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I THAKA

When you set out for Ithaka
"pray that your road's a long one,
f 11 of adventure, full of dlscovery

you won' 't f'nd/things like that on your way
as long as your thoughts are exalted,
as long as a rare excitement
stirs your spirit and your body.
Lalstrlgonlans, Cyclops, wild Poseidon
you won't encounter them
unless you bring them along 1Q§1de you,
unless your soul raises them up. in front of you.

Pray that your road's a long one.

May there be many a summer morning when
full of gratitude, full of joy
youqcome into harbors seen for the first t1me'
may you stop at Phoenician trading centers’
and buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfumes of every Kind,
as many sensual perfumes as you can;
may you visit numerous Egyptian cities
~to fill yourself with learning from the wise.

i . Yoy . . ‘ ¥
Keep Ithaka ‘always in mind.
Arriving there is what you're destined for.
But don't hurry the journey at all.

' Better if~if goes on for years <
so you're old byj;iﬁ\gime you reach the island,
‘wealthy with all yod've gained on the way,
not expecting Ithaka to make you rich.
Ithaka gave you the marvelous journey.
Without her you wouldn't have set out.

She hasn't anythlng else to give.

And if you find her poor,. Ithaka won't have fooled _you.
Wlse as you'll have becomé," and so experienged,
you'll have understood by then what an Ithaka means.

Kostas Kavafys



ABSTRACT
The purpose of this study Qas to devélop techniqueﬁ for
analysis of the hammer thro&ing and to analyse the thrgw{ﬁg
technlque of Wﬁrld callber hammer throwers. The developmentv
of the techniques 1nc1uded testing of dlfferent versions of ,
the DLT 3-D c1nem§tograph1c method and the derivation of
fofmulas, based on rigid body dynamics, for analjsis of the
kinematic and kinetic parameters involved in‘fotafion of the
.human body.

The DLT was tested with and without mathematical models
for image refinement and with cal;brgtion trees of different
shape. A tree which was geometric in shape used with the
basic DLT equations and with model IV for image refinement
(Karara and Abdel Aziz, 1974) gave the best results of all
the tests. The RMS error of the measured versus the
simulated coordinates of the control point were. found to be
“0;24 cm., for the X-axis, 0.19 cm for the Y-axis and, 0.26 cm
for the Z-axis. The method was also tested for areas outside

|

the calibration tree. It was found that a well constructed
'A

tree with image refinement models can be used for

‘callbratlng areas ‘of iFEger volume than the one covered by

kS
£

the callbratlon tree. . e )

.

The hammer throwing data were collected during the 1982
European Championship, with the best throw of the three
" medalists being analysed. Lagragian interpolation formulas

i\
were used for the time-match of the coordihates derived from

:

the two films. The data were smoothed with digital filters.
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It was found that the maximum velocity of the hammer
occurred before the release pgint. None of the athletes
achieved an optimal angle of~release, while the closer to
the oprimal‘angle achieved by the winner tould give him the
gold medal with the same difference }n throwing distance.
The accelerat1on of the hammer was maximum in the last
double support phase of the‘throw. It wa;\rhe duration of
the acceie%atdon in this phase'fhat was critical for a
successful throw. Another parameter that characterised the
‘analyzed athletes was their ability to increase the )
aceeleration of the hammer ddring the single SUpport phase
of each turn or at least not to deé?ease ir a great deal.
This was accomplish by decreasing the moment of inertia ef
the pody about the vertical axis. All athletes achieved
faster single support phases than double support phases 19
all the turns. The latter was achieved by leaning backwards
during the first half of.the«double support phase and by
using the second half of this phase to initiate a&fast
rotation. The breaking of the horizontal movement in the
last turn was critical'for a successful throm. A relatively
low center of mass of the body seemed to be appropriate for
‘controlling the movement“in all the turns. A tall and/or
heavy athlete does not necessary have advantages against a

shorter and llghter athlete. The length of the hammer should

be shortened in order for athletes to perform mechanically

2

bétter throws. "
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1. INTRODUCTION

‘Biomechanics of sport is a discipline which studies the
mechanic¢s of human motion under the Special condition of
Sports. Its content can be grouped into four major areas.
j. Determination of the characteristics of an outstanding
performer.
2. Detection of differences between performers,
3. Investigation’of new techniques’ of performance.
4, Yalidation and‘supply of data for mathematical models of
performance. ; o
Biomechanists derive information about human motion
mainly by means of: (a) Direct force
measurements; (b) Electro£yogfaphy;-(c) Electrogoniometry;
and (4) Cinematégraphf. 5}rect attachments to the Subject
are requiredabith methods (a), (b) and (c), while in_(d) a
caﬁera can be placed a considerable distance from the
subject ensuring no physical interference. . -
Cinemagography has been a most useful tool for -
researchers in biomechanics:and a most acceptable tool for
subjects when data has to be collected in real life
situations.
Most of human hotiop occurs in three-dimensional space
rather than in a plane. However, film as a plane does not
prgvide the analyst with infbrmation.about the third

dimension., Investigators in biomeéhanifs have sought methods
s,

R
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of deriving three -dimensional coordinates of the body in
motlon by using films. In 1930, Bernstelnqlntroduced the use
of a mirror in order to obtain a second 1mage of the motion
bby using one camera. Since that time a wvariety of
three-dimensional methods have been introduced. Within the

T ‘ .
~last decade severaf investigators have drawn upon techn1ques

*
from other disciplines in their attempts to resolve the ‘
problem.
Photogrammetry is a diégipline‘in which the use of

hngly sophlst1cated meétric cameras enable measurements

based on the photogrammetric concept that the film, being a
A

i

perfect plane, is a central prOJectlon of the object space,
Assuming that the internal characterisgics of the cameras
are well known and by using a comparatér and observations '
from different goints, one can achieve spatial coordinates
of a point in the object space. This is a normal
photégrammetric procedure since the characteristics of the
metric cameras arq\well known. “

I'n 1971, the photogrammetrlsts Abdel-Aziz and Karara
presented a technique called "Direct Linear Transformation
(DLT)" with which one can achieve photogrammétric
measurements by using non-metric cameras. This is a two-pass
regression technique; a set of control points (calibration
tree) in the object space is used to calculate the external
and internal characteristics of the camerasi The calculated

coefficients are used together with digitized coordinates of

" the points of interest to achieve the spatial coordinates of



the points. \ \
" Shapiro (1978), Walton (1981) and Miller et al (1980)

tested the technique for biomechanical research and found

l r'

the resulting measurements{to be highly satisfactory. The ﬁﬁgﬁ
' 3

calibretion of the cameras in these studies yas.achieved by
using a three dimensional calibration tree. In 1980,
Woltring presented a technlque in which calibration could be
achieved by filming a plane grid with control p01nts The

" grid was rotated to dlfégrent positions and filmed. These

: different positions of the grid offered a 3-D calibration
tree. This method has the advantage of ease of constructipn,
but itvisﬁéifficult to have a large grid in rotation without
deformation.

The relationship between the volume of the calibration
tree and of the calibrateé afea has been of main concern
among the researchers involved with DLT. To resolve this

problem Dapena et al, (1981)'%resented a version of the DLT
with which one can use a contgol(pbjece of unknown shape to
calibrate large areas. Weak points of this technique
included complexity in the calibration process, ana failure
to account for reflnement of the image caused by lens
distortion and fllm deformations. It is generally accepted

that data collected with non-metric cameras encompasses

errors caused by these factors (Shapiro 1978, Walton 1981

and Karara and Abdel-Aziz 1974). In 1974, Kargra and
Abdel-Aziz presented six mathematical models fwhich when used
together with the basic DLT model account foy image

: |
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refinement. These models have not beeR~utilized in previous
>

biomechanics research.

Assuming that the b;d§ is a mechanical link system and
if the coordinatesﬁof poiﬁt§ of interest of the body can be
accurately,dgtermined in 3—ﬁ\space, one can use cléssical

¥ mechanics mef%ods to investigate human motion.

Hammer throwiné originally appeared as a hunting
method, later és means of waging war as a weapon and
finally, in £oday§ "civilized world", as an Olympit event.

Despite its change in purpose, the movement pattern has
remained basically the same. A heayy object mounted at the

end of a stick, or a belt, or a string, is released after a

&

" few rotations in order to kill g dinosaur, to wound a

Goliath, or to break the wordd record. According to Howard
Payﬂe,

"Hammer throwing aé we know it today, has had a
short history if we date it from 1887 when the
Americans drew up rules setting the circle
diameter at 7 feet., the hammer length at 4 ft.
and the weight of the ball, chain and handle of
the implement at 16 lb. However, if we include
‘sledge hammers, shafted implements and wheel

/ hubs, then we can go way back to trace the
origins -some historians think to 2000 B.C. when.
at the Tailteann Games in Ireland thea"Roth

Cleas" or "wheel feat" was contested, ...",
(Payne 1969:9)

The specificatidns of today's Olympic event[ according
to Rules and By-Laws of the Canadian Track and Field |
Association, are presented below. -

The hammer is composed of a sphere (ghe head)*"and a
grip connectea by a steel wire, as in Figure 1. The minimum

weight of the hammer is 7.257 kg. and the complete iength

¥

A
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must be between 117.5 and 121,5.cm. ,A glove can be worn by

the athlete to protect his fingers while throwing.

The Head, mus? be spheriéal with a diameter between ' .
102mm. and 130mm. It ghould be made from solid iron, or
brass, or any metal not softer than brass, or a shell of
such metal fi*léd with lead or other solid materials. If a
fi;ling is u£§§Q$¢ must be inéerted in such a manner that it Qﬁ% '

is immovable and the distance of the centre of gravity from
the centre of the éphere is less than 6mm.” .

The Grip must be triangular and may bejeither of single
or double loop construction, but must be rigid and without
hinging of any kind and so made that it cannot stretgh

appreciably while being thrown.

)
E
,};‘°‘
grip : \ =l
cable
D head
‘ 1.195 o
% +,02m "

Figure 1: Dimensions of the Hammer

The Connection Wire must be a single unbroken and

straight length of spring steel wire with a diameter no less .
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, - / ~ - .
than 3mm. It may be looped at one or both ends as a means of

attachment. The connections of the wire with the grip and
the head shall be such that they do not increase thg length
of the hammer while it is being thrown. |

The throwing circle must be made from concrete and have

a slightly rough surface. The diameter of the circle must be

2.134 meters, and the throwing arc 40°, For protection <
, #

purposes, a cage with certain specifications is required.
Figure 2 is a schematic representation of the throwing
circle and the ‘protection cage..

The following is.a description of a right-handed
thqéwing techniqﬁe. The athlete stands at the back of the
circle‘with his feet almost parallel and facing the opposite
direction of the throw. The gloved left hand is placed in
the handle so that the grip rests along the middle phalanges
of the fingers. The right hand is placed under the left. The
athlete swings the hamme;Aa few times éround his head while
his feet remain almost stétionary.vAt the end of the last |
swing the thrower initiates a whole body turning action with
his feet, rotating with Q}s weight over his left foot. The
gradually accelerated rotation carries him to the front of
the circle after three or four turﬁé and he uses the last
turn to give the hammer a final large releage velocity. The
plane of .the orbit of tﬁe“hgmmér th%oughout is:inclined at
.an angle so that an dptimal angle of release can be

achieved.
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~equation. , ~

The hammer is a projectile and assuming negligible
aerodynamic factors or Coriolis forces during flight, the

final distance of a throw is given by the following

&
&l

U?sin26 + 2Ucosf(U?sin?6 + 2ghy¢ij

29

Horlzontal distance of the throw

where: L =
.U = Velocity of release.
6 = Angle of release,
h = Height of release.
g = Acceleration due to gravity.

Also, by differentiating (1) with respect to §, with
constant velocity and height of release the distance L will
. N : . . - o ; . . .
be maximum ifs. -

o N |
~sin?f = : - ' (2)
o 2(u+gh), -

)

i

Thus, assuming an optimal angle of release-lt is reasonable
to consider the veloc1ty of release as the most 1mportant
factor af%sctlng'the final d;stance of a throw.

The world record for hammer throwing has shownvgreaterv-

'“1mprovement than the records for any other{fleld event This

v

is malnly a result of contlnued 1mprovement in technlque.
The world records in thlS event and. in the ‘discus throw1ng

event for the last four decades -are shown in Table 1.



TABLE 1

WORLD RECORD OF HAMMER AND DISCUS THROWING _
-FOR 1850. TO 1980 . =

-
0 . T

1950 59.80m.  57.93m.
1960. 70.33m;'  60.46m,
1870~ 95.84m. .  68.40m.
1980 © sisom.  71.12m

oY

Although the technidue'has been.contlnuously evolVing,
there ls‘limited literature available concerning the;eveht.r_
Publications which arelavailable arefalmost entlrely_ |
qualitativeﬁig natureFFThé lack’of qhantitatlve'analysiskmay”7
be a result or‘one‘or both of the'following. V |
1. The lack ot interest in the event,by hon?ﬁnropeahs. lni

the'lastvtwo decadés, the évent has been'dOminated hY‘
'athletes from the U.S.S.R. The three medals in this event
\1n the last three- Olymp1c Games have been collected by
' athletes of that country ‘
12..Hammercthrow1ngh a complex event,‘is.basicallv a.
| rotational movement therefore, the value‘of a “
itwo dimensional f1lm analys1s is quest1onable. The
‘,phys1cal space requ1red'for thlS event increases 1ts
complexlty. It is obvious that a controlled 1aboratory
environment 1s not the best place for throw1ng the
hammer. |
The underlylng respons1b111ty of the’ sports

\

blomechanlst is. to prov1de the coach and the athlete w1thv

¥
A
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useful - information about kinematic and kinetic parameters of

the skill. The lack.of such information about hammer

throwing performance inspired this study.

A. Purpose of the study

The purpose of this study was to develop a method for
analysis of hammer throwing and to analyze the tgchn}qﬁe of
world caliber hammer throwers as it is performéd in a
competition. In order to develop the method for analysis,
different versions of the DLT 3-D cinematographic method
were tested. These tests included the basic DLT method with
different mathematicalrmodels for image refinement, as well
as different calibration trees for the derivation of the
calibration coefficients. Rigid body dynamics were used for
the dérivation of the formulas to investigate the parameters
for analysis. Temporal, kinematic, and kinetic parameters of

“(a) the hammer, (b) the athlete, and (c) the system, athlete

plus hammer, were analysed.

A comparison between between the different subjects was

made based on the analysed parameters.L

" B. Limitations
The conduct of the study was limited by the ability of
the researcher to determine the location of selected body

and object points, and also by the number of subjects.
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C..Delimitations

The study was delimited to the three medalists‘of the
1982 European Championship, to a filﬁing‘frame'rate‘of 100
frames per second, to the motion of the hammer and the

system after the preliminary swings.
D. Definition of terms

Cal ibration of an image is the process of determining a.
number of unigue coefficients which when substituted
into an equation or a set of eguations define the
object to image transformation.

Cal ibration coefficients are the unique numbers which when
substituted into equations define the object to image
transformat1on

Calibration tree is a structure which provides a set of
points (control points) with well known spatial
coordinates and they are used for the calculation of
the calibration coefficients.

Central pPOJectlon is a mapping of points in which each
point, its projection and the projection center are

collinear.

Comparator is a precise optical instrument with viewing
optics for obtaining coordinate pairs from a
secondary 1image.

Digital filter is a set of algorithms which form an
analytical tool for removing or isolating certain
frequency components from a digital signal.

Digitizer coordinates are a pair of coordinates which
' describe the location of a point with respect to
digitizer reference frame.

Digitizing board is a precise instrument which is used to
obtain coordinate pairs of points from a film.,

Direction cosines are a set of numbers which define the
orientation of a vector in an orthogonal system of
axes.,

Direct Linear Transformation (DLT) is a two-pass linear
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regression technique with which three dimensional

coordinates of a point in space can be achieved by
using films from different observations.

Double support is the phase of the throw when the athlete
-~ has both feet on ground

Film deformation is the image deformation caused by changes
in the geometry of the film. For example the lack of
a perfect plane when the film is in the camera or
projector.

Focal center is the point of the lens through which all the
optical rays appear to pass. :

Instantaneous Center of curvature is the center of the
instantaneous circle described by the arbit of a
point which traces a rotational motion,

Interpolation is a numerical method in which a function is
evaluated at some point within a specified interval
of the independent variable based on neighboring
values of the dependent variable.

Least square technique is a numerical method in which the
parameters of a mathematical model are determined by
minimizing the sum of the square differences between
the observed and modeled values of the dependent
variable.

Lens distortion is the geometric distortion of an 1image
caused by the imperfection of the lens.

Metric camera is a precision camera for recording
photographic images in photogrammetry. Some of the
characteristics of this camera are: A fixed focus;
Symmetric lens with minimal optical distortion; The
ability to hold the film flat; A diaphragm shutter
located within the lens; A precisely calibrated inner

chamber for which the parameters of interior
orientation are known. -

Newton’s iterative method is a numerical analysis method to
- find the roots of an overdetermined system of
non- llnear equations.

\
Newton’s method is a numerical analysis method for
determining the roots of an egquation.

Non-metric camera is a camera which does not meet the
requ1rements of a metric camera.(see metric camera).

Overdetermined system of equations is a system of equations
in which the number of equations exceeds the number
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of unknowns,.

Photogrammetry is science of obtaining measurements from
films. -

Precessional motion is the motion of a spinning top where,
as the top rotates about its axis of rotation, the
axis of rotation rotates about another axis
(vertical). Nutation is the special case of
precession when the angle of precession does not
remain constant. T

Radii of curvature is the distance from the point which
traces a rotational motion to the instantaneous
center of curvature.

Random error is an error which is created by the
inconsistencies of the measurement process.

Single support is the phase of the turn in which the athlete
has only one foot on the ground.

Spatial coordinates are a pair or triplet of numbers which
define the location of a point with respect to a
reference frame. '

Systemat ic error is an error which is consistent in the data
and caused from the malfunction of an instrument or a -
mathematical model. .



I1. REVIEW OF RELATED LITERATURE.

The review of literature related to this work is presented
in the following seqQuence:
2.1 Three-dimensional cinematographic techniques.
2.2 émoothing techniqﬁes.

2.3 Hammer throwing.

A. Three-Dimensional Cinematographic Techniques.
The techniques found in tﬁgiliterature can be divided
into four basic groups:' | |
1. Single cameré technique.
"2, Mirror fechniqué.
3. Stereometric technique.
4, Multi-camera techniques.
Single Camera Techﬁgqué.

Piagenhoef (1968) presented a method that utilized the
real length of body-segments, the camera-to-plane of motion
distance ana thé length of the segments as they appeared in
the film in order to calculate the spatial coordinates of
points by using trigoqometric}functions. The same téchnique
has been used by Riley et al (1978). In their study, a
simulated computer graphics method was used to determine the
third coordinate. The techniques described above give a

rough estimation of the third coordinate..In analysis of

14
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single segment movements, the results can be reasonable, but
the lack of accuracy is obvious in more complicated

analyses.

Mirror Téchnique.

This sophisticated'techniqde was introduced by the.
Russian physiologist Bernstein (1930). A plane mirror is
placed in such a way that the objecf space plus its imége in
the mirror are recorded on the film. With this techniqhe, a
researcher can obtain two images from different points of
view by using only one camera. Although the technique Hasv
the advantage of absolute synchronization of the two -
'5camerasﬁ, it suffers from the disadvantages of: (a) small
image, (b) mirror surface distortion and (c) it can be used

only in a laboratory environment.

Stereometric Tecﬁnique.

This technique is based on thévsame principles as those
of binocular vision. The eyes, being approximatively 7 cm'~
apart record an object from different angles. The two
different images ére reconstfucted in the brain giving the
impression éf the space more than of ‘a plane. In practice,
two photogrammetric cameras are placed side by side with
their optical axes parallel to one another. For the
calculation of the X,Y,Z coordinates, standard eqﬁatibns
have been derived. Ayoud et al (1970) were the first to

suggest the application of this technique for obtaining
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three dimensional spatial coordinates of human motion.

This téchnique réquires photogrammetric cameras with
well known internal characteristics. Such cameras are very
expensive, and consequently the technique appears to be
unrealigtic for the standards'ofva biomechanics laboratory.
Moreover, the fact that they are still cameras and that an
external-device is necessary-in order to obtain a multiple
image.(e.gi stroboscope) limits the technique to laboratory
environments,

Multiple Cameras Technique.

This techniq’é employs more than one camera to record
the motion, and ddfferent algorithms can be_found in the
literature to reconstruct the three dimensional coordinates e
of the body ip motion.

Noble and Kelléy (1969) used three cameras to determine
the three dimensional coordinates of a moving ball
describing the path of -a right circular helix. Two cameras
were placed in the horizontal plane, 90° out of phase with
one another. The third camera was positioned directly above
the apparatus. The timing of the films was synchronized by
firing a flash bulb at the beginning of the filming. Each
film gave two coordinates and by using different scale
factors, the X,Y,Z coordinates were reconstructed. However,
the errors presented by the authors (35% of the criterion = ——
value in acceleration) deem the appropriateness of this

technigque within biomechanical research questionable.
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Anderson (1970) presented a method whioh utilized three
cameras, one sightéd along each of the thre:>orthogonal axés
X,Y,2. The two cameras in the horizontal plane were used.to
calculate the X,Y,Z'coordinates while the camera iqgthe
vertical axis was used to provide correétion factors for
perspective errors. This méthod necessitates the recording
of each point by all)th;ee cameras. | }

Miller (1971) presented another éechniQUe which also
utilized three cameras. The cameras were not placed on the
three ofthogonal axes, but instead,.in a horizontal plgne-
.and 120° out of phase with each other. The intersection of
the optical'aXes of the three cameras was used as the
origin. Three targets were carefully positioned beyond the
origin and aligned with the optical axis of each éamera,
providing reference coordinates of the origin. The space
coordinates of the cameras and the distance between the lens
nodal plane and the film plane inside the camera are
required to use the algorithm for the reconstruction of the
X,Y,2Z coordinates of the filmed ébject. This technique has a
general applicability and prbvides an exact analytical
solution to the perspecfive problem. However, because it
requires a specific placement of the cameras and of the
targets, it is difficult to use in real life events and
especially in a competition situation.

Bergemann-(1974) emphasized th¢ importaﬁce of camera
placement to the pfoduction of accurate spatial coordinates.

The two cameras were placed in the horizontal plane with
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their optical axes intersecting at a common origin. For the
placement of the caméras, standard surveyiag ‘equipment was
used. Equations were derived to calculate the position of
several arbitrary points on a‘foordinate grid. A similar
method was presented by‘Van'Ghelﬁwe (1974). Pensore et al 
(1976) have shown that it is no longer necessary for the
optical axes to intersect, although a theodolite 1s réquired
td obtain precise spatial information for the cameras aﬁd
the reference points, -

Van Gheluwe (1978) reported a techq@que involving
camera placement in any position relative to the subject
being filmed. The bésic principle of the technigue relies
upon the explicit mathematical reconstructioﬁ of the
position of the cameras in the space using the known
life-sized coordinates and the image—coo}dinates of certain
reference points. A steel tri-axial reference frame was
placed in the filmed space to provide appropriaté
information for. the calculation of the position and for
orientation Jf the cameras. The accuracy of thé presented
results were within the acceptable limits. However, it 1is
-not known whether'the points chosen for the reliability test
were other than control points. Morever the method does not
account for image refinement from lens distortion or film
deformation errors.

In 1971, Abdel-Aziz and Karara presented a meéhod that
allowed the use of non-metric cameras (cameras with unknown

internal characteristics) in stereo-photogrammetry. This
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method isAthe,"Direct Linear Transformation™ (DLT) method.
The positioh and orientation of the cameras were derived
through the use of control points in the space instead of a
comparator. A minimum of six non-coplanar control points was
required for the solution. Six mathematical models were.
presented by the same investigators (Karéra et al, 1974) to
refine the image from lens distortion and film deformation
in non-metric photographs.

Shapiro.(1978) tested the DLT method with high-speed
cinematography. A "tree" with 48 control points was used to
calibrate the cameras. it was found that the unknown spatial
coordinates of a point can be located with an average error
of +0.4cm for the X-axis, *0.5cm for the Y-axi§ and #0.5cm
for the Z-axis. In a dynamic test the acceleration of a ball
in free fall was found to yield between -9.5 to -19 m/s?.

7’

In an éxtended investigation of the three dimensional y
e

"probiem, Walton (1981) arrived at the conclusion that the //7
precision with which the object points were located wit% the
DLT method, was adequate for most analyses of human motion.
He suggested that accuracy of the ﬁeésuréments can be
.increased by using a redundant number dfkcontrol points and,
if possible, more than two cameras.

Miller et al (1980) presented the use of_fhe DLT method
together with a mélhod for obtaining spatial kinematic
parameters of segments of biomechanical systems.

‘The problem of producing accurate three dimensional

coordinates ha® been of continuing interest. Virtually all
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of the above studies validated their procedures by filming
an artificial frame. Walton (1981), in one of his validation
procedures, uséd the'body landmarks of a trampolinist to
calculate the accelération.of the C of M of the athlete due
to gravity. He found thatAthe largest error in any of the
computed values for "g" was 1.58 m/sf. He also foufd that

the mathematical model of the DLT solution with tﬁe image
refinement model increased the accuracy of the meaéuremenﬁs.
He suggested that the data obtained through cinematography
should be filtered to reduce inherent errors associated with
film analysis.

. “Woltring (1980) tested the same techhique. For a
calibration tree, he used a 2-D plane'withAéontrol points.

" The plane was rotated about an axis and waS'fiimed in some
specific angular positions. This technigue can be Very
useful in a laboratory enviroment or for calibratiﬁg small
areas, but it is difficult to find construction materiél |
which will not undergo deformatibn when the plane is of a
large size and must be rotated.

A alteration of the .DLT method was presented by Dapena
et al (1981). With this method the use of a calibration tree
is no longer necessary and theqcalib;ation of thelcaméras is
achieved by the use of two calibration Crossés‘aﬁd a set of
vertical'poles,which are placed in-the filmihg area. The
authors validated this métho@ by using a 24-poih£ grid. The
éverage Root Mean Square error of the-meaéured versus the

{

‘ . .
simulated coordinates of 15 points of the grid was 1.50cm
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for the X-axis, 1.30cm for the Y-aﬁis and 0.60cm for the
Z-axis. This model did not.account\for the image refinemept
components and in a large filmed area the image déformations
from the lens or.the film itself would be expected to be
large. Further, tﬁese investigators did not justify the
deletion of 9 points of the tested grid (15 points of the

grid out of 24 were used for the validation).

B. Smoothing Techniques.

Since there is always .a certain amount of error

associated with film analysis, it is necessary to use

nume-ical methods which reduce thlS kind of error: There are

A( *’
- fferent methods of data smoothing utlllzed 1n

leS research, Eagly researchers used\manual

;sg methods to draw sméoth curves through successive
bgéints (Miller ané Nelson, 1973). Finite differences
hay ;been used to calculate fifst and second time | \
degf;atives of displacement data (Miller and Nelson, 1973)..
Pliienhoef (1973) used a pqunomial approximation method to.
swfoth film data. Using displacement déta, he determined the
coeffs ents of a polynom1al which best fit the ‘data points.
>The o;ca: of the polynomial could be altered‘dependlng on
the:régn,drity oﬁ dlsplacementﬁdata. The pol§nom1al was
differentiéted to obtain-estimates of velocity and |
acce.era’ on data. |

Reinsch (1967) presented the use of spline functions to

experiméntal data. The use of cubic splines.has been

smoorﬁ
& o

I
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widely accepted by biomechanics researchers and it has been
reported that the acceleratlon values calculated by thlS
method for film dlsplacement data were more accurate than
those derived  from other methods in the past (Zernicke et
al, 1975; MacLauglin et al, 1976). To solve the problem of

acceleration of the displacement-time data becoming zero at

the knot points,vZerpicke et al, (1976) suggested that three

extra points at the beginning and at the end of each data

set should be used.

The estimation of the degree of smodthing i1s an

_additional problem for the researcher. MacLaughlin et al

- (1976) suggested that the cdlculated average error in

measurement of distances from film can be used for the
estimation ofyche degree of smoothing. Further, Zernicke et
al (1976) suggesced the use of the resultant acceleration
curve to alter the degree of smoothing.

A more recent smoothing method was reported»by»Pezaack
et al (1977) and it is known as the digital filter methed.
They used a second order Butterworth. low pass recursive

filter to reduce the noise inherent in the signal of film

data. The acceleratlon curve of a freely rotating arm was

used to valldate the accuracy of smoothing with this method

'Fihite differences and Chebyshev least squares polynomials

were tested in the same experiment. An accelerometer was
connected to the arm to provide a criterion acceleration
curve. It was found thatsthe digital filter followed by

finite difference differentiation was the only method to

C
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accurately reproduce the acceleration time curve recorded~by
the accelerometer. Spline functions.were'notftested in thel'
above study. Howeuer in their discussion, the authors
doubted that spline functions would give more accurate
resuits than Chebyshev'oolynomials.

The aforementionedustudies present methOds for
smoothing data in biomechanical_researCh. Honeverithe-'
queStion of whether a signal of certain frequency;is a data
signal or a“noise Signal remains unanswered and the .
estimation of the error inherent in data analysis;remafns/a

subjective consideration.

C. Hammer Throw1ng

The first attempt to blomechanlcally analyse hammer
Nk

throwing technique was by Lapp (1935). He_found_that thew

v

hammer accelerates_when the athlete’is in thevdoublehSUpportf
phaseuand.decelerates during thelsingledsupport phase.
'Samozvetov (1974% in austudy of the acceieration of

the hammer found that the duratlon of acceleration of the
hammer was cr1t1cal for a maxzmum dlstance throw. He also
found that the acceleratlon phase corresponds to the double
support phase oﬁ the thrower. |

. Kuznyetsov (1974)‘used w1re tensors attached to the
handle of the hammer to. measure centr1peta1 forces caused by
the effort of the thrower to propel the hammer. This was

used as a strength measurement method but results were not

presented.‘



24

Dyson, (1977) qlaimed that, throwers can accelerate the
hammer in the single support phase gy pulling it downward.
"Vertical downward acceleration is achieved by permitting .
the body weight to drop just before the hammer head itself
drops in its swings or turns. Here, therefore, the limiting
factor to acceleration is the thrower’s weight - which can
bé Jowered with or without contact with the ground."” (Dysbn,
1977). If this statement is correct then the weight of the
athlete 1is another critical fagfgr in hammer throwing.

Elhendorf (1978) studied the rélationshiﬁ of turn time
and distance thrown.“He’found that turn time and distance do
not have significant relationships iﬁ a three turn throw,
but they are significantly related when the athlete uses
four turﬁs. |

Ariel (1978) compared Eipematic parameters of the six
best throwers of the 1976 Olympic Games with those of an
average group. He found that the average grougjhad a longer
furn time for each turn., He also found tha£ égéidouble
sﬁpport time of the Olympians was longer that those of the
second group.

Dapena (1981) suggested that the tangential component
of the wire pull force, rather than the tangential component
of weight of the hammer force is mainly responsible for
changes in the velocity of the hammer. He found that for a

throw of 67.50 metres, the maximum total wire pull was 2750

Newtons.
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The above studies have presented limited quantitative.
information about the hammer throwing technique. The need

for further study is evident.



I11. METHODS AND PROCEDURES

The methods and procedures utilized in the present study are
described below.'fhe DLT method was'tested together with
different calibration trees and the six mathematical models
for image refinement presented by Karara and Abdel-Aziz in ¢
1974. The model which gave the best results was used for the
data‘collection and data reduétion of hammer throwing. The V
digital filter method was used for the reduction-of the
noise (Pezzack et al (1977) and Winter (1979)). Rigid body

dynamics methods were employed for the analysis of the

hammer throwing technique.

A. DLT Method

The DLT is based on the basic theoretical concept of
photogrammetry: the photograph, being a perfect plane, is a
cengral projection of the object space. Analytical
repgesentation of the geometry dvf-the technique can be found
in prendix A. It is normal photogrammetric pract;ce tO o
determine the transformation of coordinates from the
secondary image to real life coordinates by careful
calibration of the metric camegas and comparators. However,
when non-metric cameras are used, an external calibration is
required. For this purpose, a set of known points named
control points (CP) are located in the object-space. If X,

Y, Z are the spatial coordinates of a point in space and U,

26
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V its digitized coordinates, the transformation is obtained
by utilizing the following equations named basic DLT

equations:

. L.Y + L3Z + L,
U +au = A _ (3)
| L10Y + L11Z + 1

-
>
+

o

©
o]
+

LgY + L,Z + Ly .
V + AV = — (4)
L9X + L]QY + L11Z + 1

1
=

o]

+

where: X,Y,Z are the coordinates of the point in space.
U,V are the digitized coordinates of the point.
L,(i=1,...,17) are coefficients named transformation
~coefficients. ’
AU,AV are image refinement components of lens
distortion and film deformation.

A minimum number of six CP is required for the solution
of a system of twelve equations and eleven unknowns. For
better accuracy a redundant number of control points is
advised. In this case an over-determinedvsystem of equations
has to be solved and a least square method can be used. In
order to calculate 3-D coordinates of a point, at least two
observations (cameras) are needed.

Once the transformation coefficientg of the two cameras
have been determined and the digitized coordinates of a
point in the object-space from both cameras are given, the
DLT equations are used for the determination of the spatial
coordinates 8? the point.

Six mathematical~models have been given by Karara and

Abdel-Aziz (1974) for the image refinement components
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(AU,AV). These models can be found in Appendix A. The first
model does not change the form of thé DLT equations, because
the eleven basic coefficients account for the linear
components of lens distortion and film deformation. When one
of the left five models is used, the number of calibration
coefficients and the minimum number of CP are increased as
shown in Table 1, Appendix A. With utilization the models II
to VI and with a redundant number of control points, the -

system of equations to be solved becomes an overdetermined

system of non-linear equations.

Validation of DLT Method

The DLT method was tésted by utilizing three different
calibration tree§ and the five matheyatical models for the
image refinement. Two Photo-Sonic IPﬂ phase-locked cameras
were used for the filming in all the tests. An Angenieux
12-120 zoom lens was mognted on each camera.

A computer program ;as written in HPL language to
calculate the DLT calibration coefficients and to simulate
the spatial coordinates of the CP. The DLT basic eguations
without any image refinement component were used as a first
step. The least square method presented by Scheid (1968,
pp.375) was used to solve the overdetermined system of
equations. As a second step, the five mathematical models
for the image refinement were sequentially introduced to the

DLT equations. The digitized coordinates of the center of

the projected images were calculated and were used as the
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pbint of symmetry of the frames._Based on these coon%énates
and the digitizer coordinates of the CP the position vector
of each point was defined with respect to the point of
symmetry. The overdetermined system of non-linear equations
was solved by expressing the equations in truncated Taylor
series and then by using Newton's iterative least squares
method. The transformation coefficients derived in the first
step were entered as initial values for the unknowns at the
first iteratiqq7.1n the first‘iteration the image refinement
coefficients were assigned a value of zero. The combuter
program was set to atteﬁuate thefiterations when .the sum of
the absolute values of the residuals was smaller of equal to
the criteria value of 10-'°, (ZR £ 10°'°), or when the
system stopped converging. With the models II, III and IV

. the system satisfied the first criteria. With model V the
system stopped converging when the criteria value was

IR < 10-* and with model VI the system stopped converging
when the value was ZR < 10-*, This might be a result of the
| least sQuare method used for the solution and of the
precision of the computer (ovér 18 unknowns, 68 equatjons
and requésted high precision).

The first tested tree was a 2-D frame with dimensions
2%X2.5 m (Woltring, 1980). The tree was constructed of hetal
tubes. table-tennis balls were used as cggtrol points and
the tree was filmed in different angular positions. The
‘cameras were placed approximetaly 20m from the frame and 10m

from each .other. This particular disposigion.of the cameras
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is not a critical factor in the accuracy of the results
(Walton,'1981; Miller et al, 1980). The cameras were set to
operate .at a speed of 100 frames per second (fps). The
measurément of the mean error was approximately 10 cm. This
iarge error was probably caused by the deformation of the
tree.vThese results indicated that, for calibration of large
areas and with non-expensive materials, the use of a 2-D
tree was not viable.

In March 1982 a new calibration tree, a steel frame
with dimensions 2.5 x 2 x 2 m wa%ktested. Thirty-five
randomly distributed table-tennis balls were mounted within
the frame by means of strings. The reference frame and a
golf ball in free fall release§ from the top of the frame

were filmed.

. vp o
The overall Root Mean Square (RMS) differences of the

X,Y,Z coordinates simulated by the DLT method with the five
mathematical models and the measured coordinates were
calculated. Refinement with model III gave slightly better
results than the other models. (RMS(X) = 1.12 cm.,
RMS(Y) = 1.09 cm., RMS(Z) = 0.81 cm.). All the models gave
more accurate results for the Z-axis (vertical) than fof the -
other axes. This might b a result of the perspective errors
of the two cameras which “ffected the X and Y axes or the
precision of the instruments used for measuring the
coordinates of the points in the experimental session.

A golf ball iq free fall was digitized in every frame

of both films and the DLT equations together with Model III
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for image refinement were used to simulate the X, Y, and Z
coordinates of the ball. The time-displacement data of the

. ball were filtered with a second order double pass
Butterworth recursive filter with a cut-off frequency of 8
Hz. A first central difference method, (Miller et al 1973)
was used to calculate the acceleration of the ball. This was
found to be between -9.5 m/s? and -10.2 m/s*. (Criterion
value of gravity = -9.81 m/s’);

The r éults of the aboéé test were complementary to
results oﬂ7similar studies and were, therefore,
safisfactory. Several decisions were made based on the above
test. To improve.the accuracy of the results derived with |
the DLT method, the cameras musf be placed as far as
possible from the object space to avoid perspective error. A
pre-built calibration "tree" with precisely measured'éontrol
points must be used. For better precision and fastef
measuring, the calibration tree should be geometric in
shape. This can provide some CP which do not require actual
measurement since the spatial coordinates ca;iz;-calculated
with respect to the coordinates of other points:

The third testeéyfrée was the calibration tree used for
the data collection of the hammer throwing and was an
aluminium frame of 3x3x3:m (Figure 3). It was made from 12
aluminium sticks with a square cross-section (2.5x2.5 cm.).
The sticks were parallel or perpendiéular7to the horizontal.

The aluminium sticks were chosen instead of other material

because they are easy to transport, easy to work with, and

—
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" Figure 3:

Data Collection Calibration Tree
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beéause a three meter stick, when mounted by two points ,one

meter from each end, presents no deformation. Rigid L-shape

corners were used to improve the stability of the

connections: The connections and the end point? of the

sticks provided a set of.33.CP plus one which.was used as

the space fixed origin. The coordinates of these points are

presented in Appendix D. First, all the points were used to

calculate the coefficients with each model and the X, Y, 2

coordinates of all the points and the location of both

cameras relative to the space fixéd origin were simulatea.
Second, 27 points were treated as tontrol points and 6

points (points 28 to 33 in Figure ;)>were treated as

unknowns. The calibration coefficients were recalculated

with all the models and the spatial coordinates of the

control points and the unknowns were simulated. Model IV ~

gave sliéhtly smaller RMS differences for the 6 unknowns and

it was chosen for the transformation of coordinates in the

hammer throwing analysis.
B. Hammer Throwing Analysis

~Subjécts : ' . c L e
The three medalists. of the 1982 Euro?eén Championship

were selected as subjects for this study and‘their bestlb

throw in .this competition were analysed. The maés and height

of each sﬁbject and the distance of the analyzed throws are

presented in Table 2.
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TABLE 2

MASS, HEIGHT AND THROWING DISTANCE OF THE ANALYZED ATHLETES

Subject# Mass(kg.) Height(m.) Distance(m.)

1 110 1.85 81.66
2 100 1.91" ' 79.44
3 95 1.80 78.66 .

Data Collection

The data were collected in Athens, Greece, in September
1982 durjing the XII1Ith European Athlefics,Champiohship; The’
location of the cameras can be séeh in Figure 4. The cameras
wege séﬁ“to an operating speed of 100 fps. (The actuéi frame
rate was found tO'bei99 fps)‘An:external light generator was
used to flash a light inside each camera which was recorded
on the side of the film. The frequency of this light was 10
Hz. The film was Kodak Ektachrome 2537, 100 ASA. The f stop

wvas f = 5.6 and the exposure time was 1/1200 second.

camera 2

camera l '

j Figure 4: Location of the Cameras
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cameras were set, the calibration tree

following hardware was usec in the data reduction
proces.: a) A Triad Model V/R-100 mirror projector which
magnifigs the projectéd'framei'b) A Bendix digitizing board

~tons 1.215 x 0.91 m. The precision of this board

ﬁfliq cm; c) An HP 9864A digitizer; d) An HP 9825B desk
top micro-computer with a RAM capaciﬁy of 64 K bytes. The
film projéctor and the digitizing board were set paraliel\to
each other and remained in the same position untilbthe
digitizing of the control points and the subjects was
completed.

Each film with the control points was projected and
‘each point was digiti;ed‘threé times with respect to the
origin of the tree. The origin from eachbfilm'was marked on
the diéitizing“boardvﬁo be used later for the digitizing of
\the subjects. The mean values of the U, V digitized
coordinates of each control point were stored. | . :

The DLT equatibns together wi;h model 1V for image

refinement were used for the calculatioh of the,calibration 
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coefficients The follow1ng were the two.equatlons which

i)

composed model IV for image reflnement

AU = a; + a0 4+ a,V + X(k1r2 + kz['4 + k3f‘)
3

+ Py(r? + 2x*) + 2P,xy : _ (5)

AV = a, + asU + agV + y(k,;r? + kor* + kyr*)
. + Pp(r? + 2y?) + 2P,xy (6)
where: AU,AV are image refinement components of lens
distortion and film deformation;
a, (i=14...,6) are coefficients of film deformation;
U,V are the digitized coordinates of the point;
X =U-Us and y = V - Vs with Us & Vs the image
coordinates of the point of symmetry;.
k, (i=1,...,3) are coefficients of symmetrical lens
dlstortlon,
r is the length of the vector from the point of
" symmetry to the point under consideration;
pP,, P, are coeff1c1ents of asymmetrical lens
distortion,
Digitizing of the Subjects.

Nineteen points on the body of the athlete and on the
hammer were digitized for each: subject in each frane. The
number of frames digitized for each subject was 155 for the
first subject, 222 frames for the second subject and 194 for
the third subject.

All the points were digitized with respect to the

origin of the calibration tree.

Data Interpolation.
OThe,light which was recofded on the sides of the films
was used to check the timing'of the digitized frames from |
both films. It was found that at the beginniﬁa of each run

the slave camera had a delay running time with respect to
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the master camera. In order to utilize these first frames
u 1nterpolat10n polynomlals wvere used to t1me match the |
frames. A first 1nterpolatlon was used to calculate the
timing of the non—matched frames. A second 1nterpolat10n wasv
used to calculate the»timefmatched digitized.codrdinates of '
" the second film, The intetbolation formula was a cubic .
vLagrahgian polynomial (Geraldti980, p.174).

(t - t2)(t - ta)(t - ta)

P(t)

£(1),
(t1 - tz)(t1 - t3)(t1 = tq) k :
(t - ) (E -t (E -t

+ \ - ; £(2)
(”'tz - t1)(tz - t3)'(t2 - tq') -

(t"‘ t1)(t - tz)(t "':tn)
+ £(3)
(ty - t)(ts = t)(ts = ty)

(b= ta)(t - t)(t - ts) | R
S : £(4) (7)
(ta - t1)(tq - tz)(tu ;"" ts) . ’

‘where: P(t) is the time: matched coordlnate'
t,, t,, ti, ts are the times of the surroundlng

frames,
£(1), £(2), £(3), £(4) are the dlgltlzed coordlnates

of the same frames. B

.
-2

@ . o
Q-

After the interpolation the digitized cooé%;nates of the
points and the callbrat1on coefficients of each’camera were -
introduced into the system of equations composed by

equations (3), (4), (5) and (6) for each camera and»the,

~ -

spatial coordinates of the points were simulated.
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Rotation and Tramslation of the Axes.

&The spatial coordinates of all points for analysis were

\
~

“x

measured with respect to the origin of the calibration tree.
The center of the throwing circle at ground level was éhosen
as the origin of the reference frame for analysis of the
‘throws. The coordinates of this point with respect to the
origin O of the calibration tree were X = 73.75, Y = 73.75
"and 2 = -11.5 cm. The general formula for. this

transformation was the following:

G

where: C,o' is the cowrdinate of the point of interest with
respect to the mew origin O';
C.,o is the coordinate of the point with respect to
the old origin O;
~ Co is the coordinate of the new origin O' with
.respect to the old origin O.

In order to present the direction of the positive Y
axis as the direction of the throw the coordinates were
rotated 95° about the Z-axis. The following matrix equation

was used for the above rotation:

X' Qi1 AQyz Q13 X

' L-3
Y = Az Q22 Q23 1Y (9)
2’ Q31 Q32 Q33 Z

where : X', Y', Z' are the coordinates of a point in the new
coordinate system O'.
X, Y, Z are the coordinates of the point in the old
coordinate system O.
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a,,, @;z, a;; are the direction cosines of the X'
axis (i = 1), Y' axis (i = 2) and Z' axis (i = 3) in
the old coordinate system O'.

+

Calculation of Error and Data Smoothing.

The error involved in the data for the present study
can be expressed as systematic and random error.

The systematic error is that error, inherent in the
coordinates of any point, which is due to the DLT method
including the model IV for image refineﬁent. Six points of
the calibrétion tree were treated as unknowns and the RMS
differences of thg measured versus the simulated coordinates
of these points gave an estimation of the amount of error.
Although the error due the DLT is a random error when the
calibration coefficients are calculated, the final value is
a systematic error in the transformation of the coordinates
of each point for analysis. | .

The random error involved in the data was due to the
digitizing process, that is the difficulty of deéecting-the
excact position of the points of interest on the projected
film. For the calculation of this error, a-set of 7 frames
was randomly selected and redigitized after the digitizing
had finished.

A second order double pass Butterworth filter was used
to reduce the error involved in the data for analysis. The
data were expressed in FbUrier series and the power spettra
were plotted. After investigation of the péwer speqtra plot

the cut-off frequency was decided to be 9 Hz. for the hammer
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kinematics and 6 Hz. for all the other analysis.

Analysis of Data. \
The following is a presentation of the procedures

undertaken for the analysis of the data.

Calculation of the Center of Mass.

!

The coordinates of the center of mass of the body of
the athletes (CMb) and the system:athlete + hammer (CMs),

were calculated by using the following equations:

1 (P - (P, - Dij)c_{i]mi (-10)

1.

v M

Cb, =

Cs, = (M % Cb; + 7.257 % H;)/(M + 7.257) (11)

where : Cb; and Cs; are the coordinates of the CMb and CMs
respectively in the jth frame;
P,; and D;; are the coordinates of the proximal and
distal end point of the ith segent;
H; is the coordinate of the hammer; g, is the
distance of the center of mass of the jth segment
from its proximal end point in percentage of the
total length of the segment;
m, is the mass of the jth segment in percentage of
the total body mass of the athlete;
M is the mass of the body of the athlete;
7.257 kg. is the mass of the hammer. The mass of the
cable and the grip of the hammer was assumed to be
concentrated in the head of the hammer although it is
in the niebourhood of 100 gr.
&

The quantities g; and m, were taken from Dempster's
cadaver data (Demster, 1955) and are presented in Table 3.

Although these anthropometric data are widely used in

biomechanical research, they are a source of error, since it
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is unlikely that the body composition of Dempster's cadavers
is the same as that of athletes and especially of throwers.
It was decided to accept this Effﬁﬁ—gg it would be tonstant

in all the ffames and will have no serious effect on the

results.
TABLE 3
ANTHROPOMETRIC DATA OF THE SEGMENTS
From Dempster(1955)

Segment (i) - Length(g;) .Mass (m;)
Trunk 50.00 49.50
Head + Neck 56.70 7.90
Upper Arm 43.60 2.70
Lower Arm + Hand 67.70 , 2.26
Thigh 43.30 10.20
Lower Leg 43,30 4,65
Foot 42.90 1.46

(g % of segmental length from proximal point, m; % of total

body mass.)

i

Linear Kinematics.
The linear velocity and acceleration of the hammer, the
CMb and the CMs were calculated numerically from the time
displacement data. First central difference method was used

for the above purpose, (Miller et al, 1973).

. . ég‘ ‘o
Instantaneous Radius and Center of Curvature.

The instantaneous radius(p) of curvature and the
coordinates of the center of curvature (CX,ICY; C.) of the
orbit of the hammer, the CMb and the CMs were calculated by

N,

usihg the following equations:
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v? .
p = ' (12)
[(x"v - x'u)? + (y'v-y'u?+ (z'v-z'u)2]"?

x'v - x'u ¢
Cy, = X + —m (13)
(kv)?
y'v -y'u
C, =y * (14)
(kv)?

C, =2z + —— (15)

[
>
N
+
[+
N
+
N
N

where : p is the radius of curvature of the orbit;
C., C,, C, are the coordinates of the center of.
curvature; Y ‘
X, y, z are the coordinates of the point of interest;
x', y', z' are the velocities of the point in the X,
Y and Z axis; .

x", y", z’ are the accelerations of the point in the

same axes;

-k is the curvature of the orbit which is « = 1/p

The derivation of the above eqguations is based on

vector anélysis and is presented in agpendix C. The

T i " ” ”

guantities x', y', 2', x', y , 2 wer ~calculated

numerically from the time displacement data of the point.

)

Tension of the Cable
The radius of curvature, the linear velocity, the mass
of the hammer and the angle of the cable with the radius of

4

curvature were utilized for the calculation of the tension
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in the cable of the hammer. Thus,

p.cosé

m 1s the mass of the hammer;
u is the resultant velocity of the hammer;
p is the raé?hg of curvature;

¢ the angle of 'the cable with the radius p.

/

where:

Angular Kinematics

Absolute and relative angﬁlaf m%98urements were |
achieved through vector identities.~$egments vere éxpreéseh
in terms of vectors in the three dimensional space, -

The angle formed by two segments was found by abplying
the dot product between the vectors represen£ing the
segments. 2

Direction cosines of the vector segment were used to
calculate the angle of the segment with the inertial axeé.l

The following angles were calculated: |
Left knee angle, formed by the left thigh and the left leg;
Hib - shoulder angle, formed by the line of the hips and the
line of the shoulder; k N
Trunk - vertical which is the angle of the trunk with the
vertical axis;

Radius - cable angle which is the angle between the radius.

of curvature and the cable of the hammer;

@
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Trunk - arms angle which is the angle between the trunk and
the arms (origin of the arms was taken the middle point of

the shoulders).

Moments and Products of Inertia.

'In each frame. the moments of 1nert1a of the system were
caLculated about’ an orthogonal system of axes C(X', Y', 2')
with origin at the CMs. Thls/system of axes was parallel to
the space-fixed system oﬁvéxes O(X( Y, 2). (See Appeqdix B)

First, the moments and products of inerEié of each
seément about their éester of mass was calculated for each
frame. The‘foilowipgAare the equations used'for_this

Vpurbose:

I, = I:x;'a312‘+ I"yicaz1? * Iﬂzi'“SIZX\ ~(17)
Ty = Ik ia 2 +'I”*Jfaz?2 + 1", ca322 (18)
1', = Iix;‘a131 + I"fila{az’* I"z:fQ532 | - (19)
I'xy =_'(af1'ayg‘1;;} f‘dZ{;aZZ'Iiyj +.a3"a3?;1ﬁzi) (20)
I'y, = ‘(a11fa¢3-l"x{ YRR PR I"Yi fjaag-a§3-l"zi) (21)
I'yz = ’(a12'a13f1";i + “22fq23;I"y1 * a32'a33'1”zi)‘ (22)
where :(I"x,, 1"yi,.17;; are the pr1nc1pal moments of 5

‘inertia of the ith segment;

@1, @iz, a;3 are the dlrectlon c051nes of the
principal axes, X (f =.1), ¥ (i =2)and. 2 (i = 3)
axis relative to the space f1xed system of axes. -

The principal moments were taken from Whitsett's

anthropometric data (Whitsett, 1963) and are presented in

“~
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Table 4. These,data:were normalized according to the mass

and height of each athlete.

normalization were taken from Dapena (1978) and are the

~%

following:

For the transverse and frontal axis, -

I = I*xMxS? / MxS?

-

and for the longitudinal akis,

where:

I = I*M?%S / M2%S

I, is the principal moments presented by WhitSett;

The equations for the above

(23)

(24)

M, S are the average mass and height ‘of Wh1tsett s

subjects M = 74.2 kg., S =

1.755 m. )

M and S are the mass and the height of ‘the subject at

the present study.

TABLE 4

PRINCIPAL MOMENTS OF INERTIA OF THE SEGMENTS

From Whitsett (1963)

Segment : . 1",

Trunk 1.2606
Head + Neck 0.0248
Upper Arm . ' »0.0213
‘Lower Arm + Hand  0.0081
“Thigh . 0.1052
Lower Leg : 0.0505

- Foot , | 0.0038

//

Iy

1.3555
0.0248

0.0213

0.008t

0.1052 -

0.0505
0.0038

1%«

0.3118
0.0168
0.0024

0.0016

0.0209
0.0050

0.0008

L J .
(presented measurements in kg-m?)

(1 ‘, principal moment about frontal axis)
(1” y pr1nc1pal moment about transverse axis)
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(1", principal;moment about longitudinal axis)

The longitudinal axis of avsegments was taken as the Z
principal ax1is witE:origin at the center of mass of the
segment and direction towards the proximal*end point. The X
principal axis of the trunk was taken as principal axis
parallel to‘tﬁe axis of the hips and with directi;n'towards
the right hip. For the non-trunk_segments an assumption was
made, ﬁhat is, the segment moves in a plane in two
successive frames. The plane was defined by the proximal end
point of the segment at the (j)th frame, the center of mass
| of the segment at the same frame and the center of mass of
the segmént at the (j+1)th frame. Aftér the definition of
the plane, the vector of the i4principal'axié was defined as
a vector normal to the Z axis at its origin and having
direction towards the direction of the motion. The vector of
the Y principal axis was then defined by the cross product
of the Z and X vectors. The method is presented in appendix
B. . |

The total moments and products of inertia of the system
about its center of mass and for each framer were found with
the following eguations: |

1

(1, s mi(Cy * *+ Chi®)] (25)

—
*
1l
n Mw

i

-
~<
1t
"M

gl'yi + m;(Cyx;? + Cpi?)] : ‘ (26)
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I, = LII'. + mi(Cui? + Cyi?)] (27)
13 i
Iyy = ZEI'xyl + m;CyxiCy ] (28)
i=
13 ' .
fxz = ‘§El'xzi +lmJCxiCzi] (29)
13 . .
Iyz = ?EI'YZI +:miCyICzi] (30)

where: I,, I,, I, are the total moments and products of
inertia of the system about the axes X, ¥, 2Z
m;, is the mass of the jth segment.
Cyxi, Cyi, C,; are the coordinates of the center of
mass of the jth segment relative to the center of
mass of the system,
I'viv I'yir I'2iy T'xyiy I'yzy, 1"y, are the moments
and products of inertia of the ith segment about the
axes X', Y', Z".

Angular momentum.

@&

The angular momeﬁtum of the system, was calculated with:
respect to an orthogonal system of axes pa351ng from the
center of mass of the systém and parallel to the space-fixed
axes. The total angular momentum of the system was foﬁnd by

the following equations:
3 ” -
E‘,x 2}-:[ _L_'xi +Exi ] , (31)
=1 .

'E'Yi + E yl. ] ‘ , A (32)

3 ¢
= Il L' + L ] A (33)
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where: L., Ly, L. are vegtors representlng the angular
‘ momentum of the system about its center of mass;

L'«xi, L'y:, L', are vectors representing the angular
momentum of the ith segment about the center of mass
of the system, considering the segmbnt as a point
mass;
L i, g"y,, L",; are the vectors representlng the,
angular’ momentum of the ith segment about its center

of mass.

For the L',,, L'y, L',, the following general equation was

" used: _ | ' -

N W
L = m¥(r, x r,)/At ' ‘ ' o (34)
3. .
where: m is the mass of the segment;

r1, I, are position vectors of the segment in two

successive frames;
At 1is the t1me lnterval between the two frames.

L xi, E;yi and L";, were-calculated by utilizing the
moments and products of inertia of thelsegments about their
center of mass and thelr angular velocity about their
pr1nc1pal axes. ThlS method is different from the one
presented by Dapena (1978). Dapena calculated the local
angular momentum of the non- trunk segment onLy about the
transverse axis and assumed that the local angular momentum
‘about the other axes was too small to be con51dered. The

local angular momenta of the segments for this study were

calculated by using. the folloying;equationsf

L = - I'yyitwxi ¥ I'yitwy; - I'Y?"wZi (36)

L i = I"xi'(')xi - I'xyiwaf - I'xzi’"‘)zi (35)

‘%&
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L'z = = I'szit0yx; 'AI'yzi'Qyi I irwa (37)

where: I'xnr I'ynr I'zx and I'xyor I'x2|r I’ yzi are the
moments and products of inertia of the ith segment
about the its center of mass;
Wxi, Wyi, Wx; are the angular velocities of the
segment about the space fixed axes.
(See appendix B for details of this technique).
After the angular momentum of the system about the X, Y and
Z axis was found, the total angular momentum of the system

was calculated from the eguation:

-,L - (sz + Lyz + Lzz)l/z ] (38)

Axis of Momentum
Axis of momentum of the system for each frame“waé
defined as the axis which passes through ‘the center of mass’
of the system and is coincident with the_aﬁgular momentum

vector. The direction cosines of the angular momentum are:

. ﬁ1 = Lxl/(sz;+ LYZ}+ L22)1/7‘> . ; 'b ) (39)ﬂ
B, = L,/(Ly? + L,? + Lp2)'/2%° ” o (40)
By = Lo/(Ly* + L,* + L,5)V2 o (a1)

‘tes of the point of ‘intersection of this axis

s

nd are:

&



- 50

X = (Bs+Xy = Zy61)/Bs - O (42)

Y = (B3°Yy = Z,°82)/83 ‘ L | (43)

Z =20 - (44)

where: X,, Y,, Z, are the coordinates of the center of mass.

Instantaneous angular velocity.
iThe instanfan3ous angular velocity of the system was
defined as the angular velocity of the system about the
system of axes passing tnrqugh center 6f mass and parallel
to the space-fixed System'of axes. The following mafrix

- €.
equation was used for this purpose:

Ly I. ~-Ixy Ixz Qy
Ly | = |-1«y I, -I,, Q, , (45)
L, “Ix: ~Iy. %, Q.

where: Q,, Q,, @, are the angular velocities about the X, ¥,
Z axes; _ ' _ ' ’
I.,, I1,, I,, Iy, I«,, I,. the moments and products of
inertia calculated with equations (17) to-(22);
L,, Ly, L, are the angular momenta of the system
calculated with equations (31) to (33).

S

‘The coiumnAmatrix of the*anguiar’velocity in the equation
(45) wns found by multiplying the inverse of the moments of
inertia matrix by the column matrix of the angular momenta.
The magnitude of the resultant instantaneous angular

velocity of the system was found by the equation:



Q=(9,2 + nyz".q. sz‘)J/z L : o (46)

External Torques of rotation.
The external torque of the rotation was defined as the

rate of change of the angular momentum. Thus,

T.= AL / At ‘;i ) R ,'i f - ,'(47)

Forces of Translation.
The external forces of translation applied to the
system were found by using the general formula: 'uf

S,

BN o
F = ma ‘ | - C(48)

_where: m is the mass of the system;

a is the acceleration of the CMs.

K1net1c Energy.

\

The k1net1c energy of the system was found from the sum

of the klnet1c energy of rotation plus the kinetic energy of

translation. Thus,
T = Tt + Tr - - (49)

where: Tt 1s the kinetic. energy of translation and Tr 15 the_y

kinetic energy of rotation glven as- follows'



where?
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Tt = —M-u? | (50)

1
—( I wyx? + Tyw,? + T,w,°

2

Tr

- 2,00y - 21,00, - 21, 0wyw, ) (51)

M is the mass of the system;

u is the velocity of the center of mass;

I., I,, I, and I,,, I4,, I,. are moments and products
of inertia of the system;

wy, wy, w, are the angular velocities.

All the programs for the data reduction and data

analysis were written in HPL computer language by the author

and the HP -9825B desk-top Eomputer was used. The motion was

divided into turns and each turn into single and double

support phase. The results of each phase, each turn, and,

each s
.

~
N

‘bject were compared to one another.



IV. RESULTS AND DISCUSSION
The sequence of presentation of the results found in this

study is as follows: Results of the DLT tests; Error
: 4
analysis; Kinematics and kinetics of the hammer; Kinematics

and kinetics of the body Center of Mass; 'Segmental

kinematics; Kinematics and kinetics of tﬂt syste m.

4 —

A. Results of the DLT Tests.
The DLT method together/fith six mathematical models
for image refinement (Karara and Abdel Aziz, 1974) and three

different calibration trees were tested. Criterion for these

~

‘tests were the Root Mean Square (RMS) differences of
measured versus simulated coordinates of the control points,
or of control points which were treated as unknowns.

The results of tests on the first tree which was a 2-D
frame filmed in different éngular positions were j‘“*“)
unsatisfactory in that there wés considerable deﬁ%émation of
its shape in rotation caused by its weight. \

‘ \

The results of tests on the second tree which was a; 3-D
T”

frame are presented in Table- 5.

TABLE 5
'RMS DIFFERENCES OF THE\ CP FOR THE SECOND TREE

Model X RMS ;\ng Z RMS MEAN

No Ref. 1.1815 1.0214 0.8458 1.0162
Model 11 1.1231 1.0998 0.8212 1.0147
Model II1 1.1199 1.0944 0.8129 1.0091
Model 1V 1.1329 1.1797 0.7611 1.0245
Model V 1.1115 1.4940 0.7678 1.1244
Model VI 1.3235 1.9939 0.5915 1.3030

(presented measurements in centimeters)
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The resulté of the third tree which was geometric in
shape and was used for the data collection of hammer
throwing, are presented in Table 6. In this Table the first
column contains the RMS of all the control points, the
second column contains tlte RMS of 27 control points from the
test when 6 points were treated as unknowns and the third
column contains the results of the 6 points treated as

unknowns.

TABLE 6

RMS DIFFERENCES OF THE CP FOR THE DATA COLLECTION TREE

Model 33 CP 27 CP 6 Unknowns
No Ref. X 0.22 0.29 0.84
Y 0.20 0.14 0.39
7 . 0.24 0.19 0.85
Model II X 0.36 0.42 0.42
Y 0.33 0.38 0.55
A 0.25 0.18 0.61
Model III X 0.24 0.30 0.46
Y 0.19 0.16 0.59
y 0.25 0.19 0.65
Model IV X 0.24 0.28 0.27
% 0.19 0.14 0.60
A 0.25 0.19 0.72
Model V X 0.29 0.29 0.38
Y 0.20 0.14 + 0.74
7 0.25 0.20 / 0.86
Model VI X 0.48 0.25 1.46
: Y 0.36 0.14 0.76
! Z 0.36 0.19 1.21

| N
) .. .
(presented measurements in centimeters)
|
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The digitized, measured and simulated coordinates of the CP
of the last tree, as well as the calibration coefficients of
the DLT with model 1V, are presented in Appendix D. The RMS
error presented in Table 6, was the error of the DLT method
in the present study. In a similar study of the DLT methed,
Shapiro (1978) found an error of #0.40 cm. in the -X-axis,
+0.40 cm. in the Y-axis and #0.50 cm. in the Z-axis. Dapena
et al (1981), found a RMS(X) = 1.50 cm., RMS(Y) = 1.32 cm,
and RMS(Z) = 0.60 cm.. With the second tree, quel II1 gave
slightly betfer results than the other models, while with
the data collection tree,'Model 1V gave the best results.
Another test on the data collection tree was the
simulation of the coordinates of the location of the cameras
with respect to the origin of the trge. These coordinates
and the simulated distance of the cameras (£, and £,;) from

the origin are presented in Table 7.

TABLE 7

SIMULATED COORDINATES AND DISTANCE OF CAMERAS

FROM ORIGIN WITH DIFFERENTLMODELS

Model Camera #1 _ Camera #2
X Y Z <, X Y A 4,

\ \ )
No Ref. 35.75 -5.21 0,70 36.13 37.61 24.98 0.92 45,16
Model 1II 35.86 -5.22 0.70 36.24 37.72 25.04 0.92 45.28
Model III 35.95 -5.23 0.70 36.33 37.68 25.01 0.92 45,23
Model IV 35.91 -5.22 0.70 36.29 37.68 25.02 0,92 45,23
Model Vo 35.87 -5.18 0.70 36.25 37.65 25.00 0.92 45,20
Model VI 36.40 -5.26 0.71 36.78 38.22 25.36 0,92 45.88

(presented measurements in meters)
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The X, Y, Z coordinates of the location of the two
cameras with respect to the origin were not measured
directly in the filming process. Only the distances of the
cameras to the center of the throwing circle were measured,

~and they were found to be £, = 36.20 m. for camera #1 and
4, = 45.10 m. for camera #2.

. The results from the third tree were superior to the
ones of the preliminary tests because in the preliminary
tests the CP were randomly distributed in space and it 1s
possible that they included higher measuring error.

In order to test the stability of the bLT for outside
areas of the calibration tree, 6 CP located in this area
were treated as unknowns (points 28 to 33 in Figure 3). The

. RMS error of the measured versus the simulated coordinates

-

£

of these points are presented in Table 6, 3rd column. These
results indicated that, use of a well constructed tree and
Karara's models for image refinement enabled reliable data
to be collected using a calibration tree smaller than the

_..area of action. These results were expected, since the

#~
. 0 . N « .
A control points were used for the estimation of coefficients

that indicate the orientation and location of the cameras in
the filming procesé and the orientation of the secondary
image in the digitizing process, rather than for the
estimation of ratio parameters of control and uknown points.
After these coefficients were computed, the spatial
coordinates of a point under consideration were calculated

based on the digitized coordinates of the point and the

g
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!

fcalibration coefficients. Utilization of the mathematical
‘models for image refinement corrected the transforméd
coordinates of a point if they were affected by film
deformétion and/or lens distortion error. These models were
of significant value when a point under observation was
located in the outer area of the image in film from at least
one camera. Points near the outer area of the images in
films from both cameras were expected to include farger

- error than. cother points.‘Fhese areas however, were nbt used
for analysis because a larger area than thaﬁ taken up by the

subject was filmed.

B. Error Analysis
The error involved in the analysed data of hammer
throwing was classified as systematic error or random error.
Systematic error was the error inherent in the use of
the‘QET method. The main sources of this error were: a) thé
leasg square method used to derive the calibration
coefficients; b) the limited precision of measurement of the
K\FP'S spatial coordinates and c) the digitiiing error of
éFese points. Another source of systematic error was the
ahthropometric data used fpr the léngth, mass and moments of
/inertia of the segments. The criterion for the estimation 6f
the systematic error was the RMS difference of the measdfed,l
\\ versus simulated coordinates of the CP. This error was found
v\to be RMS(X) = 0.24 cm., RMS(Y) = 0.19 ém. and

RMS(Z) = 0.25 cm..

o
“E
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Random error was defined as the error mainly created by
the researcher's inability to detect the exact location of

points in the digitizihg process. Other sources of this

. error were vibration of the cameras in the filming process

and vibration of the projector and digitizer in the
digitizing process. Thiskerror was estiméted by redigitizing
seven randomly selected f}amés..The RMS differences of all
the points from the two digitizings were found to bé

RMS(X) = 1.73 ¢§;, RMS(Y) = 0.64»ém., RMs(z) = 0.62 cm.. The
d&ffereﬁces were higher for poorly detected points and

smaller for well detected points. The absolute differences

. of the two digitizings for the right hip (poorly detected

point) and the hammer (well detected point) for the seven

frames are presented in Table 8.

TABLE 8

ABSOLUTE DIFFERENCES OF TWO DiGITIZINGS

FOR THE RIGHT HIP AND THE HAMMER

RIGHT HIP HAMMER
X Y Z X Y Z
FRAME #1. 3.41 1.91 0.97 1.57 0.06 0.30
FRAME #2 3.34 0.16. 0.68 - 0.28 0.17 0.28
FRAME #3 0.66 0.47 1.81 0.55 0.08 0.10
- FRAME #4. 1.04 0.46 1.86 0.01 0.00 0.10
FRAME #5 2.52 2.05 0.48 0.20 0.15 0.81

FRAME #6 2.56 1.05 0.17 0,76  0.95 0.22
FRAME #7 0.48 1.69 0.48  1.84 0.67 0.23

(presented measurements in centimeters)
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It should be noted here that the X, Y, Z-axes presented in
“the above tests were the axes before the rotation, thérefore
the X-axis of the tests is the axis of the direction of the-
throw in the analyzedgdata. | |
Digital fi1£ers were used for the reduction of error»in
the data. The cut off frequency used was Fc = 9 Hz. for the
hammer kinematics and fc = 6 Hz, for all other parameteré.
This decision was based on study of the power spectra plots
of the signal. Figures 5 and 6, are two examples of these
plots for the X-axis .of the hammer and the right hip points.
An example of raw versus filtered data can be seen'in Figure
7 which shows the accéleration of the hammer. This
acceleration was caléﬁlated with'first,central'differences
£

from raw data and data filtered with cut off frequency Fc =

9 Hz.

C. Kinematics and Kinetics of. the Hammer.

The analyzed throws were (a) a three_turn throw of
»81.66-m.-(Subject 1); (5) a four turn thfow of 79.44 m.
(Subject 2); and (c) a four turn throw of 78.66 m. (Subject
3). Each turn was divided into single support phase and
double support phase. The beginning of the single support
phase (BSS) and the beginning of the double support phase
(BDS) for each turn were used as reference instances for the
analysis and presentaﬁion of dgta. Other reference instances

for each turn were the éimes when the hammer.reéched the R

highest (MAX-2) and the lowest (MIN-Z) points of its orbit.

s
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Acceleration of the Hammer, Raw and Filtered Data, Subject 1

Figure 7
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The analysis of each throw started at the beginning of the
first turn. No analysis was made of‘the preliminary swings
of the hammer.

The height and angle of release were féund to be'1;27
m.‘and 40.7°°for'Subject-1, 1.26 m. and 37.3° for Subject 2
and 1.28 m. and 37.6° for Subject 3. The angies of release
for all the subjects were léss than the calculated'optimaf.
angle of release which for an 80 m. throw was 6 = 44.3°.

The maximum velocity of the hammer was found to be
30.99 m/s for Subject 1, 30.72 m/s for Subject 2 and 31.02
m/s for Subject 3. The maximum velocity of the hammer
occurred 10 to 20 milliseconds before release for all
subjects. |

The timing of each throw and reference instance are
presented in Table 9. In each turn the hammer réached the
MAX-Z point in the singlé-Support phase and the MIN-Z in the
double support-phase; The time of thef%%h@%% support phase
was shorter than the time of;the dOUbie support'phasé for
all the subjects and %ll the phases. Subject B/had the
faﬁ§?5t turn time ﬁorfeaﬁh turn. The same subject spent-less
timé than the others in driving the hammer upward during the
double support phase 22%, 27%, 24%,&38%_6f the double
support time for each turn. The egivalent percentages for

Subject 1 were 29%, 30%; 46% and for Subject 2, 31%, 32%,

29%, 39%.
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TABLE 9

TIMING OF EACH REFERENCE INSTANCE

. Ppoint Subject 1 Subject 2 Subject 3

MAX-Z -——— " 0.29 0.18

BDS -——- 0.41 0.24

MIN-2 -——- 0.68 0.49

BSS -~ 0.80 0.56

MAX-Z , 0.23 0.98 0.75 R

BDS 0.32 1.07 0.79

MIN-2Z 0.51 1.22 0.98

BSS 0.59 1.29 1.05

MAX-Z 0.75 1.45. 1.20

BDS 0.81 . 1.52 1.25

MIN-2Z 0.97 1.67° 1.4

BSS 1.04 1.73 1.46

MAX-Z 1.18 1.88 1.63

BDS 1.25 1.95 1.67

MIN-2Z 1.39 2.09 1.83 3;
RELEASE 1.51 2.18 1.91 4

(presented measurements in seconds)

Thelspatial coordinates of tﬁé hammer for the different
subjects showed that the hammer traveled in a spiral mode
startin; at an acute aﬁgle to the horizontal and finishing
with the release angle. In the first turn Subject 2 rotated
the hammer in a plape closer to the horizontal i.e. at a
more acute angle é%an the other subjects'and gradually - -
changed this angle to the release angle. Figures 8, ,9 and 10
present the trajectory of the hammer in the different planes

for Subject 3.
The radius of curvature of the hammer for each of the
three subjects'can be seen in Figures 11, 12 and 13. The

length of the radii oscillated from phase,'to:phase and.
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within the same phase. There was a gradual deerease.of the
amplitude of oscillation ffon turn to turn, For]aaen‘}urn
the length of the radii became'maximqm at the beéigning of
the single support phase, gradually decréasedﬁduring the'
single support phase and began increasing again in the
double support‘phase. In the last tdrn, and after'the radii
had fallen to their minimum length, the amplitude of |
oscillation became very small for Subject 1 and 2. Subject 3
increased the radius after the BDS point and decreased it to
a minimum length when tné§hammer'was at the MIN-Z point. In
comparison with other subjects, SUbjECt 1 presented the
smoothest oscillations with the hlghest amplitude, while
Subject 2 presented the noisiest oscillations and Subject 3
the smallest amplitude. In the last double‘support phase,
after the hammer passed from the M}N Z, the radii's length

1ncreased and approached infinity asatha release point for
YR

< .f

Subjects 1 and 3,'wh11e Subject 2 relessed the hammer before
it started traveling in abstraight line (i.e. with low |
length of radius). /
The angle between the fadius of curvature of the Hgmmet
and the cable for all the subjects ranged from 0° to 13°
’ %

»E;gpre 14 represents the change of this angle for Subject 3

while 5ub3ects 2 and 3 showed similar curves. Thif

greater in the first turn and decreased, gradual_u
second from the last turn, then increased again. ut1ng the
single support phases the angle started w1th a small value

~ and 1ncreased untll the middle po1nt of the phase. Before
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the hammer arrived at its MAX-Z point the angle started
decreasing again arriving at a minimum at the end of the
single support phase. In the double support phases the angle
decreased from the beginning to the middle point-of the
phase and then indreased again, In the last twp turns and
during the transitioh from double to single support and'froﬁ
single to double support the angle decreased. In the last
turn the anglé started incrgasing after the MIN-Z point
arrived to a maximum angle then decreased until = 40'
milliseconds before the reiéase and started increasing agéin
until the rélease point.

Figures 15, 16 and 17 répreseﬁt the velocity curves of
the hammer. Theatélocity increased in theiéouble subpor;
phaseé and decreased in the single support phase§. There was
a gradual increase of velocity from tufn.to turn. The
contribution of each turn to the maximum velocity can be

seen in Table 10.

IR  TABLE 10

CONTRIBUTION OF EACH TURN TO THE MAXIMUM

VELOCITY AND ACCELERATION OF THE HAMMER

o

"TURN VELOCITY =~ ACCELERATION
| s.1 S.2 s.3 s.T 5.2  S.3
First  -- 69 76 -~ 56 61
Second 79 .80 83 73 17 80 N
Third 86 86 - B9 . 86 = 80 89

Fourth 100 100 100 100 100 100

(presented measurements in percentage of maximum)
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"There-was a local minimum velocity at the BDS point in
each turn, except in the second-turn of,Suhjects 1 and 2'who‘
‘achieved the local:minimum.velocity before that point
(Figures 15 and 16). In each turn the hammer reached its
local maximum ve&ocity.at the end of the double support
~ phase and beginning of the single support phase. In the
| first single‘supportiphase the velocity curves showed great
oscillations, probably caused by the athletes'>effort to,ﬁ
achieve a high velocity immediately. Itawas the velocity in
‘the Y and Z axes which primarily contributed to the loca&}
maximum’veIOClty of the hammer in each turn, |

'In thé single support phases for all the subjects and

A

for .all but the first turn, the decrease in velocity was \‘
|

|

calculated in percentage of the maximum veloc1ty This
,“decrease was found to be: 6%, 10% in each turn for Subject\
"1, 6%, 7%, 7% in each turn for Sub]ect 2 and 8%, iy, 12% 1n¢
each ,turn for Subject 3. |

The accelerationsfof the hammerlégr'all subEects are’
presented in Flgures 18, 19 and 20. The hammer accelerated
in the double support phase and there was a gradual 1ncrease,
from turn to turn for each throw. The hlghest accelerat1on
. for each turn occurred . at the time when the hammer reached
the MIN-Z point of 1ts-orb1t« The maximum acceleratlon was
found to be 478 m/s? for Subject 1, 505 .m/s? for Subject 2 |
and 492 m/s? for Subject 3. Thls global maxlmum occurred 60'
mllllseconds after the local MIN-Z point of the hammer ‘and

60 m1111seconds before the release po1nt for SUbject 1. The’;

{
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egivalent times were 50 and 40 milliseconds for Subject 2
and 0 and 80 milliseconds for Subject 3.-Subject 1 kept a

high acceleration at the global maximum for a longer time

“

than the other subjects, ﬁile‘Subject 3, after reaching the
global maximum presented a second maximum of lower value
approximately 50 milliseconds after the first peak. The
épntribution of. each turn to the maximum acceleration for
all .subjects can be seen in Table 10. {t was mainly the
acceleration in the Y and Z—axes‘that contributed to the
peaks of the resultant acceleration (Figure 2{). in‘the
single support phases the acceleration increased slightly,
in the second turn fgr Subject 1,.in the second and third
turn for Subject 2 and in the third turn for Subject 3. In
all the other single support phases the acceleration eilther
remained the same or decreased. The’accelerations presented
different oscillations for the different subjects. Subject
. 1, increased the acceleration in the second single support
phase, while, ih the last singlé éuppor£ the acceleration
decreased until approximatelx 30 milliseconds before/the
hammer's MAX-Z. Then, it increased until the MAX-Z and when

?

the hammer started traveling downwards to the BDS point the

]

acceleration decreased again (Figure 18). Subject 2, 1n all
the ;ingle support phases increased the acceleration from
the BSS poiné until approximately 20 milliseconds before the
MAX-Z. Then, he decreased the acceleration until the MAX-Z,
and increased it from there to the BDS point (Figure 19).

Subject 3, in the second single support phase showed
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\

'opposifé oscillations to the ones of Subject 2. In the last
two turns he decreased the a;celeratibn until approximately .
10 milliseconds after the MAX-Z and increased from there to
the BDS point (Figure 20). |

Figures 22, 23 énd 24 repreSent‘the tension in the
cable of the hammer calculated using equation (16). The
tension‘ﬁas maximum wher the -hammer reached the lowest point
of its orbit. This maximum tension was found to be 3730 N
for Sﬁbject 1, 3602 N for Subject 2 and 3837 N for Subject
3; The contribution of‘eéch turn to i1e maxlmum tension was
found to be 62%, 79% and 100% for Subject 1, 50%, 72%, é1%
and 100% for Subject 2 and, 55%, 72%, 82% and 100% for
Subject 3. For eaéh turn the local maximum tension occurred
in the doublé support phase. In the single support phase the
tension decreased until the point where the ham%er reached
its_MAx;Z and from that point the tension star;edAincréasing
again. Oﬁly Subject 1 achieved an absolute increase of
ténsion in the single support phase and only for the second
turn, | |

The impulses applied to the hammer in different phases

~and for the different subjects are presented in Table 11. In
theLlast double support phase Subject 1, agplied é’grea;e;

implilse than did the other subjects. This reflected the

application of force over a longer period of time.

®
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TABLE 11
IMPULSE APPLIED UPON THE HAMMER FOR EACH PHASE
Phase Subject 1 Subjeét 2 Subject 3
ss  =--==- 368.71 2643.47 e
DS - - : §12.77 524.47
SS 419.01 439.07 ,854.73
DS 532.96 492.33 652.74
ss 484 .44 510.67 497.06 /
DS 613.71 578.79 627.88
SS 556.73 598.18 . 433.40
DS 744 .32 736.32 725.60

(presented measurements 1n N#s)

Figures 25, 26 and 27 represent the moments of inertia
. N

of the hammer about the orthogonal system of axes paréllel

to the inertial frame and passing through the centeg of mass %
of the system (CMs). In the first turn Subjects 2 and 3 ‘
achieved larger moment of inertia about the Z-axis than did
Subject 1. This was because they rotated the hammer 1n a

plane which was closer to the horizontal than to the

vertical plape; with Subject 2 presenting an angle with. the

L

horizontal 6 = 9°.

Figures 28, 29 and 30\represent the distance of the
hammerqto the CMs po%yi; This distance increased in the
siggle support phéSeJand decreased in the double suppbrt
phase. In the double support phase agﬁletes pulaed the £3
hammer toward their CMs QCd in the singﬁe sdbport phase the
hammer traveled away from the CMs. In the first double
suppert phase, the distance increased Fg the point where thﬁ

hammer reached its MIN-Z, then 1t decfeased again until the

S
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BSS point. This happened with all the subjects, but was most
evident in Subject 1.

Figures 31, 32 and 33 represent the anqular momentum of
the hammer with respect to the CMs. The‘angular momentum
increased in the single support phase and decreased in the
double support phase. There was a gradual increasé of the
angular momentum from turn to turn. The maximum angular
momentum was found to be: 327.95 Kg*m’/s for Subject 1,
321.44 Kg*m?/s for Subject 2 and, 319.81 Kg*m? /s for Subject
3. In the first single support phase, Subject 1 reached and
mantained until the beginning of the second single support
phase, a local maximum angular momentum which was 83% of the
global maximu m. Subjects 2 and 3, reached 65% and 76% of
ghe global maximum respectively and continued to increase
the angular momentum until the end of the turn. The
contribution of the last three turns to the maximum angular
momentum was respectively: 83%, 94% and 100% for Subject 1,
82%, 93% and 100% for Subject 2 and, 88%, 96% and 100% for
Subject 3. Subject 1, achieved in the end of the first turn
what the others achieved in the end of the second turn in
terms of angular momentum of the hammer. These results,
compared with the radii of curvature of the hammer (F{gures
11, 12, 13) indicate that the angular velocif& of the hammer
increased in the single support phase when its radius
decreased in length,

Figures 34, 35 and 36 represent the angles between the

angular momentum vector of the hammer and the X, Y and



95

16° 1

1 109fans .L.chmI 8yl 40 unjuswop Je|nbBuy :1g aunblL 4

L¥0ddNS 3TONIS 40 ONINNID38=SSH

cZ'1

PO 1

(0as)
16°0C

I W Il
6570

2€°0

‘140ddNS 3718N0A 40 ONINNID38=Sa8

*

jo

.

‘e
“tenecet

ooo-n

um&mdum

vl
92
o

sdd

0
06
W
00T a
L
N
0ST 4
12}
0
W
002
)
N
062 v
00¢
(S/WiyU4bY)



96

A
;

L¥0ddNS 3ITONIS 40 ONINNID3IE=SSE '1¥0ddNS 318N0A 40 DNINNIDIg=SA8

[

Z 109(qgns ‘uswweH eyl JO wnjuswol JelnBuy :Zg aunbi4

-

(99s) 3 W I &L

B1° ¢ S6° T £EL° T ZG6° 1 6C° 1 L0 1 08°0 If°0
/ s
’ ~ )
s
H
v ]
/ 3 -
.’ P N
, K |
M d K L
-1
\ A - -
3 -~ S
s B % .
rd
* h .
. ¢
\ . ..
% ! ", G
-. ~. L?‘o -1
' '
e
r, 3
0..& ) l
asvatdy sad ssd sdd Ssd cad 55d sdad

00T

0CT

0¥l

09T

08T

00¢

0ze

O=2wmabEH DE

z

ove

0

092 N

08¢

00t

0Z¢
(S /W 4wy by)



97

L

\l
140ddNS 3TONIS 40 ONINNIDIE=SSE ‘ LHOddNS 3718N0A dJO ONINNIO3E=SQ8

(o°98) a W I A
S0 T 6L°0

£ 108fans ‘usumeH ayl jo E:ucmeoz.gmﬁzocq €€ aunBL 4

16°1 L9°1 9y 1 S7°1 860 vz°0

0zt

4 091

TO0O¥YXma=z&0x

1 00¢

asvaTay

5ag

554

sad

ove

08¢

(s /uyuiyby)

Z O



98

1 woaofgns ..L0aom> wnjuswol JeinbBuy S ,JswweH 84yl j0 sa|Buy uoLloadlg pE aJunbid
(Z)SIXV-2 onmeq A (X)SIXV-X. ‘
hmon_azm m#.vsz u_oozazzHmemwmhmoaaDm m._maonr.._o wszzHowmumom

(08s) I W I L
11 ST 1 AV 18°0 66°0 AN

Z 2
N..............N.....N ) o
.‘ '..
N-c.ao'-tnooo-m- '-.n a..ooooN Nn-ou 7 ov
.z 4 L NI A
oc.“ VA N-o. '

e ——

< Z 0 Q@

-t ‘. o e X X..X..X
L c X Koot g ma...wm...wm......:......J 00T

OO
;u:........:.m:.m a | -1 0¢°T
.e..o Q-’ *4.9.9.0 o0 0.0 ’
o (@} o ﬂU-.. -tofco . .. . S%censrsseanee”
Q. eeveet" 00l o O.*
). . Q- .0 )

(bap)
35vdT13Jd sad Ssd sad s8d mom .



99

Z 109fgns ‘uUoi10opA WNyuawoW Je|nBuy s ,usumeH @yl 40 sa(Buy uoli1oaJdlqg :GE 2unbi 4

(Z)SIXV-Z ‘(O)SIXV-A ‘(X)SIXV-X
140ddNS 319NIS 40 DNINNID3E=SSE ‘1d¥0ddNS 378N0Q 40 ONINNID38=SQ04d

(088) 9 W I &

B1°¢C S6° 1 €L 1 Z2Ss° T 6C° 1 L0 T 08°0C 1%°0
= )
£ N§§ .
- lv\
y4 %
- .....\ll.m:f.m. g 7
= - i . M-- p.oo- oao . -
E-Z 2. .
o-o oj{
-m. .N.
Pz
!

B M@ S s \\ . i

- X X X X 2 mu

e T A I T e R o

— .lv- Q.x- J-QM -oo e, o c.ud E“m o %o

ocno v.t. X ..-. g
..M:l\. J/\Wt o -
. K ailiiies Y] o~ -
ol g o.f
IR, : _
tom!ol.lhu --.c c.-cOI . &.\,o
. @ ~jo. 5
L % -
(WIM ~4 Oc\o
asvaayg sag Ssocd sdd ssd sad SSga sad

0t

0t

06

0L

06

01T

0€T
(bop)

< Z U AaAmM



100

A
€ 109{gns ‘Jojoap wnjuawol Je|pbuy s ,uswweH 8yl 4o s8|Buy uol1oauiq :9E Sunbi4

(Z)SINWV+Z *(O)SIXV-A *(X)SIXV-X
L1HOddNS 3TONIS 40 ONINNID3E=SSE ‘1¥OddNS 378n0a 40 ONINNIDIg=Sag

(oe8) A W I L.

.,Hm.a L9°1 9¢v° 1 SsC T S0°1 6L°0 9670 ve'o
@
- / 4 OT
2ot 2 e E T
v'..'
2 znk. | z-Eag Ea 4 ot
mc. .I.N L+ ez 1y 3-&1‘“ n\Nsoa
- " 2z < e
oo.ﬁN!o‘oNoawo%-h .vom-ocoamo\oo
. -1 0S
i
4 0L
X.dx X ~
w\q.woﬁ-.\ (.l-wﬁ Nﬁ.-.ooo.lv'wm. i O m
oy v-..nvmoL m.o.%. (..Nn Wﬁ-.%wm!o} b X « X ~un nm
i .-N%%Wrs.. o X x w.n.\...!.\zl!..t..\ ~E X
T = 5
0.0, QOO @uad 01T
4 0¢€T
(bap)

5ad

< Z' Y Aan



B4

101

pa
I3
4

Z-axis. These figureg show the angular position of the plane
of the hammer in space, which will bggperpendicular to the
vector. The angle of thi§ plane with the vertical at the
beginning of each throw was § =~ 35° for Subject 1, 6 = 9°
for Subject 2 and 6 = 25° fQE Subject 3. This angle
increased dur@ng theﬁsinéle support phases and decreased

1

during the double support phases.

)

D. Kinematics and Kinetics of thé Body.

Selected trajecjories of the center of mass of the body
(CMb) in different p}ines are presented in Figures 37, 38,
39 and 40. In the Y+Z plane, Subjects 2 and 3 had similar
trajectories of CMb. In the X-Y and X-Z planes all three
subjects presented similar-trajectories.

The maximum verticél displacement of the CMb in each
turn was less than 0.12 m. for all subjects. In the Z-axis
the CMb’moved in the oppogite direction to the hammef except
during the last turn when the maximum height of the CMb
occurred at the release point same as the maximum height of
hammer.

Figures 41, 42 and 43 represent the CMb radii of
curvature. These figures indicate that the highest rotation
of the CMb occurred at the end of the double support and
beginning of the single support phase. The radii of the CMb
bgcame smallest at the same time as the radii of the hammer

became greatest. Subjects 2 and 3 presentéd nolsier

oscillations of radius than Subject 1.
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Figures 44 and 45 1llustrate the resultant velocities
of the CMb for ;ubjects 1 and 2. The velocity of CMb for
Subject 3 was similar to the one of Subject 1. Subjects 1
and 3 presented a gradual increase of CMb velocity from turn
to turn with the global maximum 1n the last turn. Subject 2
achieved the global maximum velocity 1n the second from the
last turn. The maximum velocity for each turn occurred at
the beginning of the double support phase and remained
relatively constant until {he middle of this phase. After
this point there was a rapid decrease in the veloéity and 1t
was least during the transition from dauble support to
single support phase. At the same ‘time the velocity of the
hammer reached i1ts local maximum for each turﬁ. It was the
velocity component of CMb along the Y-axis which mainly
contributed to the maximu m. This, together with the 2
component (Figure 46) indicated tﬂat in the first half of
the double support phase the direction of the CMb's velocity
was backwards and up (Y-Z plane, direction of throw).

The linear accelerations of the CMb for Subject 1 are
presggted in Figurev47. The accelerations of the other
subjects were similar to the one presented in Figure 47
except about the Z-axis which are presented later in this
chapter. The acceleration of the CMb became negative about
all the axes 1n the double support phase. This indicated
that in the double support phase the forces were transmitted

to the hammer which obtained its maximum acceleration at the

same time. The acceleration of the CMb in thé Z-ax1ls reached
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-28

-35

1.04 1.25 1.51
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T I M E (sec)
BDS=BEGINNING OF DOUBLE SUPPORT, BSS=BEGINNING OF SINGLE SUPPORT
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0.32

Y-AXIS(O), Z-AXIS(zZ)

X-AX1S(x),
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m

Acceleration of the CMb i

Figure 47

the X, Y, Z Axes, Subject 1
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maximum and minimum values in different instances for
different phases and for different subjects. In the fir;t
turn the makimum occurred after the BDS point while in the
other turns this maximum occurred before that point. In the
last double support phase Subject 2 had a continued decrease
§£ acceleration until the release point. This did not occur
wgth Subjects 1 and 3, who, after achieving a minimum
acceleration when the hammer reached its MIN-Z, increased
the éMb acceleration to a local peak jﬁst before the release
point (Figures 48, 49 and 50).

Figure 51 represents the moments of Hngrtia of the body
about the center of mass’'of the system for Subject 3. About
the X and Y-axis the moments changed from minimum to maximum
in every phase. About the Z-axis, Subjects 1 and 2 showed a
generally lower moment in the first turn than in.the other
turns. In the last turn for Subject 1, in tlhe lasp two turns
fpr Subject 2 and in the last three turns for Subject 3, the
momeﬁt became maximum at the beginning of the single support
phase, then became minimum when the hammer reached the MIN-Z
point. Increase of the moment of inertia about the Z-axis
occurred in the double support during the time interval
between the MIN-Z poinf and the BSS point.

Figures 52, 53 and 54 represent the angular momentum of
the body about the center of mass of the syste m. There was
a gradual increase of the angular\momentum of the body from

turn to turn. The.global maximum occurred in the second from

the last double support phase for Subjects 1 and 3, and in
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the last single support phase for Subject 2. Increase 1in the
apgular momentum of the body occured during the first two
double support phases for Subject 1, and during the first
three double support phases for Subject 3. Subject 2
presented increases in this parameter during all but the
last single support phases. Subject 2 also presentea greater
oscillations of the angular momentum during all the throw
than aid the other subjects. During the last double support
phaée, all subjects maintained a relatively constant éngular
momentﬁm until the MIN-Z poing. After the MIN-Z the angular
momentum decreased rapidly until the release point was
reached.

The direction angles of the angular momentum vector of
the body for Subject 1 are presented in Figure 55. These
angles together with the direction angles of the same vector
of the hammer (Figure 34) indicate that the planes of
merment of the hammer and body becaﬁ§§§§rallel in the

middle of the double support phase j§§§ befofé\the hammer
reached the MIN-Z point. |

Thé angle of the knee joint of the supporting leg was
analyzed. During the throw this angle ranged from 75° to
160° for all subjects. In each turn the angle was greater at
the BSS point and least at the BDS point (Figures 56, 57 and
58). All subjects reached the greater"éngle of the knee 1in
the last double support phase. During all but the last turn

each subject presented a different pattern knee of

flexion/extention. Subject 1 presented the same flexion and

4
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extension in the first and second turn. Subject 2, presented
a gradual increase in extension after the firsé@turn, while
Subject 3 presented a gradual decrease of extension in the
first three turns. Subject 3 started flexing his knee before
the double support phase hiad terminated. This could indicate
that he did not use all the double support‘time for force
production. All the subjects started knee extension before
the BDS point in the last turn. Subjects 1 and 3 reached
maximum extension before the releasé point, whiie Subject 2,
was still exfending his.knee at the time of release point.
The angle of the hip line with the shoulder line ranged
from 8° to 47° for Subject 1, 3° to 50° for Subject 2 and 6°
to 59° for Subject 3 (Figure 59). In each turn the angle was-
greatest at the BDS point. The local minimum angle for each
turn occurred before the double support phase was terminated
and the angle started increasing again in the same phase.
The angles of the trunk with the X, Y and Z-axes
changed as in Figure 60. Relative to the X and Z-axes the
angles became maximum during the last double support phase,
when the athletes applied a final force\upon the hammer. In
the same phase the angle of the trunk with the Y;axigrbecame
minimum before the release point and started increasing

again,
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E. Kinematics and Kinetics of the System

The analysis of the kinematics and kinetics of the
system was based on the movement of the center of mass of
‘the system (CMs) and the movement of the body segments plus
the hammer about this point.

Figure 61 represents the spatial coordinates of the
CMs, for Subject 1. The coordinates of the CMs point for the
other subjects were similar to the ones presented in Figure
61. The maximum Z for each turn occurred in the middle of
the single support phaée, while the same maximum for the CMb
occurred at the end of the double support phase. Figures 62,
63 and 64 represent thg trajectory of the CMs in the
different planes for Sugject 3. Subjects 1 and 2 presented,
trajectories similar to Subject 3. In the horizontal plane
the CMs moved in an parabolic epicycloid mode.

Figures 65, 66 and 67 represent the radii of curvature
of thé CMs for all the sub%ects. The CMs presentedlthe
greatest translation at the\end of the single support and
beginning of the double support phase. This translation was
caused mainly by the movement of the CMb, which in this
instandepmoved in the direction of the throw. The greatest
translation among-all the tugns occurred at the beginning of
the last double support phase. At this point, Subject 1 had
greater translation than the other two subjects, achieving
the highest velocity of his CMb at that point (Figure 44).

The resultant velocity of the CMs for each subject 1s

presented in Figures 68, 69 and 70. The three turns allowed
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: (1'/140
Subject 1 to havé smoother velocity of CMs compared with the
other sﬁbjects who used four turns. There was a gradual
inéreasé in velocity from turn to turn with the global
maximum in the last turn. The maximum peak for Subject 1
occurred at the last BDS point. After this point the
velocity decreased to a local minimum and increased again.
Subjects 2 and 3, achieved their global maximum close to the
release point., In the other turns, Subject 1 achieved his
maximum and minimum velocities at the beginning of the
double support phase and at the beginning of the single-
support phase respectively. Subject 2, achieved the maximum
at the beginning of the single support phasé and the minimum

at the middle point of the samg/phase. Subject 3 who

he

presented the great%st oscillations in vélocity, achieveﬁ a
first maximum at the end of the double support and a second
maximum at the end of the single support phase.

The linear velocities about the X, Y and Z-axes for all
the subjects are presented in Figures 71, 72 and 73. It was
the velocity in the Y direction which mainly contributed to
the resultant velocity of the CMs.- There was no common
pattern of movement for the three subjects.

The acceleration curves of the CMs are presented in
Figures 74, 75 and 76. The greater acceleration occurred in
the direction of the throw (Y-axis) fLr all the subgécts. In
the last turn,~Subject 1 achieved a great acceleration about
the Z-axis, while in the direction of the Y-axis the

acceleration was very small or negative. The same did not
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, BSS=BEGINNING OF SINGLE SUPPORT

Y-AXIS({o), Z-AX1S(z)

X-AXIS(x),

BOS=BEGINNING OF DOUBLE SUPPORT

Y, Z Axes, Subject 1

}i

Acceleration of the CMs in the

Figure 74
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Y, 7 Axes, Subject 3

Acceleration of the CMs in the X,

Figure 76

QO
o
L‘-J - H
[} () [op
A .
- < —— ror—— =
— . el
- S S
(6% e ® otvattormsee, _,..-:“
y [P T et TSI
N e voemes T Maas T —
& ,-.4"""""-‘-" m
9] e % St e \:2 a
0o R ey -~ 5
- .,.::”:\ »
o ...-.-»o-""'q.< :N w
—— M"‘/ e ~ Vo) -J
N ,,4'-.-3" N < O
U . P U . rd
n o - ~
o sy SN sl
-~ P aatad S
e e T % .
‘:':___ ) ..'_‘,.4"' O
T el —~—O e} —_
» : e o S ™ g N
@] ot bl —
3! -~ K, P et O . — rad .-(2
e e e S Z
o .y = —
Sttt *‘?ﬂ:.‘. ""'"”"2. -&__\"\ )l ’(‘)\ 8 é
vl R '@' evavensmevas vO "-ﬁ O. o m
C) ¢ N e P D = w (|,|) -
[o¥) o - s ot oy vy ~— iy
Lo FSE e eomise e N ® o
. ______,....4....--"“'—-“.,
B «--{ﬁ""" PSSP o o
- [ = R
S ™ S O ki
lana ot odll iy ~ Q >
v ey, Lo S i Ay
W et e ‘s o S -
Pl 3 N —
e Do ok X
""*'\m—-.‘—m::‘.ﬁ,— . W~
x, TE—— @
e - e ‘3,, Lw Y
v Qo o 9" Rl LB a
(9P :.,.. “;-‘ [T N 1
0 aaat Lo < x
,:y*;;;: P w
o et ‘: o
.}?---...‘ —'.x o
;: j::‘;‘h‘-.m—-. Cetovoneey z
PRI =
i 0 - Z
M o~ L]
Ul A e . O
{:; ] :')C o N M-"‘w o) g
B - ;
o, " - ‘n
haga s TN Seetotres cvevene s el -~ . . 0
tg:; Le9]
A L
A g ennean O
1 1 1 L 1 e 1 4 1
o [Tg} o [Te} (] un (o)) <t
— [ [ — r;‘( .TI ("l
|

O UMW JEECE-OZ




Lre

6]
99

Q)

[S)

{kg*m*m)

28

21

1.21

1.¢4

(.ol

u?

(]

Coe 0o

E

T 1 M

(cec)

BEGINNING OF DOUBLE SUPPORT, BSS

BEGINNING OF SINGLE SUPPORT
Z-AXIS(z)

X-AXIS(x),

BDS

147

Sub ject 1

Y

Figure 77: Moments of Inertia of the System about its Center of Mass
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occur with Subjects 2 and 3 who had the same acceleration
about the Y-axis as about the Z-axis. |

The moments of inertia of the system for Subject 1, are
presented in Figure 77. The moments of -inertia of the systéhy
for the other subjects are similar to the ones of Subject 1.
About the X-axis and when-the hammer reached its MAX-Z the
moment of inertia became greater than about the other axes
in all the turns. After the first turn was completed, the
moments of inertia about the Y and about.thevZ‘axis changed
in the same fashion. About the Z-axis the moment of-inertia
‘became minimum in the middle of, the last double support
phase. This was a result of the athletes' effort to apply
all the forces in the vertical direction which drove the
system necgssarily closer to the vertical axis.

Figures 78, 79 and 80, represent the instantaneous
angular velocity of the syste m. There was a gradual :
increase in the angular velocity of the system from turn to
turn. It became maximum before the last BSS point fo:
Subjects 1 and 3 and before the release point for Subject 2.

Figqures 81, 82 and 83, erresent the angular momentum
of the syste m. The angular momentum of tﬁe system about the
Z-axis was similar for all the subje;ts.ﬁAboutvthe Y-axis
this momentum decreased gradually from turn to turn becoming
minimum iﬁ the last BDS point. — |

Figure 84 represents the external torqués of the system
for Subject 1. About'the Y and Z-axes these torques weré

maximum at the beginning of the throw and were minimimum at

Y

-
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the end of the throw. The torqgues remained very small in the
single support phases and increased in the double support

phases.

" Figures 85, 86 and 87 represent the direction angles of
the angular 5omentumﬁkector of the syste-m. The angle of
this vector with the Y and Z-axes started increasing in the
single support phase and became minimal at the end of the
double support for all the subjects. The maximum angles -of
this vector were found to be: 130° with the Y-axis and 41°
with the Z-axis for Subject 1, 123° with the Y-axis and 35°
with the Z-axis for Subject 2 and, 125° with the Y-axis and
35° with the Z-axis for Subject 3. These angles occurred at
the last BDS point for Subject 1 and Subject 2, while
Subject 3 achieved this angle in the mid%}e of the last
double support phase.

Figure 88 represents the trajectories of the angular
momentum vector for different subjects.vThese figures
indicate thét while the system rotated about an axis which
was defined by the anguiar momentum vector, the angular
momentum vector was also rotating about‘;%other axis. This.
axis passed through the CMs point and intersected the ground
in the center of curvature of the orbit described byvthe
ground intersection of the angular momentum vector. The
second axis was the axis of precession of the syste m.

The total kinetic energy of the system for Subject 1 is

presented in Figure 89. The energy was mainly rotational

rather than translational (Figure S0) and inreased graduaily
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tic Energy of Translation of -the System, Subject 1
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Figure 90
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in the same way as the angular momentum of the syste m.

F. Discussion of Hammer Throwing

The velocity of the hammer increased gradually from
turn to turn, with a local increase in the double support
phase and a local decrease in the single support phase. The
global maximum velocity occurred 10 to 20 milliseconds
before the release point. Theoretically, the hammer should
have reached maximum velocity at the instant of release. The
fact that it did not could be a result of data smoothing, of
misdetection of the release frame or ghat the analy;ed
subjects did not‘ﬁﬁilize the ﬁaximum velocity of the hammer .
To'ensurelthat thejtiming of the maximum velocity was not
affected by the smoothing of the data, the velocity was
recalculated using ra:\aata. This test confirmed the time of
occurrence of the maximum:velocity to be as presented above.. .
By filming at 100f/s, at Ahe release point the hammer moved
~-30 cm from one frame to the other. If there was a
migdetection of the release frame then the hammer had been
;eleased in an interval of = 60 ém. However, in such a case
the height of release would have been = 80 cm which ‘seems
unreasonable to believe. Also, assuming negligible air
resistance during the flight of the hammer and by using
equation (1), the calculated heights, angles and velocities
of release\could produce throws over 90 m. It is therefore

reasonable to acdept that the athletes did not utilize the

maximum velocity of the hammer at the release point.
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The height of release was lower than the standing \
‘height of the athletes' shoulders and it depended on the/
acceleration of the hammer in the vertical and inﬂthe
throwing directions rather than on the height of the
athletes.

The angle of release, although none of the athletes
achieved the calculated optimal, was a critical factor for
the finalzthrowing distance. To improve the angle an athlete
must learn how to break his horizontal motion and alsé\how
to achieve an-angle of the plane of motion of the hammer
which is closer to the optimal angle in the last turn.
HoweQer, the length of the hammer might prevent this angle
being achieved during the last turn since the ground would
interfere.

A faster single support than double support phase for
all the turns was a common characteristic of thf three
subjects. This was achieved by using the last part bf the
double support phase for initiating a fast turn. During the
first half of the double support phases the CMb had achieved
the greatest velocity in the direction of the throw. The
torque of the EMb about theesupportin§ foot. created by the
new‘position of the CMb with respect to the supporting foot
obliged athletes to make a fast landing of the free foot.
The free foot landed behind the supporting foot in the (Y,

-X) section of the circle and in an angle of 70° measured

from the Y~-axis in the direction of rotation,
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; The acceleration of the hammer increased gradually from
tufn to turn with maximum local peaks in the double support
phéses. In the single support phases, athletes accelerated
ghé hammer by rotating very fast and by reducing the moment
of inertia of their body about the vertical axis. It was the
duration of acceleration in the double support phase rather
than the maximum acceleration that improved the final
throwing distance.

The shoulders were continuously driven by the hips,
while the hammer was continuously driven by the arms. This _
“was accomplished by a very fast legs/hips rotation in the
single support phase which allowed the athletes to have the
greatest possible hip-shoulder angle at the beginning of the
double support. It was ohly at the changing points from one
support to the other that the hammer assisted the rotation
of the system slightly.

The trunk was utilized by the athletes to transfer the
angular momentum from legs/hips to the hammer. It received
angular momentum from the legs/hips in the doublé support
phase and transfered it to the hammer in the single ;upport
phase. Only in the last double support phase, after the
force production from the lower limbs had been terminated,
did athletes use the trunk as a force production system to
improve the final velocity of the hammer. After this pbint,

{
the shoulder musculature participated in increasing this

parameter.
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\ ,

The knee joints achieved maximum extension at the
release point, while {ﬁJthe other turns extension was less
than maximu m. This knee flexion/extension pattern helped
athletes to rotate faster in the single support_phases.

The moments of inertia of the body about the X and Y
axes reached a local maximum and a local minimum in every
phase of the throw. About the vertical axis and &t the end
of each double support phase the moments became maximum and
decreased from there .to the end of the double support
phases. This helped athletes accelerate the hammer in the
single support phase, even without utifﬁzing any force
initiated by the legs.

The hammer and the CMb rotated in parallel planes only
at the point before the hammer reached its lowest point in
the double support phase.

The system:athlete + hammer translated at the end of
the single support and beginning of the double support
phase. This translation was greater for the thrze turn
throw, because the athlete had more freedom to move.
Translation in the direction of the throw was least in the
last turn for the three turn throw. The fourth turn did not
allow athletes to break the translation of the systen,
resulting in a.lower angle of release and probably a lower
release velocity of the hammer.

3 | The angular momentum of the system incsgased in the

double support phase and decreased or reméiﬁgg relatively

constant in the single support phase,
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_The direction of the angular momentum vector of the
body came closer to the vertical at the middle pointfof the
single support phase. At the same time the direction of the
angular momentum vector of the hammer was at 1ts greatest
angular displacement from the vertical axis.

The torgques for the rétation were mainly applied to the
system during the double support phase.

The maximum angular velocity of the system for each
turn occurred at the end of the double support phases. The
time of occurrence of the global maximum angular velocity is
important because it allows athletes to transfer the angular
momentum of the system to linear momentum of the hammer. The
result of bad timing was reflected in the radii of curvature
of the hammer; Subjects 1 and 3 achieved a greater length of
radii that did Subject 2.

A fourth turn served basically to smooth initiation of
the throw rather than for ipcréasing the dynamic parameters
of the syste m. This tufzicould be detrimental in final
distaﬁce since at the release'point, athletes had the

tendency not to break the horizontal movement. In the last

turn, linear momentum of the system could not be transferred

to the hammer. The cost could be a reduced angle of release
of the hammer and possibly a reduced release velocity. A
common mistake for Subjects 2 and 3 was that their CMs
reached maximum velocity just before the release point,
while Subject 1 achieved this maximum at the beginning of

the last doublé support.
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A heavy athlete will have some advantage over a lighter

<

athlete although this does .not seem to be a critical factor
since a lighter athlete can balance the lack ogeéreat mass
by rotating faster. The height of the éthlete does not seem
to be a critical factor either. Although a tall athlete
could theoretically achieve a greater radius of rotation uf
the hammer and a better angle of ;elease, the present
analysis has demostrated that this did not happen. An ideal
hammer thrower would have very strong and fast legs, very
good coordination, andqa strong lower back. "A strong kid
who is a very good dancer".

The system:athlete + hammer can be charééterized as a
heavy assymetrical'top which describes precessional motion.
Since the angle of precession of the syStém varied, anothef

characteristic of the top is nutation. The axis of

precession of the system can be ésed_%n the coaches language

Q. , -
.. Nyl :
as the axis of rotation. s e

o



V. SUMMARY AND CONCLUSIONS

The purpose of ﬁhe present study was to develop a technigue
for analysis of the hammer throwing event and to analyze the
technique of world caliber hammer throwers. To develop the
technique for analysis, the DLT 3-D cinematographic method
was tested. These tests included different mathematical
models for image refinement, as well as the use of different
calibration trees for the derivation of the calibration
coefficients. It was fougd that a tree, geometrical in
shape, together with mathematical model IV for image
refinement (Karara ahd Abdel Aziz 1974), gave the most
accurate results. ?g? RMS error of measured versus simulated
coordinétes of thekébntrol points was: RMS(X) = 0.24cm,
RMS(Y) = 0.19cm and RMS(Z) = 0.26cm. Six points were chosen
to be treated as unknowns in the outside area of éhé
calibration tree. The error of these points was fopnd to be:
RMS(X) = 0.27cm, RMS(Y){= 0.60cm and RMS(Z) = 0.72cm. The
latter error indicates that a smaller calibration tree can
be used to caiibrate larger areas. o

The calibrationxtree which gave the best results was
used for the calibration of two cameras in the data
collection of the hammer throwing study. The data were
collected during the 1982 European Championship and the best
throw of each of the three medalists was analysed. Two phase
locked cameraé were used for dﬁta collection. A Lagréngi%n

polynomial was used for the time matching of frames, based

on an external event which was a light of 10 Hz generated by

1£Q
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an external light generator and recorded on the sides of the
films. The basic DLT equations together with model IV for
image refinement (Karara and Abdel Aziz, 1974) were used for
the transformation of the digitized to real life coordinates
of selected body and object points. Digital filters we}e
used to reduce the noise inherent to the data. The deriveq
formulas for analyéis of the dqta were based on rigid body
dynamics and can be used for analysis of any rotational
movement . \ ’

The fEEths of the analysis of hpmmer throwing can be
summerized as follows.

i. A faster single support phase than double support phase
was a coﬁwon characteristic for the three analyzed
subjects.s%he torques of the CMs with respect to the
supporting foot were the main reasons for the fast
single support phase.

2. The height of release was lower than the height of the
shoulders and it depended on the acceleration of the
‘hammer in the vertical direction rather than on the

. Leight of the athletes.

3. The angle of release was a critical factor for the final
throwing distance. However, the length of the hammer
might prevent this angle being-achieved during the last
“turn since the ground would interfere. °

4. The angle of the plane of rotation of the hammerrstarted

from an acute angle with the horizontal plahe and

gradually changed from turn to turn to the release
A&
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angle.

The length of the radius of curvature "of the hammer
decreased from turn to turn until the instance when the
hammer reached the minimum point in the Z-axis during
the last turn. After that point the radius started —
increasing to become infinitive at the release point.
The hammer was continuously driven by the athletes and
it was only at the chaﬁging points from one suppogt to
the other that the hamher slightly assisted the rotation
of the system.

The velocity of the hammer increased gradually from turn

. to turn, with a local increase in the double support

10.

11.

phase and a local decrease in the single support phase.
The maximum velocity occurred 10 to 20 milliseconhds

before the release point.
\

The acceleration of the hammer increased gradually from

N

turn to turn and inﬁthe double support phase. In the
single support phasé, the athletes improved the
acceleration of the hammer by reducing the moment of
inertia of gheiﬁ body about the vertical axis.

The hammer and the center of mass of the body rotated in
parallel planes‘only at the point before the hammer
reached 1its 10west.point in the double gupport phase.
The maximum vertical displaceme?t of the CMb in each
turn was less than 0.12 cm. $§ | e : @f{

The radius of curvature of the CMb had noisier

oscillations in four turn throws thaf~in a three turn
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13.

14,

15.

6.

17.
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throw.
The linear velocity of the CMb increased during the
single support phase in all the turns.

The moments of inertia of the body about the vertical

axis increased during the second half of each double -~
suppoft phase. During the single support phase this
parameter decreased continuously until approximately the
mi@dle point of the double support phase.

The angular momentum of the body increased from turn to

~

turn reaching the maximum during the second from the

last double support phase.
<
The knee joints achieved maximum extension at release

»

) 5
point, while in the other turns extension was less. Only

in -the last double support phase, after‘the forces from
the lower limbs had been transferfed to fhe hammer, did
athletes activéiy use the trunk/gs a fofce production
system.

In the horizontal plane the CMs moved in a parabolic
3

epicycloid mode. .

The system.ﬁathlete;hammer trahslated at the end of the
s

s;ngle ﬁﬁpport and ﬁ;glnnlng of double support phase.

This translatlon was gregter for the three turn throw,

because the athlete had more g;eedom to move.

Translation in the direction .of the throw was least in

the last turn for the three turn throw. A fourth turn

did not allow:athletes to break the translation of the

system, resulting in a lower angle of release and
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19.

20.

"
21¢

22,

23.

173

probably a lower release velocity of the hammer. ' .

There Qas no common pattern-of linear velocity of theu
system among the analysed subjects.

The vertical acceleration of the syétem during the las£
turn and the minimum horizontal a;celeration in the
direction of the throw in the same turn seem to be
critical for a successful throw.

The maximum angular velocity of the system for each t&;n
occurred at the end of the double support phase. |
The angular momentum of the system increased at the end
of the double support phases and decreased or remained
relatively‘constant in‘the single support phases. It was
the angular momentum of the body\that directed the
motion. The direction of the angular momentum vector of
the body came close to the vertical at the middle point

of the singleTSUpport phasé. At this time, the body

rotated mainly about an almost vertical axis. During the

i
‘same time the direction of the angular %omentum vector

of the hammer was at 1ts furthest angular displacement

EN

ﬁfom the vertical.

The torques for the rotation were mainly applied upon
the systeﬁ in the double support phase. !

The kinetic ene:gx,qﬁ/ihe system increased gradually
from turn to/turn and it was mainly caused by the

rotation rathet than the translation of the system.
) [ ]

N
N
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On the basis of the results of the hammer throwing analysis

the following conclusions seem justified.

1

- An athlete should try to reduce the time of the single

support as much as possible. This can be achieved by a)
tilting backwards during the first half’of the double
support; b) by dsing»the second half of the double
support phase for a fast rotation; c) by rotating the
free leg close to the supporting leg; d) by placing the
free foot behind and on the right of the supporting foot
and at a angle about 250° to the direetion of thef
throwing axis (measuring the angle_from the back of the
circle and in the direction of the rotation).

A fourth turn is basically used for a smooth initiation
of the throw rather than for increasing the dyn%mic
parameters of the system. This turn might cost {n final

distance since at the release point, athletesthave the

tendency not to break the horizontal -movement. The cost

. could be a reduced angle of release and p0551b1y a

reduced release 0eloc1ty of thé ) ‘hammer .

It is the duration of acceleration in the double support
phase rather than the max1mum acceleration that 1mproves
the final throw1ng distance.

A heavy athlete Wlll have some advantage over a llghter
athlete, although this does not seem to be a @rltlcal
factor, since a lighter athlete can offset the lack of
great‘mass bfirotating faster. The height of the athlete

does -not seem to.be a critical factor either,
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The length of the hammer might prevent athleﬁ%§3from
achieving an optimal anglé of release since‘the Qround
would interfere. Therefére, thisrlength might have to be
reduced in order for athletes to perform mechanically
efficient throws.

The system: athlete+hammer can be characterized as a
heavy assymetrical spinning top which deécribes ®
precessional motioh. The angle of preceésion of the
system varied, thétefore the “dystem had another
characteristic: nutation. o -

An ideal hammer thrower could be %n athlete whp has very .
strong and fast legs,.wﬁo has very good coo%dination?gg@
who has a strong lower back‘muscle system and, who. is"

not necessarely very tall. "A strong kid who is a.very

good dancer”. . ' . _ o

o

'Recommendations

of

The: following studies are recommendations on the basiﬁ;
the present—findings:
The DLT method should be tested on a statistical base to

estimate the expected error in areas which are not

covered by the calibration tree.
& o
New methods should be found for the calculation of the

anthropometric data of the body segﬁents, based on

indi(&dual éﬁ racterisics of the analysed subjects.

Mo e

A statistical, study is recommended for comparison of the

kinematic and\>inetic parameters of different level

8]

s
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hammer throwers.
4. Direct force measurements should be~used for the studyxof E

the forces involved in the different phases of the throw

o =

and thelr dlrectlon

o

5. A study of hammer throw1ng in the last turn of the
movement with a filming rate of at leést 300 f/s is
recommended to examine whether the highest velocrty ofT'
the hammer does occur before the release point as 1t was
found in the present study. If the results of such a
study agree with those in the present study, thén R
biomechanists, coaches and athletes shoui seek,new e

throw1ng technique which will allow athletes to utlllze

this maximum velocity at the release p01nt

[

o
Lixs

Pl 3 o : j o o i
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Description of the DLT Technigue.
This description is based on the technique invented by

Abdel Aziz Karara in 1971 and presented by other

investigators (Marzan et al, 1975; Walton, 1981; Miller et
. ~-

al,-1980). The fechnique'is based on the basic theoretical

—
~

condept of photogrammetry, thaé is: thé*ghofsgraph, being a

perfect plane, is a centfal projection of the object space. ’
Figure A.1, is a geometric representation of the

transformation of the 3-D object épace onto the 2-D

secondary image. The following manipulations are based on

vector analysis. \

Let: .
P = xn, * yn, + zn, (A.1)
Q = an, *+ bnn + cn, (A.2)
where: x,y,z,a,b,c,%0,Y0,20, are scalars
and n; (i=x,y,z,k,m,n) unit vectors.
I1f{s = the magnified principal distance then:
*S = -SN, 2 ‘ ‘ (A.4)
. t\ a J\k ¢
‘-;%\_g L -
Let:
p = un, *+ vn, . 4 (A.5)
g = Yol * VoD: (A.6)

where: u,v,uo,Vo are scalars
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From figure 1 we have: .
£»= pP-9g A : (A.7)
From (A.5),(a.6),(A.7) \W
'ro= (u - udn, *+ (v - veln, | (A.8)
Fufthe: observe that: .
T=r+s - - a.9)
W, )
From (A.4),(a.8),(A.9) )
T = (u~- uln, + (v -"vo)n, - sn, (A.10)

Py

..

Assume that n, and n, are orthog&ﬁal; then equation (A.10)
- . X

can be written as follows:

i T = (u - uelny + (v - vo)nm - sn, (A.11)

3

Using equations (A.11) and (A.2), and the colineafity

conditions, we obtain:

a C } ‘ y
= - - ° (A.12)
U = Up g
A
b o , ,
- - - ~ | (A.13)
v = Vo S

e

From equations (A.12) and (A713),we have:
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. & ,
- 'as
U = Uy - — . (A.14)
c .
N bs - ’ -
Vo=V - - : r+ (A,15)
> c @ .

\\z’aa\ '
u and v are the scalar compénents of the vector p which

locates the image'point I, with. respect to the.image
reference frame.  In digitizing, we have digitizer units not

necessarily the same as those used to establish theng;ject

reference frame. , ‘ 4
‘/’ Introduce scale factors C,, C, for n, and n,
/
/4
“directions, respectively, and let;
— ' | _
U= Cyu ’ (A.16)
V= Cpv " : ‘ (A.17)
s
From equations (A.14), (A.15), (A.16), (A.17),
aS\"\ )
U = C1(Uo - - ) f (A.18)
. ! o) ’ i\
N . bs. ‘ '
V= Clvgr- =) \ (A.19)

c .~ Q
A

Equations (A.18) and (A.19) ekpress the digitizer

b

coordinates U,V in terms of a,b,c.

v A

From Figure 1,

'3 ~

Q=P-R ' ' . (a.20)



=

From equations (a.1), (a,2), (A.20): | £

4 g .

0 = (x ~ xo)n, + (y - yo)n, *+ (z - zo)n, (A.21)
¥ . : ¢

Let 641, 612, 6,1, be the direction ‘cosines of n, with

respect to the objisf space frame (n., Dm, ﬁ')' 6,4, 022,

v

0,5 bekthe direction- g051nes of n, with respect to the same

N
frame; apd 65, 632, 633, be the dlrectlon cosines of n, w1th

>

respett to -the same frame. Then:

lrﬂx = 0440y + 6420 + 043N (A.ZZ)
Ey. = 92'12;‘ +>'8223m + 623.’1" ‘ \f1-23)
n, = 6340, + 320y + egggn ' _ - (A.24)

The 6,; (i=1,2,3, j=1;2,3) form a 3-dimensional rotation

matrix.

-

From equations (A,21), (A.22), (A.23) and (3.24), we obtain:

-/ o .
Q = [(x - x0)8,, + (y = yol)Bz1 + (z - zo)631]n,

i [(x - Xo)91z + (Y ">Yo)922 + (z - ZO)('?, TV

+

[(x = %0)64: + (y = yo)O23 * (z - 2,)635]1n,  (A.25)

~

Equate the coefficients of equations (A.2) and (A.25):

a = (X - x0)911 + (Y - Yo)921 + \’(Z - 20)0;1 (A.26)
. i X

b = (.x - Xo)91z + (y ".YO)ezz + (z - 20)632 (A.Z?)

c'= (X - X0)6is + (y - Yo)825 + (2 = 25)85, (A.28)

From equationsA(A.14), (A.15), (A.26), (A.27) and (A.28):
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>
+

Lzy '+ L3Z «t :Lg

™

™)
»
+

Ljoy + L11’Z'+ 1

c

wn
<
+

o Ley * L2 + Lg '
V = ~ e - (A.30)
Lgx + L;oy-".*' Lyiz +: 1 »

i F]
whére: v
L, .é“%);(ﬁo_e.fa‘- s6,,)/d ' (a3
L, =‘g;\(uoe;3 - 56;,)/d o (aa32)
Ly = Cy(uoBas - 564,)/d (A.33)
Ly = = Cil(uobys = s8,1)%0 + (Uobz23 - S824)Y0
¢ (Uobss - $631)z01/d (A.34)
Ls = ‘clz(voie,_a - 56,,)/d | (A.35)
Lo = Cslvofss - s622)/d - (h.36)"
Ly = Cz2(vofss - s852)/a o -(A.37)
Co = - Cef(voBis = S61a)%0 * (vobas - SO2z)Yo
+ (Voei; - SGazyZo]/é ' . "(A.38)
Lo = 605/ ¢ V-
| Ly = 8.:/d L s
Lii = 633/@ S (a0
with: ; : E | . | - N w g
= ~(Robis * Yobzs * ZoB33) L (aa2)

Equations :(A.29) and CA;3D) are the basic Direét,ﬁinéar
;Transfﬁfﬁétioqs (DLT) quationéﬂ Y : 4
L; (i=1,2,ﬂ....1lf are the transformation coeffiéieﬁts.n
expressed in terms o{ seventeen separate.elements. |

ﬂxo,YO,zq) define the .location of the camera with respéqt to

)
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3

o, L L \
- \

the object reference frame. - o . , A

B

¢

(uo,vo),defineftﬁe location of‘the principalfpoint in Ehe:J”

4 ~ .
secondary image.

8 . .
(Cy,Ca) deflne the scale factors. e s
S defines the' ﬁ”gﬁlfled/prlnc1pal dlstance. N\ ;
Gl M

; are the dlrectlonal cosineg defining the orlentatlon Xf

the camera, with respect to the object space. If the vect rs.

6 : \

n, and n, of the’ secondary 1mage are not orthogonal then

the angle between the two vectors is the e1ghteenth elemen
which express the eleven transformatlon coeff1c1ents.>Au

m1n1mum of six control p01nts is reqp1red in order to solv

¢ ~

a system of 24 IK = number of control p01nts] 11nean$
equations and find the'Values of the eleven coeff1c1ents.

This is an overdetermlned system and to- solve it a least
ﬁ

squares method can be used. However, to reconstruct the
-, B
three dimensional spatlal coord1nates, at least two

more systgns of 2(K) linear eQuations eath have to be solved

for the eleven coeff1c1ents of each camera. The DtT

-

equations then, are used to solve for the unknown (x,y,z)

.observations from different pointS‘are required. Here two or

spatlal coordlnates of points in the space. In: thlS case a .

S,

- system of 2(J) [J = number of observat1ons] llnear equatlons

has to be,solved'for three unknowns. The same least squares}

method can be used.
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Figure A.1 Geometrical representation of the transformation

of the- 3-D object space onto the’ projected secondary image.

A
B
N

o(x,y,z)

(LI L I}

érigin in the object space;

hd

Origin in the image plane;
Projection center;
Mp(uo,voe).= Principal point;

I(u,v)
N, ,0m,Ns = Right handed orthogonal triad;
,n,,n; = Right handed orthogonal triad of unit vectors;

- w e w on

[—ln wio >IYlsls
N o= ZRO -

1=

oo Xt Ol -~

O 0T

- w w =

-e

= A point in the object space;
= Photographic image of point O;

‘Image plane orthogonal unit vectors;
Position vectors defining relative positions of
Position vectors defining relative positions of

ition vector defining relative positions of Mp,N;
ition vector defining relative positions of I,N; ©
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Solution of the Linear System

Let N be the number of the CP used then the systeh of
equations takes the following matrix form: (X, Y,, 2, are
the real life coordlnates of the CP (i=1 to N number of
C.P); U,, V, are the dlgltlzed coordlnates of the same

points.)

X1 ‘Y1 Z<| 1 0 0 0 0 ‘X1U1 ‘Y1U1 "'Z1U| L1 U1
Xz Yz Zz N 0 0 0 0 “X2U2 ‘Y2U1 "ZzUz Lz Uz

X3 Y3 Z3 1 0 0 O 0 ‘X3U3 ;Y3U3~ "ZaUg L3 U3

_ : = (r.43)
X, Yo 2, 1 0 0 O =X, Upn “YaUn =2,U0n||Ls Un

0 0 0 0 X1 Y1 Z1 1 ‘X1V1 ‘Y1V1 "Z~|V1 L7 V1
0 0 0 0 XZ Yz Zz 1 —XZVZ -Y2V2 _Z2V2 Lg VZ

0 0 0 0 X; Y3 Zg 1 "X3V3 -Y3V3 —Z3V3 Lg' Vg

0 0 0 0 X, ¥Ya Z, 1 =X,V =¥,V =Z,Vq||Lsx U,

[ 2] Isllc)

' The solution of the above system is given by the following

matrix equation:
B = (A'"AY (& -C) (A.44)

where: A' is the transpose of the Jacobian matrix . [A] and (A"A)"l is
the inverse of the (A':A) matrix.

The same equations are used for the second camera. After the

b
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= 1 to 11) and the L, (i= 1 to 11) of th% first and the

FJ'Second camera respectively have been calculated, the

*®

‘ - . PUSA .
reconstfyction of the 3-D real life coordinates of the CP 1s

' J ; . . .
achieved.by the following matrix equation.

(UL,
(VLg
(UL,
(VL

the s

where

'

\

- L1) (UL10" Lz) (UL11' Lg) (Lo - U) ~//f4'//htr_:‘.
- Ls) (VL10- LS) (Vqu"' L7) (LB - V) .{“"}'35'/“.
Yi= (A.45)
- L1) (UL10_ Lz) (UL11" L3) (Lq - U)
' Z .
- Ls) (VL1(§’ ,.5) (VL11' L7) (Lg; - V)
[E] [F1 (6]

I3

olution then is given by the following matrix equation:
E-'-G =F (A.46)

: E-' is the inverse of the E matrix.

In the equations of the system.(A.45) the Li (i=1 to 11) and

U, Vv

are the coefficients and the digitized coordinates of-

the CP from the first camera and L, (i=1 to 11) U, V the

same

ESS

for the second camera.

Image Refipement

{

count
the 2

analy

The coefficients of the equations (A.29) and (A.30)
for the transformation of the 3-D object space onto
-D secondary image and vise versa. However, in film

sis the above coefficients do not count for the

distortions of the image due to the lens of the cameras and
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Al

the projector as well as to the film itself (We assumed that
the film is a perfect plane which is notﬁalways the case.)
For the refinement of the image, Abdel Aziz and Karara
(1974), have presented 6 mathematical models to be used
together with the DLT equations. These models are:
MODEL I: Linear polynomial in U and V:
AU = a, + a,U + a3V ‘ - (A.47)
AV = a, + asU + agV | o (a.48)
In this model, only the linear components of lens distortion
and film deformation are taken into consideration.
Incorporating Model.I.into the bésic DLT equations does not
change their form.&}n other words, by using Model I in the

DLT solution the number of unknowns remains 11.

MODEL II: ®ne more unknown k,; is added to Model I to account
for symmetrical lens distortion: |
AU = a; + a,U + a3V + Xk, r? l (r.49)
AV = a, + asU + agV + Yk,r? — - (A.50)

A
In this case, the DLT solution involves 12 unknowns.

MODEL III: An odd radial polynomial of the sebenth~degrde is-

added to Model I to account for symmetrical lens distortion:
AU = @, + a,U + a3V + X(kyr? + Kor* + k,r¢) (a.51)
AV = a, + asU + agV + ¥(k,r? + kpr* + kyr¢) (A.52)

The DLT solution in this instance involves 14 ‘inknowns.
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MODEL 1V: Model III is combined with a model for

asymmetrical lens distortion:

AU = a, + azU + a3V + Xf(ﬂ_k_flrz + kzr: + k3r‘)
+ P,(r? + 2X?) + 2P.XY | (A.53)
AV = ay + a.sU + O.SV + Y(k1r2 + sz‘ + k3r‘)

# Pylr? + 2Y?) + 2P.XY (A.54)
Thé® DLT solution here invb;ves 16 unknowns.
MODEL V: The same as Model‘IV, except that the radial
polynomial'accounting for lens distPrtion is 3 full
polynomial of the seventh degree:
AU = a, ; a,U + a5V |
+ X(k,r? + kpr? + k3r“ + kyrs + k;r‘)
+ P,(r® + 2X?) + 2PXY (A.55)
AV = a4 + asﬁ + agV
+ Y(k,r?* + ﬁzr’ + k,r* 4 kyr® + kgre)
+ Py(r? + 2Y?) + zp;xy ¢ (A.56)

Here the DLT solution involves 18 unknowns,

MODEL VI: Same as Model V, except the polynomial in U and V

is of the second degree, accounting for the nonlinear

-

component of film deformation:

AU = a, + a,U + a3V + a,U? + agV?

+ X(k,r? + kpr? ;ﬂk}r‘ + kyrs + ksr*)

+ p,(r{ + 2X?) & 2P;xy (A.57)
AV = ag + a;U0 + agV + agU? + a,,;V?

+ Y(k,r? + kor® + kar* + kar® + ksr*)
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+ P,(r? + 2Y?) + 2P,XY . (A.58)

. In this model, the DLT solution involyes 22 unknowns.

”

In all the above models .
U and V are the digitized coordinates of the point under
consideration, If %s'& Vs are the image coordinates of the
point of symme£ry, then |

X U-Us and Y = V - Vs,

r fthe length of the vectof from the point of symmetry to

the image point under consideration.

AU.and AV are image refinement c§mponents. e

a; (i=1,.l.,10) are coefficients of film déforhation‘

k;, (i=1,...,5) are coefficients of symmétricai lens |

distortion,

P,, P, are coeffici;%ts of asymmetricai lens distortion.'
When one of the\?bove modelé (excépt model I) has to be

used with the DLT equétiohs, then anvover*determined systemé

of 2(K) nd;-linear equafions have to be solved for tﬁe |

appropriate number of unknowns for each model: Introducing

one of the models for image refinement, eguations (A.29) and

(A.30) take the following form:

-
>
+

‘ L,Y + L3Z + Ly
- U +AU = (A.59)
‘ LgX + LioY + L2 + 1 '
£
. LgX + LeY + L,Z + Ly '
V + AV = (A.60)
’ L1QY+L11Z+ 1 )

o
‘©

]

+
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where' X, Y Z are the coordlnates of the p01nt in space.
u,v re the digitized coordinates of the point.
L; (1 ,11) are coefficients name d transformation

coé f1c1ents |
AU,AV are image refinement co%ponents of lens
dlstortlon and film deformation.

\
\

Using’oneygf,the“mathematical models for image'
L : ;
reflnement (exept model I), the number of the toefficients

-increases and an increased number of CP is requ1red Table

~

A.1 contains the number of coefficients and the minimum

quﬁber of CP required fot each model.
< ’

TABLE A.1 ‘

NUMBER OF UNKNOWNS AND MINIMAL CONTROL POINTS

'FOR EACH MATHEMATICAL MODEL

© Model Unknowns Control points
No Ref. 11 6
-Model 11 12 6
Model III 14 7
Model 1V 16 . 8
Mdgel v 18 9
Model VI =~ 22 11

For the optimal.number of the object-space control
points, a mathematical model is given by Karara and Abdel

Aziz (1974):

/ - e
S, = — (A.61)
(2(n-u)]'’?



197

»

where : S, is the:  standard deviation of thekstandard

. deviations of the object-space coordinates
S is the standard deviation of the object-space
coordinates. ‘ S
n is the number of observations (in case of two
cameras, it is twice the number of control points ),
u is the number of unknowns, :

el
The same investigskors have indicated that beyoﬁd 20: to
25 CP‘the improvements in }he results are bfobably not worth
the additional effort required‘to position the extra control

[

points.

¢

Solution of the Non-Linear System

Assume that mfdel II is to be used. The equations

(A.59) and (A,60) can be expressed in the ﬁollowing form:

L;X + LY + L3Z + Ly

F1=
+ (U + k,Xr?)(LgX + Ljo¥Y + Ly42 + 1) =0 (A.62)
Fz =L5X+L5Y+L7Z+Lg
=0 (A.63)

+ (V + R, Yr?) (LeX *+ LioY + Ly12 + 1)

Note: Model 11 doesn't include ay, a,, a3, as, as Since
these are components of the linear lens distortion and film
deformation which are included in the basic 11 coefficients.

By expressing (A.62) and (A.63) in truncated Taylor series,

we obtain:
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F,(L,+AL;, L;+ALy, L3+AL;, L,+AL,, Lg+ALs, Lg+ALs, L;+AL;,
Ly+ALg, Lg+ALs, Ly1o*AL,o, Lqs+ALyq1y Ki*AKy)

= F,(L., Ly, Lss Le» Lss LL, Ly, Tas Loy Loy, Lus, ki)

4 (AL,-T,, + AL,-T,, + ALTl,s + ALe+Tl s + ALg-T,s + ALg-T, ¢
3+ AL,M,; + ALg®I, 4 + ALg+Tl;s + ALjo Mo * ALy iy *

Bk Tiq) +ovnnn. Q N - (a.64)

n, = — o (A.65)
~ i aL 1
\-

(A, 66)

=
(&)
1]

n,, = —— (A.67)

Hig  — (A.68)
Y, 0L,

aF,
N,y = — , (A.69)
3Ls ' , .

oF ,
Mg = ——— “ (A.70)
© 3Ls

F
m,;, = —— (A.71)
3L,

- ‘ 3F ,
o N, = —4m . (A.72)
aLa . *

- 3F, ]
;g = — e (A.73)
. 3Lg



The Jacobian of the system
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. (a.74)

(A.75}

(A.76)

J (A.77)

Let J- be the above matrix, then if G is the column matrix of

the AL,, ALy, ALs, AL,, ALs, ALs, ALg, ALy, ALg, AL, ALio;

AL,,, Ak, and C the column matrix of the F,, Fz,’FQ, Fg,

L

iterative method as following:

= (Jt-3)"(3*-C)

ot s
F,,, the solution is achieved by utilizing Newton's

(A.78)
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. where J' is the transpose of the Jacobian matrix.

The elements of the C matrix and in the first iteration are
calculated from equations (A.62) and (A.63), Ey inserting
the initial values of the 11 basic coefficients as have been
calculated from the system of equations (A.44), ;nitial
value ﬁor the k, element is used the zero value. The
computer program is sét to attenuate the iterations when the
sum of the absolute values of the residuals is smaller O%f»
equal to the criteria value of 107'°, (ZIRI < 10°'°), or ”
when the system stops converging. .

1

| Simulation of the Spatial Coordinates

After the choice of the appropriate model for “the image
refinement a number of 2J system of equétions is solved for
the reconstruction of the X, Y, Z coordinates of the‘points

under considaration.

Lg (U+AU)-L, L,,(U+AU)-L, L,,(U+AU)-L, L,-(U+AU)

X
Ly (V+AV)~Ls Lo (V+AV)-Lg Ly, (V+AV)~L, 1Lg-(v+av) | .
L ; : Y|= '(Aﬁ79)
LQ(U+AU)"L1 L1o(U+AU)"Lz L511(U+AU')_-L3 Lq“(U+AU)
Z
Lg(V'*’AV)"Ls L1o(v+AV)"Ls L1'1(V+AV)_L7 La“(V*‘AV)

In order to use one of the mathematical models for
: 7 i
image refinement, one must insert the coordinates of the
- . 3o~ . o
center of symmetry of projection for each camera. These

coordinates can be calculated by using the following- two
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equations:

L,Lio * LsLy, ' :
U, = . (A.80)
Lg? + Lao? + Lyy?

[
e

©
+

-

wm
-

w
+

LeLyo * LsLy¢y .
vV, = , . (a.81)
Lg? + Lyo? + Ly,y? »

o

- . 2
The same way for U, and V, of the second camera. However,

the above equations are not valid if the CP are not
symmetrically distributed in space which is usually the
case. Therefore, one musf enter the coordinates of the
center of symmetry manually. .

After the calibration of the system and the digitizing
of the coordinates of the pofnts,under observaéion is

finished, the system of equations (A.79) is used to simulate

the ;patial coordinates of each point.

4 -
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DLT Proéramsx
The following‘programs and subroutines were written 1in

HPL languege for the H.P.9825B desk top microcomputer.

B
DATA ENTERING PROGRAM
ﬁ Tape D.L.T.I.K.
i track #0

file #0

DESCRIPTION

This program was designed to insert all the required
information for the DLT calibration.

User enters:
1. The # of all CP;
The names of all CP;

2 .
" 3. The X, Y, Z measured coordinates of all CP;
4

. User and_prOJect I.D. information.

User digitizes:
1. The U, V- coordinates of all CP from both cameras;
2. The coordlnates of the edges of each film for the Us and

Vs. o ) . . A

The computer prints all information (except users and
progects I1.D. If you wish this information in/print, it will
be recorded in trk 1, file 0, string A$[10, 60]).

After each entry the program is set- to ask whether or not
you have entered a parameter with error. If yes, then you
should type in.Yes or Y or y, and enter the correct ;
parameter. This correction feature: is not in use for names B
of the C{;or 1.D. information. ‘ -



W o1 & WO
se as “ed » “es se "

10:
11:
12:
-13:
14:
15:
16:
17:
18:
19:
20
21:
22:
23:
24:
25:
26:
27
28 ¢
29:
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*******************D;L.T.I.K.’ TRK 0' FILE O*#{***************.***"

"3-D CALIBRATION (DATA ENTEKING)":

" Cop

: ent
: dim

gsb
gsb
gsb
dsp

"IN
%
for
nex
% ]
for
ent
fmt
ent
if

wth
% "
wtb
fmt
fmt
fmt
wrt
wrt
for
wtb
ent
if

ret

"ER

if
if
if
ent
ret

*1894

yright@ 1984 by Iraklis Kollias":
"4 OF ALL C.P. ",N
BS([N,16],08(8],X[N], Y[N] Z[N),A[N, 8] s(4},B[N,3],C(N,3],A$[10,60])
"INSERT" . , | j
"DIGI"

"RECORD" oL

"PIRST STEP DGNE ++ USE FILE #1";end

Y

/

SERT" :fxd 0

"insert name of C.P."

I=1 to N;prt I;ent "NAME OF C.P.» (max # of char=16)+ + + +",BS[1I
t I - P
Insert the measured coordlnates

1=1 to N;fmt 5,£2.0,".",c;wrt 16.5,I,BS[I]
"Xea", X[I] ent “Y**",Y[I] cent "Z++" ,Z[I]
l,f2. 0 X, 016 3f9.2,z;:fmt 2 c;wrt 7.1,1, BS(I] X[I], Y[I],Z[I]
"ERROR ? (Yes or No)",QS(l]
cap(QS[1,1])="Y";wrt 7.2," ERR";wtb 7,10,13;gto -3

7,10,13;next I .
Outout and corrections if any"

7,12; fmt 1,20x,52"=" .

2,20x," CONTROL POINTS MEASURLD (X,Y¥,2) COORDg™
3,45x,"Xcoord",4x,"Ycoord", 4x,"Zcoord"f

4,21x,£2.0,".",x, c16 3f10.2

7.1; wtb 7,10;wrt 7.2;wtb 7,10;wrt 7.1; wtb 7,10

7.3;wtb 7,10 |

1=l to N;wrt 7.4,I,BS[I], X[I] Y[I],Z[I] next 1

7,10;wrt 7.1;wtb 7,12 ’

"ANY CHANGE ? (Yes or No)",QS if cap (QS$[1, 1])—"Y",sfg 1 gsb "EFR"
flgl;cfg l;gqto -5

s

R":

enp "Roﬁ $",r0;enp "COLUMH #",rl . | o o e

rl=1l;enp- X[r0]

rl=2;enp Y{ro0]

rl 3;enp 2[r0] e
"{ORE CHAJuE" ? (Yes or No)",0S$;if cao(Q$[l,1))="Y";gto -4
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41

42: "DIGI":prt "USE TUE “tree’ ORIGIN";spc 2

43: for I=1 to 2

44: if I=l;prt "FIRST FILM..." o

45: if 1=2;ort "SECOND FILM..." :

46: dsp "digi TOP END OF FILM";red 4,rl,r2;beep

47: dsp "digi BOTTOM END OF FILM";red 4,r13,rd;beep

43 : dsp "digi LEFT LEFT END OF FIL4";red 4,r5,r6;beep

49: dsp "digi RIGHIT END OF FILM";red 4,r7,r18;beep

50: if I=1:r2-(r2-r4)/2+S[1)};r7-(r7-15)/2+5[2]

51: if I=23;r2-(r2-r4)/2+»S{3];r7-(r7-r5)/2+5(4}

52: ort "DIGIT 3 FRAMES OR 3 TIMES TiE SAJE FRAME";spc 2
53: for J=1"to 3

54:: for. K=1 to N o

55: dsp " DIGITIZE ",BS[K];red 4,B[(K,J),C[K,J);:becep

56: next K : .

57: ent "L R RO R ? (Yes or No)",Q%;if cap(Qs$(1,1])="Y";9to -3
58: next J '
59: % "A[L,l)}=Ucamneral, A[L,3]=Vcameral”

“60: % "A[L,5)=Ucamera2, A[L,7]=Vcam2ral”

6l1: % "a{L,2},A(L,4]),A[L,6]),A[L,8] = S.D."

62: for L=1 to N :

63: cll “MBEaN’(8(L,1],B(L,2],8([L,3],A[L,41-3])

64: cll1 “#pan’(c(v,l),clL,21,c1(L,3],AlL,41-1])

65: cll ‘sp’(B(L,1],B[L,2),B(L,3],AlL,41-3),A[L,44-2])

66: cll ‘sp’(clL,ll,c{L,2},C(L,3),A[{L,41-1],A[L,41))

67: next L e

68: fmt 2,c9," CONTROL POINTS DIGITIZP COORDs (in digi-units)”
69: fmt 5,x,f2.0,".",cl7,£9.2,£9.4,£9.2,£9.4

70: gsb "PRINT"

71: for Y=1 to 100;dsp "second filn now";beep;wait 10;next Y;next I
72: ret

73:

74: "MEAN": (pl+p2+p3)/3+pd;ret

75: "SD":y (((pd-pl) 2+ (p4d-p2) 2+ (p4-p3)~2)/2)+pS;ret

76: :

*x12727
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17:
78
719:
80:
g1:
BZ:
83:
84:
85:
86 :
87 :
g8 :
89:
90 :
91:
92:
93:
94 :
95:
96:
97:
93 :
99:
100:
101:
102:
103:
104:
105:
106:
1u7:
108:
109:

*26247
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"PRINT" : t

fmt 1,58"=";fmt 3,24x,“Xcoord",4x,"S.D.",5x,"Ycoord",4x,"S.D."

fmt 4,23)(,“[J,",f3-0'"]",4);,"J,",f2.0,4x'"[J,",f3.0,"]",4x,"J,",f2.
wtb 7,27,69;for A=1l to 20;wtb 7,32;next A;wth 7,27,77

wrt 7.1;wtbh 7,10

if I=1;wrt 7.2," FIRST-"

if I=2;wrt 7.2,"SECOND-" ‘

wtb 7,10;wrt 7.1;web 7,10;wrt 7.3;wrt 7.4,41-3,41-2,41-1,41;wtb 7,
for J=1 to A .

wrt 7.5,J,B$[J],A[J,4I-3],A[J,4I-2],A[J,4I-l],A[J,éI]

next J

wtb 7,10;wrt 7.1;wtb 7,12;ret

"RECORD":16N+6+r0;24N+r1;64N>12 .
prt "STORAGE SPACE";pnrt "NAYML OF c.p.",r0;prt "X, ¥, 2 coord", rl
prt “DIGIT. coord",r2;vort R et bd et "
prt "Mark tiles if you haven’ 't done it yet!il!"
prt n "
prt "T#1-F#0 (I.D.info.)",650
prt "T#l-F#l (CiP.names) ", r0
prt "T§l-F#2 (X,Y,2 coords) ", rl
ort "T#l-F§3 (U,Vcoords) ", r2
prt "T§l-F#4 Us,Vscoords",208 : )
for R=1 to 10;ent "I.D. INFORMATION(lO*60char)",A$[R];next R
ent "ARE FILES MARKED ?7? (Yes oOr No) ", QS
if cap(QS[l,l])=“Y";qto +2 /
rew;trk l;mrk 1,650;mrk 1, r0;mrk l,rl;mrk 1,r2;mrk 1,208
trk l;fdf O;rcf 0,AS[*] ‘
trk 1l;fdf l;rcf 1,BS[*]
trk L;faf 2;rcf 2,X(*),Y(*),2(*]
trk f:fdf 3;rcf 3,A[*]
trk 1;fdf 4;rcf 4,5[*)
ret

e - —————— — - -
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N

CALIBRATION COEFFICIENTS (NO REFINEMENT)

+TEST

Tape D.L.T.I.K.

fi

track #0

le #1

DESCRIPTION

This program calculates the basic DLT coefficients.
-After the preliminary tests the basic DLT coefficients
together with the coordinates of the point of symmetry
stored in file #4, track #1 of D.L.T.I.K. tape. It can
be used for testing the CP‘s coordinates to determine
whether or not they are correct. After the calculation
the coefficients the X, Y, Z coordinates of the CP are
simulated and printed.
Another test that this program is featured to run is th
simulation of the X, Y, Z coordinates of the two camera
* with respect to the tree origin.

Several runs with all the points and with less points a
advisable to ensure that no errored CP participate in t
calculation of the coefficients.

are
also

of

»

e
S

re
he
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)

: 3 “*****‘k*ﬁ************D.L'T.I.K.' TRK 0' FILE l**'k*********k*******"

"CALIBRATION COEFFICIENTSF(NO REFINEMENT) +4TLS30":
"Copyright@ 1984 by Iraklis Kollias": -
dim AS[50]);" CALIBRATIOH WAITd DLT (NO REFINEIENT) "+AS

: ent "4 OF ALL C.P.",r99;r%39+A ,

dim X[A],Y[A]'Z[A}.A[AISI:H[4}3]11[3,4],N[3.3]:J{4]nK[3l,O[3]

gim BS[A,16],05[16] ' &

ent "IS IT THE VERY FIRST RUN? (Y or N)",Q$

ent "# OF CONTROL POIN%S Sb BE USED",C | | :

dim Bl2C,11],D(11,2C],¢(2¢1,G(11),E[11,11], F[11],L{2,11],3(4],P (4]
trk 1;1df 1,BS \ R 4
trk 1;13f 2,X(*),Y (*),2({*] ‘ |
trk 1;1df 3,A[*) é‘ *
if cap(2S(1,1))="¥";trk 1;1df 4,5[*]

if cap(QSll,l])#“Y";Erk 1;148f 4,L[*),S({*]
ara S+P;.0l+W ‘ g

"COEFF":0+r0 L

for L=1 to 3 by 2 e

2(L-1)+1+A;A+2+B;1+r0>r0

for I=1 to C;I+C+J . .
WX[I]»B[I,l]»B[J,S];WY[I]*B[I,Z]»B[J,S];WZ[I]¢B[I,3]+B[J,7]
O»B[I,S]»B[I,6L»B[I,7]+B[I,8]+B[J,l]+B[J,2]+B[J,3]+8{J,4]
-A[I,A]NX[I]»B[I,9];-A[I,A]WY[T]»B[I,lO];-A[I,A]WZ[I]»B[I,ll]
-A[I,BIWX[I]»B[J,9];—A[I.B]WY[I]*B[J,IO];-AII,BIWZ[I]*E[J,ll]

.next 1 :

trn B+D;mat DB+E;mat DC+F;inv E+E;mat EF+G

for J=1 to 11:G{J}+L[r0,Jd);next J

G[110[9]+G[2]G[10]+G[3]Glll]*rl

GI5]G[91+G(6]1G{101+5([7)G(JL]+r2 “
Gl9]172+4G[10]) 724G [11])" 2»r

rl/r3+5[L];r2/r3+5[L+1]

next L

fmt ,20%,cC

fmt 1,21x,"CALIBRATION COEFFICIENTS FOR T#O CAYMLRAS (",f2.0,"C.P.)"
fmt 2,20x,51"=" - ‘ .
fmt 3,21lx,"L{1,",£2.0,") =",£f14.10," L{2,",£2.0,") =",£14.10

fmt 4,21x,"FIRST CAIERA" ,13x,"SECOXND CAMERAY

tmt 5,22x%x,cC .

wrt 7.2;:;wtb 7,10;wrt 7.1,C;wrt 7,33

‘wtb 7,10;wrt 7.2;wtb 7,10;wrt 7.4;wtb 7,10

for I=1 to ll;wrt 7.3,1,L{1,1],I,L[2,1I];wtD 7,10;next 1

wrt 7.%;wtb 7,12

*7492
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44: "C.pP.RECOVERING":

45: for I=1 to 20;0»rI;wtb 7,32;next I;wtb 7,27,77
46: fmt 1,£2.0,z;fmt 2,f8.2,2z;fmt 3,74"-";fmt 4,74"="
47: fmt 5,18x,c;fmt 6,9c8

48: wrt 7.4;wrt 7.5,AS;wrt 7.3 :
49: wrt 7.6,"Xm“,"Xs",“dX","Ym“,"Ys",“dY","Zm","Zs","j
50: wtb 7,27,86,int(12/64) ,int (12)

51: for I=1 to r99;wrt 7.1,1

52: for T=1 to 3

53: L[l,T+8]A[I,l]—L[l,T]+H[l,T]

54: L[l,T+8]A[I,3]—Lll,T+4]+H[2,TI
551'L[2,T+8]A[I,5]-L[2,T]»H[3,T]

56: L[2,T+8]A{I,7]-L[2,T+4]*H[4,TJ

57: nz2xt T

5d: L[l,4]'A[I,l]*J[1];L[1,8]'A11,3]*Jl21

59: L[2,4]—A[I,S]*J[3];L[2,8]—A[f,7]+JIA]

60: trn H+I;mat Il+N;mat IJ+O;inv N»N;fat NO+K

“ 6l x[I]»rl;K[l]/W¢r2;r1—r2+r3

62: Y[I]»r4;K[2]/W*rS;r4-r5*r6 .

63: Z[I]+r7;K[3]/W*r8;;7-r8+r9 _ A
64 : if I<=C;r3“2+r10*r10;r6‘2+rll*rll;r9’2+r12»r12
65: if I>C;r3'2+r13»rl3;r6“2+rl4»rl4;r9"2+g15*rl5
66: for Y=1 to 9;wrt 7.2,rY;next Y

67: wtb 7,10,13;next 1 .

68: wrt 7.3;fmt 1,c15,f11.2,2f24.2

69: r10+r13+516;r11+r14+rl7;r12+r15+r18

70: 4(:10/C)+r1u;4(r11/C)»rll;J(rlZ/C)»:lz ' ,
71: if C<r99;{(rl3/(r99~C))+r13;J(rl4/(r99—C))»rlé;J(rlS/(r99fC))tr15
12: J(r;G/r99)*r16;J(rl7/r99)4rl7;{(r18/r99)*r18

73: wtb‘7,27,86,int(16/64),int(lﬁ) '

74+ if C<r99;wrt 7.1,"RMS OF C.P. ",rl0,rll,rl2

75: if C<r99:;wrt 7.1,"RM5 OF UNKNOWNS", r13,r14,r15"

76: wrt 7.1,"TOTAL RHS ", rl6,rl7,1rl8

77: £t l,c;wrt 7.l,"***h(Mea3urements in cm.) ";wWrt 7.4
78: wtb 7,12;wtb 7,27,09 _ &

79: ent "SHALL COEFF.. "BE REZICORDID? (Y, )",0ns _

30: if cap(Q$(1,1)])4"y";dsp "OHl! TUANK “S";wait 2000 ;gto +4
31: prt "ysl,Vsl,Us2,vs2"

82: for Y=1 to 4;prt P[Y],S[¥};spC sPlY]+S[Y];next ¥
83: trk l;rcf 4,L{*),S[*] :

‘84 trk O o !

85: % "oAALRAS COORDINATES" N s

86: for I=1 to 2;for J=1"to 3 T

87 L[I,J]*N[l,J];L[I,J+8]»N(2,J];L[I,J+4]»N[3,J]

88: next J ‘

89: —L[I,4]+O[l];—1*0[2];+L[I,8]*O[3}

90: jinv J+Njmat NO+K :

9%; prt "COORDs of CAMERA #",1

92: prt K{1}/w,K[2}/W,K[3]1/4

93: next 1

94: trk 0;dsp "G N D";end

* 21401
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REFINEMENT WITH Karara's MODELS (main program)
Tape D.L.T.I.K.

track #0

file #2 B

DESCRIPTION

This program was designed for the calculation of the .
DLT coefficients whenever one of the mathematical models for
_image refinement is used
‘User enters
The # of all the CP in the data file
The Model # (2,3,4,5,6) to be used
The # of CP to be used for the calculatlon of the
coefficients
The computer
loads the CP's data
loads the appropriate model to be used
calculates the coefficients
s¥mulates the X,Y,Z coordinates of all the CP
prints in the small prlnter the sum of the residuals after
each iteration .
prints the measured, simulated and their differences
prints the RMS error of the CP '
prints the RMS error of the unknowns if any
records the calibration coefficients in track #1, file
5(11), 6(III) 7(1v), 8(V), 9(vI1)

FY

T

After the tests of tke points are finished it is adviseble
to run the program with all the correct p01nts in order to
calculate the ‘coefficients that will be used in the recovery
of the coordinates of 'points of interest.
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5 L e
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WREFINEMENT WITi Karara’'s MODELSY:

"Copxrlqht@ 1984 b% Iraklis Kollias"s - .
ent "% of all the C.Points”,P;P+r93

oD “MODEL TQ BE USED",M;M»>r98 '

ent "$ OF COWTROL POINTS TO BC USED",C

if M=2;12+Q

if M=3;14+Q

if M=4;16+0

if M=5;18+Q
s if M=6;22+Q &'\\
: Q+r97 ' ‘ : .
: dim L{2 11],5[4],H[4.3]u1(3r41iNI3,3],Jl4],K[31:9l3].A$[50]
: d:_lm X[Pi,Y[P],Z[P],A[P,B]‘,Mip,z,S] ;3% [Prgl
: dim Ql2,Q1,E[Q,0),8(2C,Q},D 0, 2C},C12C1,51Q),FlC),P(2,2]
. trk 1;1df 1,BS
. 13f 2,X[*}.Y(*],2(*]
: 1df 3,A{*] .
. 14f 4,Li*],S([*]
. for I=1 to 2 '
: for J=1 to 11:L[1,J]1+QlI,Jl;:next J I
. for K=12 to r97:0+9[1,K];next K
: next I -
. for I=1 to r99 , ’
: A[I,1]+M[1I,1,1]);A(I 3]+M[I,l,2];A[1,5]+H[J,2,l];A[I,7]+M[I,2,2]
: A{I,l}—s 1{>n I,l,3§:A[I,3g—S&2]»M 1,1,4] .
. al1,5)-si3)+M{1,2,3]:A L,7'-S 41+4(1,2,4] ‘
: for J;l to.2:y (M[I,J,3] 2+M([1,J,4) 2)+M[1,J3,5)inext J
: next
. trk 0:14f r98+1,57
: "g":,01lsW
: gsb "MODEL"
! urt 7.3:;fmt 1,cl5,f11.2,2£24.2
: r26+r29*r32;r27+r30+r33;r28+r3l*r34
: {(r26/C)+r26; (£27/C)»r27;{(x28/C)+r28
¢ 1f C<r99;y(r2 /§r99‘C))?12 'é(r30/(r99—C))»rBO:J(rBl/(rBB-C))f$3l
. J(r32/r98)+r3254 (£33/r99)»x33;V(r34/r99)~r3d -
: wth 7,27,86,int(16/64),1nt(lo)
. if C<r99:wrt 7.1,"R45 OF C.P. mor26,r27,128
 {F S<rdgiwrt 7.1,"Ru5 OF UNSNOWNS",r29,r30,r3l
« wrt 7.1,"TOPAL RO ",r32,r33,r34
. fmt ,ciwrt 7,"*** (Measurements in ca.)";wrt 7.4
: wtb 7,12 | :

S trk lircf rag+3,p[*] . »
: wtb 7,27,69;d350 "D O NEL !!!";end

"ooUT":fnt ,20x%x,cC : ’ :
for 1, 51%, "CALIBRATION COEFFICIENTS FOR TyO CAILPAS (", £2.0,"C.F )
. fat 3,21x,"P(L,",£2.0,"] =r,£14.9," P12, £2.0,"] =", £14.9
ot 2'%0% 51 %=h;fat 4, 21x,"FIRST CAMCRA",13x,"5oCOND CANZRAT: LRt 5,21x,
©wrt 7.2:wtb 7,105wrt 1.1,C;wrt 7,A8;wth $710%wrt 7.2;wct 7.43wth 7,10
Yor 1=1 to rodiwet 7.3,1,p{1,11,1,P{2,1);wtd 7,10;next I
+ wrt 7.2;wtbh 7,12 ‘
for I=1 to 20;3+rI;wtb 7,32;next I;wtb 7,217,717
fat 1,£2.0,z;fmt_2,£8.2,z;Eat 3,74"-";fat 4"74"=";fat 6,2x,9c3
¢ fmt 5,18x,ciwrt 7.4;wrt 7.5,AS;wrt. 7.3
ort 1'%, gkt vgsm "4X"  Ym®,"Ys", "dy ", "Zn", 25", "dZ"swrt 7.3
588tb 7,27,86,int(12/64),int(12);ret ~

€
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SUBROUTINE MODEL‘II

Tape. D‘.ﬁ\.T.}I'.K.

K , {rack #0
file #3

DESCRIPTION ,
This subroutine is loaded at the end of the program in

file #2. The basic DLT equations are used together with
equations (A.49) and (A.50) for the calculation of the
calibration coefficients. '
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S,

" S" )
9“ODEL"'"REFINBMENI’ WITH MODEL $#2 (KARARA)"+AS
“”opyrlght@ 1984 by Iraklis Kollias": N
for I=1 to 2; ;0+r24»r25;1076+r90 ,

rl": beep £xd 0; :1+r24+r24;dsp " PLEASL DON'T TOUCH+",r24
1f r24>8 ani r25>r90; gto "OK"

for J=1 to 12:001,31+G{J}+»rJ»Q(I,J]);next J

for J=1 to C; J+C+L o
N(r9X[J]+rlOY[J]+rllZ{J])+l+ 7
N(rlx[J]+r2Y[J]+rBZ[J])+r4»rl‘ .
W(r5X[J)+r6Y(J}+r72([J])+r8+rl9

S[J,I,ll*O;M[I,I,2]0PA1[J I 3]1+Q;M{3,1,4)1+-0;1(J,1, 5]1+3
0+r120572+r20;P+rl2RS 2»r

r17r20-r18+C(J);rlir2l- rl9+C[ ]

WA[J]+B[J, 1] +B[L,5]) ;wY[J)+B(J,2])+B(L,6]);Wz([J}+B(J,3])~B[L, 7)
l»B[J,4]+B[L,8]

v+B{J,5]+B[(J,6]+B[J,7]+B[J,3]+B[L, 1]»B{L,2]+B[L,3]+-2[L, 4]
-ﬂK{J]rZO»B[J,9]--WK[J]rZI»B[L,9]

vy {31r20+B(7,10);-wy{Jjr21+B]L, 10]

-W2{J]r20+B[J,11]) ;- Wz [J]r2l+3{L,11]
—Qr175°2+813,12]1;-Rr175"2+B[L, 12]

next J

if C>6:trn 3+Dsmat DB+E;mat Dﬂ+F inv E+E;mat PF+Q

if C=6;inv B3»B;mat BC+G

r25»r90 O»r22+r25»r26

for T=1 to 12;if abs(G[T])<=10" (- lO),r22+l+r22;next T
for J=1 to 12; abs(J[J])+r25+r25 next J

fxd 10;prt r25

for J=1 to 2C; abs(C[J])+r20+r26 next J

if r22<i2;gto "rl"

"OK"s:for J=1 to 12;9Q1(1,J3]1+P[I,J];next J

fxd 10;prt r26;fxd 0; ort r22, r24 next 1

$¥ " C:C)L]1?'|

C.P.RECOVERING": c0+r26+r27+r28+r29+130+r31>r32+»r33+1r34+r35
for I=1 to 2;for J=1 to 12 ;P(1,J]+Q[1, 31 inext Jinext I
for I=1 to r99 wrt 7.1,

for J=1 to 2; J+2»L \

for K=1 to 12 Q[J K}+rK;next K

Mi1,3, lJ»O MII,Jd 2]*P M[I J, 3]*u,4[1 J,41+R;4{1,3,5]~
O+r12RS 2+r20,P rlZnS 2»r21

rl-r9r20+11[J,1) ;r5-r921+1i(L,1]
r2—rlUr20+d{J,2},ro—rlOer*n L,Z%
r3-rllr20+1u{J,31;r7-rlir21-00{L,3
r20-r4»3[J};r21-r8+J3 (L]

next J ¢

trn l+I:mat Iil+N;mat IJ+O;inv N-U;mat NO+K
x[I]+rl;K[l]/w»r2,rl r2+13
Y{I]+rd4sK([2])/wrrb;rd-r5+rd
2l1}»r7;K[3]/d+»r8;7-r8>r9

if I<=C;r3 " 2+r26+r26;r5 " 2+4r27+r27;13 "2+r23+r23

if I>C;r372+r29+129; r6>2+r30+1r3J; r9°2+r3lsr3l

for Y=1 to 9;wrt 7. 2 rYy;next Y

wtb 7,10,13;next I

ret
59 )
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SUBROUTINE MODEL III
Tape D.L.T.IQK.
“track #0

* file #4

DESCRIPTION

This subroutine is loaded at the end of the program in
file #2. The basic DLT equations are used together with
equations (A.51) and (A.52) for the calculation of the
calibration coefficients.
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: -"Sll

. ?WOD SL" :"REFINEAENT WITil MODEL #3 (KARARA)"-»AS
: "o {tlghtq 1934 by Iraklis Kollias":

for 1 to 2;0+r24+r25;1076+r390

rl": beep,fxd 0; l+r24»r24(dsp " PLLASE DON'T TOUCH»",r24

1f r24>8 and r25>r90,gto 'OK"

for J=1 to 14;Q{1,J)+5(J)»rJd»0Q{I,J] ;next J

for J=1 to C;J+CeL - ,

A(r9XEJ}+rlOY[J]+rllZ[J])+l+rl7

wW(rlX [J]+r2Y(J)+r32[J})+r4~rl8

: N(rSX[J%+roY J]+L7Z[J])+r8+rl9

: MJ,1,1]+0;H J,I,Z]*P;j[ 1,31+Q;M([J,1 4]»R,AlJ 1,51~

: O+0(rl2572+4r13s"4+4rl4s 6)+r20 P+R(r125 2+rl3S 4+r 45 6)*r21
: rl7r20—r18+C[J]:rl7r21—r19»C[L]

: WX[JJ¢B[J,l]+B{L,5];WY[J]*B[J ,2]+*B[L,6]:WZ([J)+B[J,3})~B[L,7]
+ 1+B8[{J,4]+B[L,8

: 0+B[J,5]1+B{J,6)+B[J,T]»3[J,8]+B[L, 11+B{L,2)}+B[L,31+3[L,4]
. ~wx(J]r20+B(J,9];-wX[J]r21l+B[L,9] "

: -wWY{J]r20+B J;lO];—WY[J]r21+B[L,lO]

: —wo[J]rZO»B[J,lll,—WZ[JLer*B L,11]

: -Qrl7S72+B J,lZ],—er?; 2+8 L,lZ}

: —er?S 4+3[J,13];:;=Rrl7574+B[L,13

: -Qrl17s 6+B J,14];-Rr17576+B(L, 14]

next J

if C>7;trn B+D;mat DB+L; mat DC+F;inv E+L;mat EF+C

if C=7;inv B+B;mat BC+S .

r25+r90 O+r22*r25»r26

for T=1 to 1l4;if abs(u[T] y<=10" (- lO),r22+l»r22 next T

: for J=1 to 1 abs(”[J])+r 5+r25;next J »

s fxd 10;prt r 5 *

for J= 1 to 2C:abs(C[J])+r26+r26;next J

if r22<l4;gto "rl"

"Oou":for J—l to 14;Q(1,J]+P[I,J];next J

fxd lO prt r26;fxd 0; ort r22, r24 next I

: g "cOdT"

Z.P.RECOVERING": O+r26+r27*r28»r29»r30+r3l+r37»r33»r34+r33

: for I=1 to r99;:;wrt 7.1,1

« for J=1 to 2; J+2+L

for K=1 to 14 P[J Kj+ri;next K

]:O;M[I, 2]+P 4[1 J,3]

2+r1338” 4+rl4o 6)+r2 ;
r5-r9r21-+11[L, 1

15, 2] 06-r10r 2111 [L;
sr7-r1lr21+01{L

r21-r8+J1L)

"

trn H»I;ma

Ha¥;mat 1J+0;inv NeN;mat NO+K
X[I]»rl;K{ :

I
]/w»rZ rl- r2+r3
: Y[I]+r4;K([2])/W»r5;r4-r5+10
Z{I]l>r7;K[3]/Wrr8;r7-r8+r9
if I<=C;r3 2+r26»r26 ro "2+r27+127;r9 2+r28»r28
¢ if I>C; r3” 2+r29+r29; r6 2+r30+r30; r9 “2+4r31-r31
: for Y= l to 9;wrt 7. 2 rY;next Y
wtb 7,lO,l3;next 1

ret
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SUBROUTINE MODEL IV
Tape D.L.T.I.K.
track #0

file #5

DESCRIPTION A
This subroutine is loaded-at the end of the ‘program in

f:le #2. The basic DLT equations are used together with
Lions (A.53) and (A.54) for the calculation of the
tion coefficients. D

&



» pdo
Y
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3
3
3
3
3
p
' R:4(1,3,51+5 |

314]" 7
2)+2r162R+r20
2) +2r15QRrR+r2l

: O+Q(§ 25"%2+4r135°4

: 3574+rl4
1] ;r5-r9r _

] ' ;r6~r10r21+3{ 2] ‘ _

. r3-rllr20+HlJ, sr7-rllr2l-+1 3] .

: r20-r4+31[J 21-r8+J(L}] .

next J . .
IH+i;mat 1J+0:inv N+1i;mat NO-K
]/W*ré;rl—rZ»rﬁ ' ‘
]/W»r57r4—r5+r6

9
0
1
3
g? if 1<=c;r;”2+r26+r26;r6“2+:274:27;r9"2+r28»r23
6
7
3
2

if I>C;r3 2¥r29+r29;r6 2+r30+1r30;519 2+r31lsr3l
. for ¥Y=1 to 9;wrt 7.2,rY¥;next Y
: wtb 7,10,13;next'1

: ret.

7535

0: gto "S*"
1l: 9MODEL?:"REFINEMENT vIITH MODEL #4 (KARARA)"»AS
2: "Copyrighte 1984 by Iraklis Kollias":
3: for I=1 to 2:0+r24+r25;1076+190 i
4: frl":beep;fxd 0;l+r24*r24:dse " pLEASE DON T TOUC:+",r 24
5: if r24>4 and r25>r90;gto "OK o w3
6: for J=1 to l6;Q[I,J]+G[J]¢rJ+Q{I,J];next J : :
7+ for J=1 to C;J+C-L
B: N(r9X[J}+rlOY[J]+rllZ[J])+l*rl7
9: W(rlX[J +r2Y[J]+r3Z[J])+r4*r18 .
lO:~W(rSX[J]+r6Y[J]+r7Z[J] +r3+rl?3 .
11: M[J,I,l]:O;M[J,I,Z]»P;w[J,I,3]+Q;M[J‘I,4]+R;H[J,I,5]»3
12 O+O(rlZS‘2+rl3SA4+rl4Sk6)+r15(5.2+2Qh2)%2r163R+r20
13: P+R(rl2572+rl35 A4r14576)+rlG6 (57 2+2R 2)+2rl15)R»r2l
14 rl7r20—r18+C[J];rl7:21-rl9+C[ %
15 NX{J]»B[J,I]»B[L,S];WY[J]»B{J, ]+E(L,6];NZ[J]+B[J,3]+3[L,7]
16: 1+8 J,4l»B[L,8} . - ‘
17: 0+8(J3,5]+313,0 +BlJ,7]»B[J,8]*B[L,l]+B[L,2]*B[L,3]+3[L,4]
18 —WX&J%r20»B{J,9]'-NX[J]r21+B[L,9] '
1oi “wy(3}r20-8({J,10f:-Wy[J]r21+E[L,10] . y
20 -WZ[J];20+B{J,11];—WZ[JJr21+B[L,ll]A~. o
21: -Qrl75 2+B J,lZ];—er7S”2+B[L,12] :
22: -Qrl7S_4-+B J,l3};-er7SA4oB[L,l3]
23: -Qrl7s’ 6-+B J, 14 :-Rrl73  6+E L,14] »
24: -r17(S72+29 2)*BEJ,15]'-rl7(S J+2R"2)+8([L,16}
25..<2c17QR+B[J,16]»B{L,151
26: next J . ’
27: if C>8;trn B+D;mat DB+E;mat DC+F: inv S-+Ljmnat EF+GC
23: if ‘C=8;inv B+B:mat BC+G “
29+ r25+r90;0+r22-r25+r26 . . ' : g
3J: for T=1 to 16; if abs(G[T})<=10 (—40);:22+l+r22;next T
31: for J=1 to l6;abs(G[J])+r25»r25;next J
32: f£xd 10;prt r25 ) k
33: for J=1l. to 2C;abs(C[J])+r26*r26;next,J
34: if r22<lé;gto "rl" .
5. "OK":for J=1_to lG:Q[I,J]»P[I,J]pnext J
6: £xd 10;prt r26:£xd Osprt r22,r24;next I
7 ﬂsb "cOJT" . - .
3 C.P.RBCOVERING":0+r26+r27+r28»{29»r30»r31»r32+r33+r34»[35
9: for I=1 to r99:wrt 7.1,1
0: for J=1 to 2:;J+2+L
4%: for K=1 to 16;P[J,K]) ext
43
44
45
46
47
48 :
49:
5 .
5
5
5
5
5
5
5

5
*
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SUBROUTINE MODEL V
»T?pe D.L.T.1.K.
tréck‘#o
file #6

DESCRIPTION ‘ | Ril\\,
This subroutine is loaded at the®end of the program in .
file #2. The basic DLT equations are used together with
equations (A.55) and (A.56) for the calculatlon of the
calibration coeff1c1ents.
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MODEL " :" REFINEMENT WITH MODLL #5 (KARARA)"+AS3
“Copyright@ 1984 by Iraklis Kollias":

for =1"to 230>r24+r25+r26;10 6+r90 )
Wo1":peep;fxd 0;l+r24sr24;dsp " PLEASE DON T TOUCH»",r24

for J=1 to C;Jd+
W(r9x J]+rlOY
W(rlx[(J]+r2Y(
W r5X[J]+r6Y&

1

L
—

"
- O

¥

o

W

@

M[J,I,1]1+0:M
r189)R+r20

+ 1145 53r16556) 2rl
) 5r170L-r21

+
38+C[L% o’ ¢
1+-BlJ, ]*B[L,6];WZIJ]*B[J,3]*B[L.7]

Lr 1] "B[lel"BlLr 3]"5[[114]

<+ 4
P —
o
@~
——

P+R(r12572+rl
r36r20-r37+C
JX[(J1+B[J,1]
l+BtJ,4]*B[L 3

9}

[
0+C{3 5] ~B(3,
—axi3{r20+-B1J
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R*2)»B[L, 18]}

if C>9;trn B+D;mat Do+C;mat DC+Fiinv E+E;mat CF+G

if C=9;inv B+B;mat 3C+G

r25+r90;0+>r22+125+r26 . )

for T=1 to 18;if abs(G[{T])<=(2)10 (—10);:22+l»r22;next T
for J=1 to lB:abs(G[J])+r25+r25;next J

fxd 10;prt r25 ‘

for J=1 to 2C;abs(C[J])+r26+r26;next J

if r22¢18;gto "rl"

"OK":for J=1 to lB;Q[I,J]»P[I,J];next J

fx3 10;prt r26;£fxd O;prt r22,r24;next 1 A

sh "cOoJT" -

C.P.RECOVERING“:0+r26+r27»r23»r29*r33+r31+r32»r33+r34»:35
for I=lpto r93;wrt 7.1,1 FYEN

for J=¥ to 2;J+2+L '
for K=1 toO 18;P{J,K}»rK;next K
A5, 3, 115050(1,3,8)2058(1,7,3]122:3]
0401 12572411357 341457441155 5+ 1o
P+R(r12572+4rl3S 3+r145744r1 55 5+r
r1-r9r20+11{J, ];rS—r9r21»H[L,l]
r2-rl0r2Q+il J,2); 6-rl0r2l+U L,2\
r3-rllir20-HlJ 3];r7-rllr21+t L,3
£20-r4+J [J]);r21-r8+J (L]
next J
trn HeI;mat IH+N;mat 1J+0:inv N»N;mat NO+K
X[I}»rl;K[l]/N»r2;rl-r2»t§
Y&I]»r4;K{2}/W+r5;r4~r5+r6 .
Z11) +r7 ;K43 /WsrB8;r7-r8>rd S
it 1<=C;r3 2+4r26%1r26;10 2+4r27+127;r3" 2+r23+r28
if I>C;r3 2+r29»r29;r6_2+r30+r30;r9 2+4r31+r31
for Y=1 to 9;wrt 7.2,cY;next Y o
wtb 7,10,13;next I G

oo~
{

-

-

218



219

SUBROUTINE MODEL VI
Tape D.L.T.I.K.
track #0

file #7

DESCRIPTION

b This subroutine is loaded at the .end of the program in
‘file #2. The basic DLT equations are used together with
equations (A.57) and (A.58) for the calculation of the
calibration coefficients.




() : n :3 11]
1: leDEL"’"REFIJEuBNF WITiI ¥MODEL $#6 (KARARA)"+AS
2 "Cop{rlght@ 1984 by Iraklis Kollias":
3: for 17to 2;0+r24>r43+r25+1r26; 1076+r90
4: "rl":beep; £xd d; l+r24*r24 dsp "“PLEASL DON’'T TOUCH=",r24
5: 1f r24>8 and r25>r90;gto hog®
6: for J=1 to 22:0[1,J}+531{J])+rJ+Q[I,J]; ;next J
7: for J=1 to C; J+C+L
8 w§r9X[J}+rlOY[J]+rllZ[J])+l+r36
9: (rl1x{J)+r2y([(J}+r32(J])+rd+r37
10: N(ISX[J}+I6Y J}+r72(J)) +r8+r33
11: M[J,1,1]+0;M{J,1,21+P;d[J,1,3]+Q;M[J,1,4]+R;.4[J,1,2]+5
12: 0+4Q(rl2s 2+r138A3+rl4SA4+r158A5+r168A6)+rl7(SA2+ZQA2)+2r18QR»r4l
13: P+P(£12a 2+rl33 3+rl4s 4+r;58 5+r16576)4rl18 (S 2+2R 2)42r17CR»14?2
14: r190°2+4r20P  2+rd4l1+r39;r21072+4r22P 2+r42-r40
15: r36r39-r37+C[(J];r36r40-r38+C[L]
16: WX[J1+BI[J, l]»B[L,S],WY[J]*BTJ,2]*B[L 6);W2(J)}+B(J,3]+B[L,7]
17: 1+38 [J,4]*B[L,8]
18: O*B{J 5]*B[J,6]*B[J,7]+E[J,8]»B[L,l]+E[L,2]*B[L,3]#S[L,4] ,
19: -ax(3]r39+873,9) ;-wA[J)rd0>B[L,9]
20: —NY[J]I39*B{J,10};-wY[J]r40+B[L,lO]
21: -w2[J]r33+B[J,11);-we[J]rd40-B(L, 11]
22: -Qr363h2*3[J,12];—Rr365A2+B[Lr12]
23: —QrBGSAB»B[J,lB];-Rr365n3+B[L,l3]
24: —Qr36SA4*B[J,l4};—Rr36SA4+B[L,l4%
25: -Or363°5+B(J,15] ;-Rr365 5»E{L, 15
26: AQr365°6+3[J,16] ;-Rr365 6+3{L,16]
27+ /-536(5"2+20" 2)»8{3,17] ;-r36(s 2+2R"2)+B{L,18]
254 —2r36QR+E[J,18]+B[L,l7] R
: -136072+8[3,19]-8[L,21]);-r36P"2+3(J,20]+3[L,22]
: 0*5[3,21]+3[J,22]+3[L,l9]+B[L,20]
: next J

if C>1ll;trn B-»D;mat D2+C;mat DC»F;inv E+Ljmat LF»G
if C=11;inv B-+3;mat 3C+G

r25+r990; 0»:43»[25+r26 R

for J=1 to 22;if abs(G[{J])<=(2)10 (-10) ;rd43+1+rd43;next J
for J=1 to 22;abs(G[J])+r25+r25;next J

fxd 10;prt r25

for J= 1 to 2C; abo(C[J])+r26+r26 next J

if r43<22;gto "rl"

"OK":for 721 to 22:;Q[1,3)+P[1,3);0+G[J] ;next J

£xd 10; ;ort r26;fxd 0O; prt rd3, r24 next I

9833 "COJI‘"

9o o0 ¢4 o4 oo

: F RECOVERIN""'O*IZb»r27*:28»r29*r3)*r3l¢r32+r33»r34»r35
: for/ I=1 to r99;wrt 7.1,1
: fo J =]l to 2; J+2+L
: for K=1 to 22 P[J n]»rm next K o
: M[I;J,l] 0:M[1,d,21+P;411,3,3)-0:M(1,J,4]1+R;1][1,J,3]+5
: 0+0(r12572471 35" 34145 4+r155, 541165 6) +117(5 24227 2)+2r189R-r4l
. P+R(rl25°2+r135°3+r14574+r15575+r10576) +rl8 (5" 2+42R™2)+2r 17CR+144
. r41+4r19072+4r20P " 2+r39;r424r210°2+r22P" 2+1r4l
: rl-r9r39+1(J,1];r5- r9r40»H[L 1]
r2- rlOr39+H[J 2],ro~rlUr40+V[L 2]

r3-rllr39+1{J,3];r7-r1lr40+11{L,3]

r39- r4+J[J],r4O r8+J[L]

next J

trn i+I;mat IH+N;mat IJ+O;inv N+N;mat NDJ+K

X11}»rl; h[l]/i+r2 rl- r2+rc3

Y[ ]+rd; K{Z]/w»rS rd-r>+r6
I1}+r7;K{3])/w+r3;r7-r3>r9

if I<= L,r3 z+r26+r26 ro “2+1r27+127; r9 2+r23-1238

if I>2:r3724r29+129; r6 "2+r33+r3); r9 2+r31+r31

for ¥Y=1 to 9;wrt 7. 2 rY;next Y

wtb 7,10,13: next 1

ret

79
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DATA DIGI FOR DLT
Tape D.L.T.I.K.
track #0

file #8

DESCRIPTION » }
With this program, the user digitizes the points of

interest from films from both cameras.

The maximum # of frames for 20 p01nts in each frame is N =

87 frames when the memory capacity of the computer is 64

Kbytes. If more frames are to be analysed the digitizing

should be done in groups of points. The latest was the case

for the hammer throwing analysis where 222 farmes were

analyzed for subject 2.

User enters

# of analyzed points from each frame

# of frames

5 lines of comments with 60 characters each

the names of the points for analysis -

track and file to record the U,V coordinates of the points

from the film of the first camera

track and file to record the U,V coordinates of the points

from the film of the second camera

marks the files for the coordinates (the # of bltes 1s

printed)

The computer prints the comments, the names of the p01nts

and the files where the data are recorded.

&

The film from the first camera is to be digitized first. The
film from the second camera is to be digitized second.




OO~ UT D WR O
) (e ee Y3

15:
16:
17:
18:
19:
20:
21:
22:
233
24:
25:
20
27
26
29
3J:
31
32
33:

% "****************D.L.T.I.K., TRK 0' FILE 8****************"

: % "DATA DIGI FOR DLT"

“Copyright@ 1984 by Iraklis Kollias":
ent "4 OF ANALY3ED POINTS IN each FR.",G .
ent "# OF FRAMES [20points max#=87]",N
G»r0;dim A[N,G,2),D[N,G,2),A$(G,30],08([20],B5(5,60]
for I=1 to S5;ent "I.D. and COMMENTS",BS[I];:next I
fat 2,20x,c;for I=1 to S;wrt 7.2,B$[I];next I

for 1=1 to G;prt I;ent "NAME OF POINT",AS{I];next I
fat 2,20x%,£3.0,2x,c;for I=1 to Giwrt 7.2,A5[I);next 1
for I=l-to 2

for J=1 to N

for K=1 to G i

dsp "DIGITIZE POINT",AS (K] ;red 4,U,V;beep

if I=l;U*A[J,K,l];V+A[J,K,2]

if I=2;U+D[J,X,1};V+D[J,K,2]

next K -

ent "DISI ERROR ?2? [Yes or ...}",QS

if cap(Q$(1,1])="Y";dsp "DO IT AGAIN";wait 1500;gto -6
dsp "NEXT FRAME IS ",J+l;wait 1500;next J

for K=l to 100;dsp "LOAD TidE -SECOND FILM";wait 555jnext K
next I

dso "INSERT U,V TAPL; 'CORTINUE ";:sto

prt "EACH FILE AC" N*G*16,"BITES" ;spC 2

dsp "MARK THE FILES then "CONTINUC ";stp

ent "trk FOR U,V from lst CAJERA",r0;ent "FILE",rl
trk rO;rcf rl,Aa(*]

ent "trk for U,V form 2st CAMERA",rZ2;ent "FILE",r3
trk r2;rcf r3,D[*] '

fmt 2,20x%x,"U,V FROi: FIRST CAILEA IN IRACK 4" ,f3.0,"FILL #",£3.0

wrt 7.2,10,rl

fmt 2,20x,"U,V FRO! SECOND CAMCLA 14 TRACK#",f3.0, "FILE ", £3.0

wrt 7.2,02,13
wtb 7,12;dsn "DCLL";end

*23408
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X,Y,Z,RECOVERY WITH DLT (KARARA's MODELS)
Tape D.L.T.I.K.
track #0

)

file #9

DESCRIPTION ‘ ' .

This program is for the recovery of the coordinates of
the points for analysis. The basic DLT equations with the
appropriate model for image refinement are used for this
purpose. User enters
model to be used (2,3,4,5,6) # of analyzed points in each
frame - \ N
# of frames
track and file where the U,V coordlnates from the first
camera
track and file where the U,V coordinates from the second
camera
track and file where the X,Y,Z coordinates of each point to
be stored. Each point will be recorded in one file, that is
in the first file will be point #1 (ie right’ eye) in the

second file will be point #2 (ie left ear)..... in the last

file will be point #last (i.e. coca cola Iabel of the Ieft
‘shoe )

The computer -

loads the coefficients of the. DLT

loads the subroutine with the appropriate model

-loads the U,V from both cameras

calculates the X,Y,2 coordinates of each point

marks the files for storing the X,Y¥,2 coordinates

records the X,Y,Z coordinates in files

The X,Y,Z coordinates of each point are recorded in its file
with an array of G[3,N] where N = # of frames and G[1,N] =

X, G[2,N] = Y and G[3,N] = Z.

-
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“fy

1
% "****************D.L.T.I.K.' TRI\ 0' FILE 9**.'**************"
: % "X,Y,2,RECOVERY WITIl DLT (KARARA s “ODELS)"
: "Copyright@ 1984 by Iraklis Kollias":
: ent "MODEL TO BE USED",M;12+C
: ¢ "Loads the coefficients"”
: if ‘M=3;14+C
: -if M=4;16+C . :
: 1f M=5;18+C . o
: if M=6;22-C ’
¢ dim P[2 Cl.,L{2, ll] S[4]
U: trk l;fdf 4; 13f 4,L{*),S(*)
11: trk 1;fdf 3+M;ldf 3+, P[*]
12: dim H([4,31,1(3,4),8(3,3]),3[4]),£1(3},0(3]),4(2,5]
13: % "Loads the AODEL"
14: trk 0;£4f M+7;14f 1+7,39 ‘
15: "PP":dsp "INSERT DATA TAPE; “COuHTINUE “";sto
156: % "Loads the data" ,
,17:.ent "# OF ANALYSED POINTS IN each FR.Y,S
"lo: ent "# OF FRAIES [20nojpts max#=37F]",N
19: G+r0;dim G[3,N],A[N,G,;§{D[N,G,2]
20: ent "trk with U,V from lst CAMERA",rOj;ent "FILD",rl;trk ru;ldf rl,al*
21: ent "trk with U,v form 2st CAMERA",r0;ent "FILC",rl;trk roJ;ld4f rl,D[*
22: ent "TRKE TO RECORD Xi,Y¥Yi,Zi",r51 .
23: ent "FILT $ TO BESIN W#ITd",r52;r52-1+r52
24: prt "STARTING FILE=",r52+1l;spc ;prt "% OF FILL—
25: ort "EACH FILZ HAS",N*24, “BITE“",spc 2
26: dsp "INSERT X,Y,2, TAPE; “CONTINUE ";3t»
27: for A=l to r0;for I=1 to N;dsp A,I
26: A[I,A,1])+M{1,1);Al1,A,2]+M([1,2]
29: D[{I,A,1)+M(2,1);D({I,A,2]+M[2,2]
30: MI[1,1]-S[1}+Mm([1,3]:([1,2]-5T12]1+11(1, 4]
31: 1{2,1)-S{3]1+1[2,3]);M[2,2]-S[4])+11[2,4]
32: for K=1 to 2;y (11[K,3]72+4[K,4]172)+M[K,5] ;next K
33: gsb "RCV"
34: next I v
35: if A+r52=0; rew trk rsl; mrk 1,0*24;rct A+r52,u[*]
36: if A+r5240;trk r51;fdf A+r32 nrk l N*24;rcf A+r52,5(*)
37: next A
38: dsp "DONI";end
*27362



225

SUBROUTINE MODEL I1
Tape D.L.T.I.K.
“track #0

file #10

DESCRIPTION _

This subroutine is loaded at the end of the program in
file #9. The solution is based on equation (A.79). The basic
DLT equations are used together with eqguations (A.49) and
(A.50) for the calculation of the 3-p coordinates.

$ "+ODEL #2"

gto "PP"

l'iﬁ\cvll:

for J=1 to 2;J+2+L

for K=1 to C;P[J,K]+rKk;next K .
A[J,1)+0;1(T,21+P;M[J,3]+2:1([J,4])+R;M[T,5]+3
O+rl12RS"2+r20;P+rl2RS"2+r21
r1-r9r20+1{JF, 1} sr5-r9r21+1i(L,1]
r2-r10r20+1[J,2);r6-r10r21-H{L,2]

¢ r3-rllr20+i1{J,31;r7-r1lr21-1(L,3]

10: r20-r4+J[(J) ;r21-r8+J(L]

11: next J ' .
12: trn H+I:;mat Il+N;mat IJ+0;inv N+N;mat NO+K
13: for T=1 to 3;K[T]+G[T,I]};next T

ld: ret. ) :

*26595
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SUBROUTINE MODEL 111
Tape D.L.T.I.K.
track #0

@ - file #11

DESCRIPTION
This subroutine .is loaded at the end of the program in

file #9. The solution is based on eguation (A.79). The basic
DLT equations are used together with equations (A.51) and
(A.52) for the calculation of the 3-p coordinates.

o

$ "MODEL 43" !
gto NPPII ?,_
"RCvll:

for J=1 to 2;J+2-+L

for k=1 to C;P[J,K]+»rK;next K

t A3, 1)+05113,2)+P; (T, 3)+0Q;M [T, 4]+R;4 [T, 5]+5
: O+Q(rl25°2+r13574+r14576)»r20 ;P+R(r125°2+r135"4+r145"6)+r 21

rl-r9r20+u{J, 1] ;r5-r9r21-1u1L, 1]
r2-rlOr20+H[J,2];r6-rlOr21+H[L,2]
r3-rllr20+1[J,3);r7-rllr21+H[L,3]
r20-r4+J(J};r2l-r8+J (L]
next J
trn H+I;mat IH+N;mat IJ+Q;inv N+N;mat NO+K
for T=1 to 3;K[T]+G[T,I];:next T :
ret

*15131
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SUBROUTINE MODEL 1V
Tape D.L.T.I.K.
track #0

file ‘#12

DESCRIPTION '

This subroutine is loaded at the end of the program in
file #9. The solution is based on equation (A.79). The basic
DLT equations are used together with equations (A. 53) and

(A.54) for the calculation of the 3-D coordinates, -

% "MODEL #4"

: gto "PP"

"RCV":
for J=1 to 2; J+2+L
for K=1 to C;P[J,K]»rk;next K

M(J,1]+0;M[J,2]+P;M[J,3]1+Q:1[J,4]+R; w[J 5]»3

o+Q(:123“2+r133‘4+r14s‘6)+r15(a 24207 2)+2r16QR+r 20
P+R(rl25724r1337°4+r14576)+4rl6(S"2+2P" 2) +2r 15QR+r 21
rl-r9r20+1[J, 1] ;r5-r9r21+1{L, 1]
r2-rl0r20+14{J,2);r6-r10r21-1[L,2]
r3-r1lr20+1{J,3);r7-r1lr21+H(L, 3]

: r20-r4+J[J);r21-r8+J (L] ;next J

trn li+I;mat IH+N;mat IJ+0;inv N»MN;mat NO+K
for T=1 to 3;K[T}-GI[T, I] ;next T ; -

:ret .

*782
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L SUBROUTINE MODEL V
.Tape D.L.T.I.K.
track #0

file #13

, .
DESCRIPTION * ‘

This subroutine is loaded at the end of the program in
filet#9. The solution is based on equation (A.79). The basic
DLT equations are used together with equations (A.55) ind
(A.56) for the calculation of the 3-D coordinates.

o

$ "AODEL #5"

gtO IIPPII

"RCV": :

for J=1 to 2;J+2+L

for K=1 to C;P[J,K}+rL;next K

A[3,1)+0;M[J,2]+P;M[J,3]+Q;M[J,4])+R;M[J,5]+5

O+Q(rl2552+r13S 34r14574+r155"5+r16S576) +r17(S"2+2:)72) +2r180R+r 20
P+R(rl12572+r1358" 3+r14574+r155"5+4r165"6)+r18(S"2+2R"2)+2r17QR+r21
rl-r9r2u+14{J,1) ;r5~r9r21+H(L,1] ‘
r2-ri0r20+1{J3,2);r6-r10r21+4[L,2]
r3-rllr20+H{3%3];r7-r1lr21+1{L,3)

r20-r4+J3{J];r21-r8+J[L]

next J

trn H+I;mat IH+N;mat IJ+O;inv N+»N;mat NO+K

for T=1 to 3;K[T])+G[T,I]l;:next T
ret
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SUéROUTINE MODEL VI
Tape D.L.T.I.K.
track #0

Eile #14

DES _RIPTION
This subroutine is loaded at the end of the program in
file #9. The solution is based on equation (A.79). The basic
DLT jfguations are used together with equations (A. 57) and
j ~or the calculation of the 3-D coordinates.

0: % "MODEL #6" ' : ’ 4

1l: th "pp"

2: |chvll: N

3: for J=1 to 2;J+2»L ' | | m
4: for K=1 to p,P[J Kl+rk:next K St @f
5: 4[J,11+0;M[3,21+P;M[J,3]-0:11 1, 4]»?,4[3 5]+3 .
6: O+Q(rl25°2+rl13573+rl45°4+r155°54r16S"6)+rl7(5"°2+420°2) +2r 16QR>r41

7: P+R(rl12572+rl13573+rl4574+4r1557°5+rl6S "6)+rle(5°2+42R" 2)+2rl70P»r42

B: r4l+r190°2+4r20P " 2+r39;r42+r21072+r22P" 2+r40

3: rl-r9r39-+i(J, l],rS-r9r4J+H[L 1]

10: r2-rl0r39+1(J,2);r6-rlord0~Hu[L, 2]

11: r3-r1l1r39+4({J,3]1;r7-rilrd40+111[L, 3]

12: r39-r4+J3{J);rd40-r8+J{L]

13: next J A ‘

14: trn U+I:mat IH+N;mat I1J+0;inv N+HN;mat NDO+K

15: for T=1 to 3;K[{T]+53[T,1};next T '

‘>16° ret > . 1 i \

£22729 - : + N\
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This appendix deals with the calculation of the moments
of 1nert1a of the system athlete plus hammer about a |
Space~- flxed orthogonal system of axes with orlgln at the’
center of mass of the system | |
homehts and Products of Inert1a thh respect to CMs

plgure B.1 is a representatlon of a ith body segment in
Space, Let O be the center of mass of the system (CMs) and
let ¢ be the center of mass of the jth: segment Let x Y A
be right handed_orthogonal system of axes fixed in space and
having origin.at the point O. They are translat1ng as the
;‘center of mass of the system translates. Axes X', Y' 'z are
parallel axes to the X, ¥, Z with orlgln at p01nt c‘. AxeS‘
Xc,, yc;, 2ci, are the prlnC1pal axes of the Ith segment
having orlgln at the point C. | n

The sum of the moments of products of 1nert1a of ‘the 13
eegments about therpolnt 0 are given by the follow;ng

equations:

3 ' ' .
I, = i?E’I'xi + ml(cyi'2 + Cziz)] (3-1)
e @ : -
13 n o < ‘
1, = itgz'yi +m(Cy 2 + €8 2)] | (B.2)
= , " , . . ;
&
IZ=iZ[I'Z|+“mi(CX|2+CY|z)] . (B.3)
=1 ) . e - teo . .

3 . ¢ ‘ .
I,y = ZEI'xfo mi'Cx[‘Cyl]' o C (B.4)

v
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EI;xzi + m;+Cy;*Cyyl \ A - (B.5)

3
= ?EI'yzi + mi'Cyi'Czi] (B.6)

Iy,

wheret I,, I,, I, are the moments of inertia of the system
. about the axes X, Y, Z
m, is the mass of the Jjth segment.
Cxi, Cyisr C.y are the coordinates of the center of
mass of the jith segment relative to the center of
mass of the system.

I'wiy I'yis T2, I'«yis I'xzy, I'y:: are the moments
and products of inertia of the ith segment about the
axes X', Y', 2'. _ -
Moments and Products of Inertia of segments about their CM
The moments and the products of inertia of the jth

segment with respect to the axes X', ¥', and Z' passing from

its CM, are calculated using the following equations:

I'w = I7% raqy? + I”yl°11212 + I"zi'a312 (B.7)

'y = I”xi’ayzz L SR PP I SR P ' (B.8)

I';, = I"xira 3% # I”yi’aisz + 1" iva3;? . (B.9)

I'sy = ~layyearzI i # @z1°@22°1 ", + a3qcasz1";;) (B.10)
: X ‘ )

I'x} = -(a,,-a13'1'x| + d21'a23'11y| + a31'a33'I zi) (B.11)
- ~ _

I'y: = '(asz'a13'17*i + a22°a23'1"yi + a32'a33'Ilzi) (3-12)

where : 1",,, 1",,, 1",, are the principal moments of
inertia of the ith segment. These data were taken
from Whitsett's anthropometric data, (Whitsett,
1963), and are presented in table 8 in the
methodology chapter. The principal moments were
normalized according to the height and mass of each
athlete. :
ai1, @iz, a;3; are the direction cosines of the
Xc (j = 1), Yo (i = 2) and Zc (i ='3) axis relative
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to the X', Y', Z' system of axes,

calculation of Direction Cosines of the Principal Axes
‘The following is a description of the technigue used to
calculate the direction cosines of the Xc, Yc and 2c axis.

The vectors representing the axes Xc, Yc, ZIc are:

fc = a1 + ay2] * agsk (B.1§)
_Y_E = aﬂ_i_ +.(Xz'2i + (ng_}_{_ o . (B.14)
ZC = a3 1 + a3z;] + a3k (B.15)

where: i, j, k are the unit vectors of the axes X', ¥', Z'.

/

Direction Cosines of Zc ‘

The direction cosines of Zc are given by the following
equations:

Pi
a3z, = (B.16)
(p1z + pz'z + p32)1/2 -

. P:
32 = (B.17)

2)1/2

(py? + p2* * Ps
. o,

33 =

‘ (B, 18)
2)1/2 ]

(pi? + Pzz.l Ps

where: p,, Pz, p3 are the coordinates of the proximal end
point P of the segment measured with respect to the
origin C. : ‘

4.
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Direction Cosines of Xc

Referring to figure B.1, line Xc is the intersection of
the planes (G) and (E). Plane (E) is normal to the line
segment Zc at point C. At the jth frame, the equation of the

plane (E) is:
!d31X+a32y+(X3‘3Z =0 (B.]g)

where: a3, a32,8a33 are the dlrectlon cosines of Zc and
have been calculated previously using Equations
(B.16), (B.17) and (B.18).

Plane (G) is defined by the points P(p;,p:,ps), which
is the proximal end point of the ith segmeﬁt in the Jth ‘
frame; the point. C(c,y,cz,c3), wﬁich is the center of mass of
the segment in the jth frame, (cy = c; = c3 = 0); and
Q(g1,g92,95) which was the centef of mass of the segment in
the (j+7)th frame measured from the point C at the jth
frame. For the trunk segment point Q is defined by t@e right
hip point at the same frame and its coordinates are measured

from the center of mass of the trunk at the same frame.

The equation of plane (G) is:

Ax + By + Cz = 0 ' . (B.20)

e » e

N

The coefficients of the equations of the plane (G) can be

found from the following equations:

Ap;y +Bp,*Cps =0 - (B.21)
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Ag,+Bg, *+Cqg; =20 (B.22)

By setting A = 1 and rewritting equations (B.21) and (B.22)

in armatrix form, we obtain:
%)

Pz ps||(B P

A (B.23)

i}

C et

dz: ds

This system can be solved numerically for B and C. Since
line Xc is the intersection of planesU(E) and (G), it can be
represented analytically by eQuations (B.19) and (B.20).
Assume thaf a point R(r,,r,,r;) is.a point of the 1ine Xc,
then if r, = q,, the coordinates r; and r, are given by the
following equation:

ER

32 033 r2:

(B.24)

B C | g

Solving (B.24) for r, and r, the direction cosines of Xc are

obtained as following:

r1 1
i1 = (8.25)
(r1z + rzz + r32)1/2
r
(r1z +‘t'22 + r32)1/2
3
a3 = E (B.27)
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Direction Cosines of Yc
The direction cosines of Yc are calculated by utilizing

the vector product of the vectors Zc and Xc because

2c x Xc = Yo - (B.28)
Using equations (B.13) and (B.15), the vector product of Zc
and Xc can be written in the following determinant

formulation:

i i k
_Z_C_ X _}_(E = Jazy) d3z32 Q33 . (B.29)
0y g2 @13 .
or
. 7
X_C_ = (dgz'a13 = d33'd12)_]_._
(e3ycays = d33'd11)i \
- \
4 + (asrrars = aaz-@i))k (B.30)

\\

From egation (B.14) and (B.30) we obtain the following:

Q27 = Q3z°@y13 ~ O033°QA12 o (B.31)
Qzp = @33°@yq ~ 031°C13 , (B.32)
€23 = Q31°Q@12 ~ W3z Q11 ) (B.33)

The above are the components of the vector representing the

Yc axis. The direction cosines Yc are calculated by using

N

these components,
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Angular Momentum of the System —

The .angular momentum of the system athlete + ;zﬁmgr

about its center of mass was calculated with the following °

equations:

13 :
Le = ZL L'« + L7 ] : (B.34)
13 : '
Ly =1§'1: L'y: + L'y, ] (B.35)
. 13 -
L= Z[ L'si + L2y ] (B.36)

where: L,, L,, L, are vectors representxng the ‘angular -
‘momentum of the syStem about its cénter of mass;
L'ci, L'yi, L'x, are vectors representing the angular -

x momentum of the ith segment about the center of mags
of the system, considering the segment as a point.
mass; ' ‘

”

L', L"yi, L",, are the vectors representing the
angular momentum of the ith segment about its center
of mass.

n

L'yso L'y, L'xy are calculated as follows, Let r,, r, be
thé position vectors of the.center of mass of the segment
with respect to the center of mass of the system in two
succesive frames (jth and (j+1)th frame).The componéhﬁs of
the two vectors are the coordinates of'theypoints C and C'
(figure B.1) measured from the center of mass of the system

at the (j+1)th frame. A vector in the direction of the

4]
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angular momentum is given by the following equation:
N=r: xI: . (B.37)

" Let Cu, Cy, C, and Cx‘, Cy', C;' be the components of the

two vectors, then

N =aqa,i+% a,j * ask ' . (B.38)
where: a;, = C,-C,' - C,-C," .
a; = C,+Cyx' = Cx°C;'
cay = CyxeCy' - CyeCyf

The magnitude of this vector is

N = (a;? + az? + ay?)'/? ' (B.39)

3
A

" The direction cosines of the vector are B, b2, B, where B,

='a, /'N,...,etc. The magnitude of the angular momentum

vectof‘is:
) . .
L = m¥N / At =~ . , . (B.40)

where m is the mass of the sedment and At the time interval

betweeén the two frames.

ey . ‘
Finally the angulafymomentum of the segment about the center

of mass of the'qystem is:
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. . N
’ Le' = LBy (B.41)
L," = L-8, | (B.42)
L.' = L+B; o | (B.43)

=

The magnitudes of the vectors L°,, L",, L", are calculated

-—

due to the follow1ng equatlonsl

L”xl = I'xf'wxi‘_ I'xyi'wyi - I'xzi'wzi .(B'44)
” Q

L yi = I'Yi'wyi ~ I'%yi‘wx; - I‘Yzi'wzi \ (B.45)

Lﬂzc = I'zi'wzi" I'yzi""-’yi - I'xzi'wxi (B.46)

where: I1',;, I',;, I%,, and I' xy i I1'y,:, I'y:: are the
moments and products of inertia of the ith segment
about the center of mass of the segment;
Wyi, Wyi, wW,; are the angular velocxtles of the
segment about a system of axes with origin at the
center of mass of -.the segment and parallel to the
space fixed axes. :

I'ir I'uiy T'ais Tlxyin T'xziy I'Y;. are calculated as

a
it is shown in equations (B.7) to (B.12).

Angula Velocity of the Segmental Principal Axes

Referring to.figure B.1, the jth segment .moves from the
jth frame and from its position C(XC,vYC;-ZC) to the (j+1)th
frame and to the p051t10n C'(Xc', Yc', 2c'). The direction
cosines of the axes Xc, Yc, Zc and the axes Xc', Yc',‘ZC'»
are calculated as invpart 3 of this éppendix. Let ay,, a,z,;
a,; be the direction cosines of the Xc axis, azy, azz, az;

the direction cosines of the Yc axis, a;;, @3z, @33 the
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&
direction cosines of the Zc axis, B+, B2, é13 the
diréction cosine o%_Xc', 321} B8,,, Bz3 the direction cosines
of the Yc' axis andkﬁ3,, Bi2, Bss the direction cosines of
the Zc' axis. The angles 6, of the Xc axis with the‘Xc'
axis, 6, of the ¥c axis with fhe Yc' axis and é3 of the iIc

axis with the Zc' axis can be found by gsing the dot product

of the vectors representing the axes and they are as -

follows:
g, = arccos(a 811 + ay2By2 * ay3B43) (B.47)
6, = arccos(az 21 + @z2B22 * az3B23) (B.48)
93 = arCCOS(a31B31 + a32[532 + a33[533)' ’ (B.49)

i ' ¥
The magnitudes of the angular velocities of the axes are:
s

™

‘

.

wy = 91/At ) (B.SO)
Wy = Gz/At (B.S/]’;
w, = 05/At |  (B.52)

where: At is the time between the Jth and (J+7)th frame.

The above angular velocities can be represented by
three vectors each oﬁ them normal to the planes forméd by
the axes Xc and Xc', Y¥c and Yc', Zc and Zc' resbecfively,
after the they have been translated to a common origin. Let

w,, wp and w3 be the three vectors, then

#
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w, = %c x Xc' | (B.53)
w, = Yo x Yc! ' : (B.54)
wy = Zc x Ic' (B.55)

4D

(Note: w,, W,, W3 are not necessarily orthogonal vectors;)

By using the directions of the axes and the equations

(B.53) to (B.55) we obtain:

Wi = (ayz2°B13 - @y3°B12)1

- (ay1+B1s - a13'611)i

+ (at1'3i2'— a12'ﬁ11)£ (B.56)

' .

Wy = (azz°B23 — @z3°B22)1

- (az1°B23 = @z3°B24)]

+ (az1+B22 ~ 022'ﬁ21)5 . (B.5?)
z3.= (asz°B3s - aas'ﬁaz)i

- (a3¢* B33 - a33'331)i 3 ﬂ
t+ (@182 - a12'ﬁ11)£ | ' (Bq58{t> ‘

Let 744, 7;2, v13 represent the GOmponen€% of wy, 721, 72;,
Y23 repfesent the components of w, and Ys1s Yazs Y33
represent the* components of ws. The direction cosines of
these vectors will be: : -
6y1 = &11 / (’7112\Q’_712z + 7432 )R )

simi .. for 812z, 8131, 8621, ..., etc..
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The total angular velocity vector of the segmenfjabout its

center of mass is:

W= Wy ot W, oW, (B.59)

~

The componénts of the velocity vector in the X, Y and z aigs

are:

W, = (4)'1'511 +0)2'521 + w3°531 (B.GO)

Wy =A(4)1'61z +&)z'..822 + 0)3'632 (B.B])

W, =0)1'813 +(a)2'623 +(x)3'533 o (B-62)
*

Instantaneous Angular Velocity of the System

Afterjthe moments of inertia, the products of inertia
and the angular momentum of the system have been calculated,
theiangular velocity of the system about its center of mass,
can be calculated by solving the following system of

equations for ., &y and Qz:

Ly = I,°0, = Tay R, - I,,°%, (B.63)
Ly = I,:Q, - I.y*Q - I,,°Q; (B.64)
L, = I,°Q, - I,,°Q, - I,,-Q R (B.65)
. . ‘:;‘_:s

where: L,, L,, L, are the angular momentum®of the system;
1., Iy, I, and Iy, I,,, I,, are the moments and
products of inertia of the system about its center of

mass;
2, 2, 8, the requested angular velocities.



Figure B.1 Representation of the jth segment in space at the
jth and (j+71)th frame. ‘

0(X,Y,2Z) = Orthogonal system of axes parallel to the space

fixed system of axes and having origin at the center of mass

of the system; : L 13

C(X',Y',2') = Orthogonal system of axes parallel to 0(X,Y,2)

with origin at the center of mass of the segment (point C)

at the jth frame; _ ‘ S '

C(Xc,¥c,2Zc) = System of the principal axes of the segment at
jth frame; = o

E vc',2c') = System of the principal axes of the

b= at the (j+7)th frame; ; ; -

. - The proximal and distal point of the segment.

-
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This appendix deals with_the derivation of the equqﬁionsvfof
the calculation of the radius and center of curvaturévof the

orbit of a point P which moves along a space curve (r), as

in Figure C.1. The method is based on vector analysis .

(Spiegel, 1959). The kinematics of the point are calculated

numerically from the time-displacement data of the point.
T ‘ . ' Y 4 . -y

el .

Radius of Curvature. ,
. A I ,

Let P be a point moving along curve (I'). The position

vector of P with respect to the origin O is:

e

r=xi+yj=zk | | o (c.1)

where: x, y, z are the coordinates of P;

i, j, k are the rectanéular unit vectors of the B

reference frame. e \;//j/ﬂ\\\~\>‘
| | v o~ -

»

A tangent vector to (I') at point P is:

— % 'i+y'j+z'k ' . . (c.2)

where: x', y', z' denote the“derivativeS»Cf-x,,y,iz‘with
' respect to time t. :

The arc lepgth s is related to r by the fdilowing equationg

dr ds

e

dt

dt

o ) “ S
. ;o
. . . : . e e
. . - . . o R e . .
. ! - - i - ,r A

= — = (x'? +y'? + zt2)1/ 2 , - (€.3) e
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A unit vector tangent to (I') is:

@

dr/dt x'i +y'j+z'k
o ) | (c.4)
|d£/dt1 (x'? + y'? +ogrr)r/e
The first of the Frenet-Serret formulas is:
ar
P - ' (C.5)
ds .

where: dT/ds is the derivative of T with respect to s;
_ k is the curvature; ‘
. N is the unit vector in the direction of dT/ds. It is
normal to the curve (I') at point P.

Since N.is a unit vector,

ar
K = |— (C.6)
ds
Now, let us calculate dT/ds. From vector calculus, we
“obtain:
dT  4T/dt
=== (C.7)
ds ds/dt
Using equation (C.4) to calculate 4T/dt, we obtain:
dT d px' d ry" d rz'
— = ——[—‘]i + __[__]i + ——[—-]En . (C.8)
. dt dt tw dt lw dt tw
Where: w = (x'? +y'? + 2'2)1/2 (C.9)
¥
However,
d rx' x'w - x'"(x'x" + y'y +z'z")/w
f—[——] = - . (c.10)
dt lw w? :
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or:

d rx' x“(x'* + y'? + z'%) - x'(x'x" * y'y" +z'z")
__[;_] - _ . (C.11)
dt lw (xvz +yvz +‘Z|2)3/2 :
In the same way: o
d v’ y (x'? o+ y'ro+z'2) - yi(x'x" 4 y'y” ¥ z'2")
~—[~—] = — (C.12)
dt Lw (x'2 + y'* + 2"'2)3? :
d rz' 2" (x'* + y'? +2'2) - 2'(x'x" + y'y" + 2'z")
_,[__] - . , _ (C.13)
dtw (xvz +Y|z +z|z)3/2
Let u and v be defined as follows:
v=w=x'?+y'?+2z"? h ‘ (C.14)
u=x'x"+y'y +z'z", - (C.~15)

Using equations (C.7),(c.8), (c.11), (c.12), (C.13), (C.14)

and (C.15), we obtain the following expression of dT/ds:

ar  (x"'v - x'u)i + (y'v - y'uli+ (z'v - z'u)k

— =

ds A A

(C.16)

From equations (C.6) and (c.16),

[(x'v = x'u)? + (y'v - y'uw?+ (z'v - z'u)?]"?
K = i . - (C.17)
. , v? ' v
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B
4

. v
The radius of curvature is defined by:

(C.18) -

From equations (C.17) and (C.18), we obtain:

v? S
p = £ (Cc.19)
S [(x'v - x'u)?r + (y'v - yu)? + (2'v - z'u)2]tr/?

N

Center of Curvature.
Let C(C,,C,,C,) be the center of curvature and P(x,y,z)_
be the point of the curve which has radius p = 1/k, as

calculated above. Then:

/
PC = pN (C.20)
From equation (C.5),
1 dT
ﬁ 2 e € (C021)
k ds 'Y :

Substituting equation (C:16) into equation (C.21), the

following expression is obtained for N:

J

(x"v - x'Wi+ (y'v - y'uj+ (z'v -z'u)k

E = (C.22)

| Kkv?

Substituting/equatidn (C.22) into equation (C.20), we
‘obtain: '
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(x"v - x'u)i + (y"'v - y'u)j + (2'v -z2'ulk
PC = (C.23)
(kv)? But:

g
@]
i

= (Cx - )i+ (Cy =y)i+ (C, - 2)k (c.24)

Combining (C.23) and (C.24):

’.

x'v - x'u _ ‘
Cy - X = ' (c.25)
(kv)? _
14
y'v-y'u |
C, ~y = : (c.26)
(kv)?
z"'v - z2'u ‘
C, ~z = s (Cc.27)

(kv)?

The coordinates of the center of curvature are given by
solving equations (C.25), (C.26) and (C.27):

x"v - x'u .
Cy = x + -'——-——)———‘ (c.28)
(kv)? : »

y'v-y'u
Cy = y.+ "—’T——)—""" (c.29)
Kv)? : :

z'v - z'u
C, =z + *—‘-(——")——— (c.30)
Kkv)? .



Figure C.1 Representation

&

1=

1=

d

space.

N = Normal unit vector to the curve-
T = Tangent unit vector;

R = Binormal unit vector;

C =

Center of curvature.

of the curve I' in the

250




APPENDIX D 'x‘,Y

C.P. Coordinates and Calibration Coefficients
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33451

=:============:================:=====================::==:== k
CAMERA #2(slave) . CAMERA #1 (master)
C.P. U v . u Y

1 -1,02 0.17 4.30 0.21
2 -1.02 -0.38 4.30 -0,42
3 0.02 -0.53 0.06 -0.64
4 6.00 0.24 10,77 0.11
5 7.31 0.11 6.71] -0.05
6 6.01 -0.31 10,75 -0.54
7 7.31. -0.48 670 -0.67
8 0.02 1,60 0,08 1,60
9 7.32 1,66 6,71 1.58
10 9.93 1,64 9.08 1.57
11 -1,01 1.67 4.32 1.70
12 6.01 1.73 10.738 1.72
13 8.51] 1,72 ' 13.17 1.71
14 -1.60 5.09 6.40 5.33
15 -1.02 5,12 4.35 5.35
16 0.00 5.19 0.12 5637
17 « 0.50 5,23 -2,29 5.38
18 5.42 5,13 ' 12,90 5.35
19 6.01 5.13 10.82 5635
20 7.32 5,20 6.77 5.41
21 8.12 5.26 4,60 5.40
22 -3.89 10.76 -3,33 11.18
23 -0.02 10,79 0.17 11,21
24 7,32 10.85 6.83 11.27
25 11.19 10.89 10,32 11.29
26 -4,717 10.51 1,08 10.97
27 -1,03 10.53 4,42 11.00
28 6.01 10,53 10,38 11.10
29 9.67 10.54 14.35 11,10
30 -0.03 14,94 0.21 15,53
3] 7.32 14,93 6.86 15.60
32 -1.04 14.55 4,47 15,20
33 6.01 14 .47 10.32 15,30

_—-——--___~-5—-___—-—_--—-——--—_--_-___-_--_----____-_____-_

-—-——_-.__._..__...,._...._.—_—'———-—-—_-__.__,_..___———--.-——.._..._-.._....___--_-——
_...___.____._...,__......—._...__.__—__...._.._.._-.._-_...__.__

-S43 8 54 3 3 A2
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CALIBRATION COEFFICICNIS FOR TJO CAMLERAD (33C.P.)

e s o e T e S 2 e e it mm e B Am e S o e me o o ST 2T == ==
—TEEDSEEEEx== =Z==== zZEZ=SE== = - == ==
== == ST S oS RN EZISREREEER

REFINECAT wITH HCDEL #4 (K2ZRARA)

T T T T T T T 1+ 7%

TSI EIETZE=ES= =

CAMERA li(slave)

P[1, 1)
P[1, 2]
P[], 3]

pll, 4)

21, 9)
P(1,10]
211,11)
P[1,12)
p(1,13]

P[},]4]

oo E==m===== Rt - T T T T+ 5 N X K
= P T e e e

i}

i

it

1}

0s. 727964815
5.005433327
~0.005577436
0.009346074
~3.096659062
0.037760662
5.145019255
0.012516315
~0.027527675
0,002238855
6.G00237217
~6.000107308
0.000601755

~0.002020311

~(.000004135

~0,500192219

212,12)

CAMERA #1 (master)

"

pf{2, 1]

P[2, 2]

]

pl{Z, 3]

]

212,13]

i

n

°[2,14]

P
Fl{z,15]

h

-2.97325850640

4.4734302935

0.049026023

0.,0934572490

~0.109703363

~0.931392528

5.356352744

0.015343203
-0.021370336
~0.006857224
~6.000572463
SL.50G05350)

0.0000C0337

g L0 0U00C0)

-C.000004783
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CALIRRATION COEFFICIENTS FOR TwWO CAMERAS (27C.P.)

REFINEMENT WITH MODEL #4 (KARAPRA)

J T e - T T T T T Y T T 3 T T T T 1 3 53 % ¥

————— 2 3-% 3 -5+ 5 1 3R e

CAMERArJZ(slave)

P{1, 1)
P:[lr 2}
P[1, 3]
Pl1, 4]
P[1, 5]
P[1, 6]
PL1, 7]
P[1, 8]
P(1, 9]
P[1,10]
P(1,11]
P[1,12)
P[1,13]
P(1,14]
P[1,15]

P[1,16]

TR R - e e T LY T Y R T L T F T N T R TN ]
-3 X N5 X 3 3 53 a5 R

0.728934932
4.986331717
-0.011472292
0.011252642
~0.093985903
0.023714357
15.130577101
0.034397477
~0.026518994
~0.000637546
~0.001833658
0.000231334
-0.000008231
0.002000056

0.000042320

© -0.,000247851

CAMERA #] (master)

P{2, 1]
P[2, 2]
P(2, 3]
P[2, 4]
P[2, 5]
P{2, 6]
p[2, 7]
P{2, 8]
P[2, 9]
P(2,10]
P[2,11]
P[2,12]
P{2,13]
P[2,14]
P[2,15]

p(2,106]

1] 0. L] i W 0 L} [} L . " i} ] L] L]

-2,9839755G4
4,478170555
0.042490899
0.0393224276

-0.1185384067

-0,023109697
5.320359935

0.050121048

-0.023960787

-0.095898541

~-0,002306823

. -0,000218194

0,000001984
~0.000000006
-0.000203016

0.000001691
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RMS OF C.P.
RMS OF UNKNOWNS

TOTAL RMS

=

0.28

*%x% (Measurements in Ccme)
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