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Abstract

Knowledge graphs leverage a data model structured as a graph or topology to represent

and manipulate data. Knowledge graphs, abbreviated as KGs, consist of interconnected

factual statements, conceptualized as distinct entities referred to as the subject and object,

linked by a specified relation known as the predicate. These graphs find applications in

recommendation systems, logical reasoning, and question-answering mechanisms. They

empower machines to comprehend the relationships between different entities and draw

conclusions based on the structured information they encompass. Constructing, revising,

and augmenting such KGs warrants particular scholarly attention.

KG construction is fundamental to organizing and representing structured knowledge

from unstructured text data. The KGs can be constructed more effectively with advanced

language models with substantial computational capabilities. The models’ effectiveness

lies in understanding textual data, extracting facts, and synthesizing the content. Our study

focuses on evaluating the capacity of these models to identify entities and relationships

that contain contextual semantics. Through the utilization of these capabilities, the quality

and comprehensiveness of KGs can be improved. Moreover, incorporating sophisticated

methods such as transformers and their fine-tuning enables these models to adapt to specific

domains, consequently enhancing the relevance and accuracy of the extracted knowledge.

The hierarchical analysis of knowledge graphs (KGs) is instrumental in uncovering the

latent structures inherent in knowledge base data. Drawing inspiration from probabilis-

tic topic modeling, which analyzes text corpora by identifying latent topics that represent

the underlying themes and content patterns in documents, our research aims to adapt and
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extend these analytical frameworks for the hierarchical exploration of KGs. Specifically,

models are introduced within a nonparametric and probabilistic context, offering adaptabil-

ity in comprehending the arrangement of the hierarchy. We have adapted the Hierarchical

Latent Dirichlet Allocation algorithm and the Nested Hierarchical Dirichlet Process to con-

struct the models. We evaluate these models quantitatively and qualitatively by analyzing

the topics and distributions of words that define the hierarchical structure of complex KGs.

By doing so, we aim to enhance our understanding of the intricate connections and de-

pendencies within KGs, facilitating more robust and scalable knowledge representation.

Furthermore, our research seeks to identify potential improvements in the algorithms used

for hierarchical analysis, ultimately contributing to more efficient methods for managing

and utilizing large-scale knowledge bases. This approach provides deeper insight into the

structural dynamics of KGs and paves the way for semantic search, ontology development,

and automated reasoning.
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Chapter 1

Introduction

The thesis presents the outcomes of the research on knowledge graphs, particularly their

construction and inducing hierarchical structures based on them. The work’s results are

documented in three papers, forming three thesis chapters. Additionally, the thesis in-

cludes the motivation and objectives of the research, emphasizing its contributions to the

scientific community. It also provides relevant background information and related works,

positioning the research at the intersection of knowledge graphs, large language models,

and probabilistic topic models. The thesis concludes with potential directions for future

research.

1.1 Motivation

The development of the internet and digital platforms has led to a massive growth of web

data repositories. Such a high volume of web data poses formidable challenges for com-

puter systems and human users. Machine systems have difficulty computing efficiency and

data storage while processing and analyzing volumes of data. To successfully harness in-

valuable insights concealed within a vast amount of web data, continuous improvement

of machine learning and data processing techniques is necessary. Understanding natural

language, ambiguity resolution, and context comprehension present significant obstacles

for these algorithms. On the other hand, human users experience cognitive overload due

to the amount of information available. Additionally, it is becoming increasingly difficult

1



to identify the reliability of data sources, thereby fostering the spread of false informa-

tion. Consequently, addressing the mentioned challenges requires cutting-edge research

to provide machines and humans with the skills and approaches to navigate the data-rich

environment successfully.

Knowledge graphs (KGs) represent a novel knowledge format founded on graph theory

in a domain that provides an intuitive way to understand and navigate the world. A KG is

a data structure representing real-world entities and the relationships between them in the

format of a triple, e.g., <head entity, relation, tail entity> or <subject, predicate, object>

[1]. In precise terminology, a KG is a directed (mostly acyclic) graph (or DAG). A KG can

have cyclic or transitive relationships, but most are subsumptive or representing inverse

relations. KGs can represent different types of data, including facts, opinions, and events.

For example, a KG in an organization is a hierarchical data structure that describes the

relationships between entities and their attributes, such as customers, products, employees,

and suppliers.

Popular, open to the public, KGs such as WikiData [2], Freebase [3], YAGO [4], and

DBpedia [5] have been widely used to support a variety of applications such as search

engines [6], recommendation systems [7], and question answering mechanisms[8]. Not

only in the research fields of Computer Science, Artificial Intelligence, and the Semantic

Web but also in some real-world products, like Google’s Knowledge Graph and Microsoft’s

Satori, KGs have demonstrated a substantial ability to offer more effective services.

However, KGs need to be revised and updated with new information, while old data must

be discarded. Therefore, constructing triples in the structured format <subject, predicate,

object> is necessary to keep KGs current. Building KG is a challenging task. It is primarily

supervised and mandates that humans extract all facts from plain text, connect them and

build a graph out of those facts. As a result, KG construction and improvement are time-

consuming and costly. One of the proposed aims is to develop a model to extract facts with

semantic relationships automatically from plain text. It should provide helpful information
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Figure 1.1: Knowledge Graphs Construction Pipeline

for the proposed here hierarchy analysis.

Large Language Models (LLM) are essential for natural language processing (NLP).

These models [9], which are based on deep learning techniques and exhibit outstanding

language generation and understanding capabilities, enable a wide range of applications in

KG construction, text generation, translation, sentiment analysis, and question-answering

systems. An outline of the pipeline for constructing a knowledge graph is shown in Fig-

ure 1.1.

Learning hierarchies from KGs is motivated by various factors. The most essential ben-

efit of hierarchical structures is that we, as humans, naturally categorize and order informa-

tion to make it easier to comprehend and recall. The hierarchical organization allows us to

see the connections between concepts and ideas. For example, a hierarchical KG integrates

information in a hierarchical structure and illustrates parent-child relationships between

entities. Such a graph organizes the entities into higher-level categories and subcategories,

making it possible to see the knowledge hierarchy. Thanks to hierarchical KGs, knowledge

can be categorized and organized, efficiently navigated, and supported by semantic infer-

ence and reasoning. A common characteristic of KGs is the semantic hierarchy. The triple

<England, /location/location/contains, Pontefract/Lancaster> found in Freebase [3], where

"Pontefract/Lancaster" is at a lower semantic level than "England" in the hierarchy, is an

example of hierarchical relation. DBpedia, on the other hand, provides ontology, i.e., hier-
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Figure 1.2: Knowledge Graphs Hierarchy Analysis Pipeline

archically organized information about classes and concepts. Although some studies have

considered hierarchy structures [10], they typically call either extra information or a differ-

ent method to collect the hierarchy information. Finding a process that can automatically

and effectively build the semantic hierarchy is thus still challenging.

There are several challenges associated with extracting hierarchy KGs. First of all, for

granularity and flexibility, the stiffness and granularity of the hierarchical structure might

restrict hierarchical information. To overcome that, graphs’ entities must fit into estab-

lished categories and subcategories, which may only sometimes match the data’s specifics

entirely. It might not be easy to balance the need for adaptability to accept various rela-

tionships and maintain a consistent hierarchical structure. Secondly, for scalability and up-

keep, maintaining the hierarchical structure can be challenging as the knowledge network

becomes larger and more complicated. In particular, when numerous entities and relation-

ships are involved, updating or changing the hierarchy may entail much work. Practical

challenges can arise while ensuring data consistency and integrity while scaling the graph.

Last but not least, for Semantic ambiguity, the interpretation and assignment of entities to

specific categories and subcategories are the foundation of the hierarchy for KG. However,

semantic ambiguity can appear when an entity has several legitimate classification possi-

bilities or when an entity spans several categories. Resolving such semantic ambiguity can

be difficult and require further context or domain-specific information.
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To overcome these issues, we are investigating novel and manageable methods for ex-

tracting hierarchical information from KGs. One possible strategy is to incorporate prob-

abilistic topic algorithms that can extract the latent hierarchy structure of KGs. These

algorithms can help reveal hidden relationships and dependencies within the KGs based

on statistical analysis, shedding light on the underlying organizational principles govern-

ing interconnected entities. Figure 1.2 shows the pipeline of knowledge graphs hierarchy

analysis. Another is to employ more adaptable language models that allow longer-term

fine-tuning, customization, and modification.

1.2 Objectives

The research topics addressed in the thesis can be framed as three objectives.

The first objective – Knowledge Graph Construction based on Large Language Models

– is to prepare high-quality data with semantic relationships. The aim is to organize and

extract structured knowledge from unstructured textual information. The intention is to ap-

ply state-of-the-art large language models to process text, identify entities and relationships

between them, and transform them into a structured KG representation. The generated KG,

compromised by factual triples, will be evaluated using Precision, Recall, and F1 metrics.

The second objective – Hierarchical Topic Modeling for Knowledge Graphs – is to de-

velop a non-parametric hierarchical generative model for KGs that draws inspiration from

probabilistic methods used in topic modeling. The goal is to discover the latent probability

distributions of a KG and organize its elements into a tree of abstract topics. The goal is

to develop a method to perform a hierarchical clustering of knowledge graph subjects and

learn membership distributions of predicates and entities to topics. Three standard datasets

should be used to evaluate the proposed approach quantitatively and qualitatively.

Ultimately, the third objective – Construction of Topic Hierarchy with Subtree Repre-

sentation for Knowledge Graphs – is to develop a non-parametric probabilistic model for

hierarchical clustering of KGs. The model should uncover the latent subject-specific distri-
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butions on paths within the hierarchy and a subtree for each subject. An entire tree should

be a collection of local trees representing each subject. The method should provide the op-

portunity to identify cross-thematic topics, while keeping individual topics for subjects in

separate subtrees. Therefore, the developed method is intended to cluster subject entities,

corresponding predicates, and object entities and deliver their distributions over subtrees.

The aim is to evaluate the model on four semantically real-world datasets. It will be essen-

tial to perform the qualitative assessment of the induced hierarchy.

1.3 Outline

After the introductory chapter, this thesis continues with a brief overview of the necessary

preliminaries and background information in Chapter 2. Chapter 3 presents the knowledge

graph construction methods and experiments, it is the content of the paper Fine-tuning Lan-

guage Models for Triple Extraction with Data Augmentation. The subject clustering based

on probabilistic topic modeling from paper Hierarchical Topic Modelling for Knowledge

Graphs is included in Chapter 4. Chapter 5 comprises of the paper Construction of Topic

Hierarchy with Subtree Representation for Knowledge Graphs. Finally, this thesis is sum-

marized and future work is discussed in Chapter 6.
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Chapter 2

Background

2.1 Knowledge Graphs

There are two definitions of knowledge graph in the survey paper[1]: A knowledge graph

acquires and integrates information into an ontology and applies a reasoner to derive new

knowledge. A knowledge graph is a multi-relational graph composed of entities and rela-

tions which are regarded as nodes and different types of edges, respectively.

(dbr:Futurama, dbo:creator, dbr:Matt_Groening)
(dbr:Futurama, dbo:company, dbr:20th_Television)
(dbr:Futurama, dbo:genre, dbr:Comedy_drama)
(dbr:Matt_Groening, dbo:birthDate, 1954-02-15)
(dbr:Matt_Groening, dbo:birthPlace, dbr:Portland,_Oregon)
(dbr:Matt_Groening, dbo:occupation, dbr:writer)
(dbr:Matt_Groening, rdf:type, dbr:Person)
(dbr:writer, rdf:type, dbr:Person)

(a) Factual Triples

dbr:Futurama dbr:Matt_Groening 1954-02-15

dbr:20th_Television dbo:writer dbo:Person

dbr:Comedy_drama dbr:Portland,_Oregon

dbo:creator dbo:birthDate

dbo:company dbp:occupation

dbo:genre

rdf:type

rdf:type

dbo:birthPlace

(b) Knowledge Graph

Figure 2.1: Factual Triples and Knowledge Graph

Following previous literature, a knowledge graph can be defined as G = {⟨s, p, o⟩ ∈

E × P × E} where ⟨s, p, o⟩ is a triple, E is the set of entities in G, and P is the set of

predicates in G. KG comprises real-world facts that can be represented as triples ⟨s, p, o⟩,

where s, p, and o stand for the subject entity, predicate, and object entity, respectively. The

examples of KGs are illustrated in Figure 2.1. In this example, the prefixes dbr, dbo, rdf ,

and rdfs are commonly used in DBpedia to provide an organized and uniform method of

7



describing information and relationships between resources. The "dbr" stands for DBpedia

Resource and is used to denote specific resources within the DBpedia dataset. The name or

identifier of the resource usually follows it. The "dbo" stands for "DBpedia Ontology," and

it is used to denote different classes or categories of resources in the DBpedia ontology.

Usually, the class or type name comes afterward.

In my thesis, a subject can be described by all its predicate-object pairs ⟨p, o⟩, name it

tags. From this view, each subject, si is annotated by its related tags, tj ∈ Ti, here Ti is the

set of tags. The set of all subjects is denoted as S ⊆ E which means it is a subset of all

entities. Tags, denoted as t := ⟨p, o⟩, belong to the set of all tags, name it vocabulary, V

whicn means Ti ⊆ V . For example in Figure 2.1, the entitiy of dbr:Futurama is described

by the tags:⟨dbo:creator, dbr:Matt_Groening⟩, ⟨dbo:company, dbr:20th_Television⟩, and

⟨dbo:genre, dbr:Comedy_drama⟩.

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) 1 serves as a fundamental framework for the

management of metadata; it facilitates interoperability among applications that transmit

machine-readable information across the Web developed by the World Wide Web Consor-

tium 2. RDF focuses on providing mechanisms that support the automated handling of

Web resources. This framework can be employed across various domains; for instance,

in resource discovery to enhance search engine functionalities, in cataloging to articulate

the content and interrelations of materials found on specific Websites, pages, or digital

libraries.

Representation of RDF metadata 3 as well as a syntax for the encoding and transmission

of this metadata in a manner that optimizes the interoperability of independently devel-

oped Web servers and clients [11, 12]. The syntax proposed herein utilizes the Extensible

1https://www.w3.org/RDF
2https://www.w3.org/
3https://www.w3.org/TR/PR-rdf-syntax/Overview.html
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Markup Language [XML]: one of the objectives of RDF is to enable the specification of

semantics for data grounded in XML in a standardized and interoperable format. RDF and

XML are mutually supportive: RDF constitutes a model of metadata and only indirectly

addresses many encoding challenges that transportation and file storage entail (such as

internationalization, character sets, etc.). For these challenges, RDF depends on the capa-

bilities provided by XML. It is equally crucial to recognize that this XML syntax represents

merely one of several possible syntaxes for RDF, and alternative methods for representing

the same RDF data model may arise.

The RDF data model provides a syntax-agnostic framework for the representation of

RDF expressions. This model is instrumental in assessing semantic equivalence.

The fundamental data model encompasses three categories of objects:

• Resources: In RDF expressions, all entities are referred to as resources. A resource

may represent an entire webpage, a segment within a webpage, a collection of pages,

or even an entity not directly accessible via the web, such as a printed book. Re-

sources are identified by URIs, potentially supplemented by anchor IDs, enabling

the identification of any conceivable entity.

• Properties: A property constitutes a particular aspect, characteristic, attribute, or rela-

tionship utilized to delineate a resource. Each property possesses a specific meaning,

delineates its permissible values, identifies the types of resources it can describe, and

clarifies its interrelations with other properties.

• Statements: An RDF statement consists of a resource, a property, and the property’s

value, known as the subject, predicate, and object, respectively. The object can be

either another resource, identified by a URI, or a literal, such as a string or primitive

datatype defined by XML. In RDF, a literal may include XML markup, but it is not

further evaluated by the RDF processor. Specific syntactic rules dictate how markup

within literals can be expressed.

9



In Figure 2.1, the description of dbr: Matt_Groening is written as below:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dbo="http://dbpedia.org/ontology/"
xmlns:dbp="http://dbpedia.org/property/"
xmlns:dbr="http://dbpedia.org/resource/">

<rdf:Description rdf:about="dbr: Matt_Groening">
<rdf:type rdf:resource="dbo:Person"/>
<dbo:occupation rdf:resource="dbo:Writer"/>
<dbo:birthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1954-02-15</dbo:birthDate>
<dbo:birthPlace rdf:resource="dbr:Portland,_Oregon"/>

</rdf:Description>

</rdf:RDF>

It comprises notations and formats for serializing triples and is built on the triple struc-

ture. It offers the fundamental building blocks for creating ontologies and outlining the

connections between resources.

2.1.2 Ontologies

Ontologies represent structured aggregations of knowledge that delineate a specific do-

main and its constituent entities, arranged in a hierarchical framework characterized by sets

that possess shared attributes. In paper [13], ontology encompasses classes, relationships,

constraints, and instances. The ontologies are employed for the purposes of knowledge

representation, decision-making assistance, and modeling endeavors. In paper [14], the

ontologies offer a standardized lexicon pertinent to a particular domain, enhance the appli-

cation of synonyms, and aid in the resolution of syntactic ambiguities. In paper [15], the

implementation, sharing, and reuse of ontologies are notably adaptable, particularly when

integrated with web technologies and applications. They facilitate a non-formal articula-

tion of knowledge, rendering them appealing to a diverse audience, irrespective of their

programming proficiency or educational background.

The relationships incorporated within an ontology are not fixed a priori, thereby allowing

for any real-world relationship to be logically defined and employed to interlink terms,

thereby mirroring reality. There exist two fundamental relationship categories frequently

utilized in numerous ontologies: is_a and part_of [16] [17]. The is_a relationship facilitates
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straightforward, hierarchical connections among terms. For instance encompassing the

terms "heart," "gills," and "brain". These terms are interconnected to the term "organ,"

which is subsequently linked to the term "anatomical structure," via an is_a hierarchy.

Consequently, a query for "all mutants that influence zebrafish organs" could utilize the

is_a relationships to yield results for any mutants displaying phenotypes in the heart, gills,

or brain.

The part_of relationship serves to elucidate how the constituents of a biological sys-

tem are organized. This may denote physical components where the brain is categorized

into the hindbrain, forebrain, etc. It is noteworthy that each segment of the brain may be

further subdivided, with the subcomponents related through a part_of relationship—for in-

stance, the cerebellum is part_of the hindbrain, which in turn is part_of the entirety of the

brain. Furthermore, a part_of relationship can also pertain to processes, such as those repre-

sented within the GO biological process ontology. For example, in that ontology, prophase,

anaphase, metaphase, and telophase are all part_of the mitotic cell cycle.

Various relationship types can be appended to an ontology to enhance the knowledge

it encompasses. The develops_from relationship, for instance, is employed to depict the

developmental lineage of the organism and its components. Thus, the brain develops_from

the neural tube.

The DBpedia ontology is the foundational structure for DBpedia 4. Initially created in

2008 as a manually curated ontology from the most commonly used Wikipedia infoboxes,

it has evolved into a successful crowdsourced project, resulting in a broad, yet somewhat

superficial, cross-domain ontology. The DBpedia community continually refines the ontol-

ogy schema and the mappings from infoboxes to the ontology through active participation

in the DBpedia Mappings Wiki. Automated daily snapshots of these specifications are

available via the DBpedia Databus, with the monthly DBpedia dataset release based on the

most recent snapshot at the start of the dataset generation process.

4https://www.dbpedia.org/resources/ontology/
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Figure 2.2: Ontology Example in DBpedia

The DBpedia ontology currently includes 768 classes organized within a subsumption

hierarchy, featuring 3,000 distinct properties and approximately 4,233,000 instances. As il-

lustrated in Figure 2.2, the ontology includes two Person classes and two Location classes.

This hierarchical structure enhances the knowledge graph by enabling the inference that en-

tities classified under the Actor class also belong to the Person class. Moreover, it provides

a theoretical framework for understanding the relationships among various classes. For

example, Actor and Writer are conceptually closer compared to the relationship between

Actor and City.

2.2 Knowledge Graph Embedding

Knowledge graph embedding in Figure 2.3 maps knowledge graphs from the discrete graph

space to a continuous vector space by translation distance models or semantic matching

models. Such a representation is useful as it allows knowledge graphs to be easily inte-

grated with common machine learning and deep learning methods. In the context of our

work, knowledge graph embeddings may be used in conjunction with hierarchical cluster-

ing methods, allowing for benchmark comparison.

The process of embedding is outlined as follows in paper [18]. When provided with a

Knowledge Graph (KG), the entities and relations are initially represented randomly in a
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Figure 2.3: Knowledge Graph Embedding

lower-dimensional vector space, and a metric is established to assess the credibility of each

fact triplet. During each iteration, the embedding vectors of entities and relations can be

updated by maximizing the overall credibility of facts through an optimization algorithm.

While numerous successful studies [19, 20] have been conducted in modeling relational

facts, the majority of them are limited to training an embedding model using observed

triplets data. Consequently, there is a growing body of research focusing on enhancing KG

embedding models to be more generalized by incorporating supplementary information,

such as entity types, relation paths, and textual descriptions.

2.3 Large Language Models

The development of large language models (LLMs) is a significant breakthrough in natural

language processing (NLP). A wide range of applications in text generation, translation,

sentiment analysis, and question-answering systems are made possible by these models[9],

which are based on deep learning techniques and exhibit outstanding language generation

and understanding capabilities. We could find the most latest LLMs in the leaderboard [21].

In this section, we initially introduce the prevalent architectures employed for LLMs. Upon
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Figure 2.4: Transformer-based LLM with self-attention

the selection of the model architecture, the principal steps implicated in the training of an

LLM encompass: data preprocessing (which involves collection, cleaning, and dedupli-

cation), tokenization, model pre-training (executed in a self-supervised learning manner),

instruction tuning, and alignment.

2.3.1 LLM Architectures Transformer

The majority of large language models rely on transformer architectures [22], shown in

Figure 2.4, which employ self-attentional mechanisms to extract contextual dependencies

and relationships between words in a text. These models are trained on enormous volumes

of text data from many sources, allowing them to obtain statistical patterns and represen-

tations of a language’s semantics. The model consists of an encoder and a decoder. The

encoder comprises six identical transformer layers consisting of two sublayers. The out-

put of each sub-layer is represented as LayerNorm(x + Sublayer(x)), where Sublayer(x)

denotes the function executed by the sub-layer itself. Once the input embedding is fed in,

it will pass through the self-attention layer and position-wise fully connected feed-forward

layer. The decoder has masked self-attention for output embedding, and then the output

from the encoder and the mask self-attention will be fed into the next transformer layers.

Specifically, the Scaled Dot-Product Attention (SDPT) is mapping a query and key-value
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pairs. So it generates the output as a weighted sum of the values, the weight assigned to

each value is computed by a compatibility function of the query with the corresponding

key. The input consists of queries and keys of dimension dk, and values of dimension dv.

It computes the dot products of the query with all keys, divides each by
√
dk, and applys a

softmax function to obtain the weights on the values.

In practice, the attention function on a set of queries simultaneously, packed together

into a matrix Q. The keys and values are also packed together into matrices K and V . We

compute the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

LLMs can be categorized into three groups based on the architecture structure, which

are encoder-only LLMs, decoder-only LLMs, and encoder-decoder LLMs [23] [24].

Encoder-only LLMs, in each phase, the attention layers have the capability to access

all the words within the original sentence. The pre-training process for these models typi-

cally involves introducing some form of corruption to a provided sentence (like randomly

masking certain words) and assigning the model the task of recovering or reconstructing

the original sentence. Encoder models excel in tasks that demand a comprehensive grasp

of the entire sequence, such as identifying sentence types, recognizing named entities, and

answering extractive questions. BERT (Bidirectional Encoder Representations from Trans-

formers) [25] is a notable single case of encoder model.

Decoder-only LLMs, on the other hand, enable the attention layers to only access words

that precede a specific word in the sentence at each stage. These models are also known as

autoregressive models. The pretraining approach for such models usually revolves around

predicting the subsequent word (or token) in the sequence. Decoder-only models are par-

ticularly well-suited for tasks centered on text generation. Notably, the GPT models serve

as a prominent example within this model category.

Encoder-Decoder LLMs, incorporating encoder and decoder, are sometimes referred

to as sequence-to-sequence models. In each phase, the attention layers in the encoder can
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scrutinize all the words in the original sentence, while the attention layers in the decoder are

limited to words positioned prior to a specific word in the input. These models are typically

pretrained based on the objectives of either encoder or decoder models, albeit with a more

intricate approach. For instance, certain models undergo pretraining by replacing random

text spans (which may consist of multiple words) with a single mask special word, with

the subsequent objective being to predict the text represented by this mask word. Encoder-

decoder models are especially effective for tasks involving the generation of new sentences

conditioned on a given input, such as summarization, translation, or generative question

answering.

The well-known three LLM families [24] are GPT, LLaMA, and PALM. The GPT

Family, comprising Generative Pre-trained Transformers (GPT), are a series of decoder-

only Transformer-based language models established by OpenAI. This family encompasses

GPT-1, GPT-2, GPT-3, InstrucGPT, ChatGPT, GPT-4. While earlier iterations like GPT-1

and GPT-2 are available as open-source, more recent versions such as GPT-3 and GPT-4

[26] are proprietary and can only be interacted with through APIs.

The LLaMA Family, on the other hand, is a set of foundational language models intro-

duced by Meta. Differing from GPT models, LLaMA models are open-source, meaning

that model weights are made accessible to the academic community under a noncommer-

cial license. Consequently, the LLaMA family is expanding rapidly as these models find

extensive utility in numerous research endeavors aimed at creating improved open-source

LLMs to rival proprietary ones or to engineer task-specific LLMs for critical applications.

The initial series of LLaMA models [27] was introduced in February 2023, with parame-

ter ranges from 7B to 65B. These models have undergone pre-training on vast amounts of

tokens sourced from publicly accessible datasets. LLaMA adopts the transformer architec-

ture of GPT-3, with several minor adjustments to its design, such as (1) utilizing a SwiGLU

activation function in place of ReLU, (2) employing rotary positional embeddings rather

than absolute positional embeddings, and (3) utilizing root-mean-squared layernormaliza-
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tion instead of standard layer-normalization. The open-source LLaMA-13B model demon-

strates superior performance compared to the proprietary GPT-3 (175B) model across var-

ious benchmarks, positioning it as a reliable baseline for further LLM studies.

The PaLM (Pathways Language Model) family, created by Google, introduced its ini-

tial model [28] in April 2022 and kept it private until March 2023. This model, a 540B

parameter transformer-based LLM, was trained on a high-quality text corpus with 780 bil-

lion tokens covering various natural language tasks and scenarios. Utilizing the Pathways

system, PaLM underwent pre-training on 6144 TPU v4 chips, enabling efficient training

across multiple TPU Pods. Through scaling, PaLM achieved remarkable few-shot learn-

ing outcomes on numerous language understanding and generation benchmarks. Notably,

PaLM540B surpassed state-of-the-art fine-tuned models in multi-step reasoning tasks and

even matched human performance on the recent BIG-bench benchmark. The U-PaLM

models, ranging from 8B to 540B, are continuously trained on PaLM using UL2R, a

method for ongoing LLM training with UL2’s denoiser-based objective. This approach

is reported to yield approximately a 2x computational savings rate.

2.4 Probabilistic Topic Models

2.4.1 Probability Theory

Bayes’ Theorem Many problems require calculating p(θ|X) given p(X|θ). Such problems

can be addressed using Bayes’ theorem, which describes the relationship between p(θ|X)

and p(X|θ). Bayes’ theorem can be expressed as follows:

p(θ|X) =
p(X|θ) p(θ)

p(X)
(2.2)

In this equation, p(θ) is known as the prior probability of θ because it is not influenced by

the variable X . Correspondingly, p(θ|X) is known as the conditional or posterior probabil-

ity of θ given x. The probability p(X|θ) is known as the likelihood, and p(X) is known as

the marginal or prior probability of X , typically used as a normalization factor. Therefore,
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Bayes’ theorem can also be expressed in the following manner:

posterior probability =
likelihood× prior probability

normalizing constant

Conjugate Distribution If a posterior probability p(θ|X) and a prior probability p(θ) of

a random variable θ belong to the same distribution family, then p(θ|X) and p(θ) are known

as the conjugate distribution, and p(θ) is known as the conjugate prior of the likelihood

function p(X|θ). Conjugate distribution is a key characteristic of the exponential family.

Case 1: The beta distribution and binomial distribution are conjugate. Consider a ran-

dom variable θ with a prior:

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (2.3)

The likelihood function is:

p(X|θ) =
(
n

k

)
θk(1− θ)n−k (2.4)

According to Bayes’ theorem, the posterior is:

p(θ|X) =
Γ(α + β + n)

Γ(α + k)Γ(β + n− k)
θα+k−1(1− θ)β+n−k−1 (2.5)

This result shows that the posterior p(θ|X) belongs to the beta distribution.

Case 2: The Dirichlet and multinomial distributions are conjugate. Consider a random

variable θ with a prior in its Dirichlet form:

p(θ;α1, . . . , αK) =
1

B(α)

K∏
i=1

θαi−1
i (2.6)

where B(α) is the Beta function and α = (α1, . . . , αK). The likelihood function is:

p(X|θ) = n!

X1! · · ·Xk!
θX1
1 × · · · × θXk

k (2.7)

According to Bayes’ theorem, the posterior is:

p(θ|X) =
1

B(α +X)

K∏
i=1

θαi+Xi−1
i (2.8)
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This matches the form of a Dirichlet distribution Dirichlet(α1 +X1, . . . , αK +XK). This

result shows that the posterior p(θ|X) belongs to the Dirichlet distribution. These two ex-

amples demonstrate that for a given likelihood function, the difficulty of finding a posterior

probability depends on the selection of a prior distribution. Appropriate selection of the

conjugate prior distribution and the likelihood function allows the posterior probability dis-

tribution to take the same form as the prior probability distribution, enabling a closed-form

solution to be directly obtained.

Divergence Kullback-Leibler (KL) divergence is a common measure that defines the

difference between two probability distributions p(x) and q(x):

DKL(p ∥ q) =
∑
x

p(x) log
p(x)

q(x)
(2.9)

This definition shows that the KL divergence cannot be negative. Moreover, if and only

if q(x) and p(x) are equal, DKL(p ∥ q) = 0. Note that KL divergence is not symmetric

when measuring the difference between two probability distributions, that is, DKL(p ∥ q) ̸=

DKL(q ∥ p).

2.4.2 Common Probability Distributions

Beta Distribution The beta distribution is a continuous probability distribution family that

operates within the range [0, 1] and is characterized by two positive shape parameters, com-

monly referred to as α and β. It represents a particular scenario of the Dirichlet distribution,

which is defined by only two parameters. Given that the Dirichlet distribution serves as the

conjugate prior to the multinomial distribution, the beta distribution functions as the con-

jugate prior to the binomial distribution. Within Bayesian statistics, it can be interpreted as

the posterior distribution of the parameter p in a binomial distribution following the obser-

vation of α − 1 independent events with probability p, and β − 1 events with probability

1− p, assuming an initial uniform prior distribution for p.

Dirichlet Distribution The Dirichlet distribution, commonly represented as Dir(α), is

a set of continuous multivariate probability distributions characterized by the positive real
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vector α. It serves as the multivariate extension of the beta distribution and functions as

the conjugate prior for both the categorical distribution and multinomial distribution within

Bayesian statistics. Specifically, its probability density function expresses the confidence

in the probabilities of rival events Ei, given that each event has been observed αi−1 times.

Multinomial Distribution The multinomial distribution serves as a broader form of

the binomial distribution, which represents the likelihood of achieving a certain number of

"successes" in a series of n independent Bernoulli trials with equal success probabilities.

In the context of a multinomial distribution, the categorical distribution is similar to the

Bernoulli distribution, where each trial produces one of a set number k of possible outcomes

with probabilities p1, ..., pk (such that pi ≥ 0 for i = 1, ..., k and the sum of all probabilities

equals 1), and there are n independent trials. The random variables Xi denote the frequency

of occurrence of outcome i across the n trials. A vector U = (U1, ..., Uk) conforms to a

multinomial distribution with parameters n and p, where p = (p1, ..., pk).

Graph plate notations Graph plate notations serve as a graphical method for under-

(a) Basic elements (b) A Bayesian network of three variables

Figure 2.5: Examples of Bayesian networks

standing topic models. Within graph plate notations, the presence of shaded and unshaded

variables distinguishes between observed and latent variables, respectively. Arrows are uti-

lized to denote conditional dependencies between variables, while plates represent repeated

sampling, with the number of repetitions specified by the variable at the base. The symbols

used in graph plate notations can be referenced in Figure 2.5.
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2.4.3 Latent Dirichlet Allocation

Probabilistic topic models have become an effective technique for identifying latent se-

mantic patterns in large document sets in the fields of natural language processing (NLP).

In order to analyze text corpora to discover latent topics that can represent the underlying

themes and content patterns in the documents, A probabilistic framework is proposed.

The assumption behind probabilistic topic models[29], which are generative models,

is that each document contains a variety of latent topics, each of which is a probability

distribution over words. The fundamental premise is that documents are generated via a

two-step generative process: first, a topic is selected from the document’s topic distribu-

tion, and then words are produced from the chosen topic’s word distribution. This method

enables the flexible representation of documents as a mixture of various topics, facilitating

the discovery of latent thematic structures. Formally, the subsequent terms are defined. A

word is considered the fundamental unit of discrete data, identified as an element from a

vocabulary indexed by 1, ..., V . Words are represented using unit-basis vectors with a sole

component set to one, while all other components are set to zero. In this manner, denoting

components with superscripts, the vth word in the vocabulary is depicted by a V-vector w

such that wv = 1 and wu = 0 for u ̸= v. A document is outlined as a succession of N words

signified by w = (w1, w2, ..., wN), where wn represents the nth word in the sequence. A

corpus signifies a compilation of M documents designated by D = {w1,w2, . . . ,wM}. It

is our objective to devise a probabilistic model of a corpus that not only assigns a high like-

lihood to elements within the corpus but also assigns a high probability to other analogous

documents.

The Latent Dirichlet Allocation (LDA)[30] topic model is one of the most used prob-

abilistic topic models. In Figure 2.6, the workflow of LDA is illustrated. Documents are

modeled by LDA as distributions over topics, while topics are modeled as distributions over

words. In order to create a smoothing effect and manage the sparsity of the resulting topic

assignments, it makes the assumption that the document-topic and topic-word distributions
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Figure 2.6: The Latent Dirichlet Allocation Workflow

are subject to a Dirichlet prior distribution. Given the observed data (documents), inference

in LDA entails calculating the posterior distribution of latent variables (topics), generally

using variational inference or Markov Chain Monte Carlo (MCMC) techniques.
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Chapter 3

Fine-tuning Language Models for Triple
Extraction with Data Augmentation

This chapter presents the work on fine-tuning language models for triple extraction with

data augmentation and analysis of their performance compared to GPT-4. The implemented

pipeline included the following steps:

• Data Augmentation and Preparation: We used diverse data augmentation techniques

to fine-tune large language models (LLMs) for extracting triples (subject, predicate,

object) from text. This process involved creating enlarged and enriched training

WebNLG datasets.

• Model Training: Eleven models, each with seven billion parameters, were fine-tuned

using different trainers from HuggingFace. These models were trained on the aug-

mented datasets WebNLG and then benchmarked against ChatGPT and GPT-4.

• After analysing the performance of different LLMs on original WebNLG and aug-

mentated WebNLG, we evaluated the best LLMs of 7b parameters, orca-mini-3, and

the other base model of LLama, llama-2-13b, on the other real-world datasets like

SKE, DocRed, FewRel, and KELM.

• Evaluation: The models were evaluated based on type, partial, exact, and strict ac-

curacy in extracting triples. The evaluation showed that smaller, fine-tuned models

could outperform the baselines set by GPT family models, including GPT-4.
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Key Findings:

1. Effectiveness of Data Augmentation: The procedures to build various prompts and

augment the datasets led to significant improvements in model performance.

2. Model Performance: Fine-tuned models with seven billion parameters performed

better in triple extraction tasks than GPT-4, particularly for the WebNLG dataset.

3. Importance of High-Quality Data: The quality and size of the training data were

critical in achieving high performance in triple extraction tasks.

Limitations:

1. Hallucination: The models occasionally hallucinated, especially on well-known top-

ics like the Jeff Bezos Wikipedia article, often providing false information about

Bezos’s birthplace.

2. Looping issues: generating continuous output until reaching the token limit.

This work demonstrates that through effective data augmentation and fine-tuning, smaller

LLMs of 7b parameters can achieve or exceed the performance of big LLMs like GPT-4 in

specific tasks such as triple extraction.

This research was conducted by Yujia Zhang, Tyler Sadler, Mohammad Reza Taesiri,
Wenjie Xu, Marek Reformat at the University of Alberta, and was accepted by the 62nd
Annual Meeting of the Association for Computational Linguistics (ACL 2024) work-
shop Knowledge Graphs and Large Language Models (KaLLM).
As the first author, I was responsible for formulating and executing the experiments,
with oversight provided by Prof Marek Reformat.

24



Fine-tuning Language Models for Triple Extraction with
Data Augmentation

Abstract:

Advanced language models with impressive capabilities to process textual information

can more effectively extract high-quality triples, which are the building blocks of knowl-

edge graphs. Our work examines language models’ abilities to extract entities and the

relationships between them. We use a diverse data augmentation process to fine-tune large

language models to extract triples from the text. Fine-tuning is performed using a mix

of trainers from HuggingFace and five public datasets, such as different variations of the

WebNLG, SKE, DocRed, FewRel, and KELM. Evaluation involves comparing model out-

put with test set triples based on several criteria, such as type, partial, exact, and strict

accuracy. The obtained results outperform ChatGPT and even match or exceed the perfor-

mance of GPT-4.

3.1 Introduction

Knowledge graphs (KGs) represent knowledge in a semantically rich and intuitive way,

enabling one to better understand and utilize gathered information. A KG is a data structure

representing real-world entities and the relationships between them in the format of a triple,

e.g., ⟨head entity, relation, tail entity ⟩ or ⟨ subject, predicate, object ⟩ [1].

The majority of available knowledge is composed of unstructured textual data. The need

to ‘convert it’ into a structured format via extracting entities and relationships between them

drives the construction of KGs. Large language models, like ChatGPT or GPT-4, have a

remarkable capacity for understanding and generating text. It makes them useful tools for

automating the process of knowledge extraction from textual sources. They can capture

nuances and complexities of language, allowing for a deeper comprehension of the text’s

meaning. Therefore, they can be employed to create KGs that accurately and fully capture
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complicated semantic relations and the meaning of texts.

Extracting triples from texts poses several challenges [31]. Finding accurate and com-

prehensive entities and representative relationships from the text can be difficult, especially

with various language usage, implicit references, and context-dependent interpretations.

Additionally, processing and analyzing enormous quantities of text can be computationally

demanding and resource-intensive.

Therefore, methods for capturing reliable contextual information are paramount for

KG’s growth and development. Advanced context-aware techniques must be developed

to identify and separate contextual references, capture relationships, and identify implicit

connections.

This work aims to tune large language models (LLMs) to perform triple extraction from

text. We have conducted several experiments using various models and datasets of different

quality and sizes. The construction of triples adhering to the DBpedia ontology format has

been particularly interesting. The WebNLG dataset [32], predominantly using the DBpedia

vocabulary for its entities and properties or emulating its ontological style, serves as the

basis for our training data.

We have introduced a set of procedures to generate various prompts, instructing models

about different processes related to triple extraction and understanding. This has led to the

augmentation of the original WebNLG data and the creation of various versions of training

datasets.

Eleven models, each with seven billion parameters, have been trained. Their efficacy has

been evaluated in comparison with GPT-3.5 and GPT-4 on WebNLG. Additionally, we have

preliminary assessed larger models with thirteen, thirty, and thirty-three billion parameters

and trained them similarly.

The ultimate objective is to propose and illustrate a training methodology capable of

elevating domain-specific models to or beyond the proficiency of leading-edge models.

The findings of the work that constitute our contributions are:

26



• the reasonably sized large language models, such as ones with seven billion parame-

ters, can be successfully tuned to extract triples from text;

• the proposed procedures to build a variety of prompts lead to the generation of en-

larged and enhanced (enriched with information that improves training) datasets;

• small, fine-tuned models can outperform the baselines set up by GPT family models:

ChatGPT and GPT-4.

• high-quality data is essential for the triple generation task; many datasets in the triple

extraction space focus on extracting only specific relationships from text rather than

all possible relationships or do not follow particular vocabulary, like DBpedia ontol-

ogy.

3.2 Related Work

In the field of triple extraction, LSTM is a conventional technique to explore. Seq2Rdf

[33] employs an LSTM-based sequence-to-sequence model to map natural language text

to RDF triples in one step, using pre-trained word and knowledge graph embeddings for

initialization. However, it is limited to extracting single triples and cannot handle multi-

triple extraction. The ChatIE framework [34] achieves zero-shot information extraction by

promoting ChatGPT, without requiring any labeled data for training. It allows interactively

querying the model to extract structured information piece by piece in a multi-turn conver-

sational format. The ChatIE relies on LLM like ChatGPT which is not open source. The

performance depends heavily on how well the prompts are engineered and provides many

details.

The Head to Tail benchmark [35] provides a systematic way to evaluate how knowledge-

able LLM are about facts in diverse domains(movies, books, academics). The benchmark

is still limited in size and diversity compared to the vast world knowledge, 18k QA pairs

may not comprehensively cover all entity types, relationships, and knowledge domains.
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Figure 3.1: Example of triple extraction prompt workflow

Few-shot learning with GPT-3 [36] achieves state-of-the-art performance on standard rela-

tion extraction datasets, surpassing existing fully supervised models. Fine-tuning Flan-T5

on explanations generated by GPT-3 further enhances performance. Treating relation ex-

traction as a text-generation task provides flexibility in expressing entities and relations.

However, GPT-3 is opaque, not open source, and significantly costly.

3.3 Methods and Procedure

The paper focuses on extracting information from plain text. It is the task of building triples

of the form ⟨subject, predicate, object⟩ based on the content of a sentence. Triple extraction

is a domain-independent task. Two entities of a triple, i.e., subject and object, appear in

the text, while a relation between these two entities is often deduced by ‘understanding the

meaning’ of the sentence. All the components of a triple are extracted at the same time.
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Llama2

You are an AI assistant who is an expert in knowledge graphs.

You will be given an instruction and text.

Generate a response to appropriately complete the instruction’s request.

{instruction}{input}{output}

LLongOrca

Below is an instruction that describes a task,

paired with an input that provides further context.

Write a output that appropriately completes the request.

{instruction}{input}{output}

other models

### Instruction:{instruction}

### Input: {input}

{output}

Table 3.1: Generic Prompt Template for Different Models.

Here is a more formal description of the task. Given a set of sentences D := {w1, w2, ...,

wn}, we want to obtain a set of facts built from and based on these sentences. Let this set be

Facts := {fact1, fact2, ..., factn}, and each fact is denoted as ⟨s, p, o⟩, s ∈ S, p ∈ P, o ∈

O, where S, P,O are sets of subjects, predicates, and objects respectively.

These triples are the basic units of knowledge graphs, resulting from the development

of the Semantic Web concept. The classes (types of entities) and properties (relationships

and attributes) used to describe triples’ components are defined using ontologies. One of

the most well-known ontologies is the one used by DBpedia [5].

Within the DBpedia dataset, triples are generated and represented using the DBpedia

ontology as the schema. This ontology consists of 320 classes organized into a subsumption

hierarchy and 1650 distinct properties describing relations between them. The subsumption

hierarchy is purposefully maintained relatively shallow, with a maximum depth of five to

accommodate use cases where the ontology is traversed or visualized. Online browsing of

the entire DBpedia ontology is available at 1.

1http://mappings.dbpedia.org/server/ontology/classes/
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3.3.1 Datasets

WebNLG The WebNLG corpus [32] is made up of sets of triplets describing facts (enti-

ties and their relationships) and the matching facts expressed in natural language, in other

words, text from which the triples are extracted. It includes 13,211 training data and 2,155

test data.

FewREL Few-Shot Relation Classification Dataset (FewRel)[37] composes 70,000 in-

stances from Wikipedia and 100 relations. The dataset is divided into three subsets: training

set (64 relations), validation set (16 relations), and test set (20 relations).

DocRED Document-Level Relation Extraction Dataset (DocRED) [38] is created from

Wikipedia and Wikidata in relation extraction data. Annotated on 5,053 Wikipedia arti-

cles, DocRED comprises 132,375 entities and 56,354 relational facts. The collection offers

large-scale distantly supervised data over 101,873 documents in addition to the human-

annotated data.

KELM The English Wikidata KG and the corresponding natural text sentences make up

the large-scale synthetic corpus known as KELM[39]. It has roughly 15 million artificially

generated sentences produced by a refined T5 model. A list of triples of the format [subject,

relation, object] is contained in each linearized KG graph in KELM. A subset of KELM,

named KELM-sub, is used which contains 400,000/5,000 samples as train/test set.

SKE Baidu has released a Chinese dataset called SKE2019. The train set contains

194,747 sentences, whereas the validated set contains 21,639 sentences. SKE21 [40] has

been released by manually labeling 1150 sentences from the test set with 2765 annotated

triples. It contains 194,747 training data, 21,639 validation data, and 1,150 testing data. 2

3.3.2 Large Language Models

LLMs like ChatGPT and GPT-4, pre-trained on a large-scale corpus, are composed of de-

coder modules based on the Transformer design, which incorporates a self-attention mech-

2http://ai.baidu.com/broad/download?dataset=sked
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Data Format

Data

Augmentation

(name)

Parts of prompt Response

instruction input output

Text2triples

Think of yourself as efficient in deconstructing a

text and precisely identifying all the entities and

their interrelations. I’ll furnish you with a text and

your job is to gather all potential triples, adhering

to the pattern: (subject|relationship|object).

Sentence Triples

Explanation

"Assume you’re highly competent in scrutinizing a

piece of text and successfully distilling all its entities

along with their connections. I’ll provide a text,

and you are to extract every possible triplet,

following the convention: (subject|relationship|

object). Detail the entire process systematically."

Sentence

To extract triplets from the given text, we need to

identify the subject, predicate, and object.

Subject: "Aarhus Airport"

Predicate: "cityServed"

Object: "Aarhus, Denmark"

The property "cityServed" is derived from the

context of the sentence, where it implies that the

airport serves the city of Aarhus.

Therefore, here is the answer in the correct format:

Aarhus_Airport | cityServed| "Aarhus, Denmark")

Triples2text

Picture yourself as an expert in scrutinizing a text,

effectively extracting all entities and their

relationships and then constructing text based on

the given triples. Once I supply you with triples in

the (subject|relationship|object) format, your

duty is to reexamine these triples and create text

that imparts their semantic interpretation.

Triples Sentence

Reflection

Picture yourself as being highly skilled in text

dissection, with the ability to efficiently identify all

entities and their ties. When provided a text along

with triples in the (subject|relationship|object)

format, you are to check these triples in light of

the text and correct any inaccuracies.

Sentence

Triples
Corrected triples

Table 3.2: The Overall Data Augmentation Tricks
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anism. However, it is difficult to conduct further research due to the close-source nature

of models. Then, open-source decoder-only LLMs like Alpaca and Vicuna are released,

which are fine-tuned based on LLaMA [27] and achieve competitive performance with

ChatGPT and GPT-4.

ChatGPT-3.5 and GPT-4 Human-like conversations are the main purpose of ChatGPT,

an advanced LLM created by OpenAI. To improve ChatGPT’s alignment with human tastes

and values, it uses RLHF [41] during the fine-tuning process. GPT-4, an advanced big

language model created by OpenAI, is expanding on the achievements of its forerunners,

such as GPT-3 and ChatGPT.

Vicuna-13B [42],Wizard [43], Orca [44], LLaMA [27], LlongOrca [45], SOLAR 10.7B

[46]Mixtral Mixtral3, Mistral mode4, Platypus Platypus-30B [47] is the open-source model

we choose from HuggingFace.

3.3.3 Prompt Engineering & Data Preparation

Training Dataset Name Used Data Format(s) Size

WebNLG (original) Text2triples N

WebNLG-combined Text2triples + Explanations + Triples2text 3*N

WebNLG-combined-with-reflections Text2triples + Explanations + Triples2text + Reflection 4*N

WebNLG-reflections-updated-instructions
Text2triples + Explanations + Triples2text + Reflection

+ new_instructions
4*N

Table 3.3: Variants of WebNLG Training Data

Prompt engineering is an in-context method for learning language models. In a nutshell,

a prompt is a sequence of natural language inputs for a model, consisting of an instruction,

context, and input text. The instruction guides the model to perform a specific task, while

the context provides additional information; the input text is the text to be processed by the

model. An example of the triple extraction prompt is shown in Figure 3.1.

In this work, we used different prompt formats for various models, ensuring that both

3https://mistral.ai/news/mixtral-of-experts/
4https://huggingface.co/ignos/Mistral-T5-7B-v1
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fine-tuning and inference employed the same prompt format. The three types of prompts

are detailed in Table 3.1. The components {instruction}, {input}, and {output} are re-

placed with information/data specific to the proposed Data Formats, Table 3.2.

The experiments have been conducted with the training datasets built with different

versions of Data Formats. Such an approach allowed us to increase the size of training

datasets by 3- and 4-fold. The process of building different datasets is illustrated at the top

of Figure 3.2. Examples of data formats are included in Table 3.2. Each format has its style

of the instruction, input, as well as output. The tasks associated with each Data Format

differed from explaining the extraction process via reconstructing a sentence from triples

to evaluating triples. The data formats were used to construct various Training Datasets,

Table 3.3.

The first Training Dataset is called WebNLG-combined dataset. It contains 39,633 en-

tries in three categories/subsets, each of 13,211 entries. The first subset includes Test2triples,

i.e., sets of sentences together with the triples extracted from them. The second subset is

the extension of the first one. We have added Explanation of the triple extraction process.

The explanations were generated by prompting GPT-3.5 with the input text and the ground

truth triples to elucidate the extraction process. The explanations comprise entity identifi-

cation, property analysis, source derivation, entity relationships, and the resultant triples.

The third is Triple2text subset. It sets the ground truth triples as the model input and the

original text as the target output. The aim is to enhance reasoning capabilities and improve

triple generation performance.

The second generated Training Data is named WebNLG-combined-with-reflections

with 52,844 entries. We have extended the WebNLG-combined dataset with so-called Re-

flection data. These data were generated by a Vicuna model previously trained for the triple

extraction task using Test2triples and Explanation. The model was fed with the text and

triples generated from it, and the task was either amending the triples or confirming their

correctness. The anticipated output was either a confirmation that a given input triple was
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accurate or its correct version.

For both datasets mentioned above, the instruction was randomly selected from the

previously generated set of twenty distinct instructions. These instructions were a mix of

human-authored instructions and variations generated by GPT-4 to enhance diversity. All

instructions underwent thorough evaluation before they were used.

The WebNLG-reflections-updated-instructions dataset was the WebNLG-combined-

with-reflections dataset when a new set of instructions was used. This time, there are eleven

instructions: ten newly constructed and one from the original set. Again, this new set of

instructions is a mixture of human-written and rephrased by GPT-4.

3.3.4 Overall Experiments Setup

The workflow of experimental steps and some details about the components forming dif-

ferent Training Datasets are shown in Figure 3.2. Once the datasets were prepared, the

models have been tuned and benchmarked using the testing dataset. The final step was an

evaluation of the results (for details, see next section).

To prepare models for the process of triple extraction, we utilized HuggingFace libraries

to perform supervised finetuning utilizing Parameter-Efficient Finetuning (PEFT) [48] and

Low-Rank Adaptation (LoRA) [49] on the WebNLG dataset. We used two prewritten train-

ers, finetune script from alpaca-Lora and autotrain-advanced from HuggingFace. The

finetune script was slightly modified to change evaluation steps and to ensure the graphics

processing unit (GPU) cache was cleared after all evaluations and checkpoints were saved.

All models were trained using two Nvidia 3090 24GB GPUs and a cutoff length 1024, with

varying configurations of packages and datasets based on the trainer used.

For the finetune script, we set an approximately 85:15 split between training and valida-

tion data. The validation set size is 6,000 for WebNLG-combined and 8,000 for WebNLG-

combined-with-reflections.

For autotrain-advanced, Supervised Fine-tuning (SFT) Trainer is used from the Trans-
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Applying LoRA to model
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Triple Evaluation
 

Figure 3.2: Experimental Workflow
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former Reinforcement Learning (TRL) package that is included as an option for training

in autotrain-advanced [50]. The WebNLG-reflections-updated-instructions dataset is used.

It contained different instructions for each training task, including additional details about

formatting triples and better explaining the model’s role.

We trained a collection of eleven models chosen based on relative performance on the

HuggingFace LLM leaderboard, and compare their performance between each other and

GPT-4. After training, the LoRA weights are combined with the base model to obtain our

fine-tuned model output. These exported weights are used to run inference on the model.

3.4 Evaluation Procedure and Results

3.4.1 Evaluation Procedure

Type Partial Exact Strict

Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GPT-4 50 samples 0.706 0.729 0.714 0.684 0.707 0.692 0.651 0.668 0.657 0.640 0.652 0.645

GPT-4-0314 0.693 0.711 0.700 0.668 0.688 0.675 0.634 0.649 0.640 0.626 0.634 0.629

ChatGPT-3.5-2023 0.592 0.610 0.599 0.570 0.588 0.577 0.533 0.548 0.539 0.521 0.532 0.525

GPT-4 Full 0.567 0.624 0.587 0.536 0.580 0.552 0.478 0.506 0.488 0.455 0.482 0.465

Vicuna-7b 0.715 0.729 0.721 0.702 0.714 0.706 0.683 0.693 0.687 0.680 0.689 0.683

WizardLM-7b 0.700 0.715 0.706 0.688 0.701 0.693 0.671 0.682 0.675 0.667 0.677 0.671

Orca-mini-7b 0.683 0.700 0.690 0.670 0.686 0.677 0.652 0.664 0.657 0.647 0.658 0.652

Orca-mini-2-7b 0.711 0.726 0.717 0.698 0.710 0.703 0.681 0.690 0.684 0.677 0.687 0.681

Orca-mini-3-7b 0.746 0.762 0.753 0.732 0.746 0.738 0.715 0.726 0.719 0.712 0.723 0.717

Llama-2-7b 0.705 0.714 0.708 0.689 0.698 0.693 0.669 0.677 0.673 0.666 0.673 0.669

Llama-2-chat-7b 0.685 0.700 0.691 0.670 0.684 0.675 0.650 0.660 0.654 0.645 0.654 0.649

LlongOrca-7b 0.710 0.722 0.715 0.697 0.707 0.701 0.680 0.689 0.684 0.677 0.685 0.680

SOLAR-Instruct-10b 0.729 0.741 0.734 0.716 0.727 0.720 0.699 0.708 0.703 0.697 0.705 0.700

Mistral-t5-7b 0.731 0.746 0.738 0.716 0.729 0.721 0.697 0.708 0.702 0.695 0.704 0.698

Mixtral-8x7b 0.730 0.739 0.734 0.716 0.725 0.720 0.699 0.706 0.702 0.696 0.702 0.698

Vicuna-33b 0.750 0.762 0.755 0.738 0.749 0.742 0.723 0.732 0.727 0.720 0.729 0.724

Platypus-30b 0.747 0.762 0.753 0.732 0.746 0.738 0.715 0.726 0.720 0.713 0.724 0.718

Table 3.4: WebNLG-reflections-updated-instructions Performance Results

The evaluation framework comprises two phases: Inference, generating the model’s
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output on the test set, and evaluation, comparing this output against ground truth triples.

All models were benchmarked with a maximum token limit of 1,024, and the output was

generated without streaming. For evaluation, the numerical results such as precision, recall,

and F1, and saved as the output file. The test set includes the same instructions in our

training data and includes 2,155 instances of directly extracting triples from text.

The scores are calculated using the evaluate package [51]. It calculates metrics based

on four different criteria. First is type evaluation (TE) where only the tags must match

to be considered correct. These tags are SUB, PRED, and OBJ for the subject, predicate,

and object. Partial evaluation (PE) requires the triples to match partially or completely,

irrespective of tag, to be considered partially or completely correct. Exact evaluation (EE)

requires the triples to match exactly, irrespective of tag, to be considered correct. Strict

evaluation (SE) requires both the triples and tag to match to be considered correct. Each

evaluation type assigns a label of correct (COR), incorrect (InCOR), missed (MIS), or

spurious (SPU), based on the triples and tags. Partial (PAR) is assigned only for the partial

evaluation type. MIS and SPU are across all evaluation types, with MIS being assigned

for each part of a reference triple when there is no matching candidate, and SPU assigned

for each part of a candidate triple when there is no matching reference. The following

formulas are calculations of precision (P), recall (R), and F1. The type and partial scores

are calculated with the “partial” formulas and exact and strict scores are calculated with the

“exact” formulas:

Possible = COR + InCOR + PAR +MIS = TP + FN

Actual = COR + InCOR + PAR + SPU = TP + FP
(3.1)

PTE|PE =
COR + 0.5 ∗ PAR

Actual

RTE|PE =
COR + 0.5 ∗ PAR

Possible

(3.2)

PEE|SE =
COR

Actual
=

COR

COR + InCOR + SPU

REE|SE =
COR

Possible
=

COR

COR + InCOR +MIS

(3.3)
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3.4.2 Results

WebNLG Dataset. The obtained results for the fine-tuned models are included in Table

3.4. It can be observed that small 7b models Orca-mini3-7b and Mistral-t5-7b have the

best performances even when compared with GPT-4. The Orca-mini3-7b model achieved

the highest F1 scores for all evaluations, outperforming all 7b models in our comparative

analysis.

Small variations have been observed between training methods and datasets. In general,

models show slight improvement from WebNLG-combined to WebNLG-combined-with-

reflections and then to WebNLG-reflections-updated-instructions. Additionally, modifying

the instructions shows a decrease in training loss. GPT models had a bigger drop in perfor-

mance going to the exact and strict metrics compared to our models, which resulted in our

models performing relatively better on the exact and strict metrics.

Ablation Study. We performed ablation studies to evaluate the impact of different data

augmentation strategies on the performance of these models. Figure 3.3 shows the effects

of various data augmentation techniques on the models’ performance. We show the perfor-

mance results obtained for two models – Orca and Vicuna – and four Training Datasets: the

original WebNLG dataset, the WebNLG-combined dataset, the WebNLG-combined-with-

reflections dataset, and the WebNLG-reflections-updated-instructions dataset, Table 3.3.

We report the precision, recall, and F1 values for the most demanding task of generating

triples identical to those provided as the target. It is easily seen that the results obtained for

the last Training Dataset are the best.

Other Datasets. Two models Orca-mini-3 and Llama-2-13b have been finetuned on

different datasets, Table 3.5. The best scores have been obtained for the KELM dataset.

The Llama-2-13b finetuned on another dataset DocRED performed very poorly and was

completely unable to learn proper formatting of triples.

The main issue with inference on other data is related to the type of triple properties

and how many triples are extracted from a single sentence. For example, the analysis of the
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DocRED dataset revealed that it is focused mainly on such relations as country and location

while ignoring any other relations. In DocRed, a few triples are extracted from paragraph

sentences. There is much looping in the models’ output; models do not efficiently learn

triple formats. Some outputs were of the form (subject | predicate | object). Further, there

are only about 3,000 entries in annotated training data. For yet another dataset – FewRel –

the issue seems to be related to the model not knowing when to generate triples following

the DBpedia and when using Wikidata formats.

3.5 Discussion and Limitations

The obtained results and their analysis have led to a few observations that confirmed known

facts about tuning large models and allowed to draw some new ones. We can categorize

them into three parts: data size, model selection, and interaction with a model (prompt and

data preparation).

Size and Quality of Datasets. It is a well-known fact that larger datasets lead to better

results. Such an obvious statement is also true for the triple extraction process. It is seen

in Table 3.5. The results obtained for KELM data – 400,000 samples in the training set

– confirm that. The model was tuned with a simple prompt containing text-2-triple and

instructions. Comparing that with our primary focused data, WebNLG, which includes

only 13,211 training datasets, shows a significant advantage of large datasets.

Once we collected results for the other two datasets – DocRED and FewRel - we inves-

tigated the content of the training datasets. It has become apparent that the reference triples

that were supposed to be constructed from sentences were of poor quality: limited to a few

relations, incoherent structure, a limited number of triples (quite often just one) form small

paragraphs.

Model Selection/Multilingual Triples. In our experiments, one of the datasets – SKE

– is a set of Chinese sentences and extracted from them triples. The difference in results

obtained from orca-mini-3-7b and llama-2-13b is very large. A quick investigation revealed
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Type Partial Exact Strict

Data Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SKE
orca-mini-3 0.828 0.828 0.828 0.829 0.829 0.829 0.829 0.829 0.829 0.827 0.827 0.827

llama-2-13b 0.129 0.127 0.127 0.130 0.128 0.129 0.127 0.127 0.127 0.124 0.124 0.124

DocRED
orca-mini-3 0.057 0.054 0.052 0.050 0.050 0.048 0.031 0.031 0.030 0.024 0.025 0.024

llama-2-13b 0.096 0.037 0.051 0.051 0.022 0.028 0.002 0.002 0.002 0.002 0.002 0.002

FewRel
orca-mini-3 0.314 0.402 0.342 0.354 0.425 0.376 0.312 0.362 0.327 0.240 0.286 0.254

llama-2-13b 0.304 0.378 0.325 0.344 0.405 0.361 0.297 0.340 0.310 0.224 0.263 0.236

KELM
orca-mini-3-7b 0.867 0.899 0.879 0.848 0.873 0.857 0.823 0.841 0.830 0.820 0.837 0.826

Llama-2-13b 0.861 0.865 0.852 0.825 0.836 0.825 0.779 0.796 0.785 0.769 0.786 0.776

raw_Webnlg
orca-mini-3-7b 0.618 0.638 0.626 0.598 0.615 0.605 0.574 0.588 0.579 0.593 0.583 0.575

Llama-2-13b 0.62 0.637 0.626 0.602 0.618 0.608 0.581 0.593 0.586 0.577 0.588 0.581

Table 3.5: Performance on Other Datasets

that the dataset used to train the orca-mini-3-7 model contained a large amount of Chinese

text. Again, it confirms a commonsense fact that if a language model is not exposed to a

text in a given language, its performance, related to this language, is not satisfactory.

Prompt and Data Preparation. The most interesting and important observation com-

ing from our experiments is a high significance of the creative approach to constructing

prompts and ‘augmentation’ of the training datasets.

As indicated earlier, the task of extracting triples from WebNLG data involves the

usage of DBpedia vocabulary. In particular, properties/relations of the extracted triples

have/should be in the DBpedia format. The WebNLG dataset has been analyzed to ensure

the training data is of high quality. DBpedia ontology has been used to determine if the

triples/relations were consistent.

The consistent structure of triples is essential so the model can effectively learn how

to form triples properly. Exposure to different properties is also of high importance. The

properties seen in the training and testing sets overlapped, with thirty-six properties unique

to the test set. All properties were checked to ensure they were present in DBpedia.

A small amount of training data, just 13,211, has forced us to generate larger datasets

from the original set via setting different tasks related to processing and extraction of

triples. Section 3.3.3 details how various versions of Training Datasets were created. We
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enhanced the data with explanations of triple generation processes generated by GPT-3.5

and previously tuned Vacuna model, generation of sentences based on sets of triples, and

simple evaluation of extracted triples. These activities have improved our best model’s

performance, i.e., orca-mini-3-7b.

Limitations There are some limitations of fine-tuned models. They hallucinated on

occasion, especially when they generated responses for more well-known topics, such as

when we asked them to generate a response to the Jeff Bezos Wikipedia article. The mod-

els frequently hallucinated the birthplace of Bezos, providing false information about the

location. Also, models had looping issues, where they would continually generate output

until they reached the token limit.

3.6 Conclusions

The paper aims to investigate different scenarios of a triple extraction task. Various models

and a few datasets have been used in the experiments. A prime contribution is the devel-

opment of a procedure/methodology for augmenting the original dataset. The additions

included several tasks indirectly related to the triple extraction process: explaining the ex-

traction steps, reconstructing sentences from triples, and determining the correctness of

extracted triples. It resulted in enlarged training datasets (3- or 4-fold). As an outcome, the

performance of 7b tuned models is comparable to or even better than that of well-known

models from the GPT family.

The applied procedures concentrated on generating triples containing elements com-

patible with a specific vocabulary, in our case, DBpedia. While our models suffer from

occasional looping and hallucinations, they effectively extract triples following DBpedia

ontology from sentences. The results demonstrate that achieving and exceeding GPT per-

formance with fine-tuned models is possible without large datasets.

42



Chapter 4

Hierarchical Topic Modelling for
Knowledge Graphs

In this chapter, we present a hierarchical topic modeling approach designed for knowledge

graphs. This method is inspired by probabilistic topic modeling techniques, particularly

Latent Dirichlet Allocation (LDA) and its hierarchical extension (hLDA). Our model aims

to uncover latent structures within knowledge graphs by organizing entities and predicates

into a tree of abstract topics.

The primary components of our approach are:

• Data Preprocessing: Knowledge graphs are collections of triples (subject, predicate,

object). Our model treats predicates and <predicates, objects> as tags that describe

subjects, similar to how words describe documents in topic models.

• Generative Model: The model generates a hierarchy of topics (nodes in a tree) where

each node represents a distribution over tags and predicates. Subjects sample paths

through this tree, providing a hierarchical clustering of subjects and a hierarchical

organization of topics.

• Inference: We utilize a non-parametric prior (nested Chinese Restaurant Process)

for tree generation, allowing the model to determine the tree structure based on data

without requiring predefined parameters. Gibbs sampling, leveraging Multinomial-
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Dirichlet conjugacy, is used for efficient posterior inference, making the model scal-

able to large datasets.

• Evaluation: We evaluate our model on three common datasets (FB15k-237, YAGO3-

10, and DBpedia), and compare it against existing hierarchical clustering techniques.

Our results show that our model can induce coherent topic hierarchies and perform

well in clustering tasks.

Key Findings:

1. Our hierarchical topic model effectively organizes knowledge graph elements into

meaningful clusters without requiring prior assumptions about the tree structure.

2. Quantitative evaluations on benchmark datasets demonstrate the model’s competitive

performance in clustering tasks.

3. Qualitative assessments highlight the coherence and interpretability of the induced

topic hierarchies.

Limitions:

1. The subject is delineated by a singular path within the acquired tree, which inade-

quately represents subjects encompassing a diverse range of topics.

2. The breadth of the tree is attributed to the lack of control over redundant topics,

leading to the inclusion of overlapping subjects such as artist, writer, and artist and

writer.

3. The computational inference process consumes a significant amount of CPU re-

sources and operates at a notably slow pace.

This work was published in the European Semantic Web Conference (ESWC) 2022, 29
May - 2 June; Hersonissos, Greece.
The primary author, Yujia Zhang, designed and conducted the experiments under the
supervision of Prof. Marek Reformat.
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Hierarchical Topic Modelling for Knowledge Graphs

Abstract: Recent years have demonstrated the rise of knowledge graphs as a powerful

medium for storing data, showing their utility in academia and industry alike. This in

turn has motivated substantial effort into modelling knowledge graphs in ways that reveal

latent structures contained within them. In this paper, we propose a non-parametric hier-

archical generative model for knowledge graphs that draws inspiration from probabilistic

methods used in topic modelling. Our model discovers the latent probability distributions

of a knowledge graph and organizes its elements in a tree of abstract topics. In doing so, it

provides a hierarchical clustering of knowledge graph subjects as well as membership dis-

tributions of predicates and entities to topics. The main draw of such an approach is that it

does not require any a priori assumptions about the structure of the tree other than its depth.

In addition to presenting the generative model, we introduce an efficient Gibbs sampling

scheme which leverages the Multinomial-Dirichlet conjugacy to integrate out latent vari-

ables, making the posterior inference process adaptable to large datasets. We quantitatively

evaluate our model on three common datasets and show that it is comparable to existing

hierarchical clustering techniques. Furthermore, we present a qualitative assessment of the

induced hierarchy and topics.

4.1 Introduction

Knowledge bases have received considerable research attention in recent years, demonstrat-

ing their utility in areas ranging from question answering [52, 53] to knowledge generation

[54, 55, 56] to recommender systems [57]. These knowledge bases are underpinned by

graph structures called knowledge graphs which describe facts as a collection of triples

that relate two entities via a predicate. Advances in artificial intelligence have spurred on

the need to find representations of knowledge graphs which can be easily and accurately

reasoned with by machines. One aspect of this is the increased research attention devoted
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to generative models for knowledge graphs which learn the latent probability distributions

of a graph. These models work by decomposing the knowledge graph to a set of probabil-

ity distributions that, when sampled together, generate its relations. The learning process,

therefore, amounts to inferring the posterior distribution conditioned on the data.

Probabilistic topic models are types of generative models that have received consider-

able attention in the field of natural language processing. The aim of these models is to

build abstract word topics from a corpus of documents and their words. In this sense, top-

ics may be viewed as clusters of words. Most topic models operate under the intuition

that words which co-occur in the same documents are likely to have similar semantics and

therefore belong to the same topics. Hierarchical topic models extend this principle and

organize the induced topics into a topic hierarchy whereby each ancestor topic represents a

conceptually coarser version of its descendant topics.

In this paper, we present a model for generating a topic hierarchy from knowledge graphs

which extends on existing topic models. In our model, topics are collections of entities and

predicates, and are organized hierarchically in the form of a rooted tree. In generating these

topics, our model also implicitly hierarchically clusters subjects by sampling a correspond-

ing tree path. Furthermore, we employ a non-parametric prior over the tree, allowing our

model to be free of any a priori assumptions about its structure other than its depth. We

present an efficient Gibbs sampling scheme for posterior inference of our model. The ap-

proach leverages the Multinomial-Dirichlet conjugacy to integrate out parameters for faster

inference. Our evaluation demonstrates our model’s ability to induce a coherent topic hier-

archy as well as hierarchical subject clustering.

4.2 Proposed Model

In this section, we describe our model by positioning it in the context of existing probabilis-

tic topic models from which it draws inspiration. Specifically, we first introduce readers

to Latent Dirichlet Allocation (LDA) [30] and Hierarchical Latent Dirichlet Allocation
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(hLDA) [58] before formalizing our model.

4.2.1 Problem Formulation

We define a knowledge graph as a collection of triples, K, such that each triple relates

a subject entity, s, to an object entity, o, via a predicate, p. Formally, K = {⟨s, p, o⟩ ∈

S×P×O} where ⟨s, p, o⟩ is a triple, and S, P, and O are the sets of subjects, predicates,

and objects in K, respectively. We note that knowledge graphs are rarely bipartite in terms

of S and O. In other words, entities can take on the role of both subjects and objects in

K, thus S ∩O ̸= ∅. Our goal is to find a representation of the knowledge graph in which

entities and predicates are hierarchically organized such that entities representing coarse

concepts subsume their fine grained counterparts. For instance, the concept Person is a

coarser concept than Artist since it encompasses all persons, including artists and non-

artists. A natural representation of this paradigm is a directed tree wherein coarse concepts

occupy nodes closer to the root node. Nodes are then collections of entities and predicates

which share similar semantics. Paths in the tree capture the progressive granularization of

a concept.

4.2.2 Probabilistic Topic Models

Given a collection of documents and their words, D, topic models generate abstract topics

on the intuition that words belonging to the same topic are likely to occur in the same

documents. Latent Dirichlet Allocation (LDA) [30] is a canonical example of the topic

models used today. In this approach, each document, di ∈ D, is a mixture of topics and

each topic is a distribution of words. To generate a document, the number of document

words, Wi, the document’s topic mixture, θi, and each topic’s word distributions, βk, are

sampled. For each document word, wi,j , first a topic indicator zi,j is sampled according to

θi then the word is generated from zj’s word distribution, βzj . This generative procedure is

formally defined as follows:
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• for each document; di ∈ D

– Wi ∼ Poisson(ξ)

– θi ∼ Dirichlet(α)

• for each topic; k ∈ 1, 2, ..., K

– βk ∼ Dirichlet(η)

• for each document; di ∈ D

– for each word in document; wi,j ∈ di

* zi,j ∼ Multinomial(θi)

* wi,j ∼ Multinomial(βzi,j)

Learning the distributions which generate the documents amounts to inferring the posterior

distribution. Although this problem is intractable for exact inference, it can be approxi-

mated with algorithms such as Variational Bayes [30] or Collapsed Gibbs Sampling [59].

We refer readers to the original papers for the full inference procedure.

LDA has been extended to generate a hierarchy of topics in Hierarchical Latent Dirichlet

Allocation (hLDA) [58]. The foundation of hLDA is the nested Chinese restaurant process

(nCRP) which is an extension of the Chinese restaurant process (CRP) [60]. The CRP is

a recursively defined stochastic process which gets its name from the analogy of seating

patrons at a Chinese restaurant. In this restaurant, there are an infinite number of tables

and each table can seat an infinite number of guests. When a guest enters, the probability

of him being seated at a table is proportional to the number of patrons already seated at

the table. Formally, when seating guest gi at a restaurant that has M non-empty tables, the

probability of seating the guest at table m is:

P(gi = m|gi−1, ..., g1) =


|ni

m|
i− 1 + γ

m ≤M

γ

i− 1 + γ
m = M + 1

0 M + 1 < m

(4.1)
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where |ni
m| is the number of patrons sitting at table m when guest gi arrives and γ is a

hyperparameter which controls the probability that an incoming guest will be seated at an

empty table.

The nCRP is used in hLDA as an infinitely deep and infinitely branching prior over a

tree structure. In this process, a tree is generated by sampling a path, ci, at each level in

the tree via the CRP. Each node in a tree, nk ∈ N, has its own CRP and being seated at

a table is analogous to taking a specific branch in the path down the tree. As before, the

probability of taking a path is proportional to the amount of times the path has been taken

before. When arriving at a node nk with children Mk on the (l − 1)th level in the tree, the

probability of selecting an existing branch, ci[l] ∈Ml or creating a new branch, ci[l] = M∗
k ,

is:

P(ci[l] = m|ci−1: 1, ci[l − 1: 1]) =


|ni

m|
|ni

k|+ γ
m ∈Mk

γ

|ni
k|+ γ

m = M∗
k

(4.2)

where ci[l] is the node on the path of di at level l, M∗
k = min(Z+ \Mk) is the smallest

positive integer not in Mk, and |ni
k| is the number of entities that have gone through node

nk when entity i arrived, |ni
k| = |{j ∈ Z+ : j < i ∧ cj[l] = nk}|.

Putting everything together, hLDA uses the nCRP to generate a tree of topics. The tree

is bounded to a maximum depth of L and each node in the tree is associated with a topic βk.

Each document di samples a path through L nodes in the tree, ci, and a topic distribution

over levels in the tree analogous to the topic mixture in LDA, θi. For each word wi,j in

di, a topic zi,j is sampled from θi and a word is generated from that topic. The generative

process is summarized as follows:

• for each node in the tree; nk ∈ N

– βk ∼ Dirichlet(η)

• for each document; di ∈ D

– ci ∼ nCRP(γ)
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– θi ∼ GEM(ρ, π)

– for each word in document; wi,j ∈ di

* zi,j ∼ Multinomial(θi)

* wi,j ∼ Multinomial(βci[zi,j ])

where GEM(ρ, π) stands for the stick-breaking process [61] and functions as the prior for

topic levels. As with LDA, we refer the readers to the original papers for model inference.

4.2.3 Model Description

We present our model as an extension of hLDA which has been adapted to knowledge

graphs. As such, we adopt the previously introduced concepts and notation, and focus on

highlighting the differences.

The first difference is the departure from the domain of documents and words to that of

subjects, predicates, and objects. We can think of a predicate-object pair as a tag which

describes a subject in a way that is analogous to how a word describes a document. In this

view, a tag, t, is defined as ⟨p, o⟩ and belongs to a subject such that ti,j ∈ Ti denotes that

tag ti,j belongs to subject si. This formulation is leveraged in our model by assigning a tag

topic distribution, βt, for each node in the tree. Furthermore, to capture the distributions

of predicates in each cluster, we mix in a predicate specific topic, βp. Predicates share

their level indicators, zi,j , with their corresponding tags. As such, the number of predicates

belonging to a subject has to equal its tag count. We define the multiset of predicates which

belong to subject si as pi,j ∈ Pi such that |Pi| = |Ti|. Thus, each node is a collection of

two topics whose elements span the domain of T ∪P.

Each subject si samples a path, ci, through the tree using the nCRP as well as a level

distribution, θi. A further departure from the original hLDA model is the replacement of the

stick-breaking process as the prior of the level distribution with the Dirichlet distribution.

This formulation is a return to the prior used in LDA and was chosen for two reasons.

The first is that the Dirichlet distribution introduces only one hyperparameter in contrast
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to the stick-breaking process’ two. This makes our model easier to apply a priori since

hyperparameter sensitivity and selection present challenges in non-parametric models. The

second is that the inference scheme is simpler when using the Dirichlet prior. Finally, the

theoretical benefits of the stick-breaking prior are not justified in a practical context since

the infinite distribution would get bounded in our model by the tree depth, L.

As mentioned previously, level indicators, zi,j , are shared among corresponding predi-

cates and tags. Thus, we sample one level indicator for each tag analogously to hLDA. This

indicator is used in conjunction with the subject path to determine the node whose topics

will be sampled from. Unlike hLDA which only samples words, our model samples predi-

cates and tags from the selected node’s predicate and tag topic distributions, βp[ci[zi,j]] and

βt[ci[zi,j]], respectively. We use the notation βp[ci[zi,j]] and βt[ci[zi,j]] to denote the predi-

cate and tag topic distributions of the node at level zi,j on path ci. The generative process

is defined as follows:

• for each node in the tree; nk ∈ N

– βp ∼ Dirichlet(ηp)

– βt ∼ Dirichlet(ηt)

• for each subject; si ∈ S

– ci ∼ nCRP(γ)

– θi ∼ Dirichlet(α)

– for each tag in subject; ti,j ∈ Ti

* zi,j ∼ Multinomial(θi)

– for each predicate in subject; pi,j ∈ Pi

* pi,j ∼ Multinomial(βp[ci[zi,j]])

– for each tag in subject; ti,j ∈ Ti
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Figure 4.1: Plate diagram for our model.

* ti,j ∼ Multinomial(βt[ci[zi,j]])

ηp and ηt are hyperparameters of our model which control the sparsity of the topics such

that lower η values result in sparser topics which are more dissimilar from one another.

Furthermore, the ratio between ηp and ηt controls the relative importance of predicates

to tags when calculating the likelihood functions. γ is a hyperparameter of the nCRP

and controls the probability of creating a new path in the tree such that higher γ values

will generate trees with a higher average branching factor. Finally, α is the topic level

hyperparameter. We provide a graphical representation of our model using plate notation

in Figure 4.1.

4.2.4 Inference

Our model is intractable for exact inference, thus we approximate it using collapsed Gibbs

sampling for posterior inference. The goal of the sampling scheme is to generate the subject

paths, c, and level indicators, z, by inferring the latent parameters. For faster mixing, we

integrate out the topic distributions, βp and βt, as well as the level distributions, θ, by

leveraging the Multinomial-Dirichlet conjugacy. This reduces our inference scheme to
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simply sampling paths and levels alternately until the parameters of the model are learned,

at which point we can collect samples to estimate the true posterior.

Sampling Paths

The posterior distribution of ci, the path for subject si, conditioned on all other variables is:

P(ci|c−i, zi,Pi,Ti, γ, ηp, ηt) ∝ P(ci|c−i, γ)P(Pi|ci,P−i, zi, ηp)

P(Ti|ci,T−i, zi, ηt) (4.3)

where c−i denotes all paths in the tree excluding the path taken by subject si. Likewise, P−i

and T−i denote the predicates and tags on the tree leaving out those belonging to to subject

si. This expression is merely an application of Bayes’ theorem which states the posterior is

proportional to the likelihood times the prior. The first term,P(ci|c−i, γ), is the nCRP prior

and is calculated as outlined earlier in the paper. The second term, P(Pi|ci,P−i, zi, ηp), is

the predicate likelihood given the choice of paths. In other words, it is the probability of

observing the predicate data if subject si were to take path ci. The calculation of this term

is defined as follows:

P(Pi|ci,P−i, zi, ηp) =

L∏
l=1

Γ
(∑

pi,j∈P−i
#[z−i = l, c−i,l = ci,l,P−i = pi,j] + ηp|P|

)
∑

pi,j∈P−i
Γ
(
#[z−i = l, c−i,l = ci,l,P−i = pi,j] + ηp

)
L∏
l=1

∏
pi,j∈Pi

Γ
(
#[zi = l, ci,l = ci,l,Pi = pi,j] + ηp

)
Γ
(∏

pi,j∈Pi
#[zi = l, ci,l = ci,l,Pi = pi,j] + ηp|P|

) (4.4)

where Γ(.) is the gamma function and #[.] indicates the number of elements that satisfy the

given conditions. Finally, the third term, P(Ti|ci,T−i, zi, ηt), is the tag likelihood given
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the choice of paths and is calculated analogously to the predicate likelihood:

P(Ti|ci,T−i, zi, ηt) =

L∏
l=1

Γ
(∑

ti,j∈T−i
#[z−i = l, c−i,l = ci,l,T−i = ti,j] + ηt|T|

)
∏

ti,j∈T−i
Γ
(
#[z−i = l, c−i,l = ci,l,T−i = ti,j] + ηt

)
L∏
l=1

∏
ti,j∈Ti

Γ
(
#[zi = l, ci,l = ci,l,Ti = ti,j] + ηt

)
Γ
(∑

ti,j∈Ti
#[zi = l, ci,l = ci,l,Ti = ti,j] + ηt|T|

) (4.5)

The time complexity of sampling a single path, ci, is O(|N|(|S| + |T|)), thus sampling all

the paths in one iteration of the Gibbs sampler is O(|S||N|(|S|+ |T|)).

Sampling Levels

The posterior distribution of zi,j , the level indicator for the j th tag in subject si is as follows:

P(zi,j|zi,−j,Pi,−j,Ti,−j, c, ηp, ηt, α) ∝ P(zi,j|zi,−j, α)P(pi,j|Pi,−j, c, zi, ηp)

P(ti,j|Ti,−j, c, zi, ηt) (4.6)

where zi,−j are all the level indicators in subject si excluding zi,j , the indicator for tag ti,j .

The prior for level indicators, P(zi,−j|zi,−j, α), is obtained by integrating out the Multi-

nomial distribution via the Multinomial-Dirichlet conjugacy and calculating the Dirichlet

prior as follows:

P(zi,j|zi,−j, α) = E(zi,j|zi,−j, α)

= E
(
E(zi,j = l)|θ1, θ2, ..., θL, zi,−j, α

)
∝ #[zi,−j = l] + α (4.7)

The predicate likelihood,P(pi,j|Pi,−j, ci, zi, ηp), is calculated by counting the total number

of predicates at the node specified by zi,j on path ci that are the same as pi,j:

P(pi,j|Pi,−j, ci, zi, ηp) = E(pi,j|zi, ci, ηp)

∝ #[z−(i,j) = zi,j, czi,j = ci,zi,j ,P−(i,j) = pi,j] + ηp (4.8)
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The tag likelihood, P(ti,j|Ti,−j, c, zi, ηt), is calculated analogously:

P(ti,j|Ti,−j, ci, zi, ηt) = E(pi,j|zi, ci, ηt)

∝ #[z−(i,j) = zi,j, czi,j = ci,zi,j ,T−(i,j) = ti,j] + ηt (4.9)

The time complexity of sampling a single topic, zi,j , is O(L) and meaning that sampling

all levels is O(|S||T||L).

Collapsed Gibbs Sampling

As mentioned previously, the collapsed Gibbs sampling process samples paths and levels

alternately, as summarized in Algorithm 1 for our model, in Figure 4.1. This approach

creates a Markov chain which iteratively approaches its stationary distribution. As such,

it is necessary to burn-in a fixed number of samples before samples approximating the

posterior distribution may be obtained. Although Gibbs sampling is guaranteed to converge

in the infinite case, the speed with which it does so is highly variable and difficult to predict

a priori. Monitoring the likelihood of the model is therefore important in determining

whether sufficient training has taken place. Furthermore, due to the non-parametric nature

of our model, the selection of hyperparameters is critically important. Recall, for instance,

that the tree’s structure and size changes every time it is sampled. Thus, high γ values may

induce trees with branching factors too high to feasibly perform inference on.

Algorithm 1 Gibbs Sampling Procedure
Input: Knowledge graph, K; nCRP hyperparmeter, γ; topic hyperparameters, ηp and ηt;
level hyperparameter α; Number of iterations, iters
Output: Hierarchical topic model for K defined by c and z

1: Obtain S, P, and T from K
2: for iter = {1, 2, ..., iters} do
3: for i ∈ {1, 2, ..., |S| do
4: Sample ci using Equation 4.3
5: for j ∈ {1, 2, ..., |T| do
6: Sample zi,j using Equation 4.6
7: end for
8: end for
9: end for
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4.3 Evaluation

We split the evaluation of our model into two parts: quantitative and qualitative. In our

quantitative evaluation, we train our model to obtain a hierarchical clustering of subject

entities. This clustering is then evaluated by comparing against ground truth labels and

calculating metrics of clustering performance. This gives insight into the quality of induced

tree and allocation of subjects to leaf nodes. To assess the quality of the inferred topic

clusters, we perform a qualitative evaluation by analyzing the membership distributions

of predicates and tags to selected topics. What follows is a summary of our evaluation

procedure and discussion of the results. The source code for our model along with the

datasets used may be found on GitHub1.

4.3.1 Datasets

We use three real-world datasets in our evaluation: FB15k-237, YAGO3-10, and DBpedia.

The datasets were chosen based on their ubiquity in existing literature and to highlight the

scalability of our sampling scheme on large datasets. What follows is a brief description of

each dataset.

FB15k-237

The FB15k-237 dataset [62] was constructed from the FB15k dataset [55] by removing

redundant and inverse triples. It contains data queried from a version of Freebase that

existed around 2013. Specifically, it is comprised of 272115 triples, 14541 entities, and

237 predicates. For our hierarchical clustering analysis, we followed a similar approach to

generating a ground truth subset of the data as [63]. Namely, we first mapped entities to the

WordNet taxonomy [64] through the sameAs predicate, which relates Freebase entities to

YAGO entities. We then extracted triples containing subjects with labels on second level in

the taxonomy from the sets provided in Table 4.1. This process yielded a dataset with 5301

1https://github.com/yujia0223/hkg
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Table 4.1: Summary of Ground Truth Classes used to Derive Clustering Evaluation
datasets.

FB15k-237 YAGO3-10 DBpedia

Level 1 Person, Organi-
zation, Location,
Event

Person, Organi-
zation, Body of
Water

Person, Place

Level 2 Artist, Politician,
Scientist, Office-
holder, Writer, Mu-
sical Organization,
Party, Enterprise,
Nongovernmen-
tal Organization,
County, Town,
City, Mountain,
Movie, Entertain-
ment, Game, Con-
test

Artist, Politician,
Scientist, Office-
holder, Writer, Mu-
sical Organization,
Party, Enterprise,
Nongovernmen-
tal Organization,
Stream, Lake,
Ocean, Bay, Sea

Artist, Athlete,
PopulatedPlace,
NaturalPlace

Level 3 - - Actor, Musi-
calArtist, Painter,
SoccerPlayer,
GridironFoot-
ballPlayer, Win-
terSportPlayer,
Swimmer, Body-
OfWater, Moun-
tain, Settlement,
Island, Country

Level 4 - - AmericanFoot-
ballPlayer, Ice-
HockeyPlayer,
Lake, City, Town
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A (908)
B (350)

D (75)
I (75)

K (45) - Mountain : 45
L (4) - Town : 1, City : 2, Swimmer : 1
M (14) - Country : 5, Island : 3, City : 2,
Lake : 1, SoccerPlayer : 2, IceHockeyPlayer :1
N (12) - Island : 4, City : 2, Country : 2,
Lake : 1, Swimmer : 1, SoccerPlayer : 1,
IceHockeyPlayer : 1

E (90)
J (90)

O (66) - Swimmer : 50, Actor : 11,
MusicalArtist : 2, Country : 2, Mountain :
1
P (16) - City : 8, Town : 4, Country : 3,
Swimmer : 1
Q (8) - Country : 2, City : 1, Swimmer
: 1, Painter : 1, MusicalArtist : 2,
AmericanFootballPlayer : 1

F (101)
...

G (84)
...

C (23)
H (23)

...

Figure 4.2: Excerpt of Our Induced Tree on the DBpedia Dataset. Numbers in brackets
indicate the number of subjects which visited the cluster on its path.

subjects, 103550 triples, 10018 entities, and 190 predicates.

YAGO3-10

The YAGO3-10 dataset was derived from the YAGO3 database [4] which is a knowledge

graph derived from Wikipedia and follows the hierarchical class structure of WordNet. As

with FB15k-237, we mapped entities to the WordNet taxonomy before selecting the subset

defined by classes in Table 4.1. This resulted in a dataset with 11954 subject, 84382 triples,

27572 entities, and 28 relations.
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Table 4.2: Method Results (Mean ± Standard Deviation) on the FB15k-237, YAGO3-10,
and DBpedia Datasets. Underscore denotes significance at alpha value of 0.05 compared
against our model as per t-test.

FB15k-237 YAGO3-10 DBpedia

Method ARI NMI ARI NMI ARI NMI

RDF2VEC

K-means .308± .012 .567± .007 .070± .019 .199± .017 .223± .005 .416± .005

OPTICS .087± .000 .283± .000 .009± .000 .172± .000 .001± .000 .311± .000

Agglom. .455± .000 .601± .000 .038± .000 .174± .000 .236± .000 .414± .000

Spectral .539± .000 .678± .000 .071± .000 .218± .000 .218± .000 .410± .000

TransE

K-means .405± .049 .632± .009 .263± .009 .367± .003 .247± .029 .389± .024

OPTICS .031± .000 .253± .000 .049± .000 .150± .000 .001± .000 .198± .000

Agglom. .491± .000 .599± .000 .226± .000 .337± .000 .198± .000 .383± .000

Spectral .658± .000 .684± .000 .270± .000 .345± .000 .057± .000 .321± .000

DistMult

K-means .269± .011 .559± .013 .174± .012 .326± .015 .400± .008 .587± .010

OPTICS .016± .000 .189± .000 .029± .000 .175± .000 .002± .000 .184± .000

Agglom. .379± .000 .621± .000 .202± .000 .382± .000 .389± .000 .594± .000

Spectral .505± .000 .600± .000 .035± .000 .124± .000 .150± .000 .478± .000

ComplEx

K-means .271± .020 .562± .016 .137± .012 .342± .009 .462± .013 .630± .015

OPTICS .019± .000 .202± .000 .017± .000 .152± .000 .002± .000 .235± .000

Agglom. .385± .000 .630± .000 .181± .000 .299± .000 .442± .000 .628± .000

Spectral .563± .000 .613± .000 .016± .000 .204± .000 .203± .000 .550± .000

ConvE

K-means .332± .031 .619± .013 .004± .003 .004± .001 .474± .019 .612± .013

OPTICS .040± .000 .254± .000 .012± .000 .088± .000 .002± .000 .238± .000

Agglom. .384± .000 .630± .000 .003± .000 .005± .000 .458± .000 .614± .000

Spectral .556± .000 .703± .000 .002± .000 .006± .000 .439± .000 .639± .000

ExCut .343± .011 .651± .002 .130± .007 .322± .011 .380± .016 .595± .005

Our Method .656± .005 .669± .021 .044± .006 .218± .002 .406± .042 .582± .022
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DBpedia

The DBpedia dataset was generated by querying DBpedia [5] for random entities belonging

to classes on levels 4 and 5 as specified in Table 4.1. Specifically, 75 entities were extracted

for each of these classes. Triples where these entities take on the subject role were then

queried for, filtering out triples which indicate class membership. This process resulted

in 908 subjects, 57191 triples, 31202 entities, and 345 predicates. The impetus for this

dataset was to evaluate our model on a hierarchy not rooted in the WordNet taxonomy. The

hierarchical relations between DBpedia classes were obtained from the DBpedia ontology

mapping which may be found on the DBpeida website2. All querying to generate the

dataset and ground truth clusters was performed in November of 2021.

4.3.2 Quantitative Evaluation

To quantitatively evaluate our model, we examined the hierarchical clustering of subjects

in our induced topic hierarchy. This type of evaluation jointly assesses the quality of the

tree structure as well as the allocation of paths along it. Specifically, we ran our model five

times on each of the aforementioned datasets using 100 burn-in samples. We then sampled

from our learned distributions to obtain a topic hierarchy. We evaluated the quality of the

clustering using the Adjusted Rand Index (ARI) [65] and Normalized Mutual Information

(NMI) [66] as in previous works [63]. We compared our model against embedding based

methods described in the related works section. Pretrained embeddings for these models

were obtained from LibKGE3 [67]. The mean and standard deviations of five runs are

summarized in Table 4.2.

Our results indicate that our model is comparable with embedding based approaches.

Indeed, the performance of all methods is highly variable with no method clearly outper-

forming the other. We note our model’s underperformance on the YAGO3-10 dataset rela-

tive to other methods. We hypothesize that this is due to the high ratio of subjects to triples

2http://mappings.dbpedia.org/server/ontology/classes/
3https://github.com/uma-pi1/kge
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Figure 4.3: Predicates and Their Posterior Distribution for Cluster K on the DBpedia tree
as displayed in Figure 4.2.

in this dataset. Such a characteristic results in a low amount of predicates and tags for each

subject compared to other datasets. This in turn hinders our model’s ability to approximate

the true likelihood when calculating the posterior, resulting in lesser performance. Never-

theless, our model is still significantly better than many of the other methods as measured

by a t-test. We conclude, therefore, that our model is capable of inducing coherent topic

hierarchies on real world knowledge graphs.

4.3.3 Qualitative Evaluation

Cluster allocation is driven by the interaction of predicates and tags. Specifically, each

cluster has predicate and tag membership distributions. This allows us to draw interesting

observations in that we can describe a cluster by its predicate and tag distributions. This

gives us insight into the composition of a cluster. Figure 4.2 provides an excerpt of our in-

duced tree on the DBpedia dataset. On the other hand in Figure 4.3, we provide an example

of cluster K’s predicate distribution from the DBpedia dataset. We note that this predicate

distribution is consistent with the subjects whose path ends at this cluster. Namely, the

predicates are consistent with these subjects, i.e., mountains. Furthermore, we can also

analyze the distribution of objects to which the predicates are connected to. We highlight

this in Figure 4.4 which shows the object distribution for the predicate locatedInArea for

cluster K. Based on the data that we used, the mountains in cluster K are most probably
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Figure 4.4: Objects’ Posterior Distribution for Predicate locatedInArea

located in Italy, Peru, Switzerland, and United States.

4.4 Conclusions

In this paper we propose a model for discovering underlying hierarchical structures in

knowledge graphs. For this purpose we adapt a hierarchical topic model used in natu-

ral language processing, namely hLDA, to the domain of knowledge graphs. Our model

extends hLDA by introducing separate predicate and tag (predicate-object pair) topics,

yielding a topic hierarchy consisting of predicate and tag distributions. Knowledge graph

subjects take paths through this hierarchy which may be seen as an implicit hierarchical

clustering of knowledge graph subjects. This formulation has the added benefit in that it

is non-parametric, therefore does not require a priori assumptions about the tree structure

other than its depth. To infer our model, we present an efficient Gibbs sampling scheme

which leverages the Multinomial-Dirichlet conjugate to integrate out latent probability dis-

tributions allowing our model to scale to large datasets. We evaluate our model on three

real world datasets and compare against benchmark methods. Our results demonstrate our

model’s ability to induce coherent topic hierarchies with high quality subject clusterings
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and explainable topic predicate and tag memberships.
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Chapter 5

Construction of Topic Hierarchy with
Subtree Representation for Knowledge
Graphs

In this chapter, we adopt a non-parametric probabilistic model, the nested hierarchical

Dirichlet process, to the field of knowledge graphs. This model discovers latent subject-

specific distributions along paths within the tree. Consequently, the global tree can be

viewed as a collection of local subtrees for each subject, allowing us to represent subtrees

for each subject and reveal cross-thematic topics.

The primary components of our approach are:

• Data Preprocessing: Knowledge graphs are collections of triples (subject, predicate,

object). Our model treats predicates and objects as words that describe subjects,

similar to how words describe documents in topic models.

• Generative Model: The nested Hierarchical Dirichlet Process (nHDP) is an extension

of the Hierarchical Dirichlet Process (HDP) framework that enables subjects to ac-

cess the entire tree and learn subject-specific distributions on thematically coherent

subjects. Each subject is expected to have a primary path representing core themes,

with branches for additional topics. The nHDP introduces two key modifications to

the nested Chinese Restaurant Process (nCRP) formulation: (i) each word follows a

unique path to a topic, and (ii) each subject possesses a distinct distribution on paths
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within a shared tree.

• Inference: Stochastic variational inference is used to estimate the posterior inference

of nHDP. This method optimizes local variational parameters for a particular group of

individuals and then updates the overall variational parameters using the natural gra-

dient. The approach involves approximating the posterior inference of nHDP through

stochastic variational inference. It includes optimizing local variational parameters

for a specific group of individuals and updating overall variational parameters using

the natural gradient.

• Evaluation: The methodology was applied to FB15k-237, DBpedia, Wikidata, and

WebRED datasets for evaluation. The models were assessed based on hierarchy topic

quality, simple coverage, subject-based coverage, and vocabulary-based coverage.

Evaluations included both quantitative and qualitative analyses of the results.

Key Findings:

1. Our nHDP_KG effectively organizes subject entities into a meaningful hierarchical

tree with the inference of the model. Each subject could be represented by subtree

shared with the global tree.

2. Quantitative Hierarchical Topic Quality evaluations on benchmark datasets demon-

strate the nHDP_KG superior performance in topic coherence. HyperMinor con-

sistently achieved high HTQ values across different datasets, especially when using

the DistMult embedding. Traco and SawETM models showed different performance

levels, with SawETM generally outperforming Traco. The hLDA model was found

to be the least effective in this evaluation.

3. Quantitative on Coverage denotes the nHDP_KG and hLDA can learn the better hi-

erarchical tree than the other three latest models, Traco, SawETM and HyperMiner.
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4. Qualitative assessments highlight the coherence and interpretability of the induced

subtree.

As mentioned earlier, this paper is still unpublished and intended for publication in the
Information Processing and Management.
The primary author, Yujia Zhang, designed and conducted the experiments under the
supervision of Prof. Marek Reformat.
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Construction of Topic Hierarchy with Subtree Representa-
tion for Knowledge Graphs

Abstract: Hierarchy analysis of the Knowledge Graphs aims to discover the latent struc-

ture inherent in knowledge base data. Drawing inspiration from topic modeling, which

identifies latent themes and content patterns in text corpora, our research seeks to adapt

these analytical frameworks to the hierarchical exploration of knowledge graphs.

Specifically, we adopt a non-parametric probabilistic model, the nested Hierarchical

Dirichlet Process, to the field of knowledge graphs. This model discovers latent subject-

specific distributions along paths within the tree. Consequently, the global tree can be

viewed as a collection of local subtrees for each subject, allowing us to represent subtrees

for each subject and reveal cross-thematic topics.

We assess the efficacy of this model in analyzing the topics and word distributions that

form the hierarchical structure of complex knowledge graphs.

We quantitatively evaluate our model using four common datasets: Freebase, Wikidata,

DBpedia, and WebRED, demonstrating that it outperforms the latest neural hierarchical

clustering techniques such as Traco, SawETM, and HyperMiner. Additionally, we provide

a qualitative assessment of the induced subtree for a single subject.

5.1 Introduction

Knowledge graphs (KGs) are gaining more attention for their potential to integrate with

large language models, addressing issues such as hallucination and token limitations. A

KG [1] comprises entities and relations, where entities are regarded as nodes and relations

as different types of edges. In semantic-oriented interpretation, knowledge graphs are com-

posed of triples in the format ⟨subject, predicate, object⟩, which serve as the fundamental

units of the graph. When representing an ontology within a specific domain O = C,R, con-

cepts C correspond to nodes, while relations R between them form the edges. Relations,
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in KGs, represent the connections between entities, which can be categorized into various

types based on their nature and context. Hierarchical relationships, such as Is-A and Part-

Of, capture taxonomic and compositional structures, respectively. Associative relationships

describe general associations, while causal relationships define cause-effect links. Tempo-

ral and spatial relationships capture time and location dependencies, whereas functional,

ownership, and membership relationships depict roles, control, and group inclusion. Addi-

tionally, dependency and social relationships represent dependencies and interpersonal or

professional connections, respectively. These diverse relationship types enrich the knowl-

edge graph, enabling more sophisticated queries and insights that can drive innovation and

enhance user experiences across various applications.

Various factors motivate learning hierarchies from KGs. A key advantage of hierarchi-

cal configurations lies in their ability to emulate the innate human tendency to categorize

and arrange data for enhanced comprehension and recall, which is particularly beneficial

for tasks such as reasoning. The hierarchical structure facilitates the identification of rela-

tionships between various concepts and notions. Notably, a hierarchical KG consolidates

data in a structured manner, delineating parent-child associations among entities. This

framework classifies entities into higher-level groupings and subcategories, unveiling the

underlying knowledge hierarchy. Hierarchical KGs streamline the categorization and orga-

nization of knowledge, enabling efficient navigation and reinforcement through semantic

inference. KGs commonly exhibit a semantic hierarchy, evident in instances like ⟨England,

/location/location/contains, Pontefract/Lancaster⟩ within Freebase [3], showcasing the hi-

erarchical relationship between ‘Pontefract/Lancaster’ and ‘England’. Moreover, another

triples repository, DBpedia [5], offers an ontology that hierarchically organizes information

about classes and concepts. Although some research endeavors have explored hierarchical

structures [10][68], they often necessitate supplementary data or alternative methodolo-

gies to gather hierarchical insights. The quest for a method capable of autonomously and

effectively replicating the semantic hierarchy remains a persisting challenge.
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One crucial consideration in hierarchy analysis for KGs pertains to discerning significant

relationships among nodes and identifying hierarchical configurations within the graph.

This challenge is further aggravated by the need to accurately capture the hierarchical

structure and semantic meanings of the nodes and edges in the KG [69][70]. This proce-

dure frequently involves using algorithms like hierarchical clustering and graph embedding

methods to reveal underlying patterns in the data. It is paramount to assess the effective-

ness of these algorithms in capturing the intricate relationships and configurations existing

in the KG, as this can profoundly influence the accuracy of the hierarchical analysis find-

ings. Evaluating algorithmic efficacy in capturing complex interconnections and elaborate

arrangements intrinsic to the KG is vital to ensuring the results’ credibility and soundness.

Furthermore, gauging the effectiveness of algorithms in capturing the interconnections and

arrangements inherent in KGs is indispensable to guarantee the reliability and validity of

the analysis outcomes.

In the previous work [71], a subject is described as a single path in the tree by the nested

Chinese Restaurant Process, focusing on nonparametric clustering at the subject. Each

subject progresses through a singular path in the tree, composing the topics following the

path, highlighting a fundamental drawback in the previously suggested approach for sub-

ject modeling. However, a specific sequence of topics is expected to encompass the entire

thematic content of the subject. Such an approach presents a combinatorial challenge as the

nCRP aims to delineate a corpus’s thematic essence with increasing levels of specificity.

Consequently, similar topics may reappear at different points in the tree to reflect their rele-

vance to the overarching subject theme. For instance, although the tree has already learned

the separate topics of "artist" and "writer," when a topic emerges that combines these two, it

generates a new composite topic rather than referencing the two pre-existing topics. Due to

the exponential increase in nodes, mastering deeper levels of learning becomes demanding,

leading to the truncation of nCRP trees, typically at the third tier. As a result, each subject

is represented by a few topics that encapsulate its thematic content, potentially blending

69



multiple themes and resulting in a broader and more complex tree structure during infer-

ence. The development of a hierarchical topic model that permits a subject to use topics in

various branches of the tree representing a hierarchy is what we are aiming at.

To overcome the mentioned issues, we are investigating novel and manageable methods

for extracting hierarchical information from KGs. Our strategy is to adopt a non-parametric

probabilistic model for the hierarchical clustering of KG data. It uncovers the latent subject-

specific distributions on paths within the hierarchy or tree, a subtree for each subject. An

entire tree is a collection of local subtrees representing individual subjects. The method

provides the opportunity to identify cross-thematic topics while keeping individual topics in

separate subtrees. Therefore, the proposed method clusters subject entities, corresponding

predicates, and object entities, and provides insight into their distributions across subtrees.

To accomplish that, we adapt the nested Hierarchical Dirichlet process (nHDP).

We quantitatively evaluate our model using four datasets: Freebase, Wikidata, DBpedia,

and WebRED, demonstrating that it outperforms the latest neural network-based hierar-

chical clustering techniques such as Traco, SawETM, and HyperMiner. Additionally, we

provide a qualitative assessment of the induced subtrees for subjects.

Here is a summary of our contributions:

• We adapt the nHDP to the knowledge graphs domain by replacing documents with

subjects, words with predicates, and objects;

• We evaluate, both quantitative and qualitative, the hierarchical tree by conducting

experiments on four real-world datasets such as Freebase, Wikidata, DBpedia, and

WebRed;

• We demonstrate the impressive performance of the proposed nHDP_KG method

surpassing other neural network-based hierarchical clustering techniques, including

Traco, SawETM, and HyperMiner.

70



5.2 Related Work

5.2.1 Hierarchy of Knowledge Graphs

The hierarchy of knowledge graphs has been a topic of interest in various research stud-

ies. hTransM [72] proposes a hierarchy-constrained approach for link prediction in knowl-

edge graphs, emphasizing the importance of hierarchical structures in enhancing predic-

tion performance. HAKE [73] introduces Hierarchy-Aware Knowledge Graph Embedding

(HAKE) to model semantic hierarchies in knowledge graphs. Path-based paper [10] creates

a hierarchical structure of subject clusters, utilizing taxonomy induction. HamQA [74], a

Hierarchy-aware multi-hop Question Answering framework on knowledge graphs, is used

to align hierarchical information between question contexts and knowledge graphs. These

studies collectively highlight the significance of hierarchy in knowledge graphs and pro-

pose various methods to leverage hierarchical structures for improved representation and

prediction.

Two categories of hierarchical topic models exist. The first category comprises tradi-

tional models like hLDA [75] and its variations [76], which use Gibbs sampling or Vari-

ational Inference for parameter estimation. However, these models struggle with large

datasets due to high computational costs. The second category consists of neural models

such as Traco, SawETM, and HyperMiner. TraCo [77], a novel neural hierarchical topic

model designed to address key challenges in topic modeling. TraCo leverages a new Trans-

port Plan Dependency (TPD) approach to model the dependencies between hierarchical

topics as optimal transport plans, ensuring sparse and balanced dependencies. This method

enhances the affinity between parent and child topics while maintaining diversity among

sibling topics. Additionally, TraCo incorporates a Context-aware Disentangled Decoder

(CDD), which decodes documents using topics at each level individually and incorporates

contextual semantic biases. This ensures that topics at different levels capture distinct

semantic granularities, thereby improving the rationality of topic hierarchies. Through ex-

71



tensive experiments on benchmark datasets, TraCo demonstrates superior performance over

state-of-the-art baselines in terms of affinity, rationality, and diversity of topic hierarchies.

SawETM [78], a novel hierarchical topic model, addresses limitations of existing models

by capturing dependencies and semantic similarities between topics across different layers.

Unlike traditional models that assume topics are independent, SawETM uses the Sawtooth

Connection technique to link topics across layers, enhancing coherence and depth in topic

hierarchies. Additionally, it integrates a robust inference network within a deep hierarchical

VAE framework, combining deterministic and stochastic paths to improve text data mod-

eling. This design prevents common issues like posterior collapse and enables SawETM to

discover rich, multi-layered topic representations. Experiments demonstrate that SawETM

outperforms other models, providing deeper and more interpretable topics and better doc-

ument representations. HyperMiner [79] introduces a novel method for topic modeling

that addresses the shortcomings of Euclidean embedding spaces by utilizing hyperbolic

space, renowned for its tree-like characteristics conducive to hierarchical data representa-

tion. By measuring distances between words and topics in this space, HyperMiner captures

the underlying semantic hierarchies more effectively. General words, which frequently co-

occur with others, are positioned near the center, while specific words are placed near the

boundary, reflecting their unique contextual relationships. Additionally, hyperbolic space

allows for the incorporation of prior structural knowledge, preserving hierarchical relations

through distance constraints. Our contributions include leveraging hyperbolic space for en-

hanced semantic hierarchy mining and designing a graph-based learning scheme to guide

the creation of meaningful topic taxonomies. Extensive experiments show that HyperMiner

outperforms baseline methods in topic quality and document representation.

5.2.2 Knowledge Graphs Embedding

Knowledge graph embedding is a method to map knowledge graphs from discrete graph

space to continuous vector space. It utilizes dense, low-dimensional continuous vectors to
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represent triples [80]. Ensuring the vector space is both lower-dimensional and dense is

crucial. A dense space enhances computational efficiency for tasks like similarity assess-

ment and embedding model optimization. Conversely, sparse embeddings can complicate

computations, resulting in inefficiencies and diminished generalization in subsequent appli-

cations. A well-distributed, dense representation preserves the graph’s relational structure

while enabling scalable and effective processing. It is powerful to allow knowledge graphs

easily integrated with deep learning algorithms. TransE [55] is based on the idea that,

when translated by valid predicates, subject embeddings should be positioned near object

embeddings. This concept is formalized through an objective function that is optimized us-

ing stochastic gradient descent to derive the embeddings. DistMult [81] is a bilinear model

that captures interactions between entities and relations in a knowledge graph. It repre-

sents relations as diagonal matrices and computes scores using the dot product of entity

embeddings and relation matrices. ComplEx [82] extends DistMult by modeling relations

as complex-valued vectors. It is capable of capturing both asymmetric and symmetric re-

lations in the knowledge graph by utilizing complex-valued embeddings. RotatE [83] is

a geometric model that represents relations as rotations in the complex vector space. It

captures compositionality and symmetry within the knowledge graph by rotating entity

embeddings based on relation embeddings. HolE [84] is a bilinear model that represents

relations as circular correlations between the embeddings of entities. It captures the com-

positional nature of relations in the knowledge graph by computing circular correlations

between entity embeddings.

5.3 Hierarchy Construction as Topic Modeling

We define a Knowledge Graph (KG), G, as a collection of triples. Each fact triple is com-

posed of a subject entity s that is linked to an object entity o via a predicate p. Formally,

G = {⟨s, p, o⟩ ∈ S × P × O} where ⟨s, p, o⟩ is a triple, and S , P , and O are the sets of

subjects, predicates, and objects in G, respectively. KGs are rarely bipartite regarding S
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Figure 5.1: ‘Conversion’ of triple components into documents and related to them words: a
given subject (document) is represented by both predicates and objects (words) of all triples
containing the subject.

andO. In other words, entities E = S ∪O can take on the role of both subjects and objects

in G, thus S ∩ O ̸= ∅.

The essential aspect of the proposed method is to treat a hierarchy construction task as

topic modeling. To accomplish that, we convert graph triples into documents and words.

As in Figure 5.1, a subject, a document in topic modeling terminology, is described by

all its predicates ⟨p⟩ and objects ⟨o⟩ that are words in the topic modeling problem. In the

presented work, we use the following convention: a subject si is described by its words

wi ∈ Wi, here Wi is the set of words describing si. The set of all subjects is denoted as

S ⊆ E , which means it is a subset of entities. Words, denoted as w := ⟨p⟩, ⟨o⟩ belong to

the set of all words, called vocabulary V which meansWi ⊆ V .

We aim to develop a hierarchical representation of a knowledge graph (KG) in which

the global tree structure captures general topics at the root level and specific topics at the

leaf level. Nodes in this tree represent collections of entities with shared semantics. Unlike

nCRP, where topics are restricted to a single path, our approach, called hereafter nHDP_-

KG, allows each subject entity to access the entire tree. A subject-specific distribution

over paths assigns higher probabilities to particular subtrees, reflecting the relevance of
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Figure 5.2: nHDP_KG Workflow

certain topics to the subject. It reveals subject-specific distributions on hierarchical paths,

with subtrees for each subject. A complete tree comprises localized subtrees for individual

subjects. This approach facilitates the identification of cross-thematic topics while preserv-

ing the distinctiveness of individual topics in separate subtrees. Consequently, the method

clusters subject entities, associated words, offering insight into their distributions across

subtrees. To achieve this, we employ the nested hierarchical Dirichlet process (nHDP).

The overall workflow is depicted in Figure 5.2.

5.4 Model Description

The proposed model uses a nested Hierarchical Dirichlet Process (nHDP), which extends

the Hierarchical Dirichlet Process (HDP), a Bayesian nonparametric model used in ma-

chine learning, to infer distributions over distributions. The nHDP expands upon the HDP

by allowing a flexible tree-structured exchangeable random partition to model hierarchical

clustering, which is beneficial for applications requiring hierarchically organized variable
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depth clusters.

Let us describe nHDP via a sequence of short descriptions of necessary concepts.

5.4.1 Dirichlet Process

The Dirichlet Process (DP) [85, 86] is a stochastic process used in Bayesian nonparametric

models to represent distributions over data. These mixture models partition a data set into

categories based on statistical characteristics that all members within a cell share. The

parameters of the mixture and a reasonable number of traits for describing the data can be

learned using Dirichlet process priors. Mathematically, it is defined as:

Wn|φn ∼ FW (φn), φn|G
iid∼ G,G =

∞∑
i=1

αiδθi . (5.1)

where the data W1, ...,WN are represented with a family of distributions FW and the cor-

responding parameters φ1, ..., φN . These parameters are drawn from the discrete, theoret-

ically infinite distribution G, which the DP permits to exist. The data W is divided as a

result of this discreteness in accordance with how the atoms θi are distributed among the

chosen parameters φn. G ∼ DP (αG0) where α > 0 is a scaling parameter, and G0 is a

continuous base probability measure.

5.4.2 Hierarchical Dirichlet Process

The Hierarchical Dirichlet Process (HDP) [87, 86] is a multi-level variation of the DP. It

relies on the notion that the base distribution on the continuous space might be discrete,

which is advantageous since a discrete distribution enables the placement of probability

mass on a subset of atoms through multiple draws from the DP in advance. As a result,

various data groups with different probability distributions can share the same atoms. It is

necessary to create a distinct base, but the atoms are currently unknown. By obtaining the

base from a DP prior, the HDP models these atoms. As a result, groupings d = 1, ..., D go

through a hierarchical procedure:

Gd|G
iid∼ DP (βG), G ∼ DP (αG0) (5.2)
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Similar to the DP, inference requires explicit representations of the HDP. The representa-

tion is based on two levels of Sethuraman’s stick-breaking construction [88]. Sample the

discrete G as in the following construction

G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi , Vi
iid∼ Beta(1, α), θi

iid∼ G0 (5.3)

here Vi can be understood as the percentage of a unit-length stick that is broken from the

rest and G0 is continuous base distribution. And then sample Gd according to the following

equation:

Gd =
∞∑
i=1

V d
i

i−1∏
j=1

(1− V d
j )δϕi

, V d
i

iid∼ Beta(1, β), ϕi
iid∼ G (5.4)

This form is the same as the previous equation with the crucial difference that G is discrete,

which causes atoms ϕi to repeat. All random variables in this representation are i.i.d., which

helps variational inference techniques.

5.4.3 Adapted Nested Hierarchical Dirichlet Process

The nHDP_KG, an adapted framework from nHDP [86], allows each subject to use the en-

tire hierarchical structure while acquiring subject-specific distributions over semantically

related topics. Each subject is represented by a primary trajectory corresponding to its core

themes, along with branches that incorporate additional topics. The process of constructing

a subject’s topic distribution is divided into two stages: first, developing the subject’s dis-

tribution over paths within the tree, and second, defining the word distribution conditioned

on reaching specific nodes along these paths.

Global tree: distribution on paths

All subject entities share a global tree drawn according to the stick-breaking construction

via nHDP.

Gil =
∞∑
j=1

Vil,j

j−1∏
m=1

(1− Vil,m)δθil,j
, Vil,j

iid∼ Beta(1, α), θil,j
iid∼ G0 (5.5)
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This tree is just an endless collection of Dirichlet processes with a continuous base distri-

bution G0 and an inter-DP transition rule. This rule states that a path is followed from a

root Dirichlet process Gi0 by drawing φl+1 ∼ Gil for l = 0, 1, 2, ..., where i0 is a constant

root index and il = (i1, ..., il) indexes the DP connected to the topic φl = θil . With the

nested HDP, we use each Dirichlet process in a global tree as a base distribution for a local

DP drawn independently for each entity rather than following pathways according to the

global tree.

Then for each subject s, a local tree Ts will be constructed. For each Gil ∈ T , the

corresponding Gs
il ∈ Ts can be drawn as per the DP,

Gs
il ∼ DP (βGil) (5.6)

as was discussed, the Gs
il In contrast Gil , will have various probability weights on the same

atoms. Therefore, the probability of a path in the tree Ts will vary for each subject, it will

have the same nodes as T while each subject will have its unique distribution on the tree.

A stick-breaking construction to represent this subject-specific DP:

Gs
il =

∞∑
j=1

V s
il,j

j−1∏
m=1

(1− V s
il,m)δθsil,j

, V s
il,j

iid∼ Beta(1, β), θsil,j
iid∼ Gil (5.7)

The HDP samples distribution Gs
il with base measure Gil . This results in a subject-specific

distribution over paths in the globally shared tree T.

The key difference from the HTM is that now each subject has its own distribution

over the shared hierarchical topic structure rather than all subjects sharing the same tree

distribution.

Local tree: Generating a subject

A technique for choosing word-specific paths that are thematically compatible with the tree

Ts for subject s, meaning they frequently reuse the same path while allowing for off-shoots.

The process goes as follows:
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• For each node il in the tree T , draw a beta-distributed random variable Us,il ∼

Beta(γ1, γ2) that acts as a stochastic switch.

• To generate a word n in a subject s: Start at the root node and recursively traverse

down the tree according to Gs
il until reaching some node il. With probability Us,il emit

the topic θil at this node. Otherwise, continue traversing down the tree according to

Gs
il .

This recursive process generates a path and selects a node il and topic θil for each word.

The probability of a word being assigned topic θil is:

p(φs,n = θil |Ts, Us) = [
l−1∏
m=0

Gs
im(θim+1)][Us,il

l−1∏
m=1

(1− Us,im)] (5.8)

Where the first term is the probability of path il according to Gs, and the second term is

the probability of selecting topic θil at that node.

This process allows each word to follow its own path in the tree according to the subject-

specific distribution Gs, capturing unique topic combinations within a subject.

5.4.4 Stochastic Variational Inference

A method of stochastic variational inference is applied to approximate the posterior infer-

ence of the nested Hierarchical Dirichlet Process (nHDP). The process involves the opti-

mization of local variational parameters for a specific group of individuals, followed by a

progression along the natural gradient of the overall variational parameters. More inference

details can be found in [86].

Greedy Subtree Selection

For each subject, a subtree is selected from the global tree T using a greedy algorithm that

maximizes the variational objective function. Starting from the root, nodes are sequentially

added based on their activation status, where an activated node is one whose parent is in

the subtree but the node itself is not.
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Stochastic Updates for Local Variables

Index Pointer. z
(s)
i,j is index pointer to atom in global DP Gi for jth break in G

(s)
i . The

prior is q(z(s)i,j ) = δ
z
(s)
i,j
(k), k = 1, 2, . . . . The updates for it are:

Is,t+1 ← Is,t ∪ {i∗},

i∗ = arg max
i′∈Ss,t

Lobj,

Lobj =
Ns∑
n=1

Eq [ln p(Ws,n | cs,n, θ)]

+Eq

[
ln p(cs,n, z

(s) | V, Vs, Us)
]
− Eq [ln q(cs,n)]

(5.9)

Topic Indicator. cs,n is the topic indicator for word n in subject s, q(cs,n) = Discrete(cs,n|νs,n)

is the prior distribution. The variational distribution on the path for word Ws,n is

νs,n(i) ∝ exp
{
Eq[ln θi,Ws,n ] + Eq[ln πs,i]

}
, (5.10)

where the prior term πs,i is the tree-structured prior of the nHDP,

πs,i =

 ∏
(i′,i)⊆i

∏
j

(
V

(s)

i′,j

∏
m<j(1− V

(s)

i′,m)
)I(z(s)i′,j=i)


×

[
Us,i

∏
i′⊂i

(1− Us,i′)

]
. (5.11)

Stick Proportion. V
(s)

i,j is the stick proportion for local DP for node i, q(Vi,j) =

Beta(V (s)
i,j |u

(s)
i,j , v

(s)
i,j ) is the prior distribution. The variational parameter updates for the

subject-level stick-breaking proportions are

u
(s)
i,j = 1 +

∑
i′:(i,j)⊆i′

Ns∑
n=1

νs,n(i′), (5.12)

v
(s)
i,j = β +

∑
i′:i⊂i′

I

(⋃
m>j

{z(s)i,m = i′(l + 1)}

)
Ns∑
n=1

νs,n(i′).

In textual terms, the statistic concerning the first parameter denotes the anticipated quan-

tity of words in subject s that either traverse or halt at node (i, j). The statistic related to
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the second parameter signifies the anticipated quantity of words from subject s whose tra-

jectories traverse the same ancestor i, but subsequently transition to a node with an index

exceeding j based on the indicators z(s)i,m from the subject-level stick-breaking construction

of G(s)
i .

Switch Probablity. Us,i is the switch probability for node i, q(Us,i) = Beta(Us,i|as,i, bs,i)

is the prior distribution. The variational parameter updates for the switching probabilities

are similar to those of the subject-level stick-breaking process, but collect the statistics from

νs,n in a slightly different way,

as,i = γ1 +
Ns∑
n=1

νs,n(i), (5.13)

bs,i = γ2 +
∑
i′:i⊂i′

Ns∑
n=1

νs,n(i′). (5.14)

The statistic for the first parameter represents the anticipated word count related to the topic

at node i. On the other hand, the statistic for the second parameter indicates the expected

number of words that transit through node i without ending there. The first parameter

statistic denotes the projected word quantity associated with the topic at node i. The second

parameter statistic signifies the anticipated number of words that traverse through node i

but do not stop there.

Stochastic Updates for Global Variables

Once the subtree is selected and the local subject-specific variational parameters are up-

dated for each subject s in mini-batch m, we adjust the global q distribution parameters,

including the topics θi and the global stick-breaking proportions Vil,j , using the natural

gradient.

Topic Probalility. θi is topic probability vector for node i, q(θi) = Dirichlet(θi|λi,1, . . . , λi,V)

q(θi) is the prior distribution. To update the Dirichlet q distributions on each topic θi

stochastically, start by constructing the vector λ′
i containing the necessary statistics based
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on the information in sub-batch m.

λ′
i,w =

S

|Cs|
∑
s∈Cs

Ns∑
n=1

νs,n(i)I{Ws,n = w}, (5.15)

For each w from 1 to V , the vector represents the anticipated quantity of words with index w

derived from topic θi across subjects indexed by Cs. The modification for the corresponding

q distribution is then calculated.

λm+1
i,w = λ0 + (1− ρm)λ

m
i,w + ρmλ

′
i,w. (5.16)

Stick Proportion. Vi,j is stick proportion for the global DP for node i. q(Vi,j) =

Beta(Vi,j|τ (1)i,j , τ
(2)
i,j ) is the prior distribution. The sufficient statistics for the q distribution on

Vil,j from the subjects in mini-batch m are gathered along with θi. This process is done as a

first step. This step is essential for the estimation of the q distribution on Vil,j . The sufficient

statistics collected from the subjects in mini-batch m are crucial for this estimation.

τ ′il,j =
S

|Cs|
∑
s∈Cs

I{il ∈ Is}, (5.17)

τ ′′il,j =
S

|Cs|
∑
s∈Cs

∑
j>il

I{(pa(il), j) ∈ Is}. (5.18)

The initial value increases the count of subjects in mini-batch m containing atom θ(i,j)

in their subtree. The subsequent value increases the occurrence of an atom with a higher

index value in the same Dirichlet Process used by a subject in sub-batch m. The global

variational parameters are updated based on these values.

τ
(1)
il,j (m+ 1) = 1 + (1− ρm)τ

(1)
il,j (m) + ρmτ

′
il,j, (5.19)

τ
(2)
il,j (m+ 1) = α + (1− ρm)τ

(2)
il,j (m) + ρmτ

′′
il,j. (5.20)

5.5 Experiment Setup

The proposed methodology has been evaluated on FB15k-237, DBpedia, Wikidata, and

WebRED datasets. Evaluation of these models was conducted based on hierarchy topic

quality, simple coverage, subject-based coverage, and vocabulary-based coverage.
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5.5.1 Dataset

In the conducted experiments four dataset have been used. A short characteristic of each

set is presented below.

Dataset # Subjects # Entities # Relations # Triplets

FB15k-237 13781 14541 237 272115

FB15k-237subset 10000 22982 237 197497

Wikidata subset 10000 27608 374 44896

DBpedia 908 31222 345 57192

WebRED subset 10000 16595 428 45712

Table 5.1: Data Statistics

FB15k-237: The FB15k-237 dataset [62], derived from the FB15k dataset[55], was

created by eliminating duplicate and reverse triples. It is based on a Freebase version from

approximately 2013. It consists of 272,115 triples built using 14,541 different entities

and 237 predicates. Due to the resource restriction for a fair comparison, we randomly

extracted triples containing 10,000 subjects for our hierarchical clustering analysis. This

process has resulted in a dataset with 10,000 subjects, 197,497 triples, 22,982 entities, and

237 predicates.

DBpedia: The DBpedia dataset [5] was created by randomly querying DBpedia for

entities in various classes such as ’Politician’, ’CelestialBody’, ’MusicalWork’, ’Written-

Work’, ’Film’, ’Scientist’, ’Artwork’, ’NaturalPlace’, ’Building’, ’Infrastructure’, ’Popu-

latedPlace’, ’Artist’, ’Software’, and ’Athlete’. A total of 75 entities were extracted for each

class, resulting in 908 subjects, 57191 triples, 31202 entities, and 345 predicates. The goal

of this dataset was to test a model on a hierarchy different from WordNet taxonomy. The

hierarchy of DBpedia classes were obtained from the DBpedia ontology mapping available

on the DBpedia website1.

1http://mappings.dbpedia.org/server/ontology/classes/
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Wikidata: The dataset Wikidata5m [89] is a large-scale KG containing millions of enti-

ties, each aligned with a corresponding Wikipedia page. This dataset combines information

from Wikidata and Wikipedia, allowing for the evaluation of link prediction on entities that

have not been seen before. The dataset is provided in three parts: the graph, a corpus, and

aliases. The inductive data splits are used in our paper. Due to the resource restriction for

a fair comparison, we randomly extracted triples containing 10,000 subjects for our hier-

archical clustering analysis. This process yielded a dataset with 10,000 subjects, 44,896

triples, 27,608 entities, and 374 predicates.

WebRED: WebRED [90] is a dataset designed for relation extraction, sourced from

various publicly available internet texts covering diverse domains and writing styles. The

dataset includes approximately 200 million weakly supervised examples for supervised

pre-training and 110,000 human-annotated examples for fine-tuning and model evaluation.

To ensure a fair comparison under resource constraints, 10,000 subjects were randomly

selected for hierarchical clustering analysis. The resulting dataset from this process consists

of 10,000 subjects, 45,712 triples, 16,595 entities, and 428 predicates.

5.5.2 Evaluation Metrics
Hierarchy Topic Quality

A comprehensive method for constructing coherence measures in hierarchical tree struc-

tures to enhance the interpretability of hierarchical topics has been introduced in [91]. The

topic coherence is calculated within branches and levels of the tree. It leads to two mea-

sures: Branch Topic Quality (BTQ) and Level Topic Quality (LTQ) – they are aggregated

to obtain Hierarchical Topic Quality (HTQ), which serves as a metric for assessing and

benchmarking topic models.

The mentioned above measures are an extension of the unifying framework presented

in [92]. The original framework defines coherence measures using four sets: segmentation

(S), confirmation measure (M ), probability estimation (P ), and aggregation (Σ), creating a
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configuration space C = S×M×P×Σ. The authors of [91] made a modification by adding

a hierarchical word set (HW ). The new configuration space is C(h) = HW×S×M×P×Φ.

They also adapted the input of the segmentation set to account for hierarchical structures.

In this method, hierarchical word sets (HW ) include words (WB) from both parent and

child nodes at a specific branch b (W b
B) and words (WL) from all nodes at a particular level

l (W l
L).

For our experiments, we use an open-source implementation of the configuration space

CV
2 for computing coherence of words representing a topic. The CV measure’s segmenta-

tion (Sone
set ), probability estimation (Psw), and confirmation measure (Φ) are utilized, using

a sliding window of size 110 and combining indirect cosine measures with Normalized

Pointwise Mutual Information (NPMI) [91]. The confirmation measures are aggregated

with a diversity term to produce BTQ and LTQ as below. The arithmetic mean of BTQ and

LTQ yields the hierarchical topic quality (HTQ) for the entire topic model. The equations

are summarized as below:

BTQ =

∑B
b=1 ϕ

WB
i · db

B
(5.21)

LTQ =

∑L
l=1 ϕ

WL
i · dl
L

(5.22)

HTQ =
BTQ+ LTQ

2
(5.23)

Sset
one = (W ′,W ∗)|W ′ = wi;wi ∈ W ;W ∗ = W (5.24)

Psw(Si) = log
P (W ′,W ∗) + ϵ

P (W ′) ∗ P (W ∗)
(5.25)

ϕ(u⃗, w⃗) =

∑|W |
i=1 ui · wi

∥u⃗∥2∥w⃗∥2
(5.26)

2https://github.com/piskvorky/gensim/blob/develop/gensim/models/coherencemodel.py
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Coverage

To evaluate constructed hierarchies more thoroughly, we propose a set of new coverage

measures based on the work presented in [93]. The proposed metrics are simple coverage,

coverage based on subjects, and coverage based on vocabulary.

A coverage evaluation process requires some preprocessing. If a given topic tz is repre-

sented by an ordered set of words W z, we replace in a subject (set of words describing it,

Section 5.3) all occurrences of top words from W z with the first word wz
top ∈ W z.

Simple Coverage. The hierarchy tree should organize topics from general to specific.

Higher-level topics, closer to the root node, should encompass a broad range of subjects,

while lower-level topics, closer to the leaf nodes, should exhibit narrower coverage. The

coverage is calculated as follows:

Cov(L) =
1

k

∑
z

PMIc(tz) (5.27)

PMIc(tz) =
#(wz

top)

total_num_subjs
(5.28)

where tz is a topic z, #(wz
top) is the number of times the word wz

top appears in a subject, and

k is the number of topics at level L. The average coverage of all topics at the same level

reflects the model’s coverage capability. As the tree becomes deeper, with each successive

level moving closer to the leaves, the coverage score should decrease accordingly.

Coverage based on subjects: Based on the idea of Simple Coverage we focus on eval-

uating coverage of all topics at a given level. The value of the coverage is calculating using

the following equations

Cov(L) =
1

k

∑
z

PMIs(tz) (5.29)

PMIs(tz) =
1

V

V∑
j=1

log
p(wz

top, wj)

p(wz
top)p(wj)

(5.30)
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p(wz
top, wj) =

#(wz
top, wj)

total_num_subjs
(5.31)

p(wz
top) =

#(wz
top)

total_num_subjs
(5.32)

p(wj) =
#(wj)

total_num_subjs
(5.33)

where p(wz
top, wj) is the frequency of co-occurrence of the first word wz

top with a word wj

across all subjects; p(wz
top) and p(wj) are the number of occurrences of the word wz

top and

wj , respectively, and k is the number of topics at level L. Pointwise Mutual Information

(PMIs) calculates the similarity between word pairs across all subjects. The PMI score is

computed for each topic in the tree. The average coherence of all topics at the same level

is calculated to assess the model’s coverage.

As a tree goes deeper, the coverage score is expected to decrease with lower levels,

aligning with the assumption that more specific topics have narrower coverage.

Coverage based on vocabulary In contrast to the two previous approaches, from the

perspective of words describing the specific topics, the number of top words in higher-level

topics should be less than that in lower-level topics. Now the equations are:

Cov(L) =
1

k

∑
z

PMIv(tz) (5.34)

PMIv(tz) =
1

V

V∑
j=1

log
p(wz

top, wj)

p(wz
top)p(wj)

(5.35)

p(wz
top, wj) =

#(wz
top, wj)

total_num_vocab
(5.36)

p(wz
top) =

#(wz
top)

total_num_vocab
(5.37)

p(wj) =
#(wj)

total_num_vocab
(5.38)

where this time p(wz
top, wj) is the frequency of co-occurrence of the first word wz

top and

a word wj in the whole vocabulary; p(wz
top) and p(wj) is the number of times the words

wz
top and wj occurs, and k is the number of topics at level L. Pointwise mutual information
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(PMIv) is employed to calculate the similarity of pairs in the whole vocabulary. The PMI

score for each topic in the tree is computed.

The average coherence of all topics at the same level is used to reflect the coverage of

the model. As the tree goes deeper, the level decrease, the coverage score should increase

as the assumption.

5.5.3 Experiment environment

For our experiments, the nHDP_KG model was configured with a batch size of 20 and

1000 iterations. The hyperparameter beta0, which controls the Dirichlet base distribution,

was set to 1. In practice, the number of topics is dataset-dependent and varies based on the

desired depth of topic exploration.

5.6 Experiment Results

The results of experiments have been evaluated quantitatively and qualitatively.

5.6.1 Quantitative Evaluation

Hierarchical Topic Quality The comparison of the performance of the proposed method

for constructing a hierarchy based on KGs with other approaches on the diverse datasets

(FB15k-237, WikiData, DBpedia, and WebRED) is showed in Table 5.2. nHDP_KG and

hLDA methods do not require embedding of triples while the latest three models were used

with five different embeddings: TransE, DistMult, ComplEx, RotatE, HoIE. The used met-

rics are BTQ (Branch Topic Quality), LTQ (Level Topic Quality), and HTQ (Hierarchical

Topic Quality).

The nHDP_KG consistently displayed superior performance across all datasets, with

HTQ values ranging from 0.795 to 0.484, demonstrating the highest performance on FB15k-

237 and the lowest on WebRED and surpassing all other models. In contrast, hLDA ex-

hibited notably lower performance with HTQ values of 0.627 on FB15k-237 and 0.244 on
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Models Embeddings FB15k-237 WikiData DBpedia WebRED

BTQ LTQ HTQ BTQ LTQ HTQ BTQ LTQ HTQ BTQ LTQ HTQ

nHDP_KG 0.785 0.805 0.795 0.671 0.647 0.659 0.502 0.445 0.473 0.489 0.479 0.484

Hlda 0.662 0.592 0.627 0.299 0.228 0.263 0.413 0.424 0.418 0.269 0.220 0.244

Traco

TransE 0.385 0.385 0.385 0.015 0.023 0.019 0.443 0.449 0.446 0.190 0.190 0.190

DistMult 0.337 0.341 0.339 0.075 0.150 0.112 0.396 0.420 0.408 0.267 0.277 0.272

ComplEx 0.427 0.427 0.427 0.012 0.017 0.014 0.369 0.390 0.380 0.379 0.414 0.396

RotatE 0.322 0.322 0.322 0.098 0.131 0.115 0.410 0.423 0.416 0.272 0.282 0.277

HolE 0.370 0.374 0.372 0.100 0.158 0.129 0.344 0.333 0.339 0.283 0.287 0.285

SawETM

TransE 0.564 0.647 0.626 0.203 0.203 0.203 0.268 0.436 0.352 0.410 0.481 0.445

DistMult 0.548 0.635 0.591 0.082 0.086 0.084 0.272 0.390 0.331 0.294 0.346 0.319

ComplEx 0.505 0.621 0.563 0.116 0.116 0.116 0.301 0.459 0.380 0.272 0.320 0.296

RotatE 0.524 0.621 0.573 0.137 0.143 0.140 0.167 0.299 0.233 0.318 0.380 0.349

HolE 0.521 0.607 0.564 0.203 0.203 0.203 0.143 0.218 0.180 0.317 0.367 0.342

HyperMiner

TransE 0.628 0.705 0.666 0.097 0.100 0.098 0.128 0.384 0.256 0.367 0.374 0.370

DistMult 0.650 0.734 0.692 0.028 0.034 0.031 0.128 0.384 0.256 0.335 0.335 0.335

ComplEx 0.559 0.635 0.597 0.121 0.138 0.130 0.128 0.384 0.256 0.306 0.324 0.315

RotatE 0.607 0.682 0.644 0.101 0.109 0.105 0.128 0.384 0.256 0.294 0.354 0.324

HolE 0.580 0.655 0.618 0.082 0.094 0.088 0.128 0.384 0.256 0.402 0.434 0.418

Table 5.2: The Performance Comparison for Various Models over Datasets
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WebRED, indicating its inferior effectiveness on these datasets.

The Traco model, employing various embeddings, exhibited varying levels of perfor-

mance: TransE embedding performed relatively well on FB15k-237 (HTQ = 0.385) but

poorly on WikiData (HTQ = 0.014) and WebRED (HTQ = 0.190). Similarly, DistMult,

ComplEx, RotatE, and HoIE embeddings displayed comparable trends, showcasing opti-

mal performance on FB15k-237 and a noticeable decline on WikiData.

SawETM demonstrated overall superior performance compared to Traco, except on DB-

pedia, particularly with TransE and DistMult embeddings. TransE achieved the highest

HTQ of 0.626 on FB15k-237 among all embeddings for this model. Performance decreased

on WikiData, with the highest HTQ values of 0.203 for TransE and HoIE.

HyperMinor generally exhibited the best performance among models utilizing embed-

dings on FB15k-237. DistMult embedding attained the highest HTQ on FB15k-237 (0.692)

and sustained relatively strong performance across other datasets. TransE, ComplEx, Ro-

tatE, and HoIE embeddings also demonstrated robust outcomes, with HTQ values consis-

tently surpassing those observed for Traco and SawETM across all datasets.

In conclusion, the nHDP_KG model outperformed other models across all datasets. Hy-

perMinor consistently achieved high HTQ values across various datasets, particularly with

the DistMult embedding. Traco and SawETM models displayed varying performance, with

SawETM generally outperforming Traco. The hLDA model exhibited the least effective-

ness in this evaluation.

Coverage As depicted in Figure 5.3-5.6, an analysis was conducted to observe the pat-

terns in coverage measurements at different levels of hierarchy for various models across

all datasets. The coverage scores are presented within a minimum and maximum values

range, with the average coverage score indicated by dot values for all hierarchical levels. It

is noteworthy that hLDA exhibits root topics due to its inherent technique characteristics.

The visual representations in Figure 5.3 illustrate the coverage trends for FB15k-237.

Results from nHDP_KG, SaWETM, and HyperMiner show a clear decline in "Coverage_-

90



Figure 5.3: Coverage Trend of FB15k-237
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Figure 5.4: Coverage Trend of Wikidata
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Figure 5.5: Coverage Trend of DBpedia
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Figure 5.6: Coverage Trend of WebRED
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simple" and "Coverage_sub" as coverage levels increase, while "Coverage_vocab" demon-

strates an upward trend, consistent with our initial assumptions. In contrast, hLDA and

Traco display relatively stable performance with only minor fluctuations across all metrics

at levels 1 and 2.

In Figure 5.4, the coverage trends for Wikidata are depicted. The metric "Coverage_sim-

ple" shows a decline in both nHDP_KG and hLDA from level1 to level2, while SawETM,

Traco, and HyperMiner display consistent levels without a decreasing trend. Regarding the

"Coverage_sub" metric, nHDP_KG and hLDA exhibit a continuous decrease across levels,

whereas Traco and HyperMiner demonstrate less pronounced but still evident reductions,

with SawETM displaying an unexpected increase. Conversely, the "Coverage_vocab" met-

ric indicates an upward trend for nHDP_KG and hLDA, suggesting enhanced vocabulary

coverage at higher hierarchical levels. On the other hand, SaWETM and Traco show rel-

atively stable trends with slight improvements, while HyperMiner exhibits variability but

ultimately lower coverage at level2.

In Figure 5.5, the graph depicts the trends in coverage for Dbpedia. The metrics "Cov-

erage_simple" and "Coverage_sub" show a clear decreasing trend as levels increase for

nHDP_KG and hLDA, whereas SawETM and HyperMiner exhibit a relatively consistent

coverage. Traco, on the other hand, does not display any noticeable coverage trend in

this context. Conversely, nHDP_KG and hLDA demonstrate an increasing trend in the

"Coverage_vocab" metric, suggesting enhanced vocabulary coverage at higher levels. Ad-

ditionally, Traco shows a slight increase across all levels, while SawETM and HyperMiner

maintain a more stable performance.

Figure 5.6 illustrates the coverage trends for WebRED. The nHDP_KG model shows

a sharp decline in the "Coverage_simple" metric as levels increase, while other models

demonstrate more stable or slightly decreasing trends. However, Traco does not efficiently

capture the hierarchy. In the "Coverage_sub" metric, nHDP_KG exhibits a consistent

decrease across levels, while the other models display moderate declines. On the other
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hand, in the "Coverage_vocab" metric, nHDP_KG shows an increasing trend, indicating

enhanced vocabulary coverage at higher levels. In contrast, other models show more sta-

bility or slight increases in this metric, with Traco showing a decline.

In summary, nHDP_KG and hLDA successfully generate hierarchical trees that align

with our coverage assumptions, demonstrating their ability to capture the intended topic

structure. In contrast, other models appear to be weaker in this regard.

5.6.2 Qualitative Evaluation

Table 5.3: Top 5 Words Distribution of Topics for Gene Wilder

Entities

Subtree for entity: (sub_id: 2582)

/m/027l0b ( Gene Wilder, Wikipedia)

With multi label Entertainer, communicator

Subtree

(1,)

(1, 1)

/people/person/profession

/award/award_nominee/award_nominations./award/award_nomination/award

/film/actor/film./film/performance/film

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

/people/person/nationality

(1, 1, 1)

/award/award_nominee/award_nominations./award/award_nomination/award

/people/person/profession

/award/award_nominee/award_nominations./award/award_nomination/award_nominee

/music/artist/track_contributions./music/track_contribution/role

/award/award_winner/awards_won./award/award_honor/award_winner

(1, 1, 3)

/award/award_nominee/award_nominations./award/award_nomination/award_nominee

/award/award_winner/awards_won./award/award_honor/award_winner

/film/actor/film./film/performance/film

/award/award_nominee/award_nominations./award/award_nomination/award

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

(1, 2)

/music/record_label/artist

/m/09nqf(United States dollar)

/people/ethnicity/people

/olympics/olympic_participating_country/medals_won./olympics/olympic_medal_honor/olympics

/media_common/netflix_genre/titles

(1, 2, 1)

/location/location/contains

/location/location/adjoin_s./location/adjoining_relationship/adjoins

/location/location/time_zones

/m/0jbk9( United States Department of Housing and Urban Development)

/location/hud_foreclosure_area/estimated_number_of_mortgages./measurement_unit/dated_integer/source
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Table 5.4: Top 5 Words Distribution for Topics for Gene Wilder (continued)

Entities

Subtree for entity: (sub_id: 2582)

/m/027l0b ( Gene Wilder, Wikipedia)

With multi label Entertainer, communicator

(1, 2,.4)

/award/award_category/winners./award/award_honor/award_winner

/award/award_category/winners./award/award_honor/ceremony

/award/award_category/nominees./award/award_nomination/nominated_for

/government/government_office_category/officeholders./government/government_position_held/jurisdiction_of_office

/business/job_title/people_with_this_title./business/employment_tenure/company

Original_Triples

Triples for the subject /m/027l0b – Gene Wilder

’/film/actor/film./film/performance/film’, ’/m/085bd1’,

’/common/topic/webpage./common/webpage/category’, ’/m/08mbj5d’,

’/people/person/place_of_birth’, ’/m/0dyl9’,

’/film/actor/film./film/performance/film’, ’/m/0hvvf’,

’/award/award_nominee/award_nominations./award/award_nomination/award’, ’/m/09qvc0’,

’/award/award_nominee/award_nominations./award/award_nomination/award’, ’/m/0gqy2’,

’/award/award_nominee/award_nominations./award/award_nomination/nominated_for’, ’/m/0291ck’,

’/award/award_winner/awards_won./award/award_honor/award_winner’, ’/m/052hl’,

’/award/award_nominee/award_nominations./award/award_nomination/nominated_for’, ’/m/017kz7’,

’/people/person/profession’, ’/m/0dxtg’,

’/people/person/religion’, ’/m/03_gx’,

’/people/person/spouse_s./people/marriage/type_of_union’, ’/m/04ztj’,

’/people/person/profession’, ’/m/02jknp’, ’/people/person/profession’, ’/m/018gz8’,

’/people/person/religion’, ’/m/0kpl’,

’/people/person/profession’, ’/m/02hrh1q’,

’/people/person/profession’, ’/m/0kyk’,

’/film/actor/film./film/performance/film’, ’/m/017kz7’,

’/film/actor/film./film/performance/film’, ’/m/0291ck’,

’/people/person/profession’, ’/m/0xzm’,

’/film/actor/film./film/performance/film’, ’/m/018f8’,

’/award/award_nominee/award_nominations./award/award_nomination/nominated_for’, ’/m/01q_y0’,

’/people/person/profession’, ’/m/0cbd2’]

The acquired hierarchy tree is presented herein, derived from predicates and objects em-

ployed to characterize subject entities. The final goal is to analyze the distribution pattern

of these terminologies within the context of subject-based hierarchical clustering.

Here, we present the results for the top 5 word distributions for topics for Gene Wilder.

Table 5.3 presents a meticulous hierarchical representation of Gene Wilder’s career and

achievements, identified by subject ID 2582. The subtrees describe Wilder’s roles in films,

nominations, awards, musical contributions, and other aspects of his career.
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The hierarchical notation, e.g., (1), (1, 1), (1, 1, 1), demonstrates how each category is

further subdivided to present a comprehensive view of the obtained tree. There is, for ex-

ample, a node (1, 1, 1) that explains the specifics of award nominations and wins related to

Wilder’s film performances. The structured approach facilitates a deeper understanding of

Wilder’s career, highlighting the breadth and depth of his contributions. Each level repre-

sents a different level of detail throughout the subtrees, from broad categories such as pro-

fession or award to finer details such as specific award nominations or film performances.

For instance, a triple indicating a film performance ⟨’/film/actor/film/film/performance/film’,

’/m/0bsb1d’⟩ would be categorized under the film performance subtree, while an award

nomination triple ⟨’/award/award_nominee/award_nominations/award/

award_nomination/nominated_for’, ’/m/09qwc0’⟩ falls under the awards subtree. This hi-

erarchical structuring of triples into subtrees facilitates a comprehensive and nuanced anal-

ysis of Gene Wilder’s career, illustrating the interconnectedness of his professional achieve-

ments in a detailed manner.

Table 5.5 provides a hierarchical representation of the entity Centre College, identified

by subject ID 4815, encompassing its multifaceted attributes and relationships. The entity

is associated with labels such as organization and institution. The hierarchical structure,

indicated by tuple notations (e.g., (1), (1, 1), (1, 2)), organizes various attributes into sub-

trees for detailed analysis. For example, the subtree under (1, 1) highlights categories

related to professions, awards, and film performances, while (1, 2) includes financial and

demographic attributes such as currency and ethnicity. The subtree (1, 2, 1) expands on

geographical and administrative details, such as locations and time zones. Compared with

‘Original_Triples,’ it provides specific details on educational aspects, financial data, and

institutional characteristics. This hierarchical organization allows for a comprehensive and

nuanced analysis of Centre College, illustrating the interconnectedness of its various at-

tributes systematically.

The distribution of subtree sizes over all subjects is presented in Figure 5.7. Most of the
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Table 5.5: Top 5 words distribution for topics for Centre College

Entities

Subtree for entity: (sub_id: 4815)

/m/04344j ( Centre College, https://www.wikidata.org/wiki/Q1804942 )

With multi label organization, instituion

Subtree

(1,)

(1, 1)

/people/person/profession

/award/award_nominee/award_nominations./award/award_nomination/award

/film/actor/film./film/performance/film

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

/people/person/nationality

(1, 2)

/music/record_label/artist

/m/09nqf (United States dollar)

/people/ethnicity/people

/olympics/olympic_participating_country/medals_won./olympics/olympic_medal_honor/olympics

/media_common/netflix_genre/titles

(1,2,1)

/location/location/contains

/location/location/adjoin_s./location/adjoining_relationship/adjoins

/location/location/time_zones

/m/0jbk9 ( United States Department of Housing and Urban Development)

/location/hud_foreclosure_area/estimated_number_of_mortgages./measurement_unit/dated_integer/source

(1,2,3)

/education/educational_institution/students_graduates./education/education/major_field_of_study

/music/performance_role/track_performances./music/track_contribution/role

/education/educational_institution/students_graduates./education/education/student

/award/award_ceremony/awards_presented./award/award_honor/award_winner

/music/performance_role/regular_performances./music/group_membership/role

Original_Triples

[Triples for the subject /m/04344j – Centre College

’/education/educational_institution/school_type’, ’/m/04qbv’,

’/common/topic/webpage./common/webpage/category’, ’/m/08mbj5d’,

’/education/university/domestic_tuition./measurement_unit/dated_money_value/currency’, ’/m/09nqf’,

’/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency’, ’/m/09nqf’,

’/education/university/fraternities_and_sororities’, ’/m/035tlh’,

’/education/educational_institution/students_graduates./education/education/major_field_of_study’, ’/m/062z7’,

’/education/educational_institution/school_type’, ’/m/01rs41’,

’/education/university/local_tuition./measurement_unit/dated_money_value/currency’, ’/m/09nqf’,

’/education/educational_institution/colors’, ’/m/01l849’,

’/education/university/fraternities_and_sororities’, ’/m/04m8fy’,

’/education/educational_institution_campus/educational_institution’, ’/m/04344j’,

’/education/university/fraternities_and_sororities’, ’/m/0325pb’]
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Figure 5.7: Overall subtree size distribution

subjects have 6 node subtrees.

5.7 Conclusion

In conclusion, our study effectively applies the nested hierarchical Dirichlet process (nHDP)

to analyze knowledge graphs, revealing subject-specific distributions and representing global

knowledge graphs as local subtrees. Through quantitative evaluation of multiple models

on various datasets, our nHDP_KG model outperforms existing neural-network-based

hierarchical clustering techniques, indicating its potential to advance the organization of

large-scale knowledge bases. Additionally, qualitative assessment showcases the model’s

ability to generate meaningful subtrees, providing insights into the structure and relation-

ships within knowledge graphs and demonstrating the robustness and versatility of our

approach.
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Chapter 6

Conclusions, Recommendations, &
Future Work

The growing interest in knowledge graphs and their use in Retrieval-Augmented Genera-

tion (RAG) systems has led to the need for automated methods for building and analyzing

graphs. This research focuses on creating graphs with specific vocabulary using advanced

techniques. A substantial portion of the work is dedicated to analyzing and processing the

graphs. The developed approaches transform the flat structure of a knowledge graph into a

hierarchical organization, revealing data patterns at various levels of abstraction.

This thesis reports the findings of three projects discussed in the previous chapters. Here

we provide a thorough overview of the contributions, conclusions, and potential directions

for future research.

6.1 Contributions

The dissertation addressed the process of building knowledge graphs and further, to a

higher degree, the methods for hierarchical analysis of graphs. We investigated various

large language models for constructing knowledge graphs and proposed new data augmen-

tation to improve the triple extraction process. We performed the analysis of knowledge

graphs by adapting conventional hierarchical topic models and introducing a few innovative

approaches for learning hierarchy. We evaluated their effectiveness on real-world data.
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• Chapter 3 explores the fine-tuning of large language models (LLMs) for triple ex-

traction using data augmentation techniques and comparing their performance to the

GPT family of LLMs.

We implemented a pipeline composed of processes for data augmentation and prepa-

ration and model training using diverse trainers from HuggingFace. We applied it

to the WebNLG dataset and benchmarked against ChatGPT and GPT-4. Our anal-

ysis extended to real-world datasets such as SKE, DocRed, FewRel, and KELM.

We demonstrated that fine-tuned models with seven billion parameters outperformed

GPT-4, particularly on WebNLG.

Key findings highlight the effectiveness of data augmentation, the superior perfor-

mance of smaller fine-tuned models, and the critical role of high-quality training data.

Limitations include occasional hallucinations and looping issues. This work under-

scores that effective data augmentation and fine-tuning can enable smaller LLMs to

match or exceed the performance of larger models like GPT-4 in specific tasks.

• In Chapter 4, we introduced a hierarchical topic modeling approach tailored for

knowledge graphs, inspired by probabilistic models like Latent Dirichlet Allocation

(LDA) and its hierarchical extension (hLDA). Our method aimed to uncover latent

structures within knowledge graphs by organizing entities and predicates into a tree

of abstract topics.

Key components of the proposed technique include 1) data preprocessing, where

<predicates> and <predicates, objects> are treated as tags for subjects; 2) a generative

model that forms a hierarchical topic tree; and 3) inference using a non-parametric

prior and Gibbs sampling for efficient posterior inference.

We evaluated the model on datasets FB15k-237, YAGO3-10, and DBpedia, demon-

strating its effectiveness in clustering tasks and the coherence of the induced topic

hierarchies.
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Key findings show that the model organizes knowledge graph elements into mean-

ingful clusters without prior tree structure assumptions, performs competitively in

quantitative evaluations, and produces interpretable topic hierarchies. However, lim-

itations include the model’s singular path representation for subjects with diverse

topics, redundancy in the tree leading to overlapping subjects, and high computa-

tional resource consumption during inference.

• Chapter 5: We adopted a non-parametric probabilistic model, the nested hierarchi-

cal Dirichlet process (DP), to process knowledge graphs, aiming to discover latent

subject-specific distributions along paths within a hierarchical tree. The proposed

approach allowed us to represent global trees as collections of local subtrees for each

subject, revealing cross-thematic topics. Key elements of the approach are data pre-

processing, treating predicates and objects as words describing subjects, a generative

model enabling subjects to learn distributions on coherent topics, and inference using

stochastic variational methods to estimate the posterior inference of GDP.

Evaluations were conducted on datasets FB15k-237, DBpedia, Wikidata, and We-

bRED, assessing hierarchy topic quality, simple coverage, subject-based coverage,

and vocabulary-based coverage.

Key findings indicate that nHDP_KG effectively organizes subjects into meaningful

hierarchical trees, demonstrating superior topic coherence and coverage performance

compared to other models such as Traco, SawETM, and hLDA. Qualitative assess-

ments further highlight the coherence and interpretability of the induced subtrees,

showcasing the model’s ability to generate insightful hierarchical structures within

knowledge graphs.

Ultimately, it is anticipated that the researchers in knowledge representation will adopt

and build upon the presented research contributions. It is worth noting that the learning

hierarchies from knowledge graphs still need to be researched. No single method cur-
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rently exists that can handle all the tasks mentioned, and many hierarchies produced by

current methods, whether discussed in this dissertation or not, have room for improvement.

Consequently, we have not achieved an optimal automated learning of hierarchies from

knowledge graphs. We hope that future researchers advance this often-overlooked field.

All this leads us to the final point of discussion in this dissertation, which is the potential

avenues for future research.

6.2 Future Work

The implications of the findings presented in this thesis are significant for both research and

practical applications for constructing and analyzing knowledge graphs. The adaptability

and performance exhibited in constructing knowledge graphs and analyzing hierarchies

across different datasets emphasize the potential enhancements for knowledge updates and

information retrieval. Moreover, there is a desire to further investigate the integration of

knowledge graphs with large language models to retrieve more precise and relevant in-

formation. The causal knowledge graph construction and downstream tasks could benefit

from utilizing hierarchical structures learned from models utilizing conditional knowledge

graphs and knowledge graph reasoning.

• Integrating large language models with knowledge graphs for enhanced retrieval-

augmented generation presents a compelling research opportunity with significant

implications. This strategy can significantly enhance information retrieval by utiliz-

ing the organized data in knowledge graphs, resulting in more precise and contextu-

ally relevant outputs. Moreover, this fusion improves natural language comprehen-

sion, enabling models to produce more cohesive and informative responses by inte-

grating external knowledge sources. The broad applicability of this research across

different domains such as healthcare, finance, and e-commerce indicates promising

advancements in information retrieval and generation tasks.
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• Constructing causal knowledge graphs and hierarchies of events/facts they repre-

sent is very important in diverse fields because it can reveal the fundamental causes

of intricate issues, thus enabling precise interventions. These graphs play a cru-

cial role in healthcare, finance, and manufacturing decision-making by examining

causal connections to guide decision-making. Moreover, specialized causal knowl-

edge graphs in specific domains improve reasoning and inference mechanisms by

capturing complex causal links, enhancing comprehension of intricate systems, and

boosting analytical abilities. The hierarchy information we learned from hierarchical

topic modeling could help construct the conditional KG with the latent hierarchical

patterns.

• The hierarchy structure learned from KGs is essential for enhancing knowledge

graph reasoning by organizing entities and their relationships in a structured man-

ner. This hierarchical organization allows for efficient reasoning processes through

faster traversal and inference, facilitates semantic understanding by capturing hier-

archical dependencies, and supports contextual knowledge representation. Addition-

ally, hierarchical reasoning enables analysis at different levels of abstraction, uncov-

ering complex relationships that a flat graph might miss. The hierarchy structure

also promotes scalability and generalization, allowing the KG to handle larger and

more complex datasets while generalizing knowledge across various abstraction lev-

els. Consequently, this structured representation significantly enhances the KG’s

ability to capture and reason over intricate relationships and dependencies, leading

to more accurate and insightful reasoning outcomes.

In summary, this thesis’s contributions are twofold. It adds to the expanding litera-

ture on large language models by proposing a promising framework for knowledge graph

construction using prompt engineering. It also shows that non-parametric techniques with

probabilistic topic modeling are a promising approach to analyzing and extracting infor-

mation at different levels of abstraction from graphs. Hopefully, this work will pave the
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way for more effective, accessible, and personalized interventions in the knowledge graph

domain.
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