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g Abstract_
In recent ye&rs,’much effort haS‘béen devoted to the design
and implementatioﬁ of high 1evelxmiﬁroprogramming languages.
One of ﬁhe goals.for such languages is to facilitate the
formal verification of microprograms.usipg Hcaré;s inductive
asgertion method. Essential.to the use of this method is an
_axiomatic definition of the microprogramming language.

In tﬁis thesis;_the axiomatization of the machine
dependenﬁ‘m;croprogramming language S*(QM-1) is described.
This language is:an instantiation of the machine independent
language schema. Sx for thé Nanodata QM-1 "nanolevel”
architecture. It &ill be showﬁ that, in spite éf the
ébmplexity of the QM-1, with its variety of side-effects and
special cbnditions, a pleasingly small and ﬁnifbrm set of

proof rules can be constructed.



- Acknowledgements

I wisﬁ to thank Dr. Subrata Dasgupta for his help and
enthusiasm throughout the course 'of this work. Our many
discussions, along with his suggestions and criticisms has
contributed greatly to this research.

I am also graﬁeful to Dr. John Tartar for his support
and help in the later stages of this work. .

Further thanks are due to the other members of ﬁy
examininé committee, Dr. Lee. White, Dr. D. Zissos, and Steve
Sutphen for their helpful suggestions and co%menﬁs. 1 would
also like to thank Darrell Makarenko and Ken Hruday for
their cbmments on an earlier draft of this thesis.

Finally, I am indebted to my wife Jane, without whose

love and support this would not have been possible.



Chapter : , Pdgg
1. Introduct;on ......................................... !
2. Review and Background .......ieetnneeeeeoooeneeennanss 7
3. An Overvié&oof S* and S*(QM-1) .....; ........ \.; ...... 15
4. A Synopsis of the QM-1 chhiteéture .....9.7......;..20
5. Axiomatization of S*(QM-1) ...t inrnnennn - 26
5.1 Data Declaration wuieeeeeeeeneenneneennnn. et 27
5.1.1 New Types ......... P e R IR 28

5.1.2 "Séruct" Declaration .....iieeeeesoseenennns 5

5.1.3 Pseudovariables ......... N e 33

5.2 The Axioms of ASSIgNMENT & vt evntonranesonnnanas 35
5.2.1 Simple Assignment Statement ........ ;..;...35

5.2.2 Expressions in Assignment Statements ...... 37

< 5.2.3 Multiple Assignment Statement ............. 41
5.3 Control Constructs ............................:,42
5.3.7 PAralleliSm «uueeeeenenneeeenneeseenneennens 42

5.3.2 Conditional Statements EERERRI e 45

5.3.3 Pfocedure Statements .....iciiieiiiieieanns 46
5;4 Proof Rules and Axioms for S*(QM-1) ........ e 49 .

6. Proof of S*(QM;1) MiCrOpPrOgrams ...veeeeeceerecensans 53
6.1 The MULT Instrucéion .......... ceean P 54

6.2 The CALL Instruction ..... e ieeaeeeaan ;........Sé

7. CONCLUSIONS &uenevennnnnnnneeennns e eessaean D 31

Table of Contentsi

7.1 Evaluation Of S* .. .iuieteeereeenonsscosoosesansesb?

7.2 Further Work ..... et eae e R 1

vii



N
NS N

..‘..........................................---.”,72

References
APPENAI Xt vttt et e e et e e, ..T8
‘ N :

v .
~l

J

<
[P
[y
[V



List of Figures

Figure ’ Page
1. QM-1 Nanblevel Architecture ,....;....t...;....' ....... 22
2. Control Function of Fail, Fair, and Faod and Nanoword

Format ..... et it e et e e e e e e, 24
OM-1 Priority Address_Mechanism ...................... 25
Correspondence of Union-with-Selector Type to QM-1
Multiplexor ..i ....... e et ee et e ‘..: ..... 32
ALU-SHIFTER Combination ....... et ettt 40
{P} Proc {Q}{p1:Q1} ...cviviiviin.nnn PP e 50
i-th Itqration of Repeat Loop ..i....- ...... ,---{ ....... 54
. QM—C.Register File ..... ,............4..; .............. 58
QM-C Stack Frame and Mask=word .....ceeeeeeeeennnnnans 59

ix



Chapter 1
Introduction
Micfoprogramming was introduced in 1951 by M.V. Wilkes as a

technique for implementing the~comtral unit of compute.
. pl S

systems. Since then, mostly due .to the technological

advances in

P2

hardware and innovations in computer

~——

archites#ire, microprogramming has become widely used as a

ective and systematic teqhnique'for control 'unit

implementation. Not only has the use of microprogrammming
increased but recent years have. seen a corresponding growth )
in the size and complexityoofAmicrocode [Pat77a].

" In response to thesé increases, along with a démand for
added reliability, much agtention has been devoted to the
devélopment of tools and techniqUes'for.the verificﬂ%ion'of
microcode [Dav80a,IEE81al]. Since firmware constit s one of
the lowest levels in the hierarchical,'multfﬁevel striicture
of comﬁuter systems, any errors.in microcodg cou ve
serious and costly repercussions on the reliability of all
higher software levels executed on the méchine. *

In a sense, microprogramming has ‘blurred the once c¢lear
distihct{on between hardware and software. This
correspondence Setween software and firmware has been
exploited. The evolution of tools ahd’techniqtes for the
production of microcode has paralleled similar developments
in software with the aépearance'qf micro;assemblers followed
by high level microprogramming languages (HLMLs) and their

compilers [BabS1a,Das78a,DasBOé,Dav80b]. The last fifteen



years has’ seen the introduction of . varlwy} of HLMLs along
wi£h autonated stfategies for optimizlng wwd compacting
microcode [Dav81a,Fi581a,Lan805,Rid81a,To£81a}. It is guite
natural then, in view of these developments, that mout of
the techniques for the Verification'of mic:ptpde are
adaptations of similar techniqueé used ihléoftw?re

verification. N

As in software,'miCQOprogram correctness‘éan be
abproached using either formal Qerificatiop or empirical
testing. Historically, the most common énd éasily.aﬁblied
approach has been empirical testing. But is testing

adequate? o : -

The disadvantages of testing are well-documented in-

research on software testing and similarly apply to firmware‘v

[Pat76a,Car87al. Not only_,is a large proportidh of the_

design time spent testing bat the infeasibility of

»

exhaustive testing restricts it to the detection of errots'

rather than showing their absenceé. In microprogramming this 

& : -
- is further compounded by the difficulty in tracing ﬁaults

found in microcode back to the errbdr in the m1croprogram
-which caused it. These problems which- confront testlng have
identified the need for verification techniques whlch can be
used in conjunction with HLMLs earlier in the microprogram
design process. For these reasons, formal verificati&n'has
been seen as an attractive, alternate appfoéch'tO'the

‘microprogram correctness problem, R

3



Many of the approaches to formal verification directly
draw upon the program proof techniques initially formalized"
by Floyd [Flo67a] and Hoare [Hoa6%al. The rationale behind
proofs of programs is tha%; given asseftiong‘concerning.the'
state of program variables during execution and a suitable
deductive sysf&m.for reasoning about these assertions one
can ;roduce a rigorous.proof Qf program correctness. Not
only can program proving techniques be applied to existing
programs but it has been convincingly argued by many authors
[GriB1a,Dij76a] that these techniques can be used to design
correct programs. N

Opponents of this radical approach to the design of
programs argue that: a) il's not feasible for lafge
programs, and in general, programs found in the "real
world", and b) it réquir s a deductive system which is
uanatural and cumbersomé to use. But on—going‘work.in this
area has resulted in the development of uniform and simple
p;oof rules for manv =~ the constructs aprearing in hiéh
level languages, in:ludirnz those for specifying pargileiism.
Secondly, the simple, alc.rithmic nature of micfoproglams
makes them ideal candiuuies for formal verification.

Although many of the lapguagé constructs in HLMLs

)
appear similar to those in high level languages their
semantics may be very different. Microprograms - even those
expressed in high level languages - are inherently machine

specific [Das80al]. Consequently the formal deductive system

for languages like PASCAL [Hoa73al] are not sufficient, nor



in some cases, necessary in the microprogrdmming domain. The
various éonditioﬁs which arise in the host'
micro-architecture must be taken ipto account when one
considers microcode verification. For example, the data path
structure in typical host machines can cause diverse
side-effects to be generated in the execution of the mosf
innocuous micro-operations.

The incorporationvOf machine—specific information into
the constructs of a languagé ﬁas been identified as a major
problem in the design of HLMLs [Dav80a,Das80al so it is not
surprising that formally representing the semantics of these
consﬁructs is a major challenge in the field of microprogram
verifiéétion. Although there have been a number of proposals
for both formally describing the seman}ics,of HLMLs élong
with differentAproof techniques, theréware only a few actual
experimental resuits?reported in the literature. The mos£
notable of these has been the IBM Micfocode Certification
System by Carter et al [Car78a] using syﬂbolic simulation
and the STRUM system by Patterson [Pat77a] using the
inductive-asse}tion method. In particular, Patterson's work
has clearly illustrated the feasibility of using proof.fules

and axioms in a deductive system for ‘proving microprograms.

' To 'avoid any terminological confusion the machine which
executes a microprogram shall be referred to as the host
machine (or architecture) and the architecture which a
microprogram emulates the target machine (or architecture).
Note, however, that in the literature on compilers and
portability, the machine for which the compiler generates
code or to which a system is proved is referred to as the
target machine. Thus, the "host" machine to an emulator
writer is the "target" machine to the compiler writer!



The general aim of this thesis is to demonstrate how
machine specific information can be inc?rporated into a
uniform, and relatively easy to use; deductive system
subporting the design of correct microprograms. It is also
hoped that this thesis will provide some insight into the
design of host machines and microprogramming languages which
support yérification.

More specifically, this thesis shows the construction
and use of a formal deductive system for the HLML,
SHQM—H.2 Developed is a Hoare Logic based on a formal
axiomatic definition of S*(QM—1)

. Furthermore, this thesis forms a part of the S*(QM-1)
project at the University}of Alberta. Related work has
included, the jnstantiation of S% to the OM-1 [KlaB81al, the
compaction of microcode produced from S*(QMT1) [Ri381a], and
the specificatioh of a C-oriented architecture, QM—C
[OlaéZa] in this language. In additién to the broader aims,
the goal of this thesis in regards to the S*(QM-1) project
Qas to evaluate the schema S* with respect to verification
by investigating the verifiability of S*(QM-1) programs.

The rest of this thesis is organized as follows.‘Ih
chapter 2 the more recent microcode verification systems and
proposals are‘reviewed. Also, thelmain.differences between

these efforts and the work gontained in this thesis are

outlined. Si-ce the main thrust of this work concerns

* This language is an instantiation of the machine
independent microprogramming schema S* for the nanolevel
archltecture of the Nanodata QOM-1.



programs written in é*(QM—1), the nature of the
microprogramming language schema S* and the idea of
instantiation of S* to the QM-1 are recapitulated in chapfer
3. Chapter‘4 provides a brief overview of the QM-1

architecture.

The main results are considered in chapter 5, where the

important issues concernjng the axiomatization of S*(QM-1)

are discussed. Chapter 6 demonstrates how the axioms and

proof rules, developed in~the preceeding chapter, can be
used-intthe proof of correcthess of two different and
‘nonjtrival nanoprograms. Fiflally chapter 7 assesées the work
reported‘here and pointé out some direcéions for further
work.

The entire formal description of S*(QM-1) is contained
in a second document submitted as a technical report
[Wag83a]. For the sake of completeness, parts of the report

: . . !
contain material already discussed in theé main body of the

thesis.



Chapter 2
Review and Background

In this chapter several dffferent strategies for ‘formal

verification are considered with brief descriptions of

actual or proposed firmware verification systems using ihese
strategies.l The different approaches to verification can be
classified by the type of formal speéification used to
describe the semantiés of the microbrogramming language. The
semantics of the language can be described aenotationally,
operationally, or axiomatically.

- denotational - language constructs are described as
semant ic functions over the domain of values which can
be assumed by data objects in the language.

] operational - the semantics are described in terms of
the more elementary actions which they invoke upon
executibn. /

. axiomatic - axioms and rules of inference ére used to
describe the pPopePtiés of constructs in the languége.

Verification techniques based on each of theée three types

- of specifications are presented in the following paragraphs;

A verification technique proposed by Blinkle and -

Budkowskin[Bli76a]\uses a denotational descripﬁion of the

semantics of a landgage. In this method; a microprogram is

divided into modules\whose binary input/output relation isv
defined as a set of semantic functions. Thé microprogfaﬁ,
viewed as a combinationvand fﬁnctional comeSition of these

modules, is solved algebraically as-a system‘of fixed-point



equatijons. One finally obtains an inpﬁt/output relatygn for
the entire microprogram. This method has béen successfully
‘tested on a number of microprograms written for a floating
point unit."

A verificatién'system proposed bleembinski and
Budkowski [Dem78al is based upon the Blinkle-Budkowski
method and uses a language called MIDDLE (Microprogramming
Design and Description Language) and a subset of it,
A-MIDDLE (Algorithmic MIDDLE). The authors of this system
suggest_that the only difference between firmware and
software is that firmware is directly linked to the hardware
executing it. Therefore:ﬁusing MIDDLE and A-MIDDLE, one can
in‘a step-wise menner abétract the purely
machine-independent behavior from the microcode. This can
then be proved correct by using existiné software
verification teéhhiques. | )

. MIDDLE consists of low level constructs which specify
Selecti;n, branching, SYnchronous; and asynchronous
'assignment. The declarétioﬁ section in MIDDLE giQes a
functional description of the hardware components and allows
the declaration of higher level functions as combinations of
" previously defined functions. In the proof itself a set of-
well-defined transfprmétions are used to change 4 MIDDLE
microprogram into a purely élgorithmic_A—MIbDLE program
after which the Blinkle-Budkowski metﬁod is apblied to ,

verify the A-MIDDLE program.



Notice that this method is basically a bottom;up
sfstem. Starfing with the microcode and description §f the
- host architecture; one abstrécts‘aWayuthQ machine specific
brope;ties of thedmicroprogram,4Alth6ugh the authors claim
”that this system could-aiso be Qsed in a tOp—down'manner for
the desién of microcode, it remains to be demonstfated that
in would iﬁ‘fact genérate efficient microcode.

Symbol ic Simulation is the most widely used
verification ‘technigue based on an.bpegational specification
of the language. This techniques. replaces the input data of
a program by symbols denoting fixed but unkﬁown guantities,
and then simula£e5~the execution of the program on these
symbols. The semantics of the language are defined Ey the
simuléﬁofcin the symbolic execution of the program. This
approach has been used in the IBM Microcode Verification
System (MCS) develobed by Carter et al [Car78al. h

The MCS system is based onySymbolic‘simulatiQn and
-Milner's [Mil71al] technique for proving-the equivalence of
programs. In this method both the behavior of tﬁe intended
microprogram and architectural description of the host

‘machine is speciiied in an APL-like language called LSS.

Then the completel omated MCS system executes both the
behavibrél descr »nt. * the microcode and the actual »
microcode on the a == _:ural descrintion. The MCS system
simplifies and tnen c¢- - ‘s the execution of the Ewo

simulations proving _hei. . . ence.
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This system was successfully use€d to verify microcode
for the NASA Standard Spaceborn Computer-2 and uncoveféd a
number of errors.AHowever, Carter, has noted that work is
still requirea on the simplification of expressions arising
in the symbolic execution ahd the proof that these
exptessions are equiQalent. More recent work in this area
has been in the development of an.iSPSJ based microprogram
simulation system developed by Crocker® [Cro80a] at ISI
(Information Sciences Institute).. But as yet few results
have appeared in the literature.

An interesting result related to simulation and
microcode verificapion has been reported by Oakley [0ak79a]
.at CMU. ﬁe has used symbo%ic simulation tb obtain
higher-level nOn—prdceaural descriptions from ISPS
descriptions of the architecture. It seems plausible that
this system could be used to generate non-broéedural
" descriptions of,microprdgrams. |

The final aéproach to verification, and the one used in
this thesis, is based upon an axiomatic description of the
semantics of the language. The axioms and rules of inference
given in the descfiption provide the basis for a deductive
system used tg construct proofs of correctness of « |
microprograms., |

fhe deductive system, or Hoare Logic, consists of
formulas in the‘predicate calculus along with formulas {p} s
{0} where P, Q are predlcates and S is some legal program

* ISPS is a procedural architecture descrlptlon language
derived from ISP [Bel7ta] by Barbacc1 [Bar82a



: 1

statement or statements. The formula {P} S {Q} is to be read
" as: if the state of the machine is such that assertion P is
true before execution of S then the execution of S leads to
a state such that Q is true when (and only if) S terminates.
This is a statement of partial correctnhess. A proof of total
correctness requires, in addition, a proof that §
terminates. P and Q are often called the pre-condition and
post-condition, reSpectively'of the statement S.

In addition, a Hoare Logic consists of inference rules
from the predicate calculus along wglh ruleé of inference
which describe the effects of the execution of composite

statements in the language. These inferences (proof rules)

are usually denoted as

“‘ H1, Hz, ...,’Hn

N
k .

which states that whenever the premises H17«Hi,'... H, are

.

true then H is also true. The alternative notation -

(H, & H, &}... & H, = H) may also be used to mean to éame
thing. Predicates (or asseftions) consist of formulas with a
meaningful.interpretation with respect to the statevof the
‘underlying ébstract machine. For instance ‘the assertion
ianguage may.be founded on the mathematical system of finite

.binary arithmetic.



12

Given the pre- and postrconditions, P and Q, one can,
in a step-wise fashion, construct valid sequences of
statements S for which {P} S {Q} can be shown to be true. An
obvious limitation of this method is that the proof is only
as good as the pre- and post-conditions. That is, a proof,
{P} M {Q} of a microprogram M is simply a statement that M
is consistent with respect to its ére- and post-conditions.
Furthermore, an axiomatiza;ion of the lénguage must describe
the change of state (of all declared variables in the
program) caused by S upon compiling and executiné S on the
host machine,

Once givgn an axiomatic definition of the lahguage
there aré a number of different ways to proceed with the
actual proof. The most common approach is tﬁe‘
induct ive-assert ion method formulated originally by Floyd
[Flo67a] and Hoare [Hoa72a]. In this technique, assertions
describihg'the~desired state.of the program at particular
points in its execution are included in the program. A
program_ié said to be vefified, with respect to the

assertions, if it can be_shown that for every path between

\

these assertions the initial assertion together with the

program imply the final assertion. The implicatibns between

these two assertions are called verif ication conditions or

VC's. | |
A verif&cation system using the inductive-assertion

technique is STRUM deve%gped by Patterson at UCLA. STRUM is

a high level microprogramming language oriented primarily to
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4

the Burroughs Interpreter (the D machine). In verifying
STRUM programs, intermediate assertions are passed to a
Verification Condition Generator which automatically uses
the axioms and proof rules for STRUM to prbvé that the
microprogram does indeed satisfy the intermediate
assertioﬁs. This system was used to formally verify a 71700
. , .
line microprogram emulating a Hewlett-Packard HP-2115,

As meptioned in chapter 1 thevpfoof technique used 1in
this thesis is similar to the inductive-assertion method
except that it is a constructive method for the design of
cﬁrrect pfograms rather than a method for proving the
carrectness of existing microprograms. The difference
between the two methods is.that the only assertions ;ssumed
true are the initial and final aésertions for the'entire"
program.

If constructive proo§ technidués_are to be sucéessgpl
it is neéessa;y that the micrbprogrammep have an elegant and .
easy .to use formal deductive system frpm'whiéh he can can
'derive proofs of program correctness. The formation of an
axiomatic definition of S#(QM;1) is quite similar in nature
to the formalization of STRUM, referred to earlier. The most
important differences between this work and thaﬁ of - |
Patterson are as foliows.

1. STRUM was oriented towards the Burroughs Interpreter
while S*¥(QM-1) is specifically tailored to a so&ewhat

different architecture, namely the OM-1,

2. S* and therefore, any language instantiated from it,
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- contains a richer set of data structuring capabilifies

- than STRUM. It also contains a humber of constructs used.
for expressing low-level parallelism appropriate for
monophase, polyphase, and multicycle timing schemes.
STRUM's support for parallelism is relatively simple.

The feature known as residual contro] [Fly71al] present

in the QMf1 poses rather unique problems in the
a#iomatization of S*x(QM-1). Since residual control is
present in several other_machines [Kor75a,Kra80a,Str78al
it is hoped that a solution to this problem will‘be
useful in a wider context than for the QM-1.

The highly horizontal nature of the QM-1 raises issues
concerning side-effects which must be reflected in the
‘axioms and proof rules. Neither STRUM nor any other )
verification system has addressed this issue. |

At évmore general level the aim of ‘this thesis was to
test the viability of the schema S* with respeé%’to

verification,



Chapter 3
An Overview of S* and S*(QM-7) )

The desigﬁ of S* as ®riginally gonceived [Das78a,Da580a] was

influenced primarily by two forées, On the one hand there

was a desire to utilize many of the (then) current
pr{ncipleé of programming language design and methodology.

Oﬁ/the othér hand Sx was to = formulated so that it:

1. coﬁld be instahtiated with minimai effort:

2. would facilitate the design, verification, and
understanding of Qell—st;hctured yet efficient
microp;ograms;

3. would allow the’representation of microprograms at
varying levels of abstraction; and - .

4. woulé:pefmit microprograms to be written, verified and
understood without reference to the internal
organization of the control unit.

’

Basically, the schema has the following features:
_ 7

1. The primitive data types bit and sequence and a set of

s

structured data types includihg,~ar;ay, tuple, .(which is

identical to the Pascal record) and stack.

2. A set of si;ple statéments which méy be used to
represent micro-operations - i.e. the most primiti§e,
indivisible units availa?le to the microprogrammer.iThe
set of simple statemeﬁts includes:

a. a generic assignment, the syntax and'sémantiés of
which is not specified in S* - their valid forms and
meanings are assumed té be macﬁznefdependent and are

¢

- ‘ 15
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determined during instantiatién;
b:. the simple selection statement
if Cy =Sy || Co =Sz ]| ... |] Co =S, fi
where the C,'s denote testable conditions and the
S,'s are simple statements (other than selections).
Here again, the cohstruct merely provides a template
for valid selections - the legal testable conditions
C,'s and'gtatements's. are machiﬁe—dependentyénd are
determined during instantiation;
c. the procedure ggll statement; and
d. the goto.
A set.of structured statements that allow for the
composition of larger program entities. Mosﬁxof these
are adaptatibns of Pascal-like statements and, of
course, -sequential composition. In addition, there exist
the cocycle and stczcle'constructs for the parallel
composition of statements.
The synonym Aeclaration statement which allows the
programmer to arbitrarily Pename‘previously declared

data objects or parts thereof.

As previously noted, the syntax and semantics, of the

égnstructs in S* are only partially de ined. An

instantiation of the schema S* to a particular host machine,

"M" specifically tailors the constructs in S* to M. The

fully defined language thus derived would contain the

machine dependent information necessary for the efficient

-



utilization of the micro-architecture. The instantiation

process itself can be divided into three stages.

1. The formation of a data declaration section. Such
pre-defined declarations serve to bind actual machine
locations to data objects in the language.

2. The determination of the exact form and meaning of
assignments and expnéssions. This includes binding S*
operators to particular hardware devices and deciding,

. with respect to the previously declared data objects,
what will constitute a valid assignment or expression.

3. the determination of the type of~constrqpt§ %Pich will
be available. for controlling the flow of the
microprograms. This will.depend on the cgntrol
mechanisms available in the machine and;;in Qfe case of
selection mechaqismﬁi those machine staﬁes fhat are
testable. |

Such an instantiation was carried out by Klassen [Kla81a]

for khe'QM—q, resuiting in the language S*(QM-1).

The primary objective in the instantiation of S*(QM—1)
was, within the framework of S#*, to design S*(QM—1).so-thaf
it would be able to be compiled into efficient object code.
In view of this}géal, Klassen's work defines the syntax of
S*(QM-1) and operationally describes the semantics of the
lanéﬁage in terms of the nanoprimitive opefations invoked
upon executioﬁ. Thé present work, buildsﬁupon this

definition of S*(QM-1) by making the-languagé verifiable,

A
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As previously outlined, the formation of an axiomatic
definitioh of the language is essential Lo upélying proof
technigques to the verification of S*(QM-1) programs. An
axiomatization of the language was formed according to the
following two constraints. First, important to the
application of a constructive proof technique, is the
definition of a simple set of axioms with the fewest
possible qualifications. Therefore, wherever feasible, the
semantics were embedded into the syntax of the lenguage. N
only is purely syntactic verificatibn preferable over proofs
of semaﬁtic‘correctness [Sto77a] but applying this principle
greatly simplifies tﬂe formal semantics.
\Exaﬁgle 1. -
Consider an ALU operation in a host machine which resete the
left and right inputs (ail, air, respectively) to zero. If
these side-effects are not explicitly bound to the ALU
operatioﬁ.theﬁ the ALU operation and its side effects can be
exp: .sed by the\Stafement sequence:

alu_result := alu_expression;
| ail := 0;
' eil := 0; //> ‘

However, alternately the semantics of the ALU oberation and
its side-effects eould be embedded directly into the syntax
by means of fhe multiple assignment statement:

alu_result,ail,air := alu_expression,0,0
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Secondly, the present instantiation of S*(QM-1) defines
the nano-architecture, data objects, and actions, that must
be visible to the progfammer in order to produce efficient
object code from S*(QM-1) source. In formalizing the
language any modifications required to S*(QM-1) in order to
support verification must not detract from the need to

produce efficient object code.



i Chapter 4

A Synopsis of the QOM-1 Architecture
In view of the discussions in the preceding chapters on the
desigﬁ and axiomaﬁiiation of S*(QM-1) it is important to‘
describe the architecture of the QM-1 and the featurés of it
which had considerable impact on this work. The Nanodata
QM-1 is a Qser—microprogrammable general emulation engine
with two rather distinctive features: a two level control
store and extensive .use of residual control.

The two level control store consists of a higher level
contro] store and a lower level nanostore. The
micro-instructions in control store may interpret the
conventional machine instructions which reside in main
store. These micro-instructions are 18-bit verfical words
and have no capacity for specifying concurrént operations.
Micro-instructions are, in turh, interpreted by highly
horizontal nano-instructions contained in nanostore. At this
lower level one can fully utilize the high‘degree of
parallelism possible between nano-operations.

- Since the primary goal of S*(QM-1) was to test as
stringently as possible the theoretical ideas uhaerlying
instantiation, verification, and code compactionaPthe QM- 1
nanolevel architecture was ch;sen as the testbed for this
work; It is at this leveli with the distinctive features of

the QM-1 and high degree of parallelism available that the

more interesting problems in microprogramming arise.
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- The QM-1 hanolevel architecture can logically be viewed
as consisting of a 6-bit domain and an 18-bit domain with
data path widths of 6-bits and 18-bits respectively. A block
structured diaéram of the major hardware components of the
QM-1 nano-architecture visible to the S*(QM-1) programmer is
given in Fig. 1. No£ice that the two domains intersect at
the instruction register and that the thirty-two general
purpose local store registers serve as a cehtral location
for routing values between many of the locations and dévices
in the . 18-bit domain. Thé 6-bit domain, besides providing
support for the storage and manipulation of 6-bit words,
acts also as a residual control for the control of many of
the transfers and transformations occurring in the 18-bit
domain, |

The idea of residual cqntrol‘originally proposed by
Flynn and Rosin [Fly71al, rests on the observation that in
emulating a target architecture control information once
"set up" remains relatively invariant for significant
periods of time. Thus, instead of holding this iﬁformétion
in the micfoword (or, in case of the QM-1, in ﬁhe nanoword),
it can be placed in special registers which can remain .
invariant for the execution of several microwords. By
reducing the amount of control information that needs to be

‘ o

held in thevmicro(nano)word its width can be significantly

reduced.
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_Figure 1. QM-1 Nanolevel Architecture

The most common use of residual control in the QM-1 is
_the selection of local store (or external store) registers

for input or output and the selection of the operation to be
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performed by functional units. For example the F—stbre
registers "fail", and "fair" select the left, and right
inputs to the ALU from local sfore while "faod" aefermines
which local store registef is connected to the ALU output
bus. The function performed by the“ALU is partially
determined by the value of yet another residual control
register, the K-vector field "kalc". (Fig. 2)

There exists two types of residual control in the QMfﬁ.
The F-store regiéters which remain sef until explicitly
changed via nanoprogram control and K-vector fields which
form part of the executing nanoword. These K-vector fields
are considered part of residual control because of the
manner in which a nanoword is executed in the OM-1. A
nanoword in nanostore is 360 bits wide and is divided into
five 72-bit subwords (Fig. 2). On execution of a nanoword
the first of thése subwords, called the K-vector, remains
active throughout the éxecﬁtion‘of each of the remaininé
subwords called T-vectors. Each T-vector has an identical
format and each are activated in tufn, one after another.
Thus, from a logical point of view, a combination of the
K-vector and the active T—vectb; constitutes a
nano-instruction. Certain of these K-vector fielas are not
only set or reset on activation of a new nanoword but can
also be explicitly changed via nahopr@gram control.

In summary, the control function in the QM-1 is quite
varied and rests partially in F-store registers which remain

stable, K-vector fields remaining stable_thr?ughout
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Figure 2. Control Function of Fail,
Nanoword Format "

\

1

Fair, and Faod and

the execution of a nanoword, and finally in T-vector fields

which provides what Kornerup and Shriver [Kor75al] termed

immediate control.

Sequencing between nanowords in the QM-1 is handled'by

a special priority address mechanism. The address of the

next nanoword to be executed could be either of the

following: one of 30 interrupt addresses encoded into

certain external store registers, a branch address contained

in the executing nanoword, or an address supplied by the
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level

1 Branch Address

: b

: Interrupt
: Addresses

¢

32 Nanoprogram Counter

Figure 3. QM-1 Priority Address Meghanism

-«

L

nanoprogram counter (NPC).

Depending on certain flags set in the executing
nanoword each of the addresses in Fig. 3 can become active.
" The priority éddress mechanism will select the active
addresé with the lowesf priority as the address of the next
nanoword to be executed. Interrupts become active only if
_they are penéing‘ and the allow-interrupts flag has been set
in the executing nanoword. The address assigned to the
highest priority level, the NPC, is always active and either
. re-executes the present nanoword, or the next nanoword in

K]

sequence.

EN 4

‘* The interrupt has been enabled and-has sensed a 50ns pulse
on its signal line. T :



Chaptér 5
Axiomatization of S*x(QM-1)

This chapter discusses the key issues which arose in the
formation of an axiomatic definition of é*(QM—1). Each of
the three étages in the instantiation of S* to the QOM-1
along with their effect on the verification of S*(QM-1) code
is discussed. Axioms and proof rules are given which
describe the semantics of lénguagg constructs according to
the criteria presented in chapter 3,

The following notation is introduced to de;cribe the
semantics of the language constructs in S*(QM-1).
Definition: The logical formula P[x/y] denotes substitution
of y for all free occurences of x in P. This corresponds to
the more usual Hoare notation where x.is the superscript of
P and y the subscript of P. ‘

Definition: The formula P[x1/y1][jz/yzj...[Xn/yn] denotes
the simultaneous substitution of-all free occurenceé of the
vafiables X1, 25, ... X, in_P by the expressions y,,
Y2,...¥Yn, respectively. Notg that the vafiables X1, X2, oo
X, may only be substituted once, and occurences of some x;
in exﬁressions Yi,» Y2,...Ys are not replaced. Furthermofe,
the substitution is not defined if the variébles X1, X2, oo
. X, are not distinct.

Definition: Substitution formulas containing brackets
denote repeated simulténeous éubstitutions performed on the

‘inner-most bracketed variables first. For example the

26



e 27

”

formula (P[{x,/y:1)[x2/y2] denotes#éhbstitution of x, by y1
followed by sﬁbstitution of x, by y.. Note that in this case
variablgs can be substituted more than once: In the previous
example 1if y, céntains the variable x. then y, will be
substituted for xzﬂin Y.

5.1 Data Declaration

In general, the purpose of the declaration section is
to introduce named objects and to aesignate their |
properties. Since,S*(QM-1) is machine specific, data objects
are predefined and correspoﬁd to actual locations in the
QM-1., The binding of data objects to machine locations
gréatly affects verification because it defines the statg of
the machine. The axioms and rules of inference for the
languaggvmust describe the effects of execution of language
constructs upon these data objects.

‘It was the declaration of the residual control
registers in the QM-1 which had the major impact on the
axiOmatiza£ion of the language. Via local store 31 and other
sources, theée_:egisters can be loaded with values which are
not known prior to execution, thereby allowing their control
function to be determined dynamically during the execution
of the program. Thus, if left undeclared, the programmer is
prevented from exploiting the parallelism which is avaiiable
in the QM-1 by the explicit control of these registers. One
effect of the need to declare residual control registers was

‘the introduction of new constructs in the'language.



5.1.1 New Types

An important property of structured daté types are ‘the
selection operations associated with the type. As originally
.designed in S*, the actual access mechanism of the storage
device corresponding to a data object of some structured
type is not visible to the programmer. For instance, for an
object of type array, elements of the array are refekenced
Aby specifying the required element, e.g. local store[31].
The actual mechanism selecting this iocation has not been
specified. In the case of storage devices insthe QM-1 whose
elements are selected by residual control reéisters, because
o% their visibility to the programmer it is necessary'that
the associated access mechanism be explicitly described as
part of thg;type. In effect, this is a considerably lower
level of description, since it actually specifies part of
the underlying data péth structure of Ehe QM-1.,

<

The following two types are used in S*(QM-1) for this
purpose: "
The.aPPay—with-pointeF which was already present in S#*, and
an'entirely.new type unibn—with—selecton. These types are |
similar to the‘'array and tuple respectively, except that the
selection operation corresponds to the actual access
mechanism used in the QM—j and is completély visible to the
programmer.

The general forms of these declarations are as follows:
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a) <id,> : arrayl[<dimension>] of <type> with <id>
where the with J.,. clause specifies identifiers of the only
legal index variables for the array <id;>. That is, the

selection of the array element to be accessed is determined

solely by values of one of the index variable$.

Exaﬁgle 2 l - \\
-In the QM-1 a source of input data for the control store is)
one of 64 "logical"*¢ lécal store registers, and this would
be)aetermined by the setting of the 6-bit fesidual control
registef fcid. This relationship may be denoted by the
declargéions

type ls_register = égg [17..0] bit .

control store_data : array [0..63] of ls_register

| | with fcid

Given this declaration the only legal reference to the above
structure (say in an assignment statement) would be |

"control_store_datalfcid]".

b) <id,> : selector {<id,>} t:<type>+s

* The notation {x}* denotes zero or more instances of the
entity x while tx¢ denotes zero or ‘one instance of entity x.
¢ If the source spec1f1ed by fcid is greater than 31 the
control store data bus is connected to a source of all ones.
This is also true for all F-stcre registers selecting local
store registers for output. Th..efore, "logically", the set
of local store registers consists of 32 registers and a set
of 32 non-existent registers whose value is all ones.

,<id>}*x t:<type>+*.

&
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<id> : <type>
{<id> : <type>}=*
endun |

Here <id,> acts as a selector of one of the locations
enclosed in the union clause. Thus, the union-with-selector
type modeis a hardware multiplexor (Fig. 4). However it is
illegal to reference the selector (<idk>)rexplicitly.‘
Rather, it is sjde-effected upon reference to a location
inside the union. If the i-th (i20) location is.referenced,
then <id,> 1s set to i as a siae—effect. |
The locations within a union can only be . of primitive types -
bit or seg. Structured types when present are considered to

\
be decomposed into primitive elements.

Example 3

The control store input source of Example 2 can also be’
declared as:
control store data : selector fcid

union

Hh

local_store : arrayl[0..31] of 1ls_register

Hh

all_ones : array[0..31] of source_all_ones
~endun

Given this declaration, a legal reference to this structure

is "control_store_data.fcid.local_store[12]". Such a

. B .
reference would, as a side-effect, set fcid to the value 12.

N

8]
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selector <id>

'

- <igd>
- <id> Components of
the
union clause

- <id>

THEXOHEU—- 30 CX

Figure 4. Correspondence of Unionrwith-Selector Type to QM-1
Multiplexor ’ : : ’

In fact,\the object nanocode corresponding to this reference
would first set fcid to 12, and then use this value in fcid
to access local store. Note that the reference
"control_store_source;fcid.local_store[fcid]" wduld be

illegal.

In suﬁmarxi.theh, the'unioﬁ—with;selectof,data type allows
the g@ntroi_funétion of‘F registers to be specified while
thelarray—with:bbinter allows references to storage
locationsﬁhsing the preset value of p@g;F register.
o S

5.1.2 "Struct” Declaration

Unlike type,decl?rations ih strongly typed languages
like PASCAL, S* and S*(QM-1) allow a data object to be of
more than one type (i.e. can be a multitype object). It is

useful in HLMLs to allow different views of the same storage
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y

device. For example, in the QM-1 it is convenient to view
local store registers not only as an array of registers but
also aé a structure consisting of varied components. (i.e.
Znstruction redistef, index register, etc.) The notion of
multityped variabies was expanded upon by allowing the
declaration of new variables as combinations Qf existing
prédeclared variables. This was necessary because of the
introduction of the array-with-pointer énd
union-with-selector types. The selection mechanisms in the
OM-1 correspond not only to a single storage device but also
to different combinations of them.

The part of the declaration which defines new selection
mechanisms on predeclared locations is prefixed.by the
keyword struct (structure). A struct declaration consists
only of structured types whose components are either an
ékisting déta object or a variable name which itself has
been declared iﬁ é struct declafaﬁion. Ih the case of
multityped declarations at least one declared types must
consist of predeclared variable names.

Example 4 |
struct control_store_data

: array [ 0..63 ] 1s_register with fcid

selector fcid

union

o]
Hh

local_store : array [ 0..31 ] of 1ls register

o]
(2}

all _ones = : array [ 0..31 ] source_all_ones

endun
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This declaration defines the new access method associated
;;Z;\}he type array-with-pointer to the combination of the

two predeclared arrays, local_ store and all ones.

5:1.3 Pseudovariables

Unlike locations which retain their value until
explicitly changed there exist locations in the QM-1 which
are unstable and transitory in nature. These locatiops are
declared as pseudovariables and are prefixed by the keyword
pvar rather than var in the predefined declaration section
of S*(QM-1) programs.

Pseudovariables correspond to two kinds of transient
loéations in the the QM-1. The first, are the K-vector

fields which form part of residual control - since these

-~

#

¢

fields are part of the executing nanoword tﬁeir values are
reset from one nanoword to the next. The second, éfe
locations corresponding to the output buses of functional
units in the QM-1 whose inputs are being continuously
>propagated”£hrough the unit. (i.e. ALU, Shifter, Index-ALU)
'Thesé loéations are conéidered unstable since the input -to
these devices gre.local store registers wﬁich are selected
by residual control registgfs whose values may not be known
prior to execution.

The transient nature of pseudovariables.implies that no
long term assumptions can be madé as to their value. This

causes several problems in attempting to prove program
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segments in which they appear.’It can however be guaranteed,
by an S*(QM-1) compiler, that once a pseudovariable has been
defined it will remain stable at least until the termination
of the statement following it - after which it is necessary
to assume that its value is undefined. In effect, this

" couples togefher the statement defining the étate of the
pseudovériable with the statement using its value.’

Example 5.
pvar alu_out_bus : seg [17;.9],bit

alu_out_bus := r_alu[féif] + 1 alulfaill;

local store[faod] := alu_out_bus

Formally, pseudovariables can be considered to be
implicitly side—effected upon‘execution of an S*(QM-1)
statement. Thus, for all pre?conditions P, with assertions
containing pseudovariables, the following must hold for the

post-condition Q of the statement:
Qo[PVAR/undefined value] = Q (T1)

where PVAR denotes any pseudovariable appearing in the

pre-condition P. The simple if statement® and all statements

inside a cocycle (cf 5.3.1) are exceptions to this rule.

' For a discussion of the effect of coupling statements on
microcode compactlon see [Rid81a,Fis81a]l.

* A simple if is an if statement where the body of the if
contains only a single assignment, goto, return, or cocycle

statement.
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Pseudovariables appearing in these statements are not

side-effected and remain defined.

5.2 The Axioms of Assignment

In S*¥ the assignment statement is useq‘to model data

transfers within the machine. Due mainly to the declarations’

of:reSidual control registers the assignment statement in
Sx(QM-1) is not free from side-effects. Thus, it was
necessary for an axiomatization of thellaﬁguage to
incorporate these side-effects into the definition of
S*(QM-1). The manner in which they could bé embedded into
formal semantics is greatly affected by the decisions méde
on both, the form of the assignments and expressions in the
language and also their correspondence to actual machine

operations. The following sections classify the types of

‘ -
side-effects which occur in assignment statements and
formally describes their semantics. -

5.2.1 Simple Assignment Statement
The simple assignment statement
X =y
where x,y are locations satisfies the axiom:
{(P[SEL/V])[x/y]1} (A1)
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where SEL denotes all sélector locations side-effected by
reference (if any) to a union-with-selector type, and V

denotes the .set of values assigned to the selectors. That
is, P[SEL/V] is eqﬁivalenu to P[sel1/91][se12/v2].... The
brackets indicate that the side-effects occur before the

actual transfer.

Example 6
. Let "control_store_data" be declared as in Example 4, and

.r

let P be the asseftiqn.
{control storel[cs_addr] =

N control_store_data.fcid.local_store[15] & fcid=15}

{
Then\py axiom (A1) the following formula is true:

/7

e ‘
{P[fci Jlcontrol_storelcs_addr]
* /control_store_data.fcid.local store[15]]} ,

control storelcs_addr] :=
control_store_data.fcid.local_store[ 15]
{P}

3

\

On substit'ution, this reduces to
{TRUE}
control_store[cs_addr] :=

control_store_data.fcid.local store[15]

{P}

A necessary condition for any transfer to occur is the
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existence of a direct daté path’® between the source and sink
locations of the assignment. For_ each such statement in an
S*x(QM-1) program, there must also exist a mapping of the
statement to nanoprimitive control fields. If this condition
is not satisfied then the statement is not compilable and a

mapping error occurs upon compilation,

5.2.2 Expressions in Assigﬁmént Statqménts

The second class of assignments are of the form

x:=BE
where E is an exbression.

As noted in chapter 4, a secé6ond group of residual
control registers - the K vector fields - are part of every
nanoWord. During the execution of a nanoword each T vector
is activated while the K vector remains active throughout.
Fields in the K‘vector specify: dperétioﬁs performed by the
18-bit functional units, mask values for testing, and
constants for injection into the 6-bit domain. An expression
E in an S*(QM-1) program, cdntaining én operator bound to
some functional unit Qill side-effect tge relevant“K vector
" fields by modifying or selecting the function to be
performed.

A second source of side-effects are the-output 1ines‘of
devices in the QM-1 declared as pséudovapiables.'The

* A direct data path is a path in the QM-1 taking input
values to an output location without moving data through
intermediate locations declared as variables in S*(QM-1).
Notice, however, that the value of a pseudovariable (cf.
section 5.1.3) may in fact be affected by the transfer.

1
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svaluation of an expression using these devices sets the

value of the corresponding pseudovariable toNthe value of

the expression. | |

Expression evaluation is the majorﬁsource of side-effects in

S*(QM-1).

Example 7 : | B ‘ 4 .

Consider the expression '
shft_in[fsid] 1l<<s(5)

This will perform a single left logical shift of 5 positions

on shft;in[fsid] (i.e. local_store[fsid]) and side effect

the K vector fields kshc (which encodes the shift function)

and kshé (which encodes the shift amount). Also the shifter

output bus will be set to the value of the expression.

Example 8. f@
S*(QM-T) also allows an operation to be indirectly

specified. For instance

shft_in[fsid] (kshc) (ksha)
is aéain, a shift expression where the type and amount of-
the shift dépends on the values of éshc ard ksha. The only
side-effect in this expression will be the setting‘of the

shifter output bus.

In comparing Examples 7 and 8 note that the latter
expression is at a "lower" level than the former. Thus,
there is a trade-off between the level of expressions and

the presence or absence of side-effects.
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’

S*(QM-1)#also pefﬁdts complex expressions of the form
\ .

\ S /igxprTMEg§;;7

where the expressi ;: ezgluéfed inside-out. Such
.expressions ggrrespogd to directly connected functional
units. In the QM-1, the ALU and the-shifter can operate
independently or as a single unit performing double sﬁifts
on the output of the ALU and the shifter input (Fig. 5).
Example 9. \

The expression , ‘ \
(1 _aluffaill+r _alul[fairl) shft_in[%éid] 1<<d(5) .
specifies a aouble\fhift on the ALU‘output and'the local

store register pointed to by fsid.
The axiom for assignments containing expressions is:

{P([SEL/V,][CNTR/V,][MOD/V,][MASK/V,][OUT/E, 1) [x/E]} (a2)
X := E

{P}

where CNTR denoteé K vector fields which ar- side—effecﬁed
as a result of the operations and V., denotes the encoded
values of these operations. MOD denotes any set of modifier
fields side-effected by the operators specified in the
expression and V, defines the corresgonding modifier values

appearing in E,. MASK denotes the K-field side—effec{éd in

the evaluation of the expression if it is a boolean
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Figure 5. ALU-SHIFTER Combination

P

expression testing some condition in the QM-1 (cf. section

\
W

5.3.2), and V, defines its qdrresponding mask value. Finally.
OUT denotes any pseudovariables (éorresponding to output
buses of devices used in E)‘which are side-effected in the '
evaluqtion of the efgression and E; denotes its
corresponding expression.
Example 10.
Let P denote the assertion: _
{fsod.local_store[15]2fsid.local_store[13] 1<<s(5) &

kshc=ko & ksha=5 & faod=15 & fsid=13}
where ko is a binary (or equivalent integer) valued 4
constant, then, by axiom (A2) the following is true:
{Plfaod/151[£sid/13][kshc/ko] |

[shft_out_bus/fsid.local_store[13] 1<<s(5)]

[fsod.local_store[15]/fsid.local store[13] 1<<s(5) ]}



fsod.local_store[15] := fsid.local_store[13] 1l<<s(5)

{P}

For convenience, the side-effects for expressions
[SEL/V,}[CNTR/V,][MOD/V;]1[MASK/V,][OUT/E;], will be denoted

simply as [EXPR].

5.2.3 Mul?iple Assignment Statement n

There are situatiéns in the QM-1 where the action of
functional units result in side-effects on other locations.
For egample, a write to control store also sets the control -
store output bus to the value being written. Such actions
can be déscribéd‘using the multiple assignment statement
which, in S*(QM-1), is of the form:

' X1,X2 1= E,,;E2 .

where x,, X, are variables (6r pseudovariables) and E,, E;

3

are valid S*(QM-1) expressions.

Example 11.

control_store[cs_addr],cs_output_bus :=
control source_datal[fcid]

- "
This same statement can be used to specify swapping of

values of certdin locations in a single time step.'®

' In the QM-1, a T-step designates a single step of
nanoprogram execution and will, generally speaking, consist
of the parallel execution of some set of nano-operations
issued from a single T vector. The duration of = T-step is
usually 80 nanoseconds (a "T period") although for certain
purposes, this may be stretched under program'control to
last for two T periods. All nano-operations are classified
as either Jeading edge or trailing edge according to whether
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e.g. fcid,ka := ka,fcid
The validity of this statement rests on certain
transfer-delay characteristics of the QM-1,

The axiom for the multiple assignment statement is:

{p[EgPR1][EXPR:][X1/E1][X2/E2]} V (A3)
X1,Xz 1= E,,E;

{P}

Example 12.
{fsid=2 & ka=3} fsid,ka := ka,fsid {ka=2 & fsid=3}

where (ka=2 & fsid=3)[fsid/kallka/fsid] = (ka=3 & fsid=2)

'5.3 Control Consfructs

The following éections discuss the effect of
:instantiatién on describing the semantics of éontfol
constructs in S*(QM-T); Also included is a discussion on the

ne:d for a parallel construct.

5.3.1 Parallelism

An‘important aspect in the design of S*(QM-1) was to
take advantage of the high d%gfee of parallelism available
in the QM-1. The major ééurce of parallelism‘in the 18-bit
domain of the QM-1 is the ability to simultaneously gate
values in and out of léqal store (and to a lesser degree

"o(cont'd)the functions they define take effect at the
beginning or the end, respectively, of the T step.
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external store). Unfortunately, attempting to utilize this
ability created a number of problems in the c;mpaction of
Sx(QM-1) code. In particular, because the input/output to
local store is controlled by F-store registers whose values
may not be known prior to execution, data interactions (i.e.
conflicts) were possible. So as not to seriously degrade the
compaction of S$*(QM-1) code it was assumed that certain of
these interactions would not QCCUr. However, Rideout
tRid&ta] does conclude that the introduction of new
sequencing constructs could significantly improve
compaction. In‘view of these conclusions and the necessity
of ensuring that data interéctions do not occur the parallel
operator, &, is introduced into S*(QM-1).
The parallel composition of two statements

S,uS,; |
specifies that’thé behavior of S,, S, is independent of the
order in which they are éxecuted. The statement following ()
S,8S5; begins exectv ion only after both S, and S, terminate.

. The basic condition which must be satisfied for the
parallel composition of two statements 1s that they . be
interference-free. Formally, according to the Owicki-Gries
tOwi76a] rules for the parallel execution of statements, the
interference-free conditidh is definéd as- follows:
Definition: Statemewg S', with pre-condition P' 'is
interference-free from stépement S wi;h_pre-‘and

post-conditions P, Q, respectively if:

1. {p' & 0} §' {Q}
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2. {P' & P} s' {P}

The proof rule for parallel composition is:

{P,1s,{0Q,}, {P,}S,{0Q,}, interference-free . (P1)

{Pi & P,} S uS, {Q, & Qz}

where interference-free implies that S, is inte;ﬁet;nce frée
from S, and vice—ve;sa. ) ’

| This is not the only parallelism which is possible in
Sx(QM-1). Also, instantiated from Sx, is the cocycle -
statement. Unlike the parallel composition “of statements the
coqzcle statement specifies the concurrent execution of all
statements appearing in the'constru¢£. This concurrent
execution is ensured by the requirement that,‘to bé
compilable, the control fields initiating the actions
specified by the statements in tHe cocycle must be encoded
into a single T-vector and its corresponding K-vector. n

Formally,‘since this construct is actually a compiler

directive the proof rule is given as:

{p} $,6S,6...6S, {0} - (P2)

PRas

{P}féoczcle $,65,6...6S, coend {Qf;

where §,0S,6...6S, denotes some sequence of parallel, "z",

and sequential, ";" operators.
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5.3.2 Conditional Statements

-Like pseudovariables, testable Jocations in the QM-1
are unstable. Unlike the former, however, test cond{tions
are not-deciareé in the data declaration part of the program
‘but are part of the language itself in the form of test.
expressions. Each legal test expression is bound-to a
pérticular machine céndition,r
Example 14.
V: The machine condition OVERFLOW resulting from an ALU
operation is defined by the S*(QM-1) test expression:

LOCAL OVERFLOW of (local store[faill+local store[fair]))

\

\.-'

Test conditions in the QM-1 fall into three categories:
1. the "LOCAL" conditions generated from ALU and shift
operations - CARRY, SIGN, OVERFLOW, RESULT, SHB, SLB

(the latter denoting the high and low order bits of the

éhifter output bus);

2. These same conditions saved as GLOB;L conditions in a
special F register (fist); and |

3. SPECIAL conditions such as F_REG_ZERO, MS_BUSY and
MS DATA. The latter, for example, is set to 1 if a main
store read or write is i; progress.

In evaluating a test éxpression (of the fgrm shown in
Example 14, say) additional side effects may occur because
of the 6-bit K vector fields ks, kt, and kx which are used
as masks_%or testiﬁg the local, global, and special

conditions, respectively. The mask for local condition, for
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instance, is constructed by placing 1's in the bits

S sponding to the conditions tested and zero elsewhere.

;%g.;ask and the test condition are ANDedAtogether with a 1
\
returned if the result is true, 0 otherwise.
Let "mask sel" denote one of the'keywordé.LOCAL,
GLOBAL, SPECIAL and let "MASK" denote the pseudovariablé
(i.e. Ks, kx, Kt) side-effected by the.evaluation of the

test expression B. Then the proof rules for the if, while,

and repeat statements are as follows.

P[MASK/VI[EXPR], {P&B}S{Q}, P&-~BsQ (C1)

{P} if (mask_sel B of (E)) » S fi {Q}
o \

. ¢
P[MASK/V][EXPR], {P&B}S{P[MASK/V][EXPR]} (Cc2)

Ay

{P} while mask_sel B of (E) do S od {P&-B}

{P}S{QO[MASK/V][EXPR]}, Q&-B=P : (c3)

A

{P} repeat S until mask_ sel B of (E) {Q&B}

5... " ‘vcedure ments

There arc '2r _ypes: of procedures which may be

declared in S*x(QM-1, . instfuction, subroutine, and
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interfﬁgt. The procedure statements call and act serve to
initiate these different procedures and because of the
priority select mechanism in the QM-1 their semantics differ
significantly from'procedure statements in high level
languages.
‘The étatement
call p

appears only within an instruction procedure and initiates

the subroutine p. The call statement tefminates only upon
return from the sugroutine p. All variables in S¥(QM-1) are
global so there is no parameter passing but subroutine
procedures can be declared with or without an
"alfow—interrupts" flag. If specified this flag allows the
execution of all pending interrupt procedures upoh return to
the calling procedure. Formally, the semantics of this
statement are:

1. allow-interrupts option not specified:

{P} proc p {Q} ? (P3)

{P} call p {0}
2. allow-interrupt option specified:

{P} proc p-{Q}, v(i)(int(i)=({Q} proc x; {Q})) (P&)

{P} call p {0}
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The assertion V(i) (int(i)=({Q} proc x; {Q})) ensures that
the execution of all pending interrupt routines will not
affect the post—conaition of proc p. The assertion jnt(j) is

true only if the interrupt procedure assigned to priority

level "i" is now pending.
Example 15.
int(5) is true if the interrupt procedure at priority

level 5 is pending and false otherwise.

The act statement
act p

activates the named procedure p. It is‘effectively a goto
Eﬁe start of the procedure. In describing the semantics of
' this statement the following notation originally introduced
by Alagic and Arbib [Ala78a] for describing the semantics of
goto stafements is used. The notation

{P} proc pv{Q}{p:1:0:}...{pn:Q4}
specifies that Q is true on "normal" exit from procedure p
whiié one of Q¢, Qz, ... , Q. is true on exit-from procedure
p ia activation of py, Pz, ... Dn, respectively (r ' g. 6).

The semantics of the act statement Vary ceperdirg on

the type of procedure activated. In the case of inscruction

and subroutine procedures it is:

{P} act.p {false}{p:P} ' ~ (P5)

7 '
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{P}

Proc:

act p;’ {p1ﬂQ1}

{Q}
Figure 6. {P} Proc {Q}{p1:Q1} and for interrupt procedures
the act statement’ will not immediately activate the

procedure but the interrupt becomes pending.

{P} act p; {P & int(i)} _ (ps)'
Again the assertion int (i) indidates that the'interrupt
procedu;e assigned to level "i" is now pending (i.e. will be
activated at the end of an instruction or call procedure).
c‘":llotice that the statement act p; does nothing if p,; is
already pending.
&’ ~
5.4 Pr&bé Rules and Axioms for S*(QM-1)
In this secfion the rules of inference and éxioms for

S*(QM-1) are summarized.

1. Simple Assignment:

t(P[=EL/V])Ix/¥1} : (A1)

" 2. Assignment with Expressions:

{P(ISEL/V1][CNTﬁ/vz][MOD/Va][MASK/Vn]IOUT/Ei])[x/EJ} (A2)
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3. Muitiple Assignment:
{P[EXPR,][EXPR,1[x,/E,]1[x./E,1} (A3)
X,,X2 = E,,E;

{P}

4, If..f1 Statement:

p[MASK/vl[Epr], {P&B}S{Q}, P&"B=Q .'}c1)

{P} if (mask_sel B of (E)) » S fi {Q}

5. While do..od Statement:

P[MASK/V][EXPR], {P&B}S{P[MASK/V][EXPR]} (Cc2)

- {P} while mask_sel B of (E) do S od {P&-B}

!

6. Repeat..until Statement:

{p}s{Q[MAsx/v][Epr]}, Q& B=P ‘ (c3)‘

{P} repeat S until mask_sel B of (E) {o&B}

7. Call. Statement(with and without allow-interfppts option

specified):

{P} proc p {0} e ‘ (P3)

{P} call p {Q}
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{P} proc p {0}, ¥(i)(int(i)=({Q} proc.x, {Q}))  (P4)

{P} call p {Q}

8. Act Statement:

{P} act p {false}{p:P} | © (p5)
{P} act p; {P & int(i)} - (Pe)

9. Parallel. Composition of Statements:

{P]}S]{{Q1}, {Pz}Sz{Qz}, interference‘free (P])

{P, & P,} SyuS, {Q; & Q;}

10.. Cocycle..coend Statement:

{P} S,6S5,6...6S, {0}  (p2)

{P}

11. Axiom for Pseudovariables:

Q[PVAR/undefined value] = Q ‘ (T1)

The following rules of_inference are not discussed én
ﬁhis thesis but form part of the axiomatic definition of
S*(QM—1X.'A discussion of the sémantics of these constructs
is given in [Wag83a].

12. Sequential Composition of Statements:
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{P}S,{Q} & {Q}S.{R}

(P} $1;S; (R]

13. Case..endcase Statement:

{p}s, (o)

{P} case ir[17..14] of 0(OP1):S,...n(OPn):S, endcase {Q &

ir[17..14] = 0}

14. Goto and Return Statements:

{P} goto L {false}{L:P} {P} return {falsel}{E:P}

15. Region..endreg Statement:

{true}l

{true} region S;;S;...;S, endreg {Q}

'S

16. Do..od Statement:

{P} S.65.6. 8s, {Q}

{P} do S,0S,6...6S, od {Q}



Chapter 6

Proof of S*(QMf1) Microprograms
In this chapter, two proofs pf S*(QM-1) microprograms are
presented to illustrate h the axioms and rules of
\inference developed in the last»chapter are to be applied.
The two examples chosen are the QM-C multiply (MULT)‘énd
call (CALL).instruction. QM-C 1is the C-oriented architecture
developed by Oiafseon [0laB82a] for emulation on the QM-1.

These two instructions have been chosen because they
both contain ‘loops, and perform two very different
functions. The multiply instruction implements a
multiplication algorithm while the cdll instruction must
correctly save the contents of certain local store
registers. Instructions with'loops are presented because the
generation of loop invariants usually is the most difficult
part in the construction of program proots. However, as
noted by Patterson [Pat76e], loops are in fact quite rare in
microprograms. This observation remains true for the

*(QM*1) microprogram written for QM-C, where loops appear
only three times. Thus it 1is hoped- ‘that these proofs will
represent the most difficult proofs in the S*¥(QM~-1) code for
the OM-C. )

In constructing the proof outl&nes "auxiliary
variables" are used to s1mp11fy the assertions and enhance
their readablity. Such varlables appear in assertlons but
are not contalned in the actual code. They are used to

denote the value of some machine location at a particular

53
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point in the execution of the microprogram. Auxiliary
variables will be denoted by subscripting identifiers by
"0". (e.g. xo, abc,, etc.) Also introduced ére ¢apitalized
variable names which are used to denote assertions in the
microprogram. (e.g. F = {fsid=5 & fsod=3}) These names are
used to deﬁote assertions which remain invariant over
‘particular sections of code. ﬂogically, they can be simply

viewed as an abbreviation of the actual assertion.

’[6.1 The MULT Instruction
The QM—C.multiply instruction has the format
MULT rt,r2
where r1,r2 specify 18-bit QM-C,regiéters; the effect of
this instruction. is: | "
reglr1] « regl[r2] * regfrt]
where "reg" denotes the QM-C register file. The main
component of the microroutine interpreting this instruétién
is a repeat statement. Before enteringxthe repeat, the signs
of the multiplier and multipliéana have been determined and
both operands.converted to'unsigned binary numbers.

- The instruction register (ir) contains in its tWO.lOWfOrdef
6-bit fields ir.b and ir.c; the parameters - r1 and r2,
respectively of the instruction. The repeat loop is iterated
18 times on the unsigned binary numbers contained in
local storel[ir.b] and local storelir.c]

Each iteration:

1. computes a partial -product, pprod, according to the

- 3

521
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A}

expression'pprod = pprod + mult{0] * mpcd
2. performs a double-shift-right by one position on the

concatenation of sh_end (i.e. the carry of the ALU

iy

operation), pprod and mult (Fig. 7)
‘The entire S*(QM-1) declaration is not given, but is
contained in the appendix. However, the following synonym

declarations show apping of relevant QM-C "logical"
B PRI “\‘ . : )

B OM~1 data objects.

.-

registers onto

syn fscf1;g} - 3 /*scratch register*/
éig mult””tﬁfjtr. 3 Tt&re[&;bq]' /*multiplierx/ d‘
gzgiéprod“g ;:lddéygstpret;;od] /*partial product*/
syn mpca 'ﬁ r_alﬁ[fairj /*multiplicandx*/

The S*x(QM-1) routine for performing he multiplication is as

[N

follows:

repeat
. ! .
kalc = 9; :}ﬂteger value'for ALU "add" operation*/

v

if (LOCAL SLB-of (mult)) = kalc := 31 fi;
./*integer value for ALU';pass left’ opetator*/
cocycle |
J sh_end := CARRY of (pprod (kalé) mpca) mult d>>1(1);
pprod,sh _end := (pprod (kalc) mpcd) mult d>>1(1),0;
mult := (ppfod (kalc) mpcd) mult 4>>1(1)
coend; | - |

fscr1 := fscri1 - 1;

until (SPECIAL F_REG _ZERO of (fscrt)); /#test for fscri=0%/

_The pre- and .post- conditions for the loop are as follows:

'
TS
L
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sh_end pprod mult

1bit 31 18 17 ' D0

¢ ' >

31 mpcd O

Figure 7. i-th Iteration of Repeat Loop

i .
PRE-CONDITIONS: : -

1. answe=mult*mpcd
2. F = {fsid=fsod=ir.b & faocd=fail=29 & fair=ir.c}
3. i= (18 - fscr1)

4, fscri1=18 & pprod=0

POST~CONDITIONS:
1. F | |
2.‘.answo= pp;gd e mult, where "e" denotes concatenation
Proof OQutline A

Considér the assertion‘
" INV: { answo=pprod#*2'+mult[17..18-i]+mult[17-1i..0]*mpcd*2" &
F } |
On entry into the loop body for the first time, this
assertion clearly holds.since, initially, by |
PRE-CONDITION(3,4):
| (i =0}

hence {answ, = pprod + mult[17..0] * mpcd & F} =~
and, by?PRF—CONDITION(Q}'pprod=q,.

&~ {answo, = mult = mbcd‘& F}
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which is true by PRE-CONDITION(1,2).
Now, assume that INV holds at the start of the i-th
iteration of the loop body. Then for this iteration the

following proof outline holds:
{ answo=pprod*2 ' +mult[17..18-1i]+mult[17-1i..0])*mpcd*2' & F }

kalc := 9;
if (LOCAL SLB of (mult)) = kalc := 31 fi;
q answo=pprod*2*+mult[17..18-i]+muit[17-i..0]*mpcd$2?

& (kalc=9 & mult[0]=1) V (kalc=31 & mult[0]=0) & F}

cocycle
sh_end := CARRY of (pprod (kald) mpcd) mult d>>1(1);

pprod,sh_end := (pprod (kalc) mpcd) mult d>>1(1),0;

{ ans;vo;ppr‘od*2‘+1 + (pprod+mult[0}*mpcd)[0..0]*2"

+mult[17..18-1]+mult[17-i..1]e0*mpcd*2’ & sh_end=0 & F}

mult := (pprod (kalc) mpcd) mult d>>1(1)
coend '
{ answo=pprod*2'*' + mult[17..18-(i+1)]

+mul£[17-(i+1fl.0]*mpcd*2'“l& F }
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{ answo=pprod*2‘+mult[17..18—i]+mult[17-i.10]¥mpcd*2' & F }

In other words, INV is an jnvariant relation for the loop

o
|9
e

(i.é. {INV} loop body {INV}).

and »
{INV & - spchAL'F—hEGjZERo of (fecri1) = INV}

by the proof rule for the repeat statement it can be

‘;oncludgd that

| | {INV}

\\\ repeat ... until (SPECIAL F_REG_ZERO of (fscri1))

{INV & fsrci1=0} -

which implies, as the post-conditiqn of the repeat o ~—C
DA |

i
-statement:

3

{ answo=ppr8d¥2f+mult[17..181i]+mult[17-i..O]*mpcd*2"& F}

&

PR & i=18 & fscri=0}
By substitutiné 18 for i in the aboVelandkgimplifyihg one
thainsvthé assertion: |
{anéwg = pbrod.o mul®t & F}
which_féj;égﬁdesired POST~CONDITION.
6.2 The CALL Iﬁstruqﬁion

"The objedtive of the QM-C CALL instruction_is to séve
the coqtents'of'the the QM-C registers and to allocate Space
.6n the stack before transferring control to the §§lled
procedure. The QM-C registers are mapped onto the 32 local
store registers, their ;orrespondendélis Shownwiﬁ Fig. 8.

The following synonym declarations are in effect and relate

the QM-C registers shown in Fig. 8 to their corrépponding_'

YA

FeatR
P



QM—1 Local Store Registers

0
e :
11
temporary |12
registers :
15 =
reg0 - 16
: variable registers :
A . :
"reg7 ' '.5 - 23
pc. program counter 24
tp frame pointer 25
' :_eb external base 26
ax . auxiliary memory "ol '~r 27
sp - - stack pointer . 28
scratch 2%
., registers 30
instruction register 31
‘FigUre 8. QM-C Registervfﬁle
local store location. N
= local sbore[24j /*program counter*/'w
= 1ocal _store[25] ‘: /xframe pointer#/ﬂ*f
=) local stoge[26] . /*external base*/
= local store[27] ”’w/*auxlllarx p01nter¢/

A/‘

local store[28] ‘ /*stackyp01nter*/

‘¥
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The stack in QM-C is implemented in control store, its state
prior to execution of the CALL instruction is given in
Fig. 9.

Saving the contents of the pc, fp and variable

‘registers 1in the OQM-C register flle is performed us.ag a

.‘/
'repeat loop in S*(QM-1) Before' execution of this loop the

. ¢."=~\
tas

following is assumeﬁ‘to*ﬁoldﬁ

1. The 1nstruct1on red;ster, ir, now conteins the value of
the,"mesk;iordﬁ. (see Flg 9) The mask-word is the first
wordwof Lhe\called procedure and 1nd1cates both the
lowest Augber variable reglster used by the procedure

andwthe space required for’ storlng local ‘variables.

0
ey

2. The program counter has been incremented for rezurn to
the céliing procedure.

3. The F-store reglster "fscr1" now contains the value of
"the lowest local store reglster whlch w1ll be saved!

This value is equa. to 16+low_reg (as contained in the

mask-word).

Giyen these conditions each iteration'of the repeat loop,

'startihgbwith-"fp" (local store[25]) down to the lowest

varlable reglster spec1f1ed by "fsrc1", saves the contents

{

of the local store reglster onto the stack in control store.

~ The S*(QMrl) code penﬁormlng thlS operation is: , ’ «
repeat )

fcid := fcid - 1; /*p01nts to register to be saved */

) control _storelcs_ addr source.reg_ addr[fc1a] cod bus
o A1) I T X .
e, b v

ol ' . . )
, .

Ty .
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High Address
OM—1 Control Store

value of pc+1

value or olc fp

- g

SR

: variable . ._yisters "lﬁﬁv "
low 'reg L“uﬁﬂ'

, -« fp
space allocated for local
frame variables of called proc.

size o

~-——— Sp

Mask-word

Sy low_reg frame size

Figure 9. QM-C Stack Frame and Mask-Word - B : A

14

Y ;

.- := control sg¥ore datalfci
. RIPre_
. /% saves register on stack in control sﬁo;\;}/

“«

kx.local_store[28] := xdecl kx.local_store[28];

/% decrements stack pointer
fscr2 := fcid - fsrcil; - . . /* set-up for test ¥/

‘until (special F_NOT ZERO of (fsrc2))

Formally, before execution of the CALL instruction the

" following -auxiliary variables are defined.

1. Ppco=pcC
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2. Spo=Sp

3. V(k)(165ks235 rego[k-16]=local storelk]

4. lowjrego=control_store[ir.ab+eb][17..12]'& 0<low regoy<7
Now, theipre— and post-conditions of thé repeat loop are:

PRE-CONDITIONS:

1. F={ v(k)(16<k<23) local_storel[k]=rego[k-16] & ir=mask
pc=pco+1 & fcia=28 & fscri=low regoe+16 & 17sfscf1524}
- -

2. {sp=spo & fcid=26}

POST-CONDITIONS
1. F

)/

2. control store[spo-1l=pcotl & control_store[spo]=fpo'Jj”fgf3

3. ¥(k)(low_reg<k<B) control_store[spo-9+kl=rego[k]

4, sp=spotlow_reg-1i0

Proof Outline ‘ | S

Consider the assertion,.P:

{V(k)(fc{dsk<26) control store[spo-k+25]}=local_storelk]

& écid>fscr1 & sp=spo+fctd-26 & F}
On entry into the loop bodygﬁor the the first timé\P is
clearly true by PRECONDITIO&Q(1,2). Now; as§9me that P holds
at the start of some iteration of the loop boay; Thenffdr
. this iteration the following pfoof outline holds.

{ V(k)(fcid<k<26) control store[spo-k+25]=local storel[k]

'~

sp=spo+fcid-26 & fcid>fsrc1 & F}

fcid = fcid -1



i.n

63

{ v(k)(fcid<k<26) cohtrol_store[spo?k+25]=local_store[k]
i

sp=spo+fcid-25 & fcid2fsrcl & F}

control_store(cs_addr_source.reg_addr[fcia),cod_bus

:= control store datalfcid];

{ v(k)(fcid<k<26) control;stobg%§p0@$425]=local_store[k]
TR oty
sp=spo+tfcid-25 & fcidzfsrcl & F}

kx.local_store[28] := xdecl kx.local store[28];

{ ¥(k)(fcid<k<26) control_store[spo-k+25]=local store[k]

sp=spo+fcid-26 & fcidzfsrcl & F}

)
v

fsrc2 := fcid - fsrct;

{ V(k)(fcid<k<26) control_store[spo-k+25]=local_ storelk]

sp=spotfcid-26 &,ﬁécr2=fcid~fsrc1 & F}

Now-if Q is the assertion given above:

{ V(k5lf¢jd§k<26) control_store[spo-k+25]=local storel[k] ®

o ng & sp§§p°+fcid-26 & fscr2=fcid-fsrcl & F}
‘ G ,

then . . . S

"

g ZQ & gsrczgégﬁ?P *

S

Therefore P is the'invariéglifelation for the loop and by
" . v s W L °

.the proef rule for the-regeat,statement it can be concluded

o
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that:
(P}
'regeat ..% until (SPECIAL F_REG_ZERO of (fscr2))
{Q & fsrc1=0)}
implying as the post-condition of the lobp that: .
fcid=fsrcl1=low_rego+16 b

and
by substituting low_rego+16 for fcid and simplifying one
obtains the desired post-condition:
{control_store[spol=pco+1 & control_storel[spo-1]=fp,

& V(k)(low reg<k<8) cohtrol_store[spo—9+k]=rego[k]

2 : & sp=spq+low_reg-10 & F}

e



Chapter 7

Conclusions ' 0

-

This thesis demonstrates very clearly the issues that arise
"in microcode verification. It has been shown that although

L..2 language constructs are quite similar to those in high

level languages their semantics:may differ significantly. In
constructing%a deductine system for S*(QM-1) these
dlfferences became apparent in descrlblng residual control,
the different kinds of 51de—effects, transient locations,

and the sequencing mechanisms in the QM-1. Yet, in spite of

S

theSe differences and‘with'a minimum number of changes to

S*(QM—1) 1t was shown that the axiomatic approach to the

..Yad

e de“was poss:ble Givén that these
4

g
same issues are characterlstlc of m1cro<arch1tectures in

ver1f1catlon of S*(QM 1)

general, it is hoped'that the form of the axioms and proof
-ru}e54AS.well as the‘relevant extensions to S*(QM-1)
'necessitated by them, will have wider applications for other
host machlnes ‘and m1croprogramm1ng languages ‘
Basically, the follow1ng changes to S*(QM 1) were found
necessary in order to ensure microprogram vetlflablllty:

1 ‘Side—effects were "classified" and embedded either ing
the-proof rules og\in the language itself. Eﬁgédding |
side-effects in the language required the construction
of the multiple assignment statement and the noveff
‘unlon with- selector data type.-

<2, Testable conditions in the QM 1 were bound to the

specific expressions which caused the conditions to

65 | ‘
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»

arise. Indeed, unlike the usual assumption made for
expressions in programming languages, expressions in
S*(QM-1) can yield side-effects.

3. Transient locations were coupled to the statement(s)
using their velue.‘

4. JP\“:i‘he parallel construct, =, wes introduced forvthe
parallel coﬁpoéition ef statements.

’KA surprising, but pleasant, result of the axiomatization of
S*(QM-1) is that, it was possible to produce a reasonably
small and uniform set of axioms and proef ruleeigkcording eo
the critefje set fefth in chapter 3. Even with fhe= |
cdmplexity of the QM-1 ﬁané—afchitecture and the variety of

side-effects and conditions that may arise, it .was still
possibie to define prbof rules with few qualifications. For
instance, the proof rule for assignment is validefdr.al7
assignments in\ehe\language encompassing the many different -
side-effects which can oeeur. | *lﬁg

| However, it should be noted that the axiematieation of
S*(QM~1) could have been”simplified if some of the features
of the OM-1 were not presenfl Although in some cases there
is a trade—pfffggtween verification and the design of the
QOM-1 as an efficient host-machine.there are changes to the
atchitecture which, if done, could simplify verification
without compromising its design. These changes are: i
1. the removal of those side-effects whose semantics wefe_

embedded into the multiple-assignment'statement: (cf.

a .

5.2.3)
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2. the removal of locations which'are declared as
pseudovariables. For example, the left end right inouts
to the alu should be gated into the alu rather than

~continually propagated through it.

3. the polling of interrupt reguests. In the description of
the call and act statements it was necessary to restrict
the actions of interrupt procedures because of the
uncertainty of knowing exactly when the interrupt would

be activated.
\

~

. 7.1 Evaluation of S#*

.Since the constructs in S* are based on the structured

constructs in PASCAL, the formation of an axiomatic

definition for S*(QM-1) was aided by the semantics presented

by Hoare and Wirth for PASCAL [Hoa73a]. The appearance of
these constructs in S* allows the appiiqption of existfng
knowledge on the semantics of these constructs to form a

basis for analyzing them with respect to languages
. » ‘ 1\_/;'
instantiated-from S, 4

A second feature of the language which proved useful in

e

describing the semantics of S*(QM 1) was the notlon of .

types. The concept of type in S# is not nearly as powerful

N

" as that in high level languages, since in the

m1croprogramm1ng domain compllabllllty must also be

considered. Yet, as demonstrated by its use 1n both the

union—with-sele;tor and array—w1th—p01nter, types can play

B/

an important role in providingda lower level description of
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the underlying architecture. The introduction of these types
in S*(QM-1) enipled the control function of many of the

“Aresidual control registers to be incorporated into the
semantics of the language.

It must.héwever be noted that it was not éossible to
define S*(QM-1) éomplétely within the framework of Sx.
Recall that one of the aims of S* was the éonstruction %f'
microcode without reference to control store organization.
Yet 1t was precisely this control information which had to
be incorporated into S*(QM-1). This indicates, at least in
the case of very horizontal architectures, it may;not be
posgible to abstract entirely the control‘structure of the
‘micro-architecture and that in these cases a much lower
level of description is required. -
| As a final point, an indirect conseéﬁence of tﬁis work

is that the very act of formalizing the semantics of the

language raised immeasurablj, one's understanding of the

really important properties of the QM-1. In a sense,

R
[ on

S*(QM-1) and its semantics is a precise and (hopefully)

unambiguoﬁs mbdéi\of the ¢ nano-architecture which
sabstracts the variety of behaviorélbgharacteristic of the
" machine into a §mall set of concepts. The exércise of
defiviné an axiomatic definition of.S*(Qﬁ-1) was worthwhile

7 2
from this viewpoint alone.

<
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7.2 Further Work

A problem of some concern which Hécomeé evident from
the proofs presented in chapﬁer 6 is the very low level of
description and ve ification that may have to be carried out
in the case-gf hor§£06£a1 programs to ensure that the
programmer is able to utilize machine resources both
efficiently and correctly. Indeed, there is a substantial
gap between the larger goal of a microcéde routine (e.g. the
multipliéation of the contents of two register operands) gnd
the finél form of the S*(QM-1) program. It is true thdt the

language does permit, .to a certain extent, descriptions at

different levels of abstraction. An' ALL or 'shift ope

can be spec&fled either by a keyword (+,-,and, etc.)
actually spec1fy1ng the value of the kalc or kshc flelds
local store operands of- the ALU may be specified directly
(fair.r- alu[3] fail.l alu[4] ) or indirectly?and at a lower
’abstractlon level (I alu[fallL r_alulfair]). But, since
eVery cons;ruct in S*(QMf1) ié’bound”to.thglgM-i hardware sé"-
zthe range ;f the abstréction level 1is not néarly broad .
enough. | ' |
Dasgupta [Das82b] has suggested that one way of
reducing the gap between the broad, abstract, function and
the concrete, detailed, form is to use a family of closely
related (or "kin");langpages each designed for, and oriented
towaras, a specific abstraction level or mode of - ‘
description.\For example a machine independent, operational,

architecture descriptionnlanguage called S*A [Das82a]

- - et

5 .

J‘J
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“ together with S* form the first members of an open-ended

language family. Also'discﬁssed by Dasdupta [Das82b] is how
"SxA and S*(QM-1) can be used in the systematic design of a
target archiﬁecturg (in S#A) and its QM—1 based emuiator,
QM-C S%n S*(QM-1)). The language S#*A was also axiomatized $o
‘that it could be formally verified [DasB3al.

Ekperience with the work reported here reinforces the
idea that such families of.labguages are psychologically
necessary if control ié to be maintainedldver the firmware
design pfocess. Additionally, it ‘increases confidence ir the
correétness'of the de;ign while‘éiving a c~~3istent and
unified means of documenting the distinct stayges ol the
aesign. An important question that remains to be answered
is: "given an architecture design and it's description in a
"hig;er" level language such as S*A, how is this to be |
transformed into lower lévels of description, such as
S*(QM—1)7 and demonstrably preservewits correctness?"

Aléecond issue réquiring closer examination is the
.exact form of the .assertion language used in the proofs of
correetness. Again, because of the low—lgvel nature of
microprograms, problems\are encounféred in constructing and

‘manipuiating the assertions in the proofs.}For examplé;
D ¥ .
gériabfes~appearing in assertions must be interpreted not

only as bit sequences but also as the integer values they
]

reEresent.’The*scarcity of theorems on finite bit arithmetic

- makes simplifying mixed ekpréSsiQns containing arithmetic

and logical operators quite diffi%ult. This problem became

v
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. o
evident in constructing the proof for the multiplication

instruction in chapter 6. The algorithm'used both shifting

‘and concatenation operators which had to be interpreted with -

.respect to the more usual 2's complement representation of

the bit séquences. More specifically what is .equired is:

1. A canonical form for representing the value of
expressions in assertions. This is certainly needed in
view ofnfhe sever;l different representations available

(i.e. 2'complement, 1'complement, sign and magnitude
lebt.:‘c ). RN :
2. A body of knowledge to help in the simplification of

mixed expressions and also transformations between the

‘35_.;§;diffgrent representations.

ifg‘solution to tﬁis probiem is crucial, if as claimed, all
constructive pfbogvtechnique is fo remain an intellectually
manageable process. Cleafly a complex and unnatural .
assertion languﬁge detracts ffom'the general usefulne§s of

microprogram verification by, increasing the likelihood of

error in the actual proof.

&

B
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