtlon accur’xcy can l)e -

Ld

achiev ed using the reference patterns obtalned from cluster analysrs of multiple repll-

.mory of a word bv a deqlgnated speaker Anot,her mterestmg reésult from thls study 1=,
: . tlmt cluster analysis could be omltted by randomly choosmg laroe number {10 to 12) of -

.
.~ reference temphtes to represent each worcl in the vocabulary The major dr'lwbacl\ of

“this approach Is an- mcrease in the response time, as it IS directly proportloml to the

:number of reference Lerr‘rplat,es per word. . B o : o (

v
-

For both <peal\er-dependent and mdepen(lent systems, averaglng technlqueﬂ can

SN

\ be -rlf,e(_l to obtalnf_s reference pattern from - multlple repetmonﬂ of a word For ﬁ\ed

N : o

-
£

s

:
a

o
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_ pattern has been created. T‘ll(‘. objective of this step is to determine the similarity

-
‘2
-
P

' Lr N )

size patterns, an (1\0 ragd frame can be (()mpulml using \\oltfhu‘j combinations of
. \ ‘h' N ¢
corrospondin.g fmqu. .-\\'f‘r:»gillg after ops i-ml‘lm time alignment, \\v ttich capn be found by

. . . ES . < . . .y - " ) - ) )
‘employing DTW might produce even bettes results. This method would work for botl

°
i

-
-

fixed and variable-size patterns.  °

The most straightforward method of ébtaining reference patterns would be to

create a reference pattern for each repetition of a word in training mode. The availa-

«

bility of reference pattern storage and response time considerations wduld limit the

. . - -
. .

number of referente templates for each word regardless of the method used to create -

a - o \/' ‘ '. ) * N
them. _ _ o . :
. ‘ I j
1.4. Pattern Ma.tchmg ) .

. ‘ ' A ‘ . . .
is point, feature vectors have been ex¥racted from the input signal and a test

4

P . + y
f

betweén the test >nd reference patterns. [t\lS quite unlikely t,h-:xt, reference and, test
L]

patterng will have the same numberkof fr'lmes since the speaking rate can vary «fro.nl\

In order to compare two patterns, their lengths must be made equal. Two approac hes
'.. EN . . o . - « ’ » -

can be -t.aken -fo'r Lhis purpose: o

. AN - [
i '-

Y ! ' \nl.‘ '
(ll\(‘al‘d those framefe of the ieug@r f'or \%‘{nch chcre are no corresponding frgmes in

the shorte‘r‘. This approach réqu-u“es lltclke"couipllt.amon but the recognition perfor-

. . . o . . . : ’ “ ”\ .
mance achievable through this method is rather poor. : ’ :

2. Linear time nermalization makes the ﬁp‘z_ztterns equal in' length by stretching the

- : N .

¢  shorter one (or compressing the longer ofic) to a certain length using some inter-

-~

polation 'schemgl Implicit in this method is the assumption that the change of

dpeaking rate is the same across the utterance. ‘ ;o :

3. ‘The above-mentioned implicit assumption is certainly not true since the speaking

[ . . .
rate can vary uniformly during an utterance. Therefore, a method capable of

.

1. The snmplest meLhod 1s n.hgn th'e bog)pning pmum of the two pxttvrm and_ ll nto

}

"1
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one sueh technique which finds an optimal time alignment path fogs
: . r e s VoL
. ‘ o ) o ] ?
1.4.1. Dynamic Time Warping .

We assuie the test pattern, TP, and the reference pattern. RF. ¢

. . . .

*
v
.

M- frames, respectively. | T N : .
A . L t
L :

- TP ="{’T_P(i),_.TP('z')',_.='.,..'Tf'>(.\i)}

and . T . .
[t \ i a ' [} /

]

RP = {BP(1), RPE2). .., RP(A)}

9

] M 3

performingnoti-limear time alignment is needéd. Dynamic tine warping (D'TW) is

o
wo'piatterns,
&,

~

.
L

oIt m\\<x nd
o

YNINY

’

(1.2

where RP(m) and TP(n) are feature vectors. Then. the %T\V problem is to find an

optimal time alignment path

’ A o = f'(k)*,_‘ l1s ks iV
v . Com=j(k), I'sk=sK ) s
such that the total distance D R N
™, R K ‘ T 0
-/ | D= 3 dITP(i(k), RPNk
. =1

<

(1.4) l

is minimized~where K is the lel.xg‘th of the common Liu:j:xis; d( fP( n), RP( m)) is the

S ’ ] S
local distance between frame n of .the test pattern an

- —

- N
rame m of{Lhe reference pat-

tern and W(k)fis a weighting functiod. Figure 1.3 shows an example of optimal time

" .
alignment., ’ “a
- - -\
t. ‘ -
- : - ¥,
d
.
[4 L3 .
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. ”
The following factors must be s"pociﬁe(l to tailor the DTV algorithm, which was
v . ~ 4
4 r . . . K ' \\,
cdisenssed above in general terms, to the requirements of a specific application.
. t. : -
1. kndpoint consgraints. o
X ' . ‘ -
L4 f - . "
. , e . . ‘ R .
2. Local constraints. ; *
o
3. Global constraints. IR T ¢
" o ' ‘
. . . . } ,
{.  Axis orientation. , - . . N ‘
5. Distance measure. | PR ,
Endpoint constraints oo
If the endpoints of reference and-test patterns are determined. then . _
~ . B ‘ \
T (=1, j)=1 b (LAY
~and ’ :
(K)="N. JIN)= M. (1.6)
If the IWR . system has no separate endpoint detection component (implicit apprdach). §
then there are no endpoint constraints, ‘
Local constraints T
~Local constraints specify the-points in a time-warp grid from which a valid path can be
tuken to a particular point (n,m). € hesé constraints control the amount of compres-
: . : o LB , .
sion or expansion of the time scales. The pragmatic advauntage of the locul constraints
. . . . . . . . ' ’ 0 . : " v
is.that some points in the time-warp grid can be elimigated from consideration. result-
ing in a decrease in computation. Figure 1.4 illustrates three t#pes of commonly used-
. . s - ¢ ) b . ‘ . : . ot
local constraints. The canceled path in Figure 1.4 ¢ indicates thay an optimal path
' L o ‘d } : .
camnot stay horizontal for two consecutive frames. S L
f . “ll »? . R
1
/
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L=l '
’ (b) Type 2 . : (c) “Nalura®
Figure 1.4 Local constraints.

. b

Global constraints
As is pointed out earlier, endpoint constraints together with local co.nst'rnintx' specify a

region of the time-warp grid in which an optimal time alignment path can li(‘.'I"iy_\ur(-
’ - |
1.5 shows one sweh region with Type .2 local cqnstraints and (1)=,(1)=1.

()= N JIKN)= M. N= M= 15 endpoint constraints.
. L4
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Figure 1.5 Global constraints. \

t ) . (

‘Axis orientation v -

-

v . . - (: . . : ’ »
In" the previous discussion, we considered the test pattern along the -z-axis and the

reference pattern ixlou* the y-axis. Another equally valid way of assigning the patterns
to-axes wouldebe "test pattern along the y-axis” and "reference pattern along the z-
I v

axis”, corresponding to eqs. (1.7). |

. ]
"

o I m=ik}, LsksK

i (1.7a)
f ) ' e - 7 -
n=gk, 1SsksHK,: ‘ - (‘I.Ab)
Eqs. (1.3) and (}].7) would define thé\ same time alignment of .test and réference pat-
. \“ . . / P
. ’ 4
4 = v
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.

terns if local constraints and the distance measure were symmetrie. Ogherwise, the
‘ . ,

choice between eqs. (1.3} and eqs. (F.7) hassan effect on recognition aceuracy,

. K L

Distance mgasure

. Ind N

There are two Tuctors involved in the computation of global distangeas given by eq.

(1.-4): the local distance measure d( TP(n), RP(m)) amd the weighting function W(k),

The local distance measure is inherently dependent on the features used in the
i ’ .
recggnition decision. Popular local distance measures include Euclidean distance on-

the LPC filter, reflection, or cepstral coeficients, [10], log arca-ratios [7]. covariance

;

e, . ; \ . . - ’
weighting. spectral distance. and LPC log likelihood measureA32].

The Weighting function ‘W(k) specifies the weight of path taken to come (o pninl'
{¢(k), J(K)) from the previous pbilnt, (i(k=1), (k= 1))."In other words. the contribution

of local distance betw;‘een frame (k) of the test p.'ittvrn and frame j(k) of the feferpnee

pattern to global distance depends upon the previous point. (
N ’ .
‘¢ -
As can be seen.from the above discussion. finding anoptimal time ahignment path

between test and reference patterns involves a sequence of decisions, namely deciding

e

on which path to take to minimize the accumulated distance. The princigle of optifial-
[ , princgy !

.
.
.

ity [11] applies for the DTW problem, making it possible to use the classical dynamic

.
programming recursive relationshup. to define the :1(‘(‘\11&!1!:1!0(! distance function
D (n. m) which represents the accumulated distance along the best path from point
(1.1)6 point (n.m). Without loss of generality, for the special case of Type 2 local

v, . . . .
constraints with all three paths having the same weight of 1, D (n.m) can be written

.

as * N
. DA(‘n—l,\n—l)
wD,(n.m) = d( TP(rx),RP(frz))_+ min D‘_l(n—l.m—-‘Z)’ ‘ {1.8)
- ' i Din=2m-1)

\



1.5. Decision Rule

The jnputs to the dectsion rule stage are the distance scores computed by the pat-

tern matehing stage. The output of this stage might bN\g rd which ‘most clesely

. ;
n#htches the test pattern, a list of ‘words ordered by their distances to the test pattorn,

or a message stating that no word in the vocabulary matches the test pattern closely

enough to justify declaring it to be the recognized word (i.e., test word is "rejected”).

' 2

»

Fmploying rejection capability in an IWR System is closely rel*d to the nature of the
specific application for which the IWR systenr is intended.
L]

The nearest neighbor (NNY rule, the k-nearest nerghbor (IKNN) rule, and the

nearest k-mean (NIKM) rule are three popular methods use;l in IWR systems. The NN

rule simply chooses- the word corresponding to the reference pattern for which the

* ~
computed DTW distance is-smallest. The KNN rule classifies the test pattern as the
. ’ .

’ B
most frequently represented word among the k nearest reference patterns [8]. Clearly.
‘ .

‘these methods can also be used to choose a list of recognition candidates.

PR

When each word is represented by two or more reference patterns, the NKM rule
[+
can be employed to make the recognition decision. The NKM rule can be described us
o* - ’ ‘ .
follows: < .

.

.
- - '

- : for cach word in the vocabulaf { ‘ .
“_J . - .

t for each reference pattern for this word {

~

.Y
: compute the DTW distance hetween the reference pattern

’
[N

and the test pattern. , -
} o -
~
< compute the average of the k smallest distantes.
* L
choose the word withﬁsmal]cst average distance.
« : . )
" P )
o‘v J , .

y
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As with the NN rule, the NKM rule canmudso be used to obtain a list of recognition can-

didates. Rabiner and Wilpon [31] shaw that when from 6 to 12 reference patterns are

L 4

Kept for each word tn vocabulary, a real statistical advantage is obtained using the
. . * ’ [ \
NKM rule with k=2 or 3 over the NN rule.

Rejection capability can be incorporated using an absolute threshold value, If the

\ -

lowest DTW score is not below a certain threshold then test pattern is rejected. Deter-

mination of a threshold value depends heavily on the specific application, users of the
' -

system, etc. This scheme can be further refined by employing o relative threshold

value. If the difference between the" DTW distances of the best and second best candi-

t

date & not less than the relative threshold, the IWR system can reject the test pattern
on the grounds that a reliable decision cannot be made. Further refinements to this

scheme are, of course, possible.

1.8. Applications
- 1
There Jre several advantages associated with using speech in man-machine com-

munications [15] which make the number of applications for speech recognition limited
only by the imagination of people interested in this field. Speech is the most natural

mode of communication for humans. Also, as shown in previous studies 1], speech is
- -
capacity output communication channel for humans. Since [\WR systems
’ - ’ :
require that words be separated by some amount of silence, some advantage with

the highest

respect to rate of information transfer is lost, but speech is still superior to other forms
. A -
4

of communication such as tvping. manipulating knobs and bu(g{m. Etc. Using speech

input’ does not pre‘\'cnt a user from simultancopsly performing other tasks such as

‘

‘walking, manipulati objects With the hands inspecting objects visually, ete. In this

regard, the value of the speech input cant be better appreciated by comparing it 16

using computer terminals which tigs up both tactile and visual functions of the user.

.

* »
e .
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B for the blind), etc.”

LA o . L ' X

)

Successful commercial applicitions for speech recognizers include [15] package -
o ‘ “ oL P LT ‘ ' « e

sérting,  quakity control~dnd. inspection. . programming  of numerically ¢ontrolled

machines, voice-actuated wheelchairs, banking and credit card tramsactions, annotat-
" . . . . : . . . 4 '

' . .

b"_ing integrated circuit* photo masks, veice control.of household appliances (espeéially _

-
3 ‘

» ..

Speech rdcognizers have also enjoyed widespread use in military applications such

is cartography in defense mapping, computer-assisted training of ‘air traffic controllers,

i- | . v < . . . :
.airplane and helicopter cockpit commynications, etc.
&l he areas of speaker identifgcation and verification and word spotting which are

‘closgly' dllicd with the field of IWR offer other interesting dpplications including secu-
. : e ,
rity and access control, monitoring conversations, etc. '

e b R ‘ ' . : : ; o e -

i
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( .. Background ' j \ e
v - ‘
Hectlon 1 overviews (llglt'll signal proccs\lng (D\P) in Lhe context of (lmw(v time

-proce<sxn°‘ of Contmuou%-blme xlgnals Since almo*t all .speech prouw:nn(r systef

emplow L)HP algorlthms In order to appl) DbP algorlthms to speech procos\m pr‘nl}-

e,

..

lems, it is e\tremel) important to ha.ve am- undex‘ht'mdmg o’f spevch»prodm(lon '

: processes as well as-the principles of DSP. Intvroduced in Section 2 are digital mo(l(-l\'

, for the speech signal. The ﬁrst two sections are far from complete and they are

%

, N
iut,,endedkonly_t,o make,this work tore self—con‘taix_led. Section 3 l)ricf]y discusses time-
flo(main.‘mélt,hod’s‘ for spee¢h analysis. Tile l:;st z:ect,iqn.s'ur’v‘ey.s linear pl'(‘(li(‘(i\'(‘.Cd(lillg
LPC) of sp’éech w}th an emphi‘xéis on latgéice ;nebho:l!s‘.-

2.1. Overview of Digita.i Sig}na."l‘ Processing (DSP) S

This review is intended to serve as an easy reference for later sccgions and to

*

~establish the notation that will be used throughout the paper. Comprehensive treat-

ments of this subject can be found in several excellent textbooks [16,2,26].

2.1.1. Dlscrete Time S}nals and Systems

’ ,
" “The acoust,iq-waveé)mduce(l in human speech is a continuously varying signal.

~ .

These contvinuous-t-ime (CT) signals can be represented using the notation of the form _

oz (t) whele subscrlpt a denotes }!Ze analog nature ofﬁthe signal. LL is’ also p()'s'%ll)l(‘ 1o

R e
l

represenb the speech signal as a sequence.of numbers. The notation -.r(n) will be usodklo

B

“denote such sefuences. A sequence can be obtained as a sequence of samples of an ana-

_log signal taken periodically with sampling period T. In other words,

hY

z(n.) = z,;,(nT_) . ‘ N (2'1)

. : - . . _ . -
_The special class of linear time-invariant (LTH systems is used to a greus extent

s

in speech processing. Such systems are completesly.ch.:irac*térized by their response-hin)

‘A



4 .

b ]
.

o a unit sample input 8(n) [26]. The output of such a system in response to an arbi-
; 4

rrary input a(n) s <‘01le using the-convolution sum expression

y(n) = f .t(/\')/l(!l‘k)”'I(N\)A*/I(I‘I) h {2.2)

o ke ’ .

where the symbol * $tands for divs.cret,e-t.ime (DT) convolution.

4 . . ) : ‘ 'c .
2.1.2. The z-Transform
The 2-transform of a sequence z(n) is defined as _
X g X aln)emr S o(23)
fn= - o P . .

where = is a complex vrir.iable. For cbnveﬁiggce; the z-t.ransform of z(n) ;V'ill _séin‘e;times

“be (‘l(-‘note(l-‘ as Z[.t] In general, eq.(2.3) will 'c;\ﬁxgrge only foxﬂ' certain values of z. The

sét. ‘of values of z for which. the eq. (2.3) convex.'.g.és'deﬁnes a region/ix the 'z—pl:mcL

known as the region of con.ver;gence (ROC). : o A "
The z-t,r:msfo.rui has soin.e impoft,a?t fep.tures which we will encoﬁuter qxﬁte often

in the analysis of digital speech mo‘del_s‘. Now, we will'b_rieﬁy state a few of=t(.he‘sef pro-

perties.

Linearity
If )
Z[z,(n)} = X,(z), ROC= RI
and
- "o Z[zsn)] = Xu(z), ROG= R2
~then- - 7 | , : S
Zlaz (n)+ bryln)] = a‘\:'l(z)»+ bX,(z), ROC contains ‘R1NR2 . (2.4)

t
¥

Time Shifting

If

Z[.t( n)|

i
te

X(:), ROC=R, - oo



‘ ! ‘ : N 20
. : ! " '
+ then , . ’
" Zle(n=ny)] = :—"".\"(:). S RQe= R, (2.5) .
. ) v . B a

Convolution Property o 0" ’

If - ‘ . ‘ : ‘ [
Zln(n)) < Xy(:), ROC=R, =
Zlrn) = Xua), ROC=R, ’

then ., : - I - *

. . "y . °

. . o .
Z[ay(n)*r(n)] = N|(2)Xsl:), CRQC contains RIMY B2 . T (2.6)

. v , A - . . _ . B
. 2.1.3. Systems Characterized by Linear Constant-Coefficient Difference

(LCCD) Equations _

Consicer an LTI system for which the input (r(n)) and out»pu't,“»

“(y{n)) satisfy a LCCD equation of the form -
N ‘ M o i R ) p 4 . T
Y ayln—k)= 3 br{in—k) T , _ (27
k=0 k=0 '

This equation is a time-domain relationship.. We can find the frequency-domain rela-
. su\- . .

tionship characterizing this systém by afplying z-transform to both sides of the (-i‘hlfu-

tion ind-using linearity and time-shifting properties. Then, we have

N - M : _——
Sa:zTkY(2) = D, bh:'*.\ﬂz) .. ,
. k=0 ke0 ' .
We obtain ' )
. . } . ¢
. M . t
D ) Tt ‘ )
His == A (2.8)
o D -

. ‘ k=0’
~Also, note that the LCCD equatjon by itself does not provide information about the

. ROC to associate with'the gifebraic exp_ression H(:)» An additional constraintsuch as

3

causality or stabili

of the system‘is necessary to'specify the ROC. For a stable sys-

tem, all the S must be inside the unit.circle.
. ‘ ! » , L



o

u “@ o q : . : ’ | ‘ |
| . | Lo
| B | o o : ‘ 21
‘*' “ . ' ‘ . ’ /. | | :
2.1.4, Sampling of Continuous-Time Signals £5 a2 &

DT processing of CT signals such as speech is only possible with proper sampling

- - ' »

of (' signals.’If 2,(t) is sampled uniformly with a sampling pefibd of T. a DT signal v

© .

n)isobtained:. i - o o . ’ ’ ' -
c_ -4 ’ ' .
1(n)= 2,08 jmnr : .

. 3
.

*  Sampling Theorem ['2(5]: Let \1,,'(!')"'})3 a  bandlimited ~ignal with

Ny Q)= 0for |2 > Q,, where X(j Q) is the CT Fourier transform of .'r,,(l).. Then

. . . LT ' t
£,(1)is uniquely determined.by its s&pplcs
," ' ' :
- . |
S (nT), n=0.21%2, - -+ 7|
provifted - ’ Y T Cea »
2 : . w . * N .
» . T 1 .
> Uy

. S . LT e _ Qy, -

where fy; isthe highest frequency (in Hz) present in r,(f) s ie.. [y, = o o

(iiven these samples, we cap reconstruct z,(t) by generating a periodic impulse

‘. ‘ * . . . . ; C, y .-
train ‘in which successive impulses have amplitudes that are successive sample valuet.

8 . ’ ‘ - - Y . .
“This impulse traip is then processed through an ideal lowpass filter witlr gain- T and
‘ ' o ’ o

cutoﬂ"l'r'(‘qfloncy greater than fy, and lesg than -;7— [y The resulting putput signal

.

“will exactly equal z,(t). The bound on’the sampling rate 2f,, is referred to as the

[
i

. - . x
Nyquist rate. o v
e - ..

‘If the sampling rate does not satisfly the above condition, aliasing (the situation

-

“where n high frequency _compbne_nt when sampled takes QR the identity of a'lower fre-

. LT -

quency component) can occur. ) ° .o : ,
. ! h ' B ) 4
4
it
-

l’?;} ’
‘q ) 1 -

. . .

-
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' 2.1.5.'DT Procesei'n'g of CT Signals 8 :

. « . : n
- - N . * s : ) l'f':"” .
1 v . l"ut' Cincludine speecl processing, there is a Sienific: advaidi:

_In many apphid@tions including speech processing, there isa significant adviaflage
. . » T e ' '/

offered in processmog a CT signal by first conyerting it to a DT sngn:\l nn(l after process- -

S

‘»

«

lng, conv ertmg lmcl\ to a CT signal. One of the reasons for tlm is tlu' lmunmuv avai-
hbllln of i lne\pemne llght\\ﬁ‘lght progmmmable and easily re%)(luml)lv (ln;\lul :m(&;

DT s\stemq [26] The DT sn;n'll proceaslng can be unplemcut&l )ch a general- or 2

spce’ml pulpme computer, with mlcroprocessors or wnh any of the vmm\ of <ln|( 0N

(like the SP1000 chip) that are specmlly oriented toward D'I signal procossmg.

Figure 2.1 shows an LTI sysrem placed in an A/D-DT filter-D/A-LPJ Stenetures
At the output of the X/D 'convert‘er we have

s

. L . :(n)= 2 ) gmar = r(nT) . _. .

The DT ﬁlter proce“es r(n) and produces the output \oquencv :/( n)w hich is converted”
N

o a CT Mgule yalty l))’ the D/A couvert(_.‘r Ifollowe(l by the low-pass filger (LP1) win hw

B 3 : W
cutofl frequency of half the saumpling frequency. .

- §
’ L ’
‘\GQ’D Duscf:lrnaet’? tnlme ‘ D /A .Lo;:;p,ass >
nverter unit sample Converter °[7]  Filter .
xa (t) x(n) response h(n) Y(n) ’ s ya'(t) .,
. & "
f 3
Flgure .1 A/D- DT Filter-D/A-LPF structure;

~

The frequency response of the equwalcnt analog f[ter mmrke(l by thick s(\ll(l llnm

dn Flgure 2.1. Wl“ be derived in Lerms of the frequency response He! “) of the DI filter

« . N v . I

[16] Conslder the steady state response of the entire system to a, smusmd of : au arbi-- »

\ |
N

e » {9 p -
Y ’ & . . g VR,
trary frequency Q, less than 'rr/T ; e : ' ‘

e . | B ' kS °
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. ‘ o
r.(t)= 1&0%() t, where 0 < 11'/7'
At the ourpnt of the A/D corverter we hate ’ o
" . 0 . ‘ . -
x(n) = r (nT) 1 cos[(ﬂ T) n] 4 coswon’ S
where 0,7 = ,. Eq. (2. ()) states the fumﬁmegtal relatlonthp between dur!al radmn
. [ . .
frequency and analoy r'admn j'r‘eq,uency. S
- w=arT. Lo T

“where w, Q. T are the digital and analog radian frequencies, and tle salm.pling period. .
respectively. The steady state output-y(n) of the DT [‘i;]ter can ’l)e written as
R ¥ :
yuln) = A4 Ill(cf “)Hw-w -0, Tcoa[ (0 o Thnt arg I(el )|u,,w0,,n\r} *(2.10)

.

where ary denotes the angle or phase of its argumeént. i\ssummv an. l(l(‘.ll D/\ con-

verter followed by an ideal LPF, the stéady state output y,(t) can be written as fol-"

lows: ) ) ‘ ' ’
H

. v(t) = AlH(e %T”c(',qm 1+ argH(e’ 7)) (2.11)

Therefore the ‘wt ellect olp equnalent analog ﬁlter is to scale the amplitude of (ho‘

zm(l tdo change the phase of input s_ivnnl by drgl._[(e] 'Q”T).

ill_put.»si"n:xl by |H(e’

- Figure 2.2 (d(l.xpte(l froul “[16]) shows the m'xgnltude of the frequeum xe~pon\e of a DT

.
N

filter dlong w1th the correspoudmg magnltude of ,the equivalent an-alog frequenq‘

»

response of the :\/D-DT F“ilt,er-D/r\-LPF structure.

.
2
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« Figure 2.2 Equivalent-analog filter frequency responsé l’or a D/A-filter-A/D-LPFEF structure.
‘ ' In general, any input analog frequency greater than m/T will be alinsed. One way,
. ‘ : o - .ot .
to overcome this phgblem is to prefilter the input signal. Figurv;"l_..'% and 2.1 (adapred
*o ' . o . . . : IR S
from [16]) clarify this technique. Ca o, ]
1 ’ N N " N >
5 ‘ . )
= - a ) . . ) .. O , ’ : >
e R ‘L . » "
’ v .;r'jé“ : ¢ ' * N .
. . : - ‘ i ) .
. . ‘ ~ =3 . \ )
‘ T T N D T
* . - k i . . . Mo . .
N f/l\l?etlr aliasing | /AD | |Discretetime| | DA’ § l,wwﬁpass .
x )] low-pass {Converter filter | Converter - Filter A
()] low-pass typ : L _ Yo O :
: - . . N—— i >
‘ [N " ‘Q - -
. N : .
.’ — L : M
. - X ) ’ . " . ° : . ) W
’ . © Fig.r» - " Uscol orefilter to reduce aliasing in A/D-DT filter-D/A-LPF structure.
- ) . ul. . ;. »
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- Aliasing pont '
\
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- , ‘ ‘Figurc 2.4 Guard band and prefilter frequency respon.ﬁsé.
Figure 3.5 shows how theae ideas (and more) are reahzed in,the LIS'NER 1000 recognl-

tiorr board. lho 'llltl-dll'I\mg filter of the qu'.I\ER 1000%01r(l cuts off at 3200 Hz.

Y L4
implying that the sam pling rate should be greater than 6400 Hz to avoid .'zli:wiug. >

~ . .

“In the above discussion®

’
L3

we have tacitly assumed that'A/D (D/A) conversion is

done with infinite precision. However, in reality, A/D converters have only finite

‘number of bifs to represent (encode) the quantized value of the input signal. In other

[ .
)

words, the output of the \7D converter encodes the quantlzed \alue of the OH"IP al

’

. .

’ . .
2

input,signal with finite prccmon The thﬂ'eroncc betweon the origin: ||~>|0n # value and -

s quanthyed ('ountvrp:n't-corrosponding to a particular bit configuration produced by,
. . ¢ R . '
the A/D eonverter is known as quantizing error orr(luan!i:ing netse. -+ . S
. l " ) ".l
Under certain assumptions about statistical properties of the input and quantiz-
. . . .

: ! q.‘m . ) . “- . N . . ..
ing error signal, it can be-shown that [29] signal-to-quantizing-noise ratio (in decibels)

T ’ R i
k d . : ‘\\‘ ) ! : . ’
¢ ‘ o . b oy
o SNR.(dB) =68 — 7.2 - .
- for a unifosm quantizing scheme where B is the word-length (in bits) of the A/D con-

o : 5
wrter. Roughly speaking, each additional Rit used in the A/D converter improves the

>



] e

SNR by 6 dB. The quantizing noise can be reduced ‘)_v increasing the number of quant-

' ¥ i . ' . I3 .

izatiog levels or.equivalently, by increasing the word length of the A/D converter.
[ ]

This consideration gives rise to the "A/D converter cbst versus SNR™ tradedil, .

.
]

2.2. Models for the Speech Signal . .'\:>
2.2.1. Source-System Model€or Speech Production - 7
. ) - . )

Speech output cin be modreled as the response of a slowly time varying system to |
; - . N N

either a periodic or a noiselike excitation. More .specifically, the speech-production
. . ’ ‘ , ':
mechanism consists essentially of an acoustic tube, #he vocal tract, excited by an *= =3
] 5

-« . .
. £ . . - . . .
appropriate source to generate the desired sound. There are three major mechanisms

[ » ’ @ . .

. .
-t -

ol excitation [29]:
“1. Air flow from the lungs s modulated=by the vocal cord vibration. resulting in a

° b

quasi-periodic pulse-like excitation. . . by

2. Air flow frog the l‘uug's' becomes turbulent as the air passes through a constriction\
, . S
in the vocal tract. resulting in a noiselike excitation. . -l
. - ) PR £
3. Air flow builds up pressure behind a point of 1§)tle closure.in the \'ogul tract. The
. o
sudden release of this pressure causes a transient excitation.’
. “ o : :
\ Thsse three differént modes of excitation result in three categories of sounds.
i ~ X -

“ Voiced sounds are produced by type 1 excitation. Vowels, among other sounds, are in

(this category. Type 2 excitation produces fricative sounds. [/, [s/. [sh/ are three of

R .

the scunds in this cafegory. Type 3 excitation

givesrise to plosive sounds. Examples of
the soutids in this category are /bf, /d/F/g/. A cross-sectional view of of the vocal
’ - . ) < -
tract’and source-system model are showd in Figures 2.5 [20] and 2.6 [29], respectively.
v » % ’ , . s E

- ‘ -

v W » [

\ \  }/'./
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Fagure 2.5 Cross-sectional view of the vocal mechanism.
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’ EXCITATION | ELINEAR ﬁspgscr;‘=
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, ﬁ .
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Figure 2.6 Source-system model of speech production.

he vocal tract shape is fixed, as in the case of vowels. the output of the system

is the convolutiomof the excitation and the vocal-tract-bmpulse tesponse. Some other

sounds te.g., diphthongs, semivowels), howevex, are produced by chanéingﬁthe shape of

o

vocal tract. [n that case, the vocaf-tract shape shape can still be assumed fixed fgr
Bk

~short time intervals owing to relatively small speed at which the articulators can be

-

moved. Under this assumption, the output can be approximated as a convolution of

the excitation-and vocal-tract impulse respohse over,short time periods.




A B » . I . . ! .
Ihe spectrum. of pertodic excitation contains impulses in frequeney domain

. .

correspotding to harmomes i iuput. The frequencey response of the voeal tract eahe

</
bits peaks (Figure 2.7 [25]) corresponding to resonance frequencies ol the voeal tract

which jre called rmant frequencies. In the frequency domain, the output spectrum is

: S v . e
the product of excitation spectrum and vocal tract spectrum. The envelope of the out-

put spectrum (dotted lines in Figure 2.7) reflects the shape of the vocal tract spectrum.
L]

v

‘ L)
- .
m’ :- ) ‘ ’
, \ ¢ - S{t) o(')orv(l)
: Vocol
A A A 4. tract e MM
o S - vit)
{a)
Elw) Viw) Slwi=E{w)Viw
LR e e (b} .

i

. o
. P . : <7 ,
Figure 2.7 Speech production model (a) time-domain {(b)frequency-domain.

The envelope of the output spectrum will vary with time as the vocal tract shape

varies. Similarly a variation in pitch frequency (inverse of excitation period) will briny

about a variatioikin the spacing of pitch harmonics. . ,
+

. ' ]

2.2.2. Lossless Tube Models

As illustrated in Figure 2.8 [29]. the vocal tract can be approximated by a con-
, :

catenation of lossless acoustic tubes. A detailed analysis of losskess tube model is quite
difficult unless some simplifying assumptions are made._These assumptions are [25] a)

sound propagation through each section can be con‘sid& ed_4s a plane wave along the

axis of the tuMe and b) losses due to viscous friction, thermal conduction and the effect



e

“opder these assamptions, o relationship between the lossless tube model and a digival

7 °
[

v A ]
of the uasal traet and ('ouphl?& between the voeal tract and clottis can be ionored.
) . . .

,
-

~

filter ~structure can be found (see Section 2.4.6.1). The lossless tube model cian. be
. N * ‘
characterized in terms of pressure or i;n terms of the volume velocity of :nirﬁ!ow as a
function of time and distance along the tube [25]. The volume v&locity-can be thought

of as a superposition of two components: a) forward-traveling wave Illl(lib) reverse-

traveling wave where the former moves' from the glogti® to the lips.

~

. 5
S
s
‘. '
A, A, Ay Ay Ag
S S U B S P
. GLOTTIS , -l ps > .
4——[:-—54
L
4——1,—— N
¢
LN W
4
' L . .
Figure 2.8 Concatenation of 5 lossless acoustic tubes.
: \

If we consider the A" tube with cross-sectional area A;. the pressure and volume

vvi‘lolcil.\' in that tube have the form [29] |
‘ _ . . ‘
pelz.t) = -%g—-[uk*’(t—.r/c)i-ttk"(1+z/c)] . : (2.12a)
Tk ’ /7 , Ce
u(r,t) = wtt—21/c) = u,~(t+ 2/c) (2.12b)

where r is distance.measured from. the loft hand of the k" tube (0= z < [, ), u,*()
. . _ : ’ Nl ' A
and u,7() are forward-traveling and reverse-traveling waves/in the & tube. p is air

density, and ¢ is the velocity of sound in air.

e - e
~ .

Since the pressure and volume velocity must be continuous across a boundary
1"

p—
\

S f
1 .

/ J
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»

between adjacent. tubes. part of the forward-traveling wave that reaches the junction

(see Figure 2.9 |

20]) is propagated on to the right. while another part i~ vetlected ek

o

Ao the lefto X similar statement applies to the reverse-traveling wave b, (213)

e =
rpam —tL_b (2.13)
AT TS s

gives the amount of wu,y, 7(f) that is reflected at the junction [29]. Thus. the quantity

ri is called the reflection coefficient for the ™ junction. It ix abvious that since the

areas are all positive

. -1 = L S'l
With this definition. it follows that [29] X
. - \ u*“l(t\i= (THrg ) (t=7 )+ rpu ol t) L (201a)
° w (t+T) = =ttt (L= )u™ gy (1) (2.14b) -

@here 7, = [/c is the time for a wave to travel the k% tube.

-

‘ *
. B i
. e
1 . . . wlt)y ult=r)  ugain u:,,(!;v.,,)
ult ugltery)  upan Uperltergey) b

. ° . ’
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- *E 2.2.3. The Complete Moael'

- . R

Thestransfer function of the tube model for the vocal tract can be:stated as [29)
: ) : BRERNI )
) MY = G
' ‘/(-') - N .
) 1+ ak:"/‘
) » 4 k=1 _ )
~-+ where (7 and a; depend upon the area function and /V.is the number of tubes. By
slowly changing the input parameters (i.e., excitation) and a,, we can approximate the
veal human vocal tract and its output — speech. _
' . . ' R ' Y
v ~ . p ° . ' .
Iigure 2.10 ( adapted from [29]) depicts the-widely accepted and used DT model
.- for speech productién®s
: ) s 0 . . . e
L L
as .
Pitch Parioa,aki i ' .
L Excitation  Jmpulse Glottal Pulse .
» Modal Model ' :
‘ Train e(n . .
1 E@ ’ " G(2) Vocal Tract
s Parameters:
- -~ . ‘ . ' Y
Voiced/ . Vocal Tract | ™ Lip Radiation
& Unvoiced ~—> Model 1 Model
. . . Switch - . V() - N w2
. o . T, Ls(n)
; Lt S@EE@GEIVEILG)
- Noise .
LW
3 T
.
i s ,
Figure 2.10 General DT model for speech production.
=
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‘Eq. (2.15) describes a three-step procedure [29]:"

] ] . . ) . . .

2.3. Spegch Processing in the Timé Domain

< ’ 1

2.3.1. Short-Time Analysis of Speech

- As indicated in the previous section, the fact that we can model the speech pro- -

duction process with a time-varying linear system forms the foundation for short-time

processing methods. In these methods. short segments of the speech signal are

2

extracted apd processed under the agsumption that vocal-tract shape is fixed during

the short ment of -the specch. These short segments, which are sometimes ealled

. . * . ’ .
frames. can overlap one another. /The‘ result of processing on cach frame produces

new time-dependent sequence which can represent a useful feature of the speech signal,

such as short-time energy and zero-crossing rate.
Most of -the short-time processing technmiques can be characterized mathematically

N

inthe form

M

@5 =

m

- ‘ ﬁ;ff . .
7'[1(711)]11'(1(—111) . ' ‘ ‘ (2.015)

=% &

. ~
1. Transformation T[] is applied to the speech signal, resn{x,l“t,ing'in a new sequence, =

2. The result of first step is then multiplied by a window sequence positioned at
: : o ' .

" time corresponding to sample index n.

3. The product of step 2 is summed over all nonzero values. Y

Duration and properties of windows have Signi'ﬁcant effect on the results of pro--

cessing. Flgure 2.11 [29] lllustrates these xdeas for-a specific window of' finite length.

As Flgure 2.11 shows the window slides along the sequence of T[z( m)], sclectmg Lhc

Q

interval to be used in the computation of @,.

———



w(5_0~m\ ' . Wi00-m) W(200-m)

Figure 2.11 T{# m)] and u{n-m) for s‘everalv values of n.

2.3.2. The Short-Tcime Autocorrelation Fﬁnctidn

‘One of the main uses of this function is in pitch-period estimation. It is also util- .

ized extensively in LPC analysis of speech. Therefore it deserves some discussion. The .

-

autocorrelation function of a DT deterministic signal is defined ds [29]

dk)= X r(m)r(m+k) . [2.16)
» mm - R ) . ) -
" 1If the signal is periodic with period P samples, then the autocorrelation function.of it
is also periodic-with the same period. ﬂ ,
' | . . .0
(k)= d(k+P) . E (2.17)

The autocorrelation function has some other important properties, namely [29]:
L. It/isan even function; i.e., d(k) = &(=k).

2. It attains its maxmum value at [:=0; ie., [d(k)|=(0) for all k.

3. The quantity $(0) is equal to the energy for deterministic signals or the average

power for random or periodic signals..

"“he great utility of the autocorrelation funcLioxl//is in the way it displayé the -
_ perivdicity of the signal. Since it attains a 'maximum at samples 0,2 P £2P ..", the
period of the signal can be estimated by finding the location of the first maximum in

the autocorrelation function. regardless of the time origin of the signal. Therefore it 1s

-



3
. ' LI ’
not \nrprmu‘r to see that the dlll()(‘()rr(‘l.lll()ll lulullon has been used extensively to (
Cestimate puch period for a ~p(-och ~l§n\ , : 4 o o
The .9llorl-‘t£mc autocorrelation function is'defined as follows [29]: L o
[ ' . . ®
R, (k)= E &(m)w(n-—m):(m+ls)u(n>rk-m) . . (2.1R)
mms — % -‘ ! 0

>

Ar lh(‘ lmgth of winy is \ then it is clear that w(n —-@) and w(n=k=m) are both

nonzero for m= n—=N+1...n—k In other wor(lséonly v\'—/é values of r{m)r{m+k)
are involved in thé computation of R, (k). It is easily shown that:

R (k)= Ry~ k)

Figure 2.12 [29] shows three examples of aMocortelation function fop~oiced and

unvoicetl speech, using a Hamming window with N'=401. The peaks ocefrring at mul-

L ‘ \
tiples of 72 indicate a period of 7.2 msec for the Figure 2.12 a. .\'i‘milurl_\'. peaks spaced

'

b ~=.

AR nmplc apart i Fivure 2.1 h 'impl'ws an approximate pitch period of 5% msee.

l’igure 212 ¢ lu(ll(’d& s a lack of penodmtv : . R
< . .

a



2.4. Linear Predictive Coding of Speech

(O)Y. ’
‘ i .
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Figure 2.12. Autocorrelation functions for (a) and (b) voiced speech; (c). unvoiced é/pecchf

= l

'2.4.1. Introduction

can be predicted from,

4

s n'p(plicd to problems ranging from 'neurophysics', to geophysics. Linear prediction, as a

The underlying idea behind linear prediction of speech is that”’a speech sample
. 3 . , B

o

Krear combinations of past speech samples and past and present

samples of excitation. By minimizing the sum of squared differences (over a finite inter-

-

and linearly predicted ones, a unigue set of -

’.

val) between the actual speech samples
”

3
[}

predictor coefficients can be determined.

.

The application of LPC is. not limited to' speech 'problems. In fa@ has been

N



~

W@

"3, the lattice method.

' ve N . ] . , .
L b . T . \

concept. has its roots in time series apalysis which deals with the :m_ul\ysié of the out- -

puts of dyngmic systems. - ) : W

-In general, consider s(n) which is the output of some system with input e(n) such
N L

that the following relation hol(.ijz[l-i']:. .

- .3(n)+‘ﬁ ak.s:(n—k)= G’éfﬂb,e(n-l); by=1 . (‘2,1(.))‘
: k=1 T T =y : A ‘

where a1 S k< p, b,1=s1<ygq, and the gain -G are the paramefers of the

thesized system. Taking the z—t-_mﬁsfoi‘m of both sides of eq. (‘é.l()) , wé have

1'+ibl.‘7—l | .v

H(:)ﬂ-—- —%((—l)-= G———‘ﬁ—f:—‘—————-— | (2.20)
» o 1+ a,: k) SR S
° k=1 k

H(:) in eq. (‘2."20)' is the general pole-zero model. ‘There are two special cases of the

8

a1 .

‘modelthat are of interq;t:
1. all-zero model: ¢,=0, 1 < k< p .

2. all-pole model: b=0, 1'sil=sgq.

i r
IS

o

In this section we will be concerned with the all-pole model. Three methods Tor

computing predictor coefficients will be summarized. These methods, are

. & . ) : .
1. the autocorrelation method i ' '

2. the covariance method &,\‘\_

.;{h

Towards the end of this section we will discuss how other parameters of speech,
< i . o ) .

cifu-be derived from LPC coefficients. These parameters will include piteh period and

formant locationse
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\2.4».2. Principles of Linear "P_rgdictive An‘alysis

s -,

\
( onhul('r the modewillustrated in Figure 2 10. Lip radiation can” be modollcd as

[20] , . ' ' . P |
| ‘L(&j S o
Cilottal shaping model G(z) t-can be approximated as o C, '
- 1
('( ) = —
. . L*(:z)
"l‘llenf,‘.\ ' o L . ' \ .

)= E(:)G{) Viz)L(s) = E(:yV(zVL(z)™

where V(z) has N poles (see Section, 2.2.3). W’e now assume that we_ can represent the

mg(lel depicted in Figure 2.10 w1th the following system function:

H(z) = ;:((} @ | ,o(2.21)
: 1+ i Qs a
k=1 :
‘where p 2 N+1. Then we h'we the following in the time domam '
« - e 4o : N . S
' s(n) = —iaka(n—k)+ Ge(n}. . o (2.22)
- RS ‘ e C
It has been shown that eq..(2.21) provides a good approﬁfmat.ion to almost all sounds
of speectr. Now,'m;r objective is to estimate the filter coefficients a; apd«(v’.

’ . - o . ’ N

2.4.2.1. The Least 'Squzﬂzr'es;\/ietl;c"d :
!-Icrcl we assume thatv't.hebi‘npuit ‘;(n) is totally unknown. This iﬁipliés that the sig-

nal s(n) can be predicted énly frpﬁ a l_inearly wel/ghted summation of past smﬁplés. If
we ‘(léﬁne h"',linea:rbpl:’edic-tor as a system whose Outpl'lt .37(}9 and. in'pvu.t' s(ni, are

&

“related to. cach other iviu eq. (2.‘23) [‘29] ‘ . 4

P , -
. s{n) = —iaka(n— : (2.23)
k=1 , .
* Although the nntat«m% (z) (transfer’ function for glottal shaping model) and (i (gain for the
vocal tract model) may ~omewhat conflmng, we I\eep them to maintain compatibility with the
literature on this subject.
© - —

a ’ o
¥ T
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3 .o s ' .
e | | . | D
» C » . ’ ' '
then in the frequencyXomain we haye P(:) as its system function:
. ‘ - " \
’ .
P(:) = —-fuk:‘* . (2.21)
k=1
\ . N
The prediction error, f(n), is defined as - .
. . (

\’Xlr‘ s(n)=s(n).=s(n) + ﬁ‘;ks(n—k) . B . SRy,
. k=1 .

Tnf(in_g the z-transform of both sides of eq. (2.25) we observe that the prediction error

.-

sequence . is the output of 7 system with the si’st_om function A(:) to the input s{n)

[29]. ' : )
‘ . ) ) -
_ Alz)=1+ f}a Sk . C(2a)
Ce ; P . » |
If &, = a;, then from eq. (2.22) and eq. (2.23) f(n) =“(_}'A_( n) . This implies that the

predictipn error filter, A(:), will be an fnverse filter for the system, fI{:), of eq.

(2.21);1.e.,

. H(:) = ——A?:). . ' v

We have to estimate q; 's for short segments or frames of speech duetd the time-
varyingnature of speech. This leads us to a short-time estimation of a; 's that ix con-

sistent with our gliscussion in Section 1.‘)\ .

L “ . . o
The short-time a.verag%prediction error is defined as [29]

°

"Fm = 2:4{"3,,(m) + ﬁaka"'(m—k)] o - T (2.27)
.- m k=1 : -

where s,(m) is a segment of speech that has been selected in the vicinity of sample n,

. “ o r ) .
le., . . L . ' “ ‘/
. ) | /
s,(m) = s(ntm) . ~ P

. The range of summation in eq. (2.27), which is.not specified for*the time being, is the

g

reason behind existence of two different computational methods, namely the autocorrela-

’ ‘ ’ W - P g - . .n .
tion method and the covariance method. F, can be minimized by sctting



oF,
=0, | s15)p (2.2%)
‘da
Solving eq. (2.28) we obtain
- X s, (m=1i)s,(m) =-fa,‘23"(m-—i)3"(?—k), lsi<sp . (229
P : k=1 m :
Definidg RN \ . o ) ’
b (1k)= s, (m~i)a (m=k) , (2.30)
. m l . )

.

eq. (2.:20) can be rewritten as [‘29]

C b,k = 8,6i0), 1SSy .

k=

)

(2.31)

1

. ' A \
What we have is p equations in p unknowns which can be solved for predictor

coefliciengs o that minimize F, fér phe frame s,(m). .
.Si’nce we are doing :«:hort,-time ana‘lyéis, the range of summation in eq. (2.27) must "

“be a finite interval.‘.A:s is pointed out earlier, this range of s;umm‘atri'on gives rise to the
v ) ; '

autocorrelation method and the covariance method which are .‘,Adisc'usse(l__iu greater

dotail in [20]. . ) IR f

2.4.2.2. Computation of the Gain ‘(G) o
oo . 3 e
N

So’me important assumpﬁ/Md results will be reported. A.complete derivation
. ) R ﬂ

:

~of the results can be found in [17]. As pointed out pre 5 if we can exactly esti-

mate d; 's: i.e.,.ay = a,, then

'

e fla) = Geln) . 23

‘However, eq. >(2.3‘2') is vra.lid to the extent that the ideal and the estimated lifiear pred- . '

“iction parameters are identical [29]. It is more realist{c to assume that the energy in

- -~
-

the error signal is-equal to the energy in the excitati\o'ﬁ/input [17,29]; i.e., v

:

N=1 N=t : ' o
G*Y em)= 3 fAm)=F, ~ e (2.33)
m=0 m=0 s i

Our objective is to express. G .in terms of the known quantities, namely the a, 's and



, . - - ) ‘
. ’ R
. L& .
o, o, . . ‘ . LY 10
) ) * - o o

o

the correlation coefficients# In [4] it hax been shown that for both types of inpurs

(impulse input and®white noise input) ;~(|. (2.31) holds C .

'I{‘ ’ s - . .

G* = R,(0) + f: a R (k)= F, ' (i)
) k=1

where R (k) is defined in eq. ('2.‘13). It has also been shown that the first p+

“coefficidnts of the autocorrelation function of the‘impulse response of the model :tre

identical to the first p+1 coefficients of the autdeorrelation function of the speech wig-

nal. Mathematically, if the autocorrelation function of fi{n) is defined as

-

R( m)= > M n)-/o(m+ n) * (2.33)
n=0
then '
o

& c R(m) = R, (m) 0smsp . B (2.36)

2.4.3. Lattice Formulations for Computation of the Coefficients (ay)

So far, we have tried to predict a speech sample from past speech samples; e,
Jorward prediction. Lattice methods employ the idea of backward prediction as well as

forward gre(lict.ioh.'Backward_prediction error is defined as [29

mr s(m—1) + 2 afs(m+ k=>i) ' C(2.37)

th -order predictor. Thls lmplles that s(m— 1) is predicted from the ¢ samples of

¢

for an ¢

the input { s(m—x+l.),\l;=l 20t } that follow «('m = 1): It has been showu lh:u itho

order forwar(l (b'tcl\\mrd) prediction error is rcl'lted to (1— 1)“'-or(l(‘r prediction errors

via eq. (2:38) ( eq. (2:39) ) [20] - 4
,u)(,,,) = fo=0(m) + kB0 = 1) ] [2.38)
bl m) = B6=Um=1) + kfi=Dm) (2.39)

where k; is calculated using eq.(2.40). Bacward and forward prediction errors for the
zeroth stage are eq®al to the input speech sample;' i.e‘,v ‘ :
{ . -‘ { . . . ) ‘ N
fOm) = b0O(m) = s(m) .

b g »



5

I

prediction errors. .

1
CFienre 2,13 depiets eqs. (2.38-39) as a signal-flow graph.
A
e(n)
N\
. .
3
Figure 2.13 All-zero andlysis lattice,
» N
. Ef(‘ l)(m)b("‘(n\—l)
> ko= = = m=l . (2.10)
- {2 (fir- 1)(m)) z(b(' l)(le))}
- m=0 s m=0 .
Siuce thv cq. (2.10) is in she form of a' normalized cross- correlation functlon the
parameters k, are bulled the,i;v‘nﬂial'correlaﬁon coe[ﬁcienta or RARCOR coeﬁi(‘ieuls
. o . . . -
[29]. .' ‘{[,“'.i‘,\ ‘
(o
\J/ ’

The quantities &, can also be computed using Burg's method [29]
L] .

\—1
[f(‘ 1(m)b ’“”(m—l)]

k, = ""'° - (2.41)

[!"”(m)] b

m=0

[b(' ”m—n]

which is obtained by minimizing the sym of the mean-squared forward and backward

m-O

-

[<3
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Bloc<k estimation _ ' St

In summary, o s anél b s are computed as follows [20)]:

l. tuitially set f1"Cm) = s m) = 0"(m).
Co .,
2. Compute by = ai'' from (‘((‘2.1[)0[‘(‘2.[()). j (i
. | N .
3. Determine FO0m ) and 68 ) ﬁ_‘om eqs. (2.38-39).
e ) ( v >
‘ ) 3’ - 2 ’ ’ : &
» -
5. Determine k, = alt rrﬂn eq. (2.11) or (2,10, '
[ . ) »
6. Determine af! for j=1.2. ... 1— 1 using
. ) ! .
bl = gl + katot ls s -1,
7. Determine fU%m) and b mn) from.('qs. (2.3R8-39).
~
. . \
R, i-i+1 . .
. R 4
9. Ifr < p gotostep .

10. "Stop:

2.4.4. Sequential Estimation Methods for Reflection Coefficients
o ) : . — T ' ' ’
Makhoul and Viswanathan in [18] distinguish two methods for computing a new

set of reflection coefficients at each time instant n:

1. Block @t‘insmtion, and

2. Adaptive estimation.
L3

. %

' . B . . . . " " L
In this method, a set of reflection coeflicients is computed using a "block™ of sampled

input. values and the procedure defined in the previous section. Whefi the hext input

)

sample® arrivés, a new block is defined and new coeflicients are estimated. There is no
° z

simple functional relationship between the reflection coefficiénts of sample time n aund

~

those -of sample time n+1. Forward and backward errors for each_stage are re-

~
%

computed (or all time up tqun +1 ,resulting’in heavy computational requircments.

. N
<

-



“u

Adnptivé estimation

It his method, the set of reflection coeflicients to be |1~'¢'<| at the {n+ 1)sf sampling

period Ape obtained by updating the set of reflection coefficienits.of n' sample peried.
I'he amoynt of update depends (indirectly)-on the input signal. .
* . .
had . .
To éxemplify this method, suppose t,hc.‘)followmg window 1y used: -
P . . y 3
w(M) =B, w20, < B s 1N - =
. winy=0, n <0 . v . N
. /
and the sum of forward and backward residual energies js minimized. £, (n+1) can be
computed as .
o _ C Sa=ddm)bu(n) + by (n = 1), ()
k(n+1)=k,in) - —rw 0] ,

where D{n) = BD{(n—1) + [Fmoi(n) + b=, (n=1) (18] .

As can be seen from the above equations, the forward and backward residuals are

' -
computed just once for each point in time. The SP1000 uses the adaptive estimution
. . A L ¢ . . ’ . “ .
method with a different update formula. Adaptive estimation methods regnive less
. . ' B -’ . .‘ .
computation compared to block methods. but at the expense of noisier reflection-
coeflicients.
. R v ~

2.4.5. Frequency Domain In\bs(pretation of Linear Predictive Analysis

So far, we have used linear prediction to estimate speech samples: i.e., we were
working in the time domain. Another.gpproach is to use linear prediction as a tool for
apectrum estimation. This means that using predictor coefficients we cah estimate the

A - N
spectrum of our model. This can be accomplished by evaluating H(:) on the unit cir- *

i \ . . } . .

cle. ‘

B ¥4
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2.4. 5 1. Frequency-Domain Interpretntxon ‘of Mean! }Sqéared‘; Pmﬂ:ﬂiﬁlq‘
¢ . ‘f " ‘._‘t 4\39 J

" . u} . ‘:. ‘.

il

; u,{f dom.nq r\ L.Zﬂ]

Error

’

,
The mean-squared prediction error can be expressyss

i zf.: ,, b

e : o N .,vp’,*"r“ S \“.{ - s La A‘ :

. & N [y s ar

\ [n = fu(’“) ;"a‘.ﬂ"" . R '*1.")')‘

or in the I'rvquon( v domain (using Parseval's thoorom) .“xs [")]
I LW
. ! . 5 . \ LA
Fo=/=—f15(e*)]"]l1(e!*)] dw (2.K3) 2%

' . 2‘“"“‘“ " ' . i ‘.w{'u.

where S (¢ ©) is the DT Fourier transform of s,(m) and A(e? @) = || :)|__’ « [Ste o)

. X LA ; )
e (i o Y -
(2.23)). Substituting ———for 8 (e’ ©) we have R :
‘ T el?) . . .
# ‘A_‘
»
>
RO . . 2 B
e ' F.o= (i- |'Sn(t}w”
' n oy, .f

7 “] dw .¢ N A

™z (el ©)|~ ot

Thus minimizing £, is equivalent Liﬁhe minimization No integri
. [ : ’

|S(e! @)}~ to its approximation |H(e! fﬂ In Section 2.0.2.2 e noted thza the auto-

. » L4

.correlation function, R, (m), of s,(m) and the autocorrelation function. IV, (m), of ’

L ke
5 N

h,tm) are equal for the first (p+1) values. As p increases, [[[{e? “)]5 becomes mm'ﬂ‘
. ‘
slmﬂ ir to IS(cJ‘")I and in tho limit”case, as P>, léuw(' two p()\\(l speetrin beeome

hml”(e"")l 15,0e7 )]

\\h at the above equation says is_that any spectrum can be .lpplo\nn.llul arbite: arily

closely by an all-pole modgl. _
. S ~

- !
Figure 2.14 [20] illustyates the spectral modelling capability of linear prediction

-3

by showing 20log,s|H(e’ “)\and 20log,,|5,(e’ ©)|. The signal spe(‘tl‘um";:w obtained

by an FFT ‘ana,lysis of a 20 msec s ioﬁ of speech (samplod at 20 kHz), woightc(l by a

Hamming window. The LPC spectrum was that of a 28 pole predlrtor nbt.unod by the
P

~

autocorrelation . method.
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2.4.6.1. Roots of the Predlctor Polynom)a‘l,/
\t;hp ;ﬂollowm’g transformation

' pcrlod [20] If the ro

Cthat (F

Ed
[~

4 " |pe2e

Ty

8

B

-

~
[~

"

RELATIVE ENERGY (a8} .
5]

'P,z,&h; -

4. -] 6 . 7‘ 8 9 0
. , FREQUENCY .{kHz) .

o

[+]
~ -
"]

—Figure 2.14 28-pode fit to an FFT signalyé;’fsvp.ectjrum.

! ; '
4, ! .

2;.4.8. Derivations of Some Other Speech Parametgxﬂ_‘é from LPC Coeflicients

¢

S (245)

\\hero sk - o‘k+1wk is the correspondmg pole in- Lhe s-plane and T is thp samplmo'

v
- 5\
en it is easy to show

W, = —;,—arctan':i _ - - {2.46a)
. : L Nkr )

F(p (2. lU) can be utlhzed foi‘ fortilant i’anal)sm The transformation defined bv (2.45)

.5 .r

lm to do \nth a concept l\nown as lmpulse mvanance mcDQP termmologv and is

]

log(:E + 5 . . ‘ (2.46b).

L7



worth brief discussion.

L. Consider a system composed E)f N loésless tubes each of length Ar = l/\ w here !
is the toml length of the vocal tract. [n such a system; all the (lelavq wnll be equal to

= Az/é . Consnder the response of the’ wstem to a unit’ unpulﬂe, i.e.. uc,-(l') = §{1).

The impulse propngates through the series of tubes. During propagation. the impulse i

partially reflected depending on the reflection coeflicients. The impulse response (i.c.,

< the volume velocity at the vlips) has been _‘shownu to be [29]
v (t) = a,d(t— N1) + Y o S(t=Ne—T) . : {(2.17)
o k=1

i
1

is N7 seconds, hence the first term. Then successive impulses due to reflections at the

P . . KN

junctions reach the lips c- multiples of 27 seconds later; hence the second term.. Tuking

the Laplace tr._:msform of both sides of eqq. (2 .47), we have
- )

»
-

Vils) = _’N’Ea e~TE L © (2.18)
[ k=0
. The second term,
Vils) 2 age T » — (2.49)

. ‘ \
" represents the resonance properties of the syst,em. The impulse response. for V() ix

% ‘ Gl t) = v 1+ Nt} . o (2.50)

Clearly, _ ‘ ‘ o S LT

Vi Q)= V(JQ+ ).

, -
A

In words, the frequency response V,(j Q)"is_"periodic in @ with peridd 8 *
1mme(llatelv remlud% us of Flgure ‘2 2 w;tb T, (he samplmg period fm) A/D=DT filter-

. - \ 0 '3

D/ A- LPF <Lructure wr.cplaced by 27'

"‘} hl summ'lr\' 9;* can sunulate th

A D DT ﬂ r- D A-LPF s(ructuxe “where Lhe mmpllu" period T =27 and the
o o N -

L

Eq. (2.47) can’be interpreted as follows: the soonest that an impulse can reach the lips
. > . -

analog system characterized by V. (j Q). witha ™



frvqm-nc_v‘rosp(.)nse of the DT filter is V(e’ “) such that l"(:)I:_CST = .1"',,(-9 ).

We can approach the same problem from a slightly different point of view of

impulse invariance.- The unit-sample response for the DT filter can be defined as
. Ci(n) = G ().t , (2.52)
since v,(t) is nonzero only at the integer multiplés of 27; i.e., the impulse response of
the DT filter consists of the samples of the impulse response for the atialog sy»ster'ﬁ\{ e
. “ . . . . . . P .‘ ; 1
hence the term impulse invariance. [t is straightforward to show that ' . \7‘ i
. . ' v .
Vi), r = Valo),
2.4.8.2. PARCOR Coefficients
The LPC cocflicients can be transformed inté the PARCOR coefficients using the
following recursive relations [29]:
k, = »;“(x') , ' . (2.53)
—— alil + koalt) o o
aimll = L———d s = - (2.5-)
1= k; A ‘
where i varies from p-to 1, ‘decreas “I-at each iteration. Initially.
'.a](p)=a]'»1'sj5p, o , -
2.4.8.3. Log Area Ratio Coefficients -
The log area ratio coefficients are defined as [7] ,
. :.1 . 1+ 4k . R ‘
s g, = log [ =] = log| “l-1=i=sp < {2.55)
. ‘41' 1‘_ l\'" .

The g, s have been found to be especially appropriate for quantization {17]

fag
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Cha.pter 3
General Instrument SP1000 Speech Processor

s

This chapter takes a close look at the Genor.;l lostrument ((-l) \l 1000 speech chip
around which the recognition hardware is deslgned. Thc first section examines archi-

tectural aspects of ‘the SP1000 in order to make the so-called ";ﬁ*mnls" that must be

'
.

..iéllowed to control the c¢hip seem less mystfriou‘s and arbilrury.. At the heart of the
SPIOOO 15 av‘lu't,tvice filter which can be ‘rc‘conﬁ.gurod for recognition as well :1.\: sy nthesis.
A ..good underst\an(li‘ng of Lhe>lattic_e filter, which is Lhc“subje(_'t, of section 3.2, is exsen-
tial 'tg fully exploiting the capabilities of the SP1000. Sections 3.3 and 3.4 lirig‘(l;' dis-
:cuSs so‘f'-t,ware and harclware interfaces for the SPIOOO. A sample block-lvvv‘l I(;gi\(':ll :
. design of a ‘ocoder lncorpomtmg the SP1000 is prescmed in the last section to further

BT .

cl’mfv the. Q§ gsions in the first .four segtions and to demonstrate lev versatility of

the (‘hlp

-3.1. SP1000 Archit e -
SP1000 is a 28 pin AMOS cﬁip cbm’bining speech analysis and synthesis functions

in a single dual in-lineg};gckiige (Figure 3.1 [1]).

.
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. ’ 4
- . i
Figure 3.1 SP1000 block diagram.
The SP1000's major architectural feature is that all of the data paths in it are serial.
‘ ’ . . ! .+ ' - —~
- Figure 3.2 [3] shows the functional blocks of the SP1000 as configured for analysis,

4



* Converter

2
o
s
" Data(D0-07)
Chip Salect (CS1)——tpl" = -
Dal“; Slmbo((ST_'B)OBE)—D — Intarrupt Request (IRQ)
Read/Write (RW) ————g{ Microproeossor
Resat (RESET) ——p{ Interface B Wait (WAIT )
Address (AO,A1) 7‘5—’ '
. l -
Quter
Parameter \
Handler
_ ) e ,
L Inner ?
Parameter ¢
Handler :
2
ADC DATA ——P Analysis Analysis
© ADC CONTROL—*  Input , - ‘Feodback - |
GAIN CONTROL— Converter 7 | : Control
’ - All-zero :
Analysis —/ 4
- Lattice
Synthesis - ’ l | " Synthesis ]
Excitation - - -Output f—p
' Genarator . DAC Data

Figure 3.2. SP1000 configured

as analyzer



~ .
QO The position of switches in Figure 3.2 would be reXersed to use the SP1000 as a ~yn-

thesizer. Outer and inner parameter handlers : essentially large recirculating shift

™ -
registers. The recirculation. period is equal t e sayﬁling period. The lattice filter

gets its coefficient data from the inner parametet handler.

. .

N T \ v ' . N . .
Analysis input converter (Figure 3.2) controls t-he analog-t‘o-(llglt_:xl converter

(ADC) via ADC CE and ADCCLK. It also controls the automahc garn control (AGC) -

Q

circuit using GAIN 6, GAIN ‘2 and GAI'\J 24 lines. The analysis input converter

—em- peceives the (lréitize(l speech sample from an external ADC chip via ADCDATA line (in

serial fashion) "I\lxe,digi(ized speech sample is further processed wnd then fed into the

.-

i lattice ﬁlt,er.'."f'he ”a‘nal_\;sis feedback control implements. the commu‘nication‘betweou
B filter stages. |
’ . H
In lecognitioa mode, the lattice filter computes 8 reﬂeciion ‘coeﬁicient.s in each
sample perlod and sends the:e estimates to the inner parameter h'm(ller ‘mmple l)\-
sa‘mple e~t|matee of reﬂectlon coefficients can be averaved over -a npumber of qamples
spociﬁed by one of the two timers on-the chlp tI‘hese averaged reflection coefficients
are stored in the .outer parameter handler and can-'be read by a mlcroproceqeor
z\ltlrough one would normally write ‘t.o (or read from) the outer parametver handler, it is
also possible to write directly to (or read frogn ) the inner parameter handler, b\ passing

the outer parameter handler. ThlS fact is not shown i Figure 3.2 due to rare usage of

this_pbssibility. S A . -

In addition to reflection coefficients (8 for recognition, 10 for synthesis), the fol-

lowing parameters are kept in the parameter handlers: :

.

o

"Recognition mode: timerl, timer2, energy, 4nd the sample rate.
Timerl and timer2 liold the umber of samples to be counted down for €ach and-are
decremented by one aft,er, each sample period. Two bits in the status register indicate

time-out condition for timerl 'md timer2. The user can specify which timer can trigger



o v ‘ ‘ .
j . . . 0

an interrupt. When an interrupt occurs, the user ¢an read averaged coeflicient values
. ~ &
and encrgy from the outer parameter handler. Clearly, polled operation is also possible

-

4 . . ' . " . .
for the same purpose.. Additionally, when timer2 runs out, gain control lines :ire

updated. Therefore, timer2 is said t

samples during a gain period.

specify the gain period. Fnergy accumulates the

.

absoldte value of the -input spéeé

Sample rfate indirectly specifies how often the input audio signal h‘ll()llli‘ be.sampled
. (see next-se¢tion for details).
. J

Synthesis mode: timerl, timer2, sample rate, excitation type (ENCTYP), and eei-
tation amplitude (ENCAMP). Although our emphasis is on the récognition side of the
SP1000. we will briefly-discuss the above parameters to make the treatment complete.

In synthesis mode, user can specify which timer should trigger the transfer of parame-

ters from the outer handler to the inner handler. Instead of transfer, it is also possible

)

o add the parameters in the outer handler to corresponding parameters in the i‘n‘m-r
1andler which can be used to achieve a reduction in-the rate of data transfer to yhe
t;PIOOO. Sample rate determines the frequency at which synthetic speech samples will |
be put out by tr\he’SPIOOO. E‘,\’CTYP determines which one of the eight different exci-
tation sources will be input to the lattice filter. It i;s! possibvle to provide external exciti-
“tion to the filter on a samplé-by-sample basis by writvir-1g di.rectlyx to the EXCU\;\H’ field
of t.he inner pararﬁpter handler and using EXCTYP code "1". This implics 't,lmt the
SP1000 can be us;’d to perfo.rm ;u,y other signal prdcessing task that can be imple-

mented using a lattice filter. The EXCAMP field simply determines the amplitude of

excitation. . : .

N L N
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-

he tattice filter can be configured as having & stages for analysis and .10 stages

for synthesis (Figure 3.3 ).

~ .
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Figure 3.3 SP1000 lattice filter configured for (a)*analyéis (b) synthesis.
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[n analysis mode, the SP1000 estimates a naw set of reflection coeflicients at each samh-

ple” period. Specifically, assume we have kfnl b,_(n=1). 1 =+ < & and s(n). Then.

1

th

forward and backward errors for n'* sample peglod and reflection coefficients to be

v

used in (n+ 1)st sample period are computed using eqs. (3.1) 3] :

CJoln) = by(n) = s(n) @ (3.1a)
fin) = [ (n)+ b_((n—1)*(n) , - V ’ k {(3.1b)
i) = byy(p=1) + foi(n)*h(n) - ' (3.1c)

k(n +1) = k,(n*— ()ff,(n)b'(:'.\'[b,_l(n- 1) : {3.1d)

)

where SGN{[] is the sign of the argument inside the square brackets and (' is a potitive
power-of-two constant. This schenie requires less computation than standiurd methods

of adaptive estimation [18]. The price to be paid for the substantial savings in compu-
1

tation time and simplicity of implementation iy-less accurate reflection coeflicients.

However, for a limited-word, speaker-dependent IWR system, the loss in accuragy can

be acceptable. ‘ I

In the SP1000, only one filter stage is physically implemented. The structure of
the xomputations as discussed above makes it possible to time-multiplex' this filter -

stage in a sample period to achieve the result that can be produced by & "real” cas-
4 - K
cagled filter stages in analysis mode (10 stages in synthesis mode). As a result. only one

filter stage needs to be reconfigured for the apalysis/synthesis function. Frgure 3.4 (3]

depicts this time-m ultiplt;,;e(l stage,

.

Time mul(iplexix.lg of one filter s’vt,age ‘gives rise to a cogeept that wé_will subse-
q\iclltl)' call the stage period . A samp_lc"‘ périod is divided into & stage periods in
analysis mode (10, in s.\'xlt:‘hesis mode). The value of the sample parameters lu handlers
determines the actual s:}mplé period as follows. In the current implementation the

SP1000 is clocked at f,=3.579545 MHz; i.e. a clock period takes 1/f, second. The
) ‘\ [/'b
sample rate (SR) parameter determines the number of clock periods during which the

filter stage will be idle. Regardles

s

s of sampling rate, it takes 28 clock periods for u

N ' t

x
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10 next stage
»

.

RAE Scaler : .
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—
to, next stage

‘ 5

Figure 3.4 Time-multiplexed filter stage.

K4

: necessary computations. Thus, a stage.period consists of 2%+ S1Y

‘ -

- clock cycles. As a result, § sample period is

T, = 8*(28+ SR)/f, scconds in analysis mode, and
e ’ o ’ N " ‘ °‘ ’ . e
T, = 10*(28+ SR/, second§ in synthesis mode. -
<
The SR can take on values-in the rankseof10,63] since the low-order 6 bits of this field
oA :

are used. The highest and lowest possible values for sampling frequency can be com-
puted substituting SR=0 and SR=63, respectively in the above formulae, giving the

following ranges far bot® modes:

analysis: [1916, 15980}Hz
s¥nthesis: [3933, 12784]Hz.

It, should be noted that not all the frequencies in the above ranges are realizable

& -
because of the way the T, is computed using SR
. . . ‘ ;
Access to internal filter data path ,
¢ ¢
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*

%‘; 1

9.

f
{

‘

[t is possible-to access lho uppofl nput path of a qt'xge using the teel option, which can
&

be,set by a bitin the control register of the SP1000. When this eption is set, pin I'1.of’
¥ N

the SP100Q is disconnected from‘ sym‘hesis output and connected t6 the upper inpit

“
..

p.nh of the lnmo multiplexed ﬁlter stagé. As a result in analysls mode, fo(n), ..., f+(n)

and in synt,hesis mode, fon), f,,(n), fo(n) appear on pin 11. Section 3.5 will present

N t
a design which makes use of the test option.-

\ . : - !
3.3. Microprocessor Software Interface for Recognition -
When dealing with tF& SP1000, user sees four registers:
- . ) . \‘
1.  control register (write-only)
2.  statusregister (read-only) . Co o _ ,
N3 1purnmbtver address register( writ‘e-only) . ¢
. . 5%
‘_med on th{% reglsters is specified by R/W. A0, and A1 lines

%“ HTRO?‘EE q&i‘; make it easy to control the

e [ﬁ y Oontfo

*
% . bei

n rontvofg‘aml \t.xlux lovrsfe

. . ‘\‘ N .
. L] y e

o

llw J)"trunmh}q(l(lro\a r("fl%t(‘;l‘ s'pef/ﬁes the handler ( bit 5 is 0 for the outer

’ l»lll(vH(‘ llld\ is 1 for the mner h‘mdler) | the parameter in it. The parameter data

Ta

regxst,cr holds the datmt hat i xs read from or to be written to the SP1000.

5 Q: N
- ,\ »

The p'tram?ter d:ﬁa regmter differs from control and_ status reglﬁters m that any

/

opormou qn/con(rol and ~tatu< registers takes effect immediately. For e\ample. a

ro:n‘(l-‘s‘lutus _opqr:;nou lf(‘turns the curren‘t state of the SP1000 and a writc-control

3

."-’ .Li':, ' - o> . "
*operatign sets'néw control parameters "immediately”. Qn the other hand. the contents

P S e . 3 e ) . S . .
Sy o iy ¥ . . L ] .o ( s
b {-1: ¥ L g L . o ‘ - Le L - - . < 0 : ;:: X
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of the purageter data register aftér a read or write operption does not 2|l\\':\‘\"l‘(‘il(‘(“
. . . 3 ‘i

the currentvalue of the parameter specified by the address register. This difference is
R ‘ 1] »

completely due to the serial architecture of the SP1000 as mentioned in section 3.1.

.~

The-parameter data register can be seen as a parallel-to-serial converter for write-data

operation and serial-tozparallel converter for read-data operation. This register can tap

N

~ \
both handlers, which are essentially recirculating shift registers with recirculation

period of one sample period. in one place. The ability of tapping handlers in just one

plice means tk’xt 10 access n pnrt,iculuf parameter in a handler one has to wait until
- ,
Jhat parameter passes by the tap and this waiting may take as long as a sample period
+
if the desired parameter happens to have just passed by the tap when access is
requested. ‘
<

>

This synchronization problem is solved byy-the use of the BUSY bit§f PRt us

-

register. The BUSg’ bit

vhtn a transfer begwden the data register and a parame-

ter handler is requested and remains set until the transfer is complete. The operations
‘u"”;' 4 .

that set the BUSY bit are both write commands (codes 2 and 3) and read-data-and-

fetch command (code 7) [1]. The read-data (code 6) and read-data-and-fetch operations

' - . . C. .
both return whatever is already in the parameter data register. In addmion to that, the
?“

L

, ~ s
read-data-and-fetch operation also requests data transfer between the¥parameter data

register and the parameter designated by the parameter address register,

In"the light of above discussion, the steps that must be taken to write to or reud

ffom a particular parameter of a particular handler are: \
o .
1. Specify the handler .and the parameder using® a write-to-parameter-address

register operation (unless it is known for €ure that the parameter address register

3 already contains the desired adtlress).

B

2. To write eight bits of the parameter data register followed by a0 (1) as the feast
: N < .

1
i

: >
significant bit (LSB). the write-data operation with code 2 (3) is issued.
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. . . ) 7 4

\\’I‘o read, read-data-and-fetch (code.7) is used. The eigth-bit' value returned by

read-data-and-fetch is the current coxit.,e_n‘t‘;of the parameter data register and is
iscarded. :

e . -
3. Wait 'until the BUSY bit is cleared which indicates that data transfer is complete.

Now the-8-bit value obtained from the specified handler is in the parameter data

’

s, a . . ) .. . ’ . . . . .
register. which can be retriéved by either read-data (code 8) or read-data-and- .
fetch (code 7) operation. If the latter is.used, the low-order 4 bits-of the parame-

“ter address 'regi'steris aut,omai‘ically incremented and a fetch opemt-ion is ini-

tmtcd It <hould be noted Lhat, the blt specnf) ing the haxidler remains unchanged.

Sraoe

In the case of write operatlon the parameter addrfis register is qulhrl dpdated.

The aut‘omat-ic update of%xe' parameter address register is especially useful for access-

ng,,/tfhe consecutive parameters. References [1] and [2] should be consulted for more

Pt . . . ¥

detailed information on the sdftware ifterface for the SP1000.

3.4. The Hardwa.re Interfalce for R-ecogniﬁion '
[ . &

-

"A typical hardwa,re mterface for the SP1000 is illustrated in Flgure 3.5 [7] which

3

is-also followed in the LIS’NER 1000 voice recognltlon board used in our unplementa-

v

r e

tion {12]. " ‘ L o oo
. . ) \ ~ ; ’ : : -
Rumble filter

The purpose of this flter is to eliminate e low-frequéq('y "noise related to power-lime

L » : ) o ¢

frequency. This filter is Asually implemented as a high-pass analog filter! The cutoff

frequency of the high-pagilter implelﬁgnted in the LIS'NER 1000 recognition board is
250Hz. * -~ . s
Pre-emphasis filter

: ADMnbutlon of energy to frequencies of interest for Qpeech recogmtlon 1s not uuxform

The enorgy_m(’)dtent of lower fre:cllgencies:‘ is higher than*that of higher ﬁrequeucies.. A

s

' ' . ‘ . ) . | . e ’ ‘\v ‘
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Rumble b Pre-emphasis Automatic .
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' {Analog) { Analog ) Amplifier .
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Anti-aliasing | © | samples - Analogto- [ ADC Clock
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Fill‘ill'e 3.5 Typical hardware interface for the SP1000 for speech rwofrnilinn.
‘ : i
pr'lgm{vtxc Jll‘\(lﬁ(‘(ttlon for the use of a pre em phasis filter is to boost the |ll"|l(l hv

quencxes so that reﬂectlon coeﬂicnents can mptun more mf‘ormmmu frbout tlu- \l) ape ol

higher frequency portion of the spe'ct.rum of the input speech signal than 'would lm,p(')‘x-',
) - 3 : . . N
. sible/ with no' pre-emphasis. In other words, reflection coeflicients obtuined from the

RN

[N » ! . ~ ' - - L g
hardware configuration depicted in Figure 3.5 do not model the spectrum of*the owedi-

nal speech signz'll since-the signal seen by the SP1000 is théypre-¢mphasized version of

o
By

the original signal. For an IWR system' based on_pattern matching, this is of no conse-
quence because both training and testing .‘ULtveradcgﬁwill‘paﬁs through the same from.

end. A popilar way of implementing pre-emphasis filter is to usé a first-order analog ,
N . : ST . . *
high-pass filter with a frequency response such that higher frequencies of interest are

o

"booste(l whlle at the same time lower frequencxes are attenuaw(l Pre- cmphasw can

. o . .

also be. achleved by a first- or(ler hlgh -pass digital filter wnth a frequency response of

f

1=z where u is in the mnge of [O 9 1. 0] [20]

:fl

<

¥
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.

From a more lhcoret.icul viewpoint, pre-emphasis can be used to.eliminate the - -

spéctr: ll contributions of rrlottal ‘waveform (/(s) and llp radlatlon L(s) S0 th.n the

‘

refllection ('o('fhments characterize the vocal tract frequencv response [20] More
aporiﬁé'nll\' by (‘hoosing Pl(s) = L(s) 'md recalling that 9(9)"‘ I(s)E(a)/L(s) (see
C lmptox ’) after .m.zlog to- digital conversion we ha\e the followmg as z-transform of

the pre-emphasized speecb SIgnal whlch is s‘een by the bPlQOO:
. o . .o . )

P(:)S(z) = V(:)E(z) . E o (3.2)

The reflection c,oefﬁ‘cient,s estimated. by the SP1000 from the pré-em‘phnsizbyd

speech signal uniquvlv and iudirect-lv» (see'cm{te«r 2) determine' an- inverse filter

»

A‘(")= l/l'(*); As a l(‘\lllt the z- tr'msform of the I'E\l(lll'll slvnal output from the last

»

. stage {but not accossll)le see section 3.2) is (Figure 36 )

OSIA() = VEEEVV(F B . (33)

C &
" .

. : : - | <Analog-to-digital

input speech b o pre-emphasized | convarsion with

signal s(t) .| “Fre-emphasis ‘| speach signal sampling period T.

2002 50 gl Fier R 9T smeingpe .

S(s) CPe)=lis)  EVEIEGS) . | v EE)-VER ;| VRE®

’ % K . ] ; g S v : Z-Gs . )

AN . Y

forward prediction error | oL
_ from 8th stage ) ., SP1000 All-zero
N 'fa(n) =e(n) . . analysis lattice
: < _ R L fitert ¢
E @ _ ' R .
) T m A (Z) - Vv (Z) .
. A

7

Flgure 3.6 Pre-emphasx,s for the SP1000- based’ Qpeech analysis.

Automa.tlc Ga.m Control Ampllﬁer (AGC)

¢



Ahcypurpose of the AGC amplifier is to keep the average input speech amphivude at o
. B ) N ' A, .

faisky constant level so that the adaptation time’of the tilter for low-amplitude -por-

tions of input speech is close to the :\il:lp(gxgi;yl time ol'nfg"l}é filter Tor high-ammphitude

: : ) " % .

port.vions. This car be s'een' frdm 6q. (3.1(” b.y obsorvi[ig t,h\,:,h the amount of update on

l.(n) is proportlonal to f(n) which, in turn. is dependent ‘an the lllpul speec, h wvnAnl

Cy _

(eq. (3.1a)). A \ side Benefit of the AGC qchemc is that the d\rn.nm( range of the mpul

R

Qpe(‘ch signal is lipited and reduced nnklnw the use of an |nv\pvn~uv R-bit analog-

to-digital con\ertcr f("l‘\ll)l(’ [22]. G. \N 6, G. \I\ 12, and '(i;\l.’\i',".’-l Ilmw wlm'h (Ivtvr-

\

mine the gmn of the amplrﬁﬂ are updated b.r«od on the, accumulatwl absolute value nl

5

\'wt
the %peech samples taken in a gain period wluch 1s spemﬁc(l by tnum_’ of the %: 1&()0

Antl-alxasmg ﬁlter " \‘

As discussed in Chapter 2, Lhe.purpdse of this filter is to p

svent aliasing, In the

LIS'NER 1000 voice recognition board, this filter iy implemented as 3 two-pole, active,

" low-pass filter which cuts off at 3200 H.
] &« )

Sample-and-hold cir_‘cuit‘z‘md analog-to-digital conversion -

The sample-and-hold circuit cbnsist,s of a switch_ and a 'capacit,or zm"‘d, its input, is the

output of, tke antl ahasmg filter. Normally, the swnch is closed and t‘hc w)lmgo on th

capacxtor £ollow< the lnput signal. When the ADCCE becomes agtno low the switeh is

‘opengd 'md the capacitor is’ (Ilsconnected.from Lbe mpuL snrrnnl. Ihe snunplv vuluc is
o

9tahe \olt'xge Gtored on the capacitor whlch feeds the ADC. ADCCLK pron(los clock sl"-. .

e

nal to ~\DC 'md digital ‘value of the ﬂample is. Serially Lr'msferrc-d from ADC to the

SPIOOO@e ADCDATA hne The ADC used id Lhe LIS’NFR 1000 board is an & hbit

S ’f-"‘.

ADC0831 manufactured by Natxonal Semiconductor {12]

e

1
i
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3.5. An Example Design: SP1000-based Vocoder

I 1his st'cti;)lléra'o will discuss 1 block‘-levcl log;cal (‘lesigu’of an HPI()\OO-I):nscgl'
vocoder. Our (i(-sigxn is not. meant to be detailed and complete. Our pi_n'&];ose in this 5(‘(‘-‘
tion is to il,l'u.strnte, by way of this example design, how the. SP1000 i'.:i;l Ii>e used for .
other spooch‘ procesvsing tasks. In doing so,»severall aspects of the SP1000. which might
go unnoticed in tl;é c‘ontext of I‘\VR as described in Chapter 4 will be (.'l.'n'iﬁvd. This
design will also involve tﬁe’ use of the synthesis capability of‘th.e SPlObO and access 1o

Y

the i-m('r‘nul lattice filter dnta._- .

The vocoder (Voi(‘e Codelf)I‘ is a device to reduce ‘the. (l.ntu rate for digitized
: .‘spm'rh well below the levels ﬁchiévable wit‘h' wy'a\'e'f'(tfrzx‘}:fé(vling techuiques [0] Mthough o
the s‘pochc h quality obtained by the use of vocoders isb;:no’vt, u.suall_v acceptable for public -~ --
teblophone conve.rsut,ions. vocoders have bee.n successfullytused in ;nilit-zu"y applications’

\

Figure 3.7 illustrates the use of vocoders in voice communication.

A ; . ’
P
Ty h
v %
« /4 .
" input.speech ] r - 1* reproduced
r Vocoder ~ > ,Vocode‘ o=
sighat .| .Analyzer ® f Synthesizer | speach signal
noise 4
. <)
4—— Transmiter > 4 Comunicaton ___p, g Ascoiver ————>
‘ "
A}

- Figure 3.7 Vocoders in voice communications.
In our design, ei"gtlt, reflection_ coefficients, the, voiced/unvéiced decision, the pitch

period (if voiced), ana+he—sam-pﬁng'rate will be transmitted over the channel.

it

IR

Vocoder analyzer L "
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Figure 3.8 shows the major blocks of 4¥e vocoder analyzer.

)

4



.
G o
. i 655
. ") "
. .
3
—— ,/f"
TS
. speach High-pass pl‘-omphlsil Anti-aliasing —p SI}EW
.i—r\;;’l " Mitter " filtor —®1 fior . cirout  ~ '
4 ‘\m . .
. %
.| Anslog-to- |y -
dighal )
converter .1 o °
- X - ‘ . . s
. g ' >
¥ . ° )
g 2 Clock(10) .
. Digital ‘
Oout {11) , . > Data
o _SP1000 ‘ Collection
 (in tast moda) : Circuit
. eb}mtrol signals
o= N
AOALRW, Y S
CSI.STHPBE . ready
’ -~
< ' o(n)
o - Da. IMSR .
‘ . o : . register
' microprocessor system °
[
refl.coeffs + un + : ’
o pitch + SR
4 A
communication o .
. channe| , ) “ Cw

. i
Figure 3.8, Vocoder analyzer.
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The ecight reflection coé[ﬁcientsl are casily ol)t.ained from tho.SvPl()()()‘. The residual out-

-put. signal can be llS("’d io make a voi_é-ed/,unvéicnl decision unld to compute the piteh

ﬁeriod. Since t,hisv singxl is not accessible (see Section 3.2),_the residual from the T

stage will be used as an approximat,ioh to it. The data collection circuit (Figuré 3.9)
L .

extracts “:‘t}his sighai""from pin 11 _(digital\ out) of the SP1000 which must be'in the test

mode [1].
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Figure 3.9 Data collectian circuit.
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The LSB of the vlvﬁ-bit. forward prodictiou error or residual f.rom a particutar filter stage
appears on piﬁ Il in the first clock eycle of-a stage por.iod. Then. for a sampling rate
SR. the most significant bit (MSé) of the residbu:.\l from filter stage n, 1 S 7 < n, will
be o’n‘pin 11 after (n—1)*{28+ SR) + 16 g}ock periods passed‘siv'nco the start of \ sam-

ple period which is indicated by the positive-to-negative transition of ADCCE line.

The microprocessor computes this time-offset and writes it to bit-time register.

The bit-time counter is loaded from the bit-time register at the start of each sam-.

. s
- . R . C . 3
ple period. The bit-time counter is decremented at each clock pulse (pin 10) and when

it reaches zero a load pulse is generated and the cdntents of the shift register is

transferred to a 16-bit buffer which is read by the microprocessor system. The
mechanism (e:g., DMA channel) used by the microprocessor system to retrieve and

buffer the forward prediction error samples is beyond the scope of this design.

The microprocessor system can perform autocorrelation analysis (see Section 2.3)

on the buffered values of the residual signal to make the voiced/unvoiced decision and

to coﬁlput,e the pitch period for voiced parts [29].. The SIFT algorithm of Markel [19]

can also be adapted to this situation for pitch period estimation. The Microprocessor

system also gets reflection coefficients from the SP1000 at each frame period and

transmits them along with voiced/unvoiced decision, the pitch period (if voiced), and

the-sampling rate over the channel. The sampling rate is not to be transmitted at cach

frame period.

Vocoder synthesizer ¥
As shown in Figure 3.10 , vocader synthesizer is comprised of three' major blocks,

namely a microprocessor system, the SP1000 in synthesis mode, and the external out-

put cireujtry.

.

The microprocessor system receives eight reflection coefficients, the yoiced/unvoiced

“decision. the pitch period, and the sampling rate and controls the SP1900. The syn-
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channnel

relfl.coeffs + unv +
pitch + SR

‘ ‘ communication

microprocessor
system

UUT

;i control
signals (Q007)

SP1000

( in test mode)

digital out (11) (

External Output
C|rcuutry

¥ §

\ ' synthetic
"\ speech

) Figilre 3.10 Vocoder synthesizer.
thesis lattice .[ilt('r ;)f th.e SP1000 has ten stages. but only eight reflection (‘O(‘ﬂi(‘i(‘l]l:
are transmitted by the analyzer. Therefore, the microprocessor system sets k, :vmdﬁl.'m
“to rero, olrccti\'el)'"'_canfelling out the ninth and Lentbl-l sy nthesis gtuges (see Section 3.2).
The [‘fX("I‘\'P parnmctver'i's- set according to voiced/unvoiced decision and the pitch
perlod is written to-timerl. The sampling rate transmitted by analy zer determlnes the

- corresponding p'lr'lmeter of thc SP1000.
Two different 'methods can be used to implement the external output circuitry.

1. If the SP1000 is in normal mode [1], the pulse-width modulated (PWM) output



'PWM output and to use a digital-to-analog converter (DAC) followed by an LP

70
P (

» . . . . .
.appears on pin 11. The recovery of syuthetic spéech from the PW)M nu”wl

.

occurs by means of the spectrum PWNM signals [5,31). Basically, k'hv spectrum ol o

PW)signal consistseof carrer lines at the harmoni~s of the sampling frequency
1]

[;. which are accompanied by a symmetrical pattern of sideband fines thay aic due

1

e d : . ' . . ¢ . . ’
to the modulating signal (i.e., synthetic speech s:\mple:f‘f. As the pame unph;s. the:
carrier lines are introduced into the spectrum by the unmodulated pulse train

which is the "carrier” of the modulation.

a

The structure- of the spectrum suggests that the modulating signal can be

-

recovered by passing the PWNM signal through a low-pass filter, cutting olf at f /2.

However, the output of the LP filter would not be an exact replica of the modu-

lating signal since the sidebands extend indefinitely outward from each carrier

A Y

line, with decreasing amplitude at greater distances. As a result, any LP filter

-~

with a cutoff frequency of [/2 must include some of the lower sideband com-

ponents of the carrier line of f, and to a lesser extent the lower sideband com-

ponents of 2f_, etc. The output of the LP filter is of lower quality but still inteidi-

gible despite these distortions [5]. On the positive side, the LP filter is easier.and
cheaper to implement compared to the second method which will be discussed
h ! A

next.

This method can produce better quality speech by exploiting the full internal pre-

cision of the SP1000 but is more costly and complicated to implement. The basic
ideas behind this scheme are to use 16-bit synthetic specch sumples instead of
v \ : )

filter t§ produce analog speech output. In order to get 18-bit speech samples from

the SP1000, it must be in test mode. 'Figure 3.11 illustrates the external output

" circuitry which in many respects is similar to the data collection circuit of the

analyzer. The 16-bit speech sample can be obtained from the upper filter path of

4

s
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W,IW'hich uses by oas reflection coeflicsent) via pin 11 In syvnthesis

. N ‘v'
the firstostge
* e
mode. ARCCE miKes a positive-to-negative rransition at the start of the ~seventh
s \ £ Lo
N . * . o .
stige period of a swnple pertod. As a result. the microprocessor system computes
t .
the number of clock  periods. to be written to the "bit-time register 0" s

34 SR +28) + 16. This design also differs from that of the data collection circuit
. : &
of the analyzer in that there are two bit-time registers. The reason for this is

that the parameters wri&;vn to the SP1000 in response to an interrupt in, say. the

5

n' piteh period are used in the (n+ 1)st pitch period.



from SP1000
_Z_Jcck | apccs
ld

" ) Falling edge
: detector

L
from microprocessor system

|4t

ad” ;
Bit-time ¢
register 0

from’SP1000

Falling edge
detecior

8

Bit-time
ragister 1

-

-1 load preset
Bit-time Casry
Counter Out

- Clock

Digital out (11)

L——__g__’ Clock

16-bit shift
; register

from SP1000

2

@

4 Input

® load
Bulffer

4

A

Digital-to-analog’
converter

R

Low-pass
- filter

L .

-

synthatic

speech

[ oA

e

.

&

4

Figure 3.11 External output circuitry for vocoder synthésizer using test mode.

'




This éhupter (.lié('ps._s‘es the design and implem'en»tal‘io'n of IWRT
Ro(ovm/m Tramer) Our, d'iscus'sion parallels Chap{,er 1. RSecLio’n 4.1 reports how

feature O\tmctlon is (lone in. the I\VRT bectlon 4.2 C\ammes “the- I\\ RT's endpomt

. detection s'chom'e Hﬂ"tlon 4 3 dnqcusqes the llnear time norm'xhzatlon process “hlch

8 _(‘h.'mges, in the mpu‘t. sngnal, '

T

coui presses oF stretehes all the refereuce/test p'ttterns te-a btandal(l lenrrth T he \ub-
JC(‘( of how the referencc p"merns are saved is eldbomtcd upon in Section. 4 1. The

D I W .;Iv:rorl(hm uqed for p'lttern matchmg and the (Iecmon rule emplm ed f01 mal\mw

t éd “Word ‘

5

' ' ‘ - -
roco"mtmn (l&'(‘.\lO!l‘\ are tle'lte(l n the last two %e(‘tlons d : _
.J. ' . ‘ ' . ,“ . . ) ' ' J. ) : ﬁ‘ . .‘ ' (1‘3 'J':‘.' Lo ' (;;

~4.1. Feature Extraction ‘ o - . e o,

.

\

The features of the speech signal that are extracted by t’l_gq.‘i‘\}iR,"[_" are eight

W Ty
PRES 3 ~

rvﬂoction coelﬁciouts-und t'lxefeno?rg_v level. This'(lécisio‘n is imposed on the design by

(‘v c: npal)lll(les of thc SP1000 as (lnscu%ed in C lnpter 3. _ RN
. o : 77\ . v
I‘he mmplmg mte for the input- audio slgn'xl dnd the frame peno&?mn Yo

R

mluwl by the.user at run tlme If theqe parameterﬂ are not spemhe(l. (lo fault \.llu(* ol

b )00 Hz nu(l 20 msec. are 'ﬁsumed for mmplmfr m;(e and frame perm(l e\pcctnelx ’

[‘ho ‘un ponod is fixed 'lS hmf of the frame penocl for"'ehe ﬂke of .quick response to.
P2 ’ ’ " . R T 1]

“/’» . " -
‘. ‘ . g = . e

4.2. E,r_ldv'pbo’int; Detection "

“

¥ . ) : o A

frames. An implicit approach %q_endpoint edtimation is ruled out because too much

1

. l"revccl’om in ;d'et,ermidatiou" of th’é endpoiﬁbs tends' to degrade the recognition perfor-

‘

m'xn(ie [13] IWRTs eudpomt detector was de51gned wnth -a Izyb;tdnppro&ch (see v‘

- .

C h.lptcr l) in mmd and accordmgly lt, generates’ an ordered set of endpomt palrs

Est'jm%t,iq_rilof .ghe endpointy is based “solely on the energy level of the:input.

“l‘.

>



fu@-tor in (n(lpomt detection. Whes the trluumg or recognit-iou mode 1s 01\

tial averag . noise level is comput.ed The QIETS IS

followed by forming all pos:sible endpoii& pairs. n the last step these g7uirs :n'v’f”"l:

‘ Pulse detectlon

However: after experimentation \\lth the system, it ha® been olm\rwd th\t the best
'. v

endpoint l)uir os_timle(‘(l by the enclpoint (lot.e(‘t'or was quite accurate most ol the liufv.

Also. consldennv the’ response time 'md the hl"‘h recog m@n accuracy obtained using

onls the best e.n(lpowt piir, we decnded to use onl\ the best en(lpomt p ur., \c‘lulfivol\'

0 ~ .

cle'm tmu\mlwlon condmona and use of a close- t'1lkmg headset- at\lv mu mp;w?’nv con-

l'

txr'-i‘bute to better deterv_mination of eg(lp‘oims. Endpoint detection is done "onithe-fiy "

I 4 ’ . ! N
th@l\\P\f contlnuoml\ "vhunts 'for" an utterance-tn the in(“omin‘g‘ frames. The
. ? 0\ * g 3% .« . -
thq an&% I gb\u;ued to-*h'n'e ended i a sllcnec pcr:od ol' more 1h i 300 msece. s
’ & . :
(letectcd S o . .

‘.~\vex'ng‘e -backgr‘ound naise (expressed in the decil)ol or dB scale) is an il.npnrthntl

dred, anfini-
un-tigde how many
B M “' . “ . ) - s e ' N
frames should be used in this computation. The {WRT also, continuosly mounitors the

energy level of background noise and updates the average level when i frame clussified

-

Fas silent is foﬁun(l before the start of utterance is (let,e.ct,ed.f The user can specify how

many of the most recent frames will be involved in the gagtage noise level computa-:

M ~

t'i'O[l. ‘ o \ v

" An utterance iv assumed to contain one or more pulses.” A% a result, the IW)
; . : ; 2

Jdn endpoint estimatiom is to detect valid pulses i the: input signal. Pulse detection is
, # o Jaa

y
. . -

-
\

Y

B

Thlee thresholds thl, tQ,., and tlz:; are uaed in the proce% of determlmn'r \\ Iu( h f!’lm('s
' . e . »
l;f)ong to a pulse thl, tlz», nd th3 have the V'llues of 4 dB 8 dB, and 6 (lB r(wpv(‘-

Q

and f denote ;he z"' frame the energy level {10 tdB) of [, thc'
‘t I’ : .

‘"""_'fand t»Be c@mg(last) fra.me ofapulse respecuvely I

}
-

;a,s.éii'_mé,th%t, f;-isthe first ;fr‘ame, in time:whose en.ergy e, exceeds th,. Then
’ L - . B




Forr@ipg possiblek endpo’fht pai_rs

- Having detected valid puls

=1

=

. . Y : : o
[, is recorded as f.. lf the energy !e\'el falls below th, for f,.m > n before rising

above th, tlun [ f,‘H, <o [ are classified as a false start 'm(l are discArded. Other-

#

wise, fn- fn+1c cenr [on are consl(lered p'xrt of pulse unless tl% rise time (tlme taken by
L3

t.ho frt:imeﬁ f,nsSis m)is greater than 80{ msec. .in Whi_ch.’case they are also (lis-

’

carded and [, is recorded as f, ..
&

Suppose f; is the first such’ frame that comes after the’ starting frame. [, ,(i.o..'

[ > s)and its energy level is below Ilz:3 (l.e.. e < thy). IW R’I eudpomt detector also

. . : . - .. . e ) )
keeps track of the latest frame which comes before [/ satisfying c, < th.. Let us Cull

this frame’ f, . If the fal.(.lz'nm-(‘akon' by the frames f;, [ . 1 is greater than 0

“msce., then these frames are discarded and f; is recorded as f;_ . A fall time greater

than 80 msec. may be caused by heavy breathing at the end of utterance.

[

ln m'de.r to be con.si("lered‘ valid, the pulse that has been just detected must pass -

e
Q‘V‘O lc\ts If the hlghesf energy level i the frameq making up the pulse is less fﬁﬂuu

B or the pulse (lumtlon is less than 80 msec., then the pulse .is copfidered; invalid and

v

“all the frames in it, are dis’cgrded. Such an invalid pulse might be produced by a door

- -

RS —~
stam, lip Smacking, etc.

.

lf a valid pulse is follow ed by a silence perlod of at least 300 msec. t‘hen an dtter-

ance w hich may contain all’the 'vahd pulwq cldected so far is &sxum(‘d over:

N

»

s, the endpoint detector procceds to form all possible.end-

L4 . L]

N

1. An utterance contains-one or more valid pulses. - - : .

Lo
. X . . . . 3
- . . ) . s . .

2. _ Every endpoint pair 's'holprl.d"_include the pulse which contains the highest' energy

5 - , W

. . 4 - . . : L ., al
- odevell _ - : } C
L AP 1 :
Ordering 'endﬁpdwm_t\p/alrs
% ,‘)1 > ~ - . " ‘ .

A"‘_ . : vt

(]

'S
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‘

In this step. endpoint pairs are ordered according to the following criteria. \

I

Pulses separated by more than a silent gap of 150 msec. are less likely to be part

of the same utterance. ’ e

B ' ’

'4.3. Linear Normalization of Reference

2. Endpoint pairs.containing more pulses are given preference in the ordering pro-
cess.
3.  Endpoint pairs with less overall silent gap dfratign are given preference in-the
L ey - : .
‘ordering process. o - _ Cven
TV . ' .
’ s Wt . ’ . \ .
In summary, IWRT's endpoint detector detects valid pulses. forms all possible
S . h . 5 LI
- B . P ’ ) N ) N . i e s . N )
. . Y - . y - M
. -endpoint pairs, and orders them. The ordered set: qf endpoint! $can gbe used to
’ i . o ’ ‘ . - o . * - s ity .
_create test/rgference patterns and to makegecognition decisions. ' SR

‘est Patterns

f

The purpose of linear normalization is to make all reference and test patterns
- ' . Q . . ‘ . v

contain the same number of frames. It has been shown in [23} that DTW algorithms

pelirgrm best when the ratio of the length of thereference pattern to the Jength of the

“test patter
 [1/'2. 2]. This

optimal path. ¢}

4 -

because the area of

3

,’.,}

.

com pressiou/expansioﬁ factor of 2 [3‘2]. J

with a ratié of 1:S is applied to the pattern, yielding an upsampled version of N78

. 4 N ’
N codsecutive frames. Each group iy

.

Irnear normalization is performed as follows. Let us assume the patternito by nor-

" malized has N frames and the standard length is 5 frames. First, fixed upsampling

’ . . \

' fraiqes. Ih other words, each ftame of the pattern is replicated $ times.

@

R - e .
. Fr N . - . . . .
. L . i cood o T : s
This upsampled vergion is then divided info 5 groups so that each group contains -

"
1

R

¥

approaches 1, and worst when the ratio is nedr the b((l__l(lh' of the interval
the region of the time-warp grid in which the

lie is maximum' when the' ratio ‘is 1, assuming a maximuin

nveraged to obtain a frame of the normalized

i .
o 3 e
g s done ucross the same pargmeter of N con- .

B

e



%\
“secutive frames.

. - - . . B '

User can specify. the standard length at run time. A default value of 30 is-assumed

' 7 . T e

if it is not specified. - : .
:1.4. Storage ofReference\’Patterns. .

lhe scheme for sLor'xge of reference patterns is de5|gned with two objectives in

. -

mind, namely future mclumon of clu‘ttermg c:»pablht) and ease of use.

B - ’

\efereneo patterns for e'lch word in a particular vocabulary are storecl n 1‘&6"'-
plale jzlc \lso for Mch voc‘xbulary, a link file cont'umncr thg frame perlotﬂmplmv _'
&
rate, .m(l length of normalized patterns that are used in tralnmg for the \ocmbuhr\ is

creuw Nam®s of template files for a.particul&r voc.abula_ry follow the' format

@ -
- <link file,name>>. <word identification > . ,
B . ) . ) . ,. N . s ) , . R » - . .
A temp-lute.ﬁle may c?)ntmn more t,han. one refereu‘t(ere fok a word. A new
. ‘.» R

Q/ u*[erence pattegn created dnrmg the training phase is simply’ ﬁmded to the end. of a
PR u

" g . \ :
template if one mlrek(ﬁ e\nth.Also vords in. a pa.rtxcular vocabular\ do not h:ne to

ﬁ—
have, the s.m&xe number gf' referencepatterﬂs A .new word can be adde(l toa \ombular\
—— ¢
At any tlme Howe\em all t.h:e reference pat@erns in a partlcdlar \ocabulan sh uld be
: S T s
ol)tuine(l using the snm(:i,, alues for bamplmfr rate, frame period, gmd \tdnddl(l leuvlh
: ‘ v .

3

Are felenee pattern coml«ts of 9*5 bytes where S is the stardard length {in frames) of

. o ?m,.' %

‘pn(torns and 9 is.th_e number of bytes in a frame,i containing eig h re{]ectipn

ot : : - ; T S .
coeflicients and the energy fevel. - _ : f". P Lo
[ ) . ' . o ) o ’\‘ R . P
In recognition m'ode.y the user is prompted to enter the name of a lmk ﬁle for;t:hei, ‘
i

wocabuhrv to be tested Values’ of the samphng rate frame perlod and qtand:g\d IR /

A

longth par'nneters of ihe tpst run - should” mateh tho%e recordecl ru the lru'R ,
. Q s . B 4
. I(leunﬁe:ntlons of. trhc,w@rc{s in the vocnbulary are derlved?)m t'heﬁle names in the
: 4 S e ] . N : .
. . . . LA A gl ) » S ra »
directory-in which-the’INWW'RT is run. Thi¢ enables the user/to-use standard UNINX com-. ..
- ’ e Lo L . o [ R

o ) . .o o ? : .
. ! . . s b - . - R A . . .
mands to rename .and’ remove template files at any time and obviates a special
we PR " T »‘ . RS . s

o



interface for dgaling with the template files. Lo ‘ ’ e

4.5, D)‘};na.rr{ic Time’ Warping Algorithm

R ' . L

] ‘.'- o

Endpomt constgamts

' Smcé the ﬁrst and last frames of an utterance age eamm'lted bv the omlpomt detector.

it . '
L

of Lhe IWRT ndpoint constraints are

. o‘

(1) = j(1)

@f;“’ , :
. ) R
. . : }
. . vy .
f(K) = jJ(K
where A is the length of common time axis for particular test and reference patterns
(see Ghapter 1) and § is the standard length’of patternsfor a pu‘l"ﬁm:;r vocabulary. !
) ; ) 4 . - B
Local constraints and axis orierrtation
Assuming test pattern’ is along the z-axis, Figure 4.1 shows the local ‘constrainty uso(l
in the I\\ RT. Numbers on cach arc indicate  the welght 'm'u'hed to that path. \h(”
3
et '1[ [2 3] have ahown that the. combln'xtlon of a test pattern along thq: -axis .m(l the .,

. _wél_ghung function 1llust,rated in Flgire '4.1 p;‘o\"ldes significant uuprovmneut in reang-

- < .

RN - . , . Y- o . . P
nition accuracy. - Lo . | , .

v . \
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- D_A(n,m)w mm D4(n 1, m—Z) + 2d( TP(n)PP(m))
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&
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B

. . . . . . e Sy s
Figure 4.1 Local constraints and weighting funcfion wsecdlin the IWR'T.
. ’ A ot v B

S . - Lo . C o o . e
The recursive formulation for the DTW algorithm with these local constraints is given

3
below. . .

Din—1,m- 1f+ d( TP(n),RP(m))

& D ("._2 ma1).+ d(TP(n)RP(m))

where n. m are frame m(hce> for test and reference patterns, respectneh Definitions

“or D, (n m) and d(TP(n),RP(m)) can be found in Ch'lpter ¥,

gﬂldbal constra.mts ‘ ‘" S

9

Local and en(lpomt constraints dlscussed ’flbove deﬁne a paralfelogram m which the:

opt‘iru:xi »ath can lie (see Figure 1’.‘4‘ erefore, accumulated distances are calculated
I | ce T'1g 1

"o
. . Y S ‘ . ) i
" ouly for those points that are inside the parallelogram. o
: ‘ rare “* ) S _
= Distance measyre =~~~ - R
. - . ,’ . ; . R L) N
“Two methods ﬁbr computing the local distance between two frames are implemented in
, > - - . . : (\) - -
‘ oy : : S | .
~the IWRT: o . : ' .

1. Euclidean distance on reflection coefficignt values as‘r..ead from the SP1000.

_ ®.  Euxclidean distance on log area-ratios. . \

-



research tool, emphasisfis, placed upon easy'ﬁicorpora;tion of new met»hods

N N .,’.“u,

~ - . | | R0

, : . . s
Since computation of log area-ratio is much mgre complich Hramta simple subtrace-

o

tion required for the first method, the second method results in much longer response

. time compared to the first method. On the other hand, thébretically, the distance com-

puted via the second method is"_moré reliable. Since the TWRT is conﬁcivcd as i

o IM i,

tance computation. VVhlch method to use. “depends heavily on the roqponhe timt‘*.m(l
€%

N

el
, , , o s
accuracy requxrements of a specrﬁc application. S N
: . ‘ . g i s ] ‘im »di
: e 2 2 - ", .
-4.8. Decision Rule ‘ . : ﬁv‘ L "3 * £ B I *
Bt ot 5 oo wea . SRR
A modlﬁed form of NI\M rﬂle 18 lmplemented in the I\VRT The val G (wv

A\]

Chapter 1 for deﬁmtion) is the lesser of 3 and the number of rcfercucv p‘\lénﬁor Q.

partlcular word The I\VRT hsts the four best mndld'xtes '1nd scores. in. u’lﬁé mo(lo

. 3 g\
b
for thoroucrh evaluation of performance
L 4
L
¢ ) ) b‘:,t' *
: S A
4 A ,r‘i o~
I ‘ Al Y SRR Ve
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Chapter 5

7

Results and Further Research

*?*1 Results - e & .

A speaker-trained [WR system, IWRT has been xmplemented successfulh The

o i -

IWRT can be trained to recogmze lsolated words of a designated talker. As discussed

i

in ¢ h.x[’r 1, various p.xr'uneters of th&IWRT can be set at run time, mukmg the fine

tuping of the system for a partic ulq.r weqker an-easy _task.

b Py . - )
There is no universally acceﬁ%-test to evaluate the performance of an IWR sys-

tem. As a result, designers of isolated word recognizers (in general, speech recognition

systems) have developed tdeir oyn testing strategy and recognition accuracies reported

by them cannot be compared to each other on a common basis. Consequently, any

N v

such score of accuracy must be qualified with the particular way the experiment is.

conducted. -

[t should be noted that "confusability” of a vocabulary has a _greater impact on
recognition accuracy than the sizeof thre vocabulary. For instance, it is quite likely

: . AW . - L
that a specific IWR system can achieve a higher score on a vocabulary consisting of,

say. 108 acoustically rich, polysyllabic words than on a.vocabulary consisting of‘sa_v,

—_—

30 monosyllabic, "similar-sounding” words. - .

. -

t

Also, experience of a particular talker affects the recognition accuracy to a large

extent. Somie speakers are problematic; i.e., they produce sounds extraneous to what is

’ A . i . n o oon Lon - . . -' B
to be said. For example,."um"s, "err"s, heavy breathing, etc. are common impediments
. _ . : : :

- . Lad »

to accurate endpoint detection. Also, some speakers have the ability to repeat a partic-

i . . 3 - . . .
ular word consistently- whereas some produce quite different versions for it on different
occasions.. The talker’s mood and stress also have an impact on recognition perfor-

. ' ' V4 )
mance. o -~ o -

81
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'stop/p

In summary, considering the characteristics of vocabulary. spepker-refated fue-

tors, background noise conditions ete., it ix difficult to obtain an objective and quanti-,

. ' .
tative measure of performance of an IWR system.

Some experiments have been conducted with the IWRT. In these experiments, the

talker was the author of this paper and the vocabulary consisted of 10 Turkish
numbers and 2& Turkish words that could be of use in a text editor. The sampling

rate, frame period,\vi":md standard pattern length had values of 6500 Hz. 20 muec, and
o Lo g &%
15 frames, respectively. In the training phase, some of the words westpsaid twice while

P

T - ¥ .\ o : :
some were said only once. Two reference patferns.are created for wqrds that lr:n'o been

observed confusable with othewwords in the vocabwlaryTn testmg phase, each word in

.....
-

the vocabulary has,,been sarc; four times over three .days. 'I‘he IWRT failed twice to

. . Mo v . . . L. .
recognize. the correct word resulting in “098.6. (=150/(-1*38)) reco@ttition accuracy.”

! o

4 o N i . . . Ty -
However, the correct word was stﬁ] m?t_-.he best four recognition candidates,
10 40 <
- ; v ,

. . . R
. T,\yo failures were due to bﬁé Turkish number four which sounds like English

"dirt". The final stop /t/ was Lhe cause of failures. Such a stop is characterized l)y a

(txme mtervnl during whlch t,be pressure in vocal tract is built up) with very

litYle engrgy followed by a b}l‘rst wnh fair amouut@f energy. Depending on the
weu

. - . . & ! . i N
valid pulse or discard it. Two reference patterns for this word hiad only one valid pulse

“correspodding to a short and weak burst 6f /t/. Two test repetitions of this word hav-

ing stronger dnd longer bursts caused the two failures. - -

3

cness/strength and duration of Ahe burst, the endpoint, (let,ect,or may detect it, as

» ) I ! v R l- . . ) .
In fact, weak‘.\l stops aré well-known as'a common source of errors in endpoint

detection since it is very difficult to dlsungmsh them from background noise ll‘(lllg only

energy mcas&rements Another fe'lt,ure of speech such as zero- crownrr (lensn) can be

used to dlsunﬂmsh ﬁnal stops from background noise. Highest energy and duration

condmons for a valxd pulse mightsbe loosened in order to include the weak ploswc
Lot :

» -
s



4

bursts in the utterance: but this increases the risk of detecting a burst of hackground

noise as a valid pulse. This tradeoff can be solved by considering the background noise

»

conditions and accuracy requirements for a specific application. Havipg two reference
patterus corresponding to "weak-burst” and "strong-burst” versions of this word might

be helpful to a gertain extent depending on the existence of similar words in the voca-

- bulary. ‘

5.2. | Further Research

]
At

The IWRT can be pade speaker-independent by incorporating a clustering

scheme into the current implementation. As was mentioned in Chapter 4. the founda-

v

. . ”A”“ . .
tions for such an improvement have already been laid.

The design and implementation of .voice input system for a specific task using the
: A | - - . .
IWRT as a bi;si!ﬂ“would be an interesting ,project. The IWRT can be modified so that it
+

‘

aeegpts strings of is lsol'ne(l words proquced accordmg to a task-imposed grammar. The
RN

su

use of syntactical constraints would llmlt the number of words that can be selected at

“ﬁq . -

"branching poiuts' of the gmmmar This would result in hlgher oxer'xll Trecognition
/

-accuracy and faster sesponse than 'would be possnble without such constraint$. -

> Another 'improvement to' the IWRT mig® be to design and implement a

connected-word recognition capability, which is more difficult thfd the I\WWR problem.
/ o : ’ ,
However, a twoslevel {33] por one-pass [6] dynamic prograclming approach for pattern
matching can be,utilized for that purpose. A moderate alnount of modification to the
. i

IWRT's DTW algorithm would permit connected-word recognition. :

1':'~ - ’ . . . ~ . #

2 L)

_“."A( f ' . .
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