
University of Alberta

APPROXIMATION TECHNIQUES FORUNSPLITTABLE FLOW AND TRAVELING
SALESMEN PROBLEMS

by

Zachary Lorne Friggstad

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Zachary Lorne Friggstad
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University ofAlberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association withthe copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

Abstract

In this thesis, we present a variety of approximation algorithms for the Unsplittable Flow on Paths

problem and some Traveling Salesman problems. The main contribution to the Unsplittable Flow

on Paths problem is a logarithmic approximation algorithm which is the first non-trivial approxi-

mation for general instances of the problem. The algorithm works by using dynamic programming

to approximate solutions on instances that cannot be approximated well through linear program-

ming techniques. A generalization of this algorithm provides a constant-factor approximation in

sub-exponential time. We also demonstrate that certain sparse instances can be approximated within

a constant factor.

The Traveling Salesman problems we consider mostly deal with finding paths in asymmetric

metrics, though we do consider others. First, we demonstrate that the integrality gap of a natural

linear programming relaxation for the Asymmetric Traveling Salesman Path problem isO(log n)

wheren is the number of nodes in the metric. We then further generalize the problem and study

the problem of finding up tok paths with minimum total distance in an asymmetric metric such that

the union of these paths spans all nodes. In the case that all paths are required to share a common

start and end node, we demonstrate a family of bicriteria approximation algorithms that find a little

more thank paths whose total cost is within some bounded ratio of the optimum value of a linear

programming relaxation. These results are extended to manyother variants of finding multiple paths

in metrics whose union spans all nodes. However, we show thatthe most general case when each

path has its own start and end location specified in advance cannot be approximated within any

bounded ratio unless P = NP.

Finally, we formulate a linear programming relaxation for the Minimum Latency problem in

asymmetric metrics and prove that the integrality gap of this relaxation isO(log n). This critically

relies on the fact that the integrality gap of a natural linear programming relaxation for the Asym-

metric Traveling Salesman Path problem isO(log n). This is the first sub-polynomial approximation

algorithm for the problem.

Acknowledgements

It is difficult to summarize how many ways I am grateful to my supervisor and mentor, Mohammad

R. Salavatipour. Of course, I thank you mostly for teaching me how to think like a researcher and

for the opportunities you presented to me. However, your support also extended beyond academics

and I also thank you for your patience, understanding and advice as I balanced my research with

other aspects of my life.

My experience would not be nearly as complete as it was without my fellow students and post-

doctoral researchers. For inspiring discussions on optimization problems, I thank Amin Jorati,

Babak Behsaz, Reza Khani, Zoya Svitkina, Imran Pirwani, andMohammad A. Safari. I also appre-

ciate the stimulating conversations I’ve had with Phillip Hendersen, Jessica Enright, Barry Gergel,

Roshan Sharrif, and Travis Dick.

I want to thank Nikhil Bansal and Rohit Khandekar for their help in getting me started with

Unsplittable Flow problems. You helped me bootstrap my studies and I’m grateful for all of the

support you’ve given me through this process. Additionally, I would like to thank Nitish Korula and

Aline Ene for a fruitful discussion on this topic.

I would also like to thank my references Mohammad R. Salavatipour, Nikhil Bansal, Mike Mac-

Gregor, and Martin M̈ueller for supporting me when I was applying for jobs. For personal funding

and research grants, I thank the University of Alberta, NSERC, and AITF. I also appreciate the feed-

back for this thesis provided by Anupam Gupta, Ryan Hayward,Jim Hoover, and Mazi Shirvani.

Thank you for examining this work and for your insightful questions.

Another big part of my graduate experience was my involvement with the ACM International

Collegiate Programming Competition. Howard Cheng, MartinMüeller, and Piotr Rudnicki are some

of the best coaches you could ask for and I’m indebted to them for their support in and beyond the

contest setting. Competing in World Finals competitions with Sumudu Fernando, Andrew Neitsch,

Steven Soneff, and Kevin Waugh was a lot of fun, thank you for the terrific experiences. I’m also

grateful to the contestants that followed me. Being your coach for four consecutive World Finals

competitions was truly an honour.

There were many professors I interacted with during my undergraduate studies that encouraged

me to pursue a graduate degree. Through independent studiesand summer research, I was inspired

by Amir Akbary, Howard Cheng, Abdelaziz Fellah, Hadi Kharaghani, Hua Li, and Shelly Wismath.

Thank you for all of the time you spent with me while I was beginning to understand my research

interests.

I dedicate this thesis to Jenne, my wife. I am humbled by the incredible love and support you

have shown me throughout my studies. My boys, Gabriel and Lucas, have also encouraged me in

their own ways. I am very proud to be your father. I am also grateful to my parents Lorne and Janice

and my sisters Kjersti, Jannaya, and Courtney. I would not behere today without your prayers and

encouragement. Finally, I thank God for my family and my successful studies.

Table of Contents

1 Introduction 1
1.1 Problems Considered 1
1.2 Notations and Preliminaries 2

1.2.1 Graphs . 2
1.2.2 Approximation Algorithms 6
1.2.3 Linear Programming . 7
1.2.4 Matroids . 9
1.2.5 Matroid Intersection .. . 11
1.2.6 Complexity and Lower Bounds .. 12
1.2.7 An Integrality Gap Example .. . 15
1.2.8 Lower Bound Examples . 16

1.3 Previous Work .. 17
1.4 New Results .20

2 The Unsplittable Flow Problem on Paths 22
2.1 Simplifying Assumptions 27
2.2 A Logarithmic Approximation for UFP 29

2.2.1 A Reduction to Intersecting Cases 29
2.2.2 Slack Tasks . 31
2.2.3 Both Endpoints Tight .. 33
2.2.4 Left-Tight and Right-Tight Tasks 37
2.2.5 An Extension to Cycles .. 39

2.3 AnO(logd n)-Approximation in TimenO(d) . 39
2.3.1 An Alternative Goal .41
2.3.2 A Reduction tod-Intersecting Instances 44
2.3.3 Simplifying the Instances 45
2.3.4 Tasks With Both Endpoints Tight 48
2.3.5 Tasks With One Tight Endpoint .. . 52

2.4 Approximatingq-Conflicting Instances . 57
2.4.1 Initial LP Rounding . 58
2.4.2 Picking a Feasible Subset .. . 60

2.5 Recent Developments 61

3 Traveling Salesman Paths in Asymmetric Metrics 63
3.1 Warmup: The Asymmetric Traveling Salesman Problem 67
3.2 The Asymmetric Traveling Salesman Path Problem 72

3.2.1 Path/Cycle Covers .72
3.2.2 A Logarithmic Approximation for ATSPP 74
3.2.3 A Logarithmic Bound on the Integrality Gap for ATSPP 77

3.3 Multiple Traveling Salesmen 78
3.3.1 Preliminary Discussions and Results 79
3.3.2 Phase 1 . 81
3.3.3 Warmup To Phase 2 . 82
3.3.4 Phase 2 . 83

3.4 Approximating Other Multiple Salesmen Variants 86
3.4.1 Varying the Endpoints ink-ATSPP . 87
3.4.2 A Constant Factor Approximation for Generalk-TSPP in Symmetric Metrics 90
3.4.3 A Logarithmic Approximation for Generalk-ATSPP withsi = ti. 92
3.4.4 Inapproximability of Generalk-ATSPP 94

4 Minimum Latency in Asymmetric Metrics 98
4.1 A Review of Minimum Latency in Symmetric Metrics 101
4.2 Relaxed Cut Constraints for ATSPP 103
4.3 Approximating Minimum Latency in Asymmetric Metrics 106

4.3.1 Constructing the Paths .. . 109
4.3.2 Connecting the paths .. 110
4.3.3 Bounding the Cost . 112

5 Conclusion 115
5.1 Future Directions - Unsplittable Flow Problems on Pathsand Trees 115
5.2 Future Directions - Asymmetric Traveling Salesman Pathand Minimum Latency

Problems . 116

Bibliography 119

List of Figures

2.1 An instance of UFP on paths with integrality gapΩ(n). 26
2.2 Grouping the tasks according to the left-most point of the formk2r for some integerk. 30
2.3 Illustrating why we may assume the capacity profile is unimodal. The capacity

profile is drawn above the line and the tasks are drawn below the line. 31
2.4 A sketch of the structure exploited by the dynamic programming. Thick lines are

tasks in a feasible solution (with the corresponding demandclass written to the left
of the image) which is why each demand class has only three tasks shown. Pairs of
dotted lines connected by a thin, double-arrowed line indicate the last start node and
the first end node among all tasks in the corresponding demandclass. The edges
spanned by tasks of any higher demand class must be containedbetween these two
dotted lines. 35

2.5 The tasks are drawn as thick lines. The common point in this intersecting case is
indicated by the thin line. The dotted lines are the latest start times over all tasks in
the respective demand classes. Demands in higher classes must start later than these
lines. Finally, while the intervals do not look “nested” to the right of the common
point, if we choose one task from each demand class then sincedi ≤ ce/2 for each
edgee right of the common point that is spanned by a left-tight taski and since
di′ < di/2 if i′ is in a lower demand class thani, then by summing a geometric
series we see that we do not violate the capacity of any edge tothe right of the
common point. 38

2.6 An sketch of an instance that requires logarithmically many groups of “disjoint in-
tersecting instances”. 40

2.7 Tasks with larger demands are drawn higher in the figure. Figure a) shows an exam-
ple of tasks with the vertical dashed lines corresponding tonodes in the underlying
path. Figure b) illustrates the planar graphH drawn from the given tasks. Figure c)
is the planar graphH ′ obtained by contracting each pathPi into a single node. . . . 42

2.8 An example withn = 15 andd = 4. The black tasks are those inT ′ and the
remaining tasks in someTi are displayed in grey. 44

2.9 Tasks with larger demands are drawn higher in the figure. The dark tasks form a
canopy for the given set of tasks. Each partition edgeek that is spanned by some
task has the largest demand task highlighted with× where the task crossesek. . . . 47

2.10 Decomposing a feasible solution. a) The first dashed line is the start ofe and the last
dashed line is the end ofe′. After choosing the task that spans the entire interval,
we may break the remaining solution into two halves by the middle dashed line. b)
Recursively decomposing these subproblems further (the thin, double-arrowed line
highlights the two subproblems). 50

2.11 An illustration of why a conflict can be blamed on one of atmostd tasks. The
height of the task corresponds to their demand and the polyline surrounding the
image is the capacity profile. The two rectangles shown are the tasksT ′. We have
FT ′(I1) = FT ′(I2) = i′ because of edgesa and b andFT ′(I4) = i because of
edgec. Note that the residual capacity left acrossI2 by choosing onlyi′ is strictly
less than the residual capacity left acrossI2 by choosing onlyi even thoughi has
larger demand thani′. For eachIk labelledS, any other taski′′ with si′′ � si′ must
span edgesa andb because the first interval labelledE appears after these edges.
Similarly, i must either end inI3 or spanc. 54

2.12 An illustration of why we only need to keep track of at most d tasks to detect vio-
lations to demand class independence. Tasks with larger demands are drawn higher
and two tasks in the same demand class are drawn at the same level. The two dark
tasks are in the smallest demand class for some interval labelled S. Notice that it is
impossible for any taski with si � si′ for each drawn taski′ to both be in the same
demand class as one of the grey intervals and to share a commonpoint with that
same grey interval. For example, if such a task was in the samedemand class as the
rightmost grey interval and shared a point with the grey interval, then it would have
to span the first edge (which is a bottleneck) of the rightmostdark interval which is
contradicts feasibility of each task by itself. 55

2.13 An instance with the “conflict-implies-contain” property that is not perfect. The
numbers on the path are the edge capacities and the demands ofthe tasks are written
next to the task. The endpoints of the dashed lines connect two tasks that conflict.
The graph corresponding to conflicting pairs is then a cycle on 5 nodes so it is not
perfect. It is easy to verify that all tasks are tight and thatthey are all in demand
classD3 so even simplified instances might not be perfect. 58

2.14 All tasks are inSi,e for taski and edgee in the picture, taski is drawn in gray only
to help distinguish it from the other tasks inSi,e. The height of the task corresponds
to the value of its demand. The dots on the tasks indicate thatthe corresponding
edge on the path is a bottleneck edge. 59

3.1 a) The graph whose shortest paths defines the metric. b) The support of the first
path/cycle cover. c) The support of the second path/cycle cover (the first is grayed
out). 74

3.2 a) A sketch of a solution using 3 salesmen. b) A sketch of a similar solution of no
greater cost using only one salesman. 79

3.3 All shown edges have distance 1 and all omitted edges havedistanceD for arbitrarily
large valuesD. Using one salesman requires cost at leastD while the optimum
solution using two salesmen is only 4. 79

3.4 An illustration of ak-Path/cycle cover withk = 4. 80
3.5 i) An instance of tripartite triangle packing withn = 2. ii) The graphH with all cost

1 arcs drawn. The “back arcs” of cost3nf(4n) are not pictured. The final metric
H ′ (not pictured) is shortest paths metric formH. The pathb, d, e, b corresponds (in
the sense of the proof) to triangle{b, d, e} in the first graph. Also, one can see that
the graph in image i) does not have a triangle packing nor doesthe graph in image
ii) have a Generalk-ATSPP solution using only cost 1 arcs. 95

4.1 An instance of the Minimum Latency problem on a subset of points on the real line.
The optimum TSP Path solution that starts ats is picured above the line and the
optimum latency solution is pictured below. The latency of the path above is an
Ω(n) factor larger than the latency of the bottom path. 99

4.2 Bad gap example for LP (α) with α = 1/2. Here,D is an arbitrarily large integer. . 105
4.3 Appending the dashed path to the solid path. 110
4.4 An illustration of the nodesu,w andvji on the pathsS andP in the proof of Lemma

4.3.3. The dashed edge is the edge that was used to “stitch” the paths together in the
append operation. .111

Chapter 1

Introduction

1.1 Problems Considered

In this thesis, we consider variants of some classic problems in combinatorial optimization. Most

of the problems considered in this thesis are NP-hard optimization problems, so we address this

difficulty by developing approximation algorithms: algorithms that find feasible solutions (usually

in polynomial time) whose value is within some bounded ratioof the optimum value. We begin by

breifly introducing the problems discussed. Previous work and our contributions to these problems

are discussed in later sections of this introductory chapter.

Unsplittable Flow: In the general Unsplittable Flow problem, we are given a graph G = (V,E)

(perhaps directed) with a non-negative capacityce on each edge. We are also given a set ofn tasks

T = {(si, ti, di, pi)}ni=1 wheresi, ti ∈ V are the start and end nodes of taski, di ∈ R≥0 is the

demand of taski, andpi ∈ R≥0 is the profit of taski. The goal is to find a subsetT ′ ⊆ T and a

pathPi from si to ti for eachi ∈ T ′ of maximum possible profit
∑

i∈T ′ pi subject to the following

constraint. For each edgee, the total demand of all tasksi ∈ T ′ for which e lies onPi should not

exceedce. The problem is general enough to capture some well-studiedproblems in combinatorial

optimization:

• If all demands, profits, and edge capacities are 1, then the problem is theEdge-Disjoint Paths

problem.

• If the graph consists ofb parallel edges with identical capacitiesc between two nodess, t,

then the problem is a sort ofBin Packingproblem. Determining if alln tasks can be routed is

the same as asking if items of sized1, . . . , dn can be packed intob bins of capacityc.

• If the graph is a single edge, then the problem is equivalent to the NP-hardKnapsackproblem.

In general, we will see that this problem is very hard to approximate which motivates the study of

Unsplittable Flow instances over restricted graph classes. In this thesis, we concentrate mostly on

instances where the underlying graphG is a simple path.

1

Traveling Salesman: In the classic version of the Traveling Salesman problem, we are given a

complete and undirected graphG = (V,E) where each edgee ∈ E has a non-negative distancede.

Furthermore, these distances satisfy thetriangle inequalityduv ≤ duw +dwv for everyu, v, w ∈ V .

Sometimes, such graphsG are calledmetricsor symmetric metrics. The goal is to find a Hamiltonian

cycle inG of minimum total distance. Without the triangle inequality, no approximation algorithm

can guarantee a reasonable bound on the approximation ratiounless P = NP. However, with the

triangle inequality the problem may be approximated withinconstant factors. One variant of the

problem is to find a Hamiltonian path with minimum total distance. Another is to allow directed

graphs that still satisfy the directed triangle inequalityduv ≤ duw + dwv for any nodesu, v, w,

though it might be thatduv 6= dvu for some nodesu, v ∈ V . Such graphs may also be called

asymmetric metrics. Again, both of these variants have been studied very well from the perspective

of approximation algorithms. In this thesis, we mainly consider variants where we want to find

paths in asymmetric metrics that include all nodes. This includes finding a single Hamiltonian path

in an asymmetric metric or finding up tok paths whose union includes all nodes for some specified

integerk. However, we do consider some other variants that involvingsymmetric metrics or cycles.

Minimum Latency : Here, we are given a start nodes in a metric and our goal is to find a Hamil-

tonian pathP starting ats. Rather than minimizing the total cost ofP (as in Traveling Salesman

problems), the goal is to minimize the average latency of thenodes onP . Here, the latency of a

single nodev ∈ V is the total cost of the edges betweens andv on the pathP ; the time it takes

to reachv when followingP . The problem is also referred to as theTraveling Repairmanproblem

because the goal of the repairman is to minimize the average waiting time of clients who require

repairs. In this thesis, we present approximation algorithms for instances of the Minimum Latency

problem in asymmetric metrics.

1.2 Notations and Preliminaries

1.2.1 Graphs

In this thesis, the termgraph is a simple, undirected graphG = (V,E) consists of a set of edges

E connecting distinct pairs of nodesV . We often denote an edgee ∈ E that connects two nodes

u, v ∈ V by uv. A directed graphG = (V,A) consists of a set of arcsA where each arc is an

ordered pair of nodes inV . As in the case of undirected graphs, we often denote an arc that connects

u to v by uv. So, in undirected graphsuv andvu refer to the same edge whereas in directed graphs

uv andvu are different arcs. In some cases, it is more convenient, notationally, to use(u, v) to refer

to a directed arc fromu to v. Most graphs in this dissertation do not contain multiple copies of an

edge or arc and there are no loops. If multiple arcs or loops are used, it will be explicitly mentioned.

For reference, we list a variety of graph-theoretic concepts below.

2

• Topological Ordering: A ordering of the nodesv1, . . . , v|V | in a directed graphG = (V,A)

is topological ordering ifvi appears beforevj for every arcvivj ∈ A. Such an ordering exists

and can be found efficiently if and only ifG contains no cycles.

• Strongly Connected: A directed graphG = (V,A) is strongly connected if for any pair of

distinct nodesu, v ∈ V , there is a path fromu to v and a path fromv to u in G.

• Weakly Connected: A directed graphG = (V,A) is weakly connected if the undirected

graphG′ = (V,E) with E = {uv : uv ∈ A or vu ∈ A} is connected. Simply put,G is

weakly connected if the undirected graph obtained by removing the orientation of the arcs is

connected.

• Eulerian Graphs: A graph (directed or undirected) is Eulerian if there is a circuit (a closed

walk) that crosses each edge exactly once. Such a circuit is called an Eulerian circuit. An

connected undirected graph is Eulerian if and only if every node has even degree. Similarly,

a weakly connected directed graph is Eulerian if and only if each node has its indegree equal

to its outdegree. An Eulerian walk is a walk that crosses eachedge exactly once, but is not

required to start and end at the same node. So, an Eulerian circuit is simply an Eulerian walk

that begins and ends at the same node. Supposes 6= t are two nodes in a connected graphG.

Then there is an Eulerian walk froms to t if both s andt have odd degree and every other

node has even degree. IfG is a weakly connected directed graph with distinct nodess, t, then

there is an Eulerian walk froms to t if the outdegree ofs is one greater than its indegree, the

indegree oft is one greater than its outdegree, and all other nodes have equal indegree and

outdegree. Eulerian circuits and walks can be found in polynomial time.

• Hamiltonian Cycles and Paths: A Hamiltonian cycle in a graph (directed or undirected) is

a cycle that visits each node exactly once. A Hamiltonian path in a graph is a path that visits

each node exactly once. It is NP-complete to determine if a directed or undirected graph has

either a Hamiltonian cycle or a Hamiltonian path [45].

• Independent Set: An independent set in an undirected graphG = (V,E) is a subset of nodes

W such that no edge inE has both endpoints inW . It is NP-complete to determine if a graph

has an independent set of a given size [45]. The size of the largest independent set in a graph

G is denoted byα(G).

• Clique: A clique in an undirected graphG = (V,E) is a subset of nodesW such that any

two distinct nodesu, v ∈ W haveuv ∈ E. It is NP-complete to determine if a graph has a

clique of a given size [45]. The size of the largest clique in agraphG is denoted byω(G).

• Graph Colourings: A colouring of an undirected graphG = (V,E) is a partition ofV into

disjoint subsetsV1, . . . , Vk such that each such subsetVi is an independent set. For a given

3

k, if there is such a partition ofG into k disjoint subsets then we say thatG can be coloured

with k colours. It is NP-complete to determine if a graph can be coloured withk colours for

anyk ≥ 3 [45], though it is polynomial time solvable fork = 2. The minimum valuek for

whichG can be coloured withk colours is called thechoromatic numberof G and is denoted

by χ(G).

• Perfect Graphs: A perfect graph is an undirected graphG = (V,E) such thatω(G′) = χ(G′)

for all vertex-induced subgraphsG′ of G. If G is perfect, thenα(G), ω(G) andχ(G) can be

computed in polynomial time [50]. IfG is a cycle with an odd numberk of nodes where

k ≥ 5 thenχ(G) = 3 butω(G) = 2 soG is not perfect. The Strong Perfect Graph Theorem

asserts thatG is perfect if and only ifG and its complement does not contain any cycle with

odd lengthk ≥ 5 as an induced subgraph [33]. Some examples of perfect graphsare the

following (see,e.g., [48]):

– Bipartite graphs. Trivially,χ(G) = ω(G) = 2 if G contains an edge.

– Comparability graphs. A graphG = (V,E) is a comparability graph if the edges can be

oriented so that if arcsuv andvw are inG, then so is the arcuw.

– Interval graphs. A graphG = (V,E) is an interval graph if there are closed intervals

Iv ⊆ R for eachv ∈ V such thatIu ∩ Iv 6= ∅ if and only if uv ∈ E.

• Metric Graphs : An undirected graphG = (V,E) with non-negative edge weightsduv, uv ∈
E is called ametricor asymmetric metricif G is a complete graph and the triangle inequality

duv ≤ duw + dwv holds for anyu, v, w ∈ V . A directed graphG = (V,A) with non-negative

arc weightsduv, uv ∈ A is called anasymmetric metricif every pair of distinct nodesu, v ∈ V

is connected by an arcuv ∈ A and the directed triangle inequalityduv ≤ duw + dwv holds. A

distinguishing feature between symmetric metrics and asymmetric metrics is that we always

haveduv = dvu in symmetric metrics whereas we may haveduv 6= dvu for some nodesu, v

in an asymmetric metric. We can extend the weight notation and definedvv in any metric

(symmetric or asymmetric), which is always zero. A symmetric metric is similar to a metric

from topology except we may haveduv = 0 for distinct pointsu, v. An important metric that

occurs in this thesis is the shortest path metric. In the undirected case, supposeG = (V,E) is

a connected (but not necessarily complete) graph with non-negative edge distancesde. Then

we obtain a symmetric metricG′ = (V,E′) with distancesd′ over the same set of nodes

whered′uv is the length of the shortest path fromu to v in G. Similarly, we can obtain an

asymmetric metricG′′ = (V,A′) from a strongly connected directed graphG = (V,A) with

non-negative arc distances.

• Circulations: A circulationC in a directed graphG = (V,A) is an assignment of a non-

negative valueCuv to each arcuv ∈ A such that the totalC-value of incoming arcs equals

4

theC-value of outgoing arcs at each node. Formally, for eachv ∈ V we have
∑

uv∈E Cuv =
∑

vw∈E Cvw. We also say thatflow conservationholds at nodev. Thesupportof a circulation

C is {uv ∈ A : Cuv > 0}, the set of arcs that are assigned a non-zero value in theC.

• Flow: Given two distinct nodess, t in a directed graphG = (V,A), a flowF from s to t is an

assignment of a non-negative valueFuv to each arcuv ∈ A such that flow conservation holds

in V at each node except, perhaps,s, t. We say that the value of the flowF is
∑

sw∈A Fsw −
∑

us∈A Fus (which equals
∑

ut∈A Fut −
∑

tw∈A Ftw by flow conservation on other nodes).

In most cases in this thesis, there will be no flow enterings nor will there be any flow exiting

t so the value of the flow in such cases would simply be
∑

sw∈A Fsw =
∑

ut∈A Fut. We say

that a flowF is integral ifFuv is an integer for eachuv ∈ A. The support of a flowF is the

set of arcsuv ∈ A for whichFuv > 0. We also say thatv ∈ V − {s, t} supportssome flow

in F if Fuv > 0 for someuv ∈ A (or, equivalently,Fvw > 0 for somevw ∈ A).

Suppose thatF is a flow of valuek where eachFuv, uv ∈ A is a non-negative integer. Then

we may find a collection ofk pathsP1, . . . , Pk from s to t such that each arcuv ∈ A appears

on at mostFuv such paths. Furthermore, if we defineCuv values for each arcuv ∈ A to be

Fuv minus the number of these paths that containuv, thenC is a circulation. SupposeF and

F ′ are flows froms to t. Then we may form a flowF +F ′ from s to t by assigningFuv+F ′
uv

to each arcuv ∈ A. Similarly, if F, F ′ are circulations thenF + F ′ is also a circulation.

Finally, if F is an flow froms to t andF ′ is a circulation, thenF + F ′ is still an flow froms

to t. Note that if bothF andF ′ are integral, then so isF + F ′.

• Cuts: Given a graphG (directed or undirected), a cut is simply a subset of nodes apart

from ∅ or V . If G = (V,E) is undirected, then for any subset of nodesS ⊆ V we let

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S or u 6∈ S, v ∈ S} be the collection of edges with

one exacly endpoint inS. If G = (V,A) is a directed graph andS is a cut then we let

δ+(S) = {uv ∈ A : u ∈ S, v 6∈ S} be the collection of arcs that exitS. Similarly, we

let δ−(S) = {uv ∈ A : u 6∈ S, v ∈ S} denote the collection of arcs that enterS. Some-

times we are interested in the set of edges or arcs incident toa nodev. For simplicity, we

useδ(v), δ+(v), δ−(v) to denoteδ({v}), δ+({v}), δ−({v}), respectively. If we have a non-

negative capacityce for each edge/arce, then we say the capacity of a cutS in an undirected

graph is
∑

uv∈δ(S) cuv. In directed graphs, the capacity of a cutS is the total capacity of the

outgoing edges
∑

uv∈δ+(S) cuv.

• Capacitated Flow: If G = (V,A) is a directed graph with non-negative capacitiesce on the

arcs ands, t are two distinguished nodes, a capacitated flow froms to t is a flowF from s

to t that satisfiesFuv ≤ cuv for each arcuv ∈ A. An s − t cut is a cutS with s ∈ S and

t 6∈ S. It is not too hard to see that the value of any capacitated flowF from s to t cannot

exceed the capacity of anys − t cut. The max-flow/min-cut theorem (e.g. [84]) asserts that

5

there is a capacitated flowF ′ from s to t and ans− t cutS′ such that the value ofF ′ equals

the capacity of the cutS′. Furthermore, if all capacitiescuv, uv ∈ A are integers, then such

a flow F ′ may be taken to be integral. Finally, ifS is a cut andF is a flow, then we let

F (δ+(S)) denote
∑

uv∈δ+(S) Fuv, the total flow across arcs exiting the cutS. Similarly, we

let F (δ−(S)) =
∑

uv∈δ−(S) Fuv denote the total flow across arcs enteringS.

1.2.2 Approximation Algorithms

An optimization problemΦ is abstractly defined as a collection of pairs of the form(F,M) where

F is a set offeasible solutionsandM is an objective functionF → R. We think of a specific pair

(F,M) ∈ Φ as an instance of the optimization problemΦ. Of interest is finding, for each(F,M) ∈
Φ, some feasible solutionf ∈ F that maximizes or minimizesM(f) (whenever such an extreme

exists). If our goal is to maximize the objective function, then we say thatΦ is a maximization

problem. Otherwise, if our goal is to minimize the objective function, then we say thatΦ is a

minimization problem.

An instance(F,M) of an optimization problemΦ is often given implicitly. For example, an

instance of the problem of finding the largest independent set in a graph is given by an undirected

graphG = (V,E). For such an instance(F,M), we have the feasible setF being all subsetsS of

V for which no two nodes inS are the endpoints of an common edge inE. The objective function

M in this case is simply|S|.
In computing science, we are interested in optimization problems that can be implicitly encoded

with a finite number of bits. For example, there are a variety of well-known ways to succinctly

represent graphs using finite sequences of0s and1s so we may encode an instance of the maximum

independent set problem where the number of bits used is polynomial in the number of nodes and

edges of the graph. An integerk may also be encoded inO(log k) bits using the standard base 2

expansion. In general, we will not be concerned with such low-level details in this thesis. Apart

from some discussion in the following subsection on linear programming and in the running time of

some hardness reductions, we will proceed without giving further thought to the matter.

Suppose thatΦ is a minimization problem. Anα-approximation forΦ is an algorithm which, for

every instance(F,G) of Φ, is guaranteed to find some feasible solutionf ∈ F such thatM(f) ≤
αM(f∗) wheref∗ ∈ F is the optimum solution for instance (in the problems we consider, there

is indeed be a solutionf∗ with M(f∗) = supf∈F M(f)). We often letOPT denote the optimum

value of the instance at hand if it is clear from the context. If Φ is a maximization problem, then

we choose the convention that anα-approximation is an algorithm that finds a feasible solution to a

given instance with value at least anOPT
α . For example, we develop anO(log n)-approximation for

the Unsplittable Flow on Paths problem wheren is the number of tasks which means the algorithm

finds a subset of tasks that can be feasibly routed whose profitis at least OPT
Ω(logn) .

Since the main point of studying approximation algorithms is to address NP-hard optimiza-

6

tion problems with efficient algorithms, all of the approximation algorithms we develop run in

polynomial-time in the size of the input unless we explicitly state otherwise. One notable exception

is in Section 2.3. We sometimes use the notion of aquasi-polynomial timealgorithm in this thesis.

These are algorithms whose running time isnO(logk n) for some constantk.

1.2.3 Linear Programming

One of the most important optimization problems isLinear Programming. An instance of Linear

Programming is presented in the following form whereA ∈ Rm×n, b ∈ Rn andc ∈ Rm are fixed

values andx ∈ Rn is a vector of variablesx1, . . . , xn.

maximize:
n
∑

i=1

cixi

subject to:
n
∑

i=1

Ajixi ≤ bi ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ n

The goal is to find valuesx1, . . . , xn to maximize the objective function
∑n

i=1 cixi such that each

of the constraints are satisfied. We often refer to an instance of Linear Programming as, simply, a

linear program or an LP. Ifx ∈ Rn satisfies all constraints of a particular LP then we will say thatx

is feasiblefor that LP. The set of feasible points is called thepolytopeof the linear program.

Through some elementary transformations of the objective functions and/or constraints, Linear

Programming can be seen to be equivalent to variants where weminimize the objective function

and/or allow equality constraints. An instance of a maximization version of Linear Programming

falls into one of three categories. If the polytope of the LP is empty, then we say that the instance

is infeasible. Otherwise, if for anyδ ∈ R we have some feasible solutionx with cxt ≥ δ then the

instance isunbounded. In the final case, we have that there is a feasible solution and there is a least

upper boundγ such that all feasible solutionsx havecxt ≤ γ. Since the set of feasible solutions is

clearly closed in the standard topology onRn (as the polytope is the intersection of the closed sets

defined by the inequalities), then there is actually a feasible pointx with cxt = γ. In such a case,

we say that the instance has afinite optimum.

Say a collection of constraints is linearly independent if the vectors corresponding to the con-

straints (i.e. the row vectorAj for a constraint of the formAjx
t ≤ bj) are linearly independent over

R. We say that a constraintAjx
t ≤ bj is tight for a givenx ∈ Rn if Ajx

t = bj holds. A feasible

solutionx is said to be abasicsolution if there aren linearly independent tight constraints. It is

a known fact that if a linear program has a finite optimum, thenthere must be some basic feasible

solutionx attaining the optimum value.

In this thesis, we consider instances of Linear Programmingthat have all values inA, b, andc

being rational. Consider such an LP that has a finite optimum.Let x be a basic solution,A′ be the

n× n matrix whose rows correspond to somen linearly independent tight constraints, andb′ be the

column vector of lengthn corresponding to thebj values for the constraints used to formA′. Since

7

x is the unique solution to the systemA′xt = b′ and all entries ofA′ andb′ are rational, then all

entries ofx are rational too. This also implies that the optimum value ofan LP with rational values

is rational.

By saying an algorithm solves Linear Programming, we mean that the algorithm will either

determine if a given linear program is infeasible, unbounded, or has a finite optimum. If it has a finite

optimum, then the algorithm will also produce a basic feasible solutionx attaining this optimum

value. Linear programs can be solved efficiently, but we firsthave to mention the notion of bit

complexity of integers. For a rational numberq, let l(q) denote the number of bits required to write

the numerator and denominator ofq in binary. That is,l(q) = O(log n + log d) whereq = ±n/d.

Given a linear program with rational entries described byA, b, c as above, let∆ := max l(q) where

the max is over valuesq appearing in eitherA, b, or c.

One approach for solving linear programming in polynomial time (inn,m and∆) is to use the

interior point method(e.g.Karmakar’s algorithm [59]). In some cases, the number of constraints is

exponentially larger than the number of variables and we cannot afford to explicitly list all of them.

To deal with this, we use the concept of aseparation oracle. A separation oracle is an algorithm

that solves the following problem. Given a rational pointx ∈ Qn, either determine thatx is feasible

or return the explicit description of a violated constraint. If a linear program has a separation oracle

that runs in polynomial time inn,∆, and the number of bits used to represent the rational pointx in

question, then it is still possible to solve the linear program in time that is polynomial in onlyn and

∆ using theellipsoid methodas in [49].

A common technique in combinatorial optimization is to formulate a problem as an instance of

Integer Programming. An instance of Integer Programming ispresented in the same way as an in-

stance of Linear Programming with the additional restriction that the variablesx1, . . . , xn take only

integer values. Such an integer program is usually formulated so there is a natural correspondence

of feasible integer points in the integer program and feasible solutions to the original optimization

problem. Integer Programming is an NP-hard optimization problem so formulating a combinatorial

optimization problem in this way does not really gain us muchin terms of polynomial-time solv-

ability. However, if we relax the condition that the variables take integer values and allow fractional

values, then we have an instance of Linear Programming that we will commonly call anLP relax-

ation of the optimization problem. In some sense, an optimum solution to an LP relaxation is a sort

of fractional approximation to the original problem itself. An example of how to formulate and use

an LP relaxation of a combinatorial optimization problem can be found in Section 1.2.7 following

the presentation of background material.

Suppose that(F,G) is an instance of a particular optimization problemΦ. Suppose further that

we have an integer programming formulation of the problem with optimum valueOPT . Finally,

say thatOPTf is the optimum value of the LP relaxation obtained from this integer program. Note

that since any integer point that is a solution to the IntegerProgramming instance is a feasible point

8

in the LP relaxation, thenOPT ≥ OPTf if Φ is a minimization problem andOPT ≤ OPTf if Φ

is a maximization problem. We say that theintegrality gapof this LP relaxation is the ratioOPT
OPTf

if

Φ is a minimization problem, orOPTf

OPT if Φ is a maximization problem.

More generally, supposeΦ is an optimization problem and we have a particular method toobtain

an Integer Programming formulation and its LP relaxation. We will say that the integrality gap of

these LP relaxations is the least upper boundZ such that the LP relaxation of any particular instance

of Φ obtained in the given manner has integrality gap at mostZ. In some cases,Z may be unbounded

so we sometimes examine the integrality gap ofΦ when restricted to inputs of a certain size. For

example, ifΦ is an optimization problem over a graph then saying the integrality gap of a certain

LP relaxation ofΦ is O(log |V |) means the integrality gap of an instance over a graphG = (V,E)

is dominated asymptotically bylog |V | as|V | increases.

In some fortunate cases, it is possible to find LP relaxationsof an optimization problemΦ that

are exact. By this, we mean the optimum value of the LP relaxation of an instance(F,M) of Φ is

equal to the optimum value of the objective functionM overF . In the language of integrality gaps,

this means the integrality gap of the LP relaxation is precisely 1. Furthermore, the basic feasible

solutions of these LP relaxations may also have integer values at each component. If a polytope

has the property that all basic feasible solutionsx have each component being integral, then we will

say that the polytope isintegral. We will encounter many (similar) integral polytopes in this thesis,

especially in Chapter 3.

1.2.4 Matroids

A matroid can be thought of as a formal analogy of linear independence in vector spaces to other set

systems.

Definition 1.2.1 A pairM = (X, I) whereX is a finite set andI ⊆ P(X) is a collection of

subsets ofX is called amatroidif the following conditions are satisfied.

1. ∅ ∈ I

2. If S ∈ I thenS′ ∈ I for anyS′ ⊆ S

3. If S, T ∈ I and |S| < |T |, then there is somex ∈ T − S such thatS ∪ {x} ∈ I

The second condition is thehereditary properyof matroids and the third condition is theex-

change property. There are many examples of matroids; we list a few below.

• X is finite subset of a vector space and aI consists of all subsets of linearly independent

elements inX.

• X is the set of edges of an undirected graphG = (V,E) andI is the collection of all acyclic

subsets ofE. This is called thegraphic matroid.

9

• X is the set of edges of an undirected graphG = (V,E) andI is the collection of all subsets

F of E where each connected component in the graphG = (V, F) has at most one cycle.

This is called thebicircular matroid[86].

• Suppose we have a partition ofX into subsetsX1, X2, . . . , Xk. Furthermore, suppose we

have a non-negative integer boundci for every1 ≤ i ≤ k. We get apartition matroid(X, I)
whereI consists of all subsetsY of X satsifying|Y ∩Xi| ≤ ci for each1 ≤ i ≤ k.

Any member ofI in a matroidM = (X, I) is called anindependent set(not to be confused

with an independent set in a graph, this term is more related to the notion of a set of vectors being

linearly independent). Abaseof M = (X, I) is simply a maximal, with respect to inclusion,

independent set (analogous to a basis in a vector space). From the exchange property, we easily see

that |Y | = |Z| for any two basesY,Z ∈ I. Therank r(M) of a matroidM is then unambiguously

defined as the size of a base ofM. For example, ifG = (V,E) is a connected graph then the bases

in the graphic matroid onG are the spanning trees ofG, each having|V | − 1 edges. Generalizing

this notion, for any subsetS of X we letr(S), the rank ofS, bemaxT∈I |T ∩ S|. This is the same

as the maximum of|T | overT ∈ I with T ⊆ S. Note thatr(X) = r(M).

Of interest in optimization is when the items of a matroid have an associated weight.

Definition 1.2.2 A weighted matroidis a matroidM = (X, I) with a weight functionw : X → R.

The weightw(S) of a subsetS ⊆ X is
∑

i∈S w(i).

In this thesis, all weighted matroids will havew(x) ≥ 0 for anyx ∈ X.

If we have a polynomial time (in|X|) algorithm for determining if a given subset ofX is in

I, then there is a very simple polynomial time algorithm that finds a base inI of minimum total

weight. Start with an empty setY ← ∅. Process the items inX in increasing order of weight and

add an itemi to Y if Y ∪ {i} ∈ I. Once all items have been processed,Y is a minimum weight

base [84]. If we process the items in decreasing order of weight instead, then the resulting setY is

a maximum weight base.

There are also two polytopes that we can associate with a matroidM. For eachi ∈ X, we

associate a real-valued variablezi. Theindependent set polytopePI(M) is given by the constraints:

∑

i∈S zi ≤ r(S) ∀S ⊆ X
0 ≤ zi ≤ 1 ∀i ∈ X

Though, we could omit the upper boundzi ≤ 1 for eachi ∈ X becauser({i}) ∈ {0, 1}. The

base polytopePB(M) is the intersection of the polytopesPI(M) and the polytope defined by:

∑

i∈X

zi = r(M)

In other words,PB(M) is obtained by adding the above constraint to the list of constraints defining

PI(M). The new constraint asserts that the totalz-value of the items is equal to the size of a base

of the matroid.

10

Now, for any independent setY ∈ I we let χY denote the characteristic vector ofY with

χY,i = 0 for i 6∈ Y andχY,i = 1 for i ∈ Y . We then haveχY ∈ PI(M) and ifY is also a base then

we haveχY ∈ PB(M) as well. Conversely, given any vectorz with zi ∈ {0, 1} for eachi ∈ X, we

form the setYz ⊆ X with i ∈ Yz if and only if zi = 1. It is also true that ifz ∈ PI(M) thenYz

is an independent set and ifz ∈ PB(M) thenYz is a base. Thus, the lattice points inPI(M) and

PB(M) correspond exactly to independent sets and bases ofM, respectively.

What is even more remarkable is that thePI(M) and inPB(M) are both integral for every ma-

troidM. This means the maximum or minimum weight of a base inM is the same as the maximum

or minimum of the objective function
∑

i∈X w(i)zi over pointsz ∈ PB(M), respectively. Further-

more, finding a basic optimum point in the linear program whose goal is to maximize or minimize

this objective function overz ∈ PB(M) corresponds to such a base of maximum or minimum total

weight [84].

Finally, we note that if there is a polynomial time algorithmthat determines if a subset ofX is

independent, then there is also a polynomial time separation oracle for the polytopesPI(M) and

PB(M) [84].

1.2.5 Matroid Intersection

Much is known regarding the intersection of two matroids [84]. Given two matroidsM1 = (X, I1)
andM2 = (X, I2) over a common ground setX, we define their intersectionM1 ∩M2 as the pair

(X, I1 ∩ I2). In general,M1 ∩M2 is not a matroid since the exchange property might not hold.

Consider the following example. We haveX = {a, b, c} and both matroids are partition matroids.

InM1, we haveX1 = {a, b} andX2 = {c} being the partition with boundsc1 = c2 = 1. InM2

we haveX ′
1 = {a} andX ′

2 = {b, c} with boundsc′1 = c′2 = 1. InM1 ∩M2, both{b} and{a, c}
are inI1 ∩ I2, but neither{a, b} nor {b, c} are inI1 ∩ I2. That is, the exchange property fails to

hold forM1 ∩M2.

Though the exchange property fails forM1 ∩M2, we can still define a notion of rank. For any

subsetS of X, we can define the rankr(S) inM1 ∩M2 as the maximum size of any subsetY ⊆ S

with Y ∈ I1 ∩I2. Notice that we saymaximuminstead ofmaximal, this is an important distinction.

It is still of interest to find a maximum size subset ofX that is in bothI1 andI2.

For example, consider the special case where bothM1 andM2 are partition matroids and

all capacitiesci are 1 in both matroids. The problem of finding a maximum size set in I1 ∩ I2
is equivalent to finding the maximum cardinality matching ina bipartite graph. To see this, let

B = (L ∪ R;E) be the following bipartite graph whereL andR denote the vertex sets of the two

sides. Each partition inM1 has a node inL and each partition inM2 has a node inR. For each

element ini ∈ X let u be the node corresponding to the partition containingi inM1 and letv be

the node corresponding to the partition containingi inM2. Add an edge connectingu to v in B.

We then see that matchings inB correspond exactly to subsets ofX that are independent in both

11

M1 andM2.

Finding the maximum size of a set common to bothI1 andI2 can be solved in polynomial

time provided we have a polynomial time algorithm for testing independence in bothM1 andM2.

Moreover, if we have a weightw(i) on itemsi ∈ X then for each integerk we can find a set

Y ∈ I1 ∩ I2 with |Y | = k of maximum or minimum total weight or determine that no such set

exists. In particular, we can find a setY of sizer(X) of maximum or minimum total weight among

all such sets. Extending the previous example, this captures the problem of finding a maximum or

minimum weight perfect matching in a bipartite graph.

As before, we can associate polytopes toM1 ∩M2. The independent set polytopePI(M1 ∩
M2) is simplyPI(M1) ∩ PI(M2), the set of all vectorsz that satisfy all the constraints defining

both polytopes. This intersection is non-empty since the all-zero vector is in bothPI(M1) and

PI(M2). Similarly, we can define the “base” polytopePB(M1 ∩M2) asPB(M1) ∩ PB(M2).

However, this intersection may be empty. It will certainly be empty ifr(M1) 6= r(M2). However,

even ifr(M1) = r(M2) there may still be no vectorz that is common to both.

The elegant properties ofPI(M) andPB(M) being integral for any matroidM carry over to the

intersection of two matroids. Specifically,PI(M1∩M2) is also integral and ifPB(M1∩M2) 6= ∅,
then it too is integral [84]. This is not true in general for the intersection of two arbitrary integral

polytopes as the discussion in the next paragraph highlights. Frequently encountered in this thesis

is the intersection of two partition matroids. SupposeX1
1 , . . . , X

1
k1

are the partitions in the first

matroid with capacitiesc11, . . . , c
1
k1

andX2
1 , . . . , X

2
k2

are the partitions in the second matroid with

capacitiesc21, . . . , c
2
k2

. There is a simpler set of constraints that defines the same polytope for the

intersection of these two partition matroids. Namely, the following polytope is also integral.

∑

i∈X1
j
zj ≤ c1i ∀1 ≤ j ≤ k1

∑

i∈X2
j
zj ≤ c2i ∀1 ≤ i ≤ k2

0 ≤ zi ≤ 1 ∀i ∈ X

We remark that the intersection of three matroidsM1,M2,M3 does not enjoy any of these nice

properties. For example, supposeM1,M2 andM3 are all partition matroids where the capacities

ci in the partitions in each matroid are all 1. Then finding the largest subsetY ⊆ X that is inde-

pendent in all three matroids is equivalent to the NP-hard tripartite matching problem in 3-uniform

hypergraphs. Using this example one can also show thatPI(M1) ∩ PI(M2) ∩ PI(M3) may be

non-empty and not integral (i.e. some coordinateszi may be non-integers at some basic pointz).

1.2.6 Complexity and Lower Bounds

In the decision version of a maximization problemΦ, we are given an instance ofΦ and a value

k. The problem is to determine if the optimum value of the instance is at leastk. Similarly, the

decision version of a minimization problem is presented in the same way and we are to determine

if the optimum value of an instance is at mostk. We say an optimization problemΦ is NP-hard if

12

there is a polynomial time reduction from every problem in NPto the decision version ofΦ. Thus,

the existence of a polynomial time algorithm to find the optimum value of an NP-hard optimization

problemΦ implies P = NP since it could be used to solve the decision version of the problem.

Proving a decision problemΦ to be NP-hard shows that finding the optimum solution is in-

tractible so a natural question is to ask how well we may approximate the optimum value ofΦ.

Indeed, some NP-hard problems can be approximated very well(e.g.within 1+ǫ for ǫ being inverse-

polynomial in the input size) and others cannot be approximated within any non-trivial bound (e.g.

not within Ω(n1−ǫ) for any constantǫ > 0) unless P = NP. In this section, we will survey a hier-

archy of categories of approximation algorithms. We will start with approximation algorithms that

find solutions extremely close to the optimum.

Definition 1.2.3 A Fully Polynomial Time Approximation Scheme (FPTAS) for anoptimization

problemΦ is an approximation algorithm with approximation ratio1 + ǫ whose running time is

polynomial in the size of the instance and1
ǫ .

For example, the famous Knapsack problem has a relatively simple FPTAS that runs in time

O(n
3

ǫ) wheren is the number of items [55]. Note that we can even chooseǫ to be inverse polynomial

in n and still obtain a polynomial time algorithm. However, evenan FPTAS has its limitations. If

one looks closely at the known NP-hardness reductions for the Knapsack problem, we see that the

difference between “yes” and “no” instances is inverse exponential inn (which can be written in

poly(n) bits) so we cannot distinguish between such instances using an FPTAS.

A slightly weaker approximation algorithm is the following.

Definition 1.2.4 A Polynomial Time Approximation Scheme (PTAS) for an optimization problemΦ

is an approximation algorithm with approximation ratio1+ ǫ whose running time is polynomial for

any fixed constantǫ > 0.

For example, a PTAS may have running timeO(n1/ǫ) on inputs of sizen which is polynomial for

fixed constantsǫ > 0, but not forǫ = 1

poly(n) . It is possible that an NP-hard optimization problem

can be approximated by a PTAS whereas the existence of an FPTAS would imply P = NP. Consider

the Feedback Arc Set problem in tournaments. The input consists of a directed graphG = (V,A)

with a single arc between any two nodes (so, for any two distinct nodesu, v ∈ V eitheruv ∈ A or

vu ∈ A, but not both). The problem is to delete the fewest arcs possible so the resulting graph has no

cycles. The problem is NP-complete (e.g.[2]) and it does have a PTAS [66]. However, the existence

of an FPTAS would imply P = NP for the following reason. Any instanceG = (V,A) of the

Feedback Arc Set problem in tournaments has optimum value that is an integer at most|A| < |V |2.

Suppose there was a(1+ǫ)-approximation for the problem running in timeO(poly(|V |)·poly(1/ǫ)).
By choosingǫ = 1

|V |2 , we would have a polynomial-time(1+ 1
|V |2)-approximation. However, such

an approximation would be an exact algorithm because
(

1 +
1

|V |2
)

·OPT = OPT +
OPT

|V |2 < OPT + 1

13

Since the number of arcs deleted is an integer, then the number of arcs deleted by such an algorithm

would then be exactlyOPT and we could use this algorithm to solve the Feedback Arc Set problem.

In general, consider the notion ofstrong NP-hardness. An NP-hard problem is said to be strongly

NP-hard if it remains NP-hard if all numbers appearing in theinput are, in absolute value, at most

polynomial in the length of the input. This means the gap between optimum solutions to “yes”

instances (instances produced through a reduction from a “yes” instance of a problem in NP) and

optimum solutions to “no” instances is at least1 + 1

poly(n) . So, if a problem is strongly NP-hard,

then an FPTAS could be used to distinguish between yes and no instances and, ultimately, show P =

NP. That is, unless P = NP, then no strongly NP-hard problem has an FPTAS.

The class of optimization problems that can be approximatedwith a PTAS is similarly denoted

PTAS. Also of interest is the class of optimization problemsAPX consisting of problems that have

constant-factor approximation algorithms. Clearly PTAS⊆ APX and it is possible to show the

inclusion is strict (see the example at the end of the Subsection 1.2.8). Similar to the theory of NP-

hardness, there is a notion of APX-hardness. Say a PTAS reduction from one optimization problem

Φ to anotherΨ is a polynomial-time reductionf such that for any instanceI of Φ, a solution within

a factor1 + ǫ from the optimum value of the instancef(I) of Ψ corresponds to a solution toI

within a factor1 + cǫ of the optimum value ofI wherec is some constant. That is, a PTAS forΨ

would imply a PTAS forΦ. Then a problemΦ is APX-hard if there is a PTAS reduction from every

problem in APX toΦ. Finally, a problem is APX-complete if it is both in APX and APX-hard. See

[10] for more information.

For example, it can be shown that the following problem is APX-hard. Given a graphG =

(V,E), we are to assign one of three colours to each node ofV to maximize the number of edges

whose endpoints do not receive the same colour. It is one optimization variant of the NP-complete

3-colouring problem. This problem is also in APX since the simple greedy algorithm that colours

the nodes one at a time and always chooses the colour that introduces the least number of monochro-

matic edges is a 3/2-approximation. The idea behind this is that when considering a nodev, at most

1/3 of the edges incident tov that already have their other endpoint coloured will be monochromatic.

The celebrated PCP theorem [7, 8] can be shown to be equivalent to the fact that unless P =

NP, there is some constantc > 1 such that the above optimization version of 3-colouring hasno

polynomial-timec-approximation. An important implication is that unless P =NP, no APX-hard

problem has a PTAS. Another example of an APX-complete problem is the classical Traveling

Salesman problem in symmetric metrics. That it is in APX follows from any of the constant-factor

approximations (the best being 3/2 [32]). APX-hardness of the Traveling Salesman problem was

originally shown in [74]. In the next subsection, we will demonstrate the more simple result that it

is strongly NP-hard which will rule out a PTAS unless P = NP.

After APX comes problems that can be approximated within some bounded ratioO(f(n)) where

f(n) → ∞ asn → ∞ wheren denotes the size of the input. The classic Set Cover problem,

14

a generalization of the Minimum Weight Vertex Cover problemmentioned in the next section to

hypergraphs (graphs where edges may connect more than two nodes), can be approximated within a

factorHn = lnn+O(1) wheren is the number of elements (or hyperedges if we use the terminology

of hypergraphs) [35]. Here,Hn is then’th harmonic number
∑n

k=1
1
k . For some problems, there are

also super-constant lower bounds on how they may be approximated. For instance, there is a constant

0 < c such that there is noc lnn approximation for Set Cover unless P = NP [15]. Sometimes these

assumptions are strengthed to provide tighter lower bounds. For any constantǫ > 0, it is known that

we cannot approximate Set Cover with a factor(1− ǫ) lnn in polynomial time unless all problems

in NP can be solved in timenO(log logn) [37]. This is a stronger assumption that P6= NP, but it is still

unknown and it highlights a more general computational barrier to finding a better approximation

algorithm for Set Cover.

In fact, sometimes lower bounds can be established that ruleout all but the most trivial approxi-

mation algorithms. A classic example is Maximum Independent Set problem in which we are given

an undirected graphG = (V,E) and we are asked to find the largest possible independent set.This

problem cannot be approximated well; unless P = NP there is noO(n1−ǫ)-approximation for the

Maximum Independent Set problem for any constantǫ > 0 [91]. We note that the extremely naive

algorithm that simply returns a single node is, trivially, an n-approximation.

Finally, there are optimization problems that cannot be approximated within any reasonable

bound. Again, in the next section we will see that the non-metric Traveling Salesman problem

cannot be approximated within any polynomial-time computable boundf(n) (such as2n) unless P

= NP. At the end of Chapter 3, we will see another problem that cannot be approximated within any

such ratio unless P = NP.

1.2.7 An Integrality Gap Example

To highlight how one can study approximation algorithms using linear programming, consider the

Minimum Weight Vertex Cover problem. In this problem, we aregiven an undirected graphG =

(V,E) with non-negative node weightswv for eachv ∈ V . A vertex coverof G is a subsetW ⊆ V

of nodes such thatu ∈ W or v ∈ W (or both) for each edgee = uv ∈ E. The goal is to find a

vertex cover of minimum total weight. The problem is NP-hard[45].

The following approximation algorithm was presented by Hochbaum [53]. Consider the follow-

ing integer programming formulation of the problem. We use a0/1 variablexv for eachv ∈ V .

min
∑

v∈V

wvxv

subject to: xu + xv ≥ 1 ∀e = uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

Any vertex coverW corresponds to a feasible pointx in the integer program withxv = 1 for

v ∈ W andxv = 0 for v 6∈ W . Conversely, any feasible pointx corresponds to a vertex cover

{v ∈ V : xv = 1}. Thus, the cost of the optimum vertex cover equals the minimum cost of the

15

integer program.

The following is a simple 2-approximation for the Minimum Weight Vertex Cover problem.

Relax the integer constraints in the integer program to simply 0 ≤ xv ≤ 1 for eachv ∈ V . Since

integer points remain feasible in this relaxation, then theminimum cost of this linear program is

at most the cost of the optimum vertex cover. Solve the resulting LP relaxation of the Minimum

Weight Vertex Cover problem in polynomial time (e.g.using the interior point method [59]) and let

x∗ be the solution found. LetW = {v ∈ V : x∗
v ≥ 1

2}. The cost ofW is no more than twice the

cost of the LP solutionx∗ (thus, at most twice the minimum cost of a vertex cover forG) because

the only variablesxv that were “rounded up” to 1 were those that were already at least 1
2 . Also,W

is indeed a vertex cover since each edgee = uv hasx∗
u + x∗

v ≥ 1 so at least one ofx∗
u or x∗

v is at

least12 .

Not only is this a 2-approximation for the Minimum Weight Vertex Cover problem, it also proves

that the integrality gap of the LP relaxation obtained is at most 2. This upper bound on the integrality

gap is essentially tight. SupposeG is a complete graph onn nodes and all nodes have weight 1. Since

G is a complete graph, then the weight of the minimum vertex cover isn− 1. However, the pointx

with xv = 1
2 for eachv ∈ V is a point in the LP relaxation with objective function valuen

2 . So, the

ratio of the optimum integer solution and the optimum fractional solution is at least2 − 2
n and we

see that the upper bound of 2 is essentially tight.

1.2.8 Lower Bound Examples

In this subsection, we demonstrate an example of a reductionthat establishes lower bounds on

how well a problem can be approximated. In fact, essentiallythe same reduction can be used to

demonstrate a few such hardness results.

First, consider the non-metric Travling Salesman problem.In this problem, we are given a com-

plete graphG = (V,E) with edge distancesde for everye ∈ E. The goal is to find a Hamiltonian

cycle inG with minimum total edge distance. The distinguishing feature of this problem from the

classic Traveling Salesman problem is that the distances donot need to satisfy the triangle inequality.

The following is well-known.

Theorem 1.2.5 For any polynomial-time computable functionf(·), there is no polynomial-time

f(|V |)-approximation for the non-metric Travling Salesman problem unless P6= NP.

Proof. Consider an instance of the Hamiltonian Cycle problem. We have a (not necessarily com-

plete) graphH = (V,E′) and the goal is to determine ifH has a Hamiltonian cycle or not. Form

a complete graphG = (V,E) on the same set of nodes asH with edge distancesde, e ∈ E where

de = 1 if e ∈ E′ andde = |V | · f(|V |) if e 6∈ E′. Notice the running time of the reduction is

polynomial sincef(|V |) is polynomial-time computable.

Now, if H has a Hamiltonian cycle then the same Hamiltonian cycle inG will have total edge

distance|V | (since every edge used is inE′). Otherwise, ifH does not have a Hamiltonian cycle then

16

any Hamiltonian cycle ofG will have total edge distance strictly greater than|V | · f(|V |) since any

such cycle must use an edge not inE′ and at least one other edge. Thus, anyf(|V |)-approximation

for the non-metric Traveling Salesman problem can be used todetermine if the original graphH has

a Hamiltonian cycle. �

Notice that the graphG produced by in the reduction is not metric in general. Ifuv, vw ∈ E′ but

uw 6∈ E′ then we cannot haveduw ≤ duv + dvw if f(|V |) > 2
|V | . Consider the same reduction that

assigns 2 tode (instead of|V | · f(|V |)) for edgese 6∈ E′. Thenduv ≤ 2 ≤ duw + dwv always holds

so we do have an instance of the metric Traveling Salesman problem. IfH has a Hamiltonian cycle

then there is a solution of cost|V | and if H does not have a Hamiltonian cycle then all solutions

have cost at least|V |+1. Thus, the gap between these two types of instances is1+ 1
|V | . This shows

that even the classic metric Traveling Salesman problem does not have an FPTAS unless P= NP.

More sophisticated reductions are known that rule out approximating this problem within certain

small constant factors. These will be mentioned in Section 1.3.

Finally, consider theBottleneck Traveling Salesmanproblem. In this problem we, again, have

a complete graphG = (V,E) with edge distancesde. The goal is to find a Hamiltonian cycle

that minimizes thelargestdistance of any edge, rather than the total distance. The reduction from

Theorem 1.2.5 (withf(|V |) instead of|V | · f(|V |) being assigned to edges not inE′) establishes

that the non-metric Bottleneck Traveling Salesman problemcannot be approximated within any ratio

better thanf(|V |) unless P= NP. Also, the reduction for the metric Traveling Salesman problem

(that assigns 2 for edges not inE′) does show that we cannot approximate the metric Bottleneck

Traveling Salesman problem within any factor strictly lessthan 2 unless P= NP. This result is tight

as there is a 2-approximation for the metric Bottleneck Traveling Salesman problem [21]. Note that

the metric Bottleneck Traveling Salesman problem is an example of a problem that is in APX but

not in PTAS.

1.3 Previous Work

In this section, we will mention some of the high-profile results concerning the problems discussed

in this thesis. A more detailed account of the previous work on each problem can be found in their

respective chapters in this thesis. Still, to supply some context for this thesis’ contributions we feel

that some of the main results in previous work should be mentioned here.

Unsplittable Flow: In general, Azar and Regev showed that the Unsplittable Plow problem can-

not be approximated withinΩ(|E|1−ǫ) for any constantǫ > 0 unless P= NP whereE is the set

of edges in the underlying graph [11]. Despite this strong inapproximability result, the problem

remains interesting as many special cases admit better approximations. One special case is where

all demands, profits, and capacities are one known as theEdge-Disjoint Pathsproblem. The Edge-

Disjoint Paths problem is NP-hard in undirected graphs and remains NP-hard in directed graphs

17

even if there are only two tasks to consider (see Fortuneet al. [39]). Kleinberg [61] demonstrated

that the Edge-Disjoint Paths problem in both undirected anddirected graphs can be approximated

within O(
√

|E|).
An instance of the Unsplittable Flow problem is said to satisfy the no bottleneckassumption

if maxi di ≤ maxe ce. That is, the maximum demand of all tasks does not exceed the minimum

capacity of all edges. Note that the Edge-Disjoint Paths problem, when viewed as an instance of

the Unsplittable Flow problem, satisfies the no bottleneck assumption. Chekuriet al. generalized

Kleinberg’s approach to the Edge-Disjoint paths problem toshow that instances of the Unsplittable

Flow problem that satisfy the no bottleneck assumption can be approximated withinO(
√

|V |).
If the underlying graph is just a single edge, then the Unsplittable Flow problem is identical

to theKnapsackproblem if we view the single edgee as a knapsack with sizece. Even though

this, seemingly simple, restriction of the Unsplittable Flow problem is NP-hard, it does admit an

FPTAS [55]. The next natural step to consider is whenG is a path which we will refer to as UFP

(Unsplittable Flow on paths). Instances of UFP satisfying the no bottleneck assumption can be

approximated within constant factors. Currently, the bestapproximation ratio for UFP with the no

bottleneck assumption is a(2 + ǫ)-approximation for any constantǫ > 0 [20]. UFP also admits

a quasi polynomial-time(1 + ǫ)-approximation for any constantǫ > 0 if the demands of all tasks

are integers that are at most quasi polynomial in the number of tasks [12]. However, this is a very

strong assumption since instances of knapsack can be solvedexactly in quasi polynomial time if

the sizes of all items are integers at mostO(nlogk n) for some constantk wheren is the number

of items. Before the results appearing in this thesis, no approximation algorithms were known for

general instances of UFP.

Traveling Salesman Problems: In the classic Traveling Salesman problem, our task is to find a

Hamiltonian cycle of minimum total edge distance in a symmetric metric. A classic approximation

algorithm by Christofides finds Hamiltonian cycles whose cost is at most32 times the minimum cost

Hamiltonian cycle [32]. The following linear program is an LP relaxation for the classic Traveling

Salesman problem. It was first considered by Held and Karp [52].

minimize :
∑

e∈A

duvxuv (1.1)

subject to : x(δ(v)) = 2 ∀v ∈ V

x(δ(S)) ≥ 2 ∀∅ (S (V

0 ≤ xuv ≤ 1 ∀uv ∈ A

Wolsey [90] and Shmoys & Williamson [85] showed that the integrality gap of this relaxation is also

at most32 .

The related Traveling Salesman Path problem asks us to find a Hamiltonian path. Hoogeveen

[54] demonstrated that if at most one of the endpoints of thispath is specified in advance, then the

18

problem may still be approximated within32 . However, if both endpoints are specified then the best

algorithm known is only a53 -approximation. Recently, this algorithm (when both endpoints are

specified) was analyzed by An and Shmoys [3] and a matching bound of 5
3 was placed on an LP

relaxation of the problem that is similar to LP 1.1.

The Asymmetric Traveling Salesman problem is presented thesame way as the classic Travling

Salesman problem, except the metric is allowed to be asymmetric. An O(log |V |)-approximation

for this problem was presented by Friezeet al. [42] almost 30 years ago and this remained the

best asymptotic guarantee of any approximation algorithm for the problem until very recently.

Williamson [89] considered an LP relaxation of the problem and showed an alternative proof of

theO(log |V |) approximation ratio of this algorithm that also bounds the integrality gap of the LP

relaxation by the same ratio. Less than two years ago, anO(log |V |/ log log |V |)-approximation for

the Asymmetric Traveling Salesman problem was presented byAsadpouret.al. [9] that also bounds

the integrality gap of the LP relaxation by this ratio.

In this thesis, one variant of the Traveling Salesman problem we consider is finding a Hamilto-

nian path in an asymmetric metric (and some generalizations). Lam and Newman [62] first presented

anO(
√

|V |)-approximation when both endpoints are fixed, but this did not bound the integrality gap

of any LP relaxation for the problem. Chekuri and Pál [30] provided the first logarithmic approx-

imation that, again, did not bound the integrality gap of an LP relaxation. Later, Feige and Singh

[38] proved that the approximability of finding minimum length Hamiltonian Cycles and Hamilto-

nian Paths (with both endpoints fixed) are within a factor2+ ǫ of each other for any constantǫ > 0.

At the time, it implied anO(log |V |)-approximation for the problem but recent improvements for

cycles have improved this toO(log |V |/ log log |V |). Again, this did not imply any bounds on the

integrality gap for the problem. Finally, Nagarajan and Ravi [70] proved that the integrality gap of

an analog of LP relaxation 1.1 to the case of Hamiltonian paths in asymmetric metrics (specifically,

LP 3.3 from Chapter 3) was bounded byO(
√

|V |).

Minimum Latency : Most of the study behind Minimum Latency problems has been for the fol-

lowing variant in symmetric metrics. We are given a symmetric metricG = (V,E) with distances

on the edges and a specific start nodes. The goal is to find a Hamiltonian pathP starting ats that

minimizes the average, over allv ∈ V , of the distances froms to v along pathP . Blum et al. [18]

exhibited the first constant-factor approximation with an approximation ratio of 72 for this variant

of the Minimum Latency problem. The current best approximation guarantee is 3.59 by Chaudhuri

et al. [25].

The variant of Minimum Latency we study in this thesis is similar to the above version, except the

metric is asymmetric. Nagarajan and Ravi [70] demonstratedthat this version can be approximated

with O(|V | 12+ǫ) for any constantǫ > 0. Their algorithm heavily relied on the fact that the integrality

gap of an LP relaxation for the Asymmetric Traveling Salesman Path problem wasO(
√

|V |).

19

1.4 New Results

Unsplittable Flow on Paths: In Chapter 2 we demonstrate that general instances of UFP (without

any further restrictions on the input) can be approximated within O(log n) wheren is the number

of tasks. This is the first non-trivial approximation for general instances of UFP. We then generalize

this approach to demonstrate that we can approximate UFP withinO(logd n) for any integerd ≥ 2.

The running time of this algorithm isnO(d) which means we can shrink the constant supressed in

theO(·) notation of the approximation ratio to be arbitrarily smallin polynomial time. Furthermore,

this is a constant-factor approximation that runs in sub-exponential2o(n) time (by choosing,e.g.,

d = ⌈√n⌉). We also consider certain sparse instances of the problem and demonstrate that these

can be approximated within constant factors in polynomial time.

Traveling Salesman Problems: Our first new contribution in Chapter 3 is anO(log |V |) approxi-

mation algorithm for the Asymmetric Traveling Salesman Path problem. While this is marginally

worse than theO(log |V |/ log log |V |)-approximation that can be obtained by combining results

in [38] and [9], its advantage is that it bounds the integrality gap of a natural LP relaxation by

O(log |V |). This greatly improves on the previous bound ofO(
√

|V |) in [70].

We also consider a generalization of this problem to a setting with multiple traveling salesmen.

Specifically, we are given nodess andt in an asymmetric metric as well as a positive integerk. The

goal is to findk paths froms to t such that each node lies on at least one such path. Settingk = 1

gives the standard Asymmetric Traveling Salesman Path problem. We generalize our algorithm for

k = 1 to arbitraryk and obtain a bicriteria approximation. For any positive integerb, our bicriteria

approximation finds at most
(

1 + 1
b

)

· k paths froms to t such that every node is on at least one

of these paths. The total cost of these paths is at mostO(b log |V |) times the optimum value of

an LP relaxation for the problem of using exactlyk paths. Note that settingb = k + 1 gives a

trueO(k log |V |)-approximation using exactlyk paths whereas settingb = 1 gives anO(log |V |)-
approximation using at most twice the number of allowed paths. As far as we know, even the case

k = 2 with two salesmen has not been considered in asymmetric metrics and settingb = 3 gives a

trueO(log |V |) approximation for this problem. We then extend these results to different instances

with multiple traveling salesmen where the start and/or endnodes are either not specified or may be

different for different salesmen.

In one of these variants, we are givenk pairs of nodes(s1, t1), . . . , (sk, tk). The goal is to find

a path fromsi to ti for each1 ≤ i ≤ k such that every node lies on one such path. In the case of

a symmetric metric, we give a simple 3-approximation for theproblem. In asymmetric metrics, if

si = ti then the problem can be thought of as the problem of finding a collection of cycles (including,

perhaps, loops) where each cycle contains one ofk nodessi and every node lies on one such cycle.

We show that this problem can be approximated withinO(log |V |). Finally, in the most general

case for asymmetric metrics, we demonstrate that the problem cannot be approximated within any

20

(polynomial-time computable) bounded ratio unless P= NP.

Minimum Latency : OurO(log |V |) bound on the integrality gap of an LP relaxation for the Asym-

metric Traveling Salesman Path problem implies anO(|V |ǫ)-approximation for the Minimum La-

tency problem in asymmetric metrics for any constantǫ > 0 using the framework in [70]. More

specifically, the actual approximation ratio in [70] isO(ρ+log |V |
ǫ3 |V |ǫ) for anyΩ(1

log |V |) < ǫ < 1

whereρ is the integrality gap of the LP relaxation for the Asymmetric Traveling Salesman Path

problem and the running time isnO(1
ǫ
). So, by choosingǫ = O(1

log |V |), our improved bound of

O(log |V |) on ρ implies a quasi-polynomial timeO(log4 |V |)-approximation. We improve on this

in Chapter 4 by presenting a polynomial-timeO(log |V |)-approximation algorithm. This algorithm

also bounds the integrality gap of a particular LP relaxation we introduce for the problem.

Finally, this thesis concludes in Chapter 5 with some directions for future research.

21

Chapter 2

The Unsplittable Flow Problem on
Paths

Recall the definition of the Unsplittable Flow problem on a path (UFP). The underlying graphG is a

simple pathv1, v2, . . . , vm where each edgee = vivi+1 has some capacityce ≥ 0. We sayvi ≺ vj

wheni < j ande ≺ e′ when, say,e = vivi+1 ande′ = vjvj+1 andi < j. Similarly, we use�,≻
and� to mean, respectively, “to the left of or equal to”, “strinctly to the right of”, and “to the right

of or equal to”. Informally, if we drew the path in a “left-to-right” manner, thenvi ≺ vj if vi is

drawn to the left ofvj ande ≺ e′ if e is drawn to the left ofe′. So, more generally, we sayv ≺ e for

an edgee = uw if v � u ande ≺ v if v � w. Finally, we sometimes denote the capacity of an edge

e = uv with cu whereu ≺ v. That is,cu is the capacity of the edge whose leftmost node isu.

In addition to this graphG, we have a collection ofn tasksT = {(si, ti, di, pi)}ni=1 where

si ≺ ti are the start and end points of taski on the path,di ≥ 0 is the demand of taski, andpi ≥ 0

is the profit of taski. In the case of a simple path, we are not concerned with how to route the

tasks we select since there is a unique path between the endpoints of any task. For a taski, we let

span(i) denote the set of edges{vivi+1 : si � vi andvi+1 � ti} on the path fromsi to ti. If a task

i is selected, then it will requiresdi units of capacity along each edgee ∈ span(i). Let length(i)

denote|span(i)|, the length of taski.

We call a subset of tasksT ′ ⊆ T feasibleif, for each edgee, the total demand of tasks inT ′ that

use edgee does not exceedce. Formally,

∑

i∈T ′:e∈span(i)

di ≤ ce.

The problem is to find a feasible subset ofT with maximum possible profit. For a subsetT ′ ⊆ T ,

we letd(T ′) be the total demand of all tasks inT ′ andp(T ′) denote the total profit of all tasks in

T ′. Thus, our goal is to find a subsetT ′ that maximizesp(T ′) while guaranteeingd({i ∈ T ′ : e ∈
span(i)}) ≤ ce for every edgee. We, furthermore, assume that every taski is feasible by itself by

discarding any taski havingdi > ce for somee ∈ span(i).

Approximating the general Unsplittable Flow problem (overarbitrary graphs) is difficult. As

22

mentioned earlier, Azar and Regev [11] demonstrated there is noO(|E|1−ǫ)-approximation for the

general Unsplittable Flow problem unless P = NP. Kleinberg [61] demonstrated that the special case

with unit demands, capacities, and profits known as the Edge-Disjoint Paths problem (EDP) has an

O(
√

|E|)-approximation in both directed and undirected graphs. Srinivasan later showed that EDP

can be approximated withinO(|V | 23 log 1
3 |V |) in directed graphs [87]. The approximability of EDP

is much better understood in directed graphs than in undirected graphs. Directed EDP cannot be

approximated withinO(|V | 12−ǫ) for any constantǫ > 0 unless P = NP [51] whereas we only know

that undirected EDP cannot be approximated withinO(log
1
2−ǫ |V |) for any constantǫ > 0 unless

all problems in NP can be decided in randomized quasi-polynomial time [4] (specifically, unless

NP⊆ ZPTIME(nO(polylog(n)))). Finally, we note that for any fixed constant integerk we can solve

the EDP problem in undirected graphs if the number of pairs(si, ti) is at mostk [82]. In contrast,

it is NP-complete to determine if both tasks can be routed in EDP instances in directed graphs with

only two tasks [39].

EDP and, more generally, the Unsplittable Flow problem has been studied on expander graphs.

WhenG is a (large) constant-degree graph that satisfies a strong edge expansion property, Frieze [41]

demonstrates that any EDP instance on such a graph can be approximated withinO(log |V |). Later,

Srinivasan demonstrated that the more general instances ofUnsplittable Flow with uniform capaci-

ties on expander graphs can be approximated withinO(log3 |V |) [87]. Additionally, Chakrabartiet

al. [23] present anO(log2 |V |)-approximation for constant-degree expander graphs that satisfy the

no-bottleneck assumption (defined in the next paragraph). For the expanders considered by Frieze

in [41], they also develop anO(
√

log |V |)-approximation if the edge capacities are uniform.

A problem whose difficulty lies between EDP and general Unsplittable Flow is the Unsplittable

Flow problem with theno bottleneckassumption. The no bottleneck assumption says that the maxi-

mum demand of all tasks is at most the minimum capacity of all edges. Instances of the Unsplittable

Flow problem satisfying the no bottleneck assumption can beapproximated withinO(
√

|V |) [28]

(in undirected graphs). The no bottleneck assumption has also been used to develop better approxi-

mation algorithms for restricted versions of the Unsplittable Flow problem that we discuss below.

The Unsplittable Flow problem remains NP-hard even on graphs where there is a unique path

between any two nodes (namely trees). That is, the problem issimply to choose the maximum

profit of a feasible subset of tasks without having to worry about how to route these tasks. As

we said in Chapter 1, if the graph is a single edge then the problem is identical to the NP-hard

Knapsack problem. In trees, the Unsplittable Flow problem is APX-hard as was shown by Garget.

al. [46]. Chekuriet. al. [29] demonstrated that the Unsplittable Flow problem in trees can indeed be

approximated within constant factors in no bottleneck instances and, in fact, the integrality gap of a

natural LP relaxation (the tree version of LP 2.1 introducedlater) is bounded by a constant. Finally,

after ourO(log n)-approximation for UFP (Unsplittable Flow on Paths) in Section 2.2 appeared

[13], Chekuriet. al. [26] devised anO(log2 n)-approximation for general instances of Unsplittable

23

Flow in trees.

An instance of UFP with unit demand, capacity, and profit can be solved efficiently since it is

equivalent to the maximum independent set problem on interval graphs, which can be solved in

polynomial time [48]. More generally, instances of UFP witharbitrary weights and arbitrary integer

capacities but unit demands can be solved exactly because LPrelaxation 2.1 has the consecutive

ones property meaning it is integral. Alternatively, one can model such an instance as a maximum

cost circulation problem on a graph with integer capacities. Instances of UFP with arbitrary demands

and uniform capacities was first shown to have a constant factor approximation by Phillipset. al.

[75]. This was improved first by Bar-Noyet. al. [14] and then by Calinescuet. al. [20] to a2 + ǫ

approximation. For the more general no bottleneck instances of UFP (with, perhaps, non-uniform

capacities), Chakrabartiet. al. [23] presented the first constant-factor approximation which was also

improved to a2 + ǫ approximation by Chekuriet. al. [29]. Bansalet. al. [12] consider a different

variant of UFP. When all demands are integers at most quasi-polynomial inn, they present a quasi-

polynomial(1 + ǫ)-approximation for any constantǫ > 0 even if the instance does not satisfy the

no bottleneck assumption.

The first non-trivial approximation for general UFP instances (that may not satisfy the no bottle-

neck assumption) was theO(log n)-approximation algorithm appearing in Section 2.2 [13]. Aswe

show later, LP 2.1 has anΩ(n) integrality gap for these instances. Chekuriet. al. [26] considered

a stronger LP relaxation and demonstrate the the integrality gap of this new relaxation isO(log2 n).

In a personal communication, they have indicated that they can improve this bound toO(log n).

Finally, a recent result by Bonsmaet. al. [19] demonstrates that general instances of UFP can be

approximated within7 + ǫ for any constantǫ > 0. Their approach, like ours, is a hybrid of LP

rounding and dynamic programming and does not bound the integrality gap of any LP relaxation by

a constant factor. We discuss their approach further in our conclusion to this chapter in Section 2.5.

Bonsmaet. al.also establish that UFP is strongly NP-hard. For a long time,the only hardness result

known for UFP was the weak NP-hardness it inherits from knapsack.

Our results in Sections 2.3 and Section 2.4 were obtained after our paper [13] was published.

They are now mostly subsumed by the recent constant-factor approximation by Bonsmaet. al. [19]

(except for the fact that the algorithm in Section 2.4 also bounds an integrality gap). The results

of these sections were obtained after papers [13] and [26] appeared, but long before [19] was made

public.

The main results of this chapter are the following.

Theorem 2.0.1 For any integerd ≥ 2 (perhaps a function ofn), UFP can be approximated within

O(logd m) in timenO(d).

We argue that we can assume thatm ≤ 2n in any UFP instance, so this is also anO(logd n)-

approximation.

24

Say an instance isq-conflicting if for every taski and every edgee spanned byi, there are at

mostq tasksi′ 6= i for which e ∈ span(i′) anddi + di′ > ce. That is, there are at mostq other

tasksi′ such that{i, i′} is not feasible because the capacity of edgee is violated. The motivation for

studying this case is discussed in section 2.4.

Theorem 2.0.2 There is a polynomial-timeO(q)-approximation algorithm forq-conflicting UFP

instances.

A good place to start looking for approximation algorithms is a linear programming (LP) relax-

ation of the problem. For each taski, define a variablexi. Consider LP 2.1 which is, perhaps, the

most natural linear programming relaxation for UFP.

maximize :
∑

i

pixi (2.1)

subject to :
∑

i:e∈span(i)

dixi ≤ ce ∀ edgese

0 ≤ xi ≤ 1 ∀ tasksi

To see this is a valid LP relaxation of UFP, consider some feasible subsetT ′ ⊆ T . Define a

point x in the polytope of linear program 2.1 byxi = 1 for i ∈ T ′ andxi = 0 for i 6∈ T ′. Since

T ′ is feasible, then the capacity constraints are satisfied. The value of the objective function under

this assignment is also the same as the profit ofT ′. Conversely, if we have an integer pointx in the

polytope, then we defineT ′ = {i ∈ T : xi = 1}. We see thatT ′ is feasible with profit equal to the

value of the objective function at pointx.

Unfortunately, the integrality gap of this LP relaxation islarge so we cannot solely rely on it

when designing approximation algorithms.

Lemma 2.0.3 There are instances of UFP with uniform profit whose optimum value is 1 such that

the LP relaxation of the problem has value at leastn
2 .

Proof. Consider the following instance withn tasks on a path havingn + 1 nodes. Identify the

tasks with integers1, . . . , n and the nodes on the path with integers0, . . . , n. Then taski has

si = 0, ti = i, di = 2−i, p = 1. Furthermore, the capacitycj of the edge from pointj − 1 to j is

2−j . See Figure 2.1 for an illustration.

The optimum solution is 1 because no two tasks can be chosen simultaneously. To see this,

consider tasksi < i′. Their total demand is2−i + 2−i′ > 2−i. Both tasksi andi′ cross the edge

connectingi− 1 to i which has capacity2−i so they cannot both be chosen simultaneously.

On the other hand, the variable assignmentxi = 1/2 has objective function valuen/2 in LP 2.1.

Consider an edge fromj − 1 to j. The LP constraint for this edge has the left-hand side being

n
∑

i=j

dixi =

n
∑

i=j

2−i

2
< 2−j = ce

25

. .
 .

. . .
d

n
= 2

−n

d3 = 2
−3

d2 = 2
−2

d1 = 2
−1

c
n

= 2
−n

c1 = 2
−1

c2 = 2
−2

c3 = 2
−3

Figure 2.1: An instance of UFP on paths with integrality gapΩ(n).

so the LP has optimum value at leastn/2. �

To address the difficulty presented by the bad integrality gap example, the set of tasks will be

split into two instances. One instance can be handled well with LP rounding and the other, which

may have a bad integrality gap, will be handled with dynamic programming. We define these two

groups as follows:

Definition 2.0.4 A bottleneck edgefor a taski is any edgee ∈ span(i) with di > ce/2. If a taski

has no bottleneck edge then it isslack, otherwise it istight.

We partition the tasksT into the slack tasks and the tight tasks. Suppose we have anα-

approximation algorithm for finding the optimum feasible subset among the slack tasks and aβ-

approximation algorithm for finding the optimum feasible subset among the tight tasks. Returning

the more profitable of these two solutions is then a2 ·max{α, β}-approximation. To see this, sup-

poseT ∗ is an optimum feasible subset ofT and thatTs, Tt are, respectively, the slack and tight tasks

in T . Thenp(T ∗) = p(T ∗ ∩ Ts) + p(T ∗ ∩ Tt). SayT ′
s, T

′
t are, respectively, the solutions found

by theα-approximation for slack tasks and theβ-approximations for tight tasks. The total profit

returned is:

max{p(T ′
s), p(T

′
t)} ≥ max{p(T ∗ ∩ Ts)/α, p(T

∗ ∩ Tt)/β}

≥ p(T ∗ ∩ Ts)/α+ p(T ∗ ∩ Tt)/β

2

≥ p(T ∗ ∩ Ts) + p(T ∗ ∩ Tt)

2max{α, β}

=
p(T ∗)

2max{α, β}
Of interest to our algorithm is the following special case.

Lemma 2.0.5 If there is a constant-factor approximation for instances of UFP when all tasks are

slack and aβ-approximation for instances of UFP when all tasks are tight, then there is anO(β)-

approximation for general instances UFP.

In fact, this is a general theme of the algorithms that follow. In many cases, we partition the

instance into different parts, approximate the optimum feasible subset in each part, and keep the

26

subset of maximum total profit among all parts. Ifγ is the worst approximation ratio among the

different parts and there arek parts, then the profit of the returned solution is within akγ factor of

the optimum feasible subset of tasks for the instance being considered (i.e. akγ-approximation).

2.1 Simplifying Assumptions

Since the approximation ratios presented in this chapter are usually super constant, we make some

simplifying assumptions at the expense of a constant factorin the approximation ratios. The few

constant factor approximations that are presented are moreproofs of concept that we can do better

than anO(log n)-approximation in certain cases and we also do not worry about optimizing these

constants. In this section, we show how to reduce a general instance of UFP to instances satisfying

certain assumptions while losing only a constant factor. Insubsequent sections, we show how to

exploit these assumptions when developing approximation algorithms.

Informally, using these simplifications we can restrict ourattention to instances whose tasks have

large demands (relative to the edges they span) and small profits and such that any two tasks either

have similar demands or the demand of one is much larger than the demand of the other. We also

show that we can assume the length of the underlying path is not much longer than the number of

tasks.

The optimum value of the slack tasks is easy to approximate. The following was proven in [26]

using techniques from [20]. It was proven after our result inSection 2.2 appeared [13], but before

we developed the more general approximation algorithm in Section 2.3. We use it in our algorithm

for Section 2.3, but we will provide an explicit proof of it inthe special case considered in Section

2.2. The proof is similar to our proof in [13].

Lemma 2.1.1 (Chekuri, Korula, and Ene [26]) The integrality gap of linear program 2.1 is con-

stant if all tasks are slack.

So, unless explicitly stated, all tasks in the rest of this chapter are assumed to be tight. Another

assumption we work with allows us to use dynamic programmingapproaches.

Lemma 2.1.2 If there is a polynomial-timeβ-approximation for tight instances of UFP where all

profits are integers in the range[0, 2n], then there is a polynomial-time2β-approximation for tight

instances of UFP with arbitrary profits.

Proof. This is the standard trick of scaling. Our proof follows the presentation of Lemma 8.3 in

[88] for approximating the Knapsack problem. Note that we could have assumed the values are in

the range[1, n/ǫ] and obtained aβ/(1 − ǫ) approximation for any constantǫ > 0, but our final

approximation ratios are at least constant factors so we consider onlyǫ = 1/2 for simplicity.

Let P = maxi pi be the maximum profit of any task and letK = P
2n . Define new profits

p′i := ⌊pi

K ⌋ where⌊x⌋ is the greatest integer not exceedingx. Note that all of the remaining tasks

27

havep′i being an integer in the range[0, 2n]. Use theβ-approximation algorithm on the instance

with profits p′i and sayT ′ is the subset of tasks found. Since the demands and capacities do not

change, the returned instance is also feasible for the original instance.

SupposeT ∗ is the optimum subset ofT under profitsp. Since|T ∗| ≤ n and sincepi ≥ Kp′i ≥
pi−1, thenKp′(T ∗) ≥ p(T ∗)−Kn. SinceT ∗ is a feasible solution with value at leastp(T ∗)/K−n
with respect to profitsp′, the value ofT ′ with respect to profitsp′ is at least(p(T ∗)/K − n)/β. So,

the total profit ofT ′ under the original profitsp is at least

(p(T ∗)−Kn)/β = (p(T ∗)− P/2)/β ≥ p(T ∗)/2β

where we observep(T ∗) ≥ P since any taski with pi = P is feasible by itself. �

We coarsely organize the tasks according to their demands. By scaling the demands and ca-

pacities uniformly, we may assume each demanddi is at least 1. DefineDk = {i ∈ T : 2k ≤
di < 2k+1}. By losing a factor of 2 in the approximation ratio, we further partitionT into two sets

Teven, Todd whereTeven = ∪k≥1D2k andTodd = ∪k≥1D2k−1 and run the subsequent algorithms

on each subsetTeven, Todd, returning the better of the two solutions. The benefits of doing this will

be made apparent later.

Finally, we may assume thatm ≤ 2n wherem is the number of nodes on the underlying path

andn is the number of tasks. If either the start node or the end nodeon the path is not an endpoint of

some task, then that node may be removed. Also, if some internal nodej with incident edges, say,

e, e′ is not the start or end point of some task, then we may removej and combine the edgese, e′

into one edge with capacitymin{ce, ce′}. It is easy to see that a subsetT ′ ⊆ T is feasible before

such an update if and only if it is feasible after such an update.

To summarize, we are assuming the following structure on theinstance (at the expense of losing

a constant factor in the approximation ratio).

Definition 2.1.3 Say an instance of UFP issimplified if the following statements are true.

1. All tasks are feasible on their own.

2. All tasks are tight.

3. The profit of each task is an integer in the range[0, 2n].

4. We have eitherDk = ∅ for all even integersk or Dk = ∅ for all odd integersk.

5. The number of nodesm on the underlying path is at most2n (twice the number of tasks).

Unless stated otherwise, we assume throughout the rest of the chapter that all UFP instances are

simplified. The only exception is that we briefly discuss slack tasks in Section 2.2.2.

Combining the observations in this section, we have the following

Theorem 2.1.4 If there is a polynomial-timeβ-approximation for simplified instances of UFP, then

there is a polynomial-timeO(β)-approximation for general instances of UFP.

28

2.2 A Logarithmic Approximation for UFP

Eventually we will present anO(logd n)-approximation running in timenO(d) for any integerd ≥ 2.

However, the ideas involved can get quite technical. Here, we present a simpler algorithm that

achieves anO(log n) approximation in polynomial time to highlight some of the main ideas of the

more general result without getting too involved in the technical details.

The basic structure of the algorithm has two main parts. First, we argue that we can restrict our

attention to instances calledintersectingwhere all tasks span a common edgee. Then, we present

a constant-factor approximation for such instances. However, there are a number of cases to be

considered for intersecting instances based on whether thetasks have bottleneck to the left ofe, to the

right of e, or both. We need to develop different algorithms for these cases. Though we may assume

that all tasks are tight due to result in [26], we also demonstrate how to approximate intersecting

instances of slack tasks since this is much simpler than the general case of non-intersecting slack

tasks. We do this to demonstrate some of the techniques in approximating slack tasks. We also

briefly demonstrate how to use an approximation algorithm for UFP to approximate instances of

unsplittable flow when the underlying graph is a cycle.

2.2.1 A Reduction to Intersecting Cases

Two tasksintersectif they share a common edge. That is,i andj intersect ifspan(i)∩span(j) 6= ∅.
A collection of tasks isintersectingif all of the tasks share a common edge; this is equivalent to the

property that the tasks in the collection pairwise intersect. This is similar to the fact that the intervals

corresponding to a clique in an interval graph must share a common point (e.g. [48]). Finally, a

collection of tasksC is feasibleif, for all edgese, we have
∑

i∈C:e∈span(i) di ≤ ce.

We now describe a reduction procedure which allows us to focus only on intersecting cases while

losing anO(log n)-factor in the approximation guarantee. This is the only place in our algorithm

where more than a constant factor is lost in the approximation guarantee.

Lemma 2.2.1 If there is aρ-approximation for instances of UFP on a line where all tasksintersect,

then there is anO(ρ log n)-approximation for the general instance of UFP on a line.

Proof. Consider an instance of UFP on a line. We first group the tasks according to their lengths.

Say a taski belongs to groupGr if 2r ≤ length(i) < 2r+1. Since we havelength(i) < m ≤ 2n

for all tasksi, thenr ∈ {0, 1, . . . , ⌈log2 2n⌉ − 1}. Focus on an optimum set of feasible tasksT ∗

with profit OPT . Note that one of the groupsGr must have at least a 1
⌈log2 2n⌉ -fraction of the total

profit of T ∗. That is, ifOPTr is the optimum profit over all feasible subsets of tasks in groupGr,

thenOPTr ≥ OPT
⌈log2 2n⌉ for somer.

Consider a groupGr, each taski ∈ Gr must span some edgee = vbvb+1 whereb = k2r for

some integerk. Create groupsHr,k for k ∈ Z and placei ∈ Gr in groupHr,k if k is theleastinteger

for which vbvb+1 ∈ span(i) for b = k2r. One sees thatHr,k is an intersecting collection of tasks

29

Figure 2.2: Grouping the tasks according to the left-most point of the formk2r for some integerk.

(Figure 2.2 helps illustrate this). Observe that for tasksi ∈ Hr,k andj ∈ Hr,l with k+3 ≤ l we have

span(i) ∩ span(j) = ∅. This follows sincelength(i) < 2r+1 andsi ≤ k2r imply ti < (k + 2)2r.

Furthermore, sincel is the least integer for whichsj ≤ l2r thensj ≥ (k + 2)2r > ti.

Now, apply theρ-approximation to eachHr,k and letCr,k denote the collection of tasks chosen

by the algorithm. For eachl = 0, 1, 2, let Cr,l be the union of allCr,l′ with l′ ≡ l (mod 3). By

arguments in the previous paragraph, none of the tasks inCr,k can intersect any task inCr,l if

k + 3 ≤ l soCr,l is a feasible collection of tasks for eachl = 0, 1, 2. Furthermore, by looking at the

restriction of the optimum solutionOPTr for groupGr to the subgroupsHr,k, we see that at least

one of the three groupsCr,l has profit at leastOPTr

3ρ . Thus, for somer ∈ {0, 1, . . . , ⌈log2 2n⌉ − 1}
and somel ∈ {0, 1, 2} we have the total profit of tasks inCr,l is at least 1

3ρ⌈log2 2n⌉ · OPT =

Ω
(

1
ρ logn

)

OPT . �

In the next section, we develop a constant-factor approximation for instances of UFP on a line

where all tasks are intersecting. Combining this with the Lemma 2.2.1 and Theorem 2.1.4 yields the

following:

Theorem 2.2.2 There is anO(log n)-approximation for UFP.

Consider an instance of UFP where all tasks share a common edge t. We refine our classification

of the tasks in the following way:

1. if no edge is a bottleneck fori then sayi is slack

2. if i has bottleneck edges on both sides oft then sayi hasboth endpoints tight

3. if k � t for all bottleneck edgesk for i then sayi is left-tight

4. if k ≻ t for all bottleneck edgesk for i then sayi is right-tight

Since the instances are simplified (cf. Definition 2.1.3), we can exclude the case of slack tasks.

However, there is a relatively simple LP rounding mechanismfor intersecting cases of slack tasks

that we describe in the following section for the sake of completeness. It is easy to verify that none

30

Figure 2.3: Illustrating why we may assume the capacity profile is unimodal. The capacity profile is
drawn above the line and the tasks are drawn below the line.

of the steps made so far rely on the tasks being tight, so we mayassume, for this algorithm only, that

the input also contains slack tasks.

Partition the tasks into four groups according to the classification above. We describe a constant-

factor approximation for each such group in the next three subsections (the algorithm for right-tight

tasks is essentially identical to the algorithm for left-tight tasks so it is omitted). The maximum total

profit of these four approximate solutions is then within a constant factor of the optimum solution

(since one of these groups has a solution consisting of at least 1/4 of the optimum profit).

There is one further simplification we can apply to intersecting cases. If all tasks share a common

point t, then we may assume the following structure on the capacities. For eache ≺ e′ � t, we have

ce ≤ ce′ and for eacht � e′ ≻ e we havece′ ≥ ce. That is, the capacities increase as we move

from the left tot and decrease as we move fromt to the right. The reason is this: in any feasible

collection of tasksT and any fore ≺ e′ � t we have that the total demand inT at edgee′ is at

least the total demand inT at edgee. By this reasoning, we may reduce the valuece to ce′ and not

worry about affecting feasibility of any subset of tasks. Ifthe capacities satisfy this, then we say the

capacity profile isunimodal. See Figure 2.3 for an illustration.

2.2.2 Slack Tasks

The following rounding algorithm is similar to the algorithm of Chakrabarti et al. [23] for the no-

bottleneck case. Though the slack tasks in our case may not satisfy this assumption, essentially the

same rounding algorithm can be seen to provide a constant factor approximation for intersecting

cases of slack tasks. For the sake of completeness, and to getan idea how we can deal with slack

tasks, we present the full algorithm and proof in the case of intersecting slack tasks. The analysis is

simpler in our case because the tasks are intersecting.

31

Recall the standard LP for UFP.

maximize :
∑

i

pixi

subject to :
∑

i:e∈span(i)

dixi ≤ ce ∀ edgese

0 ≤ xi ≤ 1 ∀ tasksi

Though it has anΩ(n) integrality gap in general cases, we will prove it has anO(1)-integrality gap

for intersecting cases of slack tasks. Chekuriet. al. proved it has anO(1)-integrality gap in general

slack cases that are not necessarily intersecting [26]. From now on, letx∗ denote an optimum

solution to the above LP.

Consider the following algorithm. Since the capacity profile is unimodal, the minimum capacity

of all edges spanned by a taski is across either edge starting atsi or across the edge ending atti.

Let C≤ be the set of tasks withcsi ≤ cti−1 and letC> be the set of tasks withcsi > cti−1. That is,

C≤ is the collection of tasks whose most constrained edge is itsstart edge andC> is the collection

of tasks whose most constrained edge is its final edge.

The rounding algorithm proceeds as follows. We first ignore the tasks inC> and focus only on

tasks inC≤. The algorithm for rounding tasks inC> is similar to what follows so it is omitted.

Next, order the tasks inC≤ in increasing order of their starting nodessi. We choose each task

i ∈ C≤ independently with probabilityx∗
i /4. Let R denote the set of chosen tasks and say these

tasks arei1 ≤ i2 ≤ · · · ≤ i|R|. We construct a sequence of sets∅ = S0, S1, . . . , as follows: let

Sr = Sr−1 ∪{ir} if Sr−1 ∪{ir} is feasible; or letSr = Sr−1 otherwise. The algorithm outputs the

setS = S|R|.

Note thatS is a random set, and the decision whether taski lies in S or not is correlated to

whether other tasks lie inS or not. We show that:

Theorem 2.2.3 Any particular requesti ∈ C≤ lies inS with probability at leastx∗
i /8.

Proof. Define the following random variables: fori ∈ C≤, let Xi = 1 if i ∈ R, and0 otherwise;

and letYi = 1 if i ∈ S, and0 otherwise. Note thatXi variables are independent, but theYi variables

are not.

Fix 1 ≤ r ≤ |R| and consider the taski = ir. We are interested inE[Yi]. SinceS ⊆ R, we have

Yi ≤ Xi and henceE[Yi] ≤ E[Xi]. Consider the eventEr that [Yi = 0 | Xi = 1]. If Er happens,

then it must be the case thatSr−1 ∪ {i} is not feasible. The lemma below characterizes the reason

Er happens.

Lemma 2.2.4 The eventEr holds if and only if the capacity of the first edgecsi in span(i) is

violated by the set of tasksSr−1 ∪ {i}.

Proof. The proof is based on the fact that the capacity profile is unimodal and the defining property

of the tasks inC≤. By definition,Er happens if and only if the capacity constraint at some edge

32

e ∈ span(i) is violated bySr−1 ∪{i}. Note that the order in which we considered the tasks implies

all tasks inSr−1 ∪ {i} cross the first edgecsi of i. Since these tasks are inC≤ and the capacity

profile is unimodal, this edge has the least capacity among all edges inspan(i). Thus, ifSr−1 ∪{i}
violates the capacity of some edge and sinceSr−1 is feasible, then surely it must violate the capacity

of csi . �

Thus, forEr to hold, the total demand of tasks inR ∩ {1, . . . , i− 1} must exceedcsi − di. For

j = 1, . . . , i−1, consider a random variableDj = dj if j ∈ R, and0 otherwise. LetD =
∑i−1

j=1 Dj .

Lemma 2.2.5 Pr[Er] ≤ 1/2

Proof. We know thatPr[Er] ≤ Pr[D ≥ csi − di] ≤ Pr[D ≥ csi/2]. The second step follows as

all tasks are slack.

We haveE[D] =
∑i−1

j=1 E[Dj] =
∑i−1

j=1 x
∗
j/4 ≤ csi/4. The last inequality holds since the

fractional solutionx∗ satisfies the capacity constraint on edgesi. Thus, by Markov’s inequality,

Pr[D ≥ csi/2] ≤ 1/2. �

Now,

E[Yi] = Pr[Yi = 1 | Xi = 1] · Pr[Xi = 1] + Pr[Yi = 1 | Xi = 0] · Pr[Xi = 0]

= Pr[Yi = 1 | Xi = 1] · Pr[Xi = 1]

= (1− Pr[Er]) · x∗
i /4

≥ x∗
i /8

as claimed. �

Say thatS≤ andS> are, respectively, the subsets ofC≤ andC> found through the above round-

ing algorithm. Ifz∗ is the value of the LP solution for the slack tasks, using Theorem 2.2.3 and

returning the most profitable ofS≤ andS>, the expected value of the solution obtained is at least

z∗/16.

2.2.3 Both Endpoints Tight

As a warm-up, consider the special case where the tasks form asequence of nested intervals. That

is, say the tasks can be ordered such thatsi � sj � tj � ti for all i ≤ j. The following notation

is useful in this case and in the more general cases of tight tasks to be considered. For a taski, let

cap(i) = mine∈span(i) ce denote the minimum capacity over all edges in the span ofi.

Theorem 2.2.6 There is a polynomial time exact algorithm for nested instances if all profits are

integers in the range[0, 2n].

Proof. The algorithm is based on a dynamic programming algorithm similar to those used for

Knapsack problems. For integersi, p, let f(i, p) be the minimum total demand among feasible

33

subsets of tasksS ⊆ {1, . . . , i} that achieve profit exactlyp. If it is not possible to obtain profit

exactlyp with a feasible subset of the firsti tasks then sayf(i, p) = ∞. The values off(i, p) are

computed in the order of increasingi. Clearlyf(0, 0) = 0 andf(0, p) = ∞ for p > 0. We claim

the following recurrence is satisfied by the valuesf(i, p) for i > 0:

f(i, p) =







min{f(i− 1, p), f(i− 1, p− pi) + di} if pi ≤ p
and f(i− 1, p− pi) + di ≤ cap(i)

f(i− 1, p) otherwise

To see this, consider somei > 0 and profitp. If f(i, p) = ∞ then surelyf(i − 1, p) = ∞.

Furthermore, ifpi ≤ p andf(i− 1, p− pi) <∞ then we claim thatf(i− 1, p− pi) + di > cap(i).

If this were not so, then consider some feasible setS′ of the firsti− 1 tasks with minimum possible

demand with profit exactlyp − pi. By definition, all e ∈ span(i) havece ≥ cap(i). Thus, if

f(i− 1, p− pi) + di ≤ cap(i) thenS′ ∪ {i} is a feasible subset of the firsti tasks obtaining profitp

which contradictsf(i, p) = ∞. Therefore, the recurrence is satisfied for pairs(i, p) with i > 0 for

whichf(i, p) =∞.

On the other hand, supposef(i, p) <∞. Consider some setS of the firsti tasks with minimum

possible demand that obtains profit exactlyp (i.e. the demand ofS is f(i, p)). If i 6∈ S then

f(i − 1, p) ≤ f(i, p) sinceS is also a feasible set of the firsti − 1 tasks. On the other hand,

f(i − 1, p) ≥ f(i, p) since any subset of the firsti − 1 tasks is also a subset of the firsti tasks

which impliesf(i − 1, p) = f(i, p). If i ∈ S thenS \ {i} is a feasible subset of the firsti − 1

demands sof(i − 1, p − pi) ≤ f(i, p) − di. If f(i − 1, p − pi) < f(i, p) − di, then by reasoning

in a manner similar to the previous paragraph, any feasible setS′ of profit p − pi of the firsti − 1

tasks with demandf(i− 1, p− pi) can be extended to a feasible setS′ ∪ {i} of the firsti elements

with profit p and demandf(i − 1, p − pi) + di < f(i, p) which is a contradiction. Therefore,

f(i− 1, p− pi) + di = f(i, p). In either case ofi ∈ S or i 6∈ S, the recurrence is satisfied.

The value of the optimum solution is then the largest valuep for whichf(n, p) <∞. Since the

instances are simplified according to Definition 2.1.3, the only values ofp which may be finite are

integers in the range[0, 2n2]. Sincei ranges from 0 ton, then all valuesf(i, p) can be computed

with dynamic programming in timeO(n3). �

More generally, a collection of tasks with both endpoints tight can be made to look something

like a sequence of nested intervals. Recall that for any non-negative integerk we definedDk to

be the collection of tasksi whose demanddi lies in the range[2k, 2k+1). We have the following

structure between groupsDk which says if taski has much less demand than taskj then taskj is

nested in taski. The basic idea is that taskj, being feasible on its own, cannot cross any bottleneck

edge for taski since the demand forj is much higher than the demand ofi while any bottleneck

edge fori has capacity close to the demand ofi.

Lemma 2.2.7 If i ∈ Dk andj ∈ Dl with k + 2 ≤ l thensi ≺ sj andti ≻ tj .

34

D
2

D
4

D
6

D
8

Figure 2.4: A sketch of the structure exploited by the dynamic programming. Thick lines are tasks
in a feasible solution (with the corresponding demand classwritten to the left of the image) which is
why each demand class has only three tasks shown. Pairs of dotted lines connected by a thin, double-
arrowed line indicate the last start node and the first end node among all tasks in the corresponding
demand class. The edges spanned by tasks of any higher demandclass must be contained between
these two dotted lines.

Proof. Sincedi < 2k+1 and2l ≤ dj , then2di < dj (by k + 2 ≤ l). Also, sincei is tight and the

capacity profile is unimodal, thendi > csi/2 which showsdj > csi . Sincej is feasible by itself and

dj > csi , thensi ≺ sj . A similar argument showsti ≻ tj . �

Recall that since the instances are simplified according to Definition 2.1.3 then we have either

Dk = ∅ for all evenk or Dk = ∅ for all oddk. We also have the following observation that bounds

the size of a feasible subset of anyDk. Since all tasks share a common point, then a bottleneck edge

(saye) of some task (sayi) must be spanned by all other tasks. Since the capacity ofe is close todi

and the demands of otherj ∈ Dk are close todi, then not too many tasks inDk can fit across edge

e in a feasible solution. Formally:

Lemma 2.2.8 LetBk be any feasible subset ofDk. Then|Bk| ≤ 3.

Proof. Let i ∈ Bk be such thatsi � sj for all j ∈ Bk. Notice thatsi ∈ span(j) for all j ∈ Bk.

Now, by definition ofDk we have2dj ≥ di for all j ∈ Bk. Furthermore, sincei is tight we have

di > csi/2. Therefore, the total demand inBk at edgesi exceeds|Bk|csi/4. SinceBk is feasible,

then the total demand crossingsi must be at mostcsi . Therefore,|Bk| ≤ 3. �

Lemmas 2.2.7 and 2.2.8 lead to a dynamic programming solution. We build a tablef(k, p) that

is the minimum total demand of a feasible subset of tasks inDk ∪ Dk−2 ∪ Dk−4 ∪ . . . that has

profit exactlyp. To build thef(k, p) values from thef(k − 2, p) values, we try adding subsets of

Dk of size at most 3. By Lemma 2.2.7, each task inDk is contained in the span of every task in

Dk−2 which resembles the property that the tasks form a nested sequence of intervals. Figure 2.4

illustrates some of these ideas.

Extend the definition off(k, p) to includek = −1 andk = −2 which should simply read as

f(k, 0) = 0 andf(k, p) = ∞ for p > 0 wheneverk = −1 or −2 (in other words, we can only

obtain a profit of 0 if no tasks are chosen).

35

Let A(k, p) be the collection of all subsetsS of Dk of size at most 3 withp(S) ≤ p and the

following additional property. For any feasible subset of tasksT ′ with total profitp(T ′) = p− p(S)

and total demandd(T ′) = f(k−2, p−p(S)) we haved(T ′)+
∑

i∈S:e∈span(i) di ≤ ce for each edge

e contained in the common intersection of the spans of all tasks in classesDl, l < k. Intuitively, a

setS in A(k, p) is one that can extend any minimum setT ∗ corresponding tof(k − 2, p − p(S))

to a feasible solutionS ∪ T ∗. We only have to verify the capacity constraints are satisfied for those

edges in the common intersection of all tasks in some lower classDl, l + 2 ≤ k. Again, by Lemma

2.2.7 this is because the span of each task inDk is completely contained in the span of each task in

someDl, l + 2 ≤ k. Lemma 2.2.8 essentially says we can restrict our attentionto small subsets of

Dk since any subset larger than 3 is not feasible on its own.

Formally, the recurrence looks like:

• f(k, 0) = 0 for k ∈ {−1,−2}

• f(k, p) =∞ for k ∈ {−1,−2}, p > 0

• f(k, p) =∞ for k ≥ 0 if A(k, p) = ∅ (note that can only happen ifA(k − 2, p) = ∅)

• f(k, p) = min
S∈A(k,p)

f(k − 2, p− p(S))) + d(S) for k ≥ 0, A(k, p) 6= ∅

Lemma 2.2.9 The recurrence correctly relates the values off(k, p).

Proof. The base cases withk < 0 are clearly correct (when interpreted as suggested above).Now,

consider somek ≥ 0 and profitp. If f(k, p) <∞ then letS = S′∪B be a subset ofDk∪Dk−2∪. . .
obtaining profitp with total demandf(k, p) andS ∩ Dk = B. We first verify thatB ∈ A(k, p).

By Lemma 2.2.8, we know|B| ≤ 3 (in fact,B may be empty). Furthermore, we also clearly have

p(B) ≤ p. Finally, sinceS′ is a feasible subset ofDk−2 ∪ Dk−4 ∪ . . . thenf(k − 2, p − pB) ≤
f(k, p)−dB . By Lemma 2.2.7, any optimum setS∗ with profit p−pB and demandf(k−2, p−pB)

places less demand across each edge spanned byB than setS′. For such a setS∗ we haveS∗ ∪ B

being feasible. Therefore,B ∈ A(k, p).

In fact, we actually haved(S∗) = d(S′) for S∗ an optimum set corresponding tof(k−2, p−pB).
Indeed, ifdS∗ < dS′ then the feasible setB ∪ S∗ has demand strictly less thanB ∪ S′ and profit

p which contradicts thatdS = dB∪S′ = f(k, p). Therefore, any subsetS of Dk ∪ Dk−2 ∪ . . .

with profit p and demandf(k, p) hasS ∩ Dk ∈ A(k, p) andS \ Dk being an optimum subset of

Dk−2∪Dk−4∪ . . . with profit p−p(B) and demandf(k−2, p−p(B)) so the recurrence correctly

determinesf(k, p) in this case.

On the other hand, iff(k, p) = ∞ thenA(k, p) = ∅. This is because anyB ∈ A(k, p) is

such thatf(k − 2, p − p(B)) + d(B) ≤ cj for all tasksj in the common intersection of tasks in

Dk−2 ∪ Dk−4 ∪ Thus, by definition we would be able to extend any such set of tasks with

demandf(k − 2, p− p(B)) to a feasible set of tasks obtaining profitp with demandf(k, p). �

36

Theorem 2.2.10There is an exact algorithm for simplified instance of UFP when the tasks are also

intersecting and tight on both sides.

Proof. As in Theorem 2.2.6 the highestp for whichf(k, p) 6=∞ is the optimum profit. By Lemma

2.2.9, we can compute the valuesf(k, p) using dynamic programming (notice the recurrence for a

given pair(k, p) only refers to pairs(k′, p′) for whichk′ < k).

The total profit isO(n2) and the profit of any subset of tasks is an integer. The number of

integersk for whichDk 6= ∅ is also at mostn. Therefore, the total number off(k, p) entries that

need to be considered isO(n3). For eachk and eachp, we have|A(k, p)| ≤ n3 by Lemma 2.2.8 so

the valuesf(k, p) can be computed in a dynamic programming fashion inO(n6) time. �

2.2.4 Left-Tight and Right-Tight Tasks

We describe the algorithm for left-tight tasks. The algorithm for right-tight tasks is essentially

identical. We have the following lemmas whose proofs are readily adapted from the analogous

results for tight tasks.

Lemma 2.2.11 If i ∈ Dk andj ∈ Dl with k + 2 ≤ l, thensi ≺ sj .

Lemma 2.2.12 LetBk be any feasible subset ofDk. Then|Bk| ≤ 3.

Furthermore, we have the following observation. Recall that t is an edge that is shared by all

tasks.

Lemma 2.2.13 If S is any (not necessarily feasible) subset ofT such that|S ∩Dk| ≤ 1 for eachk,

then the total demand inS at any given edgem ≻ t does not exceedcm.

Proof. Let e be any edge to the right oft (i.e. e ≻ t). Since all tasks are left-tight, then for any taski

with e ∈ span(i) we havedi ≤ ce/2. Order the tasksi ∈ S havinge ∈ span(i) in order of demand

di1 ≤ di2 ≤ . . . ≤ dib . Note thatdij < dij+1
/2 because we assume that only evenk haveDk 6= ∅

or only oddk haveDk 6= ∅ and we also have|S ∩Dk| ≤ 1. Inductively, we havedij ≤ dib2
j−b so

the total demand of tasks inS across edgee is bounded by:

b
∑

j=1

dij ≤ dib

b
∑

j=1

2j−b ≤ 2dib ≤ ce

�

The preceding lemmas indicate that we can use a dynamic programming algorithm similar to the

one for tight tasks. The main difference is that we only need to be concerned with the edgese � t

if we ensure we only take subsets ofDk of size at most 1. The structure exploited by the following

dynamic programming algorithm is illustrated in Figure 2.5.

Since the optimum solution chooses at most 3 tasks from eachDk then the resulting solution

found is within a factor 3 of the optimum. Letf(k, p) denote the minimum total demand of a feasible

37

D
2

D
4

D
6

D
8

Figure 2.5: The tasks are drawn as thick lines. The common point in this intersecting case is in-
dicated by the thin line. The dotted lines are the latest start times over all tasks in the respective
demand classes. Demands in higher classes must start later than these lines. Finally, while the inter-
vals do not look “nested” to the right of the common point, if we choose one task from each demand
class then sincedi ≤ ce/2 for each edgee right of the common point that is spanned by a left-tight
taski and sincedi′ < di/2 if i′ is in a lower demand class thani, then by summing a geometric
series we see that we do not violate the capacity of any edge tothe right of the common point.

collection of tasks from groupsDk, Dk−2, Dk−4, . . . that has total profit exactlyp and contains at

most one task from each demand classDl, l ≤ k. The recurrence looks similar to the one for tight

tasks except the setA(k, p) is restricted to singleton subsets ofDk and the only edges we need to

check for feasibility those edgese � t in the common intersection of all tasks inDk−2∪Dk−4∪
The proof of correctness is similar to that of the recurrencefor tasks with both endpoints tight.

The main difference is that Lemma 2.2.13 assures us that no edge to the right of the common edget

is violated by any subsetS that represents any finitef(k, p) entry. Furthermore, the recurrence can

be computed in polynomial since there are at mostn distinct values fork, the maximum total profit

p to be considered isO(n2), and the number of items of eachDk that need to be iterated over is at

mostn so the total running time isO(n4).

Lemma 2.2.14 The dynamic programming algorithm finds a subset whose totalprofit is at least 1/3

of the optimum total profit for these left-tight tasks.

Proof. Let T ∗ be an optimum collection of left-tight tasks. For eachDk, discard all but the most

profitable task inT ∗ ∩Dk from T ∗; call this new setT ′. Since|T ∗ ∩Dk| ≤ 3 then one third of the

total profit ofT ∗ remains inT ′.

The dynamic programming routine finds the optimum feasible subset of tasksS having |S ∩
Dk| ≤ 1 for each integerk, so surelyp(S) ≥ p(T ′) ≥ p(T ∗)/3. �

Theorem 2.2.15There is a polynomial-time 3-approximation for intersecting instances of UFP that

are either left-tight or right-tight.

We summarize what we have done to prove Theorem 2.2.2. We losta constant factor in the ap-

proximation ratio in the reduction to simplified instances as in Definition 2.1.3. We further reduced

the problem to intersecting cases in Section 2.2.1 and lost an O(log n) factor. Next, we partitioned

38

the tasks in the intersecting instances into three groups both-tight, left-tight, and right-tight (we can

also remove the condition that the tasks are tight from our definition of simplified and deal with the

slack tasks in Section 2.2.2). Finally, in Sections 2.2.3 and 2.2.4 we demonstrated how to either

solve or approximate the solutions to each of these groups within a constant factor. The composition

of these steps results in anO(log n)-approximation for general instances of UFP, thereby proving

Theorem 2.2.2.

2.2.5 An Extension to Cycles

The unsplittable flow problem on cycles can be solved approximately using the algorithm for paths.

The following approach was observed in [23]. Consider an edge e in the cycle with the smallest

capacityce and partition the tasks used in an optimum solution, sayT ∗, into two groups. Group 1 is

the collection of tasks that are routed along edgee and group 2 is the collection of tasks that are not

routed along edgee. Say the total profit of these groups is, respectively,OPT1 andOPT2.

We can find a subset of tasks with profit at leastOPT1/(1− ǫ) for any constantǫ > 0 by using

the known FPTAS for Knapsack [55]. For each taski with demanddi and profitpi, we create an

item for the knapsack with sizedi and valuepi. The overall capacity of the knapsack isce. Any

feasible packing to the Knapsack instance maps directly to afeasible solution for UFP on the cycle

by simply routing all tasks whose corresponding Knapsack item is packed. These tasks are routed

along the route using edgee. Since all tasks in this solution use edgee ande has the minimum

capacity over all edges, then surely no other edge cannot have its capacity constraint violated.

Notice that the tasks in group 2 (which are not routed acrosse) correspond to a feasible solution

to the UFP problem on the line obtained by deleting edgee and all tasks inT ∗ whose paths use edge

e. Using the UFP approximation algorithm described in this paper, we can find a feasible subset

of tasks whose total profit is at leastΩ
(

1
logn

)

OPT2. Thus, we get anO(log n)-approximation to

UFP on cycles by taking the best of our two approximations toOPT1 andOPT2.

2.3 AnO(logd n)-Approximation in Time nO(d)

The main result of this section is that for any integerd ≥ 2 (perhaps a function ofn), there is an

O(logd n)-approximation for UFP with running timenO(d). This is interesting for a few reasons:

• For any constantc > 0, this yields a polynomial-timec log2 n-approximation for UFP. Infor-

mally, we can select the constant suppressed by theO(·) notation in theO(log n) approxima-

tion to be arbitrarily small. Say the approximation ratio ofthe following algorithm is actually

bounded byc′ logd n. Then to get ac log2 n-approximation for some constantc > 0, we

simply choose any integerd greater than2c
′/c.

• There is a quasi-polynomial timeO
(

logn
log logn

)

-approximation by choosingd = Θ(log n).

39

Figure 2.6: An sketch of an instance that requires logarithmically many groups of “disjoint inter-
secting instances”.

• There is a constant-factor approximation running in sub-exponential (i.e. 2o(n)) time. For

example, choosingd = Θ(
√
n) results in anO(1)-approximation running in timenO(

√
n) =

2O(
√
n logn). More generally, choosingd = Θ(nǫ) for small constant values ofǫ > 0 results

in anO
(

1
ǫ

)

-approximation running in time2O(nǫ logn).

First, we want to emphasize that it is not possible to improveon the logarithmic approximation

from Section 2.2 through a more clever combination of intersecting cases. In Section 2.2, one

of the basic ideas was to partition the input intoO(log n) groups. In each group, the tasks were

partitioned into intersecting instances where no two tasksfrom different instances in this group

shared a common edge. One might wonder if it is possible partition an input instance differently

into even fewer groups of “disjoint” intersecting instances. The example sketched in Figure 2.6

shows this is not possible. A more formal construction of this instance is the following. LetI1

denote the instance that includes a single task that spans atleast one edge. Fork > 1, let Ik be the

instance that is formed as the disjoint union of two copies ofIk−1 one where one instance ofIk−1

has all tasks starting strictly later than the end nodes of all tasks inIk−1. Finally, add one more task

to Ik that spans all tasks in both instances ofIk−1.

The total number of tasks inIk isnk = 2k−1. We argue, by induction, that at leastk groups are

required to partition the tasks ofIk so that each partition can be expressed as the union of intersecting

instances where no two tasks from different instances sharea common edge. Fork = 1, it is trivial.

Now, for k > 1, consider such a partition of the tasks inIk. If the long task spanning both instances

of Ik−1 is in a partition by itself, then at leastk − 1 groups are required to partition the remaining

nodes by induction (since the two instances ofIk−1 are disjoint). Finally, if one of the instances of

Ik−1 has a task in the same group as the long task inIk, then the other instance ofIk−1 cannot have

any tasks in the same group. By induction, we require at leastk − 1 more groups for this instance

of Ik−1. Sincek = log2 nk − o(1), then we see that we require at least a logarithmic number of

partitions.

To deal with this difficulty we generalize the notion of an instance being intersecting. The basic

ideas of the algorithm in this section are similar to the ideas in theO(log n)-approximation in Section

2.2. We lose anO(logd n)-factor by reducing to instances where there is a collectionof d− 1 edges

E′ (that we callpartition edges) such that every task spans at least one edge inE′ (settingd = 2

produces intersecting instances as considered in Section 2.2). We call such instanced-intersecting

40

instances.

This reduction was inspired by an analogous reduction by Gamzu and Segev for the Highway

Problem [44]. The Highway Problem is similar in spirit to UFPin that we have a collection of

tasks over an underlying path. However, the tasks come with abudgetbi rather than a demand

and a profit and there are no capacities on the edges. Our job isto assign prices to each edge

of the path to maximize our profit, which is calculated as follows. For each taski, if the sum

of the prices of all edges spanned byi does not exceedbi, then that task pays this total price.

Otherwise, taski pays nothing. In [44], they also reduce to cases where each task spans one of

d − 1 edges and lose anO(logd n) factor. They then describe a constant-factor approximation for

such instances whose running time is a polynomial factor larger than(O(log nm))O(d). By choosing

d = Θ(
√
log n) (or, more generally,d = Θ(logδ n) for any constant0 < δ < 1), this is a polynomial

timeO(log n/ log log n)-approximation. Actually, their algorithm works for the more general case

where the underlying graph is a tree, but when their ideas arerestricted to a path then our reduction

to d− 1 intersecting cases is similar to their reduction.

To approximate instances where each task spans one ofd− 1 edges, we extend the ideas of the

O(log n)-approximation. There is no good notion of “left-tight” or “right-tight” in such instances

since tasks may have bottlenecks between edges ofE′, but we demonstrate that, after guessing a

certain subset of up tod − 1 tasks, the remaining tasks may be classified as “left-tight”or “right-

tight” (or both) in some sense. Then, the dynamic programming algorithms from Section 2.2 are

generalized tod-intersecting instances.

2.3.1 An Alternative Goal

To further simplify our search in some cases, we use the following definitions.

Definition 2.3.1 A (not necessarily feasible) subset of tasksT ′ ⊆ T is conflict-freeif for any two

tasksi, i′ ∈ T ′ the subset{i, i′} is feasible.

Definition 2.3.2 A (not necessarily feasible) subsetT ′ ⊂ T is demand class independentif, for each

demand classDk, no two tasks inT ′ ∩Dk share a common node in the underlying path.

The following lemma demonstrates the usefulness of these properties.

Lemma 2.3.3 LetT ′ ⊆ T be a conflict-free subset that is also demand class independent. ThenT ′

may be partitioned into four feasible subsets ofT in polynomial time.

Proof. We begin by forming a planar graphH. For each taski ∈ T ′, add two points in the Euclidean

plane at(si, di) and(ti, di) and connect these by a straight line segment. Notice that sinceT ′ is

demand class independent then no two line segments share a common point in this drawing.

For each edgee = (j, j + 1) on the underlying path, ife is spanned by at least two tasks inT ′,

then leti, i′ be the two such tasks with greatest demand valuesdi, di′ . Add a point to the paths for

41

a) b) c)

Figure 2.7: Tasks with larger demands are drawn higher in thefigure. Figure a) shows an example
of tasks with the vertical dashed lines corresponding to nodes in the underlying path. Figure b)
illustrates the planar graphH drawn from the given tasks. Figure c) is the planar graphH ′ obtained
by contracting each pathPi into a single node.

i andi′ at location(j + 1/2, di) and(j + 1/2, di′), respectively, and connect these points with a

straight line segment. It is easy to see that no line segment drawn in this manner crosses any other

line segments or touches any other node other than its endpoints. That is, we have a planar graph

if we view the endpoints of all line segments as vertices and the segments between points as edges.

Let Pi be the nodes on the path drawn horizontally between the points corresponding tosi andti.

Before adding the vertical edges,Pi was simply a line segment but it may have been subdivided into

a path with internal nodes when the vertical edges were added. Contract each pathPi to a single

point, saypi, and call this new graphH ′. This construction is illustrated in Figure 2.7. Since the

property of a graph being planar is preserved under contractions, thenH ′ is also planar. Also, each

node inH ′, being the contraction of some pathPi, corresponds naturally to a task inT . We can

colour the nodes ofH ′ using 4 colours in polynomial time [81].

The claim is that the nodes in any one of these colour classes corresponds to a feasible subset

of tasks. To see this, let us first consider the total demand across any edgee in the original set of

tasksT ′. If there is only one task that spanse, then surely no colour class ofH has the total demand

acrosse exceedingce. Otherwise, leti, i′ be the two tasks with largest demandsdi > di′ that span

e. SinceT ′ is conflict-free, then we havedi + di′ ≤ ce.

Consider any two tasksi1, i2 in T ′ that spane and say thatdi1 ≤ di2 . SinceT ′ is demand

class independent and sinceDk = ∅ for all evenk or Dk = ∅ for all oddk, then it must be that

di1 ≤ di2/2. So, the sum of the demands of tasks inT ′ that spane is at mostdi + di′ + di′/2 +

di′/4 + di′/8 + . . . ≤ di + 2di′ . Now, we have an edge between pointspi andpi′ in H ′ since they

are the largest two demands that spane so the total demand acrosse in any particular colour class is

at mostdi + di′/2 + di′/4 + di′/8 + . . . ≤ di + di′ ≤ ce. That is, the total demand in any colour

class across edgee does not exceedce. Since this holds for any edgee, then every colour class of

our 4 colouring ofH ′ corresponds to a feasible subset ofT ′. �

Also, in some cases when we are searching for OPT, the following lemma allows us to restrict

our search to certain solutions while only losing a constantfactor in the approximation ratio. In

particular, it says that there is a feasible solution that isalso demand class independent whose total

42

profit is at leastOPT/4.

Lemma 2.3.4 For any feasible subsetT ′ ⊆ T , we can partitionT ′ into four groups in polynomial

time such that each of these groups is conflict-free and demand class independent.

Proof. Focus on a particular demand classT ′ ∩Dk. The claim is that no nodev is spanned by more

than four tasks inT ′ ∩Dk. Suppose some nodev was spanned by five tasks inT ′ ∩Dk. Then either

three of these tasks have some bottleneck edge beforev or three of these tasks have some bottleneck

edge afterv. Suppose it is the former case (the latter is similar) and that these tasks arei1, i2, i3.

Also, suppose thati1 has the right-most bottlenecke � v meaningi2 andi3 also span edgee. Then

the total demand across edgee is at leastdi1 + di2 + di3 ≥ di1 + di1/2 + di1/2 = 2di1 . Sincee is

a bottleneck for taski1 thendi1 > ce/2 meaning the total demand acrosse exceedsce contradicting

feasibility ofT ′.

Now, form the graphGk whose nodes are tasks inT ′∩Dk with two such nodes being connected

by an edge (inGk) if and only if they share a common node in the underlying path. ThenGk is an

interval graph and we just argued that all cliques inGk have size at most four. Interval graphs are

perfect graphs so we may efficiently colour the nodes inGk with four colours so that no two adjacent

nodes receive the same colour [48]. Do this for each demand classT ′ ∩ Dk (using the same four

colours) and let the four colour classes be the four partitions ofT ′ with the desired property. Finally,

sinceT ′ is feasible then it is conflict-free. Any subset ofT ′ (in particular, each of the partitions we

just found) must also be conflict-free. �

These two lemmas say that the optimum profit of a feasible subset of tasks and the optimum

profit of a conflict-free and demand class independent subsetof tasks are within a constant factor of

each other (if the tasks are tight). We note that this does nothold if we only consider conflict-free

subsets or only demand class independent subsets. For example, any feasible subset of tasks in the

bad gap example from the proof of Lemma 2.0.3 has profit at most1 whereas no two tasks in this

example are in the same demand class so the optimum profit of a demand class independent subset

is n. On the other hand, no two tasks in the following instance with unit profits conflict whereas

the optimum solution is only 3. The example is similar to the example from the proof of Lemma

2.0.3 except the demanddi of taski is 1 + 2−i and the capacityci of the i’th edge from the left is

2 + 2−i + 2−i−1. The tasks are tight since taski spans thei’th edge and

di = 1 + 2−i >
2 + 2−i + 2−i−1

2
=

ci
2

It is also easy to check that no two tasks conflict. However, nothree tasks can be chosen in any

feasible solution since any three tasks have total demand exceeding 3 across the first edge, which

has capacity2 3
4 . So, there may be anΩ(n) gap between the optimum profit of a feasible subset of

tasks and the optimum profit of either a conflict-free subset of tasks or a demand class independent

subset of tasks. This is why we simultaneously consider boththe property of being conflict free and

the property of being demand class independent.

43

e e e
1 2 3

Figure 2.8: An example withn = 15 andd = 4. The black tasks are those inT ′ and the remaining
tasks in someTi are displayed in grey.

The following two lemmas are essentially restatements of some results in the previous section,

but they are useful in this form in what follows.

Lemma 2.3.5 For any two tasksi, i′ with di ≤ di′ , eitherdi′ < 2di or taski′ does not span any

edge that is a bottleneck for taski.

Proof. Sayi ∈ Dk andi′ ∈ Dk′ and suppose2di ≤ di′ . Let e be any bottleneck edge of taski.

Thence/2 < di ≤ di′/2 soce < di′ . Since every task is feasible on its own, thene is not spanned

by i′. �

Corollary 2.3.6 For any two tasksi ∈ Dk, i′ ∈ Dk′ with k ≤ k′. Eitherk = k′ or no bottleneck of

i is spanned byi′.

Proof. If k 6= k′ thenk + 2 ≤ k′ since the instance is simplified (cf. Definition 2.1.3). Then

2di < 2k+2 ≤ 2k
′ ≤ di′ and Lemma 2.3.5 says that no bottleneck ofi is spanned byi′. �

2.3.2 A Reduction tod-Intersecting Instances

Recalld ≥ 2 is an integer that we may consider as a parameter to the algorithm. Lete1 ≺ . . . ≺ ed−1

be any collection of edges whose deletion breaks the underlying path into paths containing at most

m/d vertices (e.g. the ei are spaced as equally as possible). LetT ′ be the tasks that span some

e1, . . . , ed−1 and partition the remaining tasksT1, . . . , Td based on the path inP − {e1, . . . , ed−1}
they are contained in. More specifically, letT1 be the collection of tasks that end beforee1, Td be

the collection of tasks that start aftered−1, and for every1 < i < d, letTi be the collection of tasks

that start afterei−1 and end beforeei. This partition of the tasks is illustrated in Figure 2.8.

Later, we develop a constant-factor approximation for finding the maximum total profit of a

feasible subset ofT ′ that runs in timenO(d). Suppose this constant factor isc ≥ 1. We get ac logd n

approximation for the general problem by the following routine. Since the edges spanned by any

two i, i′ in differentTk are disjoint (asi andi′ are separated by someej), then we may naively take

the union of feasible solutions to eachTk as a feasible solution forR. Let S′ be thec-approximate

solution for the instance with tasks fromT ′ and letS1, . . . , Sd be the approximate solutions for

44

the instances with tasks fromT1, . . . , Td, respectively, by recursively calling this algorithm for each

Tk in turn and using the union of these solutions. Return the more profitable of the two setsS′ or

S1 ∪ . . . ∪ Sd.

Consider an optimum subset of tasksS∗ ⊆ T of profit OPT . Either the total profit inS∗ ∩ T ′

is at leastOPT
logd m or else the total profit inS∗ ∩ (T1 ∪ . . .∪ Td) is at least

(

1− 1
logd m

)

OPT . In the

former case, ourc-approximation finds a solution of cost at leastOPT
c logd m .

In the latter case, letOPTk denote the optimum profit of a feasible subset ofTk and notice

that
∑d

k=1 OPTk ≥
(

1− 1
logd m

)

OPT . Inductively (the base cases withm ≤ d are trivial), we

have that the profit ofSk is at least OPTk

c logd m/d for all 1 ≤ k ≤ d. Thus, the profit of the solution

S1 ∪ . . . ∪ Sd is at least

d
∑

k=1

OPTk

c logd m/d
≥ 1

c logd m/d
·
(

1− 1

logd m

)

OPT

=
1

c logd m/d
·
(

logd m− 1

logd m

)

OPT

=
1

c logd m/d
·
(

logd m/d

logd m

)

OPT

=
OPT

c logd m
.

Notice that there are at mostm/(d − 1) calls to the constant factor approximation since each

edge of the original path is used as one of thed− 1 partition edges at most once. Summarizing:

Theorem 2.3.7 Let d ≥ 1 be an integer. If we have a constant-factor approximation for instances

of UFP where there ared − 1 edgese1, . . . , ed−1 such that every task spans at least one of theek,

then we have anO(logd m)-approximation for general instances of UFP. Recalling that m ≤ 2n,

this is also anO(logd n)-approximation. Furthermore, the running time of the general approxi-

mation algorithms is only a polynomial factor larger than the running time of the constant-factor

approximation.

2.3.3 Simplifying the Instances

Our goal in this section is to restrict our attention tod-intersecting instances with even more structure

while losing only a constant factor in the approximation ratio. There are two main steps in this

process. The first step ensures no “interval” between edgese1 ≺ . . . ≺ ed−1 has tasks both starting

and ending in that interval. The second step guesses the taskwith the largest demand (if any) across

each of thed−1 edges. Our goal is then to approximate the optimum feasible subset of the remaining

tasks. Once the largest demand tasks are known across each ofthed−1 edges, we are able to impose

a lot of structure on the remaining tasks which is exploited in the dynamic programming phases in

subsequent sections.

45

For the first step, observe that the nodes in the underlying path are naturally partitioned into

d intervalsI1, . . . , Id by the edgese1, . . . , ed−1 in the following way. Consider a nodev on the

underlying path. Ifv ≺ e1 then we sayv ∈ I1. Similarly, if v ≻ ed−1 then we sayv ∈ Id. Finally, if

ek−1 ≺ v ≺ ek then we sayv ∈ Ik. For each taski, let l(i) be the interval withsi ∈ l(i) and letr(i)

be the interval withti ∈ r(i). Consider a functionX : {I1, . . . , Id} → {S,E} that assigns a label

X(Ik) to each interval. We use the labelsS andE to denote that the interval will be astart or an

endinterval. Given such a labelingX, letTX = {i ∈ T : X(l(i)) = S and X(r(i)) = E}. That is,

each taski ∈ TX starts in an interval labelledS and ends in an interval labelledE. We want to find

a labellingX so that the optimum solution does not decrease very much after we remove some tasks

from T to obtainTX . SupposeT ∗ is an optimum subset of tasks inT with profit OPT = p(T ∗).

Lemma 2.3.8 There is a label functionX such that the maximum profit of a feasible subset ofTX is

at leastOPT/4. Furthermore, we can, in polynomial time, find a collection of O(d) label functions

{Xα} such that the optimum of someTXα
is at leastOPT/4.

Proof. Consider a random label function. LetX(Ik) be randomly and independently chosen to be

S or E for every1 ≤ k ≤ d. The probability anyi ∈ T is in TX is at exactly 1/4 since its two

endpointssi andti lie in separate intervals and these intervals are labeled independently. Then the

expected total profit of items inTX ∩ T ∗ is exactlyOPT/4.

Notice that the probability any given taski is in TX depends only on the labels of the two

intervals containing its endpoints. We may find, in polynomial time, a collection ofO(d) label

functions{Xα} through a textbook application of using a family of pairwise-independent random

values (e.g. [68]) such that the profit ofT ∗ ∩ TXα
is at leastOPT/4 for some label functionXα in

the collection. �

Suppose, now, thatX is a label function that induces a subset of tasksTX whose cost is at least

OPT/4. By Lemma 2.3.8, we only haveO(d) different label functions to try and we proceed to

run the rest of the algorithm on each of these label functionsand keep the most profitable answer

returned.

From now on, we suppose that we have a label functionX{I1, . . . , Id} → {S,E} such that

T = TX and that the optimum valueOPT we are concerned with is for a subsetT ∗ of TX . For the

next step in this section, consider any feasible subsetT ′ of T . Say a subsetC of T ′ is acanopyof

T ′ if the following two criteria hold:

• If i ∈ C, then there is some partition edgeek, 1 ≤ k ≤ d− 1 such thatek ∈ span(i) and any

otheri′ ∈ T ′ that also hasek ∈ span(i′) satisfiesdi′ ≤ di.

• Every edgeek that is spanned by some task inT ′ is also spanned by some taski ∈ C such

thatdi′ ≤ di for anyi′ ∈ T ′ that spansek.

46

e e e e e
1 2 3 4 5

Figure 2.9: Tasks with larger demands are drawn higher in thefigure. The dark tasks form a canopy
for the given set of tasks. Each partition edgeek that is spanned by some task has the largest demand
task highlighted with× where the task crossesek.

Informally, a canopy ofT ′ contains the largest demand task inT ′ across each of thed−1 partitions,

if any. Ties for the largest demand across a specificek may be broken in any way. Figure 2.9

highlights a canopy for a feasible solution.

Notice that there are at most(n+ 1)d−1 = nO(d) possible canopies over all feasible subsetsT ′

of T ; for a feasible subsetT ′ and for each edgeek we have that eitherek is not spanned by any task

in T ′ or we have one of the largest tasks inT ′ spanningek in the canopy. We may try allnO(d)

guesses for a canopy and suppose we have properly guessed a canopyC of an optimum solutionT ∗.

Form a new set of taskŝT from T by discarding the following tasks:

1. all tasks inC

2. all tasks that span a partition edgeek that is not covered by the canopyC

3. all tasksi that span a partitionek wheredi > di′ for all i′ ∈ C spanningek

4. all tasksi such thatC ∪ {i} is not feasible

The first type of task is removed because we already guessed itto be inT ∗, the second type is

removed becauseT ∗ does not have any task spanning the given edge, the third typeis removed

because it exceeds our guess for the maximum demand spanningek in T ∗, and the fourth is removed

because they clearly cannot be in an optimum solution when weguess the proper canopy. Notice

that the optimum solution of̂T is preciselyp(T ∗ − C).

The benefits of guessing the canopy when given a labelingX are summarized in the following

lemma. The lemma basically says that all bottleneck edges for any taski not in a canopy for a

feasible solution must be in one of the two end intervalsl(i) or r(i).

Lemma 2.3.9 SupposeC is a canopy for some feasible subsetT ′ and let T̂ be the subset ofT

obtained by removing the above four types of tasks fromT given canopyC. Then for anyi ∈ T̂ and

for any bottleneck edgee for taski we have that eithere ∈ l(i) or e ∈ r(i).

47

Proof. Suppose thate is a bottleneck ofi ∈ T̂ and thate 6∈ l(i) ∪ r(i). It cannot be thate is one

of the partition edgesej ∈ {e1, . . . , ed−1} because we would otherwise have some taski′ ∈ C with

larger demand thani spanning the same edgeej . But thendi′ ≥ di > cej/2 sinceej is a bottleneck

for i soi would have been discarded after the canopyC was guessed.

So, say thate ∈ Ik with 1 < k < d and notice thati spans bothek−1 andek since the start node

si of taski lies to the left ofIk and the end nodeti of taski lies to the right ofIk. Suppose that

X(Ik) = S (the other case is similar). Sincei 6∈ C there is somei′ ∈ C such thati′ also spansek−1.

Let i′ be such a task inC of largest demand; in particular,di′ ≥ di sincei′ is in the canopy and both

span the common edgeek−1. Now, sinceX(Ik) = S it must be thati′ also spansek. Sincei′ spans

bothek−1 andek, then it must also span edgee (recallek−1 ≺ e ≺ ek). Thendi + di′ ≥ 2di > ce

sincee is a bottleneck fori. But then{i, i′} is not feasible meaningC ∪ {i} is not feasible. This

contradictsi ∈ T̂ . �

Now, we partitionT̂ into three groups, one of which consists of tasksi with all bottlenecks in

l(i), another consists of tasksi with all bottlenecks inr(i), and a final group consisting of tasksi

with a bottleneck in bothl(i) andr(i). We finally solve each of these three partitions either exactly

or within a constant factor which, by taking the better of thethree solutions, will lead to a constant

factor approximation for the optimum solution inT .

2.3.4 Tasks With Both Endpoints Tight

In Section 2.2.3, an exact algorithm was presented for tightintersecting instances whose profits

were integers in the range[0, 2n]. The main property that was exploited by the algorithm is that the

instance looked somewhat like a nested sequence of intervals in that if two tasks were in different

demand classes, then the span of the one with larger demand was contained in the span of the one

with smaller demand. A nested sequence of intervals is a special case of the property of being

laminar. Reall that a collection of subsetsS = {S ⊆ V } of a setV is called laminar if for any

S, T ∈ S eitherS ∩T = ∅, S ⊆ T , orT ⊆ S. Extend this definition to say that a collection of tasks

T ′ is laminar if for any i, j ∈ T ′ we have eitherspan(i) ∩ span(j) = ∅, span(i) ⊆ span(j), or

span(j) ⊆ span(i).

As a first step, adjust the capacities in each interval to be monotone across that interval in a

similar way to how the capacity profile was made unimodal in the O(log n) approximation. For

each intervalIk with X(Ik) = S, we can assume that the capacities are non-decreasing in the

intervalTk by the following reason. Fore, e′ ∈ Ik with e ≺ e′, the total demand spanninge in a

feasible subset of̂T does not exceed the total demand spanninge′ because no taski ∈ T̂ ends before

e′. So, if ce > ce′ , then we may decreasece to be exactlyce′ . Similarly, if X(Ik) = E then the

capacities in the intervalIk can be modified to be non-increasing. The whole point is that we may

now say that both the first and last edge of every task are now bottlenecks, rather than merely saying

that bothl(i) andr(i) contain a bottleneck edge fori. The property we exploit to solve instances of

48

tasks with both endpoints tight is that the sets of edges spanned by these tasks must be laminar, as

we now show.

Lemma 2.3.10 Any feasible subsetT ′ of T̂ is laminar.

Proof. Let i, i′ ∈ T̂ be two tasks that cross (i.e. si ≺ si′ ≺ ti ≺ ti′). Suppose thatdi ≥ di′

(the other case is similar). Since the first edge of taski′ is also spanned by taski and since the

first edge of taski′ is a bottleneck edge fori′, then{i, i′} conflict across the first edge ofi′ because

di + di′ ≥ 2di′ > csi . Therefore, bothi andi′ cannot be in any feasible solution. �

Modify T̂ in the following way to ensure, for simplicity in the following algorithm, that no two

tasksi, i′ ∈ T̂ havespan(i) = span(i′). While there are twoi, i′ ∈ T̂ with span(i) = span(i′), do

the following. Saye, e′ are the edges incident tosi such thate ≺ si ≺ e′. Then “insert” a new edge

e′′ betweene ande′ by creating a copys′i of si and arranging the edges soe ≺ s′i ≺ e′′ ≺ si ≺ e′.

Set the capacity ofe′′ to ce′ and adjust the endpoints of the tasks as follows. For tasksi′′ 6= i

(including i′) whose start node wassi, keep the start node ofi′′ assi. Finally, set the start node of

taski to bes′i. If it so happened thatsi was the first node on the path (so edgee was not present)

then the new graph simply looks likes′i ≺ e′′ ≺ si ≺ e′. It is easy to verify that a subset of nodes

is feasible before this update if and only if it is feasible after this update, thate′′ is a bottleneck for

i, and that no other edge becomes a bottleneck for any task for which it was already a bottleneck.

Though we have increased the number of edges in the path fromm to at most2n, the algorithm

that follows is no worse than constant-factor approximations so we may still claim that the final

approximation ratio isO(logd m). Now we may assumespan(i) 6= span(i′) for every distinct

i, i′ ∈ T̂ .

The basic idea of the dynamic programming algorithm is that any feasible solutionT ′ can be

decomposed in the following way. Consider the set of edges spanned by some task inT ′. SinceT ′

is laminar, then either there is a task inT ′ that spans all of these edges or there is a nodev such that

all tasks inT ′ either end no later thanv or start no earlier thanv (the nodev divides the set into two

parts). These ideas are illustrated in Figure 2.10. The dynamic programming solves the problem of

determining if it is possible to obtain profit exactlyp using tasks that are entirely contained between

two given points. Notice that after dividing a feasible solution into two parts by a “dividing node”v,

we can do no worse by assuming that the parts on both sides ofv leave the largest possible residual

capacity over all edges spanned by that part.

The dynamic programming table we are interested is the following.

Definition 2.3.11 For nodesv ≺ v′ and a valuep, let R(v, v′, p) denote the collection of feasible

subsets of̂T of total profit exactlyp where each subset consists only of tasksi with v � si and

ti � v′. For such a subsetS ∈ R(v, v′, p), letm(S) denote the minimum remaining capacity of all

edges in[v, v′] (the collection of edges that appear betweenv andv′) after routing all tasks inS.

49

a) b)

Figure 2.10: Decomposing a feasible solution. a) The first dashed line is the start ofe and the last
dashed line is the end ofe′. After choosing the task that spans the entire interval, we may break the
remaining solution into two halves by the middle dashed line. b) Recursively decomposing these
subproblems further (the thin, double-arrowed line highlights the two subproblems).

Finally, leta(v, v′, p) denote the maximum ofm(S) over allS ⊆ R(v, v′, p). If R(v, v′, p) = ∅ then

let a(v, v′, p) = −∞.

Basically,a(v, v′, p) is the most capacity that can possibly be left across edges in[v, v′] over

all feasible subsets of tasks contained in[v, v′] of total profit exactlyp. Thea(v, v′, p) values are

related through the following recurrence. When[v, v′] consists of a single edgee, we simply have

a(v, v′, p) =







ce if p = 0
ce − di if ∃i with si = v, ti = v′, pi = p
−∞ otherwise

The following lemma is the structure we exploit in the recurrence to calculatea(v, v′, p) values.

It has probably been proven before for a laminar set of intervals, but we include a proof because it

helps illustrate how the recurrence works.

Lemma 2.3.12 If v ≺ v′ are nodes andS is a laminar subset of tasks whose start and end nodes

are all contained betweenv andv′ then either a) there is somei ∈ S with span(i′) ⊆ span(i) for

all i′ ∈ S or b) there is some nodev′′ with v ≺ v′′ ≺ v′ such thatti � v′′ or v′′ � si for all i ∈ S.

Proof. Suppose there is no taski with span(i′) ⊆ span(i) for all i′ ∈ S. Now, if there is no task inS

with si = v then we may chose the node immediately proceedingv in the underlying path asv′′ and

note thatv ≺ v′′ ≺ v′ andv′′ � si for all i ∈ S. Otherwise, suppose taski ∈ S hassi = v and that

i spans the most edges among tasks inS starting atv. The claim is that we can chosev′′ = ti. Since

we assumed case a) in the statement of the lemma is not satisfied, thenv ≺ ti = v′′ ≺ v′. Suppose,

for the sake of contradiction, that there was somei′ ∈ S with si′ ≺ v′′ ≺ ti′ . If si′ = v, theni′

is a task inS starting atv that spans more edges thani, contradicting our choice ofi. Otherwise,

if v ≺ si′ then we havev = si ≺ s′i ≺ ti ≺ ti′ which contradictsS being laminar. Therefore,

selectingv′′ = t demonstrates thatS satisfies case b) in the statement of the lemma. �

For cases where[v, v′] contains multiple edges, it is useful to define the quantityq(v, v′, p).

Intuitively, it is the maximum remaining capacity across the interval[v, v′] of a feasible subset of

50

the tasks contained in[v, v′] with profit exactlyp withoutusing the taski with si = v, ti = v′ (if

such a task exists). More precisely,q(v, v′, p) is the maximum ofm(S) over subsetS ∈ R(v, v′, p)

such that noi ∈ S hassi = v andti = v′.

The q(v, v′, p) values can be computed froma(v, v′, p) values with smaller interval lengths

|[v, v′]| by the following expression.

q(v, v′, p) := max
v≺v′′≺v′

{

max
0≤p′≤p

min{a(v, v′′, p′), a(v′′, v′, p− p′)}
}

The outer-most max in the expression tries all such nodesv′′ and the inner-most max in the expres-

sion then “guesses” the profit of the two subsets of tasks on each side of this nodev′′.

We finally have that:

a(v, v′, p) =







max{q(v, v′, p), q(v, v′, p− pi)− di} if ∃i with si = v, ti = v′, pi ≤ p,
anddi ≤ q(v, v′, p− pi)

q(v, v′, p) otherwise

In the first case of the piecewise expression, the first argument in themax corresponds to taski not

being used and the second corresponds to taski being used. The quantityq(v, v′, p− pi) is used to

determine the maximum possible remaining capacity across[v, v′] when total profitp− pi is routed

from the tasks strictly contained in[v, v′]. The second case is when there is noi with pi ≤ p and

span(i) = [v, v′] or when it is impossible to have at leastdi capacity remaining across all edges in

[v, v′] by routing a total profit ofp− pi of tasks strictly contained in[v, v′].

Lemma 2.3.13 The recurrence correctly relates thea(v, v′, p) values.

Proof. Correctness for the base of[v, v′] containing a single edge is immediate. For the remaining

cases, we consider two options. Ifa(v, v′, p) = −∞ then surelya(v, v′′, p′) = −∞ or a(v′′, v′, p−
p′) = −∞ for all v ≺ v′′ ≺ v′ and0 ≤ p′ ≤ p since we could otherwise take the union of two

corresponding sets inR(v, v′′, p′) andR(v′′, v′, p−p′) (respectively) as a set inR(v, v′′, p). If there

is a taski with si = v, ti = v′ andpi ≤ p then it must be thatdi > q(v, v′, p− pi) or else we could

addi to the two sets corresponding to the argument ofq(v, v′, p) to get a feasible set inR(v, v′, p).

So, the recurrence is correct whena(v, v′, p) = −∞.

Now, supposea(v, v′, p) 6= −∞ and thatS ∈ R(v, v′, p) hasm(S) = a(v, v′, p). If there is no

taski ∈ S with si = v, ti = v′ andpi ≤ p then Lemma 2.3.12 shows the setS can be split into two

halves by a dividing nodev′′. For the proper guess of profitp′ to the left of this dividing node, the

corresponding term inq(v, v′, p) will be a(v, v′, p) so surelyq(v, v′, p) ≥ a(v, v′, p). If there is such

a taski ∈ S then the setS−{i} ∈ R(v, v′, p− pi) can be similarly divided (recall we are assuming

no two tasks have the same start and end points) and we haveq(v, v′, p − pi) ≥ a(v, v′, p) + di In

either case, the recurrence certainly determines a value that is at leasta(v, v′, p). Using a similar

argument, we see that all values that are not−∞ that are determined by the recurrence correspond

to feasible subsets inR(v, v′, p). Sincea(v, v′, p) is the maximum possible residual capacity of sets

in R(v, v′, p), then the recurrence actually determines the correct valueof a(v, v′, p). �

51

Say thatvs, ve are equal to, respectively, the leftmost start nodesi and the rightmost end nodetj

over all tasks in the instance. The profit of the optimum feasible subset of̂T is then the largestp such

thata(vs, ve, p) 6= −∞ and such a subset can be obtained through appropriate bookkeeping. Recall

we assumed that all profits of tasks in̂T were integers in the range[0, 2n]. Since there aren tasks

in total, then the only values ofp with a(vs, ve, p) 6= −∞ are integers in the range[0, 2n2]. Also,

since there are at most2n points on the underlying path (even after we adjusted the endpoints so no

two tasks span the same set of edges), then there are at most2n choices for eachvs andve entry.

Thus, the size of the table isO(n4). Now, each entry can be computed by making onlyO(n3) calls

to other entries with strictly smaller intervals[v, v′] since there areO(n) guesses for the dividing

nodev′′ andO(n2) guesses for profitp′ in the definition ofq(v, v′, p). By using the recurrence, the

a(j, j′, p) values can computed with dynamic programming in timeO(n7). Note that this running

time does not depend ond.

2.3.5 Tasks With One Tight Endpoint

As in Section 2.2.4, we only demonstrate the algorithm for left-tight tasks which we denote bŷT .

The algorithm for right-tight tasks is essentially identical. We exploit Lemmas 2.3.3 and 2.3.4 and

restrict our search to only finding an optimum subset of conflict-free and demand class independent

tasks (cf. Definitions 2.3.1 and 2.3.2) and lose only constant factor inthe process. Note that the

canopyC that we have guessed is not necessarily demand class independent, but Lemma 2.3.4

allows us to find a high-value subset ofC that satisfies this property. Also, recall that all left-tight

tasksi have a bottleneck in intervall(i) andall bottlenecks ofi lie in l(i).

The following summarizes why we may make these simplifications.

Lemma 2.3.14 If T ′ is an optimum conflict-free and demand class independent subset ofT̂ , then

we may find a feasible subset ofC ∪ T ′ whose cost is within a constant factor of the cost of the

optimum feasible subsetF ∗ of C ∪ T̂ that includes all tasks inC.

Proof. Sayp(F ∗) = OPT . SupposeF ∗ ∩ T̂ = T0 and note thatp(F ∗) = p(C) + p(T0) sinceF ∗

contains all ofC. ThenT0 is conflict-free since it is feasible. By Lemma 2.3.4, there is a conflict-

free and demand class independent subsetT1 ⊂ T0 with p(T1) ≥ p(T0)/4. SinceT ′ is an optimum

conflict-free and demand class indepenent subset ofT̂ , thenp(T ′) ≥ p(T0)/4 as well.

Now, consider the setT ′ ∪ C. It is conflict-free sinceC is conflict-free,T ′ is conflict-free and

no task inT ′ can conflict with a task inC becauseT ′ ⊆ T̂ and we did not include tasks in̂T that

conflicted withC. However,T ′ ∪ C is not necessarily demand class independent. The following

argument is similar to the one made in Lemma 2.3.4. Consider any demand classDk and any node

v. SinceC is feasible, then an argument similar to Lemma 2.2.8 says that at most 4 tasks inC ∩Dk

spanv. SinceT ′ is demand class independent then at most one task inT ′ spansv. So, at most five

tasks inC ∪ T ′ spanv.

52

Since the interval graph associated to tasks in(C ∪ T ′) ∩Dk has maximum clique size 5, then

we can partition these tasks into 5 groups of which no two in the same group share a common point.

Do this for all demand classesDk and keep the most profitable of the 5 partitions in each class.

This results in a conflict-free and demand class independentsubsetF of C ∪ T ′ with profit at least

p(C ∪ T ′)/5. Stacking the inequalities shows:

p(F) ≥ p(C ∪ T ′)/5 = p(C)/5 + p(T ′)/5 ≥ p(C)/5 + p(T0)/20 ≥ p(C ∪ T0)/20 = p(F ∗)/20

Finally, we use Lemma 2.3.3 to find a feasible subset ofp(F) with cost at leastp(F ∗)/80. �

As in other sections, we employ dynamic programming to find such an optimum conflict-free

and demand class independent subset ofT̂ . The dynamic programming in this section is a fair bit

more complicated and technical, so we spend some time developing the intuitions and basic ideas

behind it. As a pre-processing step, we can assume that the capacities of the edges in intervals

labelledS are increasing so that the first edge of every task is a bottleneck but it is simpler to not

modify the capacities of the edges in intervals labelledE. Since we do not alter the capacity of any

edge in an interval labelledE and since no left-tight task has a bottleneck in an interval labelled

E before this modification, then it is still true that all left-tight tasks we consider in this section

still do not have a bottleneck edge in an interval labelledE. It is important to remember that this

means no two left-tight tasksi, i′ can conflict across an edge in an interval labelledE since, for any

e ∈ span(i) ∩ span(i′) in an interval labelledE, we havedi + di′ ≤ ce/2 + ce/2 = ce. We note

that it may be that a left-tight taski now has a bottleneck across an interval labelledS apart from

l(i), but this will not be a problem in what follows.

Suppose the tasks are sorted so thatsi1 � si2 � . . . � sin (wheren = |T̂ | now). LetTj =

{ij , ij+1, . . . , in} and suppose thatT ′ is a conflict-free and demand class independent subset ofTj

for some1 ≤ j ≤ n. Supposei = ij′ wherej′ < j and consider the setT ′ ∪ {i}. We describe

some conditions under whichT ′∪{i} cannot be conflict-free or demand class independent that help

us build our dynamic programming routine. We begin by introducing some notation. First, for a

taski′ and an intervalIk, let r(i′, Ik) denote the least residual capacity left across intervalIk after

choosingi′. That is, define the residual capacityci
′

e on edgee by

ci
′

e =

{

ce − di′ if e ∈ span(i′)
ce otherwise

Thenr(i′, Ik) = mine∈Ik c
i′

e . Given this notation, we define the following.

Definition 2.3.15 SupposeT ′ is a conflict-free and demand class independent subset of left-tight

tasks. For each intervalIk labelledS, let

• FT ′(Ik) be the taski ∈ T ′ that spans some node inIk that minimizes the residual capacity

r(i, Ik) across intervalIk. If there are multiple such tasks, then any will do (e.g. the one with

least indexij).

53

i

S S E S E

 i'

a

b

c

Figure 2.11: An illustration of why a conflict can be blamed onone of at mostd tasks. The height of
the task corresponds to their demand and the polyline surrounding the image is the capacity profile.
The two rectangles shown are the tasksT ′. We haveFT ′(I1) = FT ′(I2) = i′ because of edgesa
andb andFT ′(I4) = i because of edgec. Note that the residual capacity left acrossI2 by choosing
only i′ is strictly less than the residual capacity left acrossI2 by choosing onlyi even thoughi has
larger demand thani′. For eachIk labelledS, any other taski′′ with si′′ � si′ must span edgesa
andb because the first interval labelledE appears after these edges. Similarly,i must either end in
I3 or spanc.

• GT ′(Ik) be the taski ∈ T ′ that spans some node inIk such thati has the smallest demand

di among all such tasks. There cannot be multiple such tasks becauseT ′ is demand-class

independent.

If no task inT ′ spans some node inIk, then simply sayFT ′(Ik) = GT ′(Ik) = nil.

Now, we explore whyT ′ ∪ {i} can fail to be either conflict-free or demand class independent.

Lemma 2.3.16 If T ′ ⊆ Tj andi = ij′ for somej′ < j is such thatT ′∪{i} is not conflict-free, then

i conflicts withFT ′(Ik) for some intervalIk labelledS with FT ′(Ik) 6= nil.

Proof. Suppose that edgee and taski′ ∈ T ′ are such thati and i′ conflict acrosse. First, since

neitheri nor i′ have a bottleneck edge in an interval labelledE, thene is in an interval labelledS

and say this interval isIk. If si 6∈ Ik then sincesi appears beforeIk andsi spans some edge in

Ik, then it must span all edges inIk. Namely, it spans the edgee′ ∈ Ik that has the least remaining

capacityr(FT ′(Ik), IK) across all edges inIk in the singleton solution{FT ′(Ik)}. Now, sincei and

i′ conflict across some edge inIk and since the least residual capacity left byFT ′(Ik) acrossIk is

no more thance − di′ (by definition ofFT ′(Ik)), then surelyi andFT ′(Ik) also conflict.

On the other hand, ifsi ∈ Ik (that is,e ∈ l(i)) then we still havesi ≤ sFT ′ (Ik) by our ordering

of tasks. Again, it must then be thati andFT ′(Ik) conflict in this case because the least residual

capacity acrossIk is no more thance − di′ . See Figure 2.11 for an illustration. �

Lemma 2.3.17 If T ′ ⊆ Tj and i = ij′ for somej′ < j is such thatT ′ ∪ {i} is not demand class

independent, then{i, GT ′(Ik)} is not demand class independent for some intervalIk labelledS

with GT ′(Ik) 6= nil.

54

S S E S E

Figure 2.12: An illustration of why we only need to keep trackof at mostd tasks to detect violations
to demand class independence. Tasks with larger demands aredrawn higher and two tasks in the
same demand class are drawn at the same level. The two dark tasks are in the smallest demand class
for some interval labelledS. Notice that it is impossible for any taski with si � si′ for each drawn
task i′ to both be in the same demand class as one of the grey intervalsand to share a common
point with that same grey interval. For example, if such a task was in the same demand class as the
rightmost grey interval and shared a point with the grey interval, then it would have to span the first
edge (which is a bottleneck) of the rightmost dark interval which is contradicts feasibility of each
task by itself.

Proof. Supposei′ ∈ T ′ is such that{i, i′} is not demand class independent. That is,i andi′ are

in the same demand class and share a common nodev. Sincesi � si′ , then we actually have

that si � si′ � ti. Saysi′ lies in intervalIk (which is an interval labelledS). The claim is that

GT ′(Ik) = i′.

Otherwise, there would be a taski′′ containing a node ofIk with di′′ ≤ di′ . Whethersi′ � si′′

or si′′ ≺ si′ , we have that bothi′ andi′′ share a common node, namely the last node inIk sinceIk is

labelledS. Now, sinceT ′ is demand class independent then it must be thati′′ is in a lower demand

class thani′, sodi′′ ≤ di′/2. Also, sincei is in the same demand class asi′ thendi′′ ≤ di/2 as well.

SinceIk is labelledS, bothi andi′′ span some node inIk, andsi � si′′ , theni must also span the

first edge spanned byi′′. Because the tasks are left-tight, the first edge ofi′′ is a bottleneck fori′′.

But then we havedi/2 ≥ di′′ > csi′′ /2 which contradicts the fact that taski is feasible on its own.

This is illustrated in Figure 2.12. �

From these lemmas, we develop a dynamic programming approach that builds a solution in a

“right-to-left” manner. To avoid conflicts or violations ofdemand class independence, it is sufficient

to keep track of two tasks in each intervalIk with X(Ik) = S: the one that leaves the least residual

capacity across that interval as well as the one in the least demand class that has a node in that

interval (if there are any such tasks). This means a subproblem will be described byO(d) integers

and each such integer can take one ofn + 1 values (to indicate one of then tasks or to indicate no

task at all), so the table has sizenO(d). The time it takes to compute an entry given previous entries

is alsonO(d), so the total running time of the dynamic programming phase isnO(d).

Let XS denote the set of intervals labelledS. Subproblems corresponding to subsets ofTj in

55

the dynamic programming phase are described by triples(F,G, p) whereF andG are mappings

XS → T̂ and p is a target profit. For1 ≤ j ≤ n and for mappingsF,G from XS to Tj =

{ij , . . . , in}, letAj(F,G, p) be a boolean variable that is true if and only if there is some subsetT ′

of Tj with profit p(T ′) = p such thatFT ′(Ik) = F (Ik) andGT ′(Ik) = G(Ik) for all Ik ∈ XS .

Then theAj(F,G, p) values are related through the following recurrence. Extend this notation to

allow values ofAj(F,G, P) with j = n+ 1 where we sayTn+1 = ∅. For the base casej = n+ 1,

we have:

An+1(F,G, p) =

{

true ifF (Ik) = G(Ik) = nil ∀Ik ∈ XS andp = 0
false otherwise

Before introducing the recurrence for1 ≤ j ≤ n, the following concepts will be useful. If we

are given mappingsF,G fromXS to T̂j+1 then we say thatij is compatiblewith F,G if ij does not

conflict with any of theF (Ik) values and ifij is not in the same demand class as anyG(Ik) for which

ij has a point inIk ∈ XS . In other words, we can addij to any setT ′ with FT ′ = F andGT ′ = G

without introducing a conflict or violating demand class independence. Then letF+ij , G+ij denote

the mappings obtained from the setT ′ ∪ {ij}. That is, for eachIk ∈ XS for which ij has a

point in Ik, if either F (Ik) = nil or r(ij , Ik) < r(F (IK), Ik), thenF+ij (Ik) = ij , otherwise

F+ij (Ik) = F (Ik). Similarly, if ij has a point inIk ∈ XS then we setG+ij (IK) = ij if either

G(Ik) = nil orG(Ik) is in a higher demand class thanij . Otherwise, we letG+ij (Ik) = G(Ik).

Inductively, for1 ≤ j ≤ n we have the following relation for computingAj(F,G, p).

1. If Aj+1(F,G, p) is true, thenAj(F,G, p) is true.

2. Otherwise, ifpij ≤ p andAj+1(F
′, G′, p−pi) is true for some pair(F ′, G′) that is compatible

with ij such that withF ′+ij = F andG′+ij = G, thenAp(F,G, p) is true.

3. Otherwise,Aj(F,G, p) is false.

Lemma 2.3.18 The recurrence correctly relates the values ofAj(F,G, p).

Proof. Surely it is true forj = n + 1 since the only conflict-free and demand class independent

subset of∅ has profit 0 andF∅(Ik) = G∅(Ik) = nil for all Ik ∈ XS .

For 1 ≤ j ≤ n, first suppose thatAp(F,G, p) is true and suppose thatT ′ is a conflict-free and

demand class independent subset ofT̂j with FT ′ = F , GT ′ = G , andp(T ′) = p. If ij 6∈ T ′, then

T ′ ⊆ T̂j+1 as well soAj+1(F,G, p) is also true. Otherwise, ifij ∈ T ′ thenpij ≤ p and it must be

thatAj+1(FT ′−{ij}, GT ′−{ij}, p− pi) is also true. This is found as(F ′, G′) range over all pairs of

mappings that are compatible withij in the second rule of the recurrence.

On the other hand, ifAj(F,G, p) is false then surelyAj+1(F,G, p) is also false since any subset

of T̂j+1 of profit p associated to the mappingsF,G would also be such a subset ofT̂j . Finally, we

argued above that if there is a conflict-free and demand classindepenendent subsetT ′ of T̂j+1 with

p(T ′) = p − pij andF+ij
T ′ = F andG+ij

T ′ = G, then the subsetT ′ ∪ {ij} has profitp and is

56

also conflict-free and demand class independent. So, it mustbe thatAj+1(F
′, G′, p) is false for all

possible pairs of mappings(F ′, G′) that are compatible withij and haveF ′+ij = F andG′+ij = G.

�

The answer is then the largestp for whichA1(F,G, p) is true for someF,G mappings. There

aren + 1 choices forj andnO(d) choices for each of the functionsF,G. Thus, the total size of

the table isnO(d). Calculating a particular entry takesnO(d) time so the overall running time is

nO(d). To construct a conflict-free and demand class independent subset with optimum profit, then

we would simply maintain any particular setT ′ associated to each trueAj(F,G, p) and construct

these sets according to rules of the recurrence.

To summarize the algorithm in this section, recall that we assumed the instances were simplified

according to Definition 2.1.3. Then, we reduced the problem to d-intersecting instances while losing

anotherO(logd m) factor. We lost a factor of 4 while pruning the instance according to some label

function on thed intervals. Then, we tried each of theO(nd) guesses for the canopy. For each guess,

we discarded the tasks that are not compatible with the canopy and classified the remaining tasks

according to which end intervals have a bottleneck. We described a polynomial-time exact algorithm

for the optimum profit of a feasible subset of tasks with both endpoints tight. For instances with

only the left endpoints tight or only the right endpoints tight, we described annO(d) exact algorithm

for finding the maximum profit conflict-free and demand class independent subset of tasks. Lemma

2.3.14 shows how to prune such a subset to obtain a feasible subset whose profit is within a constant-

factor of the optimum solution using these tasks. We take thebetter of the three solutions found for

the tasks with left endpoints tight, right endpoints tight,or both endpoints tight and lost an additional

factor of 3. Overall, this is anO(logd n)-approximation because we lost anO(logd n) factor when

reducing tod-intersecting instances and all other steps only lost a constant factor . The total running

time isnO(d).

2.4 Approximating q-Conflicting Instances

There is a trivialq-approximation when each edge is spanned by at mostq tasks based on the fact

that interval graphs with maximum clique sizeq can be coloured withq colours [48]. Let’s consider

a more general setting. Say that a subset of tasksT ′ is q-conflictingif for any taski and any edgee

spanned byi, the number of other tasksi′ that also spane for whichdi + di′ > ce is at mostq. We

exhibit anO(q)-approximation forq-conflicting instances. This definition admits the possibility of

having much more thanq tasks span each edgee in the input.

Similar instances were considered in [64] for the Maximum Independent Set of Rectangles

(MISR) problem. In MISR, we are given a collection of axis-parallel rectangles in the plane and

the goal is to find the largest subset of rectangles such that no two share a common point. They

showed that if every point in the plane is touched by at mostq rectangles, then there is anO(q)-

57

12 23 19

8

12 12

11

13

Figure 2.13: An instance with the “conflict-implies-contain” property that is not perfect. The num-
bers on the path are the edge capacities and the demands of thetasks are written next to the task. The
endpoints of the dashed lines connect two tasks that conflict. The graph corresponding to conflicting
pairs is then a cycle on 5 nodes so it is not perfect. It is easy to verify that all tasks are tight and that
they are all in demand classD3 so even simplified instances might not be perfect.

approximation algorithm that also bounds the integrality gap of a certain LP relaxation by the same

ratio. Their algorithm proceeds in two phases. In the first phase, they solve an LP-relaxation that has

constraints similar to the constraints in the LP 2.2 we consider soon. Say the optimum value of this

LP isOPTf . They round the solution to the LP to obtainΩ(OPTf) (not necessarily independent)

rectanglesR with an additional property. No corner of any rectangle inR is touched by any other

rectangle inR. That is, two rectangles inR conflict only by “overlapping” across their middles. In

the second step, they exhibit that the intersection graphGR whose nodes areR with edges between

two conflicting rectangles is in fact a perfect graph (more specifically, a comparability graph). Since

the size of the maximum clique isq, they can then efficiently find an independent set of size at least

|R|/q = Ω(OPTf/q) by q-colouringGR.

Our algorithm also proceeds in two phases. First, we formulate and solve an LP relaxation that

is stronger than the standard LP relaxation 2.1 that is reminiscent of the LP formed for UFP in [26].

We then use a rounding technique analogous to the technique that shares some similarities with the

techniques [64] for the Maximum Independent Set of Rectangles problem. Specifically, we find a

collectionT ′ of demand class independent tasks (cf. Definition 2.3.2) whose total profit is within a

constant factor of the LP optimum that also satisfies anotherstrong property: ifi, i′ ∈ T ′ conflict,

then eitherspan(i) ⊆ span(i′) or span(i′) ⊆ span(i) (analogous to the “overlapping rectangles”

property considered in [64]). Simply put, if two tasks inT ′ conflict, then one is contained in the

other: “conflict implies contain”. Unfortunately, the graph obtained from conflicting pairs is not

necessarily perfect meaning they may not beq-colourable (see,e.g., Figure 2.13). However, there

is still enough structure to the remaining tasks that allowsus to use a relatively simple randomized

algorithm that finds a conflict-free subset with total profitΩ(p(T ′)/q).

2.4.1 Initial LP Rounding

For each taski and each edgee ∈ span(i) let Si,e be the tasksi′ spanninge with di′ ≥ di and

di + di′ > ce′ for somee′ � e that is spanned by bothi andi′. In words,Si,e is the collection of

58

D

D

D

k

k+4

k+2

Dk+6

 - Bottleneck
e

i

Figure 2.14: All tasks are inSi,e for taski and edgee in the picture, taski is drawn in gray only to
help distinguish it from the other tasks inSi,e. The height of the task corresponds to the value of its
demand. The dots on the tasks indicate that the corresponding edge on the path is a bottleneck edge.

tasks that spane and conflict withi on some edgee′ � e. Similarly, defineTi,e the same way asSi,e

except consider edgese′ ≻ e. Figure 2.14 illustrates a setSi,e.

Clearly anyi′ 6= i in Si,e conflicts withi. Furthermore, for any twoi′, i′′ ∈ Si,e we also have

thati′ andi′′ conflict for the following reason. We have thati conflicts withi′ across an edgee′ � e

and thati conflicts withi′′ across an edgee′′ � e. Suppose thate′ � e′′. Thene′′ ∈ span(i′) as

well. We havedi′′ + di′ ≥ di′′ + di > ce′′ soi′ andi′′ also conflict acrosse′′. So, at most one task

from Si,e can appear in a feasible solution. Similarly, at most one task from Ti,e can appear in a

feasible solution. This leads us to consider the following LP relaxation for UFP.

maximize :
∑

i

xipi (2.2)

such that :
∑

i:e∈span(i)

xidi ≤ ce ∀ edges e

∑

i′∈Si,e

xi′ ≤ 1 ∀i, e ∈ span(i)

∑

i′∈Ti,e

xi′ ≤ 1 ∀i, e ∈ span(i)

xi ≥ 0 ∀i

We just argued in the previous paragraph that feasible UFP solutions map to feasible integer solu-

tions of the LP having the same value, so the optimum value of the LP is at least the optimum profit

of the UFP instance. This is similar to the LP presented in [26], except we have replaced the rank

constraints by the weaker constraints over setsSi,e. Careful inspection of the results in [26] shows

that the integrality gap of LP 2.2 and the LP in [26] differ only by a constant (i.e. the new constraints

presented in LP 2.2 are the only possible constraints that can be generated by the approximate sep-

aration oracle in [26]). Since the LP in [26] has an integrality gap ofO(log n), then the integrality

gap of LP 2.2 isO(log n) in general UFP instances. For the specific case ofq-conflicting instances,

we prove that LP 2.2 actually has anO(q) integrality gap. It is also interesting to note that LP 2.2

has an optimum value of 1 (as opposed toΩ(n)) in the bad instance for LP 2.1 from Figure 2.1. To

59

see this, note that all tasks are inTn,1 so
∑

i xi =
∑

i∈Tn,1
xi ≤ 1 holds.

Let x∗ now denote an optimum solution to the LP with valueOPTf . Consider Algorithm 1.

Lemma 2.4.1 The expected profit ofX returned by algorithm 1 when initially called withR is at

least OPTf

40 . Furthermore,X is demand class independent and if any twoi, i′ ∈ X conflict then

eitherspan(i) ⊆ span(i′) or span(i′) ⊆ span(i).

Proof. At the recursive call wheni was selected andX was returned from recursively calling

T ′−{i}, i was selected fromT ′∩Dk to minimizelength(i). So, any otheri′ ∈ T ′∩Dk that shares

a common edge withi must also span eithersi or ti. Denote byL the collection tasks inT ′ ∩Dk at

this recursive call that also span nodesi. The claim is that
∑

i∈L x∗
i ≤ 4 and we assume otherwise

to find a contradiction. Eachi ∈ L has a bottlenecke ≺ si or a bottlenecke ≻ si. So, more than

half of
∑

i∈L x∗
i is represented by tasks with bottlenecks to the left ofsi or by tasks with bottlenecks

to the right ofsi. Suppose it is the former (the latter is similar) and call such tasksL′. Let i′ ∈ L′

have the rightmost bottlenecke ≺ si so every task inL′ spanse. Then the total fractional demand

that spanse is at least

∑

i′′∈L′

x∗
i′′di′′ ≥

∑

i′′∈L′

x∗
i′′di′/2 > di′/2

∑

i′′∈L′

x∗
i′′ > 2di′ > ce

which contradicts the fact thatx∗ is feasible.

This contradiction establishes that
∑

i∈L x∗
i ≤ 4 and a similar statement holds for tasks in

T ′ ∩ Dk that spanti. Let es,i, et,i denote the first and last edges spanned by taski (they may be

equal ifi spans a single edge). LetZ denote the tasks inT ′ − {i} that are in eitherTi,es,i or Si,et,i

or are inDk and share a common edge withi. Now, the total of thex∗
i′ values of tasks inTi,es,i

is at most 1 as is the total of thex∗
i′ values of tasks inSi,et,i by the LP constraints. Therefore, the

total of all thex∗
i′ values for tasks inZ is at most 10. Since any individual taski′ is added toX

with probability at mostx∗
i′/20, then by union bound the probability thatZ ∩ X 6= ∅ is at most

10/20 = 1/2. So:

Pr[i ∈ X] = Pr[i ∈ X|Z ∩X = ∅] · Pr[Z ∩X = ∅] ≥ x∗
i

20
· 1
2
=

x∗
i

40

By linearity of expectation, the expected profit of tasks in the setX returned by RoundLP(T)

whereT is the set of all tasks is then at leastOPTf

40 . ThatX is demand class independent and satisfies

span(i) ⊆ span(i′) or span(i′) ⊂ span(i) for every conflictingi, i′ ∈ X follows by construction.

�

2.4.2 Picking a Feasible Subset

There is a simple randomized rounding procedure that returns a 1
16q -fraction of the total value of all

of the tasks in the setX returned from algorithm 1 when called with the set of all tasksR. In the

following algorithm, for any taski ∈ X, let Ci be the collection of tasksi′ that conflict withi and

havelength(i′) ≥ length(i).

60

Algorithm 1 RoundLP(T ′)

1: if T ′ = ∅ then return ∅
2: Let k be minimum such thatT ′ ∩Dk 6= ∅
3: Let i ∈ T ′ ∩Dk be such thatlength(i) is minimum
4: X ← RoundLP (T ′ − {i}) ⊲ recursively call this algorithm
5: Let es,i andet,i denote, respectively, the first and last edges spanned by task i
6: if Ti,es,i ∩X = Si,et,i ∩X = {i} and no taski′ ∈ X ∩Dk hasspan(i) ∩ span(i′) 6= ∅ then

addi toX with probability x∗

i

20
7: return X

Algorithm 2 Prune(X)
1: Order the tasks inX asi1, i2, . . . , i|X| in decreasing order ofti − si.
2: F ← ∅
3: for l = 1 . . . |X| do
4: if F ∩ Cil = ∅ then addi to F with probability 1

2q
5: end for
6: Use Lemma 2.3.3 to find a feasible subsetF ′ of F of total profit at least 1/4 the total profit of

F .
7: return F ′

Lemma 2.4.2 Suppose the tasks inX are q-conflicting, demand class independent, and satisfy the

property that among conflicting tasks we have the span of one is contained in the span of the other.

Then Algorithm 2 returns a feasible subset ofX whose total profit is at least ap(X)
16q .

Proof. Consider a taski and lete have the least capacity among edges inspan(i). For everyi′ ∈ Ci,

it must be thatspan(i) ⊂ span(i′) so i′ also spanse. Sincee has the least capacity among edges

spanned byi, then it must be thatdi+ di′ > ce. BecauseX is q-conflicting, we must have|Ci| ≤ q.

Since the probability that any task is added toF is at most 12q , then by the union bound we have that

the probability thatF contains some task inCi − {i} is at most12 . Taski is then added toF with

probability at least12 · 1
2q = 1

4q .

Now,F , being a subset ofX, is demand class independent. By construction,F is also conflict-

free. Thus, by Lemma 2.3.3, we may find a feasible subsetF ′ of F whose total profit is at least14 of

the total profit inF . That is, the total profit ofF ′ is at least 1
16q times the total profit ofX. �

By composing Lemmas 2.4.1 and 2.4.2, we arrive at the main result of this section.

Theorem 2.4.3 There is a polynomial time algorithm that finds a feasible subset of demands whose

expected total profit is at leastOPTf

640q .

Since linear program 2.2 is an LP-relaxation for UFP, then this proves Theorem 2.0.2.

2.5 Recent Developments

Since the result of this chapter were obtained, Bonsma, Schulz, and Wiese discovered a polynomial-

time constant factor approximation algorithm for UFP [19] that does not require any extra assump-

tions. Specifically, for any constantǫ > 0, they present a polynomial-time approximation algorithm

61

with approximation ratio7 + ǫ. They also showed strong NP-hardness for UFP which rules outthe

possibility of an FPTAS assumingP 6= NP.

In their approximation, they partition the tasks into slackand tight tasks. However, they have

two levels of slack tasks: for some constant0 < δ ≤ 1/2 they call a taski small if di ≤ δ · cap(i),
mediumif δ · cap(i) < di ≤ cap(i)/2, andlarge if cap(i)/2 < di. Using the result of Chekuriet al.

in [26] on approximating small tasks, the optimum solutionsto the small and medium tasks can be

approximated within a constant factor. Bonsmaet al. refine this approach to improve the constants

by introducing slightly different constraints in the LP relaxation to approximate small tasks. For the

medium tasks, they use a dynamic programming routine similar to the dynamic programming used

in by Chakrabartiet al. [23] for approximating UFP under the no bottleneck assumption. The slack

in the capacities is used in a manner analogous to how [23] exploited the no bottleneck assumption.

These two approaches for small and medium tasks are combinedto provide a3 + ǫ approximation

for the small and medium tasks collectively for any constantǫ > 0.

Since the the small and medium tasks in [19] already had a constant-factor approximation from

[26], the greatest contribution of [19] is a constant-factor approximation for the large tasks (which

we called tight tasks in this chapter). There are similarities between our basic approach and the

basic approach in [19], we both shifted focus to approximating a different structure whose optimum

solution is close to the optimum solution of the UFP instanceand we both used dynamic program-

ming to achieve this. In [19], they define the notion of a “top-drawn” subset which is subset of

tasksT ′ ⊆ T that satisfy the following propertiy. If we view each taski as an open rectangle in the

planeR(i) = (si, ti) × (cap(i) − di, cap(i)), then a subset of tasksT ′ is said to be top-drawn if

for any twoi, j ∈ T ′, we haveR(i) ∩ R(j) = ∅. It’s not too hard to see that a top-drawn subset of

tasks is feasible. Conversely, they show that every feasible subset of tasks can be partitioned into 4

top-drawn subsets so an algorithm for finding the optimum top-drawn subset of tasks is, in turn, a

4-approximation for large instances of UFP. They then show that the optimum top-drawn subset can

be approximated within a factor(1 + ǫ) for any constantǫ > 0 using clever dynamic programming

that exploits the geometry of top-drawn sets.

In our approach, we reduce the problem of approximating an optimum UFP solution to approxi-

mating an optimum conflict-free and demand class independent subset of tasks. Our approach relied

heavily on the fact that the tasks were intersecting ord-intersecting which required us to lose a loga-

rithmic orO(logd m) factor. The only way to ensure that theO(logd n) is a constant factor loss is to

choosed = nδ for a small constantδ > 0. However, the running time, while sub-exponential, grows

much faster than polynomial. So, while our approaches are similar in spirit, the approach in [19]

enjoys the fact that top-drawn instances can be found efficiently without losing an extra logarithmic

factor in the approximation guarantee to find them.

62

Chapter 3

Traveling Salesman Paths in
Asymmetric Metrics

The classic Traveling Salesman problem (TSP) is the problemof finding the cheapest Hamilto-

nian cycle in a symmetric metric. One well-studied variant is the Asymmetric Traveling Salesman

problem (ATSP) where the goal is to find the cheapest Hamiltonian cycle in an asymmetric metric.

Analogously, one may consider problems concerning cheap Hamiltonian path in either symmetric or

asymmetric metrics which we generically call Traveling Salesman Path problems. We can consider

variants of Traveling Salesmen Path problems where some of the endpoints are fixed and some are

not. The four basic variants are when no endpoints are specified (so any Hamiltonian path will do),

where two nodess andt are specified and we require the Hamiltonian path start ats and end att, or

where only the start nodes or only the end nodet is specified.

It is also natural to consider variants where multiple salesmen are available. For example, large

companies often have more than one salesman at their disposal and they want to schedule a route

for each salesman so that every client is visited by some salesman. It is not necessary to visit a

client with more than one salesman. In terms of graphs, givena positive integerk, we want to find a

collection ofk paths in a metric graph so each node of the graph lies on at least one of thek paths.

The goal is to minimize the total cost of all paths (e.g.minimize the total travel cost of the salesmen).

There are multiple variants of this problem because we can specify start and/or end locations of each

of thek paths in advance. There is one additional variant that is interesting. Suppose we are given a

set ofk start locationsS = {s1, s2, . . . , sk} and a set ofk end locations{t1, t2, . . . , tk}. The goal

is to find a set ofk paths where the start and end points of the paths establish a bijection between

S andT . That is, each of the start locations is the start of precisely one path and each of the end

locations is the end of precisely one path, but it may be that apath starting atsi ends attj for some

j 6= i. For example, ifS = T , one application is to a company that maintains a fleet of identical

vehicles. It does not matter where the vehicles end up after driving their route, it only matters that

each depot has the same number of vehicles before and after the routes are followed. This is related

to some vehicle routing problems we discuss when we mention previous work in this area.

63

Traveling Salesman problems have been studied extensivelyfrom the perspective of approxima-

tion algorithms. A well-known algorithm (e.g. [88]) approximates the classic Traveling Salesman

problem within a factor 2 by simply observing that the minimum spanning treeT of the metric is

a lower bound on the optimum solution (since a Hamiltonian cycle is connected) and that a depth-

first search traversal ofT visits all nodes and crosses each edge twice. If we report thefirst time

we visit a node, then by the triangle inequality the resulting cycle has cost no more than the total

cost of the edges traversed in the depth-first search. Christofides [32] improved on this approach by

presenting a32 -approximation for TSP. To date, this remains the best approximation algorithm for

general instances of TSP. Regarding lower bounds, Papadimitriou and Yannakakis [74] first proved

that TSP was APX-hard. Later, Papadimitriou and Vempala provided an explicit constant lower

bound. Specifically, they proved that unless P = NP, then there is no
(

220
219 − ǫ

)

-approximation for

TSP for any constantǫ > 0.

Held and Karp [52] introduced an LP relaxation for TSP (LP 1.1). Wolsey [90] and Williamson

& Shmoys [85] showed that the integrailty gap of this LP is also at most32 . There are examples

for which the integrality gap of LP 1.1 is arbitrarily close to 4
3 and it is a major open problem to

determine if this lower bound is tight. It should also be noted that this LP can be solved in polynomial

time since separating over the cut constraints can be accomplished using a minimum cut algorithm.

Special cases of TSP have also been considered. Bermen and Karpinski [16] show that the

problem admits an87 -approximation when all distances are 1 or 2 (as in the strongNP-hardness

proof in Section 1.2.8), improving on a previous bound of7
6 by Papadimitriou and Yannakakis [74].

When the nodes in the metricG = (V,E) are points in the Euclidean plane and the distance between

any two points is their Euclidean distance, both Arora [6] and Mitchell [67] show the problem has a

PTAS.

Another special case that has been considered is when the distanceduv is equal to the length of

the shortest path fromu to v in a connected, unweighted graph (sometimes calledGraphic TSP).

Very recently, Oveis Gharan, Saberi, and Singh [72] showed that the integrality gap of LP 1.1 is
3
2 − c for some very small constantc > 0. Even more recently, M̈omke and Svensson [69] improved

this bound to 1.461. When we further restrict the input of Graphic TSP to metrics obtained from

the shortest path metrics of 3-edge connected and cubic graphs, Aggarwalet al. [1] show that the

integrality gap of the LP relaxation is at most4
3 .

A variant of TSP where our goal is to find a Hamiltonian path hasalso been studied. Hoogeveen

[54] showed that if no endpoints are specified or if at most oneendpoint is specified, then the problem

can still be approximated within32 . In the case that both endpoints are specified, a5
3 -approximation

is shown. Later, An and Shmoys [3] analyzed his algorithm in adifferent way and bounded the

integrality gap of a variant of LP 1.1 to the case of Hamiltonian paths by53 as well. When the metric

is graphic, they also show that analysis similar to [72] demonstrates that the integrality gap of this LP

is bounded by32 −c′ for some very small constantc′ > 0. Mömke and Svensonn [69] also show that

64

their analysis of the integrality gap of LP 1.1 for TSP generalizes to the case of Hamiltonian paths

and demonstrates that the corresponding LP has an integrality gap of at most 1.586. The integrality

gap is at least32 for the case of TSP Path when both endpoints are fixed.

The Asymmetric Traveling Salesman problem has also received a lot of attention. Friezeet al.

[42] gave the first approximation algorithm for the problem with an approximation ratio oflog2 n.

Williamson [89] showed that the solutions produced by this algorithm also bound the integrality gap

of LP relaxation 3.1 (to be introduced later) bylog2 n. Bläser [17] modified this algorithm to obtain

an approximation ratio of0.999 log2 n, followed by an improvement to43 log3 n ≈ 0.842 log2 n

by Kaplanet al. [58]. Feige and Singh [38] provided one more constant-factor improvement to
2
3 log2 n. Then, in a breakthrough paper, Asadpouret al. [9] finally improved the approximability

by more than a constant factor and presented anO(log n/ log log n)-approximation for ATSP that

also bounds the integrality gap of LP 3.1 by the same amount. One intersting special case is when

the asymmetric metric comes from the shortest paths of a (perhaps weighted) directed graph that

can be drawn on an orientable surface of genusγ. Oveis Gharan and Saberi [71] show that the

integrality gap of LP relaxation 3.1 isO(
√
γ log γ). In particular, they also show that the integrality

gap in metrics obtained from shortest paths in planar graphs(which can be embedded on the sphere,

an orientable surface of genus 0) is at most 22.5.

Similar to TSP, Papadimitriou and Vempala [73] show ATSP cannot be approximated within a

factor 117
116 − ǫ for any constantǫ > 0 unless P = NP. The best known lower bound for the integrality

gap of LP 3.1 is 2, as shown by Charikaret al. [24]. It is also an important problem to determine if

the upper bound on the integrality gap (or, more generally, the best polynomial-time approximation

ratio) is also constant.

The first approximation algorithms for the Asymmetric Traveling Salesman Path problem ap-

peared much later than the first approximation algorithm forATSP [42]. Lam and Newman [62]

first showed that the problem can be approximated within anO(
√
n)-factor. The first logarithmic

approximation was by Chekuri and Pal [30] with an approximation ratio of4Hn = 4 lnn − o(1).

Later, Feige and Singh [38] demonstrated that the approximability of ATSP and ATSPP were within

2+ ǫ for any constantǫ > 0. Combined with their ATSP approximation, this implied ATSPP can be

approximated within
(

4
3 + ǫ

)

log2 n. None of the aforementioned algorithms bound the integrality

gap of any LP relaxations. The first such bound was proven by Nagarajan and Ravi [70] for the LP

relaxation we consider later, namely LP 3.3, where they proved the gap was at mostO(
√
n). Until

our work, this was the best known bound on the integrality gap.

Another variant that is studied in literature is the following (sometimes under the guise ofvehicle

routing rather than traveling salesmen). Given a symmetric metricG = (V,E) and a collection of

k nodesr1, . . . , rk, the goal is to find a cycleCi containingri for each1 ≤ i ≤ k such that every

node inV lies on one such cycle. The objective in this case is to minimize the total length. A

2-approximation is known for this problem which is based on the doubling-tree principle. Namely,

65

one can easily find a minimum cost forest where each componentcontains a unique rootri. Since

the optimum solution contains such a forest as a subgraph (bydeleting one edge per cycle), this

minimum cost forest has cost at most the optimum valueOPT . After doubling the edges of this

forest, we obtain an Eulerian graph for each connected component and all nodes can then be visited

by traversing the edges of these graphs with cost at most2OPT (see,e.g. [65, 80]). A similar

algorithm also applies to finding pathsP1, . . . , Pk wherePi starts atri such that every node is on

one such path.

More recently a32 -approximation was presented by Rodrigues and Xu [83] when the number of

rootsk is constant. They also point out that previous technical reports that claim a32 -approximation

for this problem [77] for arbitraryk and a5
3 -approximation for a path variant [78] of this problem

are incorrect. For the special casek = 2 in the Hamiltonian path variant of the problem, Rathinam

and Sengupta [79] also demonstrate a3
2 -approximation.

Yet another variant is when the metricG = (V,E) is symmetric and we have two subsets of

nodesS, T , both of equal size (sayk). Furthermore, we can assume thatS andT are disjoint (there

is a simple reduction from the problem withS ∩ T 6= ∅ to this case). The goal is to findk paths,

each of which starts at some node inS and ends at some node inT , so that all nodes inV (including

S andT) are on exactly one such path. In this way, the start and end nodes of the paths establish a

bijection betweenS andT . Rathinama and Sengupta [76] consider this problem (with the additional

constraint that each path also visits some node inV − (S ∪ T)). Using ideas from their paper, it

is possible to find a minimum cost forest where each connectedcomponent contains exactly one

node inS and exactly one node inT (by using matroid intersection techniques over twoR-rooted

spanning forest matroids from Section 3.4.2, one withR = S and the other withR = T). By

doubling each edge in this forest except edges that lie on some si − tj paths, we obtain an Eulerian

path fromsi to tj in each forest which is a 2-approximation for the problem.

As far as we know, all of the variants we consider in this Chapter concerning multiple traveling

salesmen in asymmetric metrics, as well as the variant in symmetric metrics covered in Section

3.4.2, have not been studied before.

In this chapter, we present a variety of approximation algorithms for some variants of the Trav-

eling Salesman problem. Unless it needs to be stated explicitly otherwise, throughout this chapter

we usen to denote the number of nodes in the metric graph being considered. Primarily, we discuss

Traveling Salesman Path problems in asymmetric metrics, but we also consider some other versions

in the last section. Many of the algorithms can be seen as extensions of theO(log n)-approximation

by Friezeet al. [42] the for well-studied Asymmetric Traveling Salesman problem [42], so we begin

by reviewing their algorithm and its analysis. We also review Williamson’s analysis [89] that the

integrality gap of a natural LP relaxation for ATSP is also bound byO(log n) and, moreover, that the

solutions found in theO(log n)-approximation by Friezeet al. [42] are at mostO(log n) times the

optimum cost of this LP relaxation. Some of the ideas in this analysis are used to prove analogous

66

bounds for the LP relaxations we consider for the TSP variants studied in Section 3.2 and Section

3.3. These bounds are used later in Chapter 4.

The first new contribution in this chapter is anotherO(log n)-approximation for the Asymmetric

Traveling Salesman Path problem (ATSPP). As mentioned, before Feige and Singh already demon-

strated that ATSPP can be approximated within a factorO(log n) [38] (which has since been im-

proved toO(log n/ log log n) due to results in [9]), but their result did not bound the integrality gap

of a natural LP relaxation. We show that our algorithm also bounds the integrality gap of the LP re-

laxation for ATSPP byO(log n), improving on the boundO(
√
n) by Nagarajan and Ravi [70]. This

is also a crucial ingredient for approximating the Minimum Directed Latency problem we consider

in Chapter 4.

Next, we consider the variant of ATSPP where we are given two nodess andt and integerk and

the goal is to findk paths froms to t whose union includes all the nodes. Our ATSPP algorithm

is modified to provide anO(k log n)-approximation for this problem. While it is unfortunate that

the approximation ratio depends onk linearly, it still demonstrates a logarithmic approximation

algorithm for the interesting case when two salesmen are available. More generally, we exhibit the

following: for any integerb ≥ 1 there is a polynomial-time algorithm that finds at most(1 + 1
b) · k

paths whose total cost is at mostO(b log n) times the optimum value of a linear programming

relaxation. To the best of our knowledge, these results are the first approximation algorithms for

Traveling Salesman Path problems in asymmetric metrics with multiple salesmen.

We discuss how to extend these results to algorithms when none of the endpoints are fixed or

where the start or endpoints may vary. In almost all cases (including the case of the paths establishing

a bijection between start nodesS and end nodesT), the approximation guarantees translate almost

identically. The most notable exception is when we have specific start and end locationssi, ti for

each path and we require that the path starting atsi to end atti. In this case, we show that no

polynomial-time algorithm can guarantee any bounded-ratio approximation unless P = NP. This is

also interesting since the same variant in symmetric metrics has a very simple 3-approximation and

the same variant in asymmetric metrics withsi = ti for every1 ≤ i ≤ k (so the paths can be thought

of as “rooted cycles”) has a logarithmic approximation. We also present these algorithms in the last

section.

The bound on the integrality gap of LP relaxation 3.3 for ATSPP appeared in [43]. The bound

of O(k2 log n) on the integrality gap of LP relaxation 3.5 fork-ATSPP we develop at the end of

Subsection 3.3.3 will appear in the full version of [43].

3.1 Warmup: The Asymmetric Traveling Salesman Problem

In this section, we review a classic approximation algorithm for finding Hamiltonian cycles in di-

rected metrics by Frieze,et al. [42]. This variant is simply called the Asymmetric Traveling Sales-

man Problem (ATSP). The algorithm is simpler than our algorithm for paths but is similar enough to

67

provide some familiarity with our ideas. We use flows and circulations extensively throughout this

chapter. The reader is referred to Section 1.2.1 for notation considering flows and circulations.

We are given a directed graphG = (V,A) where each arce = uv ∈ A has a costduv. First,

we note that for anyW ⊆ V we have that the cost of the optimum Hamiltonian cycle on the

metric induced byW is at most the cost of the optimum Hamiltonian cycle onV . We dub this the

monotonicity property. To see this, supposev1, v2, . . . , vn is a Hamiltonian cycleC on V . Now,

supposev ∈ V −W and arcsuv, vw are used in the optimum solution onV . If we replaceuv, vw

with uw then we obtain a cycle onV −{v}. By the triangle inequlity,duw ≤ duv + dvw so the cost

of this cycle is no more expensive than the cost of the original cycle. Repeat this for all nodes in

V −W (processing them in any order) to obtain a cycle onW of no greater cost than the optimum

cycle onV .

A cycle coverof a subset of nodesW is an integral circulationC such thatC(δ+(v)) =

C(δ−(v)) = 1 (so each arcuv hasCuv ∈ {0, 1}). If one considers the subset of arcsD = {uv ∈
A : Cuv = 1}, then the indegree and outdegree of each node in the graphG = (V,D) is exactly 1.

That is,D is a collection of vertex-disjoint cyclesC1, . . . , Ck where each node lies on some cycle

Ci and eachCi includes at least 2 nodes. Viewing a cycle cover as a subset ofarcs, a cycle cover

is then a base of the intersection of two partition matroids,one which bounds the indegree of each

node inV by 1 and the other which bounds the outdegree of each node inV by 1. More formally,

consider the two matroidsM+ = (A, I+),M− = (A, I−) where:

D ∈ I+ ⇔ ∀ v ∈ V, |δ+(v) ∩D| ≤ 1

D ∈ I− ⇔ ∀ v ∈ V, |δ−(v) ∩D| ≤ 1

A base inM+ (resp.M−) is a subset of arcsD where every node has precisely one outgoing (resp.

incoming) arc inF . Thus, the minimum cost cycle cover ofV can be found in polynomial time

using matroid intersection techniques to find base that is common to bothM+ andM−.

We begin with a high-level overview of the approximation algorithm for ATSP by Friezeet al.

[42]. Begin by computing an optimum cycle coverC on V . Discard all but one node from each

cycle in the support ofC and repeat with the remaining nodes until only a single node remains. The

number of nodes is at least halved at each step since each cycle has at least two nodes, so the overall

number of iterations is at mostlog2 n. Once there is one node remaining, then the graph onV using

only the arcs in the support of the cycle covers we found throughout the algorithms execution is

Eulerian. Follow an Eulerian circuit, but bypass some arcs of this circuit to ensure each node is only

visited once. The cost is bounded by at mostlog2 n times the cost of an optimum solution since the

Eulerian circuit is the union of the support of at mostlog2 n cycle covers and since a cycle cover on a

subset of nodes costs no more than the optimum Hamiltonian cycle on all ofV . The full description

is found in Algorithm 3.

68

Algorithm 3 An O(log n)-approximation for ATSP [42]
1: LetDv ← 0, ∀v ∈ V
2: LetW ← V
3: while |W | > 1 do
4: LetD′ be a minimum cost cycle cover ofW
5: LetC1, C2, . . . , Ck be the cycles in the support ofD′

6: Choose any single nodevCi
from each cycleCi to “represent” that cycle

7: UpdateD ← D +D′ ⊲ D ∩D′ = ∅ before this step
8: UpdateW ← {vC1

, vC2
, . . . , vCk

}
9: end while

10: LetG′ = (V, support(D))
11: Find an Eulerian circuitC of G′ that visits all nodes
12: Remove all but one occurence of each nodev ∈ V fromC to get a Hamiltonian cycleC ′

13: return C ′

Lemma 3.1.1 The graphG′ = (V,D) computed on line 10 of Algorithm 3 has an Eulerian circuit

that visits all nodes.

Proof. Each cycle coverD′ satsifiesD′(δ+(v)) = D′(δ−(v)) = 1 for everyv ∈ V . By induction on

the number of iterations and sinceD is initially 0 on all v ∈ V we see thatD(δ+(v)) = D(δ−(v))

at the end of the main loop. Now, each arcuv ∈ A hasDuv ∈ {0, 1} since ifD′
uv = 1 for any

iteration, then eitheru or v is discarded fromW anduv is not used in any future circulation. In

other words,uv ∈ support(D) if and only if Duv = 1. Thus, the degree requirements forG′ are

satisfied. It is a commonly-known fact that a directed graph with equal indegree and outdegree at

each node has an Eulerian circuit that includes all the nodesif and only if it is weakly connected (i.e.

connected if the directed edges are replaced with undirected edges).

It is sufficient to prove that there is always a path tow wherew is the sole node inW when the

loop terminates. LetW0 = V and denote the setW just after thej’th iteration of the loop byWj .

If the number of iterations isp, thenWp = {w}. We prove by induction onp − j for 0 ≤ j ≤ p

that there is a path from any node inWj to w using only arcs in the support ofD. It is clearly true

for j = p sinceWp = {w}. Now, suppose that every node inWj+1 has a path tow using only arcs

in p. Every nodev ∈ Wj is in some cycleCi in the support of the cycle coverD′ found in iteration

j+1. Thus, there is a path fromv to the “representative node”vCi
by following arcs in the cycleCi

(which are also arcs inD). From here, there is a path tow using only arcs inD by induction since

vCi
∈ Wj+1. Thus, forj = 0 we see that every node inW0 = V has a path tow using only arcs in

D. �

Theorem 3.1.2 The cycleC ′ returned by Algorithm 3 has cost at mostlog2 n · OPT whereOPT

is the minimum cost of a Hamiltonian cycle onV .

Proof. The cost of each cycle coverD′ found in each iteration is at mostOPT becauseD′ is a

minimum cost cycle cover onW , because the optimum Hamiltonian cycle onW in each iteration is

69

trivially a cycle cover (when viewed as an integral circulation), and because the optimum Hamilto-

nian cycle onW has cost no more than the optimum Hamiltonian cycle onV . The number of nodes

of W kept in each iteration is at most|W |/2 since each cycleCi in the cycle cover involves at least

2 nodes and we discard all but one node in each cycle fromW at the end of each iteration. Thus, the

the number of iterations is at mostlog2 n.

SinceD is simply the sum (as a circulation) of the at mostlog2 n cycle covers found in each

iteration and each cycle cover has cost at mostOPT , then the total cost of the circuitC is at most

log2 n ·OPT . The final cycleC ′ is obtained from the circuitC by shortcutting past some nodes, so

the triangle inequality yields that the cost ofC ′ is at most the cost ofC. �

Now, consider the following integer programming formulation for ATSP. We have a variablexuv

for each arcuv ∈ A and constrainxuv to take only values 0 and 1. The idea is thatxuv = 1 if we

useuv in the Hamiltonian cycle andxuv = 0 if we do not useuv in the Hamiltonian cycle. For a

subset of arcsD, we letx(D) =
∑

uv∈D xuv (similar to our notationF (D) =
∑

uv∈D Fuv for a

flow or circulationF). Then the integer program is:

minimize :
∑

e∈A

duvxuv (3.1)

subject to : x(δ+(v)) = 1 ∀v ∈ V

x(δ−(v)) = 1 ∀v ∈ V

x(δ+(S)) ≥ 1 ∀∅ (S (V (3.2)

xuv ∈ {0, 1} ∀uv ∈ A

The equality constraints ensure that integer pointx is a cycle cover. If one considers the subset

of edgesD = {uv ∈ A : xuv = 1}, then we already discussed thatD is a collection of cycles where

each nodev ∈ V is on exactly one of these cycles. Then, Constraints (3.2) tell us thatD cannot

have more than one cycle otherwise the nodesS in such a cycle would havex(δ+(S)) = 0. So,D

is actually a Hamiltonian cycle whose cost is the same asx. Conversely, ifD is any Hamiltonian

cycle onG, then the pointx with xuv = 1 for uv ∈ D andxuv = 0 for uv 6∈ D is a feasible point

in the integer program with the same cost asD.

If we replace the integer constraintsxuv ∈ {0, 1}, ∀uv ∈ A with 0 ≤ xuv ≤ 1, ∀uv ∈ A,

we obtain a linear program known as theHeld-Karp relaxation for ATSP [52]. Not only do we

have that Algorithm 3 is alog2 n approximation, we also see that it bounds the integrality gap of this

relaxation. Before proving this, we recall a result of Frankand Jackson. Actually, the stated theorem

is not quite as strong as their original result, but it is sufficient for our needs and is simpler to state.

It says that for any non-isolated nodev of a directed Eulerian graph, there is one incoming arc and

one outgoing arc such that if we bypassv by shortcutting past these arcs, the number of outgoing

arcs of any subsetS not containingv remains the same. It is often called thesplitting off lemma for

70

digraphs. An application of the lemma is then referred to assplitting off.

Theorem 3.1.3 (Frank [40] and Jackson [56])LetG = (V,A) be a directed multigraph with the

indegree and outdegree being equal at every node. For any non-isolated nodew, there are two arcs

uw,wv such that if we letA′ denote the collection of arcs obtained by removinguw,wv fromA and

addinguv toA, then|δ+A′(S)| = |δ+A′(S)| for any∅ (S (V − {w}.

Williamson analyzed the ATSP approximation algorithm in [42] to show that it also bounds the

integrality gap of LP relaxation 3.1. Specifically, he proved the following.

Theorem 3.1.4 (Williamson [89]) LetOPTf denote the optimum value of the linear programming

relaxation of the integer program. The cost of the cycleC ′ returned by Algorithm 3 is at most

log2 n ·OPTf .

Proof. For anyW ⊆ V , let LP (W) denote the instance of LP 3.1 on the graph induced byW .

Similarly, let OPTf (W) denote the optimum value ofLP (W). The first step is to show that

OPTf (W) ≤ OPTf (V) for anyW ⊆ V . This follows by induction if we show thatOPTf (W) ≤
OPTf (W ∪ {v}) for anyv ∈ V −W .

Let x be an optimum solution toLP (W ∪ {v}). We know that eachxuv is rational so we define

∆ = lcmuv∈A{duv} whereduv is the denominator in the reduced form ofxuv. Then∆xuv is an

integer for eachuv ∈ A. Consider the multigraphG∆ onW ∪ {v} with ∆xuv copies of each arc

uv. This graph has indegree and outdegree exactly∆ at each nodev and each cut∅ (s (W ∪{v}
has|δ+(S)| ≥ ∆.

While δ+(v) 6= ∅, use Theorem 3.1.3 to find arcsuv, vw such that removing a copy ofuv, vw

and adding a copy ofuw does not decrease the|δ+(S)| for any∅ (S (W . Note that the total cost

of all arcs does not increase by the triangle inequality. LetA′ denote the resulting multiset of arcs

when we finally haveδ+(v) = δ−(v) = ∅ and let#uv denote the number of copies ofuv in A′.

We form a solutionx′ to LP (W) by settingx′
uv = #uv

∆ . Since the indegree and outdegree of each

node inW does not change throughout the splitting off operation, then x′(δ+(u)) = x′(δ−(u)) = 1

for everyu ∈ W . Furthermore, by our choice of arcsuv, vw in each step, we also have that

x′(δ+(S)) ≥ 1 for each∅ (S (W . Thus,x′ is a feasible solution toLP (W).

The cost ofx′ is exactly the total cost ofA′ scaled by∆−1. This, in turn, is at most the total

cost ofA scaled by∆−1. Finally, the total cost ofA is exactly∆OPTf (W ∪ {v}) sincex is

an optimum solution forLP (W ∪ {v}). Sincex′ is feasible forLP (W), thenOPTf (W) is at

most the cost ofx′. However, we just saw that the cost ofx′ is at mostOPTf (W ∪ {v}), so

OPTf (W) ≤ OPTf (W ∪ {v}).
The second step is to show that the cost of the optimum cycle cover onW is at mostOPTf (W).

The result then follows because we already saw that the cost of C ′ is bounded by the total cost of

at mostlog2 n minimum cost cycle covers on subsets ofV . To see this, remove the cut constraints

x(δ+(S)) from LP (W). The resulting polytope is exactly the polytope for the intersection of the

71

base polytopes for the two partition matroids that bound theindegree and outdegree of a node by 1.

This is an integral polytope (cf. Section 1.2.3) and the integer solutions correspond to cycle covers

of W , so the minimum cost cycle cover has cost exactly equal to theoptimum value of this polytope

which, in turn, is at mostOPTf (W) since a feasible solution toLP (W) remains feasible when

constraints are removed. �

3.2 The Asymmetric Traveling Salesman Path Problem

The Asymmetric Traveling Salesman Path problem (ATSPP) is similar to ATSP except we are look-

ing for a Hamiltonian path rather than a Hamiltonian cycle. In this section, we demonstrate an

O(log n)-approximation algorithm for ATSPP. What distinguishes this algorithm from previous ap-

proximation algorithms is that we can also bound the integrality gap of a natural LP relaxation of

ATSPP byO(log n) using our algorithm.

Our algorithm is also similar in spirit to theO(log n)-approximation for ATSP by Friezeet al.

[42] that was presented in the previous section. We build on this algorithm by first describing a

structure similar to the cycle covers in the ATSP algorithm called a path/cycle cover. As before,

we choose a representative from each cycle and discard all but the representative node from each

cycle. However, for our algorithm to work we cannot arbitrarily choose any representative from each

cycle. We introduce a potential function called a “label” for each node and choose a representative

based on this function. After finding sufficiently many path/cycle covers, we prove that we can find

a cheap path that includes all the nodes that were not discarded in some iteration. Then, using the

cycles found across the iterations, we graft the discarded nodes onto the path.

The rest of the section is organized as follows. First, we precisely define what is meant by a

path/cycle cover and discuss how to find one optimally. We also demonstrate why a simple gener-

alization of the ATSP algorithm to ATSPP using path/cycle covers may not succeed. We can then

present the algorithm which is similar to the ATSP algorithm, except representatives for the cycles

are chosen differently and the final path is constructed a bitdifferently. Properties concerning the

node labels are then proven to demonstrate the correctness and approximation ratio of the algorithm.

Finally, we concluded this section by presenting a natural LP relaxation and prove how the algorithm

bounds the integrality gap of this relaxation byO(log n).

3.2.1 Path/Cycle Covers

SupposeG = (V,A) is a directed metric ands, t ∈ V are given in advance withs 6= t. The goal is

to find a Hamiltonian path that starts ats and ends att. A good starting point is to define the notion

of a path/cycle cover.

Definition 3.2.1 A path/cycle cover ofG = (V,A) with a specified start nodes and a specified end

nodet is an integrals− t flowF such that:

72

• F (δ+(v)) = F (δ−(v)) = 1 for eachv ∈ V − {s, t}

• F (δ+(s)) = F (δ−(t)) = 1

• F (δ−(s)) = F (δ+(t)) = 0

If F is a path/cycle cover, then letD = {uv ∈ A : Fuv = 1} be the support ofF . Similar to the

support of cycle covers in Section 3.1,D consists of ans − t pathP and cyclesC1, . . . , Ck such

that every nodev ∈ V is on precisely one ofP,C1, . . . , Ck.

The support of a path/cycle cover is a common base of two partition matroids; one which bounds

the indegree of eachv 6= s by 1 and the indegree ofs by 0, and another which bounds the outdegree

of eachv 6= t by 1 and the outdegree oft by 0. As with cycle covers in Section 3.1, this means

an optimum path/cycle cover of a directed graph can be found in polynomial time using matroid

intersection techniques. Note that a Hamiltonians − t path is trivially the support of a path/cycle

cover (with no cycles), so the cost of an optimum path/cycle cover is at mostOPT .

A first approach to this problem would be to find a path/cycle coverF , remove all but one node

from each cycle inF , and repeat until the support of the path/cycle cover consists of only a path

from s to t with no additional cycles. From this, we could incorporate the discarded nodes using the

cycles from the supports of path/cycle covers found across all iterations. For sure, such an algorithm

arrives at this case because the number of remaining nodes strictly decreases in each iteration before

the final iteration. However, it is not so apparent that the number of iterations isO(log n).

One might hope that when a nodev becomes part of thes − t path, it then remains on the path

in subsequent iterations. If this were the case, we could still argue that the number of nodes that

are not on the path is halved at each step. Unfortunately, this is not always the case; it is possible

that a node is part of the path in one iteration and is then included in a cycle in the next iteration.

See Figure 3.1 for one such example. The metric is the shortest paths metric of the graph in the first

image. The first path/cycle cover requires 4 edges and the 4 edges shown in the second image have

cost 1, so it is an optimum path/cycle cover. Suppose the nodethat was discarded from the cycle is

the grayed out node in the third image. It is easy to verify that the path/cycle cover shown in the last

image has cost 5 while all other path/cycle covers have cost 6, so the path/cycle cover shown in the

last image is optimum.

Still, the first part (the main loop) of our algorithm is similar to Algorithm 3 for Hamiltonian

cycles. One of the main differences is that we no longer choose an arbitrary representative of a

cycle in each iteration; we will be more careful. Another major difference is that instead of simply

maintaining a set of nodesW across the iterations, we also maintain an acyclics − t flow F on

W that is composed of parts of previous path/cycle covers. Denoting the set of nodes that remain

after all iterations byW , the following holds after the main loop because of how we choose the

representatives. For any twou, v ∈W , there is either a path fromu to v or a path fromv to u in the

73

s

v

t s

v

t

a) b) c)

s

v

t

1

1

1 1

1

22

Figure 3.1: a) The graph whose shortest paths defines the metric. b) The support of the first
path/cycle cover. c) The support of the second path/cycle cover (the first is grayed out).

support of the acyclic flowF . This helps us reconstruct a Hamiltonian path using only arcs found in

some path/cycle cover.

3.2.2 A Logarithmic Approximation for ATSPP

In the algorithm we useH to denote a circulation. A connected componentA of the support ofH

is a strongly connected component in the support ofH that includes at least two nodes; we do not

consider isolated nodes in the support ofH. Finally, if F is an integral flow over nodesV , then we

may form a multigraphG = (V, F) where we haveFe copies of each arce.

The algorithm for approximating ATSPP is Algorithm 4. As mentioned earlier, the algorithm

maintains a setW of nodes that always containss andt and an acyclic flowF from s to t involving

only nodes inW . At each step of the algorithm, a path/cycle coverF ′ of the nodes inW is found

which is then added toF . The innermost loop starting at Step 10 chooses a representative for each

connected componentA in the support of circulationH in a particular manner and discards all other

node inA from W . It might be that some nodes inA also support some of the flow in the acyclic

flow F , so we modify the flowF to bypass such nodes by shortcutting. This can be naively (i.e.

without using the splitting off lemma). The setsSv are only to simplify notation in the proof. We

ultimately use the setsSw to show that every nodew ∈W at the end of the main loop supports a lot

of flow in F which helps us construct the final path.

First, we prove that we can always find an Eulerian walk froms to t in the multigraph(V,AP +

C).

Lemma 3.2.2 The multigraph(V,AP +C) in Step 23 has an Eulerian walk froms to t that includes

all nodes inV .

Proof. SinceC is a circulation, then the indegree and outdegree of each node v ∈ V using the arcs

from C are equal. SinceP is a path then the indegree and outdegree of each nodev ∈ V − {s, t}
using the arcsAP are equal. Finally, the indegree ofs is one less than its outdegree and the outdegree

of t is one less than its indegree sinceP starts ats and ends att. Therefore, the degree requirements

for such a walk are satisfied.

74

Algorithm 4 An O(log n)-approximation for ATSPP
1: LetW ← V
2: Let Sv ← {v}, ∀v ∈ V ⊲ only needed for the correctness proof
3: Let lv ← 0, ∀v ∈ V
4: Let Fuv ← 0, ∀u, v ∈ V
5: LetCuv ← 0, ∀uv ∈ V
6: for 2⌊log2 n⌋+ 1 iterationsdo
7: Find a minimum-cost path/cycle coverF ′ onW
8: F ← F + F ′

9: Subtract a circulationH from F soF is acyclic again
10: for each connected componentA in the support ofH do
11: For each vertexu ∈ A, let du denote the total flow inH enteringu (i.e. H(δ−(u))).
12: Let vA ← argminu∈A lu + du ⊲ breaking ties arbitrarily
13: for each nodew ∈ A− {vA} do
14: Shortcut the flow inF overw sow supports no flow inF
15: end for
16: W ←W − (A− {vA})
17: lvA

← lvA
+ dvA

18: SvA
← ∪v∈ASv

19: end for
20: C ← C +H
21: end for
22: Let P be a topological ordering of the nodes in the multigraph(W,F) formed from flowF
23: Viewing P as an acyclics − t flow, let P ′ be an Eulerian walk froms to t in the multigraph

(V, P + C)
24: Shortcut past repeated nodes inP ′ to get a Hamiltonian pathX
25: return X

To prove the connectivity requirement, it suffices to prove that the graph(V,AP +C) is weakly

connected. This follows from showing each nodev ∈ V has a path tot using only edges inAP +C.

The argument is near identical to the analogous argument in Lemma 3.1.1. The idea is that all nodes

in W trivially have a path tot by following onlyAP . The other nodes can reacht by first following

the cycle found when they were removed to the representativeof that cycle which, inductively, has

a path tot. �

The next two lemmas collectively say that each node inW at the end of the main loop supports

more than half of the flow froms to t in F .

Lemma 3.2.3 We haveF (δ+(v)) = F (δ−(v)) = 2⌊log2 n⌋+1− lv for eachv ∈W −{s, t} after

the main loop.

Proof. For eachv ∈ W − {s, t}, both F (δ+(v)) andF (δ−(v)) increase by 1 in each of the

2⌊log2 n⌋ iterations when the new path/cycle cover is added. Wheneverv ∈W −{s, t} is chosen as

a representative node, bothF (δ+(v)) andF (δ−(v)) decrease by the amount of flowdv enteringv

from the circulationH because we removed this circulation from the flow. However, this decrease is

precisely the amount thatlv increases in that iteration. Finally, we note that when a node is bypassed

in step 14, it is discarded fromW and theF (δ+(v)) andF (δ−(v)) values for any otherw ∈ W do

75

not change during this bypass. �

Lemma 3.2.4 Each nodev ∈W − {s, t} haslv ≤ ⌊log2 n⌋ throughout the algorithm.

Proof. We do this by proving, in each iteration of the loop, that2lv ≤ |Sv| for eachv ∈W . We also

maintain the invariantSu ∩ Sv = ∅ for anyu, v ∈ W . Both statements are initially true because

Sv = {v} andlv = 0 before the first iteration of the outer loop. Inductively, consider a step in the

algorithm whenlv is updated becausev was chosen as the representative of some circulationA.

Let F be the flowF at the start of the current iteration of the outer loop. That is, F is the

acyclic flow before the path/cycle coverF ′ is added. Consider some connected componentA of the

circulationH removed fromF = F +F ′. First, we claim that there are distinct nodesa, b such that

da = db = 1.

Consider a topological ordering of the nodes based on the acyclic flow F . Let a be the first

node in this ordering that appears inA and letb be the last node in this ordering that appears in

A. Note thata 6= b since we only considered connected componentsA of the support ofH that

involve at least two nodes. We haveda, db ≥ 1 since botha andb support some flow inA. Since

all other nodes inA appear aftera in this topological ordering, then there is no arcua for u ∈ A

with Fua > 0. Thus, the only flow that can entera fromH is from the path/cycle coverF ′ that was

introduced in this iteration. However,F ′
uv ≤ 1 for any arcuv so it must be thatH(δ+(a)) = 1.

In a similar manner,db = 1 because no nodev ∈ A can haveF bv > 0 sinceb appears latest in

the topological ordering of nodes inA and because only one unit of flow fromF ′ can exitb in the

path/cycle coverF ′. The result forb then follows because

1 = H(δ+(b)) = H(δ−(b)) = db

where the middle equality follows from flow conservation atb.

We know that just before the value oflv is updated we have

lv + dv = min
u∈A

lu + du.

Consider the nodesa, b described above (it may be thata = v or b = v). Then we havelv + dv ≤
la + 1 andlv + dv ≤ lb + 1. By the induction hypothesis, we have both

2lv+dv−1 ≤ 2la ≤ |Sa| and 2lv+dv−1 ≤ 2lb ≤ |Sb|.

SinceSa andSb are disjoint, then after the update we have|Sv| ≥ |Sa|+ |Sb| ≥ 2lv where we now

refer to the new values ofSv andlv.

ThatSu ∩ Sw = ∅ for anyu,w ∈ W after updatinglv andSv follows simply because the new

setSv is formed as the disjoint union of setsSu for u ∈ A and the nodesu ∈ A − {v} are then

discarded fromW . �

We are now equipped to prove the approximation ratio.

76

Theorem 3.2.5 The pathX returned by Algorithm 4 has cost at most(2⌊log2 n⌋+ 1) ·OPT .

Proof. Let P ∗ be an optimum Hamiltonian path onV of costOPT . Consider a subsetW of V .

The optimum Hamiltonian path onW costs no more than the cost ofP ∗ because we can shortcut

past nodes inV − W to transformP ∗ into a feasible Hamiltonian path onW of cost at most

OPT . A Hamiltonian path onW corresponds to an (acyclic) path/cycle cover onW so the optimum

path/cycle cover onW has cost at mostOPT . Since the flowF plus the circulationC we find after

the outer loop are obtained by combining2⌊log2 n⌋+1 minimum cost path/cycle covers on subsets

of W and, perhaps, shortcutting around some nodes, then the costof F plus the cost ofC is at most

(2⌊log2 n⌋+ 1) ·OPT .

Next, we claim that any arcuv used in the pathP found by topologically orderingW satisfies

Fuv ≥ 1. If so, then the cost ofP is at most the cost ofF . To see this, recall thatF , being an acyclic

integer flow sending2⌊log2 n⌋ + 1 units of flow froms to t, can be decomposed as the union of as

many paths froms to t. By Lemmas 3.2.3 and 3.2.4, bothu andv appear on at least⌊log2 n⌋ + 1

path. By the pigeonhole principle, there then must be some path that includes bothu andv. Now,v

cannot appear beforeu on this path sinceu comes beforev in the topological ordering ofW based

on F . Similarly, there cannot be another nodew ∈ W that appears betweenu andv on this path

since, otherwise,v could not have immediately followedu in the topological ordering. Thus, the

edgeuv appears on a path in the path decomposition ofF meaningFuv ≥ 1.

So, the cost of the pathP is at most the cost of the acyclic flowF . Incorporating the circulation

C, we then get an graphG with an Eulerian walk froms to t that spans all the nodes whose cost is at

most the cost ofF plus the cost ofC. Since bypassing nodes on this walk does not increase the cost

of the walk, we finally see that the cost the final Hamiltonian pathX is at most(2⌊log2 n⌋+1)OPT .

�

3.2.3 A Logarithmic Bound on the Integrality Gap for ATSPP

As with ATSP, the cost of the pathX returned by Algorithm 4 is at most a logarithmic factor of the

optimum cost of a natural linear programming relaxation of the problem. Consider the following LP

relaxation of ATSPP.

minimize :
∑

uv∈A

duvxuv (3.3)

subject to : x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V − {s, t}

x(δ+(s)) = x(δ−(t)) = 1

x(δ−(s)) = x(δ+(t)) = 0

x(δ+(S)) ≥ 1 ∀{s} ⊆ S (V (3.4)

0 ≤ xuv ≤ 1 ∀uv ∈ A

77

If x is a feasible point with integer components, then the degreeconstraints say thatx must be

a path/cycle cover. The cut constraints then ensure that there are no cycles (otherwise the nodes of

the cycle would be such a setS with outgoing cut size 0) so the path/cycle cover would indeed be a

Hamiltonian path froms to t. LetOPTf denote the optimum fractional solution to the LP relaxation

above. Conversely, it is easy to see that a Hamiltonian path corresponds to a feasible integer solution

to LP 3.3. Then we can bound the integrality gap in the following way.

Theorem 3.2.6 The cost ofX is at most(2⌊log2 n⌋+ 1) ·OPTf .

Proof. As in the proof of Theorem 3.1.4, the result follows if we can show that the cost of every

path/cycle cover found on any subsetW of V is at mostOPTf . ForW ⊆ V with s, t ∈ W , let

LP (W) denote the linear programming relaxation for ATSPP on the instance induced by the nodes

in W with optimum valueOPT (W). If we remove the cut constraintsx(δ+(S)) from LP (W),

then we once again have the integral polytope correspondingto the intersection of the two matroids

that define the minimum path/cycle cover problem. Since the optimum value ofLP (W) does not

increase if these constraints are removed, then we only needto show thatOPT (W) ≤ OPT (V)

to establish the theorem. Again, this follows if we showOPT (W) ≤ OPT (W ∪ {v}) for any

v ∈ V −W where we recall thats, t ∈W .

Essentially, this is the same argument as in Theorem 3.1.4. We just have to be careful because

1 = x(δ+(s)) 6= x(δ−(S)) = 0 and0 = x(δ+(t)) 6= x(δ−(t)) = 1 so the multigraph obtained

from multiplying x by ∆ is not Eulerian. However, if we add precisely∆ edges fromt to s in the

multigraph, then we get an Eulerian graph and we can split offthe arcs aroundv while preserving

global connectivity among the nodes inW . Note that we never split off anyts arcs nor do we

introduce any newts arcs becausev 6∈ {s, t} and there are notv or vs arcs. After splittingv off, we

remove the∆ arcs fromt to s and form the solutionx′ for LP (W) in the same way. Removing the

ts arcs does not decrease|δ+(S)| for anyS containings becausets 6∈ δ+(S). �

3.3 Multiple Traveling Salesmen

More generally, we may consider the problem of findingk paths froms to t whose union covers

all of the nodes. This is called thek-Asymmetric Traveling Salesmen Path problem(k-ATSPP).

In symmetric metrics, we usually do not save too much by usingk salesmen instead of 1 for the

following reason. Ifk is odd, then we can cover all the nodes using a single salesmanat no greater

cost than if we usek salesmen. The salesman could travel betweens and t exactlyk times by

following each of thek paths in the optimum solution using multiple salesmen. The process is

illustrated in Figure 3.2. Ifk is even, then the optimum solution using a single salesman has cost

at most(1 + 1/k) times the optimum solution usingk salesmen for essentially the same reason.

The main difference is that after following the last of thek paths in an optimum solution usingk

78

ts ts

a) b)

Figure 3.2: a) A sketch of a solution using 3 salesmen. b) A sketch of a similar solution of no greater
cost using only one salesman.

s

t

Figure 3.3: All shown edges have distance 1 and all omitted edges have distanceD for arbitrarily
large valuesD. Using one salesman requires cost at leastD while the optimum solution using two
salesmen is only 4.

salesmen, we are still ats. We can take one final step tot which has costOPT/k whereOPT is the

optimum solution usingk salesmen since surely the single step froms to t has no greater cost than

the cheapest of thesek paths. However, in asymmetric metrics the cost between using even only one

path or two paths can be dramatically different. Consider the example in Figure 3.3 that shows the

ratio of the cost between using one or two salesmen can be unbounded.

In this section, we develop a bicriteria approximation algorithm that finds approximatelyk paths

whose total cost is within some bounded ratio of the optimum solution which uses exactlyk paths.

This bicriteria approximation is parameterized by a positive integerb and different bicriteria approx-

imation guarantees result from different choices ofb. On one extreme, settingb = 1 results in an

O(log n) approximation that uses at most twice the number of given paths and, on the other extreme,

settingb to bek+1 results in a true (not bicriteria)O(k log n)-approximation using exactlyk paths.

3.3.1 Preliminary Discussions and Results

The use of partition matroids allows us to consider the following useful structure:

Definition 3.3.1 A k-path/cycle cover froms to t is an integral flowF such thatF (δ+(v)) =

F (δ−(v)) = 1 for eachv ∈ V − {s, t}, F (δ+(s)) = F (δ−(t)) = k, andF (δ−(s)) = F (δ+(t)) =

0.

A k-path/cycle cover can be decomposed into a collection ofk paths froms to t and a collection

of cycles where the cycles are disjoint from each other and from the paths and where any two paths

79

s

t

Figure 3.4: An illustration of ak-Path/cycle cover withk = 4.

only haves andt in common. Again, we may find the minimum costk-path/cycle cover since these

are precisely the bases common to two partition matroids (ifwe havek copies of thest arc). A

k-path/cycle cover is illustrated in Figure 3.4

An LP relaxation fork-ATSPP in the same spirit as LP 3.3 for ATSPP is as follows. Note that

we allow thest edge to be used multiple times since the optimumk-ATSPP solution may have some

paths travel directly tot without visiting any other nodes.

minimize :
∑

e∈A

duvxuv (3.5)

subject to : x(δ+(v)) = x(δ−(v) = 1 ∀v ∈ V − {s, t}

x(δ+(s)) = x(δ−(t)) = k

x(δ−(s)) = x(δ+(t)) = 0

x(δ+(S)) ≥ 1 ∀{s} ⊆ S (V

0 ≤ xuv ≤ 1 ∀ uv ∈ A, u 6= s or v 6= t

0 ≤ xst ≤ k (3.6)

We consider more general approximation algorithms for the case ofk Traveling Salesmen.

Definition 3.3.2 An (α, β)-bicriteria approximation algorithm fork-ATSPP is a polynomial-time

algorithm which finds betweenk andβ · k paths froms to t whose union spans all nodes where the

total cost of these paths is at mostα · OPT whereOPT is the cost of the optimum solution using

exactlyk paths.

80

In particular, an(α, 1)-bicriteria approximation is simply anα-approximation since it uses no more

thank paths.

The main result of this section is the following:

Theorem 3.3.3 For any integerb ≥ 1, there is a polynomial time (inn andb) (O(b log n), (1+ 1
b))-

bicriteria approximation fork-ATSPP. In particular, the cost of the paths found by this algorithm

are at most((b + 1) log2 n)OPTf whereOPTf is the optimum value of the linear programming

relaxation 3.5.

Of interest are the following two special cases:

Corollary 3.3.4 There is an(O(log n), 2)-bicriteria approximation fork-ATSPP.

Proof. Chooseb = 1. �

Corollary 3.3.5 There is anO(k log n)-approximation fork-ATSPP.

Proof. Chooseb = k + 1 and notice thatk · (1 + 1
k+1) < k + 1. Since the number of paths is an

integer, then there are preciselyk paths. �

We break the presentation of the algorithm into the two phases. The first phase of the algorithm

is very similar to the first phase of Algorithm 4 for ATSPP. A modification of the second phase

of Algorithm 4 can be used to obtain anO(k2 log n)-approximation fork-ATSPP, but getting the

ratio down toO(k log n) requires a different approach to this second phase. So, the second phase

is presented first as a simple modification of the steps after the outer loop in Algorithm 4 to get an

O(k2 log n) approximation in the special caseb = k+1. Then we present the final version of phase

2 that works for any valueb ≥ 1.

3.3.2 Phase 1

Let b ≥ 1 be an integer, this is theb in the statement of Theorem 3.3.3. For notational convenience,

we letL be (b + 1)⌊log2 n⌋ for the remainder of this section. Consider Algorithm 5, a variant of

Algorithm 4.

The statements and proofs of Lemmas 3.2.3 and 3.2.4 carry over essentially word for word. One

argument in Lemma 3.2.4 requiredF ′(uv) ≤ 1 which is no longer the case for every arcuv ∈ A.

However, it is still true thatFuv ≤ 1 for any arcuv 6= st. Sinceuv hasv 6= t in the proof, the

argument still works. The fact that the circulation can be incorporated into the pathsP and then

shortcut is also similar because the indegrees and outdegrees of each node (excepts andt) using

arcs inC are equal and the graph using arcs inC is weakly connected. Finally, we similarly have

that the cost ofF plus the cost ofC is at mostL ·OPT sincek paths spanningV can be shortcut to

k paths spanning a subsetW of V and thatk paths spanningW trivially form a k-path/cycle cover

of W .

81

Algorithm 5 An (O(b log n), (1 + 1
b)k)-bicriteria approximation fork-ATSPP

1: LetL← (b+ 1)⌊log2 n⌋
2: LetW ← V
3: Let Sv ← {v}, ∀v ∈ V
4: Let lv ← 0, ∀v ∈ V
5: Let Fuv ← 0, ∀u, v ∈ V
6: LetCuv ← 0, ∀uv ∈ V
7: for L iterationsdo
8: Find a minimum-costk-path/cycle coverF ′ onW
9: F ← F + F ′

10: Remove a circulationH from F soF is acyclic again
11: for each connected componentA in the support ofH do
12: For each vertexu ∈ A, let du denote the total flow inH enteringu.
13: Let vA ← argminu∈A lu + du ⊲ breaking ties arbitrarily
14: for eachw ∈ A− {vA} do
15: Shortcut the flow inF overw sow supports no flow inF
16: end for
17: W ←W − (A− {vA})
18: lvA

← lvA
+ dvA

19: SvA
∪v∈A Sv

20: end for
21: C ← C +H
22: end for
23: Use phase 2 to find a collectionP of at mostk · (1 + 1

b) paths whose union spansW
24: Add the circulationC to the arcs used byP to get a multiset of edgesC ′

25: Find at mostk · (1 + 1
b) walksP ′ whose union covers each arcuv exaclyC ′(uv) times

26: Bypass repeated nodes inP ′ to get at mostk · (1 + 1
b) pathsX whose union spans all nodes

27: return X

In the warm up to phase 2, we only consider the caseb = k + 1. We prove that the cost of thek

pathsP found is at mostO(k) times the cost ofF which implies the cost ofP plus the cost ofC is

at mostO(kL) · OPT = O(k2 log n) · OPT . In the actual phase 2, we consider any integerb ≥ 1

and show that we can find betweenk and(1 + 1
b)k paths that spann all nodes inW whose cost is at

most the cost ofF (without losing anO(k) factor).

3.3.3 Warmup To Phase 2

Consider the specific caseb = k + 1. As this is only a warm up to the main result, some details are

only sketched. After the outer loop is complete,F is an acyclic integer flow ofkL units froms to

t. Form the auxiliary graphG′ = (W,A′) whereuv ∈ A′ if and only if there is a path fromu to v

using only edges in the support ofF . SinceF is acyclic and since the relation “u has a path tov” is

transitive, thenG′ is a partially-ordered set. An antichain in this partially-ordered set is a subsetT

of W such that for anyu, v ∈ T we do not haveuv ∈ A′. A chain cover is a collection of paths in

G′ whose union spans all nodes. We use the following classic result.

Theorem 3.3.6 (Dilworth’s Theorem,e.g. [48]) Let T be any antichain andP be a chain cover

using l chains of a partially-ordered set. Then|T | ≤ l and we have equality ifT is a maximum

82

antichain andP is a covering using the fewest paths possible.

This dual relationship between antichains and chain coversallows us to prove the following.

Theorem 3.3.7G′ can be covered byk chains.

Proof. Suppose this is not true. Then Dilworth’s Theorem says that there is an antichainI with

|I| ≥ k + 1. Consider a decomposition ofF into kL paths froms to t. By the analogs of Lemmas

3.2.3 and 3.2.4 for Algorithm 5, each node is involved in at leastL − ⌊log2 n⌋ paths. SinceI is an

antichain, then no two paths may pass through a common node inI so the total number of paths is

at least

|I|(L− ⌊log2 n⌋) ≥ (k + 1)((k + 2)⌊log2 n⌋ − ⌊log2 n⌋) > k(k + 2)⌊log2 n⌋ = kL

which is a contradiction. �

It is also possible to find thesek paths efficiently. The total cost of thesek paths is bounded byk

times the cost of the flowF . The reason for this weaker bound is that the edges used in these paths

are edges inA′ which correspond to paths inF . So, each edge ofF could potentially be used in all

k paths we just found which is why we can only prove the weaker bound.

3.3.4 Phase 2

Rather than relying on the transitive closure of the acyclicflow F , we can find fewer edge-disjoint

paths that span all of the nodes inW in the support ofF . Currently, we can partitionF into

kL = k(b+ 1)⌊log2 n⌋ paths froms to t whose union spansW , but we want to reduce the number

of paths significantly using only edges in the support ofF while still including every node inW . We

see that this is possible because eachw ∈ W supports a significant amount of this flow. For now,

let D be some fixed (perhaps non-integer) value that we specify later. The main object of concern

in this phase is the following polytopeP(D) with a variablezuv overR for every ordered pair of

distinct nodes.

P(D) : z(δ+(w)) = z(δ−(w)) = 1 ∀w ∈W − {s, t} (3.7)

z(δ+(s)) = z(δ−(t)) = D

z(δ−(s)) = z(δ+(t)) = 0

0 ≤ zuv ≤ Fuv ∀ ordered pairs u, v ∈ V

Note that any pointz in this polytope with integer coordinates corresponds to aD-path/cycle

cover (which is only possible ifD is an integer). Since the support ofF is acyclic and the support

of z is required to be a subset of the support ofF , then any integer pointz is actually a collection of

D paths froms to t whose union spans all nodes. Thus, our goal is to find the smallest integerD for

whichP(D) has an integer point. The following property is key for phase2.

83

Lemma 3.3.8 The polytopeP(D) is integral whenD is an integer.

Proof. There is a simple correspondence between points inP(D) and points in the intersection of

the base polytopes for two partition matroids over the arcs where we haveFuv copies of each arc

uv. �

So, to proveP(D) has an integer point for a given integerD, it suffices to prove thatP(D)

containsanypoint. That is, if there is some pointz with, perhaps, rational coordinates, then there

is certainly a pointz′ with integer coordinates sinceP(D) is integral. Note also that the bounds

zuv ≤ Fuv would also imply that the cost of such an integer point (i.e. aD-path cover) is at most

the cost ofF .

We require that each node inW−{s, t} supports the same amount of flow inF , which is possible

through the following lemma.

Lemma 3.3.9 There is an acyclic integral flowF ′ that sendskL units froms to t whose cost is no

more than the cost ofF such that every nodev ∈ W − {s, t} supports the same amount of flow

α ≥ L− ⌊log2 n⌋ in F ′.

Proof. Let γ = maxw∈W lw and recall thatγ ≤ ⌊log2 n⌋. Now, modify the acyclic flowF in the

following way. While there is somev ∈ W − {s, t} with F (δ+(v)) > L − γ, then bypass some

flow aroundv. More formally, choose any two arcsuv ∈ δ−(v), vw ∈ δ+(v) with Fuv, Fvw > 0

and letǫ := min{Fuv, Fvw, F (δ+(v))− (L− γ)}. Subtractǫ fromFuv andFvw and addǫ toFuw.

The flowF remains acyclic after this operation (since there was already a path fromv to w in the

support of the acyclic flowF before this operation) and the total flow incident to every other node

does not change. Repeat this procedure untilF (δ+(v)) = L− γ.

We see thatFuv is an integer for every edge after each modification. It is true initially sinceF

is the sum of paths found in phase 1. When choosingǫ at each step we have that both flow values

Fuv andFvw as well asF (δ+(v)) are integers by induction. Since bothL andγ are also integers,

thenǫ is an integer. The modification then adjusts the flow across each edge by an integer so the

resulting flow is also integral. Finally, the resulting flow is also acyclic because the flow is acyclic

before each update and since we only add edgesuw for which there was already a pathuv, vw. �

From now on, we assume thatF has this uniformity condition among nodes inW − {s, t}. The

following lemma is the first step to finding a good integerD for whichP(D) 6= ∅. The valueD

may be fractional, but we deal with that problem later.

Lemma 3.3.10 There is some value (perhaps fractional)D betweenk and kL
L−⌊log2 n⌋ such that

P(D) is non-empty.

Proof. Every nodev ∈ W − {s, t} has the same amount of flow (sayL − γ) in F passing through

it. Let D = kL
L−γ and note thatk ≤ D ≤ kL

L−⌊log2 n⌋ by Lemma 3.3.9. We now construct a (possibly

rational) pointz in P(D) to exhibit thatP(D) 6= ∅.

84

This is simple, letzuv = Fuv

L−γ . We have1 ≤ L − γ becauseγ ≤ ⌊log2 n⌋ andL = (b +

1)⌊log2 n⌋ whereb ≥ 1. So, 0 ≤ zuv ≤ Fuv is satisfied. Since eachv ∈ W − {s, t} has

F (δ+(v)) = F (δ−(v)) = L−γ, thenz(δ+(v)) = z(δ−(v)) = 1. Similarly, we see thatz(δ+(s)) =

z(δ−(t)) = D andz(δ−(s)) = z(δ+(t)) = 0. �

The main problem is that the valueD in the lemma may not be an integer. This is remedied with

the following lemma.

Lemma 3.3.11 If P(D) 6= ∅, thenP(⌊D⌋) 6= ∅.

Proof. SupposeD is not already an integer, otherwise we are done. Letz be any point inP(D).

Form an undirected and weighted bipartite graphH = (WL ∪WR, E
′) where bothWL andWR

are disjoint copies ofW . For each arcuv, add an edge fromu ∈ WL to v ∈ WR with weightzuv.

In fact, we usezuv to denote both the weight of theuv arc in the original directed graphG and the

weight of the edge in our new bipartite graphH connectingu ∈ WL to v ∈ WR. By the degree

constraints, we have thatz(δ(v)) (the totalz-value of all edges inE′ incident tov) is an integer for

everyv ∈ L ∪WR except fors ∈WL andt ∈WR which havez-degreeD.

First, we claim that there is a path froms ∈ WL to t ∈ WR in H that only uses edgesuv with

zuv > 0. Note that these paths are allowed to take a step fromWR to WL sinceH is undirected.

Such a step corresponds to following an arcuv in the reverse direction in the original directed graph

G.

Suppose, for the sake of contradiction, that there is no pathfrom s ∈ WL to t ∈ WR using only

edgesuv with positive weight. LetS be the collection of all nodes inH that can be reached from

s using only edges with positive weight; our assumptions means the copy oft in WR is not inS.

We count the weight of the edges with both endpoints inS in two different ways and arrive at a

contradiction.

On one hand, since every nodev ∈WR − {t} hasz(δ(v)) = 1 and sincet 6∈ S, then

z(E(S)) =
∑

v∈WR∩S

z(δ(v)) = |WR ∩ S|.

On the other hand, since every nodev ∈WL − {s} hasz(δ(v)) = 1 and sinces ∈ S, then

z(E(S)) =
∑

v∈WL∩S

z(δ(v)) = |(WL − {s}) ∩ S|+ z(δ(s)) = |(WL − {s}) ∩ S|+D.

But |R ∩ S| = |(WL − {s}) ∩ S| + D contradicts our assumption thatD is not an integer. So, it

must be that there is a path froms ∈WL to t ∈WR in H using only edgese with ze > 0.

Suppose that such a path followed a sequence of edgese1, e2, . . . , ec. SinceH is bipartite and

s ∈WL, t ∈WR are on different sides, thenc must be odd. Let

σ = min

{

D − ⌊D⌋, min
1≤i≤c:i odd

zei

}

85

be the minimumz-value of the edges that are followed fromWL to WR when walking along this

path (or the difference betweenD and⌊D⌋ if this is smaller). Update thez values of the edges on

this path by:

zei ←
{

zei − σ i odd
zei + σ i even

We now argue that the resultingz-values fit in the polytopeP (D − σ). First, notice that both

z(δ(s)), s ∈ WL andz(δ(t)), t ∈ WR, which were originallyD, decrease by exactlyσ. Any other

nodev not on this path does not have thez-value of any incident edge changed. Finally, ifv is an

internal node on this path then thez-value of one incident edge decreases byσ and thez-value of

another incident edge increases byσ. Therefore, we havez(δ(v)) = 1 after this update for every

nodev apart froms ∈WL andt ∈WR.

By our choice ofσ, we continue to haveze ≥ 0 for every edgee. Now, if the path was a single

edgest, then no edge had itsz-value increased so the boundsze ≤ Fe continue to hold for every

edgee. Otherwise, every edgee = uv on this path has eitherz(δ(u)) = 1 or z(δ(v)) = 1 soze ≤ 1

must hold after an update. Since the onlyze values that are increased are those in the support ofF ,

thenze ≤ 1 ≤ Fe.

The above process maps a point fromP (D) to a point inP (D − σ) whenD is not an integer.

If σ was chosen to beD − ⌊D⌋ > 0, thenz(δ(s)) = z(δ(t)) = ⌊D⌋ after this process and we are

done. Otherwise, we can repeat the process to map a point fromP (D − σ) to P (D − σ′) for some

σ′ > σ with D − σ′ ≥ ⌊D⌋ and so on. Each such step that does not result in a point in the polytope

P (⌊D⌋) has us remove at least one edge from the support ofz. Since no edges are introduced to the

support ofz, then this process is repeated at most|WL| · |WR| = |W |2 times. After finitely many

iterations, we arrive at a point inP (⌊D⌋). �

Lemma 3.3.11 shows that forD = ⌊ kL
L−γ ⌋ we haveP (D) 6= ∅. SinceD is an integer, then any

basic pointz in P (D) 6= ∅ has eachze value being integer. Find and return such a point to obtainD

paths of cost at most the cost ofF whose union spans all ofW .

The number of paths is bound as:

D ≤ kL

L− γ
≤ k(b+ 1)⌊log2 n⌋

(b+ 1)⌊log2 n⌋ − ⌊log2 n⌋
= k

(

1 +
1

b

)

This proves Theorem 3.3.3.

3.4 Approximating Other Multiple Salesmen Variants

Section 3.3 presented a bicriteria approximation algorithm for the problem of findingk paths from

a given nodes to a given nodet in an asymmetric metric. Here, we consider other variants, mainly

on how the start and/or end nodes are specified. For most casespresented, we discuss how the

algorithm in Section 3.3 can be used to approximate these variants (after we define what a bicriteria

86

approximation is for these variants). However, one case that cannot be approximated with these

techniques is when we are given pairs of nodes(s1, t1), . . . , (sk, tk) and we want to find ansi − ti

path for each1 ≤ i ≤ k so that each node is included on at least one such path. We callthis case

Generalk-ATSPPand discuss this case further.

In symmetric metrics (i.e. Generalk-TSPP), we have a simple constant-factor approximation.

In the special case in asymmetric metrics wheresi = ti for each1 ≤ k ≤ n, the problem is to

find cycles where each cycle contains some “root”ri := si(= ti) so that each node is on one of

the cycles. In this case, we show how anO(log n)-approximation follows from a relatively simple

modification of theO(log n)-approximation for ATSP reviewed in Section 3.1. Finally, we conclude

this section by demonstrating that Generalk-ATSPP cannot be approximated in polynomial time

within any bounded ratio unless P = NP.

3.4.1 Varying the Endpoints ink-ATSPP

We first present a couple of simple transformations between instances ofk-ATSPP to show how

some variants ofk-ATSPP can be modelled as an instance ofk-ATSPP when a common start node

s and a common end nodet are fixed in advance. Then, we can apply the techniques from Section

3.3 to approximate these instances. First, let’s assign names to describe the different instances. If a

common sources is specified and all paths are required to start ats, then we shall call this case a

single sourcecase. If no sources are specified and thek paths are allowed to start at any (perhaps

different) nodes, then we shall call this case theno sourcecase. Finally, if distinct nodess1, . . . , sk

and we require that eachsi be the start of precisely one path, then we shall call this case themultiple

sourcecase. Note that the case where some of thesi are the same can easily be reduced to the case

where thesi are different: simply create a separate nodes′i for each1 ≤ i ≤ k with cost 0 arcs to

and fromsi. Let the new instance be defined with distinct start locationss′i whose underlying metric

is the shortest paths metric for the new graph.

Similarly, we can define the termssingle sink, no sink, andmultiple sinkto describe how the

endpoints of the paths are described. We can combine these terms to describe both the start and end

locations of an instance. For example, the problem considered in Section 3.3 is the single source,

single sink case ofk-ATSPP. The only real ambiguity is the multiple source, multiple sink case. If

nodess1, . . . , sk andt1, . . . , tk are given then there are two variants ofk-ATSPP where eachsi is

required to be the start of a path and eachtj is required to be the end of a path. If a path that starts

at si may end at anytj , then we simply call this variant the multiple source, multiple sink case.

However, if we require the path that starts atsi to end at the respective nodeti, then we call this

problemGeneralk-ATSPP.

Theorem 3.4.1 Suppose there is an(α(n), β(n))-bicriteria approximation algorithm for single

source, single sink instances ofk-ATSPP. Then there is an(α(n + 1), β(n + 1))-bicriteria ap-

proximation algorithm for single source, no sink instancesof k-ATSPP.

87

Proof. Let G = (V,A) be an instance ofk-ATSPP with distancesduv, u, v ∈ V and a specified

start nodes. Also say thatOPT is the cost of the optimumk-ATSPP solution inG and that paths

P ∗
1 , . . . , P

∗
k are the paths used in such an optimum solution. Create a new vertex, sayt, and letM :=

maxu,v∈V duv. Consider the asymmetric metric graphG′ = (V ∪ {t}, A′) where the distancesd′uv

are defined as:

d′uv =







duv if u, v ∈ V
0 if v = t

M if u = t

First, we verify that the distancesd′uv satisfy the directed triangle inequality. Letu, v, w ∈ V ′ with

u 6= v, v 6= w.

• if u, v, w ∈ V thend′uw = duw ≤ duv + dvw = d′uv + d′vw

• if u = t andv, w ∈ V thend′uw = M ≤M + dvw = d′uv + d′vw

• if v = t andu,w ∈ V thend′uw = duw ≤ 0 +M = d′uv + d′vw

• if w = t andu, v ∈ V thend′uw = 0 ≤ d′uv + d′vw

• finally, if u = w = t andv ∈ V thend′uw = 0 as well

Now, viewG′ as a instance ofk-ATSPP with start nodes ∈ V and end nodet being specified.

Let P1, . . . , Pk′ be the paths found by the bicriteria approximation withk ≤ k′ ≤ βk. Note that

G′ has a solution of costOPT which is obtained by appendingt to the end of each of the paths

P ∗
i , 1 ≤ i ≤ k used in the optimum solution forG. So, the total cost of the pathsP1, . . . , Pk′ is at

mostαOPT . By shortcutting, we may assume that no pathPi, 1 ≤ i ≤ k′ containst as an internal

node. Deletingt from the end of each of these paths, we obtain at mostβk pathsP ′
1, . . . , P

′
k′ that

start ats and visit every node inV = V ′ − {t} whose total cost is at mostαOPT . �

Corollary 3.4.2 For any integerb ≥ 1, there is an(O(b log n), (1 + 1
b)k)-bicriteria approximation

for single source, no sink instances ofk-ATSPP.

Proof. It is immediate from Theorems 3.3.3 and 3.4.1 and the fact that (b + 1)⌊log2(n + 1)⌋ =
O(b log n). �

Now, consider the variant where a common start nodes is given and there arek distinct end

nodest1, . . . , tk. The goal is to find ans − ti path for each1 ≤ i ≤ k so that every node is on

at least one such path while minimizing the total cost of these paths. A clarification needs to be

made regarding bicriteria approximation algorithms for such instances. We say an(α, β)-bicriteria

approximation algorithm is one that finds betweenk andβk paths where each starts ats and ends at

someti whose total cost is at mostαOPT . Furthermore, for each1 ≤ i ≤ k, there must be at least

ones− ti path among the at mostβk paths.

88

Theorem 3.4.3 Suppose there is an(α(n), β(n))-bicriteria approximation algorithm for single

source, single sink instances ofk-ATSPP. Then there is an(α(n+k+1), β(n+k+1))-approximation

for single source, multiple sink instances ofk-ATSPP.

Proof. Say thatG = (V,A) is an instance ofk-ATSPP with distancesduv where a common start

nodes and varying end nodest1, . . . , tk are specified. Also say thatOPT is the cost of the optimum

k-ATSPP solution inG and that pathsP ∗
1 , . . . , P

∗
k are the paths used in such an optimum solution

whereP ∗
i ends atti. The reduction is similar to the one in Theorem 3.4.1 except we have to deal

with one potential issue. If we were to simply add a nodet and a cost 0 arc from eachti to t, then a

path may visitti before passing through a differenttj to reacht. This would allow multiple paths to

reacht through sometj while having no path reacht through someti. We deal with this by adding

an extra node between eachti andt that can only be reached throughti to force the paths to reacht

through distinct nodesti.

Createk + 1 new verticest, r1, . . . , rk and letM := maxu,v∈V duv. We first create a (not

complete) directed graphG′′ before obtaining our final metric graph. LetG′′ = (V ′, A′′) where

V ′ = V ∪{r1, . . . , rk, t} andA′′ = A∪{tiri, rit : 1 ≤ i ≤ k}∪{tv : v ∈ V }. Define costsd′′uv as

d′′uv =







duv if u, v ∈ V
0 if uv = tiri or uv = rit for some1 ≤ i ≤ k

1 + α(n+ k)M if u = t, v ∈ V

Notice that for anyu, v ∈ V ′ there is a path fromu to v in G′′ and that the shortest path fromt

to any other node has cost at least1 + α(n + k)M since that is the cost of any outgoing arc from

t. Finally, letG′ = (V ′, A′) be the asymmetric metric graph whose distances are obtainedfrom the

shortest path distances inG′′. View G′ as an instance ofk-ATSPP where both the start nodes ∈ V

and end nodet are fixed. LetP1, . . . , Pk′ be paths obtained from running the(α, β)-bicriteria

approximation onG′ wherek ≤ k′ ≤ βk.

There is a solution of cost atOPT in G′ that is obtained by addingri and thent to the end of

each pathP ∗
i in the optimum solution for thek-ATSPP instance onG. SinceP ∗

i ends atti, then the

total cost of the steps added to the paths is 0. So, the total cost of the pathsP1, . . . , Pk′ is at most

αOPT . In particular, this means no pathPi containst as an internal node since the distance fromt

to any other node exceedsα(n + k)M ≥ αOPT (notice that the optimum solution forG contains

at mostn + k arcs, each of cost at mostM). For the same reason, no path contains any of the new

ri nodes except, perhaps, as the second last node.

We can now obtain pathsP ′
1, . . . , P

′
k′ in G from the pathsP1, . . . , Pk′ . For eachi, we have that

Pi stays entirely withinV except for either the last node, which ist, or the last two nodes which

visit somerj before ending att. In the first case, sayv is the second last node on pathPi. Then

d′vt = min1≤j≤k dvtj since the shortest path fromv to t in G′′ first visits the node of the formtj

that is nearest tov. For such a nodetj , we form a pathP ′
i in G that followsPi to v, then finishes

at tj . In the second case wherePi visits somerj and thent, we let the pathP ′
i in G follow P until

89

the node just prior torj , then take one final step totj if the node appearing beforerj onPi is not

alreadytj . In either case, the cost ofP ′
i is the same as the cost ofPi so the total cost of the paths

P ′
i is at mostαOPT . Finally, since each noderj was visited at least once, then for each1 ≤ j ≤ k

there is some pathP ′
i that ends attj . �

Corollary 3.4.4 There is an(O(b log n), (1+ 1
b)k)-bicriteria approximation for single source, mul-

tiple sink instances ofk-ATSPP where.ti are specified.

Proof. This follows from Theorems 3.3.3 and 3.4.3 and the fact that(b + 1)⌊log2(n + k + 1)⌋ =
O(b log n) sincek ≤ n. �

If the start points are subject to the same variations (i.e. no source or multiple source instances

with a single sink), then the analogs of Theorems 3.4.1 and 3.4.3 hold by minor adjustments to the

proofs to create a common start locationss. In fact, any combination of ways to specify the start and

endpoints can be approximated using similar means (e.g. no source and multiple sinks would have

an approximation ratio ofα(n+ k + 2)).

Again, we have to clarify what happens in the multiple source, multiple sink case with sources

S = {s1, . . . , sk} and sinksT = {t1, . . . , tk}. In such a case, the reduction to the case with a

common starts and a common nodet and using a bicriteria approximation for this case guarantees

only that each path starts at somesi and ends at sometj but does not guaranteei = j. In particular, if

the approximation algorithm guarantees that onlyk paths are used (so it is a true approximation, not

a bicriteria approximation), then the only thing we can say about the structure is that the association

of a start nodesi to the end nodetj of the path starting atsi establishes a bijection betweenS and

T . As mentioned before, this is interesting in cases where the“salesmen” that travel fromS to T

are identical so it does not matter which one is received by a node inT .

Finally, we come to the case where we require the path that starts atsi to end atti which we

call Generalk-ATSPP. A bicriteria approximation that uses at mostβk paths s all paths start and

end at some input pair(si, ti) (i.e. no paths can start at somesi and end at sometj for i 6= j) and

has at least onesi − ti path for each1 ≤ i ≤ k. Another way to think of this is that each(si, ti)

pair has at least path and the average number of times an(si, ti)-path is used is at mostβ. Before

presenting the inapproximability of this general problem,we mention how certain interesting cases

of this problem can be approximated well.

3.4.2 A Constant Factor Approximation for General k-TSPP in Symmetric
Metrics

Recall the Generalk-TSPP problem is the following. We are given a set ofk ordered pairs of nodes

(s1, t1), . . . , (sk, tk) in a symmetric metric graphG = (V,E) with distancesduv. The goal is to

find ansi − ti path for each pair whose union spans all nodes. Here, we see that the problem can be

approximated within a constant factor if the metric is symmetric (i.e. duv = dvu for all u, v ∈ V).

90

We may assume the2k nodess1, t1, . . . , sk, tk are distinct by creating multiple copies of each

start and/or end location in the following way. For eachv that is some start nodesi or some end

nodetj , let nv be the number of times thatv appears amongs1, t1, . . . , sk, tk. Replacev with nv

different nodesv1, . . . , vnv
where we defined(vi, u) := d(v, u) for 1 ≤ i ≤ nv andd(vi, vj) = 0

for 1 ≤ i, j ≤ nv. It is trivial to verify that these new distances also satisfy the triangle inequality.

LetR = {s1, t1, . . . , sk, tk} be the collection of2k nodes that are the start or end nodes from some

pair.

Definition 3.4.5 AnR-rooted spanning forestF is an acyclic collection of edgesF such that every

nodev ∈ V is connected to some node inR by edges inF .

The cheapestR-rooted spanning forest is a lower-bound on the optimum solution to k-TSPP.

To see this, supposeP is the set of edges used in the optimumk-TSPP solution. Since the nodes

s1, t1, . . . , sk, tk are all distinct and the distances are metric, then no nodev ∈ V is visited by more

than one path (which also implies each edge is used at most once). We can then obtain anR-rooted

spanning forest by deleting one edge from eachsi − ti path inP , which has cost no less than the

cheapestR-rooted spanning forest.

Let I ⊆ P(E) be the collection of subsets ofE such thatF ∈ I if and only if the graph

GF = (V, F) is acyclic and no two nodes inR are in the same connected component ofGF .

Then the maximal subsets inI are preciesly theR-rooted spanning forests ofG. The following

observation on the structure ofI allows us to compute the cheapestR-rooted spanning forest in

polynomial time.

Theorem 3.4.6 (e.g.Cerdeira [22]) The pairM = (E, I) whereI is defined as in the previous

paragraph is a matroid.

Given this, we use the following algorithm to compute an approximatek-TSPP solution.

Algorithm 6 A 3-approximation for Generalk-TSPP in symmetric metrics
1: Let T1 be a minimum costR-rooted spanning forest
2: Let T2 be the multi-set of edges obtained by doubling each edge inT1

3: T3 ← T2 ∪ki=1 {siti}
4: P ← ∅
5: for each connected componentF of T3 do
6: Let (si, ti) be the unique input pair contained inF
7: Compute an Eulerian walkPF from si to ti in F
8: Shortcut over repeated nodes inPF to obtain ansi − ti pathP ′

F

9: P ← P ∪ {P ′
F }

10: end for
11: return P

Theorem 3.4.7 Algorithm 6 returns a collection ofsi − ti paths whose union spans all nodes.

Furthermore, the cost of these paths is at most3 ·OPT .

91

Proof. By assumption that alls1, t1, . . . , sk, tk are distinct, then each connected component ofT1

(and, thus,T2) has precisely one node inS. Then each connected component inT3 contains precisely

two nodes inS and these correspond to the endpoints of some input pair(si, ti). Furthermore, since

T1 is a subset ofT3, then inT3 every nodev ∈ V is connected to both nodes in some input pair

(si, ti).

Consider a connected componentF of T3 containing a pair, say,(si, ti). Since the degree of

every node inT2 is even, then the degree of every node inF − {si, ti} is even and the degrees ofsi

andti are odd. Thus, there is an Eulerian walk fromsi to ti in F .

We argued that the cost ofT is at mostOPT just before Theorem 3.4.6. It follows that the cost of

T2 is at most2 ·OPT . Since any feasible solution consists of paths fromsi to ti for each1 ≤ i ≤ k

and since following the single edgesiti is the shortestsi − ti path by the triangle inequality, then

the cost of∪ki=1{siti} is also at mostOPT . That is, the cost ofT3 is at most3 · OPT . Now,PF

is an Eulerian walk ofF meaning its cost is exactly the cost of the edges ofF . Shortcutting does

not increase the overall cost, so the cost ofP ′
F is at most the cost ofF . Thus, the final set of paths

returned by Algorithm 6 costs no more than3 ·OPT . �

3.4.3 A Logarithmic Approximation for General k-ATSPP with si = ti.

Now consider the variant of Generalk-ATSPP (back in asymmetric metrics) wheresi = ti for every

1 ≤ i ≤ k. A solution looks like a collection of cycles where each cycle contains a root and each

node lies on one such cycle. Note that there may be “singletoncycles” consisting of a single root

noderi whose corresponding salesman does not visit any other nodes. From now on, we view the

problem as the following. Given an asymmetric metric graphG = (V,A) with distancesduv and

a subset of nodesR = {r1, . . . , rk}, we want to find a collection of cycles of minimum total cost

where each cycle contains one node inR and every node inV −R is on one such cycle.

The classicO(log n)-approximation by Freizeet al. [42] for ATSP can be modified in a simple

way to approximate this variant. Define aR-rooted cycle coveras a collection of cycles where each

node inV −R is on one such cycle but where a node inR is not necessarily on any of these cycles

(which may be thought of as a “trivial cycle” containing onlyone node). For any subsetW ⊆ V

includingR, the cheapestR-rooted cycle cover on the graph induced byW is a lower-bound for

OPT since we can obtain a feasibleR-rooted cycle cover on the graph induced byW by simply

shortcutting past nodes inV −W in the optimum Generalk-ATSPP solution forG.

Lemma 3.4.8 The cheapestR-rooted cycle cover ofG can be computed in polynomial time.

Proof. LetA′ = A∪{l1, . . . , lk}whereli is a self-loop atri with cost 0 (i.e. an arc fromri to itself).

TheR-rooted cycle covers are precisely the common bases betweenthe two partition matroids over

A′ that bound, respectively, the indegree and outdegree of a node by 1. �

92

The algorithm then proceeds in the natural way. Find a minimum costR-rooted cycle cover.

If a cycleC has more than one rootri, then iteratively shortcutC around some roots (but do not

discard the roots) until exactly one root is onC. By the triangle inequality, the cost does not increase

which, by optimality of theR-rooted cycle cover, means the resultingR-rooted cycle cover is also

a minimum costR-rooted cycle cover. Now, for each cycle with no root discardall but one node

(choosing this node arbitrarily). For a cycle containing a root ri, discard all nodes butri from this

cycle. Repeat until onlyR remains, add the cycles found in previous iterations, and shortcut.

Algorithm 7 An O(log(|V −R|)-approximation for Generalk-ATSPP whensi = ti for all i

1: LetD ← ∅
2: LetW ← V
3: while W 6= R do
4: LetD′ be a minimum costR-rooted cycle cover ofW
5: LetC1, C2, . . . , Cl be the cycles ofD′

6: for each cycleCi of D′ do
7: if Ci contains more than one rootthen
8: Shortcut past all but one root inCi

9: end if
10: if Ci contains one rootrj then
11: Let vCi

← rj
12: else
13: Let vCi

be any node onCi

14: end if
15: W ← {vC1

, vC2
, . . . , vCl

}
16: D ← D +D′

17: end for
18: end while
19: for eachi from 1 tok do
20: Find an Eulerian circuitXi in the component containintri
21: ShortcutXi past repeated nodes to obtain a cycleYi

22: end for
23: return {Yi}ki=1

The proof of correctness is near-identical to the proof of correctness for Algorithm 3. The main

difference is that we must deal with multiple components at the end of the main loop. All cycles

found have length at least 2, all but at most 1 node in each cycle is discarded in each step, and

all nodes inW − R appear on at least one such cycle so the number of iterations is bounded by

⌊log2 |V − R|⌋ + 1. The extra+1 is because it takes at mostlog2 |V − R| iterations to reduce the

set of nodes not inR to a single node. One more iteration then guarantees this node is connected to

some root. So, we have just argued the following.

Theorem 3.4.9 There is anO(log |V |−k)-approximation for instances of Generalk-ATSPP where

si = ti for each1 ≤ i ≤ k.

While this is anO(log n)-approximation wheren = |V |, for large values ofk (i.e. l = n −
2o(logn)) it is actually ao(log n)-approximation.

93

3.4.4 Inapproximability of General k-ATSPP

We recall the Generalk-ATSPP problem. We have a collection of start nodess1, . . . , sk and a

collection of end nodest1, . . . , tk in an asymmetric metricG = (V,A) with non-negative distances

duv, uv ∈ A satisfying the directed triangle inequality. We must find a pathPi for each1 ≤ i ≤ k

wherePi starts atsi and ends atti and such that every node inV lies on somePi. The objective is

to minimize the total cost of all pathsPi.

The main result of this section is proving that Generalk-ATSPP cannot be approximated within

any multiplicative factorf(n) wheref(n) is a polynomial-time computable function (e.g.2n or n!)

unless P = NP. The reduction is from the following problem.

Definition 3.4.10 In the tripartite triangle packing problem, we are given a tripartite graphG =

(U ∪ V ∪W,E) with |U | = |V | = |W | = n where no edge inE has both endpoints in a common

partition U, V , or W . A triangle is a subset of 3 nodes for which any two are adjacent in G. The

problem is to determine if it is possible to findn vertex-disjoint triangles inG.

The following can be found in [45].

Theorem 3.4.11The triangle packing problem in tripartite graphs is NP-complete.

We have the following lower-bound on the approximability ofGeneralk-ATSPP. We recall that

a polynomial-time computable functionis a functionf : Z→ Q such thatf(n) can be computed in

timeO(polylog(n)) (i.e. polynomial time in the number of bits used to represent the input).

Theorem 3.4.12Generalk-ATSPP cannot be approximated better than any polynomial-time com-

putable ratiof(n) unless P = NP.

Proof. Let G = (U ∪ V ∪ W,E) be an instance of triangle packing in a tripartite graph with

|U | = |V | = |W | = n. Create a directed graphH with four layers of nodesX1, X2, X3, X4 where

X1 andX4 are disjoint copies ofU , X2 is a copy ofV , andX3 is a copy ofW . For everyuv edge

in G with u ∈ U, v ∈ V , add an arc fromu ∈ X1 to v ∈ X2 in H. For everyvw edge inG with

v ∈ V,w ∈ W , add an arc fromv ∈ X2 to w ∈ X3 in G. Finally, for everyuw edge inG with

u ∈ U,w ∈ W , add an arc fromw ∈ X3 to u ∈ X4. Since every arc is oriented fromXi to Xi+1

for somei = 1, 2, 3 then the graph is acyclic. All of these arcs should have distance 1. Finally, for

everyu ∈ X4 and everyu′ ∈ X1, add an arc directed fromu to u′ of cost3nf(4n). Next, letH ′

denote the asymmetric metric on the same nodes asH where the distance between nodes inH ′ is

their distance inH. For eachu ∈ U , add a salesman that starts at the copy ofu in X1 and ends

at the copy ofu in X4. So, there aren salesmen in total. This instance of Generalk-ATSPP can

be computed in polynomial time becausef(n) is polynomial-time computable. An example of this

reduction is illustrated in figure 3.5.

The claim is that if there is a triangle packing includingn triangles, then there is ak-ATSPP

solution with cost3n. Otherwise, anyk-ATSPP solution must use an edge with cost≥ 3nf(4n),

94

ba

f

e

c

d

a ac e

fb bd

i) ii)

U

VW

X X X X
1 2 3 4

Figure 3.5: i) An instance of tripartite triangle packing with n = 2. ii) The graphH with all cost 1
arcs drawn. The “back arcs” of cost3nf(4n) are not pictured. The final metricH ′ (not pictured) is
shortest paths metric formH. The pathb, d, e, b corresponds (in the sense of the proof) to triangle
{b, d, e} in the first graph. Also, one can see that the graph in image i) does not have a triangle
packing nor does the graph in image ii) have a Generalk-ATSPP solution using only cost 1 arcs.

so the gap between “yes” and “no” instances is at leastf(4n). SupposeT = {(ui, vi, wi)}ni=1 is

a collection ofn vertex-disjoint triangles with eachui ∈ U, vi ∈ V andwi ∈ W . For each such

triangle(ui, vi, wi), we have the salesman starting atui ∈ X1 to travel first tovi ∈ X2, then to

wi ∈ X3, and finally toui ∈ X4. Every node inH ′ is visited since every node is included in some

triangle inT . By construction, every step taken by a salesman traverses an edge of cost 1. Each of

then salesmen then moves a total distance of 3 so the total cost is3n.

Conversely, suppose there is ak-ATSPP solution that avoids using any edge of cost3nf(4n).

Then each of the edges followed by the salesmen must be in increasing order of the levelXi. Since

there are onlyn salesmen and since each salesman can visit only two nodes in addition to their

endpoints, then each salesman visits every layerXi and each node is visited by preciseley one

salesman. Finally, by construction the cost of an edge from layerXi to layerXi+1 is either 1 or at

least3nf(4n). Since we assumed that no edges of cost3nf(4n) were used, then every salesman

must use a weight 1 edge. Thus, the nodes visited by each salesman correspond to a triangle inG

and these triangles partition the nodes ofG. Since the graphH ′ has4n nodes, then first statement

of the theorem holds. �

It may still be possible to devise a bicriteria approximation algorithm for Generalk-ATSPP with

a bounded approximation ratioα using at mostβk paths. We have simply shown that such an

algorithm would necessarily haveβk ≥ k + 1 if P 6= NP.

The instances of Generalk-ATSPP produced in the previous reduction havek = n
4 . We can

slightly modify the reduction in Theorem 3.4.12 to prove a similar hardness for smaller values ofk

relative ton.

Theorem 3.4.13For any constantǫ > 0 and any polynomial-time computable functionf(·), in-

stances of Generalk-ATSPP withk ≥ nǫ cannot be approximated withinf(n) unless P = NP.

95

Proof. Form the same auxiliary graphH as in the reduction in Theorem 3.4.12. Then, append a

directed path of length at leastn
1
ǫ − 4n to the copy ofu1 in X4 and say this path ends at nodeu′

1.

Call this new graphH ′′ and note that total number of nodesN in H ′′ is at leastn
1
ǫ . We also set the

weight of each backward arcuv with u ∈ X4 andv ∈ X1 to be(N − n) · f(N). The metric in

the Generalk-ATSPP instance is then the shortest-path metric completion of H. The salesmen are

similarly defined: for each2 ≤ i ≤ n we define a salesman that starts at the copy ofui in X1 and

ends at the copy ofui in X4. The only difference is that the first salesman starts at the copy ofu1 in

X1 and ends at the new nodeu′
1 at the end of the new path we appended to the copy ofu1 in X4.

If there is a triangle packing, then follow the same paths in thek-ATSPP solution as in the proof

of Theorem 3.4.12 except the first salesman proceeds tou′
1 along the newly-appended path after

reachingu1. The total cost of this solution isN − n. Conversely, anyk-ATSPP solution that avoids

using an arc of cost at least(N − n) · f(N) corresponds naturally to a triangle packing. We note

that the first salesman must visitu1 beforeu′
1 if no arcs of cost at least(N −n) ·f(N) are followed,

so their subpath fromu1 ∈ X1 to u1 ∈ X4 also corresponds to a triangle.

The gap between “yes” and “no” instances is thenf(N). Sincef(N) can be computed in

polynomial time inn, then the reduction takes polynomial time. �

One may ask about even smaller values fork. Currently, it is not known if the canonical

NP-complete problem 3SAT (instances of SAT with at most three variables per clause) has a sub-

exponential time algorithm (i.e. 2o(n)) wheren is the number of variables in the SAT instance and

m is the number of clauses. Note that a2O(n) algorithm for 3SAT is trivial since we can try all

2n possible truth assignments and, in time that is polynomial in n andm, check each such truth

assignment to see if it satisfies the instance. The contribution ofm to the running time is suppressed

sincem = O(n3) in an instance of 3SAT. We can show that approximating General k-ATSPP onN

nodes whenk is polylogarithmic inN would imply a sub-exponential time algorithm for 3SAT.

Theorem 3.4.14There is a constantd > 0 such that for any polynomial-time computable function

f(·) the following holds. Suppose there is a polynomial-time approximation algorithm for instances

of k-ATSPP onN nodes withk ≥ (log2 N)d with ratio better thanf(N). Then there is a sub-

exponential time algorithm for 3SAT.

Proof. Consider the reduction from 3SAT to tripartite triangle packing from [45]. For some constant

c > 0, the running time isO(nc) wheren is the number of variables in the original SAT instance.

By slightly increasingc we may assume that there is a constantn0 such that for alln ≥ n0, instances

of SAT onn variables are reduced to instances of tripartite triangle packing in time at mostnc. If

we denote the size of a partition in the tripartite triangle packing instance byk, thenk ≤ nc since

the size of the resulting instance can be no larger than the running time of the reduction.

Now consider the following reduction from 3SAT to Generalk-ATSPP. Reduce an instanceΦ of

3SAT first to tripartite triangle packing as in [45] (with each partition having sizek ≤ nc) and then

96

to k-ATSPP using the reduction from Theorem 3.4.13, except the path length is⌊2k
1

c(c+1) ⌋ − 4k.

The length of the backward arcsuv with u ∈ X4 andv ∈ X1 is still (N − n) · f(N) whereN

is the number of nodes in this modified version ofH with the sub-exponentially long path. The

resulting metric then hasN ≤ 2k
1

c(c+1) ≤ 2n
1

c+1 nodes. Since the number of bits used to represent

N is polynomial inn, thenf(N) can be computed in time that is polynomial inn. Thus, the

entire reduction takes time that is polynomial in2n
1

c+1 . As in Theorem 3.4.13, the gap between

“yes” and “no” instances is at leastf(N). Finally, the number of paths in the instancek is at least

(log2 N)c(c+1). We let the constantd in the statement of the theorem bec(c+ 1).

Now, suppose there is a polynomial-time approximation algorithm for Generalk-ATSPP when

k ≥ (log2 N)d with ratio better thanf(N). We show how to use this to get a sub-exponential time

algorithm for 3SAT. LetΦ be a 3SAT instance onn nodes. Ifn ≤ n0, we solveΦ by brute force over

all of the possible truth assignments. Asn ≤ n0, there are a constant number of truth assignments

that must be checked. Otherwise, run the reduction outlinedin the previous two paragraphs and then

run the approximation algorithm for Generalk-ATSPP on this instance. The running time of the

reduction to tripartite triangle packing found in [45] is polynomial inn, the reduction to Generalk-

ATSPP is polynomial in2n
1

c+1 , and the running time of the algorithm is polynomial inN ≤ 2n
1

c+1

and log f(N). Sincelog f(N) is bound by a polynomial inn, then the total running time of this

sequence of steps isO((2n
1

c+1
)b) = O(2bn

1
c+1

) for some constantb. That is, the total running time

is 2o(n) sincec > 0. �

97

Chapter 4

Minimum Latency in Asymmetric
Metrics

Minimum Latency problems are similar to Traveling Salesmenproblems except we want to mini-

mize the average time a node waits to be reached, rather than minimize the total travel cost. Min-

imum Latency problems are also referred to as Traveling Repairman problems because they model

the following situation. Imagine you are a repairman and youhave a list of clients that need your

services. Since these clients are likely frustrated that they need repairs, it is more important to your

business that you minimize the average time a client waits tobe served rather than minimize your

total cost of travel.

Recall the formal description of the Minimum Latency problem in asymmetric metrics. We

are given an asymmetric metricG = (V,A) with distancesd on arcs inA. Furthermore, a start

nodes ∈ V is specified. The goal is to find a Hamiltonian pathP in G starting ats to minimize

the following objective. Suppose there aren nodes (includings) and the distance froms to the

k’th node on this path isDk (with D1 = 0 since the first node visited iss). Then the objective

is to minimize the average waiting time1n
∑n

k=1 Dk. Note that we do not actually care about the

distance from the last node inP to s since the time it takes the repairman to travel home does not

affect client satisfaction. We often say that the distance from s to v alongP is thelatencyof node

v in pathP . Also, notice that the average latency of nodes on a pathP is exactly a factorn from

the total latency of all nodes. For the sake of simplicity, from now on we suppose that the cost of

a solution is measured by the total latency of all nodes rather than their average latency. Note that

anα-approximation for minimizing the total latency is also anα-approximation for minimizing the

average latency.

In general, the minimum latency pathP may look very different from the optimum Hamiltonian

path starting froms (i.e. a TSP Path solution starting ats) even if the metric is symmetric (i.e.

duv = dvu for all u, v ∈ V). Consider the following example from [18]. The metricM is simply

the subset ofn + 1 integer points (withn even){0, 1,−2, 4,−8, . . . ,−2n−1} = {0} ∪ {(−2)i :

i = 0, 1, . . . , n− 1} on the real lineR with distances between pointsx, y simply being|x− y|. The

98

0-1 2 8-4-16

Figure 4.1: An instance of the Minimum Latency problem on a subset of points on the real line.
The optimum TSP Path solution that starts ats is picured above the line and the optimum latency
solution is pictured below. The latency of the path above is anΩ(n) factor larger than the latency of
the bottom path.

starting point iss = 0. Then the optimum TSP Path solution travels from0 to 2n−2 and then to

−2n−1. Notice that this path passes by all other client locations and that the total distance of this

path is2n. Any location of the form−22i+1 has latency at least2n−1 since this is the time it takes

the path to travel from 0 to location2n−2 and back to 0 again. There aren/2 such points so the

average latency is thenΩ(2n).

However, consider the solution that visits locations in theorder1,−2, 4,−8, 16, . . . ,−2n−1.

Letting ℓ(i) denote the latency of thei’th node in this list, we haveℓ(1) = 1 andℓ(i) = ℓ(i− 1) +

2i−2+2i−1 = ℓ(i−1)+3 ·2i−2 for i > 1. Inductively, we then haveℓ(i) = 3 ·2i−1−2. Summing

over alli, the total latency is thenO(2n) so the average latency isO(2n/n).

This is anΩ(n)-factor smaller than the average waiting time when following the optimum TSP

Path solution described above. See Figure 4.1 for an illustration of these two solutions. In [18], it is

also noted that some instances of the Minimum Latency problem over points inR2 (with distances

between points being Euclidean distance) have optimum solutions that use crossing edges. On the

other hand, there are no optimum TSP Path solutions that use crossing edges for any instance of

TSPP over points inR2 (e.g., [63]).

The main result of this chapter is an approximation algorithm for the Minimum Latency problem

in asymmetric metrics. Our algorithm also bounds the integrality gap of a particular LP relaxation

that we introduce in sec 4.3.

Theorem 4.0.15There is anO(log n)-approximation algorithm for the Minimum Latency prob-

lem in asymmetric metrics. Furthermore, the integrality gap of linear program 4.4 is bounded by

O(log n).

In some sense, the linear programming relaxation we consider has variables for each nodevi that

look like variables in LP 3.3 for ATSPP with start nodes and end nodevi. Variables for differenti

are then related through some extra “ordering” constraintsthat attempt to order the locations. Along

the way, we require Theorem 3.3.3 and another modification ofTheorem 3.2.6. Specifically, it is not

be sufficient to simply use anyO(k log n)-approximation fork-ATSPP, we need the fact that the LP

presented for ATSPP has anO(k log n) bound on the integrality gap.

99

A generalization of the Minimum Latency problem also considers repair times. Say each node

v has a repair timerv meaning the repairman must takerv time to service nodev before moving to

the next node. We say that the latency of a node is the time it takes to reach the node plus the time

it takes to complete the repair. For simplicity, we say that the start nodes does not have any repair

time. The special caserv = 0 for all v ∈ V is the original Minimum Latency problem. It is quite

easy to incorporate repair times in asymmetric metrics.

Theorem 4.0.16 If there is anα(n)-approximation algorithm for the Minimum Latency problem in

asymmetric metrics, then there is also anα(n)-approximation algorithm for the Minimum Latency

problem in asymmetric metrics with repair times.

Proof. SupposeG = (V,A) is an instance of the Minimum Latency problem in asymmetric metrics

with start nodes ∈ V , distancesd, and repair timesrv. Form a new (nonmetric) graphG′ = (V ′, A′)

whereV ′ consists ofV plus a copyv′ of each nodev ∈ V −{s}. For each new copyv′ of some node

v, add an arc fromv to v′ with costrv (the repair time of nodev) and add an arc fromv′ to v with

cost 0. Finally, the asymmetric metricH is defined as follows. The nodes ofH are{s} ∪ (V ′ − V)

(the starts plus the copyv′ of eachv ∈ V − {s}) and an arcuv of H have distance equal to the

length of the shortest path fromu to v in the graphG′. This asymmetric metricH is the instance of

the Minimum Latency problemwithout repair times. Note thatH andG have the same number of

nodes.

Consider a Hamiltonian path (sayP) s, v2, v3, . . . , vn in G. We claim that the latency of the

Hamiltonian path (sayP ′) s, v′2, v
′
3, . . . , v

′
n in H (without repair times) is equal to the latency of the

pathP in G (with repair times). InP , the latency of nodevi, i > 1 is equal to the length of the path

from s to vi plus the repair times of nodesvj , 1 < j ≤ i. In G′, the shortest path froms to v′2 is

equal tods,v2
plus the repair time ofv2. Similarly, the length of the shortest path fromv′j to v′j+1 is

dvjvj+1
plus the repair time ofvj+1. So, we see that the length of the path froms to v′i in P ′ is equal

the length of the path froms to vi in P plus the repair times of allvj , 1 < j ≤ i.

Similarly, given a Hamiltonian path (sayP ′) s, v′2, v
′
3, . . . , v

′
n in H we can consider the Hamil-

tonian path (sayP) s, v2, v3, . . . , vn. Essentially the same arguments show that the latency ofP ′

(without repair times) is the same as the latency ofP (with repair times). Since solutions to the Min-

imum Latency problems inG andH correspond naturally and have the same cost and since both

G andH have the same number of nodes, then anα(n)-approximation algorithm for the Minimum

Latency problem without repair times can be used to approximate the Minimum Latency problem

with repair times. �

In symmetric metrics, the first constant factor approximation for the Minimum Latency prob-

lem, by Blumet al. [18] guaranteed an approximation ratio of 72. Goemans and Kleinberg [47]

improved this to 21.55, followed by an improvement to 7.18 byArcheret al. [5]. Currently, the best

approximation ratio for the Minimum Latency problem in symmetric metrics is 3.59 by Chaudhuri

100

et al. [25].

A generalization to the setting where we want to find a collection ofk paths in a symmetric metric

that start at a common nodes was considered by Fakcharoenpholet al. [36] where they present a

constant factor approximation. The constant factor was subsequently improved by Chekuri and

Kumar [27]. More generally, Chekuri and Kumar [27] present aconstant-factor approximation when

the repairmen start at different nodes. Finally, a 6-approxomation was presented by Chaudhuriet al.

[25] for the setting ofk repairmen with possibly different start locations. Jothi and Raghavachari

[57] develop a constant-factor approximation for a variantof the problem withk repairmen starting

at a common nodes where each node also has an associated start time.

In asymmetric metrics the only approximation algorithm known before our work for the Mini-

mum Latency problem was anO(n
1
2+ǫ)-approximation by Nagarajan and Ravi [70] that does not

bound the integrality gap of any LP relaxation. They also demonstrate that anα-approximation

for Minimum Latency in asymmetric metrics also implies a4α-approximation for ATSP. That is,

approximating the Minimum Latency problem in asymmetric metrics is, asymptotically, at least as

hard as approximating ATSP.

The first section of this chapter reviews the basic ideas behind approximating the Minimum

Latency problem in symmetric metrics. Not all proofs are provided here, but some of the ideas

that are mirrored in our algorithm are highlighted. The section following this establishes a technical

result concerning the integrality gap of ATSPP that is necessary for our Minimum Latency algorithm.

The LP relaxation for ATSPP ensures that every cut separating s from any other node has capacity

at least 1. We need similar results for a similar LP that has the bound on cut constraints relaxed to

2/3 or 1/2. We show, more generally, that if the cut constraint is replaced byx(δ+(S)) ≥ α where

α > 1/2 and if the indegree and outdegree of a node is only forced to beequal (not to both be equal

to 1), then the integrality gap is stillO(α−1 log n). If the cut constraint is replaced byx(δ+(S)) ≥ 1
k

for some integerk ≥ 2, then we apply the bicriteria approximation result fork-ATSPP from Section

3.3 to find
(

1 + 1
b

)

· k paths whose total cost isO(bk log n) times the optimum value of the LP.

Then, we describe the LP relaxation for the Minimum Latency problem and discusses how to round

a feasible point in this LP to an integer point while increasing the objective function only by an

O(log n) factor.

TheO(log n)-approximation for Minimum Latency in asymmetric metrics in Section 4.3 ap-

peared in [43]. An asymptotically weaker result than Corollary 4.2.3 also appeared in this paper.

4.1 A Review of Minimum Latency in Symmetric Metrics

We review the basic ideas behind the constant-factor approximation for the Minimum Latency prob-

lem in symmetric metrics by Blumet.al. [18]. Though many improvements to the constant factor in

the approximation algorithm have been presented since [18], they are more or less clever refinements

of the basic principles we discuss here. The main deviation of our presentation from the presentation

101

in [18] is that we discuss optimum paths that visitk nodes rather than optimum trees that includek

nodes. Since we are only establishing some intuition regarding the problem here, the simplicity of

paths over trees is preferred. Also, the intuition gained bydiscussing paths translates more directly

to our algorithm for Minimum Latency in asymmetric metrics in Section 4.3.

LetG = (V,E) be an undirected graph with edge distancesduv satisfying the triangle inequality

and lets ∈ V be the start node. Since we are dealing with symmetric metrics, we haveduv = dvu

for all u, v ∈ V . LetOPT denote the total latency of an optimum path that visits nodesin the order

s = v∗1 , v
∗
2 , . . . , v

∗
n. Say the distance froms to v∗k on this path isDk. For any integer1 ≤ k ≤ n, let

Pk denote the optimum cost of a path inG that starts ats and visitsk− 1 other nodes inV (any will

do) and say that this path isPk. Note thatPk ≤ Dk. For simplicity in this discussion, we assume

that we already know the pathsPk (it is NP-hard to compute them).

Assume, by scaling, that all distances are at least 1. First,coarsely organize the nodes in sets

Sj = {vk : 2j ≤ Dk < 2j+1} by their latencies in the optimum solution. Letmj be the maximum

number of nodes that can be covered by a path with cost less than 2j+1. That is,Pmj
< 2j+1

whereasPmj+1 ≥ 2j+1. We construct a Hamiltonian path inG starting ats as follows. For

j = 0, 1, . . . in order, follow the path froms to the end ofPmj
and then back tos again. Report the

first time each node is visited. So, the final solution is constructed by joining the pathsPm0
,Pm1

, . . .

at the common starts and then performing a depth-first search starting atr that first goes downPm0
,

thenPm1
, and so on.

Here is how to bound the cost of these paths. For a nodev∗k in, say,Sj , we have that the latency

of v∗k is less than2j+1. So,mj ≥ k since the path of costDk obtained by visiting the firstk nodes in

the optimum solution has cost less than2j+1. This means thek’th node in the Hamiltonian path we

just constructed is visited before completing the traversal of Pmj
. Since the cost ofPmj

is at most

Pmj
≤ 2j+1 and since each edge onPmj′

, 1 ≤ j′ ≤ j, is traversed at most twice before reaching

thek’th node, then the latency of thek’th node in our solution is at most2
∑

0≤j′≤j 2
j′+1 ≤ 8 · 2j .

Finally, since the latency ofv∗k is at least2j wherev∗k ∈ Sj , then the latency of thek’th node

visited in our solution is at most8 times more than the latency ofv∗k. Summing over allk shows that

the total latency of our solution is at most8 times the total latency of the optimum solution. Note

that this algorithm assumes we can find optimum paths that start at r and visitk − 1 other nodes

which is impossible to do efficiently unless P = NP, but a variant of this algorithm produces an8c-

approximation for the Minimum Latency problem if we only have ac-approximation for computing

these paths.

Of course, this approach will not work in asymmetric metricsbecause we cannot simply travel

“backwards” along a path and expect to have a reasonable bound on the cost. That is, even if we

have ac-approximation to the problem of finding the cheapest path starting ats that visitsk nodes,

we cannot stitch these paths together for varying values ofk as in the undirected case because the

cost of returning tos before traversing the next path might be too expensive.

102

In our algorithm for Minimum Latency in asymmetric metrics,we devise and solve a linear

program that determines a “fractional latency” for each node. Then, we group the nodes according

to their fractional latencies in the LP and approximate a path that visits most nodes in one particular

group using algorithms from Chapter 3. The cost of these paths is bounded by a logarithmic factor

of the latency of the last node in the path which is why we require the integrality gap bounds, not

just approximation algorithms, for ATSPP problems. The nodes in a group that are not covered by a

path are moved into the next group. These paths will be stitched in the naive way: once we reach the

end of one path in one group, go to the next unvisited node in the next group. As mentioned before,

we need to bound the cost of these “back edges”. We do this by using new “ordering” constraints

in the LP that have no analog in the linear programming relaxations for the problems considered in

Chapter 3. These help us bound the cost of these back edges by areasonable factor of the cost of the

LP optimum.

4.2 Relaxed Cut Constraints for ATSPP

In this section, we define a more general LP relaxation for ATSPP. Given some value0 ≤ α ≤ 1,

denote the following LP as LP(α).

minimize:
∑

uv∈A

cuvxuv (4.1)

such that:x(δ+(v)) = x(δ−(v)) ∀v ∈ V − {s, t}

x(δ+(s)) = x(δ−(t)) = 1

x(δ−(s)) = x(δ+(t)) = 0

x(δ+(S)) ≥ α ∀{s} ⊆ S (V (4.2)

xuv ≥ 0 ∀uv ∈ A

If α > 0, it is easy to argue that optimum integer points in this LP correspond to optimum

Hamiltonian paths. We want to bound the integrality gap of this LP, but the weaker cut constraints

make this difficult. To do this, we recall the path/cycle cover LP.

minimize:
∑

e∈A

cuvxuv (4.3)

such that:x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V − {s, t}

x(δ+(s)) = x(δ−(t)) = 1

x(δ−(s)) = x(δ+(t)) = 0

xuv ≥ 0 ∀uv ∈ A

If we also added the constraintx(δ+(v)) = 1 for eachv ∈ V −{s, t} to LP 4.1, then it is easy to

argue that the optimum path/cycle cover is at most the optimum value of LP 4.1 and then we could

103

proceed as in Section 3.2. However, without this extra constraint we have to resort to approximate

bounds.

Lemma 4.2.1 LetW ⊆ V be a subset containings and t and letα > 1/2. Given a solutionx to

LP(α) with cost at mostL, a feasible solution to LP 4.3 onW of cost at most 3
2α−1L can be found.

Proof. Multiply x by 1/α. Now it constitutes a flowF of 1/α units froms to t. Constraints (4.2),

restricted to sets of size 1, imply that each nodeu now has at least one unit of flow going through it.

Find a flow decomposition ofF into paths and cycles, so that the union of the paths is acyclic. Let

F = Fp +Fc, whereFp is the sum of flows on the paths in our decomposition, andFc is the sum of

flows on the cycles.

Choose someγ such that 1
2α < γ < 1. For any nodeu such that the amount ofFp flow

going throughu is less thanγ, shortcut any flow decomposition paths that containu (splitting-off

techniques as in Theorem 3.1.3 are not needed), so that thereis no moreFp flow going throughu.

LetU ⊆W be the set of vertices still participating in theFp flow. Then each vertex inU has at least

γ units ofFp flow going through it, and each vertex inW − U has at least1 − γ units ofFc flow

going through it.

We find a topological ordering of vertices inU according toFp (which is acyclic), and letP be

ans-t path that visits the nodes ofU in this topological order. We claim that the cost ofP is within

a constant factor of the cost ofFp. The argument for this is similar to one in the proof of Theorem

3.2.6. Out of1/α units of flow going froms to t in Fp, each vertexu ∈ U carriesγ units, which

is more than half of the total amount (asγ > 1/2α). So for any two such verticesu andv, there

must be shared flow paths that carry flow of at least2γ − 1/α units. In particular, for every two

consecutive nodesu, v ∈ P , Fp must contain such shared paths in whichv immediately followsu.

So the cost ofP is at most 1
2γ−1/α times the cost ofFp.

We now definẽx as a flow equal to one unit ofs-t flow on the pathP plus 1
1−γ times the flow

Fc. If any nodev 6= s, t hasx̃(δ+(v)) > 1, then we can bypass flow iñx aroundv (again, without

splitting off) until (̃δ+(v)) = 1. We claim that̃x is now a feasible solution to LP 4.3: there is exactly

one unit of flow froms to t and no flow enterss or exitst (asFc consists of cycles not containing

s or t); there is flow conservation at all nodes excepts and t. Now, before bypassing some flow

in x̃(δ+(v)) we have that every node inW − {s, t} supported at least one unit of flow iñx for the

following reason. Ifv is on the pathP then it gets at least one unit of flow from the path. Otherwise,

v supported at least1 − γ flow from Fc which, after scaling by 1
1−γ , meansv supported at least 1

unit of flow in x̃. After shortcutting, everyv ∈W − {s, t} then supports exactly one unit of flow in

x̃.

The cost of this solution is at most

1

2γ − 1/α
· cost(Fp) +

1

1− γ
· cost(Fc) ≤ max

(

1

2γ − 1/α
,

1

1− γ

)

· 1
α
L.

If we setγ = 1
3 + 1

3α , which satisfies1
2α < γ < 1, we see that the cost of̃x is at most 3

2α−1 · L. �

104

2 3

4 5

1 6

1

1

1

1

1

1

1

1

D

Figure 4.2: Bad gap example for LP (α) with α = 1/2. Here,D is an arbitrarily large integer.

Now we can bound the integrality gap of LP(α) by the following.

Corollary 4.2.2 For α > 1
2 , the integrality gap of LP(α) is at most6 log2 n+3

2α−1 .

Proof. We use Algorithm 4 as in the proof of Theorem 3.2.6 to bound theintegrality gap. The only

difference is that we cannot bound the cost of the optimum path/cycle ofW cover byOPT because

we do not have constraintsx(δ+(v)) = 1 andx(δ−(v)) = 1 for v ∈W −{s, t} in LP 4.1. However,

Lemma 4.2.1 says that the optimum path/cycle cover on a subset W containints andt is at most
3·OPT
2α−1 so we can proceed as in the proof of Theorem 3.2.6 with this weaker bound. �

We note that forα ≤ 1/2, the gap between the optimum ATSPP solution and the optimum

solution to LP(α) can be unbounded. For example, letD be an arbitrarily large value and consider

the shortest path metric obtained from the graph in Figure 4.2. It is easy to check that the following

assignment ofx-values to the arcs is feasible for LP(α) with α = 1/2. Assign a value of 1/2 to

arcs (1,2), (3,2), (3,6), (1,4), (5,4), and (5,6) and a valueof 1 to arcs (2,3), (4,5). Every other arc is

assigned a value of 0. This assignment is feasible for the linear program and has objective function

value 5. On the other hand, it is easy to verify that any Hamiltonian path from 1 to 6 has cost at least

D.

On the other hand, if we multiply a solution to LP(1/k) by k (and, perhaps, split off around some

nodes sox(δ+(v)) = x(δ−(v)) = 1), it becomes a point in the relaxation for thek-ATSPP LP 3.5.

The following is then a simple consequence of Theorem 3.3.3.It is also be used in Section 4.3.

Corollary 4.2.3 For any integerb ≥ 1, one can efficiently find a collection of
(

1 + 1
b

)

·k paths from

s to t of total cost at most(b+ 1) · k · log2 n times the optimum value of LP(1/k).

Proof. Multiplying the solution to LP(1/k) by k increases its cost byk. If necessary, split off flow

passing through nodesv ∈ V − {s, t} until they support exactly 1 unit of flow. Theorem 3.3.3 then

says we can then find
(

1 + 1
b

)

·k paths froms to t whose union spans all nodes while losing at most

an additional factor of(b+ 1) log2 n. �

105

We note that a similar result in [43] shows how to find at mostk log2 n paths whose total cost is

at mostk log2 n times the optimum solution to LP(1/k). While the number of paths found by this

result is much more than the number found in Corollary 4.2.3 (even forb = 1), the bound on the

cost of these paths is less than the bounds in Corollary 4.2.3(though, only by a constant factor when

usingb = 1 in the corollary). It’s interesting to note that even this result, which uses many more

paths, would have been sufficient for the results in Section 4.3 after making minor modifications to

Algorithm 8 and some proofs in that section. The interested reader can find the details in [43].

4.3 Approximating Minimum Latency in Asymmetric Metrics

The algorithm in this section for Minimum Latency in asymmetric metrics works when both the

start and end nodes are specified. We may suppose that the end locationt is specified by guessing all

possible endpoints and running the proceeding algorithm. So, our instance of the Minimum Latency

problem is to find a Hamiltonian path from the start nodes to the end nodet such that the total

waiting time of all nodes along this path (includingt) is minimized.

The LP relaxation we use is quite large. To gain some intuition regarding its formulation, we

discuss some of the motivation behind the constraints before presenting the final LP. First, mini-

mizing the average waiting time and the total waiting time isessentially the same goal; the total

waiting time is precisely a factorn larger than the average waiting time. So, we say that our goalis

to minimize the total waiting time.

Now, if P is the path used in an optimum solution then we can view the total waiting time (not

average) as the sum of the costs of each of the subpaths ofP that start ats. We formulate the LP

to have a collection of variables for each nodev that model a path froms to v as a flow of value 1.

To add some consistency between flows for different nodesv, we can add constraints to ensure that

each such flow is a “subflow” of the flow froms to t. So, for each nodev and each edgee = uw,

we letfv
uw be the total amount of the unit flow froms to v supported by edgeuw. Saying that the

flow from s to v is a subflow of the flow froms to t amounts to placing the constraintfv
uw ≤ f t

uw

for each edgeuw. The objective function is then the sum of the costs of each ofthese flows.

In the introduction to this chapter, we mentioned that many paths are generated throughout the

course of the rounding algorithm rather than a single path from s to t. Then, we stitch these paths

together by traveling from the end of one path to the first unvisited node in another path. To bound

the cost of stitching these paths together, we introduce ordering variablesxuv where the idea is that

u comes beforev in the solution whenxuv = 1. Since the nodes are totally ordered by the optimum

pathP , we havexuv + xvu = 1 for all distinct pairs of node. In other words, it must be thateither

u comes beforev or v comes beforeu.

We actually require a refinement of the notion of ordering constraints. In an optimum solution,

if u comes beforev then the subpath froms to v passes throughu. More generally, for any triple

of distinct nodesu, v, w we usexuvw to indicate thatv lies afteru and beforew in the solution.

106

Again, for distinctu, v, w we have the following. Ifu comes beforew, then eitherv appears before

u, betweenu andw, or afterw. In an integer solution, this amounts toxvuw + xuvw + xuwv = 1.

Finally, if u comes afterw thenxvuw = xuvw = xuwv = 0 in an integer solution. Both cases are

modelled in the LP by the constraintxvuw + xuvw + xuwv = xuw.

Next, we can force the flow froms to v to pass through anyu appearing beforev in the following

way. For any setS containingu but not containings, we can add a constraint that says the total flow

in fv on arcs exitingS must be at leastxuv. In the ideal case where thex values are integers, ifu

comes beforev then this ensures that the unit of flow froms to v passes throughu. Otherwise, ifu

comes beforev then no flow is required to pass throughu.

One final class of variables we add, for technical reasons to be seen later, is a variableℓ(v) for

eachv that is the “latency” of nodev. In an optimum integer solution, this is simply the cost of

the subpath froms to v. However, we also know that ifu, v, w appear in this order, then the cost

of the path tow is at leastdsu + duv + dvw. So, we may constrain the latency ofw to be at least

(dsu+duv+dvw) ·xuvw; this will be useful in the rounding procedure. LP 4.4 is the linear program

we use based on these ideas.

minimize:
∑

v 6=s

ℓ(v) (4.4)

such that:ℓ(v) ≥
∑

uw

duwf
v
uw ∀v

ℓ(v) ≥ [dsu + duw + dwv]xuwv ∀u,w, v : |{u,w, v}| = 3 (4.5)

ℓ(t) ≥ ℓ(v) ∀v

xuw = xvuw + xuvw + xuwv ∀u,w, v : |{u,w, v}| = 3 (4.6)

xuw + xwu = 1 ∀u,w : u 6= w (4.7)

xsu = xut = 1 ∀u /∈ {s, t} (4.8)
∑

w

fv
wu =

∑

w

fv
uw∀v, ∀u /∈ {s, v} (4.9)

∑

w

fv
sw =

∑

w

fv
wv = 1 ∀v (4.10)

fv
us = fv

vu = 0 ∀u, v (4.11)
∑

w

fv
uw = xuv ∀v, u 6= v (4.12)

fv
uw ≤ f t

uw ∀u,w, v (4.13)

fv(δ+(S)) ≥ xyv {s} ⊆ S (V, y ∈ S (4.14)

xuw, xuwv, f
v
uw ≥ 0 ∀u,w, v

We note that the LP can be solved in polynomial time using the ellipsoid method. The number

of variables isO(n3) and there are only polynomially many instances of each constraint type except

Constraints (4.14). However, we can use a max-flow/min-cut algorithm to separate over these con-

107

straints. In particular, for everyv we form a graphGv on V where the capacity of an edgewx is

fv
wx. Then for everyy as in the constraint, we check that the minimumy, v cut inGv has value at

leastxyv.

First, we prove that integer solutions correspond to feasible paths with the same total latency.

Let P be a Hamiltonian path froms to t. Setxuv = 1 if u appears beforev onP , and 0 otherwise.

Similarly, setxuvw = 1 if u, v, w appear in this order onP , otherwise setxuvw = 0. Let l(v) denote

the cost of the subpath ofP from s to v. Finally, for a nodev, setfv
uw = 1 if u appears immediately

beforew andw appears sometime beforev onP . All constraints are easy to check if we remember

that variables of the formfv are simply indicators of the edges of the subpath ofP from s to v.

Conversely, supposex, f are integer points in the polytope. Thex variables are clearly only 0

or 1 (e.g.Constraints (4.7) and (4.6)). From this and Constraint (4.12) we must havefv
uw ≤ xuv for

u, v, w : u 6= v. Foru = v, we havefv
v,w = 0 by (4.11). Thus, each variable in the LP is assigned

a value of only 0 or 1. LetPv denote the set of edges{uw : fv
uw > 0}. Then the out-degree of

s and in-degree oft is exactly 1 using edges inPv by Constraint (4.10). By the flow conservation

Constraints (4.9),Pv is a path froms to v plus, perhaps, some cycles on nodes not on this path.

Now, if fv
uw = 1 thenf t

uw as well by Constraint (4.13). So, ifPv contains a cycle thenPt must

also contain a cycle. But this is impossible since ifC were such a cycle, Constraint (4.14) would

be violated forv = t, S = C and any nodey ∈ C becausexyt = 1. So,Pv is just a path froms

to v. Since any such path must be a subpath ofPt, thenPv must be a subpath ofPw for v, w with

xvw = 1. Finally, the cost ofPv is exactlyl(v) so the total latency of the pathPt is equal to the

value of the LP under this integer solution.

We begin the rounding algorithm with a lemma that allows to group the nodes into onlyO(log n)

groups based on their latency.

Lemma 4.3.1 Given a feasible solution to LP (4.4) with objective valueL, we can find another

solution of value at most(1+ 1
n)L in which the ratio of the largest to smallest latencyℓ(·) is at most

n2.

Proof. Let (x, ℓ, f) be a feasible solution with valueL, with ℓ(t) the largest latency value in this so-

lution. Note thatL ≥ ℓ(t). Define a new feasible solution(x, ℓ′, f) by ℓ′(v) = max{ℓ(v), ℓ(t)/n2}.
The total increase in the objective function is at mostn · ℓ(t)n2 ≤ L/n as there aren nodes in total.

Thus, the objective value of this new solution is at most(1 + 1/n)L. �

Using Lemma 4.3.1 and scaling the edge lengths (if needed), we can assume that we have a

solution(x, ℓ, f) satisfying the following:

Corollary 4.3.2 There is a feasible solution(x, ℓ, f) in which the smallest latency is 1 and the

largest latency is at mostn2 and whose cost is at most(1 + 1
n) times the optimum LP solution.

LetL∗ be the value (i.e. total latency) of this solution.

108

The idea of our algorithm is to constructs-v paths for several nodesv, such that together they

cover all vertices ofV , and then to “stitch” these paths together to obtain one Hamiltonian path. We

use our results for ATSPP to construct these paths. For this,we observe that parts of a solution to the

latency LP (4.4) can be transformed to obtain feasible solutions to different instances of LP(α). For

example, we can construct a Hamiltonians-t path of total lengthO(log n) · ℓ(t) as follows. From

a solution to LP (4.4), take thet-flow defined by the variablesf t
uw, and notice that it constitutes a

feasible solution to LP 3.3. In particular, sincexyt = 1 for all y, Constraints (4.14) of LP (4.4) for

v = t imply that the cut constraints of LP 3.3 are satisfied. The objective function value for LP 3.3

of this solution is at mostℓ(t). Thus, by Theorem 3.2.6, we can find the desired path. Of course,

this path is not yet a good solution for the latency problem, as even nodesv with ℓ(v) ≪ ℓ(t) can

have latency in this path close toO(log n) · ℓ(t). Our algorithm constructs several paths of different

lengths, incorporating most nodesv into paths of lengthO(log n) · ℓ(v), and then combines these

paths to obtain the final solution.

Algorithm 8 An O(log n)-Approximation for Minimum Latency in Asymmetric Metrics

1: Let (x, ℓ, f) be a solution to LP (4.4) as described by Corollary 4.3.2. LetS be the path{s}.
2: Partition the nodes intog = ⌊log2 ℓ(t) + 1⌋ setsV1, . . . , Vg with v ∈ Vi if 2i−1 ≤ ℓ(v) < 2i.
3: for i = 1 to g − 1 do
4: for j = 1 to 2 do
5: if Vi 6= ∅ then
6: Let vji = argmaxv∈Vi

|{u ∈ Vi : xuv ≥ 1
2}| ⊲ this maximizes the size ofBj

i below
7: LetAj

i = {u ∈ V : xuvj
i
≥ 2

3 + 2i−2+j
24 log2 n}

8: LetBj
i = {u ∈ Vi : xuvj

i
≥ 1

2} ⊲ |Bj
i | ≥ (|Vi| − 1)/2

9: Find ans-vji pathP j
i , containingAj

i , of costδ1 log2 n · 2i; appendP j
i to S.

10: Find twos-vji pathsPj
i , containingBj

i , of cost at most8 log2 n · 2i; appendPj
i to

S.
11: Vi = Vi − (Aj

i ∪Bj
i ∪ {vji }) ⊲ size ofVi is at least halved

12: end if
13: end for
14: Let Vi+1 = Vi+1 ∪ Vi ⊲ remaining nodes are carried over to the next set
15: end for
16: Construct ans-t pathPg, containingVg, of cost at most(2 log2 n+ 1) · ℓ(t). AppendPg to S.
17: ShortcutS over the later copies of repeated nodes. OutputS.

4.3.1 Constructing the Paths

Algorithm 8 finds an approximate solution to the Minimum Latency problem, and we now explain

how some of its steps are performed. The algorithm maintainsa pathS, initially containing only the

start nodes, and gradually adds new parts to it. This is done through operationappendon lines 9,

10, and 16. To append a pathP to S means first to extendS to incorporate the nodes ofP by going

from the last node ofS to the first node inP not already covered bys and then following pathP .

The new path is obtained from this walk by shortcutting past nodes that appeared earlier in the walk.

If all nodes inP are already covered byS, then the result of appendingP to S is simplyS. For

109

s

a

d

b c

e s

a

d

b c

e

Figure 4.3: Appending the dashed path to the solid path.

example, ifS = sabc andP = sbdce, the walk that results issabcdce. After shortcutting, the walk

is simplysabcde. See Figure 4.3 for an illustration. Step 10 appends a set of paths toS. This just

means sequentially appending all paths in the set, in arbitrary order, toS.

Next we describe how to build pathsP j
i andPj

i in Steps 9 and 10. We described above how to

use Corollary 4.2.2 to build a Hamiltonians-t pathP of length(2 log2 n+1) ·ℓ(t), which is used on

line 16 of the algorithm. The idea behind building pathsP j
i andPj

i with their corresponding length

guarantees is similar.

To constructP j
i , we do the following. Since each nodeu ∈ Aj

i hasxuvj
i
≥ 2/3, the amount of

vji -flow that goes throughu is at least2/3. We apply splitting-off on this flow to nodes outside of

Aj
i , and obtain a total of one unit ofs-vji flow over the nodes inAj

i , of cost no larger thanℓ(vji) ≤ 2i.

This flow satisfies all the constraints of LP(α = 2/3), including the set Constraints (4.2), which are

implied by the set Constraints (4.14) of the latency LP (4.4), asxuvj
i
≥ 2/3 for u ∈ Aj

i . Thus, using

Corollary 4.2.2, we can find a path froms to vji , spanning all the nodes ofAj
i , whose cost is at most

δ1 log2 n · 2i for some constantδ1.

To obtain the set of pathsPj
i , we look at thevji -flow going through each node ofBj

i , whose

amount is at least12 . Apply splitting-off on thevji -flow to nodes outside ofBj
i to, again, obtain a

total of one unit ofs-vji flow over the nodes inBj
i of cost nol arger thanℓ(vji) ≤ 2i. Furthermore, the

amount of flow passing through each node inBj
i remains at least12 , so the resulting flow satisfies

all the constraints of LP(α = 1/2) including the set Constraints (4.2). This time, use Corollary

4.2.3 withb = 3 to obtain 2 paths froms to vji which span all nodes inBj
i with total cost at most

8 · log2 n · 2i.

4.3.2 Connecting the paths

We now bound the lengths of edges introduced by the append operation in the different cases. The

cost of the path obtained by appending pathP to the existing pathS is at most the cost ofP plus

the cost ofS plus the cost of the edge from the end ofS to the first node inP that does not appear

in S. Let app(P) denote the cost of this new edge.

Lemma 4.3.3 For anyi, j, and pathP ∈ Pj
i , app(P) ≤ 6 · 2i. Also,app(Pg) ≤ 6 · 2g.

110

s

u

w

v i
j

S

&

Figure 4.4: An illustration of the nodesu,w andvji on the pathsS andP in the proof of Lemma
4.3.3. The dashed edge is the edge that was used to “stitch” the paths together in the append opera-
tion.

Proof. Let u be the last node of the pathS before the append operation,vji be the last node ofP ,

andw be the first node ofP that does not appear inS. If there is no such node, then the append

operation simply returnsS and there is no cost increase. The pathsS, P and nodesu,w andvji are

illustrated in Figure 4.4. We need to boundduw, the distance fromu tow.

We observe thatxwu ≤ 5/6. If u = s, this is trivial. Otherwise,u = vj
′

i′ is the endpoint of some

path constructed in an earlier iteration. Note thatj′ ≤ 2 andi′ ≤ g − 1 ≤ log2 ℓ(t) ≤ 2 log2 n by

our assumption thatℓ(t) ≤ n2, which means that56 ≥ 2
3 +

2i′−2+j′

24 log2 n . So, if we hadxwu > 5/6, then

w would be included in the setAj′

i′ and in the pathP j′

i′ , and thus be already contained inS, which

is a contradiction (note it cannot be thatw was in another path inPj
i since these paths share onlys

andvji).

Consequently,xuw = 1− xwu ≥ 1/6. This means that the amount ofw-flow that goes through

u is at least1/6. Since this flow has to reachw after visitingu, it has to cover a distance of at least

duw, thus adding at least16 · duw to ℓ(w), the latency ofw. Thus,ℓ(w) ≥ 1
6duw, andduw ≤ 6ℓ(w).

Now, if w ∈ Pj
i , it must be inBj

i , which, by definition, means thatw ∈ Vi, and thereforeℓ(w) ≤ 2i.

Soapp(P) = duw ≤ 6 · 2i. If w ∈ Pg, thenapp(Pg) ≤ 6ℓ(w) ≤ 6ℓ(t) ≤ 6 · 2g. �

To bound the cost of appending a pathP j
i to S, we need an auxiliary lemma. Informally, it

says that if the LP suggests thatu,w, v should appear in this order, then the latencyℓ(v) of v is a

significant fraction of the distance fromu tow.

Lemma 4.3.4 For anyǫ > 0, if xuw + xwv ≥ 1 + ǫ, thenℓ(v) ≥ ǫ · duw.

Proof. Using Constraint (4.6) we have:

1 + ǫ ≤ xuw + xwv

= (xvuw + xuvw + xuwv) + (xuwv + xwuv + xwvu)

= 2xuwv + (xvuw + xuvw) + (xwuv + xwvu).

On the other hand,(xvuw +xuvw)+ (xwuv +xwvu) ≤ xvw +xwu = 2− (xuw +xwv) ≤ 1− ǫ,

using again Constraint (4.6), then Constraint (4.7), and the assumption of the lemma. Therefore,

111

2xuwv ≥ (1 + ǫ)− (1− ǫ) = 2ǫ, i.e.xuwv ≥ ǫ. Then the claim follows using Constraint (4.5).�

Lemma 4.3.5 For anyi andj, app(P j
i) ≤ 24 log2 n · 2i.

Proof. Let u, vji , andw be as in the proof of Lemma 4.3.3. To boundduw, we consider two cases.

Case 1:If w ∈ Vi, we apply the same proof as for Lemma 4.3.3 and conclude thatapp(P j
i) ≤

6 · 2i.
Case 2:If w 6∈ Vi, let (i′, j′) be an earlier iteration of the algorithm in which nodeu = vj

′

i′ was

added toS. Sincew /∈ S, it must be thatw /∈ Aj′

i′ , and thusxwu < 2
3 + 2i′−2+j′

24 log2 n . On the other

hand, sincew ∈ Aj
i , it must be thatxwvj

i
≥ 2

3 + 2i−2+j
24 log2 n . Because2i′ + j′ ≤ 2i+ j − 1, we have

xuw + xwvj
i

= (1− xwu) + xwvj
i

≥ 1− 2i′ − 2 + j′

24 log2 n
+

2i− 2 + j

24 log2 n

≥ 1 +
1

24 log2 n
.

Using Lemma 4.3.4, we get that

app(P j
i) = duw ≤ 24 log2 n · ℓ(vji) ≤ 24 log2 n · 2i. �

4.3.3 Bounding the Cost

Now we bound the latencies of the nodes in the path returned byAlgorithm 8.

Lemma 4.3.6 Suppose that a nodev is first added to pathS in iteration k of the outer loop of the

algorithm. Then the latency ofv in S is at mostδ2 log2 n · 2k, for some constantδ2 > 0.

Proof. Let len(P) denote the length of a pathP . The latency of nodev onS is at most:

k
∑

i=1

2
∑

j=1



len(P j
i) +

∑

P∈Pj
i

len(P) + app(P j
i) +

∑

P∈Pj
i

app(P)





≤
k

∑

i=1

2
∑

j=1

[

δ1 log2 n · 2i + 8 log2 n · 2i + 24 log2 n · 2i + 2 · 6 · 2i
]

≤ δ2 log2 n · 2k

�

Suppose thatni is the number of nodes that are originally placed into the setVi. Since a nodev

is originally placed inVi if ℓ(v) ≥ 2i−1, the value of the LP solutionL∗ can be bounded by:

L∗ =
∑

v

ℓ(v) ≥
g

∑

i=1

ni 2
i−1. (4.15)

Suppose nodev was initially placed inVi (so ℓ(v) ≤ 2i). Ideally, we would like to bound the

final latency ofv by O(log n) · 2i. If we could do this, then the total latency would be at most

112

O(log n)
∑n

i=1 ni2
i ≤ O(log n)L∗. However, the algorithm may move some node fromVi to some

Vj with j > i and the bound on their latency cannot be described so simply.The key observation is

that at most one quarter of the nodes inVi are moved up toVi+1 after iterationi of the outer loop.

Since the latencies of the groups double asi increases and since at most one quarter of each group

Vi is moved to a higher group, then summing a geometric series shows that the average increase of

the latency of a node is stillO(log n).

More formally, letn′
i denote the size ofVi at the beginning of iterationi of the outer loop. Note

thatn′
i may be larger thanni since some nodes may have been moved toVi in Step 14 of the previous

iteration.

Claim 4.3.7 For anyi, the size of the setVi at the end of iterationi is at mostn′
i/4.

Proof. Consider the iteration(i, j = 1). Note that the vertexvji is chosen precisely to maximize the

number of nodesu in Vi with xuvj
i
≥ 1/2, which is the size of the setBj

i .

LetBu = {v ∈ Vi : xvu ≥ 1
2} at the start of iterationi. The size ofBu is the number of ordered

pairs(v, u) with xvu ≥ 1/2. By Constraint (4.7) we havexuv ≥ 1/2 or xvu ≥ 1/2 for any two

u 6= v in Vi, so the total number of ordered pairs(u, v) with xuv ≥ 1
2 is at leastn

′

i(n
′

i−1)
2 . Since

there aren′
i nodes, then there must be someu such that at leastn

′

i−1
2 other nodesv havexvu ≥ 1/2.

SinceBu consists of these nodes andu itself, then|Bu| > n′

1

2 .

After iterationj = 1, we then have|Vi| ≤ n′
i/2 sinceB1

i ∪ {vji } is removed fromVi. Repeating

this argument shows that|Vi| ≤ n′
i/4 after iterationj = 2 because the size ofVi is again cut in half.

�

Finally, we can prove our main result.

Theorem 4.3.8 The total latency of pathS returned by Algorithm 8 isO(log n) · L∗.

Proof. From Claim 4.3.7, it follows that at most a1/4 fraction of then′
i nodes that are inVi at

the beginning of iterationi are moved to the setVi+1 at the end of this iteration. Thus, for any

1 < i ≤ g, n′
i ≤ ni + n′

i−1/4. Inductively, this implies thatn′
i ≤

∑i
h=1 nh/4

i−h.

Now we claim that the total latency of the solutionS is at most
∑g

i=1 n
′
i · δ2 log2 n · 2i. This

is because at mostn′
i nodes are added toS in iterationi, and each such node has latency at most

δ2 log2 n · 2i (using Lemma 4.3.6). Therefore, the total latency of the solution is at most:

g
∑

i=1

n′
i · δ2 log2 n · 2i ≤

g
∑

i=1

δ2 log2 n · 2i ·
i

∑

h=1

nh

4i−h

= δ2 log2 n

g
∑

i=1

i
∑

h=1

2h−i · 2h nh

≤ δ2 log2 n

g
∑

h=1

2h nh

∞
∑

i=0

1

2i

≤ O(log n) · L∗,

113

using the bound onn′
i, re-ordering the summation, and using inequality (4.15). Combined with

Corollary 4.3.2, this proves the theorem. �

One might wonder if the integrality gap of the LP relaxation 3.3 for ATSPP isO(log n/ log log n)

since the integrality gap for its ATSP counterpart is bound by the same ratio [9]. While bounding

the integrality gap of LP 3.3 byo(log n) is still an open problem, it is natural to ask if this (and

a similar improvement to thek-ATSPP relaxation 3.5) would imply a similar improvement tothe

approximability of the Minimum Latency problem in asymmetric metrics? This is not immediately

true from our algorithm. As noted earlier, we lost anO(log n)-factor for essentially two reasons.

One is that the integrality gap for LP 3.3 (and for LP 3.5 withk = 2) was shown to be onlyO(log n).

The other is that we grouped the nodes intoO(log n) groups which affected the cost of the solution

by O(log n) in Lemma 4.3.5.

If we wanted to scale the latencies in Lemma 4.3.1 so that the gap between the smallest and

largest latencies wasf(n) with log2 f(n) = o(logN), this would require we increase eachℓ(v)

to be at leastℓ(t)/f(n) and the bound on the cost increase would be
(

1 + n
f(n)

)

. But anyf(n)

with log2 f(n) = o(log n) hasf(n) = o(nǫ) for all constantsǫ > 0 so the cost increase would be

at leastΩ(n1−ǫ) for all constantsǫ > 0. In other words, the cost would increase by far too much

to guarantee ao(log n)-approximation ratio. So, if one wanted to improve the approximability of

Minimum Latency in asymmetric metrics given improved bounds on integrality gaps for ATSPP and

k-ATSPP LP relaxations, then revisions to this approach, or anew approach altogether, are required.

114

Chapter 5

Conclusion

We conclude by discussing some directions for future work with the problems considered in this

thesis and some of their variants. We first discuss directions for the Unsplittable Flow problem

on Paths and then discuss directions for the Traveling Salesman variants discussed in this thesis.

Directions for Minimum Latency problems will be discussed along with the Traveling Salesman

variants.

5.1 Future Directions - Unsplittable Flow Problems on Paths
and Trees

There are two open problems regarding UFP that, in the author’s mind, seem most interesting. First

is the question of a PTAS. While a constant factor approximation has recently been demonstrated for

UFP [19], there is still a gap between the strong NP-hardnesslower bound (also from [19]) and this

constant upper bound. If the input demands are constrained to be integers at most quasi-polynomial

in n, then the problem does indeed admit a quasi-PTAS, a(1+ ǫ)-approximation runnining in quasi-

polynomial time for any constantǫ > 0 [12]. Can ideas from these two algorithms be combined

to achieve a PTAS for the general problem? The constant-factor approximation deals with slack

and tight tasks separately, but there are ideas in [12] that combine LP approaches and dynamic

programming approaches to obtain the quasi-PTAS in their restricted setting. The LP based parts

of the algorithm in [19] also only use the weaker LP relaxation 2.1 and do not utilize the stronger

constraints in LP relaxation 2.2 or the strong LP relaxationconsidered in [26].

The second main problem is whether the integrality gap of LP relaxation 2.2 or, equivalently,

the LP relaxation for UFP considered in [26] is bounded by a constant. As mentioned before, the

integrality gap of this LP was shown to beO(log2 n) which was subsequently improved toO(log n),

but no super constant lower bounds are known. Furthermore, in this thesis we showed that the

integrality gap was constant in certain sparse instances, namelyq-conflicting instances whenq is

a fixed constant. TheO(log n) bound on the integrality gap is shown by performing the same

decomposition into intersecting instances as we considered in Section 2.2 and then demonstrating

115

that the integrality gap of the LP relaxation is bounded by a constant in intersecting cases. So, if

the integrality gap is super constant then such an instance would have to resist decomposition onto

collections of disjoint intersecting instances, much likethe example presented at the beginning of

Section 2.3.

An interesting place to start bounding the integrality gap of LP 2.2 would be the case with unit

profits. Chuzhoy and Chalermsook [34] show that the Maximum Independent Set of Rectangles has

an integrality gap that is bounded byO(log log n) for the case when all rectangles have unit profit.

Their algorithm also uses the constant-factor approximation for instances of Maximum Independent

Set of Rectangles where each point in the plane is covered by at most a constant number of rectan-

gles. Our algorithm forq-conflicting instances may prove useful here in a similar waythe algorithm

of Lewin-Eytanet al. [64] was used in [34].

There are also interesting open questions for the more general case of Unsplittable Flow in trees.

The current best approximation algorithm has anO(log2 n)-approximation ratio, but the best lower

bound is only constant. Determining the best polynomial-time approximation ratio (assuming some

complexity theory barrier) is an interesting question. Is there a constant approximation for Unsplit-

table Flow in trees or can we prove a super-constant lower bound? In either case, the author believes

that anO(log n)-approximation should be obtainable. The results in this thesis critically rely on

“left tight”, “right tight” and “both tight” properties which does not generalize well to Unsplittable

Flow with unbounded degree trees. However, a good start might be to generalize these algorithms

(or the algorithm in [19]) to the case of bounded-degree trees.

The LP relaxation for UFP developed in [26] also does not generalize well to a polynomial-

time solvable LP relaxation for Unsplittable Flow in trees.Another interesting problem is to devise

an efficiently solvable/approximable LP relaxation for Unsplittable Flow in trees that has at most

a polylogarithmic integrality gap. Perhaps it is even possible to produce an LP relaxation with a

constant integrality gap in trees.

5.2 Future Directions - Asymmetric Traveling Salesman Path
and Minimum Latency Problems

There are numerous interesting problems that should be addressed concerning the Traveling Sales-

man variants discussed in this thesis. Starting with ATSPP,we know from [38] that the approxima-

bility of ATSP and ATSPP differs by a multiplicative factor2 + ǫ for any constantǫ > 0. However,

their result does not extend to integrality gaps. In particular, the author is interested in knowing if

the integrality gaps for the Held-Karp relaxations for bothATSP and ATSPP differ by a constant

factor.

A possible starting point would be to see if the recent algorithm in [9] that proves the integrality

gap of the HK LP relaxation for ATSP isO(log n/ log log n) can be adapted to prove the same

asymptotic bound for the integrality gap of the HK LP relaxation for ATSPP. The first technical

116

challenge is that the assignmentze := xuv + xvu for the undirected graph obtained from a pointx

in the ATSP polytope already fits in the base polytope for the graphic matroid without scaling by
n−1
n . The result in [9] relies on this scaling so that the resulting point in the spanning tree polytope

is in the relative interior of this base polytope. This is not too serious as we could use,say, the

randomized swap roundingtechnique by Chekuriet al. [31] to sample a random spanning treeT

with the required negative correlation properties such that Pr[e ∈ T] = ze. This works foranypoint

in the polytope, not just one in the relative interior. A moreserious obstacle to a straight-forward

adaptation of the ATSP algorithm in [9] to ATSPP occurs in thelast step. There is a technical hurdle

in applying Hoffman’s circulation theorem because the flow enterings and the flow exitingt are

both zero.

For k-ATSPP, the obvious problem is to improve upon theO(k log n)-approximation and inte-

grality gap. Improving theO(log n) part of this guarantee is at least as challenging as improving the

approximation ratio/integrality gap for ATSPP (fork = 1). The main question, in the author’s mind,

is whether the bound can be improved toO(log n · polylog k) or evenO(log n). However, it could

also be that the integrality gap of the relaxation considered in this thesis isΩ(k) even if ATSPP has

a constant integrality gap.

Though Generalk-ATSPP seems very difficult, there are still some interesting questions. We

demonstrated complexity barriers to approximating General k-ATSPP within any ratio for values

of k being as small as polylogarithmic in the number of nodes. Maybe better approximations

are possible for a constant number of(si, ti) pairs. In particular, what if there are only two pairs

(s1, t1), (s2, t2)? There is potential for this case to be difficult because the somewhat-related prob-

lem of finding edge-disjoint paths between two such pairs is NP-complete [39], but there could be a

good approximation algorithm. Also, there might also be a good bicriteria approximation algorithm

that may use each of the(si, ti) salesman more than once.

Another question relates to bicriteria approximations formultiple traveling salesmen with mul-

tiple sources and/or multiple sinks (and even, perhaps, Generalk-ATSPP). Consider, for example,

the single source, multiple sink case. A bicriteria approximation simply says that each sink is the

end ofβ pathson average. It may be that all but one sink is used only once while the lastsink is

usedk + 1 times for a total of2k paths. What about harder bounds on the number of times a sink

may be used as an endpoint? Rather than saying a sink is used onaverageβ times, what if we said

each sink can be usedat mostβ times. So, for the caseβ = 2 as was explored in Sections 3.3 and

3.4 this means each sink can be used at most twice in single source, multiple sink instances. Is there

still such a bicriteria approximation algorithm with a logarithmic (or even polylogarithmic) bound

on the approximation ratioα?

The approximation algorithm for Minimum Latency in asymmetric metrics lost anO(log n)

factor essentially for two reasons, one is the rounding of the LP for ATSPP and the other is because

O(log n) buckets were used when grouping the nodes by their latency. Care was taken to ensure the

117

total loss was only additive in these two ratios. As we mentioned at the end of Chapter 4, it might

seem natural to assume that an improved bound on the integrality gaps of ATSPP andk-ATSPP

would imply a similar improvement for the approximability of Minimum latency. However, the fact

that we useO(log n) buckets prevents such an improvement to ATSPP from immediately implying

the same improvement for Minimum Latency.

Two of the problems related to ATSPP covered on in this thesisare Minimum Latency and

k-ATSPP. A natural combination of these variants is thek-Traveling Repairmen problem in asym-

metric metrics, the problem of findingk paths starting at a fixed nodes whose union covers all

other nodes exactly once while minimizing the average distance froms to a node inV along these

paths. As mentioned before, this has already been studied insymmetric metrics and constant factor

approximations are known. It is easy to construct asymmetric metrics where the cost withk = 1 is

exponentially larger than the cost withk = 2 so it may be of practical importance to consider using

more than one repairman. The first question is whether this variant admits a good approximation

algorithm/integrality gap. If so, what can be said if thek repairmen all start at different locations

(with endpoints still not fixed). One would hope that our bounds fork-ATSPP can be applied to the

k-Traveling Repairmen problem in a way that is similar to applying ATSPP to Directed Latency, but

there are some technical issues. For example Lemma 4.2.1 does not translate directly to the setting

with multiple salesmen and it seems difficult to develop meaningful ordering constraints fork ≥ 2

paths.

Finally, we remark on the Generalk-TSPP problem in symmetric metrics. We exhibited a 3-

approximation that used simple lower bounds, one being similar to the spanning tree lower bound

for classic TSP and the other being the simple fact that everysi − ti path has cost at least the cost

of the edgesiti. A glaring omission is the application of any lower-bounds based on minimum cost

matchings as in Christofide’s algorithm for TSP or Hoogeveen’s algorithm for TSP Path. For exam-

ple, after finding theS-rooted spanning forest and adding thesiti paths, perhaps we can augment

the graph to have an Euleriansiti path for every component using matchings rather than doubling

the edges in the forest. The problem with this approach is that a particular component we are trying

to augment may contain an odd number of wrong-degree nodes from different paths in some opti-

mum solution, making it difficult to bound the cost of the matchings using edges from the optimum

solution. Still, it might be possible to find ac-approximation for some constantc < 3 for General

k-TSPP in symmetric metrics.

118

Bibliography

[1] N. Aggarwal, N. Garg, and S. Gupta,A 4/3-approximation for TSP on cubic 3-edge-connected
graphs, arXiv:1101.5586, available online athttp://arxiv.org/pdf/1101.5586 .

[2] N. Alon, Ranking tournaments, SIAM J. Discrete Math, 20(1):137–142, 2006.

[3] H. An and D. B. Shmoys,LP-based approximation algorithms for traveling salesmanpath
problems, arXiv:1105.2391, available online athttp://arxiv.org/pdf/1105.2391 .

[4] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang,Hardness of the undirected edge-disjoint
paths problem with congestion, In Proceedings of FOCS, 2005

[5] A. Archer, A. Levin, and D. P. Williamson,A faster, better approximation algorithm for the
minimum latency problem, SIAM J. Comput., 37(5):1472-1498, 2008.

[6] S. Arora,Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems, Journal of the ACM, 45:753–782, 1998.

[7] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy,Proof verification and the hardness
of approximation problems, Journal of the ACM, 45(3):501-555, 1998.

[8] S. Arora and S. Safra.Probabilistic checking of proofs: A new characterization of NP, Journal
of the ACM, 45(1):70–122, 1998

[9] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, andA. Saberi, An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem,
In Proceedings of SODA, 2010.

[10] G. Ausiello, P. Crescenzi, V. Kann, Marchetti-Spaccamela, Giorgio Gambosi, and Alberto
M. Spaccamela, Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties, Springer, 2003.

[11] Y. Azar and O. Regev,Strongly polynomial algorithms for the unsplittable flow problem, In
Proceedings of IPCO, 2001.

[12] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber,A quasi-PTAS for unsplittable flow on
line graphs, In Proceedings of STOC, 2006.

[13] N. Bansal, Z. Friggstad, R. Khandekar, and M. R. Salavatipour, A logarithmic approximation
for unsplittable flow on line graphs, In Proceedings of SODA, 2009.

[14] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, B. Schieber, A unified approach to approxi-
mating resource allocation and scheduling, J. ACM 48(5):1069–1090, 2001.

[15] M. Bellare, O. Goldreich, and M. Sudan,Free bits, PCPs, and nonapproximability - towards
tight results, SIAM J. on Computing, 27:804–915, 1998.

[16] P. Berman and M. Karpinski,8/7-approximation algorithm for (1,2)-TSP, In Proceedings of
SODA, 2006.

119

[17] M. Bläser,A new approximation algorithm for the asymmetric TSP with triangle inequality, In
Proceedings SODA, 2002.

[18] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank,P. Raghavan, and M. Sudan,The
minimum latency problem, In Proceedings of STOC, 1994.

[19] P. Bonsma, J. Schulz, and A. Wiese,A constant factor approximation algorithm for unsplittable
flow on paths, arXiv:1102.3643, available online athttp://arxiv.org/abs/1102.
3643 .

[20] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani, Improved approximation algorithms
for resource allocation, In Proceedings of IPCO, 2001.

[21] G. Carpaneto, S. Martello and P. Toth,An algorithm for the bottleneck travelling salesman
problem, Operations Research, 32(2):380389, 1984.

[22] J. O. Cerdeira,Matroids and a forest cover problem, Mathematical Programming, 66:403–405,
1994.

[23] A. Chakrabarti, C. Chekuri, A. Kumar, and A. Gupta,Approximation algorithms for the un-
splittable flow problem, Algorithmica, 47(1):53–78, 2007. Preliminary version inAPPROX,
September 2002.

[24] M. Charikar, M. X. Goemans, and H. Karloff,On the integrality ratio for asymmetric TSP, In
Proceedings of FOCS, 2004.

[25] K. Chaudhuri, B. Godfrey, S. Rao and K. Talwar,Paths, trees, and minimum latency tours, In
Proceedings FOCS, 2003.

[26] C. Chekuri, A. Ene, and N. Korula,UFP in paths and trees and column-restricted packing
integer programs, In Proceedings of APPROX, 2009.

[27] C. Chekuri and A. Kumar,Maximum coverage problem with group budget constraints, In
Proceedings of APPROX, 2004.

[28] C. Chekuri, S. Khanna, and B. Shepherd,An O(
√
n) approximation and integrality gap for

disjoint paths and UFP, Theory of Computing, 2:137–146, 2006.

[29] C. Chekuri, M. Mydlarz, and F. B. Shepherd,Multicommodity demand flow in a tree and
packing integer programs, ACM Transactions on Algorithms, 3(3), 2007

[30] C. Chekuri and M. P̈al, AnO(logn) approximation ratio for the asymmetric travelling sales-
man path problem, In Proceedings of APPROX, 2006.

[31] C. Chekuri, J. Vondŕak, and R. Zenklusen,Dependent randomized rounding via exchange prop-
erties of combinatorial structures, In Proceedings of FOCS, 2010.

[32] N. Christofides,Worst-case analysis of a new heuristic for the traveling salesman problem,
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[33] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas,The strong perfect graph theorem,
Annals of Mathematics 164(1):51-229, 2006.

[34] J. Chuzhoy and P. Chalermsook,The maximum independent set of rectangles problem, In Pro-
ceedings of SODA, 2009.

[35] V. Chvátal, A greedy heuristic for the set-covering problem, Mathematics of Operations Re-
search, 4:233–235, 1979.

120

[36] J. Fakcharoenphol, C. Harrelson, and S. Rao, Thek-traveling repairman problem, In Proceed-
ings of SODA, 2003.

[37] U. Feige,A threshold oflnn for approximating set cover, Journal of the ACM, 45:634–652,
1998.

[38] U. Feige and M. Singh,Improved approximation ratios for traveling salesman tours and paths
in directed graphs, In Proceedings of APPROX, 2007.

[39] S. Fortune, J. E. Hopcroft, and J. Wylie,The directed subgraph homeomorphism problem,
Theor. Comput. Sci., 10:111–121, 1980.

[40] A. Frank,On connectivity properties of Eulerian digraphs, Annals of Discrete Mathematics,
41:179–194, 1989.

[41] A. Frieze,Edge disjoint paths in expander graphs, SIAM Journal on Computing, 30:1790–
1801, 2001.

[42] A. Frieze, G. Galbiati and F. Maffioli,On the worst-case performance of some algorithms for
the asymmetric traveling salesman problem, Networks, 12:23–39, 1982.

[43] Z. Friggstad, M. R. Salavatipour, and Z. Svitkina,Asymmetric traveling salesman path and
directed latency problems, In Proceedings of SODA, 2010.

[44] I. Gamzu and D. Segev,A sublogarithmic approximation for highway and tollbooth pricing, In
Proceedings of ICALP, 2010.

[45] M. R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[46] N. Garg, V. V. Vazirani, and M. Yannakakis,Primal-dual approximation algorithms for inte-
gral ow and multicut in trees, Algorithmica, 18(1):3-20, 1997.

[47] M. X. Goemans and J. Kleinberg,An improved approximation ratio for the minimum latency
problem, Math. Program., 82:111-124, 1998.

[48] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathe-
matics, Vol 57), North-Holland Publishing Co., Amsterdam,The Netherlands, second edition,
2004.

[49] M. Grötschel, L. Lov́asz, and A. Schrijver,The ellipsoid method and its consequences in com-
binatorics and optimizaiton, Combinatorica, 1:169–197, 1981.

[50] M. Grötschel, L. Lov́asz, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-
mization, Springer-Verlag, 1988.

[51] V. Guruswami, S. Khanna, B. Shepherd, R. Rajaraman, andM. Yannakakis,Near optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems,
J. of Computer and System Sciences, 67(3):4730496, 2003.

[52] M. Held and R. Karp,The traveling salesman problem and minimum spanning trees, Opera-
tions Research, 18:1138–1162, 1970.

[53] D. S. Hochbaum,Approximation algorithms for the set covering and vertex cover problems,
SIAM Journal on Computing, 11:555–556, 1982.

[54] J. A. Hoogeveen,Analysis of Christodes heuristic: some paths are more difcult than cycles,
Operations Research Letters, 10(5):291-295, 1991.

[55] O. H. Ibarra and C. E. Kim,Fast approximation algorithms for the knapsack and sum of subset
problems, Journal of the ACM, 22:463–468, 1975.

121

[56] B. Jackson,Some remarks on arc-connectivity, vertex splitting, and orientation in digraphs,
Journal of Graph Theory, 12(3):429–436, 1988.

[57] R. Jothi and B. Raghavachari,Approximating thek-traveling repairman problem with repair-
times, Journal of Discrete Algorithms, 5(2):293–303, 2004.

[58] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, Approximation algorithms for asym-
metric TSP by decomposing directed regular multigraphsJ. ACM, 52(4):602-626, 2005.

[59] N. Karmarkar,A new polynomial time algorithm for linear programming, Combinatorica,
4(4):373-395, 1984.

[60] R. Karp, Reducibility among combinatorial problems, In Raymond E. Miller and James W.
Thatcher, editorsComplexity of Computer Computations, 85–103, Plenum Press, 1972.

[61] J. M. Kleinberg, Approximation Algorithms for Disjoint Paths Problems, PhD thesis, MIT,
1996.

[62] F. Lam and A. Newman,Traveling salesman path problems, Mathematical Programming,
113(1):39–59, 2008.

[63] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B.Shmoys,The traveling salesman
problem, John Wiley, 1985.

[64] L. Lewin-Eytan, J. Naor, and A. Orda,Routing and admission control in networks with advance
reservations, In Proceedings of APPROX, 2002.

[65] W. Malik, S. Rathinam, S. Darbha,An approximation algorithm for a symmetric generalized
multiple depot, multiple travelling salesman problem, Operations Research Letters 35(6):747-
753, 2007.

[66] C. Mathieu and W. Schudy,How to rank with few errors: a PTAS for weighted feedback arc
set on tournaments, In Proceedings of STOC, 2007.

[67] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: a simple
polynomial-time approximation scheme for geometric TSP,k-MST, and related problems,
SIAM J. on Comput., 28:1298–1309, 1999.

[68] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and
Probabilistic Analysis, Cambridge University Press, Cambridge, UK, 2005.

[69] T. Mömke and O. Svensson,Approximate graphic TSP by matchings, arXiv:1104.3090, avail-
able online athttp://arxiv.org/pdf/1104.3090 .

[70] V. Nagarajan and R. Ravi,The directed minimum latency problem, In Proceedings of APPROX,
2008.

[71] S. Oveis Gharan, A. Saberi,Asymmetric traveling salesman problem on graphs with bounded
genus, In Proceedings of SODA, 2011

[72] S. Oveis Gharan, A. Saberi, and M. Singh,A randomized rounding approach to the travel-
ing salesman problem, Manuscript, Available online athttp://www.cs.mcgill.ca/

˜ mohit/publications.html .

[73] C. H. Papadimitriou and S. Vempala,On the approximability of the traveling salesman prob-
lem, Combinatorica, 26(1):101–120, 2006.

[74] C. H. Papadimitriou and M. Yannakakis,The traveling salesman problem with distances one
and two, Math. Oper. Res., 18:1–11, 1993.

122

[75] A. Phillips, R. N. Uma and J. Wein,Online admission control for general scheduling problems,
Journal of Scheduling, 3(6):365–381, 2000.

[76] S. Rathinam and R. Sengupta,Matroid intersection and its application to a multiple depot,
multiple TSP, Technical report, University of California, Berkely, 2006.

[77] S. Rathinam and R. Sengupta,3/2-approximation algorithm for a generalized, multiple depot,
Hamiltonina path problemTechnical report, University of California, Berkeley, 2007.

[78] S. Rathinam, R. Sengupta,5/3-approximation algorithm for a multiple depot, terminal Hamil-
tonian path problemTechnical report, University of California, Berkeley, 2007.

[79] S. Rathinam, R. Sengupta,3/2-approximation algorithm for two variants of a 2-depot Hamil-
tonian path problem, Operations Research Letters 38(1):63-68, 2010.

[80] S. Rathinam, R. Sengupta, and S. Darbha,A resource allocation algorithm for multi-vehicle
systems with non holonomic constraints, IEEE Transactions on Automation Sciences and En-
gineering, 4(1):98-104, 2006.

[81] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas,Efficiently four-coloring planar
graphs, In Proceedings of STOC, 1996.

[82] N. Robertson N, P. D. Seymour,Graph minors XIII: the disjoint paths problem, Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995.

[83] B. Rodrigues and Z. Xu,A 3/2-approximation for multiple depot multiple travelingsalesman
problem, In Proceedings of SWAT, 2010.

[84] A. Schrijver, Combinatorial Optimization - Polyhedraand Efficiency, Springer-Verlag, New
York, 2005.

[85] D. B. Shmoys and D. P. Williamson,Analyzing the Held-Karp TSP bound: a monotonicity
property with application, Information Processing Letters, 35(6):281-285, 1990.

[86] J. M. S. Simes-Pereira,On subgraphs as matroid cells, Mathematische Zeitschrift, 127:315–
322, 1972.

[87] A. Srinivasan,Improved approximations for edge-disjoint paths, unsplittable ow, and related
routing problems, In Proceedings of FOCS, 1997.

[88] V. Vazirani, Approximation Algorithms, Springer, 2003.

[89] D. P. Williamson,Analysis of the Held-Karp heuristic for the traveling salesman problem,
M.Sc. Thesis, Masachusetts Institute of Technology, 1990.

[90] L. A. Wolsey,Heuristic analysis, linear programming and branch and bound, In Combinatorial
Optimization II, volume 13 of Mathematical Programming Studies, pages 121134. Springer
Berlin Heidelberg, 1980.

[91] D. Zuckerman,Linear degree extractors and the inapproximability of max clique and chro-
matic number, Theory of Computing, Volume 3 (2007), pp. 103128

123

