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Abstract 

 Predicting the formation and structures of non-molecular inorganic compounds has long been a 

fundamental goal in solid state chemistry.  In this thesis, machine learning approaches have been 

applied to confront this challenge, focusing in particular on the large family of half-Heusler compounds 

because they exhibit many useful materials properties but have not always been structurally well 

characterized.  Two specific problems have been tackled:  assigning the correct site distributions in 

existing half-Heusler compounds, and predicting the formation of new half-Heusler compounds. 

 The site preference within the structures of half-Heusler compounds have been evaluated 

through a machine-learning approach.  A support-vector machine algorithm was applied to develop a 

model which was trained on 179 experimentally reported structures and 23 descriptors based solely on 

the chemical composition.  The model gave excellent performance with sensitivity of 93%, specificity 

of 96% and accuracy of 95%.  As an illustration of data sanitization, two compounds (GdPtSb, HoPdBi) 

flagged by the model to have potentially incorrect site assignments were resynthesized and structurally 

characterized.  The predictions of the correct site assignments from the machine-learning model were 

confirmed by single-crystal and powder X-ray diffraction analysis.  These site assignments also 

correspond to the lowest total energy configurations as revealed from first-principles calculations. 

 A machine-learning ensemble was used to predict new half-Heusler compounds.  Compositions 

were selected for synthesis if they were also adopted by a full-Heusler compound counterpart.  The 

model gave excellent performance with sensitivity of 90.0%, Specificity of 98.0%, and accuracy of 

97.7%.  Perturbations in site occupancy (e.g., vacancies, disorder) led to changes in crystal symmetry.  

Synthetic minority oversampling (SMOTE) and ensemble methods have been combined and applied 

for the first time to a materials science problem, and the performance of this approach has been 

evaluated
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Chapter 1 Introduction 

1.1. Heusler compounds 

 One of the largest families of intermetallic compounds (combinations of metals having 

definite composition and ordered structures) are Heusler compounds.  Discovered in 1903 by Fritz 

Heusler, Cu2MnAl was the first example in this family.1  It was remarkable at the time, when 

magnetic phenomena were still not well understood, because it behaves like a ferromagnet even 

though none of the constituent elements are ferromagnetic.  Eventually, this behaviour was 

explained as arising from magnetic interactions between Mn d states mediated through conduction 

electrons (known as RKKY interactions).2  Today, hundreds of Heusler compounds are known 

which exhibit diverse properties useful for many applications, including memory-shape alloys, 

superconductors, topological insulators, spintronics, and thermoelectric materials. 

 The wide range of properties found in Heusler compounds can be traced to the flexibility 

in their structures and compositions.  The crystal structure of Cu2MnAl, known as the Heusler (or 

full-Heusler) structure, consists of atoms in three sites (8c, 4b, 4a) in the centrosymmetric space 

group Fm3̅m.3  The coordination environment around each site can be described as cubic.  The 

family of Heusler compounds includes not only the original Heusler structure, but also other 

closely related derivatives such as half-Heusler and inverse Heusler structures.  The sites in the 

crystal structures can be occupied by many metallic elements in the periodic table ranging from 

the alkali metals to the pnicogens, and sometimes even some decidedly non-metallic elements such 

as O, Br, and Te.  Although Heusler compounds are well studied, the focus of this thesis is to try 

a new approach in understanding and predicting their structures. 
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1.2. Synthesis of intermetallic compounds 

 Like many other inorganic solid-state compounds, intermetallic compounds can be 

prepared by directly combining the elemental components in a sealed container (typically a fused-

silica ampoule that is evacuated) and heating them at high temperatures in a furnace.  If all reactants 

remain as solids even at these high temperatures, the mechanism for forming these compounds is 

assumed to proceed through atomic diffusion.4  Starting materials can come in various forms such 

as powders, ingots, or foils.  However, reaction rates can be increased by grinding reactants or 

pelletizing them together increases the contact area between reactants and decreases the path 

lengths for diffusion.5  For atoms to move from one position to another, bonds are broken, the 

structure is distorted, and new bonds are formed.  Structural reorganization can be minimized if 

reactants and products have similar structures.  Diffusion rates are affected not only by temperature 

but other factors such as atomic sizes and packing.6  Ideally, melting can be achieved but reactions 

can still proceed below the solidus; a rule of thumb (called Tammann’s rule) to ensure reasonable 

rates is that the reaction temperature should be at least two-thirds of the lowest melting point 

among the reactants.7  As a reaction proceeds, a product layer forms and acts as a barrier between 

reactants.  Subsequent regrinding and reheating of the sample is then needed to ensure complete 

reaction. 

 Standard resistance furnaces are often unable to reach high enough temperatures for metals 

to react together, as is the case for many samples synthesized in this work.  In this case, arc melting 

is a useful alternative approach (Figure 1-1.). 
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Figure 1-1. Solid state synthesis methods: (a) standard resistance furnace and (b) arc melter. 

 

The starting materials are pressed into pellets and placed within an arc furnace, which is evacuated 

and back-filled with argon gas.  An electric arc is generated by a high potential difference, and is 

directed to a tungsten getter which is first melted to remove remaining traces of oxygen.  Then the 

pellets are arc-melted, and usually they are flipped over and arc-melted again to ensure 

homogeneity.  Metals with low boiling points (<1500 °C) may volatilize and their loss must be 

compensated by pre-adding a slight excess, or minimized by using large pieces (foils or ingots).  

The samples are then further annealed in a furnace and quenched in cold water.  For 

characterization, half of the sample is ground for powder X-ray diffraction and the remaining half 

is examined for presence of crystals. 
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1.3. X-ray diffraction 

 The primary means of characterizing the structures of solid state compounds is through X-

ray diffraction.  Within the spectrum of electromagnetic radiation, hard X-rays have wavelengths 

of 0.3 to 2 Å which are comparable to distances between atoms in a crystal.8  When they strike a 

crystal, these X-rays are elastically scattered and undergo constructive interference if Bragg’s law 

is satisfied.  The directions of the scattered waves depend on the lattice (a set of points such that 

each has the same environment) and their intensities depend on the basis (the set of atoms 

associated with each point).  X-ray diffraction experiments can be conducted on single crystals or 

powders (which contain randomly oriented crystallites). 

 X-rays are produced when electrons are accelerated across an electrical potential and strike 

a metal anode (typically Cu for powder diffraction or Mo for single-crystal diffraction).  An X-ray 

spectrum consists of a broad background (caused by inelastic scattering processes) superimposed 

by a few sharp and intense peaks.  The background is caused by inelastic scattering processes in 

which the electron loses kinetic energy in variable amounts.  The sharp peaks are caused by elastic 

scattering processes in which core electrons from the K shell are ejected and the holes are filled 

by relaxation of higher energy electrons from the L and M shells (Figure 1-2).  The less intense K 

line (resulting from the M to K transition) appearing at shorter wavelengths is typically filtered 

out, while the more intense K line (resulting from the L to K transition) appearing at higher 

wavelengths is selected for the X-ray diffraction experiment.  Actually, the K line is split into a 

doublet because of small energy differences arising from spin-orbit coupling. 
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Figure 1-2. Generation of X-rays and the emission spectrum for a Cu X-ray tube. 

1.3.1. Single-crystal diffraction 

 A crystal structure is defined by a lattice which describes the long-range periodicity.  The 

lattice points are outlined by a unit cell, which is the smallest repeat unit, with lengths a, b, c and 

angles α, β, γ.  In 3D, seven crystal systems are possible and when centring operations are included, 

14 Bravais lattices are generated.  A space group describes the set of point and translational 

symmetry operations possible within a crystal structure. 

 The conditions for X-ray diffraction can be described in two ways (Figure 1-3).  According 

to the Laue equations, constructive interference takes place at the intersection of Laue cones along 

which scattered X-rays emanate, whereas according to Bragg’s law, constructive interference takes 

place when the path difference between X-rays reflected from lattice planes is equal to an integral 

multiple of wavelengths.9 
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Figure 1-3. (a) Laue and (b) Bragg conditions for X-ray diffraction. 

 Suitable crystals are typically 0.01 to 0.5 mm in dimension and are mounted on a 

goniometer of a diffractometer.  In this work, a Bruker PLATFORM diffractometer is used which 

is equipped with a SMART APEX II CCD area detector and a Mo K X-ray source.  Frames of 

intensity data are collected, usually for 10 to 30 seconds.  The intensities Ihkl are proportional to 

the square of the amplitude of the structure factor, Fhkl, which is the superposition of scattered 

waves for a given set of lattice planes (hkl) and depends on the scattering factors, displacement 

parameters, type, and location of atoms.  The electron density function of a crystal can be obtained 

by a Fourier transform of the set of structure factors.  Although the amplitudes of the structure 

factors can be obtained experimentally from the intensities, there is no information about their 

phases.  Instead, structure solution proceeds through guessing these phases.  The calculated 

structure factors from a proposed model are compared with the experimental structure factors, and 

the model is refined until the differences between these structure factors are minimized (as 

indicated by a low residual index). 
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1.3.2. Powder diffraction 

 X-ray diffraction patterns can also be collected on powder samples, which is prepared by 

fine grinding.  Because a powder contains small crystallites oriented randomly, diffraction rings 

are observed instead of discrete spots, and intensities for symmetry-equivalent reflections cannot 

be resolved.  Structure determination is more difficult than in single-crystal X-ray diffraction.  

However, typically an experimental powder pattern can be compared with a simulated pattern to 

see if a desired phase has been formed or to identify multiple phases in a sample.  In this work, an 

Inel powder diffractometer is used which is equipped with a curved position-sensitive detector, 

allowing for simultaneous collection of intensities over an angular range of 0 to 120° in 2θ. 

 

1.4. Scanning electron microscopy 

 The surface topology and composition of solids can be examined by scanning electron 

microscopy.  Within a high-vacuum environment, electrons are accelerated (typically over a 

voltage of 20 kV) and when they undergo several types of interactions when they strike a sample.  

Secondary electrons emitted from the surface through inelastic scattering processes are used to 

probe the surface topology.  Energy-dispersive X-ray (EDX) spectroscopy is used to determine the 

composition of the sample.  When the incident electron beam ejects core electrons, higher-level 

electrons relax to the hole and X-rays characteristic of the element are emitted.  The amount of a 

given element can be detected to roughly ~2 wt. %, provided that they are heavier than Na.  Lighter 

elements are harder to detect because of the possibility of reabsorption of low-energy X-rays by 

the sample. 
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1.5. Band structure calculations 

 A crystalline solid contains a periodic arrangement of atoms whose orbitals can overlap to 

form energy levels that come so close together that they are described as quasicontinuous bands 

rather than discrete levels.  To solve the Schrödinger equation, a few assumptions are made.  First, 

electron-electron interactions are neglected and the Kohn-Sham one-electron equation is solved 

instead of dealing with the many-electron case.10  Second, by taking advantage of the translational 

invariance of a periodic solid, Bloch’s theorem expresses the wavefunctions as a linear 

combination of atomic orbitals: 

𝛹(𝑘, 𝑟) =  ∑ exp {𝑖𝑘𝑟𝑗}𝜙𝑗

𝑗

 

where rj is the position of the atom j in the unit cell, ϕj is the orbital of the atom, and k is a 

wavevector in reciprocal space and measures the momentum of an electron.  It suffices to plot the 

energies of these wavefunctions within the first Brillouin zone, which is the Wigner-Seitz cell 

(constructed by identifying midpoints to the nearest neighbour reciprocal lattice points, so as to 

portray symmetry more clearly around the reciprocal lattice origin) in reciprocal space.  In 1D, for 

example, the Brillouin zone is bounded by −
𝜋

𝑎
≤ 𝑘 ≤

𝜋

𝑎
 where a is the unit cell length. 

 A band dispersion diagram (E vs. k) plots the energies along high-symmetry points within 

the Brillouin zone.  Another useful plot is the density of states (DOS) curve, which is inversely 

proportional to the slope of the bands.  It is possible to extract the atomic projections to the DOS 

to determine which elements contribute to the bands at a particular energy. More information can 

be obtained by a plot of the crystal orbital Hamiltonian population (COHP) which can reveal the 

nature of bonding interactions (Figure 1-4).  COHP values are derived from the density of states 

matrix weighted by the Hamiltonian matrix to describes the interaction between two orbitals 

belonging to neighbouring atoms.11,12 
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Figure 1-4. Band dispersion, density of states, and crystal orbital Hamilton population curves. 

 

 Calculations in this work were performed with the tight-binding linear muffin tin orbital 

(TB-LMTO) program package.13,14  The tight-binding approximation treats the electrons as if they 

are tightly bound to the atom and the interactions are limited to neighbouring atoms.  The form of 

the potential energy function experienced by electrons is assumed to be spherically symmetric 

around atoms but constant in the interstitial sites, resembling the shape of a muffin tin.  The atomic-

spheres approximation involves expanding the muffin-tin radii so that they are allowed to overlap 

slightly with the aim of filling up all space.  This approximation is appropriate if the structure 

contains close-packed atoms, as normally found in intermetallic compounds.  By default, the 

program uses the local density approximation which approximates the exchange-correlation 

energy by locally treating the electron density as a homogenous electron gas. 

 

1.6. Machine learning 

 The term “machine learning” was first coined by Arthur Samuel in 1959 when he was 

studying how a program learns to play the game of checkers.15  Later, Tom Mitchell remarked that 

“A computer program is said to learn from experience E with respect to some class of tasks T and 
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performance measure P, if its performance at tasks T, as measured by P, improves with experience 

E.”16  The practical application of machine learning in materials science is an exciting area which 

is becoming more widespread, and its utility is being recognized by experimentalists to guide the 

high-throughput discovery of materials.  In particular, it is more efficient and practical to use 

machine-learning algorithms rather than ab initio calculations to establish correlations in complex, 

many-body systems.  Moreover, the digitization of scientific information has enabled chemists 

with the opportunity to leverage the analysis of large data as a new tool to complement 

computational work and intuition.  

 The application of machine learning to material science is a developing field with its utility 

and associated challenges still being illuminated.  In addition to inorganic materials discovery, 

machine learning can also be used for high-throughput property prediction, optimization of 

experimental conditions, automation of experimental procedures, materials tuning, microstructure 

optimization, and even materials characterization.17-22  Many of these applications require the 

description of materials in a machine interpretable way and there have been many efforts to design 

a fingerprint that is chemically interpretable.23-25  The line between performance and 

interpretability is one we have to straddle in this field and the hope is that with a good fingerprint 

we can have both.  The performance is also influenced by the data and algorithms due to the fact 

that we need enough good data for our prediction to be reliable and each algorithm will handle the 

data differently.  The development of new machine learning architecture itself is a burgeoning 

field and what kind of architecture is best suited for our application is an ongoing question in the 

field.26  In regards to the data aspect, although information is being digitized and stored, its 

organization, access and quality are still problems.27 
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 In this work, we examine tasks T involving classification where other tools would be too 

costly in terms of computation, time, and effort.  The general procedure works by first extracting 

and describing information.  For example, the compositions of a series of compounds can be 

extracted from a database and a simplified description can be formulated.  The experience E comes 

in the form of features which is anticipated to help distinguish between a set of classes.  Because 

it is not obvious at the outset which features will do this optimally, both chemically and non-

chemically intuitive features are considered.  These features are selected based on the evaluation 

of the performance P, with the features selected that result in the best performance.  One metric 

used to evaluate performance P is the accuracy, which is defined as the sum of the true positives 

and true negatives over the total number of samples. 

1.6.1. Feature selection and principal component analysis 

 To develop a machine-learning model, feature selection is a necessary first step.  What are 

features and how are they generated?  Features are used to train machine-learning models.  They 

can be extracted through an unsupervised learning algorithm, they can be generated by hand by 

processing data for information, or they can be proposed based on one’s intuition.  In chemistry, 

it makes sense to generate features based on the properties of elements, such as atomic radii or 

melting points.  These properties can be combined to generate new ones.  For example, taking the 

ratio of two properties of elements would be sensible for radii (to mimic Pauling’s radius ratio 

rules) but perplexing for boiling points.  However, the idea of the procedure of feature selection is 

to avoid bias. 

 Feature selection accomplishes several purposes.  Pragmatically, it helps us interpret the 

model by identifying what features correlate well with the dataset.  Because the input matrix is 

smaller, the learning times are faster.  It also prevents overfitting.  Having a description of the data 
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that is too fine-grained or having too many features increases the number of dimensions on which 

the data are projected, leading to an increase in sparsity and causing difficulties in finding a good 

decision boundary (because even the in-class separation can become greater as more detail is 

added).  The algorithm may learn peculiarities associated with the dataset and may come up with 

an unreasonable decision barrier, which leads to poor generalizability of the model and overfitting. 

 In a procedure called cluster resolution feature selection, the discriminating power is 

improved by maximizing the distances of the confidence ellipses bounding two clusters.28,29  The 

features are first ranked by their Fisher ratio, which is the ratio of in-class to between-class 

variance.  In a binary classification problem, a good feature maximally separates classes and 

minimizes in-class variance.  A principal component analysis (PCA) model is created starting from 

a subset of features with the highest Fisher ratios.  Higher-dimensional data are projected onto 2D 

PCA space.  The data are autoscaled to fit around the origin and are projected on a random line 

passing through the origin (Figure 1-5).30  The distance between the data points and the origin is 

fixed, and we seek to maximize the sum of the squared distances of the projected points to the 

origin.  The line of best fit (the “principal component”) is a linear combination of the variables, 

and the weights in this linear combination are called loading scores. 

 

Figure 1-5. Projection of points onto a line of best fit including Pythagorean relationship. 
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The line is scaled by calculated its unit vector (called the eigenvector).  The eigenvalue is then 

calculated, which determines how much variation is accounted for by each principal component.  

Further principal components are found by finding a line orthogonal to the previous principal 

component and repeating the procedure.  The points can then be projected onto a lower-

dimensional PCA space (Figure 1-6). 

 

Figure 1-6. Projection of a point in PCA space consisting of two principal components. 

 

In a binary classification problem, there are two possible classes, by definition.  Samples belonging 

to one class are projected onto PCA space.  The length of the confidence ellipse is generating using 

Hotelling’s value, and the eigenvalues and directions of each principal component are given by the 

loading vectors.  Points are distributed along the circumference of the ellipse.  After both ellipses 

have been computed, the Euclidean distance between each point on both ellipses is calculated.  The 

shortest distance is compared to half the distance between each point on the circumference.  If it 

is shorter, then the ellipses are considered to be overlapping.  The confidence limit is then changed 

until there is no overlap (Figure 1-7). 
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Figure 1-7. Non-overlapping confidence ellipses in PCA space. 

 

The procedure is repeated in a stepwise fashion using backwards elimination and forward 

selection.  In backwards elimination, a variable is removed and the performance of the model is 

evaluated.  If the model improves, that variable is dropped, but if it gets worse, it is retained.  

Conversely, in forward selection, a variable is added and if the model improves, that variable is 

included, but if it gets worse, it is removed.  This procedure attempts to circumvent the nesting 

problem of variables being eliminated too early.  The combination of features is permuted for 

several generations and the survival rate of each variable is monitored.  Models are generated at 

different survival rate thresholds and evaluated using the Matthew’s correlation coefficient on the 

validation set.  The subset of features that produces the best model is kept.  The aim is to select 

features that make the model generalizable, rather than those that simply explain trends in the 

training set. 
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1.6.2. Partial least-squares discriminant analysis 

 Partial least-squares discriminant analysis can be used for dimensional reduction, feature 

selection, and classification.  We consider here only the case of the base algorithm applied to a 

binary classification problem, in which a function is sought to discriminate two classes.31  Each 

matrix X and Y is decomposed into matrices: 

𝑋 = 𝑇𝑝 + 𝐸  𝑌 = 𝑇𝑞 + 𝐹  𝑤 = 𝑋′𝑦 

𝑡 =  
𝑋𝑤

√∑ 𝑤2
  𝑝 =  

𝑡′𝑋

√∑ 𝑡2
   𝑞 =  

𝑦′𝑡

√∑ 𝑡2
    𝑏 = 𝑤(𝑝𝑤)−1𝑞 

where T is the score matrix, p is the x loading, q is the y loading, and E and F are residuals (also 

called errors or noise terms).  A weight vector w is estimated which maximizes the covariance 

between X and Y.  The covariance gives information about the strength of correlation between X 

and Y.  This weight vector is then used to calculate the X score, which in turn is used to calculate 

the X and Y loadings.  The X score is a projection of the training samples onto a new axis (called 

the PLS components), similar to how PCA is used to project data onto lower-dimensional space.  

The loadings are coefficients that related the variable (X or Y) and the PLS component.  Subsequent 

PLS components are created from the residuals E and F, a new weight vector is calculated, and 

the process is repeated.  For each PLS component, a regression coefficient b is calculated using 

the loadings and weight vectors.  These coefficients are then collected in a matrix and can be used 

to predict Y from an input X.  What makes this a classifier is that the Y variable is categorical 

(containing class 1 and class 0). 

 

1.6.3. Synthetic minority oversampling and k-nearest neighbours 

 The k-nearest neighbours (KNN) algorithm classifies a data point on the basis of its 

surrounding neighbours (Figure 1-8).  After the number of neighbours k to include is established, 
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the Euclidean distance between every point and the kth closest points are calculated.  If k is too 

low, the neighbourhood is represented poorly, but if it is too high, the algorithm quickly becomes 

computationally expensive.  A typical guideline to choose k is to start with the square root of the 

total number of samples, and round to the nearest odd integer to avoid any ties.  Then k is varied 

to see how the performance of the model changes. 

 

 

 

Figure 1-8. k-nearest neighbours’ algorithm. 

 

 An algorithm that utilizes (KNN) is the synthetic minority oversampling technique 

(SMOTE), which is used to adjust the class distribution in unbalanced data sets, with the goal of 

improving the performance of the model by increasing the number of samples within the minority 

class (which also tends to be the class one wishes to predict).32  Before SMOTE is applied, the data 

set must be partitioned into a calibration and a test set.  SMOTE will only be used to balance the 

calibration set.  In our case, we have a data set that contains two classes, with one being the 

minority.  SMOTE then applies the k-nearest neighbour’s algorithm to the minority class.  In other 

words, for a sample in the minority class, it finds the k neighbours that are also part of the same 

minority class.  Then a point is placed between them and this point is called a synthetic sample.  
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This is done for each sample in the minority class, resulting in the generation of a group of 

synthetic samples that are similar to the minority class.  Each synthetic sample is evaluated by 

using the nearest neighbour algorithm once again, but the data set now includes the minority class, 

the majority class, and the synthetic samples.  The synthetic samples are kept based on the criteria 

that their nearest neighbours consist of mainly samples belonging to the minority class.  This 

voting threshold can be adjusted to make the algorithm stricter.  For example, suppose we want 

90% of the neighbours of the synthetic samples to consist of the minority class.  This would give 

samples that are very similar to the original minority class, but will also reduce the number of 

synthetic samples generated.  In the end, the classes may not be completely balanced but at least 

they are more balanced than before. 

 

1.6.4. Support vector machine 

 The basic idea of a support vector machine is to find a hyperplane or decision barrier that 

best separates classes.  Support vectors are a subset of points in each class that influence the 

decision barrier and form the margin of these classes (Figure 1-9). 

 

 

Figure 1-9. Choice of support vectors gives different decision barrier widths. 
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A set of support vectors is sought which maximizes the margin width.  If the data are not linearly 

separable, two techniques can be employed. 33  The first technique is called the kernel trick, where 

a kernel function (Gaussian in this case) is used to project the data into higher dimensional space 

where it then becomes separable (Figure 1-10). 

 

Figure 1-10. Projection of data using a Gaussian kernel function. 

 

The second technique is called the soft margin approach where points are allowed to be on the 

wrong side of the margin and a penalty is added.  The penalty depends on how far on the wrong 

side of the margin the point is located.  Support vectors are then sought that minimize the penalty 

and also maximize the margin width. 

 

1.7. Research motivation 

 Heusler compounds have attracted attention for their diverse physical properties, which 

can be tuned by chemical substitution or introducing deficiencies into their structures.  

Nevertheless, the uncomfortable fact is that the structures of many Heusler compounds have not 

been properly characterized.  Out of 1371 reports of Heusler compounds, only 637 have had 

complete crystal structures determined, and of these, only 78 involved single-crystal X-ray 
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diffraction.  Many of the subtle features about site occupation simply cannot be determined reliably 

from powder X-ray diffraction.  The major goal of this thesis is thus to predict the correct 

assignment of atomic positions in Heusler compounds with the aid of machine-learning tools.  This 

problem would be too time-consuming if every existing Heusler compound needed to be 

resynthesized and recharacterized experimentally, or if total energy calculations were to be 

performed.  A secondary motivation is to illustrate the effectiveness of machine-learning 

techniques and to examine how conclusions can be drawn from good data.  Throughout this work, 

predictions were experimentally validated whenever feasible, and the importance of empirical 

evidence is emphasized. 
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Chapter 2 Solving the Colouring Problem in Half-Heusler Structures:  

Machine-Learning Predictions and Experimental Validation 

 

2.1. Introduction 

 One of the most fundamental problems in solid state chemistry is establishing how different 

types of atoms are distributed within various sites of a crystal structure.  A classic example often 

mentioned in inorganic chemistry textbooks is the occurrence of normal vs. inverse spinels AB2O4, 

in which the differing occupation of octahedral and tetrahedral sites by the metal cations A and B 

can be rationalized by crystal field stabilization energies that depend on d-electron configurations.1  

Because crystal structures have a formal relationship to the mathematical concept of a graph, 

determining site preferences of atoms within a solid has been described as a case of a “colouring 

problem” in graph theory.2,3 

 The colouring problem is particularly pertinent for the large family of intermetallics known 

as half-Heusler compounds, which have the equiatomic composition ABC and display diverse 

properties useful for many applications (e.g., thermoelectrics, spintronics, topological 

insulators).4–9  Their structure can be described in various ways.  One helpful perspective is to 

merge the NaCl-type (rocksalt) and ZnS-type (zincblende) structures (Figure 1a) to result in the 

cubic structure (space group F43̅m) of half-Heusler compounds, also called the MgAgAs-type 

structure (Figure 1b).10  The structure features three sites at 4a (0, 0, 0), 4b (½, ½, ½), and 4c 

(¼,¼,¼).  The coordination geometries around these sites, as defined by the nearest-neighbour 

environments, are tetrahedral for 4a and 4b, and cubic for 4c.11  The 4a and 4b sites are equivalent 

in the sense that if their occupation by the elemental components is swapped, the structure remains 
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unchanged.12  Then, the colouring problem in half-Heusler compounds ABC can be expressed 

succinctly as, “Which of the components, A, B, or C, prefers to occupy the 4c site?” 

 

Figure 2-1.  Merging of (a) NaCl-type and ZnS-type substructures results in (b) half-Heusler 

structure containing tetrahedral (at 4a and 4b) and cubic sites (at 4c), which can be occupied by a 

variety of elements as summarized in (c). 
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 A simple rule has been proposed to predict these site preferences:  The NaCl-type 

substructure, which entails greater ionic bonding character, should consist of atoms with a larger 

difference in electronegativity, whereas the ZnS-type substructure, which entails greater covalent 

character, should consist of atoms with a smaller difference in electronegativity.4  Put another way, 

this means that the 4a and 4b sites should contain the most and least electronegative atoms and the 

4c site should contain the atoms with intermediate electronegativity.  How well does this rule 

work?  For MgAgAs itself, the eponymous representative of this structure type, the NaCl-type 

substructure is predicted to consist of Mg and As atoms, and the ZnS-type substructure of Ag and 

As atoms; i.e., the 4c site should be occupied by Ag atoms.  The prediction is not borne out by 

experiment, which shows that the 4c site is actually occupied by As atoms.10  In fact, analysis of 

all half-Heusler structures reported to date in Pearson’s Crystal Data shows that the situation is not 

so clear cut.13  A wide variety of elements can occupy these sites; some elements are found 

exclusively in tetrahedral, some exclusively in cubic, and some in both sites (Figure 1c).  

Moreover, depending on the choice of electronegativity scale, the accuracy of these predictions 

ranges from poor (using the Gordy scale)14 to modest (using the Allred-Rochow scale)15 (Table 1). 

 

Table 2-1.  Accuracy in Predictions of 4c Site Preference in Half-Heusler Compounds a 

electronegativity scale accuracy 

Gordy 0.313 

Pauling 0.375 

Mulliken 0.492 

Martynov-Batsanov 0.525 

Allred-Rochow 0.659 

 
a Based on analysis of all reported half-Heusler compounds in Pearson’s Crystal Data. 
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Of course, the rule of electronegativity differences can be extended by including other factors, 

such as size or electron configurations, which certainly influence crystal structures.  More rigorous 

quantum calculations have been made to evaluate the relative importance of ionic vs. covalent 

bonding character in dictating the site preferences, but these studies are necessarily restricted to 

limited sets of compounds.16–18  It is also inevitable that ambiguous cases will arise when 

electronegativities or sizes are similar. 

 Establishing the correct site distribution is essential because any conclusions about 

structure-property relationships, and thereby efforts to improve on the properties of half-Heusler 

or other compounds, rest on the premise that the crystal structure is accurate.  Unfortunately, there 

have been many reports in the literature in which site distributions have been assumed without 

independent corroboration, or computational studies have been performed on hypothetical or 

experimentally unconfirmed structures.  Site distributions are often not definitive in the literature 

or assigned inconsistently within databases; for example, it is unclear if the 4c site in MnPdSb is 

occupied by Pd or Sb atoms.13,19–22  The electronic structure can change drastically if different site 

distributions are invoked; for example, NiMSn and NiMSb (M = Ti, Zr, Hf) have been computed 

to be narrow-gap semiconductors, zero-gap semimetals, or metals, depending on which structural 

model is chosen.23 

 Most experimental structural studies of half-Heusler compounds are based on powder X-

ray diffraction (XRD) data because, with no refinable positional parameters, there is no strong 

incentive to perform single-crystal XRD experiments.  Of the 720 entries of half-Heusler 

compounds listed in Pearson’s Crystal Data, only 42 (6%) were examined using single-crystal 

data, and of these, 9 (1%) included a careful evaluation of site distributions, while the remainder 

were derived by analogy to related compounds.13  As an illustration of the ambiguities that can 
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arise, the powder XRD patterns of LiAuSb are simulated with the 4c site being occupied by Li, 

Au, or Sb atoms (Figure 2).24  Light elements like Li are undetectable in the presence of heavily 

scattering elements like Au and Sb, and the XRD patterns for the models with Au or Sb atoms in 

the 4c site become indistinguishable.  This does not mean that the latter two models are equally 

viable; rather, the implication is that the X-ray diffraction method is agnostic about which model 

is likely to be correct.  To resolve the quandary, alternative experimental techniques (such as 

neutron diffraction) or computational support may prove helpful. 
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Figure 2-2.  Simulated powder XRD patterns for LiAuSb with the 4c site being occupied by Li, 

Au, or Sb atoms. 
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 High-throughput first-principles calculations have been performed on many half-Heusler 

compounds; these include studies that target hypothetical members, whose stabilities are evaluated 

by identifying energy minima relative to other competing phases.25–28  As an alternative approach, 

we have been interested in applying machine-learning techniques to accelerate materials 

discovery, especially of intermetallic compounds.29,30  Both methods have their own advantages 

and disadvantages.  In first-principles calculations, by definition, no prior empirical information is 

required, but various approximations must be made to manage the time and cost of these 

calculations.  In machine-learning methods, a model can be rapidly trained using empirical data, 

but the success depends on the quality of these data.  Recently, Legrain et al. have compared these 

approaches as applied to the question of existence vs. nonexistence of half-Heusler compounds.31  

They demonstrated that predictions from different first-principles calculations are not fully 

consistent, but a machine-learning model based solely on chemical composition can perform very 

well and serve as a complement by highlighting unrecognized factors that influence stability.  The 

ultimate arbiter, however, is experimental evidence to test the veracity of these predictions. 

 Either approach relies on identifying the correct site distributions within the structure of 

half-Heusler compounds.  In first-principles calculations, this requires a search for the lowest 

energy candidate among models with different permutations of atoms within sites; in machine-

learning methods, this requires an evaluation of the entries in crystallographic databases.  

However, as indicated above, it is not clear how reliable these crystallographic data really are, 

given the challenges in the diffraction analysis, and it is not clear how well the electronegativity 

difference rule really works, if the reported structures have not been independently verified.  We 

set out several goals in the present study:  (1) to develop and evaluate a machine-learning model 

that accurately predicts which component occupies the 4c site in the structures of half-Heusler 
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compounds ABC, (2) to apply this model as a data-sanitizing tool so that potentially incorrect 

structures reported in databases can be flagged, and (3) to test predictions in ambiguous cases (in 

which the electronegativity difference rule is unhelpful) by experimental synthesis and 

characterization. 

 

2.2. Experimental Section 

2.2.1. Machine-Learning Model 

 The problem at hand is to predict site distributions in half-Heusler compounds.  In machine 

learning, this can be formulated as a classification problem, which we tackle by supervised 

learning using a training set of data.  Crystallographic data were extracted for all half-Heusler 

compounds (MgAgAs-type structure, space group F43̅m) reported in Pearson’s Crystal Data,13 

subject to the constraints that they do not contain hydrogen, noble gases, or elements with Z > 83, 

and that they exhibit fully ordered structures with no deviations from the ideal composition ABC.  

In total, there were 179 such compounds.  For each compound, three structural variants were 

generated in which the 4c site is occupied by A, B, or C.  The data set thus consists of 537 samples, 

categorized into “Class 1” containing 179 entries having the experimentally reported site 

distributions and “Class 2” containing 358 entries having alternative site distributions.  (We use 

the term “sample” to be synonymous with “entry,” “example,” or “data point” in a machine-

learning data set.) 

 Descriptors for the machine-learning model were derived from 43 properties of each 

element encompassing size, electronegativity, number of electrons, and others (Table S1 in 

Supporting Information).  Atoms that occupy the tetrahedral 4a and 4b sites are interchangeable, 

and we anticipate that the structural preferences will be influenced strongly by how these atoms 



 

31 
 

can be discriminated from the ones that occupy the cubic 4c site.  The elemental properties were 

thus combined through 6 arithmetic operations that express differences or ratios between values 

for the atoms occupying 4a/4b vs. 4c sites (Table S2 in Supporting Information), giving a total of 

258 features or variables to be potentially used in the machine-learning model. 

 A machine-learning pipeline was developed using the PLS_Toolbox software (version 

8.0.1),32 implemented through the MATLAB (2018a release) interface.33  The data were 

preprocessed by autoscaling (mean-centering and scaling to unit variance) and normalization to 

the sum of absolute values.  Two-thirds of the data were assigned to a training set, and one-third 

to a validation set.  A support vector machine (SVM) classifier algorithm was applied with a 

Gaussian radial basis function.  The SVM classification was carried out with a venetian-blind 

cross-validation with a 10-fold data split.  An important step in building the pipeline was to apply 

cluster-resolution feature selection (CR-FS), in which the choice of features is optimized through 

a systematic procedure involving backward elimination and forward selection.34,35  The features 

are ranked according to their Fisher ratios, which are the ratios of between-class and in-class 

variabilities, and thus measure their discriminating ability.  In backward elimination, a feature is 

successively removed starting from the lowest-ranked ones, and if the model improves, that feature 

is rejected.  Conversely, in forward selection, a feature is successively added starting from the 

highest-ranked ones, and if the model improves, that feature is retained.  Features were also 

scrubbed if values were missing or gave division-by-zero errors.  Ten different iterations with 100 

rounds of feature selection were performed and 1000 different models were generated.  In the end, 

the best performing model was generated by identifying 23 features which were the most common 

ones and had the highest survival rates among the 1000 models.  The survival rate was obtained 
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by noting which features survive after 100 rounds of feature selection; the 23 features survived 99 

out of 100 times and were present across all 10 iterations of the procedure. 

2.2.2. Synthesis of Half-Heusler Compounds 

 Two sets of compounds were synthesized anew, to test the predictions of the machine-

learning model.  In the first set, MnIrGa, MnPtSn, and MnPdSb were prepared to illustrate the 

importance of the CR-FS procedure in constructing a reliable machine-learning model.  In the 

second set, GdPtSb and HoPdBi were flagged as among the most likely candidates to have 

incorrect site distributions as reported in Pearson’s Crystal Data. 

 Starting materials were freshly filed Gd and Ho pieces (99.9%, Hefa), Mn powder (Alfa-

Aesar, 99.95%), Ir powder (Cerac, 99.9%), Pd powder (Alfa-Aesar, 99.95%), Pt sponge (99.9%), 

Sn drops (Anachemia, 99.9%), Sb powder (Cerac, 99.995%), and Bi powder (Aldrich, 99.99+%).  

The elements were combined in equimolar ratios with a total mass of 0.3 g and pressed into pellets.  

These pellets were arc-melted three times on a copper hearth under an argon atmosphere, with the 

ingots being flipped each time, in an Edmund Bühler MAM-1 arc melter.  The ingots were then 

placed in fused-silica tubes which were evacuated and sealed.  The ingots were annealed at 1273 

K for 7 d, and then quenched in cold water.  The products were finely ground and analyzed by 

powder XRD on an Inel diffractometer equipped with a curved position-sensitive detector (CPS 

120) and a Cu K1 radiation source operated at 40 kV and 20 mA.  If secondary phases were 

detected, the products were reground and pressed into pellets, and the arc-melting and annealing 

steps were repeated. 

 For all compounds synthesized, Rietveld refinements were performed on the powder XRD 

data using the TOPAS Academic software package.36  Additionally, for HoPdBi, single-crystals 

were available which were confirmed to have an equiatomic composition by energy-dispersive X-
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ray (EDX) analysis carried out on a JEOL JSM-6010LA InTouchScope scanning electron 

microscope.  Single-crystal XRD data for HoPdBi were acquired at room temperature on a Bruker 

PLATFORM diffractometer equipped with a SMART APEX II CCD detector and a graphite-

monochromated Mo K radiation source, using  scans at 6 different  angles with a frame width 

of 0.3º and an exposure time of 15 s per frame.  Face-indexed numerical absorption corrections 

were applied.  Structure solution and refinement were carried out with use of the SHELXTL 

(version 6.12) program package.37  The cubic space group F43̅m was chosen on the basis of Laue 

symmetry, intensity statistics, and systematic absences.  Structure refinement proceeded in a 

straightforward fashion and resulted in excellent agreement factors with no significant residual 

density observed. 

2.2.3. First-Principles Calculations 

 To determine the total energies of GdPtSb and HoPdBi adopting structures with different 

site distributions, electronic structure calculations were performed using the Vienna ab initio 

simulation (VASP) package, within the Perdew-Burke-Ernzerhof generalized gradient 

approximation and with projector-augmented wave potentials applied.38–40  A cut-off energy of 

500 eV for the pseudopotential basis set were used.  For the density of states (DOS) calculation, a 

-centred k-point mesh of 12  12  12 was used.  The criterion for energy convergence was set 

to 1  10–8 eV.  To visualize the valence electron and charge distributions, the electron localization 

function (ELF) was calculated and a Bader charge analysis was performed.41,42 

 Bonding characteristics were evaluated through an energy-resolved crystal orbital 

Hamilton populations (COHP), which were extracted from the electronic structures calculated 

from the tight-binding linear muffin-tin orbital program with the atomic spheres approximation 

(TB-LMTO-ASA, version 4.7).43,44  The basis sets included Ho 6s/(6p)/5d/4f, Gd 6s/(6p)/5d/4f, 
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Pd 5s/5p/4d/(4f), Pt 6s/6p/5d/(5f), Sb 5s/5p/(4d)/(4f), and Bi 6s/6p/(6d)/(5f) orbitals, with the 

orbitals shown in parentheses being downfolded.  Integrations in reciprocal space were carried out 

using a k-point mesh of 8  8  8 with an improved tetrahedron method. 

 

2.3. Results and Discussion 

2.3.1. Machine-Learning Predictions 

A machine-learning model to predict site distributions in half-Heusler compounds ABC has 

been built by means of an SVM algorithm.  The model was trained on crystallographic entries 

appearing in Pearson’s Crystal Data13 and using descriptors solely based on elemental properties.  

For each compound, three site distributions are possible, depending on which element (A, B, C) 

occupies the cubic 4c site.  The data consisted of 537 samples (179 compounds with 3 site 

distributions), labeled as Class 1 for those with the experimentally reported site distributions and 

Class 2 for those with alternative site distributions.  The results of the machine-learning model are 

summarized graphically as plots of predicted probability for the correctness of the site distribution 

vs. sample number (Figure 3).  The numerical values of these probabilities for individual samples 

are also listed (Table S3 in Supporting Information). 
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Figure 2-3.  Probability for correctness of site distributions (a) before and (b) after CR-FS 

procedure applied. 

 

Samples having probabilities close to 1 (as expected for Class 1 samples, showing agreement with 

the reported site distributions) are starkly delineated from those having probability close to 0 (as 

expected for Class 2 samples, with alternative site distributions).  Overall, the machine-learning 

model has excellent predictive ability, achieving an accuracy of 95%, which is a significant 

improvement over the best accuracy of 66% attained when the electronegativity difference rule is 

applied (using the Allred-Rochow scale).  Other statistical performance measures for the machine-

learning model are impressive (Table 2). 
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 A systematic procedure for feature selection called CR-FS has been applied, which aims 

to optimize the model with the best choice of descriptors.  Before CR-FS, there are a small number 

of misclassified samples that fall beyond the decision barrier (horizontal line at a probability of 

0.50 in Figure 3a).  Class 1 samples with low probabilities are potentially false negatives and the 

corresponding Class 2 samples with high probabilities are potentially false positives.  These 

situations may suggest that the machine-learning model requires further improvement, or that the 

site distributions as reported in the literature are incorrect and one of the other two alternative site 

distributions are likely to be the correct one instead.  We have demonstrated previously that other 

machine-learning classification models for predicting crystal structures benefit from this type of 

careful feature selection.45,46  The descriptors were combinations of various elemental properties 

of the components A, B, and C.  An estimate of their potential importance in the machine-learning 

model can be quantified by their Variable Importance in Projection (VIP) scores (Figure 4).47  

However, a high VIP score (blue bars in Figure 4) alone does not guarantee that a given descriptor 

will be retained, because it is a combination of many descriptors, not just individual ones, that 

matters in achieving the highest quality of a model.  Applying the CR-FS procedure, which aims 

to select the best set of descriptors in an unbiased manner, results in only 23 descriptors that were 

retained in the final model (orange bars in Figure 4).  Compared to the model without CR-FS 

applied (Figure 3a), where there is a smattering of misclassified samples, the probabilities of Class 

1 vs. Class 2 samples are much more cleanly separated after CR-FS (Figure 3b) and the 

performance of the model improves (Table 2). 
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Figure 2-4.  VIP scores for descriptors used in the machine-learning model before (blue bars) and 

after CR-FS (orange bars).  For each elemental property, six arithmetic operations were applied. 

 

 Of course, there is a possibility that the literature reports could have been incorrect.  To 

verify if the inconsistency originates from the model or from the experimental observations (or 
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both), we have identified three samples with low probabilities of being in Class 1 (before CR-FS) 

that merit further investigation:  MnIrGa with Ga in 4c (probability of 0.127), MnPtSn with Sn in 

4c (probability of 0.043), and MnPdSb with Sb in 4c (probability of 0.069) (Figure S1 in 

Supporting Information).  In nearly all previous reports of these compounds, the site occupations 

were not explicitly deduced but rather were assigned by assumption.  Therefore, we have 

resynthesized these compounds.  Rietveld refinements of their powder XRD patterns confirm the 

revised site occupancies as indicated (Figure 5). 

 

 

Figure 2-5.  Rietveld refinements for MnIrGa with Ga in 4c, MnPtSn with Sn in 4c, and MnPdSb 

and Sb in 4c.  Impurities were included in the peak profiles. 
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 After CR-FS, these compounds are now correctly classified and have high probabilities of 

being in Class 1:  MnIrGa with Ga in 4c (probability of 0.881), MnPtSn with Sn in 4c (probability 

of 0.881), MnPdSb with Sb in 4c (probability of 0.680) (Figure S1 in Supporting Information).  

Given that these site distributions agree with the electronegativity difference rule (here, the p-block 

component is the one of intermediate electronegativity while the precious metal component is the 

most electronegative), a skeptic may wonder if the machine-learning model offers any new 

insights. 

 To counter such a possible objection, we have examined the handful of misclassified 

samples remaining even after CR-FS (Figure S1 in Supporting Information).  For example, it can 

be proposed that GdPtSb with Sb in 4c and HoPdBi with Bi in 4c are quite reasonable site 

distributions, by analogy to the compounds just discussed above.  However, the machine-learning 

model suggests that these assignments are likely incorrect, and one of the alternative distributions 

in which the precious metal atoms enter the 4c site is a much more viable candidate (Figure 6). 



 

40 
 

 

Figure 2-6.  Probability of element occupying 4c site in GdPtSb and HoPdBi. 

 As before, we have resynthesized these compounds and carried out Rietveld refinements of their 

powder XRD patterns (Figure 7).  Single crystals of HoPdBi were also available to allow a full 

structure determination, giving unambiguous proof for Pd occupying the 4c site.  Crystal data for 

both the powder and single-crystal refinements are listed (Table 3).  The revised CIFs have been 

submitted to CCDC.  In general, inspection of the outliers indicates that pnictides and Li-

containing compounds tend to be misclassified. 
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Figure 2-7.  Rietveld refinements for (a) GdPtSb and (b) HoPdBi with different site distributions 

(the element highlighted in red in the formula is placed in the 4c site). 
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2.3.2. Factors Affecting Site Distributions in Half-Heusler Compounds 

 In traditional explanations for rationalizing the site distributions in half-Heusler 

compounds ABC, the electronegativity difference rule is sometimes augmented by guidelines 

invoking size differences or special cases of preferred occupation by certain elements.4  The 

drawbacks to this approach are that continuous refinement of these rules is needed to explain new 

cases and that it is not clear what electronegativity or size scales are to be used, among many 

possible.  In the machine-learning model, the most appropriate combination of these factors is 

chosen impartially.  It is informative to take a closer look at the descriptors that influence the site 

distributions (Figure 4).  Out of the 23 descriptors used in the final model, 15 are related to various 

radii and only 2 to electronegativity scales, but this does not imply that size factors are more 

important than electronegativity factors.  Recall that these descriptors were built through 6 types 

of arithmetic operations applied to elemental properties.  The greater number of size descriptors in 

the machine-learning model may simply reflect a more complicated mathematical dependence, but 

we offer another possible interpretation later.  No one radius scale predominates, but rather a 

combination of six scales (atomic, covalent, ionic, crystal, Miracle, and Zunger pseudopotential 

radii) is required.48  The inclusion of Miracle radii, which are derived from metallic glasses, is 

especially interesting because it reflects the metallic bonding character in half-Heusler compounds.  

Indeed, we propose that such radii should be used more frequently in relation to intermetallic 

compounds generally.  Most of the remaining features (metallic valence, numbers of electrons) 

useful for classification pertain to distinguishing between transition-metal and p-block metalloids. 

 It is reassuring that the machine-learning model captures electronegativity as an influential 

factor for classification.  In particular, the ratio of Pauling electronegativities and the difference in 

Allred-Rochow electronegativities between the atoms in the 4c vs. non-4c sites are highlighted, 
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essentially reproducing the electronegativity difference rule.  The combination of these two 

electronegativity scales is very helpful in cases where there are discrepancies in their values.  For 

example, in the cases of GdPtSb and HoPdBi mentioned above, these two scales actually give 

different predictions for the site occupancy of the 4c site.  In the Pauling scale, Pd (2.20) and Pt 

(2.28) are more electronegative than Sb (2.05) and Bi (2.02), but in the Allred-Rochow scale, Pd 

(1.35) and Pt (1.44) are less electronegative than Sb (1.82) and Bi (1.67)!15,49,50  The experimental 

confirmation that Pd and Pt are the ones that really occupy the 4c site, conforming to the Allred-

Rochow scale, vindicates the machine-learning approach which takes the best combination of 

features to account for the entire set of compounds.  We caution that the apparent dominance of 

size over electronegativity factors cannot be interpreted too literally.  Rather, what we can take 

away from this analysis is that size acts as an effective proxy for many other physical and quantum 

features, including electronegativity, for this classification problem.  For example, Allred-Rochow 

electronegativities are calculated based on effective nuclear charges (which can be related to 

pseudopotential radii) and covalent radii. 

 It is interesting to compare how well the machine-learning models perform if they are built 

on electronegativity descriptors alone, or radius descriptors alone (Table 2).  Keeping in mind that 

the number of descriptors is not the same, we note that both such models perform similarly, 

achieving an accuracy of 87–88% for the validation set, but this is still not as good as the full-

feature model (accuracy of 95%).  The improvement in accuracy is meaningful and can be traced 

to two major reasons.  First, unclear cases (in which the probability of a correct site distribution 

falls in an ambiguous region when only electronegativity or radius descriptors are considered in 

the model) now become more definitive (in which the probability approaches 0 or 1 in the full-

feature model).  Second, the electronegativity-only or radius-only model sometimes leads to 
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nonsensical predictions.  For example, all site distributions are predicted to be equally unlikely for 

MnPdSb (with low probabilities of 0.047, 0.019, and 0.007 for all possibilities) in the 

electronegativity-only model, and similarly for MnIrGa (with probabilities of 0.137, 0.369, and 

0.063) in the radius-only model.  The radius-only model also gives false negatives for 

experimentally validated cases of MnPtSn with Pt in 4c (probability of 0.182) and MnPdSn with 

Pd in 4c (probability of 0.039). 

2.3.3. Total Energy Calculation and Charge Density Analysis for GdPtSb and HoPdBi 

 As further support for the corrected structures as suggested for GdPtSb and HoPdBi 

through the machine-learning model, total energy calculations were performed on these 

compounds with different site distributions.  The site distributions with the highest probability 

(GdPtSb with Pt in 4c and HoPdBi with Pd in 4c) correspond to the lower total energy 

configurations, by 0.4–0.6 eV/atom, which is substantial. 

 Inspection of ELF plots and Bader charges (Figure 8), along with DOS and –COHP curves 

(Figure 9), shows significant differences in the electronic structures.  GdPtSb in the wrong 

structure (Sb in 4c) shows negative charge found on the most electropositive atom Gd and Pt–Sb 

interactions that are strongly antibonding, which are chemically unreasonable characteristics.  

GdPtSb in the correct structure (Pt in 4c) shows charge distributions closer in line with 

expectations, the Fermi level falling near a pseudogap, and bonding interactions close to being 

optimized.  HoPdBi in either structure appears to show reasonable charges for atoms, but the ELF 

plot for the wrong structure shows disturbingly high localization of electron density around the Bi 

atoms, which is not a realistic situation.  Finally, it is interesting to point out that the oft-cited 

picture of the half-Heusler structure as the merging of a more ionic NaCl-type substructure with a 

more covalent ZnS-type substructure does not bear out on inspection of the charges. 
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Figure 2-8.  Bader charge analysis for (a) GdPtSb and (b) HoPdBi in alternative site distributions, 

with total energies calculated from first principles and machine-learning probabilities indicated. 
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Figure 2-9.  DOS and –COHP curves for (a) GdPtSb and (b) HoPdBi in alternative site 

distributions, with machine-learning probabilities indicated. 

 

2.4. Conclusions 

 A machine-learning model has been developed to predict the correct site distribution in 

half-Heusler compounds based on features that depend on the composition alone.  The 95% 



 

47 
 

accuracy of this model is a marked improvement over simple heuristic guidelines based on 

electronegativity differences that have been historically used to rationalize site distributions in 

these compounds.  Because very few experimental structure determinations have actually been 

carried out on these compounds, it was not clear at the outset if the data used to build the machine-

learning model can be assumed to be completely reliable.  Accepting these data without thought 

risks compromising the quality of the model, but for a high-throughput machine-learning approach 

to work, it should not be necessary to inspect individual data points and painstakingly correct 

erroneous entries.  For this reason, data cleansing is an integral part of a machine-learning 

workflow, especially for materials informatics where data are much scarcer (at most 102–103 

entries) compared to other popular informatics applications where data are more abundant (>106 

entries).51  It is important to ensure that samples are not misclassified simply because the model 

has not yet been optimized.  The CR-FS procedure is a crucial step in ensuring that the best quality 

model has been obtained.  An interesting insight from implementing this procedure was the 

realization that size factors (including radii that pertain to metallic character), in addition to 

electronegativities, strongly influence the site distribution.  Then, remaining misclassified samples 

are prime suspects to be re-evaluated experimentally, as we have demonstrated with GdPtSb and 

HoPdBi which were characterized by powder and single-crystal X-ray diffraction methods.  

Although combining machine-learning with first-principles approaches can be very powerful, we 

emphasize, as have others, that the ultimate test of any predictive model for materials discovery 

should be experimental validation.  The model (available at https://github.com/Mar-group/Half-

Heusler-site-occupancy-prediction) could serve as a useful guide to predict site occupancies of 

heretofore unknown half-Heusler compounds. 
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Chapter 3 Predicting New Half-Heusler Compounds 

 

3.1. Introduction 

 The previous chapter discussed how machine learning can be used to predict the site 

distributions (“colouring problem”) in half-Heusler compounds.  This chapter focuses on a 

different question, namely, will a compound having composition ABC adopt the half-Heusler 

structure? 1 In the course of this investigation, it became important to consider the close 

relationship between the half-Heusler and full-Heusler structures. 

 The family of Heusler compounds spans at least four structure types termed full-Heusler 

(Cu2MnAl-type), half-Heusler (MgAgAs-type), inverse Heusler (CuHg2Ti-type), and quaternary 

Heusler (LiMgPdSn-type).  That is, they can be formed among both ternary and quaternary phases.  

The combination of elements is so vast (>130 000) that exploratory synthesis to discover new 

Heusler compounds is a difficult task.  To date, there have been 1371 Heusler compounds that 

have been reported, 46% of which (637 compounds) have been structurally characterized by X-

ray diffraction, and 5% of which (78 compounds) have had detailed atomic assignments.2  Most 

of the experimental characterization has tended to be performed by powder X-ray diffraction, 

which can be problematic because of ambiguities as discussed previously.3,4  For example, 

different structural models can lead to nearly identical intensities in the simulated powder XRD 

patterns.  In some cases, experimental observations disagree with structures proposed by 

computations (e.g., NiMnCuSb), inviting skepticism about inflated claims that high-throughput 

calculations can guide the search for new compounds.5-10  In fact, computational approaches have 

a long way to go to fulfill their promise to advance materials discovery, because they often neglect 
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real problems faced by experimentalists, such as the occurrence of competing phases, the 

numerous permutations possible for site occupation, and the possibility that crystal structures may 

be wrong or inconsistently reported.2,5,11 

 Various rules have been formulated previously that attempt to rationalize the formation of 

Heusler compounds and their site occupancies.12-14  On the basis of electronegativity differences, 

the structure is split up into two substructures.  Vacancies are introduced if applicable so that a 

precise valance electron count is attained, in accordance with the 8- or 18-electron rule.  Further 

constraints are placed on the position of the light atoms (such as Li), if they are present.  

Unfortunately, these rules are fallible, with frequent violations of the electron count and 

ambiguities in atom assignments arising from the use of different electronegativity scales.  As 

Legrain et al. showed, even first-principles studies that assess the stability of half-Heusler phases 

can give inconsistent results.15  When they compared results from first-principles and machine-

learning approaches, they found the best agreement among compounds that satisfy the 8- or 18-

electron rule, but suggested that additional factors (e.g., configurational entropies, quasiharmonic 

contributions) come into play to account for differences.  Experimental validation is needed to 

clarify the limitations of the machine-learning approach.  The challenge is that although a 

compound may be predicted to exist, there is no guidance on the conditions under which it forms; 

in fact, it might be metastable.  In particular, the structures of real compounds often exhibit site 

disorder. 

 Full-Heusler compounds comprise 63% (862 compounds) of the Heusler family.  They 

crystallize in the Cu2MnAl-type structure (space group Fm3̅m), which is a doubled superstructure 

of the CsCl-type structure (space group Pm3̅m) (Figure 1).  That is, on going from CsCl to 

Cu2MnAl, the symmetry is reduced by a factor of 2 (“a klassengleiche transformation of index 2”) 
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and the number of sites increases from two to three, at Wyckoff positions 8c (1/4, 1/4, 1/4), 4b 

(1/2, 1/2, 1/2), and 4a (0, 0, 0).  Half-Heusler compounds comprise 27% (365 compounds) of the 

Heusler family.  They crystallize in the MgAgAs-type structure (space group 𝐹4̅3m), which is 

derived from the Cu2MnAl-type structure by a further reduction in symmetry by a factor of 2 (“a 

translationengleiche transformation of index 2”) and the number of sites increases from three to 

four, at Wyckoff positions 4a (0, 0, 0), 4b (1/2, 1/2, 1/2), 4c (1/4, 1/4, 1/4), and 4d (3/4, 3/4, 3/4).  

The local symmetry of the 4a and 4b sites is reduced from m3̅m to 4̅3m.  The 8c site in Cu2MnAl-

type structure is split into the 4c and 4d sites in the MgAgAs-type structure, of which only one set 

is occupied while the other set is vacant.  The “half-occupancy” of the formerly 8c site thus gives 

rise to the name “half-Heusler.” 
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Figure 3-1. Relationships between CsCl, full-Heusler, and half-Heusler structures. 

 

 There exist 27 instances in which full-Heusler (AB2C) and half-Heusler compounds (ABC) 

are formed from the same set of elements A, B, and C (Figure 2).  This is an interesting 

phenomenon that suggests that intermediate structures may be possible, but the chemical space has 

not yet been extensively explored.  The 8- or 18-electron rule is violated for some of these half-

Heusler compounds, and more than half of the cases involve group-10 elements (Ni, Pd, Pt).  In 
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fact, roughly 40% of all half-Heusler compounds contain Ni (Figure 3).  The 18-electron rule can 

be satisfied by combining Ni (10 e–) with lanthanide elements (3 e–) and a group-15 element such 

as Sb (5 e–), which is the most frequently encountered element in half-Heusler compounds.  

Another common combination of elements is Ni (10 e–), group-4 elements (4 e–), and Sn (4 e–), 

which also satisfies the 18-electron rule. 

 

Figure 3-2. Compositional overlap between full- and half-Heusler compounds. 
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Figure 3-3. Occurrence of elements in half-Heusler structure type. 

 

 If compounds could be prepared having compositions that are intermediate between full- 

and half-Heusler compounds, it would be possible to correlate how structures and physical 

properties evolve with site occupation.  Introducing site deficiencies and doping would then be a 

powerful tool to tune materials properties in applications such as magnetic, magnetocaloric, and 

thermoelectric applications.  For example, varying the composition between full- and half-Heusler 

compounds has been shown to improve magnetocaloric response and increase saturation moments 

in MnNi1+xSb.16,17  Complex order-disorder transitions take place in this intermediate region.18,19  

Doping in TixNb1–xCoSn introduces transitions from a non-magnetic semiconductor to a 

ferromagnetic metal.20  Self-doping with Ni in ZrNiSn improves thermoelectric properties by 

reducing its thermal conductivity by over 60%.21 

 In the current study, the primary goal is to discover new compounds with the half-Heusler 

structure through predictions made from a machine-learning approach.  A secondary goal is to 
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identify half-Heusler compounds with compositions that have a full-Heusler counterpart, that is, 

the formation of a solid solution AB2–xC (x = 0–1). 

 

3.2. Experimental 

3.2.1. Machine-Learning Model 

 A machine-learning model was developed to discover new half-Heusler compounds ABC.  

The task was formulated as a classification problem.  Crystallographic data were extracted for all 

compounds ABC in Pearson’s Crystal Data, including those that deviated from the ideal 

composition by up to 20%, subject to the constraints that they do not contain hydrogen, noble 

gases, or elements with Z > 83, except that U- and Th-containing compounds were included.  In 

total, the data set contained 2818 such compounds, of which 180 adopt the MgAgAs-type 

structure.2  Descriptors were derived from 55 properties of each element; the elemental properties 

were then combined through 21 arithmetic operations that were weighted by composition, giving 

a total of 1155 descriptors at the outset.  A machine-learning pipeline was developed using the 

PLS Toolbox software (Version 8.0.1) implemented through MATLAB (2018a release).22,23  Two-

thirds of the data were assigned to a training set and one-third to a validation set.  The data were 

preprocessed by autoscaling and normalization.  The autoscaling procedure involved mean-

centering of the feature columns, followed by division by their standard deviation to obtain unit 

variance.  The normalization procedure involved division by the sum of the absolute values of each 

row. 

 The PLS Toolbox software contains three different machine-learning algorithms (KNN, 

SVM, and PLS-DA) which outputs prediction probability which where combined using soft-voting 

script written in MATLAB.  Feature selection was carried out in two ways to create more models 
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to consider (Figure 4).  Cluster-resolution feature selection (CR-FS) and genetic algorithms (GA) 

were applied to generate six models.24,25  Three iterations with 100 rounds of CR-FS were 

performed, giving 300 sets of features.  The best performing set contained 230 features which had 

the highest survival rate among the 300 models.  One iteration of the GA was ran using a 

population size of 256, which corresponds to the largest population setting to increase the number 

of possibilities to perform crossover and to improve accuracy.  The maximum number of 

generations was set to 200, sufficient for the algorithm to converge on a solution.  The mutation 

rate was set to 0.005 to address under- or overrepresentation of features in populations, with double 

crossover used as the breeding strategy.  Partial least squares was used as the regression method 

to evaluate chromosomes in the population, with 25 latent variables and 10-fold-split random cross 

validation being used.  The fittest model contained 225 features.  These two sets of features were 

then applied with three types of algorithms.  The training data set was augmented using the 

synthetic majority oversampling technique (SMOTE) (Figure 5).26 

 

 

Figure 3-4. Machine-learning workflow. 
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Figure 3-5. The process of SMOTE: (1) initial unbalanced dataset, (2) generation of synthetic 

samples using the minority class, and (3) evaluation of synthetic samples in the dataset using KNN. 

 

 The SMOTE algorithm is used to improve the individual performance of each model by 

increasing the number of samples in the minority class.  The k-nearest neighbours in the minority 

class (half-Heusler compounds) are first calculated, and then between each neighbour, a synthetic 

sample is placed which is intended to be as similar as possible to the minority samples.  The 

synthetic samples are added to the data set, and the KNN procedure is performed on the whole 

data set to find the nearest neighbours of the synthetic samples.  If 60% of the nearest neighbours 

of the synthetic samples belong to the minority class, then they are kept in the data set; otherwise, 

they are discarded.  For the training set, a total of 53 synthetic samples were generated for the 

model using GA, and 631 for the model using CR-FS.  The models were then combined to create 

an ensemble (Figure 6).  The votes were combined through soft voting, which is based on taking 
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the average of the prediction probabilities.  If the average probability is greater than 50%, then the 

compound is assigned a label of “half-Heusler.” 

 

 

Figure 3-6. Ensemble of models used for classification. 

 

3.3. Results and Discussion 

3.3.1. Machine learning 

 A machine-learning model has been built to predict new compounds with half-Heusler 

structures, by training on 2818 compounds whose compositions were within 20% of the idealized 

one ABC found in Pearson’s Crystal Data.2  The data set consists of two classes, consisting of 

compounds that have half-Heusler structures (180) and those that do not (2638).  The data were 

sorted in a similar way as described in the previous chapter for determining site occupancies in 

half-Heusler structures (e.g., CBA to ABC) to reflect the most probable site occupancies because 
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the way descriptors are defined is not order-invariant.27  Descriptors were generated based on 

elemental properties (Table 1) and arithmetic operations (Table 2), with the assumption that these 

will reproduce previously developed rules for half-Heusler structures. 

 

Table 3-1. Elemental properties used to generate features. 

1. atomic number 29. number of f valence electrons 

2. atomic weight 30. number of unfilled s orbitals 

3. period number 31. number of unfilled p orbitals 

4. group number 32. number of unfilled d orbitals 

5. family number 33. number of unfilled f orbitals 

6. metal / metalloid / nonmetal 34. number of outer-shell electrons 

7. Mendeleev number 35. first ionization energy 

8. quantum number l 36. polarizability 

9. atomic radius 37. melting point 

10. Miracle radius 38. boiling point 

11. covalent radius 39. density 

12. ionic radius 40. specific heat 

13. effective ionic radius 41. heat of fusion 

14. Zunger pseudopotential radii sum 42. heat of vaporization 

15. CSD covalent radius 43. thermal conductivity 

16. Slater radius 44. heat of atomization 

17. crystal radius 45. cohesive energy 

18. Pauling electronegativity 46. bulk modulus 

19. Martynov-Batsanov electronegativity 47. 1st Bohr radius 

20. Gordy electronegativity 48. Effective nuclear radii 

21. Mulliken electronegativity 49. electron affinity 

22. Allred-Rochow electronegativity 50. chemical hardness 

23. metallic valence 51. NIST total energy (LDA) 

24. number of valence electrons 52. NIST kinetic energy (LDA) 

25. Gilman number of valence electrons 53. NIST coulomb energy (LDA) 
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26. number of s valence electrons 54. NIST electron-nucleus energy(LDA) 

27. number of p valence electrons 55. NIST exchange energy (LDA) 

28. number of d valence electrons  
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Table 3-2. Arithmetic expression used to generate features. 

largest number – smallest number 

na*Xa  

nb*Xb 

nc*Xc 

2*( na*Xa+ nb*Xb) 

2*( na*Xa+ nc*Xc) 

2*( nc*Xc+ nb*Xb) 

2*( na*Xa)+ 2*( nb*Xb)+ 4*( nc*Xc) 

2*( nc*Xc)+ 2*( nb*Xb)+ 4*( na*Xa) 

2*( na*Xa)+ 2*( nc*Xc)+ 4*( nb*Xb) 

(( na*Xa)+ ( nc*Xc)+ ( nb*Xb))/3 

( (4*( nb*Xb)+4*( na*Xa))/sqrt(2))^3 

( (4*( nb*Xb)+4*( nc*Xc))/sqrt(2))^3 

( (4*( nc*Xc)+4*( na*Xa))/sqrt(2))^3 

(smallest number/largest number) – 0.225 

(smallest number/largest number) – 0.414 

(smallest number/largest number) – 0.732 

(smallest number/largest number) – 1 

(1-exp(-((( nb*Xb- nc*Xc)/2)^2)) 

(1-exp(-((( nb*Xb- na*Xa))/2)^2)) 

(1-exp(-((( na*Xa- nc*Xc))/2)^2)) 

 

 An ensemble approach was used to overcome the reliance on a single model and to cover 

chemical space more broadly.  The idea is to avoid misclassifications and to improve prediction 

probabilities, with the assumption that multiple models describe different areas of chemical space 

and the majority decision is better than an individual one.  For example, if a single model gives a 

prediction probability of 90% to a compound ABC having a half-Heusler structure, and two other 
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models give lower probabilities of 25%, the average probability would become 47%, thus changing 

the classification. 

 

Table 3-3. Comparison of model performance. 

Model Training set Validation set 

Before feature selection (ensemble)   

 sensitivity (Class 1 / Class 2) 0.858 / 0.976 0.733 / 0.971 

 specificity (Class 1 / Class 2) 0.976 / 0.858 0.971 / 0.733 

 accuracy 0.969 0.964 

After feature selection (ensemble)   

 sensitivity (Class 1 / Class 2) 0.900 / 0.989 0.867 / 0.983 

 specificity (Class 1 / Class 2) 0.989 / 0.900 0.983 / 0.867 

 accuracy 0.978 0.975 

After SMOTE (ensemble)   

 sensitivity (Class 1 / Class 2) 0.950 / 0.986 0.900 / 0.982 

 specificity (Class 1 / Class 2) 0.986 / 0.950 0.982 / 0.900 

 accuracy 0.981 0.977 

After SMOTE (best individual)   

 sensitivity (Class 1 / Class 2) 0.954 / 0.997 0.816 / 0.985 

 specificity (Class 1 / Class 2) 0.997 / 0.954 0.985 / 0.816 

 accuracy 0.993 0.974 

 

 The results indicate that the ensemble approach is more generalizable than with a single 

model (Table 3), with an improved performance in the validation set.   Specifically, the sensitivity 

(rate of true positives) is an important metric because we are interested in predicting new half-

Heusler compounds.  The ensemble method outperforms the single-model method by 9% in this 

regard.  The sensitivity and accuracy increase after feature selection (to avoid overfitting data) and 

SMOTE are applied (to give the model more class-1 samples from which to learn), demonstrating 
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that these methods were indeed helpful in improving the model.  There is a large discrepancy 

between the two classes, which decreases the sensitivity relative to class 1, but this discrepancy 

was softened by adding 54 (using GA) or 631 synthetic samples (using CR-FS) to the training sets.  

The huge difference in the number of synthetic samples for each feature set can be attributed to 

how well they cluster classes into homogeneous neighbourhoods.  It can be concluded the CR-FS 

was better, but the comparison should be tempered by the fact they contain different numbers of 

features.  It should be pointed out that the synthetic samples were only generated from the training 

set, to avoid bias in which samples generated from the validation set appear in the training set.  In 

a previous comparison of first-principles vs machine-learning methods to the discovery of half-

Heusler compounds, Legrain et al. developed an ensemble model using the random forest 

algorithm (with 1000 trees).  Legrain’s model had a precision of 0.90, a recall of 0.52, and a 

Matthew’s correlation coefficient of 0.68; in comparison, our model had a precision of 0.77, a 

recall of 0.90, and a Matthew’s correlation coefficient of 0.82.15  Our model performs better 

balanced (MCC) statistical measures and has a significantly lower amount of false negatives but a 

higher number of false positives. So, our model is a bit greedier in terms of our half Heusler 

predictions but overall exhibits better performance.  Our model also diverges a bit when it comes 

to the prediction for the formation of half-Heusler compounds.  We also focus in on the predictions 

for the existence of half-Heusler compounds that have counterparts among full-Heusler 

compounds (Table 4), in addition to identifying the most probable candidates to form half-Heusler 

structures (Table 5). 
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Table 3-4. Full-Heusler counterpart probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sample probability Sample probability 

MnRhPb 0.940318  LiMgTl 0.699684 

SbUPd 0.937233  LiPdSn 0.699185 

MnSnPd 0.923915  LiCdSn 0.69472 

MnRhSn 0.904742  MnSnCo 0.691028 

LiCdGe 0.886437  MnRuSn 0.683711 

MnPdIn 0.885059  LiPdGe 0.677328 

MnSnNi 0.883066  LiGeCo 0.671179 

MgSnNi 0.870451  LiGaRu 0.667919 

LiMgPb 0.860629  MnRhAl 0.650874 

MnSnCu 0.852327  TiPbLi 0.64874 

NbSnNi 0.850677  VSnCo 0.646496 

ZrSbNi 0.847263  LiMgIn 0.644947 

LiMgGe 0.83755  LiNiSn 0.643281 

VSnNi 0.816952  LiMgCd 0.641821 

LiZnGe 0.806029  MnPtAl 0.639986 

LiHgGe 0.801488  ScSnNi 0.635793 

PdPbLi 0.799741  VSnRh 0.634538 

TiSnPd 0.792943  MnRhGe 0.626066 

LiSbCo 0.771848  CrSnRu 0.621542 

LiMgGa 0.766507  LiPdGa 0.615888 

LiMgSn 0.765717  VSnRu 0.613479 

MgInPd 0.760959  MnPdGe 0.601354 

ZrSnCo 0.753862  VPbLi 0.58175 

LiMgSi 0.751294  LiNiSi 0.576855 

LiSbSn 0.748943  TiSnIr 0.57591 

TiSbCu 0.742239  SnIrLi 0.575458 

YBiPd 0.73048  LiGaRh 0.571219 

LiZnSn 0.730323  LiSnPt 0.568707 

TiBiLi 0.729338  MgPdGa 0.548588 

LiAlPd 0.717202  LiAlPt 0.544319 

MnRuSb 0.713088  ScPdPb 0.540573 

TiSnRu 0.712848  LiGeRh 0.536203 

MgInNi 0.712028  TiSnCu 0.534805 

SnHfCo 0.707933  LiPdIn 0.527771 

VSnFe 0.76901  CrGeRu 0.512912 

LiGeNi 0.700193  LiCuGe 0.508319 
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Table 3-5. Highest probability for half-Heusler structures. 

samples probabilities samples probabilities samples probabilities 

PdCdBi 0.9925665  NbBiPt 0.941015  MnSnPd 0.923915 

SbTaNi 0.9892582  ZrBiAu 0.940976  NbBiCo 0.923572 

BiLaNi 0.985461  MnRhPb 0.940318  CrSbHg 0.923149 

NiCdBi 0.9847144  AgHgBi 0.940167  TiBiAu 0.923033 

BiPrPt 0.9835108  MgSbPb 0.939578  MnRhIn 0.922864 

BiLaAu 0.9833609  SbTaPt 0.939273  MgSbIr 0.922363 

BiLaHg 0.982716  ZnRhPb 0.939022  MnSbHg 0.921615 

SbUPt 0.9821082  MnRhTl 0.938971  TiSbOs 0.92123 

BiLuHg 0.9798159  ZnPdSb 0.938014  BiTbHg 0.921187 

BiSmPt 0.9727946  CuZnBi 0.937885  LiMgI 0.920599 

HfBiAu 0.9722375  NbBiNi 0.937402  BiGdZn 0.920305 

BiLuAu 0.9719914  SbUPd 0.937233  NbSbNi 0.920065 

BiCeHg 0.9659705  MgSbCo 0.936808  NbBiAu 0.920052 

BiLaZn 0.9647496  BiTbZn 0.936188  ZnPdIn 0.91858 

BiDyPd 0.9619523  LiGaBi 0.935529  CrSbAu 0.918371 

PdCdPb 0.9609973  BiTmHg 0.935256  RhCdBi 0.91725 

BiGdHg 0.960758  MgBiSn 0.934833  TiBiRu 0.915882 

BiYbNi 0.9581364  MgSbAu 0.934196  TiBiRh 0.915459 

NbSbPt 0.957862  MgAgBi 0.933027  BiPrZn 0.915128 

MgBiPt 0.9488026  MgSbFe 0.932152  ZnPdTe 0.914501 

ZrBiPt 0.9479557  CrBiAu 0.931845  MgSbZn 0.914197 

ZnPdBi 0.9479335  BiUPt 0.930309  ZnRhTl 0.913619 

MnAuTl 0.9476165  MgSbRh 0.929953  BiTmPb 0.913425 

CuCdBi 0.9475496  CrCdBi 0.92977  CuCdSn 0.913366 

ZnAgBi 0.9475029  BiCeAu 0.929528  NbBiFe 0.911177 

MgBiCo 0.9471268  SbTaPd 0.929069  AsPtTh 0.911061 

ZnRhBi 0.9470903  MgSbOs 0.928982  ZnRhSb 0.911022 

TiBiPt 0.9463257  BiYbHg 0.928741  NbCdBi 0.910216 

MgBiFe 0.9455812  ZrBiRu 0.928405  MgPbCo 0.907448 

ZnPdPb 0.9454404  ZnPdTl 0.928359  BiDyZn 0.906976 

BiLaPb 0.9448877  MgSbIn 0.927812  BiGdAu 0.906375 

MgBiRh 0.9446175  LiAlBi 0.927354  MnSbTl 0.905418 

MgBiAu 0.9446037  MgSbSn 0.926572  MnRhSn 0.904742 

CdPtBi 0.9443456  MgBiCr 0.92642  BiLuZn 0.904638 

MgBiRu 0.9439655  MnAuBi 0.925895  MgBiNb 0.902902 

MgBiIr 0.9428587  BiLaTl 0.925168  NbBiRu 0.902436 

MgBiPd 0.9425756  ZnRhSn 0.924664  BiTmZn 0.90069 

CoCdBi 0.941657  MgPbNi 0.924595    
TiSbPt 0.941534  CuCdPb 0.924557    
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CdHgBi 0.9414863  MgBiMo 0.923983    
 

 Future experimental work includes the synthesis and characterization of a set of some of 

the predicted compounds.  Several candidates that follow the 18-electron rule (e.g., VSnCo, 

CrSnRu, and TiSnPd) would be a good starting point to determine if semiconducting compounds 

with a full-Heusler counterpart can be prepared.  CrSnRu is particularly interesting because there 

is only one other Cr-containing half-Heusler compound known to date.  Synthesis of the 

compounds with the top ten probabilities would help evaluate if the model is overoptimistic or not.  

An inspection of the other candidates suggests that Li- and Mg-containing candidates are 

worthwhile exploring. 

3.4. Conclusion 

A machine learning model was developed to predict new members of the half-Heusler family based 

on features that depend on composition alone.  The final model showed an improvement over 

previous work with a validation accuracy of 98%.  In developing the model, two machine-learning 

techniques not commonly used in the materials informatics were compared.  The first technique, 

minority oversampling, resulted in a marked improvement in the sensitivity of the model.  The 

second technique, an ensemble of several models whose outputs have been combined via a soft 

voting algorithm, resulted in a larger improvement in the sensitivity of model.  Combination of 

both techniques resulted in a model that performs just as well or better in the performance metrics 

reported in this work but also shows a smaller performance drop when comparing the training and 

validation performance metric.  This indicates that these techniques have made the model more 

reliable by combatting the phenomenon of overfitting.  Experimental work is underway to validate 

the model with a focus on half-Heusler compounds that have a full-Heusler counterpart and have 

the highest prediction probabilities.  
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Chapter 4 Conclusions 

4.1. Machine learning approach to data sanitization 

 A machine learning approach is a powerful recent addition to the chemists’ toolbox but has 

specific requirements in order for it to be useful.  Its effectiveness depends on data quality and 

representation of the samples.  Data quality relies on good science being done in a standardized 

way and the accuracy of the database.  It is testament to the high and rigorous standards of solid 

state chemists and crystallographers who have long had the tradition of storing useful 

crystallographic information in databases so that future generations can take advantage of it.  

Nevertheless, there are two problems that pertain and are particular to the half-Heusler compounds.  

The first problem is the ambiguity in site distributions, which are not typically analyzed because 

of a lack of incentive to do so when there are no refinable position parameters.  The second problem 

is inconsistency between what is reported in databases and what was actually written in the paper.  

In Chapter 2, we address this problem by applying machine learning to sanitize the site occupancy 

for half-Heusler compounds in a high-throughput manner.  This achieves several goals.  First, 

transcription errors can be identified in the database.  Second, only with correct site assignments 

can reliable chemical rules and accurate structure-property relationships be formulated.  Third, 

DFT calculations can be initiated properly by indicating the correct structures to input.  Fourth, 

clean data lead to more reliable representations to be used in building machine-learning models.  

For example, if a set of features is generated that is not invariant to the order in which elements 

are listed in a formula, several representations of the same compound are possible.  Elements are 

then sorted in columns, each representing the occupation of a crystallographic site.  If the site 

occupation is reported incorrectly, the structure of the compound is also represented incorrectly.  

Additionally, the machine-learning model was experimentally verified by synthesizing the flagged 
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compounds GdPtSb and HoPdBi, which adds to the credibility of using a machine learning 

approach.  The machine-learning model outperforms the traditional approach to assigning site 

occupancy with a validation accuracy of 0.929 vs 0.659 (Allred-Rochow). 

 

4.2. Machine learning approach to materials discovery 

 Chapter 3 builds upon the work of Chapter 2 by utilizing the corrected site occupancies to 

develop a machine-learning model for the high-throughput discovery of new Heusler compounds.  

In a traditional approach to synthesis of new compounds, obvious chemical substitutions of 

existing compounds lead researchers to investigate only a narrow portion of chemical space, 

introducing a distribution bias.  Applying rules based on this biased distribution only exacerbates 

this problem of tunnel vision.  Serendipitous discovery can add new members that extends the 

distribution in new directions, but this is not generally an efficient way to search the space.  

Utilizing a machine-learning approach, we can quickly search through chemical space and 

discover new compounds by learning from relations in higher dimensions.  We employed a novel 

machine-learning framework and sought to experimentally validate its output.  This serves two 

purposes: (1) to discover new members of an important family of compounds, and (2) to convince 

the scientific community of the validity of a machine-learning approach.  An ensemble method 

was used to combat overfitting and SMOTE was applied to tackle the class imbalance problem 

which is ever present in this field.  The performance of the model showed incremental 

improvement after application of the techniques (Table 4.1). 
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Table 4-1. Comparison of model performance 

Model Training set Validation set 

Before feature selection (ensemble)   

 (sensitivity  / specificity) 0.858 / 0.976 0.733 / 0.971 

 accuracy 0.969 0.964 

After feature selection (ensemble)   

 (sensitivity  / specificity) 0.900 / 0.989 0.867 / 0.983 

 accuracy 0.978 0.975 

After SMOTE (ensemble)   

 (sensitivity  / specificity) 0.950 / 0.986 0.900 / 0.982 

 accuracy 0.981 0.977 

After SMOTE (best individual)   

 (sensitivity  / specificity) 0.954 / 0.997 0.816 / 0.985 

 accuracy 0.993 0.974 

 

The ability to correctly identify half-Heusler compounds (sensitivity) is highest for the ensemble 

method combined with SMOTE.  The same model also has the highest validation accuracy and the 

lowest degree of overfitting.  Synthetic will be focused on predicted half-Heusler compounds that 

have a full Heusler counterpart.  This will narrow down synthetic efforts even further while 

simultaneously increasing the number of systems where the transition between the two can be 

studied. 
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4.3. Future work 

 In this work, machine learning has been applied to solve the coloring problem for half-

Heusler structures and to predicted new half-Heusler compounds.  Although a first draft of a 

manuscript has been written for Chapter 3, more experimental exploration can be done in this 

system.  The family of Heusler compounds is very large, spanning a wide range of compositions 

whose formation is still not completely understood.  For example, why are there are so few half-

Heusler counterparts to the other family members?  The transition from half-Heusler to full-

Heusler structures (solid solutions with composition ABC2–x) is of particular interest because of 

the structures transform from noncentrosymmetric to centrosymmetric.  Using machine learning 

to populate the families and help pick out erroneously characterized samples from the past can aid 

in understanding the fundamental chemistry of this important family of compounds.  While 

features were being developed for the machine-learning algorithms, it became apparent that there 

is no simple way to represent nonstoichiometric compounds, or structures exhibiting disorder.  

Although developing machine-learning representations of molecular organic and inorganic 

compounds is now a popular area of study, the same cannot be said of non-molecular inorganic 

solids.  A long term goal is to address the balance of machine representation and chemical 

interpretability.  It would be interesting to apply generative models instead of classification models 

to tackle materials prediction problems. 
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Appendix 1 Supplementary Data for Chapter 2 

Table S1. Elemental Properties 

 

1. atomic number 23. cohesive energy 

2. atomic mass 24. number of s valence electrons 

3. period number 25. number of p valence electrons 

4. group number 26. number of d valence electrons 

5. family number 27. number of f valence electrons 

6. metal / metalloid / nonmetal 28. number of unfilled s orbitals 

7. Mendeleev number 29. number of unfilled p orbitals 

8. quantum number l 30. number of unfilled d orbitals 

9. atomic radius 31. number of unfilled f orbitals 

10. Miracle radius 32. number of outer-shell electrons 

11. covalent radius 33. first ionization energy 

12. Zunger pseudopotential radii sum 34. polarizability 

13. ionic radius 35. melting point 

14. crystal radius 36. boiling point 

15. Pauling electronegativity 37. density 

16. Martynov-Batsanov electronegativity 38. specific heat 

17. Gordy electronegativity 39. heat of fusion 

18. Mulliken electronegativity 40. heat of vaporization 

19. Allred-Rochow electronegativity 41. thermal conductivity 

20. metallic valence 42. heat of atomization 

21. number of valence electrons 43. bulk modulus 

22. Gilman number of valence electrons  
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Table S2. Arithmetic Operations Applied to Elemental Properties 

operation description 

½(Xa + Xb) – Xc difference between (average of atoms in 4a and 4b) and atoms in 4c 

½(Xa + Xb) / Xc ratio of (average of atoms in 4a and 4b) and atoms in 4c 

min{Xa, Xb} – Xc difference between (minimum of atoms in 4a and 4b) and atoms in 4c 

max{Xa, Xb} – Xc difference between (maximum of atoms in 4a and 4b) and atoms in 4c 

min{Xa, Xb} / Xc ratio of (minimum of atoms in 4a and 4b) and atoms in 4c 

max{Xa, Xb} / Xc ratio of (maximum of atoms in 4a and 4b) and atoms in 4c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. Probabilities for Correctness of Site Distributions in Half-Heusler Compounds 

 Each sample ABC is labeled by specifying the occupation of the 4c site. For example, 

MgAgAs-Mg, MgAsAs-Ag, and MgAgAs-As refer to model structures in which Mg, Ag, 

and As atoms occupy the 4c site respectively. 
 The samples were split into a training set (2/3) and a validation set (1/3). 
 Class 1 refers to site distributions as experimentally reported in the literature; Class 2 

refers to alternative site distributions with the 4c site being occupied by other atoms. 
 Probabilities were evaluated on an SVM model after features were chosen through a CR-FS 

procedure. 
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Training Set, Class 1 

 

no. sample correctness probability 

1 ZnAgAs-As 0.881 

2 AgCdSb-Sb 0.881 

3 AlBeB-B 0.881 

4 CrAlCo-Co 0.881 

5 AlLiSi-Si 0.906 

6 CdLiAs-As 0.881 

7 MnLiAs-As 0.921 

8 ZnLiAs-As 0.881 

9 CaBiAu-Au 0.937 

10 BiYbAu-Au 0.924 

11 DyPbAu-Au 0.962 

12 ErPbAu-Au 0.939 

13 GdPbAu-Au 0.959 

14 HoPbAu-Au 0.960 

15 LiAuSb-Sb 0.881 

16 SnLuAu-Au 0.900 

17 AuMnSb-Sb 0.881 

18 SnMnAu-Au 0.638 

19 YPbAu-Au 0.955 

20 ScSnAu-Au 0.881 

21 CeBiPd-Pd 0.904 

22 BiCePt-Pt 0.881 

23 MgBiCu-Cu 0.881 

24 BiDyNi-Ni 0.922 

25 BiErNi-Ni 0.935 

26 BiErPd-Pd 0.938 

27 ZnFeBi-Bi 0.160 

28 BiGdNi-Ni 0.915 

29 BiGdPt-Pt 0.900 

30 BiHoNi-Ni 0.924 

31 BiHoPt-Pt 0.913 

32 BiLaPd-Pd 0.893 

33 MgLiBi-Bi 0.600 

34 BiVLi-Li 0.625 

35 BiLuPd-Pd 0.940 

 

no. sample correctness probability 

36 BiLuPt-Pt 0.928 

37 BiNdNi-Ni 0.874 

38 PtNdBi-Bi 0.226 

39 BiScNi-Ni 0.951 

40 BiSmNi-Ni 0.906 

41 BiTmNi-Ni 0.934 

42 BiYNi-Ni 0.918 

43 ZrBiNi-Ni 0.955 

44 BiPrPd-Pd 0.900 

45 BiSmPd-Pd 0.914 

46 BiTbPd-Pd 0.904 

47 BiYbPd-Pd 0.902 

48 BiTbPt-Pt 0.881 

49 BiYPt-Pt 0.905 

50 BiYbPt-Pt 0.882 

51 ZrBiRh-Rh 0.931 

52 CuCdSb-Sb 0.881 

53 HfSbCo-Co 0.888 

54 MnCoSb-Sb 0.373 

55 SnNbCo-Co 0.950 

56 TaSbCo-Co 0.900 

57 SbVCo-Co 0.881 

58 ZrSbCo-Co 0.881 

59 TiSnCo-Co 0.951 

60 MgPbCu-Cu 0.888 

61 CuMgSn-Sn 0.881 

62 SbMnCu-Cu 0.881 

63 SbDyPd-Pd 0.946 

64 SbDyPt-Pt 0.926 

65 SbErPd-Pd 0.949 

66 SbErPt-Pt 0.930 

67 TiSbFe-Fe 0.930 

68 VSbFe-Fe 0.881 

69 SnTiFe-Fe 0.976 

70 IrMnGa-Ga 0.881 
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no. sample correctness probability 

71 RuMnGa-Ga 0.881 

72 GaTiRh-Rh 0.881 

73 GdPtSb-Sb 0.081 

74 LiInGe-Ge 0.881 

75 HfSbNi-Ni 0.966 

76 HfSnNi-Ni 0.989 

77 SnHfPt-Pt 0.981 

78 HfSbRh-Rh 0.948 

79 HoSbNi-Ni 0.935 

80 SbHoPd-Pd 0.947 

81 LiInSn-Sn 0.881 

82 MgLiP-P 0.954 

83 LiZnN-N 0.968 

84 ZnLiP-P 0.881 

85 LuSbNi-Ni 0.937 

86 LuSbPd-Pd 0.946 

87 NiMgSb-Sb 0.140 

88 SbMgPd-Pd 0.900 

89 SbMnNi-Ni 0.881 

90 PdMnSb-Sb 0.680 

91 MnPtSb-Sb 0.663 

92 PtMnSn-Sn 0.881 

93 NbSbRh-Rh 0.881 

94 SnNbRh-Rh 0.881 

95 SbScNi-Ni 0.955 

96 TbSbNi-Ni 0.923 

97 TmSbNi-Ni 0.935 

98 VSbNi-Ni 0.971 

99 SbYbNi-Ni 0.900 

100 SbZnNi-Ni 0.637 

101 SnTiNi-Ni 0.979 

102 USnNi-Ni 0.986 

103 SbScPd-Pd 0.954 

104 SbTmPd-Pd 0.945 

105 YbSbPd-Pd 0.919 

106 SnZrPd-Pd 0.959 

107 SbSmPt-Pt 0.903 

108 SbTbPt-Pt 0.917 

109 SbYPt-Pt 0.916 

110 SbYbPt-Pt 0.897 

111 SnThPt-Pt 0.960 

112 SnTiPt-Pt 0.881 

 

 

no. sample correctness probability 

113 SnZrPt-Pt 0.971 

114 ThSbRh-Rh 0.894 

115 USbRh-Rh 0.881 

116 SbZrRh-Rh 0.913 

117 TaSbRu-Ru 0.926 

118 TiSbRu-Ru 0.881 

119 ZrSbRu-Ru 0.907 
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Training Set, Class 2 

 

 

no. sample correctness probability 

120 MgAgAs-Ag 0.022 

121 ZnAgAs-Ag 0.022 

122 ZnAgAs-Zn 0.006 

123 AgCdSb-Ag 0.036 

124 SbMgAg-Mg 0.030 

125 AlBeB-Be 0.077 

126 AlBeB-Al 0.021 

127 CrAlCo-Cr 0.051 

128 LiAlGe-Al 0.077 

129 AlLiSi-Li 0.012 

130 AlLiSi-Al 0.030 

131 CdLiAs-Cd 0.017 

132 MgLiAs-Li 0.029 

133 MnLiAs-Li 0.076 

134 MnLiAs-Mn 0.021 

135 ZnLiAs-Zn 0.038 

136 ZnNaAs-Na 0.032 

137 CaBiAu-Bi 0.057 

138 CaBiAu-Ca 0.067 

139 BiYbAu-Bi 0.077 

140 AuCdSb-Cd 0.007 

141 DyPbAu-Pb 0.077 

142 DyPbAu-Dy 0.022 

143 ErPbAu-Er 0.020 

144 SnErAu-Er 0.058 

145 GdPbAu-Pb 0.044 

146 GdPbAu-Gd 0.026 

147 HoPbAu-Ho 0.024 

148 SnHoAu-Ho 0.055 

149 LiAuSb-Au 0.486 

150 LiAuSb-Li 0.077 

151 SnLuAu-Sn 0.029 

152 SnMgAu-Mg 0.021 

153 AuMnSb-Mn 0.007 

154 AuMnSb-Au 0.183 

155 SnMnAu-Sn 0.077 

156 TbPbAu-Pb 0.033 

157 YPbAu-Pb 0.046 

158 YPbAu-Y 0.031 

159 ScSnAu-Sc 0.057 

160 SnTmAu-Tm 0.043 

 

no. sample correctness probability 

161 CeBiPd-Bi 0.045 

162 CeBiPd-Ce 0.038 

163 BiCePt-Bi 0.037 

164 ZrBiCo-Bi 0.022 

165 MgBiCu-Bi 0.107 

166 MgBiCu-Mg 0.072 

167 BiDyNi-Bi 0.021 

168 BiDyPt-Dy 0.041 

169 BiErNi-Er 0.046 

170 BiErNi-Bi 0.014 

171 BiErPd-Bi 0.020 

172 BiErPt-Er 0.048 

173 ZnFeBi-Fe 0.106 

174 ZnFeBi-Zn 0.077 

175 BiGdNi-Bi 0.015 

176 BiGdPd-Gd 0.043 

177 BiGdPt-Gd 0.041 

178 BiGdPt-Bi 0.027 

179 BiHoNi-Bi 0.018 

180 PdHoBi-Ho 0.050 

181 BiHoPt-Ho 0.047 

182 BiHoPt-Bi 0.026 

183 BiLaPd-Bi 0.072 

184 BiLaPt-La 0.034 

185 MgLiBi-Li 0.064 

186 MgLiBi-Mg 0.077 

187 BiVLi-Bi 0.057 

188 BiLuNi-Lu 0.051 

189 BiLuPd-Lu 0.052 

190 BiLuPd-Bi 0.025 

191 BiLuPt-Bi 0.023 

192 BiMgNi-Mg 0.077 

193 BiNdNi-Nd 0.027 

194 BiNdNi-Bi 0.077 

195 PtNdBi-Pt 0.852 

196 BiPrNi-Pr 0.034 

197 BiScNi-Sc 0.069 

198 BiScNi-Bi 0.012 

199 BiSmNi-Bi 0.026 

200 BiTbNi-Tb 0.040 

201 BiTmNi-Tm 0.041 
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no. sample correctness probability 

202 BiTmNi-Bi 0.024 

203 BiYNi-Bi 0.015 

204 BiZnNi-Zn 0.037 

205 ZrBiNi-Bi 0.012 

206 ZrBiNi-Zr 0.049 

207 BiPrPd-Bi 0.051 

208 BiScPd-Sc 0.077 

209 BiSmPd-Sm 0.039 

210 BiSmPd-Bi 0.035 

211 BiTbPd-Bi 0.025 

212 BiTmPd-Tm 0.046 

213 BiYbPd-Yb 0.054 

214 BiYbPd-Bi 0.017 

215 BiTbPt-Bi 0.023 

216 BiTmPt-Tm 0.044 

217 BiYPt-Y 0.047 

218 BiYPt-Bi 0.027 

219 BiYbPt-Bi 0.020 

220 TmBiRh-Bi 0.034 

221 ZrBiRh-Bi 0.006 

222 ZrBiRh-Zr 0.067 

223 CuCdSb-Cu 0.422 

224 LiCdP-Cd 0.045 

225 HfSbCo-Sb 0.030 

226 HfSbCo-Hf 0.048 

227 MnCoSb-Mn 0.004 

228 NbSbCo-Sb 0.026 

229 SnNbCo-Nb 0.043 

230 SnNbCo-Sn 0.023 

231 TaSbCo-Ta 0.050 

232 TiSbCo-Sb 0.077 

233 SbVCo-V 0.030 

234 SbVCo-Sb 0.051 

235 ZrSbCo-Zr 0.048 

236 TaSnCo-Sn 0.020 

237 TiSnCo-Sn 0.039 

238 TiSnCo-Ti 0.030 

239 MgPbCu-Mg 0.038 

240 SbMgCu-Mg 0.035 

241 CuMgSn-Mg 0.024 

242 CuMgSn-Cu 0.865 

243 SbMnCu-Sb 0.657 

 

no. sample correctness probability 

244 DySbNi-Sb 0.051 

245 SbDyPd-Dy 0.035 

246 SbDyPd-Sb 0.077 

247 SbDyPt-Sb 0.077 

248 ErSbNi-Sb 0.029 

249 SbErPd-Er 0.042 

250 SbErPd-Sb 0.044 

251 SbErPt-Sb 0.054 

252 NbSbFe-Sb 0.017 

253 TiSbFe-Sb 0.051 

254 TiSbFe-Ti 0.039 

255 VSbFe-V 0.019 

256 ZnFeSb-Fe 0.077 

257 SnTiFe-Ti 0.013 

258 SnTiFe-Sn 0.075 

259 IrMnGa-Ir 0.076 

260 PtMnGa-Mn 0.005 

261 RuMnGa-Mn 0.028 

262 RuMnGa-Ru 0.040 

263 GaTiRh-Ga 0.077 

264 GdSbNi-Sb 0.037 

265 GdPtSb-Pt 0.920 

266 GdPtSb-Gd 0.037 

267 LiInGe-Li 0.077 

268 TiGePt-Ge 0.304 

269 HfSbNi-Sb 0.013 

270 HfSbNi-Hf 0.043 

271 HfSnNi-Hf 0.036 

272 HfSnPd-Sn 0.077 

273 SnHfPt-Hf 0.028 

274 SnHfPt-Sn 0.006 

275 HfSbRh-Hf 0.061 

276 HfSbRu-Sb 0.008 

277 HoSbNi-Sb 0.042 

278 HoSbNi-Ho 0.037 

279 SbHoPd-Sb 0.059 

280 SbHoPt-Ho 0.039 

281 LiInSn-In 0.077 

282 LiInSn-Li 0.077 

283 MgLiP-Mg 0.070 

284 MgLiSb-Li 0.077 

285 LiZnN-Zn 0.027 
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no. sample correctness probability 

286 LiZnN-Li 0.030 

287 ZnLiP-Zn 0.077 

288 LiSbV-Sb 0.077 

289 LuSbNi-Sb 0.026 

290 LuSbNi-Lu 0.045 

291 LuSbPd-Lu 0.046 

292 LuSbPt-Sb 0.065 

293 NiMgSb-Mg 0.046 

294 NiMgSb-Ni 0.926 

295 SbMgPd-Sb 0.077 

296 SbMgPt-Mg 0.057 

297 SbMnNi-Mn 0.003 

298 SbMnNi-Sb 0.325 

299 PdMnSb-Pd 0.023 

300 TeMnPd-Mn 0.006 

301 MnPtSb-Pt 0.089 

302 MnPtSb-Mn 0.000 

303 PtMnSn-Pt 0.078 

304 MnRhSb-Rh 0.077 

305 NbSbRh-Sb 0.010 

306 NbSbRh-Nb 0.007 

307 SnNbRh-Sn 0.032 

308 NbSbRu-Sb 0.006 

309 SbScNi-Sc 0.060 

310 SbScNi-Sb 0.023 

311 TbSbNi-Tb 0.035 

312 TiSbNi-Sb 0.043 

313 TmSbNi-Sb 0.061 

314 TmSbNi-Tm 0.033 

315 VSbNi-V 0.004 

316 YSbNi-Sb 0.033 

317 SbYbNi-Yb 0.028 

318 SbYbNi-Sb 0.067 

319 SbZnNi-Sb 0.413 

320 ThSnNi-Sn 0.020 

321 SnTiNi-Ti 0.014 

322 SnTiNi-Sn 0.077 

323 USnNi-U 0.016 

324 ZrSnNi-Sn 0.023 

325 SbScPd-Sc 0.070 

326 SbScPd-Sb 0.026 

327 SbTmPd-Sb 0.072 

 

no. sample correctness probability 

328 SbYPd-Y 0.043 

329 YbSbPd-Sb 0.074 

330 YbSbPd-Yb 0.034 

331 SnZrPd-Sn 0.058 

332 SbScPt-Sc 0.066 

333 SbSmPt-Sm 0.028 

334 SbSmPt-Sb 0.077 

335 SbTbPt-Sb 0.077 

336 SbTmPt-Tm 0.035 

337 SbYPt-Y 0.042 

338 SbYPt-Sb 0.077 

339 SbYbPt-Sb 0.055 

340 SnScPt-Sc 0.053 

341 SnThPt-Th 0.028 

342 SnThPt-Sn 0.010 

343 SnTiPt-Sn 0.076 

344 SnUPt-U 0.013 

345 SnZrPt-Zr 0.030 

346 SnZrPt-Sn 0.005 

347 ThSbRh-Th 0.035 

348 SbTiRh-Ti 0.023 

349 USbRh-Sb 0.010 

350 USbRh-U 0.017 

351 SbZrRh-Sb 0.009 

352 SnTiRh-Ti 0.045 

353 TaSbRu-Sb 0.004 

354 TaSbRu-Ta 0.011 

355 TiSbRu-Ti 0.024 

356 VSbRu-Sb 0.023 

357 ZrSbRu-Sb 0.007 

358 ZrSbRu-Zr 0.052 
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Validation Set, Class 1 

 

Validation Set, Class 2 

no. sample correctness probability 

359 MgAgAs-As 0.899 

360 SbMgAg-Ag 0.106 

361 LiAlGe-Ge 0.884 

362 MgLiAs-As 0.950 

363 ZnNaAs-As 0.855 

364 AuCdSb-Sb 0.811 

365 SnErAu-Au 0.877 

366 SnHoAu-Au 0.944 

367 SnMgAu-Au 0.726 

368 TbPbAu-Au 0.964 

369 SnTmAu-Au 0.896 

370 ZrBiCo-Co 0.886 

371 BiDyPt-Pt 0.909 

372 BiErPt-Pt 0.926 

373 BiGdPd-Pd 0.920 

374 PdHoBi-Bi 0.026 

375 BiLaPt-Pt 0.866 

376 BiLuNi-Ni 0.937 

377 BiMgNi-Ni 0.914 

378 BiPrNi-Ni 0.886 

379 BiTbNi-Ni 0.898 

380 BiZnNi-Ni 0.550 

381 BiScPd-Pd 0.951 

382 BiTmPd-Pd 0.940 

383 BiTmPt-Pt 0.925 

384 TmBiRh-Rh 0.909 

385 LiCdP-P 0.890 

386 NbSbCo-Co 0.906 

387 TiSbCo-Co 0.899 

388 TaSnCo-Co 0.945 

 

no. sample correctness probability 

389 SbMgCu-Cu 0.778 

390 DySbNi-Ni 0.935 

391 ErSbNi-Ni 0.937 

392 NbSbFe-Fe 0.932 

393 ZnFeSb-Sb 0.505 

394 PtMnGa-Ga 0.684 

395 GdSbNi-Ni 0.930 

396 TiGePt-Pt 0.051 

397 HfSnPd-Pd 0.966 

398 HfSbRu-Ru 0.944 

399 SbHoPt-Pt 0.928 

400 MgLiSb-Sb 0.787 

401 LiSbV-V 0.530 

402 LuSbPt-Pt 0.928 

403 SbMgPt-Pt 0.906 

404 TeMnPd-Pd 0.061 

405 MnRhSb-Sb 0.717 

406 NbSbRu-Ru 0.893 

407 TiSbNi-Ni 0.974 

408 YSbNi-Ni 0.928 

409 ThSnNi-Ni 0.967 

410 ZrSnNi-Ni 0.987 

411 SbYPd-Pd 0.939 

412 SbScPt-Pt 0.942 

413 SbTmPt-Pt 0.927 

414 SnScPt-Pt 0.977 

415 SnUPt-Pt 0.960 

416 SbTiRh-Rh 0.912 

417 SnTiRh-Rh 0.924 

418 VSbRu-Ru 0.563 
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no. sample correctness probability 

419 MgAgAs-Mg 0.023 

420 AgCdSb-Cd 0.004 

421 SbMgAg-Sb 0.860 

422 CrAlCo-Al 0.430 

423 LiAlGe-Li 0.016 

424 CdLiAs-Li 0.096 

425 MgLiAs-Mg 0.032 

426 ZnLiAs-Li 0.073 

427 ZnNaAs-Zn 0.061 

428 BiYbAu-Yb 0.053 

429 AuCdSb-Au 0.411 

430 ErPbAu-Pb 0.040 

431 SnErAu-Sn 0.035 

432 HoPbAu-Pb 0.064 

433 SnHoAu-Sn 0.049 

434 SnLuAu-Lu 0.061 

435 SnMgAu-Sn 0.080 

436 SnMnAu-Mn 0.011 

437 TbPbAu-Tb 0.026 

438 ScSnAu-Sn 0.028 

439 SnTmAu-Sn 0.049 

440 BiCePt-Ce 0.036 

441 ZrBiCo-Zr 0.061 

442 BiDyNi-Dy 0.039 

443 BiDyPt-Bi 0.031 

444 BiErPd-Er 0.049 

445 BiErPt-Bi 0.023 

446 BiGdNi-Gd 0.041 

447 BiGdPd-Bi 0.031 

448 BiHoNi-Ho 0.044 

449 PdHoBi-Pd 0.931 

450 BiLaPd-La 0.034 

451 BiLaPt-Bi 0.061 

452 BiVLi-V 0.591 

453 BiLuNi-Bi 0.013 

454 BiLuPt-Lu 0.051 

455 BiMgNi-Bi 0.041 

456 PtNdBi-Nd 0.026 

457 BiPrNi-Bi 0.020 

458 BiSmNi-Sm 0.034 

459 BiTbNi-Bi 0.014 

 

no. sample correctness probability 

460 BiYNi-Y 0.047 

461 BiZnNi-Bi 0.114 

462 BiPrPd-Pr 0.035 

463 BiScPd-Bi 0.012 

464 BiTbPd-Tb 0.042 

465 BiTmPd-Bi 0.029 

466 BiTbPt-Tb 0.041 

467 BiTmPt-Bi 0.030 

468 BiYbPt-Yb 0.048 

469 TmBiRh-Tm 0.060 

470 CuCdSb-Cd 0.000 

471 LiCdP-Li 0.051 

472 MnCoSb-Co 0.745 

473 NbSbCo-Nb 0.029 

474 TaSbCo-Sb 0.016 

475 TiSbCo-Ti 0.044 

476 ZrSbCo-Sb 0.061 

477 TaSnCo-Ta 0.070 

478 MgPbCu-Pb 0.096 

479 SbMgCu-Sb 0.529 

480 SbMnCu-Mn 0.004 

481 DySbNi-Dy 0.033 

482 SbDyPt-Dy 0.034 

483 ErSbNi-Er 0.041 

484 SbErPt-Er 0.042 

485 NbSbFe-Nb 0.013 

486 VSbFe-Sb 0.041 

487 ZnFeSb-Zn 0.010 

488 IrMnGa-Mn 0.019 

489 PtMnGa-Pt 0.033 

490 GaTiRh-Ti 0.262 

491 GdSbNi-Gd 0.036 

492 LiInGe-In 0.012 

493 TiGePt-Ti 0.044 

494 HfSnNi-Sn 0.022 

495 HfSnPd-Hf 0.024 

496 HfSbRh-Sb 0.009 

497 HfSbRu-Hf 0.047 

498 SbHoPd-Ho 0.040 

499 SbHoPt-Sb 0.058 

500 MgLiP-Li 0.023 
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no. sample correctness probability 

501 MgLiSb-Mg 0.136 

502 ZnLiP-Li 0.045 

503 LiSbV-Li 0.173 

504 LuSbPd-Sb 0.057 

505 LuSbPt-Lu 0.046 

506 SbMgPd-Mg 0.049 

507 SbMgPt-Sb 0.119 

508 PdMnSb-Mn 0.000 

509 TeMnPd-Te 0.098 

510 PtMnSn-Mn 0.000 

511 MnRhSb-Mn 0.008 

512 SnNbRh-Nb 0.014 

513 NbSbRu-Nb 0.006 

514 TbSbNi-Sb 0.039 

515 TiSbNi-Ti 0.030 

516 VSbNi-Sb 0.043 

517 YSbNi-Y 0.041 

518 SbZnNi-Zn 0.006 

519 ThSnNi-Th 0.030 

 

no. sample correctness probability 

520 USnNi-Sn 0.023 

521 ZrSnNi-Zr 0.038 

522 SbTmPd-Tm 0.035 

523 SbYPd-Sb 0.071 

524 SnZrPd-Zr 0.025 

525 SbScPt-Sb 0.026 

526 SbTbPt-Tb 0.035 

527 SbTmPt-Sb 0.062 

528 SbYbPt-Yb 0.033 

529 SnScPt-Sn 0.052 

530 SnTiPt-Ti 0.007 

531 SnUPt-Sn 0.011 

532 ThSbRh-Sb 0.050 

533 SbTiRh-Sb 0.041 

534 SbZrRh-Zr 0.073 

535 SnTiRh-Sn 0.111 

536 TiSbRu-Sb 0.023 

537 VSbRu-V 0.016 
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Figure S1. Highlighted samples on prediction probability figure. 

 

 


