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Abstract

It has long been known that many solutions of the Einstein field equations possess
causal anomalies in the form of closed time-like curves (CTCs). However the matter
fields in these space-times are such that time travel is extremely difficult if not im-
possible. In the 1980s K. Thorne gave a boost to this idea by suggesting that since
certain quantum mechanical phenomena allow the violation of weak energy condition
(WEC), an advanced civilization might be able to construct worm holes suitable for
time travel. In 1991 R. Gott showed that CTCs are created in the space-time of two

parallel moving cosmis strings (Gott space-time) which does not require the vic lation

of the weak energy condition.

However, the asymptotic behavior of Gott space-time is completely different
from the other causality violating solutions of Einstein field equations. In this thesis
in the course of review of some of the work done on this space-time during the last year
we see why despite causality violation Gott space-time is singularity free. A theorem
related to asymptotic flatness due to F. Tipler and a theorem on topology change
in causality violating space-times due to R. Geroch are mentioned in §3. The result
agrees with the previous findings on the asymptotic behavior of Gott space-time;

namely, Gott space-time is not asymptotically flat.

In §4 and §5 we see how straight cosmic strings represented by point parti-
cles correspond to the conjugacy classes of Poincaré group elements. It turns out
that strings in Gott space-time are represented by those elements of the Poincaré
group belonging to the conjugacy classes of pure boosts. What is done is essentially
a more accurate formulation of what S. Deser et al. have done. We also review how
these coordinate identifications can be represented by the double cover of SO(2,1),
namely SU(1,1), based on the work done by S. Carroll et al. We reach the conclu-

sion that SU(1, 1) elements representing coordinate identificatioms in Gott space-time



correspond to those points in (2+1)D anti-de Sitter space-time not reached by any

geodesic from the origin.



Acknowledgements

I wish to thank Dr. Werner Israel for his moral support and Curt Cutler, Sean Carroll,
Patrick Brady and Dr. Alex Lyons for helpful discussions. I specially want to thank
Dr. Don Page, my advisor, for relentless help, extreme patience and inspiring kindness

whose startling resourcefulness amazes the expert and non-expert alike.



Contents

1 Introduction 1
2 A Review of Conical Space, Causal Structure 6
2.1 Conical Space, Gauss-Bopnet Theorem . . ... ............ 6
21.1 Definitions . . . + -« ¢ vt v v e 6

29 QGauss-Bonnet Theorem, Conical Geometry . . . . . ... ....... 10
23 Causal Structureand CTCs . . . . ... ..o v i v 12
931 TimeOrientability . ........... o0 12

932 Causal Structure . . . . .. . .o v v oot v oo 15

93.3 Closed Time-Like Curves (CTCs) . ... ... ... ...... 17

2.3.4 Geodesic Completeness, Tipler's Singularity Theorem . . . . . 19

3 CTCs Produced by Moving Cosmic Strings 22
3.1 What Is Gott Space and How Is it Constructed? . . . ... ...... 22
3.2 Gott Space-Time and Singularity Theorems . ............. 27

32.1 Causality Violation and Hawking-Penrose-Geroch Singularity
TREOTEMS . . « o v v o o oo o ot v v o oo an s oo sanns 27

322 Gott Space-Time, Tipler's Theorem And Topology Change . . 31

3.2.3 Partial Asymptotic Predictability of Gott Space-Time . . . . . 33



3.2.4 The Boundary of the Causality Violating Region. . . . . . .. 36

3.3 Absence of Blue Shift Singularity in Gott Space-Time . . . . . . .. . 48

4 Is Gott Space-Time Physically Realistic? 83
4.1 Conjugacy Classes of the Poincaré Group Elements . . ... ... .. 55
4.2 Dynamics of Point particlesin (2+1)D . ............. ... 58
421 StaticPoint Particles . . . . ... .. ....... ... .. .. 38

4.2.2 Moving Particles with Angular Momentum . . . . .. ... .. 59

4.2.3 Spinning Sourcesin (241)D . . ... ... ... oL 60

4.2.4 Point Particles with Tachyonic Centerof Mass . . . . ... .. 63

5 Gott Space-Time and Pseudo-Unitary Representations of the Lorentz
Group in (2+1)D 66

5.1 Pscudo-Unitary representations of the Lorentz Transformationsin (2+1)D €8

5.2 The Decay of a Particleinto Two . ... ................ 72
53 GottParticles . . ... ....... ... .. i 73
5.4 Gott Particles and (2+1)D Anti-de Sitter Space-Time . . . . . .. .. 76
6 Conclusion 81
Bibliography 83

Appendix A 86



Appendix B

Appendix C

88

89



List of Figures

1.0.1 All observers related by a Lorentz transformation agree on the temporal

order of events related by a time-likevector. . . . ... ... ... .. 2

1.0.2 The temporal order of events related by a space-like vector is observer

dependent. . . . . . .. ... ... e e e 2

2.1.1 The embedding of t =const in R3 is a cone. The ratio of the circum-

ference of a circle to its radius is less than 2r asr — 0. . . . ... .. 8
2.1.2 Conical singularity is shown by identifying the cut edges of a flat plane 9

2.2.1 The integration of the intrinsic curvature on D is related to the line

integral of the extrinsic curvature on D....v . 11

2.2.2 The apex can be smoothed out in a way that the boundary conditions
aresatisfied. . . . . .. ... ... L e 11

2.3.1 The cylindrical Minkowski space. The metric in S* x R3 defined in a
way that the time coordinate is periodic. The future light cone of a

poiatpeE Mis M. .. ... .. ... e 13

2.3.2 Klein-Minkowski space. The top and bottom of the above rectangle
are identified to get a cylinder, then the other two sides are identified
with a twist. The metric on the resulting Klein bottle K is induced
from the covering Minkowski space, as shown. A closed time-like curve
pqrp is pictured together with its futuce light cones. The future light
cone points up when pqrp leaves p, but down where pgrp returns to p;

the space-time is not time orientable. . . . . ... ........... 14



2.3.3 The schematic diagram of an achronal set and its past and future

developments. 45 degree lines are light rays . .. ... .. w e e

2.3.4 Penrose diagram of Minkowski space with one point removed showing
an edgeless achronal set going to space-like infinity. The causal future

of pcouldnot liein D*(S). .. ...... ... .. .

2.3.5 A bad partial Cauchy surface which is asymptotically null. This par-
tial Cauchy surface does not give any information about the causal

behaviornearby a%. . . . ... ...

3.1.1 Two parallel string static solution; A particle leaving A at event E;,
crossing the wedge of string (1) and returning to B at event Ey. The
particle then changes its direction and crosses the string (2) and returns
to A at event E}. If the proper conditions are met, this particle returns
to A before a light ray which left A at E;, passed through the origin,

reversed its direction at B and returnedto A. . . ... ... ... ..

3.1.2 The space-time diagram of the same strings shown in the previous
figure which have equal velocities moving in opposite directions with
respect to the L frame. Identifications E; and E, are now on different
t =const. surface and as the particle crosses the string towards which

it is moving, it goes backintime. . . .. ... ... ..o o0

3.2.1 The identification wedges are tilted in such a way that ¢, is continuous

in rz > 0 and t; > 0, whereas t, is continuous in z;, < 0 and ¢, > 0.

3.2.2 Space-tirae diagram illustrating the proof that there are regions con-
taining no CTCs. The projections of the world lines of the strings on

(z1,t.) plane are shown with dashed lines. Region I U IT is devoid of
03 1 0P

18

18

19

23

23

35

35



3.2.3 The function g(¢) = ¢’ maps the angle measured in frame (1) with
respect to the —z axis to the angle ¢ in frame (2) measured with
respect to the +z axis. g[g(®)] is the angle which the null ray has with

respect to the —z axis in frame (1) after scattering form both strings.

3.2.4 The behavior of g(¢) vs. ¢: . ¢) < (>)¢ for ¢ > (<) and g(¢) > (<)o
for ¢ > (<)2a - (.

----------------------------

3.2.5 A sketch showing the general features of the boundary of the region
containing CTCs. The past and future boundaries of this region are
null planes which meet at a space-like cusp. CTCs are restricted to
the region between these planes. The “identification” edges of the
planes represent the intersection of CTC boundary with the string
wedges. The seemingly disconnected A is actually connected and the
connection is aleng the identification wedges which have a cusp along
the particle world line. Therefore A has topology S* x R2. The null
generators j and k of the past and future CTC boundaries, respectively,
are shown inscribed. Only the world line of the particle moving at
yr > 0isshown. The above diagram is the CTC boundary for v = 0.90,
a=7n/4-000001landd=01. .....................

3.2.6 5tring world line and identification lines in the rest frame of the string

at rest in coordinate system (1)

3.2.7 The boost has caused the identification wedges of the strings to rotate

with respect to the L frame. The cusps meet these identification planes

on t1,%5 = 0 lines

oooooooooooooooooooooooooooooo

39

39

43

44



3.2.8 This figure represents the (z,t;) cross section at (y, = 0,2, = 0)
of the CTC boundary depicted in Fig.3.2.5 A self-intersecting null
geodesic begins with an angle very close to k. As it moves forward
in time it distances itself away from the future boundary until it be-
gins to go back in time so its tangent vector approaches j and begins

to go forward in timeagain. . . ... ... ... . o0 o

3.2.9 The string has a transverse velocity to the left where the light rays
passing to the right of the string are blue shifted with respect to the
light rays passingto theleft. . . . ... ... ... ... ........

3.3.1 Scattering of an arbitrarily directed light ray from a string with angle

deficit 2o as is seen by an observer at rest in frame (1). . . . ... ..
3.3.2 Due to the absence of curvature, convergence on the null boundary can
onlybeconstant. . ... . ... ... .. .. e
4.1.1 The rotations around ¢ form a subgroup and each rotation represents

a conjugacy class of the Poincaré group elements. . .. ........

4.2.1 The line r =const., 0 < ¢ < 27(1 — 4p) is a CTC (the dashed line).
The surface of constant “inertial” time T winds helically around the ¢
axis. The event B lies in the causal futureof A. . ... ........

5.2.1 The decay of a particleintotwo. . . . .. ... .............

5.4.1 The geometry of anti-de Sitter space-time is the geometry induced on

47

52

56

61

a hyperboloid in 4-D with the line element ds? = —du® — dv? + dz® + dy?. 78



5.4.2 Conformal diagram of anti-de Sitter space-time with time-like and
space-like geodesics. (I) correspond to SU(1,1)elements representing
Gott space-time. Space-like geodesics go to space-like infinity which
is a time-like surface. In SU(1,1)Time-like geodesics pass through
v =0 at t' = 7 and return to the origin at t = 27. Under the
SU(1,1) = SO(2,1) homomorphism, time-like geodesics retur to the

originatt' =7, . ... ... .. ... e e

1.0.1 The angle deficit is placed below the +z, —z axis

80



Table of Notations

b e eee ettt the line mass density of a string,
O oeterereneenasessontaseneenesnannns the deficit angle of a straight cosmic string,
U eeireriieeeneeee e eaaaans velocity of string with respect to the lab frame,
Boverrnernnnasncees the velocity of string (1) with respect to the frame of string (2),
T P generalized affine parameter
S P extrinsic curvature,
GUT ittt ettt eetaseesnesnssnasssenassscsssnssnnes Grand Unified Theories,
(Myg) ceeeeiiiiiiieiiiiii e space-time M with metric g,
;3,7 . boundary of space-time (M, g),
Sl vttt et eeeeaeeeteneanneanetereenaeastacentaastrtatereataratns such that,
O ettt e e e et etasesnesereaseasssosastosasaesesansanones a null vector,
| () T PR chronological future of p,
() T R PP E chronological past of p,
JH(D) o oreeiee e e causal future of p,
N ) T TR o causal past of p,
2 O R future null infinity,
A PP past null infinity,
A R TPR the same as dM,
5 PP topological n-sphere,
S ittt ittt teteeeaeaeenenearenarinteataeasttastasatarontarens an achronal set S,
1Y S infimum or greatest lower bound,
) R - ¥ RN an at least C? curve in M,
U),U'(p),o(p) . oo ovvvvrevninnnnieiniannnen, an open neighborhood of a point p,

20 ) I future Cauchy development of a surface S,



- i 0 TN future Cauchy horizon of S,

/TR 20, S a null generator of H*(S),
T Riemann tensor,
HZ ittt iaeiaiiiiiieiiiiesiesienaeeaea.. the half 2.D plane,
7 the causality violating region,
A the boundary of A,
/2 (1) T trace of a matrix 2,
B ittt eeeeeteatreeae e eae et aeereaeraeeteetaaresetassnanns asymptotic limit,
T equivalence relation,
e subset of a set,
5 union of two sets,

[ SN intersection of two sets.



Chapter 1

Introduction

In 1905 special relativity invalidated the Newtonian concept of absolute time and
replaced the Galilean transformation laws with the Lorentzian ones. Force at a dis-
tance was replaced by interaction through a field. The causal structure of space-time
was changed and the causal relations between every two points in space-time was
determined by their respective null cones. Two points are causally related if one of
them lies inside or on the future null cone of the other point. But despite time di-
lation and Lorentz contraction, Lorentz transformations respect the causal order of
events (as long as tachyonic speed is ruled out and super luminal sound waves are
not allowed). A glance at the Minkowski diagram reveals that Lorentz transforma-
tions are constructed in a way to preserve the causal order of events, even though the
temporal order of events which are not causally related is frame dependent. This is a
fortunate event because any change in the temporal order of causally related events
which is formulated in terms of the creation of closed time-like curves (CTCs) would
make scientific prediction impossible and immediately give rise to questions of self
consistency of physical phenomena. For example what wonld happen if one travels
back in time and kills one’s parents? Questions of this kind need not cause panic as

long as special relativity is concerned.

In 1915, very soon after the introduction of general relativity, it became ap-
parent that causal order is no longer a sacred law and massive rotating bodies might
deform the geometry of space-time in a way that causality violation is permitted

(Kerr geometry, Godel universe, the Van-Stockum infinite rotating cylinder (1], S.



Figure 1.0.1: All observers related by a Lorentz transformation agree on the temporal
order of events related by a time-like vector.

v /T

The time component of this veckor is
negalive in (¥,¥) coordinale system
an indication of change in the
tomporal order of eventa.

Figure 1.0.2: The temporal order of events related by a space-like vector is observer
dependent.



Deser et. ak spinning cosmons{11]). What actually happens is that the rotation of
large masses causes the light cones to tip over and the closed orbits of Killing vectors
which in large distances are space-like becor time-like and CTCs appear. However
all these space-times have features which make the time travel impossible or physi-
cally unrealistic for any observer moving along CTCs. For example Kerr space-time
is not singularity free and an observer traveling on CTCs lie behind the event horizon.
Causality violation in Gédel'’s universe is total and every point liesona CTC.In a
simply connected space-time, this implies the absence of any achronal hypersurfaces
without boundary and the absence of a cosmic time function which increases along
any future directed time-like curve[2]. Thorne wormhole space-time requires tonology
change but since it is singularity free, the weak energy condition (WEC) is necessar-
ily violated [3]. The WEC violation also contributes to the classical stability of the

Cauchy horizon by giving rise to an optical divergence effect.

In 1991, after many years working on the gravitational properties of cosmic
strings, R. Gott was inspired to investigate the causality violation in the space-time
of moving cosmic strings [4]. He suggested that since straight cosmic strings distort
the geometry of space-time in such a way that even at large distances space-time is
not Minkowskian, a particular movement or rotation of cosmic strings should result

in creation of CTCs.

He achieved this goal by combining what gives rise to CYC creation in Thorne
wormhole space-time, namely, the high relative velocity of two wormhole mouths,
with gravitational lensing effects of straight cosmic strings. Gravitational lensing
causes an observer to see a double image of a quasar behind a cosmic string. One
of the rays is possibly time delayed with respect to the other one (time delay occurs
when the string is not exactly between the observer and the quasar). When leaving
a point A moving at nearly the speed of light, a rocket ship can reach the other side
of the string before a light ray leaving A simultaneously with the rocket ship. The



addition of a cosmic string parallel to the first one moving with high velocity, enables
the rocket ship to travel a large distance in a very short timne and if viewed from an

appropriate coordinate system actually go back in time.

The discovery of CTCs in the space-time of two moving parallel cosmic strings
(parallely moving parallel cosmic strings) immediately received the attention of ex-

perts on cosmology and global structure. This interest was due to several facts:

1- Unlike the case with the CTC containing Thorne’s wormhole space-time, there is
no violation of any of the energy conditions in Gott space-time. Therefore we do
not have to rely on any phenomena based on the intrinsic quantum mechanical

nature of fields, like the Casimir effect, to justify WEC violation.

2- There are apparently no event horizons or singularities which would make space-
like and future null infinities causally well behaved, thereby preventing any
self-inconsistent solutions of the local physical laws. Thus the question arises

how singular Gott space-time is?

3- Since the metric nearby finite strings can be approximated by the metric in the
space-time of straight cosmic strings, the question arose whether segments of

finite strings or loops passing each other with high velocities can give rise to
CTCs or not.

In this thesis we exclusively deal with CTCs in the space-time of two moving
parallel cosmic strings and see how creation of CTCs in Gott space-time is solely due
to the global properties of conical space. In §2 we give a precise but concise review
of the definitions and concepts vital to a go::i understanding of those féatures of
conical geometry and causal structure whick allow the creation of CTCs. We also
state and give an intuitive proof of F. Tipli's singularity theorem {1] which has been

used (rather carelessly) by some authos s0 explain whether and why Gott space-time



is singularity free. In §3.1 after a discussion on how R. Gott proves that there are
in fact CTCs in the space-time of two moving parallel cosmic strings, we examine
why F. Tipler’s theorem does not require Gott space-time to hold singularities. In
doing so extensive use of discoveries made by C. Cutler [5] on the structure of the
boundary of the causality violating region are used. We also address the possibility

of the existence of blue shift singularities in Gott space-time.

In §4 we make use of a methodology developed by S. Deser et al. [6] to see
that cosmic strings in fact correspond to the conjugacy classes of Poincaré group
elements or INSO(2,1) (imhomogeneous Lorentz group on a plane). We examine
exactly which invariant quantities of conjugacy classes of this group correspond to
what physical properties of Gott space-time. It is seen that the configuration of
sufficiently fast moving point particles in (2+1)D, called Gott particles, (straight
cosmic string in (3+1)D) is not the only particle configuration giving rise to CTCs.
S. Deser et al. claim (in a very concise way incomprehensible to the reader not used
to their methodology) that Gott strings are physically unrealistic. In this chapter

this concept is made clear.

In §5 in parallel to §4, first we give a review of the work done by S. Carroll
et al. [7] in which they use SU(1,1), the pseudo-unitary representation of Lorentz
group in (2+1)D, to represent coordinate identifications in Gott space-time. In doing
so first SU(1, 1) elements are used to investigate the decay of a stationary particle into
two. Then the study of Gott space-time shows SU(1,1) elements representing Gott
space-time are not obtained by exponentiating Lie algebra elements. It is later seen
that this is actually the same property of anti-de Sitter space-time in which there are
points not reached by any geodesic from the origin. These points characterize Gott
space-time. We finally try to answer the question whether this property of SU(1,1)
is of any physical significance or merely a property of that group irrelevant to Gott

space-time.



Chapter 2

A Review of Conical Space, Causal Structure

2.1 Conical Space, Gauss-Bonnet Theorem

Before launching into rather slightly intricate features of CTCs in the space-time of
two moving parallel cosmic strings, it is essential to have a good understanding of
conical singularities and those generic features of conical space-time which give rise

to the existence of causality violating regions.

2.1.1 Definitions

A conical singularity is a non-removable quasi-regular singular point {non-removable
in the sense that space-time is not extendible beyond the singular point) in the space-
time of a straight cosmic string. Such singularities arise due to a pathology in the
topological structure of globally inextendible space-times. Excising these singularities
leave a manifold with S! x R? (R* — R?) topology. As it turns out (see §2.2) Gott

space-time can actually be constructed from such excised space-times.

Conical singularities are a solution to G,, = 87T, with
T} = p diag(1,0,0,1)(r), (2.1)

in which 4 is in units of unit Plank mass per unit Plank length (1.35 x 10%gem™!) is



both mass density and tension along the string®. The distance is defined as,
ds? = dr? + d2% + (1 — 4p)?r’d¢® - di2, (2.2)

in a particular gauge. One might ask how the manifestly flat metric (2.2) gives the
energy-momentum tensor (2.1), which is manifestly non-zero. The answer is that
(2.1) was derived using a metric satisfying Einstein’s equation with the above T,,, by
a transformation not valid at r = 0. With the transformation ¢’ = (1 — 4p)®, (2.2)

can be written in the form,
ds? = dr? + dz? + r2d¢” - dt?, (2.3)

with 0 < ¢/ < 27(1—4p). From (2.1) it is obvious that the geometry is invariant under
the action of any element of inhomogeneous Lorentz group in 2 direction (parallel to

the string).

The embedding of a t =const, z =const surface in R? is a cone (Fig.2.1.1). Due
to the mentioned symmetry this cone is characteristic of all features of straight cosmic
strings in (3+1)D. For this reason from now on space-time of a straight cosmic string
is shown by a point particle in (2+1)D. Since as r — 0 the ratio of the circumference
of a circle centered at the origin to r is less than 27, r = 0 is a non-removable singular
point in this geometry. In other words at r = 0 the cone is not locally diffeomorphic
to R2.

It is a quasi-regular or non-p-p singuiarity (non-parallel propagated) since
the components of Riemann tensor remain bounded (in fact identically zero) in the

parallel propagated orthonormal frame of an observer approaching r = 0 [8]2.

1T = T* means that the work done against this tension in stretching the string a unit length
equals energy per unit length. The string is “conformally stretched”(8].

21t should be added that the quantum mechanical description of such a singularity might give
a completely different result. The vacuum stress energy tensor might diverge at a quasi-regular
singularity suggesting that in a self consistent calculation including quantum effect, these features
would be replaced by a curvature singularity{10)



Figure 2.1.1: The embedding of ¢ =const in R3 is a cone. The ratio of the circumfer-
ence of a circle to its radius is less than 27 as r — 0.

A conical geometry can be shown in R? by cutting and identifying the edges of
a wedge with angle 87u (Fig.2.1.2). For this reason 8y is called the deficit angle of
the conical geometry. These jumps which later appear many times in our treatment
of CTCy are not an indication of the pathological behavior of the space-time at the
wedge, but they are due to the bad choice of coordinat: system. In other words
space-time is perfectly well behaved across the wedge and where the wedge is located
is completely arbitrary as long as it does not interfere with the boundary conditions

while patching different coordinate systems.
The most striking features of gravity in (2+1)D stem from the identity,
R“yaﬂ = -E“ypeamm ’ (2.4)

equivalent to Cop, = 0 (Weyl tensor vanishes), valid only in (2+1)D. This identity

is an indication of the absence of curvature outside matter and shows there are no



T

Identify

Figure 2.1.2: Conical singularity is shown by identifying the cut edges of a flat plane

dynamical degrees of freedom where T,5 = 0, which is also obvious from the flat
metric? (2.3). All effects of localized sources in (2+1)D are on the global geometry,
which is fixed by the singularities of the world lines of the particles, arbitrary straight
lines. This means in particular that the conserved quantities, total energy, momentum
and angular momentum are related to the topological invariants. This property can
be expressed more elegantly by the Gauss-Bonnet theorem (a generalized form of
Stokes’ theorem) which says \/ﬁGg, in which g is the 2-metric, is the Euler invariant

density, a total 2-divergence([11].

3For this reason (2+1)D gravity is sometimes called “gravity without curvature”.



2.2 (Gauss-Bonnet Theorem, Conical Geometry

A good understanding of the nature of topological invariants mentioned in the pre-
vious section is of vital importance to the justification of some of the steps taken in
§4. Let D be a 2-manifold, locally homeomorphic to H?, with intrinsic curvature R,
boundary D (Fig.2.1.2)) and let k = ‘T":e“ be the extrinsic curvature of D. For a
2-manifold, D is a line and k is a scalar. Therefore D has no intrinsic curvature 4.

Then a corollary to the Gauss-Bonnet theorem says,

2 /D kl+ [ JgRds = amx (2.5)

where the x = 1 is the Euler number of this 2-surface. From (2.2) it is easily seen that
for a cone with smooth apex the first integral on the right hand side is just 47(1 - 4p)
and is independent of the exact form of \/gR and depends only on the integral of this
quantity over the 2-surface (Fig.2.2.1}. But from Einstein’s equations in (2+1)D,

167y/gTy = 21/9Gg = - /4R, (2.6)

therefore as long as T¢ = 0 for r > p, in which p is a certain radial distance on the
cone, the metric (2.2) truly represents the geometry for r > R. The energy of particles
(their total mass) determines the topological and intrinsic geometrical properties of a
2-surface in (2+1)D gravity, whereas the momentum and angular momentur: related
to the lapse function and shift vectors of these particles determine how this 2-surface
evolves in (241)D space-time . For 1 = 1/4 the integration on D vanishes. In this
case the space outside the source is cylindrical. For u > 1/4 the 2-surface is closed.
For a closed surface with 52 topology x = 27. Thus (2.6) requires p = 1/2, in which
case space-time is finite (its space-like cross sections are compact). Therefore we can
have either u < 1/4 or p = 1/2. If 1/4 < p < 1/2 there exist other mass distributions
so that the total mass adds up to 1/2 [8]. One might think that causality violation

4The name intrinsic here follows from the nomenclature for higher dimensions.
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Figure 2.2.1: The integration of the intrinsic curvature on D is related to the line
integral of the extrinsic curvature on D .

Figure 2.2.2: The apex can be smoothed out in a way that the boundary conditions
are satisfied.
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in Gott space-time is due to the quasi-regular singularity at r = 0 and since cosmic
strings predicted by the GUT theories are of finite cross section, CTCs in Gott space
are unphysical and this way the chronology is protected. But as it turns out there is
an open neighborhood around each string in which there are no CTCs. In this case
the apex can be smoothed out by replacing the point particle with a particle of finite
radius satisfying boundary conditions (Fig.2.2.2). Therefore CTCs in Gott space are
the generic properties of invariants described in the previous paragraph and not the

singularity at r = 0.

2.3 Causal Structure and CTGCs

It is essential for the treatment of CTCs in Gott space-time to have a basic un-
derstanding of the causal structure and for the sake of completeness a lemma from

singularity theorems will be given.

2.3.1 Time Orientability

A space-time manifold M with metric g, denoted by (M, g), is time-orientable when
a continuous choice of future light cone can be made for every point on this manifold
[12), or, equivalently, when there is a continuous time-like vector field on the manifold

[13](p.189). Two following examples clarify the meaning of this concept®,

Example 1: The cylindrical Minkowski space [1] is an orientable space-time
constructed from Minkowski space (R* topology) by identifying the hypersurfaces
t =0 and t = 1. The resulting space-time is flat but the topology is now S* x R?. The

5Here there is a fine distinction between the light cone and the null cone. Sometimes some authors
use the term light cone to designate the subset of M generated by null geodesi-  from p € M. They
use the term null teme to designate what we call light cone, namely, the set of null vectors in the
tangent space &t p.

12
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Figure 2.3.1: The cylindrical Minkowski space. The metric in §* x R® defined in a
way that the time coordinate is periodic. The future light cone of a point p € Mis
M.

circles (z, y, z) =const are closed time-like geodesics (Fig.2.3.1). Causality violation

is total. The future and past of every light cone is identified with M.

Example 2: Klein-Minkowski space (Fig.2.3.2) is a non-orientable space-time
formed by placing a Minkowski metric on R?x K (where K is the Klein non-orientable
surface). It is not possible to make continuous choice of future light cones everywhere.
An observer moving into his local future light cone along the CTC pgrp will leave p
moving forward in time but return to p going backward in time as measured by his

initial light cone.

Since almost all interesting examples of causality violation occur in time ori-
entable space-time and non-orientability makes a clear description of the causal struc-
ture impossible, from now on we assume (M, g) to be time orientable, unless stated
otherwise (moreover a non-time orientable space-time becomes time orientable by
going to the covering space). Given this condition the notion of future and past is

determined arbitrarily at the beginning once and for all p € M.

13



Figure 2.3.2: Klein-Minkowski space. The top and bottom of the above rectangle
are identified to get a cylinder, then the other two sides are identified with a twist.
The metric on the resulting Klein bottle K is induced from the covering Minkowski
space, as shown. A closed time-like curve pgrp is pictured together with its future
light cones. The future light cone points up when pqrp leaves p, but down where pgrp
returns tc p; the space-time is not time orientable,

14



2.3.2 Causal Structure

The chronological future of a point p, I*(p) is defined as the set of events that can
be reached by a future directed time-like curve starting from p (future directed with
respect to the future light cone).

there exists a future (past) directed
I*)(p) = { q € M| time-like curve A(t) with A(0) = p(g) @2.7)
| and A(1) = ¢(p)

Likewise the causal future (past) of a point p, J*(-)(p) is the same as above, with
the time-like curves replaced with causal curves. I*(-)(p) is open and in Minkowski
space it is the interior of the future light cone of p. Likewise, J+(=)(p) is the future

(past) light cone of p, and its interior.

An achronal set is a set no two points of which are chronologically related or
Fp.g€S st. peI*q), (2.8)

For a closed and achronal set S, edge of S is defined as the set of points p € S such
that every open neighborhood o of p contains a point ¢ € I'*(p), a point r € I"(p)

and a time-like curve A from r to g which does not intersect S.

For a time-like or null curve A(t) we say that p € M is a future end point of A
if for every neighborhood o of p there exists a to such that A(t) € o(p) for all ¢ > £,
(for M with Hausdorff property there can only be one future and one past end point).

An ineztendible curve A(t) in M is a curve which has no end point in M.

Future (past) Cauchy development or domain of dependence of an achronal set

DH)($) =Vp e M- every past (future) directed inextendible , (29)
non-space-like curve from p intersects S,

15



The definition of D+") is the same as above with non-space-like replaced with time-
like.

The boundary of future (past) development of S is the boundary of total future
(past) predictability, called the future (past) Cauchy horizon (Fig.2.3.3) and defined

as

HY)(S) = {¥p e D*)(S)| I*O(p) n DH)(S) = 0} (2.10)

Lemma 1 If S is closed, H*(S) is an achronal set generated by null geodesics which
have no past end point or their past end point is on the edge of S.

If edge of (S) = 0, S is called a partial Cauchy surface (Fig.2.3.4)and if HH-)(S) =0
or in other words D*(S)UD*(S) = M, S is a Cauchy surface. In this case M is called
globally hyperbolic and a striking feature of M is that knowing the induced metric,
its normal derivative and the matter fields on a Cauchy surface uniquely determines

M. M is fully deterministic.

A bad partial Cauchy surface is a partial Cauchy surface which is asymptoti-
cally null. The Penrose diagram of Minkowski space-time with a bad partial Cauchy
surface is depicted in (Fig-2.3.5). These partial Cauchy surfaces are bad in a sense
that a unique complete determination of a matter field on these surface does not
uniquely determine that field throughout the space-time even though such space-
time is free of any singularities, i.e. extra information can come from or sink into

space-like infinity. They give no information on the causal behavior nearby space-like

infinity.

A space-time (M, §) is called asymptotically simple if there is a conformal
isometric imbedding of f : (M,§) — (M', &) and an at least C* function Q > 0 such

16



that
g =5, . ] (2.11)
QO = 0 and d # & on EM)=STICM.
(M, §) should also be void of any sing:larities or &¥ - hotizons, therefore all null
geodesics end on 8f(M) both in the past and futurz uiections. Asymptotic empti-
ness, Ry = 0 on T and Q being C3, guarantees S5{%. 1 te be composed of two null
surfaces - and Z*, past and future null infinitise # pecuvely. 2 space-time (M, g)
is called asymptotically flatif it contains an open neis “Lorkc 4 ¢ isometric to an open
neighborhood of I+ and Z~ of an asymptotically ciur e and emply space-time (M,35)
[13)(p.222). Roughly speaking, in Gott space-time {M, §) is Mizkowski space-time

and (M', ) is the Einstein static universe®.

2.3.3 Closed Time-Liks Curves (CTCs)

A closed time-like curve is any C° time-like A : [0,1] — (M, g) s.t. A(0) = A(1). In
the language of causality definitions, if

I(pg) € M s.t. p € I'*(q) and g € I'*(p), (2.12)

then p and q are connected by a CTC. The causality (chronology) condition is satisfied
in (M, g) if there are no closed non-space-like (time-like) curves in (M, g). A space-
time (M, g) is strongly causal if Vp € (M, g), 3o(p) such that every causal curve
through p, intersects o(p) only once. We show the regions containing CTCs by A and
its boundary by A respectively.

8The exact definition of asymptotic flatness has slightly changed over the years. The definition
used here is basically the definition first used by R. Penrose {14](p.184) and later adopted by S.
Hawking [13)(p-310). F. Tipler defines asymptotic flatness as being exactly equal to weakly asymp-
totically simple and empty [1](p.49) even though asymptotic flatness used by R. Penrose has a slightly
broader meaning. Also see [12](p.276).
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Figure 2.3.3: The schematic diagram of an achronal set and its past and future
developments. 45 degree lines are light rays
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Figure 2.3.4: Penrose diagram of Minkowski space with one point removed showing
an edgeless achronal set going to space-like infinity. The causal future of p could not
lie in D*(S).

P

18



e

s*

H's)

Figure 2.3.5: A bad partial Cauchy surface which is asymptotically null. This partxa.l
Cauchy surface does not give any information about the causal behavior nearby i°.

2.3.4 Geodesic Completeness, Tipler’s Singularity Theorem

Defining singularities in inextendible space-times in terms of time-like and null geodesic
completeness seems to be the most natural way to define singularities. It is natural
because it is unreasopable for the world line of a freely falling observer to come to an
end in finite affine time (affine parameter for a null geodesic). A space-time (M, g)
is b-incomplete if the generalized affine parameter can take only finite values. Other
wise it is called b-complete. In this definition, r(p, E;), the generalized affine param-
eter is defined ip the terms of the tangent vector V* in the parallely propagated basis
Ei(p) along a geodesic parametrized by ¢ by r(p,E;) = [,(¥; Vivi)idt. Clearly a b-
complete space-time is geodesically complete since the definition of generalized affine

parameter reduces to the ordinary affine parameter on a geodesic. 7

71t is called b or bundle complete because completeness is actually defined in terms of the met-
ric completeness of the manifold of the bundle of orthorormal frames on (M, g){13](p.259). It is
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P-P singularity refers to the divergence of at least one component of R,3,,
in a parallel propagated orthonormal frame. One might think that b-completeness
necessarily implies p-p singularity{1}(p.31), but the violations of b-completeness in
Taub-NUT space and the example given in [15] show that this is not the case.

Tipler’s theorem says that an asymptotically flat space-time (M, g) can not be
null geodesically complete if

i RyyK°K® > 0 everywhere for all null vectors K. This condition is satisfied if the
weak energy condition holds on (M, g),

ii the generic condition holds on (M, g) , namely K®K*K\.RgaycKp # O for at least
one point for all null geodesics in (M, g) . This condition demaads that roughly
speaking every geodesic encounter some effective curvature somewhere along »is
path. F. Tipler needs this property to make use of the following fact: given,
in a space-time which is generic and satisfies the generic condition and has a
complete time-like or null geodesic, then some nearby geodesic meets that one

more than once [1)(p.73).

iii (M, g) is partially asymptotically predictable from a partial Cauchy surface S or

in other words,
VA,y D¥FS)NA#0, and D-(S)Ny #6, (2.13)

in which A is a null generator of Zt, v is a null generator of 7~ and D)(S)
is the closure of D*~)(S) such that D*=) = DH-)(S). The importance of the
space-times in which this condition holds is that in these space-times a causality
violation which is visible from infinity is allowed. These spaces are causal only
in a very weak sense; regular initial data exist (there is a partial C.uchy surface

on which the components of the induced metric and its normal dcrivative are

generalized in the sense of being defined for all C? curves.
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well defined). The Cauchy problem is well posed for at least a non-compact
subset of M, and the region near i%, space-like infinity is causal.

iv The chronology condition is violated in .7=(Z*) N J*(S), namely J~(Z+) N J*(S)
contains CTCs. This condition is used to show that for space-times in which

this condition holds H+(S)NI* #40.

The proof is based on a simple idea. If (M, g) is partially asymptotically predictable
3 s.t. 7 is a generator of H*(S) and nNZI* # 9. Therefore 7 is future complete.
According to lemma (1) 7 is also past complete, consequently the conditions (i) and
(i) require 7 to have a pair of conjugate points, but this contradicts the achronality
of H*(S) since any null geodesic which has two conjugate points (points in which the
Jacobi field vanishes), points further apart along the geodesic can be joined by a time-

like curve [12)(p.237). So 7 can not be future and past complete, a contradiction.

$What usually happens for example in Thorne wormhole space-time is that at a conjugate point
one or more future directed null generators intersect and leave H*(S). This point is called a
caustic{12](p.220).

21



Chapter 3

CTCs Produced by Moving Cosmic Strings

3.1 What Is Gott Space and How Is it Constructed?

In Gott space [4] the appearance of CTC containing region, A, is a result of the
combination of the exotic behavior of conical spaces. Assume a coordinate system in
which the string with deficit angle 2a < 7/2 is always anchored to be at rest and is
located at (t;,z,,%1) = (41,0, d) parallel to z axis and the points (¢, (y; —d) tana, y;)
and (t),—(y, — d)tan.a,y) are identified (Fig.3.1.1). Simple trigonometry shows
that for a panicle leaving z, at E;;, moving with velocity v,, crossing the wedge
and returning to th: z; axis, at Ey,, wy is minimized when wy = wg and E = T/2.
Imagine we set t = 0 as the particle with velocity v, hits the identification plane at

E, which is identified with £,. The four important events on the particles world line

are listed as below,

E, = (—wo/vp, 2o, 0),

E, = |[0,(wpsina — d)tana,wysinaj, (3.1)
E; = [0,-(wpsina - d)tana,wysina),

Ey = (wo/vp, —x0,0).

Now if (¢)z),3) frame is boosted (Lorentz transformed) in +z direction with re-
spect to (tz,zz,yr), the lab or center of mass frame whose coordinates coincide with

coordinates of (¢;,z;,y) frame at t; = ¢; = 0, with velocity v, such that

2 z3
= —— 3.2
% z§ — wiv?' (32)
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Figure 3.1.1: Two parallel string static solution; A particle leaving A at event Ej,
crossing the wedge of string (1) and returning to B at event Ejy. The particle then
changes its direction and crosses the string (2) and returns to A at event E}. If the
proper conditions are met, this particle returns to A before a light ray which left A
at E;, passed through the origin, reversed its direction at B and returned to A.

t

T 1 N ?El

v

E,

Figure 3.1.2: The space-time diagram of the same strings shown in the previous figure
which have equal velocities moving in opposite directions with respect to the L frame.
Identifications E; and Es are nw oa different ¢ =const. surface and as the particle
crosses the string towards whick it is moving, it goes back in time.
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the above events are simply Lorentz transformed as

E, = (0,77 "0,0),

E,, = [vs7s(wosina —d)tana,~,(wosine - d)tana,wosinal, (33)
E,, = [~7vs(wosina — d)tana, —y,(wosina — d)tana, wysinal,

E; = (0, =7;130,0).

Now we have the means to construct a CTC. Events E;; and Ej, are on the
t; = 0 surface, they are simultaneous. If we add a string parallel to the first one
located at (0,0,y; = —d) at t; = 0 and boost it in —z direction the following

discrete symmetries hold in the (t;,zr,y.) frame;

Dy : (tr,zroyrez) = (=te,—2L,yL.20),

Dy : (tr,zr,ye,zi) = (to, =T, —yL,3L), (3.4)

Dy : (tr,7ey1,2t) = (=tL,Te,—yL,2L),
and because the continuity of the metric and the derivatives of the metric across the
boundary y; = 0 is trivially satisfied [16], these coordinate systems can be smoothly
patched across this surface. The mentioned symmetries guarantee the existence of
an analogous path in y; < 0 region of the coordinate system Fig.(3.1.2). On this
path E! begins on —z axis and the event E} ends on +r axis. So if E; and Ej are
identified, E; = 'f and the particle returns to zo at the same time that it leaves
1o, the departure of the particle from z = z and its arrival to zo are simultaneous

events. Therefore the particle follows a CTC.
From (3.2) as (v, — 17) it can easily be shown that
2= 1 > [sina]™! (3.5)
* 1-wj/z§ ’

which is equivalent to

v, > cos Q@ (3.6)
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given

im  wp /To = [cosal]. (3.7
This equation gives a lower bound for the string velocity.

We see the underlying reason behind this CTC creation. The coordinate iden-

tifications
[tl, (yl - d) tan Qa, yl] = [tls —(yl - d) tan Q, yl]’ (3-8)

which in the rest frame of the strings truly represent the conical character of space-
time, in the lab frame are identifications along different t; =const. surfaces. Therefore
if we divert attention to Fig.3.1.2 which is a better representation of what is happening
form the point of view of the observer at rest in the lab frame, the particle goes back
in time when it hits one of the identification surfaces of the string towards which it
is moving. As it will be shown later, boosting has caused the identification wedges
in y > 0 and y; < 0 to rotate in the direction of movement of the string around
the y; axis. The (1) frame is rotated clockwise and the (2) frame counter-clockwise
respectively. Not surprisingly, it can be shown that if the strings make an angle ¢ with
the 2 axis, (3.5) reduces to v, > [sin 4mp]/ cos ¢, thus only the transverse components

of the string velocities contribute to the creation of CTCs.

The question might arise whether cosmic strings are physically relevant and
how they fit into cosmological models. It is suggested[17] that vacuum cosmic strings
with g > 107 produced in the early universe could provide the fluctuations necessary

to cause inhomogeneities which later resulted in the formation of galaxies.

On the other hand observations put an upper bound on the mass density per
length of strings. Due to the wake effect (also called the sling shot effect), as will be
seen later, the transverse velocity of cosmic strings causes the light rays passing on
two sides of strings to red shift or blue shift with respect to each other. Assuming

relativistic velocities for these strings, the observed fluctuation in the isotropy of
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microwave background temperature T tequires g2 ~ & < 1074[8]. Then (3.5) gives
~, > 103. Can strings reach such high velocities? Strings are under enormous tensions.
In fact the tension is so high that straight strings barely satisfy the weak energy
condition. String theories predict that collapsing loops and kinks achieve very high

velocities and open ends of strings do reach the velocity of light [18].

These discoveries raise the question that since the gravitational field (rather
“topological field”) at small distances from loops and strings with finite length (which
perhaps can be constructed in a laboratory from a substance whose tension counts for

all its mass) can be approximated by (2.2), does the Gott time machine necessarily

require strings with infinite length?

The other not so trivial question to answer is that when the Gott time ma-
chine is constructed or if somehow there are two infinite moving parallel cosmic strings
somewhere in the universe, can they be used for time travel? The answer to the first
question is postponed to the next chapter but we try to answer the second by first
rewording the question. How do singularity theorems which were designed to explain
causal pathologies in curved space hold in Gott space-time which has a consider-
ably more simple structure? More precisely we should investigate the possibility of
Gott time machine being marred by singularities which prevent any observer on a
partial Cauchy surface to approach H*(S). One kind of these singularities are the

singularities discussed in §2.3.4.

The other kind of singularities are due to infinite blue shift of a small high
frequency wave packet going around the Cauchy horizon to the future. The idea
behind investigating blue shift singularities is that we will finally have to show the
possibility of using Gott time machine by calculating the effect of the existence of
an observer on the back ground space-time in a perturbative way. For an observer

approaching H*(S), the perturbation in 4g of the flat metric g is of the order of the
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perturbation in energy-momentum density tensor. If §g < g is not satisfied, using
perturbation theory to study the effects of the presence of an observer on the flat
space-time is no longer valid. We try to investigate the former type of singularity in
$3.2 and the latter is discussed in §3.3.

3.2 Gott Space-Time and Singularity Theorems

Singularity theorems which use the causality condition are mainly divided into three

categories.

1- Hawking-Penrose-Geroch singularity theorems.

2- Theorems which make extensive use of partial asymptotic predictability of
causality violating space-time. This condition ensures that the region near

space-like infinity 0 is causally well behaved.

3- Theorems dealing with topology change in M N S(7) in which S() is the time
evolution of a partial Cauchy surface S such that S(0) = S, i.e. topology change

in Thorne wormhole space-time which gives rise to CTCs!.

We briefly discuss the importance and motivation behind the construction of these

theorems.
3.2.1 Causality Violation and Hawking-Penrose-Geroch Sin-
gularity Theorems

This category refers to the gravitational collapse of small objects (stars) within the

universe and besides causality violation, makes extensive use of the notion of closed

1 Almost all these theorems require the weak energy condition to hold which is not the case for
Thorne wormholes.
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trapped surfaces, namely, compact, edgeless 2-surface, on both sides of which the
convergence of outgoing orthogonal null geodesics is positive. The existence of such

surfaces means that the gravitational collapse has proceeded beyond a certain point
[13](p.265)2.

Before investigating how the theorems of this class might predict the possibility
of occurrence of any singularities in the space-time of two parallel moving cosmic

strings, it is useful to outline two definitions from F. Tipler [1](p.112-113).
Definition 1 A space-time (M, g) is said to be asymptotically deterministic if;

1- (M, g) contains a partial Cauchy surface S such that:

2- Either H(S) = H*(S)UH~(S) is empty, or, if not, then lim,_q[inf T, K°K?) >
0 on at least one of the null geodesic generators v of H(S) tangent to K*,
where a is the past (future) limit point of the affine parameter along v €
H(SYH(S)).

Definition 2 The matter tensor will be said to be past stochastic along a causal
geodesic segmesit v with tangent vector K* if there existsa > 0, b > 0 andc € N
such that c is the number of disjoint affine parameter intervals (sy,82) - - (8, Si+1)
along v, each interval satisfying siy1 > 8; and |s; — si+1} > b with TwK°K® > a at
every point in every interval. Furthermore, c is finite if 7y has a past end point or
is past incomplete and infinite if v is complete. Future stochastic matter tensors are

defined similarly.

21t should be noted that it is possible to construct non-compact 2-surfaces in Minkowski space-
time which locally possess the characteristics of a trapped surface; the set of outgoing orthogonal
null geodesics converge at each point on this surface [19)(p.103). Therefore one cannot dismiss the
possibility of the existence of such surfaces in Gott space-time, merely based on the absence of
curvature.
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F. Tipler originally constructed these definitions based on the assumption that since
H(S) in causality violating space-times is non-empty, where the causality violation

begins it contains matter or (M, g) is at least non-flat.

Theorems of the first category are mainly constituted of five theorems [13](p.263-
203);

Theorem 1 Space-time (M, g) is not null geodesically complete if:
1- RyK°K® > 0 for every non-space-like vector K°;
9- there is a non-compact Cauchy surface H in M;

3- there is a closed trapped surface in M.

Theorem 2 Space-time (M, g) is not null geodesically complete if:

—a
L

R K°K® > 0 for every non-space-like vector K*;

2

the generic condition is satisfied;

3- the chronology condition holds on M;

there ezists at least one of the following;

-
[ ]

i- a compact achronal set without edge;
ii- a closed trapped surface;

iii- a point p such that on every past (future) null geodesics from p, the diver-
gence of null geodesics from p becomes negative.

Theorem 3 There is a past incomplete non-space-like geodesic through p € (M, g)
if:

29



1- RypK°K® >0 for every non-space-like vector K*;
2- the strong causality condition holds on (M, g);

3- there is some past direc .d time-like vector W at p and a positive constant b
such that if V is the unit tangent vector to the past-directed time-like geodesics
through p, then on each such geodesic, the expansion 8 = V', of these geodesics
becomes less than —3c/b within e distance b/c from p, where ¢ = -W*V,.

Theorem 4 Space-time is not time-like geodesically complete if:
1- Ry KK > 0 for every non-space-like vector K°;
2- there is a compact space-like 3-surface (without edge);

3- the unit normals to this space-like 3-surface are everywhere converging (or

everywhere diverging) on the surface.

Theorem 5 Space-time is not b-bounded® if conditions (1)-(3) of Theorem 4 hold,

and

4- the energy-momentum tensor is non-zero somewhere on the space-like 3-surface;

5- if K is a non-space-like vector, then T°*K, is zero or non-space-like and

T K2 K® > 0, equality holding only if T®K, = 0.

As can be seen Theorems 1-3 require (M, g) to be causal which is certainly

not the case with Gott space-time. However critics might argue that any one of

3The exact definition of a b-bounded space-time is rather cumbersome and not necessary to our
discussion at this point. Roughly speaking, this definition is an attempt to generalize the definition
of geodesic completeness in terms of exp : Tp(M) — M and affine parameter [13](p.33) to all C'
curves in terms of the generalized affine parameter (see §2.3.3). For a more accurate account of this
definition, see [13](p.51,292).
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the causality conditions is too strong a condition in the above theorems. Indeed as
F. Tipler has pointed out, the condition in Theorem 1 requiring the existence of a
non-compact Cauchy surface and the condition in Theorem 2 requiring the chronology
condition to hold in (M, g) , can be replaced with a condition with necessitates (M, g)
to have a non-compact partial Cauchy surface $ and either to be asymptotically
deterministic or for at least one of the generators of H*(S)(H~(S)), 7, the energy-
momentum tensor, Ty, to be past (future) stochastic as v approaches its past (future)
affine parameter limit [1](p.111-117). But since the generators of the past (future)
boundary of CTC containing region in Gott space-time (part of H*(S)(H~(S))) are
past (future) complete (see §3.2.4) and T, = 0 (specially far away from the origin
so the generators of the CTC boundary do not run the risk of going into the strings
with non-vanishing T,;), neither is Gott space-time asymptotically deterministic nor

is the energy-momentum tensor past (future) stochastic along any of the generators
of H*(S)(H~(S)).

At this moment we have no concrete proof why conditions 2 and/or 3 of
theorems 4,5 are not satisfied in Gott space-time, but since as S. W. Hawking et.al
say “condition 2 may be interpreted as saying that the universe is spatially closed”,
which is certainly not the case with Gott space-time, it appears highly plausible that
condition 2 is not satisfied [13)(p.273) (also see §3.2.3).

3.2.2 Gott Space-Time, Tipler’s Theorem And Topology
Change

From the second category, Tipler’s theorem regarding asymptotic flatness (see §2.3.4)
has been mentioned in relation with Gott space-time [4][5]. Since it does not directly
require compactness or finiteness and because of its generality it seems to be the most

relevant theorem of the second class to this particular example.
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il couoress says that if a space-time is

a

asymptotically flat,
b- the generic condition holds,

C:

weak energy condition is satisfied,

d

partially asymptotically predictable from a partial Cauchy surface S,

e- the chronology condition is violated in J*+(S) N J=(Z*), or in other words the
causality violating set is at least partly naked,

then this space-time is singular in the sense of being null geodesically incomplete.
But it should be noted that time-like and null geodesic completeness are minimum

conditions for a space-time to be singularity free. There are by no means sufficient
[13](p.258).

Gott space-time is locally flat?, therefore there are obviously many geodesics
which encounter no effective curvature anywhere along their path. But one can not
dismiss the application of the above theorem to Gott space-time hastily since one is
after those properties of this space-time which are stable under small perturbations.
Therefore it is regarded as physically reasonable to demand the above theorem to
hold in Gott space-time because even if a given space-time is not generic, a small

perturbation in the metric would result in a space-time which is generic[16].

Asymptotic flatness of Gott space-time is discussed in §3.2.4. It is shown that
Gott space-time is not asymptotically flat. But as it is seen, there might be conditiors
under which the requirement of asymptotic flatness in Tipler’s theorem can be eased

so that a modified version of this theorem can be used in Gott space-time.

*In this context, a locally flat space-time is a space-time in which Rapys =0.
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R. Geroch was the pioneer of the theorems of the third category [20]. We
use a different version of one of his theorems due to F. Tipler which unlike that of
Geroch does not require the space-time to be compact. The only constraint is that

any possible topology change is localized in a compact region [1](p.109).

To investigate further how these theorems comply with Gott space-time we

need to have a better understanding cf the structure of causality violating region.

3.2.3 Partial Asymptotic Predictability of Gott Space-Time

We first prove there are sets with measure non-zero with space-like boundary®, with-
out CTCs |5]. To see this we tilt the wedges of (3.1) according to Fig.3.2.1 and boost
the (1) frame and (2) frames (rest frames of strings (1) and (2)) in +z and —z of
the frame of the stationary observer respectively’. The two following sets in the L
frame are defined for € > 0;

IE{JLZO’tIZG}’ IIE{ILSOthZe}y (3'9)
or in terms of the L coordinates (Fig.3.2.2),
I={z 20,t; > vzy +€/'7} I = {IL <0,t 2 ~vz, +€/‘7}, (3.10)

now since discontinuities in ¢; and t, are due to “jumps” across wedges at rest in
(2) and (1) frames respectively and these discontinuities are limited to z; < 0 for
(1) frame and z; > 0 for (2) frame, ¢, is an increasing monotonic function along
every future directed time-like curve in the set I and t; is an increasing monotonic
function along every future directed time-like curve in II. So any CTC must cross the

boundary between sets I and II, namely z; = 0, an even number of times. But at

5This part is mainly based on Curt Cutler’s work.
SHere we adopt a coordinate dependent definition of the stationary observer, namely, a stationary
observer is a static observer in the Lab frame.
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zp =0, t; =t =t; and there can be no closed time-like curves intersecting r; = 0.

It is seen I U IT can be foliated by surfaces (Fig.3.2.2)
{.1.'[, > 0,t2=k}U{IL >0, =k}, (3.11)

which can be smoothed out at z; = 0 (so it becomes C*®) while preserving the space-
like character of these surfaces. Due to symmetry, there are similar surfaces for t; < 0

which are the reflected images of these edgeless achronal sets. Three features of these

surfaces are very important:

1- the space-like character of these surfaces is not changed under the action of any
element of Lorentz group’. So although the existence of these surfaces was
proved by placing the wedge identifications in a particular way, the geometrical

properties of these surfaces are obviously coordinate independent.

2- As € — 0 it is seen that there is always an arbitrary small neighborhood of the
origin devoid of CTCs and at T > (<)0 the world line of the strings enter
T'UII (Fig.3.2.2). Therefore “smoothing out” the apex of the cone does not
affect the structure of the CTC containing region.

3- These surfaces are not bad partial Cauchy surfaces. In other words they ar+ not
asymptotically null of the form given in §2.1.1.

The third feature gives important information on the causal behavior nearby the
space-like infinity i°. The point i® is in an open neighborhood which is causally well
behaved. This means D*(S) N A # @ for at least some of the null generators A of Z*
and since D~(S) N+ # 0 for all generators v of -, according to the definitions given
in 2.3.4. Gott space-time is most probably partially asymptotically predictable.

TOr under any diffeomorphisms in general.
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Yu.¥1.¥Y2

Figure 3.2.1: The identification wedges are tilted in such a way that ¢, is continuous
in z; > 0 and t; > 0, whereas t, is continuous in z; <0 and 2, > 0.
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127
t L:VXL+W

~

L ~

string world line
—>

Xy,

Figure 3.2.2: Space-time diagram illustrating the proof that there are regions con-

taining no CTCs. The projections of the

world lines of the strings on (z.,t.) plane

are shown with dashed lines. Region I U I1 is devoid of CTCs.
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It should be added that this problem is treated lightly and if I may say care-
lessly by both Cutler [5] and S. Carroll et al. [7] Cutler asserts that the mere existence
of a partial Cauchy surface guarantees the partial asymptotic predictability of this
space-time. But after a full understanding of the boundary of causality violating

region (A) it turns out this problem merits a more careful treatment.

3.2.4 The Boundary of the Causality Violating Region

There is one property of the boundary of any causality violating subset of (M, g)
which is rather generic of the boundary of the CTC containing regions. It is a null
surface becaur= it can simply neither be a space-like nor a time-like surface. It can
not be space-like since any time-like curve passing through a point p infinitesimally
close to a space-like surface has to cross the surface®. Therefore any CTC through p
would have to enter the region in which there are no CTCs. So points infinitesimally
close to a space-like surface can not possibly lie on a CTC. To prove that A (the
boundary of the CTC containing region) is not time-like, Cutler implicitly makes the

not so restrictive following assumptions that if A were time-like and

3(p,q) € A s.t. p € I*(q),
V(U and U’) s.t. P G+U and g € U’,+ 12
o €Usmdd €V) st { P € I*(p) and g € I*(¢)
¢ € I*(¢) and p' € I*(¢),

then A can not be time-like. The above assumption says that there are at least two
points on A lying on a time-like curve such that in every open normal neighborhood
of them there are two points connected by a CTC. After making this assumption the

proof is only one step away. Since I*(g) and I*(p) are open sets, either the future

$Here we use the fact that in a space-time with a Lorentg metric and a time-like direction field,

a positive definite metric can be constructed. The proximity to the null surface is defined in terms
of this metric{13)(p.39).
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directed time-like curve A from p to q or from q to p can be deformed in such a way

that:
Irerst. r€ AUA, but g€ I*(r), r € I*(p) and p € I*(q), (3.13)

so r lies on a CTC, a contradiction. Therefore A is a null surface.

To gain further insight into the structure of A we accept the“supposition” that
points on A lie on null geodesics that spiral around the strings an infinite number of

times, they are lim,_. of “nth polarized hypersurfaces N "9which are defined as

p is the past and future end point of a self-intersecting
VpeN = (3.14)
null geodesic which spirals around the strings n times.
In this context a self-intersecting null geodesic is a null geodesic with different tangent
vectors at p, distinguished from a closed null geodesic (CNG) with equal tangent
vectors at p which go around the strings an infinite number of times but are either

past or future geodesically incomplete [15]'°.

To see which points lie on CNG we first note that a CNG must loop around
both strings on a z =const. surface, since there are no identifications in the z di-
rection, there can be no CNGs with tangent components along the z direction. We
assume the geodesics loop around the strings n number of times and return to the
+z axis having the same direction with respect to the —z axis (see Appendix-A).

Therefore we define the function

¢’ = g(¢) = cot™ {(1 ~ u?) Y%= cot (2a — ¢) + uesc (20 - ¢)]} , (3.15)

9This argument originally belongs to Kim and Thorne{21] which they apply to show that A in
Thorne wormhole space-time is foliated by hypersurfaces on which the vacuum polarization com-
ponent of energy-momentum density tensor is divergent. There is not a concrete proof that Gott
space-time should obey the same rules, but it rather looks intuitively obvious that it is probably
the case. Since A has no holes and discontinuities, as we approach A it becomes more and more
difficult to go back in time far enough to have a CTC. There are two ways CTCs can cope with this
problem. First to go back in time more effectively which means becoming null geodesics, second to
loop the strings a larger number of times. As points in A approach A, we expect these two effects
to combine.

19T}iis is a generic property of causality violating space-times which have Cauchy horizons with
compactly generated null generators,

37



in which u = T%:’ﬁ is the velocity of frame (1) with respect to frame (2), which maps
¢ = tan™! Eg;“ in the rest frame of string (1) to ¢' in the rest frame of string (2)

(Fig.3.2.3). A necessary condition for the existence of a CNG is that

¢ =g"(¢), N even. (3.16)

But Fig.3.2.4 shows g(¢) has the following important properties which characterize

the behavior of null rays in Gott space-time,

9¢) = ¢
9(2a-¢) = 2a-(
g(¢) — ¢ for 0<¢<(, (3.17)
g(¢) — ¢ for (<¢<2a-¢(,
g(¢) — = for 2a-(<¢<m.
Solving (3.16) for N =1 gives
cot ¢ + cot (2a — () = v[ese { + csc(2a — ¢)). (3.18)

This equation uniquely determines ¢ as;
sin{ = ng—a-[sina — Vv? = cosa?, (3.19)

which shows v > cos & in compliance witk (3.6). Now since for g(¢) > 7 and g(¢) < 0
the null ray never intersects the identification wedges, the behavior of g(¢) in 0 <
¢ < 2a is all we need. Fig.3.2.4 also shows that for a CNG we can have either ¢ = (
(stable fixed point angle) or ¢ = 2a — ¢ (unstable fixed point angle). Equation (3.17)
explains the choice of nomenclature. If ¢ is slightly higher or lower than the fixed
point angle, it is asymptotically driven to the fixed point angle. The behavior of
CNGs with slightly higher or lower angles than the unstable fixed point angle is the

opposite.

The sufficient condition for the above ray to be a CNG is that z%(A,) =

2P(An41) in which X is the curve parameter (not necessarily affine). If d is half of the
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T Y1, Y2

¢ I, T2

Figure 3.2.3: The function g(¢) = ¢' maps the angle measured in frame (1) with
respect to the —z axis to the angle ¢ in frame (2) measured with respect to the +z
axis. g{g(¢)] is the angle which the null ray has with respect to the =z axis in frame
(1) after scattering form both strings.

20

¢ a9)

§ 203

Figure 3.2.4: The behavior of g(¢) vs. &; g(¢) < (>)¢ for ¢ > (<)¢ and g(¢) > (<)¢
for ¢ > (<)2a - (.
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impact parameter, half of the distance between two strings at ¢, = 0, then in the

d = 0 limit we have
Aty = hfcot ¢ + cot (2a — €)],

Azy = —hfese( + csc(2a - ()]
in which h = xsin ¢ and At and Az, are the distance and time required for a CNG

(3.20)

to leave y; = 0, cross the string and return to y; = 0. Then from (3.18),

Aty + vAzx,
——— =0, 3.21
V1=12 (3.21)

and therefore due to symmetry there is a CNG for ¢ and one for (2a - ¢) only when

At =

d = 0. But d = 0 is only the limiting case and in general d # 0 and At; > 0. There

are no CNGs in a generic Gott space-time.

Points on A lie on null geodesics which loop around the strings an infinite
number of times and the absence of CNGs may look disappointing. But we should
remember that the null generators of A also spiral around the strings an infinite
number of times. Because if they ever stop spiralling the strings, they have to enter
I U Il given in Fig.3.2.2. They never leave A simply because any tangent to a
null cone is along a null ray which eventually intersects any space-like surface unlecs
it hits a surface of coordinate discontinuity and goes back in time into somewhere
before intersecting S. Then for sufficiently large n the nth polarized hypersurface

would follow the null generators into I U I, a contradiction.

By a simple Lorentz transformation the null vectors whose direction of space-
like components are given by the stable and unstable fixed point angles, which from

now on we shall call stable and unstable null vectors, are in the lab frame;

ty —cos(rxp +sin(ryr duy,
j « { L G ey :"' stable null vector,
dug

tL + cos CLXL —sin CLyL ' de
tr +cos(rxy +sinLyr , L
k o { L C Cy dtg

t, —cos(rxy —sin(ryr , G

(3.22)

unstable null vector,

AV AV
o o o o



in which ¢; and (7 — () are the stable and unstable angles respectively seen by the

observer stationary in the lab frame given by

VI=#

sin(y = cota. (3.23)

v

The ambiguity remains which one, j or k, are along the null generators of the bound-
ary. To answer this question we note that in Lorentzian geometry unlike Euclidean
geometry, a null surface is uniquely specified by knowing the null vector along the

generators of the surface which in our case are j and k. Thus A is

4

—t; —x;cos(y +yrsin(, = -—qcos(y where ‘%f > 0

{ —~ty+x,cos(p —yrsin{y = —gcos(g where %{* <0

| generator: stable null vector

¢ (3.24)
—ty +xpcos(y +yLsing, = gqcos(; where %’,‘f > 0

{ -ty —xpcoslL —yrsin(L = gqcos(; where %’,‘f 0

| generator: unstable null vector

We focus attention on the cross section of that part in which %ﬁ* > 0, in which the
generators always go towards +y. Due to symmetry the structure of A in the %{s <0
region is the reflected image of the part in which %{f > 0. Remember, {; < 7/2 is
measured with respect to the —z axis, it is seen that if j were the null vector tangent
to the generators of that part of A which is adjacent to future of CTC containing
region (called future boundary), A would have to cross into I U I1, a contradiction
(this is obvious by looking at Fig.3.2.2 and keeping the directions of j < 7/2 and
k > /2 in mind). Therefore k is along the generators of the future and j is along the

generator of the past boundary. The future and past boundary intersect each other

at the cusp
r, = ¢q, -tp+y,sin( = 0 for %f (3.25)
r, = —q, ty+yrsin( = 0 for :—‘,‘,‘f 0

'[n Euclidean geometry we simply do rot have null hypersurfaces.
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Knowing there is a neighborhood of the origin not containing CTCs, we immediately

conclude ¢ > 0. A complete structure of A is given in Fig.3.2.5.

Identification wedges for y; > 0 in L coordinate are

T — vt ~ 'y"lyl, tana = -7‘ldtana, %f > 0
identified with (3.26)
zL— vt +7 'y tana = +7"'dtana, %f < 0.

This equation shows as v — 1, ™! — 0 and the identification we.iges close.
So #%e boost has caused the wedges to rotate and close (Fig.3.2.7). These planes are
similar to butterfly wings which are very close rather than open, i.e. the maximum
angle between the covariant vectors orthogonal to the identification wedges, 3, when

a = 7/4 and v = cosa, with respect to the R* Euclidean metric g = diagfl,1,1,1} is

B = cos™! %ﬁ{-:—l% and lim,—; 8 = 0.

To determine the value of ¢ we note that because of the linearity of Lorentz

transformations, D, in (3.4) in terms of coordinate (1) can be written as;

Dy : (zy,yt1) = (=z1,,—h) (3.27)

But the other symmetry in coordinate (1) is

(31,y1,t1) - (-zlvylstl)v (3'28)
therefore,

(zr,p.t1) = (21,31, =), (3.29)

should also be a symmetry in coordinate (1). The parametric equations of the iden-

tification wedge for y; in terms of coordinate (1) are (Fig.3.1.1)

z; = v|(m —d)tana+ovty] = 9[-(n - d)tana+vt)},
nh = Y (330)
ty = 4[ti+v(y —d)tana] = 7[t, +v(y - d)tanal,
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Identify

N\

7
Particle world
line

/

Figure 3.2.5: A sketch showing the general features of the boundary of the region
containing CTCs. The past and future boundaries of this region are null planes which
meet at a space-like cusp. CTCs are restricted to the region between these planes.
The “identification” edges of the planes represent the intersection of CTC boundary
with the string wedges. The seemingly disconnected A is actually connected and the
connection is along the identification wedges which have a cusp along the particle
world line. Therefore A has topology S! x R2. The null generators j and k of the past
and future CTC boundaries, respectively, are shown inscribed. Only the world line
of the particle moving at yz > 0 is shown. The above diagram is the CTC boundary
for v=0.90, « = v/4 - 0.00001 and d = 0.1.

Identify
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A\ 4

Figure 3.2.6: String world line and iden:ification lines in the rest frame of the string
at rest in coordinate system (1).

o cuep
Figure 3.2.7: The boost has caused the identification wedges of the strings to rotate
with respect to the L frame. The cusps meet these identification planes on t;,t; =0

lines.
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and the only way that the intersection of the cusp with identification wedges is mapped
to itself under (3.29) is that the cusp intersects the plane at r. Inserting t, = 0 on
the right hand side of (3.30), and (3.26) and using (3.25) gives

Y sin(y = vg. (3.31)
This equation, with
gV1=1? = 1, = (y, - d)tana, (3.32)
gives
1= dsiy.- ';cosa\/12- vf. (3.33)
v2 — cos

In the limit as v — cosa, {; — 7/2 and ¢ -~ 0o. So the null benndary opens up
and g goes to +00. An z,t; cross section of ¥ig.3.2.5 skows how a self-intersecting
null geodesic behaves (Fig.3.2.8). A self-intersecting null ray starts off with a tangent
vector very close to k. Bui as it develops through time, its trajectory distances itself
from the boundary far enough to go back in time where it approaches j and the null

ray begins to go forward in time again.

Now we are in a position to see how Geroch’s topology change and the re-
maining conditions of Tipler’s theorem apply in Gott space. For the CTC containing
region A we have ANI* #0, ANI~ # 0, and as S(7) develops (5(0) corresponds
to the partial Cauchy surface of §3.2.4) through this space-time for some 7 at which
S(r) is no longer a Cauchy surface, S(7)N A # 0 and the intersection is not compact.
Therefore if there is a topology change, such a topology change does not occur in a
finite region [1)(p.109). It is also obvious from Fig.3.2.5 and the definition of the past
boundary that the past boundary is a subset of H*(S(0)) since the domain of future
development of S(0) ends at A.

We now investigate how the remaining conditions required by Tipler's theorem,

namely J=(Z+) N A # @ and asymptotic flatness, comply with Gott space-time. As
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trivial the first one is (Z* N A # 0 is obvious), asymptotic flatness is not so trivial.
Asymptotic flatness requires an open neighborhood of Z+ and I~ (which are M, the
boundary of M in the conformal imbedding of Minkowski space in Einstein static
universe) to be isometric to an open neighborhood in Gott space which is naturally
an open neighborhood of I+ and I~. But because of the conical structure of Gott
space-time it has been suggested [22] that since parallel transporting :: “ector on a
closed path around the origin in this open neighborhood changes the direction of
the vector whereas parallel transporting such a vector in Minkowski space gives an

identical vector, open neighborhoods of I+ and I~ in Gott space and Minkowski

space are not isometric.

It should be no*ed that the rotation of a vector mentioned in the above para-

graph, due to parallel transportation is also true for a static string (static cone) and

is not due to causality violation in this space-time.

Critics might refute the asymptotic flatness of Gott space-time based on the
fact that strings extend to i¥ in %z directions, so Rg # 0 on M=ItuI-ud
[12](p.276). But there is some confusion about the definition of M since Hawking
defines M to be (Z+ UZ-) not including i*{13]. This argument of critics does not

seem to b« a serious blow to the asymptotic flatness of Gott space-time as long as,
30(i% s.t. o(")NH* =0 (3.34)

in which o(i%) is an open neighborhood of i°. We tend to accept the definition given
in [13](p.225) since this book gives a more careful treatment of causality violating

space-times.

Another way to view the problem stated in the previous paragraph is that
one major weakness of theorems of this kind is that their proof depends on the
existence and structure of asymptotic infinity. The condition of asymptotic @mtness

in these theorems was used only to show that at least one generator of H''S) could
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Figure 3.2.8: This figure represents the (zz,%,) cross section at (yz = 0,2z, = 0) of
the CTC boundary depicted in Fig.3.2.5 A self-intersecting null geodesic begins with
an angle very close to k. As it moves forward in time it distances itself away from the
future boundary until it begins to go back in time so its tangent vector approaches j
and begins to go forward in time agair.

Quasar
The identified wedges
string of the string
Q—-—)
—>
v
observer

Figure 3.2.9: The string has a transverse velocity to the left where the light rays
passing to the right of the string are blue shifted with respect to the light rays passing

to the left.
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be continued into the future for infinite affine parameter length while remaining in
H*(S). This could happen even in non-asymptotically flat space-times unless there

are many causality violating regions whose Cauchy horizons intersected (1}(p.86).

At the end we emphasize the point that the causal structure of Gott space-
time is rather remarkable. Recall that i is where space-like geodesics end. In this
space-time there are those space-like geodesics which enter A and never leave A
(+z, —z axis) and there are those space-like geodesics which never even asymptotically

approach A, i.e. space-like geodesics on space-like surfaces which foliate J U I1.

3.3 Absence of Blue Shift Singularity in Gott Space-

Time

Now we address the blue shift singularity which characterizes how a a small wave
packet can possibly affect the background space-time. The blue shift of the light rays
circulating the moving strings is basically the result of the same effect which causes
anisotropy in the microwave background due to the transverse motion of infinite
cosmic strings[23]. An observer at rest in the frame of the strings sees two images
of the source neither of them red shifted with respect to the other one. But as soon
as the string begins its transverse motion to the left according to the space through
which the light ray passes, the observer has a velocity towards the source (Fig.3.2.9).
Thus the observer’s right image of the source is Doppler blue shifted with respect to
the left image. All light rays passing to the right of the string will be blue shifted
and all light rays passing to the left experience no Doppler effect!2.

We investigate a possible blue shift singularity of the null generators of A. To

120f course tkis depends on the specific choice of the deficit angle. Whether one side is moving
toward the observer and the other side is receding from the observer is completely arbitrary. Only
the relative blue shift has any physical meaning.
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address this issue we use some of the basic ideas used by Hawking'3. Each time a
null tetrad is parallel propagated around the strings along the stable or unstable fixed
point null vectors, it is Lorentz boosted with a factor exp (k) with respect to the L
frame of §3.2.3. and the temporal separation shrinks by exp (—h), so the power grows

by exp (2h) (this is due to Lorentz contraction of a volume element).

But possible infinite blue shift is not the only factor contributing to the diver-
gence in energy-momentum tensor. Another important geometrical quantity associ-
ated with the null ray on the Cauchy horizon is the change of cross sectional areas
of a pencil of generators as the null tetrad is parallel propagated around the strings.
Let

f=1n—s§-i‘-1, (3.35)
where S, and S, are the areas of the pencil on successive loops around the strings.
The quantity f measures the amount the generators are diverging in future direction.

The classical stability of H*(S) is measured by exp (2h — f), in other words (2h —
f) < 0 guarantees that there is no blue shift singularity on H*(S).

For a null ray the blue shift after leaving +z, scattering both strings and
returning to +z is independent of the choice of coordinate system. Therefore we
try to calculate this quantity due to the crossing from the wedge which is at rest in
coordinate (1) as seen by an observer at rest in the coordinate of string (2). ¥(is
the smaller fixed point angle which the null ray makes with the —z axis in the res:
frame of string (1) before scattering from the strings, a:«d consequently (2a—() is the
angle which that ray makes with +z after scattering (Fig.3.2.9), since (w, k) makes
a 4-vector, the change in the frequency of the ray passing through wedge (1) as seen

13The full machinery used by Hawking to investigate this problem is rather complicated and was
originally designed for non-flat metrics in four dimensions. We only need the criteria which he uses
to show the stability of Cauchy horizon for the specific example given in his paper {15].

1414 is also useful to know that the null tetrad is defined so that one of the basis vectors is tangent
to the pull vector along which the null tetrad is parallel propagated.
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Figure 3.3.1: Scattering of an arbitrarily directed light ray from a string with angle
deficit 2a as is seen by an observer at rest in frame (1).

from frame (2) is

;. = -uk '
wy Yw ) (3.36)
wyi = Y(w —wiu cos().
Likewise,
woy = jwy — wyucos (2a - ¢)), (3.37)
therefore from the above equations and (3.19) we conclude
T 1 —ucos(2a - () >1, (3.38)

wo; 1-ucos(

in which wo; and wyy are the frequencies of the null ray before and after crossing the
wedge at rest in (1) frame. Using (3.19) it can be shown that exp (h) = k > (<)1 for
generators along the past (future) boundary.
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To address the convergence of the generators, we see that because of the ab-
sence of curvature the null geodesic generators of A are straight lines, therefore con-
vergence in Gott space-time can only be inversely proportional to affine parameter A
i.e. it can only be of the form given in Fig.3.3.2, but this contradicts the fact that
there are only two discrete fixed point angles. Therefore we have f = 0. To investi-
gate this point further we solved the geodesic equations of motion in the lab frame
for a generator starting of at [t,(TL, ), TLo, 0] on A (Fig.3.2.5). After scattering form
the wedge at rest in the frame of string (1) (Fig.3.3.1, also see Appendix C) this ray

returns to yz = 0 at [ty(z, ), z],,0] with

zy, = azg, - b (3.39;
in which
a = -1
(3.40)
b > 0.

Therefore due to symmetry after one complete spiral around both strings
Tp, = Ty +2b (3.41)

which would not be possible if the generators of A were to have non-zero convergence
since b is independent of z;,. So f = 0 and the generators of the null boundary
are blue shifted on the past boundary and red shifted on the future boundary going

towards the future with no convergence or divergence.

The result achieved so far does not strictly prove that there is no blue shift
singularity, though we believe there is none. A more careful look at Fig.3.2.5 shows
that even though along the past boundary blue shift causes exponential growth in
the energy density, this growth is finite. The generators of the past boundary leave
the boundary through the cusp and stop blue shifting. This means for a wave packet

starting of at a finite time in the past, the blue shift is finite.
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The null boundary

Figure 3.3.2: Due to the absence of curvature, convergence on the null boundary can
only be constant.

The arguments presented in the last few sections show that Gott space-time,
perturbed by a classical wave packet is most probably free of any singularities or
exponential growth in the energy-momentum tensor density as the observers approach
the causality violating region. Therefore if such causality violating region exists, from

a classical point of view, it can be used for time travel'®.

In the next chapter we address the issue of the possibility of constructing time
machines using ordinary matter, a matter which satisfies the known energy conditions.
In addressing this issue we use a method employed by S. Deser et al. [6] using the

elements of the Poincaré group.

15Hawking showed that for Misner space-time, the classical instability of the Cauchy honzon
allows one to choose a quantum state in which the semi-classical divergence of the quantum stress
tensor in the vacuum state is cancelled. However, since the Gott space-time is classically stable, this
mechanism could not be used to cancel a divergence in the quantum stress tensor if such a quantum
divergence occurs in tkis space-time.
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Chapter 4

Is Gott Space-Time Physically Realistic?

As we said in §2.1.1 space-time in. { 2+1)D is necessarily locally flat outside matter.

Several consequences follow this flatness:

i There are no gravitational waves in classical and quantum gravity in (24+1)D, which

immediately follows from Copys = 0.

ii Forces between sources are not mediated by graviton exchange, but rather interac-

tions arise from non-trivial geometric and topological properties of the 2-surface.

iii The Einstein gravity in (2+1)D does not approach Newtonian gravity in the G — 0
limit, since Newtonian gravity in (2+1)D requires the force law to have an

inverse distance character whereas Einstein gravity is flat regardless of the value

of G.

These characteristics of gravity in (2+1)D inspired Deser, Jackiw, 'tHooft and Teit-
elboim to embark on the investigation of planar gravity in 1981 [11]{24][25]. They
hoped this dimensional reduction of the theory would help them gain insight into for-
mulating a way to overcome unrenormalizable infinities in (3+1)D which are absent

in (2+1)D gravity.

During their study in a 1984 paper they presented solutions of the field eque-
tions in the presence of point particles having CTCs. These CTCs arise due to
identifications along the ¢ axis similar to the identifications on different ¢t =const.

planes due to the presence of moving parallel cosmic strings. They find it suggestive
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that the quantization of angular momentum would correspond to the quantization of
jumps in time coordinate. But in the same paper they also added (without proof)
that such jumps in time coordinate are not possible in a space with n moving particles
where angular momentum is purely orbital, in contrast to spin angular momentum.
By orbital angular momentum they mean angular momentum due to the relative

spatial movement of particles about a specific point i.e. Gott moving parallel cosmic

strings.

Following the publication of Gott's result regarding CTCs in the space-time
of two moving parallel cosmic strings, they decided to use the methodology which
they developed to treat spinless and spinning sources in (2+1)D, namely elements
of the Poincaré group, representing the conical geometry of space-time to prove that
although Gott's strings correspond to purely orbital motion of particles in (2+1)D,
these particles are not physically realistic, by which they mean the particles corre-

spond to a source with tachyonic (space-like) momentum.

In their methodology Deser et al. use elements of the Poincaré group (inhomo-
geneous Lorentz group) to construct a coordinate independent geometrical interpre-
tation of particles with and with out spin in (2+1)D (to which Deser et al. refer as
cosmons) and later tachyonic particles. In this section after a short review of some of
the properties of the elements of the Poincaré group, we give a self-contained review of

their results with emphasis on those parts which we think were treated rather lightly.
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4.1 Conjugacy Classes of the Poincaré Group El-

ements

An element B of a group G is said to be conjugate to A € G if there exists X € G
such that{26]
B=XAX"'or A= X"'BX, (4.1)

It can easily be proved that conjugacy is an equivalence relation and the equivalence
class of mutually conjugate elements of a group is simply called a conjugacy class !,
The importance of conjugacy classes in a group are in that the properties common
to all the elements of a class represent coordinate independent physical properties
of the conjugacy class. These physical properties are coded by the invariants of the
corjugacy class. For example the set (1, A, B,C, Dy, D) form a group. In this group
A, B, C are reflections through the axes 4, B, C of an equilateral triangle and D, are
the rotations of the triangle with angle 27n/3. (A, B,C) form a conjugacy class of

this group. The Poincaré group in (2+1)D has a subgroup Q(6),

1 0 0
0 cosf siné |, (4.2)

0 —sinf cosé

rotations around the t axis in the (z,y) plane (Fig.3.3.1). Each element of this

subgroup represents a conjugacy class.

Each element of pure boosts, L, in (24+1)D can be shown as,

L} = coshu,
LY = L = {isinhu, (4.3)
Ly = 8 ~ ##(1 - coshu),

10ne of the well known properties of equivalence classes are that they are disjoint.
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Figure 4.1.1: The rotations around ¢ form a subgroup and each rotation represents a
conjugacy class of the Poincaré group elements.

in which  is the unit vector in the direction of the boost and u the rapidity. It is
easily shown (4.7) that L(9,u) ~ L(?',u) in which ¢ # 0. Therefore the parameter

space of the equivalence classes of pure boosts and pure rotations is 2-dimensional.

The action of an element of the Poincaré group acting on a vector x in (2+1)D

can be written as[27);

T(q, B)(x) = B(x) + q = ¢B(x) (4.4)

in which B is an element of SO(2,1) (homogeneous Lorentz group in (2+1)D), q =
(t,z,y) is a translation and T is a Poincaré group element. There are two important

invariants of the two mentioned conjugacy classes of T

1- Since the action of the Poincaré group elements on vectors are represented by the

action of a SO(2,1) element and a translation, the traces of all the elements in
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a class is one of the invariants. This follows, since in this case the operation of
conjugation becomes that of making a similarity transformation. To see this we

investigate the conjugation of T(q, B) by T(p, A) which yields

T(p, A)T(q, B)T"\(p, A)(x) = pAQBA~'p~'(x)
= ABA-!(x)-ABA™'p+Aq+p (4.9)
= Qx)+r,

in which r = (t,z,y) is a translation, but
Tr(Q) = Tr(ABA™') = Tr(B), (4.6)

therefore conjugation of the Poincaré group elements leaves the trace invariant.

The importance of this quantity is that

rr(B) = 1+2cosf
| or (4.7)

rr(B) = 1+ 2coshu,

depending on whetler B belongs to the conjugacy classes of pure rotations or

pure boosts respectively. As|it turns out, it also corresponds to the mass of the
point particles in (2+41)D.

2- The other important invariant quantity is v*g,/v? in which v* is the eigenvector
of B with unit eigegvalue. The importance of this quantity lies in the fact that
if B belongs to the donjugacy classes of pure rotations, in the coordinate system

in which B = Q(6), eigenveétor of B defined by Bv = v is,

|
} v =(1,9) =(1,0,0), (4.8)

Therefore, this quantity rebresents q° (which is later shown to be related to
|

the angular momentum of ‘the particle). If B is a pure boost v"q, represents

identification along the nuli vector in the plane passing through axis ¢t and 7

called t — ¥ hyperplane.
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These two invariants are all we need to describe the dynamics of point particles in
(241)D and investigate the feasibility of the argument of Deser et al. in refuting that

cosmic strings giving rise to CTCs in Gott space-time as unphysical.

4.2 Dynamics of Point particles in (241)D

4.2.1 Static Point Particles

To formulate the conical structure of space-time caused by straight cosmic strings as
point particles in (2+1)D in terms of the elements of the Poincaré group, we show

the angle deficit depicted in fig-(2.1.2) by the identification
' = Q2a)(z) = T(0,)(x). (4.9)

The metric corresponding to this Poincaré group element is

1
2 __ 1 (2.2 2y _ 42
ds® = rsm(r do® + dr®) - dt°, (4.10)
which after a length rescaling (r®a™! — ', ad — ¢/, a =1 - 87p) gives the metric
(2.3). Inserting the metric components of (4.10) in formulae for the Einstein tensor

component for the general stationary metric given in Appendix-B, we derive

VIT® = pé¥(r),

JaT® = 0, (4.11)

JiTi = 0,
which truly represents a static point particle at the origin. The Poincaré group
element identification corresponding to a static particle located at a = (ao, @) = (0,4)
is

X =Q(x -a) +a=T(Q,a)T(0, -a)(x), (4.12)
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in which Q0 is a pure rotation and therefore & # 0 merely represents that the particle is
not at the origin. This fact does not represent an invariant physical quantity. There
is a representation in which @ =10 with 0 being a pure rotation, but if ag # 0, there
would be no representation rendering ap = 0 and keeping Q(6) a pure rotation (or in
the language of group theory, there would be no irreducible representation of Q(f) in

which ap = 0). Therefore ag is related to an invariant physical quantity.

4.2.2 Moving Particles with Angular Momentum

The identification corresponding to a particle located at a moving with velocity ¥ is
X = a + B(H)QB~\(¥)(x - a) = T(a, B)T(0,Q)T(a™, B~ )(x) (4.13)

in which B(7)QB~(7) is a similarity transformation of Q from the coordinate system
in which the particle is at rest to the coordinate system in which the particle is moving

with the velocity 7.

Equivalently for two particles located at (a,-a) moving along the (+z,—x)
directions with velocities (7, —#), the identification equation corresponding to (4.13)

is written as
x"=a+ BB {-2a+ B 0B(x +a)} = ¥(x) +c. (4.14)

Now for this identification to belong to the conjugacy classes of pure rotations we
should have

Tr(BQB-'B~'0QB) = Tr({) = 1+ 2cos 20/ (4.15)

which requires |-T—'1%)—'1| <l

The second invariant which signifies identifications in the time coordinate can

be calculated to be

v*c, = ¢® = 2sinhusina {cos a(-2a,) + sina coshu(2a,)} . (4.16)
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To interpret this equation correctly we note that in (2+1)D world, because of the
above identifications, the fact that the particles have velocities +# and —# does not
necessarily require #., = 0 [7], moreover the mass addition formula is non-linear and
follows the prescription given by (4.15). We expect as (ai) — 0, Um — 0 and the
mass addition formula follows that of ordinary (non-conical) space. Therefore we

expect

lim ® = 4ad x 7 =8nJ, (4.17)

a,5—0

in which J is the total orbital angular momentum of the particles about the origin.
The general two parameter (no charge) stationary metric describing this particle and
the energy momentum tensor derived using Appendix-B can be written as (Again it
is not this metric which is directly inserted in Einstein's equation. The actual metric

is related to this metric by a length rescaling and is similar to (4.10)[11])

ds? = [d(t + JO)? - [dr® +r2d8?], 0< 0 < 2x(1 - 4p),

JAT® = M(r), (4.18)
VITY = (1/2)J€9;6(x)6(y),

in which i, j refer to Cartesian coordinates, proving that this metric genuinely repre-
sents a spinning particle at the origin. Therefore we give a brief detour to study the

space-time of a spinning source in (2+1)D.

4.2.3 Spinning Sources in (2+1)D

By a simple transformation (¢t + J8) — T, the metric (4.18) yields the manifestly flat

form

ds? = dT? - dr? — r2d?, (4.19)

but because of the identifications X(g=0) = X[p=2x(1-4,)], the above metric represents a

CTC for r < J fig-(4.2.1), namely the line r =const., 0 < 8 < 27(1 — 4p).

60



Figure 4.2.1:
surface of co
lies in the ca)

To g3

nature of th
(4.18) and (
by the metr
the physical
with angula
exists CTCs
metric (4.19
time is stati
particles ins

causal propc

After

\

[
\/

The line r =const., 0 < ¢ < 27(1 - 4u) is a CTC (the dashed line). The
nstant “Inertial” time T winds helically around the ¢ axis. The event B
usal future of A.

e
2 existelce of CTCs in this (2+1

1.19). For the observer in the coordinate system which is represented

in further insight into an observer independent interpretation of the

)D world, we try to interpret metrics

¢ (4.18)| traveling on a circle with radius R centered at the origin, all
properties of space-time can be represented by a spinning point particle
- momentum J and mass M. As it was shown for this observer there
for r < J. For the observer in the coordinate system represented by the
) traveling on a similar circle in his/her coordinate system, the space-

hnary and the properties of space-time can be represented by static point
ide the%rcle. This observer also experiences CTCs at r < J since the
rties of

pace-time are coordinate independent?.

this briLf discussion we address the possibility of the existence of CTCs

2More preg

isely the geometrical properties of space-time are diffeomorphism invariant.

61




in the space-time of two moving spinless particles. We note that the Gauss-Bonnet
theorem §2.2 and equation (2.5) place a strong condition on the trajectory of the ob-
servers entering the causality violating region, the region containing CTCs. According
to equation(2.5), the metric (4.19) truly represents the space-time of an observer at
r =l as long as R(the 2-curvature)= 0 for r > I. In other words there are no parti-
cles outside a circle of radius ! centered at the origin. For an observer entering CTC
violating region at a distance ! from the origin this requires R = 0 for | > J. To see

whether this condition is met if a = [ from(4.17) if (a = 47u) we have

2uw>1=2pu>1/2, (4.20)

which according to §2.2 necessarily requires the space-time to be finite. Pure orbital

momentum, corresponding to a Poincaré group element representing a pure rotation,

gives rise to CTCs only in finite space-times.

A summary of the results achieved in the last few sections is required at this
point. There are at least two space-times in (241)D ,whose identifications belong to

the conjugacy classes of pure rotations of the Poincaré group elements which permit

causality violation

i space-times nearby a rotating point particle (or particles) which satisfies R = 0 for
at least some point at r < J. Equation (4.17) was derived assuming angular
momentum is purely orbital. Therefore for a spinning point particle, @ = 0
and 7 can be arbitrarily small so r < J is satisfied. This is not a completely
new result, as the underlying reason of the existence of CTCs in the stationary
axially symmetric space-time of the Kerr geometry and the Van-Stockum infinite
rotating cylinder {1} are manifestly similar to those of spinning point particles
in (241)D. Like that of a spinning point particle there is a limit to how far the
CTCs are spread out. This limit is proportional to the mass or mass density of

the rotating object and the rate of rotation.
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ii Finite space-times, space-times whose space-like cross sections are compact. Com-
pact space-times in (3+1)D do give rise to CTCs and it is not surprising to have
CTCs in (2+1)D finite space-times with moving point particles. The possibility
of the existence of CTCs in these space-times was investigated by ’t Hooft[28]

The question remains how Gott particles fit into this picture. Gott space-
time is the space-time of two point particles moving with equal velocities in opposite
directions whose space-time satisfies certain conditions. Therefore Gott space-time
is not from category (i) since angular momentum in Gott space is totally orbital
and due to the relative motion of point particles. It is certainly not from category
(ii) either, since according to §3.2.3 this space-time possesses non-compact partial
Cauchy surfaces going to i° (space-like infinity). To answer the question asked at
the beginning of the paragraph we go back to §4.1 and equation(4.15) to investigate
the conjugacy classes of the Poincaré group elements which represent the coordinate

identifications in Gott space-time.

4.2.4 Point Particles with Tachyonic Center of Mass

We recall from §3.1 that a necessary condition for the Gott space-time to have CTCs
is that v, the velocity of each string in the lab frame to satisfy equation(3.6) which

can easily be shown to require
coshusina > 1, (4.21)

in which v = tanhu. On the othker hand the Poincaré group element representing
coordinate identifications in Gott space are certainly given by left hand side of (4.15),
therefore if this element belongs to the conjugacy classes of pure rotations Iu‘—;g:-ll <

1 can be shown to require (this step is not straight forward and needs some algebra)

coshusina < 1, (4.22)
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therefore (4.21) ouly if the corresponding Poincaré group element belongs to the

(=]

conjugacy classes of pure boosts in which case Tr(Q') = 1 + 2 cos 4y, requires u t
be pure imaginary. This surprising result is due to the fact that identifications ip

Gott space-time are boost like; coordinate identifications are restricted to the ¢ —

=

hyperplane, the plane passing through the velocity vector # and ¢ axis.

To further investigate the physical properties of these boost identified space

times we assume ¥ is along +z , the corresponding metric is[6]
2
dr? = di? ~ dz? - ""” td’ - [¢ (v+6m t—*‘i)] . @2

which after inserting into Einstein’s equation for general stationary metrics given jn

Appendix-B yields

TY x é(x)6(t). (4.24)

This equation has two important implications. First it confirms our earlier statemept
that because of the conical geometry of space-time the velocity addition formula
does not follow that of non-conical space-time, despite the fact that the particles
are moving in +z, —z directions, 7% # 0. The second implication is that (4.24)
is the er--zv-11 .. -utum tensor of matter with tachyonic velocities which is a direct

consequence of ;& .- ¢ implication.

A ¢ «cnce of a space-like center of mass momentum is that CTCs do not
arise from the decay of a particle with initial time-like momentum, Deser et al. say
[6] “Gott CTCs can not be created or destroyed, but come towards the interaction

region from space-like infinity. We can view this as resulting from a boundary condi-

tion at space-like infinity that one should call ‘unphysical’, namely the identification
(4.23). The source must always be moving at its high velocity in order to ensyre
this CTC creation”. This conclusion is generally acceptable as long as one does fot

try to broaden the meaning of “unphysical” beyond its limit. One should also note
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that tachyonic center of mass of two particles with time-like momenta is a direct con-
sequence of non-linear mass addition formula in multiconical space-time (see §5.3).
Whether one calls this phenomenon ‘unphysical’ seems to be more a matter of taste
than a sound physical reasoning, If we assume the space-time is causally well behaved
at any time, it is always causally well behaved. But there is no reason to believe we
are living in a universe which is causally well behaved at any time. One should also
notice that CTCs approach the origin from Z~ and go to Z*, not as Deser et al. claim

from %, space-like infinity.
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Chapter 5

Gott Space-Time and Pseudo-Unitary
Representations of the Lorentz Group in (2+1)D

Following the discovery of CTCs in the space-time of two moving paraliel cosmic
strings, being familiar with S. Deser et al.s treatment of straight cosmic strings as
point particles in (2+1)D, S. Carroll et al. [7] decided to investigate the feasibility of
time travel in Gott space-time by representing point particles in (2+1)D, unlike S.
Deser et al., not by the conjugacy classes of Poincaré group elements, but by non-
compact pseudo-unitary group of Lorentz transformations in (2+1)D, SU(1,1) and its
corresponding Lie algebra. Despite striking similarities between the representation of
Gott space-time in (2+1)D by the elements of Poincaré group and the elements of
SU(1,1) (SU(1,1) and SO(2,1) have the same local properties) the work done by S.
Carroll et al. bears new results and merits the devotion of an entire chapter to their

treatment of (2+1)D point particles in Gott space-time.

S. Carroll et al.§ approach to this problem has several advantages as well as

disadvantages over the approach made by S. Deser et al.

i perhaps the most important advantage of the S. Carroll et al.$ paper is that they
claim to have formulated a method which allows them to treat generic many
particle systems in (2+1)D dimensional space-time{7]. In §4.2.2 we treated a

system with two particles only a system with a high degree of symmetry'. Using

10ne of R. Jackiw's students, Daniel Kabat has studied a highly symmetrical many particle
system using Poincaré group elements. In doing so he has used the fact that to maximize the
angular momentum confined to a compact region of an open (2+1)D universe, one has to lay N
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this method, later they claim to have been able to prove “in an open universe
with net time-like momentum, no subset of particles can possess a space-like

momentum” [22].

ii S. Carroll et al. do not draw any conclusions on the existence of CTCs im the space-
time of spinning point particles with total time-like momentum (see §4.2.2). In
fact in deriving the conservation laws regarding the particle decay they implic-
itly assume that space-time is causal at large distances from the point particles.
This is also true for spinning point particles at sufficiently large distances from

the origin.

iii The geometry of Gott space-time represented by the metric (4.23) can be shown to
posses space-like identifications (reminiscent of Misner spaces [13)(p.173)) which
when viewed from properly Lorentz transformed coordinate system bears CTCs
(the CTC possessing property of a space-time is coordinate independent). But
S. Carroll et al. do not independently show Gott space-time possesses CTCs.
They merely prove that (3.5) derived by Gott can not be satisfied by a center

of mass with time-like momentum.

In this chapter in the light of what was said in §3 and §4 we try to give a
self-contained comprehensive review of S. Carroll et al.§ treatment of Gott space-
time and those aspects of multiconical space-time which was not clearly revealed (i.e.
non-linear energy addition formula). After a self-contained review of SU(1,1) and

how it is related to (2+1)D gravity in §5.1, in §5.2 we study the decay of a particle into

particles rotating on a circle around the origin. Then he proves there is no way for the angular
momentum to reach the limit which is required for the creation of CTCs following discussions given
in §4.2.3[29]. Later on, S. Deser and R. Jackiw use the generators of SO(2,1) to treat two particle
systems in (2+1)D[33].
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two and see how the conservation laws directly follow the causality requirements in
(24+1)D. In §5.3 we finally see how Gott space-time is represented by the elements of
SU(1,1) and in what sense this space-time is unphysical. §5.4 is the study of a peculiar
similarity between (24+1)D anti-de Sitter space-time and the matrix representations

of the group of Lorentz transformations in (2+1)D, namely SU(1,1).

5.1 Pseudo-Unitary representations of the Lorentz

Transformations in (241)D

10 01
gy = y Oy = )
01 10
0 —i {1 0
y O3 l ’

in which o; are the Pauli matrices, SU(1, 1), the group of unimodular unitary trans-

If

(5.1)

a2

formations consists of those elements of g € SL(2,C) (group of unimodular 2 x 2
complex matrices) which satisfy the relation
g'o3g = a3. (5.2)

It can be shown that this relation requires g to be represented as[30};

u+iv T -1y )
g= = ugy + 10y + Yoo + ivay, (9.3)
r+iy u—1iv
where
w4i--yi=1 (5.4)
Now if X = z#0, in which p = (0,1,2) represents the space-time coordinates in

(241)D, det[X] = 23 — z? — 3} is invariant under the transformations of the type

X' =gXg' (5.5)
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which on its own indicates that SU(1,1) is homomorphic to at least some subclass of

(2+1)D Lorentz transformations [31)(p.294).

To understand the Lie algebra of SU(1,1) (its tangent space at identity with
properly defined structure constants (12](p.169)) which is essential to a good under-
standing of §5.2, §5.3 and §5.4, we investigate how pure boosts and pure rotations
are represented by the elements of SU(1, 12 IfJ = %03, in complete analogy with

SU(2), rotations in z,y plane with angle a are easily verified to be

e~ie/2 .
R(a) = gpcosaf2 — ioysina/2 = = e, (5.6)
0 eia/?

Boosts in (z,y) less intuitively follow the group structure of SU(2) and are what

makes SU(1,1)a non-compact Lie group. They are shown to be

-y

—i o
B( )=00005h€/2+£.&‘sinha/2=( cosh§/2  e*sinh¢/2

| = e~k (5.7)
esinh¢, 2 cosh§/2

in which £ = Iﬂ, £= f/f, 7 = £tanh € is the velocity in (z,y) plane, ¢ = tan! £, /&,
and k;j = §0; (j = 1,2). Therefore

o3 , ki = 0j (5.8)
form a basis (generators) for the Lie algebra over SU(1,1).

The representations introduced in the previous paragraph, besides showing
an easy way to calculate the trace of the elements of SU(1,1)(Tr[g]), also suggest
that (J, K) form a basis for the Lie algebra of SU(1,1)[32](p.26). One of the known
properties of non-compact Lie groups is that they may posses elements connected to
the identity oo but not expressible as the exponentiations of the elements of the Lie
algebra [7). In this case the connection to identity is given by multiplication of several

exponentiations of the components of the Lie algebra. As a matter of fact it will be

2The complex extensions of the Lie algebras of SU(1,1)and SU(2) are identical{32](p.24).
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shown (see §5.3) that SU(1, 1)transformation matrices representing Gott space-time

belong to this category.

Now we are in a position to see how SU(1, 1)helps us to understand the dy-
namics of point particles in (2+1)D. In analogy to §4.14 the coordinate identifications
representing the embedding of the space-time of a moving particle, with rest frame

deficit angle o and rapidity f in (2+1)D flat space-time is shown by 3

T = B(€)R(a)B~!(€). (5.9)

But now the generalizations begin. In a causally well behaved space-time in which

(1,---, N) particles interact and result in (1,.--, M) particles the relation
Tt =TTy Ty =Ty Ty -+ T (5.10)

should hold simply because the effects of interaction move with finite velocities (this
statement can not be made in space-times with causal pathologies). In §5.2 the above

equation yields the conservation laws regarding the decay of one particle into two.

To derive the proper i:zm of the conservation laws we should define the total
momentum of a group of particles in a way that for one particle it reduces to the
SU(1,1)element representing the coordinate identifications in the space-time of a

single particle namely (5.6) and (5.9). The total momentum is defined as;
e—iBl’GP"J’, = T}o‘ (5.11)

in which Jo = J, J; = —¢;K; with ,j = (1,2), €2 = 1 defined in (5.8), M the mass
of the particle and P* = (yM,yM7) is the 3-momentum. Two major consequences

of the above equation are as follows:

38. Carroll et al. unlike Cutler and S. Deser et al. do not use the term “coordinate identification”.
They rather use the fact that because of the coordinate identifications, parallel transport of a vector
around the origin does not map the vector into itself. More technically, this is represented by the
holonomy group of (2+1)D space-time,
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i in the rest frame of a single particle
e—inGPl‘J,. - e—iaJ = R(a), (512)

so in the rest frame (5.11) truly defines the 3-momentum of the particle. That
(5.11) should also define the 3-momentum in the moving frame follows from
the fact that in the matrix representation of a Lie group BeAB~! = eBAB~!
Therefore if A = R(a), the above equation properly defines the transformation

of P*# as Lorentz vector.

ii If P* is the 3-momentum associated with each particle (1,---,N) then
e—l.slGP“J‘ -— 7"‘0‘ = TNTN—I o Tl
= o-i87GPJu =BRGP _\Js ... o=i8%GPU, (5.13)

# e-isxG(Pp+P,‘,‘,_l+---+P{‘)J,._

This is an indication of non-linear addition of energy and momenta of a group
of particles which is characteristic of a multiconical space-time. The above
inequality is also an indication of the fact that the order in which matrices are
multiplied to yield T}, is important since for Abelian groups the inequality at

the end of (5.13) is replaced with an equality.

All the information regarding the parallel transport of a vector around a moving

particle (specifying the holonomy group) is contained in (5.9). Calculating T in (5.9)

explicitly yields
TF p2e-ic'/2 ipe=i®
e, e)=| iy (514)
_ipe+l¢ \/m?em /2
in which
p =sinh§ysina,/2 = yav4sina/2, (5.15)
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given 0 < a < /2, uniquely determines the magnitude of the special relativistic
2-momentum of the particle. The above equation should not be confused with (5.12)

as the true definition of 3-momentum in multiconical space-time. In (5.14)
tano'/2 = cosh £ tan a/2 (5.16)

is related to the total energy of the moving particle. These abbreviations greatly

simplify the treatment of two particle systems.

5.2 The Decay of a Particle into Two

To have a better grasp of the physical reality of Gott space-time we first study particle
decay in this space-time which is later used to analyze universes with total time-
like momentum. (2+1)D particle decay is based on the a priori assumption that
the space-time of a single particle is causally well behaved and any CTC creation
is confined to with in a neighborhood of the origin®. This assumption requires the
coordinate identifications at large and small distances from the origin to be the same®.

Coordinate identification is given by combination of (5.14) and (5.6) at small and large

distance respectively. In particular equating

T(a) = T%(ps, o', 85)T*(pa, @'y, 85) (5.17)

with (5.6) yields the conservation laws regarding the disintegration of a static particle
into two, namely

oy + dg = a

Pa =pPr = p (5.18)

$a — ¢ = T—af2

4Gott space-tima simply does not satisfy the above criterion.

5The holomomy group is a discrete group. (I)-Identity which corresponds to no transformation.
(II)-Integer multiples of positive parallel transport of a vector around the particle. (III)-Integer
multiples of negative parallel transport of a vector around the particle.
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As it is seen the very fact that Gott particles satisfy
Ga=¢p=T (5.19)

guarantees that they can not arise from the disintegration of a particle into two. This
fact corresponds to the statement in §4.2.4 that the Poincaré group elements repre-
senting coordinate identifications in Gott space-time do not belong to the conjugacy
classes of pure rotations. In other words (5.18) is an indication of the fact that as the
particle disintegrates, the offspring particles move back to back on the two sides of
the cone and the distortion in the geometry of the space-time moves away from the
center with the velocity of the faster particle. As it is seen this picture is inconsistent

with particle kinematics in Gott space-time.

To give further insight what was said in the previous paragraph, a ¢ =const.
surface is drawn as the particles move away from the decaying particle. To simplify
calculations the deficit angle a,, = oy + ' is located in a way that v, = vy, =
7&; (Fig.5.2.1). As the particle decays, two observers on y axis in the upper and
lower half plane which were staticnary with respect to each other now have relative
velocities f—;’k This behavior suggests that the particle decay might result in the

instability of this space-time.

5.3 Gott Particles

As R. Gott showed [4] the space-time of two moving particles contains CTCs provided

the particle velocities in the lab frame satisfy v < ’ini* m (see §3.1)

b=cosh¢sina/2 > 1. (5.20)

In the cm frame coordinate identifications are either described by (5.6) or (5.7). These

equations also show a convenient way to determine whether coordinate identifications
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Figure 5.2.1: The decay of a particle into two.

belong to the holonomy group of pure rotations or they necessarily involve both

rotations and boosts. We have

lTr[ ~i81G P4, cosaf2 = cosy—-4rGP* P?<0 |,
— 1T}€ =
2 cosh€/2 = cosh VFIRGP? P50 .

The general form of the coordinate identification matrix for two moving particles is

(5.21)

given in (5.17). For Gott particles

g = g = @« ,
§a = & = €&, (5.22)
2 = 0 )
¢g = 7
Inserting these values in (5.17) yields
%’I‘rTB" =1-2% < -1, (5.23)

which is not covered by either of (5.21). It can be seen from (5.6) and (5.7) that
no matrix of the form (5.11) can have Tr[Tio)) < —1. But it can be shown that the
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combinations of several exponentiations

- -t J - o
Ttot =e 181rGP“J,.e i8xGP “J,.e 18708 ), (524)

can have negative trace. Therefore the SU(1, 1)element representing Gott space-time
can not be written as the exponentiation of an element of the Lie algebra of SU(1,1).
The question remains whether this property of Gott space-time has any physical
significance or is merely due a group property of SU(1,1). In trying to answer this

question we note that SU(1,1)is a double cover of SO(2,1). Namely
R(a)lsuq,1y = —R(e + 27)|suq) (5.25)

whereas they represent the same Lorentz transformation. Since Tr[R(a)] =-Tr[R(a+
27)], £ Tr(TB4) represent the same Lorentz transformation and Gott space-time corre-
sponds to the second equation ir (5.21). In §5.4 we see that anti-de Sitter space-tine
has similar properties which are not surprisingly related to the exponential map on

that space-time manifold.

To gain further insight into on how Gott space-time might be constructed
from accelerating stationary particles after inserting (5.22) into the right hand side
of (5.17), unlike §5.2, (5.17) is equated not to R(a), rather to a boosted rotation,
namely (5.14). After equating the real and imaginary parts of the T}, component and

using (5.21), we derive
¢cm 7r/2 [}
g—sin? o/
vfm = l—si::l ¢:,/22

As it is seen, Gott space-time necessarily requires the center of mass to move with

(5.26)

tachyonic velocities v > ¢ in the y direction. It should not escape attention that
the origin of this tachyonic center of mass is due to the multiconical nature of the
space-time and by no means requires violation of any conservation laws. However
it shows that causality violations and tachyonic center of mass for any two particles

are intertwined, therefore the existence of one necessarily requires the existence of

(6]



the other . A condition exists which is similar to §4.24 and which one might call

“unphysical”.

Following the same procedure, S. Carroll et al. further prove that the decay
of two particles into four can not result in a tachyonic center of mass for any two
of the produced particles and then generalize their result to show “in an open uni-
verse with net time-like momentum, no subset of particles can possess a space-''ke
momentum”([22]. It has been shown that in closed (2+1)D universes, the decay of a
particle into two can result in creation of CTCs satisfying Gott condition (5.20) in the

vicinity of particles once they get close enough. However this space-time is unstable

and collapses before the creation of CTCs[28)].

5.4 Gott Particles and (2+1)D Anti-de Sitter Space-

Time

The space of constant curvature with R < 0 is called anti-de Sitter space Anti-
deSitter space in (2+1)D has topology S! x R? and its geometry is the geometry
induced on the hyperboloid (Fig.5.4.1)

w+P-rt-y?=1 (5.27)
in 4-D space (u,v, z,y) with the line element
ds? =',-du2 — dv® + de? + dy. (5.28)

From (5.27) and (5.4) it is easily seen that anti-de Sitter space-time and SU(1, 1)are

isomorphic with group operation on this space-time defined by the isomorphism. The
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following coordinates are introduced on the hyperboloid:

u = coshrcost’ |,
v = coshrsint ,
(5.29)
z = sinhrcos¢ ,
y = sinhrsing .

in which 0 < ¢’ < 27. The line element induced on the hyperboloid can be written as
ds? = — coshr?dt? + dr? + sinh r2d¢’. (5.30)

This space-time manifestly contains CTCs and has at least one time-like Killing vector
b% which with the first integral (ds® = g,,dz*dz") yields a straight forward way to

derive radial geodesics. With a coordinate rescaling
¥ = 2tan"le"—-7/2 ,0 < ¥ £ 72 (5.31)

the metric (5.30) can be written in the conformal form ds? = coshr2d3? in which d3
is the metric for a flat (2+1)D Einstein static universe [13](p.121). In this coordinate

system the tangent to geodesics can be written as ©;

B s (532)
dr' ~ VE? +esectr’ '

in which
+ space-like
€=4 — time-like - (5.33)
0 light-like

The conformal diagram of this space-time with geodesic lines is given @
Fig.5.4.2. Region (I) corresponds to those points in anti-de Sitter space-time whick
can not be reached from p, an arbitrarily selected point (this space-time is homoge-

neous), by any geodesic. In other words for any g €(I), ¢ is not in the range of the

®For time-like geodesics, it is much easier to write the geodesic equation in derivative form rather
than closed integrated form.
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Lines of r =const. are
closed time-like curves.

Figure 5.4.1: The geometry of anti-de Sitter space-time is the geometry induced on
a hyperboloid in 4-D with the line elemeut ds? = —du? — dv? + dz? + dy?.
following map[13)(p.33);

exp: T, = Ads (5.34)

which is the exponential map of the tangent space T}, to anti-de Sitter space-time man-
ifold (Ads). This phenomenon can be recognized as a characteristic of SU(1,1)and
its corresponding Lie algebra (i.e. tangent space at the identity). Gott particles are
represented by those elements of SU(1, 1)which are not connected to the identity by
exponentiations of the elements of the Lie algebra. In other words these elements do
not belong to a one parameter subgroup of SU(1,1). To see this more clearly, %Tr[g]
from (5.4), (5.23) and (5.29) in conformal coordinates can be written as;

1 cost' .
§Tr[g] su=— < ~1 for Vq € (I). (5.35)

Therefore in the light of what was said in §5.3 these elements of SU(1, 1)cannot be

written as exponentiation of Lie algebra elements.

The question remains whether the phenomenon mentioned above is of any
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physical significance or merely represents an aesthetic property of SU(1,1). To an-
swer this question we note that the elements of SO(2,1) sufficiently represent co-
ordinate identifications of point particles in (2+1)D space-time. But in (5.5) the
Lorentz transformation of X is invariant under g — (—g), therefore homomorphism
of SU(1,1) onto SO(2,1) elements maps g and (—g) to the same SO(2,1) element.
In other words the points (u,v,z,y) and (—u,—v, —z,—y) on the above hyperboloid
(Fig.5.4.1) represent the same particle dynamics in (2+1)D and as far as this space-
time is concerned, they are the same’. In conformal coordinates this identification is
equivalent to

t = t'+m,

¢ = o+

It is easily seen that under such identifications, points in (I) on ¢ plane can be reached

(5.36)

by space-like radial geodesics moving on ¢ + 7 plane.

"This is similar to lthe homomorphism of SU(2) and SO(3), the only difference is that the double
value of SU(1,1) is not an indication of an extra degree of freedom. '
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space-like
infinity

3n/2

n/2

r '
0 /2

Figure 5.4.2: Conformal diagram of anti-de Sitter space-time with time-like and
space-like geodesics. (I) correspond to SU(1, 1)elements representing Gott space-time.
Space-like geodesics go to space-like infinity which is a time-like surface. In
SU(1,1)Time-like geodesics pass through » = 0 at ¢’ = 7 and return to the ori-
gin at ¢t = 2x. Under the SU(1,1) = SO(2,1) homomorphism, time-like geodesics
return to the origin at ¢ = 7.
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Chapter 6

Conclusion

In conclusion, we embarked on what was treated lightly by the pioneers of investi-
gating the structure of Gott space-time, which we tried to address more completely.
If the strings are assumed to have finite thickness, Gott space-time is singularity free
and not asymptotically flat, namely there is no open set isometric to an open neigh-
borhood of Z* and Z~ in Minkowski space-time, since causality violation extend to
Z* and T~ in the space-time of two moving parallel cosmic strings. This fact res-
cues Gott space-time from having singularities, or rather rescues F. Tipler’s theorem,
which requires asymptotically flat space-times in which certain conditions hold to

have singularities, from joining the long queue of incorrect theorems.

In trying to establish the lack of singularities in Gott space-time we found
out that it has a rather interesting and perhaps bizarre causal structure. The causal
behavior near i® depends on which space-like geodesic one approaches i°. There are
space-like geodesics in an open neighborhood never intersecting A, whereas there are
space-like geodesics in an open neighborhood which intersect A and never leave that
region again. However a complete understanding of the causal behavior of Gott space-
time is possible if the conformal structure of this space-time is established. We tried
to obtain a conformal diagram of this space-time but since it is not asymptotically
flat, the problem turned out to be more difficult than what we origin.:lly thought,
however, the effort was not completely fruitless. We could show that at least for
some values of the parameters v, d, & and the polar angle 8, i lies in a causally well

behaved open neighborhood.
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The absence of CNGs causes Gott space-time to be most probably free of
singularities even when small classical perturbations are added. In most causality
violating space-times which do have CNGs, like Thorne wormhole space-time and the
example given in [15], the classical blue shift singularity is prevented by the divergence
of future directed null geodesics infinitesimally close to a CNG which is caused by
WEC violation (or in a less formal way, negative energy density). This is a fortunate
event (from the point of view of the observers traveling in Gott space-time), because
the blue-shifted future directed null generators of the past CTC boundary in Gott
space-time have positive convergence and the existence of a CNG would result in a
blue shift singularity (The classical stability does not necessarily guarantee that the
Cauchy horizon is immune to divergence in the energy momentum density due to

vacuum polarization [15].)

It seems as S. Carroll et al. claim, pseudo-unitary representations of Lorentz
transformations in (2+1)D yield a more powerful tool to investigate many particle
systems. In this method point particles are represented by SU(1,1) elements. Using
this method, they claim they have been able to prove that in a universe with total
time-like momentum no subset of particles (each seperately assumed to have a time-
like momentum) can have a net space-like momentum. After proving Gott particles
cannot arise due to the decay of a particle into two, we addressed how Gott space-
time corresponds to those elements of SU(1,1) not connected to the identity by
exponentiating Lie algebra elements. After an ansatz made by D. N. Page we see
this space-time is equally indicated by those points in anti-de Sitter space-time not
connected to the origin by any geodesic. In other words these points do not lie in
one parameter subgroup of SU(1,1). This seems to be an irrelevant group property

of SU{(1,1) which disappears upon the homomorphic map of SU(1,1) onto SO(2,1).
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Appendix A

To derive the function g(¢;) = ¢ which maps the angle that a light ray makes in
frame (1) with respect to the —z; axis before scattering from string (1) of a light ray
to the angle ¢, with respect to the +, axis in the frame of string (2) (Fig.3.2.3), we

use Lorentz transformation laws as follows: First we define

cospy = -4, sing = P (A1)
cos¢p = ‘j—f} , Singp = —‘-j{%
given Lorentz transformations,
11 = 7(x2 = vtg), t) = Y(t2 ~ vza). (A2)
Therefore,
cot g, = —Z—;: = (1 - u?)"Y?[cot ¢y — ucsc ¢y). (A.3)
Likewise,
cotdp = —%xy-:- = (1 - u?)"?[cot §; ~ ucscéy), (A.4)

in which @, ¢, are the angles seen by the observers at rest in the frame of string {1)
and (2) after the scattering of the light ray from string (1) and u = T%f is the speed

of frame (2) with respect frame (1).

To calculate ¢, in terms of ¢, we divert attention to Fig.1.0.1 in which the
deficit angle is placed below y; = d, so ¢ = 27 — (20 — ¢), and after inserting in
(A.4) we have

cot ¢ = (1 - u)~V?[— cot (2a — ¢y) ~ ucsc(2a — ¢y )}, (A.5)
which immediately yields

9(6) = cot~1{(1 = u?)~"?[- cot (2a — ¢1) — ucsc (22 - ¢y )}}. (A.6)
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Figure 1.0.1: The angle deficit is placed below the +z, ~r axis.
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Appendix B

A general stationary metric in (24+1)D can slways be written as
ds? = =N¥(dt + kidz*)? + ;;dz'de’. (B.1)
With this metric the Einstein equations can be written as

G® = R+ 3FIF; - kV;Fi - 3K,N"\(;N)F¥
—N-'KK;(ViVi = ¥iV2)N + IN2KK;F*F] - AN K.K;FH Fu
2rGT®,
G% = -LK;Fi*FiF, + N-'k;(ViVi - yiV3)N + }V,;FJ
+3N-Y9;N)Fi + }k'N*Fj
= 2rGT™,
Gi = INF*F] - N-YV'V! - 4iV})N - {4 F*Fy
2xGTY,

(B.2)
where R is the Ricci scalar constructed from the spatial metric v;;, V' is the covariant

derivative with respect to the spatial metric, and

F,'j = Vin—VjK.',

Fii ki By, (B3)
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Appendix C

To calculate the change in the coordinates of a null generator of the future boundary
(Fig.3.2.5 and §3.3), as a null generator leaves +x axis in the lab frame and scatters
from the wedge at rest in the coordinate (1), its z coordinate advances in -z direction
ie. [tp(TLy)yZ1e,0] = [tL(zr, — b), 71, — b,0]. But this change in the r coordinate
is constant for all null generators at all times i.e. @ = —1. Therefore the null

generators neither converge nor diverge. To calculate (g,b), we first perform the

following transformation,

[t,_(.’tl,o),l'l,o,()] -t if‘uvtg., 0), (C.1)

to the coordinate system in which the string (1) is at rest. Then we perform the

scattering according to Fig.1.0.1
(t1e: 210, 0) — (8}, ,74,,0)s (C.2)
and perform the following transformation,
(t191 %192 0) = [te(2 10 ~ b, 200 ~ b,0]. (C3)

The result is

)
!

-1,

- D43 /i-vlsinatana
b = (l-v3)§2:0;~l_-wl2-a >0.

(C4)
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