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ABSTRACT 

 
This exploratory archival analysis investigates the 
relationships probabilistic co-occurrence measures of 
semantic association and semantic richness have with 
subjective measures of semantic transparency in English 
compound words. We also examine their correlations 
with behavioural measures. Specifically, the present study 
establishes links between nominal transparency 
classification [11]; participant ratings of whole word 
transparency and lexeme meaning dominance (LMD) [9]; 
vector-based measures of semantic distance, semantic 
neighbourhood density, and semantic neighbourhood 
dispersion [5, 6]; and lexical decision data from the 
English Lexicon Project [1]. We show that semantic 
distances between the whole compound and its 
constituent lexemes may capture associative information 
involved in transparency and LMD ratings. Further, 
evidence is presented for the semantic neighbourhoods of 
constituent morphemes playing a role in compound 
recognition. 
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1. INTRODUCTION 
 
Morphologically complex words contain semantic 
relationships at multiple levels. With respect to 
concatenated English compounds (e.g., strawberry), the 
two constituent morphemes may relate to each other, as 
well as to the meaning of the whole compound.  There are 
multiple ways to conceptualize and quantify these 
meaning-based relationships, but perhaps the most 
studied of these has been semantic transparency [11]. 
Transparency in this context refers to how predictable the 
meaning of the whole word is from the meanings of its 
constituent morphemes. The methods used to determine 
semantic transparency are typically subjective, prone to 
bias, and may not always correlate with other 
operationalizations of semantic relatedness in a manner 
that one would expect if they are indeed representative of 
the same underlying construct [7]. Here we examine 

various metrics assumed to describe the intralexical 
semantic relationships of English compounds. 
Specifically, we determine whether values obtained from 
a probabilistic global co-occurrence model of semantics 
[6] predict transparency ratings. We also assess the 
predictive ability of all examined constructs with respect 
to archival lexical decision RT data. 
 
1.1. Semantic transparency, headedness, and LMD 

 
Semantic transparency has been most commonly 
operationalized through expert classification into discrete 
categories [11, 12] and participant ratings of transparency 
[9]. Transparency of morphemes has been shown to 
facilitate the processing of compound words across a 
variety of task paradigms, including both primed and 
unprimed lexical decision tasks and typing tasks [15]. 
      Other subjectively derived methods of understanding 
the meaning-based relationships within compound words 
exist. Most notable among these constructs is that of 
headedness, wherein the head of a compound is the 
lexeme that determines the semantic category to which 
the word belongs [8]. In 2008, Juhasz et al. assessed the 
dominance in meaning between constituents using 
participant ratings and showed that this method of 
classifying words into “headed” (first constituent 
dominant) and “tailed” (second constituent dominant) had 
robust and novel effects on behavioural measures [10].  
 
1.2 Modelling semantic space 
 
Significant variation exists in the conceptualization and 
design of models aiming to objectively characterize the 
semantic organization of the mental lexicon. (see 
Buchanan et al., [2] for a review). The present study, 
however, is concerned with language-based models of 
semantics that class words and concepts together based on 
various statistical co-occurrence properties of a corpus.  It 
has been shown that well-designed models of this type can 
mimic object-based models (e.g., feature based models) 
in many contexts and are much easier to implement in an 
objective fashion [13, 2, 5]. Models of this type generate 
a high-dimensional semantic matrix, in which each word 



has a defined location and its similarity to another word is 
measured as a function of the distance between them. 
 
1.2.1. Semantic richness and the distributional 
characteristics of the semantic neighbourhood 
 
The collection of words with which a target shares 
association can be referred to as its “semantic 
neighbourhood”, with the “neighbours” being the 
associated words therein [2]. These neighbours vary in 
semantic distance from a given word; close neighbours 
are those with a stronger level of association to the target, 
whereas distant neighbours may share little association 
with the target. As such, target words may differ in the 
distributional characteristics of their neighbourhoods, 
with some neighbourhoods being more “dense” than 
others. That density of the neighbourhood is used as a 
measure of semantic richness.  Language-based co-
occurrence models have been used to generate a measure 
of semantic neighbourhood density (SND).  Originally, 
SND was operationalized as the mean semantic 
association between a target word and its nth closest 
neighbours [2]. More recently, with the evidence that the 
relative positioning of neighbours may play a larger, or at 
least different, role in lexical processing than simple mean 
distance, [3, 14],  measures that capture the relative 
distributions of neighbours across semantic 
neighbourhoods have come in favour. We investigate the 
effects of both in this study. 
 
1.3 The present study 
 
In accordance with questions raised by Wang, Hsu, Tien, 
& Pomplun [18] the present study employs a global co-
occurrence model to predict transparency values. 
Semantic distances derived from the WINDSORS model 
[5] are used to this end. This model has been shown to 
effectively capture associative information, as well as 
feature and category information [5]. SND values derived 
from this model have demonstrated relationships with 
behavioural variables across task types [3]. In this study 
we examine two methods of deriving semantic richness, 
the second being a novel measure of semantic 
neighbourhood dispersion, to assess if the semantic 
neighbourhoods of constituent lexemes play a role in 
transparency and LMD ratings and/or lexical decision 
performance for their respective compounds. 
 
 
 
 

2. METHODS 
 

In this study, we examine semantic distances between the 
first constituent (C1), second constituent (C2), and whole 
word (WW) lexemes of English compound words and 
assess their ability to predict subjective measures of 
semantic transparency and LMD. Finally, we assess the 
ability of all semantic variables to predict archival lexical 
decision data from the English Lexicon Project (ELP) [1]; 
this dataset is used to avoid inter-stimulus compound 
priming effects [12]. 
 
2.1. Data sources and measures 
 
This study makes use of four publicly available databases 
that can be found by accessing the relevant reference 
material. Words with extreme frequency values or that 
were not common between necessary datasets were 
omitted from analysis. Transparency classifications of 
124 compounds are taken from Stathis [16]. Participant-
rated transparency and lexeme meaning dominance 
(LMD) of 445 compounds are taken from Juhasz et al. [9].  
For each of these two lists of compounds, semantic 
distances between each whole word and its constituents 
are taken from the WINDSORS database [5]. Measures of 
semantic richness for each constituent lexeme of each 
word are also derived from this database. For analyses not 
examining transparency, the full 445 compound list from 
Juhasz et al. are used.  Finally, the lexical decision times 
for each whole compound is taken from the ELP [1].  
 
2.1.1. Subjective semantic variables 

 
Classification of transparency comes from a stimulus set 
developed by Stathis [16] in which words were classified 
into the four categories of transparent-transparent (TT), 
transparent-opaque (TO), opaque-transparent (OT), and 
opaque-opaque (OO) [11]. 124 noun-noun compounds 
from this dataset, along with their constituent lexemes, 
were used in all analyses involving nominal transparency 
classification. 
     Participant-rated semantic transparency and LMD are 
operationalized using ratings gathered by Juhasz et al. [9]. 
These ratings are based on the mean in-lab rating of 
compound words as part of a larger norming study. Whole 
word transparency was rated by participants on a 1-7 
scale, where higher ratings indicate that a word’s lexemes 
represent a word transparently. LMD was rated on a 0-10 
scale, where 0 represents first constituent dominance and 
10 represents second constituent dominance. Each word 
was rated by an average of 14 participants. A total of 445 



compounds along with their constituent lexemes were 
included in all analyses involving these variables. 
 
2.1.2. Semantic distance and semantic neighbourhood 
variables 
 
Semantic distances between the first constituent (C1), the 
second constituent (C2), and the whole word (WW) are 
operationalized as the similarity cosine of the two 
lexemes as included in the WINDSORS database [6]. 
These values range from 0-1, with higher values 
representing higher association or closer semantic 
distance. The SND of C1, C2, and WW is operationalized 
as the mean distance to a target constituent and its 200 
closest neighbours in the WINDSORS model, with values 
closer to 1 indicating a denser neighbourhood. A novel 
measure intended to better capture the distribution of 
semantic distances is also included. We call this measure 
dispersion of semantic association (DSA) and is 
operationalized as the standard deviation of the semantic 
distances to the closest 200 neighbours of a target word. 
Both SND and DSA were converted to z-scores before 
analysis. 
 
2.1.3. Behavioural data 
 
Mean lexical decision response time (RT) data for each 
whole compound noted in section 2.1.1 was gathered 
from the ELP [1], with 124 (for analyses involving 
nominal transparency) and 445 (for all other analyses) 
response times (RTs) being used in this study. These RTs 
were normed on 816 undergraduate participants, with 
each individual word in the dataset receiving 34 
responses. Whole-word RTs are assessed with log 
orthographic frequency [4] as a covariate. 
 

3. RESULTS 
 
3.1 Predicting transparency and LMD 
 
An analysis of variance comparing the semantic distance 
between WW and C2 across transparency classes 
revealed a large effect [F(3,120) = 5.255, p = .002, ω2 = 
.087].  Semantic distances between WW-C1 did not differ 
across transparency classification, see Figure 1. Multiple 
regression analyses found WW-C1 and WW-C2 semantic 
distances to be significant predictors of both participant-
rated whole word transparency and LMD with large effect 
sizes (See Table 1). 
 
 
 

 
Figure 1: Mean semantic distance between lexeme 
pairs compared across transparency classifications. 

 

 
 

Table 1: Multiple regression analyses predicting 
whole word transparency ratings and LMD. 

 
Variable R2 B(SE) Β F/t sr2 

Trans. .16   43.82*  
 WW-C1  1.87(.28) .29 6.68* .08 
 WW-C2  1.63(.29) .24 5.54* .05 
      
LMD .25   72.88*  
 WW-C1  -2.05(.30) -.28 -6.69* .09 
 WW-C2  3.44(.32) .45 10.85* .20 

       * p<.001 
 
3.2. Predicting lexical decision performance 
 
Analyses of variance revealed no differences in lexical 
decision times between nominal transparency 
classifications. Hierarchical regression assessed whether 
SND and DSA of all lexemes predicted response latency 
after frequency was entered.  Frequency was entered into 
the first step of the equation, followed by SND of each 
lexeme for the second step, and finally DSA was added 
into the third step (see Table 2).  

 
Table 2: Hierarchical multiple regression analysis   
predicting lexical decision response times. 
 
Step     R2 B(SE) β F/t sr2 
First  .03   13.26*  
 Freq.  -1.34(.37) -.17* -3.64 .03 
Second .05   5.78*  
 Freq.  -1.27(.373) -.17* -3.42 .03 
 SND      
  C1  12.03(5.42) .11* 2.33 .01 
  C2  8.61(5.39) .08 1.59 .00 
  WW  -7.15(4.55) -.08 -1.59 .00 
    (continued) 
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Table 2. (continued) 
Step   R 2 B(SE) β F/t sr2 
Third  .15   7.85*  
 Freq.  -.96(.37) -.13* -2.62 .01 
 SND      
  C1  14.46(5.61) .14* 2.69 .02 
  C2  14.26(5.46) .13* 2.62 .01 
  WW  12.95(6.42) .14* 2.02 .01 
 DSA      
 C1  -8.21(4.94) -.08 -1.68 .00 
 C2  -14.03(4.74) -.14* -2.97 .02 
 WW  -27.06(6.22) -.30* -4.36 .04 

* p<.05 
 
 

4. DISCUSSION 
 
Our findings suggest that the WINDSORS-derived 
semantic distances may capture the underlying 
associative information that informs transparency and 
headedness judgements. Further, SND and DSA appear to 
contribute uniquely to the variance in lexical decision 
performance. Having closer-on-average neighbours 
appears to be facilitative to word recognition, whereas 
greater neighbourhood dispersion confers an inhibitory 
effect. Further, these effects arise not simply at the level 
of the whole word; SND of the constituents are at least as, 
and possibly more, facilitative than whole word SND. 
Notably, DSA of the whole word appears to have a far 
stronger effect then any SND variable, providing support 
for models of semantic processing that account for the 
variability of a neighbourhood [3, 14]. These results have 
implications for theories of morphological decomposition 
[17] and for attractor dynamics models of semantic 
processing [14] and as such, further research using these 
variables will likely prove worthwhile. 
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