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Abstract

For the weight function
∏d

j=1|xj|2κj on the unit sphere Sd−1, estimates

of the maximal Cesàro operator of the weighted orthogonal polynomial expan-

sions at the critical index are proved, which allow us to improve several known

results in this area, including the critical index for the almost everywhere con-

vergence of the Cesàro means, the sufficient conditions in the Marcinkiewitcz

multiplier theorem, and a Fefferman-Stein type inequality for the Cesàro op-

erators. These results on the unit sphere also enable us to establish similar

results on the unit ball and on the simplex.
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Chapter 1

Introduction

Spherical Harmonic Analysis is an important branch of Harmonic analysis, a

mainstream branch of mathematics that has a history of more than 200 years.

It is important in many theoretical and practical applications, particularly in

the computation of atomic orbital electron configurations, representation of

gravitational fields, geoids, and the magnetic fields of planetary bodies and

stars, and characterization of the cosmic microwave background radiation. In

3D computer graphics, spherical harmonics play a special role in a wide variety

of topics including indirect lighting (ambient occlusion, global illumination,

precomputed radiance transfer, etc.) and recognition of 3D shapes.

The purpose of this thesis is to study the pointwise convergence of Cesáro

means of weighted spherical polynomial expansions on the unit sphere. For a

class of product weights that are invariant under the group Zd2 on the sphere,

estimates of the maximal Cesàro operator of the weighted orthogonal polyno-

mial expansions at the critical index are proved, which allow us to improve

several known results in this area, including the critical index for the almost

everywhere convergence of the Cesàro means, the sufficient conditions in the
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Marcinkiewitcz multiplier theorem, and a Fefferman-Stein type inequality for

the Cesàro operators. These results on the unit sphere also enable us to es-

tablish similar results on the unit ball and on the simplex.

This is a joint work with my supervisor Dr. Feng Dai and Dr. Sheng Wang

(Guilin University of Electronic Technology, China). And our paper is now

published in [1].

Below, we shall describe the main results and their background in more

details with a “ minimum” of definitions and notation. Necessary details and

appropriate definitions will be given in the next chapter.

Let Sd−1 := {x ∈ Rd : ‖x‖= 1} denote the unit sphere of Rd equipped with

the usual rotation-invariant measure dσ, where ‖x‖ denotes the Euclidean

norm. Let

hκ(x) :=
d∏
j=1

|xj|κj , x = (x1, · · · , xd) ∈ Rd, (1.1)

where κ := (κ1, · · · , κd) ∈ Rd and κmin := min16j6d κj >0. Throughout the

thesis, all functions and sets will be assumed to be Lebesgue measurable.

We denote by Lp(h2
κ;Sd−1), 16p6∞, the Lp-space of functions defined on

Sd−1 with respect to the measure h2
κ(x) dσ(x). More precisely, Lp(h2

κ;Sd−1) is

the space of functions on Sd−1 with finite norm

‖f‖κ,p:=
(∫

Sd−1

|f(y)|ph2
κ(y)dσ(y)

) 1
p

, 16p <∞.

For p =∞, L∞(h2
κ) is replaced by C(Sd−1), the space of continuous functions

on Sd−1 with the usual uniform norm.

A spherical polynomial of degree at most n on Sd−1 is the restriction to

Sd−1 of an algebraic polynomial in d variables of total degree n. We denote
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by Πd
n the space of all spherical polynomials of degree at most n on Sd−1. We

denote by Hd
n(h2

κ) the orthogonal complement of Πd
n−1 in Πd

n, where it is agreed

that Πd
−1 = {0}. Each element in Hd

n(h2
κ) is then called a spherical h-harmonic

polynomial of degree n on Sd−1. In the case of hκ = 1, a spherical h-harmonic

is simply the ordinary spherical harmonic.

The theory of h-harmonics is developed by Dunkl (see [8, 9, 10]) for a family

of weight functions invariant under a finite reflection group, of which hκ in (1.1)

is the example of the group Zd2. Properties of h-harmonics are quite similar to

those of ordinary spherical harmonics. For example, each f ∈ L2(h2
κ;Sd−1) has

an orthogonal expansion in h-harmonics, f =
∑∞

n=0 projn(h2
κ; f), converging in

the norm of L2(h2
κ;Sd−1), where projn(h2

κ; f) denotes the orthogonal projection

of f onto Hd
n(h2

κ), which can be extended to all f ∈ L1(h2
κ; Sd−1).

For δ > −1, the Cesàro (C, δ) means of the h-harmonic expansions are

defined by

Sδn(h2
κ; f) :=

n∑
j=0

Aδn−j
Aδn

projj(h
2
κ; f), Aδn−j =

(
n− j + δ

n− j

)
, n = 0, 1, · · · ,

whereas the maximal Cesàro operator of order δ is defined by

Sδ∗(h
2
κ; f)(x) := sup

n∈N
|Sδn(h2

κ; f)(x)|, x ∈ Sd−1.

One of our main goals in this thesis is to study the following weak type

estimate of the maximal Cesàro operator: for f ∈ L1(h2
κ;Sd−1),

measκ

{
x ∈ Sd−1 : Sδ∗(h

2
κ; f)(x) > α

}
6C
‖f‖κ,1
α

, ∀α > 0, (1.2)

here, and in what follows, we write measκ(E) :=
∫
E
h2
κ(x) dσ(x) for a mea-
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surable subset E ⊂ Sd−1. Such estimates have been playing crucial roles in

spherical harmonic analysis on the sphere; for example, they can be used to es-

tablish a Marcinkiewicz type multiplier theorem for the spherical h-harmonic

expansions (see [4, 6]).

The background for this problem is as follows. In the case of ordinary

spherical harmonics ( i.e., the case of κ = 0), it is known that (1.2) holds if

and only if δ > d−2
2

. (See [4, 21]) . Indeed, in this case, since the Cesàro

operators are rotation-invariant, a well-known result of Stein [18] implies that

for hκ(x) ≡ 1, (1.2) holds if and only if

lim
n→∞

Sδn(h2
κ; f)(x) = f(x), a.e. x ∈ Sd−1, ∀f ∈ L1(h2

κ;Sd−1). (1.3)

In the case of κ 6= 0 (i.e., the weighted case), while a standard density argu-

ment shows that (1.2) implies (1.3), the result of Stein [18] is not applicable to

deduce the equivalence of (1.2) and (1.3), since the measure h2
κdσ is no longer

rotation-invariant. In fact, an estimate much weaker than (1.2) was proved

and used to study (1.3) for δ > λκ := d−2
2

+
∑d

j=1 κj in [25], whereas (1.2)

itself was later proved in [6] for δ > λκ, where the results are also applicable

to the case of more general weights invariant under a reflection group. Finally,

for hκ in (1.1), it was shown in [32] that (1.3) fails for δ < σκ with

σκ := λκ − κmin =
d− 2

2
+

d∑
j=1

κj − min
16j6d

κj. (1.4)

Of related interest is the fact that σκ is the critical index for the summablity
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of the Cesàro means in the space L1(h2
κ;Sd−1). More precisely,

lim
N→∞

‖SδN(h2
κ; f)− f‖κ,1= 0, ∀f ∈ L1(h2

κ;Sd−1) (1.5)

if and only if δ > σκ. (See [14, 7]).

In this thesis, we prove that if κ 6= 0, then (1.3) holds if and only if δ>σκ,

and moreover, if at most one of the κi is zero, then the weak estimate (1.2)

holds if and only if δ>σκ. Of special interest is the case of δ = σκ, where

our results are a little bit surprising in view of the facts that (1.5) fails at the

critical index δ = σκ, and the corresponding results in the case of κ = 0 (i.e.,

the case of ordinary spherical harmonics) are known to be false at the critical

index σ0 := d−2
2

.

Our results on the estimates of the maximal Cesàro operators also allow

us to establish a Fefferman-Stein type inequality for the Cesàro operators and

to weaken the conditions in the Marcinkiewitcz multiplier theorem that was

established previously in [6]. The precise statements of our results on the

sphere can be found in Theorem 3.1.1, and Corollaries 3.7.1-3.7.6 in the third

chapter.

We will also establish similar results for the weighted orthogonal polyno-

mial expansions with respect to the weight function

WB
κ (x) :=

( d∏
j=1

|xj|κj
)

(1− ‖x‖2)κd+1−1/2, min
16i6d+1

κi>0 (1.6)

on the unit ball Bd = {x ∈ Rd : ‖x‖61}, as well as for the weighted orthogonal
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polynomial expansions with respect to the weight function

W T
κ (x) :=

( d∏
i=1

x
κi−1/2
i

)
(1− |x|)κd+1−1/2, min

16i6d+1
κi>0. (1.7)

on the simplex Td = {x ∈ Rd : x1>0, . . . , xd>0, 1− |x|>0}, here, and in what

follows, |x|:=
∑d

j=1|xj| for x = (x1, · · · , xd) ∈ Rd. The precise statements of

our results on Bd and Td can be found in Theorem 4.1.1, Corollaries 4.2.1-4.2.4,

Theorem 5.1.2, and Corollaries 5.2.1-5.2.4 in the fourth and the fifth sections.

It turns out that results on the unit ball Bd are normally easier to be

deduced directly from the corresponding results on the unit sphere Sd, whereas

in most cases, results on the simplex are not able to be deduced directly from

those on the ball and on the sphere due to the differences in their orthogonal

structures. (See, for instance, [6, 7, 24, 26]). In the fifth chapter of this thesis,

we will develop a new technique which allows one to deduce results on the

Cesàro means on the simplex directly from the corresponding results on the

unit ball.

We organize this thesis as follows. Chapter two contains some preliminary

materials on weighted orthogonal polynomial expansions on the unit sphere,

the unit ball and the simplex. Our main results on the unit sphere are stated

and proved in the third chapter. After that, in the fourth chapter, similar

results are established on the unit ball. These results are deduced directly

from the corresponding results on the unit sphere. Finally, in the fifth chapter

we discuss how to deduce similar results on the simplex from the corresponding

results on the unit ball. A new technique is developed.
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Chapter 2

Preliminaries

In this chapter, we will describe some necessary materials for weighted orthog-

onal polynomial expansions on the sphere, the ball and the simplex. Unless

otherwise stated, the main reference for the materials in this section is the

book [10].

2.1 Notations

In this section, we shall introduce some necessary notations that will used

frequently in the rest of the thesis. We use the notation C1 ∼ C2 to mean that

there exists a positive universal constant C, called the constant of equivalence,

such that C−1C16C26CC1. And we note C1 . C2(C1 & C2) if there exists a

positive universal constant C such that C16CC2(C1 > CC2).

Let Rd denote the d-dimensional Euclidean space, and for x ∈ Rd, we write

x = (x1, x2, · · · , xd). The norm of x is defined by ‖x‖:=
√∑d

j=1 x
2
j . The unit
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sphere Sd−1 and the unit ball Bd of Rd are defined by

Sd−1 := {x : ‖x‖= 1}, and Bd := {x : ‖x‖6 1}.

Given x = (x1, · · · , xd) ∈ Rd, and ε = (ε1, · · · , εd) ∈ Zd2 := {±1}d, we write

x := (|x1|, · · · , |xd|), |x|:=
∑d

j=1|xj|, and xε := (x1ε1, · · · , xdεd). We denote by

ρ(x, y) the geodesic distance, arccos x · y, of x, y ∈ Sd−1.

The simplex Td of Rd is defined by

Td = {x ∈ Rd : x1>0, . . . , xd>0, 1− |x|>0}

2.2 Orthogonal polynomial expansions in sev-

eral variables

Let Ω denote a compact domain in Rd endowed with the usual Lebesgue mea-

sure dx, where in the case of Ω = Sd−1, we use dσ(x) instead of dx to denote

the Lebesgue measure. Given a nonnegative product weight function W on Ω,

we denote by Lp(W ; Ω) the usual Lp-space defined with respect to the mea-

sure Wdx on Ω. For each function f ∈ Lp(W ; Ω), we define its ‖·‖p,W norm

as following

‖f‖p,W :=

(∫
Ω

|f(x)|pW (x)dx

) 1
p

, 1 6 p <∞,

and for p =∞, we consider the space of continuous functions with the uniform

norm

‖f‖∞,W := sup
x∈Ω
|f(x)|.
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We denote Vdn(W ) the space of orthogonal polynomials of degree n with

respect to the weight function W on Ω. Thus, if we denote by Πn(Ω) the space

of all algebraic polynomials in d variables of degree at most n restricted on the

domain Ω, then Vdn(W ) is the orthogonal complement of Πn−1(Ω) in the space

Πn(Ω) with respect to the inner product of L2(W ; Ω), where it is agreed that

Π−1(Ω) = {0}.

Since Ω is compact, each function f ∈ L2(W ; Ω) has a weighted orthogonal

polynomial expansion on Ω, f =
∑∞

n=0 projn(W ; f), converging in the norm

of L2(W ; Ω), where projn(W ; f) denotes the orthogonal projection of f onto

the space Vdn(W ). Let Pn(W ; ·, ·) denote the reproducing kernel of the space

Vdn(W ); that is,

Pn(W ;x, y) :=

adn∑
j=1

ϕn,j(x)ϕn,j(y), x, y ∈ Ω

for an orthonormal basis {ϕn,j : 16j6adn := dimVdn(W )} of the space Vdn(W ).

The projection operator projn(W ) : L2(W ; Ω) 7→ Vdn(W ) can be expressed

as an integral operator

projn(W ; f, x) =

∫
Ω

f(y)Pn(W ;x, y)W (y)dy, x ∈ Ω, (2.1)

which also extends the definition of projn(W ; f) to all f ∈ L(W ; Ω) since the

kernel Pn(W ;x, y) is a polynomial in both x and y.

Let Sδn(W ; f), n = 0, 1, · · ·, denote the Cesàro (C, δ) means of the weighted

orthogonal polynomial expansions of f ∈ L(W ; Ω). Each Sδn(W ; f) can be

expressed as an integral against a kernel, Kδ
n(W ;x, y), called the Cesàro (C, δ)
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kernel,

Sδn(W ; f, x) :=

∫
Ω

f(y)Kδ
n(W ;x, y)W (y)dy, x ∈ Ω,

where

Kδ
n(W ;x, y) := (Aδn)−1

n∑
j=0

Aδn−jPj(W ;x, y), x, y ∈ Ω.

Finally, given a sequence of operators Tn, n = 0, 1, · · · on some Lp space,

we denote by T∗ the corresponding maximal operator defined by T∗f(x) =

supn|Tnf(x)|.

2.3 h-harmonic expansions

We restrict our discussion to hκ in (1.1), and denote the Lp norm of Lp(h2
κ; Sd−1)

by ‖·‖κ,p,

‖f‖κ,p:=
(∫

Sd−1

|f(y)|ph2
κ(y)dσ(y)

)1/p

, 16p <∞

with the usual change when p = ∞. An h-harmonic on Rd is a homogeneous

polynomial P in d variables that satisfies the equation ∆hP = 0, where ∆h :=

D2
1 + . . .+D2

d, and

Dif(x) := ∂i + κi
f(x)− f(x− 2xiei)

xi
, 16i6d,

with e1 = (1, 0, · · · , 0), · · ·, ed = (0, · · · , 0, 1) ∈ Rd. The differential-difference

operators D1, . . . ,Dd are the Dunkl operators, which are mutually commuting.

The restriction of an h-harmonic on the sphere is called a spherical h-harmonic.

A spherical h-harmonic is an orthogonal polynomial with respect to the weight

function h2
κ(x) on Sd−1, and we denote by Hd

n(h2
κ) the space of spherical h-

harmonics of degree n on Sd−1. Thus, using the notation of the last subsection,

10



we have Hd
n(h2

κ) ≡ Vdn(h2
κ).

A fundamental result in the study of h-harmonic expansions is the following

compact expression of the reproducing kernel (see [9, 24, 29]):

Pn(h2
κ;x, y) = cκ

n+ λκ
λκ

∫
[−1,1]d

Cλκ
n (

d∑
j=1

xiyjtj)
d∏
i=1

(1 + ti)(1− t2i )κi−1dt, (2.2)

where Cλ
n is the Gegenbauer polynomial of degree n, and cκ is a normalization

constant depending only on κ and d. Here, and in what follows, if some κi = 0,

then the formula holds under the limit relation

lim
λ→0

cλ

∫ 1

−1

f(t)(1− t)λ−1dt =
f(1) + f(−1)

2
.

The following pointwise estimates on the Cesàro (C, δ) kernels were proved

in [7].

Theorem 2.3.1: Let x = (x1, · · · , xd) ∈ Sd−1 and y = (y1, · · · , yd) ∈ Sd−1.

Then for δ > −1,

|Kδ
n(h2

κ;x, y)|6cnd−1

[∏d
j=1(|xjyj|+n−1ρ(x, y) + n−2)−κj

(nρ(x, y) + 1)δ+d/2

+

∏d
j=1(|xjyj|+ρ(x, y)2 + n−2)−κj

(nρ(x, y) + 1)d

]
.

2.4 Orthogonal expansions on the unit ball

The weight function WB
κ we consider on the unit ball Bd is given in (1.6) with

κ := (κ1, · · · , κd+1) ∈ Rd
+. It is related to the hκ on the sphere Sd by

h2
κ(x,

√
1− ‖x‖2) = WB

κ (x)
√

1− ‖x‖2, x ∈ Bd, (2.3)

11



in which hκ is defined in (1.1) with Sd in place of Sd−1. Furthermore, under

the change of variables y = φ(x) with

φ : x ∈ Bd 7→ (x,
√

1− ‖x‖2) ∈ Sd+ := {y ∈ Sd : yd+1>0}, (2.4)

we have

∫
Sd
g(y)dσ(y) =

∫
Bd

[
g(x,

√
1− ‖x‖2 ) + g(x,−

√
1− ‖x‖2 )

] dx√
1− ‖x‖2

.

(2.5)

The orthogonal structure is preserved under the mapping (2.4) and the

study of orthogonal expansions for WB
κ on Bd can be essentially reduced to

that of h2
κ on Sd. More precisely, we have

Pn(WB
κ ;x, y) =

1

2

[
Pn(h2

κ; (x, xd+1), (y, yd+1)) (2.6)

+ Pn(h2
κ; (x, xd+1), (y,−yd+1))

]
where x, y ∈ Bd, and xd+1 =

√
1− ‖x‖2, yd+1 =

√
1− ‖y‖2. As a consequence,

the orthogonal projection, projn(WB
κ ; f), of f ∈ L2(WB

κ ;Bd) onto Vdn(WB
κ ) can

be expressed in terms of the orthogonal projection of F (x, xd+1) := f(x) onto

Hd+1
n (h2

κ):

projn(WB
κ ; f, x) = projn(h2

κ;F,X), with X := (x,
√

1− ‖x‖2). (2.7)

This relation allows us to deduce results on the convergence of orthogonal

expansions with respect to WB
κ on Bd from that of h-harmonic expansions on

Sd.

12



For d = 1 the weight WB
κ in (1.6) becomes the weight function

wκ2,κ1(t) = |t|2κ1(1− t2)κ2−1/2, κi>0, t ∈ [−1, 1], (2.8)

whose corresponding orthogonal polynomials, C
(κ2,κ1)
n , are called generalized

Gegenbauer polynomials, and can be expressed in terms of Jacobi polynomials,

C
(λ,µ)
2n (t) =

(λ+ µ)n(
µ+ 1

2

)
n

P (λ−1/2,µ−1/2)
n (2t2 − 1),

C
(λ,µ)
2n+1(t) =

(λ+ µ)n+1(
µ+ 1

2

)
n+1

tP (λ−1/2,µ+1/2)
n (2t2 − 1),

(2.9)

where (a)n = a(a + 1) · · · (a + n − 1), and P
(α,β)
n denotes the usual Jacobi

polynomial of degree n and index (α, β) defined as in [23].

2.5 Orthogonal expansions on the simplex

The weight functions we consider on the simplex Td are defined by (1.7),

which are related to WB
κ , hence to h2

κ. In fact, W T
κ is exactly the product of

the weight function WB
κ under the mapping

ψ : (x1, . . . , xd) ∈ Bd 7→ (x2
1, . . . , x

2
d) ∈ Td (2.10)

and the Jacobian of this change of variables. Furthermore, the change of

variables shows

∫
Bd
g(x2

1, . . . , x
2
d)dx =

∫
Td
g(x1, . . . , xd)

dx
√
x1 · · ·xd

. (2.11)

The orthogonal structure is preserved under the mapping (2.10). In fact,
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R ∈ Vdn(W T
κ ) if and only if R ◦ ψ ∈ Vd2n(WB

κ ). The orthogonal projection,

projn(W T
κ ; f), of f ∈ L2(W T

κ ;Td) onto Vdn(W T
κ ) can be expressed in terms of

the orthogonal projection of f ◦ ψ onto Vd2n(WB
κ ):

projn(W T
κ ; f, ψ(x)) =

1

2d

∑
ε∈Zd2

proj2n(WB
κ ; f ◦ ψ, xε), x ∈ Bd. (2.12)

The fact that projn(W T
κ ) of degree n is related to proj2n(WB

κ ) of degree 2n

suggests that some properties of the orthogonal expansions on Bd cannot be

transformed directly to those on Td.
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Chapter 3

Weak estimates of the maximal

Cesàro operators on the sphere

3.1 Main result

Recall that the letter κ denotes a nonzero vector κ := (κ1, · · · , κd) in

Rd
+ :=

{
(x1, · · · , xd) ∈ Rd : xi>0, i = 1, 2, · · · , d

}
,

and

κmin := min
16j6d

κj, |κ|=
d∑
j=1

κj, σκ :=
d− 2

2
+ |κ|−κmin. (3.1)

We will keep these notations throughout this chapter. Some of our results

and estimates below are not true if κ = 0.

Our main result on the unit sphere can be stated as follows:

15



Theorem 3.1.1: (i) If δ>σκ, then for f ∈ L1(h2
κ;Sd−1) with ‖f‖κ,1= 1,

measκ

{
x ∈ Sd−1 : Sδ∗(h

2
κ; f)(x) > α

}
6C

1

α
, ∀α > 0

with α−1|logα| in place of α−1 in the case when δ = σκ and at least two

of the κi are zero.

(ii) If δ < σκ, then there exists a function f ∈ L1(h2
κ;Sd−1) of the form

f(x) = f0(|xj0|) such that Sδ∗(h
2
κ; f)(x) = ∞ for a.e. x ∈ Sd−1, where

16j06d and κj0 = κmin.

3.2 Proof of Theorem 3.1.1: Part (i)

Let us first introduce several necessary notations for the proofs in the next

few subsections. Recall that ρ(x, y) denotes the geodesic distance arccosx · y

between two points x, y ∈ Sd−1. We denote by B(x, θ) the spherical cap

{y ∈ Sd−1 : ρ(x, y)6θ} centered at x ∈ Sd−1 of radius θ ∈ (0, π]. It is known

that for any x ∈ Sd−1 and θ ∈ (0, π)

Vθ(x) := measκ(B(x, θ)) =

∫
B(x,θ)

h2
κ(y)dσ(y) ∼ θd−1

d∏
j=1

(xj + θ)2κj , (3.2)

which, in particular, implies that h2
κ is a doubling weight on Sd−1 (see [5, 5.3]).

And we denote that:

V (x, y) := measκ(B(x, ρ(x, y))).

16



For f ∈ L1(h2
κ;Sd−1), we define

Mκf(x) := sup
0<θ6π

1

measκ(B(x, θ))

∫
{y∈Sd−1: ρ(x,y)6θ}

|f(y)|h2
κ(y) dσ(y).

Since the weight h2
κ satisfies the doubling condition and is invariant under

the group Zd2, the usual properties of the Hardy-Littlewood maximal functions

imply that for f ∈ L1(h2
κ;Sd−1),

measκ{x ∈ Sd−1 : Mκf(x) > α}6C ‖f‖κ,1
α

, ∀α > 0. (3.3)

For the proof of the first assertion in Theorem 3.1.1, we use Theorem 2.3.1

to obtain

|Kδ
n(h2

κ;x, y)|6CEδ
n(h2

κ;x, y) + CRn(h2
κ;x, y), (3.4)

where

Eδ
n(h2

κ;x, y) : = nd−1

∏d
j=1(|xjyj|+n−1ρ(x, y) + n−2)−κj

(nρ(x, y) + 1)δ+d/2
, (3.5)

Rn(h2
κ;x, y) : = nd−1

∏d
j=1(|xjyj|+ρ(x, y)2 + n−2)−κj

(nρ(x, y) + 1)d
. (3.6)

Thus,

|Sδn(h2
κ; f, x)|6C|Eδ

n(h2
κ; f, x)|+C|T δn(h2

κ; f, x)|+C|Rn(h2
κ; f, x)|,

17



where

Eδ
n(h2

κ; f, x) : =

∫
{y∈Sd−1:ρ(x,y)6 1

2
√
d
}
Eδ
n(h2

κ;x, y)f(y)h2
κ(y) dσ(y), (3.7)

T δn(h2
κ; f, x) : =

∫
{y∈Sd−1: ρ(x,y)> 1

2
√
d
}
Eδ
n(h2

κ;x, y)f(y)h2
κ(y) dσ(y), (3.8)

Rn(h2
κ; f, x) : =

∫
Sd−1

Rn(h2
κ;x, y)f(y)h2

κ(y) dσ(y). (3.9)

This implies that

measκ{x ∈ Sd−1 : Sδ∗(h
2
κ; f, x) > α}6measκ{x ∈ Sd−1 : Eδ

∗(h
2
κ; f, x) >

α

3C
}

+ measκ{x ∈ Sd−1 : T δ∗ (h
2
κ; f, x) >

α

3C
}

+ measκ{x ∈ Sd−1 : R∗(h
2
κ; f, x) >

α

3C
},

where

Eδ
∗(h

2
κ; f, x) := sup

n∈N
|Eδ

n(h2
κ; f, x)|, T δ∗ (h

2
κ; f, x) := sup

n∈N
|T δn(h2

κ; f, x)|

R∗(h
2
κ; f, x) := sup

n∈N
|Rn(h2

κ; f, x)|.

Thus, for the proof of the stated weak estimates of Sδ∗(h
2
κ; f, x) in Theo-

rem 3.1.1, it will suffice to establish the corresponding weak estimates for the

maximal operators Eδ
∗ , T

δ
∗ and R∗. Namely, it suffices to prove the following

three propositions:

Proposition 3.2.1: For δ>σκ and each f ∈ L1(h2
κ;Sd−1), we have that

R∗(h
2
κ; f, x)6CMκf(x), x ∈ Sd−1, (3.10)
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and

measκ({x ∈ Sd−1 : R∗(h
2
κ; f, x) > α})6C ‖f‖1,κ

α
, ∀α > 0. (3.11)

Proposition 3.2.2: For δ>σκ and f ∈ L1(h2
κ;Sd−1),

measκ({x ∈ Sd−1 : T δ∗ (h
2
κ; f, x) > α})6C ‖f‖1,κ

α
, ∀α > 0.

Proposition 3.2.3: If either δ > σκ or δ = σκ and at most one of the κi is

zero, then

measκ

{
x ∈ Sd−1 : Eδ

∗(h
2
κ; f, x) > α

}
6C
‖f‖κ,1
α

, ∀α > 0. (3.12)

Furthermore, if δ = σκ and at least two of the κi are zero, then

measκ

{
x ∈ Sd−1 : Eδ

∗(h
2
κ; f)(x) > α

}
6C
‖f‖κ,1
α

log
‖f‖κ,1
α

, ∀α > 0.

The proofs of these three propositions will be given in Sections 3.3, 3.4, 3.5

respectively.

3.3 Proof of Proposition 3.2.1

For the proof of Proposition 3.2.1, we need the following two simple lemmas.

Lemma 3.3.1: For x, y ∈ Sd−1,

Rn(h2
κ, x, y) ∼ 1

1 + nρ(x, y)
· 1

V (x, y) + Vn−1(x)
(3.13)
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Proof. By (3.6), it is sufficient to show that for each 16j6d,

Jj(x, y) := (|xjyj|+ρ(x, y)2 + n−2)−κj ∼ (|xj|+ρ(x, y) + n−1)−2κj . (3.14)

In fact, let’t consider the following two cases:

Case 1. If |xj|> 2ρ(x, y), since |xj|> 2ρ(x, y) > 2||xj|−|yj||, we have that

|xj|∼ |yj|,

thus

Jj(x, y) ∼ (|xj|2+n−2 + ρ(x, y)2)−κj ∼ (|xj|+n−1 + ρ(x, y))−2κj .

Case 2. If |xj|62ρ(x, y), then since |yj|−|xj|6ρ(x, y),

|yj|6ρ(x, y) + |xj|< 3ρ(x, y),

thus

Jj(x, y) ∼ (ρ(x, y) + n−1)−2κj ∼ (|xj|+ρ(x, y) + n−1)−2κj .

Hence, in either case, we have have proven (3.14).

It follows that

d∏
j=1

Jj(x, y) ∼
d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj

∼ n−(d−1) + ρ(x, y)d−1

Vn−1(x) + V (x, y)
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Then

Rn(h2
κ, x, y) = nd−1 ·

d∏
j=1

Jj(x, y)

(nρ(x, y) + 1)d
∼ 1

1 + nρ(x, y)
· 1

V (x, y) + Vn−1(x)

Lemma 3.3.2: For x, y ∈ Sd−1 and α>0, let

Aαn(x, y) :=
nd−1

(1 + nρ(x, y))α

d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj .

If α > d− 1 and f ∈ L1(h2
κ;Sd−1), then

∫
Sd−1

|f(y)|Aαn(x, y)h2
κ(y) dσ(y)6CMκf(x),

where the constant C is independent of n, f and x. Furthermore, if α = d−1

and ε > 0 then

∫
{y∈Sd−1: ρ(x,y)>ε}

|f(y)|Aαn(x, y)h2
κ(y) dσ(y)6C

∣∣∣log
1

ε

∣∣∣Mκf(x).

Proof. For x ∈ Sd−1, by the last Lemma we have

Aαn(x, y) =
Rα
n(x, y)

(1 + nρ(x, y))α−d

∼ (1 + nρ(x, y))d−α−1

V (x, y) + Vn−1(x)

Let

Aαn(h2
κ; f, x) :=

∫
Sd−1

Aαn(h2
κ;x, y)f(y)h2

κ(y) dσ(y).
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and

Ãαn(h2
κ; f, x) :=

∫
{y∈Sd−1: ρ(x,y)>ε}

Aαn(h2
κ;x, y)f(y)h2

κ(y) dσ(y).

Then if α > d− 1,

|Aαn(h2
κ; f, x)|6

∫
Sd−1

|f(y)|h2
κ(y)

V (x, y) + Vn−1(x)
(1 + nρ(x, y))α−d+1dσ(y)

6
∫
B(x,n−1)

|f(y)|h2
κ(y)

V (x, y) + Vn−1(x)
(1 + nρ(x, y))α−d+1dσ(y)

+
∞∑
j=0

∫
{y: 2j

n
<ρ(x,y)6 2j+1

n
}

|f(y)|h2
κ(y)

V (x, y) + Vn−1(x)
(1 + nρ(x, y))α−d+1dσ(y)

6
∫
B(x,n−1)

|f(y)|
Vn−1(x)

h2
κ(y)dσ(y)

+
∞∑
j=0

2(d−α−1)j

∫
{y: 2j

n
<ρ(x,y)6 2j+1

n
}

|f(y)|
V (x, y)

h2
κ(y)dσ(y)

.Mκ(f)(x) +
∞∑
j=0

2−j

measκ(B(x, 2j

n
))

∫
B(x, 2

j+1

n
)

|f(y)|h2
κ(y)dσ(y)

.Mκ(f)(x) +
∞∑
j=0

2−jMκ(f)(x)

.Mκ(f)(x)

If α = d− 1, then

|Ãαn(h2
κ; f, x)|6

∫
{y∈Sd−1: ρ(x,y)>ε}

|f(y)|
V (x, y)

h2
κ(y)dσ(y)

.

dlog2
π
ε
e∑

j=1

1

measκ(B(x, 2jε))

∫
B(x,2jε)

|f(y)|h2
κ(y)dσ(y)

.
∣∣∣log

1

ε

∣∣∣Mκf(x).
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Proof of Proposition 3.2.1. The pointwise (3.10) follows directly from

(3.9), Lemma 3.3.1 and Lemma 3.3.2, while the weak estimate (3.11) is an

immediate consequence of (3.10) and (3.3). �

3.4 Proof of Proposition 3.2.2

Without loss of generality, we may assume that ‖f‖1,κ= 1 and α > 1. Let

Sd−1
j := {x ∈ Sd−1 : |xj|> 1

2
√
d
} for 16j6d. Since for each x ∈ Sd−1,

max
16j6d

|xj|>
1√
d
‖x‖= 1√

d
,

it follows that Sd−1 = ∪dj=1Sd−1
j . By (3.8), this implies that

|T δn(h2
κ; f, x)|.n

d−2
2
−δ ·

∫
ρ(x,y)> 1

2
√
d

y∈Sd−1

|f(y)|
d∏
j=1

(|xjyj|+n−1ρ(x, y) + n−2)−κjh2
κ(y)dσ(y)

6
d∑

m=1

n
d−2

2
−δ ·

∫
ρ(x,y)> 1

2
√
d

|ym|> 1√
d

|f(y)|
d∏
j=1

(|xjyj|+n−1ρ(x, y) + n−2)−κjh2
κ(y)dσ(y)

6C
d∑
j=1

T δn,j(h
2
κ; f, x),

where

T δn,j(h
2
κ; f, x) :=

∫
{y∈Sd−1

j :ρ(x,y)> 1

2
√
d
}

n
d−2

2
−δ|f(y)|∏d

i=1(|xiyi|+n−1ρ(x, y) + n−2)κi
h2
κ(y)dσ(y).
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Thus, it suffices to establish the weak estimates of

T δ∗,j(h
2
κ; f, x) := sup

n∈N
T δn,j(h

2
κ; f, x)

for each 16j6d. By symmetry, we only need to consider the case of j = 1.

Take ε > 0 such that ε−κ1 = cα for some absolute constant c to be specified

later. Set Fε = {x ∈ Sd−1 : |x1|6 ε}. A straightforward calculation then shows

that

measκ(Fε) =

∫ ε

−ε
|x1|2κ1(1− x2

1)
d−3

2
+|κ|−κ1dx1

∫
Sd−2

|y2|2κ2· · · |yd|κddσ(y)

∼ ε2κ1+16Cεκ16Cα−1.

On the other hand, if x ∈ Sd−1 \ Fε, y ∈ Sd−1
1 and ρ(x, y)> 1

2
√
d
, then

d∏
i=1

(|xiyi|+n−1ρ(x, y) + n−2)κi>Cεκ1n−|κ|+κ1 ,

which implies that

|T δn,1(h2
κ; f, x)|6Cn

d−2
2
−σκε−κ1n|κ|−κ1‖f‖1,κ

= Cn
d−2

2
+|κ|−κ1−σκε−κ1 6 Cε−κ1 = Ccα.

Therefore, choosing c > 0 so that Cc = 1
2
, we deduce that

measκ

{
x ∈ Sd−1 : T δ∗,1(h2

κ; f, x) > α
}
6measκ(Fε)6C

1

α
,

which is as desired.
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3.5 Proof of Proposition 3.2.3

The proof of Proposition 3.2.3 relies on the following lemma.

Lemma 3.5.1: Let x, y ∈ Sd−1 be such that ρ(x, y) 6 1
2
√
d
. If i is a positive

integer such that i6d and |xi|> 1√
d
, then

d∏
j=1

Ij(x, y)6C(1 + nρ(x, y))|κ|−κi
d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj , (3.15)

where

Ij(x, y) := (|xjyj|+n−1ρ(x, y) + n−2)−κj . (3.16)

Proof. By symmetry, we may assume that i = 1. Consider the following two

cases:

Case 1. ρ(x, y) 6 n−1.

In this case, note that Ij(x, y) ∼ (n−2+|xjyj|)−κj . If |xj|> 2n−1 > 2ρ(x, y),

then |xj|∼ |yj| and

Ij(x, y) ∼ |xj|−2κj∼ (|xj|+ρ(x, y) + n−1)−2κj .

If |xj|< 2n−1, then |yj|< 3n−1 and

Ij(x, y) ∼ n2κj ∼ (|xj|+ρ(x, y) + n−1)−2κj .

Thus, we have conclude that

d∏
j=1

Ij(x, y) ∼
d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj ,

25



which clearly implies (3.15).

Case 2. ρ(x, y) > n−1.

In this case, note first that if |xj|> 2ρ(x, y), then

Ij(x, y) ∼ (|xj|2+n−1ρ(x, y))−κj ∼ |xj|−2κj∼ (|xj|+ρ(x, y) + n−1)−2κj ;

while if |xj|< 2ρ(x, y), then

Ij(x, y) 6 (n−1ρ(x, y) + n−2)−κj

∼ (1 + nρ(x, y))κj(ρ(x, y) + |xj|+n−1)−2κj

This means that for all 16j6d,

Ij(x, y) 6 C(1 + nρ(x, y))κj(ρ(x, y) + |xj|+n−1)−2κj .

On the other hand, however, recalling that |x1|> 1√
d
> 2ρ(x, y), we have

that |x1|∼ |y1|∼ 1, and hence

I1(x, y) ∼ (|x1|+ρ(x, y) + n−1)−2κ1 .

Therefore, putting the above together, we conclude that

d∏
j=1

Ij(x, y) = I1(x, y)
d∏
j=2

Ij(x, y)

6C(1 + nρ(x, y))|κ|−κ1

d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj ,

which is as desired.
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Now we are in a position to prove Proposition 3.2.3.

Proof of Proposition 3.2.3. Without loss of generality, we may assume

that ‖f‖1,κ= 1 and α > 1. As in the proof of Proposition 3.2.2, we have

Sd−1 =
⋃d
i=1 S

d−1
i with

Sd−1
i := {x ∈ Sd−1 : |xi|>

1√
d
}.

Thus, it is enough to prove that for each 16i6d,

measκ({x ∈ Sd−1
i : Eδ

∗(h
2
κ; f, x) > α})6Cα−1, (3.17)

with α−1 logα−1 in place of α−1 in the case when δ = σκ and at least two of

the κi are zero.

To prove (3.17), we consider the following cases:

Case 1. κi > κmin or δ > σκ

In this case, we shall prove that

Eδ
∗(h

2
κ; f, x)6CMκf(x), ∀x ∈ Sd−1

i , (3.18)

from which (3.17) will follow by (3.3).

By Lemma 3.5.1, if x ∈ Sd−1
j , y ∈ Sd−1 and ρ(x, y)6 1

2
√
d
, then

|Eδ
n(h2

κ;x, y)|6Cnd−1(1 + nρ(x, y))−δ−
d
2

d∏
j=1

Ij(x, y)

6Cnd−1(1 + nρ(x, y))−(d−1−κmin+κi+δ−σκ)

d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj .
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Since κi − κmin + δ − σκ > 0 in this case, the estimate (3.18) then follows

by Lemma 3.3.2.

Case 2. κi = κmin and minj 6=i κj > 0.

Without loss of generality, we may assume that i = 1 in this case. Let ε > 0

be such that εd−1+2|κ|−2κ1 = c−1
1 α−1, where c1 > 0 is an absolute constant to

be specified later. Set

Fε = {x ∈ Sd−1 : 1− ε2 6 |x1|6 1}.

A straightforward calculation shows that

measκ(Fε) = cκ

∫ 1

1−ε2
x2κ1

1 (1− x2
1)

d−3
2

+|κ|−κ1 dx1 ∼ εd−1+2|κ|−2κ1 ∼ α−1.

Next, for x ∈ Sd−1
1 \ Fε, and y ∈ Sd−1, we set

J : = J(x, y) = {j : 2 6 j 6 d, |xj|< 2ρ(x, y)},

J ′ : = J ′(x, y) = {2, 3, · · · , d} \ J.

Recall that Ij(x, y) is defined in (3.16). From the proof of Lemma 3.5.1, it

is easily seen that if |xj|> 2ρ(x, y),

Ij(x, y)6C(|xj|+ρ(x, y) + n−1)−2κj (3.19)

and that if |xj|< 2ρ(x, y),

Ij(x, y)6C(1 + nρ(x, y))κj(ρ(x, y) + |xj|+n−1)−2κj . (3.20)
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Note also that if x ∈ Sd−1
1 and ρ(x, y)6 1

2
√
d
, then |x1|> 1

2
√
d

and |y1|>|x1|−ρ(x, y)> 1
2
√
d
.

Thus, under the condition x ∈ Sd−1
1 and ρ(x, y)6 1

2
√
d
,

d∏
j=1

Ij(x, y)6C(1 + nρ(x, y))

∑
j∈J

κj
d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj ,

which, in turn, implies that

|Eδ
n(h2

κ;x, y)|

6Cnd−1(1 + nρ(x, y))
−δ− d

2
+

∑
j∈J

κj
d∏
j=1

(|xj|+ρ(x, y) + n−1)−2κj . (3.21)

If J $ {2, 3, · · · , d}, then
∑
j∈J

κj 6 |κ|−κ1 −min26j6d κj and

δ +
d

2
−
∑
j∈J

κj>d− 1 + min
26j6d

κj > d− 1.

On the other hand, however, if J = {2, 3, · · · , d}, and x ∈ Sd−1
1 \ Fε, then

δ +
d

2
−
∑
j∈J

κj = δ +
d

2
− |κ|+κ1>d− 1,

and moreover,

ρ(x, y)>
1

2
max
26j6d

|xj|>
√

1− x2
1

2
√
d− 1

>
ε

2
√
d− 1

,

where the last step uses the fact that 1−|x1|> ε2 for x /∈ Fε. Thus, using (3.21)

and recalling that ε−(d−1+2|κ|−2κ1) = c1α, we conclude that if x ∈ Sd−1
1 \Fε and
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ρ(x, y)6 1
2
√
d
, then

|Eδ
n(h2

κ;x, y)|6C nd−1

(1 + nρ(x, y))d−1+ min26j6d κj
∏d

j=1(|xj|+ρ(x, y) + n−1)2κj

+ Cc1α.

Since ‖f‖κ,1= 1 and κmin > 0, using Lemma 3.3.2, and choosing c1 =

(2C)−1, we deduce that for x ∈ Sd−1
1 \ Eε,

Eδ
∗(h

2
κ; f, x)6CMκf(x) +

1

2
α.

It follows that

measκ({x ∈ Sd−1
1 : Eδ

∗(h
2
κ; f, x) > α})

6measκ(Fε) + measκ({x ∈ Sd−1
1 \ Fε : Eδ

∗(h
2
κ; f, x) > α})

6C
1

α
+ measκ({x ∈ Sd−1 : Mκf(x)>

α

2C
})6C 1

α
.

Case 3. κi = 0, minj 6=i κj = 0 and δ = σκ.

Since κ 6= 0, we may assume, without loss of generality, that i = 2 and

κ1 > 0. In this case, using (3.19) and (3.20), we have that for x, y ∈ Sd−1,

|Eδ
n(h2

κ;x, y)|

6Cnd−1

∏d
j=1(|xj|+ρ(x, y) + n−1)−2κj

(1 + nρ(x, y))d−1
χ{y∈Sd−1: |x1|62ρ(x,y)}(y)

+ Cnd−1

∏d
j=1(|xj|+ρ(x, y) + n−1)−2κj

(1 + nρ(x, y))d−1+κ1
,

where χF denotes the characteristic function of the set F . Thus, using Lemma

30



3.3.2, we conclude that

Eσκ
∗ (h2

κ; f, x)6C
(

log
1

|x1|

)
Mκf(x).

Therefore, for ‖f‖κ,1= 1 and α > 0,

measκ{x ∈ Sd−1 : Eσκ
∗ (h2

κ; f, x) > α}

6measκ{x ∈ Sd−1 : |x1|6α−1}

+ measκ{x ∈ Sd−1 : Mκf(x) > α(logα)−1}

6Cα−1|logα|.

3.6 Proof of Theorem 3.1.1: Part (ii)

The proof of Theorem 3.1.1 (ii) follows along the same idea as that of [16],

where the Cantor-Lebesgue Theorem is combined with the Uniform Bounded-

ness Principle to deduce a divergence result for the Cesàro means of spherical

harmonic expansions. The result of [16] was later extended to the case of

h-harmonic expansions in [32]. Our proof below is different from that of [32],

and it leads to more information on the counterexample f , from which the

corresponding results for weighted orthogonal polynomial expansions on the

ball Bd and on the simplex Td can be easily deduced.

The proof of Theorem 3.1.1 (ii) relies on several lemmas. The first lemma

is a well known result on Cesàro means of general sequences (see, for instance,

[33, Theorem 3.1.22, p. 78] and [33, Theorem 3.1.23, p. 78]).

Lemma 3.6.1: Let sδn := (Aδn)−1
∑n

j=0A
δ
n−jaj denote the Cesàro (C, δ)-
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means of a sequence {aj}∞j=0 of real numbers. Then for δ>0

|an|6Cδnδ max
06j6n

|sδj |, n = 0, 1, · · · , (3.22)

and for 06δ1 < δ2,

|sδ1n |6Cδ1,δ2nδ2−δ1 max
16j6n

|sδ2j |, n = 0, 1, · · · . (3.23)

The second lemma was proved in [16, Section 3.3]. It follows from the

asymptotics of the Jacobi polynomials and the Riemann-Lebesgue theorem.

Lemma 3.6.2: Let α, β> − 1
2
, and let F be a subset of [−1, 1] with positive

Lebesgue measure. Then there exists a positive integer N depending on the

set F for which

sup
t∈F
|P (α,β)
n (t)|>Cn−

1
2 , ∀n>N,

where the constant C depends on the set F , but is independent of n.

To state our next lemma, recall that the generalized Gegenbauer polyno-

mial C
(λ,µ)
n is the weighted orthogonal polynomial of degree n with respect to

the weight |t|2µ(1− t2)λ−
1
2 on [−1, 1].

Lemma 3.6.3: Let f ∈ L(wκ; [0, 1]) with wκ(t) = |t|2κ1(1 − t2)λκ−κ1− 1
2 . Let

f̃ : Sd−1 → R be given by f̃(x) = f(|x1|). Then f̃ ∈ L1(h2
κ;Sd−1) and

proj2n(h2
κ; f̃ , x) = d2n(f)C

(λκ−κ1,κ1)
2n (x1), x ∈ Sd−1, (3.24)
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where

d2n(f) :=
1

‖C(λκ−κ1,κ1)
2n ‖2

L2(wκ;[0,1])

∫ 1

0

f(t)C
(λκ−κ1,κ1)
2n (t)wκ(t) dt. (3.25)

Proof. We need the following formula for the reproducing kernel Pn(h2
κ; ·, e1)

of the space Hd
n(h2

κ) (see [7, proof of Theorem 2.2 (lower bound)]):

Pn(h2
κ;x, e1) =

n+ λκ
λκ

C(λκ−κ1,κ1)
n (x1), x ∈ Sd−1, n = 0, 1, · · · , (3.26)

where e1 = (1, 0, · · · , 0) ∈ Sd−1.

By (2.9), it follows that {C(λκ−κ1,κ1)
2n }∞n=0 is an orthogonal polynomial basis

with respect to the weight wκ(t) on [0, 1]. Thus, each function f ∈ L(wκ; [0, 1])

has a weighted orthogonal polynomial expansion
∑∞

n=0 d2n(f)C
(λκ−κ1,κ1)
2n (t) on

[0, 1], which particularly implies that for each polynomial g of degree at most

2n on [−1, 1],

∫ 1

−1

f(|t|)g(t)wκ(t) dt =
n∑
j=0

d2j(f)

∫ 1

−1

C
(λκ−κ1,κ1)
2j (t)g(t)wκ(t) dt. (3.27)

Next, we note that (3.26) implies that the term on the right hand side of

(3.24) is an h-harmonic inHd
2n(h2

κ). Thus, for the proof of (3.24), it is sufficient

to verify that for each P ∈ Hd
2n(h2

κ),

∫
Sd−1

f̃(x)P (x)h2
κ(x) dσ(x)

=d2n(f)

∫
Sd−1

C
(λκ−κ1,κ1)
2n (x1)P (x)h2

κ(x) dσ(x). (3.28)
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Indeed, for P ∈ Hd
2n(h2

κ),

∫
Sd−1

f̃(x)P (x)h2
κ(x) dσ(x)

=

∫ 1

−1

f(|x1|)wκ(x1)
[∫

Sd−2

P (x1,
√

1− x2
1y)h2

k̃
(y) dσ(y)

]
dx1,

where hk̃(y) =
∏d−1

j=1|yj|κj+1 for y = (y1, · · · , yd−1) ∈ Rd−1. Since the weight

h2
k̃
(y) is even in each yj, it is easily seen that the integral over Sd−2 of the

last equation is an algebraic polynomial in x1 of degree at most 2n. Thus, it

follows by (3.27) that

∫
Sd−1

f̃(x)P (x)h2
κ(x) dσ(x)

=
n∑
j=0

d2j(f)

∫ 1

−1

C
(λκ−κ1,κ1)
2j (x1)wκ(x1)

[∫
Sd−2

P (x1,
√

1− x2
1y)h2

k̃
(y) dσ(y)

]
dx1

=
n∑
j=0

d2j(f)

∫
Sd−1

C
(λκ−κ1,κ1)
2j (x1)P (x)h2

κ(x) dσ(x).

Since, by (3.26), C
(λκ−κ1,κ1)
j (x1) ∈ Hd

j (h
2
κ), the desired equation (3.28) fol-

lows by the orthogonality of the spherical h-harmonics.

Now we are in a position to prove Theorem 3.1.1 (ii).

Proof of Theorem 3.1.1(ii). Without loss of generality, we may assume

that κ1 = κmin. Assume that the stated conclusion were not true. This would

mean that Sδ∗(h
2
κ; f̃ , x) is finite on a set Ef ⊂ Sd−1 of positive measure for all

f ∈ L1(wκ; [0, 1]) and some δ < σκ, where f̃(x) = f(|x1|) for x ∈ Sd−1, and
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wκ(t) = |t|2κ1(1− t2)σκ−
1
2 . By Lemma 3.6.1, this implies that

sup
n∈N

n−δ|proj2n(h2
κ; f̃ , x)|<∞, ∀x ∈ Ef ,∀f ∈ L(wκ; [0, 1]). (3.29)

We will show that (3.29) is impossible unless δ>σκ.

In fact, by(3.29),

Ef =
∞⋃
N=1

{
x ∈ Ef : sup

n∈N
n−δ|proj2n(h2

κ; f̃ , x)|6N
}
,

hence, there must exist a subset E ′f of Ef with positive Lebesgue measure such

that

sup
x∈E′f

sup
n∈N

n−δ|proj2n(h2
κ; f̃ , x)|6Nf <∞.

By Lemma 3.6.3, this in turn implies that

sup
x∈E′f

sup
n∈N

n−δ|d2n(f)||C(σκ,κ1)
2n (x1)|6Nf , (3.30)

where d2n(f) is defined in (3.25). Note that by (2.9),

C
(λκ−κ1,κ1)
2n (x1) =

Γ(λκ + n)Γ(κ1 + 1
2
)

Γ(λκ)Γ(κ1 + 1
2

+ n)
P

(σκ− 1
2
,κ1− 1

2
)

n (2x2
1 − 1).

Hence, using [23, (4.3.3)], we can rewrite (3.30) as

sup
n∈N

n1−δ|`n(f)|sup
t∈If
|P (σκ− 1

2
,κ1− 1

2
)

n (t)|6Nf , (3.31)

where If := {2x2
1 − 1 : x ∈ E ′f}, and

`n(f) :=

∫ 1

0

f(t)P
(σκ− 1

2
,κ1− 1

2
)

n (2t2 − 1)wκ(t) dt. (3.32)
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Since E ′f ⊂ Sd−1 has a positive Lebesgue measure, it is easily seen that

If ⊂ [−1, 1] has a positive Lebesgue measure as well. Thus, (3.31) together

with Lemma 3.6.3 implies that

sup
n∈N

n
1
2
−δ|`n(f)|<∞, ∀f ∈ L(wκ; [0, 1]). (3.33)

Since {n 1
2
−δ`n(f)}∞n=0 is a sequence of bounded linear functionals on the

Banach space L(wκ; [0, 1]), it follows by (3.33) and the uniform boundedness

theorem that

sup
n
n

1
2
−δ sup
‖f‖L(wκ;[0,1])61

|`n(f)|<∞. (3.34)

On the other hand, however, using (3.32) and [23, (7.32.2), p. 168], we

have

sup
‖f‖L(wκ;[0,1])61

|`n(f)|= max
t∈[0,1]

|P (σκ− 1
2
,κ1− 1

2
)

2n (2t2 − 1)|= P
(σκ− 1

2
,κ1− 1

2
)

2n (1) ∼ nσκ−
1
2 .

Thus, (3.34) implies that

sup
n∈N

n
1
2
−δnσk−

1
2 = sup

n∈N
nσκ−δ <∞,

which can not be true unless δ>σκ. This completes the proof. �

3.7 Corollaries

3.7.1 The pointwise convergence

In this subsection, we devote to the investigation of almost everywhere con-

vergence of Cesàro (C, δ)-mean Sδn of weighted orthogonal expansions on the

36



unit sphere Sd−1 by our weak-type estimation. What we have already known

is for δ > d−2
2

+ |κ|,

Sδn(h2
κ; f, x) = f(x), a.e.x ∈ Sd−1,

And for δ < d−2
2

+ |κ|− min
16i6d

κi, there exists a function f ∈ L1(h2
κ;Sd−1)

such that

lim sup
n→∞

|Sδn(h2
κ; f, x)|=∞, a.e.x ∈ Sd.

At here we proved the critical index for the a.e. convergence of Cesàro

(C, δ)-mean means, that is, for f ∈ L1(h2
κ;Sd), if δ > d−2

2
+ |κ|−κmin, and

κmin > 0, then

Sδn(h2
κ; f, x) = f(x), a.e.x ∈ Sd−1,

Corollary 3.7.1: In order that

lim
n→∞

Sδn(h2
κ; f)(x) = f(x)

holds almost everywhere on Sd−1 for all f ∈ L1(h2
κ;Sd−1), it is sufficient and

necessary that δ>σκ.

Proof. For all f ∈ L1(h2
κ;Sd−1) we can write

f(x) = gm(x) + bm(x),

where gm(x) ∈ Hd
n, and lim

m→∞
‖bm‖1,κ= 0. Set

Λδ(f)(x) := lim sup
n→∞

Sδn(h2
κ; f, x)− lim inf

n→∞
Sδn(h2

κ; f, x),
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Then by Theorem 3.1.1 (i), ∀ε > 0

measκ({x ∈ Sd−1 : Λδ(f)(x) > ε}) = measκ({x ∈ Sd−1 : Λδ(bm)(x) > ε})

6measκ({x ∈ Sd−1 : Sδ∗(h
2
κ; |bm|, x) & ε})

.
‖bm‖1,κ

ε
→ 0, as m→∞.

This implies that lim
n→∞

Sδn(h2
κ; f, x) exists.

Then since gm(x) ∈ Hd
n,

measκ({x ∈ Sd−1 : | lim
n→∞

Sδn(h2
κ; f, x)− f(x)|> ε})

6measκ({x ∈ Sd−1 : Sδ∗(h
2
κ; |bm|, x) >

ε

2
})

+ measκ({x ∈ Sd−1 : |bm(x)|> ε

2
})

.
‖bm‖1,κ

ε

Let m→∞, we get

measκ({x ∈ Sd−1 : | lim
n→∞

Sδn(h2
κ; f, x)− f(x)|> ε}) = 0

lim
n→∞

Sδn(h2
κ; f, x) = f(x), a.e. x ∈ Sd−1.

Then we finish the proof of sufficiency, whereas the necessity follows directly

from Theorem 3.1.1 (ii).

38



3.7.2 Strong estimates on Lp

Using Stein’s interpolation theorem for analytic families of operators ([19]), we

can deduce the following strong estimates for the maximal Cesàro operators:

Corollary 3.7.2: If 1 < p <∞ and δ > 2σκ|12 −
1
p
|, then

‖Sδ∗(h2
κ; f)‖κ,p6Cp‖f‖κ,p. (3.35)

In particular,

‖Sσκ∗ (h2
κ; f)‖κ,p6Cp‖f‖κ,p, 1 < p <∞.

We first show Sδ∗ is strong-type (2, 2) for δ > 0. It is sufficient to show the

following lemmas. The idea of the proof is directly from the proof of Lemma

3.5 of [4].

Lemma 3.7.3: If there exists a δ0 > 0 such that for all f ∈ L2(h2
κ;Sd−1),

‖Sδ0∗ (h2
κ; f, x)‖κ,2.p ‖f‖κ,2.

Then for all δ > 0 and for all f ∈ L2(h2
κ;Sd−1), we have

‖Sδ∗(h2
κ; f, x)‖κ,2.p ‖f‖κ,2.

Proof. Firstly, since for any α > 0, and β > 1
2
,

n∑
k=0

(
AδkA

β−1
n−k

Aδ+βn

)2

∼
n∑
k=0

(
kδ(n− k)β−1

nδ+β

)2

∼ n−1
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Then

|Sδ+βn (h2
κ; f, x)|=

∣∣∣∣∣
n∑
k=0

AδkA
β−1
n−k

Aδ+βn

Sδk(h
2
κ; f, x)

∣∣∣∣∣
6

n∑
k=0

∣∣∣∣∣AδkAβ−1
n−k

Aδ+βn

∣∣∣∣∣ · |Sδk(h2
κ; f, x)|

6

 n∑
k=0

∣∣∣∣∣AδkAβ−1
n−k

Aδ+βn

∣∣∣∣∣
2
 1

2

·

(
n∑
k=0

|Sδk(h2
κ; f, x)|2

) 1
2

.

(
n∑
k=0

|Sδk(h2
κ; f, x)|2·n−1

) 1
2

Hence

Sδ+β∗ (h2
κ; f, x) 6 sup

n

(
n∑
k=0

|Sδk(h2
κ; f, x)|2·n−1

) 1
2

Therefore, we just need to show that for all δ > −1
2
, and for all f ∈

L2(h2
κ;Sd−1),

‖sup
n

(
n∑
k=0

|Sδk(h2
κ; f, x)|2·n−1)

1
2‖κ,2. ‖f‖κ,2

In fact, on one side, we know that for all f ∈ L2(h2
κ; Sd−1),

‖sup
n

(
n∑
k=0

|Sδ0k (h2
κ; f, x)|2·n−1)

1
2‖κ,26 ‖Sδ0∗ (h2

κ; f, x)‖κ,2. ‖f‖κ,2

On the other side, since (Aδn−k)(A
δ
n)−1 =

k∏
j=0

(n − j + δ)−1 is a decreasing

function of δ,
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n∑
k=0

|Sδk(h2
κ; f, x)− Sδ0k (h2

κ; f, x)|2k−1 6
n∑
k=0

1

n
|Sδk(h2

κ; f, x)− Sδ0k (h2
κ; f, x)|2

6
∞∑
n=0

1

n
|Sδn(h2

κ; f, x)− Sδ0n (h2
κ; f, x)|2

∼
∞∑
n=0

1

n

∣∣∣∣∣
n∑
k=0

(
Aδ+1
n−k

Aδ+1
n

−
Aδn−k
Aδn

)
projk(h

2
κ; f, x)

∣∣∣∣∣
2

=
∞∑
n=0

(Aδ+1
n )−2

n(δ + 1)2
|
n∑
k=0

kAδn−k projk(h
2
κ; f, x)|2

we can get

‖sup
n

(
n∑
k=0

|Sδk(h2
κ; f, x)− Sδ0k (h2

κ; f, x)|2k−1)
1
2‖2

κ,2

.‖(δ + 1)−1(
∞∑
n=0

n−1(Aδ+1
n )−2|

n∑
k=0

kAδn−k projk(h
2
κ; f, x)|2)

1
2‖2

κ,2

=(δ + 1)−2

∞∑
n=0

n−1(Aδ+1
n )−2

n∑
k=0

k2(Aδn−k)
2‖projk(h

2
κ; f, x)‖2

κ,2

=(δ + 1)−2

∞∑
k=0

‖projk(h
2
κ; f, x)‖2

κ,2·k2

∞∑
n=k

n−1(Aδn−k)
2(Aδ+1

n )−2

Since

k2

∞∑
n=k

n−1(Aδn−k)
2(Aδ+1

n )−2 ∼ k2

∞∑
n=k

n−1n−2(δ+1)(n− k)2δ ∼ 1,

we have

‖sup
n

(
n∑
k=0

|Sδk(h2
κ; f, x)− Sδ0k (h2

κ; f, x)|2k−1)
1
2‖2

κ,2. ‖f‖κ,2
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Then by using triangle inequality,

‖sup
n

(
n∑
k=0

|Sδk(h2
κ; f, x)|2·n−1)

1
2‖κ,2

6‖sup
n

(
n∑
k=0

|Sδ0k (h2
κ; f, x)|2·n−1)

1
2‖κ,2

+ ‖sup
n

(
n∑
k=0

|Sδk(h2
κ; f, x)− Sδ0k (h2

κ; f, x)|2k−1)
1
2‖2

κ,2

.‖f‖κ,2

By this lemma, we can get the following Lemma.

Lemma 3.7.4: For δ > 0 and f(x) ∈ L2(h2
κ;Sd−1), ‖Sδ∗(h2

κ; f, x)‖κ,2. ‖f‖κ,2.

Proof of Theorem 3.7.2. Firstly, recalling that ([14])

‖Sδ∗(h2
κ; f)‖∞6C‖f‖∞, δ > σκ,

we deduce from Theorem 3.1.1 and the Marcinkiewitcz interpolation theorem

that

‖Sδ∗(h2
κ; f)‖κ,p6Cp‖f‖κ,p, 1 < p <∞, δ > σκ. (3.36)

Secondly, in Lemma 3.7.4, we have already get

‖Sδ∗(h2
κ; f)‖κ,26C‖f‖κ,2, δ > 0. (3.37)

Thirdly, the index δ of the Cesàro (C, δ)-means can be extended analyt-

ically to δ ∈ C with Re δ > −1, as can be easily seen from the definition.
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Furthermore, it is well known (see [4]) that for δ > 0, ε > 0 and y ∈ R,

Sδ+ε+iyn (h2
κ; f) = (Aδ+ε+iyn )−1

n∑
j=0

Aε−1+iy
n−j AδjS

δ
j (h

2
κ; f), (3.38)

and

|Aδ+ε+iyn |−1

n∑
j=0

|Aε−1+iy
n−j |Aδj6C(ε)ecy

2

. (3.39)

It follows that for δ > 0, ε > 0 and y ∈ R,

Sδ+ε+iy∗ (h2
κ; f, x)6C(ε)ec(ε)y

2

Sδ∗(h
2
κ; f, x). (3.40)

Finally, for each measurable function N : Sd−1 → {0, 1, · · ·}, define

Qα
Nf(x) := SαN(x)(h

2
κ; f, x) for α ∈ C with Reα > 0. It can be easily veri-

fied that {Qα
N : α ∈ C, Reα > 0} is a sequence of analytic operators in the

sense of [19]. On one hand, since 2|1
p
− 1

2
|∈ (0, 1) for p 6= 2, it follows that for

any δ > 2σκ|1p−
1
2
|, we can always find θ ∈ [0, 1] such that 2|1

p
− 1

2
|< 1−θ < δ

σκ
,

and two numbers ε, ε′ > 0 satisfying δ = θε+ (1− θ)(σκ + ε), and 1
p

= θ
2

+ 1−θ
pε′
,

where pε′ = 1 + ε′ if p < 2, and pε′ = 2 + (ε′)−1 if p > 2. On the other hand,

however, using (3.36),(3.37), (3.40), we have that for any y ∈ R,

‖Qε+iy
N f‖κ,26C(ε)ecy

2‖f‖κ,2,

‖Qσκ+ε+iy
N f‖κ,pε′6C(ε)ecy

2‖f‖κ,pε′ .

Thus, applying Stein’s interpolation theorem [19], we conclude that

‖Qδ
Nf‖κ,p6C‖f‖κ,p, δ > 2σκ|

1

p
− 1

2
|.
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Since the constant C in this last equation is independent of the function

N , the stated estimate (3.35) follows. �

3.7.3 Marcinkiewitcz multiplier theorem

We can also deduce the following vector-valued inequalities for the Cesàro

operators.

Corollary 3.7.5: For 1 < p < ∞, δ > 2σκ|1p −
1
2
| and any sequence {nj} of

positive integers,

∥∥∥∥∥
( ∞∑

j=0

|Sδnj(h
2
κ; fj)|

2

)1/2
∥∥∥∥∥
κ,p

6c

∥∥∥∥∥
( ∞∑

j=0

|fj|2
)1/2

∥∥∥∥∥
κ,p

. (3.41)

Proof. Note first that (3.41) for δ > 0 and p = 2 is a direct consequence of

Corollary 3.7.2. Next, we prove (3.41) for δ > σκ and 1 < p <∞. Define the

following positive operators:

S̃δn(h2
κ; f, x) :=

∫
Sd−1

f(y)|Kδ
n(h2

κ;x, y)|h2
κ(y) dσ(y), x ∈ Sd−1, n = 0, 1, · · · .

It is easily seen from the proofs of Theorem 3.1.1 and Corollary 3.7.2 that

‖S̃δ∗(h2
κ; f)‖κ,p6C‖f‖κ,p, 1 < p6∞, δ > σκ. (3.42)

We shall follow the approach of [20, p.104-5] that uses a generalization of

the Riesz convexity theorem for sequences of functions. Let Lp(`q) denote the

space of all sequences {fk} of functions for which

‖(fk)‖Lp(`q):=

(∫
Sd−1

( ∞∑
j=0

|fj(x)|q
)p/q

h2
κ(x)dσ(x)

)1/p

<∞.
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If T is a bounded operator on both Lp0(`q0) and Lp1(`q1) for some 16p0, q0, p1, q16∞,

then the generalized Riesz convexity theorem (see [3]) states that T is also

bounded on Lpt(`qt), where

1

pt
=

1− t
p0

+
t

p1

,
1

qt
=

1− t
q0

+
t

q1

, 06t61.

We apply this theorem to the operator T that maps the sequence {fj} to

the sequence {Sδnj(h
2
κ; fj)}. By Corollary 3.7.2, T is bounded on Lp(`p). By

(3.42), it is also bounded on Lp(`∞) as

∥∥∥∥ sup
j>0
|Sδnj(h

2
κ; fj)|

∥∥∥∥
κ,p

6

∥∥∥∥S̃δ∗(h2
κ; sup

j>0
|fj|
)∥∥∥∥

κ,p

6c

∥∥∥∥ sup
j>0
|fj|
∥∥∥∥
κ,p

.

Thus, the Riesz convexity theorem shows that T is bounded on Lp(`q) if

1 < p6q6∞. In particular, T is bounded on Lp(`2) if 1 < p62. The case

2 < p <∞ follows by the standard duality argument, since the dual space of

Lp(`2) is Lp
′
(`2), where 1/p+ 1/p′ = 1, under the paring

〈(fj), (gj)〉 :=

∫
Sd−1

∑
j

fj(x)gj(x)h2
κ(x)dσ(x)

and T is self-adjoint under this paring.

Finally, we prove that (3.41) for the general case follows by the Stein inter-

polation theorem ([19]). Without loss of generality, we may assume that there

are only finitely many nonzero functions fj in (3.41). Using (3.38), (3.39), the

Cauchy-Schwartz inequality, and applying the above already proven case of
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(3.41), we obtain that for δ > 0 and p = 2 or δ > σκ and 1 < p <∞,

∥∥∥∥∥
( ∞∑

j=0

|Sδ+ε+iynj
(h2

κ; fj)|
2

)1/2
∥∥∥∥∥
κ,p

6C(ε)ecy
2

∥∥∥∥∥
( ∞∑

j=0

|fj|2
)1/2

∥∥∥∥∥
κ,p

, (3.43)

where y ∈ R and ε > 0. (3.41) then follows from (3.43) via applying Stein’s

interpolation theorem to the family of analytic operators,

Tαf :=
∞∑
j=0

Sαnj(h
2
κ; f)gj, Reα > 0,

where (gj) is a sequence of functions on Sd−1 with
∑

j|gj(x)|2= 1 for x ∈

Sd−1.

Corollary 3.7.5 allows us to weaken the condition of the Marcinkiewitcz

multiplier theorem established in [6].

Corollary 3.7.6: Let {µj}∞j=0 be a sequence of complex numbers that satisfies

(i) supj|µj|6c <∞,

(ii) supj 2j(n0−1)
∑2j+1

l=2j |∆n0ul|6c <∞,

where n0 is the smallest integer >σκ + 1, ∆µj = µj − µj+1, and ∆`+1 = ∆`∆.

Then {µj} defines an Lp(h2
κ;Sd−1), 1 < p <∞, multiplier; that is,

∥∥∥∥∥
∞∑
j=0

µj projj(h
2
κ; f)

∥∥∥∥∥
κ,p

6c‖f‖κ,p, 1 < p <∞,

where c is independent of µj.

In the case when the weights are invariant under a general reflection group,

Corollary 3.7.6 was proved in [6] under a stronger assumption that n0 is the
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smallest integer >σκ + 2 + κmin. The proof of Corollary 3.7.6 is based on

Corollary 3.7.5 and runs along the same line as that of [4].
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Chapter 4

Weak estimates on the unit ball

Analysis in weighted spaces on the unit ball Bd = {x ∈ Rd : ‖x‖61} can

often be deduced from the corresponding results on the unit sphere Sd, due to

the close connection between the weighted orthogonal polynomial expansions

on Bd and Sd, as described in Section 2.3, see [10, 25, 26, 28] and the reference

therein. In this section, we shall develop results on Bd that are analogous to

those on Sd.

Throughout this section, we will use a slight abuse of notations. The letter

κ denotes a fixed, nonzero vector κ := (κ1, · · · , κd+1) in Rd+1
+ rather than in

Rd
+, and hκ denotes the weight function hκ(x) :=

∏d+1
j=1|xj|κj on Sd rather than

the weight on Sd−1. Accordingly, we write

κmin := min
16j6d+1

κj, |κ|=
d+1∑
j=1

κj, σκ :=
d− 1

2
+ |κ|−κmin. (4.1)

For a set E ⊂ Bd, we write measBκ (E) :=
∫
E
WB
κ (x) dx. Finally, recall that

Sδn(WB
κ ; f) denotes the (C, δ)-means for the orthogonal polynomial expansions

with respect to the weight function WB
κ on Bd that is given in (1.6).
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4.1 Main result

Theorem 4.1.1: (i) If δ>σκ := d−1
2

+ |κ|−κmin, then for f ∈ L(WB
κ ;Bd)

with ‖f‖L(WB
κ ;Bd)= 1,

measBκ

{
x ∈ Bd : Sδ∗(W

B
κ ; f)(x) > α

}
6C

1

α
, ∀α > 0,

with α−1|logα| in place of α−1 in the case when δ = σκ and at least two

of the κi are zero.

(ii) If δ < σκ, then there exists a function f ∈ L(WB
κ ;Bd) of the form f(x) =

f0(|xj0 |) such that Sδ∗(W
B
κ ; f)(x) =∞ for a.e. x ∈ Bd, where 16j06d+1

is the integer such that κj0 = κmin, and xd+1 =
√

1− ‖x‖2.

Proof. Given f ∈ Lp(WB
κ ;Bd), define f̃ : Sd → R by f̃(X) = f(x) for X =

(x, xd+1) ∈ Sd. Clearly, f̃ ◦ φ = f , where φ : Bd → Sd+ is defined in (2.4),

which, using (2.5), is measure-preserving in the sense that for each measκ(E) =

cκ measBκ (φ−1(E)) for each E ⊂ Sd+. Using (2.5), we also have that f̃ ∈

Lp(h2
κ; Sd) and ‖f̃‖Lp(h2

κ;Sd)= c‖f‖Lp(WB
κ ;Bd). Furthermore, by (2.7),

Sδn(h2
κ; f̃ , X) = Sδn(WB

κ ; f, x), X = (x, xd+1) ∈ Sd, n = 0, 1, · · · .

Thus, we may identify each function f ∈ Lp(WB
κ ;Bd) with a function

f̃ ∈ Lp(h2
κ;Sd) under the measure-preserving mapping φ, and such an identi-

fication preserves the Cesàro means of the corresponding weighted orthogonal

polynomial expansions. Consequently, the stated conclusions of Theorem 4.1.1

follow directly from the corresponding results on the sphere Sd that are stated

in Theorem 3.1.1.
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We can also deduce the following corollaries from the corresponding results

on the sphere Sd, using a similar approach.

4.2 Corollaries

Corollary 4.2.1: In order that

lim
n→∞

Sδn(WB
κ ; f)(x) = f(x)

holds almost everywhere on Bd for all f ∈ L(WB
κ ;Bd), it is sufficient and

necessary that δ>σκ.

Corollary 4.2.2: If 1 < p <∞ and δ > 2σκ|12 −
1
p
|, then

‖Sδ∗(WB
κ ; f)‖Lp(WB

κ ;Bd)6Cp‖f‖Lp(WB
κ ;Bd). (4.2)

In particular,

‖Sσκ∗ (WB
κ ; f)‖Lp(WB

κ ;Bd)6Cp‖f‖Lp(WB
κ ;Bd), 1 < p <∞.

Corollary 4.2.3: For 1 < p < ∞, δ > 2σκ|1p −
1
2
| and any sequence {nj} of

positive integers,

∥∥∥∥∥
( ∞∑

j=0

|Sδnj(W
B
κ ; fj)|2

)1/2
∥∥∥∥∥
Lp(WB

κ ;Bd)

6c

∥∥∥∥∥
( ∞∑

j=0

|fj|2
)1/2

∥∥∥∥∥
Lp(WB

κ ;Bd)

. (4.3)

Corollary 4.2.4: Let {µj}∞j=0 be a sequence of complex numbers that satisfies

(i) supj|µj|6c <∞,
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(ii) supj 2j(n0−1)
∑2j+1

l=2j |∆n0ul|6c <∞,

where n0 is the smallest integer >σκ + 1. Then {µj} defines an Lp(WB
κ ;Bd),

1 < p <∞, multiplier; that is,

∥∥∥∥∥
∞∑
j=0

µj projj(W
B
κ ; f)

∥∥∥∥∥
Lp(WB

κ ;Bd)

6c‖f‖Lp(WB
κ ;Bd), 1 < p <∞,

where c is independent of µj.

In the case when the weights are invariant under a general reflection group,

Corollary 4.2.4 was proved in [6] under a stronger assumption that n0 is the

smallest integer >σκ + 2 + κmin.
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Chapter 5

Weak estimates on the simplex

5.1 Main result

In this section, we will show how to deduce similar results on the simplex Td

from those on the ball Bd. Recall that Sδn(W T
κ ; f) denotes the (C, δ)-means

of the orthogonal polynomial expansions with respect to the weight function

W T
κ on Td that is given in (1.7). Our argument in this section is based on the

following proposition.

Proposition 5.1.1: Let ψ : Bd → Td be the mapping defined in (2.10). Then

for each f ∈ L(W T
κ ;Td) and δ>0,

Sδ∗(W
B
κ ; f ◦ ψ, x) ∼ Sδ∗(W

T
κ ; f, ψ(x)), x ∈ Bd.

Proof. For simplicity, we set F = f ◦ψ. Clearly, F ∈ L(WB
κ ;Bd) and F (xε) =

F (x) for all ε ∈ Zd2, and x ∈ Bd. In particular, this implies that

proj2n+1(WB
κ ;F ) = 0, n = 0, 1, · · · . (5.1)
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We further claim that

projn(W T
κ ; f, ψ(x)) = proj2n(WB

κ ;F, x). (5.2)

Indeed, using (2.2) and (2.6), we have

Pn(WB
κ ;xε, yε) = Pn(WB

κ ;x, y), x, y ∈ Bd, ε ∈ Zd2, (5.3)

and hence, for each ε ∈ Zd2,

proj2n(WB
κ ;F, xε) =

∫
Bd
F (y)P2n(WB

κ ;xε, y)WB
κ (y) dy

=

∫
Bd
F (yε)P2n(WB

κ ;xε, yε)WB
κ (y) dy

=

∫
Bd
F (y)P2n(WB

κ ;x, y)WB
κ (y) dy

= proj2n(WB
κ ;F, x),

where we used the Zd2-invariance of the measure WB
κ (x)dx in the second step,

(5.3) and the fact that F (·ε) = F (·) in the third step. (5.2) then follows by

(2.12).

Next, we prove the inequality

Sδ∗(W
T
κ ; f, ψ(x))6CSδ∗(W

B
κ ;F, x), x ∈ Bd. (5.4)

To this end, we set

Aδx :=
Γ(x+ δ + 1)

Γ(x+ 1)

1

Γ(δ + 1)
, x>0.
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Using asymptotic expansions for ratios of gamma functions (see [2, p.616]),

we have that for ` = 0, 1, · · ·,

( d
dx

)`
Aδx =

Γ(δ + `)

δ(Γ(δ))2
(x+ 1)δ−` +O

(
(x+ 1)δ−`−1

)
, x>0. (5.5)

Define the operator

τ δ2n(WB
κ ; g, x) =

2n∑
j=0

Φn(j) projj(W
B
κ ; g, x), g ∈ L(WB

κ ;Bd),

where

Φn(x) =


Aδ
n−x/2
Aδn

− Aδ2n−x
Aδ2n

, 06x62n,

0, x > 2n.

Let ` be an integer such that δ− 1 < `6δ. It is easily seen from (5.5) that

for 0 < x < 2n,

|Φ(m)
n (x)|6Cn−δ(n− x

2
+ 1)δ−m−1, m = 0, 1, · · · , `+ 1,

which, in turn, implies that

|4`+1Φn(j)|6Cn−δ(n− x

2
+ 1)δ−`−2, 06j62n− 1, (5.6)

and 4mΦn(2n) = 0 for m = 0, 1, · · · , ` − 1. Thus, using summation by parts

` times, we obtain

|τ δ2n(WB
κ ; g)|6C

2n−1∑
j=0

|∆`+1Φn(j)|j`|S`j(WB
κ ; g)|+C|∆`Φn(2n)|n`|S`2n(WB

κ ; g)|,
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which, using Lemma 3.6.1, is controlled by

Cn−δ
2n∑
j=0

(2n− j + 1)δ−`−2j`jδ−`Sδ∗(W
B
κ ; g)6CSδ∗(W

B
κ ; g). (5.7)

On the other hand, however, using (5.1) and (5.2), we have

Sδn(W T
κ ; f, ψ(x)) = (Aδn)−1

n∑
j=0

Aδn−j proj2j(W
B
κ ;F, x) (5.8)

= (Aδn)−1

2n∑
j=0

Aδn−j/2 projj(W
B
κ ;F, x)

=
2n∑
j=0

[Aδn−j/2
Aδn

−
Aδ2n−j
Aδ2n

]
projj(W

B
κ ;F, x) + Sδ2n(WB

κ ;F, x)

= τ δ2n(WB
κ ;F, x) + Sδ2n(WB

κ ;F, x). (5.9)

Thus, combing (5.7) with (5.9), we deduce the estimate (5.4).

Finally, we show the converse inequality

Sδ∗(W
B
κ ;F, x)6CSδ∗(W

T
κ ; f, ψ(x)), x ∈ Bd. (5.10)

The proof is similar to that of (5.4), and we sketch it as follows.

Let m be the integer such that 2m6n < 2m+ 1. Then by (5.1) and (5.2),

Sδn(WB
κ ;F, x) =

m∑
j=0

Aδn−2j

Aδn
proj2j(W

B
κ ;F, x) =

m∑
j=0

Aδn−2j

Aδn
projj(W

T
κ ; f, ψ(x))

=
m∑
j=0

µj projj(W
T
κ ; f, ψ(x)) + Sδm(W T

κ ; f, ψ(x)),

where
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µj =


Aδn−2j

Aδn
− Aδm−j

Aδm
, 06j6m,

0, j > m.

Using (5.5) and similar to the proof of (5.7), one can easily verify that for

06j6m,

|∆iµj|6Cm−δ(m− j + 1)δ−i−1, i = 0, 1, · · · . (5.11)

Let ` be an integer such that δ− 1 < `6δ. Summation by parts ` times shows

that

∣∣∣ m∑
j=0

µj projj(W
T
κ ; f, ψ(x))

∣∣∣6C m−∑̀
j=0

|∆`+1µj|(j + 1)`|S`j(W T
κ ; f, ψ(x))|

+ Cm` max
06i6`
|∆iµm−i||S`m−i(W T

κ ; f, ψ(x))|,

which, using Lemma 3.6.1, and (5.11), is controlled by CSδ∗(W
T
κ ; f, ψ(x)). The

desired inequality (5.10) then follows.

Recall that κmin, |κ| and σκ are defined in (4.1). For a set E ⊂ Td, we

write measTκ (E) :=
∫
E
W T
κ (x) dx. The following result is a simple consequence

of Proposition 5.1.1, Theorem 4.1.1, and (2.11).

Theorem 5.1.2: (i) If δ>σκ := d−1
2

+ |κ|−κmin, then for f ∈ L(W T
κ ;Td)

with ‖f‖L(WT
κ ;Td)= 1,

measTκ

{
x ∈ Td : Sδ∗(W

T
κ ; f)(x) > α

}
6C

1

α
, ∀α > 0,

with α−1|logα| in place of α−1 in the case when δ = σκ and at least two

of the κi are zero.
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(ii) If δ < σκ, then there exists a function f ∈ L(W T
κ ;Td) of the form f(x) =

f0(|xj0 |) such that Sδ∗(W
T
κ ; f)(x) =∞ for a.e. x ∈ Td, where 16j06d+1

is the integer such that κj0 = κmin, and xd+1 =
√

1− |x|.

5.2 Corollaries

As a consequence of Theorem 5.1.2, we obtain

Corollary 5.2.1: In order that

lim
n→∞

Sδn(W T
κ ; f)(x) = f(x)

holds almost everywhere on Td for all f ∈ L(W T
κ ;Td), it is sufficient and

necessary that δ>σκ.

Corollary 5.2.2: If 1 < p <∞ and δ > 2σκ|12 −
1
p
|, then

‖Sδ∗(W T
κ ; f)‖Lp(WT

κ ;Td)6Cp‖f‖Lp(WT
κ ;Td). (5.12)

In particular,

‖Sσκ∗ (W T
κ ; f)‖Lp(WT

κ ;Td)6Cp‖f‖Lp(WT
κ ;Td), 1 < p <∞.

Corollary 5.2.3: For 1 < p < ∞, δ > 2σκ|1p −
1
2
| and any sequence {nj} of

positive integers,

∥∥∥∥∥
( ∞∑

j=0

|Sδnj(W
T
κ ; fj)|2

)1/2
∥∥∥∥∥
Lp(WT

κ ;Td)

6c

∥∥∥∥∥
( ∞∑

j=0

|fj|2
)1/2

∥∥∥∥∥
Lp(WT

κ ;Td)

. (5.13)

Using Corollary 4.2.3, and following the approach of [4], we have
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Corollary 5.2.4: Let {µj}∞j=0 be a sequence of complex numbers that satisfies

(i) supj|µj|6c <∞,

(ii) supj 2j(n0−1)
∑2j+1

l=2j |∆n0ul|6c <∞,

where n0 is the smallest integer >σκ + 1. Then {µj} defines an Lp(W T
κ ;Td),

1 < p <∞, multiplier; that is,

∥∥∥∥∥
∞∑
j=0

µj projj(W
T
κ ; f)

∥∥∥∥∥
Lp(WT

κ ;Td)

6c‖f‖Lp(WT
κ ;Td), 1 < p <∞,

where c is independent of µj.

Corollary 5.2.4 was proved in [6] under a stronger assumption that n0 is

the smallest integer >σκ + 2 + κmin.
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