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Abstract

This thesis concentrates on the construction of directional tensor product complex

tight framelets (TP-CTFm). It uses a complex tight framelet filter bank (CTFm) in

one dimension and the tensor product of the one-dimensional filter bank to obtain

high-dimensional filter banks. It has a number of advantages over the traditional

tensor product real wavelet transform.

Motivated by two-dimensional dual tree complex wavelet transform, the com-

plex tight framelet filter banks with frequency separation are constructed in the fre-

quency domain. Then the high-dimensional framelet filter banks via tensor product

and corresponding frames will have directional selectivity.

The computational cost increases exponentially as dimension and redundancy

rate grow, which restricts the application of framelet filter banks in high-dimensional

data processing. In the frequency domain, we propose complex tight framelet filter

banks with mixed sampling factor to reduce the redundancy rate.

The tensor product complex tight framelet filter banks constructed in the fre-

quency domain are bandlimited. They are not finitely supported in the time domain.

Compactly supported wavelets or framelets are essential to many applications due

to their good space-frequency localization and fast computational algorithm. We

have proved a theoretical result on directional selectivity and provided step-by-step

algorithms to construct compactly supported complex tight framelet filter banks

CTF3, CTF4, and CTF6. Then the directional compactly supported tensor product

complex tight framelet filter banks TP-CTF3, TP-CTF4, and TP-CTF6 in high

dimensions can be obtained via tensor product.
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The directional tensor product complex tight framelet is used to the application

of image denoising and video denoising. Experimental results show that our con-

structed TP-CTFm succeeds in providing improved image denoising results com-

bined with advanced statistical models comparing with many other state-of-the-art

transform based image denoising methods.
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Chapter 1

Introduction

1.1 Definitions, background, and motivations

In order to introduce the background and motivations, we first need some definitions

and notion. By l2(Z) we denote the linear space of all complex-valued sequences

u = {u(k)}k∈Z : Z → C such that ‖u‖l2(Z) :=
(∑

k∈Z |u(k)|2
)1
2 <∞. The Fourier

series (or symbol) of a sequence u ∈ l2(Z) is defined to be

û(ξ) :=
∑

k∈Z
u(k)e−ikξ, ξ ∈ R,

which is a 2π-periodic measurable function in L2(T) since

‖û‖2L2(T)
:=

1

2π

∫

[−π,π)

|û(ξ)|2dξ =
∑

k∈Z
|u(k)|2 = ‖u‖2l2(Z) <∞,

where T is defined as the quotient R/2πZ. If u ∈ l1(Z), that is, ‖u‖l1(Z) :=
∑

k∈Z |u(k)| <∞, then u ∈ l2(Z) and û ∈ C(T) is a continuous function.

For a, b1, . . . , bs ∈ l1(Z), {a; b1, . . . , bs} is called a (dyadic) tight framelet filter

bank if

|â(ξ)|2 +
s∑

`=1

|b̂`(ξ)|2 = 1,

â(ξ)â(ξ + π) +
s∑

`=1

b̂`(ξ)b̂`(ξ + π) = 0,

(1.1.1)

for ξ ∈ R. (1.1.1) is also called the property of perfect reconstruction and it is one
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of the fundamental properties for filter banks. The filter a is called a low-pass filter

since it is often required that â(0) = 1, and all the filters b1, . . . , bs are called high-

pass filters since they often have b̂1(0) = . . . = b̂s(0) = 0. Note that if â(0) = 1, it

follows from (1.1.1) that b̂1(0) = . . . = b̂s(0) = 0. When s = 1, the (dyadic) tight

framelet filter bank {a; b1} is called a (dyadic) wavelet filter bank.

A (dyadic) wavelet system comprises a set of functions {ψj,k}j,k∈Z, which is

generated from one single function or more functions by dilations and shifts. It

forms an orthogonal basis for the function space L2(R). Each member in this set is

defined as

ψj,k = 2j/2ψ(2j · −k), j, k ∈ Z,

where ψ is called the mother wavelet, which plays an important role in wavelet

analysis.

Mallat [37] and Meyer introduced multiresolution analysis (MRA) to generate

mother wavelet ψ. Let V0 be a subspace of L2(R) and Vj := {f(2j·) : f ∈ V0}.

As outlined in Chapter 5 by Daubechies [4], MRA is a decomposition of L2(R) into

a nested chain of closed subspaces such that

(1) · · · ⊂ V−k ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ · · · ;

(2)
⋂

j∈Z Vj = {0};

(3)
⋃

j∈Z Vj is dense in L2(R);

(4) there exists a function φ ∈ L2(R) such that V0 = span{φ(· − k)}k∈Z;

(5) the mother wavelet function ψ ∈ L2(R) can be constructed such that V1 =

V0 ⊕W where W = span{ψ(· − k)}k∈Z.

The MRA is completely determined by the function φ in item (4). Thus we have

to construct such a function φ first. Since by item (4) V0 = span{φ(· − k)}k∈Z,
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φ ∈ V0. Also by the definition of V1, we have V1 = span{φ(2 · −k)}k∈Z. Since

φ ∈ V0 ⊂ V1, the following refinement equation holds:

φ = 2
∑

k∈Z
a(k)φ(2 · −k),

where a = {a(k)}k∈Z is a sequence on Z. φ is called refinable function if φ ∈

L2(R) and satisfies the refinement equation. The MRA can be constructed from a

refinable function φ under mild conditions on the sequence a. From an MRA, a

wavelet system can be constructed.

A wavelet system has many advantages. First, it is a time and frequency rep-

resentation [1] comparing with Fourier transform. The Fourier transform of f ∈

L1(R) is defined to be f̂(ξ) =
∫
R
f(x)e−ixξdξ, for ξ ∈ R. Since all the information

in the time domain is involved in the Fourier transform, the time and frequency in-

formation cannot be seen simultaneously. The wavelet system enjoys a multiscale

structure: for j ∈ Z, ψj,k corresponds to a frequency scale. The frequency infor-

mation can be reflected by the wavelet function ψj,k with different j. Therefore, the

wavelet system can describe the time-frequency localization very well. Second, a

wavelet system offers a sparse representation for smooth or piecewise smooth sig-

nals [38]. A wavelet function ψ is called to have vanishing moments of order m

if ∫

R

xkψ(x)dx = 0, k = 0, 1, . . . ,m− 1.

The wavelet function with high order vanishing moments makes only a few wavelet

coefficients large while the other coefficients very small.

For practical applications, The decimated dyadic filter bank tree proposed by

Mallat [37] is the most acknowledged form in application. The most popular set of

wavelet filter banks was proposed by Ingrid Daubechies [4].
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Although wavelets have many applications in compression and signal process-

ing, the requirements on wavelets to be orthonormal or biorthogonal are too restric-

tive to construct bases with extra conditions. For example, it is well known that the

dyadic real-valued orthogonal compactly supported wavelets cannot have symme-

try except Haar wavelet. As a generalization of wavelet representation, frames are

over-complete systems that allow us to have more flexibility. Frames of a vector

space were introduced by Duffin and Schaeffer in [6].

A sequence {fn}n∈Γ is a frame for L2(R) if there exist two constants B > A >

0 such that

A‖f‖2L2(R)
6
∑

n∈Γ
|〈f, fn〉|2 6 B‖f‖2L2(R)

, f ∈ L2(R).

A frame {fn}n∈Γ is tight if A = B. For a tight frame, A and B can be normalized

to one such that the Parseval identity holds:

‖f‖2L2(R)
=
∑

n∈Γ
|〈f, fn〉|2, f ∈ L2(R).

Throughout this thesis, the word framelets is a synonym for wavelet frames.

One problem with the real wavelets and framelets is a lack of directional se-

lectivity in high dimensions. Multidirectional representation systems can represent

curve or edge singularities effectively and offer a sparse expression for the hight-

dimensional data which simplifies the processing and modeling of geometric fea-

tures of the data in high dimensions.

To better understand directionality, consider the Haar orthogonal wavelet fil-

ter bank in two dimensions. The one-dimensional Haar orthogonal wavelet filter

bank is {a; b} with a = {1
2
, 1
2
}[0,1] and b = {1

2
,−1

2
}[0,1] on discrete support [0, 1].

The two-dimensional Haar orthogonal wavelet filter bank is obtained by the tensor
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product {a⊗ a; a⊗ b, b⊗ a, b⊗ b}. More specifically, they are

a⊗ a =




1
4

1
4

1
4

1
4


 , a⊗ b =



−1

4 −1
4

1
4

1
4


 , b⊗ a =




1
4 −1

4

1
4 −1

4


 , b⊗ b =



−1

4
1
4

1
4 −1

4


 ,

on discrete support [0, 1]2. The two-dimensional transform can be implemented

separately because of the tensor product filter: each row of the two-dimensional

input data is convolved with the one-dimensional filter in the first dimension of

the tensor product filter, then each column of the resulting two-dimensional data is

convolved with the one-dimensional filter in the second dimension. Worthy of note

is both a⊗ b and b⊗ a are able to select horizontal and vertical edges, respectively.

But b ⊗ b is oriented along two diagonal orientations simultaneously and produces

a checkerboard pattern. See Figure 1.1 for the demonstration.

Figure 1.1: Two-dimensional tensor product real-valued wavelets in the time do-

main. The third graph demonstrates the checkerboard artifact of b ⊗ b. Figure

adapted from [44].

This is because u is real (that is, u : Z → R) if and only if û(ξ) = û(−ξ).

Thus, we always have |û(−ξ)| = |û(ξ)| for a real filter u, and the magnitude of

its frequency spectrum is symmetric about the origin. If both u and v are one-

dimensional real high-pass filters, then the frequency spectrum of the tensor product

filter u ⊗ v concentrates equally in all four quadrants (more precisely, the four

corners) of the basic frequency square [−π, π]2. Consequently, the filter u ⊗ v

behaves like a saddle point and lacks directional selectivity.
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The same argument applies to the tensor product of real-valued functions. This

lack of directional selectivity complicates the image modeling and processing of

ridges or edges singularities. Since the edges and textures are ubiquitous in images,

directional representations have to be devised to handle the geometric features by

offering effective and sparse expansions.

In order to remedy this drawback, it is natural to design the spectra of high-

dimensional filters in separate quadrants of the frequency plane. Several approaches

have been proposed in the literature: for example, the curvelet transform [2] and the

shearlet transform [21, 29, 30, 34] in two dimensions on R2, contourlets [5] in the

discrete domain Z2, symmetric complex orthogonal wavelet filter banks [13, 15,

35], and the dual tree complex wavelet transform (DT-CWT) in [27, 28, 43, 44],

and etc.

Curvelets are one type of tight frames proposed by E. Candès and D. Donoho [2,

3]. In the frequency domain, curvelet transforms apply angle-trapezoid filters to

achieve directional selectivity. However, it is a challenge for curvelets to develop an

efficient algorithm for practical applications in discrete setting. Based on unequall-

spaced fast Fourier transform, discrete curvelet transform was proposed in [2]. The

construction requires a rotation and partition of the two-dimensional frequency

plane in polar coordinate perspective. Even so, it still suffers high redundancy rate.

Shearlets were introduced for the approximation of functions f ∈ L2(R
2) in

2006 [10]. Shearlets constitute an affine system from one single shearlet function

by scaling, shearing, and translation operations. The scaling operation can elongate

the elements in the affine system. The shearing operation captures the directionality

of the curve singularities. The translation operation offers the spatial localizations.

In order to have discrete transform, one has to calculate the coefficients in the con-

tinuum setting and pseudopolar Fourier transform is applied. However, to achieve

6



nearly perfect reconstruction of the obtained discrete shearlet transform, the over-

sampling rate used in pseudopolar Fourier transform is often very large, and this

results in high redundancy rate.

Contourlets, proposed by Do and Vetterli [5], are one of the multidirectional rep-

resentation systems. Contourlets can handle piecewise smooth images with steady

contours effectively. The construction of contourlets is directly from the discrete

domain. The contourlet transform can be treated as a discrete version of certain

curvelet transforms. One drawback of the contourlets lies in its shift-sensitivity.

The DT-CWT is probably the most popular and successful among all these

approaches mentioned above. The success of the DT-CWT depends on three major

advantages [44]:

• the two-dimensional DT-CWT offers six directions (roughly along ±15◦,

±45◦, ±75◦), comparing with only two (horizontal and vertical) directions of

classical tensor product real wavelets;

• the DT-CWT is nearly shift-invariant without high redundancy, comparing

with the shift-invariant undecimated wavelet transform, see Figure 1.2 for the

wavelets of the two-dimensional DT-CWT;

Figure 1.2: Typical wavelets associated with the DT-CWT in two dimensions. The

first row illustrates the real part of each complex wavelet; the second row illustrates

the imaginary part. Figure adapted from [44].

7



• the d-dimensional DT-CWT can be implemented by applying 2d tensor prod-

uct discrete orthogonal wavelet transforms in parallel.

The one-dimensional DT-CWT employs two trees of finitely supported orthog-

onal real wavelet filter banks with three sets: {a0; b0}, {a1; b1}, and {a2; b2}

such that |â`(ξ)|2 + |â`(ξ + π)|2 = 1 and b̂` = e−iξâ`(ξ + π) for ` = 0, 1, 2.

The filter banks {a0; b0} and {a0(· − 1); b0(· − 1)} used for the first level of the

two trees can be any finitely supported orthogonal real wavelet filter bank, where

a0(· − 1) and b0(· − 1) are the shifted versions of sequences a0 and b0, respec-

tively. The correlated pair of finitely supported orthogonal real wavelet filter banks

{a1; b1} and {a2; b2} used for all other levels of the two trees are linked to each

other through the half-shift condition [42, 43, 44]:

â2(ξ) ≈ e−iξ/2â1(ξ), ξ ∈ [−π, π).

Then complex wavelet coefficients are generated by taking the wavelet coefficients

from two trees as the real part and imaginary part, respectively. Equivalently, com-

plex wavelet coefficients in the DT-CWT are obtained by employing the complex

high-pass filters b1 + ib2 and b1 − ib2. Due to the half-shift condition, the two

high-pass filters b1 and b2 satisfy

b̂2(ξ) ≈ −i sgn(ξ)eiξ/2b̂1(ξ), ξ ∈ [−π, π),

where sgn(ξ) = 1 for ξ > 0 and sgn(ξ) = −1 for ξ < 0. Consequently, the under-

lying complex high-pass filters b1 + ib2 and b1 − ib2 enjoy the following frequency

separation:

b̂1(ξ) + ib̂2(ξ) ≈ 0, ξ ∈ [−π, 0] and b̂1(ξ)− ib̂2(ξ) ≈ 0, ξ ∈ [0, π].

8



The frequency separation plays a critical role to produce the desired directional

selectivity of DT-CWT in high dimensions.

The half-shift condition for a1 and a2 in the DT-CWT is not trivial in dis-

crete setting in the time domain. Instead of using pairs of correlated orthogonal

real wavelet filter banks to achieve frequency separation, in this thesis, we propose

complex tight framelet filter banks with frequency separation so that the high-pass

filters in high dimensions via tensor product achieve directional selectivity.

1.2 Discrete framelet transform

Let us introduce the discrete framelet transform using the one-dimensional tight

framelet filter bank {u0; u1, . . . , us}. The discrete framelet transform can be de-

scribed by two linear operators – the subdivision operator and the transition opera-

tor [19]. For a filter u ∈ l0(Z), the subdivision operator Su : l(Z) → l(Z) is defined

to be

[Suv](n) = 2
∑

k∈Z
v(k)u(n− 2k), n ∈ Z,

and the transition operator Ta : l(Z) → l(Z) is defined to be

[Tuv](n) = 2
∑

k∈Z
v(k)u(k − 2n), n ∈ Z.

The transition operation often averages data to lower frequency resolution levels;

while the subdivision operator refines data to higher resolution levels.

The subdivision and transition operators can be implemented through convolu-

tion, upsampling, and downsampling operators. For u ∈ l0(Z) and v ∈ l(Z), the

convolution u ∗ v is defined to be

[u ∗ v](n) :=
∑

k∈Z
u(k)v(n− k), n ∈ Z.

9



The upsampling operator↑d : l(Z) → l(Z) and downsampling operator↓d : l(Z) →

l(Z) with the sampling factor d are defined to be

[v↑d](n) :=





v (n/d) if n
d

is an integer,

0 otherwise,

and [v↓d](n) := v(dn), n ∈ Z.

Using convolution, upsampling, and downsampling, we have

Tuv = 2(v ∗ u?)↓2 and Suv = 2(v↑2) ∗ u,

where the adjoint filter u? is defined by u?(n) := u(−n), n ∈ Z.

In terms of Fourier series, we have û ∗ v(ξ) = û(ξ)v̂(ξ), v̂?(ξ) = v̂(ξ), and

v̂↑2(ξ) = v̂(2ξ), v̂↓2(ξ) = 2−1[v̂(ξ/2) + v̂(ξ/2 + π)].

Then, the subdivision and transition operators can be expressed as

Ŝuv(ξ) = 2v̂(2ξ)û(ξ),

T̂uv(ξ) = v̂(ξ/2)û(ξ/2) + v̂(ξ/2 + π)û(ξ/2 + π), ξ ∈ R.

The one-level discrete framelet transform consists of two parts: decomposition

and reconstruction. Let {u0; u1, . . . , us} be a tight framelet filter bank. For given

data v ∈ l(Z), the one-level framelet decomposition is

w` :=

√
2

2
Tu`

v, ` = 0, . . . , s,

where w`’s are called sequences of framelet coefficients of the input signal v. We

can group all coefficient sequences together to define the framelet decomposition

operator W:

Wv :=

√
2

2
(Tu0v, . . . , Tus

v) , v ∈ l(Z).

The one-level framelet reconstruction employing the filter bank {u0; u1, . . . , us}

10



can be described by a framelet reconstruction operator V which is defined to be

V(w0, . . . , ws) :=

√
2

2

s∑

`=0

Su`
w`, w0, . . . , ws ∈ l(Z).

The factor
√
2
2

is applied to balance the energy between the input data and its

framelet coefficients.

The simplest way to obtain tight framelet filter banks in high dimensions is

by the tensor product of one-dimensional tight framelet filter banks. The main

advantage of tensor product wavelets and framelets lies in their easy construction

and fast computational algorithms.

For one-dimensional filters u, v ∈ l1(Z), the tensor product filter u ⊗ v in two

dimensions is defined to be

[u⊗ v](j, k) = u(j)v(k), j, k ∈ Z.

Let {a; b1, . . . , bs} be a one-dimensional tight framelet filter bank. The tensor prod-

uct d-dimensional tight framelet filter bank is defined by ⊗d{a; b1, . . . , bs}, with

⊗da being the low-pass filter and all other filters being the high-pass filters.

For d-dimensional filters a, b1, . . . , bs ∈ l1(Z
d), following (1.1.1), {a; b1, . . . , bs}

is called a (d-dimensional dyadic) tight framelet filter bank if

|â(ξ)|2 +
s∑

`=1

|b̂`(ξ)|2 = 1, (1.2.1)

â(ξ)â(ξ + πω) +
s∑

`=1

b̂`(ξ)b̂`(ξ + πω) = 0, (1.2.2)

for all ξ ∈ Rd and all ω ∈ Ω\{0}, where Ω := [0, 1]d ∩ Zd. The filter a is called

the low-pass filter since we often have â(0) = 1, and all the filters b1, . . . , bs are

called high-pass filters since it is often required that b̂1(0) = · · · = b̂s(0) = 0.

Note that if â(0) = 1 in a tight framelet filter bank {a; b1, . . . , bs}, then it fol-
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lows directly from (1.2.1) that b̂1(0) = · · · = b̂s(0) = 0. When s = 2d − 1,

the (d-dimensional dyadic) tight framelet filter bank {a; b1, . . . , b2d−1} is called

the (d-dimensional dyadic) orthogonal wavelet filter bank. Let {a; b1, . . . , bs} be

a d-dimensional tight framelet filter bank. Under the mild condition |1 − â(ξ)| 6

C|ξ|τ , ξ ∈ [−π, π]d for some positive numbers C and τ (all the tight framelet fil-

ter banks constructed in Chapter 2 satisfy this condition with τ = 1), the function

φ̂(ξ) :=
∏∞

j=1 â(2
−jξ) is a well-defined function in L2(R

d) and {φ;ψ1, . . . , ψs} is

a tight frame for L2(R
d), where the functions ψ1, . . . , ψs are defined by ψ̂`(ξ) :=

b̂`(ξ/2)φ̂(ξ/2), ` = 1, . . . , s. That means the system

{
φ(· − k) : k ∈ Zd

}⋃{
2dj/2ψ`(2j · −k) : k ∈ Zd, j ∈ N ∪ {0}, ` = 1, . . . , s

}

(1.2.3)

is a (normalized) tight frame for L2(R
d) satisfying

‖f‖2L2(Rd) =
∑

k∈Zd

|〈f, φ(·−k)〉|2+
∞∑

j=0

s∑

`=1

∑

k∈Zd

|〈f, 2dj/2ψ`(2j·−k)〉|2, f ∈ L2(R
d).

Due to this connection between a tight framelet filter bank and a tight frame for

the function space L2(R
d), we concentrate on tight framelet filter banks instead of

tight frames for L2(R
d) in the whole thesis. In fact, it is more natural to study

its underlying discrete affine systems instead of the functional systems (1.2.3) in

L2(R
d).

1.3 Overview

Chapter 2 and Chapter 3 comprise the construction of directional tensor product

complex tight framelet filter banks in the frequency domain. Chapter 2 begins with

the definition of discrete affine systems, explains the connection between the tight
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framelet filter banks and the tight frames for the function space L2(R), and finally

discusses the construction of tight complex framelet filter banks with frequency

separation in one dimension. Though a tight frame with higher redundancy often

leads to superior performance, the computational cost magnifies exponentially as

the dimension increases. This restricts the usage of frame with immense over-

complete rate. Chapter 3 introduces a complex tight framelet filter bank with mixed

sampling factors to reduce the computational cost in high-dimensional applications.

The complex tight framelet filter banks constructed in Chapter 2 and 3 are ban-

dlimited in the frequency domain. They do not have compact support in the time

domain. Compactly supported wavelets and framelets are of importance due to their

good space-frequency localization and computational efficiency in applications. It

is still an unsolved problem whether there exist compactly supported tensor prod-

uct complex tight framelets with directionality. Chapter 4 covers the answer to this

question by proving theoretical results and providing step-by-step algorithms to

construct compactly supported complex tight framelet filter bank {a; bp, bn}. Built

on Chapter 4, Chapter 5 continues to work on compactly supported tight framelet

filter banks so that their tensor product filters in hight dimensions have more direc-

tions.

Finally, the directional tensor product complex tight framelets are tested in the

applications of image and video denoising. Experimental results demonstrate that

our proposed system shows superior performance comparing with the DT-CWT

and many other transform-based methods.

13



Chapter 2

Directional Tensor Product Complex

Tight Framelets

This chapter develops the idea of the frequency separation. The directional tensor

product complex tight framelets are systematically constructed and studied. The no-

tion of discrete affine systems associated with a multilevel discrete framelet trans-

form is introduced in [19]. It allows us to analyze the frequency separation of

high-pass filters in the multilevel tight framelet filter bank. Following this, one-

dimensional complex tight framelet filter banks with good frequency separation are

constructed. Finally, we explain how and why one-dimensional complex wavelets

and framelets with frequency separation lead to directional selectivity in high di-

mensions via tensor product. Several examples are provided to illustrate our con-

struction. The results in this chapter have been published in SIAM Journal on Imag-

ing Sciences [24].

2.1 Discrete affine systems

The advantage of discrete framelet transform lies in the ability to extract the mul-

tiscale information from the input signals. Hence a multilevel discrete framelet

transform is applied. The multilevel discrete framelet transform applies the filter

bank recursively in both decomposition and reconstruction procedures.
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Let {a; b1, . . . , bs} be the tight framelet filter bank used in the discrete framelet

transform. For a positive integer J , the J-level discrete framelet decomposition is

given by the following recursive formulas:

vj := 2−d/2Tavj−1, w`,j := 2−d/2Tb`vj−1, ` = 1, . . . , s, j = 1, . . . , J,

where v0 = v ∈ l2(Z
d) is the input signal. The original input data v is decomposed

into one low-pass subband and sJ high-pass subbands after the J-level discrete

framelet decomposition.

Now the J-level discrete framelet reconstruction is used to rebuild the original

signal recursively as follows:

v̊j−1 := 2−d/2Sav̊j + 2−d/2

s∑

`=1

Sb`ẘ`,j, j = J, . . . , 1.

It is convenient for us to define the associated discrete affine systems to analyze

multilevel discrete framelet transforms.

Following [19], the multilevel filters aj and b`,j with j ∈ N and ` = 1, . . . , s are

defined by

âj(ξ) := 2dj/2â(ξ)â(2ξ) · · · â(2j−2ξ)â(2j−1ξ),

b̂`,j(ξ) := 2dj/2â(ξ)â(2ξ) · · · â(2j−2ξ)b̂`(2
j−1ξ),

with a1 = 2d/2a and b`,1 = 2d/2b`. Now their shifts in the time domain are defined

by

aj;k := aj(· − 2jk) and b`,j;k := b`,j(· − 2jk), k ∈ Zd, j ∈ N, ` = 1, . . . , s.

(2.1.1)

Since l2(Z
d) is a Hilbert space with the inner product 〈v, w〉 =

∑
k∈Zd v(k)w(k),
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as shown in [19], we have

vj(k) = 〈v, aj;k〉 and w`,j(k) = 〈v, b`,j;k〉, k ∈ Zd, j ∈ N, ` = 1, . . . , s,

Consequently, a J-level discrete framelet transform is to compute the following

representation:

v =
∑

k∈Zd

〈v, aJ ;k〉aJ ;k +
J∑

j=1

s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k, v ∈ l2(Z
d) (2.1.2)

with the series converging unconditionally in l2(Z
d). Moreover, we have the fol-

lowing cascade structure:

∑

k∈Zd

〈v, aj−1;k〉aj−1;k =
∑

k∈Zd

〈v, aj;k〉aj;k +
s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k,

j ∈ N, v ∈ l2(Z
d).

The fast discrete framelet transform algorithm is built on this cascade structure.

The J-level discrete affine system associated with the filter bank {a; b1, . . . , bs}

is defined to be

DASJ({a; b1, . . . , bs}) :={aJ ;k : k ∈ Zd}
⋃

J⋃

j=1

{b`,j;k : k ∈ Zd, ` = 1, . . . , s}.
(2.1.3)

Following the general theory in [19], we have the following result for discrete

affine systems.

Theorem 1. Let a, b1, . . . , bs ∈ l1(Z
d). For J ∈ N, define DASJ({a; b1, . . . , bs}) as

in (2.1.3) with aJ ;k and b`,j;k being given in (2.1.1), respectively. Then the following

statements are equivalent:

(1) {a; b1, . . . , bs} is a tight framelet filter bank.
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(2) The following identity holds:

v =
∑

k∈Zd

〈v, a1;k〉a1;k +
s∑

`=1

∑

k∈Zd

〈v, b`,1;k〉b`,1;k, v ∈ l2(Z
d). (2.1.4)

(3) DAS1({a; b1, . . . , bs}) is a (normalized) tight frame for l2(Z
d), that is,

‖v‖2l2(Zd) =
∑

k∈Zd

|〈v, a1;k〉|2 +
s∑

`=1

∑

k∈Zd

|〈v, b`,1;k〉|2, v ∈ l2(Z
d). (2.1.5)

(4) For every j ∈ N, the following identity holds:

∑

k∈Zd

〈v, aj−1;k〉aj−1;k =
∑

k∈Zd

〈v, aj;k〉aj;k+
s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k, v ∈ l2(Z
d),

with convention a0 := δ and a0;k := δ(· − k) for k ∈ Zd, where δ is the

Dirac/Kronecker sequence on Zd:

δ(n) =





1, if n = 0,

0, if n 6= 0.

(5) For every J ∈ N, the identity in (2.1.2) holds.

(6) For every J ∈ N, DASJ({a; b1, . . . , bs}) is a (normalized) tight frame for

l2(Z
d), that is,

‖v‖2l2(Zd) =
∑

k∈Zd

|〈v, aJ ;k〉|2 +
J∑

j=1

s∑

`=1

∑

k∈Zd

|〈v, b`,j;k〉|2, v ∈ l2(Z
d).

Proof. These claims have been proved in [19] for the general downsampling matrix

M. This theorem is a special case with downsampling matrix M = 2Id. For the

completeness, we only present a sketch of the proof here.

Plugging v = δ(· −n) with all n ∈ Zd into (2.1.4), we deduce that the resulting

equations in (2.1.4) with v = δ(· − n) are exactly the time domain version of the
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conditions in (1.2.1) and (1.2.2) in the frequency domain. Hence, (1) ⇐⇒ (2).

(2)=⇒(3) is by direct calculation. (3)=⇒(2) is an application of the polarization

identity to (2.1.5). Hence, (2) ⇐⇒ (3).

It follows from the convention a0 = δ that

∑

k∈Zd

〈v, a0;k〉a0;k =
∑

k∈Zd

v(k)δ(· − k) = v.

Thus, (4)=⇒(2).

We now prove (2)=⇒(4). By the definition of b`,j in (2.1.1) and b`,1 = b`,

b`,j = aj−1 ∗ (b` ↑2j−1Id) = aj−1 ∗ (b`,1 ↑2j−1Id)

=
∑

n∈Zd

aj−1(· − n)(b`,1 ↑2j−1Id)(n) =
∑

m∈Zd

aj−1(· − 2j−1Idm)b`,1(m),

where Id is d× d identity matrix. Therefore, by the definition of b`,j;k in (2.1.1),

b`,j;k = 2djb`,j(· − 2j Idk) = 2dj
∑

m∈Zd

aj−1(· − 2j Idk − 2j−1Idm)b`,1(m)

= 2dj
∑

m∈Zd

aj−1(· − 2j−1Idm)b`,1(m− 2Idk) =
∑

m∈Zd

aj−1;mb`,1;k(m).

Consequently,

〈v, b`,j;k〉 =
∑

m∈Zd

〈v, aj−1;m〉b`,1;k(m) = 〈〈v, aj−1;·〉, b`,1;k(·)〉.

From the above two identities, we deduce that

∑

k∈Zd

〈v, b`,j;k〉b`,j;k =
∑

m∈Zd

aj−1;m

(∑

k∈Zd

〈〈v, aj−1;·〉, b`,1;k〉b`,1;k(m)

)
.

The same argument can be applied to aj;k similarly by replacing b`,j;k and b`,1;k with

aj;k and a1;k, respectively. Therefore,

∑

k∈Zd

〈v, aj;k〉aj;k +
s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k
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=
∑

m∈Zd

aj−1;m

(∑

k∈Zd

〈〈v, aj−1;·〉, a1;k〉a1;k(m) +
s∑

`=1

∑

k∈Zd

〈〈v, aj−1;·〉, b`,1;k〉b`,1;k(m)

)

=
∑

m∈Zd

〈v, aj−1;m〉aj−1;m,

where (2.1.4), i.e., item (2), is applied in the last identity. This proves (2)=⇒(4).

(4)=⇒(5) is from the summation of equation in item (4) with j = 1, . . . , J .

Conversely, considering the differences between J = j and J = j − 1 in (2.1.2),

we see that (5)=⇒(4).

The equivalence between item (5) and item (6) is similar to the equivalence

between item (2) and item (3).

Therefore, the performance of a multilevel discrete framelet transform is com-

pletely determined by its underlying discrete affine systems. Similarly, {a; b1, . . . , b2d−1}

is an orthogonal wavelet filter bank if and only if DASJ({a; b1, . . . , b2d−1}) is an or-

thonormal basis for l2(Z
d) for every J ∈ N.

2.2 Tensor product complex tight framelets TP-CTF2s+1

with s ∈ N

We first provide a road map and some explanations. The one-dimensional complex

tight framelet filter bank {a; b1,p, . . . , bs,p, b1,n, . . . , bs,n} is constructed such that

(1) {a; b1,p, . . . , bs,p, b1,n, . . . , bs,n} is a tight framelet filter bank. By definition,

the following conditions are satisfied:

|â(ξ)|2 +
s∑

`=1

|b̂`,p(ξ)|2 +
s∑

m=1

|b̂m,n(ξ)|2 = 1,

â(ξ)â(ξ + π) +
s∑

`=1

b̂`,p(ξ)b̂`,p(ξ + π) +
s∑

m=1

b̂m,n(ξ)b̂m,n(ξ + π) = 0,
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a.e.ξ ∈ [−π, π];

(2) the low-pass filter a is real and symmetric about the origin, and has 2m order

linear-phase moments with zero phase: â(ξ) = 1 + O(|ξ|2m) as ξ → 0 for

some m ∈ N;

(3) all b̂1,p, . . . , b̂s,p concentrate in [0, π] and almost vanish in [−π, 0], while all

b̂1,n, . . . , b̂s,n concentrate in [−π, 0] and almost vanish in [0, π];

(4) b`,n = b`,p, which is equivalent to b̂`,n(ξ) = b̂`,p(−ξ) for all ` = 1, . . . , s.

The requirements in item (2) are not necessary for directionality except the con-

dition â(0) = 1. However, the linear phase property (i.e., symmetry) and linear-

phase moments of the low-pass filter are desired in numerical algorithms and ap-

plications. The linear-phase moments in item (2) imply that â(0) = 1 and all

the high-pass filters b`,p and b`,n have at least m order vanishing moments (see

[16]). The condition â(0) = 1 is indispensable for the existence of the refin-

able function φ̂(ξ) =
∏∞

j=1 â(2
−jξ). Item (3) is simply the frequency separation.

Item (4) allows us to simplify the associated underlying high-dimensional real tight

framelets which are obtained by separating the real and imaginary parts of the com-

plex tight framelets. For simplicity, the following additional condition is imposed

such that (1.2.2) holds automatically:

(5) â(ξ)â(ξ + π) = 0 and b̂`,p(ξ)b̂`,p(ξ + π) = 0 for ξ ∈ R, ` = 1, . . . , s.

We now construct the one-dimensional directional complex tight framelet filter

banks. Let Pm(x) := (1 − x)m
∑m−1

j=0

(
m+j−1

j

)
xj . Then Pm satisfies the identity

Pm(x) + Pm(1− x) = 1 (see [4]).

For cL < cR and two positive numbers εL, εR satisfying εL + εR 6 cR − cL, we

define a bump function χ[cL,cR];εL,εR on R by
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χ[cL,cR];εL,εR(ξ) :=





0, ξ 6 cL − εL or ξ > cR + εR,

sin
(
π
2Pm( cL+εL−ξ

2εL
)
)
, cL − εL < ξ < cL + εL,

1, cL + εL 6 ξ 6 cR − εR,

sin
(
π
2Pm( ξ−cR+εR

2εR
)
)
, cR − εR < ξ < cR + εR.

(2.2.1)

Note that χ[cL,cR];εL,εR is a continuous function supported on [cL−εL, cR+εR]. This

bump function (2.2.1) is actually a partition of unity and serves as our prototype for

the one-dimensional complex tight framelet filters. Let 0 < c1 < c2 < · · · < cs <

cs+1 := π and ε1, . . . , εs be positive numbers satisfying

0 < ε1 6 min(c1,
π
2
− c1) and (c`+1 − c`) + ε`+1 + ε` 6 π,

` = 1, . . . , s.

(2.2.2)

Define the symmetric real low-pass filter a and 2s numbers of complex high-pass

filters b1,p, . . . , bs,p, b1,n, . . . , bs,n by

â := χ[−c1,c1];ε1,ε1 , b̂`,p := χ[c`,c`+1];ε`,ε`+1
, and b̂`,n := b̂`,p(−·),

` = 1, . . . , s.

(2.2.3)

The conditions in (2.2.2) guarantee item (5): the short support length makes each

term in item (5) zero. It is easy to check that all items (2) – (4) are fulfilled.

In particular the low-pass filter a has infinite order linear-phase moments. Due

to the bump function in (2.2.1), the condition in item (1) is satisfied. Therefore,

CTF2s+1 := {a; b1,p, . . . , bs,p, b1,n, . . . , bs,n} is a (one-dimensional dyadic) tight

framelet filter bank satisfying all the requirements in items (1) – (5). For simplicity,

c1 and ε1 are often set to be free parameters and

c` := c1 +
π − c1
s

(`− 1), ε` = ε1, ` = 1, . . . , s. (2.2.4)
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For this particular choice, due to the constraints in (2.2.2), the parameters c1 and ε1

must satisfy

0 < ε1 6 min

(
c1,

π

2
− c1,

c1 + (s− 1)π

2s

)
. (2.2.5)

Tensor product complex tight framelet filter bank TP-CTF2s+1 in d dimensions

is defined to be

TP-CTF2s+1 := ⊗d CTF2s+1 = ⊗d{a; b1,p, . . . , bs,p, b1,n, . . . , bs,n},

where ⊗d means taking d times of tensor product and d is often omitted when d = 2.

This tight framelet filter bank TP-CTF2s+1 has one real low-pass filter a ⊗ a and

(2s + 1)d − 1 complex high-pass filters. And the associated J-level discrete affine

system is given by

DASJ(TP-CTF2s+1) = DASJ(⊗d{a; b1,p, . . . , bs,p, b1,n, . . . , bs,n}).

It is important to understand how and why tensor product complex framelets

TP-CTFm and the DT-CWT can achieve directionality in high dimensions. To do

so, consider the complex-valued wavelet function ψ : R2 → C in two dimensions.

The same argument can be applied to the high-pass filter u : Z2 → C similarly.

Separating the real and imaginary parts, ψ = ψ[r]+iψ[i], where ψ[r] and ψ[i] are real-

valued functions in two dimensions. For ψ[r] and ψ[i] to have directionality, ψ̂ often

concentrates around a point ζ ∈ R2\{0} (i.e., a nonzero vector) in the frequency

domain. More precisely, ψ̂(ξ) = g(ξ − ζ), where g is a function concentrating

around the origin. Let f be the inverse Fourier transform of g, that is, f̂ = g.

For the TP-CTFm and the DT-CWT, f is often an isotropic real-valued function

concentrating around the origin in the time domain. From the relation ψ̂(ξ) =
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g(ξ − ζ) = f̂(ξ − ζ), we deduce that

ψ(x) = f(x)eiζ·x, ψ[r](x) = f(x) cos(ζ·x), ψ[i](x) = f(x) sin(ζ·x), x ∈ R2.

Even though the complex-valued function ψ does not exhibit any orientation

with isotropic magnitude |ψ(x)| = |f(x)|, its real part ψ[r] and imaginary part ψ[i]

indeed have directionality. The function f provides good spatial localizations as

well as the magnitudes for ψ[r] and ψ[i]. The factors cos(ζ · x) and sin(ζ · x) grant

the directional selectivity to ψ[r] and ψ[i] according to ζ . Note that ψ[r] and ψ[i] have

the same direction, which is perpendicular to the vector ζ .

To see this point, let us look at the simplest case: the two-dimensional tensor

product tight framelet filter bank using CTF3. By the definition in (2.2.3) with s =

1 and the requirement in (2.2.5), the tight framelet filter bank CTF3 = {a; bp, bn}

is given by defining 2π-periodic functions â, b̂p, and b̂n:

â := χ[−c,c];ε,ε, b̂p := χ[c,π];ε,ε, and b̂n := χ[−π,−c];ε,ε, (2.2.6)

where the bump function χ is defined in (2.2.1). Then {a; bp, bn} is a one-dimensional

tight framelet filter bank such that a is real and symmetric about the origin with

â(0) = 1. Define functions φ, ψp, and ψn by

φ̂(ξ) :=
∞∏

j=1

â(2−jξ), ψ̂p(ξ) := b̂p(ξ/2)φ̂(ξ/2), and ψ̂n(ξ) := b̂n(ξ/2)φ̂(ξ/2),

ξ ∈ R.

Then {φ;ψp, ψn} is a tight frame forL2(R) such that φ is real-valued and symmetric

about the origin. Since b̂n(ξ) = b̂p(−ξ), we have bn = bp and ψn = ψp. Moreover,

both functions ψp and ψn are complex-valued and enjoy the frequency separation:

ψ̂p(ξ) ≈ 0, ξ ∈ (−∞, 0] and ψ̂n(ξ) ≈ 0, ξ ∈ [0,∞). (2.2.7)
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The tensor product of complex tight frame {φ;ψp, ψn} in two dimensions are

{φ⊗φ}
⋃

{φ⊗ψp, φ⊗ψn, ψp⊗φ, ψn⊗φ, ψp⊗ψp, ψp⊗ψn, ψn⊗ψp, ψn⊗ψn}.

(2.2.8)

By (2.2.7), for g, h ∈ {ψp, ψn}, ĝ ⊗ h = ĥ ⊗ ĥ concentrates in an area away from

the origin of the frequency plane. As a consequence, both the real and imaginary

parts of g ⊗ h exhibit good directions. For a complex-valued function f : R → C,

define

f [r](x) := Re(f(x)), f [i](x) := Im(f(x)), x ∈ R.

Denote f = f [r]+ if [i] with both f [r] and f [i] real-valued functions on R. Similarly,

for a complex filter u : Z → C, we can write u = u[r] + iu[i] with both sequences

u[r] and u[i] having real coefficients. Define real-valued functions ψp,[r] := Re(ψp),

ψp,[i] := Im(ψp), ψn,[r] := Re(ψn), and ψn,[i] := Im(ψn). Correspondingly, define

real filters bp,[r] := Re(bp), bp,[i] := Im(bp), bn,[r] := Re(bn), and bn,[i] := Im(bn).

{φ;ψp,[r], ψn,[r], ψp,[i], ψn,[i]} is a real tight frame in L2(R) with the underlying real

tight framelet filter bank {a; bp,[r], bn,[r], bp,[i], bn,[i]}. However, this real filter bank is

not applied to generate the high-dimensional one by tensor product since it suffers

the same shortcoming as general real wavelets or framelets. Instead, we first take

the tensor product of the one-dimensional complex tight frame in two dimensions

as in (2.2.8), then separate the real and imaginary parts to derive the directional real

tight frame in L2(R
2). More specifically, we have

√
2

{√
2
2
φ⊗ φ;φ⊗ ψp,[r], φ⊗ ψp,[i], ψp,[r]⊗ φ, ψp,[i]⊗ φ, ψp,[r]⊗ ψp,[r]−ψp,[i]⊗ ψp,[i],

ψp,[r]⊗ ψp,[r]+ψp,[i]⊗ ψp,[i], ψp,[r]⊗ ψp,[i]−ψp,[i]⊗ ψp,[r], ψp,[r]⊗ ψp,[i]+ψp,[i]⊗ ψp,[r]

}

(2.2.9)
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with the following underlying two-dimensional real tight framelet filter bank

√
2
{√

2
2
a⊗ a; a⊗ bp,[r], a⊗ bp,[i], bp,[r] ⊗ a, bp,[i] ⊗ a, bp,[r] ⊗ bp,[r] − bp,[i] ⊗ bp,[i],

bp,[r] ⊗ bp,[r] + bp,[i] ⊗ bp,[i], bp,[r] ⊗ bp,[i] − bp,[i] ⊗ bp,[r], bp,[r] ⊗ bp,[i] − bp,[i] ⊗ bp,[r]
}
.

Now one can check that the derived two-dimensional real tight frame exhibits four

directions:

(1) φ⊗ ψp,[r] and φ⊗ ψp,[i] select the horizontal edges along 0◦;

(2) ψp,[r] ⊗ φ and ψp,[i] ⊗ φ select the vertical edges along 90◦;

(3) ψp,[r] ⊗ ψp,[r] ± ψp,[i] ⊗ ψp,[i] select the edges along 45◦;

(4) ψp,[r] ⊗ ψp,[i] ± ψp,[i] ⊗ ψp,[r] select the edges along −45◦.

The directionality of tensor product complex tight framelet filter bank using

CTFm with m > 3 can be analyzed similarly.

TP-CTF2s+1 in d dimensions with d > 3 can be defined by taking d times the

tensor product of CTF2s+1. For simplicity, TP-CTF2s+1 is also applied to stand for

CTF2s+1 in one dimension. Since TP-CTF2s+1 is a tensor product filter bank in

high dimensions, the discrete framelet transform using TP-CTF2s+1 is essentially

the same as the classical real discrete wavelet transform except for having more

high-pass filters.

In two dimensions, there are 2s(s+1) directions for 4s(s+1) high-pass filters in

TP-CTF2s+1 with directions along 0◦,±45◦, and 90◦ repeated s− 1 times. There-

fore, the two-dimensional TP-CTF2s+1 offers 2s(s+1)−4(s−1) = 2s(s−1)+4 =

1
2
(n− 1)(n− 3)+ 4 different directions with n := 2s+1. For example, TP-CTF3

has four directions along 0◦,±45◦, and 90◦; TP-CTF5 has eight directions along

0◦,±22.5◦,±45◦,±67.5◦, and 90◦. The particular example constructed in [19] cor-

responds to TP-CTF3 here.

25



2.3 Tensor product complex tight framelets TP-CTF2s+2

with s ∈ N

The directional selectivity of TP-CTF2s+1 can be further improved by splitting the

low-pass filter a into two auxiliary low-pass filters ap and an. Let 0 < c1 < c2 <

· · · < cs < cs+1 := π and ε0, ε1, . . . , εs be positive numbers satisfying (2.2.2) with

the additional condition

0 < ε0 < c1 − ε1. (2.3.1)

Define the two auxiliary filters ap and an by

âp := χ[0,c1];ε0,ε1 and ân := âp(−·). (2.3.2)

The high-pass filters b1,p, . . . , bs,p, b1,n, . . . , bs,n are defined the same as in (2.2.3).

Since

|â(ξ)|2 = |âp(ξ)|2 + |ân(ξ)|2,

â(ξ)â(ξ + π) = âp(ξ)âp(ξ + π) + ân(ξ)ân(ξ + π),

(2.3.3)

CTF2s+2 := {ap, an; b1,p, . . . , bs,p, b1,n, . . . , bs,n} is a (one-dimensional dyadic) tight

framelet filter bank. Despite the low-pass filter a is real and symmetric about the

origin, the two auxiliary filters ap and an are complex and may not have any sym-

metry. They are one-sided in the frequency domain satisfying the relation an = ap

and (2.3.3). c1, ε0, and ε1 are often set to be free parameters and the special choice

in (2.2.4) is taken as well. For this particular case, both (2.2.5) and (2.3.1) must be

satisfied. Techniques in (2.3.3) are often applied to split one filter into two one-sided

auxiliary filters to improve the directional selectivity of high-dimensional filters.

The one-dimensional complex tight framelet filter bank is simply CTF2s+2 :=
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{ap, an; b1,p, . . . , bs,p, b1,n, . . . , bs,n}. Now the tensor product complex tight framelet

filter bank TP-CTF2s+2 in d dimensions is defined to be

TP-CTF2s+2 := {⊗da; TP-CTF -HP2s+2},

where TP-CTF -HP2s+2 consists of total (2s + 2)d − 2d complex high-pass filters

given by

(
⊗d {ap, an; b1,p, . . . , bs,p, b1,n, . . . , bs,n}

)
\
(
⊗d {ap, an}

)
.

It is not difficult to see that the associated J-level discrete affine system is given by

DASJ(TP-CTF2s+2) = DASJ({⊗da; TP-CTF -HP2s+2}).

TP-CTF2s+2 is also used to stand for CTF2s+2 in one dimension for simplicity.

The discrete framelet transform using TP-CTF2s+2 is essentially the same as the

discrete framelet transform using filter bank ⊗d{ap, an; b1,p, . . . , bs,p, b1,n, . . . , bs,n}

with a slight modification as follows:

(1) the filter bank ⊗d{ap, an; b1,p, . . . , bs,p, b1,n, . . . , bs,n} is first applied to the d-

dimensional input data v;

(2) the outputs from ⊗d{ap, an} are discarded;

(3) the low-pass filter ⊗da is applied to the input data v, from which the output

is used to replace the discarded outputs from step (2);

(4) steps (1) – (3) are repeated recursively by treating the output from step (3) as

the new input data.

In two dimensions, due to an = ap and b`,n = b`,p, ` = 1, . . . , s, there are

2s(s+2) directions for the 4s(s+2) high-pass filters in TP-CTF -HP2s+2 with the
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directions along ±45◦ degrees repeated s−1 times. Therefore, the two-dimensional

tensor product complex tight framelet TP-CTF2s+2 offers 2s(s+ 2)− 2(s− 1) =

2(s−1)(s+2)+6 = 1
2
(n−4)(n+2)+6 different directions with n := 2s+2. For

example, TP-CTF4 has six directions along ±15◦,±45◦, and ±75◦, and TP-CTF6

has 14 directions.

2.4 Examples

This section presents several examples of tensor product complex tight framelets.

These TP-CTFm are characterized by their corresponding filter banks in the fre-

quency domain. Despite the fact that there are many other choices, the parameters

given here are tuned according to the best performance in image denoising for test-

ing image Barbara at standard deviation σ = 30.

Example 1. This example is from [19]. For TP-CTF3, we apply (2.2.4) and set

c1 =
33
32
, c2 = π, ε1 =

69
128
, and ε2 =

51
512
.

See Figure 2.1 for graphs of the one-dimensional complex tight framelet filter

banks CTF3. See Figure 2.2 for the directionality of the two-dimensional ten-

sor product complex tight framelet TP-CTF3 (more precisely, the generators in

DASJ(TP-CTF3)). Please refer [19] for more details on this example.

Example 2. For TP-CTF4, we apply both (2.2.4) and (2.3.1), and set

c0 = 0, c1 =
291
256
, c2 = π, ε0 =

35
128
, ε1 =

27
64
, and ε2 =

1
2
.

See Figure 2.1 for graphs of the one-dimensional complex tight framelet filter

banks CTF4. See Figure 2.3 for the directionality of the two-dimensional ten-
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(a) CTF3
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(b) CTF4

Figure 2.1: (a) CTF3 = {a; bp, bn} in the frequency domain. Solid line is for â,

dotted line is for b̂p, and dashed line is for b̂n.

(b) CTF4 = {ap, an; bp, bn} in the frequency domain. Solid line is for âp, dotted

line is for ân, dotted-dashed line is for b̂p, and dashed line is for b̂n.

Figure 2.2: The real part (the first four) and the imaginary part (the last four) of the

generators at level 5 in DAS6(TP-CTF3).

sor product complex tight framelet TP-CTF4 (more precisely, the generators in

DASJ(TP-CTF4)).

Figure 2.3: The first row shows the real part and the second row shows the imagi-

nary part of the generators at level 5 in DAS6(TP-CTF4).

Example 3. For TP-CTF6, we apply both (2.2.4) and (2.3.1), and set

c0 = 0, c1 =
119
128
, c2 =

π
2
+119

256
, c3 = π, ε0 =

35
128
, ε1 =

81
128
, ε2 =

115
256
, and ε3 =

115
256
.

See Figure 2.4 for graphs of the one-dimensional complex tight framelet filter
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banks CTF6. See Figure 2.5 for the directionality of the two-dimensional ten-

sor product complex tight framelet TP-CTF6 (more precisely, the generators in

DASJ(TP-CTF6)).
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Figure 2.4: CTF6 = {ap, an; b1,p, b2,p, b1,n, b2,n} in the frequency domain. Right

solid line is for âp and left solid line is for ân. Dotted-dashed line is for b̂1,p and

dotted line is for b̂2,p. Dashed line is for b̂1,n and the line with + sign is for b̂2,n.

Figure 2.5: The first two rows show the real part and the last two rows show the

imaginary part of the generators at level 5 in DAS6(TP-CTF6). Among these 16

graphs, the directions along ±45◦ are repeated once. Hence, there are total 14

directions in the discrete affine system DASJ(TP-CTF6).

We now explain the directionality and oscillations for the graphs in Figure 2.5.

The total six nonzero different vectors ζ’s of the complex wavelets associated with
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the 12 high-pass filters in ⊗{ap, an; b1,p, b1,n}\ ⊗ {ap, an} have small norms (near

the origin). Therefore, the graphs of the real and imaginary parts of these complex

wavelet functions/filters exhibit six edge-like (i.e., fewer oscillation) directions in

Figure 2.5. In addition, the corresponding vectors ζ’s of the complex wavelet func-

tions associated with all other 20 high-pass filters in TP-CTF -HP6 have larger

norms (away from the origin) with total 10 different directions (with ±45◦ repeated

once). Therefore, the graphs of the real and imaginary parts of these complex

wavelet functions/filters exhibit 10 texture-like (i.e., more oscillations) directions

in Figure 2.5. The good performance of TP-CTF6 in applications is probably be-

cause TP-CTF6 has both edge-like (for selecting edges) and texture-like directional

elements (for capturing textures).
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Chapter 3

Directional Tensor Product Complex

Tight Framelets with Low Redundancy

Though empirically higher redundancy of a tight frame often leads to better perfor-

mance, the computational costs increase exponentially with respect to the redun-

dancy rate and dimensions. These computational expenses and storage requirement

restrict the usefulness of such tight frames and over-complete representations in

multidimensional applications (in particular, for moderately high dimensions such

as video processing).

Motivated by the directional tensor product complex tight framelets, this chapter

covers the construction of tensor product complex tight framelets with low redun-

dancy. We introduce the definition of redundancy rate and generalize the notion of

dyadic tight framelet filter banks to tight framelet filter banks with mixed sampling

factors. Finally, example of directional tensor product complex tight framelet with

low redundancy are provided. The results in this chapter have been submitted to

Applied and Computational Harmonic Analysis [25].

3.1 Redundancy rate

Let us explain by what we mean the redundancy rate of a transform or a system.

Most data in d-dimensional applications has finite length. For given data v with
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finite length, we first extend it into a periodic sequence ve on Zd, then perform the

wavelet/framelet transform on the extended data ve. This induces a linear transform

on the original data v, which can be expressed in terms of a matrix W . More pre-

cisely, we can arrange the d-dimensional data v properly so that it can be regarded

as an n×1 column vector in Rn, that is, v ∈ Rn. By performing the linear transform

W on v, we obtain another column vector w := Wv ∈ RN of frame coefficients. If

{a; b1, . . . , bs} is a real orthonormal wavelet filter bank with s = 2d−1, thenN = n

and W is a real n × n orthogonal matrix satisfying WTW = In. If {a; b1, . . . , bs}

is a real tight framelet filter bank, then we must have N > n and W is a real N × n

matrix satisfying WTW = In. The ratio N/n is called the redundancy rate of the

linear transform W or its underlying tight frame, since it is the ratio of the frame

coefficients number N to the original input data number n. Note that the redun-

dancy rate N/n is independent of input data length n and it only depends on the

number s of high-pass filters and the sampling factor (which is Id here).

For the d-dimensional tensor product tight framelet filter bank TP-CTFm, if m

is odd, there are one real low-pass filter and (m−1)d−1 complex high-pass filters.

Consequently, its redundancy rate is no more than md−1
2d−1

for any decomposition level

J ∈ N. If m is even, there are one real low-pass filter and md − 2d complex high-

pass filters in the TP-CTFm. Therefore, its redundancy rate is no more than md−2d

2d−1

for any decomposition level J ∈ N. For both the DT-CWT and the TP-CTFm,

one complex coefficient is counted as two in the calculation of redundancy rates.

The TP-CTF4 has almost the same performance, directionality and redundancy

rate as those of the DT-CWT. The TP-CTF6 has superior performance than both

TP-CTF4 and DT-CWT in image denoising [24] and image inpainting [47], but

it has higher redundancy rate 6d−2d

2d−1
in d dimensions. See Table 3.1 for a numerical

illustration of redundancy rates.
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d 1 2 3 4 5 6 7 8
UWT 4 10 22 46 94 190 383 766
UFT2 7 25 79 241 727 2185 6559 19681
UFT4 13 73 373 1873 9373 46873 234373 1171873

DT-CWT 2 4 8 16 32 64 128 256
TP-CTF3 2 22

3
35
7

51
3

725
31

115
9

17 27
127

2537
51

TP-CTF4 2 4 8 16 32 64 128 256
TP-CTF5 4 8 175

7
413

5
10024

31
248 615 19

127
153173

85

TP-CTF6 4 102
3

295
7

851
3

24925
31

7395
9

2203 27
127

658537
51

TP-CTF↓
6 2 22

3
35
7

51
3

725
31

115
9

17 27
127

2537
51

Table 3.1: Redundancy rates of various tight frames for different d dimensions.

UWT is the undecimated wavelet transform with decomposition level J = 3 with

the tensor product of 1D orthonormal real wavelet filter bank {a; b}.

UFTs is the undecimated framelet transform with decomposition level J = 3 with

the tensor product of a 1D real tight framelet filter bank {a; b1, . . . , bs}.

DT-CWT is the dual tree complex wavelet transform.

TP-CTFm is the tensor product complex tight framelet with m = 3, 4, 5, 6.

TP-CTF↓
6 is our proposed tensor product complex tight framelet with low redun-

dancy.

The construction of TP-CTFm with m > 3 is modified in order to reduce

the redundancy rate. For simplicity of presentation, we restrict our attention to

one particular example: TP-CTF6 with underlying one-dimensional complex tight

framelet filter bank CTF6. We hope the redundancy rate of TP-CTF6 can be sig-

nificantly reduced, while keep almost all the desirable properties of TP-CTF6.

Hence, the modified directional tensor product complex tight framelet is denoted

by TP-CTF↓
6, where the superscript ↓ here means that TP-CTF↓

6 is a reduced ver-

sion of TP-CTF6.

There are also many nonseparable approaches beyond the tensor product (i.e.,

separable) to achieve directionality in high dimensions. The notation dD stands for

d dimensions or d-dimensional. Some examples of such nonseparable transforms

are 2D curvelets in [2], 2D contourlets in [5], the steerable pyramid in [48], 2D and
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3D shearlets in [26, 29, 30, 33, 34], 3D surfacelets in [36], and directional tight

framelets in [12, 18, 26], as well as quite a few more in the literature. The redun-

dancy rates of such nonseparable transforms depend on the numbers of directions

applied in each resolution level and the decomposition level J ∈ N. Generally

speaking, those nonseparable transforms often have much higher redundancy rates

than those tensor product based transforms for reasonable performance in applica-

tions.

3.2 Tight framelet filter banks with mixed sampling

factors

This section introduces tight framelet filter banks with mixed sampling factors

and studies their properties. Our proposed TP-CTF↓
6 is a particular case of such

framelet filter banks.

3.2.1 Fast framelet transform using tight framelet filter banks

with mixed sampling factors

To reduce the redundancy rate, higher sampling factors are applied to the high-pass

filters in the TP-CTFm. To this end, let us generalize the definition of the (d-

dimensional dyadic) tight framelet filter bank {a; b1, . . . , bs}, which uses the uni-

form sampling matrix 2Id, where Id is the d× d identity matrix.

Let M be a d × d invertible integer matrix. For a sequence u = {u(k)}k∈Zd :

Zd → C, the downsampling sequence u ↓M and the upsampling sequence u ↑M
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with the sampling matrix M are defined by

[u↓M](k) := u(Mk), k ∈ Zd and [u↑M](k) :=





u(M−1k), if k ∈ MZd,

0, if k ∈ Zd\[MZd].

| det(M)| is called the sampling factor. We adopt the notation u !M to explic-

itly specify the sampling matrix M associated with the filter u. A (d-dimensional

dyadic) tight framelet filter bank {a; b1, . . . , bs} with uniform sampling matrix 2Id

will be denoted more precisely as {a ! 2Id; b1 ! 2Id, . . . , bs ! 2Id} under this new nota-

tion.

For a filter u ∈ l1(Z
d) and a d × d integer matrix M, the subdivision operator

Su,M : l∞(Zd) → l∞(Zd) and the transition operator Tu,M : l∞(Zd) → l∞(Zd) are

defined to be

[Su,Mv](n) := | det(M)|
∑

k∈Zd

v(k)u(n−Mk), n ∈ Zd,

[Tu,Mv](n) := | det(M)|
∑

k∈Zd

v(k)u(k −Mn), n ∈ Zd.

Define ΩM := (M−TZd) ∩ [0, 1)d. In terms of Fourier series, we have

Ŝu,Mv(ξ) = | det(M)|v̂(MTξ)û(ξ),

T̂u,Mv(ξ) =
∑

ω∈ΩM

v̂(M−Tξ + 2πω)û(M−Tξ + 2πω).
(3.2.1)

Define the conjugate sequence u? of u by u?(k) := u(−k), k ∈ Zd. Note that

û?(ξ) = û(ξ). Then

Su,Mv = | det(M)|(v↑M) ∗ u and Tu,Mv = | det(M)|(v ∗ u?)↓M,

where v ∗ u :=
∑

k∈Zd v(k)u(· − k) is the convolution of v and u.

Let a, b1, . . . , bs ∈ l1(Z
d) and M,M1, . . . ,Ms be d×d invertible integer matrices.
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For J ∈ N and given data v0 ∈ l∞(Zd), the J-level discrete framelet decomposition

(or forward transform) employing the filter bank {a !M; b1 !M1, . . . , bs !Ms} is

vj := | det(M)|−1/2Ta,Mvj−1 and w`,j := | det(M`)|−1/2Tb`,M`
vj−1,

` = 1, . . . , s, j = 1, . . . , J,

(3.2.2)

where vj are sequences of low-pass coefficients and all w`,j are sequences of high-

pass coefficients of the input signal v0. The J-level discrete framelet reconstruction

(or backward transform) employing the filter bank {a !M; b1 !M1, . . . , bs !Ms} can

be described by

v̊j−1 := | det(M)|−1/2Sa,Mv̊j +
s∑

`=1

| det(M`)|−1/2Sb`,M`
ẘ`,j,

j = J, . . . , 1,

(3.2.3)

where v̊0 is a reconstructed sequence on Zd. The property of perfect reconstruction

requires that the reconstructed sequence v̊0 be exactly the same as the original input

data v0 if v̊J = vJ and ẘ`,j = w`,j for j = 1, . . . , J and ` = 1, . . . , s.

Using [19, Theorem 2.1], we have the following result on the perfect recon-

struction for the filter bank {a !M; b1 !M1, . . . , bs !Ms}.

Theorem 2. Let a, b1, . . . , bs ∈ l1(Z
d) and let M,M1, . . . ,Ms be d × d invertible

integer matrices. Then the following statements are equivalent:

(1) For every J ∈ N, the J-level fast framelet transform employing the filter bank

{a !M; b1 !M1, . . . , bs !Ms} has perfect reconstruction.

(2) The one-level discrete framelet transform employing the filter bank

{a !M; b1 !M1, . . . , bs !Ms} has perfect reconstruction, that is,

v = | det(M)|−1Sa,MTa,Mv +
s∑

`=1

| det(M`)|−1Sb`,M`
Tb`,M`

v, v ∈ l∞(Zd).

(3.2.4)
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(3) The filter bank {a !M; b1 !M1, . . . , bs !Ms} is a tight framelet filter bank with

mixed sampling factors, that is, the following perfect reconstruction condi-

tions hold:

|â(ξ)|2 + |b̂1(ξ)|2 + · · ·+ |b̂s(ξ)|2 = 1, (3.2.5)

χM−TZd(ω)â(ξ)â(ξ + 2πω) +
s∑

`=1

χ
M

−T

`
Zd(ω)b̂`(ξ)b̂`(ξ + 2πω) = 0, (3.2.6)

for almost every ξ ∈ Rd and all ω ∈ [ΩM ∪ ∪s
`=1ΩM`

]\{0}, where ΩM`
:=

(M−T

` Zd) ∩ [0, 1)d and

χ
M

−T

`
Zd(ω) =





1, if ω ∈ M−T

` Zd,

0, if ω 6∈ M−T

` Zd.

Proof. The equivalence between item (1) and item (2) is straightforward. By (3.2.1),

the Fourier series of the sequence Sb`,M`
Tb`,M`

v is

| det(M`)|
∑

ω`∈ΩM`

v̂(ξ + 2πω`)b̂`(ξ)b̂`(ξ + 2πω`).

Consequently, we see that (3.2.4) holds if and only if

v̂(ξ) =
∑

ω0∈ΩM

v̂(ξ+2πω0)â(ξ)â(ξ+2πω0)+
s∑

`=1

∑

ω`∈ΩM`

v̂(ξ+2πω`)b̂`(ξ)b̂`(ξ+2πω`)

=
∑

ω∈ΩM∪∪s
`=1ΩM`

v̂(ξ+2πω)

(
χM−TZd(ω)â(ξ)â(ξ+2πω)+

s∑

`=1

χ
M

−T

`
Zd(ω)b̂`(ξ)b̂`(ξ+2πω)

)
.

Now using the above identity and employing a similar argument as in the proof

of [19, Theorem 2.1], we can deduce that item (2) is equivalent to item (3).
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3.2.2 Discrete affine systems of tight framelet filter banks with

mixed sampling factors

To understand the performance and properties of the J-level fast framelet transform

using a tight framelet filter bank {a !M; b1 !M1, . . . , bs !Ms}, it is important to look

at the J-level discrete affine system associated with {a !M; b1 !M1, . . . , bs !Ms}.

Let a, b1, . . . , bs ∈ l1(Z
d). Note that l1(Z

d) ⊆ l2(Z
d) and l2(Z

d) is a Hilbert

space equipped with the inner product 〈u, v〉 :=∑k∈Zd u(k)v(k) for u, v ∈ l2(Z
d).

Following Chapter 2, the multilevel filters aj and b`,j with j ∈ N and ` = 1, . . . , s

are defined to be

âj(ξ) := â(ξ)â(MTξ) · · · â((MT)j−2ξ)â((MT)j−1ξ), (3.2.7)

b̂`,j(ξ) := âj−1(ξ)b̂`((M
T)j−1ξ) = â(ξ)â(MTξ) · · · â((MT)j−2ξ)b̂`((M

T)j−1ξ).

(3.2.8)

In particular, a1 = a and b`,1 = b`. We also use the convention a0 = δ. Since

a, b1, . . . , bs ∈ l1(Z
d), it is straightforward to see that all aj, b`,j are well-defined

filters in l1(Z
d) ⊆ l2(Z

d). For j ∈ N and k ∈ Zd, we define the shifts to be

aj;k := | det(M)|j/2aj(· −Mjk),

b`,j;k := | det(M)|(j−1)/2| det(M`)|1/2b`,j(· −Mj−1M`k).

(3.2.9)

Then J-level discrete affine system associated with mixed sampling factors filter

bank {a !M; b1 !M1, . . . , bs !Ms} is defined to be

DASJ({a !M; b1 !M1, . . . , bs !Ms}) :=

{aJ ;k : k ∈ Zd}
⋃

{b`,j;k : k ∈ Zd, ` = 1, . . . , s, j = 1, . . . , J}.
(3.2.10)

Under the framework of the Hilbert space l2(Z
d), the J-level fast framelet transform
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using the tight framelet filter bank {a !M; b1 !M1, . . . , bs !Ms} is exactly to compute

the following representation:

v =
∑

u∈DASJ ({a !M;b1 !M1,...,bs !Ms})
〈v, u〉u

=
∑

k∈Zd

〈v, aJ ;k〉aJ ;k +
J∑

j=1

s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k, v ∈ l2(Z
d),

(3.2.11)

where the series converges unconditionally in l2(Z
d).

Similar to Theorem 1, we have the following result on the discrete affine system

associated with a mixed sampling factor filter bank.

Theorem 3. Let a, b1, . . . , bs ∈ l1(Z
d) and M,M1, . . . ,Ms be d× d invertible inte-

ger matrices. For J ∈ N, define DASJ({a !M; b1 !M1, . . . , bs !Ms}) as in (3.2.10)

with aj and b`,j being given in (3.2.7) and (3.2.8), respectively. Then the following

statements are equivalent:

(1) {a !M; b1 !M1, . . . , bs !Ms} is a tight framelet filter bank with mixed sampling

factors.

(2) The following identity holds:

v =
∑

k∈Zd

〈v, a1;k〉a1;k +
s∑

`=1

∑

k∈Zd

〈v, b`,1;k〉b`,1;k, v ∈ l2(Z
d). (3.2.12)

(3) DAS1({a !M; b1 !M1, . . . , bs !Ms}) is a (normalized) tight frame for l2(Z
d),

that is,

‖v‖2l2(Zd) =
∑

k∈Zd

|〈v, a1;k〉|2 +
s∑

`=1

∑

k∈Zd

|〈v, b`,1;k〉|2, v ∈ l2(Z
d). (3.2.13)

(4) For every j ∈ N, the following identity holds:

∑

k∈Zd

〈v, aj−1;k〉aj−1;k =
∑

k∈Zd

〈v, aj;k〉aj;k+
s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k, v ∈ l2(Z
d),
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where by convention a0 := δ and a0;k := δ(· − k) for k ∈ Zd.

(5) For every J ∈ N, the identity in (3.2.11) holds.

(6) For every J ∈ N, DASJ({a !M; b1 !M1, . . . , bs !Ms}) is a (normalized) tight

frame for l2(Z
d), that is,

‖v‖2l2(Zd) =
∑

k∈Zd

|〈v, aJ ;k〉|2 +
J∑

j=1

s∑

`=1

∑

k∈Zd

|〈v, b`,j;k〉|2, v ∈ l2(Z
d).

Proof. Similar to Theorem 1, we only prove (2)=⇒(4). By the definition of b`,j in

(3.2.8) and b`,1 = b`,

b`,j = aj−1 ∗ (b` ↑Mj−1) = aj−1 ∗ (b`,1 ↑Mj−1)

=
∑

n∈Zd

aj−1(· − n)(b`,1 ↑Mj−1)(n) =
∑

m∈Zd

aj−1(· −Mj−1m)b`,1(m).

Therefore, by the definition of b`,j;k in (3.2.9),

b`,j;k = | det(M)|(j−1)/2| det(M`)|1/2b`,j(· −Mj−1M`k)

= | det(M)|(j−1)/2| det(M`)|1/2
∑

m∈Zd

aj−1(· −Mj−1M`k −Mj−1m)b`,1(m)

= | det(M)|(j−1)/2| det(M`)|1/2
∑

m∈Zd

aj−1(· −Mj−1m)b`,1(m−M`k)

=
∑

m∈Zd

aj−1;mb`,1;k(m).

Consequently,

〈v, b`,j;k〉 =
∑

m∈Zd

〈v, aj−1;m〉b`,1;k(m) = 〈〈v, aj−1;·〉, b`,1;k(·)〉. (3.2.14)

From the above two identities,

∑

k∈Zd

〈v, b`,j;k〉b`,j;k =
∑

m∈Zd

aj−1;m

(∑

k∈Zd

〈〈v, aj−1;·〉, b`,1;k〉b`,1;k(m)

)
.

41



The same argument can be applied to aj;k and the above identity still holds by

replacing b`,j;k and b`,1;k with aj;k and a1;k, respectively. Therefore,

∑

k∈Zd

〈v, aj;k〉aj;k +
s∑

`=1

∑

k∈Zd

〈v, b`,j;k〉b`,j;k

=
∑

m∈Zd

aj−1;m

(∑

k∈Zd

〈〈v, aj−1;·〉, a1;k〉a1;k(m) +
s∑

`=1

∑

k∈Zd

〈〈v, aj−1;·〉, b`,1;k〉b`,1;k(m)

)

=
∑

m∈Zd

〈v, aj−1;m〉aj−1;m,

where (3.2.12) in item (2) is applied in the last identity. This proves (2)=⇒(4).

The coefficients in the representation in (3.2.11) using a J-level discrete affine

system can be exactly computed through the J-level fast framelet decomposition in

(3.2.2). In fact, since âj−1(ξ) = â(ξ) · · · â((MT)j−2ξ) and Tu,Mv = | det(M)|(v ∗

u?)↓M, by [19, Lemma 4.3],

〈v, aj−1;k〉 = | det(M)|(j−1)/2〈v, aj−1(· −Mj−1k)〉 = | det(M)|(1−j)/2[Taj−1,Mj−1v](k)

= | det(M)|(1−j)/2[T j−1
a,M v](k) = vj−1(k),

where vj−1 is exactly the same sequence as obtained in the fast framelet decompo-

sition in (3.2.2) with v0 := v. Similarly, by (3.2.14) and the above identity,

〈v, b`,j;k〉 = 〈〈v, aj−1;·〉, b`,1;k〉 = | det(M`)|1/2〈vj−1, b`(· −M`k)〉

= | det(M`)|1/2
∑

m∈Zd

vj−1(m)b`(m−M`k) = | det(M`)|−1/2[Tb`,M`
vj−1](k)

= w`,j(k).

This establishes the connection between the representation in (3.2.11) under the

J-level discrete affine system and the J-level fast/discrete framelet transform in

(3.2.2) and (3.2.3).
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3.2.3 Connections to tight frames in L2(R
d)

Following the general theory on frequency-based framelets in [14, 18], this sub-

section discusses the natural connections between the tight framelet filter bank

{a !M; b1 !M1, . . . , bs !Ms} and the tight frame in L2(R
d).

For a function f : Rd → C and a d× d real matrix U, following [18], we adopt

the notation:

fU;k,n(x) := f[[U;k,n]](x) := [[U; k, n]]f(x) := | det(U)|1/2e−in·Uxf(Ux− k),

x, k, n ∈ Rd.

In particular, fU;k := fU;k,0 = | detU|1/2f(U · −k). For f ∈ L1(R
d), its Fourier

transform is defined to be f̂(ξ) :=
∫
Rd f(x)e

−ix·ξdx for ξ ∈ Rd. Note that f̂U;k =

f̂U−T;0,k.

The following result is based on the general theory developed in [14, 18] on

frequency-based framelets.

Theorem 4. Let a, b1, . . . , bs ∈ l1(Z
d) and M,M1, . . . ,Ms be d×d invertible integer

matrices. Suppose that all the eigenvalues of M are greater than one in modulus

and there exist positive numbers ε, C, τ such that |1− â(ξ)| 6 C‖ξ‖τ , ξ ∈ [−ε, ε]d.

Define

φ̂(ξ) :=
∞∏

j=1

â((MT)−jξ) and ψ̂`(ξ) := b̂`(M
−Tξ)φ̂(M−Tξ),

ξ ∈ Rd, ` = 1, . . . , s.

(3.2.15)

If {a !M; b1 !M1, . . . , bs !Ms} is a tight framelet filter bank, then

{φ !M;ψ1 !M1, . . . , ψ
s !Ms} is a tight framelet in L2(R

d), that is, φ, ψ1, . . . , ψs ∈

L2(R
d) and AS0({φ !M;ψ1 !M1, . . . , ψ

s !Ms}) is a (normalized) tight frame inL2(R
d):
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‖f‖2L2(Rd) =
∑

k∈Zd

|〈f, φ(· − k)〉|2 +
∞∑

j=0

s∑

`=1

∑

k∈Zd

|〈f, | det(M−1M`)|1/2ψ`
Mj ;M−1M`k

〉|2,

f ∈ L2(R
d),

(3.2.16)

where

AS0({φ !M;ψ1 !M1, . . . , ψ
s !Ms}) := {φ(· − k) : k ∈ Zd}

⋃
{| det(M−1M`)|1/2ψ`

Mj ;M−1M`k
: k ∈ Zd, ` = 1, . . . , s, j ∈ N ∪ {0}}.

(3.2.17)

The converse direction also holds provided in addition that
∑

k∈Zd |φ̂(ξ+2πk)|2 6=

0 for almost every ξ ∈ Rd.

Proof. By the same argument as in [18, Theorem 13] and [14, Theorem 6], (3.2.16)

holds for all f ∈ L2(R
d) and φ, ψ1, . . . , ψs ∈ L2(R

d) if and only if

lim
j→+∞

∑

k∈Zd

|〈f, φMj ;k〉|2 = ‖f‖2L2(Rd) (3.2.18)

and

∑

k∈Zd

|〈f, φM;k〉|2 =
∑

k∈Zd

|〈f, φ(· − k)〉|2+

s∑

`=1

∑

k∈Zd

|〈f, | det(M−1M`)|1/2ψ`(· −M−1M`k)〉|2
(3.2.19)

for all f ∈ L2(R
d) such that f̂ is a compactly supported C∞ function.

By our assumption on M and â, φ̂ is a well-defined bounded function. By

the similar argument as in [14, Lemma 4], we see that (3.2.18) is satisfied, since

limj→+∞ φ̂((MT)−jξ) = 1.

Define N := M−T and N` := M−T

` . Note that ψ`(· − M−1M`k) = η`(M−1
` M ·

−k) with η` := ψ`(M−1M`·) and η̂`(ξ) = | det(M−1
` M)|ψ̂`(N−1N`ξ). By [18,

Lemma 10], we have
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∑

k∈Zd

|〈f, | det(M−1M`)|1/2ψ`(· −M−1M`k)〉|2 = | det(M−1M`)|2
∑

k∈Zd

|〈f, η`
M

−1
`

M;k
〉|2

=(2π)−2d| det(M−1M`)|2
∑

k∈Zd

|〈f̂ , η̂`
N
−1
`

N;0,k〉|2

=(2π)−d

∫

Rd

∑

k∈Zd

f̂(ξ)f̂(ξ + 2πN−1N`k)ψ̂`(ξ)ψ̂`(ξ + 2πN−1N`k)dξ

=(2π)−d

∫

Rd

∑

k∈Zd

f̂(ξ)f̂(ξ + 2πN−1N`k)b̂`(Nξ)b̂`(Nξ + 2πN`k)φ̂(Nξ)φ̂(Nξ + 2πN`k)dξ

=(2π)−d

∫

Rd

f̂(ξ)φ̂(Nξ)
∑

ω`∈ΩM`

b̂`(Nξ)b̂`(Nξ + 2πω`)

∑

k∈Zd

f̂(ξ + 2πN−1ω` + 2πN−1k)φ̂(Nξ + 2πω` + 2πk)dξ,

where we used (3.2.15) in the last second identity and the fact that Zd = MT

` ΩM`
+

MT

` Z
d. Similarly, by [18, Lemma 10] we have

∑

k∈Zd

|〈f, φ(· − k)〉|2

=(2π)−d

∫

Rd

∑

k∈Zd

f̂(ξ)f̂(ξ + 2πk)â(Nξ)â(Nξ + 2πNk)φ̂(Nξ)φ̂(Nξ + 2πNk)dξ

=(2π)−d

∫

Rd

f̂(ξ)φ̂(Nξ)
∑

ω0∈ΩM

â(Nξ)â(Nξ + 2πω0)

∑

k∈Zd

f̂(ξ + 2πN−1ω0 + 2πN−1k)φ̂(Nξ + 2πω0 + 2πk)dξ

and

∑

k∈Zd

|〈f, φM;k〉|2 = (2π)−d

∫

Rd

f̂(ξ)φ̂(Nξ)
∑

k∈Zd

f̂(ξ + 2πN−1k)φ̂(Nξ + 2πk)dξ.

By the similar argument as in [14, Lemma 5], we can conclude that (3.2.19) holds

45



if and only if

φ̂(ξ)φ̂(ξ + 2πω + 2πk)

(
χM−TZd(ω)â(ξ)â(ξ + 2πω) +

s∑

`=1

χ
M

−T

`
Zd(ω)b̂`(ξ)b̂`(ξ + 2πω)

)

= δ(ω)φ̂(ξ)φ̂(ξ + 2πk), a.e. ξ ∈ Rd

(3.2.20)

for all ω ∈ ΩM ∪ ∪s
`=1ΩM`

and for all k ∈ Zd. If {a !M; b1 !M1, . . . , bs !Ms} is a

tight framelet filter bank, by (3.2.5) and (3.2.6), it is obvious that (3.2.20) is satisfied

and therefore, {φ !M;ψ1 !M1, . . . , ψ
s !Ms} is a tight framelet for L2(R

d).

If
∑

k∈Zd |φ̂(ξ + 2πk)|2 6= 0 for almost every ξ ∈ Rd, then it is easy to deduce

that (3.2.20) is equivalent to (3.2.5) and (3.2.6). This proves the converse direction.

Since M−1M`Z
d = Zd may not hold any more for all ` = 1, . . . , s, the system

AS0({φ !M;ψ1 !M1, . . . , ψ
s !Ms}) in (3.2.17) is not covered by the current theory

of wavelet/multiresolution analysis.

3.3 One-dimensional complex tight framelets with low

redundancy

Built on the tight framelet filter banks with mixed sampling factors, this subsection

builds a one-dimensional tight framelet filter bank CTF↓
6, which consists of one

real low-pass filter a, two auxiliary complex filters ap and an, and four complex

high-pass filters b1,p, b2,p, b1,n and b2,n such that

(1) an = ap, b1,n = b1,p, and b2,n = b2,p;

(2) both CTF↓
6 := {ap ! 4, an ! 4; b1,p ! 4, b2,p ! 4, b1,n ! 4, b2,n ! 4} and

{a ! 2; b1,p ! 4, b2,p ! 4, b1,n ! 4, b2,n ! 4} are tight framelet filter banks;
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(3) all the filters ap, an, b1,p, b2,p, b1,n, and b2,n have good frequency separation.

As discussed in Chapter 2, the directionality of the tensor product complex tight

framelet TP-CTF↓
6 largely depends on the frequency separation of all the high-pass

filters in the J-level discrete affine system DASJ({a ! 2; b1,p ! 4, b2,p ! 4, b1,n ! 4, b2,n ! 4})

as well as the frequency separation of the two auxiliary filters ap and an. For

` = 1, 2 and j ∈ N, define

âj(ξ) := â(ξ)â(2ξ) · · · â(2j−2ξ)â(2j−1ξ),

b̂p`,j := âj−1(ξ)b̂
p
`(2

j−1ξ) = â(ξ)â(2ξ) · · · â(2j−2ξ)b̂p`(2
j−1ξ), (3.3.1)

b̂n`,j := âj−1(ξ)b̂n` (2
j−1ξ) = â(ξ)â(2ξ) · · · â(2j−2ξ)b̂n` (2

j−1ξ). (3.3.2)

Note that a1 = a, bp`,1 = bp` and bn`,1 = bn` . We also define

aj;k := 2j/2aj(·−2jk), bp`,j;k := 2(j+1)/2bp`,j(·−2j+1k), bn`,j;k := 2(j+1)/2bn`,j(·−2j+1k),

for ` = 1, 2, j ∈ N, and k ∈ Z. Then the associated one-dimensional J-level

discrete affine system is given by

DASJ({a ! 2; bp1 ! 4,bp2 ! 4, bn1 ! 4, bn2 ! 4}) :=

{aJ ;k : k ∈ Z}
⋃

{bp`,j;k, bn`,j;k : k ∈ Z, ` = 1, 2, j = 1, . . . , J}.

A detailed construction of CTF↓
6 is given in the following result by defining the

filters a and b1,p, b2,p, b1,n, b2,n as in (2.2.3) with s = 2 and ap, an as in (2.3.2).

For a filter u, we say that u has the ideal frequency separation if either û(ξ) = 0

for all ξ ∈ [−π, 0] or û(ξ) = 0 for all ξ ∈ [0, π]. The following result describes the

frequency separation of tight framelet filter banks with mixed sampling factors.

Theorem 5. Let 0 < c0 < c1 < c2 < π and ε0, ε1, ε2, ε3 be positive real numbers.

The filters a, ap, bp1, b
p
2 are constructed by defining their 2π-periodic Fourier series
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on the basic interval [−π, π) as follows:

â := χ[−c1,c1];ε1,ε1 , â
p := χ[0,c1];ε0,ε1 , b̂

p
1 := χ[c1,c2];ε1,ε2 , and b̂p2 := χ[c2,π];ε2,ε3 .

Define

an := ap, bn1 := bp1, bn2 := bp2. (3.3.3)

If the following conditions are satisfied,

ε0 + ε1 6 c1 6
π
2
− ε0 − ε1,

π
2
+ ε2 + ε3 6 c2 6 π − ε2 − ε3,

ε1 + ε2 6 c2 − c1 6
π
2
− ε1 − ε2,

(3.3.4)

then both {ap ! 4, an ! 4; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4} and {a ! 2; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4}

are tight framelet filter banks. If both (3.3.4) and the following additional condi-

tions are satisfied:

1
2
c2 +

1
2
ε2 + c1 + ε1 6 π and c1 + ε1 +

1
2
ε3 6

π
2
, (3.3.5)

then all the high-pass filters bp1,j;k, b
p
2,j;k, b

n
1,j;k, b

n
2,j;k, k ∈ Z at all scale levels j > 2

in the J-level discrete affine system DASJ({a ! 2; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4}) have the

ideal frequency separation for any J > 2, more precisely,

b̂p`,j(ξ) = 0, ξ ∈ [−π, 0] and b̂n`,j(ξ) = 0, ξ ∈ [0, π]

j > 2 and ` = 1, 2,

(3.3.6)

where b̂p`,j and b̂n`,j are defined in (3.3.1) and (3.3.2), respectively.

Proof. By Theorem 2, {a ! 2; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4} is a tight framelet filter bank

if and only if

|â(ξ)|2 + |b̂p1(ξ)|2 + |b̂p2(ξ)|2 + |b̂n1 (ξ)|2 + |b̂n2 (ξ)|2 = 1, (3.3.7)
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â(ξ)â(ξ + π) +
2∑

`=1

(
b̂p`(ξ)b̂

p
`(ξ + π) + b̂n` (ξ)b̂

n
` (ξ + π)

)
= 0, (3.3.8)

2∑

`=1

(
b̂p`(ξ)b̂

p
`(ξ +

π
2
) + b̂n` (ξ)b̂

n
` (ξ +

π
2
)
)
= 0, (3.3.9)

2∑

`=1

(
b̂p`(ξ)b̂

p
`(ξ +

3π
2
) + b̂n` (ξ)b̂

n
` (ξ +

3π
2
)
)
= 0. (3.3.10)

By the definition of the bump function, it is easy to check that the identity (3.3.7)

holds. By (3.3.4), we see that for ξ ∈ R, γ = 1, 2, 3, and u ∈ {bp1, bp2, bn1 , bn2}:

â(ξ)â(ξ + π) = 0, âp(ξ)âp(ξ + γπ
2
) = 0, ân(ξ)ân(ξ + γπ

2
) = 0, (3.3.11)

û(ξ)û(ξ + γπ
2
) = 0. (3.3.12)

Therefore, all the identities (3.3.8) – (3.3.10) hold and {a ! 2; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4}

is a tight framelet filter bank.

By Theorem 2, {ap ! 4, an ! 4; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4} is a tight framelet filter

bank if and only if

|âp(ξ)|2 + |ân(ξ)|2 + |b̂p1(ξ)|2 + |b̂p2(ξ)|2 + |b̂n1 (ξ)|2 + |b̂n2 (ξ)|2 = 1 (3.3.13)

and for all γ = 1, 2, 3,

âp(ξ)âp(ξ + γπ
2
)+ân(ξ)ân(ξ + γπ

2
)+

2∑

`=1

(
b̂p`(ξ)b̂

p
`(ξ +

γπ
2
)+b̂n` (ξ)b̂

n
` (ξ +

γπ
2
)
)
= 0.

(3.3.14)

By the definition of the bump function, it is easy to check that the identity (3.3.13)

holds. It also follows directly from (3.3.11) and (3.3.12) that (3.3.14) holds. Hence,

{ap ! 4, an ! 4; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4} is a tight framelet filter bank.

Using (3.3.4) and (3.3.5), by calculation we can directly check that the ideal

frequency separation (3.3.6) holds.
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3.4 Tensor product of CTF
↓
6

This section discusses the tensor product tight framelet filter bank TP-CTF↓
6 de-

rived from the one-dimensional tight framelet filter banks in Theorem 5. Define

TP-CTF -HP
↓
6 to be the set including all 6d − 2d complex high-pass filters as fol-

lows:

TP-CTF -HP
↓
6 :=

(
⊗d{ap, an; b1,p, b2,p, b1,n, b2,n}

)
\
(
⊗d{ap, an}

)
.

Then the directional tensor product complex tight framelet filter bank TP-CTF↓
6 in

d dimensions is defined to be

TP-CTF↓
6 := {⊗da ! 2Id ; u ! 4Id with u ∈ TP-CTF -HP

↓
6}.

Note that the low-pass filter ⊗da is real and due to the relations in (3.3.3), u ∈

TP-CTF -HP
↓
6 if u ∈ TP-CTF -HP

↓
6. Therefore, the tight framelet filter bank

TP-CTF↓
6 can always be rewritten as

TP-CTF↓
6 = {⊗da ! 2Id ; u ! 4Id, u ! 4Id with u ∈ TP-CTF -CHP

↓
6},

where TP-CTF -CHP
↓
6 is a subset of TP-CTF -HP

↓
6 with exactly 6d−2d

2
filters. Con-

sequently, the complex tight framelet filter bank TP-CTF↓
6 is essentially equivalent

to the following real tight framelet filter bank:

{⊗da ;
√
2Re(u),

√
2 Im(u) with u ∈ TP-CTF -CHP

↓
6}. (3.4.1)

Therefore, we essentially only have total (6d− 2d)/2 number of complex high-pass

filters in TP-CTF -HP
↓
6. Thus, the number of real coefficients (by identifying one

complex number with two real numbers: its real and imaginary parts) produced by

all the complex filters in TP-CTF↓
6 is the same as those produced by the real tight
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framelet filter bank in (3.4.1). That is, TP-CTF -HP
↓
6 produces exactly the same set

of real coefficients as the 6d − 2d real filters in (3.4.1) do. Note that the sampling

matrix is 4Id for all high-pass filters in ⊗d{ap, an; bp1, bp2, bn1 , bn2}, while we only per-

form sampling by 2Id on the low-pass filter ⊗da. Consequently, regardless of the

decomposition level, the redundancy rate of the fast framelet transform employing

TP-CTF↓
6 in d dimensions is no more than

6d − 2d

4d

∞∑

j=0

1

2jd
=

3d − 1

2d − 1
.

For example, the redundancy rates of TP-CTF↓
6 are 2, 22

3
, 35

7
, 51

3
and 725

31
for d =

1, . . . , 5, respectively. See Table 3.1 for more details on the redundancy rates of

TP-CTF↓
6. Note that the redundancy rate of the original TP-CTF6 is 2d times that

of the TP-CTF↓
6 in d dimensions.

3.5 Example

This section presents one example of tensor product complex tight framelets with

low redundancy rate.

Example 4. For the directional tensor product complex tight framelet TP-CTF↓
6

with low redundancy, the parameters in Theorem 5 are set to be

ε0 = 0.125, ε1 = 0.3, ε2 = 0.35, ε3 = 0.0778, c1 =
π
2
−0.425, c2 = 2.0.

(3.5.1)

Note that the above parameters satisfy the conditions in both (3.3.4) and (3.3.5). To

have some ideas about the filters in CTF↓
6, see Figure 3.1 for the frequency response

of the filters in CTF↓
6. For the directionality of TP-CTF↓

6 in two dimensions, see

Figure 3.2 for some elements of DASJ(TP-CTF
↓
6) with J = 5.
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Figure 3.1: The one-dimensional tight framelet filter bank CTF↓
6 =

{ap ! 4, an ! 4; bp1 ! 4, bp2 ! 4, bn1 ! 4, bn2 ! 4} in Theorem 5 with parameters in (3.5.1).

Solid line for âp, dotted line for ân, dashed line for b̂p1, dash-dotted line for b̂n1 ,

circled line for b̂p2, and circle-dotted line for b̂n2 .

Figure 3.2: The first two rows show the real part and the last two rows show the

imaginary part of the 2D high-pass filters at the level 4 in DAS5(TP-CTF
↓
6) in two

dimensions. Among these 16 graphs for the first two rows or the last two rows, the

directions along ±45◦ are repeated once. Hence, there are 14 directions in the 2D

discrete affine system DAS5(TP-CTF
↓
6).
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Chapter 4

Compactly Supported Tensor Product

Complex Tight Framelets TP-CTF3
Despite several desirable properties, the directional complex tight framelets con-

structed in Chapter 2 and Chapter 3 are bandlimited and they do not have compact

support in the time domain. Compactly supported wavelets and framelets are of

great interest and importance due to their good space-frequency localization and

computational efficiency. It remains an unsolved problem whether there exist com-

pactly supported tensor product complex tight framelets with directionality. This

chapter satisfactorily answers this question by studying and constructing compactly

supported tensor product complex tight framelet filter banks with directionality.

Several concrete examples will be provided. The results in this chapter have been

accepted by SIAM Journal on Mathematical Analysis [23] for publication.

4.1 Preliminaries

This chapter only discusses the two-dimensional TP-CTF3 with two high-pass fil-

ter in its underlying one-dimensional filter bank. It plays a fundamental role for

the construction of compactly supported TP-CTF4 and TP-CTF6 with increasing

directionality.

The tight framelet filter bank CTF3 = {a; bp, bn} constructed in (2.2.6) (see [19,
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24] for more detail) are bandlimited. Due to the short support length of â, b̂p, and b̂n,

one can observe that the equation (1.2.2) in the definition holds. More precisely, (2.2.6)

induces

â(ξ)â(ξ + π) = 0, b̂p(ξ)b̂p(ξ + π) = 0, b̂n(ξ)b̂n(ξ + π) = 0, (4.1.1)

which straightforwardly imply

â(ξ)â(ξ + π) + b̂p(ξ)b̂p(ξ + π) + b̂n(ξ)b̂n(ξ + π) = 0. (4.1.2)

Therefore, taking advantages of short supports of â, b̂p, and b̂n, the bandlimited tight

framelet filter bank CTF3 only has to satisfy the following partition of unity:

|â(ξ)|2 + |b̂p(ξ)|2 + |b̂n(ξ)|2 = 1.

If we require all filters a, bp, bn ∈ l0(Z) to have finite support, then â, b̂p, and b̂n

are 2π-periodic trigonometric polynomials. Consequently, the identities in (4.1.1)

cannot be true and the condition in (4.1.2) can not be ignored for constructing a

finitely supported tight framelet filter bank CTF3. As we discussed before, the di-

rectionality of the above bandlimited tight framelet using CTF3 largely relies on

the frequency separation of ψp and ψn in (2.2.7). However, if ψp and ψn have are

compactly supported and not identically zero, the frequency separation in (2.2.7)

cannot hold neither. These restrictions make the construction of directional com-

pactly supported CTF3 much more difficult than that of bandlimited one.

Directionality of wavelets or framelets in high dimensions has close relation

to the frequency separation of their associated one-dimensional filter banks. By

ψ̂p(2ξ) = b̂p(ξ)φ̂(ξ) and ψ̂n(2ξ) = b̂n(ξ)φ̂(ξ), since generally φ̂ ≈ χ[−π,π], to

satisfy the condition in (2.2.7), b̂p should be relatively small on the negative interval

[−π, 0) so that b̂p concentrates largely on the positive interval [0, π), while b̂n should
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be relatively small on the positive interval [0, π) so that b̂n concentrates largely on

the negative interval [−π, 0). A natural quantity to measure frequency separation

(and therefore, the directionality of tensor product tight framelets) is

Bbp,bn(ξ) := |b̂p(ξ + π)|2 + |b̂n(ξ)|2, ξ ∈ [0, π].

The smaller the quantity Bbp,bn over the interval [0, π], the better the frequency

separation of the two high-pass filters bp and bn. If we can construct a tight framelet

filter bank {a; bp, bn} such that the integration of Bbp,bn(ξ) over [0, π] is relatively

small, then the resulting tensor product tight framelet filter bank ⊗{a; bp, bn} and its

associated real tight frame will have strong directions along 0◦ (horizontal), ±45◦,

and 90◦ (vertical) in two dimensions.

4.2 Lower bound for frequency separation of CTF3

This section addresses a sharp theoretical lower bound for the best possible fre-

quency separation of CTF3 = {a; bp, bn}, shows that the frequency separation

function A(ξ) in (4.2.2) is often small for many known low-pass filters, and finally

shows that all real tight framelet filter banks cannot have good frequency separation.

Theorem 6. Let a, bp, bn ∈ l2(Z) such that {a; bp, bn} is a tight framelet filter bank.

Then

|b̂p(ξ + π)|2 + |b̂n(ξ)|2 > A(ξ), a.e. ξ ∈ [0, π], (4.2.1)

where the frequency separation function A(ξ) associated with the low-pass filter a

is defined to be

A(ξ) =
2− |â(ξ)|2 − |â(ξ + π)|2 −

√
C(ξ)

2
(4.2.2)
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with

C(ξ) := 4
(
1− |â(ξ)|2 − |â(ξ + π)|2

)
+ (|â(ξ)|2 − |â(ξ + π)|2)2. (4.2.3)

Moreover, the inequality in (4.2.1) is sharp in the sense that there exist b̊p, b̊n ∈

l2(Z) such that {a; b̊p, b̊n} is a tight framelet filter bank satisfying | ̂̊bp(ξ + π)|2 +

| ̂̊bn(ξ)|2 = A(ξ) a.e. ξ ∈ [0, π]. If in addition the filter a is real, that is, â(ξ) =

â(−ξ) a.e. ξ ∈ R, then the tight framelet filter bank {a; b̊p, b̊n} can satisfy the

additional property:
̂̊
bn(ξ) =

̂̊
bp(−ξ) a.e. ξ ∈ R, that is, b̊n = b̊p.

Proof. Since {a; bp, bn} is a tight framelet filter bank, by definition




b̂p(ξ) b̂n(ξ)

b̂p(ξ + π) b̂n(ξ + π)






b̂p(ξ) b̂p(ξ + π)

b̂n(ξ) b̂n(ξ + π)


 =




1− |â(ξ)|2 −â(ξ)â(ξ + π)

−â(ξ + π)â(ξ) 1− |â(ξ + π)|2


 .

(4.2.4)

Since the determinant of the matrix on the right-hand side of (4.2.4) is 1−|â(ξ)|2−

|â(ξ + π)|2, it follows directly from (4.2.4) that we must have 1− |â(ξ)|2 − |â(ξ +

π)|2 > 0, for almost every ξ ∈ R.

Note that from (4.2.4), {a; bp, bn} is a tight framelet filter bank if and only if for

almost every ξ ∈ [0, π], the following three equations hold:

|â(ξ)|2 + |b̂p(ξ)|2 + |b̂n(ξ)|2 = 1, (4.2.5)

|â(ξ + π)|2 + |b̂p(ξ + π)|2 + |b̂n(ξ + π)|2 = 1, (4.2.6)

â(ξ)â(ξ + π) + b̂p(ξ)b̂p(ξ + π) + b̂n(ξ)b̂n(ξ + π) = 0. (4.2.7)

In the rest of the proof, we always assume ξ ∈ [0, π]. Note that (4.2.5) and (4.2.6)

imply

|b̂p(ξ)| =
√

1− |â(ξ)|2 − |b̂n(ξ)|2,

|b̂n(ξ + π)| =
√

1− |â(ξ + π)|2 − |b̂p(ξ + π)|2.
(4.2.8)
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Using (4.2.8), we deduce from (4.2.7) that

|â(ξ)â(ξ + π)|2 6
(
|b̂p(ξ)b̂p(ξ + π)|+ |b̂n(ξ)b̂n(ξ + π)|

)2

=
(
|b̂p(ξ + π)|

√
1− |â(ξ)|2 − |b̂n(ξ)|2 + |b̂n(ξ)|

√
1− |â(ξ + π)|2 − |b̂p(ξ + π)|2

)2

6

(
|b̂p(ξ + π)|2 + |b̂n(ξ)|2

)(
2− |â(ξ)|2 − |â(ξ + π)|2 − (|b̂p(ξ + π)|2 + |b̂n(ξ)|2)

)
,

where Cauchy-Schwarz inequality is applied in the last inequality. Define B(ξ) :=

|b̂p(ξ + π)|2 + |b̂n(ξ)|2. Then the above inequality can be rewritten as

f(B(ξ)) > 0 with f(x) := −x2+
(
2−|â(ξ)|2−|â(ξ+π)|2

)
x−|â(ξ)â(ξ+π)|2.

(4.2.9)

Since f is a quadratic polynomial, by calculation, f has two real roots:

A(ξ) and 2− |â(ξ)|2 − |â(ξ + π)|2 − A(ξ),

where A(ξ) is defined in (4.2.2). Note that the function C(ξ) can be rewritten as:

C(ξ) = (2−|â(ξ)|2−|â(ξ+π)|2)2−4|â(ξ)â(ξ+π)|2 6 (2−|â(ξ)|2−|â(ξ+π)|2)2.

From the expression of A(ξ) and the above inequality, we see that A(ξ) > 0 and

0 6 A(ξ) 6 2− |â(ξ)|2 − |â(ξ + π)|2 − A(ξ). (4.2.10)

In particular, f(x) > 0 if and only if A(ξ) < x < 2− |â(ξ)|2 − |â(ξ + π)|2 −A(ξ).

Therefore, since f(x) < 0 for all x < A(ξ), by f(B(ξ)) > 0, B(ξ) > A(ξ). Thus,

we proved inequality (4.2.1).

We now show that the inequality in (4.2.1) is sharp by explicitly constructing a

tight framelet filter bank {a; b̊p, b̊n} satisfying | ̂̊bp(ξ+π)|2+ | ̂̊bn(ξ)|2 = A(ξ) for all

ξ ∈ [0, π]. In the following, we construct such 2π-periodic measurable functions
̂̊
bp

and
̂̊
bn by defining

̂̊
bp(ξ),

̂̊
bp(ξ + π),

̂̊
bn(ξ), and

̂̊
bn(ξ + π) on the interval ξ ∈ [0, π].
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For ξ ∈ [0, π], we define

̂̊
bp(ξ + π) =





1
2 , if C(ξ) = 0,
√

1
2A(ξ)

(
1− |â(ξ)|2−|â(ξ+π)|2√

C(ξ)

)
, otherwise,

(4.2.11)

and

̂̊
bn(ξ) =





1
2 , if C(ξ) = 0,
√

1
2A(ξ)

(
1 + |â(ξ)|2−|â(ξ+π)|2√

C(ξ)

)
, otherwise.

(4.2.12)

We first show that both
̂̊
bp(ξ + π) and

̂̊
bn(ξ) are well defined nonnegative functions

for ξ ∈ [0, π]. By the definition of C(ξ) in (4.2.3), it is straightforward to see that

√
C(ξ) >

∣∣∣|â(ξ)|2 − |â(ξ + π)|2
∣∣∣ for ξ ∈ [0, π]. Consequently, we have

∣∣∣∣∣
|â(ξ)|2 − |â(ξ + π)|2√

C(ξ)

∣∣∣∣∣ 6 1.

Since A(ξ) > 0, both
̂̊
bp(ξ + π) in (4.2.11) and

̂̊
bn(ξ) in (4.2.12) are well defined

nonnegative functions for ξ ∈ [0, π]. Let β(ξ) denote the phase of â(ξ)â(ξ + π),

that is, β(ξ) is a real-valued measurable function on [0, π] such that

â(ξ)â(ξ + π) = eiβ(ξ)|â(ξ)â(ξ + π)|, ξ ∈ [0, π]. (4.2.13)

If â(ξ)â(ξ + π) = 0, define β(ξ) = 0. For ξ ∈ [0, π], define

̂̊
bp(ξ) = −eiβ(ξ)

√
1− |â(ξ)|2 − | ̂̊bn(ξ)|2 (4.2.14)

and

̂̊
bn(ξ + π) = −e−iβ(ξ)

√
1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2. (4.2.15)

We now prove both
̂̊
bp(ξ) and

̂̊
bn(ξ + π) are well defined functions by showing that
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for ξ ∈ [0, π],

1− |â(ξ)|2 − | ̂̊bn(ξ)|2 > 0 and 1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2 > 0 (4.2.16)

and

|â(ξ)â(ξ + π)| = | ̂̊bp(ξ) ̂̊bp(ξ + π)|+ | ̂̊bn(ξ) ̂̊bn(ξ + π)|. (4.2.17)

We prove (4.2.16) and (4.2.17) by considering four cases.

Case 1: C(ξ) = 0. Since C(ξ) = 0, it follows from (4.2.11) and (4.2.12) that

̂̊
bp(ξ + π) =

̂̊
bn(ξ) = 1

2
. By C(ξ) = 0, it follows from the definition of C(ξ)

in (4.2.3) that 1− |â(ξ)|2 − |â(ξ + π)|2 = 0 and |â(ξ)|2 − |â(ξ + π)|2 = 0. Hence,

|â(ξ)|2 = |â(ξ + π)|2 = 1
2
. Consequently, 1 − |â(ξ)|2 − | ̂̊bn(ξ)|2 = 1 − 1

2
− 1

4
=

1
4
> 0 and 1 − |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2 = 1 − 1

2
− 1

4
= 1

4
> 0. Thus, (4.2.16)

holds. Now by the definition of
̂̊
bp(ξ) in (4.2.14) and

̂̊
bn(ξ + π) in (4.2.15), we have

̂̊
bp(ξ) = −eiβ(ξ)/2 and

̂̊
bn(ξ + π) = −e−iβ(ξ)/2. Thus, it is straightforward to check

that (4.2.17) holds.

Case 2: C(ξ) 6= 0 and A(ξ) = 0. By the definition of
̂̊
bp(ξ + π) in (4.2.11)

and
̂̊
bn(ξ) in (4.2.12), we have

̂̊
bp(ξ + π) =

̂̊
bn(ξ) = 0. Clearly, (4.2.16) holds

since 1 − |â(ξ)|2 − |â(ξ + π)|2 > 0. It is also easy to see that A(ξ) = 0 implies

â(ξ)â(ξ + π) = 0. Therefore, (4.2.17) is true.

Case 3: C(ξ) 6= 0, A(ξ) 6= 0, and |â(ξ)|2 − |â(ξ + π)|2 =
√
C(ξ) or −

√
C(ξ).

Without loss of any generality, we only consider |â(ξ)|2 − |â(ξ + π)|2 =
√
C(ξ),

from which we deduce that

1− |â(ξ)|2 − |â(ξ + π)|2 = 0,
̂̊
bp(ξ + π) = 0, and

̂̊
bn(ξ) =

√
A(ξ).

It follows from 1 − |â(ξ)|2 − |â(ξ + π)|2 = 0 and the definition of A(ξ) in (4.2.2)

that A(ξ) = 1−|â(ξ)|2+|â(ξ+π)|2
2

= |â(ξ + π)|2. Now we see that (4.2.16) is satisfied,
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since 1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2 = 1− |â(ξ + π)|2 = |â(ξ)|2 > 0 and

1− |â(ξ)|2 − | ̂̊bn(ξ)|2 = 1− |â(ξ)|2 − A(ξ) = 1− |â(ξ)|2 − |â(ξ + π)|2 = 0.

Consequently, we deduce from the above identity and the definition of
̂̊
bp(ξ) in (4.2.14)

that
̂̊
bp(ξ) = 0. Since

̂̊
bp(ξ + π) = 0 and A(ξ) = |â(ξ + π)|2, from the definition of

̂̊
bn(ξ + π) in (4.2.15) we deduce that

| ̂̊bn(ξ + π)|2 = 1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2 = 1− |â(ξ + π)|2 = |â(ξ)|2.

Therefore, by
̂̊
bp(ξ) =

̂̊
bp(ξ + π) = 0,

̂̊
bn(ξ) =

√
A(ξ), and | ̂̊bn(ξ + π)| = |â(ξ)|,

we see that

| ̂̊bp(ξ) ̂̊bp(ξ+π)|+| ̂̊bn(ξ) ̂̊bn(ξ+π)| = | ̂̊bn(ξ) ̂̊bn(ξ+π)| =
√
A(ξ)|â(ξ)| = |â(ξ)â(ξ+π)|,

where we used the identity A(ξ) = |â(ξ + π)|2 in the last identity. Hence, (4.2.17)

holds.

Case 4: C(ξ) 6= 0, A(ξ) 6= 0, and |â(ξ)|2 − |â(ξ + π)|2 6= ±
√
C(ξ). Note that

the last two conditions imply that
̂̊
bp(ξ+π) 6= 0 and

̂̊
bn(ξ) 6= 0. From the definition

of
̂̊
bp(ξ + π) in (4.2.11) and

̂̊
bn(ξ) in (4.2.12), we see that

| ̂̊bp(ξ + π)|2

| ̂̊bn(ξ)|2
=

√
C(ξ)− (|â(ξ)|2 − |â(ξ + π)|2)√
C(ξ) + (|â(ξ)|2 − |â(ξ + π)|2)

=
1− |â(ξ)|2 − A(ξ)

1− |â(ξ + π)|2 − A(ξ)
,

(4.2.18)

where the relation
√
C(ξ) = 2 − |â(ξ)|2 − |â(ξ + π)|2 − 2A(ξ) (derived from

the definition of A(ξ) in (4.2.2)) is applied in the last identity. Since C(ξ) 6= 0,

we deduce from the definition of
̂̊
bp(ξ + π) in (4.2.11) and

̂̊
bn(ξ) in (4.2.12) that

| ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2 = A(ξ). Now it follows directly from (4.2.18) that

| ̂̊bp(ξ + π)|2

| ̂̊bn(ξ)|2
=

1− |â(ξ)|2 − A(ξ)

1− |â(ξ + π)|2 − A(ξ)
=

1− |â(ξ)|2 − A(ξ) + | ̂̊bp(ξ + π)|2

1− |â(ξ + π)|2 − A(ξ) + | ̂̊bn(ξ)|2
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=
1− |â(ξ)|2 − | ̂̊bn(ξ)|2

1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2
.

That is, we proved

| ̂̊bp(ξ + π)|2

| ̂̊bn(ξ)|2
=

1− |â(ξ)|2 − | ̂̊bn(ξ)|2

1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2
. (4.2.19)

From the identity in (4.2.19), we further deduce that

| ̂̊bp(ξ + π)|2
A(ξ)

=
| ̂̊bp(ξ + π)|2

| ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2

=
1− |â(ξ)|2 − | ̂̊bn(ξ)|2

(1− |â(ξ)|2 − | ̂̊bn(ξ)|2) + (1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2)

=
1− |â(ξ)|2 − | ̂̊bn(ξ)|2

2− |â(ξ)|2 − |â(ξ + π)|2 − A(ξ)
.

In other words, we proved

| ̂̊bp(ξ + π)|2
A(ξ)

=
1− |â(ξ)|2 − | ̂̊bn(ξ)|2

2− |â(ξ)|2 − |â(ξ + π)|2 − A(ξ)
. (4.2.20)

Similarly, we can prove that

| ̂̊bn(ξ)|2
A(ξ)

=
1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2

2− |â(ξ)|2 − |â(ξ + π)|2 − A(ξ)
. (4.2.21)

By our assumption A(ξ) > 0, we see from (4.2.10) that 2− |â(ξ)|2 − |â(ξ + π)|2 −

A(ξ) > A(ξ) > 0. Since
̂̊
bp(ξ + π) 6= 0 and

̂̊
bn(ξ) 6= 0, we deduce from (4.2.20)

that 1 − |â(ξ)|2 − | ̂̊bn(ξ)|2 > 0. By the same argument, we deduce from‘(4.2.21)

that 1−|â(ξ+π)|2−| ̂̊bp(ξ+π)|2 > 0. Hence, we proved (4.2.16). Therefore,
̂̊
bp(ξ)

and
̂̊
bn(ξ + π) are well defined. It now follows from (4.2.19) that

| ̂̊bp(ξ + π)|2

| ̂̊bn(ξ)|2
=

1− |â(ξ)|2 − | ̂̊bn(ξ)|2

1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2
=

| ̂̊bp(ξ)|2

| ̂̊bn(ξ + π)|2
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from which we see that the vector (| ̂̊bp(ξ + π)|, | ̂̊bn(ξ)|) is parallel to the vector

(| ̂̊bp(ξ)|, | ̂̊bn(ξ + π)|). Consequently, we must have

| ̂̊bp(ξ) ̂̊bp(ξ+π)|+| ̂̊bn(ξ) ̂̊bn(ξ+π)| =
√
| ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2

√
| ̂̊bp(ξ)|2 + | ̂̊bn(ξ + π)|2.

By the definition of
̂̊
bp(ξ + π) in (4.2.11),

̂̊
bn(ξ) in (4.2.12),

̂̊
bp(ξ) in (4.2.14), and

̂̊
bn(ξ + π) in (4.2.15), we conclude that

| ̂̊bp(ξ) ̂̊bp(ξ + π)|+ | ̂̊bn(ξ) ̂̊bn(ξ + π)|

=

√
| ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2

√
| ̂̊bp(ξ)|2 + | ̂̊bn(ξ + π)|2

=
√
A(ξ)(2− |â(ξ)|2 − |â(ξ + π)|2 − A(ξ)) = |â(ξ)â(ξ + π)|,

where in the last identity we used the fact that A(ξ) and 2− |â(ξ)|2 − |â(ξ+ π)|2 −

A(ξ) are the two roots of f in (4.2.9) and f(0) = −|â(ξ)â(ξ + π)|2. Thus, we

proved (4.2.17).

By our construction, | ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2 = A(ξ) for all ξ ∈ [0, π] such

that C(ξ) 6= 0. If C(ξ) = 0, as discussed in Case 1, then we have A(ξ) = 1
2

and | ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2 = 1
4
+ 1

4
= 1

2
= A(ξ). To complete the proof, we

now show that {a; b̊p, b̊n} is a tight framelet filter bank. By our construction of
̂̊
bp

and
̂̊
bn, (4.2.5) and (4.2.6) are satisfied with bp and bn being replaced by b̊p and b̊n,

respectively. To check (4.2.7), we have

â(ξ)â(ξ + π) +
̂̊
bp(ξ)

̂̊
bp(ξ + π) +

̂̊
bn(ξ)

̂̊
bn(ξ + π)

=eiβ(ξ)|â(ξ)â(ξ + π)| − eiβ(ξ)(| ̂̊bp(ξ) ̂̊bp(ξ + π)|+ | ̂̊bn(ξ) ̂̊bn(ξ + π)|) = 0,

where (4.2.17) is applied in the last identity. Therefore, {a; b̊p, b̊n} is indeed a tight

framelet filter bank.
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If the filter a is real, â(ξ) = â(−ξ) a.e. ξ ∈ R. Consequently,

|â(−ξ)| = |â(ξ)| and C(−ξ) = C(ξ) = C(π−ξ), A(−ξ) = A(ξ) = A(π−ξ).

(4.2.22)

We now prove that
̂̊
bp(−ξ) = ̂̊

bn(ξ) a.e. ξ ∈ R, which is equivalent to verify that

̂̊
bp(−ξ) = ̂̊

bn(ξ) and
̂̊
bp(π − ξ) =

̂̊
bn(ξ − π), a.e. ξ ∈ [0, π]. (4.2.23)

By (4.2.22) and the definition of
̂̊
bp(ξ + π) in (4.2.11) and

̂̊
bn(ξ) in (4.2.12),

̂̊
bp(−ξ) = ̂̊

bp((π − ξ) + π) =
̂̊
bp((π − ξ) + π) =

̂̊
bn(ξ), ξ ∈ [0, π],

which is the first identity in (4.2.23). Similarly, we have

̂̊
bp(π − ξ) = −e−iβ(π−ξ)

√
1− |â(π − ξ)|2 − | ̂̊bn(π − ξ)|2

= −e−iβ(π−ξ)

√
1− |â(ξ + π)|2 − | ̂̊bp(ξ + π)|2 = ei(β(ξ)−β(π−ξ)) ̂̊bn(ξ + π),

where (4.2.15) and the first identity in (4.2.23) are used. If we can prove that

ei(β(ξ)−β(π−ξ)) = 1, ξ ∈ [0, π], (4.2.24)

then the second identity in (4.2.23) holds and therefore, we proved
̂̊
bp(−ξ) = ̂̊

bn(ξ)

a.e. ξ ∈ R.

We now prove (4.2.24). Replacing ξ by π−ξ in the definition of β(ξ) in (4.2.13)

and using (4.2.22),

â(π − ξ)â(2π − ξ) = eiβ(ξ−π)|â(π − ξ)â(2π − ξ)| = eiβ(ξ−π)|â(ξ)â(ξ + π)|.

Since â(ξ) = â(−ξ), we have

â(π − ξ)â(2π − ξ) = â(ξ − π) â(−ξ) = â(ξ + π)â(ξ) = â(ξ)â(ξ + π).
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Consequently, comparing with (4.2.13), we conclude that for ξ ∈ [0, π] such that

â(ξ)â(ξ + π) 6= 0, we must have eiβ(π−ξ) = eiβ(ξ), which is simply (4.2.24). For

the case that â(ξ)â(ξ + π) = 0, (4.2.24) is true since β(ξ) = β(π − ξ) = 0. This

completes the proof of Theorem 6.

Let a be a finitely supported low-pass filter such that â(0) = 1 and â(π) =

0. By (4.2.2) and (4.2.3), we have C(0) = C(π) = 1 and A(0) = A(π) = 0.

Now by the definition of
̂̊
bp(ξ) and

̂̊
bn(ξ), we see that limξ→π+

∣∣ ̂̊bp(ξ)
∣∣ = 0 and

limξ→π−

∣∣ ̂̊bn(ξ)
∣∣ = 0. Now it follows directly from (4.2.14) that

lim
ξ→π−

∣∣ ̂̊bp(ξ)
∣∣ = lim

ξ→π−

√
1− |â(ξ)|2 −

∣∣ ̂̊bn(ξ)
∣∣2 = 1.

However limξ→π+

∣∣ ̂̊bp(ξ)
∣∣ = 0, therefore

̂̊
bp(ξ) must be discontinuous at ξ = π.

Similarly,
̂̊
bn(ξ) must be discontinuous at ξ = π. Hence, though the two high-pass

filters b̊p and b̊n achieve the optimal theoretical lower bound A(ξ), they cannot be

finitely supported in the time domain and have slow decay filter coefficients.

Interestingly, as demonstrated by the following result, the frequency separation

function A(ξ) in (4.2.2) is often very small for most known low-pass filters in the

literature.

Theorem 7. Let A(ξ) be the frequency separation function defined in (4.2.2) asso-

ciated with a filter a ∈ l2(Z) satisfying |â(ξ)|2 + |â(ξ + π)|2 6 1, a.e.ξ ∈ R.

Then

0 6 A(ξ) 6 min(|â(ξ)|2, |â(ξ + π)|2), a.e. ξ ∈ R. (4.2.25)

In particular,

(1) A(ξ) = 0, a.e.ξ ∈ [0, π] if and only if â(ξ)â(ξ + π) = 0, a.e.ξ ∈ R.

(2) A(ξ) = min(|â(ξ)|2, |â(ξ + π)|2), a.e.ξ ∈ [0, π] if and only if |â(ξ)|2 +
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|â(ξ + π)|2 = 1, a.e.ξ ∈ R with min(|â(ξ)|2, |â(ξ + π)|2) 6= 0. In particular,

if |â(ξ)|2+ |â(ξ+π)|2 = 1, a.e.ξ ∈ R (that is, a is an orthogonal filter), then

A(ξ) = min(|â(ξ)|2, |â(ξ + π)|2), a.e.ξ ∈ [0, π].

(3) If a is the B-spline filter aBm of order m given by âBm(ξ) := cos2m(ξ/2) with

m ∈ N, then

4−m sinm(ξ) 6 A(ξ) 6 41−m sinm(ξ), ξ ∈ [0, π]. (4.2.26)

Proof. Define x := |â(ξ)|2 and y := |â(ξ + π)|2. Then 0 6 x, y 6 1 and 0 6

x+ y 6 1. In terms of x and y, the function A(ξ) in (4.2.2) can be rewritten as

A(ξ) = 1
2
A(x, y) with A(x, y) := 2− x− y −

√
4(1− x− y) + (x− y)2.

By direct calculation,

1
2
A(x, y) = x− 4x(1− x− y)

g(x, y)
6 x, (4.2.27)

where g(x, y) := 2−3x−y+
√
4(1− x− y) + (x− y)2 > 2−3x−y+(x−y) =

2(1− x− y) > 0.

If g(x, y) > 0, by the symmetry of x and y in A(x, y), it follows from (4.2.27)

that A(ξ) = 1
2
A(x, y) 6 min(x, y) = min(|â(ξ)|2, |â(ξ+π)|2). Note that g(x, y) =

0 if and only if x+ y = 1 and x > y.

If g(x, y) = 0, A(ξ) = 1
2
A(x, y) = y = min(x, y) = min(|â(ξ)|2, |â(ξ + π)|2).

Therefore, we proved the inequality (4.2.25).

Item (1) follows directly from the definition of A(ξ) and the relation in (4.2.3).

Item (2) follows directly from (4.2.27). For item (3), by the definition of the func-

tion A with a = aBm, we have A(ξ) = 1
2
A(x, y) and

sin2m(ξ) = 22m sin2m(ξ/2) cos2m(ξ/2) = 4mxy.
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Note that

A(x, y) = (2−x−y)−
√

(2−x−y)2 − 4xy =
4xy

(2−x−y) +
√

(2−x−y)2 − 4xy
.

Since 0 6 x, y 6 1, 0 6
√

(2− x− y)2 − 4xy 6 2 − x − y. We conclude that

2xy
2−x−y

6 A(x, y) 6 4xy
2−x−y

. Consequently, by 0 6 x, y 6 1 and x+ y 6 1,

xy 6
2xy

2− x− y
6 A(x, y) 6

4xy

2− x− y
6 4xy.

This completes the proof of (4.2.26).

For each low-pass filter a ∈ l2(Z), Theorem 6 provides a sharp lower bound

for the frequency separation of the associated high-pass filter bp and bn. Theorem 6

guarantees the existence of a tight framelet filter bank {a; b̊p, b̊n} achieving this

optimal lower bound. However, the 2π-periodic functions
̂̊
bp(ξ) and

̂̊
bn(ξ) must be

discontinuous. As a consequence, the high-pass filters b̊p and b̊n cannot be finitely

supported with slowly decay filter coefficients. The theoretical optimal lower bound

A(ξ) can only be approximated at the cost of long filter supports for both bp and

bn. The main purpose of this chapter is to obtain finitely supported tight framelet

filter banks {a; bp, bn} with short support and good frequency separation. We often

slightly sacrifice the optimal frequency separation given in Theorem 4.2.1 to have

finitely supported complex tight framelet with short support and good directions.

The following result shows that for a tight framelet filter bank {a; bp, bn}, if the

high-pass filters bp and bn are real (but a can be a complex filter), then the frequency

separation of bp and bn cannot be good. Moreover, the best possible frequency

separation between two real high-pass filters bp and bn in a tight framelet filter bank

{a; bp, bn} is achieved when a is an orthogonal filter. However, Theorem 7 tells us

that the frequency separation between two complex high-pass filters bp and bn in a
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complex tight framelet filter bank {a; bp, bn} is the worst when a is an orthogonal

filter.

Theorem 8. Let a, bp, bn ∈ l2(Z) such that {a; bp, bn} is a tight framelet filter bank

and the two high-pass filters bp and bn are real (but a may be complex). Then

∫ π

0

[
|b̂p(ξ+π)|2+|b̂n(ξ)|2

]
dξ =

1

2

∫ π

0

[
2−|â(ξ)|2−|â(ξ+π)|2

]
dξ >

π

2
, (4.2.28)

where the equal sign holds if and only if a is an orthogonal filter (that is, |â(ξ)|2 +

|â(ξ + π)|2 = 1, a.e.ξ ∈ R).

Proof. Define B(ξ) := |b̂p(ξ + π)|2 + |b̂n(ξ)|2. Note that a filter u has real coeffi-

cients if and only if û(ξ) = û(−ξ). Then b̂p(ξ + π) = b̂p(ξ − π) = b̂p(π − ξ) and

B(ξ) = |b̂p(π − ξ)|2 + |b̂n(ξ)|2.

By |â(ξ)|2+ |b̂p(ξ)|2+ |b̂n(ξ)|2 = 1, we have |â(π−ξ)|2+ |b̂p(π−ξ)|2+ |b̂n(π−

ξ)|2 = 1. Therefore,

B(ξ) + B(π − ξ) = |b̂p(π − ξ)|2 + |b̂n(ξ)|2 + |b̂p(ξ)|2 + |b̂n(π − ξ)|2

= 2− |â(ξ)|2 − |â(π − ξ)|2.
(4.2.29)

Note that

1 = |â(−ξ)|2 + |b̂p(−ξ)|2 + |b̂n(−ξ)|2 = |â(−ξ)|2 + |b̂p(ξ)|2 + |b̂n(ξ)|2

= 1 + |â(−ξ)|2 − |â(ξ)|2,

we must have |â(−ξ)| = |â(ξ)|. Therefore, it follows from (4.2.29) that B(ξ) +

B(π − ξ) = 2− |â(ξ)|2 − |â(ξ + π)|2, from which

∫ π

0

[
2− |â(ξ)|2 − |â(ξ + π)|2

]
dξ =

∫ π

0

[
B(ξ) + B(π − ξ)

]
dξ = 2

∫ π

0

B(ξ)dξ.

Since |â(ξ)|2 + |â(ξ + π)|2 6 1, a.e.ξ ∈ R, we conclude from the above identity

that (4.2.28) holds.
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4.3 Structure of finitely supported complex tight framelet

filter banks

In order to design directional finitely supported complex tight framelet filter banks

{a; bp, bn}, this section investigates the structure of all possible finitely supported

complex high-pass filters bp and bn from the tight framelet filter bank {a; bp, bn}.

We are interested in finding all possible finitely supported complex tight framelet

filter banks {a; bp, bn} from a given finite supported low-pass filter a. For prescribed

support lengths of bp and bn, such result enables us to find the complex tight framelet

filter bank {a; bp, bn} with the best possible frequency separation by optimization

techniques.

To construct finitely supported tight framelet filter banks, it is convenient to

use Laurent polynomials instead of 2π-periodic trigonometric polynomials. Recall

that l0(Z) denotes the linear space of all finitely supported sequences on Z. For a

sequence u = {u(k)}k∈Z ∈ l0(Z), its z-transform is a Laurent polynomial defined

by

u(z) :=
∑

k∈Z
u(k)zk, z ∈ C\{0}.

Let u : Z → Cr×s be a sequence of r×smatrices. We define u? to be its associated

adjoint sequence by u?(k) := u(−k)T, k ∈ Z. In terms of Fourier series, we have

û?(ξ) = û(ξ)
T

and û(ξ) = u(e−iξ). Using Laurent polynomials, we have

u?(z) := [u(z)]? :=
∑

k∈Z
u(k)

T

z−k, z ∈ C\{0}.

In terms of Laurent polynomials, for a, b1, b2 ∈ l0(Z), {a; b1, b2} is a tight framelet
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filter bank if




a(z) b1(z) b2(z)

a(−z) b1(−z) b2(−z)







a(z) b1(z) b2(z)

a(−z) b1(−z) b2(−z)




?

= I2 (4.3.1)

for all z ∈ C\{0}, where I2 is the 2× 2 identity matrix. It is easy to see that (4.3.1)

is equivalent to




b1(z) b2(z)

b1(−z) b2(−z)







b1(z) b2(z)

b1(−z) b2(−z)




?

= Ma(z) (4.3.2)

with

Ma(z) :=



1− a(z)a?(z) −a(z)a?(−z)

−a(−z)a?(z) 1− a(−z)a?(−z)


 .

For a 2 × 2 matrix U of Laurent polynomials, we say that U is paraunitary

if U(z)U?(z) = I2 for all z ∈ T := {ζ ∈ C : |ζ| = 1}, or equivalently,

U(e−iξ)U(e−iξ)
T

= I2 for all ξ ∈ R.

For a Laurent polynomial u, the notation u ≡ 0 denotes u is identically zero,

while the notation u 6≡ 0 denotes u is not identically zero. We say that u is an

orthogonal filter if u(z)u?(z) + u(−z)u?(−z) = 1 for all z ∈ C\{0}.

The main result in this chapter is as follows:

Theorem 9. Let a, b1, b2, b
p, bn ∈ l0(Z) such that {a; b1, b2} is a tight framelet filter

bank and a is not identically zero. Suppose that

|a(z)|2 + |a(−z)|2 6 1, z ∈ T.

Then the following are equivalent:

(1) {a; bp, bn} is a finitely supported tight framelet filter bank and

bp(z)bn(−z)− bp(−z)bn(z) = λz2k[b1(z)b2(−z)− b1(−z)b2(z)] (4.3.3)
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for some k ∈ Z and λ ∈ T. Remove condition (4.3.3) if a is an orthogonal

filter.

(2) There exists a 2× 2 paraunitary matrix U of Laurent polynomials such that

[
bp(z) bn(z)

]
=

[
b1(z) b2(z)

]
U(z2), z ∈ C\{0}. (4.3.4)

To prove Theorem 9, we need several auxiliary results. Let us first introduce

some definitions. We say that u is a trivial factor if it is a nonzero monomial, that is,

u(z) = λzk for some λ ∈ C\{0} and k ∈ Z. For two Laurent polynomials u and v,

by gcd(u, v) we denote the greatest common factor of u and v. In particular, we use

the notation gcd(u, v) = 1 to mean that u and v do not have a nontrivial common

factor.

Lemma 1. Let p1, p2, p3, p4 be Laurent polynomials. Define

P(z) :=



p1(z) p3(z)

p2(z) p4(z)


 . (4.3.5)

Then the following are equivalent:

(1) det(P(z)) = 0 for all z ∈ C\{0}.

(2) p1(z)p4(z)− p2(z)p3(z) = 0 for all z ∈ C\{0}.

(3) There exist Laurent polynomials q1, q2, q3, q4 such that

p1(z) = q1(z)q3(z), p2(z) = q2(z)q3(z),

p3(z) = q1(z)q4(z), p4(z) = q2(z)q4(z).
(4.3.6)

(4) There exist Laurent polynomials q1, q2, q3, q4 such that

P(z) =



q1(z)

q2(z)



[
q3(z) q4(z)

]
.
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Proof. If P is identically zero, then all claims hold obviously. Hence, we as-

sume that at least one of p1, p2, p3, p4 is not identically zero. Since (1)=⇒(2) and

(3)=⇒(4)=⇒(1) are obvious, it suffices to prove (2)=⇒(3) to complete the proof.

If both p1 and p2 are identically zero, then the claim in item (3) obviously holds

by taking q1 = p3, q2 = p4, q3 = 0 and q4 = 1. Now we assume that either p1 6≡ 0

or p2 6≡ 0, that is, at least one of p1 and p2 is not identically zero. Define

q3 := gcd(p1, p2) and q1 := p1/q3, q2 := p2/q3. (4.3.7)

Since q3 is not identically zero, all q1, q2, q3 are well-defined Laurent polynomials

and at least one of q1 and q2 are not identically zero. Moreover, p1 = q1q3, p2 =

q2q3, and gcd(q1, q2) = 1, which means that q1 and q2 have no nontrivial common

factor. By item (2), we have 0 = p1p4 − p2p3 = q3(q1p4 − q2p3). Since q3 is not

identically zero, from the above identity we must have q1p4 = q2p3. Because at

least one of q1 and q2 is not identically zero, without loss of generality, we may

assume that q1 is not identically zero. By gcd(q1, q2) = 1 and q1p4 = q2p3, we

must have q1 | p3. Then we define q4 = p3/q1, which is a well-defined Laurent

polynomial. By q1p4 = q2p3, we see that p4 = q2q4. Using (4.3.7), now one can

directly check that (4.3.6) holds. Therefore, we complete the proof of (2)=⇒(3).

Proposition 4.1. Let Q and V be 2× 2 matrices of Laurent polynomials. If

V(z)Q(z) =



c(z) 0

0 d(z)


 , (4.3.8)

then there exist Laurent polynomials u1, u2, u3, u4, v1, v2, v3, v4 such that

c(z) = v1(z)v3(z)
(
u1(z)u4(z)+u2(z)u3(z)

)
,

d(z) = v2(z)v4(z)
(
u1(z)u4(z)+u2(z)u3(z)

)
,

(4.3.9)
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and

V(z) =



v1(z) 0

0 v2(z)






u1(z) −u3(z)

u2(z) u4(z)


 , Q(z) =




u4(z) u3(z)

−u2(z) u1(z)






v3(z) 0

0 v4(z)


 .

(4.3.10)

If c = 1, then we can particularly take v1 = v3 = 1 so that u1(z)u4(z)+u2(z)u3(z) =

1 and d(z) = v2(z)v4(z).

Proof. By our assumption in (4.3.8), we have [V(z)Q(z)]1,2(z) = V1,1(z)Q1,2(z) +

V1,2(z)Q2,2(z) = 0 for all z ∈ C\{0}. By Lemma 1, there exist Laurent polynomi-

als u1, u3, v1, v4 such that




V1,1(z) V1,2(z)

−Q2,2(z) Q1,2(z)


 =




v1(z)

−v4(z)



[
u1(z) −u3(z)

]
.

Similarly, we have [V(z)Q(z)]2,1(z) = V2,1(z)Q1,1(z) + V2,2(z)Q2,1(z) = 0 for all

z ∈ C\{0}. By Lemma 1, there exist Laurent polynomials u2, u4, v2, v3 such that




V2,1(z) V2,2(z)

−Q2,1(z) Q1,1(z)


 =



v2(z)

v3(z)



[
u2(z) u4(z)

]
.

Now we can directly check that both (4.3.10) and (4.3.9) are satisfied.

If c = 1, then it follows from (4.3.9) that all v1, v3 and u1u4 + u2u3 must be

monomials. Now it follows directly from (4.3.10) that

V(z) =



1 0

0 v2(z)
v3(z)






u1(z)v1(z) −u3(z)v1(z)

u2(z)v3(z) u4(z)v3(z)




and

Q(z) =




u4(z)v3(z) u3(z)v1(z)

−u2(z)v3(z) u1(z)v1(z)






1 0

0 v4(z)
v1(z)


 .

Redefine u1, u2, u3, u4, v2, v4 as u1v1, u2v3, u3v1, u4v3, v2/v3, v4/v1, respectively. We
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now see that the claim holds for the particular case of c = 1.

The following two corollaries are direct consequences of Proposition 4.1.

Corollary 1. Let P be a 2 × 2 matrix of Laurent polynomials defined in (4.3.5).

Then P is paraunitary, that is, P(z)P?(z) = I2 for all z ∈ C\{0}, if and only if

p3(z) = −λzkp?2(z), p4(z) = λzkp?1(z), p1(z)p
?
1(z) + p2(z)p

?
2(z) = 1,

λ ∈ T, k ∈ Z.

(4.3.11)

Proof. Let Q and V be the 2× 2 matrix of Laurent polynomials defined by

V(z) := P(z) and Q(z) := P?(z) =



p?1(z) p?2(z)

p?3(z) p?4(z)


 .

If P is paraunitary, then V(z)Q(z) = I2. By Proposition 4.1 with c = 1, we see that

(4.3.11) must hold.

Conversely, if (4.3.11) is satisfied, then we can directly check that P is a parau-

nitary matrix.

Corollary 2. Let Q,V, Q̊, V̊ be 2× 2 matrices of Laurent polynomials. If

V(z)Q(z) =



1 0

0 d(z)


 = V̊(z)Q̊(z)

and det(V̊(z)) = λzk det(V(z)), for some λ ∈ C\{0}, k ∈ Z, then there exists a

2× 2 matrix U of Laurent polynomials such that det(U(z)) = λzk and

V̊(z) = V(z)U(z). (4.3.12)
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Proof. By Proposition 4.1 with c = 1, we see that

V(z) =



1 0

0 det(V(z))


U1(z), V̊(z) =



1 0

0 det(V̊(z))


U2(z),

where U1,U2 are 2 × 2 matrices of Laurent polynomials such that det(U1(z)) =

det(U2(z)) = 1. Therefore, [U1(z)]
−1 is also a matrix of Laurent polynomials.

Define

U(z) := [U1(z)]
−1



1 0

0 λzk


U2(z).

Now it is trivial to check that (4.3.12) holds and det(U(z)) = λzk is a nontrivial

monomial.

Now we have the following result about the essential uniqueness of factorization

of a positive semidefinite 2× 2 matrix of Laurent polynomials.

Theorem 10. Let P be a 2× 2 matrix of Laurent polynomials given in (4.3.5) such

that gcd(p1, p2, p3, p4) = 1. If V and V̊ are 2 × 2 matrices of Laurent polynomials

satisfying

V(z)V?(z) = P(z) = V̊(z)V̊?(z) (4.3.13)

and det(V̊(z)) = λzk det(V(z)) for someλ ∈ T, k ∈ Z, then there exists a

2 × 2 paraunitary matrix U of Laurent polynomials such that V̊(z) = V(z)U(z),

det(U(z)) = λzk, and U(z)U?(z) = I2 for all z ∈ C\{0}.

Proof. It is a basic result in linear algebra that there exist two 2× 2 matrices A and

B of Laurent polynomials satisfying det(A(z)) = det(B(z)) = 1 and

A(z)P(z)B(z) =



c(z) 0

0 d(z)


 (4.3.14)
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with c, d being Laurent polynomials satisfying c | d. The above result can be proved

using elementary matrix forms and Euclidean division of Laurent polynomials. The

diagonal matrix diag(c, d) is called the Smith normal form of P and such Laurent

polynomials c, d are essentially unique. See [49] for a detailed proof of the above

result. Moreover, one can directly verify that

c = gcd(p1, p2, p3, p4) = 1 and d = det(P)/c. (4.3.15)

Consequently, by (4.3.13), we have

(A(z)V(z))(V?(z)B(z)) =



1 0

0 d(z)


 = (A(z)V̊(z))(V̊?(z)B(z)). (4.3.16)

We now consider two cases: det(P(z)) 6≡ 0 or det(P(z)) ≡ 0.

We first consider the case det(P(z)) 6≡ 0, that is, the determinant of P is not

identically zero. Note that det(A(z)V̊(z)) = det(A(z)) det(V̊(z)) = det(V̊(z)) =

λzk det(V(z)) = λzk det(A(z)V(z)). Consequently, it follows from Corollary 2

that there exists a 2 × 2 matrix U of Laurent polynomials such that det(U(z)) =

λzk and A(z)V̊(z) = A(z)V(z)U(z), from which we have V̊(z) = V(z)U(z) since

det(A(z)) = 1. Therefore, it follows from (4.3.13) that V(z)V?(z) = V̊(z)V̊?(z)

which leads to

V(z)
(
U(z)U?(z)− I2

)
V?(z) = 0.

By (4.3.13), we have det(V(z)) det(V?(z)) = det(P(z)) 6≡ 0, hence, det(V(z)) 6≡

0. Therefore, V(z) is invertible for all z satisfying det(V(z)) 6= 0. Now we deduce

from the above identity that we must have U(z)U?(z) = I2 for all z ∈ C\{0}. This

proves the claim for the case det(P(z)) 6≡ 0.

We now study the case det(P(z)) ≡ 0. Then (4.3.15) implies d ≡ 0 and (4.3.13)

implies det(V(z)) ≡ 0. Applying Proposition 4.1 to the first identity in (4.3.16) and
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noting that d = det(V) = 0, we must have

A(z)V(z) =



1 0

0 0






u1(z) −u3(z)

u2(z) u4(z)


 and u1(z)u4(z) + u2(z)u3(z) = 1

for some Laurent polynomials u1, u2, u3 and u4. By (4.3.13) and V(z)V?(z) = P(z),

it follows from the above identity that

A(z)P(z)A?(z) =



1 0

0 0






u1(z) −u3(z)

u2(z) u4(z)







u?1(z) u?2(z)

−u?3(z) u?4(z)






1 0

0 0


 =



q(z) 0

0 0


 ,

(4.3.17)

where q(z) := u1(z)u
?
1(z) + u3(z)u

?
3(z). Since det(A(z)) = 1, by our assumption

gcd(p1, p2, p3, p4) = 1, the Laurent polynomial q must be a nonzero monomial.

Since q? = q, q must be a positive real number. Redefining A,B through scal-

ing by diag(q−1/2, q1/2)A and Bdiag(q1/2, q−1/2), respectively, we conclude that all

(4.3.14), (4.3.16), and (4.3.17) with q = 1 are still satisfied and

A(z)V(z) =



1 0

0 0


U1(z), U1(z)U

?
1(z) = I2 with U1(z) := q−1/2



u1(z) −u3(z)

u?3(z) u?1(z)


 .

Similarly, by d = det(V̊) = 0 and (4.3.17) with q = 1, we can apply Proposition 4.1

to the second identity in (4.3.16) and conclude that there exists a 2× 2 paraunitary

matrix U2 of Laurent polynomials such that

A(z)V̊(z) =



1 0

0 0


U2(z) and U2(z)U

?
2(z) = I2.

Note that there is no further rescaling on the matrices A and B due to the identity

in (4.3.17) with q = 1. Define U(z) := U?
1(z)U2(z). Then V̊(z) = V(z)U(z) holds.

Moreover, U is a paraunitary matrix and det(U(z)) = 1. It is also obvious that

det(V) = det(V̊) = 0. This proves the claim for the case det(P(z)) ≡ 0.
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We are now ready to prove Theorem 9.

Proof of Theorem 9. (2)=⇒(1) is straightforward. Note that (4.3.4) is equivalent

to



bp(z) bn(z)

bp(−z) bn(−z)


 =




b1(z) b2(z)

b1(−z) b2(−z)


U(z2), z ∈ C\{0}. (4.3.18)

Since {a; b1, b2} is a tight framelet filter bank and U is paraunitary, it follows directly

from (4.3.2) and (4.3.18) that {a; bp, bn} is a finitely supported tight framelet filter

bank. Moreover, it follows directly from (4.3.18) that (4.3.3) holds with λzk :=

det(U(z)).

We now prove (1)=⇒(2). For a sequence u : Z → C and γ ∈ Z, its coset

sequence u[γ] is defined to be u[γ](k) := u(γ+2k), k ∈ Z. Since both {a; b1, b2} and

{a; bp, bn} are finitely supported tight framelet filter banks, using coset sequences,

we see from (4.3.2) that


b

p,[0](z) bn,[0](z)

bp,[1](z) bn,[1](z)




b

p,[0](z) bn,[0](z)

bp,[1](z) bn,[1](z)



?

= Na(z) =


b

[0]
1 (z) b

[0]
2 (z)

b
[1]
1 (z) b

[1]
2 (z)




b

[0]
1 (z) b

[0]
2 (z)

b
[1]
1 (z) b

[1]
2 (z)



?

,

where

Na(z) :=




1
2 − a[0](z)(a[0](z))? −a[0](z)(a[1](z))?

−(a[0](z))?a[1](z) 1
2 − a[1](z)(a[1](z))?


 .

Define c(z) := gcd([Na(z)]1,1, [Na(z)]1,2, [Na(z)]2,1, [Na(z)]2,2). Then we have

2 det(Na(z)) = 1
2
− a[0](z)(a[0](z))? − a[1](z)(a[1](z))? and trace(Na(z)) = 1 −

a[0](z)(a[0](z))?− a[1](z)(a[1](z))?. Therefore, c must be a factor of trace(Na(z))−

2 det(Na(z)) = 1/2. Consequently, we conclude that c = 1. By Theorem 10, there

must exist a 2× 2 paraunitary matrix U of Laurent polynomials such that



bp,[0](z) bn,[0](z)

bp,[1](z) bn,[1](z)


 =



b
[0]
1 (z) b

[0]
2 (z)

b
[1]
1 (z) b

[1]
2 (z)


U(z) (4.3.19)
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for all z ∈ C\{0}. Since u(z) = u[0](z2) + zu[1](z2) holds for any u ∈ l0(Z),

it is straightforward to deduce from (4.3.19) that (4.3.4) holds. Hence item (ii) is

proved.

4.4 Algorithms of directional compactly supported com-

plex tight framelet filter banks

This section proposes an algorithm to construct finitely supported complex tight

framelet filter banks {a; bp, bn} with good frequency separation from any eligible

finitely supported low-pass filter a. Several examples is provided to illustrate our

algorithm.

We first explain how to construct all tight framelet filter banks using Theorem 9.

For b1, b2 ∈ l0(Z), define a Laurent polynomial db1,b2 by

db1,b2(z
2) := z[b1(z)b2(−z)− b1(−z)b2(z)].

Then db1,b2 is a well-defined Laurent polynomial. It follows from (4.3.2) that

|db1,b2(z2)|2 = det(Ma(z)) = 1− |a(z)|2 − |a(−z)|2, z ∈ T. (4.4.1)

If a is an orthogonal filter, db1,b2 ≡ 0. Define

b1(z) := za?(−z), b2(z) ≡ 0. (4.4.2)

For db1,b2 6≡ 0, by Fejér-Riesz lemma, we see that up to a monomial factor there

are essentially only finitely many Laurent polynomials db1,b2 satisfying (4.4.1). All

finitely supported complex tight framelet filter banks {a; b1, b2} having the shortest
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possible filter supports can be derived from the low-pass filter a by solving a linear

equation system. Consequently, Theorem 9 allows us to obtain all finitely supported

complex tight framelet filter banks {a; b1, b2} with the given low-pass filter a.

For a finitely supported sequence u = {u(k)}k∈Z such that u(k) = 0 for all

k ∈ Z\[m,n] and u(m)u(n) 6= 0, define fsupp(u) := fsupp(u) := [m,n] to be the

filter support of u and len(u) := len(u) := n−m to be the length of the filter u. We

now recall an algorithm, which is a special case of [20, Algorithm 4], to construct an

initial finitely supported tight framelet filter bank {a; b1, b2}. In fact, this algorithm

can construct all possible complex tight framelet filter banks {a; b1, b2} with the

shortest support length.

Algorithm 1. Let a ∈ l0(Z) be a finitely supported filter on Z such that |a(z)|2 +

|a(−z)|2 6 1 for all z ∈ T and a is not an orthogonal filter.

(S1) Define A(z) := 1 − a(z)a?(z), B(z) := −a(z)a?(−z), and D(z2) := 1 −

a(z)a?(z)− a(−z)a?(−z).

(S2) Select ε, s1, s2 ∈ {0, 1} and a polynomial d satisfying d(z)d?(z) = D(z) with

d s1+s2−1
2

e 6 md 6 nd 6 b s1+s2−1
2

c + n0 + ε, where [−n0, n0] := fsupp(A)

and [md, nd] := fsupp(d).

(S3) Parameterize a filter b1 by b1(z) = zs1
∑n0+ε

j=0 tjz
j . Find the unknown coef-

ficients {t0, . . . , tn0+ε} by solving a system X of linear equations induced by

R(z) ≡ 0 and coeff(b?2, z, j) = 0 with j = s1 − n0 − 2md − 1, . . . ,−s2 −

n0 − ε− 1 and j = 1− s2, . . . , s1 + 2n0 − 2nd + ε− 1, where R and b?1 are

uniquely determined by fsupp(R) ⊆ [2md, 2nd − 1] and

B(−z)b1(z)− A(z)b1(−z) = d(z2)zb?2(z) +R(z).
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(S4) For any nontrivial solution to the system X in (S3), there must exist λ > 0

such that

λd(z2) = z−1[b1(z)b2(−z)− b1(−z)b2(z)]

holds. Replace b1, b2 by λ−1/2b1, λ
−1/2b2, respectively.

Then {a; b1, b2} is a finitely supported tight framelet filter bank satisfying

max(len(b1), len(b2)) 6 len(a) + ε,

with fsupp(b1) ⊆ [s1, s1 + n0 + ε] and fsupp(b2) ⊆ [s2, s2 + n0 + ε].

We are now ready to present an algorithm to construct finitely supported com-

plex tight framelet filter banks with frequency separation.

Algorithm 2. Let a ∈ l0(Z) be a finitely supported filter on Z such that |a(z)|2 +

|a(−z)|2 6 1 for all z ∈ T.

(S1) If a is not an orthogonal filter, construct a finitely supported tight framelet

filter bank {a; b1, b2} by Algorithm 1; if a is an orthogonal filter, construct

{a; b1, b2} by (4.4.2).

(S2) Choose a suitable filter length N ∈ N ∪ {0} and parameterize filters u1 and

u2 by

u1(z) := c0 + c1z + · · ·+ cNz
N , u2(z) := d0 + d1z + · · ·+ dNz

N ,

where c0, . . . , cN , d0, . . . , dN are complex numbers to be determined later. We

can further assume c0 ∈ R by normalizing the first filter u1.

(S3) Define new high-pass filters bp and bn by

bp(z) := b1(z)u1(z
2)+b2(z)u2(z

2), bn(z) := z2m[b2(z)u
?
1(z

2)−b1(z)u
?
2(z

2)],
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where m is an integer such that the centers of fsupp(bp) and fsupp(bn) are

close to each other.

(S4) If in addition the given filter a is real, then we further require that the initial

filters b1, b2 should be real and c0, . . . , cN , d0, . . . , dN ∈ R. Further replace

the filters bp and bn in (S3) by [bp(z)+ ibn(z)]/
√
2 and [bp(z)− ibn(z)]/

√
2,

respectively.

(S5) Find a solution {c0, . . . , cN , d0, . . . , dN} of the following constrained opti-

mization problem:

min
u1,u2

∫ π

0

[|bp(−e−iξ)|2 + |bn(e−iξ)|2]dξ

under the constraint |u1(e−iξ)|2 + |u2(e−iξ)|2 = 1 for all ξ ∈ R (such con-

straint on u1, u2 can be rewritten as equations using c0, . . . , cN , d0, . . . , dN ).

Then {a; bp, bn} is a tight framelet filter bank. For a real filter a, we additionally

have bn = bp.

4.5 Exmaples

Here several examples are presented to illustrate Algorithms 1 and 2. In order to

see the improvement of directionality of a tight framelet filter bank {a; bp, bn}, we

use the following quantities:

dR := 1
2

∫ π

0
[2−|â(ξ)|2−|â(ξ+π)|2]dξ, dA :=

∫ π

0
A(ξ)dξ,

dB :=
∫ π

0
[|b̂p(ξ + π)|2 + |b̂n(ξ)|2]dξ,

(4.5.1)

where the sharp theoretical lower bound frequency separation function A is defined

in (4.2.2) and the subscript R in dR refers to the case of real high-pass filters. By
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Theorem 6, we always have dA 6 dB. If both bp and bn are real filters, by Theorem 8

we always have dR = dB.

Example 5. Let a(z) = (z−1 + 2 + z)/4 = {1
4
, 1
2
, 1
4
}[−1,1] be the B-spline filter of

order 2. Using Algorithm 1, we obtain a tight framelet filter bank {a; b1, b2} with

b1(z) =
√
6
6
(1−z−1) and b2(z) =

√
3

12
(1−z−1)(1+3z). Applying Algorithm 2 with

N = 0, we have a finitely supported complex tight framelet filter bank {a; bp, bn}

with bn = bp and

bp(z) := 1
8
(1− z−1)[(−

√
2 + 2i)z + (

√
2 + 2i)].

By calculation we have dR = 5
8
π ≈ 1.96349, dA ≈ 0.05339, and dB ≈ 0.549282.

If we take N = 2, then

bp(z) =(−0.029642235761 + 0.024549845327i)z−3 + (0.065991543776

− 0.054654520855i)z−2 − (0.134097034666− 0.310569363503i)z−1

− (0.199259492567 + 0.279133899131i) + (0.256396707847

− 0.0503651650857i)z + (0.00392785810329 + 0.00474261627248i)z2

+ (0.0366826532672 + 0.0442917599689i)z3.

By calculation, we have dB ≈ 0.329559. See Figure 4.1 for the graphs of the eight

tight framelet generators in the associated two-dimensional real tight framelet for

L2(R
2) in (2.2.9).

Example 6. Let a(z) = z−2(1 + z)4/16 = { 1
16
, 1
4
, 3
8
, 1
4
, 1
16
}[−2,2] be the B-spline

filter of order 4. Using Algorithm 1, we obtain a tight framelet filter bank {a; b1, b2}

with b1(z) =
1
80
(z − 1)(3 z3 + 15 z2 + 41 z + 5) and b2(z) =

1
80
(4 +

√
14)(z −

1)(z + 5)(z2 + 15− 4
√
14). Applying Algorithm 2 with N = 0, we have a finitely
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Figure 4.1: The eight two-dimensional generators of compactly supported

TP-CTF3 in Example 5 with N = 0: the first four for real part and the last four for

imaginary part.

supported complex tight framelet filter bank {a; bp, bn} with bn = bp and

bp(z) =(−0.00557089416719 + 0.0731736018309i)z−2 + (−0.0222835766688

+ 0.292694407324i)z−1 − (0.318357701145 + 0.258767723882i)

+ (0.307215912811− 0.0833775092464i)z + (0.0389962591703

− 0.0237227760259i)z2.

By calculation we have dR = 93
128
π ≈ 2.28256, dA ≈ 0.00187, and dB ≈ 0.762678.

If we take N = 2, then

bp(z) =(0.0136422120987− 0.00936825359825i)z−4 + (0.0545688483947

− 0.0374730143930i)z−3 − (0.117755602061− 0.0384179743194i)z−2

+ (0.176657429397− 0.291096804867i)z−1 + (0.215352648865

+ 0.333764545470i)− (0.226650219509− 0.0670651937025i)z

− (0.0454200982851− 0.00120108848925i)z2 − (0.0601885257055

+ 0.0876475668564i)z3 − (0.0102066931945 + 0.0148631622666i)z4.

By calculation, we have dB ≈ 0.283860. See Figure 4.2 for the graphs of the eight

tight framelet generators in the associated two-dimensional real tight framelet for

L2(R
2) in (2.2.9).

Example 7. Let a(z) = − 1
32
z−3+ 9

32
z−1+1

2
+ 9

32
z− 1

32
z3 = {− 1

32
, 0, 9

32
, 1
2
, 9
32
, 0,− 1

32
}[−3,3]

83



be an interpolatory filter. Using Algorithm 1, we obtain a tight framelet filter

bank {a; b1, b2} with b1(z) =
√
33

1056
z−3(z − 1)2(z + 3)(z − 5)(z2 + 4 z + 1) and

b2(z) = −
√
22

1056
z−3(z − 1)2(2

√
3 + 3)(z + 2 −

√
3)(z − 2 +

√
3)(z2 + 2 z + 9).

Applying Algorithm 2 with N = 0, we have a finitely supported complex tight

framelet filter bank {a; bp, bn} with bn = bp and

bp(z) =(0.000765760176767 + 0.00404161855344i)z−3 − (0.0403653729403

+ 0.0880450827059i)z−1 − (0.0122521628283 + 0.0646658968550i)

+ (0.267462323475 + 0.228631206606i)z − (0.341301227765

− 0.0646658968550i)z2 + (0.125690679882− 0.144627742454i)z3.

By calculation we have dR = 151
256
π ≈ 1.85305, dA ≈ 0.03719, and dB ≈ 0.690756.

If we take N = 2, then

bp(z) =(0.000127813163114 + 0.000468578346241i)z−5 − (0.00306783185075

+ 0.0157028980677i)z−3 − (0.00204501060982 + 0.00749725353985i)z−2

+ (−0.0374047192910 + 0.0481138677951i)z−1 − (0.0665960959763

+ 0.172855502749i) + (0.350214784764 + 0.131605792365i)z

− (0.245342403089− 0.169559360297i)z2 − (0.0151368278988

+ 0.148441081755i)z3 − (0.0395698809181− 0.0107933959918i)z4

Figure 4.2: The eight two-dimensional generators of compactly supported

TP-CTF3 in Example 6 with N = 2: the first four for real part and the last four for

imaginary part.
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+ (0.0588201717073− 0.0160442586840i)z5.

By calculation, we have dB ≈ 0.307271. See Figure 4.3 for the graphs of the eight

tight framelet generators in the associated two-dimensional real tight framelet for

L2(R
2) in (2.2.9).

Figure 4.3: The eight two-dimensional generators of compactly supported

TP-CTF3 in Example 7 with N = 2: the first four for real part and the last four for

imaginary part.

Example 8. Let a(z) = − 3
64
z−2+ 5

64
z−1+15

32
+15

32
z+ 5

64
z2− 3

64
z3 = {− 3

64
, 5
64
, 15
32
, 15
32
, 5
64
,− 3

64
}[−2,3].

Using Algorithm 1, we obtain a tight framelet filter bank {a; b1, b2} with

b1(z) =

√
297879

6354752
z−2(z − 1)2(3203z3 + 1921z2 − 31z − 93),

b2(z) = −
√
496465

794344
z−2(z − 1)2(248z2 + z + 3).

Applying Algorithm 2 with N = 0, we have a finitely supported complex tight

framelet filter bank {a; bp, bn} with bn = bp and

bp(z) =(−0.00427685553137 + 0.00414104756178i)z−2 + (0.00712809255228

− 0.00690174593631i)z−1 − (0.0855371106274 + 0.173923997595i)

+ (0.256611331882 + 0.179445394344i)z − (0.263739424434

− 0.169782950033i)z2 + (0.0898139661588− 0.172543648408i)z3.

By calculation we have dR = 557
1024

π ≈ 1.70885, dA ≈ 0.12595, and dB ≈ 0.444929.
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If we take N = 2, then

bp(z) =(0.000174962462941 + 0.000667428960698i)z−4 − (0.000291604104902

+ 0.00111238160116i)z−3 + (0.00604271655936 + 0.00470763073231i)z−2

− (0.0147368599440 + 0.0256441568391i)z−1 + (0.119900001836

+ 0.197463905829i)− (0.282016222613 + 0.153449185519i)z

(0.207557346014− 0.197627972771i)z2 + (−0.0335526030334

+ 0.174187921033i)z3 + (0.0198783637212− 0.00521099275084i)z4

+ (−0.0229561008975 + 0.00601780292595i)z5.

By calculation, we have dB ≈ 0.387149. See Figure 4.4 for the graphs of the eight

tight framelet generators in the associated two-dimensional real tight framelet for

L2(R
2) in (2.2.9).

Figure 4.4: The eight two-dimensional generators of compactly supported

TP-CTF3 in Example 8 with N = 2: the first four for real part and the last four for

imaginary part.
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Chapter 5

Compactly Supported Tensor Product

Complex Tight Framelets TP-CTF4 and

TP-CTF6

Compactly supported wavelets and framelets are important due to good space-

frequency localization and efficient computational algorithms. Based on the ex-

emplary role of compactly supported TP-CTF3, this chapter studies and constructs

compactly supported TP-CTF4 and TP-CTF6 by optimization techniques such

that they perform comparably well as their band-limited counterpart in image pro-

cessing. We completely answer the question on what type of low-pass filters are

suitable for the construction of compactly supported TP-CTF4 and TP-CTF6.

Step-by-step algorithms are provided for constructing finitely supported TP-CTF4

and TP-CTF6 having small frequency separation with prescribed filter supports.

Several concrete numerical examples are presented to illustrate the results and al-

gorithms. The results in this chapter have been summarized in [22].
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5.1 Splitting low-pass filters with frequency separa-

tion property

As discussed in [23, 24], the directionality of tensor product filters is closely related

to the frequency separation. For a filter b = {b(k)}k∈Z which is not identically zero,

we define the following quantities to measure the frequency separation of filter b:

fsp(b) :=
min

{
2
∫ 0

−π
|̂b(ξ)|2dξ, 2

∫ π

0
|̂b(ξ)|2dξ

}

∫ π

−π
|̂b(ξ)|2dξ

. (5.1.1)

It is straightforward to observe that 0 6 fsp(b) 6 1. The smaller the quantity fsp(b)

is, the better the frequency separation of the filter b will have. If b is a real filter,

since b̂(ξ) = b̂(−ξ), it is trivial to see that fsp(b) = 1. However, things can be quite

different for complex filters.

For any complex tight framelet filter bank {a; bp, bn} with b̂n(ξ) = b̂p(−ξ),

Theorem 6 implies that

fsp(bp) = fsp(bn) >
2
∫ π

0
A(ξ)dξ∫ π

−π
1− |â(ξ)|2dξ =: fsp(a|hp),

where hp in fsp(a|hp) stands for high-pass. As shown in [23, Theorem 2], the quan-

tity fsp(a|hp) is often very small for most known low-pass filters in the literature.

Note that the main difference between CTF2s+1 and CTF2s+2 lies in that the

low-pass filter a in CTF2s+1 has to be split into two one-sided auxiliary filters ap

and an. This section discusses how to split a given real low-pass filter a into two

one-sided auxiliary filters ap and an such that an = ap.
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5.1.1 Analysis and algorithm for splitting a low-pass filter into

two auxiliary filters

Similarly to Theorem 6, ap and an still have a sharp lower bound as demonstrated

by the following result.

Theorem 11. Let a ∈ l2(Z) be a complex filter on Z. For any complex filters

ap, an ∈ l2(Z) satisfying

|âp(ξ)|2+ |ân(ξ)|2 = |â(ξ)|2, âp(ξ)âp(ξ + π)+ ân(ξ)ân(ξ + π) = â(ξ)â(ξ + π),

(5.1.2)

for a.e. ξ ∈ R, then

|âp(ξ + π)|2 + |ân(ξ)|2 > min(|â(ξ)|2, |â(ξ + π)|2), a.e. ξ ∈ [0, π]. (5.1.3)

Moreover, the inequality in (5.1.3) is sharp in the sense that there exist filters

ap, an ∈ l2(Z) satisfying (5.1.2) and

|âp(ξ + π)|2 + |ân(ξ)|2 = min(|â(ξ)|2, |â(ξ + π)|2), a.e. ξ ∈ [0, π]. (5.1.4)

If in addition a is real (or more generally, |â(−ξ)| = |â(ξ)|), then the relation an =

ap is also satisfied by the particular filters ap, an defined in (5.1.9) and (5.1.10).

Proof. Since â is a 2π-periodic function, the conditions in (5.1.2) are equivalent to

|âp(ξ)|2 + |ân(ξ)|2 = |â(ξ)|2, (5.1.5)

|âp(ξ + π)|2 + |ân(ξ + π)|2 = |â(ξ + π)|2, (5.1.6)

âp(ξ)âp(ξ + π) + ân(ξ)ân(ξ + π) = â(ξ)â(ξ + π), (5.1.7)

for almost every ξ ∈ [0, π]. Consequently, by (5.1.5) – (5.1.7) and Cauchy-Schwarz

89



inequality, we have

|â(ξ)â(ξ + π)|2 6
(
|âp(ξ + π)âp(ξ)|+ |ân(ξ)ân(ξ + π)|

)2

6
(
|âp(ξ + π)|2 + |ân(ξ)|2

) (
|âp(ξ)|2 + |ân(ξ + π)|2

)

=
(
|âp(ξ + π)|2 + |ân(ξ)|2

) (
|â(ξ)|2 − |ân(ξ)|2 + |â(ξ + π)|2 − |âp(ξ + π)|2

)
,

for ξ ∈ [0, π]. Let F (ξ) := |âp(ξ + π)|2 + |ân(ξ)|2. Then the above inequality can

be rewritten as

|â(ξ)â(ξ + π)|2 6 F (ξ)
(
|â(ξ)|2 + |â(ξ + π)|2 − F (ξ)

)
. (5.1.8)

Solving (5.1.8) for F (ξ), we conclude that

F (ξ) >
|â(ξ)|2 + |â(ξ + π)|2 −

√
(|â(ξ)|2 + |â(ξ + π)|2)2 − 4|â(ξ)â(ξ + π)|2

2

=
|â(ξ)|2 + |â(ξ + π)|2 −

∣∣∣|â(ξ)|2 − |â(ξ + π)|2
∣∣∣

2
= min(|â(ξ)|2, |â(ξ + π)|2).

This proves (5.1.3).

We now concretely construct filters ap, an ∈ l2(Z) satisfying (5.1.3), (5.1.5)

and (5.1.6).

For ξ ∈ [0, π], we define

âp(ξ + π) :=





|â(ξ)|/
√
2 if |â(ξ)| = |â(ξ + π)|,

|â(ξ + π)| if |â(ξ)| > |â(ξ + π)|,

0 if |â(ξ)| < |â(ξ + π)|,

(5.1.9)

ân(ξ) :=





|â(ξ)|/
√
2 if |â(ξ)| = |â(ξ + π)|,

0 if |â(ξ)| > |â(ξ + π)|,

|â(ξ)| if |â(ξ)| < |â(ξ + π)|,

(5.1.10)
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and

âp(ξ) := −eiβ(ξ)
√

|â(ξ)|2 − |ân(ξ)|2

ân(ξ+π) := −e−iβ(ξ)

√
|â(ξ + π)|2 − |âp(ξ + π)|2,

(5.1.11)

where β(ξ) is defined in (4.2.13) denoting the phase of â(ξ)â(ξ + π).

We show that âp(ξ) and ân(ξ+π) in (5.1.11) are well defined and all the condi-

tions in (5.1.4) and (5.1.5) – (5.1.7) are satisfied. Let ξ ∈ [0, π] be arbitrarily fixed.

We now consider three cases.

Case 1: |â(ξ)| = |â(ξ + π)|. By (5.1.9) and (5.1.10), we have

âp(ξ + π) = |â(ξ)|/
√
2 = |â(ξ + π)|/

√
2, ân(ξ) = |â(ξ)|/

√
2.

The above identities imply that âp(ξ) and ân(ξ + π) in (5.1.11) are well defined.

More explicitly,

âp(ξ) := −eiβ(ξ)
√

|â(ξ)|2 − |ân(ξ)|2 = −eiβ(ξ)|â(ξ)|/
√
2,

ân(ξ + π) := −e−iβ(ξ)

√
|â(ξ + π)|2 − |âp(ξ + π)|2 = −e−iβ(ξ)|â(ξ + π)|/

√
2.

By the definition of β(ξ), all (5.1.4) and (5.1.5) – (5.1.7) are satisfied.

Case 2: |â(ξ)| > |â(ξ + π)|. By (5.1.9) and (5.1.10), we have

âp(ξ + π) = |â(ξ + π)|, ân(ξ) = 0.

The above identities imply that âp(ξ) and ân(ξ + π) in (5.1.11) are well defined.

More explicitly,

âp(ξ) := −eiβ(ξ)
√
|â(ξ)|2 − |ân(ξ)|2 = −eiβ(ξ)|â(ξ)|,

ân(ξ + π) := −e−iβ(ξ)

√
|â(ξ + π)|2 − |âp(ξ + π)|2 = 0.

By the definition of β(ξ), (5.1.4) and (5.1.5)– (5.1.7) are satisfied.

Case 3: |â(ξ)| < |â(ξ + π)|. This case is similar to Case 2. By (5.1.9) and
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(5.1.10), we have

âp(ξ + π) = 0, ân(ξ) = |â(ξ)|.

The above identities imply that

âp(ξ) := −eiβ(ξ)
√

|â(ξ)|2 − |ân(ξ)|2 = 0,

ân(ξ + π) := −e−iβ(ξ)

√
|â(ξ + π)|2 − |âp(ξ + π)|2 = −e−iβ(ξ)|â(ξ + π)|2.

By the definition of β(ξ), all (5.1.4) and (5.1.5) – (5.1.7) are satisfied.

For a real filter a, according to Theorem 11, we must have

fsp(ap) = fsp(an) >
2
∫ π

0
min(|â(ξ)|2, |â(ξ + π)|2)dξ∫ π

−π
|â(ξ)|2dξ =: fsp(a|lp),

where lp in fsp(a|lp) stands for low-pass.

We now study how to split filter a into two finitely supported filters ap and an.

Theorem 12. Let a, ap, an ∈ l0(Z) be filters on Z such that the two Laurent poly-

nomials
∑

k∈Z a(k)z
k and

∑
k∈Z a(k)(−z)k do not have common zeros on C\{0}.

Then (5.1.2) holds if and only if there exist u1, u2 ∈ l0(Z) such that

âp(ξ) = â(ξ)û1(2ξ), ân(ξ) = â(ξ)û2(2ξ), |û1(ξ)|2 + |û2(ξ)|2 = 1. (5.1.12)

If in addition a is real, then both an = ap and (5.1.2) are satisfied if and only

if (5.1.12) holds for some u1, u2 ∈ l0(Z) satisfying u2 = u1.

Proof. Necessity is a direct calculation. We only need to prove the sufficient part.

Suppose (5.1.2) holds. In terms of matrices, (5.1.2) is




âp(ξ) ân(ξ)

âp(ξ + π) ân(ξ + π)






âp(ξ) âp(ξ + π)

ân(ξ) ân(ξ + π)


 =




|â(ξ)|2 â(ξ)â(ξ + π)

â(ξ)â(ξ + π) |â(ξ + π)|2


 .

(5.1.13)
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For a sequence u : Z → C and γ ∈ Z, the coset sequence u[γ] is defined to be

u[γ](k) := u(γ + 2k), k ∈ Z. Since ap, an, and a are all finitely supported filters,

we see that (5.1.13) in terms of coset sequences is



âp[0](ξ) ân[0](ξ)

âp[1](ξ) ân[1](ξ)






âp[0](ξ) âp[1](ξ)

ân[0](ξ) ân[1](ξ)


 =



â[0](ξ)â[0](ξ) â[0](ξ)â[1](ξ)

â[1](ξ)â[0](ξ) â[1](ξ)â[1](ξ)




=



â[0](ξ) 0

â[1](ξ) 0






â[0](ξ) â[1](ξ)

0 0


 .

Since
∑

k∈Z a(k)z
k and

∑
k∈Z a(k)(−z)k do not have common zeros on C\{0},

â[0](ξ)â[0](ξ), â[0](ξ)â[1](ξ), â[1](ξ)â[0](ξ), and â[1](ξ)â[1](ξ) have no common zeros

for ξ ∈ T. Also, since âp(ξ) and ân(ξ) are 2π periodic functions, by direct calcu-

lation, we have det(
[ ̂ap[0](ξ) ̂an[0](ξ)

̂ap[1](ξ) ̂an[1](ξ)

]
) = det(

[̂a[0](ξ) 0
̂a[1](ξ) 0

]
) = 0. Then by Theorem 10,

there exists a 2× 2 paraunitary matrix U of Laurent polynomials such that



âp[0](ξ) ân[0](ξ)

âp[1](ξ) ân[1](ξ)


 =



â[0](ξ) 0

â[1](ξ) 0


U(ξ), ξ ∈ T.

Since û(ξ) = û[0](2ξ)+ e−i·ξû[1](2ξ) holds for any u ∈ l0(Z) and U is a paraunitary

matrix, it is straightforward to check that (5.1.12) holds. This completes the proof

of Theorem 12.

Now an algorithm is presented to apply Theorem 12 to split a low-pass filter a

into two one-sided auxiliary filters ap and an by optimization techniques.

Algorithm 3. Let a ∈ l0(Z) be a finitely supported complex filter on Z.

(S1) Choose N ∈ N and define

U(ξ) :=



cos(t0) − sin(t0)

sin(t0) cos(t0)



∏N

j=1




cos(tj) − sin(tj)

e−iξ sin(tj) e−iξ cos(tj)


 , (5.1.14)
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where t0, . . . , tN ∈ [−π, π] are real numbers to be determined later.

(S2) Define ap := [ar + iai]/
√
2 and an := [ar − iai]/

√
2, where the filters ar and

ai are defined to be

âr(ξ) := â(ξ)U1,1(2ξ), âi(ξ) := â(ξ)U1,2(2ξ),

where Uj,k is the (j, k)-entry of the 2× 2 matrix U.

(S3) Find a solution {t0, . . . , tN} of the following constrained optimization prob-

lem:

min
t0,...,tN

∫ π

0

|âp(ξ + π)|2 + |ân(ξ)|2dξ.

Then ap and an satisfy the conditions in (5.1.2) with frequency separation quantities

fsp(ap) and fsp(an) small. Moreover, if the low-pass filter a is real, then an =

ap, fsp(an) = fsp(ap) and the optimization problem in item (S3) is equivalent to

mint0,...,tN fsp(ap).

5.1.2 Design and choice of low-pass filters for TP-CTFn

As discussed in [17], a few statistics-related quantities are of interested in applica-

tions. For a sequence a = {a(k)}k∈Z ∈ l0(Z), we define its expectation/mean E(a)

and variance Var(a) by

E(a) :=

∑
k∈Z |a(k)|2k
‖a‖2l2(Z)

and Var(a) :=

∑
k∈Z |a(k)|2(k − E(a))2

‖a‖2l2(Z)
.

Note that Var(a) = minc∈R
∑

k∈Z |a(k)|2(k−c)2/‖a‖2l2(Z), with the minimum value

achieved at c = E(a).

For an orthogonal low-pass filter, by Theorem 7, we haveA(ξ) = min(|â(ξ)|2, |â(ξ+

π)|2). Therefore, fsp(a|hp) = fsp(a|lp) and ‖a‖2l2(Z) = 1/2.
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In Table 5.1, we list the frequency separation quantities fsp(a|lp) and fsp(a|hp)

as well as their l2-norms for three families of well-known low-pass filters: the B-

spline filters aBm, the interpolatory filters aI2m, and the Daubechies orthogonal filters

aDm for m ∈ N. The B-spline filter aBm of order m is given by âBm(ξ) = 2−m(1 +

e−iξ)m. The interpolatory filter aI2m is given by âI2m(ξ) := cos2m(ξ/2)Pm(sin
2(ξ/2)),

where

Pm(x) :=
m−1∑

j=0

(
m+ j − 1

j

)
xj. (5.1.15)

A Daubechies orthogonal low-pass filter aDm of orderm is supported inside [0, 2m−

1] and satisfies |âDm(ξ)|2 = âI2m(ξ) = cos2m(ξ/2)Pm(sin
2(ξ/2)).

m 1 2 3 4 5 6
‖aBm‖2l2(Z) 0.5 0.375 0.3125 0.273438 0.246094 0.273438

Var(aBm) 0.25 0.333333 0.45 0.571429 0.694444 0.818182

fsp(aBm|hp) 0.363380 0.027195 0.004327 0.000822 0.000170 0.000037

fsp(aBm|lp) 0.363380 0.151173 0.066291 0.029913 0.013745 0.006395

‖aI2m‖2l2(Z) 0.375 0.410156 0.426498 0.436333 0.443063 0.448035

Var(aI2m) 0.333333 0.428571 0.507137 0.574308 0.633798 0.687718

fsp(aI2m|hp) 0.027195 0.020072 0.016720 0.014666 0.013237 0.012168

fsp(aI2m|lp) 0.151173 0.094585 0.073303 0.061623 0.054049 0.048651

Var(aDm) 0.25 0.328124 0.453684 0.425360 0.559572 0.531640

fsp(aDm|hp) 0.363380 0.257277 0.209530 0.181110 0.161768 0.147526

Table 5.1: The frequency separation quantities fsp(a|hp) and fsp(a|lp) for three

families of low-pass filters including Daubechies orthogonal filters aDm, B-spline fil-

ters aBm, and interpolatory filters aIm for m = 1, . . . , 6. Note that for Daubechies

orthogonal filters, fsp(aDm|lp) = fsp(aDm|hp) and ‖aDm‖2l2(Z) = 1/2 for all m ∈ N.

The listed Var(aDm) is the smallest among all possible choices of aDm satisfying

|âDm(ξ)|2 = âI2m(ξ).

We now discuss how to choose the low-pass filter a so that the directional tensor

product tight framelet filter banks can be built with the following desirable proper-

ties:

(1) short support for computational efficiency;
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(2) small Var(a) for good spatial localizations;

(3) small frequency separation quantities fsp(ap), fsp(an), fsp(b1), . . . , fsp(bs);

(4) all ‖ap‖2l2(Z), ‖an‖2l2(Z), ‖b1‖2l2(Z), . . . , ‖bs‖2l2(Z) are approximately around 1/(s+

2);

(5) â(ξ) should be almost 1 in a neighborhood of the origin. This necessarily

implies that |â(ξ)|2 = 1 + O(|ξ|n) as ξ → 0 with a largest possible integer

n ∈ N and is closely related to the vanishing moments of b1, . . . , bs.

By Theorem 6 and (5.1.3), to achieve (3), it is necessary that the frequency sep-

aration quantities fsp(ap|hp) and fsp(ap|lp) must be very small. Since ‖a‖2l2(Z) =

1
2π

∫ π

−π
|â(ξ)|2dξ, the l2-norm of a roughly reflects the percentage of frequency oc-

cupation covered by the filter a in the frequency domain. Since there are s + 2

number of filters in {ap, an; b1, . . . , bs}, it is necessary to require (4) so that all fil-

ters work more or less equally effective. (5) deals with the frequency separation

between low-pass filters and high-pass filters. For an input signal v, most large co-

efficients of the discrete Fourier transform v̂ of v are concentrated around the origin.

If 1− |â(ξ)|2 is not very small in a neighborhood of the origin, then low frequency

information of v will significantly leak into the high frequencies and result in a

not-so-good frequency separation between the low-pass filter and high-pass filters.

As demonstrated in Table 5.1, though the B-spline filters have very short support

and very small frequency separation quantities fsp(aBm|hp) and fsp(aBm|lp), their

variances are generally large. More importantly, aBm satisfy item (5) only with n = 1

(the interval that |âBm(ξ)|2 ≈ 1 is too small) and the quantity ‖aBm‖2l2(Z) is often small

as well. Hence, a significant percentage of low frequency information is shifted to

the high-pass filters. This requires the high-pass filters to be extremely efficient for
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reasonably good performance in applications.

While the Daubechies orthogonal filters have the ideal norm ‖aDm‖2l2(Z) = 1/2

and reasonably small variance Var(aDm), the frequency separation quantities fsp(aDm|hp)

is not that small and decreases slowly at the expenses of longer filter supports. In

particular, for low-pass filters aDm,

A(ξ) = min(|âDm(ξ)|2, |âDm(ξ + π)|2).

Due to the relation |âDm(ξ)|2 + |âDm(ξ + π)|2 = 1, we have

A(π/2) = |âDm(π/2)|2 = 1/2,

which is independent of the choice of m. This creates a fixed peak point for the

function A(ξ) and forces the frequency separation of all its derived high-pass filters

cannot be that good.

Table 5.1 indicates that the family of interpolatory filters aI2m is a good choice

as the low-pass filters for our purposes. Experimental results show that directional

tensor product complex tight framelets built from aI2m perform quite well in appli-

cations. Though aI2m filters have symmetry, the filter support of aI2m is twice as long

as that of aDm. Therefore, the high-pass filters derived from aI2m tend to have long

support.

We propose a method of constructing low-pass filters with the advantages of

both interpolatory and orthogonal filters. To do so, the following lemma is needed

to guarantee the existence.

Lemma 2. Let n,m ∈ N with n 6 m and 1
2
< c 6 1. Define

P(x) :=
n−1∑

j=0

(
m+ j − 1

j

)
xj + xn (c0 − (c1 + 2c0)x) (5.1.16)
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with

c0 =
cP′

m(c)− (m+ 1)Pm(c)

cm
, c1 =

(1− 2c)P′
m(c) + (2 + 2m−m/c)Pm(c)

cm
,

(5.1.17)

where Pm is defined in (5.1.15). Then c1 > 0, P(x) > 0, and

(1− x)mP(x) + xmP(1− x) 6 1, 0 6 x 6 1.

Proof. Define Pm,n(x) :=
∑n−1

j=0

(
m+j−1

j

)
xj . Since the binomial coefficients

(
m+j−1

j

)

are all positive for j = n, n+ 1, · · · ,m− 1, it is suffice to show that these conclu-

sions hold when n = m. Then Pm,n becomes Pm defined in (5.1.15).

We first show c1 > 0 by induction.

When m = 1,

c1 =
1

c
((1− 2c)P′

1(c) + (2 + 2− 1

c
)P1(c)) =

1

c
(4− 1

c
) > 0, c ∈ (

1

2
, 1].

When m = k, assume (1− 2c)P′
k(c) + (2 + 2k − k

c
)Pk(c) > 0.

Then, when m = k + 1 we have

(1− 2c)P′
k+1(c) +

(
2 + 2(k + 1)− k + 1

c

)
Pk+1(c)

> (1− 2c)P′
k+1(c) +

(
2 + 2k − k

c

)
Pk+1(c)

> (1− 2c)P′
k(c) +

(
2 + 2k − k

c

)
Pk(c), c ∈ (

1

2
, 1],

because

Pk+1(x)−Pk(x) =
k∑

j=0

((
k + j

j

)
−
(
k + j − 1

j

))
xj =

k∑

j=1

(
k + j − 1

j − 1

)
xj > 0,
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and

P′
k+1(x)− P′

k(x) =
k∑

j=1

((
k + j

j

)
−
(
k + j − 1

j

))
jxj−1

=
k∑

j=1

(
k + j − 1

j − 1

)
jxj−1

> 0, x ∈ [0, 1].

Therefore, by induction,

c1 =
1

cm

(
(1− 2c)P′

m(c) +
(
2 + 2m− m

c

)
Pm(c)

)
> 0, m ∈ N.

Next we prove P(x) > 0. Note that c0, c1 are obtained through the equations

P(c) = 0 and P′(c) = 0, then we have

P(x) = (1− x

c
)2Q(x),

where Q(x) is a polynomial of degree m − 1. Since it is well known that (1 −

x)mPm(x) + xmPm(1− x) = 1, consider

(1− x)mP(x) =(1−m)m(Pm(x) + c0x
m − (c1 + 2c0)x

m+1)

=1 + xm((1− x)m(c0 − (c1 + 2c0)x)− Pm(1− x)).

Also, (1− x)mP(x) = (1− x)m(1− x
c
)2Q(x), thus we have

Q(x) =
1

(1− x)m(1− x
c
)2

+ xm
(1− x)m(c0 + (c1 + 2c0)x)− Pm(1− x)

(1− x)m(1− x
c
)2

,

that is,

Q(x) =
1

(1− x)m(1− x
c
)2

+O(|x|m), x→ 0.

SinceQ(x) is a polynomial of degreem−1, by the uniqueness of Taylor expansion,

Q(x) is exact the truncated Taylor expansion for 1

(1−x)m(1−x
c
)2

to degree m − 1.

Because the coefficients of Taylor expansion for 1

(1−x)m(1−x
c
)2

are all positive, we
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have Q(x) > 0 for x ∈ [0, 1]. Therefore,

P(x) = (1− x

c
)2Q(x) > 0, x ∈ [0, 1].

By (1−x)mPm(x)+x
mPm(1−x) = 1, we see that

∫ 1

0
(1−x)mPm(x)dx = 1/2

and ∫ 1

0

(1− x)mP(x)dx =
1

2
− m!

2m+1(2m+ 1)!!
c1.

Consequently, by P(x) = Pm(x)+x
m(c0− (c1+2c0)x) and c1 > 0 we deduce that

1− (1− x)mP(x)− xmP(1− x) = c1x
m(1− x)m > 0, x ∈ [0, 1].

Based on Lemma 2, we provide an algorithm to design the desired low-pass

filter a for the construction of TP-CTF4 and TP-CTF6.

Algorithm 4. Let m, n ∈ N and 1
2
< c 6 1.

(S1) Choose n = m or n = m − 1 and define a polynomial P as in (5.1.16) with

c0, c1 being given in (5.1.17). Then by lemma 2, we have

cos2m(ξ/2)P(sin2(ξ/2)) > 0, ξ ∈ R.

(S2) Using Fejér-Riesz lemma, we can always get the factorization |â(ξ)|2 =

cos2m(ξ/2)P(sin2(ξ/2)), satisfying the following properties:

â(0) = 1, (1 + e−iξ)m | â(ξ), |â(ξ)|2 + |â(ξ + π)|2 6 1, ξ ∈ R.

Then the obtained real a ∈ l0(Z) is the desired low-pass filter.

If we choose c0 = c1 = 0 in (5.1.16), the low-pass filter a constructed in Algo-

rithm 4 is simply the Daubechies orthogonal low-pass filter. The two free param-

100



eters c0 and c1 are used to add a double root to the polynomial P at the point c so

that the frequency response â is dumped near the point 0 < 2 arcsin
√
c 6 π, with

the frequency separation quantities fsp(a|hp) and fsp(a|lp) small. In application,

we often choose c = 1.

5.2 Construction of compactly supported TP-CTF4

and TP-CTF6

This section provides algorithms for constructing directional compactly supported

TP-CTF4 and TP-CTF6.

Let us first discuss how to construct the one-dimensional finitely supported

CTF4 by splitting the low-pass filter a into ap and an in the filter bank {a; bp, bn}.

By modifying Algorithm 2, the algorithm for constructing CTF4 = {ap, an; bp, bn}

is given by

Algorithm 5. Let a ∈ l0(Z) be a finitely supported real filter on Z satisfying

|â(ξ)|2 + |â(ξ + π)|2 6 1 for all ξ ∈ R.

(S1) Construct two auxiliary filters ap and an by Algorithm 3 so that fsp(ap) is

reasonably small.

(S2) Construct a finitely supported real tight framelet filter bank {a; b1, b2} by

Algorithm 1.

(S3) Choose a suitable filter length N ∈ N and define a 2 × 2 matrix U(ξ) as

in (5.1.14), where t0, . . . , tN ∈ [−π, π] are real numbers to be determined

later.
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(S4) Define bp := [br + ibi]/
√
2 and bn := [br − ibi]/

√
2, where the real filters br

and bi are defined to be

b̂r(ξ) := b̂1(ξ)U1,1(2ξ)+b̂2(ξ)U2,1(2ξ), b̂i(ξ) := b̂1(ξ)U1,2(2ξ)+b̂2(ξ)U2,2(2ξ),

where Uj,k is the (j, k)-entry of the 2× 2 matrix U.

(S5) Find a solution {t0, . . . , tN} to the following constrained optimization prob-

lem:

min
t0,...,tN

∫ π

0

|b̂p(ξ + π)|2dξ,

which is equivalent to the optimization problem: mint0,...,tN fsp(bp).

Then CTF4 := {ap, an; bp, bn} is a compactly supported tight framelet filter

bank with frequency separation quantities fsp(ap), fsp(an), fsp(bp), and fsp(bn)

small.

Now we present how to construct finitely supported one-dimensional CTF6.

We first split the low-pass a into ap and an by Algorithm 3, then directly ap-

ply optimization techniques to find the optimal frequency separation quantities of

b1,p, b2,p, b1,n, and b2,n instead of studying the structure of all finitely supported

CTF6 filter banks.

Algorithm 6. Let a ∈ l0(Z) be a finitely supported real filter on Z satisfying

|â(ξ)|2 + |â(ξ + π)|2 6 1 for all ξ ∈ R.

(S1) Construct two auxiliary filters ap and an by Algorithm 3 so that fsp(ap) and

fsp(an) are reasonably small.

(S2) Choose a suitable filter length N ∈ N and parameterize filters b1, b2, b3, and
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b4 by

b̂j(ξ) := cj,0 + cj,1e
−i·ξ + · · ·+ cj,Ne

−iN ·ξ, j = 1, · · · , 4,

where cj,k are real numbers to be determined later with j = 1, . . . , 4 and

k = 0, . . . , N .

(S3) Define new high-pass filters b1,p, b2,p, b1,n, and b2,n by

b̂1,p(ξ) := b̂1(ξ) + ib̂2(ξ), b̂1,n(ξ) := b̂1(ξ)− ib̂2(ξ),

b̂2,p(ξ) := b̂3(ξ) + ib̂4(ξ), b̂2,n(ξ) := b̂3(ξ)− ib̂4(ξ).

(S4) Find a solution cj,k with j = 1, · · · , 4, k = 0, · · · , N to the following

constrained optimization problem:

min
cj,k

{
λ1

∫ π
4
+
π
3

π
4

|b̂1,p(ξ)|2dξ + λ2

∫ π
2
+
π
3

π
2

|b̂2,n(ξ)|2dξ − λ3

∫ −π
2
+
π
3

−π
2

|b̂1,p(ξ)|2dξ

−λ4
∫ −3π

4
+
π
3

−3π
4

|b̂1,n(ξ)|2dξ
}
,

under the constraints:

|â(ξ)|2 + |b̂1,p(ξ)|2 + |b̂2,p(ξ)|2 + |b̂1,n(ξ)|2 + |b̂2,n(ξ)|2 = 1,

â(ξ)â(ξ + π) +
2∑

`=1

b̂`,p(ξ)b̂`,p(ξ + π) +
2∑

m=1

b̂m,n(ξ)b̂m,n(ξ + π) = 0,

for all ξ ∈ R (such constraints on b1,p, b2,p, b1,n, and b2,n can be rewritten as

equations using cj,k with j = 1, · · · , 4 and k = 0, · · · , N ), where λ1, · · · , λ4
are real multipliers.

Then CTF6 := {ap, an; b1,p, b2,p, b1,n, b2,n} is a compactly supported tight framelet

filter bank with frequency separation quantities fsp(ap), fsp(an), fsp(b1,p), fsp(b2,p),

fsp(b1,n), and fsp(b2,n) small.
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5.3 Examples

Many examples of compactly supported complex tight framelet filter banks with

good frequency separation can be constructed by using Algorithm 5 and 6. Several

concrete examples are presented to illustrate Algorithms 3, 4, 5, and 6. Again,

Laurent polynomial is used to represent filters for our convenience.

Example 9. Let m = 1, n = 1, and c = 1. By Algorithm 4, we obtain the low-pass

filter

a(z) = 1
8
z2 + 3

8
z + 3

8
+ 1

8
z−1.

Applying Algorithm 3 with N = 2, we obtain two finitely supported complex tight

framelet filters ap and an with an = ap, and

ap(z) = −0.00794848752 iz6 − 0.02384546256 iz5 − (0.00748434124 + 0.0839743577 i) z4

− (0.02245302373 + 0.1883351730 i) z3 + (0.04140480387− 0.1803866855 i) z2

+ (0.1840891416− 0.06012889515 i) z + 0.1915734828 + 0.06385782760 z−1.

Example 10. Let m = 2, n = 2, and c = 1. By Algorithm 4, we obtain the

low-pass filter

a(z) =
√
5+1
32

z3 + 3
√
5+5
32

z2 +
√
5+5
16

z + 5−
√
5

16
+ 5−3

√
5

32
z−1 + 1−

√
5

32
z−2.

Applying Algorithm 3 with N = 2, we obtain two finitely supported complex tight

framelet filters ap and an with an = ap, and

ap(z) =− 0.004349695057 iz7 − 0.01573734456 iz6 − (0.004227143772 + 0.06910881945 i) z5

− (0.01529394984 + 0.1870886796 i) z4 + (0.03219164397− 0.2197740875 i) z3

+ (0.1776462614− 0.08316180815 i) z2 + (0.2307396411 + 0.02621182382 i) z

+ 0.08889702305 + 0.01896705390 i− 0.02697174423 z−1 − 0.01951693746 z−2.
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Example 11. Let m = 3, n = 3, and c = 1. By Algorithm 4, we obtain the

low-pass filter

a(z) =

(√
7+2

√
21

128 +
√
21+1
128

)
z4 +

(
5
√

7+2
√
21

128 + 7+3
√
21

128

)
z3 +

(
21+

√
21

128 + 9
√

7+2
√
21

128

)
z2

+

(
35−5

√
21

128 + 5
√

7+2
√
21

128

)
z − 5

√
7+2

√
21

128 + 35−5
√
21

128 +

(
−9

√
7+2

√
21

128 + 21+
√
21

128

)
z−1

+

(
−5

√
7+2

√
21

128 + 3
√
21+7
128

)
z−2 +

(
−
√

7+2
√
21

128 + 1+
√
21

128

)
z−3.

Applying Algorithm 3 with N = 2, we obtain two finitely supported complex tight

framelet filters ap and an with an = ap, and

ap(z) = −0.002431485651 iz8 − 0.01034323888 iz7 − (0.002391775334 + 0.052764700 i) z6

− (0.01017431612 + 0.1660768426 i) z5 + (0.02235770774− 0.2367616231 i) z4

+ (0.1525311712− 0.1217604482 i) z3 + (0.2447522517 + 0.03082550567 i) z2

+ (0.1291518972 + 0.04059411758 i) z − 0.03166384949− 0.002492654040 i

− (0.04205918078 + 0.006038545210 i) z−1 + 0.002534039267 z−2 + 0.006138802345 z−3.

Example 12. Let m = 4, n = 3, and c = 1. By Algorithm 4, we obtain the

low-pass filter

a(z) =

(
1+

√
28

256 +

√
8+2

√
28

256

)
z4 +

(
1+

√
7

32 + 3
√

8+2
√
28

128

)
z3 +

(
7+

√
28

64 + 7
√

8+2
√
28

128

)
z2

+

(
7−

√
7

32 + 7
√

8+2
√
28

128

)
z + 35−5

√
28

128 +

(
7−

√
7

32 − 7
√

8+2
√
28

128

)
z−1

+

(
7+

√
28

64 − 7
√

8+2
√
28

128

)
z−2 +

(
1+

√
7

32 − 3
√

8+2
√
28

128

)
z−3 +

(
1+

√
28

256 −
√

8+2
√
28

256

)
z−4.

Applying Algorithm 3 with N = 2, we obtain two finitely supported complex tight

framelet filters ap and an with an = ap, and

ap(z) = −0.001610384272 iz8 − 0.008358632665 iz7 − (0.001572980556 + 0.03703693068 i) z6

− (0.008164490235 + 0.1203552630 i) z5 + (0.004639289884− 0.2133425722 i) z4

+ (0.09429382335− 0.1792921519 i) z3 + (0.2132241120− 0.03117824642 i) z2
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+ (0.1913092832 + 0.04860219956 i) z + 0.03531841033 + 0.02122319973 i

− (0.05076102270 + 0.006352614540 i) z−1 − (0.02232972752 + 0.003811528158 i) z−2

+ 0.006503672580 z−3 + 0.003902162030 z−4

See Figure 5.1 for the graphs of the corresponding wavelet frame functions and

frequency separations of ap with m = 1, 2, 3, 4.
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Figure 5.1: The magnitudes of â and âp: the solid line is for â and the dashed line

is for âp. The first column is for Example 9, the second column is for Example 10,

the third column is for Example 11, and the last column is for Example 12.

Example 13. Let m = 3, n = 3, and c = 1. Applying Algorithm 5 with N = 3, we

have finitely supported complex tight framelet filters bp and bn with bn = bp and

bp(z) = (0.0007476670045− 0.0007002035305 i) z10 + (0.003180482860− 0.002978579118 i) z9

− (0.007223295040− 0.006554742760 i) z8 + (0.01423548086− 0.01422510646 i) z7

+ (0.1024049440− 0.06284697495 i) z6 − (0.1746180510− 0.2915247702 i) z5

− (0.1091807890 + 0.3181734521 i) z4 + (0.2068595684 + 0.05519129755 i) z3

+ (0.004606785266 + 0.03038696555 i) z2 − (0.02118423369− 0.03696722410 i) z

− 0.008199923925− 0.008910041145 i− (0.01327749368 + 0.01455126886 i) z−1

+ (0.0004817649521 + 0.0005144215105 i) z−2 + (0.001167093146 + 0.001246204852 i) z−3.

Applying Algorithm 6 with N = 3, we have finitely supported complex tight

framelet filters b1,p, b2,p, b1,n and b2,n with b1,n = b1,p and b2,n = b2,p, where b1,p and
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b2,p are given by:

b1,p(z) = (−0.0006928637152 + 0.00002962954706 i) z8 − (0.002947356452− 0.0001260404244 i) z7

− (0.004923137834− 0.0004482249293 i) z6 − (0.00430741995− 0.001195316105 i) z5

+ (0.002494118451− 0.007748024540 i) z4 + (0.02011745310− 0.03907249541 i) z3

+ (0.06911031776− 0.01452451456 i) z2 − (0.03722884294− 0.1731281984 i) z

+ (0.02200254375− 0.1599836419 i) z−1 + (0.1101609272 + 0.01398707627 i) z−2

− (0.02446606216− 0.05990110653 i) z−3 − (0.03633367460 + 0.02040494922 i) z−4

+ (0.01409575615 + 0.007916160189 i) z−5 − 0.1270817587− 0.01499812678 i,

b2,p(z) = −0.1120785661− 0.1786963212 i+ (0.0006291132418− 0.0002444780665 i) z8

+ (0.002676169832− 0.001039979423 i) z7 + (0.001011376705 + 0.001036252694 i) z6

− (0.01080213930− 0.01027777649 i) z5 − (0.01092476539− 0.006815808054 i) z4

+ (0.02793651200− 0.03423800993 i) z3 + (0.005883393031− 0.01417034898 i) z2

− (0.00890280119− 0.1154111572 i) z + (0.2496167834 + 0.1007144269 i) z−1

− (0.2078663904− 0.03651159370 i) z−2 + (0.07251662177− 0.07893887976 i) z−3

− (0.01584078814− 0.05973560735 i) z−4 + (0.006145480446− 0.02317460493 i) z−5.

See Figure 5.2 for the graphs of the frequency separations of bp, b1,p, and b2,p with

m = 3 and n = 3.

Example 14. Let m = 4, n = 3, and c = 1. Applying Algorithm 5, we have

finitely supported complex tight framelet filters bp and bn with bn = bp and

bp(z) = 0.02250135114 + 0.05506310548 i− (0.0003443801525− 0.0002527203580 i) z6

− (0.001787490874− 0.001311734519 i) z5 − (0.004300699297− 0.001960737896 i) z4
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Figure 5.2: The first and second are for m = 3 and n = 3 in Example 13. The first

is for the magnitude of b̂p in CTF4. The second is for the magnitudes of b̂1,p and

b̂2,p in CTF6: the solid line is for b̂1,p and the dashed line is for b̂2,p. The third and

fourth are for m = 4 and n = 3 in Example 14: the third is for the magnitude of b̂p

in CTF4. The fourth is for the magnitudes of b̂1,p and b̂2,p in CTF6.

− (0.006950362108 + 0.001103654279 i) z3 − (0.003342185452− 0.0001403005844 i) z2

+ (0.01954528967 + 0.02700956160 i) z + (0.1637178323− 0.1836739625 i) z−1

− (0.3703940856 + 0.06711333459 i) z−2 + (0.1508313466 + 0.2608716562 i) z−3

+ (0.04308758525− 0.07759772125 i) z−4 + (0.008585532825 + 0.01169944173 i) z−5

− (0.02114973436 + 0.02882058572 i) z−6.

Applying Algorithm 6 with N = 4, we have finitely supported complex tight

framelet filters b1,p, b2,p, b1,n and b2,n with b1,n = b1,p and b2,n = b2,p, where b1,p and

b2,p are given by:

b1,p(z) = −0.07017678857 + 0.1204610765 i− (0.001132750766− 0.0005481354075 i) z8

− (0.005879495790− 0.002845074060 i) z7 − (0.006767265847− 0.003340854930 i) z6

+ (0.01543785096− 0.007126777580 i) z5 − (0.005993067370− 0.03986936013 i) z4

− (0.05597939029 + 0.07211098886 i) z3 + (0.1049841862− 0.08187164366 i) z2

+ (0.06844160670 + 0.1123035699 i) z − (0.1287264047 + 0.06066939528 i) z−1

+ (0.03833231590− 0.1241611254 i) z−2 + (0.06490831962 + 0.05687919330 i) z−3

+ (0.01744911612− 0.009692666600 i) z−4,
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b2,p(z) = 0.1889939478− 0.1172709272 i+ (0.0007818352229− 0.0004202485500 i) z8

+ (0.004058083243− 0.002181282639 i) z7 + (0.002079721417 + 0.001630026732 i) z6

− (0.02410439374− 0.02721939390 i) z5 + (0.007321862450− 0.04871391588 i) z4

+ (0.008513641570− 0.007801830049 i) z3 + (0.06403680485 + 0.06340749535 i) z2

− (0.1622776543 + 0.008414146780 i) z − (0.1049455509− 0.2155499924 i) z−1

− (0.04132617871 + 0.1877097344 i) z−2 + (0.09263166169 + 0.07156537920 i) z−3

− (0.03576378056 + 0.006860201970 i) z−4.

See Figure 5.2 for the graphs of the frequency separations of bp, b1,p, and b2,p with

m = 4 and n = 3.
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Chapter 6

Applications of Tensor Product Com-

plex Tight Framelets

This chapter concentrates on the application of proposed directional tensor product

complex tight framelets in image and video processing. In image denoising prob-

lems, bivariate shrinkage [45, 46] and Gaussian Scale Mixture (GSM) model [41,

51] are applied to test the performance. Strong statistical model can improve the

estimation of framelet coefficients in such image restoration applications. For video

denoising in three dimensions, we compare the performance of directional tensor

product complex tight framelet with low redundancy rate with many other multi-

directional representation systems. In all this chapter, we assume that the images

or videos are contaminated with independent identically distributed (i.i.d.) white

Gaussian noise with standard deviation σ known in advance.

6.1 Image denoising

This section comprehensively tests the performance of directional tensor product

complex tight framelet in image denoising. Many signals and images contain noise

due to the imperfect acquisition procedure. As the simplest image inverse problem,

noise removing is essential to many other applications. In the past five decades,

numerous researches were devoted to this problem from many different perspec-
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tives. There are four denoising principles can be concluded from all these ap-

proaches [31]:

• Bayesian patch-based methods;

• transform thresholding;

• sparse coding;

• pixel averaging and block averaging.

The denoising methods in this chapter belong to the transform thresholding. The

basic philosophy for this principle is that wavelets or framelets can not approximate

the noise well and so the noise stays in small coefficients while the true signal will

reside in the large coefficients. By thresholding small coefficients, a majority of

the noise will be removed. However, the wavelet coefficient of true signal will be

suppressed as well. Thus, statistical model of wavelet or framelet coefficients is

needed to distinguish the noise from the signal.

The general model for denoising can be expressed as

y = x+ n, (6.1.1)

with observed value y, original data x, and additional noise n. We want to recover

x from the observed y.

As usual, the image restoration performance is measured by the peak signal-to-

noise ratio (PSNR) which is defined to be

PSNR(x, x̊) = 10 log10
max(x)

MSE(x− x̊)
,

where x is the original data, x̊ is the reconstructed data, max(x) is the maximum

possible value of the original data x which is 255 in our experiment, and MSE(·) is
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the mean squared error defined by

MSE(x− x̊) =
1

N

N∑

i=1

(xi − x̊i),

where N is the total number of pixels.

It is well known that wavelet coefficients are statistically dependent: if a wavelet

coefficient is large or small, the adjacent ones are likely to be large or small; in

addition, large or small coefficients tend to propagate across the scales. So the

general way of soft or hard thresholding to choose wavelet coefficients of natural

images is weak because it ignores the dependencies between the coefficients.

In order to take dependencies between a coefficient and its parent (adjacent

coarser scale at the same position) into consideration, bivariate shrinkage [45, 46] is

applied to all framelet coefficients in our comparison test. Let σ denote the standard

deviation of the i.i.d. Gaussian noise. For a frame coefficient c, bivariate shrinkage

is defined by the shrinkage function ηbsλ as follows:

ηbsλ (c) = ηsoftλc
(c) =





c− λc
c
|c| , |c| > λc,

0, otherwise,

with λc :=

√
3σ2

n

σc
√

1 + |cp/c|2
,

(6.1.2)

where σn := σ‖b‖2 with b being the high-pass filter inducing the frame coefficient

c, the frame coefficient cp is the parent coefficient of c, and

σc :=





√
σ̆2
c − σ2

n, σ̆c > σn,

0, otherwise,

with σ̆2
c :=

1

Nc

∑

j∈Nc

|cj|2,

where Nc is the number of framelet coefficients in the window centering around the

frame coefficient c at the band induced by the filter b.
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The bivariate shrinkage is originally derived from real-valued orthogonal wavelet

coefficients. Two main adaptations have to be made for over-complete complex

framelet coefficients. First, the variance of observed coefficients σ̆2
c is estimated

from the magnitude of the complex framelet coefficients. Second, the ‖b‖2 is cal-

culated with respect to the complex high-pass filter b instead of real and imaginary

part of b separately.

The decomposition level for all TP-CTFm is set to be J = 5 for 512 × 512

images and J = 4 for 256 × 256 images, so that the denoised subband has at least

16 × 16 framelet coefficients. The decomposition level for the dual tree complex

wavelet transform is set to be J = 6 (see [44, 46]). Symmetric boundary extension

with 16 pixels is applied to all test images to avoid the boundary effect.

See Figure 6.1 for the grayscale test images: Barbara, Lena, Fingerprint, and

Boat.

(a) Barbara (b) Lena (c) Fingerprint (d) Boat (e) House

Figure 6.1: (a)-(d) are the four 512 × 512 grayscale test images: Barbara, Lena,

Fingerprint, and Boat. (f) is the 256× 256 grayscale test image House.

The image denoising results for directional tensor product complex framelets

by bivariate shrinkage in terms of PSNR are reported in Table 6.1.

Table 6.1 demonstrates that the image denoising results of compactly supported

directional tensor product complex tight framelets are comparable to those of their

bandlimited counterparts. TP-CTF3 performs less well than others due to in-

sufficient directional selectivity. TP-CTF6 performs significantly better than the
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512× 512 Lena

σ DT-CWT TP-CTF3 Example 7 TP-CTF4 Example 14 TP-CTF6 Example 14

5 38.26 37.98 38.01 38.12 38.17 38.37 38.38

10 35.20 34.93 34.93 35.16 35.21 35.48 35.49

15 33.46 33.26 33.21 33.51 33.55 33.80 33.80

20 32.23 32.09 32.00 32.33 32.36 32.57 32.56

25 31.27 31.17 31.05 31.39 31.42 31.60 31.57

30 30.48 30.42 30.28 30.62 30.64 30.80 30.76

40 29.20 29.24 29.06 29.40 29.41 29.52 29.47

50 28.20 28.34 28.12 28.46 28.46 28.54 28.47

80 26.14 26.42 26.16 26.48 26.48 26.47 26.40

100 25.19 25.52 25.29 25.55 25.56 25.52 25.45

512× 512 Barbara

5 37.37 37.16 37.02 37.42 37.28 37.84 37.76

10 33.54 33.19 32.98 33.65 33.45 34.18 34.12

15 31.41 30.91 30.71 31.51 31.31 32.07 32.05

20 29.91 29.30 29.10 29.97 29.77 30.54 30.55

25 28.76 28.04 27.84 28.77 28.56 29.35 29.37

30 27.83 27.04 26.83 27.79 27.58 28.38 28.40

40 26.40 25.53 25.33 26.29 26.08 26.86 26.87

50 25.32 24.48 24.29 25.21 25.01 25.71 25.72

80 23.27 22.82 22.67 23.21 23.10 23.53 23.52

100 22.44 22.25 22.11 22.45 22.40 22.64 22.62

512× 512 Boat

5 36.73 36.45 36.52 36.53 36.57 36.92 36.87

10 33.19 32.97 33.03 33.10 33.16 33.41 33.37

15 31.33 31.18 31.22 31.30 31.38 31.56 31.51

20 30.02 29.94 29.94 30.03 30.12 30.26 30.19

25 29.00 28.98 28.94 29.06 29.13 29.26 29.16

30 28.18 28.20 28.12 28.26 28.32 28.44 28.34

40 26.93 26.98 26.87 27.03 27.07 27.19 27.07

50 26.01 26.07 25.95 26.12 26.15 26.25 26.13

80 24.20 24.29 24.15 24.33 24.36 24.41 24.31

100 23.40 23.50 23.36 23.53 23.57 23.58 23.50

512× 512 Fingerprint

5 35.97 35.29 35.51 35.56 35.57 36.27 36.27

10 31.83 30.97 31.18 31.42 31.42 32.10 32.23

15 29.81 28.81 28.98 29.33 29.33 29.77 30.02

20 28.41 27.48 27.64 27.99 27.99 28.17 28.49

25 27.30 26.56 26.69 27.00 26.99 26.98 27.34

30 26.39 25.86 25.92 26.20 26.19 26.06 26.43

40 24.98 24.75 24.63 24.93 24.93 24.68 25.06

50 23.94 23.84 23.57 23.95 23.92 23.67 24.04

80 21.90 21.73 21.27 21.92 21.79 21.66 21.99

100 21.00 20.69 20.21 21.01 20.80 20.75 21.05

Table 6.1: Denoising results, in terms of PSNR values, of directional tensor product

complex tight framelets. TP-CTFm withm = 3, 4, 6 stands for bandlimited direc-

tional tensor product complex tight framelets. Example 7 stands for the compactly

supported TP-CTF3. Example 14 stands for the compactly supported TP-CTF4

and TP-CTF6 in the corresponding column.
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DT-CWT. In particular, the performance of compactly supported TP-CTF4 is

comparable to that of the DT-CWT; that is, the compactly supported TP-CTF4

offers an alternative to the famous DT-CWT.

The performance of TP-CTF↓
6 for image denoising are compared with two

groups of different approaches. The first group tensor product approach includes

TP-CTF3 (which has the same redundancy rate 22
3

as that of TP-CTF↓
6), TP-CTF6

(which has the same directional selectivity as TP-CTF↓
6 with a higher redundancy

rate 102
3
), and DT-CWT (which has redundancy rate 4). The second group con-

sists of non-tensor-product approaches including curvelets [2], shearlets [33, 34],

and smooth affine shear tight frames [26].

The software for curvelets is CurveLab at http://www.curvelab.org.

The frequency wrapping package in CurveLab is applied for comparison. De-

tailed information on CurveLab package can be found in [2]. The redundancy

rate of the CurveLab wrapping is about 2.8. The shearlets software ShearLab is

at http://www.shearlab.org. Here two subpackages using compactly sup-

ported shearlets are chosen: one is DST (discrete shearlet transform) described

in [33] and the other one is DNST (discrete nonseparable shearlet transform) in [34]

which has the best performance so far in ShearLab packages. The redundancy rates

for DST and DNST are 40 and 49, respectively. For the smooth affine shear tight

frames (ASTF) in [26]. The redundancy rate for this system we choose is about 5.8.

See [26] for more details. The comparison results of performance are reported in

Table 6.2.

For texture-rich images such as Barbara and Fingerprint, Table 6.2 shows that

TP-CTF↓
6 outperforms TP-CTF3, DT-CWT, CurveLab, DST, and DNST. It also

has a better performance than that of TP-CTF6 for Fingerprint but slightly worse

performance for Barbara. Though CurveLab (wrap) has low redundancy rate, its
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512× 512 Barbara

σ TP-CTF↓
6 TP-CTF6 TP-CTF3 DT-CWT CurveLab DST DNST ASTF

5 37.63 37.84(-0.21) 37.16(0.47) 37.37(0.26) 33.83(3.80) 37.76(-0.13) 37.17(0.46) 37.40(0.23)

10 33.97 34.18(-0.21) 33.19(0.78) 33.54(0.43) 29.17(4.80) 33.94(0.03) 33.62(0.35) 33.74(0.23)

25 29.28 29.35(-0.07) 28.04(1.24) 28.81(0.47) 24.83(4.45) 28.90(0.38) 28.93(0.35) 29.29(-0.01)

40 26.85 26.86(-0.01) 25.53(1.32) 26.45(0.40) 23.87(2.98) 26.36(0.49) 26.48(0.37) 27.08(-0.23)

50 25.73 25.71(0.02) 24.48(1.25) 25.36(0.37) 23.38(2.35) 25.22(0.51) 25.31(0.42) 26.05(-0.32)

80 23.51 23.53(-0.02) 22.82(0.69) 23.27(0.24) 22.22(1.29) 23.11(0.40) 22.96(0.55) 23.97(-0.46)

100 22.58 22.64(-0.06) 22.25(0.33) 22.42(0.16) 21.61(0.97) 22.23(0.35) 22.06(0.52) 23.02(-0.44)

512× 512 Fingerprint

5 36.29 36.27(0.02) 35.29(1.00) 35.82(0.47) 33.35(2.94) 36.02(0.27) 35.28(1.01) 35.20(1.09)

10 32.23 32.10(0.13) 30.97(1.26) 31.74(0.49) 30.61(1.62) 31.95(0.28) 31.76(0.47) 30.97(1.26)

25 27.27 26.98(0.29) 26.56(0.71) 27.26(0.01) 26.03(1.24) 27.04(0.23) 27.10(0.17) 26.95(0.32)

40 25.02 24.68(0.34) 24.75(0.27) 24.98(0.04) 23.92(1.10) 24.79(0.23) 24.82(0.20) 25.01(0.01)

50 24.01 23.67(0.34) 23.84(0.17) 23.95(0.06) 23.00(1.01) 23.77(0.24) 23.78(0.23) 24.07(-0.06)

80 21.99 21.66(0.33) 21.73(0.26) 21.91(0.08) 21.18(0.81) 21.65(0.34) 21.63(0.36) 22.11(-0.12)

100 21.09 20.75(0.34) 20.69(0.40) 21.01(0.08) 20.37(0.72) 20.63(0.46) 20.56(0.53) 21.22(-0.13)

512× 512 Lena

5 38.16 38.37(-0.21) 37.98(0.18) 38.25(-0.09) 35.77(2.39) 38.22(-0.06 ) 38.01(0.15) 38.19(-0.03)

10 35.22 35.48(-0.26) 34.93(0.29) 35.19(0.03) 33.37(1.85) 35.19(0.03) 35.35(-0.13) 35.18(0.04)

25 31.20 31.60(-0.40) 31.17(0.03) 31.29(-0.09) 30.07(1.13) 31.09(0.11) 31.51(-0.31) 31.40(-0.20)

40 29.10 29.52(-0.42) 29.24(-0.14) 29.22(-0.12) 28.15(0.95) 28.92(0.18) 29.32(-0.22) 29.40(-0.30)

50 28.11 28.54(-0.43) 28.34(-0.23) 28.22(-0.11) 27.19(0.92) 27.89(0.22) 28.21(-0.10) 28.46(-0.35)

80 26.11 26.47(-0.36) 26.42(-0.31) 26.15(-0.04) 25.16(0.95) 25.71(0.40) 25.78(0.33) 26.44(-0.34)

100 25.21 25.52(-0.31) 25.52(-0.31) 25.20(0.01) 24.22(0.99) 24.67(0.54) 24.58(0.63) 25.48(-0.27)

512× 512 Boat

5 36.74 36.92(-0.18) 36.45(0.29) 36.73(0.01) 33.59(3.15) 36.51(0.23 ) 36.04(0.70) 36.66(0.08)

10 33.10 33.41(-0.31) 32.97(0.13) 33.19(-0.09) 30.60(2.50) 33.07(0.03) 33.15(-0.05) 33.07(0.03)

25 28.81 29.26(-0.45) 28.98(-0.17) 29.03(-0.22) 27.51(1.30) 28.75(0.06 ) 29.23(-0.42) 29.10(-0.29)

40 26.72 27.19(-0.47) 26.98(-0.26) 26.99(-0.27) 25.96(0.76) 26.71(0.01 ) 27.20(-0.48) 27.14(-0.42)

50 25.79 26.25(-0.46) 26.07(-0.28) 26.06(-0.27) 25.18(0.61) 25.78(0.01 ) 26.23(-0.44) 26.23(-0.44)

80 24.05 24.41(-0.36) 24.29(-0.24) 24.22(-0.17) 23.55(0.50) 23.90(0.15 ) 24.17(-0.12) 24.41(-0.36)

100 23.27 23.58(-0.31) 23.50(-0.23) 23.39(-0.12) 22.79(0.48) 23.05(0.22 ) 23.17(0.10) 23.57(-0.30)

Table 6.2: Comparison results, in terms of PSNR values, of several image de-

noising methods using proposed directional tensor product complex tight framelet

TP-CTF↓
6, TP-CTF3, TP-CTF6, DT-CWT, CurveLab (wrap) with redundancy

rate 2.8 in [2], DST with redundancy rate 40 in [33], DNST with redundancy rate

49 in [34], and ASTF with redundancy 5.8 in [26].
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performance is not as good as others for all the test images under bivariate shrink-

age. Despite the fact that DST and DNST have much higher redundancy rates than

that of TP-CTF↓
6, the performance of DST or DNST is not as good as TP-CTF↓

6

for Barbara and Fingerprint. With twice redundancy rate of TP-CTF↓
6, ASTF per-

forms better than TP-CTF↓
6 only when the noise level is high σ > 40.

For Lena and Boat, TP-CTF↓
6 does not perform as well as TP-CTF3 and

DT-CWT only when σ is high (σ > 40) within less than 0.3dB loss in PSNR.

For comparison among TP-CTF↓
6, TP-CTF6, DNST, and ASTF, we see at most

0.48dB loss of performance of TP-CTF↓
6 for both Lena and Boat. TP-CTF↓

6 out-

perform DST and CurveLab for the test images of Lena and Boat.

Advanced statistical modeling can improve the estimation of framelet coef-

ficients in transform-based image restoration methods. Gaussian Scale Mixture

(GSM) [41, 51] model has been used to describe the behavior of the wavelet/framelet

coefficients of natural signals, which is given by

x(t) =
√
z(t)u(t),

where t is a positive location vector. GSM model assumes that each coefficient x

is specified by a Gaussian probability density function u with zero mean and a hid-

den multiplier z to adapt spatial fluctuation. In a neighborhood of wavelet/framelet

coefficients at nearby location, the GSM model vector x is the product of two in-

dependent random variables: a positive hidden multiplier z and Gaussian random

vector u with probability density function N(0, Cu).

Note that conditioned on z, the distribution for the coefficient vector x is Gaus-

sian with zero mean and covariance zCu. Following [41], the probability density
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function is given by

p(x|z) = 1

(2π)N/2|zCu|1/2
exp

(
−x

TC−1
u x

2z

)
,

and the distribution for x can be calculated from

p(x) =

∫ ∞

0

p(x|z)p(z)dz =
∫ ∞

0

1

(2π)N/2|zCu|1/2
exp

(
−x

TC−1
u x

2z

)
p(z)dz.

Then the denoising model (6.1.1) combined with GSM becomes

y =
√
zu+ n.

Specified by the hidden multiplier z in a neighborhood, the observed y is Gaussian

distributed with zero mean and covariance zCu + Cn as given in

py|z(y|z) =
1

(2π)N/2|zCu + Cn|1/2
exp

(
−y

T(zCu + Cn)
−1y

2

)
. (6.1.3)

From Bayesian perspective, the image denoising is to calculate the Bayesian es-

timator for the center coefficient in a neighborhood of wavelet/framelet coefficients

modeled by GSM. The estimator is given by

x̂c = E{xc|y}

=

∫
xcp(xc|y)dxc =

∫∫ ∞

0

xcp(xc, z|y)dzdxc

=

∫∫ ∞

0

xcp(xc|y, z)p(z|y)dzdxc =
∫ ∞

0

p(z|y) E{xc|y, z}dz,

(6.1.4)

where xc stands for the center coefficient in the neighborhood [41]. In implementa-

tion, (6.1.4) is discretized as

x̂c =
K∑

k=1

p(zk|y) E{xc|y, zk}, (6.1.5)

where K is the number of discretized z.
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Conditioned on z, the observed y is Gaussian distributed. Then E{xc|y, z}

in (6.1.5) is the Wiener estimation

E{xc|y, z} = zCu(zCu + Cn)
−1y,

please refer [32, 40, 50] for more information on the Wiener estimation. The pos-

terior density p(z|y) in (6.1.5) can be calculated using Bayes formula by

p(z|y) = p(y|z)pz(z)∫
p(y|a)pz(a)da

,

where p(y|z) is given by (6.1.3). As for the pz(z), Portilla et al. chose a Jeffrey’s

prior in [41]

pz(z) ∝
1

z
,

due to its superior performance to other options.

In traditional GSM model [51], the signal covariance is assumed to be the same

within each subband. Improvement can be made to catch the different local co-

variance. This is implemented by estimating local covariance in non-overlapping

areas as Spatial Variant GSM (SVGSM) [8], by adapting the local directions to the

covariance as Orientation Adaptive GSM (OAGSM) [11], or by clustering the co-

efficients in one subband into many similar components as mixtures of Gaussian

Scale Mixture models (MGSM) [9, 39] and mixtures of projected Gaussian Scale

Mixture models (MPGSM) [7]. MGSM model can capture the local covariance on

each component. The denoising result can be significantly improved. We choose

mixtures of Gaussian Scale Mixture models (MGSM) as our advanced statistical

model for testing. However, we do not estimate the multiplier zk for each compo-

nent k. Instead, we take Jeffrey’s prior for all the components to reduce the number

of parameters.
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To implement either GSM or MGSM model, we have to calculate the covariance

matrix Cu in the transform domain. If nj and yj are the vectors of wavelet/framelet

coefficients of the noise and noisy observation, respectively, then Cn and Cy can be

calculated by

Cn =
1

J

J∑

j=1

njn
T

j and Cy =
1

J

J∑

j=1

yjy
T

j , (6.1.6)

where J is the total number of coefficients in the neighborhood. With Cn and Cy,

the signal covariance Cu can be computed from

Cu = Cy − Cn,

with a normalization E{z} = 1. Hence, the covariance of the noise Cn in the

transform domain is essential to the calculation of the signal covariance. The or-

thonormal wavelet transform preserves the variance of the white Gaussian noise in

the transform domain. However, for over-complete transforms, the covariance of

the noise in the transform domain is more complicated.

Though the covariance of the noise coefficients in the transform domain can be

obtained by (6.1.6), it is an approximation. Based on the notion of discrete affine

system, the exact covariance of the noise coefficients can be calculated. It can be

generated to other over-complete transforms. Since the noise n is i.i.d. Gaussian

with zero mean and covariance σ2, the covariance of two noise coefficients in the

transform domain between positions k1 and k2 can be calculated from

E{〈n, bj,l;k1〉〈n, bj,l;k2〉}

=E
{(∑

n(·)bj,`(· − 2jk1)
)(∑

n(·)bj,`(· − 2jk2)
)}

=E

{∑

p

n(·)n(p− ·)bj,`(· − 2jk1)bj,`(p− · − 2jk2)

}
= 〈bj,l;k1 , bj,l;k2〉E{n2}

=〈bj,l;k1 , bj,l;k2〉σ2,
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where bj,l;k1 and bj,l;k2 are the filters applied corresponding to position k1 and k2 in

the discrete affine system and the property of i.i.d. Gaussian with zero mean for the

noise n is applied to simplify the expectation.

Above calculation demonstrates that the covariance of the Gaussian noise in the

transform domain completely depends on the corresponding filters applied in the

discrete affine systems. Thus, the exact covariance of wavelet/framelet coefficients

of the noise in the transform domain can be calculated by the inner product of

corresponding filters in discrete affine systems.

The denoising results using advanced statistical models are reported in Table 6.3

for bandlimited TP-CTF4 and TP-CTF6. In order to capture the local covariance,

the neighborhood size is set to be 5× 5.

TP-CTF4 TP-CTF6

σ Lena Barbara Boat House Lena Barbara Boat House

10 35.55 34.58 33.50 35.35 35.73 34.81 33.66 35.90

15 33.77 32.53 31.58 33.31 34.03 32.82 31.76 33.99

20 32.51 31.05 30.22 32.06 32.80 31.39 30.43 32.61

25 31.51 29.89 29.22 30.93 31.83 30.26 29.41 31.55

30 30.66 28.93 28.38 29.80 31.01 29.33 28.59 30.65

50 28.34 26.27 26.19 27.27 28.70 26.74 26.39 28.05

Table 6.3: Image denoising results, in terms of PSNR values, of bandlimited

TP-CTF4 and TP-CTF6 with advanced statistical model MGSM.

Table 6.3 demonstrates the performance of proposed directional tensor product

complex tight framelet with advanced statistical models (MGSM) in image denois-

ing has significant improvement comparing with simple statistical models (bivariate

shrinkage). There is an average of 0.2 ∼ 0.3 dB improvement in terms of PSNR

for all test images for all standard deviation levels.

It is comparable to the reported best performance in [7] under the transform

thresholding philosophy.
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6.2 Video denoising

The redundancy rate is crucial for video denoising in three dimensions (3D), since

the computational cost is the bottleneck for high-dimensional data processing. Our

proposed TP-CTF↓
6 only has the redundancy rate 35

7
in 3D.

We compare the performance of TP-CTF↓
6 with the directional tensor prod-

uct complex tight framelet TP-CTF3 (which has the same redundancy rate 35
7

as

TP-CTF↓
6), TP-CTF6 (which has the same directionality as TP-CTF↓

6 but has the

redundancy rate 295
7
), the 3D DT-CWT (which has the redundancy rate 8), the 3D

nonseparable surfacelets in [36] (which has the redundancy rate 6.4), and the 3D

nonseparable compactly supported shearlet frames DNST3D–42 and DNST3D
2 –154

in [34] in ShearLab with DNST3D–42 and DNST3D
2 –154 having the redundancy

rates 42 and 154, respectively. The decomposition level for all tensor product com-

plex tight framelets TP-CTFm is set to be J = 4 and the boundary extension size

for all TP-CTFm is set to be 16 pixels. The strategy for processing frame coef-

ficients for all TP-CTFm and DT-CWT is the 3D bivariate shrinkage as outlined

in (6.1.2) but with window size 3 instead of 7. The constant
√
3 in the bivariate

shrinkage function in (6.1.2) for DT-CWT is still set to be
√
3, but this constant is

replaced by
√
4 for TP-CTFm (though there are no significant performance differ-

ences if the constant
√
3 is used for TP-CTFm). All parameters for 3D surfacelets

and the two 3D shearlets DNST3D–42 and DNST3D
2 –154 are the same as those de-

scribed in [34, 36]. The two video sequences Mobile and Coastguard are used for

comparison, which are the same test videos as used in the paper [34] and can be

downloaded from the ShearLab 3D package at http://www.shearlab.org.

See Figure 6.2 for the first frame of these two videos Mobile and Coastguard.
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(a) Mobile (b) Coastguard

Figure 6.2: The first frame of the test videos Mobile and Coastguard.

The comparison results of performance are reported in Table 6.4 under i.i.d.

Gaussian noise with standard deviation σ = 10, 20, 30, 40, 50, 80, 100.

192× 192× 192 Mobile

σ TP-CTF↓
6 TP-CTF6 TP-CTF3 DT-CWT Surfacelets DNST3D-42 DNST3D-154

10 35.26 35.52(-0.26) 33.40(1.86) 34.11(1.15) 32.79(2.47) 35.27(-0.01) 35.91(-0.65)

20 31.58 31.77(-0.19) 29.90(1.68) 30.53(1.05) 29.95(1.63) 31.32(0.26) 32.18(-0.60)

30 29.52 29.66(-0.14) 28.03(1.51) 28.55(0.97) 28.26(1.26) 29.00(0.52) 29.99(-0.47)

40 28.10 28.20(-0.10) 26.76(1.34) 27.17(0.93) 27.05(1.05) 27.37(0.73) 28.42(-0.32)

50 27.01 27.08(-0.07) 25.79(1.22) 26.15(0.86) 26.11(0.90) 26.13(0.88) 27.22(-0.21)

80 24.82 24.82(0.00) 23.87(0.95) 24.03(0.79) 24.25(0.57) 23.69(1.13) 24.75(0.07)

100 23.87 23.82(0.05) 23.06(0.81) 23.06(0.81) 23.40(0.47) 22.63(1.24) 23.62(0.25)

192× 192× 192 Coastguard

10 33.86 34.15(-0.29) 32.59(1.27) 33.16(0.70) 30.86(3.00) 33.13(0.73) 33.81(0.05)

20 30.26 30.62(-0.36) 29.21(1.05) 29.66(0.60) 28.26(2.00) 29.45(0.81) 30.28(-0.02)

30 28.38 28.73(-0.35) 27.46(0.92) 27.82(0.56) 26.87(1.51) 27.50(0.88) 28.40(-0.02)

40 27.13 27.45(-0.32) 26.28(0.85) 26.58(0.53) 25.91(1.21) 26.17(0.96) 27.13(-0.00)

50 26.18 26.48(-0.30) 25.40(0.78) 25.66(0.52) 25.17(1.01) 25.17(1.01) 26.17(0.01)

80 24.30 24.53(-0.23) 23.67(0.63) 23.84(0.46) 23.61(0.69) 23.17(1.13) 24.17(0.13)

100 23.47 23.65(-0.18) 22.91(0.56) 22.98(0.49) 22.87(0.60) 22.24(1.23) 23.22(0.25)

Table 6.4: Video denoising results, in terms of PSNR values, of several methods

using proposed 3D TP-CTF↓
6 with the redundancy rate 35

7
, 3D TP-CTF6 with the

redundancy rate 295
7

(having the same directionality as TP-CTF↓
6), 3D TP-CTF3

with the redundancy rate 35
7

(having the same redundancy rate as TP-CTF↓
6), the

3D DT-CWT with the redundancy rate 8, the 3D nonseparable surfacelets in [36]

with the redundancy rate 6.4, and the 3D nonseparable compactly supported shear-

let frames DNST3D-42 and DNST3D
2 -154 with the redundancy rates 42 and 154,

respectively.

From Table 6.4, we see that the loss of performance of TP-CTF↓
6 is not signif-

icant in comparison with TP-CTF6 for both Mobile and Coastguard. TP-CTF↓
6
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can outperform DNST3D
2 -154 when the noise level σ is high (σ > 50) despite the

fact that DNST3D
2 -154 has the highest redundancy rate 154 which is 41.5 times

the redundancy of TP-CTF↓
6. Generally, TP-CTF↓

6 outperforms all other methods

for any noise level σ (except a slightly worse performance at σ = 10 comparing

with DNST3D-42 for Mobile). Significant improvement can be seen in comparison

with the nonseparable 3D surfacelets in [36] (up to 2.47dB for Mobile and 3dB

for Coastguard) and DNST3D-42 in [34] (up to 1.24dB for Mobile and 1.23dB for

Coastguard).
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