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Abstract

In classic reinforcement learning(RL) for continuous control, agents make de-

cisions at discrete and fixed time intervals. The duration between decisions

becomes a crucial hyperparameter. Setting it too short may increase the prob-

lem’s difficulty by requiring the agent to make numerous decisions to achieve

its goal, while setting it too long can result in the agent losing control over

the system. However, physical systems do not necessarily require a constant

control frequency. For learning agents, it is often preferable to make decisions

with a low frequency when possible and a high frequency when necessary.

Previously, control frequency adaptation methods in temporal-abstraction RL

have been proposed. However, like classic RL, these methods often do not

consider physical time and treat task time steps discretely. This can make the

learning experience sensitive to the underlying task interaction frequency. We

propose a framework called Continuous-Time Continuous-Options (CTCO),

where the agent chooses options as open-loop sub-policies of variable dura-

tions. These options are defined in continuous time and can interact with

the system at any desired frequency providing smooth extended continuous

actions. We demonstrate the effectiveness of CTCO by comparing its per-

formance to classical RL and temporal-abstraction RL methods on simulated

and real-world continuous control tasks with various action-cycle times. We

show that our algorithm’s performance is not affected by the choice of task

interaction frequency. Moreover, we show the benefit of having open-loop op-

tions over simple action repetition. Furthermore, we demonstrate the efficacy
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of CTCO in facilitating exploration in a real-world visual reaching task with

sparse rewards for a 7 DOF robotic arm.
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Chapter 1

Introduction

Robotics has the potential to improve human life by automating a wide range

of tasks. However, classical methods for controlling robots are often not

equipped to handle the complexity of these tasks. The desired behaviours

in such tasks can be highly complex to express, and those tasks are often

highly dynamic in nature. Reinforcement learning (RL) is a promising ap-

proach to learning how to perform such tasks. RL enables the agent to learn

desired behaviours through experience and interaction with the task [39]. In

RL, the agent takes actions at specific time-steps, which are often determined

by the task itself. In continuous control and robotics tasks, these time-steps are

typically equally spaced in real-time, i.e. every ∆t second. However, current

state-of-the-art RL methods ignore the physical time between these time-steps

and interpret them as discrete events. This can lead to varying learning per-

formances across different interaction frequencies [42]. A favourable RL agent

should consider the physical time and be able to perform robustly across dif-

ferent interaction time scales.

RL agents select actions from their policy based on the current state of

the environment, and these actions are applied at each time-step. When the

actions are primitive or low-level, the decision process occurs at every time-

step, which can provide a wide range of control behaviours. However, this

approach has certain drawbacks from the perspective of the learning agent. In

continuous control tasks, the effect of actions on the environment state takes

time to develop. This results in high sample complexity and challenging ex-
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ploration. For instance, a random uniform policy applied at high frequency

often only explores a limited area around the initial state. In particular, learn-

ing in goal-based tasks or settings with sparse rewards may drastically suffer

from ineffective exploration [1], [30], [47]. In terms of policy learning, it be-

comes increasingly challenging for an agent to determine the optimal action

as the time interval ∆t approaches zero in action-value-based methods. This

is because the advantage of each action becomes insignificant [4], [42]. More-

over, policy gradient methods are also ineffective in this scenario due to the

divergent variance of the policy gradient [30].

We argue that the decision frequency does not necessarily need to be fixed

to the interaction frequency. Typically, the decision frequency should be higher

when the system is hard to control, while it can be lower otherwise [15]. A

good example is the swing-up pendulum task. During the “swinging phase”,

the system is simple to control, and one can decide to swing left or right

with low frequency until the pendulum is upright. In the stabilization phase,

however, the system is unstable, and one needs to apply frequent small torques

in different directions to compensate for perturbations. In other words, one

can make the learning algorithm more efficient by allowing the agent to make

decisions less frequently when possible.

We suppose a continuous control task is represented as a base Markov De-

cision Process (MDP) with fixed time-steps of duration ∆t seconds. Our goal

is to enable our agent to adapt its decision frequency by forming extended

continuous courses of action that can last for multiple numbers of time-steps

in the base MDP. Our approach involves utilizing the options framework intro-

duced by Sutton et al. [41]. We represent the extended actions as options with

open-loop policies and termination conditions that are defined by a time-out

function. Specifically, the agent selects a trajectory of continuous actions as

well as the duration of executing this trajectory in continuous time. This ap-

proach transforms the base MDP to a new augmented MDP where time-steps

are not necessarily equally spaced in time. The action space of this MDP

would be the option policy and its duration in the base MDP.

The concept of explicitly choosing the duration of extended actions has
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been studied in a body of works for adapting the control frequency which are

known as action repetition RL (ARRL) methods [19], [24], [26], [36]. In ARRL

methods, the agent repeats an action for multiple time-steps. In contrast to

ARRL methods, where the agent chooses the number of repetitions from a

finite set of integers, we choose to sample the duration in seconds as a real

number. In this way, the choice of durations is not sensitive to the frequency of

interaction. There have been works to compensate for this limitation that scale

the maximum possible number of repetitions with frequency [30]. However,

the increased size of possible repetitions intensifies the problem’s difficulty in

both value-based and policy-gradient methods.

From the view of action abstraction, policies based on repeating an action

are limited in representational power and exploration, especially in continuous

control tasks where a smoothly changing control signal may be desirable. Our

method provides smooth courses of action as options. Options are introduced

in Hierarchical Reinforcement Learning (HRL), where the agent increases the

level of abstraction while maintaining flexibility in control [38]. Better ex-

ploration and achieving higher learning performance are shown when using

options both in discrete and continuous action spaces [3], [50]. However, the

need to learn each sub-policy brings the same issues as in classical RL when

the physical time between time-steps is ignored. To address this problem, we

set options to have open-loop policies that output primitive actions as a func-

tion of the physical time elapsed from the start of option execution. Instead

of discrete values, options in our method are chosen as continuous values that

parameterize the option policy.

1.1 Contributions

In this thesis, we propose the Continous-Time Continuous-Options (CTCO)

framework as a new approach to reinforcement learning for continuous control.

The contributions of this work can be summarized as follows:

• Our framework can be seen as a hybrid between full HRL and Action

Repetition RL. We develop a system that utilizes temporal abstraction

3



that selects options similar to HRL but from a continuous multidimen-

sional space Ω. We form the sub-policy associated with an option as

an open-loop controller parameterized with ω ∈ Ω. Normalized Radial-

basis functions are used to represent these sub-policies that change in

time, providing more expressive options than a constant action repeti-

tion.

• CTCO augments the space of option policies with continuous values

defining option durations. This duration determines the termination

condition of the selected option. In this way, our approach can adapt

its decision frequency regardless of the interaction frequency. Building

on the state-of-the-art classical RL method, soft-actor-critic(SAC) in-

troduced by Haarnoja et al. [14], we have implemented a SAC-based

algorithm where the actions are pairs of an option and its duration.

• We perform a series of experiments to show the robustness of our frame-

work to different interaction frequencies as well as the possible advan-

tages of open-loop options over repeated actions. We set the performance

measure as in continuous-time RL defined by Yildiz et al. [46] and com-

pare the performance of CTCO against one method from each of the

classical, hierarchical, and action repetition RL methods. Our exper-

iments are conducted in simulated classic RL benchmarks from Deep-

Mind Control Suite and on a 7-DoF real robotic manipulator consisting

of sparse and dense reward settings.

This thesis is structured as follows. In Chapter 2, we provide an intro-

duction to the concepts of robot learning, focusing on reinforcement learning

in the context of robotics and continuous control. We also discuss related

works in decision frequency adaptation. Chapter 3 presents the fundamental

concepts of reinforcement learning, which serve as the building blocks for our

proposed methods. In Chapter 4, we introduce our framework CTCO, includ-

ing its policy formulation and the actor-critic framework. Chapter 5 covers

the empirical analysis of our method. Finally, in Chapter 6, we summarize
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the work done, evaluation results, and discuss limitations and possible future

directions.
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Chapter 2

Background

This chapter presents a brief literature review of robot learning techniques,

with an emphasis on reinforcement learning. It commences by framing learn-

ing tasks as the acquisition of policies and skills, along with introducing various

policy structures. Subsequently, the method of reinforcement learning in the

context of robotics is discussed. Finally, state-of-the-art reinforcement learn-

ing approaches for addressing the challenge of adapting control frequency are

reviewed. Reinforcement learning, the technique employed in this thesis, is

given particular attention and elaborated on further in the technical back-

ground section.

2.1 Robot Learning

There is a vast range of potential applications for robots, such as in services,

homes, factories, healthcare and others. In each of these fields, there could be a

variety of utilizations of a robot in different environments requiring the robot

to make changes in the environment through observing states and applying

actions. These environments are typically unstructured and unpredictable,

where the robot may have to deal with unforeseen and new situations that

the robot’s designers do not expect. These challenges make hand design and

programming by humans tedious and mostly impossible. Therefore, a part of

the research in robotics has been trying to answer how a robotic agent can

learn to affect its environment to achieve some goal given the environmental

challenges. That research expands on methods in classical control, learning
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from human demonstrations, high-level planning and reinforcement learning

[16], [18].

2.2 Learning a Skill Policy

Performing a task means achieving some objective. A desired behaviour or skill

is what an agent follows to achieve the task objective. Therefore, learning to

do a task is learning such skills. In the context of learning a skill, a policy

is a set of rules or guidelines that determine how an agent should behave in

a given state to achieve the desired objective. Typically skills are formed as

stochastic policies where the policy maps state to action probabilities [18].

Two important components of policies are the action space, which defines the

set of actions that an agent can take in response to its environment, and the

policy structure, which determines how the agent chooses which action to take

in a given situation. In the following, we will explore different types of action

spaces, followed by various policy structures used in robot learning.

2.2.1 Action Spaces

In order to make changes in the environment, a robot needs to send control

signals to its actuators, such as the torque of an electric motor, pressure in

hydraulic actuators and force in cable-driven actuators. The action space

chosen for the policy is closely related to the control signal. Selecting the

actions as the same as the control signals can benefit robots with complex

models and dynamics. However, in most applications, an additional controller

exists between the policy and the actuator. Using an extra controller enables

designers to benefit from prior works in control for robotics, such as PID

controllers. Desired values to be controlled can be the actions of the policy;

for instance, the policy may choose the positions, velocities and accelerations

of robot arm joints or torque and forces of an electric motor as the input for

a controller. The policy may also determine other values associated with the

configurations of the controller, such as gains of a PID controller in the action

space. Another benefit of having an additional controller is that the policy
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may work at a lower frequency than the frequency of interaction with a robot

actuator. For example, a controller can work at 1KHz, but policy actions are

chosen at a much less rate [18].

2.2.2 Policy Structures

The choice of the policy structure directly influences the policy’s representa-

tional power in terms of how restricted it can be. Very general representations

can bring the finest level of control in a task and achieve optimal behaviour;

however, more limited representations may result in better data efficiency and

generalization [16], [18]. Therefore the choice of the policy structure is critical

as it determines the class of behaviour. The following proposes a range of

highly general to highly restricted policy structures.

Non-parametric Policies

Non-parametric policies are the most expressive representations. The size

of the policy can grow as needed by the complexity and data size in training.

We can mention Nearest-neighbor approaches, gaussian processes, Riemannian

motion policies and locally weighted regression methods in this area [2], [32].

In these methods achieving high-quality generalization typically needs a large

amount of data [18].

Generic Fixed-size Parametric Policies

Policies with these structures have a fixed-complexity parametric representa-

tion. The structure and representation power of the policy is assumed to be

more restricted than non-parametric policies. Look-up tables in discrete set-

tings and linear combinations of basis functions such as tile coding [39], the

Fourier basis [17], neural networks [21], decision tree classifiers, and support

vector machines in continuous settings are among examples of fixed-size para-

metric policies. In designing these kinds of policies, the choice of number and

definitions of the parameters matters, given that the representational power is

fixed. For instance, tabular representations can describe any discrete function

but cannot generalize to unseen states and actions; on the other hand, policies
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consisting of linear combinations of basis functions can naturally generalize

to novel conditions both in discrete and continuous settings as a change in

one parameter may globally change the policy behaviour. It should be noted

that the success in generalization depends on the assumptions made about the

shape and smoothness of the policy.

Restricted Parametric Policies

As policy representation grows in complexity, issues such as overfitting, sam-

ple complexity, and generalization become more noticeable, particularly in

robotics tasks. Consequently, researchers have proposed policies with struc-

tures specifically customized for robotics to mitigate these challenges. Some

of the constrained approaches are outlined below:

Linear Quadratic Regulators: These methods try to find optimal tra-

jectories around a given or learned trajectory, assuming that the system’s dy-

namics are linear, the objective is quadratic in the state, and the state is fully

observable. Achieving the optimal behaviour is guaranteed when the linear-

quadratic conditions are met, and knowledge of dynamics and cost function

are fully known along with a known trajectory to stabilize around [51].

Dynamic Movement Primitives: DMPs allow for learning simple and

generalizable policies from a few demonstrations of skills. These policies can

also be improved by reinforcement learning [34]. Many robotic movements

are formed by a goal configuration and the shape of the movement. DMPs

benefit from this fact by deploying differential equations for converging to a

goal configuration in the movement while shaping the movement using non-

linear functions. A little data is needed for learning DMPs, and generalization

could be achieved in cases where the class of motions comprehensively describes

the desired skills. While policies learned in these methods are deterministic,

there are other approaches, such as probabilistic variants of DMP frameworks

called ProMPs which can generate distributions of trajectories [29] as well as

Gaussian Mixture Regressions [9] which models the likelihood of states over

time and can produce multimodal distributions over trajectories describing

different behaviours with some variance.
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Goal-based Policies

The most limited types of policy structures are those that are goal-based,

where the policy parameters are primarily used to achieve a specific goal con-

figuration. As a result, the strategies produced by these policies are usually

fixed, such as navigating to a specific goal point [37]. In some cases, only

a small number of parameters may be adjusted, such as in the case of PID

controllers or motion planning.

2.3 Reinforcement Learning in the Context of

Robotics

In reinforcement learning (RL), robots ( agents ) can autonomously learn skills

through trial-and-error interactions with an environment. Each interaction is

typically defined as observing the environment, taking action, and getting

scalar feedback called reward over time-steps determined by the task. Rein-

forcement learning aims to learn a policy that maximizes the sum of rewards

over time. A wide variety of problems in robotics can be framed in this scheme.

Also, RL can be used to learn the parameters of any given policy representa-

tion as long as a reward function is present to promote the desired behaviour.

Researchers have used RL to train robots to perform tasks such as grasping

objects, flying helicopters, and walking on two or four legs [16], [18].

There are several different methods in RL that can be broadly grouped

into the categories of model-free or model-based and value-based or policy-

search methods. In the following, each category is introduced with examples

of applications in robotics.

Model-based Methods

In these methods, transition models are learned from data which are often

hard to learn and inaccurate. Researchers have used approximated transition

models to aid exploration and policy search and improve data efficiency [11],

[12], [20]. These methods are advantageous when learning a model of transi-

tion is more straightforward than learning the optimal policy. Also, if there
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are non-stationarities or changes in the task, the learned model can be trans-

ferred for learning a new policy without needing additional data acquisition.

Moreover, especially in robotics, having a transition model can help sampling

data where it is hard or impossible due to practical issues such as putting the

robot in a particular state and sampling different actions. On the other hand,

as mentioned earlier, learning accurate transition models is complicated, and

the inaccuracy in models can inject bias in learning the policy.

Model-free Methods

In these methods, policies are learned directly via interactions without ac-

cess to a transition model. Model-free methods are favourable in tasks with

complex dynamics where learning a transition model is more challenging than

learning a policy. However, model-free methods may need much more data

than model-based methods; also, if there are changes in the task, additional

data collecting is needed for learning a new policy. According to Lillicrap et

al. [22], these techniques have been employed to control a robotic arm to reach

a target. Similarly, Mnih et al. have implemented these methods for playing

Atari games. In addition, real-world applications of robotic manipulation and

locomotion have also been explored by Levine et al. [21], Mahmood et al. [23],

and Bloesch et al. [5].

Value-based Methods

A part of RL methods tries to learn the value of states or state-action pairs to

select actions with the highest value given a state. Low variance properties,

sample efficiency and guaranteed convergence to optimal policies in discrete

settings make value-based methods favourable. These methods may not be

suitable for robotics tasks when there is noise, state features are poor, the

state space is high-dimensional, and the action space is continuous. Mnih et

al. [27] and Zhang et al. [49] are among the works that use Deep-Q networks

as value-based methods in robotics.
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Policy Search Methods

In contrast to value-based methods, policy search methods directly parame-

terize the policy and search for parameters. These methods are a good match

for robotic tasks as they can handle continuous action spaces and scale well

with high dimensional states. Policy search methods are either actor-only or

actor-critic. Actor-only methods tend to directly optimize the policy without

learning any value function. Most of these methods that estimate the gradient

of the policy are based on the REINFORCE algorithm [45]. These methods

often suffer from high variance in gradient estimations. On the other hand,

actor-critic methods learn both parameterized policy as the actor, and value

function as the critic that can have shared parameters [14], [20], [25], [35],

[40]. These methods have the advantage of both value-based methods and

policy search methods. Because of using a bootstrapped approximation of

value-function, the variance in gradient estimations is decreased, and sample

efficiency is achieved. These advantages make them state-of-the-art methods

in reinforcement learning and robotics and the larger area of deep RL [13],

[33].

2.4 RelatedWorks in Decision Frequency Adap-

tation

2.4.1 Action Repetition

Static Action Repetition

In both real-life and simulated environments, the concept of repeating actions

is a common occurrence used by agents to control their behaviour during

task execution. Traditional methods typically employ a fixed action repetition

scheme, where the agent repeats the same action for a specified number of time

steps. For example, Braylan et al. [7] studied the effect of different frame skip

values on performance in Atari games and found that some games exhibited

significantly better performance with higher frame skip values.

In their paper, Metelli et al. [24] proposed a new hyper-parameter for
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improving performance in reinforcement learning called “action persistence.”

This parameter is represented by a fixed value, k, which specifies how many

times an action should be repeated before it is changed to modify the control

frequency. The authors developed a new k-persistent policy based on a clas-

sical Markovian stationary policy. They also introduced a Persistent Bellman

operator derived from the original Bellman operator. They implemented the

Persistent Fitted Q-Iteration algorithm, which can estimate the value func-

tion at a given persistence. The experimental results presented in the paper

demonstrated that introducing persistence can improve sample efficiency, as

reducing the control frequency can lead to better performance.

The paper by Dabney et al. [10] introduced “temporally-extended ϵz-greedy

exploration”. This method involves selecting an exploration probability ϵ, a

set of options Ω, and a sampling distribution p that has support on Ω. At each

step, the agent either follows the current policy π for one step with probability

1 − ϵ, or with probability ϵ, it samples a new option and executes it until it

reaches a termination condition. The authors demonstrated the effectiveness

of this method in both tabular and deep reinforcement learning, particularly

in environments with sparse rewards, where it can lead to significant improve-

ments in exploration and performance.

Dynamic Action Repetition

This part explores various approaches for achieving dynamic action repetition,

which refers to an agent’s ability to select different repetition rates.

Lakshminarayanan et al. [19] proposed enlarging the action space by pair-

ing actions with a specific repetition value. The authors employed this frame-

work with two popular Deep RL algorithms, DQN and A3C, and applied them

mainly to Atari games. The Augmented DQN was implemented by duplicating

the network’s last layer and outputting the Q-values for actions at two differ-

ent repetition rates. However, a drawback of this approach is that repetition

rates are hyperparameters, and there is no automatic adaptation of frequency.

Another approach, proposed by Sharma et al. [36], introduces the concept

of a skip network that is used jointly with the original network to select the
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action repetition, deploying policy gradient methods. However, a drawback

of this implementation is that the second network is not action-dependent,

meaning that the action repetition chosen in a specific state is an average of

all actions. This can lead to sub-optimal performance in states where one

action is impulsive, and the other has a high action repetition value.

Another approach to achieving dynamic action repetition is presented by

Yu et al. [47]. The authors propose a secondary binary policy to decide whether

to repeat the previous action or select a new one. This method, called Tempo-

rally Abstract Actor-Critic (TAAC), extends a policy gradient method where

the primary network selects a new action at each state. However, the action

is only chosen once a second network decides whether it is more advantageous

to repeat the previous action or choose a new one.

In previous related work of Ni and Jang [28], the task is framed in continuous-

time MDP where the agent selects a primitive action and the continuous time

to apply it on the environment. In their approach, the time scale is chosen

from a predetermined interval between δmin and δmax. The reward function

is approximated to be constant during the action execution. Additionally, a

penalty is used for choosing small time-scales by constraining the average time

scale. The policy is optimized using soft-actor-critic. The authors have only

tested their approach on simulated tasks without real-world experiments.
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Chapter 3

Technical Background

This chapter provides technical background for the proposed reinforcement

learning method by introducing the key concepts and components that serve

as the building blocks. These include the basic definitions in RL, function

approximation in RL, actor-critic policy gradient methods, maximum entropy

RL, and temporal abstraction and its relation to continuous-time RL. Under-

standing these building blocks is crucial to grasp the proposed method and its

underlying principles fully.

3.1 Reinforcement Learning Framework

3.1.1 Definitions

In reinforcement learning, the goal is to learn an optimal behaviour to maxi-

mize a scalar accumulative return through trial and error [39]. RL frameworks

have two components called agent and environment that interact with each

other. The agent and environment interaction is often supposed to happen in

a Markov Decision Process (MDP) framework. An MDP is defined as a tuple

M := (S,A,R, p, γ, µ0), where S is the state space, A is the action space,

R : S × A → R defines the reward function, p : S × A × S → R+ is the

transition probability distribution, γ ∈ [0, 1) is the discounting factor, and µ0

is the initial state distribution [39].

In the above discrete MDP formulation, an agent interacts with the envi-

ronment in time-steps. At each time-step t ∈ Z, the agent receives the current

environment state st and, using a policy π, takes action at. In the next time-
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step, a reward rt+1 = r(st, at) and state st+1 ∼ p(· | st, at) will be observed by

the agent. In this way, for each initial state s0 ∼ µ0, an interaction trajectory

of s0, a0, r1, s1, a1, r2, . . . is produced.

Generally, in an MDP setting, a stochastic policy π can be defined as

a mapping from the trajectory of interactions past each time-step t, Ht =

(s0, a0, r0, · · · , st) to probabilities over the action-space as π : H×A → R+. A

Markovian assumption for the policy results in reducing the past trajectory to

the current state of the agent and leads to the policy definition as π : S×A →

R+. Thus, an agent takes actions by sampling at ∼ π(· | st). A policy can also

be deterministic when it maps a state to a particular action.

Tasks in RL are defined either as episodic or continuing. An episodic task

has a termination state sT . When the agent arrives at it, the interaction

trajectory is ended, and the environment state will be reset with respect to

the initial state distribution µ0. On the other hand, in continuing tasks, the

agent will continue to interact with the environment for an infinite number of

time-steps. In this thesis, all the tasks are considered episodic.

The performance of an RL agent is measured based on the discounted

accumulated rewards, known as return when following its policy π as

Jπ := E
µπ

[ ∞∑
t=0

γtr(st, at)

]
.

Here, µπ shows the distribution of interaction trajectories associated with pol-

icy π.

A value function vπ(s) is denoted as the expected return when the agent

follows π form state s as

vπ(s) := E
µπ

[ ∞∑
t=0

γtr(st, at)

]
s0 = s ∀s ∈ S.

An action-value function, or q-function, qπ(s, a) is defined similarly as the

expected return following policy π if taking action a at state s

qπ(s, a) := E
µπ

[ ∞∑
t=0

γtr(st, at)

]
s0 = s, a0 = a ∀s ∈ S, a ∈ A.
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vπ and qπ can also be defined recursively in the form of Bellman equations

vπ(s) =
∑
a∈A

π(a | s)(r(s, a) + γ
∑
s′∈S

p(s′ | s, a)vπ(s′)),

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ | s, a)(
∑
a′∈A

π(a′ | s′)qπ(s′, a′)).

In the case of continuous action or state space, the summation becomes inte-

gral.

By definition, an optimal policy π∗ ∈ Π, where Π is a set of all possible

policies, has optimal value function v∗ as

v∗(s) = max
π∈Π

vπ(s) ∀s ∈ S,

and optimal q-function as

q∗(s, a) = max
π∈Π

qπ(s, a) ∀s ∈ S, a ∈ A.

When the state and action spaces are tabular, and the true dynamics of

the environment are known, we can compute the optimal value function v∗ and

optimal action-value function q∗ using Dynamic Programming (DP) methods.

DP methods involve applying the Bellman optimal operator iteratively, start-

ing from an arbitrary initial value function until convergence. Additionally,

DP methods can be used to find both the optimal value functions and optimal

policy by applying the policy evaluation and policy improvement processes

iteratively. However, if the transition model is unknown, we can relax this as-

sumption using model-free Temporal Difference (TD) methods to approximate

the value functions for a specific policy π.

3.1.2 Function Approximation

In the case of large or continuous state and action spaces, tabular TD methods

become impractical for finding true value functions for a specific policy π.

Instead, we can use function approximation techniques to approximate vπ

and qπ as v̂θ and q̂θ, respectively, where θ is a vector parameter. The same

TD errors in tabular methods can be used as regression errors to learn the

parameters θ by minimizing an MSE objective function
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Algorithm 1 A Generic Actor Critic Algorithm

Initialize θ,ϕ
for each time-step t do

at ∼ πϕ(. | st)
θ ← θ + αθ∇J(θ)
ϕ← ϕ+ αϕ∇Jπ(ϕ)

end for

JQ(θ) = E
µπ

[(
r(s, a) + γq̂θ(s

′, a′)− q̂θ(s, a)
)2
]
,

where µπ denotes the stationary distribution under policy π. Stochastic Gra-

dient Descent (SGD) can be used to optimize θ iteratively to minimize JQ(θ)

as

θ ← θ + αθ

(
q̃(s, a)− q̂θ (s, a)

)
∇q̂θ (s, a) ,

where αθ is the step size, and q̃(s, a) is the target value.

In action-value methods, a policy is implicitly formed by finding the action

with the maximum value in a state. Instead, policy gradient methods param-

eterize the policy as πϕ(. | s) and explicitly define the distribution of actions

given a state, which is parameterized by some vector parameter ϕ. The per-

formance measure will also be a function of this parameter, defined as Jπ(ϕ).

Therefore, the policy improvement process can be constructed as updating ϕ

due to the gradient of performance with respect to the parameter:

ϕ← ϕ+ αϕ∇Jπ(ϕ).

Parameterizing both the value functions and the policy results in actor-

critic methods. These methods try to estimate a value function based on the

data collected from agent experience and update the policy by estimating the

gradient of the performance w.r.t policy parameter. A general scheme of an

actor-critic method is shown in algorithm 1. All the methods implemented in

this thesis categorize as actor-critic methods where neural networks with some

learnable weights are used as function approximators.
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3.1.3 Maximum Entropy Reinforcement Learning

In maximum entropy reinforcement learning, the agent’s objective function

considers not only the rewards obtained but also the stochasticity of the policy.

To measure this stochasticity, the entropy of the policy in visited states is

augmented to the performance measure as follows:

Jπ := E
µπ

[ ∞∑
t=0

γt
(
r(st, at) + αH(π(. | st))

)]
, (3.1)

where α is a temperature parameter that controls the trade-off between the

policy’s stochasticity and the rewards obtained [52].

Soft Actor-Critic

Soft Actor-Critic(SAC) is a policy gradient actor-critic method introduced by

Haarnoja et al. [14] that optimizes the maximum entropy objective in (3.1).

A data buffer D is used to store transition information. In this algorithm, a

soft-value and soft-q function are defined as

v(s) := E
a∼π(.|s)

[
q(s, a)− α log π(a | s)

]
,

q(s, a) := E
s′∼p(.|s,a)

[
r(s, a) + γv(s′)

]
.

The value functions and the policy are parameterized with θ and ϕ, respec-

tively, and modelled by neural networks. A target network parameterized with

θ̃, with the same model as θ, is used to stabilize the training [27]. Parameter

θ is optimized due to the following objective

JQ(θ) = E
s,a,s′∼D

[(
qθ(s, a)− (r(s, a) + γvθ̃(s

′))
)2
]
,

with vθ̃(s) = E
a∼π(.|s)

[
qθ̃(s, a)− α log πϕ(a | s)

]
.

Policy parameters, ϕ, are optimized due to an alternative objective:

Jπ(ϕ) = E
s∼D,a∼πϕ(.|s)

[
qθ(s, a)− α log πϕ(a | s)

]
.
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Algorithm 2 Soft Actor Critic Algorithm

Initialize: θ,ϕ, α
for each time-step t do

at ∼ πϕ(. | st)
observe st+1, rt+1

D ← D ∪ {st, at, st+1, rt+1}
θ ← θ + λθ∇J(θ)
ϕ← ϕ+ λϕ∇Jπ(ϕ)
α← α + λα∇J(α)
θ̃ ← τθ + (1− τ)θ̃

end for

In practice, a multidimensional Gaussian distribution is often used to model

the policy. Neural networks parameterized with ϕ implement the mean and

variance of such distributions. When computing the gradients of the policy

objective with respect to the parameters, the gradients need to flow through

the sampling operation of the policy distribution. However, the sampling

operation is not differentiable, making it challenging to compute gradients

with respect to the mean and standard deviation. Reparameterizing actions

as

at = fϕ(st, ϵt) with ϵt ∼ N (0, I)

enables SAC to efficiently compute gradients for updating the policy network.

The temperature parameter α can also be learned due to

J(α) = E
s∼D,a∼πϕ(.|s)

[
α(− log πϕ(a | s)−H)

]
,

where H is an adjustable target entropy. A generic pseudo code of SAC is

shown in 2.

3.2 Continuous Time RL

In Reinforcement Learning, the dynamics of the environment are assumed to

follow an MDP framework, while in classical control, the state dynamics are

defined by differential equations in the continuous-time domain. If we denote

the continuous-time state by s(t), then the change in the state can be expressed
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as follows:

ds(t) = f(s(t),a(t)) dt+ σ(s(t),a(t))dW (t), t > 0,

where a(t) = µ(s(t)) is the system input or action, f defines the dynamics in

form of differential equations, and W and σ account for the stochasticity in

the system [44]. By defining a reward function r(s(t),a(t)), the goal of control

would be maximizing a discounted integral of rewards over time

Jµ = E
[ ∫ ∞

0

e−ρtr(s(t), a(t))dt

]
, (3.2)

where ρ is a time-constant. Similar to classical RL , value function of state s

is defined as

vµ(s) = E
[ ∫ ∞

0

e−ρtr(s(t), a(t))dt | s(0) = s

]
. (3.3)

The system can evolve in continuous time but control decisions are made

discretely, meaning that an action a(t) defined in continuous time with dura-

tion d is chosen and applied at state s(t) and after execution the system is at

some state s′ [6], [31]. In this transition a reward can be defined as:

R(s, a, d) =

∫ t+d

t

e−ρ(κ−t)r(s(κ), a(κ))dκ.

Thus if a policy π is choosing the action (and it’s duration ) then the

corresponding value function in (3.3) can be redefined recursively as:

vπ(s) = E
a,d∼π(.|s)

[
R(s, a, d) + e−ρdvπ(s

′)

]
,

and similarly the action-value function in continuous time is defined as

qπ(s, a, d) = E
a′,d′∼π(.|s′)

[
R(s, a, d) + e−ρdqπ(s

′, a′, d′)

]
.

3.3 Temporal Abstraction in RL

Semi-Markov Decision Processes

Semi-Markov Decision Processes(SMDPs) are a special kind of MDP appro-

priate for modeling continuous-time discrete-event systems. In SMDPs the
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actions take variable amounts of time and the goal is to model transitions

given temporally-extended courses of action [41]. This model is closely related

to the system described in 3.2.

Suppose the underlying base system is an MDP, with regular, single-step

transitions, then we can have the concept of an extended action, as the same

as in SMDPs, when the course of action is several discrete time-steps. We

denote the term option for these courses of actions. The relation between the

MDP, SMDP and options over the MDP are shown in figure 3.1.

Options

Options are known as sequences of simple actions that allow an agent to per-

form extended actions over time. An option consists of three parts: a pol-

icy, a termination function, and an initiation set. An option, represented as

o : {Io, βo, πo}, can only be chosen if the current state s is within the initiation

set Io; In this thesis we assume initiation set is equal to the statespace. When

the option o is being executed, the agent will follow its policy πo and continue

doing so until the termination condition is met, at which point a new option

will be selected [41].

Figure 3.1: Illustration of a base system that is an MDP, with regular, single-
step transitions, while the options define potentially larger transitions, like
those of an SMDP, that may last for a number of discrete steps [41].

The reward associated with choosing an option o in state s is defined as:

r(s, o) = E
[
rt + γrt+1 + ...+ γk−1rt+k−1

]
. (3.4)
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The value function for a state in an SMDP with options can also be defined

similarly as in MDPs, as the expected sum of discounted rewards and the value

of the next state as:

v(s) = E
[
rt + γrt+1 + ...+ γk−1rt+k−1 + γkv(st+k)

]
.

Similarly, the Q-value for an option o in state s, can be defined as:

q(s, o) = E
[
rt + γrt+1 + ...+ γk−1rt+k−1 + γkq(st+k, o

′)

]
.

In these equations, rt is the reward at time step t, γ is the discount factor,

st+k is the state after k steps, and o′ is the next option to be selected after k

steps; It is important to note that the value of k is not fixed and is a random

variable. This thesis focuses on scenarios where k is established as a timeout

before option execution. To address this, options are considered semi-Markov

options, enabling policies and termination conditions to rely on all preceding

events since the option was initiated, according to Sutton et al. [41].

3.3.1 Semi-Markov Options

Building on the concepts introduced in 3.2 and 3.3, we now consider semi-

Markov options with termination conditions as a time-out function. In this

case, we can see the transitions from one option to the other as one time-step

of an MDPM′ := (S ′ = S,A′, p′,R′, γ′, µ′
0 = µ0), that is an augmentation of

a simple base MDP M = (S,A, p,R, γ, µ0). The action space of M′ would

be the space of possible option policies, Ω, paired with natural numbers N

as the length of execution, A′ = Ω × N. M′ will have the transition model

p′(s′ | s, πo, k) for πo ∈ Ω, k ∈ N and a reward model similar to 3.4 but with

deterministic length of execution defined as r′(s, o, k) = E
πo

[
rt + γrt+1 + ... +

γk−1rt+k−1

]
. It should be noted that the discounting factor for M′ is not

constant and varies with option length k as γ′ = γk.

If a policy π is choosing options and execution lengths, then the perfor-
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mance of such policy inM′ would be defined as

Jπ = E
[ ∞∑

i=0

γ
∑j=i−1

j=0 kjr′(si, oi, ki)

]
. (3.5)
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Chapter 4

Continuous-Time Continuous
Option Actor Critic

This chapter outlines the proposed approach and techniques used in this study

to achieve the research objectives. We propose a framework in which an RL

agent optimizes its behaviour while adapting its decision frequency. Our frame-

work, Continuous-Time Continuous-Options (CTCO), includes a policy that

chooses extended continuous actions with varying lengths. The policy only

decides on the next course of action once the current one is finished, allowing

the system to adapt its decision-making frequency.

We suppose a continuous control task is given as a base MDPM(S,A,R, p, µ0, γ)

with some constant time-interval ∆t seconds between time-steps. CTCO in-

teracts with MDP M through applying the extended actions. CTCO forms

a policy π which samples extended actions at:t+⌈ d
∆t

⌉ and continuous durations

d ∈ R+, with ai ∈ A for i = t · · · t+⌈ d
∆t
⌉−1. Durations are continuous values;

therefore, CTCO can adapt its decision frequency regardless of the interaction

frequency 1
∆t
. Meanwhile, by optimizing its policy, our framework can produce

desired courses of action in the base MDP. We choose to optimize the policy in

an actor-critic framework based on the soft-actor-critic(SAC) algorithm [13].

Our choice is based on two main advantages of SAC over other actor-critic al-

gorithms. Firstly, using an entropy regularization term promotes exploration

and helps maintain diversity in the policy. Additionally, SAC’s use of a replay

buffer can make it more sample efficient than other algorithms.

The following describes how CTCO uses temporal abstraction and formu-
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lates its policy to choose extended actions. Then, we show how our framework

optimizes its policy in a policy gradient actor-critic framework.

4.1 The Policy Formulation

In this section, we describe the formulation of the policy of our framework and

how it interacts with a continuous control task MDP.

4.1.1 Options and Durations as High-level Actions

Based on concepts in section 3.3, we denote an extended action at:t+k as a

sequence of primitive actions executed by a semi-Markov option o ∈ O with

some intra-option policy πo ∈ Ω and termination βo as a time-out of k time-

steps in the base MDPM(S,A,R, p, µ0, γ). In this setting, O is the space of

options and Ω is the space of intra-option policies. The interaction of CTCO

with MDP M is equivalent to the interaction of CTCO with a high-level

MDP MH(SH ,AH ,RH , pH , µH
0 , γ

H) with state-space SH := S, action-space

AH := Ω×N, reward function RH := S ×Ω×N→ R, transition distribution

pH := S×Ω×N×S → R, initial state distribution µH
0 := µ0, and discounting

γH := γ. One interaction in the ith time-step of MH consists of observing

the state si = st and sampling an intra-option policy πoi and its duration di

from a policy π(., .|si) then applying the intra-option policy πoi in the base

MDP for k = ⌈ d
∆t
⌉ time-steps and finally observing the si+1 = st+k and reward

ri = rt + γrt+1 + ...+ γk−1rt+k−1.

Now we need our RL agent to be able to choose an option o and, accord-

ingly, πo to generate a continuous course of action in one decision. However,

the space of all possible intra-option policies, Ω, is infinitely large without any

structure that would make sampling πo intractable. To overcome this limita-

tion, we associate an intra-option policy πo with a vector parameter ω ∈ Ω,

where we have reduced Ω to a multidimensional space with real values. There-

fore we formally define the stochastic policy as π : S×Ω×R→ R+. We denote

ω a continuous option that parameterizes a deterministic intra-option policy
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πω to generate actions according to the following

ω, d ∼ π(., . | s = st) (4.1)

at+k = πω(st+k, k∆t, d) For k = 0, · · · , ⌈ d
∆t
⌉ − 1, (4.2)

where policy πω can be any function, neural network, or program that generally

can depend on a set of parameters ω, and the state st+k, elapsed time from

the start of option execution k∆t, and option duration d.

According to the definition of MH , (ω, d) corresponds to an option and

is considered the high-level action in this MDP. Considering this, the reward

definition in section 3.3.1 and the intra-option policy definition in (4.2), we

obtain the high-level reward associated with an option (ω, d) inMH as:

r(s = st,ω, d) =

⌈ d
∆t

⌉∑
k=0

γkr(st+k, πω(st+k, k∆t, d)). (4.3)

If a policy π is choosing ω, d then according to (3.5) the performance

measure of π in high-level MDPMH becomes

Jπ = E
µπ

[ ∞∑
i=0

γ
∑j=i−1

j=0 ⌈
dj
∆t

⌉r(si,ωi, di)

]
. (4.4)

Figure 4.1 illustrates the interaction between the CTCO agent and the envi-

ronment. More visualizations of how CTCO works can be found in supplementary videos.

4.1.2 Open-loop Intra-option Policies

Until now, we have shown how our method can vary the decision frequency by

choosing an intra-option policy πω and its duration d to generate an extended

action. In this section, we demonstrate the structure of such intra-option

policies.

We encode deterministic option policies using a linear parametric model

without state dependency to achieve a simple model with a few parameters.

Option policies without state dependency result in open-loop controllers that

are undesirable, particularly in the presence of stochasticity. However, the pol-

icy over options can compensate for the lack of feedback by selecting suitable
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Figure 4.1: Diagram of a CTCO agent interacting with a task environment.
At each decision point t in the based MDP, this agent observes a state si = st
and chooses option parameter ωi and duration di. Then executes intra-option
policy πωi

due to (4.2) for duration di while integrating rewards according to
(4.3).

options as frequently as needed for the cost of increased decision frequency.

Equation (4.5), describes a deterministic open-loop intra-option policy that

outputs actions a ∈ A as a linear combination of some time-dependent fea-

tures ϕ(t) : R→ R|A|×|Ω| with coefficients ω ∈ Ω.

at+k = πω(k∆t, d) = ϕ(k∆t/d)× ω For k = 0, · · · , ⌈ d
∆t
⌉ − 1 (4.5)

We take inspiration from movement primitives and use normalized radial

basis functions (RBFs) to encode the features ϕ, resulting in smooth and low-

jerk action trajectories that are suitable for robotic applications. The number

of RBFs, NRBF , determines the complexity of the action trajectory. With one

RBF, we obtain an option policy with constant action, while with more RBFs,

we obtain a more complex intra-option policy. Moreover, the dimensionality

of option parameters ω will be set as |Ω| = NRBF |A|, meaning that every

NRBF elements of ω are used to generate one element of the low-level action

vector. The general form of ϕ with NRBF features is shown in (4.6).

ϕ(t) =

[
e

−(t−cj)
2

2hj∑NRBF

k=1 e
−(t−ck)2

2hk

]
i,j

For i ∈ {1, · · · , |A|}, j ∈ {1, · · · , NRBF}, (4.6)

here cj and hj are centers and widths of RBFs respectively. Since we are using
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normalized RBFs, generated actions in (4.5), will have the same range of values

as of the corresponding elements in ω. Figure 4.2 shows normalized RBFs for

NRBF = 3 and 3 randomly sampled continuous options when |A| = 1.
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Figure 4.2: The left plot shows three equally spaced RBFs. The right plot
shows three sample options vs time, generated from RBFs in the left.

4.2 A Soft Actor-Critic Framework

Up to this point, we have presented a mathematical framework that outlines

how a policy π generates extended actions as options and interacts with an

MDP. In the following section, we discuss the implementation and optimiza-

tion of such a policy. Among many choices in policy gradient methods, we

implement our algorithm following the soft actor-critic (SAC) architecture

[14].

The policy π is responsible for selecting the parameters ω and the duration

d of the options. The stochastic policy takes the current state of the system s

as input and determines the probability density of the parameter vector and

the duration conditionally independent, as in

ω, d ∼ π(., .|s).

We model the probability density function of ω as a multidimensional Gaus-

sian distribution. However, the probability density function of d can only be

defined over positive values. To address this issue, we transform a Gaussian

distribution to a pdf defined over positive numbers by applying an invertible
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function that maps samples from the Gaussian distribution to positive values.

In our case, we choose the sigmoid function for this purpose. We use a neural

network with weights θ to implement the policy. The network outputs µω
θ (s),

σω
θ (s), µ

d
θ(s), σ

d
θ(s) as the mean and variance of the Gaussian distributions to

sample the continuous option ω and the duration d given an observation of

state s according to the following

ω ∼ N (µω
θ (s),σ

ω
θ (s)) (4.7)

d = dmaxSigm(d−) with d− ∼ N (µd
θ(s), σ

d
θ(s)). (4.8)

Here d is limited to continuous values in (0, dmax).

4.2.1 Policy Evaluation.

We include an entropic regularization term in the performance objective that

encourages the exploration of different option parameters ω and durations d

as discussed in 3.1.3. Furthermore, since high-frequency decision-making is

problematic for training performances, we include a new component called

high-frequency penalization to discourage the policy from choosing small du-

rations. The high-frequency penalization, βh, is a constant positive scalar

subtracted from the objective each time the policy makes a decision. This

modifies the objective definition in (4.4) to

Jπ(θ) = E
µπ

[ ∞∑
i=0

γ
∑j=i−1

j=0 ⌈
dj
∆t

⌉ (ri + βEH(πθ(·, · | si))− βh)

]
. (4.9)

where βE and βh are the entropic regularizer and the high-frequency penalty

term. To see how βh encourages for longer durations, we take out the term

associated with the high-frequency penalty in the overall objective in (4.9) as

E
µπ

[
−

∑∞
i=0 γ

∑j=i−1
j=0 ⌈

dj
∆t

⌉βh

]
. Since γ < 1, larger values of d will increase this

term.

Following the SAC framework and the fact that actions are pair of option

parameter and duration, (ω, d), we define the Q-function by the following
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Bellman equation:

Qπ(s,ω, d) := E
s′∼p(.|s,ω,d)
ω′,d′∼πθ(.,.|s′)

[
r(s,ω, d)−βh+γ⌈ d

∆t
⌉(Qπ(s′,ω′, d′)−βE log πθ(ω

′, d′|s′))
]
,

(4.10)

where ω′, d′ ∼ π(s′) are next option parameter and duration sampled in next

state s′. In practice, such an equation cannot be solved in closed form. Similar

to the implementation of SAC by Haarnoja et al. [13], we approximate the Q-

function and the target Q-function, as Q̂χ and Q̂χ′ , using neural networks

parameterized by χ and χ′. To learn these weights, we minimize the bellman

error in (4.11). We stochastically estimate the gradient of this objective as

∇̂JQ(χ) to update critic parameters χ and χ′ accordingly.

JQ(χ) = E
(s,ω,d,r,s′)∼D

[
1

2

(
r − βh + γ⌈ d

∆t
⌉(Q̂χ′(s′,ω′, d′)− βE log π(ω′, d′ | s′))

− Q̂χ(s,ω, d)
)2
]
. (4.11)

4.2.2 Policy Improvement.

To optimize the parameterized policy πθ, we need to compute the gradient of

the objective in (4.9) w.r.t to the policy parameters θ and update θ.

∇θJπ(θ) = ∇θE
µπ

[ ∞∑
i=0

γ
∑j=i−1

j=0 ⌈
dj
∆t

⌉ (ri + βEH(πθ(·, · | si))− βh)

]
. (4.12)

In the following we show that the policy gradient for continuous control

in an MDP with variable discounting will have the same form as for an MDP

with a constant discounting factor. Following the policy improvement in SAC,

we first reparameterize the policy as in (4.14) and (4.13). Then we obtain the

gradient of Q-function w.r.t policy paramter to derive the policy gradient.

ω = fω
θ (s; ϵ) := µω

θ (s) + ϵσω
θ (s) with ϵ ∼ N (0, I), (4.13)

d = fd
θ (s; ϵ) := dmaxSigm(µd

θ(s) + ϵσd
θ(s)) with ϵ ∼ N (0, 1). (4.14)
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According to the Bellman equation we have gradient of Q w.r.t to θ as:

∇θQ
π(s,ω, d)

= ∇θ E
s′∼p(.|s,ω,d)
ω′,d′∼π(.,.|s′)

[
r(s,ω, d)− βh + γ⌈ d

∆t
⌉(Qπ(s′,ω′, d′) + βEH(πθ(., .|s′)))

]

= ∇θ E
s′∼p(.|s,ω,d)
ω′,d′∼π(.,.|s′)

[
r(s,ω, d)− βh + γ⌈ d

∆t
⌉(Qπ(s′,ω′, d′)− βE log πθ(ω

′, d′|s′))
]

Using the reparameterized policy in (4.13) and (4.14) we get:

∇θQ
π(s,ω, d) = E

s′,ϵ′

[
γ⌈ d

∆t
⌉
(
∇ωQ

π(s′,ω′, d′)∇θf
ω
θ (s

′, ϵ′)+∇dQ
π(s′,ω′, d′)∇θf

d
θ (s

′, ϵ′)

+∇θQ
π(s′,ω′, d′)− βE∇θ log(πθ(ω

′, d′|s′))
)]

. (4.15)

Recursively replacing ∇θQ
π(s′,ω′, d′) results in:

∇θQ
π(s,ω, d) = E

µπ

[ ∞∑
i=0

γ
∑i

j=0⌈
dj
∆t

⌉
(
∇ωQ

π(si+1,ωi+1, di+1)∇θf
ω
θ (si+1, ϵi+1)

+∇dQ
π(si+1,ωi+1, di+1)∇θf

d
θ (si+1, ϵi+1)− βE∇θ log(πθ(ωi+1, di+1|si+1))

)
|ωi+1=fω

θ (si+1,ϵi+1),di+1=fd
θ (si+1,ϵi+1)

]
for s0 = s,ω0 = ω, d0 = d. (4.16)

Now we derive the policy gradient:

∇θJπ = ∇θE
µπ

[ ∞∑
i=0

γ
∑i−1

j=0⌈
dj
∆t

⌉(R(si,ωi, di)− βh + βEH(πθ(., .|si))
]

= ∇θ E
s0,ω0,d0

[
Qπ(s0,ω0, d0)− βE log πθ(ω0, d0|s0))

]
= E

s0,ϵ0,ϵ0

[
∇θQ

π(s0,ω0, d0) +∇ωQ
π(s0,ω0, d0)∇θf

ω
θ (s0, ϵ0) +∇dQ

π(s0,ω0, d0)

∇θf
d
θ (s0, ϵ0))− βE∇θ log(πθ(ω0, d0|s0))|ω0=fω

θ (s0,ϵ0),d0=fd
θ (s0,ϵ0)

]
(By reparameterizaiton trick)

= Eµπ

[ ∞∑
i=0

γ
∑i−1

j=0⌈
dj
∆t

⌉
(
∇ωQ

π(si,ωi, di)∇θf
ω
θ (si, ϵi) +∇dQ

π(si,ωi, di)

∇θf
d
θ (si, ϵi))− βE∇θ log(πθ(ωi, di|si))

)
|ωi=fω

θ (si,ϵi),di=fd
θ (si,ϵi)

]
.

(By replacing ∇θQ
π(s0,ω0, d0) using (4.16))
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Discounting can be dropped to stochastically sample states from the dis-

counted distribution dπ,γ. Therefore we have the policy gradient as:

∇θJπ = Edπ,γ

[
∇ωQ

π(s,ω, d)∇θf
ω
θ (s, ϵ) +∇dQ

π(s,ω, d)∇θf
d
θ (s, ϵ))

− βE∇θ log(πθ(ω, di|s))|ω=fω
θ (s,ϵ),d=fd

θ (s,ϵ)

]
. (4.17)

Finally we incorporate the approximated Q-function to estimate the policy

gradient as in (4.18).

∇̂θJπ(θ) = E
s∼D,ϵ,ϵ∼N (0,I)

[
∇ωQ

π
χ(s,ω, d)∇θf

ω
θ (s, ϵ) +∇dQ

π
χ(s,ω, d)∇θf

d
θ (s, ϵ)

− βE∇θ log πθ(ω, d|s)
∣∣∣
ω=fω

θ (s,ϵ),d=fd
θ (s,ϵ)

]
. (4.18)

The complete algorithm of CTCO is described in algorithm 3.

Algorithm 3 Continuous-Time Continuous-Option Actor-Critic

Input: A policy π with a set of parameters θ, Intra-option policy model
π(ω), critic parameters χ, χ′, learning-rates λq, λp, replay buffer D.
i = 0, observe s0
while True do

ωi, di ∼ πθ(., .|si) ▷ Sample option and duration
Execute πωi

(k∆t, di) For k = 0, · · · , ⌈ di
∆t
⌉ − 1

Observe si+1 and compute ri with (4.3)
Store si,ωi, di, ri, si+1 in D
χ← χ− λq∇̂χJQ(χ) ▷ Update critic

θ ← θ − λp∇̂θJπ(θ) ▷ Update actor
Perform soft-update of χ′.
i← i+ 1

end while
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Chapter 5

Empirical Evaluation

In this chapter, we present the experimental results of our work. We start

by describing the experimental setup, and then we focus on answering the

following questions:

1. Can our algorithm adapt its decision frequency independently from the

interaction frequency in continuous control tasks?

2. Does our algorithm benefit from having options with more complex be-

haviour than action repetition?

3. How does our algorithm perform on a real-robotic task with sparse re-

wards?

5.1 Experimental Setup.

This section describes the experimental setup used for our experiments, includ-

ing evaluation criteria, task specifications, and algorithms implementations in

simulation and real-world settings.

5.1.1 Evaluation Criteria

Continuous control tasks are defined in continuous time. However, they are

often modelled as discretized MDPs with some time-interval ∆t. When eval-

uating the performance of a reinforcement learning algorithm, we consider

the performance measure in continuous time as in (3.2), regardless of the dis-

cretization frequency. We assume that the frequency is high enough to neglect
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the effect of time resolution. To compute the performance measure Jπ in a

base MDPM(S,A,R, p, d0, γ) with time-interval ∆t, we set γ = e−ρ∆t due to

an approximation of the integral as summation when ∆t→ 0:

∞∑
0

γtr(st, at)∆t ≈
∫ ∞

0

e−ρtr(s(t), a(t))dt. (5.1)

In this thesis, we assume time-constant ρ = 0.4 for all tasks. For example, a

time-discretization of ∆t = 0.05 seconds would result in γ = 0.98.

5.1.2 Considerations in Algorithms Implementations

When learning simulated tasks, optimization happens synchronously while the

agent interacts with the task in the same process. Unlike discrete simulation

timesteps, the time of the real-world proceeds during the agent computations.

Therefore, we ensure the action inference time is less than the action cycle

time, and optimization steps are done asynchronously in a parallel process

[48]. Moreover, the number of updates an agent does in the real-world is lim-

ited by the computation resources and is independent of the time discretiza-

tion. Therefore, we modify learning algorithms to maintain a fixed number

of updates per time unit in both simulated and real-world experiments. The

implementations are publicly available 1.

5.1.3 Tasks

Here we present the details of the simulated and real-world continuous con-

trol environments used in this thesis. In all of the experiments, to ensure

that all reinforcement learning algorithms are optimizing and being evaluated

for the same objective, we modify the task rewards by multiplying them by

∆t. Furthermore, we change the maximum episode lengths according to the

interaction frequency to maintain the same episode length in task time.

1https://github.com/amir-karimi96/continuous-time-continuous-option-policy-gradient

35

https://github.com/amir-karimi96/continuous-time-continuous-option-policy-gradient


Simulated Tasks

Figure 5.1: Tasks of Point-Mass, Point-Mass-with-Obstacle, Cheetah, Ball-in-
cup

Figure 5.1 depicts images of simulated tasks used in this thesis. Three simu-

lated tasks of Point-Mass, Cheetah and Ball-in-Cup are taken from DeepMind

Control Suite [43].

The task of Point-Mass-with-Obstacle is a modification of Point-Mass,

where the action is the desired position of the object. A PID controller

internally controls the object’s position. Moreover, to make the task more

challenging, we discourage discontinuity in actions by not performing de-

sired positions further than 4cm from the object position and adding a neg-

ative reward of −0.2. The reset coordinates of object is randomly set with

xreset ∈ [−0.2,−0.15]cm and yreset ∈ [−0.05, 0.05]cm. The obstacle and goal

positions are constant.
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Real-world Task of Visual-Reacher

In this part we describe the real-world task of visual reacher. First the physical

setup is presented and then the task specifications are introduced.

In this task, the goal is to reach a static bean bag randomly placed on a

table using a robotic arm equipped with a camera on its wrist. The physical

setup of the task is shown in figure 5.2. The robot has the bean bag attached

to its wrist by a string, which allows it to randomly set the bean bag’s position

on the table. To ensure the safety of the robot and avoid hitting objects, the

position of the end-effector is bounded to a box with dimensions 30 × 50 ×

30 cm3.

We use a 7 DoF Franka-Emika Panda robotic arm. The actuation com-

mands and sensory data are communicated using ROS protocol. There are

three ROS nodes. The first node is the controller device that directly actuates

the robot. The second node is an interface between an agent and the robot.

This node needs to communicate with the controller device at a fixed rate of

1000 Hz. We have used a Jetson-Nano minicomputer with real-time OS for

this node. The third node is a workstation where policy inference and learning

happen. The task environment, which is defined in this node, sends actions

to and receives sensory data from the robot at an arbitrary rate through com-

municating with the interface node. All communications happen in a wired

network using ROS topics and messages. The camera sends images to the

workstation through USB.

We implement the task environment with the standard structure of RL

environments as in OpenAI Gym [8]. The agent controls the angular velocities

of 7 joints resulting in a seven-dimensional action-space. The action values are

limited to [-0.3,0.3]rad/s for each joint.

The observation consists of the most recent camera image and joint con-

figurations. The observation-space is a tuple of 80× 60× 3 RGB image, seven

joint positions and seven joint velocities.

37



Figure 5.2: Visual Reacher. Before each episode, the robot randomly sets
the position of the red bean bag on the table. The goal of the robot is to reach
the bean bag by using visual inputs.

The sparse reward R is computed as

R(s, a) =

{
1 if ρ(s) ≥ 0.0125

0 otherwise

with

ρ(s) =
1

w × h

∑
p∈red pixels

(0.5− |px|)(0.5− |py|)

where ρ(s) is a metric that shows how big and close to the center the bean bag

is in the image. w = 80, h = 60 are image dimensions and px, py ∈ [−0.5, 0.5]

are normalized coordinates of red pixels in the camera image.

Each episode takes 8s to complete, and the total number of time steps is

determined according to the interaction frequency. Before the start of each

episode, the target position of the bean bag is randomly sampled in an area of
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20 × 30 cm2. The robot places the bean bag in the target position using the

string. Then all the joints are reset to a particular position.

5.2 Robustness w.r.t to the Interaction Fre-

quency

In this part, we empirically analyze the learning performance of our method in

different environment interaction frequencies. We hypothesize CTCO performs

similarly across different interaction frequencies due to sampling the option du-

rations in continuous time, while RL frameworks which choose an action for

each task time-step have their learning performance influenced by the interac-

tion frequency. Particularly they are not robust to high-frequency interactions.

We first examine this robustness over different sets of NRBF ∈ {1, 2, 3} and

βh ∈ {0, 0.005, 0.01} hyperparameters. Then we compare the frequency sensi-

tivity of our method against classic RL by using soft actor-critic (SAC) [13],

ARRL by using fine-grained action repetition (FiGAR-SAC) [36], and HRL by

using double actor-critic (DAC-PPO) [50]. In this experiment, we use three

simulated benchmarking tasks of Point-Mass, Cheetah and Ball-in-Cup from

DeepMind Control Suite [43]. Details of these tasks are discussed in 5.1.3.

We test algorithms in three tasks for four different interaction frequencies of

F ∈ {50, 100, 250, 500Hz}. We evaluate the performance of each algorithm due

to (5.1) after learning for 400 minutes of task time and compute the average

performance over 30 runs with different random seeds.

5.2.1 Results

Tables 5.1, 5.2, and 5.3 show that the performance of CTCO in each task

is robust across different interaction frequencies for a given combination of

hyperparameters. The choice of βh hyperparameter is critical for the algo-

rithm’s performance. For instance, in the task of cheetah, when βh is 0.01,

the policy favours longer options and cannot react fast enough to find a good

policy. When βh is set to zero, the algorithm’s performance can be sensitive to

the interaction frequency, as the policy may converge to the shortest possible
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durations. The performance of the algorithm is not significantly affected by

the choice of NRBF hyperparameter. In some cases, higher values of NRBF

perform better, especially when βh is higher. This suggests that CTCO can

benefit from options when choosing longer durations.

Table 5.1: Final performance of different hyperparameter settings for each
interaction frequency in task of Point-Mass after 400 minutes of task time.

Hyperparameters Interaction Frequency (Hz)
βh NRBF F = 50 F = 100 F = 250 F = 500
0.0 1 1.08± 0.07 1.06± 0.07 1.06± 0.07 1.04± 0.08
0.0 2 1.04± 0.08 1.02± 0.07 1.00± 0.08 1.01± 0.08
0.0 3 1.01± 0.08 0.98± 0.08 0.95± 0.10 0.99± 0.09
0.005 1 1.12± 0.07 1.11± 0.07 1.11± 0.07 1.11± 0.07
0.005 2 1.08± 0.07 1.05± 0.08 1.06± 0.07 1.07± 0.07
0.005 3 1.04± 0.08 1.05± 0.08 1.02± 0.08 1.00± 0.10
0.01 1 1.13± 0.07 1.12± 0.07 1.12± 0.07 1.12± 0.07
0.01 2 1.11± 0.07 1.10± 0.07 1.08± 0.07 1.06± 0.08
0.01 3 1.09± 0.07 1.07± 0.07 1.06± 0.07 1.04± 0.08

Table 5.2: Final performance of different hyperparameter settings for each
interaction frequency in task of Cheetah after 400 minutes of task time.

Hyperparameters Interaction Frequency (Hz)
βh NRBF F = 50 F = 100 F = 250 F = 500
0.0 1 0.85± 0.03 0.86± 0.03 0.87± 0.02 0.86± 0.03
0.0 2 0.89± 0.03 0.88± 0.02 0.89± 0.02 0.88± 0.02
0.0 3 0.92± 0.02 0.92± 0.02 0.89± 0.02 0.86± 0.03
0.005 1 0.67± 0.03 0.64± 0.05 0.67± 0.04 0.65± 0.03
0.005 2 0.65± 0.04 0.68± 0.04 0.68± 0.06 0.64± 0.06
0.005 3 0.81± 0.03 0.80± 0.03 0.79± 0.02 0.74± 0.07
0.01 1 0.58± 0.02 0.58± 0.02 0.58± 0.02 0.58± 0.02
0.01 2 0.59± 0.04 0.61± 0.03 0.64± 0.03 0.57± 0.03
0.01 3 0.70± 0.04 0.70± 0.04 0.68± 0.06 0.68± 0.05
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Table 5.3: Final performance of different hyperparameter settings for each
interaction frequency in task of Ball-in-Cup after 400 minutes of task time.

Hyperparameters Interaction Frequency (Hz)
βh NRBF F = 50 F = 100 F = 250 F = 500
0.0 1 1.70± 0.12 1.75± 0.11 1.82± 0.09 1.76± 0.10
0.0 2 1.83± 0.08 1.85± 0.08 1.84± 0.08 1.86± 0.08
0.0 3 1.84± 0.08 1.85± 0.08 1.86± 0.08 1.83± 0.09
0.005 1 1.73± 0.11 1.67± 0.13 1.74± 0.09 1.75± 0.10
0.005 2 1.81± 0.08 1.82± 0.08 1.82± 0.08 1.82± 0.09
0.005 3 1.80± 0.08 1.85± 0.08 1.84± 0.07 1.79± 0.11
0.01 1 1.69± 0.12 1.66± 0.11 1.70± 0.10 1.68± 0.13
0.01 2 1.75± 0.09 1.80± 0.09 1.78± 0.08 1.74± 0.09
0.01 3 1.76± 0.10 1.77± 0.08 1.78± 0.10 1.78± 0.09

In the following, we show the importance of decision frequency adapta-

tion by comparing CTCO(βh = 0.05, NRBF = 3) against SAC, DAC-PPO

and FiGAR-SAC algorithms in different interaction frequencies. SAC and

DAC-PPO agents have a constant decision frequency equal to the interaction

frequency. FiGAR-SAC agent can alter its decision frequency by choosing the

number of action repetitions from 1 to 10.
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Figure 5.3: Performance Comparison of RL algorithms in three control tasks
with varying interaction frequencies. Results from CTCO(βh = 0.05, NRBF =
3), SAC, FiGAR-SAC, and DAC-PPO after 400 minutes of task time, averaged
over 30 runs with 95% confidence interval.

Figure 5.3 shows that our algorithm maintains almost constant perfor-

mance across different frequencies. While the performance of SAC, FiGAR-
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SAC and DAC-PPO is influenced by interaction frequency. Specifically, at

the highest interaction frequency, our method performs better than all other

algorithms in all tasks. In the task of Cheetah, CTCO has sub-optimal perfor-

mance, suggesting that with dense reward, simpler algorithms like SAC and

FiGAR-SAC that can have the highest representational power may achieve

higher performances.

5.3 Advantage of Continuous Options over Ac-

tion Repetition

In this section, we investigate if our method can benefit from having option

policies other than repeating actions for the cost of introducing a new hyper-

parameter NRBF and increased action-space dimensionality. Policies based on

action repetition have the most representational power when the repetition

duration is one time-step. However, in this case, the exploration will be very

limited, as shown in the previous section 5.2. On the other hand, CTCO

can generate extended actions that are more complex than just repeating an

action. We hypothesize that in cases where the exploration is crucial and, at

the same time, smoothly changing actions are desired our method can benefit

from parameterized options.

We aim to validate our hypothesis by creating a modified test case for the

Point-Mass task, which involves placing an obstacle between the object and the

goal position. We also change the action space to the desired position of the

object. Actions will be effective only when the position commands are within

a predefined distance from the object’s position. In this way, and given that

this environment has sparse rewards, learning a good policy requires effective

exploration while taking smoothly changing actions. To show the effectiveness

of parameterized options in our method over action repetition, we test CTCO

with hyperparameters βh ∈ {0, 0.005} and NRBF ∈ {1, 2, 3}, FiGAR-SAC and

SAC to learn the task of Point-Mass-with-Obstacle.
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5.3.1 Results

Figure 5.4 shows the learning performances of CTCO, SAC, and FiGAR-SAC

in the task of Point-Mass-with-Obstacle for 400 minutes of task time. It can

be seen that having more expressive options benefits exploration and learning

performance in the task of Point-Mass-with-Obstacle. This result shows that

action repetition policies, including CTCO with NRBF = 1, are not suitable

when the continuity in actions is desirable.
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Figure 5.4: Comparison of action repetition and continuous options in the
task of Point-Mass-with-Obstacle with ∆t = 0.02s. Average performance of
CTCO with different configurations, SAC and FiGAR-SAC over 30 runs with
95% confidence intervals are depicted.

Figure 5.5 depicts sample solutions of action repetition and CTCO agents

with different option complexity in the task of Point-Mass-with-Obstacle. Note

that in this task, primitive actions are desired 2D positions. It is evident

that reaching the goal state with action repetition needs many right deci-

sions. Whereas with more complex options, the continuously changing action

increases the chance of reaching the goal state with better exploration.
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Figure 5.5: Visualization of actions in task of Point-Mass-with-Obstacle. From
left to right, sample solutions of FiGAR-SAC, CTCO with NRBF = 2, and
CTCO with NRBF = 3 are shown.

5.4 Real-world Evaluation

To test the ability of CTCO to work in a real-world scenario, we designed a

sparse reward visual-reaching task using a robotic arm as described in 5.1.3.

Although target reaching can be efficiently solved by using classic robotic

techniques such as visual servoing, object detection, and planning, it is still

valuable to evaluate the effectiveness of RL algorithms in the presence of real-

world challenges in robot learning.

In this experiment, we assess the learning performance of CTCO with

βh = 0.02, NRBF = 2 for different interaction frequencies of 25, 50 and 100 Hz.

We also test the performance of SAC in these frequencies to emphasize the

importance of temporally extended actions in the exploration for real-world

goal-based tasks. For implementation details, refer to 5.1.
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5.4.1 Results
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Figure 5.6: Learning performance of CTCO(right) and SAC(left) in real-world
task of visual-reacher. Average of 5 runs with 95% confidence intervals for 100
minutes of task time.

Figure 5.6 shows that CTCO can robustly learn the challenging task of sparse

reward visual-reaching in a practical time regardless of the interaction fre-

quency. Although SAC performs better in the least interaction frequency,

this method cannot learn properly with small time-interval interactions. This

result justifies the possible benefits of infrequent decision-making in learning

real-world tasks in several points. First of all, the slow dynamics of the envi-

ronment makes exploration challenging with high-frequency decision-making.

In addition to the exploration issues, limited resources in real-world scenarios,

such as the memory for a data buffer with image data, are less of a problem

with fewer interaction samples in time.

Figure 5.7: Series of figures showing robot motion deploying CTCO agent.

Figure 5.7 shows the learned behaviuor of CTCO in task of visual-reacher

for one episode.
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Chapter 6

Conclusion

In this thesis, we addressed the problem of learning to adapt the decision fre-

quency in reinforcement learning for continuous control. Classic reinforcement

learning algorithms that are defined in discrete time decide which action to

apply at fixed time intervals. Choosing too short decision intervals causes

exploration issues, whereas the system can become uncontrollable with too

long decision intervals. As a new approach to adapting the decision frequency,

we proposed a reinforcement learning framework where the agent selects con-

tinuous extended actions with variable continuous durations. This approach

provides robustness with respect to the underlying interaction frequency and

promotes high-level, smooth exploration. We empirically showed this robust-

ness and the possible benefits of continuous options over simple action repeti-

tion in simulated and real-world robotic tasks.

6.1 Limitations and Future Work

While removing the decision frequency hyper-parameter, our algorithm suffers

from two drawbacks: it introduces two new hyper-parameters and has open-

loop option policies. The two new hyper-parameters define the number of

RBFs composing the option policies and the high-frequency penalization. The

agent’s performance can be sensitive to the choice of these hyperparameters

for different reward scales and task complexity levels. A future research di-

rection could address learning the high-frequency penalization automatically.

In our work, option policies are open-loop controllers. Therefore, they can-
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not respond to unexpected state changes in stochastic environments. For in-

stance, we qualitatively show in the supplementary videos that in the task

of visual reaching with a moving object, when running a policy pre-trained

with static objects, CTCO may fail in tracking the object if the object loca-

tion is changed too fast. Technically, the policy can counteract this deficit by

choosing low-duration options (thus increasing the frequency of the feedback

loop). However, lower-duration policies are undesirable since they complicate

learning. This limitation can be compensated using closed-loop sub-policies

or implementing termination policies [30].
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