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ABSTRACT PR
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\

Wc; con\si@cr the inciastiq scattering of intcrmcdigchcncrgy pmfons leadiig to the‘ -
. excitation of colltsté%ivc states in é\’rcn—evcn nuclei. Thi$work is done in the fram: wbrk of
Difac phenomenology, We vcalculatc the inelastic scattering amplitude in the disioncd
w;avc Born approkimaiion in which we describe thé relative motion of the ngclcon and
target by Dirac spmors These spmors are solutions of the Dirac cquanon with complcx
scalar and vceﬁ)r opucal potentials. The transition operator,zs obtained by dcformmg
these potentials and kccpmg terms whlch are first order in the nucleaéidcformauon Thc
states of the targgt nucleus are treated nonrelativistically. -

A corﬁputcr program based on these considerations has been written and tested. ' ‘
Calculations of cross scction; analyzing powc;: and polarization transfer coefficients will "
| be coﬁ\;aztd with c)'ipérimcntal data. We also compare otir calculations ﬁsh those. of
~ other authors Thc cal.culations'&rc found to agrea well with data whén the deformation
parametcr of thc statc is small but agrcemcnt gets worse with mcreasmg s;ze of the

- *

deformaﬁon mdxcatmg thc unportacc of coupleichannels cffects. We also fmd that the
" full relativistic calculauon does a bettcr jo of describing thc data than some

nonrelativistic calculapons even if there is some correction for relanvny
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I~ INTRODUCTION

A scattering experiment is done to gain data which will aid in the undcrgtanding
of nuclear stx(*ucturc and nuclear reactidns. When the incident particlc.has a low kincti(:
cnergy ( a few tems of Mev ) the observed results can generally be well explained, by
décﬁbing the ipvolvcd particles with the Scbrédi?gcr theory of scattering, but with the
advent of machines which routinél‘y accelerate protons t§ a kinetic energy of five hundred
Mev or more the Schrt?dingcr :icscriptiéns of these p@jcctilcs has béen found to be
inadequate [CI82), At a k‘inctic energy of five hundred Mev a proton has a velocity of
over eighty per cent of the speed of lvight ‘so a proper relativistic description is in order,

Such a relativistic dcscr'iption of ;;roton elastic scattering has been developed in |
the past few years (C182), and does a very good job of describing the elastic scattering
observables. This model is based on the Dirac equation with an optical potential
consigting of a term whlich is a scalar under Lorentz transformation and a term which
transforms as the zeroth component of a four-vector. The description of the cross section
resulting from the Dirac based calculations is; at least as good as that of the Schrodinger
ca!cu‘latior']s andﬂ the descriptiqn of the spin observables ( analyzing power and spin
rotation parameter ) is much better.

The Dirac opticlal potential has gained respectability since relativistic impulsé
approximation (RIA) calculations have shown that these ve,ctof and scalar potentials arise

" naturally from a relativistically invariant free®ucleon-nucleon scattering amplitude

[Mc83]. These microscopic calculations give reasonable agfeement with the deep,



phenomenologically determined optical potentials, These RIA potentials resultin a good
description of the cIftic s;:attcring of 506 Mev, protons from “°Ca [Sh§3].

| Another jntcresting point is the obscrvatioﬁ that a central potential that has a
"wine-bottle-bottom” shape can give a bcttcr‘dcscn'pu'on of elastic scattering data than a
potential which has the standard Woods-Saxon shape [Me81). Such a potential shape is
an ar;ifacg of the reduction of the Dirac equation to a two-component Schrodinger-like
equation, This effective potcmial‘ has been used in the f:alcuiation of inelastic scattering
observables [Sa84] and is found to give slightly better brcdictions than the standard

- ‘ -~ .

(Woods-Saxon) potential.

. Recently it has been pointed out that thc.rc iii relation between elastic écaFtcdng
and the inelastic scattering to collecd‘vc states [Am80]. The assumption of a local, surface
pcal‘ccd u‘ansition.dcnsit)&{cads to an c;(prcssion for the inelastic cross section in terms of
the elastic cross s‘cctionr at a shifted angle. This n:lation gives a good description of the
inelastic cross section for 800 Mev. protons scattering from 2°8Pp. This relation is also
found to hold when the calculation is done in the framework of the 'r‘elia—t_iv’i_stic distorted
wave impulse approximation. [i’i83].

A good description of elastic scattering may result in a good description of the

, '
inelastic scattering. The present work has been carried out with this hope in mind. We
extend the phenomenological Dirac .optical model to the calculation of proton inelastic
scattering leading to collective excited states. The inelastic scattering amplitude is
calculated in the distorted wave Bom approximation (DWBA). The rcla;dve motion of the
proton and nucleus is acscribed by a fou}:-componcnt Dirac spinor and the target nucleus

" I :
is descibed nonrelativistically. We obtain the transition operator by deforming the scalar



and vector potentials and keeping terms which are first order in the nuclear deformation,
In chapter Il we outline some of nonrelativistic scattering theory, In chapter 11]

we discusé the phcnlomcnolgical Dirac optical model and we show the fits obtained t?

elastic scattering data, In chapter IV we show the calculation of the Tq;atn‘x element for

I3

) ) ~—
inelastic scattering to collective states, The relation of thid T-matrix to the scattering

observables is shown in appendix B, Chapter V contains the predictions for the inelastic

observables and comparisons to data, A conclusion is given in chapter V.

-



11 - SCATTERING THEORY,

-

-

1

Here we consider the formal nonrelativistic thcory/of [{10 scatfeﬁng of spin-0
projcctilcs~ fx‘orh a spin-0 target, This is the simplest scattering system, ang a imowlcdge
~of the structure of the theory fo; tﬁis system makes the extension to more complicated
systems and relativistic calculations fairiy easy. For the sake of simplicity we considcr’

only interaction potentials for which 2V (r) goes to zero as r+oe, sO we ig;morc the

~ Coulomb potential. Also for simplicity we take fi=c=1, |

It should be pointed out here that the observables which are calculated in lat;r

chapters are rclatcdl to the T-matrix (Apbcn@ix B), and the inclusion of the scattering
operator and. its properties may seem extraneous. However, the écat,tering operator is the
most fundamental operator of scattering theory in the sense that it relates the asymptotic
outgoing state of the system to the asymptotic incoming state. Thes.c are the 
expéﬁmcnfally observable states, and so the scattering opcfator contains all the
information about the scattering pro‘c‘css. Rather than pulling the T-métrix' out of the |
proverbial hat I willAu;y to present an overview of the relationships between the -

(e}

commonly used objeéts of sca;terihg theory, which we will in fact calculate in later
chapters, and the S-matrix, but due to lack of space there will still be ‘sor‘nc things pulled

out of that hat.



.

II-1 The S-matrix and th‘e On-shell T~m’atrixl

.

‘ _ P .
In a scattering experiment the initial staf§of the system ¥, (1) is prepared at - l‘
™

t=-o, The system then cvolvcs in time according to the Hanultoman into a state ‘P(*f(t/)
t

W}N has the same quantum numbcrs (moqxcntum spm ctc) as ‘P (t) p+) (v

. continues to evolve, and in the limit t—< begomes a frcc wave ‘Pom(t) which contains
' ' ‘ ?

some scattered (spherical) wave in addition to the incident plane wave, Y‘;‘(t),; X

~ ~Alternatively we can specify a state in the future (t=co), ‘{’om(t'), which arises from a state
‘ X o
¥O)(t) ( and has the same quantum numbers as ¥ (1)), which in turn evolves from a

state W, (1) in the remote past, ‘i‘(”)(t) is a solution of the same Schﬁidingcr equation as :

-‘i’(*)(t) but asymptotically it is an incoming spherical wave. The assumption of tilnc
reversal invariance gives a relation between ¥ and ‘ﬂ" (Ja70) |
(Y& =}P<j>(-t)ﬁ . o A | | 11-1 |
| The functions ¥™)(1) are soiutionsy of the Lippmann-Scthwingcr Equatfon
P o ‘P<°)(t)+IG @e-t)Y \P‘*’(t)dt | fj ; | -2

wherc Vis the mtr?cnon potential of the problem and the free Green funcnons Gy ® are

solunons of ‘
( 9/t - Hy) d0<t>(t) S50 . . -3
Note that V(II72) contains ihe .boundary con?h’ﬁons
Lmt_,_,,'f‘ﬂ(t) ¥

m/out(t) , -4

Also note that 1f the full wave is ‘{‘(*)(t) then ‘I’(O)(t) is W, (1) and if the full wave is. |
R )

9 )(t) then ¥Oy) is ‘I’om(t)



Equation II-3 can be written (see 1110 and.below) as .
x l(E”Ho)Go(t)(E)Fl‘ , o | 1-5
~ and we can wiite a fanial solp‘tion as
N Gy ®(E) = [E - Hy k] | k | .
where the He tells us which way to close the in;cgraﬁon contour around the poles in the
Green function, Thcsc shifts of the pole into the cémi)lex plane rcﬁcct the boundar):
'cloﬁdidons that are imposed on the time dcpcn&ent Green functions,
Th;: asymptotic (free) wave functions are related to the fuil wave functior;s by the
Mé‘)llcr‘opcx‘ators, Q " such th‘at
‘P(ii =Q Y 0
Q¥ (1 - - o7
s0 Q2 propaéatcs ‘i’h;(t) frpm t=-coto a time t, and Q prbpagatcs ¥ (0 from t=+.<‘>9 to a
time t. The Mélicr operators are defined as the limits
Q. =LIM,, _exp(Hy exp(-iHp) . I-8
It is possibié to form.'ap operator which r’ciatgé ti’le asymptc;tic’ states at t=-o0 10
| those at t=co. This is the scatteri_an opératof, S, w‘hich‘ i; defined as' -

. $=Q1Q,

This operator relates the asymptotic states by

Y,0=S¥,0 .~ . . %
'.and |
fFin(t) = st Yourld T o - f‘i;—%

The sets of states {,‘I’i*n(t)v} and { ‘l’;m(t)} are assumed to be complete so froin I1-9 we



get that SST = STS = 1 jie Sisa umtary opcra\or thn evaluatcd on thc asis of |

asymptoucally free statcs thxs operator is callcd the S-matrix.

——

It is more convenient to work with wave functions which ,are functions of
At . . ‘ku » > “ v " l
energy instead of time so we Fourier transform the wave functions by
+

-fT@):IcE“P(t)dt | o | 1-10

and similarly for the Green functions G, ®)(t). The Iiippm‘anﬂSchwingér‘ equation then

bccomcs -
W’(E) ‘P(O)(E)+[E Home]lvww(s) . B i-11
S is a time independent opcrator soO cquatmns -9 become
‘POM(E) S¥,® A 1-12a
‘Pm(E)=ST \foul(jﬁ) . | | B QYA

Note that in II- 125 if the full state is ‘P(*)(E,a) i.e. the siﬁte hasl'q?fantum numbcrs‘a
?\"

f@n ‘P xs ‘P(O)(E a) ie ‘P(O) hqg; the same quantum numbcrs but ¥ 1s a lmcar

combmauon of all p0531b1e ﬁnal states and can not be assxgned defimte quantum

numbers. Suml_a‘rly if the full s‘tatc is ‘F(‘)(E,a) then h is ‘I{(o?(E,a), but ‘Pid is then a ’_ 1 : :

linear combination of all possible initial states. L S
. : a .. . ,‘ ‘ . 1‘ ‘

The iotal‘ Hamiltonian for the systéxri'is‘ H = H; + V-so we can write a formal

SOlllthﬂ of thc Llppmann Schwmger equatmn as . ;’

[E H]\P‘*’—[E H, ]\P“’) [E H]T(°)+V‘i’(°) . I-13
or

P ‘P(°)+[E H:txe]‘V‘P(o) o m4

'
!

Note that thxs is purely a fonnal soluuon since we- must sull evaluate [ E-H :t e}



which Would reqﬁiré that we know thé eigenfunctions of H ,
-'I"hc"S—matriJ‘c elements are spcéi,ﬂcd by
_<‘P()(E)|‘{‘<*7(E)> ' : 3 15
—<‘P‘*><Ef>w<*><r~:i>>+<<\P<><E>| <~P<*><E,>| ¥ (E) > |
- and using our formal solutions II-13 we can write
O (Eg? ¥ (Ep) > = { (E-H 1:—:1 Ly .
| (8- H+xe11V}|~P<°><E>>

also the funcuons 'Y(i)(Er) are orthonormal SO .
<y® (Ef)w‘ﬂ E)>=8 | . 1I-16
where O = 'B(Ef-‘E ) 8 2 - Here a and‘B are all th'e ‘quan\ium numbers besides energy

which are rcqmred to specify ‘i’(*) (E). Finally 1t is useful to rccall thc relation

[~

[E-Htie]'=P[E-H]'~ ma(E H .. - . 017

where the P denotes the pﬁncipal value of the-infte‘gral. The elements of the scattering

\ S

matrix then b%come

S, =8, +<\1J“(Ef)|vnsr H+1e]1 V[Ef H-ie 1 ¥ (B) >

2

5. s+ {PLE- E]hmt‘:(Ef E) S
| ‘ P[Ef E]l-ma(E E)}<\P<°)(Ef)|V|\P<*’(E)> -, -
. -—‘-‘8 :2n18_(Ef-E')<‘P(O) (Ef)‘lvl\le(f)'(Ei)> L
=8 27:123(15f 1~:)Tﬁ ’: R mas,

!

‘ where we havc deﬁned the T-matnx on the cnergy shell ( final energy initial energ)'f )‘ '

"

as



-~

To= <¥O ) V¥ >

tm
I

-2 The Off-shell T-matrix

First consider the Green functions, Gy, for the free Hamilltonian, and G, for the

i

T

total Hamiltonian — .
Go=[E-H,t ) o ) 11-20
G=[E-HI'=(E-H,-v]* . 121
Note that for sxmphcxty we have dropped the tie, but thlS is 1mphcd with the propcr sign
when the boundary conditions are spccxﬂed. Usmg the identity
. LUA-1/B=1/B(B-A) VA R . n22
we can: find' integral ccjuations relating Go and G; i.e. scfting A =E-H, ‘and
B=E-H,-V gives |
| [G=Go+GVG . T
Sumlarly mtercha”ngmg A and B glves o |
G,=G-GVG, + . . mas
Wc can'iteratcH-ZB to get - -

G GO+G VG0+GOVG VG0+

. _GO+GO[V+VGOV+VGOVG V+...‘].G‘O o

: ’*’Go“‘GoT, Gof : '-? ‘ . 1]-25

where the off-shell T-matrix is definedby = .
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T=V+VGyV4VGyVGyV .- Il-26a -

" =V4+VG,T 0.26b -

~ Comparing equations II-14 and II-7 we see that the Moller operator can be

SN

" written as
Q,=1+G,V n-27

and using this in the expression II-19 for the T-matrix gives
To=<¥O@®IVI¥YO®)>

=<¥OE®pivae 1YOE)> .

SHOE VAV VIO E) >

il

then using II-23 to iterate the operatbf between the plane wave states this is

- (recalling I1-26a ) .
Ty= <¥OE)|V+VGyV+VG VG, V.| ¥? (E) >
_ < \I.l(o) EpIT| \P(O)‘(Ei) > o [1-28

 II-3 Invariance Properties of the S-M'atrix

" We say that a system is invariant with respect to some unitary operation if the

Hamiltonian is invariant, that is
H=U!HU

First consider the effect of 'translatio,r}'s ona systém.' The operator which

)

. generates a rigid translation of the system through a vector a is ’



11

.

D(a) = exp(-ia-P) | o R
where P is the total momentum operator of the sy'stcm,‘d_V, Consider thc effect of this
operator in one dimension_

[T
[N
O]

[}

Nkl?ﬂ(a)f(x) = exp(-iaP)f(x)
= X (~a)"/ n! (d/dx)"f(x)

= f(x-~a)

so if the system is in a state ¥ then a translation of the state through a vector a is .

produced by

¥(x-a) = D(a) ¥ (x) . S - | I1-30

Recall that the Hamiltonian of the system is H=Fy+V , where H, is the kinetic

energy operator of the system, The translation operator commutes with H, and if the
system is translationally invariant then H also commutes with D(a) i.e. H = D"}(a)H
’ ‘ s '

D(a). So if the system is translationally invariant the translation operator ‘r‘ﬁpst commute
" with the Méller operators since RSO
L D(a) Q, = D(@) LIM, , _exp(Ht) exp(iHgt) ..

- =LIM,_, _ exp(iHt) exp(-iHt) D@)

and since the scattering matrix is S = Q_* Q_ we have that S'is invariant under

translations

S=Dla)SD@ . S m3

SN

Also since S commutes with D(a) for all a, S must commute ‘with the momentum

" operator of the system, [S , P] = 0, and takmg matrix elements of this commutator gives R

4
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<" ISP p'> - <p" | PS P> = 0

o0 5 B .
LS (propy=0 1152

so thclS~niatrix is nonzero only if p" = p’, i.e, xf ‘the total momemum is conserved, So

we sce that imposing, translational inVarjanc‘é on our systcml Jeads toi cbnscrvatioln of

linear morﬁ;ntum, Taking matrix elements of I1-31 gives |

" <p'ISIp>=<p'| D"(a) S D(a) [p> - |

~<p/ ISP : 11-33

where |p,> is the translatéd wave function. And we see that S is invariant under

\

!

translations
Now cons:cier the, cffect of rotations on our systcm If the: systcm is rotated
‘through an angle ©, about a du'ccuon n, we dcﬁnc a vector © = On, and thc rotation
- opérator is | [
R(®) = exp(i©-J) R B : L n;34‘
‘where J is the total anéular momentum operator of the system.
| If thc systém is rotétidnally 'in'vlariant then R(®) must cc;mrrxll.xt\e' with the
ﬁamﬂtomm, SO by the same argumcnts as were used for tmnslanonal mvanance R(®)
, commutcs wnh 2, and so, thh S This 1 is true for an).' © so S must commute with J,.
and tlll‘rough‘s‘tc"ps sirrﬁlar to those which giyc I1-32 we get that 'ro‘tational invariancc of
o thc‘sys‘tcnz ﬁnﬁlicS conéeﬁétibn of angular 'mor'nentuml. Finally, as in the t_rahslétional

Ve

case, we must have | : : [



. <p'|S|p> = <p'| RN(©) S R(O) |p>
=<Pg'ISlPg> - 1135
so the S-matrix is invariam under xotatiohs of the system as well,

The opcrator S commutes with the kmcuo energy opcraton, Ho, and wnh the

total angufhr momcmum of the system, J (wh;ch is Just L for spmlcss paruclcs) Thc

opcrators Hg, L 2 and L, form‘acomplctc set of obscrvablcs ( ie, they bhave
\simultancous eigenfunctions | E, 2, m > with the eigenvalues E, 2(2+1), m ). The

rcprcscntauon of this wave function in coordmatc space is

C<x|E g, m>- 4nﬂ<rvn<>m11(kr \,m(sg; 136

-

where the factor (Mk)" ? comes from the normalization

<E,2,m|E,2, m > = (2 5(E"- E) IR &

. - :

- S commutes with Hg, and L so thc S-matrix is diagOnal in the angular momentum
| ! ! , - N |
representation, and it has the fom‘1 ‘ :

-~

<E\f, m|S|E.2 m>—(21c)38(E E) a4 E) . I1-38
where s (E) is the eigenvalue of S correspondmg to the engcnfuncuon 1 EJZ, m >. Notc

that s (E) is mdependent of m. Thxs can be easﬂy shown sch S commutes with L, so it
- commutés with L, and we can write *

L,SL=SL.L.

and taking matrix elemerits of this we get - N - . L Y

<.pm-1{8).,ml>=<.,m|{S|.,m>

which must be 'true for all m so the matrix clérﬁen; can not depend on.m.

: o
13
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Ghe
¢ The potcnual due to the scattering center is V(r), énd in the center of
‘ AN
- momentum system the wave funcuon is a solution of the Schrodinger equation

1

\ A
(p¥2M4 V(r) ) ¥ =E ¥ , 11-39

~or defining k?=2mE and 'Ut(f;)=,2'm\/(r) we can write this as. -

LY

(P4 R)¥=-UnY . ‘ 140

At' t=-oo the incident pam"clc is at z=-e= and is incident along the z-axis.The nuclear

\
kN

potcnnal gocs 10 zero fastcr than rzU(r) as [e° 50| thc asymptouc incident wave function *
r

fcel§ no potcnnal and is just thc planc wave

¥ (0 =expli) . 1-41

After scattering the total wave function contains the part of Lhc plane wave which was not

scattcx:cd, travcllmg along the z-axis, as well as a scattcred outward u;avellmg, spherical

,}v W , ‘ . " g
wave ’ ﬂ .

: ' . "t{’:," o

; T Wor) = £(8,0) exp(ik)/t . R © [-42
The total wave fun'ction is then

T(Ir(r) ¥ (r) + ‘Yo(r) exp(ikz) + f(6,9) exp(ikr)/r 11-43

,_/‘

where f(8,9) is the scam:rmg amphmde ( i.e. the amplitude of the scattered wave ).

The planc wave can be expanded as -

“‘.f‘f'cxp(ﬂcz);Zi!(un) j_'(kr) P_!(cose) o -4

At largc r tho sphencal Bessel funcnon has the form

(5(»:» N
;«

14



Jg(kr) =, Vkr sin(kr - R7/2) - 11-45

L -

and far from the scattering center the plane wave can be written as

/ -
exp(ikz) »___ 1/kr Exif' (22 +1) sin(kr ~ £ 7/2) Py(cost) . [1-46  +

The Schrédinger equations for ¥ (r) and W rop(r) differ only by the presence of the

(r) can differ at most

potential U(r), and if U(r) goes to zero fast enough Y () and ¥

. '
by a constant phase for each partial wave, so we write for the total wave function -

¥ror(r) #pan Lke ZxBx sin(kr ~47/2 4 8, ) Py(cos) . 11.47
With a little manipulation we can write:
sin( kr ~Am/2 4 81) = exp(-i 81) { sin(kr ~2n/2) +
+ 1/2i exp(ikr - W/2)(exp(2i 8,) - 1]}

and the total wave function can then be written as

Yo or(®) *ran Uk ZJB‘.eI;p(-i 8,) sin( kr - 27/2 ) Py(cosB)

+ exp(ikr)/kr ZJB_! (-i Y sin( 81 ) Py(cosB) . 11-48

- Comparing this with II-46 we see that
[ ]

B, exp(-i 8,) = (2 +1) - | ‘¢
and the partial wave expansion for the scaticring amplitude for spin-0 spin-0 scattering is

/

£(0) = 1/2ik 21 (20+1) [exp(2i 8,) - 1] Py(cos®) . 11-49



S G

I1-5 Relation Between The Scattering Amplitude And The T-matrix

,The‘ free Green function can be written in terms of the cigcnfpnctions and
cigenenergies of the free Hamiltonian as {Ja70] |
Gy(r,r) ='(2n):3 f exp(ik"r) exp(-ik"r) / (E - E') &K | 11-50
where E=k%2M and E'=k*2M so |
Go*(r,r) = (21) LIM,,, ZMJ explik™ (r . )]/ (K*~k? ki) d°k . u~5}
Finding the residues at the poles k'=V( k2  i€) and taking the limit e+0 gives the free
Green function as A
GyA(r,r) = ~M/2m)exp(k | r~r' )] /] r-r| . I1-52
‘ v

We can write equation 1I-10 as .

“f’(’)(k,r) = exp(ik-r) + jGOi(r,r') v(r) ‘{’(i)(k,r') d’r K I1-53 -

Here we consider orily the nuclear force, so V(r") falls off rapidly and in the asymptotic
region r » 1’ there is no significant contribution Ito the integral. In this case we can.;nake
the apprbximau'ons ‘. |
fr-r'|>r-fr
lr-rta1r
. and the Green function in the asymptotic region is . '
Gy¥(r,r) = ;M/(Zn) exp( ;i i(kr-k''r')]/r [1-54
where k'=k®. The Lippmann-Schwinger cc;uation is thcn.
\I!‘*)(l{,r) = exp(ikr) - exp—(mrAM/(Zn) I expl —i( kr') ] V(r') ¥®(k,r) &*r

Comparing this expression with [I-43 we see that the scattering amplitude is
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106) = -Mi2m) Jexpl - i( k) ) Vi) Yk, r) d
= -M/(2R) f YO ) V() POk ) dF 11-55
and finally corﬁpaﬁng this last with [I-18 we get the relationship ~b<:tw<:<:n the scattering
amplitude and the T-matrix as
f(0) = -M/2m) T+ B 11-56

’

11-6 The S-matrix Elements \

Using equations I1-18 and I1-56 we can relate the S-matrix and the scattering

»

amplitude through
<k'|S-lIk>=i(21t)2/1\.'l8(1(~f:.'-'Ek)f(9) E Ca n-57
We cadn use thcﬁtransformationl matrix | |
‘ , R ,
<K|E2,m>= (M2 2r*2 §(E, - E) Y, (®) | I1-58

to evaluate the left hand side of 1I-57, by using the completness of { | E,£, m > }, i.e.

. <k'|S- 1’|k>=JdEZl <K|S-1|E, 4, h><E g m|k> . 11-59
m .
Recall that we have shown that | E, 2, m > is an eigenfunction of S with the cigcnvalug#«-
Sy $O we can write
‘?.

<k'|S-1|k>=J"c‘1EZJ (s_!-l)<k'|E‘,.2,m><E,.Q,m|k>. 1-60
m ) C

and with 11-58 this bcc‘onics , ‘ | . ‘



N~

<K[S-1]k»>= me( sy~ 1) @mP/MK 8( By - By ) YR Ypy ®
. ’ N ‘

‘=2‘(sx S1) @RYMK 8( B, - By ) (2+1)/4 Px(cose} 161 |

Comparing II-61 with [1-57 we see that the scattering amplitude is

£(6) = 1/2ik Z‘ (20+1) (5, - 1) Py(cosf) . 11-62,
This last resplt, when comparcd with II-49, gives the relation between the partial,~wéve
S-matrix elements and the phase shift as
s, =exp2i 8 F . o I-63 .
: . : - :
We will be calculating these S-matrix elements in later chapters when we do the fits to
the elastic scattering of a spin-1/2 projectile scattering from a spin-0 target.

!

II.7 Scattering From Two‘Potent,ials

- Let us consider what happens if we can write the potential in the scattering
problem as two separate pieces
V=U+W . - 64

The wave function of the system is a solution ;)f the Schrédinger equation thh the -
quniltonianv | ‘. -

| HeHy+UsW . = 65
and the T-matrix is from II-19 | |

Ta=<¥O @ U+WI¥IE®)> " - I66




Suppose that we can find a solution for the Hamiltonian involving only U
‘~Hl = HO +~7U
SO~

H, x*) = Ex®

19
1-67 .

1-68

where the energy eigenvalue is the same as the eigenvalue corresponding to the

Hamiltonian II-65.
There are three Greén furictions for this problem:
=[E-H,y]!
= [ E H U !
= [ E-H, -U VAR : : "
and using‘cqixation‘ II—‘22 we'can write a relation bet\yecq Gand G, as

T GW=G ™+ G WG

Also we can write Lippmann-Schwinger equ;\tﬁdns for thc‘.‘wave functions ",

O G, U ¥
‘i’(*) =yO, G, ( U+W)yO .
Usmg - 70 in II-71b we wnte

g _ \y(°)+(G(+)+G(+)WG(+))(U+W)‘Y(0)

-(1+G(+)U)‘P(°)+G(+)W[1+G(+’(U+W)]‘P(°)

with II-71 thxs last equanon can be written as

\y(+) - x(+) + G (+rw \p(+)

"

Now\co,ns’ider the scattcring amplitudc_H¥66 -

I1-69a

I1-69b

I1-69¢

1-70

- II-71a -

[-71b

o7
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To=<¥O|U+W| \y.w'}
Using 1I-72 the matrix clcmcnt can be written as

T <‘P(°)|UIx(*)>+<%(°)|,W+UG(*)Wl‘i’(*)>

. ’ '
The first term on the right hand 51dc can be rewritten using II-71a

<\§I(O)IU|(1+G(*)U)‘{’.(°)>—<(l+G(*)U)T <°>|UI‘*‘<°>> |
. ' . _ ’ | ‘e‘__<(1+UTG())T‘P(9)|U|‘P(°)>_‘
v-._<xf()|U|‘P(°)> "

Sumlarly for the second term

<‘*'(°’|(<1+UG(+))W|‘P(*)>—<X(’|W|‘Px(*)>

At \

R L. : ‘ . .
where we have used the condition for time reversal invariance

\

'x(‘)(k’r)'.‘—_[x(*)pk o . I3
ny ' ' . ' .

The transmon amphtude for scattenng from two potcnuals is thcn

Tf—<x(')l-UI‘P<°)>+<x“|Wl‘*'<+)> R | &2
.The prcsence of the total wave funcnon in the s}econd term gcnerally precludes solvmg

the problem exactly but thcrc are various ways to approxlmate the soluuon

| | | . ‘ | é . I‘Y .
118 *: Optical Potentials and Distorted Waves

,"l’!
S

o o
’ We mtroduce a potcnnal U into the T-matnx 11-19 by

Tﬁ-<\1'(0)|v U+U|‘P(+)> |

0-75

TE—

=< ‘I’f(o) | ® +k'U ‘ \Pi(+)_>-
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’Iwher‘e the restﬂual bin‘tera‘c'tion‘ is deﬁned b'y‘ ; " " . N |
Ce=veu L : O ns
) We take the potennal U to be the optxcal potcnual for the problcm SO the dlstorted wave is

Toa solunon of |
(Hy+U)x=Ex . | B .. o 177
 The Grecn ftxnction associated: with this distorted. wave,Is - | | | N
G('*>='[E-H(,5U+ie]"l : “ I- " o H7I8 N
$O the diﬂstorted‘wa\‘/e can be written as | o |
‘x(*)=‘(1l+G°+)U)‘I‘(°) : | o e “1"1-79 |
and usirig I-73 the e T-matrix s then | | |
| ﬁ <xr()|U|‘P(°)>+<xf()|a)|‘i’(+)> ‘ ’ | ‘, II-‘80“ \ '
® lrs the dlfference between the total potennal V for the scattermg and the opucal |
'potentral wtfrch, is sphcncally symmetnc and descnbes only the elasnc scattcrmg This
.resrdual part of the mteracnon potentxal is the portron that may support changes of state
.durmg the process For example if we are consrdermg melasuc scattermg the ﬁrst term of "
. II 80 w111 be zero and the T—matnx wﬂl be gwen by the second term of II 80. The form ' -
" of the resrdual mteractxon for excrtauon to collecnve states w111 bc dtscussed in chapter
| IV We expand the total wave funcuon in the second term usmg - 72 and keep only the
ﬁrst term in the expansron s0 o | | | -
Tf-—<x ‘)Icolx(+)> L N ,b _' N II-81 -
. ‘Thrs 1s the T-matnx for melastlc scattermg in the sttorted Wavc Born Approxlmanon

”(DWBA) Thxs is the approximanon that we use later to calculate excitations io collecttve "



o

states.
A
.

| Anotl;cr commonly used dis;ortcd w!avel ‘apprqximation is the distorted wave
ifnpulsé approximation (DWIA). To derive the HDV‘\/IA matrix cfcmént we start with the
inclastic partof 80 © - o
| Tg -< 1ol .\ri@) > .
‘ Wé restrict Qurseis;cs to ﬂxc ;Easc of a single nucleon iri both the incomip_g and oufg‘oing

+ channels, then the residual interaction is the sum of the two bédy residual interactions

Qe

o ‘@;ijj@j(voj-~U/A) a o . .82
J where v, ('i,s tlllcbiﬁteractibn between the pmjc\cﬁic and thc j& nucleon in the nucl,eu§ and
Uis thev.avéragé botct\ﬁa!, for cxaml‘)le an optical potential. Expanding the- fotal wave
"fuhc“ti-on as in I1-72 we can wﬁtc the T—rﬁatrix ‘elgrr'xcnt. as’ |
. T, =<xPlo|x®+G6,®w q)iw > ’ R
= <:xf('.) | o + 0 G +',.'..‘ |..xi(+)’>
- <x©It] xi(;) > -

‘whefewchave‘dcﬁnevdthet-niatri.xbyy‘; L o o L

 t=0+0GMWt . T-83

S0+ Gt

S T BEE T R
NOW We.ﬁit!'Od_llée an e,ffeqﬁire two body t-matrix
. - ,-., . o . : N .

§=.¢j+qu.,v<_+v)tj S ) o ' ‘H',84'

then we can doa little alg'c:bra» to get



t_2t+ZtG()2 ltkl+..: -

k#j '
The free two body t~matn'x obeys I ‘ . Lo
"t.<.°>=00j+qu<°> R L " n 85

The DWIA is formed in two steps Fust we approxxmate the total t~matr1x by the sum of

the two body t~matnces in nuclear matter, then we approxmate these by the free two

body t-matrices so the transmon matnx element in DWIA 1s

,\Iﬁ=<xf<->l‘2jtj<°>|xi<«>«-? oo e

- II-9 The Optical Potential Fr.om‘_Plane Wavei Impulse ‘Approxima’tion’"

1 LA . : [
, : ' [

It is. possrble m the plane wave 1mpulse approxtmatron (PWIA), to ﬁnd an .‘

W

expressxon for the opt1cal potenual in terms of the scattenng amphtude at zero momentum

transfer The T-matnx element can be obtamed ‘by startmg from expresronﬂ 28 and ; e

approxrmatmg the transmon operator by the sum of free two-body transmon operators (

: unpulse approxunatxon) The result 15 -

| Tr' <¥ <°><I> r§t<°>|¢ CE L H87

where the <D s, the nuclear ground state wave functxon The free t~matnces are

propomonal to the scattermg amplltude for the spm-l/2 c/m spm l/2 system Wrth the PR

assumpuons of rotatronal mvanance, panty conservatxon and trme reversal mvanance thej L

%

'scattenng amphtude can be wntten in terms of five complex amplrtudes whlch arev ST

<

u"‘ . [ R
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L » fu’nétions of energy, angle and isosi)iﬂ :
M(Q)'= A'+ B o;-N o,N+C (0o, +0, )N +
3 Do K 0;K+EGpPoyP o I1-88
where the coordinate system is choscn as
= (k¢- ki)/lk kxl, N= (kixkf)/|k xkfl,
"P=(ki+kf)/lkl+kr[ o | . 089
‘a‘nd k, and k, are the initiai and final wavc“ ;ectorg. ‘ | |
.' ‘From‘ II-56 the free t-rhgmix is
4@ = 2wm M, |

so the matrix element of the free t-matrices bet'Wcén nuclear ground states is
<l Zj‘tjw) | @y > = 2mim < By | 2 M; [ @y >

If‘the target has even numbers of neutrons and protons thc spin averages over the target

. } w111 glve zero, SO the only terms that survwe in M are -

M(q) A(q)+C(q)cN S -90.

~The T-matnx can thén be wntten as -

»
-

| T‘ = -21r/m[A(q)+C(q)c N]F(q) B o

X whérc xA(q) is -the Fou'ner tra‘nsformlof A(E,O)‘ and thg foﬁfx fa‘ctoxj‘ is ihe Fouﬁer | :
, transform of the densxty | . | | | |

| F(q) chp(!qr)p(r)d3 o | " ‘\ e

Recall from 1-74 that the elasnc scattermg tcrm of the T—matnx for an opncal

&

potcnnal U is |



'
A

Tﬂ=‘<x\((")lUl‘i’i(°>> o - | 093
‘In the plEine wave appro;;ima;i_on m,s is ‘
Ta=<¥OUI¥®>
jcxp( iker) U cxp(xk r) d3
= I exp(iq-r) U d3 - , : 1-94 .
whcre mc momentum transfer isq=k- k Wc caf;'Foariér \umsfoﬁa 11-94 to wri{c |
“the opucal potcnnal in terms of the T- matmg element |
, U= Iexp( -ig-r) T d°q C | B ‘III~95v
ltlg;ng II-90 in II-94 the opucal potcnual is | )

P

U= ~2ﬂ/mj exp(-igr) [ A@ +C@ o, "NTF(qy d3 ‘ 3 =

= Ugenc + Us.é. S I | ‘ : S S
For heavy nucleii [Ja7Q] A(q) va‘riés sloWIy cOmpared with F(q) s0 wecan wr,i'te ' ‘
U = -2/m A(O) p(r) T LR ’11-96 .

3

The spm-orbit term isa lmle more comphcated but 1f we rcalrze that forﬂlasnc scattenng ‘ ,
the magmtude of the wave vcctor does not change we can write
N= (ﬁxkf)uk xkrl-(k xkf)/(kzsme) -

and also kf— k - q. s0 k x k q X k thcn thc spm Ol‘blt potcnnal is -

o U,, = —21t/m i 0‘ V{ Iexp( 1q r) [ C(q)/ (k% sme) ] F(q) d3q } X k
=-21t/m10' (l/raHlar)rxk g
=-21t/m xlraHlarO‘ L 97

Agam for heavy nuclcx the functlon H sxmbhfies o



[n thxs approxxmation thc potcnnal mvolves the pmducn of thc T~matnx and the dcnsxty

Thxs is thc tp approxlmauon for the optical potennal and results in a potcrmal with the

. samc gencral fonn as thc nonrclauwsuc phenomcnologxcal opncal potential,

26
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Il » ELASTIC SCATTERING

There are several relativistic approaches to nuclear physics which suggest that

3

the opu‘cal potential for nucleomnucleus scattering involves large Lorentz scalar and

vector contributions. First, the phenomenological Dmc opucal model [C182] uses strong‘

"

vectorand scalar potentials to give good fits to elasue spin observables Thc relativistic

impulse approximation (RIA) [Mc83,Wa85] calculations find deep scalar and vector

A

potentials from a.Lorentz-invariant representation of nucleon-nucleon scattering

amplitudes Fi'nally,) relativistic meah field calculations [Ho81b)] relate these potchtizils to

‘ Iarge scalar (sxgma) and vector (omega) meson ﬁclds and nge a good descnpuon of

R

ground state charge dénsities. In this chapter we explore the, ﬁrst two of these types of

calculatmns-.

11 Phenomenology |

-®
Y

'I'he phenomenologlcal opncal model is fo‘zmed by varymg the parameters of.
‘the potenual until the clasnc scattermg observables calculated usmg thxs potennal agrec
well wnh the expenmental elastic scattermg data. ‘ ’

The nonrelanvxsnc phenomenologlcal opncal potermal is constructed from a /

complex central term whlch is usually parametenzed asa Woods Saxon funcnon and a .

oy :
5




w
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‘s'pin;orbit term which is parameterized as the derivative of a Woods-Sixon function
[Sh68]. This spin—orbit‘téﬁn is. required to explain the clasti;: pblarilzation of the scattered
particles and improves the caléulatcd cross sections at backwafd/ angles,

Feshbach [Fc58] has dcvclopcd a formal theory of elasue scattering whxch has
bccn described by Jackson [Ja70] and ‘we bricfly outline here,

Write the total Hamiltonian of the system as

H=Hy+ V(n&) +H(E) I
)
where H, is lhc kinetic energy opcrator of the prolcculc €= R ‘denotes all nuclcar

coordinates, V(r,§) is jhe potential for interaction between the projectile and the target

.
)
(3

and H(E) is the internal Hamiltonian of the target, H(E) has a complete set of :

eigenfunctions {<I>J(§)} which we can use to expand the total wave function ' oy

- IS

wu@=£%mwm® . . - 1.2

whcrc"l‘j(r) describes the motion of the projectile relative to the target. Thé@‘eé%t&

(

channel in this cxéansion is Wy(r) @ (&) so we define an elastic channel projection

)

operator, P, such rth'atl T e
< P \P(r,g) 5 ZOLX3) N .. -3
and anod‘g projection operatér, Q, Wthh projects all states except the elastic channel
= : g , , ¥
: Q%@hzmﬁmq©l : I1l-4

After some manipulation of Pe,Sghrc")ding'er equation associated th III-1 the
gcncmhzed othcal potcnnal is defined by,

Ua'<<b lV(r,§)|d> >+ <@ |VQ[E QHQ] QVI®,> . I0-5
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If V(r,§) is a local interaction and exchange effects are ignored < D, | V(r,5) | D, > isa

local singlc pax"ticlc potential V(r) which is real and represents the leadihg term in the
interaction between the incident nucleon and the target groun;i state. The second term
represents scattering which involves an intermediate excited state of the nucleus [Ja70i
and it is this term which contributes the imaginary part of the optical potentiali If
scattering through intermediate states is an unimportant process then the optical potential
can bé approximated by the first term of I11-5.

The shape of the real part the central potential can be guessed from the
following argumcni, The intrinsic nuclear wave functions are functions of the nuclear
coordinates only, and ’wc assume that the total potential js the sum over a“ll tﬁ¢ nucleons

in the nucleus of the two body interaction between the projectile and a target nucleon, so

the matrix element of the potential between nuclear ground states is

SOV (1,8 DGE) > = < @) 1T, , v, (r-1,) | B8 >
=Jd3r’v(r~r‘)<<D0(§)|Zi_l'AS(rrr')]d)&Sé)>
The matter density of the nucle‘us is

pIr) =< @) | Ei aad oG > 111-6

A

so the matrix element we are considering can be written as
<<DOIV|<D0>=Id3r’v(r-r’)p(r')
and if the nucleon-nucleon interaction is short range, we can use a point ( 8-function )

interaction so our matrix element is just proportional to the matter density of the nucleus

<@ | V|®,>=comst. p(r) . f | I0-7
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We therefore choos§ functions for the optical potential that are roughly the shape of the * .
nuclear density, for example the Woods-Saxon function, which we use
f(rr,a)=[1+exp((r-R.)/a)]! - 111-8
where R = rAAm, r, is the radius parameter and a is the diffuseness. |
" The relativistic phcnczmcnological optical model is based on the Dirac equation,
The optical potential is formed from a Lorentz scaia; term, Uq(r), and a term, U(r),.
~ which transforms as tllxc' time-like compo_nent‘of a Lorentz four—veétor. The eqpation we |
solve is then (with R=c=1)
| [a-p+B(m+Us)]‘§‘=(E-“Uv~VC)}{" | -9
where' o and B arc'thc standara 4x4 Dirac matrices, m is the rest mass of the projectile, E

A

is the total projectile energy in the center of momentum frame and V. is the coulomb

potential due to a charge distribution of the form o -
p(r)=N{1~IERF[(r—R)/(2‘a)]} : IH—1'()

where ERF(x) is the error functior}.‘Thc normalization constant, N, is dctcrmined by

integrating the cha_rgé density over all space to get the total chargé. This form for the

coulomb potential is v;';ry close to the Woods-Saxor: form if we make

; | Rw.s = Rege
aws=agp (W)2/12 .,
this also matches the gradierits at =R [Co85a). The scalar and vector potentials are
parameterized as | |
Ug = V'S f(rrgpag)+iWsf(rnrga,) 'III-lvla

Uy = Vy F (5 Iy ay;) +i Wy £ (5,15 ay,) I-11b
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whcrc\Ihc {'s are the Woods-Saxon functions III?S.
\1 Equation 111-9 can be reduced [C182] to a Schrodinger-like equation which
i S ' '
contains efféctive central and spin-orbit terms that can’ be compared with the
, \ .

nonrclauvl\stIc optical potential. The effect of the nonrelativistic spin-orbit potential is

implicit in the use of the Dirac equation since this equation ‘describes a spin-1/2 particle.

The Dirac phenomenology has twelve free parameters as does the Schrodinger based
phenomenology but the reduction of the Dirac equation to a Schrodinger-like equation

gives effective dentral and spin-orbit potentials which are fairly: complicated functions of

\

the Dirac potentials and allows more freedom in the form of the effective potentials.
| A . .

These effective potentials also explicitly contain the energy of the incoming particle.

If we write the four component Dirac wave function in terms of
v \ |

two-component wavc\functions, uandd as ]

\ L )
Y= (uf,dl)t . 11-12
\\ Q. '

we can write IH~9 as two coupled equations for u and d
(m+Ug)u+opd=(E-Uy, V )u III-13a
opu- (n&+U )d=(E-Uy-Vo)d . II-13b

where p is the pro;epule mo entum operator ; and © is the usual Pauli spin vector. From '

thé second of these equations e“‘cz'm write the lower component in terms of the uppcf

one - | | |
.d (E Uy- Vi+m+Ug)! O‘pu " | - 1n-14

Substxtutmg III 14 mto III 13a results in a sccond order cquatwn for u whlch contains

the first derivative of u ( the Darwin term ). To get rid of the Darwin term so that we

have an equation which looks like the {:hrbdinger équatiop we make the subsﬁ;utioﬁ



¥oasi2u 11115
where we choose a form fof ] \a;hich will make the two wave functions asymptotically
the samevin the absence of the Coulomb interaction

s=(E~Uy-Vo+ m+Ug)/(E+m) C U ID-16
we get, after a little algebra, the Schxﬁdingcnlike equation

[ 47?'/ 2m) + Ugep(n) + Uy oL ] ‘Pg =T¥g | ‘m~17
. -where T is the kinetic energy of the incoming proton. The effecééive‘centml potentiél is :

ccm(r)--[(E Uy-Ve)t-(m+Us)-(E*-m )1/(2m>
<[ Urss - 3/4 ( s/s 2575 ) / (Zm) ' IM18a
and the spin-orbit potential is | |

Upo®=-s/@ms) . . B 81
' Note that a‘prime on s denotes differenﬁanon with respect to r. Equation IIII;-17 is
"Schrodinger-like" because the energy of the projecnle is explicitly contained in the
~ potentials. B |

This reduction of the Dirac equetion actually results in a central petential which
is quite different from the regular Woods-Saxon form [C182] Wlth the Woods Saxon
central potennal the shape‘must remain basxcally the same as the projectile energy

. 1ncreases~ but the strength is free tovchange from attra'ctive to repulsive. The effectiv_e
cenn'al potcntial has e much more d’rématic energ); dej)endence At low energies the
patennal is close to the convennonal Woods-Saxon shape and attracuve, and as the .

_ pro;ccnle energy mcreases the strength of the potennal decreases m magnitude and

eventually becomes repulswe at about 200 Mev. The center of the potential becomes

’ i Ty
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more repulsiue as lncident‘energy is increased but there rcmains an-attractive pocket at
the nuclear surface, Figure -1 shows the real part of the effective central potential for
protons scattering from #°Ca at an incident‘proton energy of 500-Mev. The relativistic
optical model parameters from »"hich this was calcula]t\edl are given in table Ill-l. The
attractive pocket is believed to be necessary for calculadng the spin observables correctly
[C183]. Figure IIT-2 shows the imaginary effecﬁ»}e central poten‘tial‘which is very similar‘
to the)usual Woodstaxon form, and figures Ill_-3 and Hl‘-4 Show the real and imag;: ary
parts of the effectw\e spm -orbit potential which are very similar in shape to the derivative - ‘
of a Woods-Saxon functxon and are surface peaked

Calculation of the observables for elastic scattering is simplest if we write the "
wave functioh'in the parti‘al wave series lV-l8 and then integtate the differential_equatioh
numeﬁcally. The integration ‘is carried out to a range where the nuclear’part of the
potenttal has dted away, say ten to fifteen Femu s usually, then the partial wave car be

. normahzed to a Coulomb function [C081] and the phase Shlft for that pamal wave can
be calculated at the same time. The elasttc observables can then be calculated in terms of
these phase shxfts ( Appendlx B). The elastic scattermg fits for vanous nuclei and
energtes will be shown in a later section. | |

The optical potential"pa'rametei"s' are ‘detet'rrlir‘led by varying the paratnetets andb |
seemg how well the calculated observables (cross sectxon analyzmg power, and Q if.

| avatlable) agree with the expenmental ones. A convement measure of the ﬁt is the :

2 chx-squared defined by. ‘

X =2 [(Og-Op,)/ACg, 2 o may
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‘ whe e O, i"sthe‘expc’:rimental‘ value, VAOEélis the error and Oﬂt is the theoretical ’value.
The elastic data are searched on il a minimum x? is found. - .
The scattering amplitudeforthe scattering of sprn\-l/2 particles from-spin-O
* particles is given in equation 11-90. There are two complex amplitud‘es which means that
_we need three 'observables to deter'mine these amplitudes up to an arbitr-ary‘pha‘se. The
observables usually measured are cross section and analyzmg power, but these are not
enough to uniquely detemune the potential parameters In part this is due to the freedom
of fitting inside the band made by the error bars and i in part due to the lack of the third

opservable Kobos et al. [Ko85]have shown that the addition of Q parameter data can if

not umquely determme then at least reduce the number of parameter sets..

III-2 ' Impulse Approximation

-

o We have seen that in the nonrelatlvrstlc PWIA the transmon matnx element is
the" matnx element between plane wave states and nuclear ground states of the scattermg
‘amphtude 11-87. To form a relatrvxsttc unpulse approxunanon we want a form for the

. nucleon-nucleon scattenng amphtude whrch is a Lorentz scalar [Mc83]
A(E:Q) A I1 I2+Ap71 A ‘“Av"Yr'“l Y2

- +‘AAYI '71"72 72p+Ar° w Oz I H + 1120
where the A s are funcnons of E and q and their subscrlpts ‘denote thexr Lorentz

‘-‘transformatton propemes ( scalar, pseudoscalar vector axral vector and tensor ), alsoi

: la,nd 2 refer to the mcrdent and the struck nucleons respectxvly. - o



We require that matrixelements of II~87 and III-20 glve the same result, i.e.

33

the probability amplxtudes for mmal and final spin conﬁguratxons must, be preserved ) a

‘we get a five-by- five matnx equanon relatmg the nonrelativistic amplttudes A, B, C D

and E to the Lorentz invariant amplxtudes As, AP, AV, A and AT The transformatton

matnx is glven exphcxtly by McNetl et al. [Mc83]. The amphtudes of II 87 can be

deterrmned fromghase shift analysrs [Ar83] and through the kmemauc transformanon
73
the Lorentz invariant amphtudes can be calculated

The optical potentlal is glvcn in terms of the Lorentz invariant scattenng .

amphtudeas T , ' o i
U=‘<<1>0|Z_ A E,q)'|<DO> | - m-21°

where the sum extends over all the nucleons in the nucleus For even-even nuclen the:

: - spms of the nucleons add to zero so the optxcal potentral is left w1th only scalar and . ‘

2/

zeroth—component vector terms whxch can be wntten as

Uv (21!) j exp(-lq r) Av(q) pv(q) d3 k R M-22a -

N

o]

Us (2::)-3 l exp( iq 5 As(q) ps(q)d q ; . - I-22b

Note that m general we can wnte vector and scalar potennals for the neutrons and }

»

‘ protons separately SO we can use expenmental measurements of the neutron and proton

charge dtstnbunon 1f we’ wrsh 'I'he p(q) s are the Founer transfonns of the vector and’ '

scalar densmes
“

ps'(q),=l éxplian) pg®) dr R

PV(CI) f exp(lqr)p\,(r)d3 I I-23a .'
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and pv(r)and ps(r) can be written in terms of the upper and lower components of'the
) ‘ . - L ‘ t

‘nuclear wave function " - SR e
V@) = VA 2+D) [ uy, #%ldm- 21 ID24a
Ps) = 1AM L @j+1) [ ugy P~ 10y P1 . IIL24b

The sums in these densities are over all occupied proton and neutron orbitals in the

I ! ‘
nucleus.
.

Calculations of the sealar and 'vector pbtentials based on this theory [Mc83]

" agree closely with the potentials that are given by Dirac phenomenology for incident’

proton energiés above 200 Mev. Fer protons incident on “°Ca at 200 Mev these potential
depths are approximately: 7 R
 Vy=300Mev . Wy=-100Mev

~-400Mev ) lWS'leOMev -

'The magmtude of Vy and Vs decrease slowly wrth mcreasmg energy wh11e Wy, and W
are fa1rly constant. For Iow energxes, in thlS sunple model the magmtudes of Vy and V¢ |

'mcrease rapldly w1th decreasmg energy Recently Wallace [ Wa85] has related the'

relat1v1st1c xmpulse approxrmanon to the convennonal meson theory of the N-N force

‘l\

i which decreases the magmtude of the low energy opttcal potentlals s0 they are in much o

N

‘better agreement w1th the phenomenologlcal 0pt1cal potenttals at low energy



11-3 Elastic Scatteri'ng Fits - ‘ k
"The ﬁts to the elastrc scattermg data were done usmg the program RUNT |

wntten by E.D. Cooper [Co8l] Thrs code aIlows free variation of the twelve opncal -

model parameters of equatxons III 5 to provrde rmmmum values of the chr squared for

- Cthe ClaSth scattermg observables D | | | o o L o o
The parameter sets of tables III 1 and III 2 vary “(Ith both mass number and
the energy of the mcommg proton For Qost cases there are two sets of parameters |
k. shown One set (set A) agrees quite well wrth the Impulse Approxrmatron calculauons of
the potentral depths mentloned earher whtle the other set (B) usually grves a better fit

’

(lower chi- squared) to the elastic scattenng data but does not agree so well with the IA

¢

calculation. Now we proceed to examine some of the medrum energy elastic scattenng

: data wluch has become avarlable recently

" 40 o 3 iz;l v J \‘
| o
The ﬁt to the cross section and analyzmg power data are shown i m Flgures III 5
and III—6 The data are from D. Fnckers [Fr86] The fit to the cross sectron data is
,excellent over the entlre angular range and the analyzmg power is also excellent up to
50 After 50 the error bars on the analyzmg power data get qmte large SO, those pomts
| make very httle contnbunon to the Chl squared and therefore w1ll not cause much of a -

change in the optical model parameters during the search The parame:iers here seem to

'be very well determmed as no other sets were found.



. 40Ca at 500 Mev, o

| B ’
. t Lo,

| ' ‘ e .
_ The parameters are shown in table III-1.5Noj¢ that both sets give identical

38

chi-squarea' for cross section and analyzing power, and‘ the chi-squared fer the Q“

- parameter is very close as well, The data for cross section and analyzing power are from

Hoffmann et al. [Ho8 1] and the Q data are from Rahbar et al. [Ra81]. The fits to data are

shown in figures II-7 to ITI-9. The cross section fits are virtually indistinguishéhle' from

e’ac‘h other and fit ttte"data very well exc'ept‘for the last four data points. The analyzing
peWer graphs. of figure I1I-8 are slightly different for thex two parameter sets hut it is
‘ 1mpossxble to say whxch is-a "better" ﬂt The Q parameter is shown in figure I11-9 and
though there is a small difference it is ‘questionable whether thls difference is sufﬁcxent to
_choOSe one set over the other. The interesting question which arises is whether or not
inelastic seatterin_g to collecttvé states is sehsitive to this slight difference. We consider

~ this quest%on in ch;pter Iv.

Seth“e’t al. [Se85] have ahalyzed these data txsing a honrelativistic optical

g

‘potermal in which they have mcluded a term whlch involves the square of a

Woods-Saxon functxon This "dens1ty squared" term anses in the relanvxsnc 1mpulse

) approxnnatton calculatxon of the Schrodmger eqmvalent potentlal/ d is mcluded inan .

. ——

attempt to correct for relatmsuc effects Thxs glves them ﬁfteen free parameters to search

' on dunng the ﬁttmg whereas we have only twelve The fits we get are about the same as

thens.
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40Ca at 800 ng' '

"~ The cross section’ and analyzmg power data are from Bleszynskr et al. [Bl82]
and the Q data are from Fergerson et al, [Fe86] Potenttal set A was obtamed by
restrlctmg the CTOSS sectron data to 33° but mcludmg all data for analyzmg power and Q
parameter in the search Note that the ﬁt to the cross section ( figure I-10 ) continucs to |
oscillate with a penod of approxtmately 6.5° after 33" but the expenmental data departs

‘ from thts trend. Parameter set B was obtamed by searchmg on all the data The fit

obtamed to the cross section w1th this set is muclf better for large anglcs although we sul]. f “

o

~ can not get the maximum at 38°. The analyzmg power shown in figure III- l 1is qutte |
3 good for both sets but it does seem easier to ﬁt when the large angle data are 1gnorcd
The Q data shown in ﬁgure IH 12 are also ﬁt better when thela.r.geangleemss section
data are 1gnored anche do not seem able to fit all the data srmultaneously [Ko86).

' Bleszynsk1 et al have analyzed these data usmg the Glauber muluple scattenng
approach The1r Cross section rmmma tend to undcrestrmate the data. shghtly and the two B
mmuna at 27 an 34 are shtfted to smaller anglcs from the data whxch 1s in agreement
o w1th our calculation. Thls Shlft away from a penodtc dtffracnon pattem is mdtcanvc of

another process beﬁommg unportant. The ﬁts to the analyzmg power are very sxmxlar and :

‘ ,'agree well thh the data except that we do better at descnbmg the peak at21°.

°

l

The cross secnongnd analyzmg power fits are shown in ﬁgures III-13 and

‘ III-14 The data are from Blanpred et al. [3184] Only one parameter set is shown in -
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table Iﬁ~2 bctausceycry st;arting set that was tnéd convcrged to thé set shown, This
uniqucrtcéé could be due to the small angrular‘ rattgc of the data since for small atngles
“ ortlythc direct reaction is £m§OMnt ‘Also thc small number ot“ data innts and ﬂte‘small
error bars hclp to umquely determine the parametcrs o |

Blanpled etal. have analyzed these data usmg both nonrclatmsnc optxcal modclt
and couplcd channels techniques. Both of these calculatmns result in fits which are about -
the same as outs : | | |

P ‘
There has been some dtscus’sitm of the ‘c;tistcncc of uncon\j/cntiong’f’potcﬂtial
~ shapes [Me81] which lead tt) better fits of the data for p;oton scgttexjng from light nuclei.
20Ne seems to 6¢ tlcavy enough not to suffc‘f the problem since the paratneter set shown
m table 1I-2 givt:é effective potentials'w'ith the same general c‘itaraétéristics as t\hosc
| shdwn in figures III-f to III-4 for 4°Ca This ag‘aixt‘ could bc a result of the small
angular range. When we try to analyzc I2c, though a good fit to the data is obtamed
only 1f the real central potentxal has the form shown in ﬁgurc IH 15. Thc odd mgglc in

thc centcr of the nucleus seems to havc no physmal Jusuﬁcauon and is p0551bly an

amfact of some tmportant proccss othcr than clastlc scattcrmg
Ca a1 500 Mev,

: Figtmcs III-16 and IMI-17 show fits to data for tvfotons scz;.ttered elastically from
'“Ca ata proton cncrgy of 500 Mev Thc data are from Hoffmann et al [HoSl] The
~ CTOSS secnon ﬁts arq cxccllent exccpt at the last rmmmum wherc both ﬁts miss a little.

- Parameter set B does a shghtly better jOb than set A for the analyzmg power( sce ﬁgure E :

' III-13) for angles abovc 18‘
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Seth et al, ‘[Sc85]’have analyzed these data the same way they analyzed the .

1)

, ‘“’Ca data at 500 Mev. and thcu- analysxs is outlmcd in that section, Thc fit th.cy gct is |

very sumlax tc? the one.we gct using paramctcr set B

,
. ¢ ; | ‘ h
%0Zr at 800 Mev, . .

| , Thc frts are shown in ﬁgurcs I1- 18 and IH-19 Thc data are from Gazzaly et aL

[Ga82], Both paramctcr sets nge good fits to the data but sct B's total chi- squared 1s

almost half that of set A Set B is not.ablc to describe the ﬁmt minimum of the analyzmg

power at 5° but docs a bettcr JOb than A of dcscnbmg thc rest of the angular range.
Gazzaly etal. haVc analyzcd Lhc cross sccuon data u:mg a Schrodmgcr optxcal

© model but w1th rélativistic kmcmaucs and thcy get a fit vcry lar to ours.
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IV - INELASTIC SCATTERING

We have seen that a relativistic description of the incoming proton gives a good

| udcscn‘pdon‘ of the elastic scattering data, It has been shown [Pi83] that scattering

‘observables for low-lyihg cbllcctivc{ states can be related to the elastic scattering
amplitu‘dc so with our elastic scattering model wc should bclablc to do a good job of
predicting chlécdvc.cxcitations. Sawafta [Sa84] has cxarﬁincd the irﬁportangc of the
"winc—botdé-ﬁottom" shape 'of the cffcctivc potential in inelastic scattering. Using the
‘ .4 ,
.rclzﬂnivilstically based potential improves inelastic scattering predictions above 200 Mev.,
Relativistic impulse approximation calculations [Ro84, Ro85] of inelastic scattering have
. s ' .
also been done with reasonable success. In this chapter we extend the relativistic optical

model to inelastic scattering to collective states. The incident proton is described

rélativistiéally‘.by a Dirac spinor but the nucleons bound in the nucleus have an average

eTRIgY of less than 20 Mev. each so we describe the nucleus nonrelativistically [Ja70].

X
Lt LN
'

4

RAD Extension of the Optical Model ' | .

'
. [
' . ]

-

o
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The extension of the optical model to inelastic scattering to collective states can

be accomplished by wrmng [B164] thé previously spherical optical potential as a.function

of the displacement of the nuciear surface -
| U(r,R) -+ U(r, R+ a@) C V-1

';whm R 1s the ré.rigc ‘of the po_tcntial axjgl a (%) is the displacement of the nuclear

5]



surface, which we can write as

u(‘)=RZ L IV-2

tm 2™

If we assume the displacement of the surface is smz;ll we can expand the potential in
powers of a(f) and keep terms to first order only

U(r,R+a(D):U(r,R)—r’a(f)a/aR[U(r,R)] | 1V:3

Thé Qistoﬂcd wave matrix element is, from [1-80

To=<xO @ |0 x> - V-4
where we have approximated the total wave functions as ti}c products of the projectile
distorted waves, X, and the target nuclear wave functions, ®. We need to find the form
of the rcsiciual intcradion I1-76 |

w=V-U
whérc U is the spherical optical potential. Wc approximate the matsix element of V
between the ground state and an excited state by the matrix element of the dcfoﬁcd
optical potential [Sa65] ’

| | <OIVI®>=<D|U,|D, > . L

where U, is given by IV -3. The T-matrix element for inelastic scattering is then )
Ta=<x1 §<Df|a(?)a/8R [U(L,R)®, > x®> . IV-6

, The matrix element between the nuclcar states plays thc role of the transition operator

bctwcen the mmal ‘and.final elastic scattering states. It contains all of thc mformatwn ‘

about the nuclear structure and any angular mom\entum selection rules. The integration

" over nuclear coordinates can be done quite easily since we only need to consider .,

éynunetry (eg. rotational) properties of the nuclear wave function. The ground state
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wave function of an even-even nucleus with J"=0* can be written és [Ja70]
" ® = (1/82 12 DO, (e) Onp IV-7a
and tho:; final state with spin I and projection M is |
@, = [(21+1) /87 "2 Dlgy(e) Oy | v
where D is a r;nation matrix, € denotes the ofiéntation of the body fixed axes with respect
to the space fixed axes, and Oiny I8 the intrinsic nuclear wave fu‘nctioﬁ. For an axially
symmetric deformation IV~2 is independent of the projection of the spin, We can then

write

a®) = R X2y ;o) W RE:

where £ gives the angle in the body fixed fraswg. To transform to the space fixed frame

W€ usc . ) 5

Y®) = DhLYp® T ve

The matrix element over nuclear coordinates is then
' 8

<@ &(Y) 0/dR { V(r',’ﬁ)] |, >=<®| a(®) |'<1>x > /R [V(r, R')]
=(2141)12/822 Y <D DO
(2+1)™ S om | DYy | D%o >
<Oy [ Ragg | Dy > Yp OR [ V(r, R)Y
The matrix element of the intrinsic wave functions contair_ls the radius“ parameter, R,

which is a constant so that matrix element can be written as

8y=R < ®r |2, | Dpp > = R, v-10
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where [31 is the deformation parameter of the stai'e,' and&x is the deformation length. The
matrix element of the rotation m;m'iccs 1s [Ra57].
<Di0M|D‘0“|D°00>=Sn2 (21’+ 1! §u8m ' : Iv-11
SO we get | o
<®, | @ J/OR v (@, > =8, (2041 Y2 Y* (@) 3R (V(rR)] Iv-12
and the T-matrix element for inelastic scattering is t}lcn ' |
T = S\l (211 )12 < x 0| Y m(®) /R | V(r,R)}| xi<f> > . IV-13
That ihis. is the comect form of }hc matri); clcmcn‘t when we change from the
nonrelativistic distorted waves and transition operator to the relativistic versions, has.
been shown by Co‘oper et al. [C085b]: The derivation of this result is outlined in
Appendix A. |
l The optical potential we deform in\;olvcs the scalar anci vector terms of the
Dirac equation III-9 |
' AU =AU, +UsT . o v
Thcse potentials are pmaﬁc'wﬁzm as m I1I-11 and the deformation is doﬁc with respect
to the 1"ango of the potential, R. We make .this'o'})ﬁcal potential nonspherical as in IV 1.
As in iV-3 the dcformcd' part of the potential is feally just the derivative of each
Woods-Saxon function in iﬁe potential with respect to the range of that function. We
write the‘matrix elc‘zmcn‘ts of the deformed potehtials between initial and final nuclear |

states as
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. LA ‘
<AUg>=38 /(2141 )" X"y [ V5 9/0R, f(1, Rg, ) + ¢
o i Wg /R, f(r, Rg; ) ] " IVI5a

i Wy 3Ry, f(r, Ry, ) ] ~ IV-15b

|

Here we keep the deformation lengths (BR) equal for each term rather than having equal
deformation parameters since it has been shown {In73,Sa84] that the choice of equal
. deformation lengths gives a better prediction for inelastic polarization than equal

deformation parameters. ‘ !

]

IV-2 Calculation of the T-Matrix Element

f

. 1 ' R . .
All we need now to calculate the T-matrix IV-13 are the initial and final
distorted waves. These distorted waves are solutions of III-9, and are four component

spinors which we can write as III-12. The matrix element is then R

Tg= Jcuty,dte) ¢ <AUy> + 7 <AUg> ) (uly, df )l ddr - | R
. [u'(<AUy> + <AUg> ) w+dly (<AUy> - <AUg> )& 1% IV-16
| v'I'he sum of tﬁc deformed potentials is ass;ociatcd only with the upper componeﬁts of the
‘, wéve func_:tions‘ and the difference of .th:: defotmccf pqtc:itizils is associated with the lower.
: éompdﬁcms. Recall frpﬁl cl‘iapter I that the pbtémials have oppo#ite signs aﬁd typically k
| <AU‘V>‘ - <AUg> is from five té ten times larger than <AUV> + <AUS>. This means

that unless the lower components of the wave functions are much smaller than the upper



o
‘ components thxs difference tenn will be cn'tibal to the calculation but Cooper [éoé 1] has
‘shown that the upper and lower components can have close to the same magmtude at "
‘ htgh momenta ‘Moreover this difference term contains the spin- orbtt dependence of the

"T-matrix and we shall discuss the imponanee this term is in the following chapter.

_We write the upper component of the incoming Dirac spinor in a partial wave

©osum

b, ) - 4 (Bpm)2m)!? X Rexplio,) (20 +1)2 / ( 4n )Ué i
<0230, ulju> GGV Wyps VLT
where we have chosen the incoming wave vector k; to point along the z-axis. Here we
denote the Clebs‘h-G‘ord'an (C-G ) coefficient by <&, s ; m,, m_| j m; >. Note that in the
absence of a potential this waye function is normalized to a plane wave. bThe g'eneraliz‘ed'

‘sphencal harmomc 8 212 is given by couplmg an orbital angular momentum wave

functmn to aspm wave functton Ce

riny= 2, <& 12501 y1i R >YRY 2,y . IVe8
'~ Alsoin IV-17.“‘,e have- ‘
K- the Spm ijecuon of the i mcommg parttcle

E; - the total energy of the i 1ncom1ng parncle (ky?c plus mass)

© . m- the rest mass of the projectile

e L0y the coulomb pﬁase shift of the.!‘h parttal wave WlthJ -2t 1/2
- _f - the radial Dtrac wave function =

The upper component of the outgomg dtstorted wave can be written in a similar way“as



]

‘“x‘(kr ,T) =4x [(Eﬁm)/Zm]m 2 r( cxp(x ) Y v-A ( Er)

<.2' 172 v?»,?\.lj V> “(kg)/(ktr)ﬂx‘mj . IV-19

4 :

Note that we have labelled these distorted waves with the projection of thelr spin so we .

- see that the T—matrix element depcnd's on ‘incoming and outgoin’g_spin projections as well

Ty

as the spm and prolecnon of the final state of Lchleus

We can also write an expression for the lower component for the Dlrac wave

-

function using III-14 and IV-19

dx‘= ( E - UV- VC +m+ US ))l o'p u)‘.l
=(E- Uv -Ve+m+ Ug)y! 41[[(Ef+m)/2m]‘“2 Z.!.' v it exp(io;z.j.)‘

Yv-l(if)<.a 1124 v-A Al j,v>opf, (kfr)/(kg)31 ;,21

. ‘The operator o P c%‘n be written as .‘ |

| e ;--memar uroL) o T v
and s1nce the generahzed sphencal harmomc is an exgenfuncuon of J?, L2 and s? the
‘ operator oL canbe evaluated as ' .

| oL=J- L2 Sz—j(j+l) m+1) s(s+1) o _IV-Z;I
‘ so the lower component of the outgomg Duac wave funcuon 1s R |

=(E- Uy- v, +m+ +Ug)! 41:[(Ef+m)/2m]lf2 Z

.,?

r! exp(x )Y vl(i,)<_c 1/2 v~x MJ V>
(-1)(3/8r llrcl') J&DIKD) OEY Yy V22

, wherc ol'is Just the functlon
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The lower component for the “ir‘lcoming wave function is hqhdiéd in exéctly the same
W;iy. No’w puf ali the ;;ieccé together into IV-1§. Tﬁe Angle integral yfor’ thp term
‘ iﬁvolving the lower éoiﬁponcnts is | |
J[ofh"’ rngy L ¢ lM(Y)] o?:{ “,ZJdQ
J.[g.“m]T[YIM(Y)] H“mdQ - | CIv-24
where we have used |
ofof = Al S | ; IV-25
and we see that th; angular integral is the same for bothétcn‘ns; |
‘We need twg ‘fésults to be able to put the z;ﬁgular integral into the form wé

want. First a sum of three C-G coefficients [R657)

> <1 121, - v,vn,u><£ 112;v- mu v>

<£Ivv,Mllu 7> L
=il 1’2[(22+1)(21+1)]m LM, >
WQ .2 172 D o | V26
| and sccond we want to get rid of the 6-j coeffic1enf by usmg [Ma58]
<.u 00|10>wa ],.2' 12,
1/2[1+()*+-'+‘1[(?.n+1)(zn+1)1”2
 -<“1/2 1/2;10>‘."‘f, . v-27
" The integrau'bn 6ver an‘gle then gives | " o
J[s,ml [Y1M®] P12, 00 -(16n>"2[21+11"2<>“’25

[1+(-)‘+1+']<J IVMIj,p.><_|,_| 1/2 1/2|10> IV



“The T-matrix is then
. | SR v
= 8 (4m? [ (Ep+m) (‘:3(+m)]1’2 aemayt X [1+(-.1>‘+1'+‘] 2
ex'p‘[ i( Oy + Gy )] [(2,+1)(29+1)/(2,+1)]1'2 Y* #-MA0,0)
“ “<_.e;1/2;o,u|jp><j',1;-1/2?0,|j-1/2>_<1 12 ; pMAA|JpM> |
| <j',I;u’—M,M|-jp>;-{J‘fl.j.(k,{)/(k‘r) F (klr)/(kr) 2dr o+
+ .[ [ (9/0r - 1/r o-l')"fj.j,(‘ljcfr)/(krr)] G[(dx-Urol)f, (kr)/(k ) ] rzdr }

V29
"~ where the mﬁial form%actorsF and G are
F Vy 3Ry, f(Ry; ) +iWy 3Ry, & sz()) |
+v s IRy, f(R8l)+1W Rg, f(Rg) o
G =[ Vy /Ry, f(Rv1)+iW a/awa(sz)
. ’-v a/aRSl f(Rg; ) - sta(aRszf( Rsz)]
‘/[(Ef u,- V+m+US)(E -U,-V +m+US)] CvaL

, iV-3 ,‘_‘Dirae Eqﬁation Based (DEB) Calculation |

)

'l'hls calculauon uses the usual Schrodmger equanon fotmahsm [Sh6g, but the- .
3 B optlcal potennal Wthh generates the dxstorted wave is' the effectwe potentlal TI-18. Th1s |

o opt1cal potennal is deformed by makmg the subsntunon of IV 1 and savmg terms to first

. onder in a(?) as m IV-3 The resultmg transmon densxty is qu;te a comphcated functxon

e
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AUpgg = AU + AU e | o o V32
where |
AU ~ AU + E/m AU, + 1/m [ Ug (AU ) HI'UV ( AUJ;.‘
+3/(4m) [ R ( AU Q'AU\‘, ) - (S"/S)2 (AU - AUy, )/s\ ]

+ [(E+m)4m] [vzs / S%( AU AUV )~ v2 ( AUg AUv )/S] rva?;.3

AU, = - [(E+m)2mS] oV (AU AU XV o va34
‘ahd S‘lS defined in III-16. The terms whxch mclude the Ccmlomb polehtial have ,been |
dropped and Wall terrh p~rop‘ortional to O‘L has been left out of the exp‘rcssion‘ fcr
AUs g, which then has the "full Thorhas" form [Sh68]. This transltlon'densit); is used
with the Schrodmger distorted waves to calculate the T—matnx A companson between

e

the DEB calculanon and the full I’ClathlSth calculanon will be done in the followmg

chapter. -
V-4 Inelastic Scattering in DWIA

Rost et al [Ro84] have done a calculatwn of melasnc scattermg whxch is based
on the relatmsnc 1mpulse approxxmatmn In thelr calculanon the vector and scalar i :

potentxals ‘are calculated through equatlon III 21. The nucleon nucleon mvananp
——

amphtudes A are obtamed in the 1mpulse approxxmatlon from the N N mteracuons as

deterrmned from phase shxft analys15 [Ar83] The collccnve excxtauons are assumed to-

N result ina deformanon of the den51ty 50

(r,R)-»p(r R+a(Q)) S IV3s
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' just as we did m V-1, where we assumed the potential follows the .densit)". The density
is then cxpahdcd m powers of & and only terms to first order in & are kept so the density
is - | | | |

‘l‘p(.‘\r,‘R)=A‘p0+Ap" o - IV-36
- The scalar ter‘rh of the'transitio‘n density is then | |

<% | AU(cR) | @, >

_6/(2I+1)1’ZJA(r r)a/aR[p(r R)]d3' | Iv~37
and there is a similar vector term. Thxstransmon densnty 1S mtegrated bettvcerrl ihitial and
-final distorted wave states. The optical potential used to oalctrlate the distorted waves is

calculated from the impulse approximation but the spirit of the calculation is very similar

v

¢

to that of our own.”
: This impulse appro'ximation calculation was eompared tomeasured cross =
secuons and analyzing powers for the' reacnon 54Pe(p,p )54Fe at 800 Mev Excellent |
: | agreement was found w1‘trh the Cross’ sectton and faxr ageement w1th the analyzmg powers
.l for the J"‘—2+ and 3‘ states ermlar quahty was found for the calculatlon of the elastic |
, scattenng observables The shape of the potenuals used m tlus DWIA calculatxon is ﬁxed B |
_jﬂ by the knowledge of the free amphtudes and th1s lumts the agreement wrth the data that
can be obtamcd. The freedom of a phenomenologlcal determmatxon of the optlcal’

: "'»‘potenual allows us fo’ do a better JOb of calculatmg the elasnc observables and therefore

(hOpefully) the melastxc observables B o
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V - INELASTIC SCATTERING PREDICTIONS

RV

’

A program PROM, has been written to do the full relatrvxsttc opncal model
‘calculatlon for proton melastlc scattering outlined in chapter IV. We use the dxstorted
' \,‘ "
waves obtained from the elastic scattering fits of chapter II for our initial and final state
wave functions. The transition operator has one adjustablc parameter, the defonnation
parameter B, which is detenni‘ned by ﬁtting the peak of the calculated cross section o '
' that of the experimental cross section. |
We compare ou'r‘ calculations to‘ expeﬁmental data and to theanalyses-of-other
authors as well as calculatmg some observables for which there is no expenmental data '
available. We start by consxdermg the melastlc scattenng of protons on 40Ca where a lot
~of expenmental effort has been concentrated In 40Ca we consider three different

energles of the mc1dent proton (362 Mev., 500 Mev 800 Mev ) and three. exmted '

states The = 3‘ state with E = 3 7364 Me}v is a good collecnve state, the JT= 2"

state thh E = 3 9041 Mev is a shghtly collectlve state and the. J" 5 state with E=:
RSt

< %9&5 Mev: is almost a pure smgle pamcle smgle hole (d ‘3)'2 f1 " ) state [Ka84

w,?w( GA

Se85] We also consxder levels in 2"Ne at an 1nc1dent proton energy of 800 Mev 48Ca :

at 500 Mev and 902r at 800 Mev .

'4°gumﬁ1m

Flgunes V-1 and V- 2 show the crogs section and anz‘.lyzmg power for the 3 state’

!

' calculated from the paramcter set in table oI-1. The data are from Frekers [Fr86] The -
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dashed cnrve is caIculated by 1gnormg the term involving lower components in the
” T-mamx clement\IV 16. The contributions of the Jower component wave functxon are
clcarly mgmﬁcant since not only is the peak of"the cross section overestimated by a factor
of five but the minima andmaxima of the ‘diffraction‘ pattern are shifted toWards srnaller ‘
angles. A sumlar shift is ‘also seen in the analyzingrpower s0 we see that the 'spin‘
.' dependent part of the T~matnx is critical to con'ectly descnbmg the data
The dotted curves of figures V-1 to V- 3 show the DEB calculatmn described in

‘section IV- 3, usmg the same parameter set as the RDWBA calculation. The DEB

calculation gtves a smaller deformanon parameter ( BDEB = 0.34 ) than the RDWBA

L Browsa = 0.36‘) and the deformation lengths are just 346 times l'arger for both, The

qualtty of the predxcuons for the Cross sectxon are very strmlar The two calculauons for
analyzxng power and polanzatton transfer ‘show smnlar features but the two calculanons n
start to dxffer quite a blt.at about 48 . The full calculation for the 3" state gtves- a fairly
good predlcuon as we expcct. | | S R
The calculanon for the 5 state’ shown in ﬁgures V-4 and V-5, is as we expect ‘
knot as good as'the ca.lculatxon for. the 3‘ state smce e the 5™ is not as collective a state as the
3 [1(284] The cross sectxon calculatton shows the general“trend of the data up to about
45° then remams above the data whlle the analyzmg powercalculahon docs not posmon
the maxuna and mxmma conectly ot get the magmtudes nght. |

" The inelastic scattering predictions calculated from the parameter sets in table |




, | - - o . . SS '
HI 1 are shown in figures V-6 to V. 17 Thc CTOSS secnon and analyzmg powep data are
from Seth et al, [Se85] and the polarization transfer data are fmm Aas ct al [Aa82]
F)guris V-6 and V~7 show cross sect10n and analyzmg powcr for the VA state
The p.redxcuons from the two parameter sets are very smular The mxmmurn at 14 m :
both ‘cro‘ss section and_ ana!yzmg power is underestimated but the position of the
xninim.nm is correct, The prediction is‘reasonable. since thi‘s state is only partly colleetivc
, [Se85). Also the data set ex.'tends to fo‘nly éS" and as forlthe 5 stat;'e at 362 Mev,}"rthe
prediction would probably get worse at larger angles.
Predxctxons for the 3 state are. shown in figures V- 8 to V- 13 We have also
included the DEB calculation of Sawafta [Sa84] for which parameter set A was used,
Thé three predictions for Cross section and analyzing power are very close‘a‘nd in good

agreement with the data. The deformauon parameter extracted from the DEB calculauon-

(BDEB—O 36 ) is shghtly smallcr than that obtamed from the RDWBA calculatxon :

‘(BRDWBA“O 39)- | . ". 4 o

Figures V- 10 to V-13 show the spin rotation parameters whieh are deﬁned in T

append1x B. Note that as d1$Cussed in appendxx B Dss , whxch is shown in figure V-11,
is very smular to Du_ , shown in ﬁgure V-10, for a collcctwe natural panty state, and |
DLs ( ﬂgure V 12)is the negatxve of DSL ( ﬁgnre V- 13 ) in the adlabauc approxunatlon
so the full analyms has been mcluded for D[_L and DLs only 'I'he three predxcnons for
. DLL are very close and decnbe the data, well The predxcuons for D calculated from the |

‘ " two parameter sets are also very similar but the DEB calculauon does not nge as large a

change from max;mum to minimum around 17 as the full calculauon does.
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Figumg V-14 to V-17 show predictions for'the 5- state, The two parameter sets
give similar predictions of the observables but the agreement with tltc data is not'very
-good, l‘i(;wcvcr over the range of the data the quality of the prediction is comparable the
‘the prcdicti(;'n of the 5" state at 362 Mev, For angles less than 3" the analyzing power
prcdictions‘ have different signs and 4 measurement of aﬁalyzing power at 2° could
distiguish .l‘)etwccn these sets, Note that these ,o,ptical potentials give essentially vthe same

ot . o

elastic séattcring and also thc same inelastic. Previous work [Au65,Am80] has shown

’ that the inelastic obscrvablcs can be cal in terms of the elastic observables, This is

reflected in the msensmvny of the mclastxc calculanon to the different parametcr sets.

Thc clastm analysis of Seth et al. [Se85) which is distussed in chapter III is

tended to inclastischattering by the method outlined in section IV+1, We underestimate

the minima for cross section and analyzing pdwcr for the 2* state at 14" more than Seth
eirs but we calculate the analyzing power better. RDWBA slightly overestimates the

imum in the wrong place while the second maximum is correctly predicted.
e The cross section for the 5° state is described slightly better by RDWBA for
) angles less than 15° and by DWBA for angles ﬂlargcr than 15°. The analyzing power is

again ovcrestimatcd by RDWBA and underéstimatéd by DWBA for angles Iéss than 23°.

£ N

- > Gencrally Seth et. al do a httle better at predicting the cross sections but we do
" better at predmtmg the analyzmg power, panmularly at small angles.
Barlctt et al [Ba85] have analyzcd the polanzatmn transfer data m the

‘ vnonrelatxvxsnc DWBA framework using both phenomcnology and impulse

4

etdl. do. For the 3" state the behaviour of our cross section calculation is very similar to

ima at 12° and 21° while DWBA underestimates the first maximum badly and places .
\ . .
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approximation to generate potentials and transition densities. Their phchomcnologiéal
calculétibn gives a better representation of the data than the impulse approx.imation and
also agrees bittcr with our RDWBA, Barletts' calculation of D, ;. is very close to the
'RDWBA prediction and is in good agreement with the data, D g is slightiy
overestimated by the DWBA Ealculatidn and the change from a maximum of 0.8 to a
‘minimum of -0.8 at about 17" is very slight while the RDWBA calculation gives a very

" good representation of the data,

»

hi 4

Our RDWBA analysis is at least as good as these DWB}: analyses and is:
definitly better at calculating aﬁdlyzigg powers at forward angles.

The extracted deformation parameters are shown in table V—'l as are the
paxﬁmctcrs of Seth et al. The agreement is very good‘for all three states. ;

40C3 at 800 Mev. | o

f -

Figures V-18 to V-23‘ show cross section and analyzing power prcc‘iictionS for
proton inclas;.ig: scattering from “°Ca at 800 Mev. The data are from Blezmynskli et al.
B182.

The 'cglcuiations of the cross sections for th;: three states using paraméfer set B
all ;rxatch the data better for large angles than the predictions dué to set A. The analyzing
power data does 3ot c*tcnd as far in angle as the cross section da;a for the 3" state, and
the two paramet%r Sets giyc‘similaf predictions over the smaller angular range. Fitting the
~ large angle elastic cros§ section daté brings the inelastic 'scattcring prediction for the cross
A éigection down cl_osé; to ﬁle Qata for all three states.

Blezynski et al. [B182] have analyzed these data in the Glauber apﬁroiimation

!
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framework and their prediction for the cross section of the 3" state is very close to that “
given by parameter set B but the;' come closer to getting the last minimum at 42°, |
Gazzaly et al. [Ga82] have done a nonrelativistic DWBA analysis in order to
extract the deformation parameters. These are shown in table V-1 along with thc results
of the analyses of Blezynski et al. and nf this work. The deformation parameters -of
Blezs"nski et al. are in better agreement with this work than thos\e of Gazzaly et al. but
for the 3 state there is a fairly large spread between the deformation parameters and .
lengths, o 7
| Othe‘r~ Aparamctcr sets were found for this nucleus and energy by ignoring both

the ’Q data and the large angle cross section data but the predictions of cross section and

analyzing power from any of these sets are not as good as those from the sets shown,
20Ne at 800 Mev,

Predictions for inelastic proton scattering ai'e‘sho“’m in ﬁgtxres V—24 to V-29.
The data are from Blanpied et al (B184]. RDWBA decnbes the 3” state much- better than
the 2* or the 4+, "I'hc Cross sect%iqon 1s~ve\ry elose to the data except that the rmmmum at
18° is slightly underestimated. The DEB calculation overestim‘atcs this mifimum by
about the same antount that RDWBA underestimates it. The analyzing power prediction
from RDWBA shift the maxima and minima to smaller angles by about 1° and
overestimates the data whﬁmEB calculation is much closer to the data

The predictions for the 2*and 4% states give maxima and minima 'wltich are

shifted towards larger angles by two to three degrees. The shape of the analyzing power

curve for the 2* state agrees well with the data except for the shift in angle. The shapes
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'ot; the diffacntial cross section for the 2+ state-and both curves for the 4* state z;rc
inconsistent with the data. )
Blanpied et al. [B184] have analyzed the data for the 0*, 2* and 4* states in both
the DWBA and coupled chanﬁcis frameworks. The coupled channels calculation doch a
much better job of dcscribi‘hg the data than DWBA or @WBA.
The deformation parameters are shown in table V-1, The parameters from
(B184] were obtained from their DWB/:\ analysis and are in reasonable agreement with

the RDWBA values. The coupled channels method. gives dcformation parameters which

are much smaller than the RDWBA values | B, cc = 0-47 and =0.25].

Bacc

'We have also analyzed 12C and find the same type of problems with this

nuc.lcus, i.e. the prcdictcd observables havi;xg the wrong shape and the maxima and
minima being shifted in a}lgle.

| Some deformation parameters for the 2* state have been in\cludcd in table.V-l.

Jones et al [Jo86] have done a coupled channel analysis of 12C data oyé; a.wide range

of energies and find that the deformation parameter for the 2* state remains almost ,

constant at a proximately B = 0.66. We give a range of parameters for each energy
P 2

because we found several parameter sets which gave different deformation parameters.
Simply letting the search, program find a minimqm chi-squarsd gave excellent fits to the
" élastic obsefvable;:s' but the potentials had the odd wigglqs in the .nuclear‘intcrior as Ishown
\in ﬁgm IH-15. These potentigls consistently result in the l'arg"cst deformation paramétcrs
and lengths ‘at all en?rgie:;. Parameter séts.without the interior wiggles dic.l'not give
chi-squared minima but gave cxtracted def:)rmation paramctcfs ncaf the lower énd of the

ranges given and in better agreement with the results of [Jo86). The 'coupIéd channels



calculations describe the data much better than RDWBA does. - S

48Ca at 500 Mev,

Figurcs V-30 to V-33 show prcdictions for protons, with an incident c;nérgy of
. 500 Mcv scattering inelastically from “¥Cato the 2* and 3 slatcs usmg the parameters
from table III-2. The data are from Seth et al. [Se85].

- The parameter sets give similar predictions even though the chi-squared for the
elastic scattcriné observables is twice as large for set A as for set B. The agreement with
the data is good except that the first minimum in the 2* state, at 13°, is underestimated in
both cross section and analyzing power and for the 3" state the cross section minima are
shifted by about 1. |

Thc analysis of Seth et al. ngcs prcdxcnons for the cross secnon for both states
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whxch are quite close to the RDWBA predictions. Flgure V- 33 shows Scth s DWBA .

. calculation of the analyzmg power for the 3" state as the long-dashed curve. For small o

"an'glcs the analyzing 'pbwcr is badly uniderestimated. This effect is even larger in their

~ 40Ca analysis for the 3" and 5 states. The 2* states of both 4"Ca and 48Ca are. only

shghﬂy underesnmatcd at small angles whﬂe RDWBA overestxmates thesc data sﬂgbtly

Thc cxn'acted deformatlon parameters are shown in table V-1 with those of Seth

etal. and they arein good agreement. .

» * "
: e
At
Ua

Figures V-34 to V-38 show predictions calculated from the two 'parameter: sets

[Py



‘ 61
in table I11-2. The data are from Gazzaly et al, {0482].» '

The two parameter sets give uery similar predietions.for all four states and the
agreement with data is excellent in all cases. Parameter set A seems to give slightly better
'predictions for the inelaStic cross section even though~ this set does not give the lowest
chi-squared for the elastic ebservahles. The difference between the two pedictions is

'Asmalll and it is doubtful whether this calculation could decide if a pararneter set is \

"correct”. There are na analyzing power data available but ﬁgure V-36 shows a.
/

comparison for the 3" state predtcttons DEB calculations using parameter set A have

been included for the 3- state in ﬁgures V-35 and V- 36. Thts calculation agrees very
1

closely with the RDWBA calculation.

- Table IV-1 shows the deformation parameters and deformation lengths obtained
by éazzaly et-al. [Ga82] for 99Zr o compare with the results df this work. The
. agreement between the extracted deformatton parameters and lengths 1s excellent. The‘ )

RDWBA calculauon does as good a job of predicting the\ observables as the DWBA

/
analysis of Gazzaly et al. and the curves are too close to pick one set over the other.

e
.

Frgure V-39 shows a plot of deformatlon length verses proton energy for the 3

.

state in 4Ca. The tnangles are from vanous nonrelatmsttc analyses [Gr72 Sh68
Sa83, Se85 B182 Ga82], the squares are from DEB' [Sa84] calculatxons and the cucles |
are the results of tlus work. There is no clear energy dependence of the deformatton

length The value of the deformation length is approxlmately 1. 3 Fm. and vanes with the

type of analys1s done.



VI - CONCLUSION

We have extended the phenomenological Dtrac op‘tical model to describe proton

| inelastic scattering ‘to collectivestates. These ;alculations have been compared with

S experir‘nental data'and with 'the analyses of other authors."l’he predictions due to
dxﬁerent fits of the elasnc scattenng data have. also been compared

“The two parameter sets for 4%Ca at 500 Mev give almost the same elastic

scattering and also give almost the same inelastic scattering, while for f‘°Ca at 800 Mev.

an improvement of the fit to the.large angle elastic cross section data resulted in an

“ 1mprovement in the predicted mela‘sttc clross section over the same angular range. The

slight dtfferenees in the elastic scattenng fits for 48Ca and 9(’Zr produced similar

L drfferences in the tnelasuc scattenng predtctrons The btggest dtfferences in these

‘
1

s parameter sets are in the unagtnary parts of the potentlal and the melasttc seattenng to
\\/ol/leetxve states does not seem to be very sensitive to these dtfferences This is'in -
agrcement thh the result [Au65 Am80] that the excrtatmn to collecuve states is related

to elastic scattenng | | | | “ B |
| The DEB calculatlon is very close to- the RDWBA calculation for all the ‘
observables The approxunatlons made m this calculatton leave the essentlals of the
! ‘relatmsnc calculation and the DEB ealculauon has the advantage that it can be done with | :

| 'only minor modtficattons to'vexlstmg Schrodmger codes 'I'he dtfferences between the -

L calculauons do not seem to be xmportant exeept for large angles ( greater than 45 )

When a transmon is desenbed in the coupled channels formahsm (appendtx A)'" -

the states are conneeted through aset of coupled equauons and the eouplmg between the -
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~ states is proportional to the transition density, Ale' The transition density is |
propomonal to the defonnauon parameter SO 1f Bi is small enough the channel couplmg is
not very unportant, and for large Bs a proper coupled channels. descnptron becomes
necessary to describe the data. This is what wehave seen in this work. For 9°Zr the
deformann parameters are all very small and the. predtctrons for melasttc scattering are ;
excellenL On the other hand 2C and 20Ne have very large deformation paraméters and
-the predtcnons are quite bad. Nonrelatiwstic coupled, Channel analyses er these nuclei do
better than RDWBA at descnbmg the data. J. Raynal [Ra86] is currently workmg on a
program to do relatmsnc coupled channels calculauons whrch should be able to explain
the 12C and 2°Ne data better than the nonrelatmsuc calculations.

| The deformatlon parameters extracted from RDWBA calcula&ons are in good |
agreement with deformatron parameters determmed by other analyses for. the good
collectrve states. |
' The RDWBA calculation of inelastic (sgattering toA collective states does at leas't‘ as
' vvell and usually betterthanthenonre‘]attvrstlc calculatmns that have been cons1dered m .

| the‘cases ‘where channel coupling is not very 1mportant The spm observables_"

‘ partlcularly are unproved by the relatmsnc descrrptxon The mclusmn by Seth etal.

' .
[Se85] of a "densrty squared" term in thexr opucal potenttal is not enough of a

@

modtﬁcauon to enable their calculatron to do as well as the full Dnrac calculatlon ,

The term of the T—matnx contammg the lower components of the Dtrac wave

T functlons is seen to be crmcal to obtammg a good predxctton of the scattermg

observables This term contams the spm-orbxt dependence of the T-matnx and the data

cannot be explamed wrthout it.

¢
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40Ca

500 Mev,

(B)

189.50
1.0370

0.7257

13577

. 1.0560
0.5388

289.53
10413
0.7337

14895

1.0538
015339

153
153
32 .

. 1’70_0 -

610

280

40Ca |

800 Mev.

(A),

182.68
1.0162
0.6733

-87.439
1.0652

0.5886

31299

1.0072 .
0.7176

57.084

© 1.0862
 0.5968

196

193

33

830"

110

39,000

¢

242.49
. 0.9814

0.6658

-128.81
1.0756
0.6294

-457.90

10.9419

0.7215

155.88
1.0593
0.6431

196
193

33

6700
1600

1100

Relativistic optical model parameters for protons

. “'°Ca. - 4Ca
362Mev. = 500 Mev.
’ . (A)
29227 198.12
1.0115 1.0541
0.6421 0.6180
94677 -84.164
1.1253 1.0580
“0.5509 0.6411

| 414.68 28795
1.0044 1.0583

" 0.6690 0.6517
3
95.739 71.110
11279 1.0450
0.5361 - - 0.6967 -

150 153

- 150 - . 153
T 32
2600, 1700

870 610
- 240
“TABLE III-1.

" incident on *’Ca at yarious energies. -
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Ne |
" 800Mev.. 500 Mev. .
@
158.45 14923
© 0.9380 1.0813
0.7032 0.5314
97.978 -49.108
.0.8842 1.1023 .
. 06839 - 0.6260
25784 22160
0.9380 110666
07370 05867
58.687 51151 -
08254 . 09924
0.7113 0.7086
30 117 |
30 us
80 . 2100
40 1200
¢ TABLE III-2.

‘9ozr

,v o,

800 Mev. 800 Mev.
@ ®
14594 127.53 ~
,1.0716 1.0925
. 0.8042 - 0.7653
| -96.310 143.84
1.0730 1.0354 ~
105466 .. 0.6458
-301.70 -229.24
10356  1.0892
0.8231 - 0.7624
62.205 ' 252.56
10724 0R973
. 04873 - 07487
1Br 13
T129 - 1290
F2200f D 12000
_ 60’0“.‘ '

410,

Relativistic optical model parameters for protons

-

. incident on various nuclei at various énergies..
. v | ) ) e ] . v
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Figure I11-4.
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Differehtial cross section for p + 40ca

elastit scattering at E; = 500 Mev.

P
The curves are Dirac optical model fits

4\caiculated\from the ‘parameter sets of -
table III-1. , :
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0225 0,81
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061-1.17  136-2.30
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TAB“LE‘V-l. Deformation parameters and deformation léngths

for various nuclei and energies.
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Figure V-1.
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Figure v-3.
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A polarization transfef;;coefficient for
p + 40ca fnelastic scdttering to the 3~ state
with Ey = 3.7364 Mev. and Ep = 362 Mev.

The curves are calculated using the parapgeter
sgt of table III-1. The sofid curve is the

RDWBA calculation and the dotted curve is the -

DEB calculation..
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Figure v-8.  Differential cross section for P +.50Ca'
inelastic scattering to the 3~ state with
E, = 3.7364 Mev'. and Ep = 500 Mev.

Co
The curves are calculated using the parameter
. sets of table III-1. The solid and dashed curves
-+ are RDWBA calculations and the dotted curve is
a DEB calculation using parameter set A.
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Figure V—9.‘

Analyzing power for p + 40Ca fnelasti¢ -
scattering to the 3~ state. with E, = 3. 7564 Mev
and E = 500 Mev ‘ ‘

The curves . are described in the previous
figure..
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with E, = 3;3364 Mev. and E, = SQO Mev,
The curves are calculated using the parameter )
sets of table IIM-1. The solid and dashed curves
are RDWBA calculations ‘and the“dotted curve is '
a DEB ‘calculation using.parameter set A. N
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with E, = 3.7364 Mev. and E "= 500 Mev.

The curve'is an RDWBA calculation using
parameter set B of table III l .
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The curves are calculated using the parameter
sets of table III-1. The solid and dashed curves
are RDWBA calculations and the dotted curve is

a DEB calculation using parameter set A.
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Polarization transfer coefficient for
p + 40ca inelastic scattering to the 3~ state
with Ey = 3:7364 Mev . and Ep = 500 Mev.

The curve is an RDWBA calculation using

. parameter set B of table II1I-1.
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Figure V-14.

~

Differential cross sectiop for p + 40Ca-
inelastic scattering to the 5~ state with
Ex = 4.4915 Mev. and Ep = 500 Mev.

The curves are RDWBA calculaéions using the
parameter sets of table ITI-1.
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Polarization transfer coefficient for
p + 400ca inelastic .scattering to the 5~ state
with Ex = 4, 4915 Mev. and Ep = 500 Mev.

The curves are RDWBA calculations using the
parameter sets of-table III-1
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scattering to the 3~ state with E = 3., 7364 Mev.

and Ep = 800 Mev.

The curves are RDWBA calculations using

' parameter sets of table IIP-1.
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scattering to the 5  state with Ex = 4.4915 Mev.

and E, = 800 Mev.

—_—

The curves are RDWBA calculations using

.the parameter sets of table iII-1. 
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scattering to the 3~ state with Ey = 5.622 Mev.

and Ep = 800 Mev.

The curves are calculated using the parameter
set of table I1I-2. The solid curve is the
RDWBA calculation and the dashed curve {is

the DEB calculation.
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Differential cross section for p.+ 20pe
inelastic scattering to the 4% state with
Ey = 4.247 Mev. and Ep = 800 Mev.

The curve is an RDWBA calculation using
the parameter set of table III-2.
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scattering to the 4% state with,Ex = 4.247 Mev.

and Ep = 800 Mev.

The curve is an RDWBA calculation usingv
the parameter set of table III-2.



Figure V-30..

AR SR WL N
10 50 a0 &0
Gt ANGLE '

Differential tross section for p +.48Ca
inelastic scattering to the 2% state with
E, = 3.8323 Mev. and Ep = 500 Mev. f

" The curves are RDWBA calculations using

the parameter sets of table III-2.
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' Figure V-34.

Differential cross section for p-+ 90zr
inelastic scattering to the 2% state with
E, = 2 1863 Mev. and E .= .800 Mev:

The ‘curves are RDWBA calculations using the

parameters of table III -2.
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Figure V-36. Analyzing power for p + 90z¢ inelastic -
' | scatteéering ‘to the 37 state with E, = 2.7479 Mev.
and Ej =.800 Mev. - ' '

A ‘ , ‘ The curves are calculated using the parameter

; ‘ : ' sets of table III-2: The solid and dashed

o~ S curves are RDWBA calculations and the dotted

e curve is a DEB calculation using parameter set A.
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Figure V-38.
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. APPE‘NDIXA - DIRAC DWBA
&

We considcr here the excitation of ‘a‘ nucleus to a collective excited state during
an inelastic colhsron with a proton. We assume that the vector‘and scalar fields follow
the nuclear matter distribution and that the total Harmltoman for the system can be written

 as the sum of three parts [Co85b]

. Hy=ap+Bm+ Ug,(r) -  Ala
' 1_ : . v ‘ ' ‘ o
" H2=21mﬁm1ma1ma1m : L . | A-1b
H, = Zm AVyo®) (a'ym + 2m) o A-lc

~ where aT creates a phonon with energy hw o SPin £ and projection m, and AV, _(r)

is the transmon densrty IV- 14 which is propornonal to the derrvatwe of the optical

‘ potennal The collecnve motion 1s descnbed by H2 and the txansmon is descnbed by H,.

A

_The transition we are mtenested in has a deﬁmte spm I and pro;ecuon M SO the sums in
| equanons A-1b and A- lc are removed and wc set 2 =1 and m=M. The equatxon that

describes the process is

i ! ¢ . ——

HY=EY, S o A2
where the total Hamiltonian is o
H=H,+H+H, . . A3

. H2 is assumed to have a complete set of exgexifuncmns [-n > which therefore obey

“ -

I"Lzln> €, - A o . A4
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132
where n is the set of all quantum numbers necessary to déscribe the state and €, is the -
. excitation energy of that siatc, We follgw the usual procedure of expanding the total

wave function in terms of the eigenfunctions of the intrinsic Hamiltonian as

\P(r,&)=2ﬂ¢n<r)|n>‘ | S . AS

Now substitute A-5 into A-2 and with A-4 we can write

E“(Hl+£n+H3~E)¢n(r)|n->=.0 . . A6
n . o . .
Multipying on the left by < m |"gives a set of coupléd equations for the ¢, (r)’s

. | A
(H +e_ -E)¢m(r)'=zn<m‘|H3ln><pn(r) AT
‘ o . . ‘
© where H, either annihilates or creates a phonon. The problem can'be simplified a great
deal if we récall that we are trying to describe just two channels, the ground state with no

phonons and an excited state with one phénon which has spin I and projection M. We

" write these states as|0>and|IM > respectively. Then we have that

ayl0>=aly|M>=0 e " Aa
o ayIM>=[0> | . A8d
T alyl0s=Ms> s A%

,‘ - ' . “ ' ‘ ‘ ' Y ‘ . 4 U .
‘With just these two states it is necessary to evaluate only four matrix elements of Hy in

\

..

‘ equation A-7. Tﬁe resulislare: . |

o »<0iH3IQ“>=<IIMVIH3'I'M-‘>-=O: L A%
<O'IH;[M>§éwiH3|O>=AVIM(r) ) . ‘A-9a-”"

We now have twb éo‘ﬁpled cquaﬁons 'dc;cﬁbing the excitation of ‘t}vi‘e nucleus by the

Q



133,

"

 passing proton. These are written explicitly as .

(H,+¢, -E )cpo(r‘);, ~Ale(ﬁr) o™ . A-10a

(H, + e -E) <plh';(r) =~ AYIM("? Ny | . AR A-10b
where the exéitah'on energy of the state | IM > l&El Now we deﬁne Green funcfions e
Go(r;r') and v(\il(‘r‘,r') by | |

(H + €, HE)‘Go(r'r')=8(r~r')“ »I “ o A-115;

(Hl+el~E)Gl(rr) 8r - ) | L, Adlb
Equanons A- 10 can then be written as mtegral equations | | |

Oo(F) = Xp(**)(r) f Go(r,;') Av,M(r') ¢IM(r') I , | l Aa12a

: ‘f’m(r) = v‘J‘ Gy(r.r) AVyy(r) %(;")' & N | - A-12b |

-

We iterate these equations once, i.e. we substitute the solution of A-10a (or A-12a)

» which solves

,(H,+e0'-£)xu<+>(r)=b> ‘. o AL

.- into A-l2b toget

¢1M<r)- JGx(PP)Avlm(l‘)xu(*)(l‘)d3' L ae

where %,/ (+)(r) is the dxstorted wave for the mcommg channel and we have exphcxtly

| mcluded the dependence of the spm prOJecuon of the mcoxmng partlcle All we need now )

: . . is the Grecn functmn whxch sathfies A 12b and 'the followmg boundary condmons

1) ¢]M(r) is fimte everywhere $0 LIM,_,O l(r r) const. ‘
: u) LIM,_“. 1(r,r') glves an outgomg sphencal wave in charmel l IM >ie.

LIM,_._ (rr) Lle{exp(xkr)/r [1 kc?/(E1+m)]7G"(r)|u>} |
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 where GH(r') is gomc function to be determined i.é. we have 6nly outgoing
spherical waves. e
B Thc\é_(ﬂxtion to the problemis ~~ * —

G,(rr) =K, (47 2 (B, + m ) / @m)

E,-t [, (r),xoi’g“ "0y m,(f)expmﬁ )

t

Eh ,tlmT( £) [ fy (*)(r) ,io® & () ] rer A-15a. |
szlm [ fli(ﬁ) (@), iotg (N0 )T Yy, i ¥) exp(-id ) o
o - o
T2 F) [ () . ioRgy() 1 . t>1  A-15b

: whére'k and E, are the mdmcntum and energy of the outgoing proton. Assyrtlptotically
the mcommg radial + waves are Besscl functmns and thc outgomg wavcs are Hankcl

functmns of thc fust kind, so we can wnte

(r)+ sm(kr .21c/2+6 )/(klr) L e A-_16av "
g_n(r) r_,m[kl/(El+m)]cos(kr 11t/2+8 )/(klr) "A_-16”b
()(r)-br_mexpl(kr 1n/2+8 )/(klr) L ; S A-l6c
8y () '-»,;,,[ikl /(E + m).] e*pi(klr-.ﬁn/2+ )/(klr) i lA-16d

) The calculatlon of the probabthty of observmg a proton in channel l M > ngcn a proton
' -

| 'mmdent in channel l O > reqmres that we cxammc thc ﬂux at a large dxstancc from the

1

: scatterersowemustexarmne ' / S Sy

LM*““’IM"’“'“Mr»J Gx<rr>AVm<r>xu‘*><r>a3' T '\' A;ii/j..

'Note that thcre are no contnbunons to this mtegral for r outs;de thé rangc/of AV,M(r)
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so we are only interested in the form of the Green function for r > r', Using A-15b, |

A-16c and A-16d in A-17 leads to

a
4. .

LIM,... () = - 4% (Ey + m)/ (2m) exp(ig) /1 (1, kyo 1 (Eyem) )f

Ejjm ¥ %n(R) I ¥y 12 M CF) [y, 1 o R gy (r) ) |
C AV M) wa(i") e ‘ . A18
Now éxp‘and the generalized spherical harmonic as in IV-20. Then we can write A-18 as

LM, 4>1M‘""('r> = (Eprmym)' 2 explik,e (1, ko %/(E,+m) JT m/2n

Z}" ™, > Co A-19
where a factor of ~-m/2n enters bekcausc vwc are looking at the T—matﬁx and not the
scattering amplitude of the scattered wave. Notice élso that we have labelled q>lM(r) with 3
the spin prdjcctibn of the outgoing proton in A- 19. The scattered particles are moving
radially outward in the direction of £ so we sét
Yxmg(g:ng(gi) I A-20
‘and‘deﬁne“tlhe final state distprted wave by

4,90 = 4n (€, +m)/(2m)] 12 z i YA &) (2, 125 mo, '], m)-
@ @) ietg )] A2l
then we can write the T-matrix in the conventional looking form |

"TM"‘f“[ X, ) AV (e j(u(!*)(r')d3r' A



"* APPENDIXB - OBSERVABLES

B-1 Elastic Observables

.
[

Thc scattcring amplitudc for elastic scattering can be expressed in terms of

b
two amphtudcs [Co81] whxch in tum can be written as funcnons of the phase ShlflS
cxtractcd when the radlal wave funcnons are normahzcd to the Coulomb wave funcuons

" These two amplxtudcsarc o,

rd

A=(OTE (4D (3,0 D) 1 (50 - 1) Py(cos8) ] . B

B = (2ik )! 2,;;,“[81"’-81<*>1P;‘ (cos®)] o V‘B-lz
thre the S-matrix elements are similar to II-62 but depend §n ‘the total spin >j, as
well as £ | |

‘. s'!fi)

=-S.!.j-.!11/2* .
Q o

_cxp(215 ) cL o+ . B3

t

' Tl%fferennal Cross secuon can thcn be written in tcrms of th.csc amplltudcs as

| do/d.Q_lA|2+|B[2 | B4

. This looké Just the same as the nonrclatwnstnc case outlmcd by Jackson [Ja70] the only o
: dxfference is that we calculatc the phase ShlftS usmg thc Duac wave functxons instead of ‘

‘ Schrodmger wave funchons |

. Thc analyzilg power is defirted as

136 .
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A=TeToT!/ Te TT!
and interms of the amplxtudcs thisis . _ ‘ - l,.'
A= 21m(A B)/(IA[2+|B|2) ' BS
: A ‘

The spin rotation paramctcr Q, 1s

Q- Tr To,T'o, /TrTrT
which in tcrms of the amplitudes is l
Q=2Re(A*B)/(|AR+ |BIF) . B
! §; :

This is how the optical modcl program RUNT, Whlch we have used for thc flmng,

calculatcs thc obscrvablcs :
B-2 Inelastic Cross Section

Recall qquau'oﬁ“A- 19 for the final state wave function

LI‘J\/Ir - ¢Mu-(r) = [(Ep+m)/(2m)] 2 exp(ikg)/r

[1, ko #I(E +m) y ixyzﬁZ‘ TMW- > ) B
We dcﬁne a wave funcuon V\/Anh all the spm mdlces by removmg the sum over tﬁe ) '
mmal prOJccnon | | |
oM w(r) [(Ef+m)/(2m)] 12 exp(ikg)ir (1, kfof/aaﬁm) It
mIZRTMW lu> - - - B-§

The outgoing flux associated w'ith ¢ ml~(r) is_
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‘ JMPW = [,‘pMHH'(r) ]T a'¢N‘lpp\’(r) ' : . ) 0
. AR km 2n? | TN P . BY

‘ wh;ie we have used [ 0,08 ] =28 The total'Outhing'currcnt is obtained by ‘
sumining over all the fmal'spin prpjcttionS and averaging over thé initial,épin SO
T =(28;+1) 12M;iu'J r | B0
where S, is the spin of the incoming paﬁiclc ( 1/2 for protons ), . . "
.The incidént wave function is a plane wave at large r

‘cp“(‘r) - ['(Eim)/(zxﬁ)]lfzegp(iklr) [‘l,kio-?/‘(Ei%m)JT > Bl

and the incoming flux is (qhoosing the beam in the z.diref;ti@ .
Jipe = (25, + 1! 2}1 9, (0 o (r)
-22(25,+ 1) k/m B2 L

" The differential cross section is the outgoing ﬂuxp'er unit solid angle divided by the '

incoming fluxso L T o .

v

do/dQ = 1/2:k “."n1/21t}22‘ ™ 2 . B-13
ik (2 2 T B3

B-3 Inelastic Spin Ob_sé'rva’bles o 4 ,
' ‘ Ca, o

fo ‘The' sum over the spin indices in B-7 can be written as the trace of TTH

| -'TrTTT;ZMTMM‘IT’MMI , S B4
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then the analyzipg poM:r is given by
A =T ToT!/ Te TTT, - B-15
aﬂd the polaﬁzatioq tranéfcllf;ocfﬁcicms are defined as
| Dy = Tr ToTlo, /T TTT - B  B-16
where j refers t'o ﬁm incident "projcc;t{lc f\rlamc and k' refers tc; the outgoing projectile

/ ‘ " " 1] . . . a
frame. The coordinate system for the scattering is shown in Figure B-1. For the incident

projectile the frame we choose has the z-axis parallel to k;, the y-axis normal to the

139

“scattering plane and the x-axis placed to form a right-handed system, The coordinate .

system for the outgoing particle is defined similarly, with the z'-axis parallel to kg, the

" y'-axis parallel to the y-axis and the x'-axis placed to form a right-handed coordinate

~sysk:ni We also use another notation for the coordinate system in this work, and that is

the ri‘gh't handed systcm formed by the unit vectors s, n and 1 ( sideways, normai“j‘%nd
longxtudmal ) as shown in ﬁgurc B- 1

Notc thata relativnsnc correction must be apphcd to the expression for D

)
A

smcc the use of thc O operator implies a particle- rest frame [Ho68, Gr83). This

Wy

corréction is not shown i m B-16 but is mcluded in our calculanons

Aasetal [Aa82] havc found that in t.he adxabatm limit D =Dyq.. Tney.‘alc.o

t

find that for collective, natural panty transmons as )uc discuss in this work, D;,.is

appro:dmately thc same as D : : .



