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Abstract 

Remote camera traps are often applied to large mammal conservation and management 

programs because they are cost-effective, allow for repeat surveys, and can be deployed for long 

time periods. Additionally, statistical advancements in calculating population metrics, such as 

density, from camera trap data has increased the popularity of camera usage in mammal studies. 

However, drawbacks to camera traps include their limited spatial coverage and tendency for 

animals to notice the devices. In this study, we compared autonomous recording units (ARUs) to 

cameras in their detectability of gray wolves (Canis lupus) through a paired study design in 

northeastern Alberta. The use of ARUs to survey for large, low-density predators, like wolves, is 

just now emerging as a viable passive monitoring method, but to our knowledge, a comparison 

of ARU and camera detectability for wolves has never been done. We also tested the random 

encounter and staying time model (REST), a new means of estimating the density of an 

unmarked population, using human volunteers and simulated camera surveys. We found ARUs 

to be comparable in their detectability of wolves to cameras, despite only operating a fraction of 

the time that cameras were active. We also found the REST method to produce unbiased 

estimates of density, regardless of changes in human abundance, movement rates, home range 

sizes, or simulated camera effort. These advances in surveying technology and statistical 

methods provide innovative avenues of large mammal monitoring that have the potential to be 

applied to a broad spectrum of conservation and management studies, provided assumptions for 

these methods are rigorously tested and met.  
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Chapter 1: General Introduction 

Predator roles in the Canadian boreal forest 

Canadian apex carnivores have been points of both management and conservation 

concern for decades. Balancing conservation efforts of keystone species while managing human 

expansion on a finite landscape and reducing human-wildlife conflict are just a few of the 

priorities of ecologists and researchers in the 21st century (Boertje et al. 2010, Latham et al. 

2011, Venier et al. 2014). These interests have resulted in a suite of technological and statistical 

advancements aimed at answering ecological questions related to predator distributions across 

geographic areas, predator-prey cycling, top-down cascades, the landscape of fear, and several 

other research topics (Mourão and Medri 2002, Borchers and Efford 2008, Rowcliffe et al. 

2008). In Alberta, Canada, the gray wolf (Canis lupus) is of primary interest due to their high 

abundances within the province and their impacts on threatened woodland caribou (Rangifer 

tarandus caribou) (Hervieux et al. 2014, Leblond et al. 2016). As such, the need to have cost-

efficient monitoring tools to manage wolf populations has been an area of methodological 

interest in recent years. 

Technological monitoring advancements 

Advancements in monitoring techniques have allowed researchers and managers to 

improve their data collection and assessments of predator statuses over the past decade. Popular 

methods include mark-recapture, radio telemetry, and aerial surveys to answer questions related 

to demographics, behavior, and distribution patterns (Kunkel and Mech 1994, Czetwertynski et 

al. 2007, Droghini and Boutin 2017). These methods are often accompanied by statistical 

programs that calculate desired variables such as abundance indices (Efford and Fewster 2013). 

However, major drawbacks of these methods include the intensive logistics, manpower, and time 
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it takes to collect sufficient data. To alleviate some of the financial and logistic pressures of 

labor-intensive techniques while maintaining rigorous data collection, passive monitoring 

methods, the use of remote camera traps in particular, have increased markedly in recent years 

(Erb et al. 2012, Meek et al. 2016, Gray 2018). The ability to deploy camera traps for long time 

periods across large study areas in a relatively cost-efficient manner has made them many 

researchers’ tool of choice, particularly for studying large, low-density predators (Burton et al. 

2015). Additionally, recent statistical advances in calculating population metrics, such as 

species’ density, from camera trap data has greatly increased interest in the use of cameras for 

population-level studies over other passive monitoring methods (Rowcliffe et al. 2008, 

Nakashima et al. 2017). 

A new tool similar to cameras, aimed at passively capturing bioacoustic data has been 

gaining popularity. The use of autonomous recording units (ARUs) have received considerable 

traction due to the ability of ARUs to record their surrounding environments on pre-established 

schedules for long time periods, cover large detection areas, and quickly process large amounts 

of data. These attributes make ARUs comparable in their data collection benefits to cameras, and 

although thus far have primarily been used in marine mammal studies, are rapidly expanding into 

areas of amphibian, avian, and bat research (Shonfield and Bayne 2017, Van Wilgenburg et al. 

2017, Sugai et al. 2018). 

While advancements in the manipulation of camera data to obtain density estimates of 

unmarked populations has put cameras in the forefront of passive monitoring techniques, the 

ability of ARUs to collect similar data may render cameras less effective in terms of occupancy 

analysis. The recording capacities of ARUs makes them an ideal tool for studying vocal, 

terrestrial mammals. However, to date, few studies have examined the efficacy of this method, 
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much-less attempted to compare ARU detectability to those of currently popular camera trap 

methods when they are applied to large, low-density carnivores, such as the gray wolf. 

Thesis objectives 

In this thesis we sought to compare ARUs to cameras as a viable means of passive 

monitoring for large vocal predators in Alberta using wolves as a test species. We compared 

camera and ARU detectability using a paired study design and Bayesian occupancy models. We 

compared discrepancies in detection probabilities as a function of the definition of a sampling 

interval as well as differences in the detection areas of both methods. We also compared camera 

and ARU hit rates from a technical standpoint of minutes of data collected versus the length of 

time the units were running, as well as technical adjustments that can be made to ARUs to target 

wolf vocal activity in future monitoring studies. Finally, we tested a recently developed method 

of mammal density estimation based on camera trap data developed by Nakashima et al. (2017), 

called the random encounter and staying time (REST) method. We used humans in a semi-

realistic, controlled test to examine the effects of variation in human abundances, movement 

rates, home ranges sizes, and simulated camera trap effort on the precision and accuracy of the 

REST method. We discussed the limitations as well as applications of this method to future large 

mammal studies. General conclusions and implications for these methodological advancements 

are discussed in the conclusion chapter of this thesis (Chapter 4). 
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Chapter 2: Acoustic vs photographic monitoring of wolves: a methodological 

comparison of two passive monitoring techniques 

Introduction 

Apex predators are often a priority for natural resource management and conservation. As 

such, necessary aspects of predator management include understanding predator ecology, 

behavior, and distribution patterns. However, carnivores are a challenge to study, often because 

they occur in low densities across vast geographic ranges (Ausband et al. 2014, Brassine and 

Parker 2015). With densities sometimes lower than 5/1000 km2 in the northern limits of their 

range, and territories that can cover hundreds or even thousands of square kilometers, the gray 

wolf (Canis lupus), is a classic example (Marquard-Petersen 2012, Mech & Boitani, 2003).  

Recent technological advances have improved our understanding of wolf ecology and 

distribution. However, these techniques are often costly in terms of finances, logistics, the time it 

takes to acquire data, and in some cases have negative effects on the health of the animal 

(Mourão and Medri 2002, Brennan et al. 2013, Gable et al. 2018). Telemetry, for example, 

requires an individual to be caught, fitted with a collar, and released, typically with the use of 

sedating drugs (Tuyttens et al. 2002). Howl surveys, meanwhile, are labor-intensive and require 

the introduction of foreign howls by people or playbacks, which could disrupt the behavior and 

social interactions of canids and their neighbors (Suter et al. 2016).  

Passive monitoring methods using a variety of visual and acoustic sensors may provide 

cost-effective, non-invasive alternatives for monitoring predators (Nichols et al. 2008). 

Currently, one of the most popular methods of passively monitoring large mammals is via 

remote camera traps. Camera traps are used primarily because of their ability to inexpensively 

survey a site continuously over a long time period with limited effects on the animals being 
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studied (Burton et al. 2015, Newey et al. 2015). Camera data has been used to produce 

occupancy, abundance, and population density estimates for several species, including wolves 

(Rowcliffe et al. 2008, Ausband et al. 2014, Gray 2018, Mattioli et al. 2018). One shortcoming 

of camera traps however is they only survey a small area directly in front of the camera lens. 

Low detectability of the target species can therefore be problematic with camera trap data.  

Animals also may respond to the light or sound produced by cameras, which also can bias 

detection probabilities (Meek et al. 2016). Acoustic monitoring via autonomous recording units 

(hereafter ARUs) is rapidly emerging as a useful tool for monitoring vocalizing species that 

could complement or possibly replace camera surveys (Suter et al. 2016, Papin et al. 2018). This 

is especially applicable to wolf howls, which can transmit over 10 kilometers and be heard by 

neighboring wolves as well as humans, and be detected up to 4.6 kilometers away by ARUs 

(Passilongo et al. 2015, Suter et al. 2016).  

A potential advantage conferred by ARUs over cameras is that their detection areas are 

much larger, which may reduce the likelihood that the detected species will sense the recording 

unit and thereby avoid it. In contrast to cameras, however, ARUs have seldom been used to 

monitor carnivores because of an assumed low howling rate and data processing time. Thus, it is 

not known how inferences regarding occupancy drawn from ARU data compare to those derived 

from cameras. 

Additionally, detectability estimates, and therefore occupancy probabilities, may change 

depending on the definition of a survey period, regardless of what method is used. Detecting the 

target species once out of hundreds of days sampling, versus once out of a dozen weeks of 

sampling affects the calculation of site occupancy probability. For example, if a species is 

detected once in 105 days, it would result in a naïve occupancy estimate of 0.010. However, if 
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the survey period is defined in weeks, (ie: 15 weeks in this example), this results in a naïve 

occupancy estimate of 0.067. Whether a 0.057 difference in naïve occupancy estimation is 

biologically significant will depend on the monitoring goal. Researchers or managers may form 

monitoring conclusions without accounting for this bias produced by different survey periods. To 

our knowledge, comparing detection and occupancy estimates at varying sample intervals has 

never been examined, despite the importance of defining what constitutes “occupancy” of a site, 

both at a spatial and temporal scale, for species monitoring and management (Efford and 

Dawson 2012). 

We use a paired ARU-camera design to directly compare inferences regarding the 

occupancy and detectability of gray wolves in Alberta, Canada. Our objectives were: 1) compare 

detectability between ARUs and cameras—examining how differences in detection estimates 

change given variations in the definition of a sampling occasion; as well as compare differences 

if methods are pooled or combined in a multi-method analysis 2) compare camera and ARU 

sampling effort and data processing time 3) address how heterogeneity in detection areas 

influence estimates of detectability, and 4) outline suggestions for a sampling framework that 

incorporates ARUs in long-term wolf monitoring. 

 
Methods 

 

Study area 

The northeastern region of Alberta, Canada where we concentrated our data collection, is 

approximately 163,350 km2. Sites were located north of Edmonton and east of High Level 

(Figure 1.1). Vegetation patterns are relatively consistent throughout the landscape. Conifer, 

broadleaf, and mixed forests create a mosaic habitat interspersed with shrubland, water bodies, 
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and grasslands (Norton et al. 2000). Considered habitat generalists, wolves have a propensity to 

use both closed and open habitats, including coniferous, deciduous, and mixed forests in addition 

to shrublands and wetlands (Uboni et al. 2017, Benson et al. 2015).  

Study design 

 Data were gathered by the Alberta Biodiversity Monitoring Institute (hereafter ABMI) 

during the summers of 2016 and 2017 (Figure 1.1). Cameras and ARUs were paired at a station. 

Four stations spaced 600 m apart in a square (Figure 1.2). These sites were deployed in a 

systematic grid across Alberta in both terrestrial and wetland locations. Distances between sites 

was at least 20 km. 

 Cameras were programmed to run 24 hours a day and were motion-triggered to take 

photos as long as the subject remained in the viewfinder. ARUs were on a recording schedule of 

38 minutes per 24 hours, with recordings occurring at dawn, midday, dusk, and midnight. 

Depending on the model of ARU deployed, recordings were done in either .wav or .wac, the 

latter being a type of lossless compression format (Wildlife Acoustics 2018). Recording length 

was ten minutes during the midnight hour and 7:00 or 8:00 AM, all other recordings were three 

minutes. 

Data selection 

We created three datasets to compare ARU detectability given camera detections, as well 

as ARU detectability given camera non-detections. For the first dataset, we selected all cameras 

that were deployed by the ABMI in 2016 and 2017 that included at least one wolf detection to 

attain a baseline of camera detectability that we could then compare to ARUs. We constrained 

the sampling period of the cameras to that of the corresponding ARUs to only include hits during 

the time the ARUs were active, approximately March 1st – June 30th, across both years. If either 
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the camera or paired ARU failed during the sampling period (ie: stopped recording), we 

excluded all detections from the paired unit during the time of inactivity. We defined a “hit” as 

the first photo or vocalization detected by either unit at least 12 hours since their last respective 

detection. This resulted in a total of 34 unique camera stations with a wolf hit in 2016 and 39 

camera stations from 2017, for a total of 73 unique stations (Table 1.1). 

The second dataset accounted for those stations where ARUs detected a wolf but cameras 

did not. We selected the same number of paired stations in northeastern Alberta between both 

years (2016, n=34; 2017, n=39) where camera detections were zero, and processed the 

corresponding ARUs for wolf vocalizations (Table 1.2). Defining a wolf “hit” remained the same 

as the previous comparison—a minimum of 12 hours between each detection. 

Finally, we created a third dataset by randomly selecting a single paired camera-ARU 

station per site deployed in northeastern Alberta based on the 146 stations used in the first two 

datasets (Figure 1.1). We chose a single station among the four deployed per site to avoid 

psuedoreplication within sites, for a total sample of 69 paired units. 

Data processing 

 Camera trap species identification was done by technicians experienced in mammal 

identification and trained via a step-wise process according to the ABMI tagging protocols 

(ABMI User Guide). 

We used the program Sound eXchange (SoX) version 14.4.2 to process ARU data. This 

program manipulates audio data and creates spectrograms based on the parameters specified by 

the user (SoX user manual 2013). To view wolf vocalizations, we used the sox function in the R 

package seewave (Sueur and Simonis 2008), version 3.3.1 (R Core Team 2018) to convert raw 

audio files into 1-minute spectrograms. Spectrograms were truncated from the original 44 kHz 
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sampling rate to a 7 kHz sampling rate, and we used the standard colors provided by SoX to 

visualize individual howls, responses, and choruses in each recording (Figure 1.3). All ARU data 

processing was completed by the same researcher. Example vocalization patterns were studied, 

and the researcher was given a sample dataset to practice their identification skills. In cases 

where the identity of a vocalization was uncertain, the researcher listened to the recording to 

confirm species identification. 

Occupancy analysis 

To compare detection probabilities between ARUs and cameras, we ran occupancy 

models using detection histories with varying sampling intervals. We used the third dataset of 69 

paired stations, where one station was randomly selected per site from the 146 processed stations 

to do this analysis. To understand how individual detection probabilities varied between ARUs 

and cameras, as well as how detectability changes with various sampling intervals, we ran 

occupancy models for each method separately using daily, weekly, and monthly detection 

histories. 

Additionally, we compared detection and occupancy estimates when the methods were 

pooled using Bayesian methods, as well as through a multi-method approach. For the pooled 

analysis, we combined camera and ARU detections so that given both units were functioning 

normally within the same survey period, if one unit detected a wolf and the other did not, it was 

entered as “1” for that sampling occasion. If a camera had a detection history of {001} and the 

paired ARU had a detection history of {100}, the resulting combined detection history would be 

{101}. This collapsing of both units’ detection histories produces variables for detectability (pi) 

and occupancy (ψ), with the exception that the probability of detection (pi) is now dependent on 

the probability the target species is present within a camera-ARU detection zone and detection is 
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conditional on the animal’s presence (Nichols et al. 2008). Occupancy analysis with a single 

method is only dependent on the probability of the species being present within the detection 

zone of the device used (MacKenzie et al. 2002). We also combined both units’ detection 

histories in a multi-method approach to assess an additional variable, θx, which is the probability 

of an individual being available for detection using method x, given an animal’s presence. The 

multi-method approach also calculates ψ, as well as px
i, or the probability of detecting an 

individual using method x in survey i. (Nichols et al. 2008). 

The assumptions of a single-season occupancy model are: occupancy of a site remains 

closed during the sampling season, (i.e., individuals do not immigrate or emigrate from the 

sampling site during the sampling season), detection between sites are independent of each other, 

and the probability of occupancy and detectability is equal across sites, (MacKenzie et al. 2002). 

We assumed that wolf occupancy of sites remained closed during the sampling period because 

wolves tend to occupy the same territories for long time periods (Jedrzejewski et al. 2001, Rio-

Maior et al. 2018). In this case, we assumed site closure at the scale of wolf territories instead of 

the detection areas of the cameras and ARUs, because it is unreasonable to assume that a wolf 

will remain in these detection areas for months at a time. Detectability between sites was not 

completely independent because wolves can travel up to 20 km in a day (Scurrah 2012, Ehlers et 

al. 2014, Latham et al. 2014). However, the sites were spaced far enough apart that if a wolf 

howled, it would not be detected by more than one ARU at a time (Passilongo et al. 2010). We 

expect wolf movement to be random relative to the camera-ARU site, therefore we do not expect 

strong biases in occupancy or detection estimates between sites (Kalan et al. 2015). The purpose 

of this paper is to examine the detectability of ARUs relative to cameras. Therefore, we are not 

overly concerned with the precision of the occupancy and detection probabilities as they apply to 
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estimating wolf abundance or distribution, instead we focus on examining the similarity or 

differences in detection estimates based on the method employed. 

 

Bayesian framework 

A maximum likelihood model, like the one available using the R package Unmarked, was 

unable to estimate occupancy and detection probability at the daily interval for our data, due to 

the low proportion of wolf detections by both cameras and ARUs. Therefore, we chose to 

estimate occupancy and detectability using a more flexible Bayesian framework in JAGS version 

4.3.0 (Plummer 2003) via the R package R2jags (Yu-Sung & Yajima 2015), allowing us to 

estimate probability density distributions of our priors instead of single point estimates used in a 

frequentist approach (Nichols et al. 2008). The code used for these models is included in 

Appendix I. In occupancy estimates, where the outcome is a Bernoulli distribution of ones or 

zeroes, we selected priors that reflected a uniform distribution between 0 and 1 for both 

occupancy and detectability. Because all our models converged quickly (≤ 3,000 chains), we 

used uninformative, uniform priors to allow the data to determine the distribution of our 

posterior estimates. The potential of uninformative priors drifting to local minima was a non-

issue in our approach because we used MCMC sampling to avoid this. 

All occupancy models for individual and pooled units were run using 3 chains, 3,000 

chain iterations, a burn-in of 500 chains, and thinning of every 5th chain. Convergence of each 

model was checked based on the R-hat values to ensure they fell between 1.000 and 1.100. All 

R-hat values were between 1.000 and 1.008. We also ran occupancy models for cameras, and 

ARUs for the weekly sampling interval, using the quadratic of week as a covariate on the 

detection probability, to test detectability as a function of time. We again used 3 chains, 3,000 
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iterations, a burn-in of 500 chains, and a thinning of every 5th chain. All R-hat values fell 

between 1.000 and 1.006 when week was used as a covariate of detectability. 

 

Multi-method occupancy analysis 

To examine multi-method occupancy and detectability, we used the program Presence v. 

12.23, and the methods proposed by Nichols et al. (2008). We collapsed the datasets by daily, 

weekly, and monthly intervals. In Presence, we ran a maximum likelihood occupancy model 

accounting for two detection methods at every survey interval, and estimated values for ψ, px
i, 

and θx.  

Results 

Occupancy analysis and detectability for individual units 

 Detection probabilities derived from ARUs were equivalent to or higher than detection 

probabilities from cameras, regardless of the resolution of sampling (Table 1.3). At the daily 

interval, camera and ARU detectability was equal (pARU = 0.033, pCamera = 0.030), but occupancy 

estimates from ARUs were double those of the cameras ( ΨARU = 0.623, ΨCamera = 0.304). At a 

weekly sampling interval, ARU detectability was higher than cameras (pARU = 0.105, pCamera = 

0.083), but both units’ individual occupancy estimates were approximately equal (ΨARU = 0.652, 

ΨCamera = 0.643). Lastly, at the monthly interval, ARU detectability was again higher than 

cameras (pARU = 0.296, pCamera = 0.233), but their occupancy estimates were roughly equal (ΨARU 

= 0.752, ΨCamera = 0.761). 

 

Occupancy analysis and detectability for pooled and multi-method units 

Pooled estimates were higher than either individual unit’s’ probabilities, but were lower 

compared to the multi-method estimates that accounted for individual unit detectability given 
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animal presence and availability for detection (Table 1.4). The pooled estimates were as follows: 

daily (pPooled = 0.047, ΨPooled = 0.548), weekly (pPooled = 0.153, ΨPooled = 0.766), and monthly 

(pPooled = 0.443, ΨPooled = 0.782). Multi-method estimates, particularly detection probabilities, 

were higher than the pooled estimates, but occupancy probabilities were similar at both the 

weekly and monthly intervals. At the daily interval, the units’ multi-method detectability 

increased (θMulti = 0.267), as did their occupancy estimates (ΨMulti = 0.742), relative to pooled 

methods. The multi-method detectability at the weekly interval was higher than the pooled units 

(θMulti = 0.698), but both occupancy estimates were similar (ΨMulti = 0.757). The multi-method 

monthly detectability was again higher than the pooled estimates, but their occupancy estimates 

were again, similar, (θMulti = 0.829, ΨMulti = 0.800). 

 

Variation in detectability based on survey period 

ARUs and cameras increased their detectability and occupancy estimates as the survey 

period length increased from daily to monthly, both individually and when the methods were 

pooled and used in the multi-method analysis. The greatest discrepancy occurred between 

weekly and monthly sampling intervals when detectability doubled for individual units, 

increased by 29% for the pooled methods, and increased by 20% in the multi-method analysis. 

Occupancy estimates also increased by approximately 10% across all comparisons between 

weekly and monthly estimates. The differences in detectability and occupancy estimates between 

daily and weekly intervals was much smaller across the board, except for cameras doubling in 

their occupancy estimates between daily and weekly periods. 

When week was included as a continuous covariate of detection probability at the weekly 

sampling interval, we observed a decrease in detectability in both cameras and ARUs (Figure 

1.4) over time. For every additional week cameras were deployed, their detectability decreased 
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linearly by 0.0013% (R2 = 0.996), while ARU detectability decreased exponentially (R2 = 

0.998).  

 

Sampling effort 

The comparability of the estimates given by the ARUs compared to cameras is surprising 

given that the cameras were operating 24 hours a day, whereas the ARUs were on a recording 

schedule of only 38 minutes per day. To examine how sampling effort between ARUs and 

cameras influenced our results, we used the stations from dataset one that had known wolf 

detections on the cameras (n=73). We constrained all hits between March 1st – June 30th of 2016 

and 2017. These are the approximate dates during which the ARUs and cameras overlapped in 

their activity. We did not match the exact dates of paired ARU and camera activity, instead 

viewing sampling effort on an individual unit basis.  

We defined a single “hit” for both cameras and ARUs as any wolf image or vocalization 

captured per minute between March 1st and June 30th, 2016 and 2017. For example, if three lone 

howls were detected in a single minute of ARU recording time, we counted that as a single hit. 

Additionally, if three images of a wolf were captured successively by a camera within the same 

minute, we also counted that as a single detection.  

Across 73 cameras deployed in 2016-2017, if every single unit was operating perfectly 

across the sampling period (i.e., 24 hour sampling effort), this would result in approximately 

12,824,640 minutes of sampling. The actual minutes sampled (due to late start times or units 

failing early) was closer to 11,612,160 minutes across both years. In contrast, if all 73 ARUs had 

been functioning perfectly during the sampling period, this would have resulted in 338,428 

recording minutes (ie: 38 minutes/24 hour sampling). Again, due to units failing early or being 

deployed late, the total minutes recorded between 2016-2017 were 319,054 minutes. 
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 Throughout the sampling period from March 1st – June 30th, there were 254 wolf hits 

across 73 cameras and 309 wolf hits across the 73 ARUs (Table 1.5). We note that because our 

selection of these stations was initially dependent on camera detections, not every paired ARU 

recorded a wolf vocalization. 46/73 (63.01%) of the selected stations had at least one wolf 

vocalization recorded. Cameras had a hit rate of 0.00002 hits/minute, and ARUs had 0.001 

hits/minute. While both methods return low hit rates, the ARU hit rate was fifty times higher 

than cameras. This translates to approximately 0.029 hits/day or 0.202 photos/week for cameras, 

and 1.440 hits/day or 10.080 recordings/week for ARUs. Long-term studies of wolf behavior 

typically report howling activity at the monthly scale (Nowak et al. 2007, McIntyre et al. 2017), 

but the ability to passively capture howls at daily or weekly intervals provides details about wolf 

acoustic patterns that have previously been unavailable. 

Finally, among those 73 stations we sampled where cameras did not detect a wolf in 

dataset two, we found that approximately 50% of the ARUs deployed at both the station and site 

level (38/73 stations; 29/57 sites), did detect a wolf (Table 1.2). 

 

Processing time 

The average processing time for an ARU that recorded 38 minutes per day over 4 months 

(approximately 4,500 one-minute spectrograms), varied depending if the recordings were made 

in .wac or .wav format. To create the spectrograms, .wac files first had to be converted to .wav, 

which typically increased the length of processing 1.5 times. Creating 4,500 1-minute 

spectrograms from .wav files took approximately two hours on a Windows 7 computer with a 

64-bit operating system and 16 GB of RAM.  

Processing the spectrogram output was comparable to, if not faster than, scanning and 

tagging camera photos for similar data. Distinguishing wolf vocalizations from other species is 
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an initial step to working with audio data. However, once the researcher is comfortable 

identifying different vocalization types, 4,500 spectrograms can be scanned, tagged, and even 

occasionally listened to in order to confirm species’ identification in under one hour (x̅ = 52 

minutes; SD 16 minutes). 

The ABMI estimates that scanning and tagging camera photos using their protocol allows 

the researcher to tag a maximum of 2,000 photos per hour (the ABMI, personal comm.). 

However, additional species were identified using this approach. While the visual evaluation of 

spectrograms could be done for multiple species, there are far too many species making sounds 

to make visual scanning a viable method for recording all vocalizing species at the same time. 

Discussion 

 We found that ARUs had equivalent or higher detection probabilities than cameras, 

regardless of the sampling interval used, even though ARUs recorded on a far sparser schedule. 

This indicates that ARUs may be a viable passive alternative to monitoring wolf populations and 

other vocal mammals. The discrepancy in occupancy estimates may be explained in part due to 

the differences in the detection radii of the methods, with cameras having a much smaller 

detection area than ARUs. Reconyx advertise their cameras as having a 30 m detection radius 

and 42° interior angle (Reconyx 2017), for an approximate detection area of 0.00033 km2. Work 

completed by Suter et al. (2016) found that harmonics of captive wolf howls were easily detected 

from a recording distance of 3.60 km, and trace howls were still detectable from a recording 

distance of 4.62 km on ARUs. A conservative detection radius of 3.00 km results in a detection 

area of approximately 28.00 km2 for ARUs. Given this discrepancy, the probability of a wolf 

being detected by a camera, given that it is moving, and thereby “occupying” the camera site, is 

much lower than that of a howl being detected by an ARU, given that the wolf is vocalizing. 
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Granted, the detection area for the ARU is dependent on habitat type and the distance of the wolf 

from the ARU.  Increasing distance from the ARU lowers detectability, in addition to dense 

forest or vegetation also hindering the transmission of sound waves (Yip et al. 2017).  

Additionally, ARUs are more vulnerable than cameras to weather variables, especially wind in 

open areas, decreasing the acoustic detection areas, and therefore potentially including a negative 

bias in occupancy analysis if not accounted for. Because of this, the detection areas of ARUs 

may be highly variable depending on the habitat they are placed in. However, these limitations 

are similar to cameras in their ability to capture images within the range of the viewfinder, 

dependent on animal positioning relative to the camera and the surrounding vegetation 

influencing detectability (Efford and Dawson 2012, Burton et al. 2015). Wind speeds can also be 

approximated from an ARU based on noise level. Efford and Dawson (2012) point out that 

undefined or varying detection areas of passive recording devices, coupled with unknown or 

varying home range sizes of the target species, can have drastic impacts on estimates of 

occupancy. Therefore, because both methods are influenced by weather and vegetation variables, 

further comparisons of absolute versus the relative error of these detection methods should be 

done. If passive methods like cameras and ARUs are to be applied to monitoring programs, it is 

necessary that detection areas be considered, particularly how detection areas are influenced by 

variables such as vegetation, weather, and background noise that may affect detectability and 

therefore estimates of occupancy (Efford and Dawson 2012). 

Both ARUs and cameras decreased in their individual probabilities of detection for each 

additional week the units were operating. This decline in detectability may be explained in part 

due to the decrease in movement and vocal activity by wolves post-breeding after the winter, 

when pups are at dens during the late spring and early summer (Finďo and Chovancová 2004, 
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McIntyre et al. 2017). Green-up of vegetation as the summer progresses also might influence 

camera and ARU detectability both visually and acoustically, although vegetation may affect 

ARU detectability more so than cameras, causing the exponential decline in detectability we 

found for ARUs in this study. 

Given that ARUs and cameras did not have perfect detectability at every site, when the 

methods were combined in the multi-method occupancy estimates, the resulting detection 

probabilities seem to be an improved reflection of wolf detectability across each site. Therefore, 

despite ARUs performing slightly better in terms of their detectability of wolves over cameras, a 

multi-method approach would likely be more accurate for long-term wolf monitoring to 

maximize detectability. This aligns with the current popularity of multi-method approaches to 

monitor rare species or trends in biodiversity patterns across regions (O’Connell et al. 2006, 

Nichols et al. 2008). 

We observed a decrease in both detectability and occupancy of wolves as our sampling 

intervals increased (i.e., more samples per unit time). The greatest differences were seen in the 

multi-method estimates, with detectability increasing by 43% between daily and weekly 

intervals, and 13% between weekly and monthly periods. The variation in detectability seen 

across the three sampling intervals can affect monitoring and management conclusions made by 

researchers, depending on the goal of their projects. For example, detecting a wolf at a camera-

ARU site twice in two weeks or 14 times in two weeks will draw different conclusions of 

detection rates if the surveys are defined as daily or collapsed into weekly intervals. To simply 

determine species presence-absence, the heterogeneity across survey periods may not pose an 

issue. However, if the goal is to determine long-term trends in habitat use, species’ distributions, 
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or species’ abundance, then determining the appropriate temporal scale of the sampling interval 

should be considered.  

 

Technical ARU adjustments 

By adjusting ARU sampling rate, bit rate, and compression formats, there is potential for 

ARUs to record at a daily rate similar to cameras. SM4 units produced by Wildlife Acoustics can 

record compressed audio recordings that double, triple, or quadruple recording time per level. 

These three formats respectively are: W4V-8, W4V-6, and W4V-4 (Wildlife Acoustics SM4 user 

manual). 

The noise floor of the recordings is increased using these compressed formats, but 

according to the Wildlife Acoustics’ user manual, the change is typically not detectable between 

an uncompressed WAV, W4V-8, and W4V-6 file. We briefly tested this using two recordings of 

a wolf chorus and lone howl made in the uncompressed WAV format from SM4 units. We 

compressed both recordings at each level available (WAV, W4V-8, W4V-6, and W4V-4) in 

Kaleidoscope Viewer. We listened to the uncompressed recordings and then each of the 

compressed versions. We did not detect a difference in our ability to hear and classify the vocal 

types from these sample recordings, but additional vocalizations should be tested to ensure the 

distance over which an animal can be detected is comparable. 

In addition to compressing the file formats, there is also the option to change the bit rate 

and sampling rate in ARUs. Bit rate is defined as the amount of data, or bits, that are transferred 

per unit time, typically measured in seconds. Larger bit rate, although it increases the quality of 

the recording, also increases the file size, thus increasing the space taken up per SD card. 

Therefore, we suggest a 16-bit rate for recording wolf vocalizations in long-term studies as this 

can maximize available memory space. Additionally, the sampling rate, or the number of 
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samples taken per second of an audio recording, can be adjusted based on the vocal frequency of 

the target species. In ARUs, the sampling rate can be as low as 8 kHz, as frequencies are 

recorded up to half of the sampling rate. Free ranging wolf howls range from approximately 

0.274 kHz (274 Hz) to 0.908 kHz (908 Hz) in fundamental frequency (Passilongo et al. 2010). 

As such, the lowest sampling rate of 8 kHz would suffice for recording wolf howls, which could 

further reduce data storage needs. 

The Wildlife Acoustics’ user manual and SM4 Configurator software 2.1.1B estimates 

the number of hours different size SD cards can record with different sampling rates. Using a 

sampling rate of 8 kHz to hypothetically record wolf howls, at the highest compression level 

(W4V-4), using two, 16 GB cards, one could record for 93, 12-hour days, or 46, 24-hour days. 

To record every minute for a full year would require two, 128 GB cards, but external batteries 

would be required in this scenario (Wildlife Acoustics user manual 2018). Alternatively, it is 

possible to record 5 minutes every hour from dusk to dawn for one year without using external 

batteries.  

The higher cost of larger storage cards (i.e. 128 GB) used in ARUs is offset given the fact 

that cameras are spatially limited in their ability to capture wolves. ARUs have the benefit of 

covering a larger spatial area than cameras, making them more cost-effective from a spatial 

coverage perspective. 

 

Wolf monitoring framework incorporating ARUs 

 Monitoring programs frequently rely on multi-method approaches to achieve their 

management or conservation goals (O’Connell et al. 2006, Ausband et al. 2014, Buxton et al. 

2018). With our comparison of ARU detectability to cameras in a Bayesian occupancy 

framework, in addition to the adjustments that can be made to ARU settings and an efficient way 
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to process the audio data via SoX, it is feasible to use paired cameras and ARUs for additional 

studies, such as behavior, habitat use, and even breeding status (Palacios et al. 2016). Our 

suggestions for a framework of monitoring that incorporates ARUs includes the following: 

If we adjust ARUs to record for 12 hours a day, using a 16-bit rate, 8 kHz sampling rate, 

and the highest compression level, W4V-4, it is possible to obtain daily estimates of wolf vocal 

activity. Depending on the number and size of SD cards used, these settings would provide a 

researcher with anywhere from 3 months to over a year of data. With a focus on night recording 

sessions, as night, dawn, and dusk are indicated as the times during which most wolf activity 

occurs (Theuerkauf et al. 2003, Nowak et al. 2007, McIntyre et al. 2017), patterns of vocal 

behavior could be easily obtained. Research in recent years has established that the number of 

howling members in wolf packs can be counted based on their vocalizations (Passilongo et al. 

2015, Palacios et al. 2016). With this information, combined with year-round recording 

capabilities, establishing trends in wolf behavior, habitat use, and breeding status are entirely 

possible, without the need for invasive techniques. 

Understanding predator distribution patterns is a fundamental element of predator-prey 

ecology and management. While advances in invasive techniques have filled several knowledge 

gaps, passive methods, particularly cameras, have also heavily contributed to estimates of 

predator occupancy, distribution, and abundance. Due to drawbacks in camera usage, particularly 

the potential bias of animals detecting the units due to light or sound emissions, in addition to 

their limited spatial coverage (Meek et al. 2016), we sought to compare the detectability of 

ARUs to cameras in a paired study. ARUs have the benefit of a larger detection area, given that 

the target species vocalizes, therefore decreasing the probability that animals may detect the unit. 

We found that ARUs had equal or higher detection probabilities to cameras when compared in a 
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Bayesian occupancy framework, despite only being active a fraction of the time that cameras 

were operating. This suggests that ARUs can monitor wolves similarly to cameras, but also 

allows for the opportunity to collect behavioral and count data previously unavailable from 

camera data. The potential for future studies using ARU technology to estimate precise howling 

rates, breeding statuses, and even population densities is a fundamental step towards improving 

methods of wolf management and conservation.  
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Figure 1.1. Terrestrial sites deployed by the ABMI between the summers of 2016 – 2017. Each 

black circle represents a site, with pink indicating a camera wolf detection at that site between 

March 1st – June 30th, 2016-2017. The inset depicts the northeastern sites that were randomly 

selected for occupancy analysis. These site locations are based on the publicly available latitude 

and longitudes produced by the ABMI, and do not represent actual locations. 
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Figure 1.2. Sampling design of a site and station determined by the ABMI. Four, paired cameras 

and ARUs are deployed at a site, each pair making up a station. Each station is 600 meters 

distant in the shape of a polygon. Each site is at least 20 kilometers away from the nearest 

neighboring site. 
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Figure 1.3. Example of an image output by SoX version 14.4.2. The y-axis is the frequency 

range in kHz, the top half representing the first channel and the bottom half the second channel 

from the ARU. The x-axis is marked in seconds, and the dBFs scale indicates the amplitude of 

the recording. The spectrogram itself shows a lone wolf howling twice approximately 10 seconds 

apart. 
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Figure 1.4. The effect of week on the probability of wolf detections for cameras and ARUs over 

17 weeks of deployment in northeastern Alberta. Error bars represent 95% credible intervals. 
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Tables 

 

Table 1.1. Total number of cameras deployed by the ABMI during the summers of 2016 and 

2017 with at least one wolf detection between March 1st – June 30th. Paired ARUs at the same 

stations and their respective proportion of wolf detections. 

2016 Unique Stations Unique Sites Hits 

Camera 34 27 55 

ARUs with wolf detections 19 15 39 

Proportion (ARU/Camera) 0.558 0.571 0.709 

2017 Unique Stations Unique Sites Hits 

Camera 39 31 71 

ARUs with wolf detections 27 24 97 

Proportion (ARU/Camera) 0.692 0.774 1.366 
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Table 1.2. Comparison of ARU wolf detections at stations where cameras did not detect wolves 

between March 1st – June 30th 2016 and 2017. 

 Unique Stations Unique Sites 

Total 73 57 

ARUs with wolf detections 38 29 

Proportion 0.521 0.509 
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 Table 1.3. Occupancy and detectability estimates of cameras and ARUs using daily, weekly, 

and monthly detection intervals. 95% CI indicates the 95% credible intervals for each estimate. 

 

  

Interval Estimates Camera 95% CI ARU 95% CI 

Daily p (detectability) 0.030 0.024, 0.050 0.033 0.022, 0.047 

 Ψ (occupancy) 0.304 0.165, 0.561 0.623 0.441, 0.842 

Weekly p (detectability) 0.083 0.059, 0.111 0.105 0.078, 0.133 

 Ψ (occupancy) 0.643 0.481, 0.858 0.652 0.499, 0.813 

Monthly p (detectability) 0.233 0.155, 0.326 0.296 0.213, 0.383 

 Ψ (occupancy) 0.761 0.117, 0.978 0.752 0.569, 0.945 
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Table 1.4. Comparison of detection and occupancy probabilities when camera-ARU stations 

were pooled as well as combined in a multi-method approach. The detectability estimates 

reported from the multi-method analysis are θx values, the probability of detection via camera 

and/or ARU given the wolf is present and available for detection. 

 

  

Interval Estimates Pooled 95% Cred Int Multi-method 95% Conf Int 

Daily p (detectability) 0.047 0.034, 0.062 0.267 0.092, 0.569 

 Ψ (occupancy) 0.548 0.388, 0.727 0.742 0.614, 0.838 

Weekly p (detectability) 0.153 0.125, 0.180 0.698 0.228, 0.948 

 Ψ (occupancy) 0.766 0.650, 0.807 0.757 0.624, 0.855 

Monthly p (detectability) 0.443 0.362, 0.525 0.829 0.360, 0.977 

 Ψ (occupancy) 0.782 0.651, 0.905 0.800 0.635, 0.902 
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Table 1.5. Sampling effort between ARUs and cameras deployed by the ABMI during March 1st 

– June 30th, 2016-2017. 73 stations were selected based on those cameras with a known hit, 

ARUs were processed after for wolf hits. 

 Min Active/Unit/Day 

Total Min Active 

(73 Units, ~122 Days) 

Wolf Hits 

(1 Image/Min) 

Hit Rate 

(Hits/Total Min Active) 

ARU 38 319,054 309 0.001 

Camera 1440 11,612,160 254 0.00002 
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Chapter 3: Testing the random encounter and staying time (REST) model 

using human participants 

Introduction 

The need to estimate and track animal densities is a critical element of wildlife 

monitoring and management. Whether populations are increasing, stable, cyclic, or declining can 

have major impacts on ecosystem function and therefore on decisions made by wildlife managers 

regarding species and community management (Kapota and Saltz 2018, Williamson et al. 2018). 

While management programs typically rely on indices of relative abundance, obtaining 

population densities is a more desirable metric for many studies. Until recently, this has proved 

challenging, with mammal density estimates typically encompassed by wide margins of error 

(Wilson et al. 2017, Lonsinger et al. 2018). 

Current methods of obtaining density estimates rely on mark-recapture studies and/or 

estimating the home range sizes of species (Borchers and Efford 2008). Although accurate, these 

methods are also intensive in terms of logistics, manpower, and time (Efford and Fewster 2013, 

Mattioli et al. 2018). Rowcliffe et al. (2008) proposed the random encounter model (REM) to 

estimate densities of unmarked populations using remote cameras and animal movement based 

on the ideal gas model. The concept for this method is grounded in mechanistic physics models 

that describe rates of gas molecule collisions (Hutchinson and Waser 2007). For the purpose of 

density estimation, Rowcliffe adapted molecular movement to animal movement and molecular 

collision rates with camera encounter rates (Rowcliffe et al. 2008). The appeal of REM is that it 

does not require the use of marked individuals or estimates of home range sizes. However, the 

need to accurately define species’ movement speed to use REM has been a drawback of the 

application of this method in field studies, due to the intensive data collection required to make 
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this estimate. Nakashima et al. (2017) modified Rowcliffe’s original method to instead account 

for the “staying time” of an animal within the detection area of remote cameras, without 

accounting for the animal’s rate of movement. He referred to this model as the random encounter 

and staying time (hereafter: REST) method.  

Nakashima et al. (2017) provided evidence for the robustness of the REST method via 

computer simulations and data collection of real duiker populations in Moukalaba-Doudou 

National Park, Gabon, Africa. In their computer simulations, they varied duiker movement 

patterns to include paired and solitary movement, as well as continuous movement and 

movement with resting. They found their computer simulations provided unbiased estimates in 

nearly every scenario. The estimates made using real duiker populations were comparable to 

those density estimates made via line transect surveys of the same study area. 

We conducted controlled human trials in Edmonton, Alberta to test the effects of 

variation in human movement rates and home range sizes on the accuracy and precision of the 

REST method. Habitat type and simulated camera detection areas remained constant, but we 

varied human densities, movement rates, home range sizes, and simulated camera coverage. 

While Nakashima et al. (2017) used simulations and real populations, our goal was to test the 

method using individuals in a controlled population as an intermediate step between computer-

simulated and real populations. We used humans as a proxy for non-territorial, terrestrial 

mammals as the focus of these tests, as it is easier to instruct people when and how to change 

their movement rates compared to non-humans. 
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Theory 

The REST model calculates species’ density as a function of the total residency time an 

animal spends in front of a camera. The equation is as follows, modified from Nakashima et al. 

(2017): 

�̂� =
�̂�

𝐴
=

∑ 𝑡𝑖
𝑛
𝑖=1

𝑇∙n∙a
, 

where �̂� is the estimated density, n is the number of cameras, and ti is the total staying time of an 

individual at the i’th camera. �̂� is the sum of each animals’ residency time across each camera. 

The denominator (A) is determined by the duration of the study period (T), the number of 

cameras deployed (n), and the proportion of the study area covered per camera (a).  

This method does not require estimates of animal movement speed, home range size, or 

individual identification. It also does not require closure of the study area in the sense that 

animals do not leave or enter the area, but only that immigration, emigration, births, and 

mortality are balanced during the study period. If multiple individuals are captured at the same 

time by the same camera, their residency time is calculated independently. If an individual leaves 

the detection area of the camera and returns, it is counted as the start of a new residency time. 

This eliminates the task of researchers defining a camera detection, instead simply summing the 

time individuals spend in front of each camera. This method is applicable to both territorial and 

non-territorial species, provided cameras are distributed either randomly or systematically, and 

that the scale is defined by the study area. 

The REST model assumes that cameras are placed randomly relative to animal movement 

within the study area, and that cameras sample habitat proportional to their availability. The 

robustness of this method to animals that possess home ranges or territories relies on the 

assumption that there is an equal probability of a home range existing within the study area, in 
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other words, the point-pattern of home range distributions is homogenous. Additionally, 

detectability within the detection zone of the cameras must be perfect (p=1). This method also 

assumes that animal behavior is not modified due to the detection device. 

 

Methods 

Study area 

Our test took place at the Louise McKinney Riverfront Park in Edmonton, Alberta, 53°N 

113°W. The study area was approximately 1.6 ha in size, and consisted of open grassy areas, 

walking paths, and a pavilion, all of which were accessible to the participants. 

 

Park trials 

The Research Ethics Office at the University of Alberta granted approval for using 

human volunteers in our test, application No. Pro00075181. A total of 12 volunteers were 

included—six participants on September 16th, 2017, and six participants on September 23rd, 

2017. On both days, the area available to a participant was either the entire park, a home range of 

1.6 ha, or half the park (0.80 ha). The park boundaries were roughly rectangular in shape. On 

September 16th, the park was divided in half length-wise, and on September 23rd it was divided 

in half width-wise. We measured these areas based on the area calculation function using a 

GPSMap78 unit, and halves were delineated with flags, so each participant was aware of their 

home range “boundaries”. Each participant was given either a GPSMap64 or a GPSMap78 unit 

to track their movements in one second intervals for the duration of each trial. 

We conducted six trials, each lasting 16 minutes and each varying the home range size 

and movement rate of the participants (Table 2.1). The trials included participants jogging for 10 

minutes and resting for 6 minutes, walking for 10 minutes and resting for 6 minutes, and walking 
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for 16 minutes continuously. While participants moved independently of each other during each 

test, their movement rates were synchronized (ie: everyone moved and rested simultaneously). 

These trials were repeated to include the entire park as the home range, in addition to halving the 

park to include two, smaller home ranges with the same variation in movement rates. 

We tracked the duration of each trial using a stopwatch and whistle signaling changes in 

movement rates and the end of each trial. Due to variation among participants in the time they 

took to start, stop, and save their individual tracks, each trial varied from exactly 960 seconds (16 

min). The tracks over both days were merged according to trial in ArcMap v10.5.1 and clipped 

to the shortest duration of any given participant within trials to standardize the frequency of 

points per person per trial (Table 2.1). As such, trials averaged 932 s ± 19 s standard deviation. 

Polygons consisting of 800 cells were created around each trial based on the coordinates of the 

outermost tracks (Figure 2.1). Each cell was approximately 20 m2. The number of points per cell 

were then summed for each trial. If a point fell on the border of two adjacent cells, whichever 

cell the majority of the point was in, we counted as belonging to that cell. 

We assumed our park habitat was homogenous during this study, and detectability was 

perfect given that each participant was tracked via GPS units that never failed during the 

simulations. The potential bias of participant attraction to detection devices was not an issue 

because cameras were not actually deployed during the trials. 

 

Analysis 

We varied human densities to include 2, 6, and 12 people, and we varied the number of 

cells randomly chosen as deployments of 8, 20, 50, and 100 cameras. These camera densities 

resulted in 1%, 2.5%, 6.25%, and 12.5% coverage of the study area, respectively. We used 1000 

bootstrap samples with replacement of camera effort in each scenario of movement speed, 
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human densities, and home range area for a total of 72 different scenarios in R v.3.5.1 (R Core 

Team 2018). 

Results 

Each scenario provided accurate estimates of human density regardless of movement rate, 

home range area, camera effort, or number of participants (Figure 2.2). Density estimates were 

biased slightly negative when camera effort was 8 cameras, but accuracy increased with 

increases in camera coverage. Additionally, precision of the estimates increased as camera effort 

increased, with 100 camera deployments having an order of magnitude less error than scenarios 

with only 8 cameras deployed. Both movement rate and home range size did not affect the 

accuracy of estimates, although walking and resting and jogging and resting trials consistently 

had wider margins of error than those trials consisting of continuous walking speeds.  

 

Effect of participant abundances on density estimates 

In scenarios where true human densities were 2 people across 20, 50, and 100 camera 

deployments, we observed the least amount of error across all movement and home range size 

scenarios. In scenarios with 20 and 50 cameras, as human abundance in the park increased, so 

did our margins of error. 

 

Effect of home range size and movement rate on density estimates 

Among all variations in home range size and movement rate, the REST method 

accurately estimated human densities. We detected no difference in accuracy or precision of the 

REST method if home range sizes were large (1.6 ha) or small (0.80 ha). Continuous walking by 

the participants had the narrowest confidence intervals across all combinations of camera effort, 

human densities, and home range sizes. When movement rates were changed to include jogging 
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and resting, as well as walking and resting, the accuracy of the estimates were not affected, but 

the margins of error were consistently wider between both movement rates than continuous 

walking. 

 

Effect of camera effort on density estimates 

 Not surprisingly, the precision of the estimates increased as camera effort increased. 

When 100 camera cells were selected, the resulting confidence intervals were, on average, an 

order of magnitude smaller than when 8 camera cells were selected (Figure 2.2). 

 

Discussion 

We found the REST method accurately estimated human densities regardless of 

movement rate, home range size, and camera coverage in these tests. Density estimates had the 

widest range of error with the lowest camera coverage (8 cameras) and with higher human 

abundances. While variations in movement rate and home range size did not affect overall 

density estimates, the least precise trials were those that involved jogging and resting and 

walking and resting. Increased precision when participants were moving at slower paces 

continuously as opposed to moving and resting may be indicative of the robustness of this 

method to slower moving animals, which would theoretically allow for longer residency times 

per camera, and therefore more precise estimates. Nakashima et al. (2017) noted that the REST 

method may not be robust to species that have long periods of inactivity. Our human experiment 

partially accounted for this potential bias by incorporating resting in which participants did not 

move from their locations for approximately 38% of the survey period during two of the trials. 

Despite this lack of movement, the REST method was still able to estimate density in those 
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scenarios, however the estimates were less precise than other movement rates. Further testing of 

the effects of animals with long periods of inactivity may be warranted. 

Nakashima et al. (2017) also suggested that cameras have sensitive sensor settings, no 

delay period between photos, or alternatively, take video recordings, and that the effective 

detection area be tested in situ according to methods proposed by Rowclifffe et al. (2011). For 

the purpose of this simulation, we addressed the concern of delays in camera capture rate as well 

as the possibility of imperfect detections within the detection zones by having each participant 

tracked every second. The cumulative number of tracks in each cell, if that cell was designated as 

a camera, would then be perfectly detectable. However, in field settings when real cameras are 

used, camera sensitivity, detection areas, and photographic capture rate should all be tested and 

accounted for. 

The potential of environmental factors and variation in target species’ attributes may 

influence detectability. Dense vegetation and inclement weather will decrease the effective 

detection areas of cameras, leading to overestimates of animal densities. While weather is an 

uncontrollable factor, it is common practice in camera trap studies to clear thick understories that 

block the view of the camera, or to place cameras in less dense areas (Rowcliffe et al. 2011, 

Rovero et al. 2013, Villette et al. 2016). Regardless of where cameras are placed, it is necessary 

that the effective detection area of each camera be tested in the field to accurately measure 

animal densities (Nakashima et al. 2017). 

Variation in body size may affect detectability and therefore capture rates of different 

species, such as smaller animals that may be missed by the camera, despite being present in the 

detection area (Rovero et al. 2013, Kolowski and Forrester 2017). This bias would lead to 

underestimates of mammal density (Nakashima et al. 2017). Our human trials did not test the 
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effect of body size on detectability. Therefore, the REST method should be applied to multiple 

species to quantify these potential biases (Nakashima et al. 2017). 

The application of the REST method to camera trap studies may have the potential to 

improve monitoring efforts for several species, provided assumptions are met. This method 

offers a cost-effective, unbiased means by which animal densities can be estimated from camera 

trap data without the use of marked individuals or estimates of home range sizes. Nakashima et 

al. (2017) applied the REST model to computer simulated and real data of red and blue duikers 

(Cephalophus natalensis and Philantomba monticola), in which they found the model to 

accurately estimate simulated and real duiker densities with even lower camera coverage (<1%) 

than we simulated in these park trials. While further testing of this method on other species 

remains to be completed, the effectiveness of REST on a controlled human test provides 

evidence of the potential application of this method to future mammal monitoring and 

management programs.   
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Figures 

 

 

 

 

 

 

 

 

Figure 2.1. Merged tracks of all 12 participants in the 800 cell polygon from trial 5. In this trial, 

the entire Louise McKinney Riverfront Park was available to everyone, and the movement rate 

was walking for a total of 10 minutes, and resting (no movement) for a total of 6 minutes. 
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Figure 2.2. Bootstrapped mean estimates and 95% confidence intervals of human densities 

including 2, 6, and 12 people with camera trap effort varying from 8, 20, 50, and 100 cameras 

across all six trials of movement rate and home range size. TD is the true density of each 

scenario while ED is the estimated density. Black, horizontal lines indicate what the true density 

was in each scenario. 
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Tables 

Table 2.1. Details of each trial: home range sizes paired with varied movement rates for each 

trial conducted at Louise McKinney Riverfront Park. The cell area (m2) refers to the approximate 

cell size per trial.  

 

  

Trial 

Home range 

(ha) Movement rate  Duration (s) 

Point 

freq (s) 

Cell 

area 

(m2) 

Total 

area (m2)  

1 0.75 Jog 5 min, rest 3 min (2x) 11424 952 20 16,000 

2 0.75 Walk 5 min, rest 3 min (2x) 11184 932 19 15,200 

3 0.75 Walk continuously (16 min) 11268 939 20 16,000 

4 1.5 Jog 5 min, rest 3 min (2x) 11208 934 20 16,000 

5 1.5 Walk 5 min, rest 3 min (2x) 10752 896 20 16,000 

6 1.5 Walk continuously (16 min) 11244 937 20 16,000 
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Chapter 4: General Conclusions 

Summary 

The goal of this study was two-fold: to compare the use of ARUs to remote cameras to 

monitor vocal predators in Alberta, using the gray wolf as a test species, and to assess a new 

method of estimating unmarked mammal densities from camera traps. We found ARUs to be 

comparable to cameras in their detectability of wolves in this paired study. We also found the 

density estimation method to produce unbiased estimates of density in a controlled test using 

humans as a proxy for wild animal movement. 

In our camera-ARU comparison, at the site-level, ARUs detected wolves at 

approximately 59% of selected sites (68/115), while cameras detected wolves at approximately 

50% of selected sites (58/115). Additionally, when we selected 73 stations where every station 

had a wolf detection via camera, while approximately 60% of the paired ARUs detected a wolf, 

ARUs had a higher per minute hit rate than cameras out of the total time each unit was active 

(ARU = 0.001 hits/min, Cam = 0.00002 hits/min). We found that ARUs had slightly higher 

detectability than cameras, and that occupancy and detectability estimates from daily and weekly 

sampling intervals were comparable (Table 1.3). However, daily and weekly estimates were 

much lower than monthly intervals, regardless of the method employed. Additionally, 

detectability estimates from the multi-method approach were generally higher than estimates 

made from simply pooling the data, without accounting for individual detection probabilities of 

each method (Table 1.4). Lastly, we found both camera and ARU detectability decreased for 

every additional week they were active, although ARUs decreased exponentially while cameras 

decreased linearly (Figure 1.4). This may be due to green-up of the vegetation as the summer 

progressed, decreasing both camera and ARU detectability. 
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The second goal of this thesis was to test the random encounter and staying time (REST) 

model (Nakashima et al. 2017). We did this using human volunteers in Louise McKinney 

Riverfront Park in Edmonton, Alberta. We tested the effects of different human abundances, 

movement rates, home range sizes, and simulated camera effort on the precision and accuracy of 

the REST method. The different combinations of these variables resulted in 72 scenarios, each of 

which we estimated using 1000 parametric bootstrap samples with replacement. For every 

scenario, the REST method produced unbiased estimates of human density, although precision 

was the most variable in scenarios where movement rates incorporated resting, camera effort was 

lowest (1% coverage) and when human densities were highest (12 people). Our most precise 

estimates were consistently those where movement rates were constant, regardless of human 

densities or camera effort. Home range size had no effect on our density estimates. 

Inclusion of ARU technology in wolf monitoring 

 

The use of ARUs to collect wolf data is a technological advancement that may further our 

ability to monitor wolves passively. Recent studies have suggested that individual wolves can be 

identified based on their vocal signature, which allows the number of howling wolves per pack to 

be counted from spectral data, opening up avenues of mark-recapture studies based solely on 

vocalizations (Root-Gutteridge et al. 2014, Passilongo et al. 2015). The applicability of analyses 

such as occupancy, abundance estimates, and potentially even density estimates to ARU data 

allows for the diversification of monitoring methods that can be used for target species, such as 

wolves. 

Limitations and implications 

Although passive monitoring methods have become ubiquitous in recent years, and our 

study provided evidence for the applicability of ARUs for gray wolf monitoring in Alberta, 
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certain limitations and assumptions of these methods should be accounted for. While ARUs, on 

average, have much larger detection areas than cameras, both methods are limited by the 

environments in which they are placed. Dense vegetation, inclement weather, and background 

noise will decrease the detectability of these devices (Efford and Dawson 2012, Yip et al. 2017). 

In the cases of occupancy and density, this decrease in detection areas, or miscalculation of true 

detection areas, may inflate both estimates unless properly accounted for. Therefore, researchers 

should make every effort to quantify the detection areas of these devices when they are in the 

field in order to reduce biased estimates as much as possible (Rowcliffe et al. 2011, Nakashima 

et al. 2017). 

In the case of ARUs sampling vocal predators, detectability is highly dependent on the 

vocal activity of the target species. Wolves are known to howl year-round, but studies have 

indicated that peak howling activity occurs in the fall and winter (Hennelly et al. 2017, McIntyre 

et al. 2017). Therefore, to effectively incorporate ARUs into wolf monitoring programs, focusing 

ARU recording activity during night, dawn, and dusk hours during seasons of high wolf howling 

activity will likely yield the most data (Passilongo et al. 2010). 

Our human test of the REST method provided evidence for the model’s robustness, given 

that assumptions were met. However, variables such as animal body size and variation in camera 

detection areas were not tested in this study. Nakashima et al. (2017) suggested that small 

animals may be missed more often by cameras, effectively underestimating densities. 

Additionally, if cameras are not placed proportionally according to habitat availability, this will 

bias estimates of density. However, knowing a priori a species’ use of habitat, and placing 

cameras accordingly, may be more difficult to estimate, and therefore may influence density 
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estimates using the REST method. As such, we suggest continued testing of the REST method 

using different species and the effects of accuracy and precision in heterogenous habitat. 

In conclusion, this thesis provided strong evidence for the viability of using ARUs to 

monitor vocal, low-density predators in a fashion similar to currently popular camera methods. 

We additionally provided support for the robustness of the REST method in estimating densities 

of unmarked populations. The potential to estimate gray wolf howling rates, behavior, and 

identify individuals from passive methods may contribute to the conservation and management 

efforts for species of interest in Alberta. Additionally, the applicability of the REST method to 

estimate densities of unmarked populations is a valuable advancement of the use of camera trap 

data in wildlife monitoring studies. Having the ability to accurately estimate density is a highly 

desirable but until now, labor-intensive management goal. The use of passive surveying 

methods, in addition to advancements in statistical and mathematical applications to these types 

of data, no doubt provide researchers with tools to not only better understand predator ecology 

but to also implement effective management strategies. 
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Appendix I 

 

Appendix I. Bayesian model using JAGS version 4.3.0 for camera and ARU occupancy models. 

Bolded lines are those that estimate weekly detectability as a function of the quadratic week. 

Non-bolded lines indicate occupancy models without covariates. 

 

y <- read.csv("CamARUDay69Wide.csv", fileEncoding = "UTF-8-BOM")   #y (detection 

history) 

y <- data.matrix(y, rownames.force = NA) 

nsite <- nrow(y)  #nsite (number of sites/rows) 

nsurv <- ncol(y)  #nsurv (number of columns in y)    

week <- c(1:17) 

week <- week/100 

week2 <- week^2 

week <- as.numeric(week) 

#Model 

library(R2jags) 

sink("model.txt") 

cat(" 

    model{ 

    # Priors 

    psi ~ dunif(0, 1) # The prior on occupancy probability 

    p ~ dunif(0, 1)  # The prior on detection probability 

    alpha.p ~ dnorm(0, 0.01)  

    beta.p ~ dnorm(0, 0.01) 
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    beta.p2 ~ dnorm(0, 0.01) 

    # Likelihood 

    for(i in 1:nsite){ 

    z[i] ~ dbern(psi) # The occupancy state of site i (z[i]) is distributed bernoulli with probability 

psi 

    for(j in 1:nsurv[i]){ 

    y[i, j] ~ dbern(eff.p[i, j])  # Detection during survey j at site i (y[i, j]) is distributed bernoulli 

with probability p*z, where z is 1 or 0 

    eff.p[i, j] <- z[i]*p  

    logit(p[i, j]) <- alpha.p + beta.p*week[j] + beta.p2*week2[j]  

    } 

    } 

    # Generated quantities 

    for(j in 1:nsurv){ 

      lp.week[j] <- alpha.p + beta.p*week[j] + beta.p2*week2[j] 

    } 

    } 

    ",fill=TRUE) 

sink() 

#Bundle data 

win.data <- list(y=y, nsite=nsite, nsurv=nsurv) 

win.data <- list(y=y, nsite=nsite, nsurv=nsurve, week=week, week2=week2) 

#Function to generate starting values 
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zst <- apply(y,1,max) 

inits <- function(){list(z=zst,psi=runif(1,0,1), p=runif(1,0,1))} 

inits <- function(){list(z=zst,alpha.p=rnorm(1,0,1), beta.p=rnorm(1,0,1), 

beta.p2=rnorm(1,0,1))} 

#Parameters to estimate 

params <- c("psi", "p") 

params <- c("psi", "alpha.p", "beta.p", "beta.p2", "lp.week") 

#MCMC Settings 

nc <- 3 

nb <- 500 

ni <- 3000 

nt <- 5 

#Start Gibbs sampler 

out <- jags(win.data, inits, params, "model.txt", n.chains=nc, n.iter=ni, n.burn=nb, n.thin=nt) 

 

 


