University of Alberta

APPROXIMATION TECHNIQUES FORUNSPLITTABLE FLOW AND TRAVELING
SALESMEN PROBLEMS

by

Zachary Lorne Friggstad

A thesis submitted to the Faculty of Graduate Studies anédrebk
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

(©Zachary Lorne Friggstad
Fall 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries torkpre single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific reegaurposes only. Where the thesis is
converted to, or otherwise made available in digital form, the Universifioérta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in associatiotheittopyright in the thesis, and
except as herein before provided, neither the thesis nor any sublspantian thereof may be printed or
otherwise reproduced in any material form whatever without the astpadr written permission.

Abstract

In this thesis, we present a variety of approximation athans for the Unsplittable Flow on Paths
problem and some Traveling Salesman problems. The mainiloation to the Unsplittable Flow
on Paths problem is a logarithmic approximation algorithtriok is the first non-trivial approxi-
mation for general instances of the problem. The algorithorke/by using dynamic programming
to approximate solutions on instances that cannot be appated well through linear program-
ming techniques. A generalization of this algorithm pr@gda constant-factor approximation in
sub-exponential time. We also demonstrate that certairsspastances can be approximated within
a constant factor.

The Traveling Salesman problems we consider mostly dedl fivitling paths in asymmetric
metrics, though we do consider others. First, we demomstratt the integrality gap of a natural
linear programming relaxation for the Asymmetric Travglialesman Path problem @(logn)
wheren is the number of nodes in the metric. We then further germrdlie problem and study
the problem of finding up té paths with minimum total distance in an asymmetric metrichsthhat
the union of these paths spans all nodes. In the case thatth#l pre required to share a common
start and end node, we demonstrate a family of bicriteriac@mation algorithms that find a little
more thank paths whose total cost is within some bounded ratio of themyph value of a linear
programming relaxation. These results are extended to wthey variants of finding multiple paths
in metrics whose union spans all nodes. However, we showtlkanost general case when each
path has its own start and end location specified in advaneeotde approximated within any
bounded ratio unless P = NP.

Finally, we formulate a linear programming relaxation fbe tMinimum Latency problem in
asymmetric metrics and prove that the integrality gap of thlaxation i<D(logn). This critically
relies on the fact that the integrality gap of a natural Im@@gramming relaxation for the Asym-
metric Traveling Salesman Path problen®ifog »). This is the first sub-polynomial approximation

algorithm for the problem.

Acknowledgements

It is difficult to summarize how many ways | am grateful to mypswisor and mentor, Mohammad
R. Salavatipour. Of course, | thank you mostly for teachirgghow to think like a researcher and
for the opportunities you presented to me. However, youpstimalso extended beyond academics
and | also thank you for your patience, understanding anétadas | balanced my research with
other aspects of my life.

My experience would not be nearly as complete as it was withmufellow students and post-
doctoral researchers. For inspiring discussions on optitiuin problems, | thank Amin Jorati,
Babak Behsaz, Reza Khani, Zoya Svitkina, Imran Pirwani,Modammad A. Safari. | also appre-
ciate the stimulating conversations I've had with Phillipridlersen, Jessica Enright, Barry Gergel,
Roshan Sharrif, and Travis Dick.

I want to thank Nikhil Bansal and Rohit Khandekar for theitghan getting me started with
Unsplittable Flow problems. You helped me bootstrap myistudnd I'm grateful for all of the
support you've given me through this process. Additionallyould like to thank Nitish Korula and
Aline Ene for a fruitful discussion on this topic.

I would also like to thank my references Mohammad R. Salpwati, Nikhil Bansal, Mike Mac-
Gregor, and Martin Nieller for supporting me when | was applying for jobs. Forspaal funding
and research grants, | thank the University of Alberta, NSE&d AITF. | also appreciate the feed-
back for this thesis provided by Anupam Gupta, Ryan Haywaird, Hoover, and Mazi Shirvani.
Thank you for examining this work and for your insightful gtiens.

Another big part of my graduate experience was my involveraeéth the ACM International
Collegiate Programming Competition. Howard Cheng, Mattiieller, and Piotr Rudnicki are some
of the best coaches you could ask for and I'm indebted to therthkir support in and beyond the
contest setting. Competing in World Finals competitionswv8umudu Fernando, Andrew Neitsch,
Steven Soneff, and Kevin Waugh was a lot of fun, thank youHerterrific experiences. I'm also
grateful to the contestants that followed me. Being yourchdar four consecutive World Finals
competitions was truly an honour.

There were many professors | interacted with during my ugrdeluate studies that encouraged
me to pursue a graduate degree. Through independent stutlesimmer research, | was inspired
by Amir Akbary, Howard Cheng, Abdelaziz Fellah, Hadi Khdragi, Hua Li, and Shelly Wismath.

Thank you for all of the time you spent with me while | was begy to understand my research
interests.

| dedicate this thesis to Jenne, my wife. | am humbled by tbesifible love and support you
have shown me throughout my studies. My boys, Gabriel ané$,ucave also encouraged me in
their own ways. | am very proud to be your father. | am alsoejtto my parents Lorne and Janice
and my sisters Kjersti, Jannaya, and Courtney. | would ndtdve today without your prayers and

encouragement. Finally, | thank God for my family and my sssful studies.

Table of Contents

1 Introduction 1
1.1 ProblemsConsidered 1
1.2 Notations and Preliminaries e 2

121 Graphs 2
1.2.2 Approximation Algorithms 6
1.2.3 LinearProgramming 7
1.24 Matroids e 9
1.2.5 Matroid Intersection 11
1.2.6 Complexityand LowerBounds 12
1.2.7 Anlntegrality GapExample 15
1.2.8 LowerBoundExamples 6 1
1.3 PreviousWork. e 17
1.4 NewResults e 20

2 The Unsplittable Flow Problem on Paths 22
2.1 Simplifying ASSumptions e 27
2.2 AlLogarithmic ApproximationforUFP 29

2.2.1 AReductiontoIntersectingCases 29
222 SlackTasks e 31
2.2.3 BothEndpointsTight, 33
2.2.4 Left-Tight and Right-Tight Tasks 37
225 AnExtensiontoCycles. 39
2.3 AnO(log,n)-Approximation in Timen©(d L. 39
2.3.1 AnAlternative Goal 41
2.3.2 A Reduction ta-Intersecting Instances L. 44
2.3.3 Simplifyingthelnstances. 0 oL 45
2.3.4 Tasks With Both Endpoints Tight 48
2.3.5 Tasks With One Tight Endpoint 52
2.4 Approximatingg-Conflicting Instances 57
24.1 InitialLPRounding 58
2.4.2 PickingaFeasibleSubset 60
2.5 RecentDevelopments 61

3 Traveling Salesman Paths in Asymmetric Metrics 63
3.1 Warmup: The Asymmetric Traveling Salesman Problem 67
3.2 The Asymmetric Traveling Salesman Path Problem 72

3.2.1 Path/Cycle Covers it 72
3.2.2 A Logarithmic Approximation for ATSPP 74
3.2.3 A Logarithmic Bound on the Integrality Gap for ATSPP 77
3.3 Multiple Traveling Salesmen oo 78
3.3.1 Preliminary DiscussionsandResults 79
3.32 Phasel e 81
3.3.3 WarmupToPhase2 82
334 Phase2 83
3.4 Approximating Other Multiple Salesmen Variants . e e e 86
3.4.1 Varying the Endpoints iR-ATSPP 87
3.4.2 A Constant Factor Approximation for Genetal SPP in Symmetric Metrics 90
3.4.3 A Logarithmic Approximation for Gener®}ATSPP withs; =¢;. 92
3.4.4 Inapproximability of Gener&ATSPP 94

4 Minimum Latency in Asymmetric Metrics
4.1 A Review of Minimum Latency in Symmetric Metrics 101
4.2 Relaxed Cut Constraints for ATSPP 103
4.3 Approximating Minimum Latency in Asymmetric Metrics 106
4.3.1 ConstructingthePaths 109
4.3.2 Connectingthepaths 110
4.3.3 BoundingtheCost, 121
5 Conclusion 115
5.1 Future Directions - Unsplittable Flow Problems on Pathd Trees 115
5.2 Future Directions - Asymmetric Traveling Salesman Ratti Minimum Latency
Problems e 116
119

Bibliography

List of Figures

lllustrating why we may assume the capacity profile isngdal. The capacity
profile is drawn above the line and the tasks are drawn belewntb.
A sketch of the structure exploited by the dynamic progréng. Thick lines are
tasks in a feasible solution (with the corresponding dendass written to the left
of the image) which is why each demand class has only thr&e s®wn. Pairs of
dotted lines connected by a thin, double-arrowed line atdithe last start node and
the first end node among all tasks in the corresponding demlasd. The edges
spanned by tasks of any higher demand class must be contaheden these two
dotted lines. L
2.5 The tasks are drawn as thick lines. The common point gnittersecting case is
indicated by the thin line. The dotted lines are the latest simes over all tasks in
the respective demand classes. Demands in higher classéstamt later than these
lines. Finally, while the intervals do not look “nested” teetright of the common
point, if we choose one task from each demand class then gjn€er. /2 for each
edgee right of the common point that is spanned by a left-tight tasind since
dy < d;/2if i’ is in a lower demand class thanthen by summing a geometric
series we see that we do not violate the capacity of any edgjeetoight of the
COMMON POINt. e e e e e e
2.6 An sketch of an instance that requires logarithmicalgnyngroups of “disjoint in-

NN
» wihek

An instance of UFP on paths with integrality gafn). 26
Grouping the tasks according to the left-most point effttm k2" for some integek. 30

31

tersecting instances”. e 40

2.7 Tasks with larger demands are drawn higher in the figugeiur& a) shows an exam-
ple of tasks with the vertical dashed lines correspondingpttes in the underlying
path. Figure b) illustrates the planar grafirdrawn from the given tasks. Figure c)
Is the planar grapl/’ obtained by contracting each pathinto a single node. . . .

2.8 An example withn = 15 andd = 4. The black tasks are those # and the
remaining tasks in sonig are displayedingrey.

2.9 Tasks with larger demands are drawn higher in the figure dark tasks form a
canopy for the given set of tasks. Each partition eegéhat is spanned by some

42
44

task has the largest demand task highlighted witlvhere the task crosseg. . . . 47

2.10 Decomposing a feasible solution. a) The first dasheddithe start o¢ and the last
dashed line is the end ef. After choosing the task that spans the entire interval,
we may break the remaining solution into two halves by thedieidlashed line. b)
Recursively decomposing these subproblems further (thedbuble-arrowed line

highlights the two subproblems). 50

2.11 An illustration of why a conflict can be blamed on one ofraistd tasks. The
height of the task corresponds to their demand and the peldurrounding the
image is the capacity profile. The two rectangles shown areabks7’. We have
Fr/(I) = Fr.(I;) = ¢ because of edgesandb and Frrv(I,) = i because of
edgec. Note that the residual capacity left acrdssby choosing onlyi’ is strictly
less than the residual capacity left acrds$y choosing only; even though has
larger demand thaii. For eachl;, labelledsS, any other task” with s;» < s;; must
span edges andb because the first interval labelldd appears after these edges.
Similarly, ¢ must eitherend idz orspanc.

54

2.12 Anillustration of why we only need to keep track of at mmésasks to detect vio-
lations to demand class independence. Tasks with largeaniésrare drawn higher
and two tasks in the same demand class are drawn at the sagheTlke two dark
tasks are in the smallest demand class for some intervdlddife Notice that it is
impossible for any taskwith s; < s; for each drawn tasK to both be in the same
demand class as one of the grey intervals and to share a comonanwith that
same grey interval. For example, if such a task was in the slem&and class as the
rightmost grey interval and shared a point with the greyrirgte then it would have
to span the first edge (which is a bottleneck) of the rightrdask interval which is
contradicts feasibility of each task byitself. 55

2.13 An instance with the “conflict-implies-contain” prapethat is not perfect. The
numbers on the path are the edge capacities and the demahddagks are written
next to the task. The endpoints of the dashed lines connectasks that conflict.

The graph corresponding to conflicting pairs is then a cyol® modes so it is not
perfect. It is easy to verify that all tasks are tight and thaly are all in demand
classD3 so even simplified instances might not be perfect. 58

2.14 All tasks are irb; . for taski and edge in the picture, task is drawn in gray only
to help dlstlngwsh it from the other tasksS$i .. The height of the task corresponds
to the value of its demand. The dots on the tasks indicatethieatorresponding
edge on the path is a bottleneckedge. 59

3.1 a) The graph whose shortest paths defines the metric. é}port of the first
path/cycle cover. c¢) The support of the second path/cyclercghe first is grayed
OUL). o o o e 74
3.2 a) A sketch of a solution using 3 salesmen. b) A sketch @ahdas solution of no
greater costusingonlyone salesman. 79
3.3 Allshown edges have distance 1 and all omitted edgestisteanceD for arbitrarily
large valuesD. Using one salesman requires cost at Idastvhile the optimum
solution using two salesmenisonly4., 79
An illustration of ak-Path/cycle coverwitlk =4. 80
i) An instance of tripartite triangle packing with= 2. ii) The graphH with all cost
1 arcs drawn. The “back arcs” of cast f(4n) are not pictured. The final metric
H' (not pictured) is shortest paths metric foffn The pathb, d, e, b corresponds (in
the sense of the proof) to triang{é, d, e} in the first graph. Also, one can see that
the graph in image i) does not have a triangle packing nor tteeegraph in image
ii) have a Generat-ATSPP solution usingonlycostlarcs. 95

ww
b

4.1 Aninstance of the Minimum Latency problem on a subsebaftp on the real line.
The optimum TSP Path solution that startssas picured above the line and the
optimum latency solution is pictured below. The latency e path above is an

Q(n) factor larger than the latency of the bottom path. . .99
4.2 Bad gap example for LR with « = 1/2. Here,D is an arbltrarlly Iarge mteger . 105
4.3 Appending the dashed pathtothe solidpath. 110

4.4 Anillustration of the nodes, w andv{ on the pathss' and P in the proof of Lemma
4.3.3. The dashed edge is the edge that was used to “stitelpatis together in the
appendoperation. e e 111

Chapter 1

Introduction

1.1 Problems Considered

In this thesis, we consider variants of some classic problentombinatorial optimization. Most
of the problems considered in this thesis are NP-hard opditioin problems, so we address this
difficulty by developing approximation algorithms: algbrins that find feasible solutions (usually
in polynomial time) whose value is within some bounded rafithe optimum value. We begin by
breifly introducing the problems discussed. Previous waidk @ur contributions to these problems

are discussed in later sections of this introductory chrapte

Unsplittable Flow: In the general Unsplittable Flow problem, we are given i@ = (V, E)
(perhaps directed) with a non-negative capacitpn each edge. We are also given a set tdsks
T = {(si,ti,d;s, pi) Y1y Wheres;,t; € V are the start and end nodes of task, € Rx is the
demand of task, andp; € Rx¢ is the profit of task. The goal is to find a subs@t C T and a
path P; from s; to ¢; for eachi € 7" of maximum possible profi} .. p; subject to the following
constraint. For each edgethe total demand of all taskse T’ for which e lies on P; should not
exceed:.. The problem is general enough to capture some well-stysti@alems in combinatorial

optimization:

¢ If all demands, profits, and edge capacities are 1, then titdem is theEdge-Disjoint Paths

problem.

¢ If the graph consists df parallel edges with identical capacitiebetween two nodes, ¢,
then the problem is a sort &in Packingproblem. Determining if alh tasks can be routed is

the same as asking if items of sidg, .. ., d,, can be packed intbbins of capacity.
e If the graph is a single edge, then the problem is equivatetite NP-hard&napsackproblem.

In general, we will see that this problem is very hard to agipnate which motivates the study of
Unsplittable Flow instances over restricted graph clasBethis thesis, we concentrate mostly on

instances where the underlying gra@hs a simple path.

Traveling Salesman In the classic version of the Traveling Salesman problem,ane given a
complete and undirected gragh= (V, E) where each edge€ E has a non-negative distandg
Furthermore, these distances satisfyttiengle inequalityd,,, < dy., + dy, fOr everyu, v, w € V.
Sometimes, such graplisare callednetricsor symmetric metricsThe goal is to find a Hamiltonian
cycle inG of minimum total distance. Without the triangle inequality approximation algorithm
can guarantee a reasonable bound on the approximationurdéss P = NP. However, with the
triangle inequality the problem may be approximated withdmstant factors. One variant of the
problem is to find a Hamiltonian path with minimum total dista. Another is to allow directed
graphs that still satisfy the directed triangle inequality, < d,., + d.. for any nodesu, v, w,
though it might be thatl,, # d,. for some nodes,v € V. Such graphs may also be called
asymmetric metricsAgain, both of these variants have been studied very wathfthe perspective
of approximation algorithms. In this thesis, we mainly ddes variants where we want to find
paths in asymmetric metrics that include all nodes. Thikighes finding a single Hamiltonian path
in an asymmetric metric or finding up topaths whose union includes all nodes for some specified

integerk. However, we do consider some other variants that involgymgmetric metrics or cycles.

Minimum Latency: Here, we are given a start nodén a metric and our goal is to find a Hamil-
tonian pathP starting ats. Rather than minimizing the total cost &f (as in Traveling Salesman
problems), the goal is to minimize the average latency ofntbdes onP. Here, the latency of a
single nodev € V is the total cost of the edges betweeandwv on the pathP; the time it takes
to reachv when following P. The problem is also referred to as fhieveling Repairmaimproblem
because the goal of the repairman is to minimize the averaiting time of clients who require
repairs. In this thesis, we present approximation algoritiior instances of the Minimum Latency

problem in asymmetric metrics.

1.2 Notations and Preliminaries
1.2.1 Graphs

In this thesis, the terrgraphis a simple, undirected graghi = (V, E') consists of a set of edges
E connecting distinct pairs of nodés. We often denote an edgec E that connects two nodes
u,v € V by uv. A directed graphG = (V, A) consists of a set of arcd where each arc is an
ordered pair of nodes 1. As in the case of undirected graphs, we often denote anatrcohnects

u to v by uv. So, in undirected graphsy andvu refer to the same edge whereas in directed graphs
uv andvu are different arcs. In some cases, it is more convenierdtioaglly, to us€w, v) to refer

to a directed arc fromu to v. Most graphs in this dissertation do not contain multiplpies of an
edge or arc and there are no loops. If multiple arcs or loopsised, it will be explicitly mentioned.

For reference, we list a variety of graph-theoretic coneéptow.

Topological Ordering: A ordering of the nodes, ..., vy in a directed grapli: = (V, A)
is topological ordering it; appears before; for every arcv;v; € A. Such an ordering exists

and can be found efficiently if and onlyd contains no cycles.

Strongly Connected A directed graphG = (V, A) is strongly connected if for any pair of

distinct nodes:, v € V, there is a path from to v and a path from to » in G.

Weakly Connected A directed graph = (V, A) is weakly connected if the undirected
graphG’ = (V,E) with E = {uv : uv € Aorvu € A} is connected. Simply put is
weakly connected if the undirected graph obtained by rengpthie orientation of the arcs is

connected.

Eulerian Graphs: A graph (directed or undirected) is Eulerian if there is @it (a closed
walk) that crosses each edge exactly once. Such a circudtlesdcan Eulerian circuit. An
connected undirected graph is Eulerian if and only if evasgienhas even degree. Similarly,
a weakly connected directed graph is Eulerian if and onhadrenode has its indegree equal
to its outdegree. An Eulerian walk is a walk that crosses ealgfe exactly once, but is not
required to start and end at the same node. So, an Euler@vitésr simply an Eulerian walk
that begins and ends at the same node. Suppese are two nodes in a connected gragh
Then there is an Eulerian walk fromto ¢ if both s and¢ have odd degree and every other
node has even degree.dfis a weakly connected directed graph with distinct nodeésthen
there is an Eulerian walk fromto ¢ if the outdegree of is one greater than its indegree, the
indegree oft is one greater than its outdegree, and all other nodes ha eglegree and

outdegree. Eulerian circuits and walks can be found in pmotyial time.

Hamiltonian Cycles and Paths A Hamiltonian cycle in a graph (directed or undirected) is
a cycle that visits each node exactly once. A Hamiltoniah pat graph is a path that visits
each node exactly once. It is NP-complete to determine ifectid or undirected graph has

either a Hamiltonian cycle or a Hamiltonian path [45].

Independent Set An independent set in an undirected gr&ph- (V, E) is a subset of nodes
W such that no edge iR has both endpoints i. Itis NP-complete to determine if a graph
has an independent set of a given size [45]. The size of tgedamdependent set in a graph
G is denoted byy(G).

Clique: A clique in an undirected grapf = (V, F) is a subset of nodeld” such that any
two distinct nodes:, v € W haveuv € E. Itis NP-complete to determine if a graph has a

clique of a given size [45]. The size of the largest clique graphG is denoted by (G).

Graph Colourings: A colouring of an undirected grapil = (V, E) is a partition ofV into

disjoint subsetd/, ..., V} such that each such sub3étis an independent set. For a given

k, if there is such a partition af into & disjoint subsets then we say th@tcan be coloured
with & colours. It is NP-complete to determine if a graph can bewelo with colours for
any k > 3 [45], though it is polynomial time solvable fér = 2. The minimum valué: for

which G can be coloured withk colours is called thehoromatic numbeof G and is denoted
by x(G).

Perfect Graphs A perfect graph is an undirected gra@gh= (V, E') such thato(G’) = x(G’)

for all vertex-induced subgrapli® of G. If G is perfect, them(G),w(G) andx(G) can be
computed in polynomial time [50]. I& is a cycle with an odd numbeér of nodes where

k > 5theny(G) = 3 butw(G) = 2 soG is not perfect. The Strong Perfect Graph Theorem
asserts thats is perfect if and only ifG and its complement does not contain any cycle with
odd lengthk > 5 as an induced subgraph [33]. Some examples of perfect geaphthe
following (see.e.q, [48]):

— Bipartite graphs. Triviallyx(G) = w(G) = 2 if G contains an edge.

— Comparability graphs. A grapfi = (V, E) is a comparability graph if the edges can be

oriented so that if arcgv andvw are inG, then so is the araw.

— Interval graphs. A grapli = (V, E) is an interval graph if there are closed intervals
I, C Rforeachw € V such thatl, N I, # @ ifand only ifuv € E.

Metric Graphs: An undirected grapli = (V, E)) with non-negative edge weights,,, uv €
E'is called ametricor asymmetric metrid G is a complete graph and the triangle inequality
duy < dyw + dyy holds for anyu, v, w € V. A directed graptG = (V, A) with non-negative
arc weightsi,,,,, uv € A is called arasymmetric metritf every pair of distinct nodes, v € V

is connected by an arew € A and the directed triangle inequalify,, < d,., + d.. holds. A
distinguishing feature between symmetric metrics and asgtric metrics is that we always
haved,, = d,, in symmetric metrics whereas we may hakg # d,, for some nodes, v

in an asymmetric metric. We can extend the weight notatiahdefined,, in any metric
(symmetric or asymmetric), which is always zero. A symneetnietric is similar to a metric
from topology except we may havk, = 0 for distinct pointsu, v. An important metric that
occurs in this thesis is the shortest path metric. In therentid case, suppoée= (V, E) is

a connected (but not necessarily complete) graph with regative edge distancés. Then
we obtain a symmetric metri¢’ = (V, E’) with distances!’ over the same set of nodes
whered,,, is the length of the shortest path framto v in G. Similarly, we can obtain an
asymmetric metric” = (V, A’) from a strongly connected directed gra@h= (V, A) with

non-negative arc distances.

Circulations: A circulation C' in a directed grapltz = (V, A) is an assignment of a non-

negative value”,,,, to each araw € A such that the total’-value of incoming arcs equals

the C-value of outgoing arcs at each node. Formally, for eachV” we haved . Cu, =
> vwer Cow- We also say thdtow conservatiomolds at node. Thesupportof a circulation

Cis{uv € A : C,, > 0}, the set of arcs that are assigned a non-zero value i'the

Flow: Given two distinct nodes, ¢ in a directed grapli = (V, A), aflow F' from s to ¢ is an
assignment of a non-negative vallig, to each araw € A such that flow conservation holds
in V at each node except, perhaps;,. We say that the value of the flo is » - 4 Fsw —

> usea Fus (Whichequalsy” . 4 Fut — > ,,,c 4 Frw by flow conservation on other nodes).
In most cases in this thesis, there will be no flow entesimgpr will there be any flow exiting

t so the value of the flow in such cases would simpIpBe, . 4 Fow = D, 1c 4 Fut- We say
that a flowF is integral if ', is an integer for eachv € A. The support of a flow is the
set of arcauv € A for which F,,, > 0. We also say that € V' — {s,t} supportssome flow

in Fif F,, > 0forsomeuv € A (or, equivalently,r,,, > 0 for somevw € A).

Suppose that’ is a flow of valuek where eacl¥,,, uv € A is a non-negative integer. Then
we may find a collection of pathsP;, ..., P, from s to ¢ such that each anev € A appears
on at mostF;,, such paths. Furthermore, if we defi6g, values for each arav € A to be
F,, minus the number of these paths that containthenC' is a circulation. Supposg and
F’ are flows froms to ¢. Then we may form a flow" + F” from s to ¢t by assigning?,,, + £,

to each arawv € A. Similarly, if F, F’ are circulations thed” + F’ is also a circulation.
Finally, if F'is an flow froms to ¢ andF” is a circulation, thert” + F is still an flow froms
to¢. Note that if both and F’ are integral, then so iE + F’.

Cuts: Given a graphG (directed or undirected), a cut is simply a subset of nodestap
from () or V. If G = (V, E) is undirected, then for any subset of nodesC V we let
0(S) ={uw € E:ue Sv¢gSoru¢g S,v e S} be the collection of edges with
one exacly endpoint irt. If G = (V, A) is a directed graph anfl is a cut then we let
0t (S) = {uv € A : u € S,v ¢ S} be the collection of arcs that exi. Similarly, we
letd—(S) = {uv € A: u ¢ S,v € S} denote the collection of arcs that enfg&r Some-
times we are interested in the set of edges or arcs incidemtntmdev. For simplicity, we
used(v), 6T (v),d~ (v) to denoted({v}), T ({v}), s~ ({v}), respectively. If we have a non-
negative capacity, for each edge/are, then we say the capacity of a ctitin an undirected

graph isZqu&(S) cuy- IN directed graphs, the capacity of a éuis the total capacity of the

outgoing edge$ ", s+ (s) Cuv-

Capacitated Flow If G = (V, A) is a directed graph with non-negative capacitiesn the
arcs ands, ¢ are two distinguished nodes, a capacitated flow frota ¢ is a flow F' from s
to ¢ that satisfiesd,, < ¢, for each arcuv € A. An s — t cut is a cutS with s € S and
t € S. Itis not too hard to see that the value of any capacitated fiofiom s to ¢ cannot

exceed the capacity of any— ¢ cut. The max-flow/min-cut theorene.Q. [84]) asserts that

there is a capacitated floW' from s to ¢ and ans — ¢ cut.S” such that the value af” equals
the capacity of the cu$’. Furthermore, if all capacities,,, uv € A are integers, then such
a flow F” may be taken to be integral. Finally, is a cut andF is a flow, then we let
F(6T(9)) denote) s+ (s) Fuv, the total flow across arcs exiting the ciit Similarly, we

let F'(67(5)) = >_,pes-(s) Fuv denote the total flow across arcs enterihg

1.2.2 Approximation Algorithms

An optimization problemb is abstractly defined as a collection of pairs of the f¢dA/) where
Fis a set offeasible solutionsind M is an objective functioF” — R. We think of a specific pair
(F, M) € ® as an instance of the optimization probl@mOf interest is finding, for eact¥, M) €

®, some feasible solutiofi € F that maximizes or minimize3/(f) (whenever such an extreme
exists). If our goal is to maximize the objective functioheh we say tha is a maximization
problem Otherwise, if our goal is to minimize the objective functidhen we say tha® is a
minimization problem

An instance(F, M) of an optimization problen® is often given implicitly. For example, an
instance of the problem of finding the largest independetinsa graph is given by an undirected
graphG = (V, E). For such an instanod’, M), we have the feasible sét being all subsets' of
V for which no two nodes irb' are the endpoints of an common edge&inThe objective function
M in this case is simplysS|.

In computing science, we are interested in optimizatioml@ms that can be implicitly encoded
with a finite number of bits. For example, there are a varidtywell-known ways to succinctly
represent graphs using finite sequencedsdindls so we may encode an instance of the maximum
independent set problem where the number of bits used isipaiial in the number of nodes and
edges of the graph. An integérmay also be encoded i (log k) bits using the standard base 2
expansion. In general, we will not be concerned with suchlewel details in this thesis. Apart
from some discussion in the following subsection on lineagpamming and in the running time of
some hardness reductions, we will proceed without givimth&r thought to the matter.

Suppose thad is a minimization problem. An-approximation fod is an algorithm which, for
every instancéF’, G) of ®, is guaranteed to find some feasible solutfor F such thatM (f) <
aM(f*) wheref* € F is the optimum solution for instance (in the problems we @ers there
is indeed be a solutiofi* with M (f*) = sup;cx M(f)). We often letO PT denote the optimum
value of the instance at hand if it is clear from the contekt® lis a maximization problem, then
we choose the convention that arapproximation is an algorithm that finds a feasible solutma
given instance with value at least Qlfl For example, we develop @(log n)-approximation for
the Unsplittable Flow on Paths problem wherés the number of tasks which means the algorithm
finds a subset of tasks that can be feasibly routed whose isratiteastQOP L

(logn)”
Since the main point of studying approximation algorithmdd address NP-hard optimiza-

tion problems with efficient algorithms, all of the approxtion algorithms we develop run in
polynomial-time in the size of the input unless we expljcéitate otherwise. One notable exception
is in Section 2.3. We sometimes use the notion qtiasi-polynomial timalgorithm in this thesis.

These are algorithms whose running time1°8") for some constarit.

1.2.3 Linear Programming

One of the most important optimization problemd.isear Programming An instance of Linear
Programming is presented in the following form whetes R™*" b € R™ andc € R™ are fixed

values and: € R" is a vector of variablesq, ..., z,.
n
maximize: Zcﬂl
=1

SUbjeCt to: ZA]zl'z

i=1

IN

b, Vi1<j<m
z; > 0 V1I<i<n

The goal is to find values, ..., z,, to maximize the objective functiol;. , ¢;x; such that each
of the constraints are satisfied. We often refer to an instafidinear Programming as, simply, a
linear program or an LP. If € R™ satisfies all constraints of a particular LP then we will dzatt:
is feasiblefor that LP. The set of feasible points is called tiadytopeof the linear program.

Through some elementary transformations of the objectinetfons and/or constraints, Linear
Programming can be seen to be equivalent to variants whemainienize the objective function
and/or allow equality constraints. An instance of a maxation version of Linear Programming
falls into one of three categories. If the polytope of the ERinpty, then we say that the instance
is infeasible Otherwise, if for anyy € R we have some feasible solutiarwith czt > § then the
instance isinboundedIn the final case, we have that there is a feasible solutidrtfzre is a least
upper boundy such that all feasible solutionshavecz? < . Since the set of feasible solutions is
clearly closed in the standard topology [&f (as the polytope is the intersection of the closed sets
defined by the inequalities), then there is actually a féagibintz with cx® = ~. In such a case,
we say that the instance ha$irste optimum

Say a collection of constraints is linearly independenh& vectors corresponding to the con-
straints {.e. the row vectord; for a constraint of the form;z* < b,) are linearly independent over
R. We say that a constraint;z’ < b; is tight for a givenz € R" if A;2" = b; holds. A feasible
solutionz is said to be @asicsolution if there are: linearly independent tight constraints. It is
a known fact that if a linear program has a finite optimum, ttiesre must be some basic feasible
solutionz attaining the optimum value.

In this thesis, we consider instances of Linear Programrtiiaghave all values ial, b, andc
being rational. Consider such an LP that has a finite optirmiuehz be a basic solutiond’ be the
n X n matrix whose rows correspond to soménearly independent tight constraints, aide the

column vector of lengtl corresponding to thg; values for the constraints used to forh Since

x is the unique solution to the systediz? = b’ and all entries ofd’ and¥’ are rational, then all
entries ofz are rational too. This also implies that the optimum valuarotP with rational values
is rational.

By saying an algorithm solves Linear Programming, we mea tiiie algorithm will either
determine if a given linear program is infeasible, unbouhde has a finite optimum. If it has a finite
optimum, then the algorithm will also produce a basic fdas@imlutionz attaining this optimum
value. Linear programs can be solved efficiently, but we fieste to mention the notion of bit
complexity of integers. For a rational numhgieti(q) denote the number of bits required to write
the numerator and denominatorg@in binary. Thatis/(q) = O(logn + logd) whereq = +n/d.
Given a linear program with rational entries describediby, c as above, lef\ := max I(¢q) where
the max is over valuegappearing in eithed, b, or c.

One approach for solving linear programming in polynomiialet (inn, m andA) is to use the
interior point methode.g. Karmakar’s algorithm [59]). In some cases, the number oftamts is
exponentially larger than the number of variables and waagafford to explicitly list all of them.
To deal with this, we use the concept ofeparation oracle A separation oracle is an algorithm
that solves the following problem. Given a rational paint Q", either determine that is feasible
or return the explicit description of a violated constralfia linear program has a separation oracle
that runs in polynomial time in, A, and the number of bits used to represent the rational pamt
guestion, then it is still possible to solve the linear peogiin time that is polynomial in only and
A using theellipsoid methodas in [49].

A common technique in combinatorial optimization is to falate a problem as an instance of
Integer Programming. An instance of Integer Programmirngésented in the same way as an in-
stance of Linear Programming with the additional reswittihat the variables,, . .., x, take only
integer values. Such an integer program is usually forradlab there is a natural correspondence
of feasible integer points in the integer program and féasiblutions to the original optimization
problem. Integer Programming is an NP-hard optimizati@bfem so formulating a combinatorial
optimization problem in this way does not really gain us mirckerms of polynomial-time solv-
ability. However, if we relax the condition that the variebltake integer values and allow fractional
values, then we have an instance of Linear Programming thati’commonly call anLP relax-
ation of the optimization problem. In some sense, an optimum gsiub an LP relaxation is a sort
of fractional approximation to the original problem itsefn example of how to formulate and use
an LP relaxation of a combinatorial optimization problem te found in Section 1.2.7 following
the presentation of background material.

Suppose thatF, (i) is an instance of a particular optimization probl@nSuppose further that
we have an integer programming formulation of the problerhwptimum valueO PT'. Finally,
say thatO PT is the optimum value of the LP relaxation obtained from thieger program. Note

that since any integer point that is a solution to the Int&yegramming instance is a feasible point

in the LP relaxation, the®PT > OPTY if ® is a minimization problem an@PT < OPTy if
is @ maximization problem. We say that tintegrality gapof this LP relaxation is the ratig% if
® is a minimization problem, o% if @ is a maximization problem.

More generally, supposg is an optimization problem and we have a particular methadbtain
an Integer Programming formulation and its LP relaxatiore Wil say that the integrality gap of
these LP relaxations is the least upper bodrglich that the LP relaxation of any particular instance
of ® obtained in the given manner has integrality gap at mosh some cases; may be unbounded
S0 we sometimes examine the integrality gapbofvhen restricted to inputs of a certain size. For
example, if® is an optimization problem over a graph then saying the natigg gap of a certain
LP relaxation of® is O(log |V'|) means the integrality gap of an instance over a gi@ph (V, E)
is dominated asymptotically g |V | as|V| increases.

In some fortunate cases, it is possible to find LP relaxatafran optimization problend that
are exact. By this, we mean the optimum value of the LP relexatf an instancéF, M) of @ is
equal to the optimum value of the objective functibhover F'. In the language of integrality gaps,
this means the integrality gap of the LP relaxation is pedgid. Furthermore, the basic feasible
solutions of these LP relaxations may also have integeregaét each component. If a polytope
has the property that all basic feasible solutisttsave each component being integral, then we will
say that the polytope istegral. We will encounter many (similar) integral polytopes instthesis,

especially in Chapter 3.

1.2.4 Matroids

A matroid can be thought of as a formal analogy of linear irdfgfence in vector spaces to other set

systems.

Definition 1.2.1 A pair M = (X,Z) where X is a finite set andZ C P(X) is a collection of

subsets o is called amatroidif the following conditions are satisfied.
1.0eZ
2. If S eZthenS’ € IforanyS’ C S
3. IfS,T € ZTand|S| < |T|, then there is some € T — S such thatS U {z} € T

The second condition is theereditary properyof matroids and the third condition is thex-

change propertyThere are many examples of matroids; we list a few below.

e X is finite subset of a vector space and @onsists of all subsets of linearly independent

elements inX.

e X is the set of edges of an undirected gré@ph- (V, E') and! is the collection of all acyclic

subsets of7. This is called thgraphic matroid

e X is the set of edges of an undirected gra&phk- (V, E) and[is the collection of all subsets
F of E where each connected component in the grépk (V, F') has at most one cycle.

This is called théicircular matroid[86].

e Suppose we have a partition &f into subsetsX;, X,, ..., X;. Furthermore, suppose we
have a non-negative integer boundor everyl < i < k. We get gpartition matroid (X, Z)

whereZ consists of all subsel§ of X satsifying|Y N X;| < ¢; foreachl < i < k.

Any member ofZ in a matroidM = (X,Z) is called anindependent sdiot to be confused
with an independent set in a graph, this term is more relatelet notion of a set of vectors being
linearly independent). Aaseof M = (X,Z) is simply a maximal, with respect to inclusion,
independent set (analogous to a basis in a vector space).theoexchange property, we easily see
that|Y'| = | Z| for any two base¥’, Z € Z. Therankr(M) of a matroidM is then unambiguously
defined as the size of a base/of. For example, itZ = (V, E) is a connected graph then the bases
in the graphic matroid ol are the spanning trees 6f, each havingV'| — 1 edges. Generalizing
this notion, for any subset of X we letr(S), the rank ofS, bemaxrcz [T'N S|. This is the same
as the maximum ofl’| overT € Z with T C S. Note thatr(X) = r(M).

Of interest in optimization is when the items of a matroiddan associated weight.

Definition 1.2.2 A weighted matroids a matroidM = (X, Z) with a weight functionv : X — R.
The weightw(S) of a subset C X is), g w(i).

In this thesis, all weighted matroids will haugz) > 0 for anyz € X.

If we have a polynomial time (inX |) algorithm for determining if a given subset &f is in
7, then there is a very simple polynomial time algorithm thatl§ a base iff of minimum total
weight. Start with an empty séf <). Process the items i in increasing order of weight and
add anitemi to Y if Y U {i} € Z. Once all items have been processEds a minimum weight
base [84]. If we process the items in decreasing order ofhwéigtead, then the resulting Sétis
a maximum weight base.

There are also two polytopes that we can associate with soidatri. For eachi € X, we

associate a real-valued variable Theindependent set polytof#& (M) is given by the constraints:

Diegz < r(S) VSCX

Though, we could omit the upper bound< 1 for eachi € X because({i}) € {0,1}. The
base polytop& (M) is the intersection of the polytopé% (M) and the polytope defined by:
Z zi =r(M)
i€ X
In other wordsP5 (M) is obtained by adding the above constraint to the list of tairgs defining
Pr(M). The new constraint asserts that the tatablue of the items is equal to the size of a base

of the matroid.

10

Now, for any independent s&f € 7 we let xy denote the characteristic vector Bf with
Xy, =0fori ¢ Y andyy,; = 1fori € Y. We then havey € P;(M) andifY is also a base then
we haveyy € Pp(M) as well. Conversely, given any vectowith z; € {0, 1} for eachi € X, we
form the seft, C X with i € Y, ifand only if z; = 1. Itis also true that i € P;(M) thenY,
is an independent set and:ife P (M) thenY, is a base. Thus, the lattice pointsf (M) and
P (M) correspond exactly to independent sets and basad,akspectively.

What is even more remarkable is that fRg M) and inPz (M) are both integral for every ma-
troid M. This means the maximum or minimum weight of a bas#rs the same as the maximum
or minimum of the objective functiod, . w(i)z; over pointsz € Pp(M), respectively. Further-
more, finding a basic optimum point in the linear program vehgsal is to maximize or minimize
this objective function ovet € Pz (M) corresponds to such a base of maximum or minimum total
weight [84].

Finally, we note that if there is a polynomial time algorittihat determines if a subset af is
independent, then there is also a polynomial time separatiacle for the polytope®; (M) and
Ps(M) [84].

1.2.5 Matroid Intersection

Much is known regarding the intersection of two matroidg [&iven two matroidsM; = (X, 7Z;)
and M, = (X, Z,) over a common ground séi, we define their intersectiafvt; N M- as the pair
(X,Z; n I). In general,M; N M5 is not a matroid since the exchange property might not hold.
Consider the following example. We have = {a, b, ¢} and both matroids are partition matroids.
In M, we haveX; = {a,b} and X, = {c} being the partition with bounds = ¢; = 1. In M,
we haveX| = {a} and X} = {b, ¢} with boundsc} = ¢, = 1. In M; N My, both{b} and{a, c}
are inZ; N Z,, but neither{a, b} nor {b, ¢} are inZ; N Z,. That is, the exchange property fails to
hold for M; N M.

Though the exchange property fails t; N M-, we can still define a notion of rank. For any
subsetS of X, we can define the rank.S) in M; N M, as the maximum size of any sub%etC S
with Y € Z; N Z,. Notice that we saynaximuninstead ofmaximal this is an important distinction.
It is still of interest to find a maximum size subsetXfthat is in bothZ; andZs.

For example, consider the special case where beth and M, are partition matroids and
all capacitiesc; are 1 in both matroids. The problem of finding a maximum sizeirs&; N Z
is equivalent to finding the maximum cardinality matchingairbipartite graph. To see this, let
B = (L U R; E) be the following bipartite graph whetle and R denote the vertex sets of the two
sides. Each partition itM; has a node i, and each partition ioM5 has a node irR. For each
element ini € X let u be the node corresponding to the partition containimgAM; and letv be
the node corresponding to the partition containing M,. Add an edge connectingto v in B.

We then see that matchings in correspond exactly to subsets &fthat are independent in both

11

My andM..

Finding the maximum size of a set common to b@thandZ, can be solved in polynomial
time provided we have a polynomial time algorithm for tegtindependence in both; and M.
Moreover, if we have a weighi(i) on itemsi € X then for each integek we can find a set
Y € 7; NI, with |Y| = k of maximum or minimum total weight or determine that no sueh s
exists. In particular, we can find a Sétof sizer(X) of maximum or minimum total weight among
all such sets. Extending the previous example, this captimeproblem of finding a maximum or
minimum weight perfect matching in a bipartite graph.

As before, we can associate polytopes\th N M. The independent set polytogg (M; N
M) is simply Pr(M;1) N Pr(Ms), the set of all vectors that satisfy all the constraints defining
both polytopes. This intersection is non-empty since theelb vector is in bothP; (M) and
Pr(Msy). Similarly, we can define the “base” polytogg; (M1 N M) as Pg(M;1) N Pg(Mas).
However, this intersection may be empty. It will certainky émpty ifr(M;) # r(Ms). However,
even ifr(M;) = r(My;) there may still be no vectarthat is common to both.

The elegant properties &% (M) and P (M) being integral for any matroidA carry over to the
intersection of two matroids. Specificall§; (M1NM.) is also integral and iPg (M1 N Ms) # 0,
then it too is integral [84]. This is not true in general foetimtersection of two arbitrary integral
polytopes as the discussion in the next paragraph higkligitequently encountered in this thesis
is the intersection of two partition matroids. Supposg, ... ,X,il are the partitions in the first
matroid with capacitiesi, ..., c,lCl and X2 ..., X,fz are the partitions in the second matroid with
capacities?, ..., c; . There is a simpler set of constraints that defines the saiyeope for the

intersection of these two partition matroids. Namely, thiéofving polytope is also integral.

Ziexj zj < ¢ V1<j<k
Ziexg zj < 2 V1<i<k
0<z < 1 VieX

We remark that the intersection of three matrolds, M, M3 does not enjoy any of these nice
properties. For example, suppos4;, M, and M3 are all partition matroids where the capacities
¢; in the partitions in each matroid are all 1. Then finding thgéat subseY C X that is inde-
pendent in all three matroids is equivalent to the NP-hapaittite matching problem in 3-uniform
hypergraphs. Using this example one can also showRhat1,) N P;(Ms) N Pr(M3) may be

non-empty and not integral ¢. some coordinates; may be non-integers at some basic paint

1.2.6 Complexity and Lower Bounds

In the decision version of a maximization problemwe are given an instance @f and a value
k. The problem is to determine if the optimum value of the instais at leask. Similarly, the
decision version of a minimization problem is presentechsnsame way and we are to determine

if the optimum value of an instance is at méstWe say an optimization probled is NP-hard if

12

there is a polynomial time reduction from every problem intdRhe decision version ab. Thus,
the existence of a polynomial time algorithm to find the optimvalue of an NP-hard optimization
problem® implies P = NP since it could be used to solve the decisiornaeis the problem.
Proving a decision problen® to be NP-hard shows that finding the optimum solution is in-
tractible so a natural question is to ask how well we may ayprate the optimum value ob.
Indeed, some NP-hard problems can be approximated vergevglivithin 1+ ¢ for e being inverse-
polynomial in the input size) and others cannot be approtéchavithin any non-trivial bounde(g.
not within Q(n'=¢) for any constant > 0) unless P = NP. In this section, we will survey a hier-
archy of categories of approximation algorithms. We wilrswith approximation algorithms that

find solutions extremely close to the optimum.

Definition 1.2.3 A Fully Polynomial Time Approximation Scheme (FPTAS) foroatimization
problem® is an approximation algorithm with approximation ratio+ ¢ whose running time is

polynomial in the size of the instance ahd

For example, the famous Knapsack problem has a relativeiplsi FPTAS that runs in time
O(";) wheren is the number of items [55]. Note that we can even chedsde inverse polynomial
in n and still obtain a polynomial time algorithm. However, ex@nFPTAS has its limitations. If
one looks closely at the known NP-hardness reductions ®oKtiapsack problem, we see that the
difference between “yes” and “no” instances is inverse egmbial inn (which can be written in
poly(n) bits) so we cannot distinguish between such instanceg agif-PTAS.

A slightly weaker approximation algorithm is the following

Definition 1.2.4 A Polynomial Time Approximation Scheme (PTAS) for an opétitn problem®
is an approximation algorithm with approximation ratiot+ ¢ whose running time is polynomial for

any fixed constant > 0.

For example, a PTAS may have running ti@én'/€) on inputs of sizex which is polynomial for
fixed constantgs > 0, but not fore = pﬂi/(in)' It is possible that an NP-hard optimization problem
can be approximated by a PTAS whereas the existence of an&Rdald imply P = NP. Consider
the Feedback Arc Set problem in tournaments. The input stinef a directed grapfy = (V, A)
with a single arc between any two nodes (so, for any two distindesu, v € V eitheruv € A or

vu € A, but not both). The problem is to delete the fewest arcs plesso the resulting graph has no
cycles. The problem is NP-completd.[2]) and it does have a PTAS [66]. However, the existence
of an FPTAS would imply P = NP for the following reason. AnytmsceG = (V, A) of the
Feedback Arc Set problem in tournaments has optimum vahtéstian integer at mostl| < V%
Suppose there wag &-+¢)-approximation for the problem running in tini&poly (]V|)-poly (1/€)).

By choosinge we would have a polynomial-timd + ﬁ)-approximation. However, such

_ 1
- |V‘2 L]
an approximation would be an exact algorithm because

<1+1) -OPT:OPT+OPT<OPT+1

V2 V2

13

Since the number of arcs deleted is an integer, then the muwhbecs deleted by such an algorithm
would then be exactl) PT and we could use this algorithm to solve the Feedback Arc@élgm.

In general, consider the notionstfong NP-hardnessAn NP-hard problem is said to be strongly
NP-hard if it remains NP-hard if all numbers appearing initiput are, in absolute value, at most
polynomial in the length of the input. This means the gap ketwoptimum solutions to “yes”
instances (instances produced through a reduction frones’ ‘ipnstance of a problem in NP) and
optimum solutions to “no” instances is at ledst pﬂi/(T)' So, if a problem is strongly NP-hard,
then an FPTAS could be used to distinguish between yes antstanices and, ultimately, show P =
NP. That is, unless P = NP, then no strongly NP-hard problesrahd=PTAS.

The class of optimization problems that can be approximaitda PTAS is similarly denoted
PTAS. Also of interest is the class of optimization probles#sX consisting of problems that have
constant-factor approximation algorithms. Clearly PTASAPX and it is possible to show the
inclusion is strict (see the example at the end of the Sulogett2.8). Similar to the theory of NP-
hardness, there is a notion of APX-hardness. Say a PTAStieddmom one optimization problem
® to anotheny is a polynomial-time reductiolfi such that for any instandeof @, a solution within
a factor1 + ¢ from the optimum value of the instang&7) of ¥ corresponds to a solution tb
within a factorl + ce of the optimum value of wherec is some constant. That is, a PTAS fér
would imply a PTAS ford. Then a problen® is APX-hard if there is a PTAS reduction from every
problem in APX to®. Finally, a problem is APX-complete if it is both in APX and Krhard. See
[10] for more information.

For example, it can be shown that the following problem is Afafd. Given a grapld’ =
(V, E), we are to assign one of three colours to each nodé taf maximize the number of edges
whose endpoints do not receive the same colour. It is onenggatiion variant of the NP-complete
3-colouring problem. This problem is also in APX since thaie greedy algorithm that colours
the nodes one at a time and always chooses the colour tradiiices the least number of monochro-
matic edges is a 3/2-approximation. The idea behind thisswhen considering a nodeat most
1/3 of the edges incident tothat already have their other endpoint coloured will be nobmomatic.

The celebrated PCP theorem [7, 8] can be shown to be equivaléhe fact that unless P =
NP, there is some constant> 1 such that the above optimization version of 3-colouring has
polynomial-timec-approximation. An important implication is that unless B, no APX-hard
problem has a PTAS. Another example of an APX-complete prabis the classical Traveling
Salesman problem in symmetric metrics. That it is in APXdai from any of the constant-factor
approximations (the best being 3/2 [32]). APX-hardnesshefTraveling Salesman problem was
originally shown in [74]. In the next subsection, we will denstrate the more simple result that it
is strongly NP-hard which will rule out a PTAS unless P = NP.

After APX comes problems that can be approximated withinesbounded rati®(f(n)) where

f(n) — oo asn — oo wheren denotes the size of the input. The classic Set Cover problem,

14

a generalization of the Minimum Weight Vertex Cover problerantioned in the next section to
hypergraphs (graphs where edges may connect more than tdes)yyaan be approximated within a
factorH,, = Inn+0(1) wheren is the number of elements (or hyperedges if we use the tetagyno
of hypergraphs) [35]. Heré],, is then’th harmonic numbe}p " _, % For some problems, there are
also super-constant lower bounds on how they may be appate@nFor instance, there is a constant
0 < csuch that there is noln n approximation for Set Cover unless P = NP [15]. Sometimesethe
assumptions are strengthed to provide tighter lower bauraisany constant > 0, it is known that
we cannot approximate Set Cover with a fagtbr ¢) In n in polynomial time unless all problems
in NP can be solved in time©(°glog) [37]. This is a stronger assumption thaNP, but it is still
unknown and it highlights a more general computationalibato finding a better approximation
algorithm for Set Cover.

In fact, sometimes lower bounds can be established thabutlall but the most trivial approxi-
mation algorithms. A classic example is Maximum Indepen&a problem in which we are given
an undirected grap&¥ = (V, E') and we are asked to find the largest possible independertitgst.
problem cannot be approximated well; unless P = NP there 9 {d~¢)-approximation for the
Maximum Independent Set problem for any constant 0 [91]. We note that the extremely naive
algorithm that simply returns a single node is, triviallg,7a&approximation.

Finally, there are optimization problems that cannot beragmated within any reasonable
bound. Again, in the next section we will see that the nonrimédiraveling Salesman problem
cannot be approximated within any polynomial-time complgdoundf(n) (such a®") unless P
= NP. At the end of Chapter 3, we will see another problem thahot be approximated within any

such ratio unless P = NP.

1.2.7 An Integrality Gap Example

To highlight how one can study approximation algorithmsgdinear programming, consider the
Minimum Weight Vertex Cover problem. In this problem, we gieen an undirected grapl =
(V, E) with non-negative node weights, for eachv € V. A vertex coveof G is a subsetV C V
of nodes such that € W orv € W (or both) for each edge = uv € E. The goal is to find a
vertex cover of minimum total weight. The problem is NP-hgi%].

The following approximation algorithm was presented by ktmseum [53]. Consider the follow-
ing integer programming formulation of the problem. We u§élavariablex, for eachv € V.

min E WLy

veV
subjectto: xz,+x, > 1 Ve=wuwv € FE

Ty € {0, 1} YveV

Any vertex coverlV corresponds to a feasible poiatin the integer program with:, = 1 for
v € Wandz, = 0forv ¢ W. Conversely, any feasible pointcorresponds to a vertex cover

{v € V:z, =1}. Thus, the cost of the optimum vertex cover equals the mininsost of the

15

integer program.

The following is a simple 2-approximation for the Minimum iyt Vertex Cover problem.
Relax the integer constraints in the integer program to kirip< x,, < 1 for eachv € V. Since
integer points remain feasible in this relaxation, thenrfiegimum cost of this linear program is
at most the cost of the optimum vertex cover. Solve the riegultP relaxation of the Minimum
Weight Vertex Cover problem in polynomial time.§. using the interior point method [59]) and let
z* be the solution found. Lét/ = {v € V : 2} > $}. The cost ofi¥’ is no more than twice the
cost of the LP solutiorr* (thus, at most twice the minimum cost of a vertex cover@ymbecause
the only variableg:, that were “rounded up” to 1 were those that were already at %aAIso, W
is indeed a vertex cover since each edge wv hasz} + =} > 1 so at least one of}, or z} is at
leasts.

Not only is this a 2-approximation for the Minimum Weight Yex Cover problem, it also proves
that the integrality gap of the LP relaxation obtained is esti2. This upper bound on the integrality
gap is essentially tight. Suppo&&s a complete graph amnodes and all nodes have weight 1. Since
G is a complete graph, then the weight of the minimum vertexec@®n — 1. However, the point
with z,, = for eachv € V is a point in the LP relaxation with objective function valje So, the
ratio of the optimum integer solution and the optimum fracél solution is at least — % and we

see that the upper bound of 2 is essentially tight.

1.2.8 Lower Bound Examples

In this subsection, we demonstrate an example of a reduthi@nestablishes lower bounds on
how well a problem can be approximated. In fact, essenttalysame reduction can be used to
demonstrate a few such hardness results.

First, consider the non-metric Travling Salesman problenthis problem, we are given a com-
plete graphG = (V, E) with edge distanced, for everye € E. The goal is to find a Hamiltonian
cycle in G with minimum total edge distance. The distinguishing featnf this problem from the
classic Traveling Salesman problem is that the distancestioeed to satisfy the triangle inequality.

The following is well-known.

Theorem 1.2.5 For any polynomial-time computable functigi{-), there is no polynomial-time

f(V|)-approximation for the non-metric Travling Salesman pesblunless B4 NP.

Proof. Consider an instance of the Hamiltonian Cycle problem. Weslza(not necessarily com-
plete) graphd = (V, E’) and the goal is to determine H has a Hamiltonian cycle or not. Form
a complete grapl = (V, E) on the same set of nodes Hswith edge distanced,,e € E where
d. = 1if e € E'andd. = |V|- f(|V]) if e ¢ E’. Notice the running time of the reduction is
polynomial sincef (|V|) is polynomial-time computable.

Now, if H has a Hamiltonian cycle then the same Hamiltonian cyclé ivill have total edge

distancdV| (since every edge used iski). Otherwise, ifH does not have a Hamiltonian cycle then

16

any Hamiltonian cycle of7 will have total edge distance strictly greater th&n - f(|V]) since any
such cycle must use an edge nofihand at least one other edge. Thus, #(y/|)-approximation
for the non-metric Traveling Salesman problem can be usddtermine if the original grapH has

a Hamiltonian cycle. |

Notice that the grapti produced by in the reduction is not metric in generakufvw € E’ but
uw ¢ E’ then we cannot havé,,, < dy, + dyy iIf f(|V]) > % Consider the same reduction that
assigns 2 tal. (instead of V|- f(|V|)) foredges ¢ E’. Thend,, < 2 < dy, + dw, always holds
so we do have an instance of the metric Traveling Salesmadotgumo If H has a Hamiltonian cycle
then there is a solution of coft’| and if H does not have a Hamiltonian cycle then all solutions
have cost at least’| + 1. Thus, the gap between these two types of instanc‘e&riﬁ%l. This shows
that even the classic metric Traveling Salesman problers doehave an FPTAS unless-PNP.
More sophisticated reductions are known that rule out apprating this problem within certain
small constant factors. These will be mentioned in SectiBn 1

Finally, consider théottleneck Traveling Salesmgnoblem. In this problem we, again, have
a complete grapltz = (V, E) with edge distanced.. The goal is to find a Hamiltonian cycle
that minimizes thdargestdistance of any edge, rather than the total distance. Thectied from
Theorem 1.2.5 (withf (]V]) instead of|V| - f(|V|) being assigned to edges notiif) establishes
that the non-metric Bottleneck Traveling Salesman proldamot be approximated within any ratio
better thanf(|V|) unless P= NP. Also, the reduction for the metric Traveling SalesmaobfEm
(that assigns 2 for edges not iY) does show that we cannot approximate the metric Bottleneck
Traveling Salesman problem within any factor strictly I#ssn 2 unless P- NP. This result is tight
as there is a 2-approximation for the metric Bottleneck &liag Salesman problem [21]. Note that
the metric Bottleneck Traveling Salesman problem is an g@tarmf a problem that is in APX but
not in PTAS.

1.3 Previous Work

In this section, we will mention some of the high-profile iésgoncerning the problems discussed
in this thesis. A more detailed account of the previous warleach problem can be found in their
respective chapters in this thesis. Still, to supply someed for this thesis’ contributions we feel

that some of the main results in previous work should be rorat here.

Unsplittable Flow: In general, Azar and Regev showed that the Unsplittablev Rimblem can-
not be approximated withif2(| E|'~¢) for any constant > 0 unless P= NP whereFE is the set
of edges in the underlying graph [11]. Despite this strorapproximability result, the problem
remains interesting as many special cases admit betteoxpyations. One special case is where
all demands, profits, and capacities are one known aEdige-Disjoint Pathgroblem. The Edge-

Disjoint Paths problem is NP-hard in undirected graphs amdains NP-hard in directed graphs

17

even if there are only two tasks to consider (see Foratrad. [39]). Kleinberg [61] demonstrated
that the Edge-Disjoint Paths problem in both undirected diretted graphs can be approximated
within O(\/|E]).

An instance of the Unsplittable Flow problem is said to $atthe no bottleneckassumption
if max; d; < max,c.. Thatis, the maximum demand of all tasks does not exceed ihienom
capacity of all edges. Note that the Edge-Disjoint Path®lpra, when viewed as an instance of
the Unsplittable Flow problem, satisfies the no bottlenesduenption. Chekurét al. generalized
Kleinberg’s approach to the Edge-Disjoint paths problershow that instances of the Unsplittable
Flow problem that satisfy the no bottleneck assumption eaagdproximated withim(m).

If the underlying graph is just a single edge, then the Uttsplie Flow problem is identical
to the Knapsackproblem if we view the single edgeas a knapsack with size. Even though
this, seemingly simple, restriction of the Unsplittablewlproblem is NP-hard, it does admit an
FPTAS [55]. The next natural step to consider is wiigis a path which we will refer to as UFP
(Unsplittable Flow on paths). Instances of UFP satisfying mo bottleneck assumption can be
approximated within constant factors. Currently, the laggtroximation ratio for UFP with the no
bottleneck assumption is (@ + ¢)-approximation for any constamt> 0 [20]. UFP also admits
a quasi polynomial-timél + ¢)-approximation for any constaat> 0 if the demands of all tasks
are integers that are at most quasi polynomial in the numbiasks [12]. However, this is a very
strong assumption since instances of knapsack can be sekaady in quasi polynomial time if
the sizes of all items are integers at mdz('rnlogk’ ™) for some constanmt wheren is the number
of items. Before the results appearing in this thesis, naa@mation algorithms were known for

general instances of UFP.

Traveling Salesman Problems In the classic Traveling Salesman problem, our task is t &n
Hamiltonian cycle of minimum total edge distance in a synrinehetric. A classic approximation
algorithm by Christofides finds Hamiltonian cycles whosé eoat most% times the minimum cost
Hamiltonian cycle [32]. The following linear program is aR lcelaxation for the classic Traveling

Salesman problem. It was first considered by Held and Karp [52

minimize : Z duvTuw (1.2)
ecA

subject to : xz(6(v)) =2 YoeV
z(6(5)) > 2 YWCSCV
0<zyp <1 Yuv € A

Wolsey [90] and Shmoys & Williamson [85] showed that the gnédity gap of this relaxation is also
at most3.
The related Traveling Salesman Path problem asks us to finahailtdnian path. Hoogeveen

[54] demonstrated that if at most one of the endpoints ofpiath is specified in advance, then the

18

problem may still be approximated with§1 However, if both endpoints are specified then the best
algorithm known is only &2-approximation. Recently, this algorithm (when both eridfsoare
specified) was analyzed by An and Shmoys [3] and a matchingcboﬂ% was placed on an LP
relaxation of the problem that is similar to LP 1.1.

The Asymmetric Traveling Salesman problem is presentedahee way as the classic Travling
Salesman problem, except the metric is allowed to be asyrianétn O(log |V |)-approximation
for this problem was presented by Friegeal. [42] almost 30 years ago and this remained the
best asymptotic guarantee of any approximation algoritbmtiie problem until very recently.
Williamson [89] considered an LP relaxation of the problend ahowed an alternative proof of
the O(log |V|) approximation ratio of this algorithm that also bounds titegrality gap of the LP
relaxation by the same ratio. Less than two years ag0) (&g |V|/ log log |V'|)-approximation for
the Asymmetric Traveling Salesman problem was presentékshygpouret.al. [9] that also bounds
the integrality gap of the LP relaxation by this ratio.

In this thesis, one variant of the Traveling Salesman prabie consider is finding a Hamilto-
nian path in an asymmetric metric (and some generalizgtituasn and Newman [62] first presented
anO(m)-approximation when both endpoints are fixed, but this dichoond the integrality gap
of any LP relaxation for the problem. Chekuri andl F30] provided the first logarithmic approx-
imation that, again, did not bound the integrality gap of &rklaxation. Later, Feige and Singh
[38] proved that the approximability of finding minimum leghgHamiltonian Cycles and Hamilto-
nian Paths (with both endpoints fixed) are within a falter ¢ of each other for any constant> 0.

At the time, it implied anO(log |V'|)-approximation for the problem but recent improvements for
cycles have improved this ©©(log |V'|/ loglog |V'|). Again, this did not imply any bounds on the
integrality gap for the problem. Finally, Nagarajan and Ra0] proved that the integrality gap of
an analog of LP relaxation 1.1 to the case of Hamiltonianatlasymmetric metrics (specifically,
LP 3.3 from Chapter 3) was bounded ©Y+/|V]).

Minimum Latency: Most of the study behind Minimum Latency problems has beertHe fol-
lowing variant in symmetric metrics. We are given a symneatnetricG = (V, E) with distances
on the edges and a specific start ned&he goal is to find a Hamiltonian pa#h starting ats that
minimizes the average, over alle V, of the distances froma to v along pathP. Blum et al. [18]
exhibited the first constant-factor approximation with @p@ximation ratio of 72 for this variant
of the Minimum Latency problem. The current best approxioraguarantee is 3.59 by Chaudhuri
et al.[25].

The variant of Minimum Latency we study in this thesis is $amio the above version, except the
metric is asymmetric. Nagarajan and Ravi [70] demonstritatthis version can be approximated
with O(|V|2+€) for any constant > 0. Their algorithm heavily relied on the fact that the intditya
gap of an LP relaxation for the Asymmetric Traveling Salesiath problem wa@(\m).

19

1.4 New Results

Unsplittable Flow on Paths In Chapter 2 we demonstrate that general instances of URRof

any further restrictions on the input) can be approximatétiwO (log n) wheren is the number

of tasks. This is the first non-trivial approximation for geal instances of UFP. We then generalize
this approach to demonstrate that we can approximate UF#wi(log, n) for any integerd > 2.

The running time of this algorithm is®(4) which means we can shrink the constant supressed in
theO(-) notation of the approximation ratio to be arbitrarily smalpolynomial time. Furthermore,
this is a constant-factor approximation that runs in supeeential2°(™) time (by choosinge.g,

d = [y/n]). We also consider certain sparse instances of the probheht@monstrate that these

can be approximated within constant factors in polynonimaét

Traveling Salesman Problems Our first new contribution in Chapter 3 is @log |V'|) approxi-
mation algorithm for the Asymmetric Traveling SalesmarhRabblem. While this is marginally
worse than the(log |V|/loglog |V'|)-approximation that can be obtained by combining results
in [38] and [9], its advantage is that it bounds the intedyadjap of a natural LP relaxation by
O(log [V]). This greatly improves on the previous bound(f,/|V|) in [70].

We also consider a generalization of this problem to a gewiith multiple traveling salesmen.
Specifically, we are given nodesandt in an asymmetric metric as well as a positive intefgefhe
goal is to findk paths froms to ¢ such that each node lies on at least one such path. Sétting
gives the standard Asymmetric Traveling Salesman Pathgmob/Ne generalize our algorithm for
k = 1 to arbitraryk and obtain a bicriteria approximation. For any positivedg#rb, our bicriteria
approximation finds at mostl + ;) - k& paths froms to ¢ such that every node is on at least one
of these paths. The total cost of these paths is at figstog |V]) times the optimum value of
an LP relaxation for the problem of using exacklypaths. Note that settin = k£ + 1 gives a
true O(k log |V|)-approximation using exactly paths whereas settirig= 1 gives anO(log |V|)-
approximation using at most twice the number of allowed patks far as we know, even the case
k = 2 with two salesmen has not been considered in asymmetriéomiaind setting = 3 gives a
true O(log |V|) approximation for this problem. We then extend these redaltifferent instances
with multiple traveling salesmen where the start and/ormeodes are either not specified or may be
different for different salesmen.

In one of these variants, we are givempairs of nodess, 1), ..., (sk, tx). The goal is to find
a path froms; to t; for eachl < i < k such that every node lies on one such path. In the case of
a symmetric metric, we give a simple 3-approximation for pheblem. In asymmetric metrics, if
s; = t; then the problem can be thought of as the problem of findindi@atimn of cycles (including,
perhaps, loops) where each cycle contains orferaddess; and every node lies on one such cycle.
We show that this problem can be approximated withifiog |V'|). Finally, in the most general

case for asymmetric metrics, we demonstrate that the probémnot be approximated within any

20

(polynomial-time computable) bounded ratio unless RP.

Minimum Latency : OurO(log |V'|) bound on the integrality gap of an LP relaxation for the Asym-
metric Traveling Salesman Path problem impliesCgl” |<)-approximation for the Minimum La-
tency problem in asymmetric metrics for any constant 0 using the framework in [70]. More
specifically, the actual approximation ratio in [70]0%(%§|W|V|5) for anyﬂ(m) <e<l1
wherep is the integrality gap of the LP relaxation for the Asymmeffraveling Salesman Path
problem and the running time is°(<). So, by choosing = O(W)’ our improved bound of
O(log |V]) on p implies a quasi-polynomial timé& (log* |V|)-approximation. We improve on this
in Chapter 4 by presenting a polynomial-tif@élog |V|)-approximation algorithm. This algorithm

also bounds the integrality gap of a particular LP relaxati@ introduce for the problem.

Finally, this thesis concludes in Chapter 5 with some dioest for future research.

21

Chapter 2

The Unsplittable Flow Problem on
Paths

Recall the definition of the Unsplittable Flow problem on &hp@FP). The underlying grapfi is a
simple pathvy, ve, . . ., v, Where each edge= v;v;;1 has some capacity > 0. We sayv; < v;
wheni < j ande < ¢’ when, saye = v;v;41 ande’ = v;v;41 andi < j. Similarly, we use<, >
and> to mean, respectively, “to the left of or equal to”, “strilycto the right of”, and “to the right
of or equal to”. Informally, if we drew the path in a “left-taght” manner, ther; < v; if v; is
drawn to the left ob; ande < ¢’ if e is drawn to the left ot’. So, more generally, we say< e for
an edgee = uw if v X wande < v if v > w. Finally, we sometimes denote the capacity of an edge
e = uv with ¢, whereu < v. That is,c, is the capacity of the edge whose leftmost node is

In addition to this graphG, we have a collection of tasksT = {(s;,t;,d;, p;)}"_, where
s; < t; are the start and end points of tastn the path¢d; > 0 is the demand of task andp; > 0
is the profit of taski. In the case of a simple path, we are not concerned with howuterthe
tasks we select since there is a unique path between theiatglpbany task. For a task we let
span(i) denote the set of edgés;v; 1 : s; < v; andv; 11 =< ¢;} on the path frons; to ¢,. If a task
1 is selected, then it will require$; units of capacity along each edgec span(i). Letlength(q)
denote|span(i)|, the length of task.

We call a subset of task®& C T feasibleif, for each edge, the total demand of tasks # that

use edge does not exceed.. Formally,

Z dl Sce.

i€T":e€span(i)
The problem is to find a feasible subsetIofvith maximum possible profit. For a subsgt C T,
we letd(T”) be the total demand of all tasks Tf andp(7”) denote the total profit of all tasks in
T’. Thus, our goal is to find a subsEt that maximizeg(T”) while guaranteeing({i € 7" : e €
span(i)}) < c. for every edge:.. We, furthermore, assume that every task feasible by itself by
discarding any taskhavingd; > c. for somee € span(s).

Approximating the general Unsplittable Flow problem (oeebitrary graphs) is difficult. As

22

mentioned earlier, Azar and Regev [11] demonstrated tisene ® (| E|'~€)-approximation for the
general Unsplittable Flow problem unless P = NP. Kleinbédd flemonstrated that the special case
with unit demands, capacities, and profits known as the Big@int Paths problem (EDP) has an
O(\/@)—approximation in both directed and undirected graphsingsan later showed that EDP
can be approximated withi (|V |3 logé |[V]) in directed graphs [87]. The approximability of EDP
is much better understood in directed graphs than in uniéidegraphs. Directed EDP cannot be
approximated withirO(|V|%—€) for any constan¢ > 0 unless P = NP [51] whereas we only know
that undirected EDP cannot be approximated Wi’(ii}(mog%_6 |V|) for any constant > 0 unless
all problems in NP can be decided in randomized quasi-patyalotime [4] (specifically, unless
NP C ZPTIME(nO(Pel¥los(n)))) Finally, we note that for any fixed constant integewe can solve
the EDP problem in undirected graphs if the number of pairs:;) is at mostk [82]. In contrast,

it is NP-complete to determine if both tasks can be routedd® Ehstances in directed graphs with
only two tasks [39].

EDP and, more generally, the Unsplittable Flow problem teentstudied on expander graphs.
WhenG is a (large) constant-degree graph that satisfies a strajegeegbansion property, Frieze [41]
demonstrates that any EDP instance on such a graph can lwxiapgted withinO(log |V]). Later,
Srinivasan demonstrated that the more general instandgsspiittable Flow with uniform capaci-
ties on expander graphs can be approximated withiiog® |V|) [87]. Additionally, Chakrabartet
al. [23] present arO(log? |V |)-approximation for constant-degree expander graphs #iisfs the
no-bottleneck assumption (defined in the next paragrapdr)tHe expanders considered by Frieze
in [41], they also develop a@(\/W)—approximation if the edge capacities are uniform.

A problem whose difficulty lies between EDP and general Uttaple Flow is the Unsplittable
Flow problem with theno bottleneclassumption. The no bottleneck assumption says that the maxi
mum demand of all tasks is at most the minimum capacity oftgles. Instances of the Unsplittable
Flow problem satisfying the no bottleneck assumption caagproximated WithirO(\/m) [28]

(in undirected graphs). The no bottleneck assumption tsastaen used to develop better approxi-
mation algorithms for restricted versions of the UnspliktaFFlow problem that we discuss below.

The Unsplittable Flow problem remains NP-hard even on ggapiere there is a unique path
between any two nodes (namely trees). That is, the problesimiply to choose the maximum
profit of a feasible subset of tasks without having to worrpwbhow to route these tasks. As
we said in Chapter 1, if the graph is a single edge then thelgmois identical to the NP-hard
Knapsack problem. In trees, the Unsplittable Flow probleiAPX-hard as was shown by Gaeg
al. [46]. Chekuriet. al.[29] demonstrated that the Unsplittable Flow problem ieg¢rean indeed be
approximated within constant factors in no bottleneckanses and, in fact, the integrality gap of a
natural LP relaxation (the tree version of LP 2.1 introdulzgelr) is bounded by a constant. Finally,
after ourO(log n)-approximation for UFP (Unsplittable Flow on Paths) in $&tt2.2 appeared

[13], Chekuriet. al. [26] devised arO(log2 n)-approximation for general instances of Unsplittable

23

Flow in trees.

An instance of UFP with unit demand, capacity, and profit carsdived efficiently since it is
equivalent to the maximum independent set problem on iategraphs, which can be solved in
polynomial time [48]. More generally, instances of UFP vathitrary weights and arbitrary integer
capacities but unit demands can be solved exactly becausel&fation 2.1 has the consecutive
ones property meaning it is integral. Alternatively, one caodel such an instance as a maximum
cost circulation problem on a graph with integer capacitiestances of UFP with arbitrary demands
and uniform capacities was first shown to have a constantrfagproximation by Phillipgt. al.
[75]. This was improved first by Bar-Naogt. al. [14] and then by Calinescet. al. [20]to a2 + ¢
approximation. For the more general no bottleneck insswt&FP (with, perhaps, non-uniform
capacities), Chakrabasi. al.[23] presented the first constant-factor approximatiorciiwas also
improved to & + e approximation by Chekuet. al. [29]. Bansalet. al. [12] consider a different
variant of UFP. When all demands are integers at most quaiqmial inn, they present a quasi-
polynomial (1 + €)-approximation for any constaat> 0 even if the instance does not satisfy the
no bottleneck assumption.

The first non-trivial approximation for general UFP instasthat may not satisfy the no bottle-
neck assumption) was the(log n)-approximation algorithm appearing in Section 2.2 [13].wes
show later, LP 2.1 has &d(n) integrality gap for these instances. Chelefri al. [26] considered
a stronger LP relaxation and demonstrate the the integgip of this new relaxation i (log® n).

In a personal communication, they have indicated that tleyimprove this bound t®(logn).
Finally, a recent result by Bonsng. al. [19] demonstrates that general instances of UFP can be
approximated withir7 + e for any constant > 0. Their approach, like ours, is a hybrid of LP
rounding and dynamic programming and does not bound thgradtey gap of any LP relaxation by

a constant factor. We discuss their approach further in onclasion to this chapter in Section 2.5.
Bonsmaeaet. al. also establish that UFP is strongly NP-hard. For a long tthepnly hardness result
known for UFP was the weak NP-hardness it inherits from kaelas

Our results in Sections 2.3 and Section 2.4 were obtained afir paper [13] was published.
They are now mostly subsumed by the recent constant-fappyogimation by Bonsmat. al. [19]
(except for the fact that the algorithm in Section 2.4 alsaruts an integrality gap). The results
of these sections were obtained after papers [13] and [28aned, but long before [19] was made
public.

The main results of this chapter are the following.

Theorem 2.0.1 For any integerd > 2 (perhaps a function at), UFP can be approximated within

O(log, m) in timen®@,

We argue that we can assume that< 2n in any UFP instance, so this is also &ilog,n)-

approximation.

24

Say an instance ig-conflictingif for every taski and every edge spanned by, there are at
mostq tasksi’ # i for whiche € span(i’) andd; + d;; > c.. That is, there are at mogtother
tasksi’ such thaf{i, i} is not feasible because the capacity of edgeviolated. The motivation for

studying this case is discussed in section 2.4.

Theorem 2.0.2 There is a polynomial-timé (q)-approximation algorithm fowr-conflicting UFP

instances.

A good place to start looking for approximation algorithragilinear programming (LP) relax-
ation of the problem. For each tagkdefine a variable;;. Consider LP 2.1 which is, perhaps, the

most natural linear programming relaxation for UFP.

maximize : Zpizi (2.2)
subject to : Z diz; < ce vV edges
i:e€span(i)
0<z; <1 V tasksi

To see this is a valid LP relaxation of UFP, consider someilissubsetl” C T. Define a
point z in the polytope of linear program 2.1 by = 1 fori € T’ andx; = 0 fori ¢ T'. Since
T’ is feasible, then the capacity constraints are satisfied.value of the objective function under
this assignment is also the same as the profit'ofConversely, if we have an integer pointn the
polytope, then we defing’ = {i € T : z; = 1}. We see thal” is feasible with profit equal to the
value of the objective function at poimt

Unfortunately, the integrality gap of this LP relaxationlasge so we cannot solely rely on it

when designing approximation algorithms.

Lemma 2.0.3 There are instances of UFP with uniform profit whose optimaimeris 1 such that

the LP relaxation of the problem has value at legst

Proof. Consider the following instance with tasks on a path having + 1 nodes. Identify the
tasks with integerd,...,n and the nodes on the path with integérs..,n. Then taski has
s; = 0,t; = i,d; = 27", p = 1. Furthermore, the capacity of the edge from poinj — 1 to j is
277, See Figure 2.1 for an illustration.

The optimum solution is 1 because no two tasks can be choseritaneously. To see this,
consider tasks < i’. Their total demand i8~% + 2~% > 2~%. Both tasks andi’ cross the edge
connecting — 1 to ¢ which has capacit@—* so they cannot both be chosen simultaneously.

On the other hand, the variable assignment 1/2 has objective function value/2 in LP 2.1.

Consider an edge fromh— 1 to j. The LP constraint for this edge has the left-hand side being

—1

gdzxv—zn:22 <27j = Ce

1=

25

dy = 272
dy =27 \

Figure 2.1: An instance of UFP on paths with integrality §p).

so the LP has optimum value at leag®. O

To address the difficulty presented by the bad integrality geample, the set of tasks will be
split into two instances. One instance can be handled wéll k¥ rounding and the other, which
may have a bad integrality gap, will be handled with dynamagpamming. We define these two
groups as follows:

Definition 2.0.4 A bottleneck edgéor a taski is any edge: € span(i) with d; > ¢./2. If a taski:
has no bottleneck edge then itsiack otherwise it igight.

We partition the taskg into the slack tasks and the tight tasks. Suppose we have- an
approximation algorithm for finding the optimum feasibldoset among the slack tasks and-a
approximation algorithm for finding the optimum feasibléset among the tight tasks. Returning
the more profitable of these two solutions is theh-anax{«, 3}-approximation. To see this, sup-
poseT™ is an optimum feasible subsetBfand thatT’,, T; are, respectively, the slack and tight tasks
inT. Thenp(T*) = p(T* N Ts) + p(T* NTy). SayT., T, are, respectively, the solutions found
by the a-approximation for slack tasks and ti¥eapproximations for tight tasks. The total profit
returned is:

max{p(T%,), p(T})}

Y

max{p(T* N T3) fa, p(T* N T2)/5)
p(T* N Ty)/a+p(T* NT)/8
2
p(T"NT,) +p(T"NTH)
2max{a, §}
p(T™)
2max{ca, 5}

Of interest to our algorithm is the following special case.

Y

Lemma 2.0.5 If there is a constant-factor approximation for instancésJ&P when all tasks are
slack and as-approximation for instances of UFP when all tasks are tighéen there is arD(5)-

approximation for general instances UFP.

In fact, this is a general theme of the algorithms that folldw many cases, we partition the

instance into different parts, approximate the optimunsitda subset in each part, and keep the

26

subset of maximum total profit among all parts.~lis the worst approximation ratio among the
different parts and there afeparts, then the profit of the returned solution is withiknafactor of

the optimum feasible subset of tasks for the instance baingideredi(e. a ky-approximation).

2.1 Simplifying Assumptions

Since the approximation ratios presented in this chapteusnally super constant, we make some
simplifying assumptions at the expense of a constant fastthre approximation ratios. The few
constant factor approximations that are presented are proafs of concept that we can do better
than anO (log n)-approximation in certain cases and we also do not worry bptimizing these
constants. In this section, we show how to reduce a genestalinioe of UFP to instances satisfying
certain assumptions while losing only a constant factorsubhsequent sections, we show how to
exploit these assumptions when developing approximatgorighms.

Informally, using these simplifications we can restrict atiention to instances whose tasks have
large demands (relative to the edges they span) and smétsmnd such that any two tasks either
have similar demands or the demand of one is much larger Headdmand of the other. We also
show that we can assume the length of the underlying pathtimooh longer than the number of
tasks.

The optimum value of the slack tasks is easy to approximate.fdllowing was proven in [26]
using techniques from [20]. It was proven after our resulbaction 2.2 appeared [13], but before
we developed the more general approximation algorithm @ii@e2.3. We use it in our algorithm
for Section 2.3, but we will provide an explicit proof of it the special case considered in Section

2.2. The proof is similar to our proof in [13].

Lemma 2.1.1 (Chekuri, Korula, and Ene [26]) The integrality gap of linear program 2.1 is con-

stant if all tasks are slack.

So, unless explicitly stated, all tasks in the rest of thiapthr are assumed to be tight. Another

assumption we work with allows us to use dynamic programrajpgroaches.

Lemma 2.1.2 If there is a polynomial-timgs-approximation for tight instances of UFP where all
profits are integers in the rang@, 2n], then there is a polynomial-tim®3-approximation for tight

instances of UFP with arbitrary profits.

Proof. This is the standard trick of scaling. Our proof follows thegentation of Lemma 8.3 in
[88] for approximating the Knapsack problem. Note that welddave assumed the values are in
the range[l, n/e] and obtained &/(1 — ¢) approximation for any constamat> 0, but our final
approximation ratios are at least constant factors so wsigenonlye = 1/2 for simplicity.

Let P = max; p; be the maximum profit of any task and 1&t = 2%. Define new profits
p; := | %] where|z] is the greatest integer not exceedingNote that all of the remaining tasks

27

havep, being an integer in the rangd@, 2n|. Use theg-approximation algorithm on the instance
with profits p; and sayT” is the subset of tasks found. Since the demands and capaitiaot
change, the returned instance is also feasible for thenaligistance.

Supposél™ is the optimum subset & under profitg. Since|T*| < n and sincey;, > Kp, >
pi—1,thenKyp' (T*) > p(T*)— Kn. SinceT* is a feasible solution with value at leagf™)/K —n
with respect to profitg’, the value ofl” with respect to profitg’ is at leas{p(7T*)/K —n)/3. So,

the total profit ofT” under the original profits is at least

(p(T™) — Kn)/B = (p(T") — P/2)/B = p(T")/28
where we observe(T*) > P since any taskwith p; = P is feasible by itself. O

We coarsely organize the tasks according to their demangssc8ling the demands and ca-
pacities uniformly, we may assume each demdni at least 1. Defind), = {i € T : 2~ <
d; < 2k*t1}. By losing a factor of 2 in the approximation ratio, we funtipartition 7" into two sets
Teven, Todd WhereTe,e,, = Up>1Dop andToqq = Up>1D2x—1 and run the subsequent algorithms
on each subséf,....., T,q4, returning the better of the two solutions. The benefits afiglthis will
be made apparent later.

Finally, we may assume that < 2n wherem is the number of nodes on the underlying path
andn is the number of tasks. If either the start node or the end nodke path is not an endpoint of
some task, then that node may be removed. Also, if some <aode; with incident edges, say,
e, ¢’ is not the start or end point of some task, then we may remjaed combine the edgese’
into one edge with capacityin{c., c.- }. Itis easy to see that a subget C T is feasible before
such an update if and only if it is feasible after such an updat

To summarize, we are assuming the following structure oimrtance (at the expense of losing

a constant factor in the approximation ratio).
Definition 2.1.3 Say an instance of UFP Emplifiedif the following statements are true.
1. Alltasks are feasible on their own.
2. All tasks are tight.
3. The profit of each task is an integer in the raf@en].
4. We have eitheb,, = () for all even integersg or D, = () for all odd integersk.
5. The number of nodes on the underlying path is at mo2t (twice the number of tasks).

Unless stated otherwise, we assume throughout the rese afhidpter that all UFP instances are
simplified. The only exception is that we briefly discuss klasks in Section 2.2.2.

Combining the observations in this section, we have thewotig

Theorem 2.1.4If there is a polynomial-timg-approximation for simplified instances of UFP, then

there is a polynomial-timé&(3)-approximation for general instances of UFP.

28

2.2 A Logarithmic Approximation for UFP

Eventually we will present a@(log,, n)-approximation running in time (@ for any integetl > 2.
However, the ideas involved can get quite technical. Hem pvesent a simpler algorithm that
achieves am(log n) approximation in polynomial time to highlight some of theimaleas of the
more general result without getting too involved in the tdchl details.

The basic structure of the algorithm has two main partst,Rirs argue that we can restrict our
attention to instances callédtersectingwhere all tasks span a common edgeThen, we present
a constant-factor approximation for such instances. Hewedhere are a number of cases to be
considered for intersecting instances based on whethtagks have bottleneck to the leftqfto the
right of e, or both. We need to develop different algorithms for thesses. Though we may assume
that all tasks are tight due to result in [26], we also denrasthow to approximate intersecting
instances of slack tasks since this is much simpler than eéheral case of non-intersecting slack
tasks. We do this to demonstrate some of the techniques imxéppating slack tasks. We also
briefly demonstrate how to use an approximation algorithmUBP to approximate instances of

unsplittable flow when the underlying graph is a cycle.

2.2.1 A Reduction to Intersecting Cases

Two tasksdntersectf they share a common edge. Thatiandj intersect ifspan (i) Nspan(j) # 0.
A collection of tasks isntersectingf all of the tasks share a common edge; this is equivaleriido t
property that the tasks in the collection pairwise intetrs€his is similar to the fact that the intervals
corresponding to a clique in an interval graph must sharenamgan point €.g. [48]). Finally, a
collection of task<” is feasibleif, for all edgese, we haved_, c..c span(i) di < Ce-

We now describe a reduction procedure which allows us tosfoaly on intersecting cases while
losing anO(log n)-factor in the approximation guarantee. This is the onlyela our algorithm

where more than a constant factor is lost in the approximafirantee.

Lemma 2.2.1 If there is ap-approximation for instances of UFP on a line where all tasksrsect,

then there is arD(p log n)-approximation for the general instance of UFP on a line.

Proof. Consider an instance of UFP on a line. We first group the tasksrding to their lengths.
Say a task belongs to grouf,. if 2" < length(i) < 2"*1. Since we havéength(i) < m < 2n
for all tasksi, thenr € {0,1,...,[log, 2n] — 1}. Focus on an optimum set of feasible tagks
.) 1 .
with profit OPT. Note that one of the grouggs, must have at Ieastﬁm—fractlon of the total
profit of T*. That is, if OPT, is the optimum profit over all feasible subsets of tasks inugrG,.,
OPT

thenOPT, > Tlog, 2n for somer.

Consider a grouf-,., each task € G,. must span some edge= wv,v,1 Whereb = k2" for
some integek. Create groupél, ; for k € Z and place € G, in groupH, ;, if k is theleastinteger

for which vyvp11 € span(i) for b = k2". One sees thall, ;, is an intersecting collection of tasks

29

e e

Figure 2.2: Grouping the tasks according to the left-mosttgaf the formk2” for some integek:.

(Figure 2.2 helps illustrate this). Observe that for tasksH, . andj € H,; with k+3 < [we have
span(i) N span(j) = 0. This follows sincdength(i) < 27! ands; < k2" imply ¢; < (k + 2)2".
Furthermore, sincéis the least integer for which; < 2" thens; > (k + 2)2" > ¢,.

Now, apply thep-approximation to eacl,. ;, and letC:,. ,, denote the collection of tasks chosen
by the algorithm. For each= 0,1,2, letC,; be the union of alC, ;» with I’ = [(mod 3). By
arguments in the previous paragraph, none of the tasks.incan intersect any task i@, ; if
k+3 <lsoC,, is afeasible collection of tasks for eatk: 0, 1, 2. Furthermore, by looking at the
restriction of the optimum solutio® PT’. for groupG,. to the subgroup#, ;, we see that at least
one of the three grougs. ; has profit at Ieas?%pﬂ. Thus, for some € {0,1,..., [log, 2n] — 1}
and some < {0,1,2} we have the total profit of tasks if.; is at Ieastm -OPT =
Q (L) oPT. O

plogn

In the next section, we develop a constant-factor appraiimdor instances of UFP on a line
where all tasks are intersecting. Combining this with thenbrea 2.2.1 and Theorem 2.1.4 yields the

following:
Theorem 2.2.2 There is anO(log n)-approximation for UFP.

Consider an instance of UFP where all tasks share a commern edg refine our classification

of the tasks in the following way:
1. if no edge is a bottleneck farthen sayi is slack
2. if i has bottleneck edges on both sides tifen sayi hasboth endpoints tight
3. if kK < t for all bottleneck edgek for i then sayi is left-tight
4. if k » t for all bottleneck edgek for i then sayi is right-tight

Since the instances are simplifiedf. (Definition 2.1.3), we can exclude the case of slack tasks.
However, there is a relatively simple LP rounding mecharfisnmintersecting cases of slack tasks

that we describe in the following section for the sake of clatgmess. It is easy to verify that none

30

[[

Figure 2.3: lllustrating why we may assume the capacity lerefiunimodal. The capacity profile is
drawn above the line and the tasks are drawn below the line.

of the steps made so far rely on the tasks being tight, so weassyme, for this algorithm only, that
the input also contains slack tasks.

Partition the tasks into four groups according to the cfacsgion above. We describe a constant-
factor approximation for each such group in the next thréxsections (the algorithm for right-tight
tasks is essentially identical to the algorithm for lefiti tasks so it is omitted). The maximum total
profit of these four approximate solutions is then within astant factor of the optimum solution
(since one of these groups has a solution consisting of sit 164 of the optimum profit).

There is one further simplification we can apply to intersegptases. If all tasks share a common
pointt, then we may assume the following structure on the capackier eacle < ¢’ < ¢, we have
ce < ¢ and for eacht = ¢’ = e we havec., > c.. That is, the capacities increase as we move
from the left tot and decrease as we move froro the right. The reason is this: in any feasible
collection of tasksI" and any fore < ¢’ < t we have that the total demand That edgec’ is at
least the total demand ifi at edgee. By this reasoning, we may reduce the vatyeo c.- and not
worry about affecting feasibility of any subset of taskghi capacities satisfy this, then we say the

capacity profile isinimodal See Figure 2.3 for an illustration.

2.2.2 Slack Tasks

The following rounding algorithm is similar to the algonithof Chakrabarti et al. [23] for the no-
bottleneck case. Though the slack tasks in our case may tigfyyghis assumption, essentially the
same rounding algorithm can be seen to provide a constatatr fapproximation for intersecting
cases of slack tasks. For the sake of completeness, and am ge¢a how we can deal with slack
tasks, we present the full algorithm and proof in the casetefsecting slack tasks. The analysis is

simpler in our case because the tasks are intersecting.

31

Recall the standard LP for UFP.
maximize : Z DiT;

subject to : Z dix; < ce vV edges
i:e€span(i)
0<z;<1 V tasks:

Though it has af2(n) integrality gap in general cases, we will prove it has’dn)-integrality gap
for intersecting cases of slack tasks. Cheletrial. proved it has ai®(1)-integrality gap in general
slack cases that are not necessarily intersecting [26]mHFrow on, letz* denote an optimum
solution to the above LP.

Consider the following algorithm. Since the capacity pgoifl unimodal, the minimum capacity
of all edges spanned by a tasls across either edge startingsator across the edge endingtat
Let C< be the set of tasks witty, < ¢;,_; and letC's. be the set of tasks witty, > ¢;,_1. That s,
C< is the collection of tasks whose most constrained edge sdts edge and's. is the collection
of tasks whose most constrained edge is its final edge.

The rounding algorithm proceeds as follows. We first ignbeetaisks irC's. and focus only on
tasks inC<. The algorithm for rounding tasks it is similar to what follows so it is omitted.
Next, order the tasks i< in increasing order of their starting nodes We choose each task
i € C< independently with probability} /4. Let R denote the set of chosen tasks and say these
tasks are; < ip < --- < 4. We construct a sequence of sgts= Sy, S1,.. ., as follows: let
Sy = Sp_1 U{i,}if S,.—1 U {4, }is feasible; or leS,. = S,._; otherwise. The algorithm outputs the
setS = Sy

Note thatS is a random set, and the decision whether tab&s in S or not is correlated to

whether other tasks lie i or not. We show that:
Theorem 2.2.3 Any particular request € C< lies in .S with probability at least:} /8.

Proof. Define the following random variables: fore C<, let X; = 1if ¢ € R, and0 otherwise;
and lety; = 1if ¢ € S, and0 otherwise. Note thak’; variables are independent, but ffievariables
are not.
Fix 1 <r < |R| and consider the task= i,.. We are interested if[Y;]. SinceS C R, we have
Y; < X; and henc&ZY;] < E[X,]. Consider the evernft, that[Y; = 0 | X; = 1]. If E, happens,
then it must be the case thélt_; U {i} is not feasible. The lemma below characterizes the reason

E. happens.

Lemma 2.2.4 The eventE, holds if and only if the capacity of the first edge in span(i) is
violated by the set of task&._; U {i}.

Proof. The proof is based on the fact that the capacity profile is odehand the defining property

of the tasks inC'<. By definition, E, happens if and only if the capacity constraint at some edge

32

e € span(i) is violated byS,._; U {i}. Note that the order in which we considered the tasks implies
all tasks inS,_; U {i} cross the first edge,, of i. Since these tasks are "k and the capacity
profile is unimodal, this edge has the least capacity amdrglges inspan(i). Thus, if S,._1 U {i}
violates the capacity of some edge and sifice, is feasible, then surely it must violate the capacity
of cg,. O

Thus, forE, to hold, the total demand of tasks®in {1,...,7 — 1} must exceed,, — d;. For
j=1,...,i—1, consider arandom variable; = d; if j € R, and0 otherwise. LetD = ZZ ! D;.

Lemma 2.2.5 Pr[E,] < 1/2

Proof. We know thatPr[E,] < Pr[D > c¢s, — d;] < Pr[D > ¢,,/2]. The second step follows as

all tasks are slack.

We haveE[D] = Zl L E[D;] = Zj 175/4 < ¢, /4. The last inequality holds since the
fractional solutionz* satisfies the capacity constraint on edge Thus, by Markov’s inequality,
PriD > ¢, /2] < 1/2. O
Now,

ElY;] = PriY;=1|X;=1]-Pr[X; =1+ Pr[Y;=1]| X, =0]- Pr[X; =0]

— (1-PrE))-2/4

> /8
as claimed. O

Say thatS< andS-. are, respectively, the subsets(®f andC'. found through the above round-
ing algorithm. Ifz* is the value of the LP solution for the slack tasks, using Téen2.2.3 and
returning the most profitable &f< and.S-, the expected value of the solution obtained is at least
z*/16.

2.2.3 Both Endpoints Tight

As a warm-up, consider the special case where the tasks fegguence of nested intervals. That
is, say the tasks can be ordered such that s; < t; < t; for all i < j. The following notation
is useful in this case and in the more general cases of tigks t® be considered. For a taisket

cap(i) = Mingcspan(i) cc denote the minimum capacity over all edges in the span of

Theorem 2.2.6 There is a polynomial time exact algorithm for nested instanif all profits are

integers in the rang@, 2n).

Proof. The algorithm is based on a dynamic programming algorithmilai to those used for

Knapsack problems. For integet, let f(i,p) be the minimum total demand among feasible

33

subsets of task§ C {1,...,i} that achieve profit exactly. If it is not possible to obtain profit
exactlyp with a feasible subset of the firstasks then say (i, p) = oco. The values off (¢, p) are
computed in the order of increasingClearly f(0,0) = 0 and f(0,p) = oo for p > 0. We claim
the following recurrence is satisfied by the valyés, p) for ¢ > 0:

{ min{f(i — 1,p), f(i = L,p —pi) +di} ifpi <p

fl,p) = and f(i —1,p — p;) + d; < cap(i)
fi—1,p) otherwise

To see this, consider some> 0 and profitp. If f(i,p) = oo then surelyf(i — 1,p) = oc.
Furthermore, ip; < pandf(i —1,p—p;) < oo then we claim thaf (i — 1,p — p;) + d; > cap(3).
If this were not so, then consider some feasibleS8eif the first: — 1 tasks with minimum possible
demand with profit exactly — p;. By definition, alle € span(i) havec. > cap(i). Thus, if
fli—1,p—pi)+d; < cap(i) thenS’ U {i} is a feasible subset of the firstasks obtaining profit
which contradictsf (i, p) = co. Therefore, the recurrence is satisfied for p&irg) with < > 0 for
which f (i, p) = cc.

On the other hand, suppogéi, p) < oco. Consider some sét of the firsti tasks with minimum
possible demand that obtains profit exagilyi.e. the demand ofS is f(i,p)). If i ¢ S then
f(@—1,p) < f(i,p) sinceS is also a feasible set of the first— 1 tasks. On the other hand,
fl —1,p) > f(i,p) since any subset of the first— 1 tasks is also a subset of the fisstasks
which impliesf(i — 1,p) = f(i,p). If i € SthenS\ {i} is a feasible subset of the first- 1
demands s¢ (i — 1,p — p;) < f(i,p) — d;. If f(i — 1,p—p;) < f(4,p) — d;, then by reasoning
in a manner similar to the previous paragraph, any feasétl§’sof profit p — p; of the firsti — 1
tasks with demand (i — 1,p — p;) can be extended to a feasible §étU {i} of the firsti elements
with profit p and demandf (¢ — 1,p — p;) + d; < f(i,p) which is a contradiction. Therefore,
fe—1,p—p;) +d; = f(i,p). In either case of € S ori ¢ S, the recurrence is satisfied.

The value of the optimum solution is then the largest valfier which f(n, p) < co. Since the
instances are simplified according to Definition 2.1.3, thly @alues ofp which may be finite are
integers in the rangf, 2n2]. Sincei ranges from 0 to, then all valuesf (i, p) can be computed

with dynamic programming in timé(n?). |

More generally, a collection of tasks with both endpoinghtican be made to look something
like a sequence of nested intervals. Recall that for any memative integek we definedDy, to
be the collection of taskswhose demand; lies in the rangd2”, 2*+1). We have the following
structure between groups, which says if task has much less demand than tasthen taskj is
nested in task. The basic idea is that tagk being feasible on its own, cannot cross any bottleneck
edge for task since the demand foi is much higher than the demand woWhile any bottleneck

edge fori has capacity close to the demand of

Lemma 2.2.71f i € Dy andj € D; withk + 2 < [thens; < s; andt; > ¢;.

34

Figure 2.4: A sketch of the structure exploited by the dyrmapnogramming. Thick lines are tasks
in a feasible solution (with the corresponding demand clagiten to the left of the image) which is
why each demand class has only three tasks shown. Pairged diaes connected by a thin, double-
arrowed line indicate the last start node and the first en@ modong all tasks in the corresponding
demand class. The edges spanned by tasks of any higher detaasanust be contained between
these two dotted lines.

Proof. Sinced; < 2+ and2! < d;, then2d; < d; (by k + 2 < I). Also, sincei is tight and the
capacity profile is unimodal, thef) > ¢,, /2 which showsi; > ¢,,. Sincej is feasible by itself and

d; > cs,, thens; < s;. A similar argument shows >~ ¢;. O

Recall that since the instances are simplified accordingefinilion 2.1.3 then we have either
D, = () for all evenk or Dy, = () for all odd k. We also have the following observation that bounds
the size of a feasible subset of aby,. Since all tasks share a common point, then a bottleneck edge
(saye) of some task (say) must be spanned by all other tasks. Since the capacitysoflose tad;
and the demands of othgre D, are close tal;, then not too many tasks iR, can fit across edge

e in a feasible solution. Formally:
Lemma 2.2.8 Let By, be any feasible subset 8. Then|B;| < 3.

Proof. Let: € By, be such thas, >~ s; for all j € By. Notice thats; € span(j) for all j € By,.
Now, by definition ofD;, we have2d; > d; for all j € B;,. Furthermore, sincéis tight we have
d; > cs, /2. Therefore, the total demand By, at edges; exceeds By |cs, /4. SinceB;, is feasible,

then the total demand crossisgmust be at most,,. Therefore|By| < 3. O

Lemmas 2.2.7 and 2.2.8 lead to a dynamic programming salutMe build a tablef (k, p) that
is the minimum total demand of a feasible subset of taskB,nJ D, _, U Dy_4 U ... that has
profit exactlyp. To build thef(k, p) values from thef(k — 2, p) values, we try adding subsets of
Dy, of size at most 3. By Lemma 2.2.7, each taskp is contained in the span of every task in
Dy,_» which resembles the property that the tasks form a nestagereq of intervals. Figure 2.4
illustrates some of these ideas.

Extend the definition off (k,p) to includek = —1 andk = —2 which should simply read as
f(k,0) = 0 and f(k,p) = oo for p > 0 wheneverk = —1 or —2 (in other words, we can only

obtain a profit of O if no tasks are chosen).

35

Let A(k, p) be the collection of all subsefs of D;, of size at most 3 withp(S) < p and the
following additional property. For any feasible subsetasfisT” with total profitp(T”) = p — p(S)
and total demand(T") = f(k—2,p—p(S)) we haved(T")+>

e contained in the common intersection of the spans of alktasklassed;,! < k. Intuitively, a

ies:eespan(i) di < cc foreach edge
setS in A(k,p) is one that can extend any minimum §&t corresponding tgf (k — 2,p — p(S))

to a feasible solutiol$ U T*. We only have to verify the capacity constraints are satidfie those
edges in the common intersection of all tasks in some loveesséd;, [+ 2 < k. Again, by Lemma
2.2.7 this is because the span of each taskjiris completely contained in the span of each task in
someD;,l + 2 < k. Lemma 2.2.8 essentially says we can restrict our attemdiemall subsets of
Dy, since any subset larger than 3 is not feasible on its own.

Formally, the recurrence looks like:

o f(k,0)=0fork e {-1,-2}

o f(k,p)=o0forke{-1,-2},p>0

o f(k,p) =00 fork >0if A(k,p) = 0 (note that can only happenif(k — 2,p) = ()

o fUhp) = min f(k=2.pp(S))+d(S) fork>0,A(kp)#0
€A(k,p)

Lemma 2.2.9 The recurrence correctly relates the valuesfok, p).

Proof. The base cases with < 0 are clearly correct (when interpreted as suggested abbiey,
consider somé > 0 and profitp. If f(k,p) < cothenletS = S’UB be asubsetab,UD;_-U...
obtaining profitp with total demandf(k, p) andS N D, = B. We first verify thatB € A(k, p).
By Lemma 2.2.8, we knowB| < 3 (in fact, B may be empty). Furthermore, we also clearly have
p(B) < p. Finally, sinceS’ is a feasible subset db;,_> U Dy, U...thenf(k —2,p — pp) <
f(k,p)—dp. By Lemma 2.2.7, any optimum s&t with profitp — pg and demand' (k —2,p—pp)
places less demand across each edge spannBdhwn setS’. For such a set* we haveS* U B
being feasible. Thereford} € A(k,p).

In fact, we actually havé(S*) = d(S’) for S* an optimum set corresponding f6k—2, p—pg).
Indeed, ifds« < dg/ then the feasible sd8 U S* has demand strictly less thaU S’ and profit
p which contradicts thals = dgus: = f(k,p). Therefore, any subsét of D, U Dy U ...
with profit p and demand'(k, p) hasS N Dy, € A(k,p) andS \ Dj, being an optimum subset of
Dy_oUDy_4U...with profitp — p(B) and demand (k — 2, p — p(B)) so the recurrence correctly
determinesf(k, p) in this case.

On the other hand, if (k,p) = oo then A(k,p) = (. This is because anig € A(k,p) is
such thatf(k — 2,p — p(B)) + d(B) < ¢; for all tasks; in the common intersection of tasks in
Dy o U Dy_4 U.... Thus, by definition we would be able to extend any such seasKst with
demandf(k — 2,p — p(B)) to a feasible set of tasks obtaining prefivith demandf (k, p). a

36

Theorem 2.2.10There is an exact algorithm for simplified instance of UFP wttee tasks are also

intersecting and tight on both sides.

Proof. As in Theorem 2.2.6 the highesfor which f(k, p) # oo is the optimum profit. By Lemma
2.2.9, we can compute the valuggk, p) using dynamic programming (notice the recurrence for a
given pair(k, p) only refers to pairgk’, p’) for which &’ < k).

The total profit isO(n?) and the profit of any subset of tasks is an integer. The number o
integersk for which Dy, # () is also at most.. Therefore, the total number g¢f(k, p) entries that
need to be considered@(n?3). For eachk and eactp, we have A(k, p)| < n3 by Lemma 2.2.8 so

the valuesf (k, p) can be computed in a dynamic programming fashio@{n°) time. |

2.2.4 Left-Tight and Right-Tight Tasks

We describe the algorithm for left-tight tasks. The alduritfor right-tight tasks is essentially
identical. We have the following lemmas whose proofs ar@ihgadapted from the analogous

results for tight tasks.
Lemma 2.2.111fi € Dy andj € Dy withk 4+ 2 <[, thens; < s;.
Lemma 2.2.12 Let By, be any feasible subset 8f,. Then|By| < 3.

Furthermore, we have the following observation. Recall tha an edge that is shared by all

tasks.

Lemma 2.2.131If S is any (not necessarily feasible) subseTauch thayS N Dy| < 1 for eachk,

then the total demand ifi at any given edge: > t does not exceed,, .

Proof. Lete be any edge to the right of(i.e. e > t). Since all tasks are left-tight, then for any task
with e € span(i) we haved; < c./2. Order the tasks € S havinge € span(i) in order of demand

di; <di, <...<d;. Notethatd;, < d; /2 because we assume that only evemaveD,, # ()

J+1
or only oddk haveDy, # () and we also havgs N Dy| < 1. Inductively, we havel;, < d;, 277" s0

the total demand of tasks istacross edge is bounded by:

b b
Zdi] < dj, Z2j_b < 2d;, < ce
i=1 =1

O

The preceding lemmas indicate that we can use a dynamicgmoging algorithm similar to the
one for tight tasks. The main difference is that we only neelet concerned with the edges< ¢
if we ensure we only take subsetsiof, of size at most 1. The structure exploited by the following
dynamic programming algorithm is illustrated in Figure.2.5

Since the optimum solution chooses at most 3 tasks from €acthen the resulting solution

found is within a factor 3 of the optimum. L¢{%, p) denote the minimum total demand of a feasible

37

Figure 2.5: The tasks are drawn as thick lines. The commont fioithis intersecting case is in-
dicated by the thin line. The dotted lines are the latest sitaes over all tasks in the respective
demand classes. Demands in higher classes must startiatethese lines. Finally, while the inter-
vals do not look “nested” to the right of the common point, & shoose one task from each demand
class then sincé; < c./2 for each edge right of the common point that is spanned by a left-tight
task: and sincel;; < d;/2 if i’ is in a lower demand class thanthen by summing a geometric
series we see that we do not violate the capacity of any edipe taght of the common point.

collection of tasks from group®y, Dy_o, D4, . .. that has total profit exactly and contains at
most one task from each demand clagsi < k. The recurrence looks similar to the one for tight
tasks except the set(k, p) is restricted to singleton subsets Bf, and the only edges we need to
check for feasibility those edges= ¢ in the common intersection of all tasksin, U Dy_4U. . ..
The proof of correctness is similar to that of the recurreiocdasks with both endpoints tight.
The main difference is that Lemma 2.2.13 assures us thatgetedhe right of the common edge
is violated by any subsét that represents any finitg(k, p) entry. Furthermore, the recurrence can
be computed in polynomial since there are at modistinct values fok, the maximum total profit
p to be considered i©(n?), and the number of items of eadh, that need to be iterated over is at

mostn so the total running time i®(n*).

Lemma 2.2.14 The dynamic programming algorithm finds a subset whose potéit is at least 1/3

of the optimum total profit for these left-tight tasks.

Proof. Let T be an optimum collection of left-tight tasks. For eadl, discard all but the most
profitable task ifl™* N D, from T™*; call this new sef”. Since|T* N Dy| < 3 then one third of the
total profit of T* remains inI”.

The dynamic programming routine finds the optimum feasiblesst of tasksS having|S N
D;| < 1 for each integek;, so surelyp(S) > p(T") > p(T™*)/3. O

Theorem 2.2.15There is a polynomial-time 3-approximation for intersaegtinstances of UFP that

are either left-tight or right-tight.

We summarize what we have done to prove Theorem 2.2.2. Wa laststant factor in the ap-
proximation ratio in the reduction to simplified instancesraDefinition 2.1.3. We further reduced

the problem to intersecting cases in Section 2.2.1 and iot(dbg n) factor. Next, we partitioned

38

the tasks in the intersecting instances into three groufstight, left-tight, and right-tight (we can
also remove the condition that the tasks are tight from ofinitien of simplified and deal with the
slack tasks in Section 2.2.2). Finally, in Sections 2.2.8 2r2.4 we demonstrated how to either
solve or approximate the solutions to each of these grouisna constant factor. The composition
of these steps results in &log n)-approximation for general instances of UFP, thereby mmvi
Theorem 2.2.2.

2.2.5 An Extension to Cycles

The unsplittable flow problem on cycles can be solved appratély using the algorithm for paths.
The following approach was observed in [23]. Consider areedin the cycle with the smallest
capacityc, and partition the tasks used in an optimum solution,Bayinto two groups. Group 1 is
the collection of tasks that are routed along edg@&d group 2 is the collection of tasks that are not
routed along edge. Say the total profit of these groups is, respectively,T'; andOPTs.

We can find a subset of tasks with profit at le@gtT} /(1 — €) for any constant > 0 by using
the known FPTAS for Knapsack [55]. For each taskith demandd; and profitp;, we create an
item for the knapsack with sizé, and valuep;. The overall capacity of the knapsackds Any
feasible packing to the Knapsack instance maps directhféasible solution for UFP on the cycle
by simply routing all tasks whose corresponding Knapsaakiis packed. These tasks are routed
along the route using edge Since all tasks in this solution use edgande has the minimum
capacity over all edges, then surely no other edge cannetiteawapacity constraint violated.

Notice that the tasks in group 2 (which are not routed aarpserrespond to a feasible solution
to the UFP problem on the line obtained by deleting edgrd all tasks if™* whose paths use edge
e. Using the UFP approximation algorithm described in thipgrawe can find a feasible subset
of tasks whose total profit is at Iea@t(L> OPT;. Thus, we get alD(log n)-approximation to

logn
UFP on cycles by taking the best of our two approximation@RiI'; andOPTs.

2.3 AnO(log, n)-Approximation in Time n?@

The main result of this section is that for any integepr 2 (perhaps a function af), there is an

O(log, n)-approximation for UFP with running time® (9. This is interesting for a few reasons:

e For any constant > 0, this yields a polynomial-time log, n-approximation for UFP. Infor-
mally, we can select the constant suppressed b@thgnotation in theO(log n) approxima-
tion to be arbitrarily small. Say the approximation ratictoé following algorithm is actually
bounded by’ log,; n. Then to get alog, n-approximation for some constaat> 0, we

simply choose any integergreater thar2® /<.

e There is a quasi-polynomial time (101;1%);”) -approximation by choosing = ©(logn).

39

Figure 2.6: An sketch of an instance that requires logaiithty many groups of “disjoint inter-
secting instances”.

e There is a constant-factor approximation running in sumeeential {.e. 2°()) time. For
example, choosing = ©(y/n) results in arO(1)-approximation running in time?(v") =
20(Vrlogn) “More generally, choosing = ©(n¢) for small constant values ef> 0 results

inanO (1)-approximation running in timg? (" lee).

First, we want to emphasize that it is not possible to impmvéehe logarithmic approximation
from Section 2.2 through a more clever combination of irdeting cases. In Section 2.2, one
of the basic ideas was to partition the input iidlog n) groups. In each group, the tasks were
partitioned into intersecting instances where no two tdek® different instances in this group
shared a common edge. One might wonder if it is possibletjpertan input instance differently
into even fewer groups of “disjoint” intersecting instaacelrhe example sketched in Figure 2.6
shows this is not possible. A more formal construction of thistance is the following. Lef;
denote the instance that includes a single task that spadeasaione edge. Faér > 1, let I, be the
instance that is formed as the disjoint union of two copie§,of, one where one instance 6f_
has all tasks starting strictly later than the end nodesl ¢dsks in/;_;. Finally, add one more task
to I}, that spans all tasks in both instanced pf; .

The total number of tasks i, is n;, = 2¥ — 1. We argue, by induction, that at ledsgroups are
required to partition the tasks @f so that each partition can be expressed as the union oféctarg
instances where no two tasks from different instances shaoenmon edge. Fdr = 1, it is trivial.
Now, for k > 1, consider such a partition of the tasks/jn If the long task spanning both instances
of I is in a partition by itself, then at least— 1 groups are required to partition the remaining
nodes by induction (since the two instancedof, are disjoint). Finally, if one of the instances of
I;,_1 has a task in the same group as the long tadk ithen the other instance éf_; cannot have
any tasks in the same group. By induction, we require at least more groups for this instance
of I,_1. Sincek = log, ni — o(1), then we see that we require at least a logarithmic number of
partitions.

To deal with this difficulty we generalize the notion of antargce being intersecting. The basic
ideas of the algorithm in this section are similar to the geaheO (log n)-approximation in Section
2.2. We lose a®(log, n)-factor by reducing to instances where there is a colleaifah— 1 edges
E’ (that we callpartition edge¥ such that every task spans at least one edg¥ i(settingd = 2

produces intersecting instances as considered in Sec&n\&e call such instancéintersecting

40

instances.

This reduction was inspired by an analogous reduction by Zaamd Segev for the Highway
Problem [44]. The Highway Problem is similar in spirit to UKPthat we have a collection of
tasks over an underlying path. However, the tasks come wiihdgetb; rather than a demand
and a profit and there are no capacities on the edges. Our jabassign prices to each edge
of the path to maximize our profit, which is calculated asdwel. For each task, if the sum
of the prices of all edges spanned byloes not exceed;, then that task pays this total price.
Otherwise, task pays nothing. In [44], they also reduce to cases where eathsfzans one of
d — 1 edges and lose ab(log,n) factor. They then describe a constant-factor approximdto
such instances whose running time is a polynomial factgetathan O (log nm))©(9). By choosing
d = ©(y/log n) (or, more generally] = ©(log’ n) for any constan < § < 1), this is a polynomial
time O(log n/ log log n)-approximation. Actually, their algorithm works for the reageneral case
where the underlying graph is a tree, but when their ideasestected to a path then our reduction
to d — 1 intersecting cases is similar to their reduction.

To approximate instances where each task spans ae-df edges, we extend the ideas of the
O(log n)-approximation. There is no good notion of “left-tight” arght-tight” in such instances
since tasks may have bottlenecks between edgés ,dbut we demonstrate that, after guessing a
certain subset of up td — 1 tasks, the remaining tasks may be classified as “left-tight'tight-
tight” (or both) in some sense. Then, the dynamic progrargnaigorithms from Section 2.2 are

generalized ta@-intersecting instances.

2.3.1 An Alternative Goal
To further simplify our search in some cases, we use theviolig definitions.

Definition 2.3.1 A (not necessarily feasible) subset of tagksC T is conflict-freeif for any two

tasksi, i’ € T’ the subsefi, '} is feasible.

Definition 2.3.2 A (not necessarily feasible) subgétC T is demand class independéifor each

demand clas®);,, no two tasks if” N D;, share a common node in the underlying path.

The following lemma demonstrates the usefulness of thexeepties.

Lemma 2.3.3 LetT” C T be a conflict-free subset that is also demand class independbenT”

may be partitioned into four feasible subsetdah polynomial time.

Proof. We begin by forming a planar gragh. For each task € T”, add two points in the Euclidean
plane at(s;,d;) and(t;,d;) and connect these by a straight line segment. Notice the¢ ihis
demand class independent then no two line segments shanenaaropoint in this drawing.

For each edge = (4,7 + 1) on the underlying path, i is spanned by at least two tasksTify
then letz, i’ be the two such tasks with greatest demand vallyes.. Add a point to the paths for

41

lff

]L

l

a) b) ¢)

Figure 2.7: Tasks with larger demands are drawn higher ifiglwee. Figure a) shows an example
of tasks with the vertical dashed lines corresponding tcesdd the underlying path. Figure b)
illustrates the planar graptf drawn from the given tasks. Figure c) is the planar grépiobtained
by contracting each path; into a single node.

1 ands’ at location(j 4+ 1/2,d;) and(j + 1/2,d,;/), respectively, and connect these points with a
straight line segment. It is easy to see that no line segrmramtrdin this manner crosses any other
line segments or touches any other node other than its emdpdihat is, we have a planar graph
if we view the endpoints of all line segments as vertices ardsegments between points as edges.
Let P; be the nodes on the path drawn horizontally between the gpoortesponding te; andt;.
Before adding the vertical edged, was simply a line segment but it may have been subdivided into
a path with internal nodes when the vertical edges were ad@edtract each patk; to a single
point, sayp;, and call this new grapli/’. This construction is illustrated in Figure 2.7. Since the
property of a graph being planar is preserved under comresstthenH’ is also planar. Also, each
node inH’, being the contraction of some path, corresponds naturally to a taskTh We can
colour the nodes off’ using 4 colours in polynomial time [81].

The claim is that the nodes in any one of these colour clagsessponds to a feasible subset
of tasks. To see this, let us first consider the total demarmsa@ny edge in the original set of
tasksT”. If there is only one task that spangthen surely no colour class éf has the total demand
across exceeding:.. Otherwise, let, i’ be the two tasks with largest demantjs> d;, that span
e. SinceT” is conflict-free, then we hawé + d;; < c..

Consider any two tasks, i in 7’ that spare and say thatl;, < d;,. SinceT” is demand
class independent and sinés, = § for all evenk or D;, = § for all odd %, then it must be that
d;, <d,;,/2. So, the sum of the demands of taskgtnthat spare is at mostd; + d;; + d;/ /2 +
di/4+di /8 + ... < d; +2d;;. Now, we have an edge between poiptandp; in H' since they
are the largest two demands that spao the total demand acrosén any particular colour class is
atmostd; + d; /2 +dy/4+di /8 + ... < d; +di < c.. Thatis, the total demand in any colour
class across edgedoes not exceed.. Since this holds for any edge then every colour class of

our 4 colouring ofH’ corresponds to a feasible subsefTof O

Also, in some cases when we are searching for OPT, the faltpl@imma allows us to restrict
our search to certain solutions while only losing a constactor in the approximation ratio. In

particular, it says that there is a feasible solution thals® demand class independent whose total

42

profit is at leasO PT' /4.

Lemma 2.3.4 For any feasible subsé&t’ C T, we can partition?” into four groups in polynomial

time such that each of these groups is conflict-free and ddroass independent.

Proof. Focus on a particular demand cl&8s1 D,,. The claim is that no nodeis spanned by more
than four tasks if” N D;.. Suppose some nodenas spanned by five tasksTH N Dy. Then either
three of these tasks have some bottleneck edge befaréhree of these tasks have some bottleneck
edge aftew. Suppose it is the former case (the latter is similar) antlttiese tasks arg, iz, i3.
Also, suppose that has the right-most bottleneek< v meaningi, andis also span edge Then

the total demand across edges at leastl;, + d;, + d;, > d;, +di, /2 + d;, /2 = 2d;,. Sincee is

a bottleneck for task thend;, > c¢./2 meaning the total demand acressxceeds,. contradicting
feasibility of 7”.

Now, form the graplt; whose nodes are tasksin D, with two such nodes being connected
by an edge (irGy) if and only if they share a common node in the underlying pathenG,, is an
interval graph and we just argued that all cliqguesip have size at most four. Interval graphs are
perfect graphs so we may efficiently colour the nod&s jrwith four colours so that no two adjacent
nodes receive the same colour [48]. Do this for each demass$El N Dy, (using the same four
colours) and let the four colour classes be the four pamttinf7” with the desired property. Finally,
sinceT” is feasible then it is conflict-free. Any subset®f (in particular, each of the partitions we

just found) must also be conflict-free. O

These two lemmas say that the optimum profit of a feasibleedutfstasks and the optimum
profit of a conflict-free and demand class independent sulisasks are within a constant factor of
each other (if the tasks are tight). We note that this doe$olok if we only consider conflict-free
subsets or only demand class independent subsets. For lexamyp feasible subset of tasks in the
bad gap example from the proof of Lemma 2.0.3 has profit at thegtereas no two tasks in this
example are in the same demand class so the optimum profitevhartd class independent subset
is n. On the other hand, no two tasks in the following instancdn witit profits conflict whereas
the optimum solution is only 3. The example is similar to tiareple from the proof of Lemma
2.0.3 except the demant of taski is 1 + 2~% and the capacity; of thei’th edge from the left is
2 +27% + 271 The tasks are tight since taskpans the'th edge and

—i —i—1)
di=1+2*2>%:%
It is also easy to check that no two tasks conflict. Howeverthmee tasks can be chosen in any
feasible solution since any three tasks have total demacekeing 3 across the first edge, which
has Capacityz% So, there may be af(n) gap between the optimum profit of a feasible subset of
tasks and the optimum profit of either a conflict-free sub$&isks or a demand class independent
subset of tasks. This is why we simultaneously consider thatiproperty of being conflict free and

the property of being demand class independent.

43

—— | I e | —
— ! - —
1 1 1
e e e
1 2 3

Figure 2.8: An example with = 15 andd = 4. The black tasks are thoseT and the remaining
tasks in som@&; are displayed in grey.

The following two lemmas are essentially restatements ofespesults in the previous section,

but they are useful in this form in what follows.

Lemma 2.3.5 For any two tasks, i’ with d; < d;/, eitherd;; < 2d; or task:’ does not span any

edge that is a bottleneck for task

Proof. Sayi € Dy andi’ € Dy and supposed; < d;. Lete be any bottleneck edge of task
Thenc./2 < d; < d;i//2 s0c. < dy. Since every task is feasible on its own, theis not spanned
by i’ O

Corollary 2.3.6 For any two tasks € Dy, i’ € Dy, with k < k’. Eitherk = k&’ or no bottleneck of

i is spanned by’.

Proof. If k # K’ thenk + 2 < K’ since the instance is simplifiedf(Definition 2.1.3). Then
2d; < 2Ft2 < 2 < ¢, and Lemma 2.3.5 says that no bottleneck isfspanned by . O

2.3.2 A Reduction tod-Intersecting Instances

Recalld > 2 is aninteger that we may consider as a parameter to thethligoriete; < ... < eq_1

be any collection of edges whose deletion breaks the uridgrpath into paths containing at most
m/d vertices €.g. thee, are spaced as equally as possible). Tébe the tasks that span some
e1,...,eq—1 and partition the remaining tasis, . .., 7, based on the path iR — {e;,...,eq_1}
they are contained in. More specifically, [Et be the collection of tasks that end beferg T,; be
the collection of tasks that start afier_;, and for everyl < i < d, letT; be the collection of tasks
that start aftee;_; and end before;. This partition of the tasks is illustrated in Figure 2.8.

Later, we develop a constant-factor approximation for figdihe maximum total profit of a
feasible subset Gf’ that runs in timex©(?). Suppose this constant factoris> 1. We get aclog, n
approximation for the general problem by the following inat Since the edges spanned by any
two 4, ¢’ in differentT}, are disjoint (as and:’ are separated by sorag), then we may naively take
the union of feasible solutions to ea€h as a feasible solution faR. Let S’ be thec-approximate

solution for the instance with tasks frofff and letSs,...,S; be the approximate solutions for

44

the instances with tasks frofy, . . . , T;, respectively, by recursively calling this algorithm faoh
T}, in turn and using the union of these solutions. Return theerpoofitable of the two setS’ or
S1U...USy.

Consider an optimum subset of tasks C T of profit OPT'. Either the total profit in5* N T”
is at Ieastbog% or else the total profit i N (T3 U...UTy) is at Ieast(l - @) OPT. Inthe
former case, oue-approximation finds a solution of cost at Ie@%@%.

In the latter case, le® PT;, denote the optimum profit of a feasible subsetlpfand notice
thatZZ:1 OPTy > (1 — @) OPT. Inductively (the base cases with < d are trivial), we

have that the profit ob}, is at Ieastdoogiiﬂ% forall 1 < k < d. Thus, the profit of the solution

S1U...USyis at least

d
Z OPT; > 1 (- 1 OPT
clog,m/d clog;m/d log,m

k=1
_ 1 ' logg;m —1 OPT
clog;m/d log; m
_ 1 (loggm/d OPT
clog;m/d log, m
~ OPT
~ cloggm’

Notice that there are at most/(d — 1) calls to the constant factor approximation since each

edge of the original path is used as one ofdhe 1 partition edges at most once. Summarizing:

Theorem 2.3.7 Letd > 1 be an integer. If we have a constant-factor approximatiariristances
of UFP where there ard — 1 edgesey, ..., eq_1 such that every task spans at least one ofehe
then we have a®(log, m)-approximation for general instances of UFP. Recallingttha < 2n,
this is also anO(log, n)-approximation. Furthermore, the running time of the gehepproxi-
mation algorithms is only a polynomial factor larger tharetrunning time of the constant-factor

approximation.

2.3.3 Simplifying the Instances

Our goal in this section is to restrict our attentionitmtersecting instances with even more structure
while losing only a constant factor in the approximatioriaatThere are two main steps in this
process. The first step ensures no “interval” between e¢lges. .. < e4—; has tasks both starting
and ending in that interval. The second step guesses thaitsthe largest demand (if any) across
each of thel—1 edges. Our goal is then to approximate the optimum feagillieet of the remaining
tasks. Once the largest demand tasks are known across gaeldefl edges, we are able to impose
a lot of structure on the remaining tasks which is exploitethe dynamic programming phases in

subsequent sections.

45

For the first step, observe that the nodes in the underlyitly @@ naturally partitioned into
d intervalsiy, ..., I; by the edgeg;,...,eq_1 in the following way. Consider a nodeon the
underlying path. I < e; then we say € I;. Similarly, if v >~ e;_; then we say € I,;. Finally, if
ex—1 < v < e, then we say € I,. For each task, leti(i) be the interval witts; € [(7) and letr(7)
be the interval witht, € (). Consider a functiolX : {I1,...,1s} — {S, E} that assigns a label
X (I,) to each interval. We use the labeélsand E to denote that the interval will bestart or an
endinterval. Given such a labeling, letTx = {i € T : X(I(¢)) = S and X (r(¢)) = E}. Thatis,
each task € T’y starts in an interval labellefl and ends in an interval labellgd. We want to find
a labellingX so that the optimum solution does not decrease very mucatvedteemove some tasks

from T to obtainT’x . Supposé™ is an optimum subset of tasksThwith profit OPT = p(T™).

Lemma 2.3.8 There is a label functioX” such that the maximum profit of a feasible subsétpfs
at leastOPT'/4. Furthermore, we can, in polynomial time, find a collectidrOgd) label functions
{X,} such that the optimum of sorfi&_ is at leastOPT/4.

Proof. Consider a random label function. L&t(I;) be randomly and independently chosen to be
S or E for everyl < k < d. The probability anyi € T is in Tx is at exactly 1/4 since its two
endpointss; andt; lie in separate intervals and these intervals are labeependently. Then the
expected total profit of items ifiy NT™* is exactlyOPT' /4.

Notice that the probability any given tagkis in Tx depends only on the labels of the two
intervals containing its endpoints. We may find, in polynaiiime, a collection ofO(d) label
functions{ X, } through a textbook application of using a family of pairwisdependent random
values €.9.[68]) such that the profit of* N T'x,, is at leastO PT' /4 for some label functio,, in

the collection. 0

Suppose, now, thaX is a label function that induces a subset of tdBkswhose cost is at least
OPT/4. By Lemma 2.3.8, we only hav@(d) different label functions to try and we proceed to
run the rest of the algorithm on each of these label functaom keep the most profitable answer
returned.

From now on, we suppose that we have a label funcKddy,...,1s} — {5, E} such that
T = Tx and that the optimum valu@ PT we are concerned with is for a sub§ét of T'x. For the
next step in this section, consider any feasible subseff 7. Say a subsef’ of 7’ is acanopyof

T' if the following two criteria hold:

e If 1 € C, then there is some partition edgg 1 < k < d — 1 such thaky, € span(i) and any

otheri’ € T’ that also hasy, € span(i’) satisfiesi; < d;.

e Every edges;, that is spanned by some taskii is also spanned by some task C' such

thatd;, < d; for anyi’ € T’ that spang;.

46

|

Figure 2.9: Tasks with larger demands are drawn higher ifigliee. The dark tasks form a canopy
for the given set of tasks. Each partition edgehat is spanned by some task has the largest demand
task highlighted withx where the task crosses.

Informally, a canopy of” contains the largest demand tasKihacross each of thé— 1 partitions,
if any. Ties for the largest demand across a speejfienay be broken in any way. Figure 2.9
highlights a canopy for a feasible solution.

Notice that there are at mogi 4 1)~ = n°(4) possible canopies over all feasible subggts
of T'; for a feasible subsét’ and for each edge, we have that either;, is not spanned by any task
in 7" or we have one of the largest tasksZih spanninge;, in the canopy. We may try ah© ()
guesses for a canopy and suppose we have properly guessempg €aof an optimum solutiorf™.

Form a new set of taské from 7" by discarding the following tasks:
1. all tasks inC'
2. all tasks that span a partition edgethat is not covered by the canopy
3. all tasks that span a partition, whered; > d;, for all i/ € C spanninge;,
4. all tasksi such that” U {i} is not feasible

The first type of task is removed because we already guessedé inT*, the second type is
removed becaus&™ does not have any task spanning the given edge, the thirdigyy@noved
because it exceeds our guess for the maximum demand spapnimg@™*, and the fourth is removed
because they clearly cannot be in an optimum solution whegwess the proper canopy. Notice
that the optimum solution 6f is preciselyp(T* — C).

The benefits of guessing the canopy when given a labdlirgge summarized in the following
lemma. The lemma basically says that all bottleneck edgeary task: not in a canopy for a

feasible solution must be in one of the two end intervélsor r(i).

Lemma 2.3.9 Suppose” is a canopy for some feasible subgétand let7" be the subset of
obtained by removing the above four types of tasks ffogiven canopy. Then for anyi € 7" and

for any bottleneck edgefor taski we have that eithes € (i) or e € r(i).

47

Proof. Suppose that is a bottleneck of € 7" and thate ¢ I(i) U (). It cannot be that is one
of the partition edges; € {e1,...,eqs—1} because we would otherwise have some taskC' with
larger demand thanspanning the same edgg But thend;: > d; > ¢, /2 sincee; is a bottleneck
for ¢ soi would have been discarded after the can6pyas guessed.

So, say that € I, with 1 < k < d and notice that spans botle;_; ande;, since the start node
s; of taski lies to the left of[, and the end nodg of taski lies to the right ofl,. Suppose that
X(I) = S (the other case is similar). Sin¢eZ C there is som& € C such that’ also spansy,_;.
Lets’ be such a task iy’ of largest demand; in particulat;, > d; sincei’ is in the canopy and both
span the common edgg_1. Now, sinceX (I;) = S it must be that’ also spans;. Sincei’ spans
bothe;_1 andeg, then it must also span edgdrecalle;,_; < e < e). Thend; + d;r > 2d; > ¢,
sincee is a bottleneck foi. But then{:,:’} is not feasible meaning' U {i} is not feasible. This

contradicts € 7. O

Now, we partition]’ into three groups, one of which consists of taskeith all bottlenecks in
1(i), another consists of taskawith all bottlenecks in-(¢), and a final group consisting of tasks
with a bottleneck in botfi(:) andr (7). We finally solve each of these three partitions either éxact
or within a constant factor which, by taking the better of thieee solutions, will lead to a constant

factor approximation for the optimum solutionTn

2.3.4 Tasks With Both Endpoints Tight

In Section 2.2.3, an exact algorithm was presented for figletrsecting instances whose profits
were integers in the rand@, 2n]. The main property that was exploited by the algorithm is tha
instance looked somewhat like a nested sequence of indarvéthat if two tasks were in different
demand classes, then the span of the one with larger demandontained in the span of the one
with smaller demand. A nested sequence of intervals is ai@pesse of the property of being
laminar. Reall that a collection of subsefs = {S C V} of a setV is called laminar if for any
S, T € SeitherSNT =0,5 C T,orT C S. Extend this definition to say that a collection of tasks
T’ is laminar if for any i, 5 € T" we have eithespan(i) N span(j) = 0, span(i) C span(j), or
span(j) C span(i).

As a first step, adjust the capacities in each interval to beatome across that interval in a
similar way to how the capacity profile was made unimodal m@Hlogn) approximation. For
each intervall;, with X (I;;) = S, we can assume that the capacities are non-decreasing in the
interval T, by the following reason. Fat,e’ € I, with e < ¢/, the total demand spannirgin a
feasible subset af does not exceed the total demand spanairmpcause no taske 7" ends before
e'. So, ifce > ¢, then we may decrease to be exactlyc.,. Similarly, if X(I;) = FE then the
capacities in the intervdl, can be modified to be non-increasing. The whole point is tleamay
now say that both the first and last edge of every task are nttbebecks, rather than merely saying

that bothi(¢) andr () contain a bottleneck edge farThe property we exploit to solve instances of

48

tasks with both endpoints tight is that the sets of edgesrsahhy these tasks must be laminar, as

we now show.
Lemma 2.3.10 Any feasible subsét’ of 7' is laminar.

Proof. Leti, i € T be two tasks that crossd. s; < sy < t; < ty). Suppose that; > d;
(the other case is similar). Since the first edge of tésk also spanned by tagkand since the
first edge of task’ is a bottleneck edge faf, then{:, i’} conflict across the first edge ¢ifbecause

d; +dy > 2d; > cs,. Therefore, bothi andi’ cannot be in any feasible solution. O

Modify 7" in the following way to ensure, for simplicity in the follong algorithm, that no two
tasksi, i’ € T' havespan(i) = span(i’). While there are twe, i’ € T with span(i) = span(i'), do
the following. Saye, ¢’ are the edges incident ¢ such thak < s; < ¢’. Then “insert” a new edge
¢’ betweere ande’ by creating a copy; of s; and arranging the edges se< s; < ¢’ <'s; < ¢'.
Set the capacity o¢” to c., and adjust the endpoints of the tasks as follows. For téskg ¢
(including ') whose start node was, keep the start node éf ass;. Finally, set the start node of
taski to bes;. If it so happened that; was the first node on the path (so edgeas not present)
then the new graph simply looks liké < ¢’ < s; < €’. Itis easy to verify that a subset of nodes
is feasible before this update if and only if it is feasibleeathis update, that” is a bottleneck for
1, and that no other edge becomes a bottleneck for any taskHighvit was already a bottleneck.
Though we have increased the number of edges in the path/ftrdmat most2n, the algorithm
that follows is no worse than constant-factor approxinretiso we may still claim that the final
approximation ratio iD(log,; m). Now we may assumepan(i) # span(i’) for every distinct
ii' eT.

The basic idea of the dynamic programming algorithm is tingtfeasible solutioid” can be
decomposed in the following way. Consider the set of edgasrsgd by some task ifi’. SinceT”
is laminar, then either there is a taskiihthat spans all of these edges or there is a noslgch that
all tasks inT” either end no later thamor start no earlier than (the nodev divides the set into two
parts). These ideas are illustrated in Figure 2.10. Themjmprogramming solves the problem of
determining if it is possible to obtain profit exacihusing tasks that are entirely contained between
two given points. Notice that after dividing a feasible ¢mn into two parts by a “dividing nodet,
we can do no worse by assuming that the parts on both sidekafe the largest possible residual
capacity over all edges spanned by that part.

The dynamic programming table we are interested is theviirig.

Definition 2.3.11 For nodesv < v’ and a valuep, let R(v,v’, p) denote the collection of feasible
subsets ofl" of total profit exactlyp where each subset consists only of tasksith v < s; and
t; < v'. For such a subset € R(v,v’,p), letm(S) denote the minimum remaining capacity of all

edges injv, v'] (the collection of edges that appear betweeand v’) after routing all tasks inS.

49

Figure 2.10: Decomposing a feasible solution. a) The firshdd line is the start af and the last
dashed line is the end ef. After choosing the task that spans the entire interval, \ag break the
remaining solution into two halves by the middle dashed. lingRecursively decomposing these
subproblems further (the thin, double-arrowed line higiis the two subproblems).

Finally, leta(v,v’, p) denote the maximum of(.S) over allS C R(v,v',p). If R(v,v’,p) = (then

leta(v,v’,p) = —oc.

Basically,a(v,v’, p) is the most capacity that can possibly be left across edgks if] over
all feasible subsets of tasks contained«n’] of total profit exactlyp. Thea(v,v’, p) values are

related through the following recurrence. WHemnv'] consists of a single edge we simply have

Ce ifp=0
a(v,v',p) =< c.—d; if Jiwiths; =v,t; =0 ,p;=p
—00 otherwise

The following lemma is the structure we exploit in the reenge to calculate(v, v’, p) values.
It has probably been proven before for a laminar set of imlenbut we include a proof because it

helps illustrate how the recurrence works.

Lemma 2.3.12If v < v are nodes andb is a laminar subset of tasks whose start and end nodes
are all contained betweenand’ then either a) there is somiec S with span(i') C span(i) for

all i/ € S or b) there is some node’ withv < v < v/ such thatt; < v"” orv” < s;foralli € S.

Proof. Suppose there is no taswith span(i’) C span(i) foralli’ € S. Now, if there is no task i
with s; = v then we may chose the node immediately proceediimghe underlying path as’ and
note thatv < v” < v’ andv” =< s; forall: € S. Otherwise, suppose taske S hass; = v and that
1 spans the most edges among taskS gtarting a. The claim is that we can chosé = ¢;. Since
we assumed case a) in the statement of the lemma is not shttefiew < ¢; = v’ < v’. Suppose,
for the sake of contradiction, that there was same S with s;; < v” < ty. If s;; = v, thend’
is a task inS starting atv that spans more edges tharcontradicting our choice aof Otherwise,
if v < sy then we have = s; < s, < t; < t which contradictsS being laminar. Therefore,

selectingy” = ¢ demonstrates that satisfies case b) in the statement of the lemma. O

For cases wher@, v’] contains multiple edges, it is useful to define the quantity, v’, p).

Intuitively, it is the maximum remaining capacity acrose thterval[v, v’] of a feasible subset of

50

the tasks contained iy, v'] with profit exactlyp withoutusing the task with s; = v, t; = o’ (if
such a task exists). More precisejyp, v’, p) is the maximum ofn(S) over subsef € R(v, v, p)
such that na € S hass; = v andt; = v’.

The ¢(v,v’, p) values can be computed froa{v,v’, p) values with smaller interval lengths
|[v, v']| by the following expression.

(o) = g { e min{a(o, o)., -)

The outer-most max in the expression tries all such nedemd the inner-most max in the expres-
sion then “guesses” the profit of the two subsets of tasks o side of this node”.

We finally have that:

max{q(v,v',p),q(v,v",p—p;) — d;} if Fi with s; = v,t; =", p; < p,

a(v,v',p) = andd; < q(v,v',p — p;)
q(v,v',p) otherwise

In the first case of the piecewise expression, the first argimg¢hemax corresponds to tasknot
being used and the second corresponds toitasling used. The quantity(v, v’,p — p;) is used to
determine the maximum possible remaining capacity adios$ when total profip — p; is routed
from the tasks strictly contained jm, v’]. The second case is when there isingith p; < p and
span(i) = [v,v'] or when it is impossible to have at leaktcapacity remaining across all edges in

[v,v'] by routing a total profit op — p; of tasks strictly contained ifv, v'].
Lemma 2.3.13 The recurrence correctly relates thgv, v, p) values.

Proof. Correctness for the base jof, v'] containing a single edge is immediate. For the remaining
cases, we consider two optionsalfv, v’, p) = —oo then surelyu(v,v”,p’) = —co ora(v”,v',p—

p') = —ccforallv < v < v and0 < p’ < p since we could otherwise take the union of two
corresponding sets iR(v, v, p') andR(v", v, p—p') (respectively) as a set iR(v, v”, p). If there

is a taski with s; = v,t; = v’ andp; < p then it must be thad; > ¢(v,v’,p — p;) or else we could
add: to the two sets corresponding to the argumeng(of v’, p) to get a feasible set iR(v,v’, p).

So, the recurrence is correct whefv, v’, p) = —oc.

Now, suppose(v,v’,p) # —oo and thatS € R(v,v’,p) hasm(S) = a(v,v’, p). If there is no
taski € S with s; = v,t; = v' andp; < p then Lemma 2.3.12 shows the sktan be split into two
halves by a dividing node”. For the proper guess of profit to the left of this dividing node, the
corresponding term ig(v,v’, p) will be a(v, v’, p) so surelyy(v, v’, p) > a(v,v’, p). If there is such
ataski € S thenthe sef — {i} € R(v,v’,p —p;) can be similarly divided (recall we are assuming
no two tasks have the same start and end points) and weghave, p — p;) > a(v,v’,p) + d; In
either case, the recurrence certainly determines a vahtestat leasti(v, v’, p). Using a similar
argument, we see that all values that are-ned that are determined by the recurrence correspond
to feasible subsets iR(v, v’, p). Sincea(v,v’, p) is the maximum possible residual capacity of sets

in R(v,v’, p), then the recurrence actually determines the correct wdluév, v’, p). |

51

Say thaw,, v. are equal to, respectively, the leftmost start nedend the rightmost end nodg
over all tasks in the instance. The profit of the optimum felassubset of ' is then the largest such
thata(vs, ve, p) # —oo and such a subset can be obtained through appropriate Emhkie Recall
we assumed that all profits of tasksihwere integers in the rangde, 2n]. Since there are tasks
in total, then the only values gf with a(vs, ve,p) # —oc are integers in the rande, 2n?]. Also,
since there are at mo2t points on the underlying path (even after we adjusted thp@&nts so no
two tasks span the same set of edges), then there are amobbices for eacl, andwv, entry.
Thus, the size of the table §3(n*). Now, each entry can be computed by making adly:®) calls
to other entries with strictly smaller intervals, v’] since there ar€(n) guesses for the dividing
nodev” andO(n?) guesses for profit’ in the definition ofg(v, v’ p). By using the recurrence, the
a(j, ', p) values can computed with dynamic programming in tithe”). Note that this running

time does not depend eh

2.3.5 Tasks With One Tight Endpoint

As in Section 2.2.4, we only demonstrate the algorithm féirtight tasks which we denote k.
The algorithm for right-tight tasks is essentially ideaticWe exploit Lemmas 2.3.3 and 2.3.4 and
restrict our search to only finding an optimum subset of coftiee and demand class independent
tasks €f. Definitions 2.3.1 and 2.3.2) and lose only constant factdhnprocess. Note that the
canopyC' that we have guessed is not necessarily demand class irieygebut Lemma 2.3.4
allows us to find a high-value subset@fthat satisfies this property. Also, recall that all leftitig
tasksi have a bottleneck in interv(i) andall bottlenecks of lie in I(z).

The following summarizes why we may make these simplificegio

Lemma 2.3.14If 7" is an optimum conflict-free and demand class independerseswatf?’, then
we may find a feasible subset@fu 7" whose cost is within a constant factor of the cost of the

optimum feasible subsét of C' U 7" that includes all tasks it

Proof. Sayp(F*) = OPT. Suppos&™ N1 = T, and note thap(F*) = p(C) + p(Ty) sinceF*
contains all ofC. ThenTj is conflict-free since it is feasible. By Lemma 2.3.4, thexa iconflict-
free and demand class independent subset T, with p(T1) > p(Ty)/4. SinceT” is an optimum
conflict-free and demand class indepenent subsét dienp(T”) > p(Ty)/4 as well.

Now, consider the séf’ U C. It is conflict-free since”' is conflict-free,7” is conflict-free and
no task in7” can conflict with a task i’ becausd” C 7" and we did not include tasks ifi that
conflicted withC. However, 7" U C is not necessarily demand class independent. The following
argument is similar to the one made in Lemma 2.3.4. Consitedamand clas®,;, and any node
v. SinceC is feasible, then an argument similar to Lemma 2.2.8 saysttmost 4 tasks i@’ N Dy
spanv. SinceT” is demand class independent then at most one tagk #pansy. So, at most five

tasks inC' UT” spanv.

52

Since the interval graph associated to task&inJ 7”) N Dj, has maximum clique size 5, then
we can partition these tasks into 5 groups of which no two énséime group share a common point.
Do this for all demand classda3;, and keep the most profitable of the 5 partitions in each class.
This results in a conflict-free and demand class indepersldigtetF of C' U T with profit at least

p(C UT")/5. Stacking the inequalities shows:
p(F) = p(CUT")/5=p(C)/5+p(T")/5 = p(C)/5 + p(To)/20 > p(C UTy)/20 = p(F~)/20

Finally, we use Lemma 2.3.3 to find a feasible subsei(&f) with cost at leasp(F™*),/80. O

As in other sections, we employ dynamic programming to finchsan optimum conflict-free
and demand class independent subséf.ofhe dynamic programming in this section is a fair bit
more complicated and technical, so we spend some time gemglthe intuitions and basic ideas
behind it. As a pre-processing step, we can assume that gazitias of the edges in intervals
labelledS are increasing so that the first edge of every task is a bettlehut it is simpler to not
modify the capacities of the edges in intervals labeledSince we do not alter the capacity of any
edge in an interval labelled and since no left-tight task has a bottleneck in an interabélled
E before this modification, then it is still true that all l¢fgtht tasks we consider in this section
still do not have a bottleneck edge in an interval labelledIt is important to remember that this
means no two left-tight tasks:’ can conflict across an edge in an interval labeliggince, for any
e € span(i) N span(i’) in an interval labelled, we haved; + d;» < ¢./2 + ¢./2 = ¢.. We note
that it may be that a left-tight tasknow has a bottleneck across an interval labeBegpart from
I(7), but this will not be a problem in what follows.

Suppose the tasks are sorted so that< s;, < ... < s, (Wheren = |T| now). LetT; =
{ij,%j+1,...,1,} and suppose that’ is a conflict-free and demand class independent subggt of
for somel < j < n. Suppose = i;; wherej’ < j and consider the s&t’ U {i}. We describe
some conditions under whi¢l U {i} cannot be conflict-free or demand class independent that hel
us build our dynamic programming routine. We begin by intrcidg some notation. First, for a
taski’ and an intervaly, letr (', I;) denote the least residual capacity left across intefyalfter
choosing’. That is, define the residual capaod:@'/ on edgee: by

i ce —dy if e € span(i’)
Ce otherwise

Thenr (i, I;;) = mineey, cg. Given this notation, we define the following.

Definition 2.3.15 Supposel” is a conflict-free and demand class independent subsettefdbt

tasks. For each interval,, labelleds, let

e Fr:/(I}) be the task € T’ that spans some node iy that minimizes the residual capacity
(4, I,) across intervall;. If there are multiple such tasks, then any will éog.the one with

least index;).

53

Figure 2.11: Anillustration of why a conflict can be blamedomre of at mostl tasks. The height of
the task corresponds to their demand and the polyline sading the image is the capacity profile.
The two rectangles shown are the tagks We haveFr (I;) = Fr/(Iy) = i’ because of edges
andb and Frr/ (1) = i because of edge Note that the residual capacity left acrdssy choosing
only ¢/ is strictly less than the residual capacity left acrfsby choosing only even though has
larger demand thaii. For eachly, labelledsS, any other task” with s;» < s;; must span edges
andb because the first interval labellédappears after these edges. Similatlgpust either end in
I3 or spanc.

e G7/(I};) be the task € T’ that spans some node fip such thati has the smallest demand
d; among all such tasks. There cannot be multiple such taskaube@” is demand-class

independent.
If no task inT” spans some node iR, then simply say'r (1) = G (1) = nil.
Now, we explore whyl” U {i} can fail to be either conflict-free or demand class indepetde

Lemma 2.3.16If 7" C T} andi = i, for somej’ < j is such thafl” U {i} is not conflict-free, then

1 conflicts withF (Ij,) for some interval, labelledS with Fipr (1) # nil.

Proof. Suppose that edgeand taski’ € 7" are such that andi’ conflict across. First, since
neitheri nor i’ have a bottleneck edge in an interval labelledthene is in an interval labelled
and say this interval ig;. If s; ¢ I then sinces; appears beford; ands; spans some edge in
I, then it must span all edges ip. Namely, it spans the edgé € I, that has the least remaining
capacityr(Fr (1), Ix) across all edges ify, in the singleton solutiof F'r (1) }. Now, sincei and
i/ conflict across some edge Ip and since the least residual capacity leftiy (1) acrossly is
no more thare. — d;; (by definition of P (I,)), then surelyi and Frr (I},) also conflict.

On the other hand, #; € I, (thatis,e € (7)) then we still haves; < sr,_,(7,) by our ordering
of tasks. Again, it must then be thatind Fi (i) conflict in this case because the least residual

capacity acros$; is no more thar, — d;;. See Figure 2.11 for an illustration. O

Lemma 2.3.171f 7" C T andi = ;. for somej’ < j is such thatl” U {i} is not demand class
independent, theki, G (1))} is not demand class independent for some intefydabelled S
with GT/(Ik) 7é nil.

54

S S E S E

Figure 2.12: Anillustration of why we only need to keep traclkat mostd tasks to detect violations
to demand class independence. Tasks with larger demandsaava higher and two tasks in the
same demand class are drawn at the same level. The two dieslatasin the smallest demand class
for some interval labelled. Notice that it is impossible for any taskvith s; < s;, for each drawn
task’ to both be in the same demand class as one of the grey intamdlso share a common
point with that same grey interval. For example, if such & t@as in the same demand class as the
rightmost grey interval and shared a point with the greyrirge then it would have to span the first
edge (which is a bottleneck) of the rightmost dark intervhlcl is contradicts feasibility of each
task by itself.

Proof. Suppose’ € T is such tha{{i, '} is not demand class independent. That iand:’ are
in the same demand class and share a common nodginces; < s;/, then we actually have
thats; < s < t;. Says; lies in intervall; (which is an interval labelle®). The claim is that
Gr(I) =1

Otherwise, there would be a tagkcontaining a node of;, with d;» < d;;. Whethers;, < s;»
or s;» < s;, we have that botkf andi”” share a common node, namely the last nodg isincel}, is
labelledS. Now, sincel” is demand class independent then it must bedthat in a lower demand
class than’, sod; < d;; /2. Also, sincei is in the same demand classiathend;» < d,/2 as well.
Sincel} is labelledS, both: and:” span some node ify,, ands; =< s;-, then: must also span the
first edge spanned hy. Because the tasks are left-tight, the first edgé&’a$ a bottleneck foi”.
But then we havel; /2 > d;» > cs,,, /2 which contradicts the fact that tasks feasible on its own.
This is illustrated in Figure 2.12. |

From these lemmas, we develop a dynamic programming agptbact builds a solution in a
“right-to-left” manner. To avoid conflicts or violations demand class independence, it is sufficient
to keep track of two tasks in each intervalwith X (1) = S: the one that leaves the least residual
capacity across that interval as well as the one in the leasadd class that has a node in that
interval (if there are any such tasks). This means a subgmokill be described by)(d) integers
and each such integer can take one of 1 values (to indicate one of thetasks or to indicate no
task at all), so the table has siz€(?). The time it takes to compute an entry given previous entries
is alson®(4), so the total running time of the dynamic programming phas€’(¥).

Let X5 denote the set of intervals labelléd Subproblems corresponding to subset§'pfn

55

the dynamic programming phase are described by triples:, p) where F' and G are mappings
Xg — T andp is a target profit. Foil < j < n and for mappings¥, G from Xg to T, =
{ij,...,in}, let A;(F, G, p) be a boolean variable that is true if and only if there is soutesetl”
of T); with profit p(T") = p such thatF'r (1) = F(I;) andGr (1) = G(I) for all I;, € Xs.
Then theA,; (F, G, p) values are related through the following recurrence. Ektéais notation to
allow values ofA; (F, G, P) with j = n + 1 where we say,, 1 = (. For the base cage=n + 1,
we have:

true if F(I;) = G(Ix) =nil VI, € Xgandp =0

Ap1(F,G,p) = { false otherwise

Before introducing the recurrence for< j < n, the following concepts will be useful. If we
are given mappings, G from Xg to TjH then we say that; is compatiblewith F, G if i; does not
conflict with any of theF’(I;;) values and if,; is not in the same demand class as &ty;,) for which
i; has a point i, € Xg. In other words, we can add to any sefl” with F» = F andGp = G
without introducing a conflict or violating demand classépdndence. Then lét*%, G*% denote
the mappings obtained from the sEt U {i,}. That is, for eachl;, € Xg for whichi; has a
point in Iy, if either F(I,) = nil or r(ij, Iy) < r(F(Ik),Ix), then F+% (1) = i;, otherwise
Ftii(I,) = F(Ix). Similarly, if i; has a point inf, € Xg then we setG"%i (Ix) = i; if either
G(I) = nil or G(I;) is in a higher demand class than Otherwise, we leG % (I;,) = G(Iy).

Inductively, forl < j < n we have the following relation for computing; (F, G, p).
1. If A;11(F,G,p) is true, thend; (F, G, p) is true.

2. Otherwise, ip;, < pandA;,1(F',G', p—p;)is true for some paifF’, G') that is compatible
with i; such that witht”’+% = F andG’*% = G, thenA,(F, G, p) is true.

3. Otherwise A, (F, G,p) is false.
Lemma 2.3.18 The recurrence correctly relates the valuesgi F, G, p).

Proof. Surely it is true for; = n + 1 since the only conflict-free and demand class independent
subset of) has profit 0 and?y(I;.) = Gy(Ix) = nil for all I}, € X.

Forl < j < n, first suppose that,(F, G, p) is true and suppose th@t is a conflict-free and
demand class independent subséf”pﬁvith Frr=F,Gpr =G ,andp(T") = p. If i; ¢ T', then
T C Tj+1 as well soA; 1 (F, G, p) is also true. Otherwise, if; € 7" thenp;, < p and it must be
that A1 (Fr—i,y, Gr—1i,3,p — pi) IS @lso true. This is found &4, G') range over all pairs of
mappings that are compatible within the second rule of the recurrence.

On the other hand, it (F', G, p) is false then surely,; ., (F, G, p) is also false since any subset
of TjH of profit p associated to the mappingsG would also be such a subsetf@f. Finally, we
argued above that if there is a conflict-free and demand didepenendent subsgt of 7}, ; with
p(T") = p — p;; and F;f,i" = F and G}rf”’ = G, then the subsef” U {i,} has profitp and is

56

also conflict-free and demand class independent. So, it beusitatA; ., (F’,G’, p) is false for all
possible pairs of mappind$”, G’) that are compatible witfy and haveF” ™% = F andG'™% = G.
]

The answer is then the largesfor which A;(F, G, p) is true for someF, G mappings. There
aren + 1 choices forj andn°(® choices for each of the functiorf§ G. Thus, the total size of
the table isn®(4). Calculating a particular entry take&’(?) time so the overall running time is
n®(@_ To construct a conflict-free and demand class independéses with optimum profit, then
we would simply maintain any particular sét associated to each trug;(F, G, p) and construct
these sets according to rules of the recurrence.

To summarize the algorithm in this section, recall that waiased the instances were simplified
according to Definition 2.1.3. Then, we reduced the probledintersecting instances while losing
anotherO(log, m) factor. We lost a factor of 4 while pruning the instance adoag to some label
function on thel intervals. Then, we tried each of th¥n<) guesses for the canopy. For each guess,
we discarded the tasks that are not compatible with the gaang classified the remaining tasks
according to which end intervals have a bottleneck. We de=sttia polynomial-time exact algorithm
for the optimum profit of a feasible subset of tasks with baidpoints tight. For instances with
only the left endpoints tight or only the right endpointdtigwe described an®(4) exact algorithm
for finding the maximum profit conflict-free and demand clagkependent subset of tasks. Lemma
2.3.14 shows how to prune such a subset to obtain a feashdeswhose profit is within a constant-
factor of the optimum solution using these tasks. We takdétter of the three solutions found for
the tasks with left endpoints tight, right endpoints tigittboth endpoints tight and lost an additional
factor of 3. Overall, this is a®(log, n)-approximation because we lost @tlog, n) factor when
reducing tad-intersecting instances and all other steps only lost ataahfactor . The total running

time isn2(®.

2.4 Approximating g-Conflicting Instances

There is a trivialg-approximation when each edge is spanned by at mtestks based on the fact
that interval graphs with maximum clique sizean be coloured with colours [48]. Let's consider
a more general setting. Say that a subset of t@8ks ¢-conflictingif for any taski and any edge
spanned by, the number of other taskSthat also spam for whichd; + d;; > ¢, is at mostg. We
exhibit anO(q)-approximation forg-conflicting instances. This definition admits the pos#ibibf
having much more thaptasks span each edgén the input.

Similar instances were considered in [64] for the Maximurdejpendent Set of Rectangles
(MISR) problem. In MISR, we are given a collection of axisgiéel rectangles in the plane and
the goal is to find the largest subset of rectangles such thawa share a common point. They

showed that if every point in the plane is touched by at magtctangles, then there is & q)-

57

13 c——
12 . — — 12
' i — 11

0O
0

O O
12 23 19

Figure 2.13: An instance with the “conflict-implies-comtaproperty that is not perfect. The num-
bers on the path are the edge capacities and the demanddadgkbere written next to the task. The
endpoints of the dashed lines connect two tasks that conflet graph corresponding to conflicting
pairs is then a cycle on 5 nodes so it is not perfect. It is easetify that all tasks are tight and that
they are all in demand clag3; so even simplified instances might not be perfect.

approximation algorithm that also bounds the integralép of a certain LP relaxation by the same
ratio. Their algorithm proceeds in two phases. In the firsiggh they solve an LP-relaxation that has
constraints similar to the constraints in the LP 2.2 we agrssoon. Say the optimum value of this
LP isOPTy. They round the solution to the LP to obtad{OPT}) (not necessarily independent)
rectanglesk with an additional property. No corner of any rectangleziis touched by any other
rectangle inR. That is, two rectangles iR conflict only by “overlapping” across their middles. In
the second step, they exhibit that the intersection gtaplwhose nodes arR with edges between
two conflicting rectangles is in fact a perfect graph (morecsrally, a comparability graph). Since
the size of the maximum clique is they can then efficiently find an independent set of sizeastle
|R|/q = Q(OPTy/q) by g-colouringGr.

Our algorithm also proceeds in two phases. First, we forfalidad solve an LP relaxation that
is stronger than the standard LP relaxation 2.1 that is regent of the LP formed for UFP in [26].
We then use a rounding technique analogous to the techriigishares some similarities with the
techniques [64] for the Maximum Independent Set of Rectsgloblem. Specifically, we find a
collectionT” of demand class independent tasifs Definition 2.3.2) whose total profit is within a
constant factor of the LP optimum that also satisfies anattieng property: ifi, s’ € T" conflict,
then eitherspan(i) C span(i’) or span(i’) C span(i) (analogous to the “overlapping rectangles”
property considered in [64]). Simply put, if two tasks’iti conflict, then one is contained in the
other: “conflict implies contain”. Unfortunately, the gtapbtained from conflicting pairs is not
necessarily perfect meaning they may notgbsolourable (seeg.g, Figure 2.13). However, there
is still enough structure to the remaining tasks that allog/$o use a relatively simple randomized

algorithm that finds a conflict-free subset with total pro¥ip(7”)/q).

2.4.1 |Initial LP Rounding

For each task and each edge € span(i) let S; . be the tasks’ spanninge with d;; > d; and

d; +dy > ce for somee’ < e that is spanned by bothandi’. In words,S; . is the collection of

58

Dk+6 —o}—

Dk+4 — T

Dyi2 - —

Dy o—1 @ P
O O

@ - Bottleneck e

Figure 2.14: All tasks are if; . for taski and edge: in the picture, task is drawn in gray only to
help distinguish it from the other tasks$3 .. The height of the task corresponds to the value of its
demand. The dots on the tasks indicate that the corresppedie on the path is a bottleneck edge.

tasks that spamand conflict withi on some edge’ < e. Similarly, defineT; . the same way a8, .
except consider edges$ > e. Figure 2.14 illustrates a sét .

Clearly anyi’ # i in S; . conflicts with<. Furthermore, for any twd, " € S; . we also have
that:’ and:” conflict for the following reason. We have thatonflicts withi’ across an edge =< ¢
and thati conflicts withi” across an edg€’ < e. Suppose that’ < ¢”’. Thene” € span(i’) as
well. We haved;» + d;; > d; + d; > ceor S01" andi” also conflict across”. So, at most one task
from S; . can appear in a feasible solution. Similarly, at most onk asn T; . can appear in a

feasible solution. This leads us to consider the followiyrelaxation for UFP.

maximize : Z TiDi (2.2)
i
such that : Z z;d; < ce V edges e
i:e€span(i)
Z xy <1 Vi, e € span(i)
i'ESi,g
Z zy <1 Vi, e € span(i)
i/ETi‘e

We just argued in the previous paragraph that feasible UkRiGas map to feasible integer solu-
tions of the LP having the same value, so the optimum valubeoEP is at least the optimum profit
of the UFP instance. This is similar to the LP presented if, [@6cept we have replaced the rank
constraints by the weaker constraints over $gtis Careful inspection of the results in [26] shows
that the integrality gap of LP 2.2 and the LP in [26] differpbly a constanti(e. the new constraints
presented in LP 2.2 are the only possible constraints thmbeajenerated by the approximate sep-
aration oracle in [26]). Since the LP in [26] has an integyadiap of O(log n), then the integrality
gap of LP 2.2 i0(logn) in general UFP instances. For the specific casgadnflicting instances,
we prove that LP 2.2 actually has éHq) integrality gap. It is also interesting to note that LP 2.2

has an optimum value of 1 (as opposedX(®)) in the bad instance for LP 2.1 from Figure 2.1. To

59

see this, note that all tasks arelip; so) ", z; = ZieTn _z; < 1holds.

Let z* now denote an optimum solution to the LP with valu&T. Consider Algorithm 1.

Lemma 2.4.1 The expected profit oX returned by algorithm 1 when initially called witR is at

OPT;

least 10

. Furthermore,X is demand class independent and if any twd € X conflict then

eitherspan(i) C span(i’) or span(i') C span(i).

Proof. At the recursive call when was selected an& was returned from recursively calling
T'—{i}, i was selected frori” N Dy, to minimizelength(i). So, any othet’ € T’ N Dy, that shares
a common edge withmust also span either or ¢;. Denote byL the collection tasks ii” N D,, at
this recursive call that also span noge The claimis thab _,_; =7 < 4 and we assume otherwise
to find a contradiction. Eache L has a bottleneck < s; or a bottleneclk = s;. So, more than
half of 3
to the right ofs;. Suppose it is the former (the latter is similar) and callhstasksL’. Leti’ € L’

ic1, T; isrepresented by tasks with bottlenecks to the left; @ir by tasks with bottlenecks
have the rightmost bottleneek< s; so every task i’ spanse. Then the total fractional demand
that spang is at least

Z xfndi’/ Z Z Jj;‘k//di'/Q > d7//2 Z .23;/ > del > Ce

Z’/IGL/ Z'IIGL/ ,L'IIGL/
which contradicts the fact that* is feasible.

This contradiction establishes thaf._, ;7 < 4 and a similar statement holds for tasks in

i€L
T’ N Dy, that spant;. Lete,,,e;; denote the first and last edges spanned by tqtkey may be
equal ifi spans a single edge). L&tdenote the tasks ili’ — {i} that are in eithefl; ., , or S;., ,

or are inD;, and share a common edge withNow, the total of ther}, values of tasks iff; ., ,

is at most 1 as is the total of the, values of tasks ir; ., , by the LP constraints. Therefore, the
total of all thez}, values for tasks irZ is at most 10. Since any individual taskis added taX
with probability at most:# /20, then by union bound the probability thatn X +) is at most

10/20 = 1/2. So:

*

xf 1
Prie X|=Prlie X|ZNX=0]-PrlZNnX=0]> %+ .- =-%
r[i € X] rfi € X|Z N 0] - Pr[Z N 0] > 20 3= 10

By linearity of expectation, the expected profit of tasksha setX returned by RoundL@")
whereT is the set of all tasks is then at Iea?stT—f. ThatX is demand class independent and satisfies
span(i) C span(i') or span(i’) C span(i) for every conflictingi, i’ € X follows by construction.

O

2.4.2 Picking a Feasible Subset

There is a simple randomized rounding procedure that retmfér&-fraction of the total value of all
of the tasks in the seX returned from algorithm 1 when called with the set of all tagk In the

following algorithm, for any task € X, let C; be the collection of task& that conflict withi and

havelength(i') > length(i).

60

Algorithm 1 RoundLP{")
1: if T = () then return

. Let k be minimum such thaf’ N Dy, #

: Leti € T" N Dy, be such thatength (i) is minimum

: X < RoundLP(T" — {i}) > recursively call this algorithm

. Lete,; ande, ; denote, respectively, the first and last edges spanned ly tas

cif Tye, , N X = Sie,, N X = {i} and no taski’ € X N Dy hasspan(i) N span(i’) # 0 then
addi to X with probability %

7: return X

o g b wWwN

Algorithm 2 Prune(X)

1: Order the tasks itX' asiy, iy, . . .,i|x| in decreasing order df — s;.

2 F« 0

3 fori=1...|X|do

4 if F'NC;, =0 thenaddi to F with probability%

5. end for

6: Use Lemma 2.3.3 to find a feasible subgétof F' of total profit at least 1/4 the total profit of

F.
7: return F’

Lemma 2.4.2 Suppose the tasks ik are ¢g-conflicting, demand class independent, and satisfy the
property that among conflicting tasks we have the span of®oeritained in the span of the other.

Then Algorithm 2 returns a feasible subsetbfvhose total profit is at least 51%

Proof. Consider a taskand lete have the least capacity among edgespian(i). For everyi’ € C;,
it must be thatpan(i) C span(i’) soi’ also spang. Sincee has the least capacity among edges
spanned by, then it must be that; + d;; > c.. BecauseX is g-conflicting, we must havg”;| < q.
Since the probability that any task is addedtds at mos%, then by the union bound we have that
the probability that” contains some task i@i; — {i} is at mostL. Taski is then added td" with
probability at least - 5. = 4.

Now, F', being a subset ok, is demand class independent. By constructiois also conflict-
free. Thus, by Lemma 2.3.3, we may find a feasible subsef ' whose total profit is at Iea%t of

the total profit inF'. That is, the total profit of” is at Ieastﬁ times the total profit ofX . |
By composing Lemmas 2.4.1 and 2.4.2, we arrive at the mauritresthis section.

Theorem 2.4.3 There is a polynomial time algorithm that finds a feasiblesslof demands whose
expected total profit is at Iea%fo—?.

Since linear program 2.2 is an LP-relaxation for UFP, thénphoves Theorem 2.0.2.
2.5 Recent Developments

Since the result of this chapter were obtained, Bonsma,|3dmd Wiese discovered a polynomial-
time constant factor approximation algorithm for UFP [184ttdoes not require any extra assump-

tions. Specifically, for any constaat> 0, they present a polynomial-time approximation algorithm

61

with approximation ratid@ + e. They also showed strong NP-hardness for UFP which ruletheut
possibility of an FPTAS assumirig # NP.

In their approximation, they partition the tasks into slaeid tight tasks. However, they have
two levels of slack tasks: for some constant § < 1/2 they call a task smallif d; < § - cap(i),
mediumif § - cap(i) < d; < cap(i)/2, andlargeif cap(i)/2 < d;. Using the result of Chekusit al.
in [26] on approximating small tasks, the optimum solutitmghe small and medium tasks can be
approximated within a constant factor. Bonsetal. refine this approach to improve the constants
by introducing slightly different constraints in the LPawtion to approximate small tasks. For the
medium tasks, they use a dynamic programming routine singilthe dynamic programming used
in by Chakrabartet al. [23] for approximating UFP under the no bottleneck assuomptirhe slack
in the capacities is used in a manner analogous to how [23iéeg the no bottleneck assumption.
These two approaches for small and medium tasks are comtonedvide a3 + ¢ approximation
for the small and medium tasks collectively for any constant0.

Since the the small and medium tasks in [19] already had aautfactor approximation from
[26], the greatest contribution of [19] is a constant-fa@pproximation for the large tasks (which
we called tight tasks in this chapter). There are simiksitbetween our basic approach and the
basic approach in [19], we both shifted focus to approxintpéi different structure whose optimum
solution is close to the optimum solution of the UFP instaaice we both used dynamic program-
ming to achieve this. In [19], they define the notion of a “tiy@wn” subset which is subset of
tasksT” C T that satisfy the following propertiy. If we view each tasis an open rectangle in the
planeR(i) = (s;,t;) X (cap(i) — d;, cap(i)), then a subset of task® is said to be top-drawn if
for any twoi, j € T”, we haveR(i) N R(j) = (. It's not too hard to see that a top-drawn subset of
tasks is feasible. Conversely, they show that every feasibset of tasks can be partitioned into 4
top-drawn subsets so an algorithm for finding the optimumd@wn subset of tasks is, in turn, a
4-approximation for large instances of UFP. They then shawthe optimum top-drawn subset can
be approximated within a factgt + ¢) for any constant > 0 using clever dynamic programming
that exploits the geometry of top-drawn sets.

In our approach, we reduce the problem of approximating amapn UFP solution to approxi-
mating an optimum conflict-free and demand class indepdrsidaset of tasks. Our approach relied
heavily on the fact that the tasks were intersecting-ortersecting which required us to lose a loga-
rithmic or O(log,; m) factor. The only way to ensure that tblog,; n) is a constant factor loss is to
choosel = n? for a small constant > 0. However, the running time, while sub-exponential, grows
much faster than polynomial. So, while our approaches anéasiin spirit, the approach in [19]
enjoys the fact that top-drawn instances can be found efflgieiithout losing an extra logarithmic

factor in the approximation guarantee to find them.

62

Chapter 3

Traveling Salesman Paths in
Asymmetric Metrics

The classic Traveling Salesman problem (TSP) is the proldefmding the cheapest Hamilto-
nian cycle in a symmetric metric. One well-studied varianthie Asymmetric Traveling Salesman
problem (ATSP) where the goal is to find the cheapest Hanidtooycle in an asymmetric metric.
Analogously, one may consider problems concerning chealkdmian path in either symmetric or
asymmetric metrics which we generically call Travelingesahan Path problems. We can consider
variants of Traveling Salesmen Path problems where sonteea#ridpoints are fixed and some are
not. The four basic variants are when no endpoints are spe¢gb any Hamiltonian path will do),
where two nodes andt are specified and we require the Hamiltonian path stareat end at, or
where only the start nodeor only the end nodeis specified.

It is also natural to consider variants where multiple sales are available. For example, large
companies often have more than one salesman at their dispasshey want to schedule a route
for each salesman so that every client is visited by somersae. It is not necessary to visit a
client with more than one salesman. In terms of graphs, giveositive integek, we want to find a
collection ofk paths in a metric graph so each node of the graph lies on atdraf thek paths.
The goal is to minimize the total cost of all patlesg. minimize the total travel cost of the salesmen).
There are multiple variants of this problem because we cacifgpstart and/or end locations of each
of thek paths in advance. There is one additional variant that éesting. Suppose we are given a
set of k start locationsS = {sy, s, ..., s, } and a set ok end locationgty, ts, ..., ¢, }. The goal
is to find a set ofc paths where the start and end points of the paths establigactidn between
S and7'. That is, each of the start locations is the start of pregieak path and each of the end
locations is the end of precisely one path, but it may be tipeith starting a; ends at; for some
j # i. For example, ifS = T', one application is to a company that maintains a fleet oftidain
vehicles. It does not matter where the vehicles end up afténd their route, it only matters that
each depot has the same number of vehicles before and aftenutes are followed. This is related

to some vehicle routing problems we discuss when we mentieviqus work in this area.

63

Traveling Salesman problems have been studied exten$reetythe perspective of approxima-
tion algorithms. A well-known algorithme(g. [88]) approximates the classic Traveling Salesman
problem within a factor 2 by simply observing that the minimspanning tre€" of the metric is
a lower bound on the optimum solution (since a Hamiltoniatleys connected) and that a depth-
first search traversal ¢f visits all nodes and crosses each edge twice. If we repoffirdteime
we visit a node, then by the triangle inequality the resglitycle has cost no more than the total
cost of the edges traversed in the depth-first search. Gfidies [32] improved on this approach by
presenting é}-approximation for TSP. To date, this remains the best aqymation algorithm for
general instances of TSP. Regarding lower bounds, Papaidimand Yannakakis [74] first proved
that TSP was APX-hard. Later, Papadimitriou and Vempalaigeal an explicit constant lower
bound. Specifically, they proved that unless P = NP, theretiseno(% — e)-approximation for
TSP for any constart> 0.

Held and Karp [52] introduced an LP relaxation for TSP (LP) 1\Wolsey [90] and Williamson
& Shmoys [85] showed that the integrailty gap of this LP isoadd mostg. There are examples
for which the integrality gap of LP 1.1 is arbitrarily cIose% and it is a major open problem to
determine if this lower bound is tight. It should also be wdteat this LP can be solved in polynomial
time since separating over the cut constraints can be adistrag using a minimum cut algorithm.

Special cases of TSP have also been considered. Bermen apihdka [16] show that the
problem admits ar?,—-approximation when all distances are 1 or 2 (as in the stidRehardness
proof in Section 1.2.8), improving on a previous bouncgdn‘y Papadimitriou and Yannakakis [74].
When the nodes in the metii¢ = (V, E)) are points in the Euclidean plane and the distance between
any two points is their Euclidean distance, both Arora [6] ditchell [67] show the problem has a
PTAS.

Another special case that has been considered is when thaakd,,, is equal to the length of
the shortest path from to v in a connected, unweighted graph (sometimes calegphic TSH.
Very recently, Oveis Gharan, Saberi, and Singh [72] showetl the integrality gap of LP 1.1 is
3 — c for some very small constant> 0. Even more recently, Bimke and Svensson [69] improved
this bound to 1.461. When we further restrict the input of Giaf¥ SP to metrics obtained from
the shortest path metrics of 3-edge connected and cubitigréggarwalet al. [1] show that the
integrality gap of the LP relaxation is at mast

A variant of TSP where our goal is to find a Hamiltonian pathdilas been studied. Hoogeveen
[54] showed that if no endpoints are specified or if at mostedpoint is specified, then the problem
can still be approximated withid. In the case that both endpoints are specifieghaproximation
is shown. Later, An and Shmoys [3] analyzed his algorithm ghifi'erent way and bounded the
integrality gap of a variant of LP 1.1 to the case of Hamiltanpaths by2 as well. When the metric
is graphic, they also show that analysis similar to [72] desti@ates that the integrality gap of this LP

is bounded b)% — ¢ for some very small constant > 0. MOmke and Svensonn [69] also show that

64

their analysis of the integrality gap of LP 1.1 for TSP gelizea to the case of Hamiltonian paths
and demonstrates that the corresponding LP has an intyggap of at most 1.586. The integrality
gap is at Ieasg for the case of TSP Path when both endpoints are fixed.

The Asymmetric Traveling Salesman problem has also redeiet of attention. Friezet al.
[42] gave the first approximation algorithm for the problerithwan approximation ratio dbg, n.
Williamson [89] showed that the solutions produced by thgedathm also bound the integrality gap
of LP relaxation 3.1 (to be introduced later) g, n. Blaser [17] modified this algorithm to obtain
an approximation ratio 0#.999 log, n, followed by an improvement té logsn ~ 0.842logy n
by Kaplanet al. [58]. Feige and Singh [38] provided one more constant-faichprovement to
§log2 n. Then, in a breakthrough paper, Asadpetial. [9] finally improved the approximability
by more than a constant factor and presente@éng n/ log log n)-approximation for ATSP that
also bounds the integrality gap of LP 3.1 by the same amouné ifitersting special case is when
the asymmetric metric comes from the shortest paths of dgpsrweighted) directed graph that
can be drawn on an orientable surface of gepuveis Gharan and Saberi [71] show that the
integrality gap of LP relaxation 3.1 8(,/7 log~y). In particular, they also show that the integrality
gap in metrics obtained from shortest paths in planar gra@phieh can be embedded on the sphere,
an orientable surface of genus 0) is at most 22.5.

Similar to TSP, Papadimitriou and Vempala [73] show ATSPncaibe approximated within a
factor%g — e for any constant > 0 unless P = NP. The best known lower bound for the integrality
gap of LP 3.1 is 2, as shown by Chariletral. [24]. It is also an important problem to determine if
the upper bound on the integrality gap (or, more generdig/biest polynomial-time approximation
ratio) is also constant.

The first approximation algorithms for the Asymmetric Tdavg Salesman Path problem ap-
peared much later than the first approximation algorithm&b8&P [42]. Lam and Newman [62]
first showed that the problem can be approximated withi®égyn)-factor. The first logarithmic
approximation was by Chekuri and Pal [30] with an approxioratatio of4H,, = 4Ilnn — o(1).
Later, Feige and Singh [38] demonstrated that the apprdilitygof ATSP and ATSPP were within
2 + e for any constan¢ > 0. Combined with their ATSP approximation, this implied ATFSEan be
approximated withir(% + e) log, n. None of the aforementioned algorithms bound the intetyrali
gap of any LP relaxations. The first such bound was proven lgaNgan and Ravi [70] for the LP
relaxation we consider later, namely LP 3.3, where theyguidhe gap was at moét(/n). Until
our work, this was the best known bound on the integrality. gap

Another variant that is studied in literature is the follagi(sometimes under the guisevahicle
routing rather than traveling salesmen). Given a symmetric métric (V, E)) and a collection of
k nodesry, ..., 7, the goal is to find a cycl€’; containingr; for eachl < i < k such that every
node inV lies on one such cycle. The objective in this case is to mirénthe total length. A

2-approximation is known for this problem which is based e doubling-tree principle. Namely,

65

one can easily find a minimum cost forest where each compaoenains a unique root,. Since
the optimum solution contains such a forest as a subgrapll€lating one edge per cycle), this
minimum cost forest has cost at most the optimum va&l&l'. After doubling the edges of this
forest, we obtain an Eulerian graph for each connected coemiand all nodes can then be visited
by traversing the edges of these graphs with cost at 2O#t7T" (see,e.g. [65, 80]). A similar
algorithm also applies to finding pati#y, .. ., P, whereP; starts atr; such that every node is on
one such path.

More recently a%-approximation was presented by Rodrigues and Xu [83] whemtmber of
rootsk is constant. They also point out that previous technicabmsphat claim %—approximation
for this problem [77] for arbitrary; and a3-approximation for a path variant [78] of this problem
are incorrect. For the special calse= 2 in the Hamiltonian path variant of the problem, Rathinam
and Sengupta [79] also demonstralghapproximation.

Yet another variant is when the metdi¢ = (V, E) is symmetric and we have two subsets of
nodesS, T', both of equal size (say). Furthermore, we can assume taand?" are disjoint (there
is a simple reduction from the problem withn 7' # () to this case). The goal is to firdpaths,
each of which starts at some nodeSimnd ends at some noden so that all nodes i (including
S andT’) are on exactly one such path. In this way, the start and edd:of the paths establish a
bijection betweert andT'. Rathinama and Sengupta [76] consider this problem (wélatiditional
constraint that each path also visits some nod¥ in (S U T)). Using ideas from their paper, it
is possible to find a minimum cost forest where each connemetbonent contains exactly one
node inS and exactly one node ifv (by using matroid intersection techniques over tR«ooted
spanning forest matroids from Section 3.4.2, one wWith= S and the other withR = T'). By
doubling each edge in this forest except edges that lie o@spm t; paths, we obtain an Eulerian
path froms; to ¢; in each forest which is a 2-approximation for the problem.

As far as we know, all of the variants we consider in this Caapbncerning multiple traveling
salesmen in asymmetric metrics, as well as the variant imsstnic metrics covered in Section
3.4.2, have not been studied before.

In this chapter, we present a variety of approximation algors for some variants of the Trav-
eling Salesman problem. Unless it needs to be stated elplitherwise, throughout this chapter
we usen to denote the number of nodes in the metric graph being cereid Primarily, we discuss
Traveling Salesman Path problems in asymmetric metri¢sybalso consider some other versions
in the last section. Many of the algorithms can be seen asgixies of the) (log n)-approximation
by Friezeet al. [42] the for well-studied Asymmetric Traveling Salesmaalgem [42], so we begin
by reviewing their algorithm and its analysis. We also revi&illiamson’s analysis [89] that the
integrality gap of a natural LP relaxation for ATSP is alsabd byO (log n) and, moreover, that the
solutions found in th& (log n)-approximation by Friezet al. [42] are at mosO (log n) times the

optimum cost of this LP relaxation. Some of the ideas in thialysis are used to prove analogous

66

bounds for the LP relaxations we consider for the TSP vasiahtdied in Section 3.2 and Section
3.3. These bounds are used later in Chapter 4.

The first new contribution in this chapter is anotli¥iog n)-approximation for the Asymmetric
Traveling Salesman Path problem (ATSPP). As mentionedrbdfeige and Singh already demon-
strated that ATSPP can be approximated within a factdog n) [38] (which has since been im-
proved toO (log n/ loglogn) due to results in [9]), but their result did not bound the gnédity gap
of a natural LP relaxation. We show that our algorithm alsortats the integrality gap of the LP re-
laxation for ATSPP byD(log n), improving on the boun@(,/n) by Nagarajan and Ravi [70]. This
is also a crucial ingredient for approximating the Minimurmd@ted Latency problem we consider
in Chapter 4.

Next, we consider the variant of ATSPP where we are given wadess andt and intege and
the goal is to findk paths froms to ¢ whose union includes all the nodes. Our ATSPP algorithm
is modified to provide a®(k log n)-approximation for this problem. While it is unfortunate tha
the approximation ratio depends @nlinearly, it still demonstrates a logarithmic approxinaati
algorithm for the interesting case when two salesmen ariéable. More generally, we exhibit the
following: for any integew > 1 there is a polynomial-time algorithm that finds at moist- ;) - &
paths whose total cost is at maS{blogn) times the optimum value of a linear programming
relaxation. To the best of our knowledge, these resultstaditst approximation algorithms for
Traveling Salesman Path problems in asymmetric metrids mvitltiple salesmen.

We discuss how to extend these results to algorithms whea abthe endpoints are fixed or
where the start or endpoints may vary. In almost all casetu@ing the case of the paths establishing
a bijection between start nodésand end node¥’), the approximation guarantees translate almost
identically. The most notable exception is when we haveifipestart and end locations;, ¢; for
each path and we require that the path starting; db end att;. In this case, we show that no
polynomial-time algorithm can guarantee any bounded @piproximation unless P = NP. This is
also interesting since the same variant in symmetric neelrés a very simple 3-approximation and
the same variant in asymmetric metrics with= ¢, for everyl < i < k (so the paths can be thought
of as “rooted cycles”) has a logarithmic approximation. W aresent these algorithms in the last
section.

The bound on the integrality gap of LP relaxation 3.3 for APS&ppeared in [43]. The bound
of O(k?1ogn) on the integrality gap of LP relaxation 3.5 ferATSPP we develop at the end of

Subsection 3.3.3 will appear in the full version of [43].

3.1 Warmup: The Asymmetric Traveling Salesman Problem

In this section, we review a classic approximation algonittor finding Hamiltonian cycles in di-
rected metrics by Friezet al. [42]. This variant is simply called the Asymmetric TravejiBales-

man Problem (ATSP). The algorithm is simpler than our atanifor paths but is similar enough to

67

provide some familiarity with our ideas. We use flows andudations extensively throughout this
chapter. The reader is referred to Section 1.2.1 for notatimsidering flows and circulations.

We are given a directed gragh = (V, A) where each are = uwv € A has a costl,,. First,
we note that for any// C V we have that the cost of the optimum Hamiltonian cycle on the
metric induced by is at most the cost of the optimum Hamiltonian cyclelonWe dub this the
monotonicity property To see this, supposa, ve, ..., v, iS @ Hamiltonian cycle” on V. Now,
supposey € V — W and arcuv, vw are used in the optimum solution &n If we replaceuv, vw
with ww then we obtain a cycle oW — {v}. By the triangle inequlityd,,., < dy. + dy., SO the cost
of this cycle is no more expensive than the cost of the origipele. Repeat this for all nodes in
V — W (processing them in any order) to obtain a cycld@rof no greater cost than the optimum
cycle onV.

A cycle coverof a subset of node®/ is an integral circulatiorC' such thatC(6*(v)) =
C(6~(v)) = 1 (so each arav hasC,, € {0,1}). If one considers the subset of alos= {uv €
A : Cy, = 1}, then the indegree and outdegree of each node in the gfaphV, D) is exactly 1.
That is, D is a collection of vertex-disjoint cyclesy, . .., C, where each node lies on some cycle
C; and eaclC; includes at least 2 nodes. Viewing a cycle cover as a subsetsf a cycle cover
is then a base of the intersection of two partition matroih® which bounds the indegree of each
node inV by 1 and the other which bounds the outdegree of each nodeby 1. More formally,
consider the two matroid$1™ = (A,17), M~ = (A, 1) where:

Del" & VYoeV, |[0t(v)nD|<1

Del” & VveV, |6"(v)ND|<1

A base inM™ (resp.M ™) is a subset of arcB where every node has precisely one outgoing (resp.
incoming) arc inF'. Thus, the minimum cost cycle cover &f can be found in polynomial time
using matroid intersection techniques to find base thatrisngon to bothM+ and M.

We begin with a high-level overview of the approximationaithm for ATSP by Friezet al.
[42]. Begin by computing an optimum cycle cowron V. Discard all but one node from each
cycle in the support of’ and repeat with the remaining nodes until only a single nedeains. The
number of nodes is at least halved at each step since eaehaght least two nodes, so the overall
number of iterations is at mokig, n. Once there is one node remaining, then the grap¥ osing
only the arcs in the support of the cycle covers we found tijinout the algorithms execution is
Eulerian. Follow an Eulerian circuit, but bypass some afdkis circuit to ensure each node is only
visited once. The cost is bounded by at most, » times the cost of an optimum solution since the
Eulerian circuit is the union of the support of at mtast, n cycle covers and since a cycle cover on a
subset of nodes costs no more than the optimum Hamiltoniele oy all of V. The full description

is found in Algorithm 3.

68

Algorithm 3 An O(log n)-approximation for ATSP [42]
1. LetD, «+ 0, VoeV
cLetW «V
: while || > 1 do
Let D’ be a minimum cost cycle cover &F
LetCq,Cs,...,Cy be the cycles in the support af
Choose any single node;, from each cycle”; to “represent” that cycle
UpdateD < D + D’ > D N D' = () before this step
UpdateW — {Ucl ,UCqy - - - ,’Uck}
: end while
: Let G’ = (V, support(D))
: Find an Eulerian circui€® of G’ that visits all nodes
: Remove all but one occurence of each node V' from C to get a Hamiltonian cycle’
: return ¢’

© oo NN

[S S S
w N B O

Lemma 3.1.1 The graphG’ = (V, D) computed on line 10 of Algorithm 3 has an Eulerian circuit

that visits all nodes.

Proof. Each cycle coveD’ satsifiesD’ (5% (v)) = D'(6~(v)) = 1 foreveryv € V. By induction on
the number of iterations and sinégis initially 0 on allv € V we see thaD (6" (v)) = D(6~ (v))
at the end of the main loop. Now, each arc € A hasD,,, € {0,1} since ifD,, = 1 for any
iteration, then eithet; or v is discarded froni/” anduwv is not used in any future circulation. In
other wordsuv € support(D) if and only if D,,,, = 1. Thus, the degree requirements &rare
satisfied. It is a commonly-known fact that a directed grajith wqual indegree and outdegree at
each node has an Eulerian circuit that includes all the nibdesl only if it is weakly connected.é.
connected if the directed edges are replaced with undaexiges).

It is sufficient to prove that there is always a pathitevherew is the sole node il when the
loop terminates. LelV,, = V and denote the sV just after thej’th iteration of the loop by ;.
If the number of iterations ig, thenW,, = {w}. We prove by induction op — j for0 < j < p
that there is a path from any nodelii; to w using only arcs in the support . It is clearly true
for j = p sinceW, = {w}. Now, suppose that every nodelii;,, has a path ta using only arcs
in p. Every nodev € W; is in some cycle”; in the support of the cycle covéd’ found in iteration
j+ 1. Thus, there is a path fromto the “representative node;, by following arcs in the cycl€;
(which are also arcs i). From here, there is a path tousing only arcs inD by induction since
ve, € Wjt1. Thus, forj = 0 we see that every node Wi, = V' has a path taw using only arcs in
D. (|

Theorem 3.1.2 The cycleC’ returned by Algorithm 3 has cost at mdsg, n - OPT whereOPT

is the minimum cost of a Hamiltonian cycle Bn

Proof. The cost of each cycle covdd’ found in each iteration is at mo&PT because)’ is a

minimum cost cycle cover oW, because the optimum Hamiltonian cyclel®hin each iteration is

69

trivially a cycle cover (when viewed as an integral circidaj, and because the optimum Hamilto-
nian cycle on/ has cost no more than the optimum Hamiltonian cycléomhe number of nodes
of W kept in each iteration is at mog#’| /2 since each cycl€’; in the cycle cover involves at least
2 nodes and we discard all but one node in each cycle fioat the end of each iteration. Thus, the
the number of iterations is at mdst, n.

SinceD is simply the sum (as a circulation) of the at mast, n cycle covers found in each
iteration and each cycle cover has cost at nd@BtT’, then the total cost of the circuft is at most
log, n- OPT. The final cycleC” is obtained from the circuif’ by shortcutting past some nodes, so

the triangle inequality yields that the cost@f is at most the cost of. (]

Now, consider the following integer programming formuatior ATSP. We have a variabie,,,
for each arawv € A and constrainz,,, to take only values 0 and 1. The idea is thgt = 1 if we
useww in the Hamiltonian cycle and,,, = 0 if we do not useuv in the Hamiltonian cycle. For a
subset of arcd, we letz(D) = > cp T (Similar to our notation(D) = > ., Fu, fora

flow or circulationF’). Then the integer program is:

minimize : Z AyvTun (3.1)
ecA
subject to : (6T (v) =1 YveV
(0" (v)) =1 YoeV
z(67(9)) > 1 YhCSCV (3.2)
Typ € {0; 1} Yuv € A

The equality constraints ensure that integer poiig a cycle cover. If one considers the subset
of edgesD = {uv € A : x,, = 1}, then we already discussed tlais a collection of cycles where
each node € V is on exactly one of these cycles. Then, Constraints (3lRysethat D cannot
have more than one cycle otherwise the naslés such a cycle would have(5*(S)) = 0. So,D
is actually a Hamiltonian cycle whose cost is the same.a€onversely, ifD is any Hamiltonian
cycle onG, then the point: with z,,, = 1 for uv € D andz,, = 0 for uv &€ D is a feasible point
in the integer program with the same cost/as

If we replace the integer constraintg, € {0,1},Vuv € A with 0 < z,, < 1,Vuv € A,
we obtain a linear program known as thield-Karp relaxation for ATSP [52]. Not only do we
have that Algorithm 3 is #bg, n approximation, we also see that it bounds the integralip/afahis
relaxation. Before proving this, we recall a result of Frankl Jackson. Actually, the stated theorem
is not quite as strong as their original result, but it is sigfit for our needs and is simpler to state.
It says that for any non-isolated nodef a directed Eulerian graph, there is one incoming arc and
one outgoing arc such that if we bypas®y shortcutting past these arcs, the number of outgoing

arcs of any subsef not containingy remains the same. It is often called sitting off lemma for

70

digraphs An application of the lemma is then referred tosaéitting off

Theorem 3.1.3 (Frank [40] and Jackson [56])Let G = (V, A) be a directed multigraph with the
indegree and outdegree being equal at every node. For amyisadated nodew, there are two arcs
uw, wv such that if we lefd’ denote the collection of arcs obtained by remowing wv from A and
addinguv to A, then|§,(S)| = |65, (S)| forany) € S C V — {w}.

Williamson analyzed the ATSP approximation algorithm i@][#b show that it also bounds the

integrality gap of LP relaxation 3.1. Specifically, he prdvke following.

Theorem 3.1.4 (Williamson [89]) Let O PT; denote the optimum value of the linear programming
relaxation of the integer program. The cost of the cy€tereturned by Algorithm 3 is at most
logyn - OPTY.

Proof. For anyW C V, let LP(W) denote the instance of LP 3.1 on the graph inducedihy
Similarly, let OPT;(W) denote the optimum value diP(17). The first step is to show that
OPT;(W) < OPTy (V) foranyW C V. This follows by induction if we show tha® PT;(1V) <
OPTy(W U {v})foranyv e V — W.

Let 2 be an optimum solution t P(W U {v}). We know that each,, is rational so we define
A = lemyyea{du, } Whered,, is the denominator in the reduced formaf,. ThenAz,, is an
integer for eachiw € A. Consider the multigrapti A on W U {v} with Az, copies of each arc
wwv. This graph has indegree and outdegree exaxth each node and each cul C s C WU {v}
has|dt(9)| > A.

While % (v) # 0, use Theorem 3.1.3 to find ares, vw such that removing a copy afv, vw
and adding a copy afw does not decrease the™(S)| for any() C S C W. Note that the total cost
of all arcs does not increase by the triangle inequality. A'etienote the resulting multiset of arcs
when we finally haved* (v) = 6~ (v) = 0 and let#uv denote the number of copies @b in A’.
We form a solution:’ to LP(W) by settingz!,, = %. Since the indegree and outdegree of each
node inW does not change throughout the splitting off operatiom tHéj+ (u)) = /(6 (u)) = 1
for everyu € W. Furthermore, by our choice of ares, vw in each step, we also have that
2'(67(S)) > 1foreach) C S C W. Thus,z’ is a feasible solution t@ P (V).

The cost ofz’ is exactly the total cost o’ scaled byA~!. This, in turn, is at most the total
cost of A scaled byA~!. Finally, the total cost of4d is exactly AOPTy(W U {v}) sincex is
an optimum solution foL P(W U {v}). Sincex’ is feasible forLP(W), thenOPT (W) is at
most the cost of:’. However, we just saw that the cost ©f is at mostOPT(W U {v}), so
OPT;(W) < OPTH(W U {v}).

The second step is to show that the cost of the optimum cysleram is at mostOPT ' (W).
The result then follows because we already saw that the ¢dst s bounded by the total cost of
at mostlog, n minimum cost cycle covers on subsetslaf To see this, remove the cut constraints

x(67(S)) from LP(W). The resulting polytope is exactly the polytope for the iségtion of the

71

base polytopes for the two partition matroids that boundriiegree and outdegree of a node by 1.
This is an integral polytopec{. Section 1.2.3) and the integer solutions correspond teayavers

of W, so the minimum cost cycle cover has cost exactly equal toplimmum value of this polytope
which, in turn, is at mosOPT, (V) since a feasible solution tbP(1) remains feasible when

constraints are removed. O

3.2 The Asymmetric Traveling Salesman Path Problem

The Asymmetric Traveling Salesman Path problem (ATSPHirigas to ATSP except we are look-
ing for a Hamiltonian path rather than a Hamiltonian cycle. this section, we demonstrate an
O(log n)-approximation algorithm for ATSPP. What distinguishes tgorithm from previous ap-
proximation algorithms is that we can also bound the inté@grgap of a natural LP relaxation of
ATSPP byO(logn) using our algorithm.

Our algorithm is also similar in spirit to th@ (log n)-approximation for ATSP by Friezet al.
[42] that was presented in the previous section. We buildhis algorithm by first describing a
structure similar to the cycle covers in the ATSP algorithetied a path/cycle cover. As before,
we choose a representative from each cycle and discardtalhduepresentative node from each
cycle. However, for our algorithm to work we cannot arbitsachoose any representative from each
cycle. We introduce a potential function called a “labelf &ach node and choose a representative
based on this function. After finding sufficiently many pattole covers, we prove that we can find
a cheap path that includes all the nodes that were not disd¢andsome iteration. Then, using the
cycles found across the iterations, we graft the discarde@ésonto the path.

The rest of the section is organized as follows. First, weipedy define what is meant by a
path/cycle cover and discuss how to find one optimally. \We dimonstrate why a simple gener-
alization of the ATSP algorithm to ATSPP using path/cycleezs may not succeed. We can then
present the algorithm which is similar to the ATSP algoritlexcept representatives for the cycles
are chosen differently and the final path is constructed différently. Properties concerning the
node labels are then proven to demonstrate the correctnésgpgaroximation ratio of the algorithm.
Finally, we concluded this section by presenting a natuPatélaxation and prove how the algorithm

bounds the integrality gap of this relaxation ®ylog n).

3.2.1 Path/Cycle Covers

Suppose> = (V, A) is a directed metric anel ¢ € V' are given in advance with # ¢. The goal is
to find a Hamiltonian path that startssaand ends at. A good starting point is to define the notion

of a path/cycle cover.

Definition 3.2.1 A path/cycle cover aff = (V, A) with a specified start nodeand a specified end

nodet is an integrals — ¢ flow F' such that:

72

e F(67(v))=F(6 (v)) =1foreachv e V — {s,t}
o F(0t(s))=F(6 () =1
e F(6=(s))=F(6t(t) =0

If Fis a path/cycle cover, then | = {uv € A : F,, = 1} be the support of". Similar to the
support of cycle covers in Section 312,consists of ars — ¢ path P and cycle, ..., C} such

that every node € V is on precisely one aP, C1, ..., Cy.

The support of a path/cycle cover is a common base of twatjpartnatroids; one which bounds
the indegree of each# s by 1 and the indegree afby 0, and another which bounds the outdegree
of eachv # ¢ by 1 and the outdegree ofby 0. As with cycle covers in Section 3.1, this means
an optimum path/cycle cover of a directed graph can be fonrblynomial time using matroid
intersection techniques. Note that a Hamiltonian ¢ path is trivially the support of a path/cycle
cover (with no cycles), so the cost of an optimum path/cyoleecis at mosO PT'.

A first approach to this problem would be to find a path/cycleecd’, remove all but one node
from each cycle inF', and repeat until the support of the path/cycle cover ctasisonly a path
from s to ¢ with no additional cycles. From this, we could incorpordtte discarded nodes using the
cycles from the supports of path/cycle covers found acrib@iei@tions. For sure, such an algorithm
arrives at this case because the number of remaining naitgly stecreases in each iteration before
the final iteration. However, it is not so apparent that theber of iterations £ (log n).

One might hope that when a noddecomes part of the — ¢ path, it then remains on the path
in subsequent iterations. If this were the case, we couldastjue that the number of nodes that
are not on the path is halved at each step. Unfortunatelyighiot always the case; it is possible
that a node is part of the path in one iteration and is theruded in a cycle in the next iteration.
See Figure 3.1 for one such example. The metric is the shqa#ss metric of the graph in the first
image. The first path/cycle cover requires 4 edges and thgdseshown in the second image have
cost 1, so it is an optimum path/cycle cover. Suppose the timdavas discarded from the cycle is
the grayed out node in the third image. Itis easy to verify tha path/cycle cover shown in the last
image has cost 5 while all other path/cycle covers have ¢asi the path/cycle cover shown in the
last image is optimum.

Still, the first part (the main loop) of our algorithm is sianilto Algorithm 3 for Hamiltonian
cycles. One of the main differences is that we no longer ch@sarbitrary representative of a
cycle in each iteration; we will be more careful. Another argjifference is that instead of simply
maintaining a set of noded” across the iterations, we also maintain an acyglie ¢ flow F' on
W that is composed of parts of previous path/cycle covers.obeg the set of nodes that remain
after all iterations by, the following holds after the main loop because of how weoskothe

representatives. For any twov € W, there is either a path fromto v or a path fromv to u in the

73

0

¢

Figure 3.1: a) The graph whose shortest paths defines thécmdty The support of the first
path/cycle cover. ¢) The support of the second path/cyatergghe first is grayed out).

support of the acyclic flowF'. This helps us reconstruct a Hamiltonian path using onlg frend in

some path/cycle cover.

3.2.2 A Logarithmic Approximation for ATSPP

In the algorithm we uséf to denote a circulation. A connected compondrif the support ofdf

is a strongly connected component in the suppoiadhat includes at least two nodes; we do not
consider isolated nodes in the supporttbf Finally, if £ is an integral flow over nodég, then we
may form a multigraplG = (V, F') where we havé’, copies of each are.

The algorithm for approximating ATSPP is Algorithm 4. As rtiened earlier, the algorithm
maintains a sell” of nodes that always containsand¢ and an acyclic flows” from s to ¢ involving
only nodes inlW. At each step of the algorithm, a path/cycle co¥&rof the nodes iV is found
which is then added té'. The innermost loop starting at Step 10 chooses a repreiserftar each
connected component in the support of circulatiod in a particular manner and discards all other
node inA from W. It might be that some nodes it also support some of the flow in the acyclic
flow F', so we modify the flowF' to bypass such nodes by shortcutting. This can be naively (
without using the splitting off lemma). The sefs are only to simplify notation in the proof. We
ultimately use the setS,, to show that every node < 1V at the end of the main loop supports a lot
of flow in F" which helps us construct the final path.

First, we prove that we can always find an Eulerian walk frotm ¢ in the multigraph(V, Ap +
0).

Lemma 3.2.2 The multigraph(V, Ap+C) in Step 23 has an Eulerian walk frosto ¢ that includes

all nodes inV.

Proof. SinceC is a circulation, then the indegree and outdegree of eacmadV using the arcs
from C are equal. Sinc® is a path then the indegree and outdegree of each nad® — {s,t}
using the arcsl p are equal. Finally, the indegree ois one less than its outdegree and the outdegree
of ¢ is one less than its indegree sinBestarts ats and ends at. Therefore, the degree requirements

for such a walk are satisfied.

74

Algorithm 4 An O(log n)-approximation for ATSPP

L LetW <V

2: LetS, «+ {v},Yv eV > only needed for the correctness proof
3: Letl, < 0,YVvoeV

4: LetF,, «+ 0,Vu,v eV

5. LetCy, «+ 0,YVuv € V

6: for 2|log, n| + 1 iterationsdo

7 Find a minimum-cost path/cycle covéf on W

8: F+ F+F

9 Subtract a circulatio#/ from F' so F' is acyclic again

10: for each connected componetin the support off do

11: For each vertex, € A, letd,, denote the total flow il enteringu (i.e. H(5~ (w))).

12: Letvg < argmingecal, + dy > breaking ties arbitrarily
13: for each nodev € A — {v4} do

14 Shortcut the flow int” overw sow supports no flow irF’

15: end for

16: W+ W —(A—{va})

17: ly, <1y, +dy,

18: Sva ¢ UpeaSy

19: end for
20: C+—C+H
21: end for
22: Let P be a topological ordering of the nodes in the multigr&gh F) formed from flowF’
23: Viewing P as an acyclic — ¢ flow, let P’ be an Eulerian walk frons to ¢ in the multigraph

(V.P+0)

24: Shortcut past repeated nodedihto get a Hamiltonian patiX
25: return X

To prove the connectivity requirement, it suffices to prdvet the grapiV, Ap + C) is weakly
connected. This follows from showing each nede V' has a path to using only edges idlp + C.
The argument is near identical to the analogous argumerdnmba 3.1.1. The idea is that all nodes
in W trivially have a path ta by following only Ap. The other nodes can reathy first following
the cycle found when they were removed to the representatitfeat cycle which, inductively, has

a path tot. O

The next two lemmas collectively say that each nodd/imt the end of the main loop supports

more than half of the flow fromto ¢ in F.

Lemma 3.2.3 We havel' (61 (v)) = F(6~ (v)) = 2|logyn] +1—1, for eachv € W — {s, ¢} after

the main loop.

Proof. For eachv € W — {s,t}, both F(67(v)) and F(6~(v)) increase by 1 in each of the
2|log, n | iterations when the new path/cycle cover is added. WheneweW — {s, ¢} is chosen as
a representative node, baf(5* (v)) and (6§~ (v)) decrease by the amount of flaty enteringv
from the circulationd because we removed this circulation from the flow. Howetis,decrease is
precisely the amount thgt increases in that iteration. Finally, we note that when aristhypassed
in step 14, it is discarded froiV" and theF' (6" (v)) and F'(6~ (v)) values for any othew € W do

75

not change during this bypass. |

Lemma 3.2.4 Each nodey € W — {s,t} hasl, < |log, n| throughout the algorithm.

Proof. We do this by proving, in each iteration of the loop, that < |S, | for eachv € W. We also
maintain the invarianf, N S, = 0 for anyu,v € W. Both statements are initially true because
S, = {v} andl, = 0 before the first iteration of the outer loop. Inductivelyns@er a step in the
algorithm wher, is updated becausewas chosen as the representative of some circulation

Let I be the flowF at the start of the current iteration of the outer loop. TlsatFi is the
acyclic flow before the path/cycle coveY is added. Consider some connected compoHreoitthe
circulation H removed fromF = F + F’. First, we claim that there are distinct nodes such that
dg =dy = 1.

Consider a topological ordering of the nodes based on theliadiow F. Let a be the first
node in this ordering that appears hand letb be the last node in this ordering that appears in
A. Note thata # b since we only considered connected componentsf the support ofH that
involve at least two nodes. We haxg, d, > 1 since botha andb support some flow iM. Since
all other nodes iM appear after in this topological ordering, then there is no af¢ for u € A
with F',,, > 0. Thus, the only flow that can entefrom H is from the path/cycle covef’ that was
introduced in this iteration. Howevek,’

uv

In a similar mannerd, = 1 because no node € A can haveF;, > 0 sinceb appears latest in

< 1 for any arcuv so it must be that/ (67 (a)) = 1.

the topological ordering of nodes it and because only one unit of flow froff can exitb in the

path/cycle covef”. The result foi then follows because
1=H(6"(b) = H(0~ (b)) =ds

where the middle equality follows from flow conservatiorbat

We know that just before the value bfis updated we have
ly +dy, = minl, + d,.
ueA

Consider the nodes, b described above (it may be that= v or b = v). Then we havé, + d, <
l, + 1andl, + d, <, + 1. By the induction hypothesis, we have both

glvtdv=l < ola < |G | and 20Fd—l <ol < |G|

SinceS, andsS, are disjoint, then after the update we hadg| > |S,| + | S| > 2!» where we now
refer to the new values &, andi,.

ThatS, NS, = 0 for anyu,w € W after updating,, andS, follows simply because the new
setS, is formed as the disjoint union of sefs, for u € A and the nodes € A — {v} are then
discarded froniV'.]

We are now equipped to prove the approximation ratio.

76

Theorem 3.2.5 The pathX returned by Algorithm 4 has cost at m@8tlog, n| + 1) - OPT.

Proof. Let P* be an optimum Hamiltonian path dn of costOPT. Consider a subsét” of V.
The optimum Hamiltonian path oW costs no more than the cost Bf because we can shortcut
past nodes i/ — W to transformP* into a feasible Hamiltonian path oW of cost at most
OPT. A Hamiltonian path oW corresponds to an (acyclic) path/cycle covelBrso the optimum
path/cycle cover oV has cost at mogD PT'. Since the flowF" plus the circulatiorC' we find after
the outer loop are obtained by combinididog, n| + 1 minimum cost path/cycle covers on subsets
of W and, perhaps, shortcutting around some nodes, then thefcBgilus the cost o is at most
(2|logyn| +1) - OPT.

Next, we claim that any argv used in the pattP found by topologically orderingl’ satisfies
F,, > 1. If so, then the cost aP is at most the cost df". To see this, recall thdt, being an acyclic
integer flow sending|log, n] + 1 units of flow froms to ¢, can be decomposed as the union of as
many paths frons to ¢. By Lemmas 3.2.3 and 3.2.4, bothandv appear on at leasiog, n| + 1
path. By the pigeonhole principle, there then must be sorttethat includes botl andv. Now, v
cannot appear beforeon this path since comes before in the topological ordering ofi” based
on F. Similarly, there cannot be another nodec W that appears betweenandv on this path
since, otherwisey could not have immediately followed in the topological ordering. Thus, the
edgeuv appears on a path in the path decompositiof' oieaningF’,,, > 1.

So, the cost of the path is at most the cost of the acyclic flov. Incorporating the circulation
C, we then get an grapfi with an Eulerian walk frons to ¢ that spans all the nodes whose cost is at
most the cost of" plus the cost of. Since bypassing nodes on this walk does not increase the cos
of the walk, we finally see that the cost the final HamiltoniathpX is at most2|log, n|+1)OPT.

(]

3.2.3 A Logarithmic Bound on the Integrality Gap for ATSPP

As with ATSP, the cost of the patki returned by Algorithm 4 is at most a logarithmic factor of the
optimum cost of a natural linear programming relaxatiorhefproblem. Consider the following LP
relaxation of ATSPP.

minimize : > duTu (3.3)
wweA
subject to : (6t () = 2(6~ (v)) = Yo eV — {s,t}
2(0%(s)) = z(67 (1) =
2(07(s)) = z(67 (1) =
z(07(8)) > 1 V{s}CSCV (3.4)
0<my, <1 Yuv € A

If z is a feasible point with integer components, then the degoestraints say that must be
a path/cycle cover. The cut constraints then ensure theg #ve no cycles (otherwise the nodes of
the cycle would be such a s&twith outgoing cut size 0) so the path/cycle cover would irtHiee a
Hamiltonian path frons to ¢. Let O PT; denote the optimum fractional solution to the LP relaxation
above. Conversely, it is easy to see that a Hamiltonian patiesponds to a feasible integer solution

to LP 3.3. Then we can bound the integrality gap in the follaywivay.
Theorem 3.2.6 The cost ofX is at most(2|log, n| + 1) - OPT}.

Proof. As in the proof of Theorem 3.1.4, the result follows if we céiow that the cost of every
path/cycle cover found on any subs&tof V' is at mostOPT;. ForW C V with s,t € W, let
LP(WW) denote the linear programming relaxation for ATSPP on tetaimce induced by the nodes
in W with optimum valueOPT (W). If we remove the cut constraintg6*(S)) from LP(W),
then we once again have the integral polytope corresportditite intersection of the two matroids
that define the minimum path/cycle cover problem. Since fitermm value ofL P(W) does not
increase if these constraints are removed, then we only teegitow thatO PT (W) < OPT(V)
to establish the theorem. Again, this follows if we sh@WPT (W) < OPT(W U {v}) for any
v € V — W where we recall that,t € W.

Essentially, this is the same argument as in Theorem 3.1e4jugt have to be careful because
1 =2(6%(s)) # x(67(S)) = 0and0 = z(6+(¢)) # z(6~(¢)) = 1 so the multigraph obtained
from multiplying = by A is not Eulerian. However, if we add preciselyedges from to s in the
multigraph, then we get an Eulerian graph and we can spliheffarcs around while preserving
global connectivity among the nodes iti. Note that we never split off angs arcs nor do we
introduce any news arcs because ¢ {s, ¢t} and there are ntw or vs arcs. After splittingv off, we
remove theA arcs from¢ to s and form the solution’ for LP(W) in the same way. Removing the

ts arcs does not decreage (S)| for any S containings becauseés ¢ 67 (S). O

3.3 Multiple Traveling Salesmen

More generally, we may consider the problem of findingaths froms to t whose union covers
all of the nodes. This is called theAsymmetric Traveling Salesmen Path problgmATSPP).

In symmetric metrics, we usually do not save too much by usgisglesmen instead of 1 for the
following reason. Ifk is odd, then we can cover all the nodes using a single saleatmangreater
cost than if we usé salesmen. The salesman could travel betweand¢ exactly k times by
following each of thek paths in the optimum solution using multiple salesmen. Tioegss is
illustrated in Figure 3.2. I% is even, then the optimum solution using a single salesmarcbst

at most(1 + 1/k) times the optimum solution using salesmen for essentially the same reason.

The main difference is that after following the last of thgaths in an optimum solution usirig

78

>
a) b)

Figure 3.2: a) A sketch of a solution using 3 salesmen. b) Actkef a similar solution of no greater
cost using only one salesman.

Figure 3.3: All shown edges have distance 1 and all omittegeethave distancP for arbitrarily
large valuesD. Using one salesman requires cost at Iéasthile the optimum solution using two
salesmen is only 4.

salesmen, we are still at We can take one final step tovhich has cos® PT/k whereOPT is the
optimum solution using salesmen since surely the single step frota ¢ has no greater cost than
the cheapest of thedepaths. However, in asymmetric metrics the cost betweemyesian only one
path or two paths can be dramatically different. Considerekample in Figure 3.3 that shows the
ratio of the cost between using one or two salesmen can baundbd.

In this section, we develop a bicriteria approximation ailpon that finds approximately paths
whose total cost is within some bounded ratio of the optimohaten which uses exactly paths.
This bicriteria approximation is parameterized by a pesiitntegen and different bicriteria approx-
imation guarantees result from different choice$.00n one extreme, setting= 1 results in an
O(log n) approximation that uses at most twice the number of givelmspatd, on the other extreme,

settingb to bek + 1 results in a true (not bicriteria) (k log n)-approximation using exactly paths.

3.3.1 Preliminary Discussions and Results
The use of partition matroids allows us to consider the failhg useful structure:

Definition 3.3.1 A k-path/cycle cover frons to ¢ is an integral flowF such thatF (6% (v)) =
F(6~(v)) =1foreachv € V — {s,t}, F(67(s)) = F(6~(t)) = k,and F(6~(s)) = F(6T(t)) =
0.

A k-path/cycle cover can be decomposed into a collectioh péths froms to ¢ and a collection

of cycles where the cycles are disjoint from each other amh fihe paths and where any two paths

79

Figure 3.4: An illustration of &-Path/cycle cover witlk = 4.

only haves andt in common. Again, we may find the minimum cdspath/cycle cover since these
are precisely the bases common to two partition matroide€ithavek copies of thest arc). A
k-path/cycle cover is illustrated in Figure 3.4

An LP relaxation fork-ATSPP in the same spirit as LP 3.3 for ATSPP is as follows.eNbat
we allow thest edge to be used multiple times since the optini#lr SPP solution may have some

paths travel directly t@ without visiting any other nodes.

minimize : Z AuvTuw (3.5)
ecA
subject to : z(0T () =200 (v) =1 Yo eV —{s,t}
2(5*(s)) = 2(6~ (1)) = k
2(5(5)) = 2(6* (1) = 0
z(6T(S)) > 1 V{s}CSCV
0< x40 <1 Yuv € A,u# sorv#t
0<zy <k (3.6)

We consider more general approximation algorithms for teeofk Traveling Salesmen.

Definition 3.3.2 An («, 3)-bicriteria approximation algorithm fok-ATSPP is a polynomial-time
algorithm which finds betwednand 3 - k paths froms to ¢ whose union spans all nodes where the
total cost of these paths is at mast O PT whereOPT is the cost of the optimum solution using
exactlyk paths.

80

In particular, an«, 1)-bicriteria approximation is simply am-approximation since it uses no more
thank paths.

The main result of this section is the following:

Theorem 3.3.3 For any integer > 1, there is a polynomial time (in andb) (O(blogn), (1+ $))-
bicriteria approximation fork-ATSPP. In particular, the cost of the paths found by thiatgm
are at most((b + 1) log, n)OPT; whereOPT is the optimum value of the linear programming

relaxation 3.5.

Of interest are the following two special cases:
Corollary 3.3.4 There is an(O(logn), 2)-bicriteria approximation fork-ATSPP.

Proof. Chooseh = 1. O

Corollary 3.3.5 There is anO(k log n)-approximation fork-ATSPP.

Proof. Chooseb = k + 1 and notice thak - (1 + 155) < k + 1. Since the number of paths is an

integer, then there are precisélyaths. O

We break the presentation of the algorithm into the two phaske first phase of the algorithm
is very similar to the first phase of Algorithm 4 for ATSPP. A dification of the second phase
of Algorithm 4 can be used to obtain & k? log n)-approximation fork-ATSPP, but getting the
ratio down toO(k logn) requires a different approach to this second phase. Soetltnd phase
is presented first as a simple modification of the steps dfteptiter loop in Algorithm 4 to get an
O(k?1og n) approximation in the special case= k + 1. Then we present the final version of phase

2 that works for any valué > 1.

3.3.2 Phasel

Letb > 1 be an integer, this is thein the statement of Theorem 3.3.3. For notational converien
we let L be (b + 1)|log, n| for the remainder of this section. Consider Algorithm 5, gamt of
Algorithm 4.

The statements and proofs of Lemmas 3.2.3 and 3.2.4 carresesentially word for word. One
argument in Lemma 3.2.4 requirdd (uv) < 1 which is no longer the case for every are € A.
However, it is still true thatt,, < 1 for any arcuv # st. Sinceuv hasv # t in the proof, the
argument still works. The fact that the circulation can beonporated into the pathB and then
shortcut is also similar because the indegrees and ouiegfecach node (exceptandt) using
arcs inC' are equal and the graph using arc’iris weakly connected. Finally, we similarly have
that the cost of” plus the cost o€ is at mostL - O PT sincek paths spanningy can be shortcut to
k paths spanning a subdét of V' and thatt paths spanningl trivially form a k-path/cycle cover
of W.

81

Algorithm 5 An (O(blogn), (1 + 3)k)-bicriteria approximation fok-ATSPP

1: Let L «+ (b+ 1)|logy 1
LetW «V
: LetS, «+ {v},Yv eV
: Letl, < 0,Yvo eV
s LetFyy 0, Vu,v eV
LetCy, + 0,Vuv € V
. for L iterationsdo
Find a minimum-cosk-path/cycle cove#” on W
F«+ F+F
Remove a circulatio from F' so F' is acyclic again
for each connected componetin the support ofd do
For each vertex € A, letd, denote the total flow ifif enteringu.
Letvg < argmingea ly, + dy > breaking ties arbitrarily
for eachw € A — {v4} do
Shortcut the flow inF" overw sow supports no flow inF’
end for
W« W—(A—{va})
Ly, < ly, +dy,
S’UA U’I}EA Su
end for
C+~C+H
. end for
: Use phase 2 to find a collectidh of at mostk - (1 + ;) paths whose union spah
: Add the circulationC' to the arcs used b} to get a multiset of edges’
: Find at most: - (1 +) walks P’ whose union covers each are exaclyC’ (uv) times
: Bypass repeated nodesi to get at most: - (1 + %) pathsX whose union spans all nodes
s return X

© O N U WN

NN NNMNNMNNNNRRRRRRRR R
N R ®NMNREOOONOR®ONRO

In the warm up to phase 2, we only consider the ¢asek + 1. We prove that the cost of the
pathsP found is at mosO(k) times the cost of" which implies the cost oP plus the cost of” is
atmostO(kL) - OPT = O(k?logn) - OPT. In the actual phase 2, we consider any intéger 1
and show that we can find betwekrand (1 + 1)k paths that spann all nodesliti whose cost is at

most the cost of” (without losing anO (k) factor).

3.3.3 Warmup To Phase 2

Consider the specific cage= k + 1. As this is only a warm up to the main result, some details are
only sketched. After the outer loop is completejs an acyclic integer flow ok L units froms to

t. Form the auxiliary grapli’ = (W, A’) whereuv € A’ if and only if there is a path from to v
using only edges in the support Bf SinceF’ is acyclic and since the relation ‘has a path ta@” is
transitive, then’ is a partially-ordered set. An antichain in this partiadisdered set is a subsét

of W such that for any:, v € T we do not havew € A’. A chain cover is a collection of paths in

G’ whose union spans all nodes. We use the following classidtres

Theorem 3.3.6 (Dilworth’s Theorem,e.g. [48]) Let T' be any antichain and® be a chain cover

using! chains of a partially-ordered set. Theé#'| < [and we have equality if" is @ maximum

82

antichain andP is a covering using the fewest paths possible.

This dual relationship between antichains and chain caléo®'s us to prove the following.
Theorem 3.3.7 G’ can be covered bk chains.

Proof. Suppose this is not true. Then Dilworth’s Theorem says thatet is an antichai with
|I| > k + 1. Consider a decomposition &f into kL paths froms to ¢. By the analogs of Lemmas
3.2.3 and 3.2.4 for Algorithm 5, each node is involved in astd, — |log, n| paths. Sincd is an
antichain, then no two paths may pass through a common noflsdrthe total number of paths is

at least
[I|(L — |logyn]) > (k+1)((k + 2)[logy] — [logyn|) > k(k +2)|logyn| = kL
which is a contradiction. O

Itis also possible to find thegepaths efficiently. The total cost of thek@aths is bounded by
times the cost of the flow". The reason for this weaker bound is that the edges usedsa paths
are edges iml’ which correspond to paths . So, each edge df could potentially be used in all

k paths we just found which is why we can only prove the weakendo

3.3.4 Phase?2

Rather than relying on the transitive closure of the acyfttiw F', we can find fewer edge-disjoint
paths that span all of the nodes Wi in the support ofF. Currently, we can partitiorF into
kL = k(b + 1)|log, n| paths froms to ¢ whose union sparid’, but we want to reduce the number
of paths significantly using only edges in the suppotf'afhile still including every node ifl’. We
see that this is possible because each W supports a significant amount of this flow. For now,
let D be some fixed (perhaps non-integer) value that we spec#y. lahe main object of concern
in this phase is the following polytopE(D) with a variablez,, overR for every ordered pair of

distinct nodes.

PD): 2(6F(w)) = 20~ (w)) = 1 VweW —{st} (3.7)
2(6%(s)) =200~ (t)) = D
(57 () = 2(6H (1) = 0
0< 2w < Fly V ordered pairs u,v € V

Note that any point in this polytope with integer coordinates corresponds f0-path/cycle
cover (which is only possible iD is an integer). Since the support Bfis acyclic and the support
of z is required to be a subset of the supporfpthen any integer pointis actually a collection of
D paths froms to ¢ whose union spans all nodes. Thus, our goal is to find the sgtatitegerD for

whichP(D) has an integer point. The following property is key for phase

83

Lemma 3.3.8 The polytopeP(D) is integral whenD is an integer.

Proof. There is a simple correspondence between poin3(iR) and points in the intersection of
the base polytopes for two partition matroids over the aresrey we have-,,,, copies of each arc
UV. ([l

So, to proveP(D) has an integer point for a given integgy, it suffices to prove thaP (D)
containsany point. That is, if there is some pointwith, perhaps, rational coordinates, then there
is certainly a point’ with integer coordinates sincB(D) is integral. Note also that the bounds
zuw < Fyuy, would also imply that the cost of such an integer poirg. (@ D-path cover) is at most
the cost ofF".

We require that each node Wl —{ s, ¢} supports the same amount of flowAh which is possible

through the following lemma.

Lemma 3.3.9 There is an acyclic integral flow” that sends:L units froms to ¢t whose cost is no
more than the cost of" such that every node € W — {s,t} supports the same amount of flow
a>L— |logyn]in F'.

Proof. Lety = max,ew [, and recall thaty < |log, n|. Now, modify the acyclic flowF' in the
following way. While there is some € W — {s,t} with F(6"(v)) > L — ~, then bypass some
flow aroundv. More formally, choose any two ares) € 6~ (v),vw € 6 (v) with F,,,, Fyy > 0
and lete := min{Fy,, Fyw, F (6% (v)) — (L —~)}. Subtrack from F,,, andF,,, and addc to F,,,.
The flow F' remains acyclic after this operation (since there was dir@apath fromw to w in the
support of the acyclic flows" before this operation) and the total flow incident to evetyeotnode
does not change. Repeat this procedure Uit (v)) = L — .

We see thaf',, is an integer for every edge after each modification. It is initially since '
is the sum of paths found in phase 1. When choosiageach step we have that both flow values
F,, andF,,, as well asF'(6 (v)) are integers by induction. Since bathand~ are also integers,
thene is an integer. The modification then adjusts the flow acrosk edge by an integer so the
resulting flow is also integral. Finally, the resulting flosvalso acyclic because the flow is acyclic

before each update and since we only add edgefor which there was already a path, vw. O

From now on, we assume thE&thas this uniformity condition among nodeshin — {s,¢}. The
following lemma is the first step to finding a good integerfor which P(D) # . The valueD

may be fractional, but we deal with that problem later.

Lemma 3.3.10 There is some value (perhaps fractiondl) betweenk and #ngnj such that

P(D) is non-empty.
Proof. Every nodev € W — {s,t} has the same amount of flow (s&y-) in F' passing through
it. Let D = XL and note thak < D < —*L

L—y L—[logy n]

rational) pointz in P(D) to exhibit thatP(D) # 0.

by Lemma 3.3.9. We now construct a (possibly

84

This is simple, letz,, = % We havel < L — v becausey < |logyn| andL = (b +

1)|logo] whereb > 1. So0,0 < z,, < F,, is satisfied. Since each ¢ W — {s,t} has
F(6T(v)) = F(6 (v)) = L—,thenz(§%(v)) = 2(6~ (v)) = 1. Similarly, we see that(§+(s)) =
2(6=(¢)) = D andz(6~(s)) = 2(6%(t)) = 0. O

The main problem is that the valu2in the lemma may not be an integer. This is remedied with

the following lemma.
Lemma 3.3.111f P(D) # 0, thenP(|D]) # 0.

Proof. SupposeD is not already an integer, otherwise we are done. zLe¢ any point inP (D).
Form an undirected and weighted bipartite grdph= (W U Wg, E’) where bothiW;, andWx
are disjoint copies of¥/. For each arawv, add an edge from € W tov € Wx with weight z,,,.
In fact, we use,,, to denote both the weight of they arc in the original directed graph and the
weight of the edge in our new bipartite graphconnectingu € Wy tov € Wg. By the degree
constraints, we have thafdé(v)) (the totalz-value of all edges itE’ incident tov) is an integer for
everyv € L UWg except fors € W, andt € Wg which havez-degreeD.

First, we claim that there is a path frosne W tot € Wg in H that only uses edges with
zup > 0. Note that these paths are allowed to take a step figmto Wy, since H is undirected.
Such a step corresponds to following an ardn the reverse direction in the original directed graph
G.

Suppose, for the sake of contradiction, that there is nofpath s € W, tot € Wx using only
edgesuwv with positive weight. LetS be the collection of all nodes i that can be reached from
s using only edges with positive weight; our assumptions ra¢ha copy oft in Wx is not in S.
We count the weight of the edges with both endpoint§'im two different ways and arrive at a
contradiction.

On one hand, since every nodes Wr — {t} hasz(4(v)) = 1 and since ¢ S, then
AB(S) = Y =(6() =[WrnNS|.
vEWRNS
On the other hand, since every nade W, — {s} hasz(d(v)) = 1 and sinces € S, then
AB(S) =) 2(6w) = (Wi —{s})NS|+2(5(s)) = |(Wr = {s}) N S| + D.
vEWLNS

But|RN S| = [(Wr — {s}) N S| + D contradicts our assumption thatis not an integer. So, it
must be that there is a path frofve W tot € Wg in H using only edges with z, > 0.

Suppose that such a path followed a sequence of edges, . .., e.. SinceH is bipartite and
s € Wr,t € Wg are on different sides, thermust be odd. Let

oc=min<D — |[D|, min z,
1<i<c:i odd

85

be the minimumz-value of the edges that are followed frdi;, to W when walking along this
path (or the difference betwedn and| D] if this is smaller). Update the values of the edges on
this path by:

Ze;, —0 4 o0dd
Zey

Ze, + 0 ieven

We now argue that the resultingvalues fit in the polytope’(D — o). First, notice that both
z(8(s)),s € Wi andz(46(t)),t € Wg, which were originallyD, decrease by exactty. Any other
nodewv not on this path does not have thevalue of any incident edge changed. Finallyyiis an
internal node on this path then thevalue of one incident edge decreasessbgnd thez-value of
another incident edge increasesdyTherefore, we have(é(v)) = 1 after this update for every
nodev apart froms € W, andt € Wg.

By our choice ofr, we continue to have, > 0 for every edge:. Now, if the path was a single
edgest, then no edge had its-value increased so the bounds< F, continue to hold for every
edgee. Otherwise, every edge= uv on this path has eithe(d(u)) = 1 or z(6(v)) = 1soz. < 1
must hold after an update. Since the onlyalues that are increased are those in the suppdrt of
thenz, <1< F,.

The above process maps a point frétD) to a point inP(D — o) whenD is not an integer.
If o was chosento b® — | D] > 0, thenz(d(s)) = z(6(¢)) = | D] after this process and we are
done. Otherwise, we can repeat the process to map a point{din— o) to P(D — ¢’) for some
o' > o with D — ¢’ > | D| and so on. Each such step that does not result in a point iroliiwpe
P(|D]) has us remove at least one edge from the suppart 8ince no edges are introduced to the
support ofz, then this process is repeated at mdgt, | - [Wg| = |[W|? times. After finitely many

iterations, we arrive at a point iR(|D]). O

Lemma 3.3.11 shows that fd» = L%j we haveP (D) # 0. SinceD is an integer, then any
basic pointz in P(D) # @ has each, value being integer. Find and return such a point to ohfain
paths of cost at most the cost Bfwhose union spans all &7.

The number of paths is bound as:

DS 1 < G e b~ (1*3)

This proves Theorem 3.3.3.

3.4 Approximating Other Multiple Salesmen Variants

Section 3.3 presented a bicriteria approximation algoritor the problem of finding: paths from
a given nodes to a given node in an asymmetric metric. Here, we consider other variangniy
on how the start and/or end nodes are specified. For most passsnted, we discuss how the

algorithm in Section 3.3 can be used to approximate thesentar(after we define what a bicriteria

86

approximation is for these variants). However, one casedfanot be approximated with these
techniques is when we are given pairs of nogast,), ..., (s, tx) and we want to find ar; — ¢;
path for each < 7 < k so that each node is included on at least one such path. Wthisatlase
Generalk-ATSPPand discuss this case further.

In symmetric metricsi(e. Generalk-TSPP), we have a simple constant-factor approximation.
In the special case in asymmetric metrics where= ¢; for eachl < k < n, the problem is to
find cycles where each cycle contains some “rogt= s;(= t;) so that each node is on one of
the cycles. In this case, we show how@flog n)-approximation follows from a relatively simple
modification of theD (log n)-approximation for ATSP reviewed in Section 3.1. Finallg eonclude
this section by demonstrating that GendtaATSPP cannot be approximated in polynomial time

within any bounded ratio unless P = NP.

3.4.1 Varying the Endpoints ink-ATSPP

We first present a couple of simple transformations betwastances ok-ATSPP to show how
some variants of-ATSPP can be modelled as an instancé-&TSPP when a common start node
s and a common end nodeare fixed in advance. Then, we can apply the techniques frartioBe
3.3 to approximate these instances. First, let's assigresamdescribe the different instances. If a
common source is specified and all paths are required to stag,dhen we shall call this case a
single sourcecase. If no sources are specified and khgaths are allowed to start at any (perhaps
different) nodes, then we shall call this case tioesourcecase. Finally, if distinct nodes, . . ., si
and we require that each be the start of precisely one path, then we shall call this taamultiple
sourcecase. Note that the case where some ofsthere the same can easily be reduced to the case
where thes; are different: simply create a separate nefléor eachl < ¢ < k with cost 0 arcs to
and froms,. Let the new instance be defined with distinct start locatigmvhose underlying metric

is the shortest paths metric for the new graph.

Similarly, we can define the ternsingle sink no sink andmultiple sinkto describe how the
endpoints of the paths are described. We can combine these te describe both the start and end
locations of an instance. For example, the problem consillier Section 3.3 is the single source,
single sink case of-ATSPP. The only real ambiguity is the multiple source, rpldtsink case. If
nodessy, ..., s, andtq,...,t; are given then there are two variantskeRTSPP where each; is
required to be the start of a path and eagfs required to be the end of a path. If a path that starts
at s; may end at any;, then we simply call this variant the multiple source, npi#isink case.
However, if we require the path that startssato end at the respective nodg then we call this
problemGeneralk-ATSPP

Theorem 3.4.1 Suppose there is af(n), 3(n))-bicriteria approximation algorithm for single
source, single sink instances BfATSPP. Then there is afw(n + 1), 8(n + 1))-bicriteria ap-

proximation algorithm for single source, no sink instanoés-ATSPP.

87

Proof. Let G = (V, A) be an instance of-ATSPP with distanced,,,,,u,v € V and a specified
start nodes. Also say thatO PT' is the cost of the optimurh-ATSPP solution inG and that paths
Py, ..., P} are the paths used in such an optimum solution. Create a nmésxysayt, and let\/ :=
max,, yev dyy. Consider the asymmetric metric gragh= (V U {¢}, A’) where the distance,,

are defined as: _
dyy fu,veV
d., = 0 ifo=t
M fu=t
First, we verify that the distance,, satisfy the directed triangle inequality. Letv, w € V' with

u# 0,0 F w.

o ifu,v,we Vthend,, =d., <du +dy, =4d,, +d

uw — uv vw

if wu=+¢andv,w € Vthend,,, =M <M +dy, =d,, +d,,

if v=tandu,w € Vthend,, =dy, <0+ M =d,, +d,,

if w=tandu,v e Vthend, =0<d, +d,

finally, if w = w =t andv € V thend,,,, = 0 as well

Now, view G’ as a instance df-ATSPP with start node € V and end nodé being specified.
Let Py, ..., Py be the paths found by the bicriteria approximation with< & < k. Note that
G’ has a solution of cosDPT which is obtained by appendingto the end of each of the paths
Pr,1 <14 < kused in the optimum solution fa@¥. So, the total cost of the patl#y, ..., P is at
mostaOPT. By shortcutting, we may assume that no pAthl < ¢ < &’ containst as an internal
node. Deleting from the end of each of these paths, we obtain at maégpathsP;, ..., P/, that

start ats and visit every node ifY = V'’ — {¢} whose total cost is at mostO PT'. O

Corollary 3.4.2 For any integeth > 1, there is an(O(blog n), (1 + 1)k)-bicriteria approximation

for single source, no sink instancesieATSPP.

Proof. It is immediate from Theorems 3.3.3 and 3.4.1 and the fadt(tha 1)|log,(n + 1)| =
O(blogn). O

Now, consider the variant where a common start nede given and there ark distinct end
nodesty,...,tx. The goalis to find as — ¢; path for eachl < ¢ < k so that every node is on
at least one such path while minimizing the total cost of ¢hgaths. A clarification needs to be
made regarding bicriteria approximation algorithms farhsinstances. We say dn, 3)-bicriteria
approximation algorithm is one that finds betwéesnd 5k paths where each startsssand ends at
somet; whose total cost is at mostO PT. Furthermore, for each < i < k, there must be at least

ones — t; path among the at mogt: paths.

88

Theorem 3.4.3 Suppose there is af(n), 3(n))-bicriteria approximation algorithm for single
source, single sink instancesieATSPP. Then there is dn(n+k+1), S(n+k+1))-approximation

for single source, multiple sink instanceskeATSPP.

Proof. Say thatG = (V, A) is an instance ok-ATSPP with distanced,,, where a common start
nodes and varying end nodés, . . . , t; are specified. Also say th&PT is the cost of the optimum
k-ATSPP solution inG and that pathg>, ..., P} are the paths used in such an optimum solution
where P} ends at;. The reduction is similar to the one in Theorem 3.4.1 excephave to deal
with one potential issue. If we were to simply add a noded a cost 0 arc from eachto ¢, then a
path may visit; before passing through a differentto reacht. This would allow multiple paths to
reacht through some; while having no path reachthrough some;. We deal with this by adding
an extra node between eaglandt that can only be reached througho force the paths to reach
through distinct nodes.

Createk + 1 new verticest,ry,...,r, and letM := max, ,cv dy,. We first create a (not
complete) directed grap@” before obtaining our final metric graph. L&t = (V/, A”) where
V' =VU{ry,...,rg,t}andA” = AU{t;r;,mit 1 1 <i < k}U{tv:v € V}. Define costgl, as

dyp Fu,veV
dl = 0 if uv=t;r; oruv =r;tforsomel <i<k
l+an+k)M fu=tveV

Notice that for anyu, v € V' there is a path from to v in G” and that the shortest path fram
to any other node has cost at least «(n + k)M since that is the cost of any outgoing arc from
t. Finally, letG’ = (V’, A’) be the asymmetric metric graph whose distances are obtammadhe
shortest path distances@{’. View G’ as an instance df-ATSPP where both the start nodec V/
and end node are fixed. LetPy,..., P, be paths obtained from running the, 5)-bicriteria
approximation oG’ wherek < k' < Sk.

There is a solution of cost @& PT in G’ that is obtained by adding and thert to the end of
each pathP;" in the optimum solution for thé-ATSPP instance of¥. SinceP;" ends at;, then the
total cost of the steps added to the paths is 0. So, the tatabfdhe pathsy, ..., Py is at most
aOPT. In particular, this means no path containst as an internal node since the distance frtom
to any other node exceedsgn + k)M > «OPT (notice that the optimum solution fa@¥ contains
at mostn + k arcs, each of cost at moaf). For the same reason, no path contains any of the new
r; hodes except, perhaps, as the second last node.

We can now obtain pathB/, ..., P/, in G from the paths";, ..., P;/. For each, we have that
P; stays entirely withinl/ except for either the last node, whichtisor the last two nodes which
visit somer; before ending at. In the first case, say is the second last node on path Then
d;; = min;<j<y dy, Since the shortest path fromto ¢ in G” first visits the node of the forrt
that is nearest to. For such a node;, we form a pathP; in G that follows P; to v, then finishes

att;. In the second case whef® visits somer; and ther, we let the pathP; in G follow P until

89

the node just prior te;, then take one final step tg if the node appearing beforg on P; is not
alreadyt;. In either case, the cost &1/ is the same as the cost 6f so the total cost of the paths
P/ is at mosttOPT. Finally, since each nodg was visited at least once, then for edck j < k

there is some patR, that ends at;. O

Corollary 3.4.4 Thereis anO(blogn), (14 1)k)-bicriteria approximation for single source, mul-

tiple sink instances of-ATSPP wheret; are specified.

Proof. This follows from Theorems 3.3.3 and 3.4.3 and the fact that 1) |log,(n + k + 1)| =
O(blogn) sincek < n. O

If the start points are subject to the same variatio®s (0 source or multiple source instances
with a single sink), then the analogs of Theorems 3.4.1 ah@ Bio0ld by minor adjustments to the
proofs to create a common start locatiensgn fact, any combination of ways to specify the start and
endpoints can be approximated using similar meartgs (o source and multiple sinks would have
an approximation ratio ak(n + k + 2)).

Again, we have to clarify what happens in the multiple sounaeltiple sink case with sources
S = {s1,...,s,} and sinksT" = {¢y,...,tx}. In such a case, the reduction to the case with a
common start and a common nodeand using a bicriteria approximation for this case guaesite
only that each path starts at somend ends at somg but does not guarantée= j. In particular, if
the approximation algorithm guarantees that dnpaths are used (so it is a true approximation, not
a bicriteria approximation), then the only thing we can dagu the structure is that the association
of a start nodes; to the end node; of the path starting ai; establishes a bijection betwegrand
T. As mentioned before, this is interesting in cases wherégshlesmen” that travel fron$ to T
are identical so it does not matter which one is received bydeinT.

Finally, we come to the case where we require the path thes sibs; to end att; which we
call Generalk-ATSPP A bicriteria approximation that uses at mgst paths s all paths start and
end at some input paik,, ¢;) (i.e. no paths can start at somgand end at somg for ¢ # j) and
has at least ong; — ¢; path for eachl < i < k. Another way to think of this is that each;, ¢;)
pair has at least path and the average number of timés;ah)-path is used is at mogt. Before
presenting the inapproximability of this general probleve, mention how certain interesting cases

of this problem can be approximated well.

3.4.2 A Constant Factor Approximation for General k-TSPP in Symmetric
Metrics

Recall the General-TSPP problem is the following. We are given a sek @irdered pairs of nodes
(s1,t1),..., (sk, tx) In @ symmetric metric grapty = (V, E) with distancesi,,,. The goal is to
find ans; — t; path for each pair whose union spans all nodes. Here, we aeth&hproblem can be

approximated within a constant factor if the metric is syrnmodi.e. d,, = d,, for all u,v € V).

90

We may assume th#&k nodessy, t1,. .., s, t are distinct by creating multiple copies of each
start and/or end location in the following way. For eacthat is some start node or some end
nodet;, letn, be the number of times thatappears among, 1, . . ., s, t. Replacev with n,
different nodes, ..., v,, where we define(v;, u) := d(v,u) for 1 < i < n, andd(v;,v;) =0
for 1 <i,j < n,. Itis trivial to verify that these new distances also sgtibe triangle inequality.
Let R = {s1,t1,..., sk, tx} be the collection ok nodes that are the start or end nodes from some

pair.

Definition 3.4.5 An R-rooted spanning forest' is an acyclic collection of edges such that every

nodev € V is connected to some nodefihby edges irF'.

The cheapesk-rooted spanning forest is a lower-bound on the optimumtswmiuto k-TSPP.
To see this, supposk is the set of edges used in the optimérAT SPP solution. Since the nodes
s1,t1,..., Sk, tg are all distinct and the distances are metric, then no moglé’ is visited by more
than one path (which also implies each edge is used at mos}.oie can then obtain aR-rooted
spanning forest by deleting one edge from each ¢; path in P, which has cost no less than the
cheapesfz-rooted spanning forest.

Let I C P(F) be the collection of subsets @& such thatF' € I if and only if the graph
Gr = (V,F) is acyclic and no two nodes iR are in the same connected componentGof.
Then the maximal subsets ihare preciesly th&?-rooted spanning forests @¢f. The following
observation on the structure éfallows us to compute the cheapé#trooted spanning forest in

polynomial time.

Theorem 3.4.6 €.9.Cerdeira [22]) The pairM = (E,I) wherel is defined as in the previous

paragraph is a matroid.

Given this, we use the following algorithm to compute an agpnatek-TSPP solution.

Algorithm 6 A 3-approximation for General-TSPP in symmetric metrics

1: Let T} be a minimum cosk-rooted spanning forest
. LetT5 be the multi-set of edges obtained by doubling each ed@g in
T3 < Ty Ule {Siti}
P+ 0
for each connected compondhtof 75 do
Let (s;,t;) be the unique input pair contained #h
Compute an Eulerian walRr from s; tot; in F'
Shortcut over repeated nodesiy to obtain ans, — ¢; path P
P+« PU{Py}
: end for
: return P

© XN AE®DN

[
= O

Theorem 3.4.7 Algorithm 6 returns a collection of; — ¢; paths whose union spans all nodes.
Furthermore, the cost of these paths is at n8os© PT.

91

Proof. By assumption that all;, ¢y, ..., s, tx are distinct, then each connected componeri;of
(and, thusTs) has precisely one node f Then each connected componeriircontains precisely
two nodes inS and these correspond to the endpoints of some input pair;). Furthermore, since
T is a subset of’3, then inT3 every nodev € V is connected to both nodes in some input pair
(si5ti)-

Consider a connected compondntof 75 containing a pair, says;,t;). Since the degree of
every node i3 is even, then the degree of every noddin- {s;, t;} is even and the degrees of
andt¢; are odd. Thus, there is an Eulerian walk freprto ¢; in F'.

We argued that the cost 6fis at mosiO PT just before Theorem 3.4.6. It follows that the cost of
T, is at most2 - OPT'. Since any feasible solution consists of paths fregrto ¢; for eachl < i <k
and since following the single edget; is the shortest; — ¢; path by the triangle inequality, then
the cost ofuk_, {s;;} is also at mosOPT. That is, the cost of is at most3 - OPT. Now, Pr
is an Eulerian walk oft” meaning its cost is exactly the cost of the edge$'ofShortcutting does
not increase the overall cost, so the cosPgfis at most the cost of. Thus, the final set of paths

returned by Algorithm 6 costs no more thanOPT. |

3.4.3 A Logarithmic Approximation for General k-ATSPP with s; = ¢;.

Now consider the variant of GenefalATSPP (back in asymmetric metrics) where= t; for every

1 < i < k. A solution looks like a collection of cycles where each eycbntains a root and each
node lies on one such cycle. Note that there may be “singlefoles” consisting of a single root
noder; whose corresponding salesman does not visit any other nédes now on, we view the
problem as the following. Given an asymmetric metric grépk= (V, A) with distancesi,, and

a subset of nodeR = {r1,...,r;}, we want to find a collection of cycles of minimum total cost
where each cycle contains one noddiiand every node ifY — R is on one such cycle.

The classi@) (log n)-approximation by Freizet al. [42] for ATSP can be modified in a simple
way to approximate this variant. DefingRarooted cycle coveas a collection of cycles where each
node inV — R is on one such cycle but where a nodddris not necessarily on any of these cycles
(which may be thought of as a “trivial cycle” containing ordye node). For any subsBt C V
including R, the cheapesk-rooted cycle cover on the graph inducedbyis a lower-bound for
OPT since we can obtain a feasiberooted cycle cover on the graph induced % by simply

shortcutting past nodes i — IV in the optimum General-ATSPP solution foiG.
Lemma 3.4.8 The cheapesk-rooted cycle cover aff can be computed in polynomial time.

Proof. Let A’ = AU{ly,...,l;} wherel; is a self-loop at; with cost O (.e. an arc fronv; to itself).
The R-rooted cycle covers are precisely the common bases betivedwo partition matroids over

A’ that bound, respectively, the indegree and outdegree ofl@ imp 1. a

92

The algorithm then proceeds in the natural way. Find a mininoest R-rooted cycle cover.
If a cycle C' has more than one roet, then iteratively shortcuf” around some roots (but do not
discard the roots) until exactly one root is ©n By the triangle inequality, the cost does not increase
which, by optimality of theR-rooted cycle cover, means the resultiRgrooted cycle cover is also
a minimum costR-rooted cycle cover. Now, for each cycle with no root discalidbut one node
(choosing this node arbitrarily). For a cycle containingatr-;, discard all nodes but; from this

cycle. Repeat until only? remains, add the cycles found in previous iterations, aodett.

Algorithm 7 An O(log(]V — R|)-approximation for Generdl-ATSPP whers; = t; for all ¢
1. LetD « 0
2 LetW «V
3: while W # R do
4: Let D’ be a minimum cosk-rooted cycle cover oft

5 LetC1,Cy,...,C; be the cycles oD’

6 for each cycleC; of D’ do

7: if C; contains more than one roibten
8: Shortcut past all but one root {@;
9: end if
10: if C; contains one roat; then
11 Letvg, < 7
12: else
13: Letve, be any node od;
14: end if
15: W(—{UCI,UCQ,...,UCL}
16: D« D+ D
17: end for

18: end while

19: for eachi from 1 tok do

20: Find an Eulerian circuifl; in the component containimt
21: ShortcutX; past repeated nodes to obtain a cyifle

22: end for

23: return {Y;}k_,

The proof of correctness is near-identical to the proof ofexiness for Algorithm 3. The main
difference is that we must deal with multiple componentshaténd of the main loop. All cycles
found have length at least 2, all but at most 1 node in eactedgctliscarded in each step, and
all nodes inWW — R appear on at least one such cycle so the number of iteradpsunded by
llog, |V — R|| + 1. The extra+1 is because it takes at mdsk, |V — R| iterations to reduce the
set of nodes not il to a single node. One more iteration then guarantees this isannected to

some root. So, we have just argued the following.

Theorem 3.4.9 There is arO(log |V | — k)-approximation for instances of GenefalATSPP where

s; = t; foreachl < ¢ < k.

While this is anO(log n)-approximation where. = |V|, for large values ok (i.e. | = n —

20(logn)y jt js actually ao(log n)-approximation.

93

3.4.4 Inapproximability of General k-ATSPP

We recall the Generat-ATSPP problem. We have a collection of start nodes .., s, and a
collection of end nodes, . . ., t;, in an asymmetric metri&; = (V, A) with non-negative distances
du.,uv € A satisfying the directed triangle inequality. We must findaghpP; for eachl < i < k
whereP; starts ats; and ends at; and such that every node in lies on someP;. The objective is
to minimize the total cost of all paths;.

The main result of this section is proving that Genér®TSPP cannot be approximated within
any multiplicative factorf (n) wheref(n) is a polynomial-time computable functioe.g.2" or n!)

unless P = NP. The reduction is from the following problem.

Definition 3.4.10 In the tripartite triangle packing problenwe are given a tripartite graplé =
(UUV UW, E)with |U| = |V| = |IW| = n where no edge it has both endpoints in a common
partition U, V', or W. A triangle is a subset of 3 nodes for which any two are adjaged:. The

problem is to determine if it is possible to findsertex-disjoint triangles irtz.
The following can be found in [45].
Theorem 3.4.11The triangle packing problem in tripartite graphs is NP-quiete.

We have the following lower-bound on the approximability@éneralk-ATSPP. We recall that
apolynomial-time computable functigma functionf : Z — Q such thatf(n) can be computed in

time O(polylog(n)) (i.e. polynomial time in the number of bits used to represent theth

Theorem 3.4.12 Generalk-ATSPP cannot be approximated better than any polynorimed-tom-
putable ratiof (n) unless P = NP.

Proof. LetG = (U UV U W, E) be an instance of triangle packing in a tripartite graph with
|U| = |V| = |W]| = n. Create a directed gragti with four layers of nodes(, X2, X3, X4 where
X, and X, are disjoint copies of/, X, is a copy ofV/, and X3 is a copy ofi¥. For everyuv edge
in Gwithu € U,v € V, add an arc froms € X; tov € X5 in H. For everyvw edge inG with
v € V,w € W, add an arc from € X, tow € X3 in G. Finally, for everyuw edge inG with
u € U,w € W, add an arc fromw € X3 tou € X,. Since every arc is oriented frof; to X,
for somei = 1, 2, 3 then the graph is acyclic. All of these arcs should have distd.. Finally, for
everyu € X4 and everyu’ € X1, add an arc directed fromto v’ of cost3nf(4n). Next, letH’
denote the asymmetric metric on the same nodgd ashere the distance between nodedihis
their distance inH. For eachu € U, add a salesman that starts at the copy. @i X; and ends
at the copy ofu in X4. So, there are salesmen in total. This instance of GendrahTSPP can
be computed in polynomial time becausg) is polynomial-time computable. An example of this
reduction is illustrated in figure 3.5.

The claim is that if there is a triangle packing includingriangles, then there is l&ATSPP

solution with cosBn. Otherwise, anyt-ATSPP solution must use an edge with cosBn f(4n),

94

Figure 3.5: i) An instance of tripartite triangle packinghvi: = 2. ii) The graphH with all cost 1
arcs drawn. The “back arcs” of ca®t f (4n) are not pictured. The final metri@’ (not pictured) is
shortest paths metric forff. The pathb, d, e, b corresponds (in the sense of the proof) to triangle
{b,d, e} in the first graph. Also, one can see that the graph in imagee} chot have a triangle
packing nor does the graph in image ii) have a Genletdl SPP solution using only cost 1 arcs.

so the gap between “yes” and “no” instances is at lgast). Supposel’ = {(u;,v;, w;) P, is
a collection ofn vertex-disjoint triangles with eaclhy;, € U,v; € V andw; € W. For each such
triangle (u;, v;, w;), we have the salesman startingquate X, to travel first tov; € Xs, then to
w; € X3, and finally tou; € X4. Every node ind’ is visited since every node is included in some
triangle inT'. By construction, every step taken by a salesman traversedge of cost 1. Each of
then salesmen then moves a total distance of 3 so the total cdst is

Conversely, suppose there ig8TSPP solution that avoids using any edge of @sf(4n).
Then each of the edges followed by the salesmen must be iasioig order of the leveY;. Since
there are onlyn salesmen and since each salesman can visit only two nodeklitioa to their
endpoints, then each salesman visits every la¥ygmand each node is visited by preciseley one
salesman. Finally, by construction the cost of an edge fayrarlX; to layer X, is either 1 or at
least3n f(4n). Since we assumed that no edges of Gosf(4n) were used, then every salesman
must use a weight 1 edge. Thus, the nodes visited by eacmsailesrrespond to a triangle (#
and these triangles partition the nodes®fSince the graptil’ has4n nodes, then first statement

of the theorem holds. |

It may still be possible to devise a bicriteria approximatidgorithm for Generat-ATSPP with
a bounded approximation rati® using at most{3k paths. We have simply shown that such an
algorithm would necessarily hays: > k + 1 if P = NP.

The instances of GeneratATSPP produced in the previous reduction have- 7. We can
slightly modify the reduction in Theorem 3.4.12 to provemitar hardness for smaller values of

relative ton.

Theorem 3.4.13For any constant > 0 and any polynomial-time computable functi¢ft), in-

stances of Generdl-ATSPP withk > n¢ cannot be approximated withif{n) unless P = NP.

95

Proof. Form the same auxiliary grapH as in the reduction in Theorem 3.4.12. Then, append a
directed path of length at least — 4n to the copy ofu; in X4 and say this path ends at node

Call this new graph” and note that total number of nodasin H” is at least: = . We also set the
weight of each backward arew with v € X, andv € X; to be(N —n) - f(N). The metric in

the Generak-ATSPP instance is then the shortest-path metric completid?. The salesmen are
similarly defined: for eac < i < n we define a salesman that starts at the copy; of X; and
ends at the copy af; in X4. The only difference is that the first salesman starts atopg of u; in

X and ends at the new nodé¢ at the end of the new path we appended to the copy @fi X.

If there is a triangle packing, then follow the same path&@itATSPP solution as in the proof
of Theorem 3.4.12 except the first salesman proceeds tlong the newly-appended path after
reachingu;. The total cost of this solution & — n. Conversely, any:-ATSPP solution that avoids
using an arc of cost at leaGV — n) - f(N) corresponds naturally to a triangle packing. We note
that the first salesman must visit beforew] if no arcs of cost at leagtV —n) - f (V) are followed,
so their subpath from; € X; tou; € X, also corresponds to a triangle.

The gap between “yes” and “no” instances is th&iV). Since f(N) can be computed in

polynomial time inn, then the reduction takes polynomial time. d

One may ask about even smaller values for Currently, it is not known if the canonical
NP-complete problem 3SAT (instances of SAT with at mostetvariables per clause) has a sub-
exponential time algorithrmi.e. 2°(")) wheren is the number of variables in the SAT instance and
m is the number of clauses. Note thap@™ algorithm for 3SAT is trivial since we can try all
2™ possible truth assignments and, in time that is polynonmial andm, check each such truth
assignment to see if it satisfies the instance. The conioibof m to the running time is suppressed
sincem = O(n?3) in an instance of 3SAT. We can show that approximating GéieAT SPP onN

nodes wherk is polylogarithmic in/V would imply a sub-exponential time algorithm for 3SAT.

Theorem 3.4.14There is a constand > 0 such that for any polynomial-time computable function
f () the following holds. Suppose there is a polynomial-time@agmation algorithm for instances
of k-ATSPP onN nodes withk > (log, N)¢ with ratio better thanf(N). Then there is a sub-

exponential time algorithm for 3SAT.

Proof. Consider the reduction from 3SAT to tripartite triangle kiag from [45]. For some constant
¢ > 0, the running time i$D(n°) wheren is the number of variables in the original SAT instance.
By slightly increasing: we may assume that there is a constayguch that for alh > ng, instances
of SAT onn variables are reduced to instances of tripartite trianglekimg in time at most°. If
we denote the size of a partition in the tripartite trianghdeking instance by, thenk < n° since
the size of the resulting instance can be no larger than tin@ng time of the reduction.

Now consider the following reduction from 3SAT to GengtaAT SPP. Reduce an instan®eof
3SAT first to tripartite triangle packing as in [45] (with dgpartition having sizé& < n°) and then

96

1

to k-ATSPP using the reduction from Theorem 3.4.13, except #ik fength is| 2 <" | — 4.
The length of the backward ares) with v € X, andv € X is still (N —n) - f(IV) whereN

is the number of nodes in this modified versionffwith the sub-exponentially long path. The
1 _1
resulting metric then ha < 28“““*V < 2n“*" nodes. Since the number of bits used to represent

N is polynomial inn, then f(N) can be computed in time that is polynomialsn Thus, the

1
c+1

entire reduction takes time that is polynomial2h®" . As in Theorem 3.4.13, the gap between
“yes” and “no” instances is at leag{ V). Finally, the number of paths in the instanicés at least
(log, N+ We let the constant in the statement of the theorem &g + 1).

Now, suppose there is a polynomial-time approximation iéiga for Generak-ATSPP when
k > (log, N)? with ratio better thary (V). We show how to use this to get a sub-exponential time
algorithm for 3SAT. Letd be a 3SAT instance amnodes. Ifn < ng, we solved by brute force over
all of the possible truth assignments. As< ng, there are a constant number of truth assignments
that must be checked. Otherwise, run the reduction outiiméuke previous two paragraphs and then
run the approximation algorithm for GenefalATSPP on this instance. The running time of the

reduction to tripartite triangle packing found in [45] islpeomial inn, the reduction to Generat

1 1
ATSPP is polynomial ir2” “** , and the running time of the algorithm is polynomialih < 2" &1

andlog f(NN). Sincelog f(NV) is bound by a polynomial im, then the total running time of this

1

1
sequence of steps@3((2"“"")?) = O(2"*“"") for some constarit. That is, the total running time

is 2°(") sincec > 0. O

97

Chapter 4

Minimum Latency in Asymmetric
Metrics

Minimum Latency problems are similar to Traveling Salesrpesblems except we want to mini-
mize the average time a node waits to be reached, rather timimize the total travel cost. Min-
imum Latency problems are also referred to as Traveling Repa problems because they model
the following situation. Imagine you are a repairman and lyave a list of clients that need your
services. Since these clients are likely frustrated ttet tteed repairs, it is more important to your
business that you minimize the average time a client waitseteerved rather than minimize your
total cost of travel.

Recall the formal description of the Minimum Latency problén asymmetric metrics. We
are given an asymmetric metrig = (V, A) with distancesi on arcs inA. Furthermore, a start
nodes € V is specified. The goal is to find a Hamiltonian pdthin G starting ats to minimize
the following objective. Suppose there arenodes (includings) and the distance from to the
k’'th node on this path i9; (with D; = 0 since the first node visited ig). Then the objective
is to minimize the average waiting time>"}_, D;,. Note that we do not actually care about the
distance from the last node i to s since the time it takes the repairman to travel home does not
affect client satisfaction. We often say that the distamoefs to v along P is thelatencyof node
v in path P. Also, notice that the average latency of nodes on a path exactly a facton from
the total latency of all nodes. For the sake of simplicitgnfrnow on we suppose that the cost of
a solution is measured by the total latency of all nodes rdttan their average latency. Note that
ana-approximation for minimizing the total latency is also@approximation for minimizing the
average latency.

In general, the minimum latency pathmay look very different from the optimum Hamiltonian
path starting froms (i.e. a TSP Path solution starting af even if the metric is symmetrid.é.
dyy = dyy, for all u,v € V). Consider the following example from [18]. The meti¢ is simply
the subset of, + 1 integer points (with, even){0,1, 2,4, -8,...,—2""1} = {0} U {(-2)* :
1=0,1,...,n — 1} on the real lineR with distances between pointsy simply being|z — y|. The

98

< —

-16 -4 -1 0 2 8

O O O—-O O O
I

<
T

Figure 4.1: An instance of the Minimum Latency problem on bset of points on the real line.
The optimum TSP Path solution that starts; @ picured above the line and the optimum latency
solution is pictured below. The latency of the path abovaniQ @) factor larger than the latency of
the bottom path.

starting point iss = 0. Then the optimum TSP Path solution travels frorto 2~2 and then to
—27~1, Notice that this path passes by all other client locatiors that the total distance of this
path is2™. Any location of the form—22i*1 has latency at leagt*~! since this is the time it takes
the path to travel from O to locatio2i*=2? and back to 0 again. There ang2 such points so the
average latency is them(2™).

However, consider the solution that visits locations in ¢heer1, —2,4, —8, 16, ..., —2""L
Letting ¢(i) denote the latency of th&h node in this list, we havé(1) = 1 and¢(i) = ¢(i — 1) +
20=2 4 21=1 = (i — 1) +3-2¢=2 for i > 1. Inductively, we then havé(i) = 3-2i~! — 2. Summing
over alli, the total latency is the@®(2™) so the average latency (2" /n).

This is anQ2(n)-factor smaller than the average waiting time when follapihe optimum TSP
Path solution described above. See Figure 4.1 for an ifltistr of these two solutions. In [18], itis
also noted that some instances of the Minimum Latency proloiéer points inR? (with distances
between points being Euclidean distance) have optimuntisoiithat use crossing edges. On the
other hand, there are no optimum TSP Path solutions thatrossing edges for any instance of
TSPP over points iiR? (e.g, [63]).

The main result of this chapter is an approximation algarifbr the Minimum Latency problem
in asymmetric metrics. Our algorithm also bounds the irgtityrgap of a particular LP relaxation

that we introduce in sec 4.3.

Theorem 4.0.15There is anO(log n)-approximation algorithm for the Minimum Latency prob-
lem in asymmetric metrics. Furthermore, the integrality gd linear program 4.4 is bounded by
O(logn).

In some sense, the linear programming relaxation we conlsadevariables for each nodgthat
look like variables in LP 3.3 for ATSPP with start nosl@nd end node;. Variables for different
are then related through some extra “ordering” constralvasattempt to order the locations. Along
the way, we require Theorem 3.3.3 and another modificatidihebrem 3.2.6. Specifically, it is not
be sufficient to simply use an(k log n)-approximation fok-ATSPP, we need the fact that the LP
presented for ATSPP has al{k log n) bound on the integrality gap.

99

A generalization of the Minimum Latency problem also coessdrepair times. Say each node
v has a repair time,, meaning the repairman must taketime to service node before moving to
the next node. We say that the latency of a node is the timkestt reach the node plus the time
it takes to complete the repair. For simplicity, we say thatstart node does not have any repair
time. The special case, = 0 for all v € V is the original Minimum Latency problem. It is quite

easy to incorporate repair times in asymmetric metrics.

Theorem 4.0.16f there is ana(n)-approximation algorithm for the Minimum Latency problem i
asymmetric metrics, then there is also@fn)-approximation algorithm for the Minimum Latency

problem in asymmetric metrics with repair times.

Proof. Supposé&r = (V, A) is an instance of the Minimum Latency problem in asymmetrétrios
with start nodes € V, distanced, and repair times,. Form a new (nonmetric) graghf = (V’, A”)
whereV”’ consists of” plus a copy’ of each node € V' —{s}. For each new copy’ of some node
v, add an arc from to v’ with costr, (the repair time of node) and add an arc from’ to v with
cost 0. Finally, the asymmetric metti€ is defined as follows. The nodes Bfare{s} U (V' — V)
(the starts plus the copy’ of eachv € V — {s}) and an ara:v of H have distance equal to the
length of the shortest path fromto v in the graphG’. This asymmetric metrié/ is the instance of
the Minimum Latency problerwithoutrepair times. Note thall andG have the same number of
nodes.

Consider a Hamiltonian path (s&) s, vs,vs, ..., v, In G. We claim that the latency of the
Hamiltonian path (say’) s, v5, v, ..., v}, in H (without repair times) is equal to the latency of the
pathP in G (with repair times). InP, the latency of node;, i > 1 is equal to the length of the path
from s to v; plus the repair times of nodes, 1 < j < i. In G’, the shortest path fromto v} is
equal tod, .., plus the repair time of,. Similarly, the length of the shortest path fromto v‘;H is
dy,v,., Plus the repair time of; ;. So, we see that the length of the path freto v; in P’ is equal
the length of the path fromto v; in P plus the repair times of all;, 1 < j <.

Similarly, given a Hamiltonian path (s&’) s, v4,vs, ..., v, in H we can consider the Hamil-
tonian path (sayP) s, vs,vs,...,v,. Essentially the same arguments show that the latendy of
(without repair times) is the same as the latency d@fvith repair times). Since solutions to the Min-
imum Latency problems i and H correspond naturally and have the same cost and since both
G andH have the same number of nodes, thermvém)-approximation algorithm for the Minimum
Latency problem without repair times can be used to appratdérthe Minimum Latency problem

with repair times. |

In symmetric metrics, the first constant factor approxiorafior the Minimum Latency prob-
lem, by Blumet al. [18] guaranteed an approximation ratio of 72. Goemans aeihKérg [47]
improved this to 21.55, followed by an improvement to 7.18Nbgheret al. [5]. Currently, the best

approximation ratio for the Minimum Latency problem in syetnic metrics is 3.59 by Chaudhuri

100

et al.[25].

A generalization to the setting where we want to find a calbeodf k& paths in a symmetric metric
that start at a common nodewas considered by Fakcharoenplkeoll. [36] where they present a
constant factor approximation. The constant factor wasegiently improved by Chekuri and
Kumar [27]. More generally, Chekuri and Kumar [27] preseabastant-factor approximation when
the repairmen start at different nodes. Finally, a 6-appnoetion was presented by Chaudhetral.
[25] for the setting ofk repairmen with possibly different start locations. Jothil &Raghavachari
[57] develop a constant-factor approximation for a variafrthe problem withk repairmen starting
at a common node where each node also has an associated start time.

In asymmetric metrics the only approximation algorithmwndbefore our work for the Mini-
mum Latency problem was aﬁ)(n%“)-approximation by Nagarajan and Ravi [70] that does not
bound the integrality gap of any LP relaxation. They also destrate that am-approximation
for Minimum Latency in asymmetric metrics also implied@-approximation for ATSP. That is,
approximating the Minimum Latency problem in asymmetridnies is, asymptotically, at least as
hard as approximating ATSP.

The first section of this chapter reviews the basic ideasnoebpproximating the Minimum
Latency problem in symmetric metrics. Not all proofs arevited here, but some of the ideas
that are mirrored in our algorithm are highlighted. The mectollowing this establishes a technical
result concerning the integrality gap of ATSPP that is neassfor our Minimum Latency algorithm.
The LP relaxation for ATSPP ensures that every cut sepgratfrom any other node has capacity
at least 1. We need similar results for a similar LP that hastbund on cut constraints relaxed to
2/3 or 1/2. We show, more generally, that if the cut constrigineplaced by:(61(S)) > « where
a > 1/2 and if the indegree and outdegree of a node is only forced &mbal (not to both be equal
to 1), then the integrality gap is st} (! log n). If the cut constraint is replaced byd ™ (5)) > +
for some integek > 2, then we apply the bicriteria approximation resultf’eATSPP from Section
3.3 to find (1+ }) - k paths whose total cost 9(bk logn) times the optimum value of the LP.
Then, we describe the LP relaxation for the Minimum Latenmbfem and discusses how to round
a feasible point in this LP to an integer point while incregsthe objective function only by an
O(logn) factor.

The O(log n)-approximation for Minimum Latency in asymmetric metricsSection 4.3 ap-
peared in [43]. An asymptotically weaker result than Cenmgll4.2.3 also appeared in this paper.

4.1 A Review of Minimum Latency in Symmetric Metrics

We review the basic ideas behind the constant-factor appadion for the Minimum Latency prob-
lem in symmetric metrics by Blurat.al. [18]. Though many improvements to the constant factor in
the approximation algorithm have been presented sincetfid} are more or less clever refinements

of the basic principles we discuss here. The main deviationiopresentation from the presentation

101

in [18] is that we discuss optimum paths that visihodes rather than optimum trees that incléde
nodes. Since we are only establishing some intuition réggrthe problem here, the simplicity of
paths over trees is preferred. Also, the intuition gainedlisgussing paths translates more directly
to our algorithm for Minimum Latency in asymmetric metriesSection 4.3.

LetG = (V, E) be an undirected graph with edge distan¢gssatisfying the triangle inequality
and lets € V be the start node. Since we are dealing with symmetric nsetie havel,, = d,.,
forall u,v € V. LetOPT denote the total latency of an optimum path that visits naglése order
s =vf,v3,...,v}. Say the distance fromto v} on this path isD,. For any integet < k < n, let
Py, denote the optimum cost of a pathd@hthat starts at and visitsk — 1 other nodes iV (any will
do) and say that this path 18,. Note thatP, < D;. For simplicity in this discussion, we assume
that we already know the patt#; (it is NP-hard to compute them).

Assume, by scaling, that all distances are at least 1. [Eiosirsely organize the nodes in sets
S; = {vg : 27 < Dy, < 2771} by their latencies in the optimum solution. Let; be the maximum
number of nodes that can be covered by a path with cost less2tha. That is, P,,, < 271!
whereasP,,; 11 > 27+1 We construct a Hamiltonian path i@ starting ats as follows. For
j =0,1,...in order, follow the path frons to the end ofP,,, and then back te again. Report the
first time each node is visited. So, the final solution is caresed by joining the pathB,,,,, Pu,,, - - -
at the common stastand then performing a depth-first search startingthat first goes dowf®, ,,,,
then?,,,, and so on.

Here is how to bound the cost of these paths. For a mgde, say,S;, we have that the latency
of v} is less thar2’ 1. So,m; > k since the path of cogp,, obtained by visiting the first nodes in
the optimum solution has cost less thdr!. This means thé'th node in the Hamiltonian path we
just constructed is visited before completing the travest®,,, ;. Since the cost oP,,,; is at most
P, < 27+1 and since each edge My, .1 < j' < j,is traversed at most twice before reaching
the k'th node, then the latency of théth node in our solution is at mo&ty ., ; 21"+l < 8. 97,

Finally, since the latency of; is at least2’ wherev; € S, then the latency of thé'th node
visited in our solution is at mosttimes more than the latency of. Summing over alk shows that
the total latency of our solution is at mastimes the total latency of the optimum solution. Note
that this algorithm assumes we can find optimum paths thetata and visitk — 1 other nodes
which is impossible to do efficiently unless P = NP, but a vari this algorithm produces &t-
approximation for the Minimum Latency problem if we only leasc-approximation for computing
these paths.

Of course, this approach will not work in asymmetric metbesause we cannot simply travel
“backwards” along a path and expect to have a reasonabledbmuthe cost. That is, even if we
have ac-approximation to the problem of finding the cheapest patttisg ats that visitsk nodes,
we cannot stitch these paths together for varying valuésay in the undirected case because the

cost of returning t@ before traversing the next path might be too expensive.

102

In our algorithm for Minimum Latency in asymmetric metriage devise and solve a linear
program that determines a “fractional latency” for eachendbhen, we group the nodes according
to their fractional latencies in the LP and approximate & plat visits most nodes in one particular
group using algorithms from Chapter 3. The cost of thesespathounded by a logarithmic factor
of the latency of the last node in the path which is why we regjthie integrality gap bounds, not
just approximation algorithms, for ATSPP problems. Theawith a group that are not covered by a
path are moved into the next group. These paths will be stitéfmthe naive way: once we reach the
end of one path in one group, go to the next unvisited nodesiméxt group. As mentioned before,
we need to bound the cost of these “back edges”. We do thisibg new “ordering” constraints
in the LP that have no analog in the linear programming réiama for the problems considered in
Chapter 3. These help us bound the cost of these back edgesdsomable factor of the cost of the

LP optimum.

4.2 Relaxed Cut Constraints for ATSPP

In this section, we define a more general LP relaxation forPF.SGiven some valugé < o < 1,

denote the following LP as LRj.

minimize: > CunTu (4.1)
such thatz(67 (v)) :v;(fi*(v)) Vo eV — {s,t}
2(5+(5)) = 2(57(1) = 1
2(67(5)) = (07 (1) = 0
2(67(9)) > a v{s}cScV (4.2)
Typ > 0 Yuv € A

If « > 0, it is easy to argue that optimum integer points in this LPre&gpond to optimum
Hamiltonian paths. We want to bound the integrality gap & tP, but the weaker cut constraints

make this difficult. To do this, we recall the path/cycle colB.

minimize: > CunTu (4.3)
ecA
such thatz(67 (v)) = 2(6 (v)) =1 Yo eV —{s,t}
2(57(s)) = 2(57(1) = 1
2(57(s)) = 2(57(£) = 0
Typ > 0 Yuv € A

If we also added the constraints* (v)) = 1 for eachv € V — {s,t} to LP 4.1, then itis easy to

argue that the optimum path/cycle cover is at most the optimalue of LP 4.1 and then we could

103

proceed as in Section 3.2. However, without this extra caitgtwe have to resort to approximate

bounds.

Lemma4.2.1LetW C V be a subset containingand¢ and letaw > 1/2. Given a solutione to

LP(«) with cost at mosL, a feasible solution to LP 4.3 div of cost at mos%L can be found.

Proof. Multiply x by 1/«. Now it constitutes a flowF” of 1/« units froms to ¢t. Constraints (4.2),
restricted to sets of size 1, imply that each nadew has at least one unit of flow going through it.
Find a flow decomposition of into paths and cycles, so that the union of the paths is acylotit

F = F, + F., whereF,, is the sum of flows on the paths in our decomposition, Bni the sum of
flows on the cycles.

Choose some such thati < v < 1. For any nodeu such that the amount af, flow
going throughu is less thany, shortcut any flow decomposition paths that contaifsplitting-off
techniques as in Theorem 3.1.3 are not needed), so thatishesemoreF;, flow going throughu.
LetU C IV be the set of vertices still participating in thg flow. Then each vertex ity has at least
~ units of £, flow going through it, and each vertex W — U has at least — ~ units of F.. flow
going through it.

We find a topological ordering of vertices &h according taF}, (which is acyclic), and leP be
an s-t path that visits the nodes 6f in this topological order. We claim that the cost@fis within
a constant factor of the cost 6f,. The argument for this is similar to one in the proof of Thewore
3.2.6. Out ofl /« units of flow going froms to ¢ in F),, each vertex. € U carriesy units, which
is more than half of the total amount (as> 1/2a). So for any two such verticas andv, there
must be shared flow paths that carry flow of at least- 1/« units. In particular, for every two
consecutive nodesg, v € P, F}, must contain such shared paths in whicimmediately follows.
So the cost of is at mostﬁ times the cost of},.

We now definet as a flow equal to one unit aft flow on the pathP plus ﬁ times the flow
F,. If any nodev # s,t hasz(6"(v)) > 1, then we can bypass flow inaroundv (again, without
splitting off) until (3 (v)) = 1. We claim that: is now a feasible solution to LP 4.3: there is exactly
one unit of flow froms to ¢ and no flow enters or exitst (as F,. consists of cycles not containing
s or t); there is flow conservation at all nodes exce@nd:. Now, before bypassing some flow
in z(6%(v)) we have that every node iV — {s, ¢} supported at least one unit of flow infor the
following reason. Ifv is on the pathP then it gets at least one unit of flow from the path. Otherwise,
v supported at least — v flow from F,. which, after scaling byl_l—v, meansy supported at least 1

unit of flow in Z. After shortcutting, every € W — {s, t} then supports exactly one unit of flow in

xX.
The cost of this solution is at most
1 1 1 1
———— -cost(Fp) + —— -cost(F,) < max|-———,—— | —L.
2y -1/« 1—7 2y—1/a’1—7) «
If we sety = 1 + 2., which satisfies’- < v < 1, we see that the cost afis at most; -2 - L. O

104

Figure 4.2: Bad gap example for LR)Ywith « = 1/2. Here,D is an arbitrarily large integer.

Now we can bound the integrality gap of LB(by the following.

. . . 6 log, n+3
Corollary 4.2.2 For a > 1, the integrality gap of LR{) is at most——22"1=,

Proof. We use Algorithm 4 as in the proof of Theorem 3.2.6 to boundrtegrality gap. The only
difference is that we cannot bound the cost of the optimurh/pgtle ofi¥ cover byO PT because
we do not have constrainigé* (v)) = 1 andz (6~ (v)) = 1forv € W —{s,t} in LP 4.1. However,

Lemma 4.2.1 says that the optimum path/cycle cover on a sliiseontainints andt¢ is at most

3-:OPT
2a0—1

so we can proceed as in the proof of Theorem 3.2.6 with thikerdzound. |

We note that fore < 1/2, the gap between the optimum ATSPP solution and the optimum
solution to LP¢) can be unbounded. For example, Iebe an arbitrarily large value and consider
the shortest path metric obtained from the graph in Figuzeléis easy to check that the following
assignment of:-values to the arcs is feasible for L(with o = 1/2. Assign a value of 1/2 to
arcs (1,2), (3,2), (3,6), (1,4), (5,4), and (5,6) and a value to arcs (2,3), (4,5). Every other arc is
assigned a value of 0. This assignment is feasible for tleatiprogram and has objective function
value 5. On the other hand, it is easy to verify that any Hami#tin path from 1 to 6 has cost at least
D.

On the other hand, if we multiply a solution to L) by & (and, perhaps, split off around some
nodes sa: (6" (v)) = (6~ (v)) = 1), it becomes a point in the relaxation for theATSPP LP 3.5.

The following is then a simple consequence of Theorem 3IBi8also be used in Section 4.3.

Corollary 4.2.3 For any integem > 1, one can efficiently find a collection ff + 1) - k paths from

stot of total cost at mosth + 1) - & - log, n times the optimum value of LP(k).

Proof. Multiplying the solution to LP{/k) by k increases its cost by. If necessary, split off flow
passing through nodesc V' — {s, t} until they support exactly 1 unit of flow. Theorem 3.3.3 then
says we can then fin(jl + %) - k paths froms to ¢t whose union spans all nodes while losing at most

an additional factor ofb + 1) log, n. O

105

We note that a similar result in [43] shows how to find at miokig, n» paths whose total cost is
at mostk log, n times the optimum solution to LP(k). While the number of paths found by this
result is much more than the number found in Corollary 4.2v@f forb = 1), the bound on the
cost of these paths is less than the bounds in Corollary &to8gh, only by a constant factor when
usingb = 1 in the corollary). It's interesting to note that even thisuk, which uses many more
paths, would have been sufficient for the results in Secti8rafter making minor modifications to

Algorithm 8 and some proofs in that section. The interestedler can find the details in [43].

4.3 Approximating Minimum Latency in Asymmetric Metrics

The algorithm in this section for Minimum Latency in asymneimetrics works when both the
start and end nodes are specified. We may suppose that thecatidht is specified by guessing all
possible endpoints and running the proceeding algorittono&r instance of the Minimum Latency
problem is to find a Hamiltonian path from the start nod® the end node such that the total
waiting time of all nodes along this path (includifigs minimized.

The LP relaxation we use is quite large. To gain some intuitegarding its formulation, we
discuss some of the motivation behind the constraints bgfoesenting the final LP. First, mini-
mizing the average waiting time and the total waiting timessentially the same goal; the total
waiting time is precisely a factot larger than the average waiting time. So, we say that ourigoal
to minimize the total waiting time.

Now, if P is the path used in an optimum solution then we can view tteg teaiting time (not
average) as the sum of the costs of each of the subpatRgiudt start ats. We formulate the LP
to have a collection of variables for each nad#hat model a path from to v as a flow of value 1.
To add some consistency between flows for different nagi@ge can add constraints to ensure that
each such flow is a “subflow” of the flow fromto ¢. So, for each node and each edge = uw,
we let f7, be the total amount of the unit flow fromto v supported by edgew. Saying that the
flow from s to v is a subflow of the flow frons to ¢ amounts to placing the constraifif,, < f!.,
for each edgeww. The objective function is then the sum of the costs of ea¢hexe flows.

In the introduction to this chapter, we mentioned that maahg are generated throughout the
course of the rounding algorithm rather than a single patinfs to ¢. Then, we stitch these paths
together by traveling from the end of one path to the first sitetl node in another path. To bound
the cost of stitching these paths together, we introducerorg variables:.,,, where the idea is that
u comes before in the solution when:,,, = 1. Since the nodes are totally ordered by the optimum
path P, we haver,, + =,, = 1 for all distinct pairs of node. In other words, it must be taaher
u comes before or v comes before..

We actually require a refinement of the notion of orderingst@ints. In an optimum solution,
if & comes before then the subpath fromto v passes through. More generally, for any triple

of distinct nodesu, v, w we user,.., to indicate that lies afteru and beforew in the solution.

106

Again, for distinctu, v, w we have the following. Iz comes beforev, then either appears before
u, betweenu andw, or afterw. In an integer solution, this amountstQ,., + Tuvw + Tuws = 1.
Finally, if w comes aftew thenz,,., = Twww = Tuwwe = 0 in an integer solution. Both cases are
modelled in the LP by the constraint,., + Tuvw + Tuwe = Tuw-

Next, we can force the flow fromto v to pass through any appearing before in the following
way. For any sef containingu but not containing;, we can add a constraint that says the total flow
in f¥ on arcs exitingS must be at least,,. In the ideal case where thevalues are integers, if
comes before then this ensures that the unit of flow fronto v passes through. Otherwise, ifu
comes before then no flow is required to pass through

One final class of variables we add, for technical reasong teeln later, is a variabi¢v) for
eachv that is the “latency” of node. In an optimum integer solution, this is simply the cost of
the subpath frons to v. However, we also know that if, v, w appear in this order, then the cost
of the path tow is at leastd,, + dy, + dyw- SO, We may constrain the latencyofto be at least
(dsu + duw + dyw) - Tuww; this will be useful in the rounding procedure. LP 4.4 is the&r program

we use based on these ideas.

minimize:) ~ £(v) (4.4)
vF#£S
such that:¢(v)

Y

v
E Auw fow Yo
uw

£(v) > [dsu + duw + dwo] Tuwe Yu,w,v : [{u,w,v}| =3 (4.5)
£(t) > {(v) Yo
xuw - x?)uw Jr IU?)/IU + xuwv Vu? w) (% ‘{u7 w’ /U}‘ = 3 (4'6)
Tyw + Twu =1 Yu,w:u#w (4.7)
> fo = > fiVo,Vud {sv} (4.9)
S fh=> =1 Vo (4.10)
us = fou =0 Vu, v (4.11)
> = Ty Vo,u # v (4.12)
ww < ft, Yu,w,v (4.13)
(6% (9)) >y, (s} CSCVyes (414)
xuwamuwv7f:jw > 0 Vu,wm

We note that the LP can be solved in polynomial time using tligseid method. The number
of variables iSO (n?) and there are only polynomially many instances of each cainstype except

Constraints (4.14). However, we can use a max-flow/min-lggréhm to separate over these con-

107

straints. In particular, for every we form a graphG, on V' where the capacity of an edger is
- Then for everyy as in the constraint, we check that the minimyne cut in G, has value at
leastz,,.

First, we prove that integer solutions correspond to féagiaths with the same total latency.
Let P be a Hamiltonian path fromto ¢t. Setz,, = 1 if u appears before on P, and 0 otherwise.
Similarly, setz,,,., = 1if u, v, w appear in this order oR, otherwise set,,,.,, = 0. Leti(v) denote
the cost of the subpath @t from s to v. Finally, for a node, setf?,, = 1 if u appears immediately
beforew andw appears sometime befoseon P. All constraints are easy to check if we remember
that variables of the fornfi” are simply indicators of the edges of the subpatidfom s to v.

Conversely, suppose f are integer points in the polytope. Thevariables are clearly only 0
or 1 (e.g.Constraints (4.7) and (4.6)). From this and ConstraintAple must have,,, < x,, for
u,v,w : u # v. Foru = v, we havef; ,, = 0 by (4.11). Thus, each variable in the LP is assigned
a value of only 0 or 1. LeP, denote the set of edgdsw : f2,, > 0}. Then the out-degree of
s and in-degree of is exactly 1 using edges iR, by Constraint (4.10). By the flow conservation
Constraints (4.9)P, is a path froms to v plus, perhaps, some cycles on nodes not on this path.
Now, if fo, = 1thenf!

uw uw

as well by Constraint (4.13). So, I?, contains a cycle ther, must
also contain a cycle. But this is impossible sinc€ifvere such a cycle, Constraint (4.14) would
be violated forv = ¢t,S = C and any nodg € C becauser,; = 1. So, P, is just a path frons
to v. Since any such path must be a subpatt?ofthen P, must be a subpath d?,, for v, w with
Zyw = 1. Finally, the cost ofP, is exactlyl(v) so the total latency of the path is equal to the
value of the LP under this integer solution.

We begin the rounding algorithm with a lemma that allows wugrthe nodes into onky (log n)

groups based on their latency.

Lemma 4.3.1 Given a feasible solution to LP (4.4) with objective valuewe can find another
solution of value at mosgtl + 1)L in which the ratio of the largest to smallest laterfgy) is at most

n2.

Proof. Let (x, ¢, f) be a feasible solution with valuk, with ¢(¢) the largest latency value in this so-
lution. Note thatl, > ¢(t). Define a new feasible solutidm, ¢/, f) by ¢'(v) = max{¢(v), £(t)/n*}.
The total increase in the objective function is at mmst% < L/n as there are nodes in total.

Thus, the objective value of this new solution is at mast 1/n)L. O

Using Lemma 4.3.1 and scaling the edge lengths (if needegl);am assume that we have a

solution(z, ¢, f) satisfying the following:

Corollary 4.3.2 There is a feasible solutiofw, ¢,) in which the smallest latency is 1 and the

largest latency is at most? and whose cost is at mo&t + %) times the optimum LP solution.

Let L* be the value (i.e. total latency) of this solution.

108

The idea of our algorithm is to construgty paths for several nodes such that together they
cover all vertices of/, and then to “stitch” these paths together to obtain one Hanin path. We
use our results for ATSPP to construct these paths. Fomkispserve that parts of a solution to the
latency LP (4.4) can be transformed to obtain feasible swiatto different instances of LR). For
example, we can construct a Hamiltonign path of total lengttO(log n) - £(t) as follows. From
a solution to LP (4.4), take theflow defined by the variableg, , and notice that it constitutes a
feasible solution to LP 3.3. In particular, sineg, = 1 for all y, Constraints (4.14) of LP (4.4) for
v = t imply that the cut constraints of LP 3.3 are satisfied. Thedibje function value for LP 3.3
of this solution is at most(¢). Thus, by Theorem 3.2.6, we can find the desired path. Of epurs
this path is not yet a good solution for the latency problesnegen nodes with ¢(v) < ¢(t) can
have latency in this path close &(logn) - £(t). Our algorithm constructs several paths of different
lengths, incorporating most nodesnto paths of lengtfO(logn) - £(v), and then combines these

paths to obtain the final solution.

Algorithm 8 An O(log n)-Approximation for Minimum Latency in Asymmetric Metrics

1: Let(z, ¢, f) be a solution to LP (4.4) as described by Corollary 4.3.2.4.be the patH s}.

2: Partition the nodes intg = |log, £(t) + 1] setsV;, ..., V, withv € V; if 2071 < f(v) < 27,

3:fori=1tog—1do

4 for j =1to2do

5: if Vi # 0 then ‘

6: Letv! = argmax,cv, [{u € V; : 4, > 1} > this maximizes the size @8/ below

7 LetAf‘:{ueV:xwgzg—i-%

8 Let B! = {u e Vi:z,, > 1} > |BI| > (Vi - 1)/2

9: Find ans-v! path P/, containingA?, of costd, log, n - 2; appendP/ to S.

10: Find two s-v’ pathsP/, containingB, of cost at mos8 log, n - 2°; appendP’ to
S.

11 Vi=Vi— (A uBlU{v}) > size ofVj is at least halved

12: end if

13: end for

14: LetViy1 =V UV, > remaining nodes are carried over to the next set

15: end for

16: Construct ars-t pathP,, containingV, of cost at mos{2 log, n + 1) - £(t). AppendP, to S.
17: ShortcutS over the later copies of repeated nodes. Oufput

4.3.1 Constructing the Paths

Algorithm 8 finds an approximate solution to the Minimum Lratg problem, and we now explain
how some of its steps are performed. The algorithm maintpeths, initially containing only the
start nodes, and gradually adds new parts to it. This is done throughaijperappendon lines 9,
10, and 16. To append a pakhto S means first to extend to incorporate the nodes &f by going
from the last node of to the first node inP not already covered by and then following pathP.
The new path is obtained from this walk by shortcutting pastas that appeared earlier in the walk.
If all nodes inP are already covered h¥, then the result of appending to S is simply S. For

109

(2 (®) (©)

pY

® (o)

"2

%
/
/

Figure 4.3: Appending the dashed path to the solid path.

example, ifS = sabc and P = sbdce, the walk that results isabcdce. After shortcutting, the walk
is simply sabcde. See Figure 4.3 for an illustration. Step 10 appends a settbsgoS. This just
means sequentially appending all paths in the set, in arbitrder, toS.

Next we describe how to build pattig andP’ in Steps 9 and 10. We described above how to
use Corollary 4.2.2 to build a Hamiltoniart path P of length(2log, n+ 1) - £(¢), which is used on
line 16 of the algorithm. The idea behind building pafffsand?; with their corresponding length
guarantees is similar.

To constructPij, we do the following. Since each nodes A’ hasz, ; > 2/3, the amount of
vf—flow that goes through is at least/3. We apply splitting-off on thislflow to nodes outside of
A7, and obtain a total of one unit efv; flow over the nodes iat/, of cost no larger thaf(v}) < 2.
This flow satisfies all the constraints of lPE 2/3), including the set Constraints (4.2), which are
implied by the set Constraints (4.14) of the latency LP (4a8), ; > 2/3foru e A{ Thus, using
Corollary 4.2.2, we can find a path frosito vf spanning all the ;10des Gfi whose cost is at most
51 logy n - 2¢ for some constant; .

To obtain the set of pathB’, we look at thev?-flow going through each node @/, whose
amount is at Ieasg. Apply splitting-off on thevf—flow to nodes outside wg‘ to, again, obtain a
total of one unit ofs-v? flow over the nodes i’ of cost nol arger thaf(v?) < 27, Furthermore, the
amount of flow passing through each noderi remains at Ieas§, so the resulting flow satisfies
all the constraints of LR{ = 1/2) including the set Constraints (4.2). This time, use Cargll
4.2.3 withb = 3 to obtain 2 paths from to v/ which span all nodes i’ with total cost at most

8 - log, n - 2°.

4.3.2 Connecting the paths

We now bound the lengths of edges introduced by the apperrdtopein the different cases. The
cost of the path obtained by appending p&tho the existing pattt is at most the cost oP plus
the cost ofS plus the cost of the edge from the end%fo the first node inP that does not appear

in S. Letapp(P) denote the cost of this new edge.

Lemma 4.3.3 For any, 7, and pathP ¢ Pf app(P) < 6 - 2. Also,app(P,) < 6-29.

110

Figure 4.4: An illustration of the nodes w andvf on the pathsS and P in the proof of Lemma
4.3.3. The dashed edge is the edge that was used to “stitelpatis together in the append opera-
tion.

Proof. Let u be the last node of the pafhbefore the append operatiavf, be the last node oP,
andw be the first node of that does not appear ifi. If there is no such node, then the append
operation simply return§ and there is no cost increase. The pa&8h® and nodes:, w andvf are

illustrated in Figure 4.4. We need to boudig,, the distance from, to w.
We observe that,,,, < 5/6. If u = s, this is trivial. Otherwisey = vf is the endpoint of some

path constructed in an earlier iteration. Note tffaK 2 andi’ < g — 1 < log, £(t) < 2log,n by

our assumption tha(t) < n?, which means tha} > 2 + 22‘4;)21) So, if we hadr,,,, > 5/6, then

w would be included in the seﬁtz,/ and in the paterQ/, and thus be already containedSnwhich

is a contradiction (note it cannot be thatwas in another path in since these paths share osly
andv?).

Consequentlyg,,, = 1 — z,,, > 1/6. This means that the amountofflow that goes through
u is at leastl /6. Since this flow has to reach after visiting, it has to cover a distance of at least
duw, thus adding at least - d.,., to £(w), the latency ofv. Thus,{(w) > &duw, anddy., < 66(w).
Now, if w € P/, it must be inB?, which, by definition, means that € V;, and thereforé(w) < 2°.
Soapp(P) = duw < 6- 2% If w € Py, thenapp(P,) < 6/(w) < 6£(t) < 6-29. O

To bound the cost of appending a pd?fi to S, we need an auxiliary lemma. Informally, it
says that if the LP suggests thatw, v should appear in this order, then the latedgy) of v is a

significant fraction of the distance fromto w.
Lemma 4.3.4 For anye > 0, if Ty + Two > 1+ €, thenl(v) > € - dyy.
Proof. Using Constraint (4.6) we have:

l+e < Zyw+ Tww
= (Touw + Tuvw T Tuww) T (Tuwo + Twuo + Twou)
= 2Zyuwo + (Toww + Tuvw) + (Twuv + Twow)-

On the other handz yuw + Zuvw) + (Twuw + Twvw) < Tow + Ty = 2 — (Tyw + Twe) < 1—¢,

using again Constraint (4.6), then Constraint (4.7), amdagsumption of the lemma. Therefore,

111

2Ty > (14+€) — (1 — €) = 2¢, i.€. Ty > €. Then the claim follows using Constraint (4.5)]

Lemma 4.3.5 For anyi andj, app(P/) < 24log,n - 2°.

Proof. Letu, v] ' andw be as in the proof of Lemma 4.3.3. To boudyg,, we consider two cases.
Case 1:If w € V;, we apply the same proof as for Lemma 4.3.3 and concludezmmP,?) <
6- 2%
Case 2:If w ¢ V;, let (¢, j') be an earlier iteration of the algorithm in which node- vf,, was
added toS. Sincew ¢ S, it must be thaty ¢ A%, and thusz,,, < 2 4 222450 On the other

24 log,
hand, sincev € A, it must be that,; > 2 + FiTe. S Becausei’ + j' < 2i +j — 1, we have
Tyw + "vaj = (]‘ - xw“) + ‘rfuw-f
2% — 245 2i—2+4]
- 241logy 1 241logy n
1
14 —-.
= b 241logyn
Using Lemma 4.3.4, we get that
app(P!) = dyw < 24l0gyn - £(v]) < 241logyn - 2. O

4.3.3 Bounding the Cost

Now we bound the latencies of the nodes in the path returnédduyrithm 8.

Lemma 4.3.6 Suppose that a nodeis first added to patl$ in iteration k& of the outer loop of the

algorithm. Then the latency ofin S is at most, log, n - 2%, for some constank, > 0.

Proof. Letlen(P) denote the length of a pafh. The latency of node on S is at most:

> |len(P))+ Y len(P) + app(P) + > app(P)

2
1j=1 Pep! PeP)
2

M»

3

Z d1logyn - 2° + 8logyn - 2' + 24logyn - 2" + 26 - 2']

”M”

IN

52 log2 n-2k
O

Suppose that; is the number of nodes that are originally placed into thé’seSince a node

is originally placed inV; if £(v) > 2¢=1, the value of the LP solutioh* can be bounded by:

=S) = Y ma (4.15)
v i=1

Suppose node was initially placed inV; (so/(v) < 2¢). Ideally, we would like to bound the

final latency ofv by O(logn) - 2¢. If we could do this, then the total latency would be at most

112

O(logn) >°1 n;2" < O(log n)L*. However, the algorithm may move some node frignto some
V; with j > ¢ and the bound on their latency cannot be described so siffipykey observation is
that at most one quarter of the noded/jnare moved up td/;,; after iteration; of the outer loop.
Since the latencies of the groups double axreases and since at most one quarter of each group
V; is moved to a higher group, then summing a geometric serimsssthat the average increase of
the latency of a node is stifP(log n).

More formally, letn) denote the size df; at the beginning of iteratiohof the outer loop. Note
thatn, may be larger than; since some nodes may have been movédd to Step 14 of the previous

iteration.
Claim 4.3.7 For anyji, the size of the séf; at the end of iteratior is at mostn; /4.

Proof. Consider the iteratiofi, j = 1). Note that the vertex{ is chosen precisely to maximize the
number of nodes in V; with z,, ; > 1/2, which is the size of the sdt!.

LetB, ={v €V, :xy, > %} at the start of iteration. The size ofB,, is the number of ordered
pairs (v, u) with z,,, > 1/2. By Constraint (4.7) we have,, > 1/2 or z,, > 1/2 for any two
u # v in V;, so the total number of ordered pairs v) with =, > % is at Ieastw. Since
there arex, nodes, then there must be somsuch that at Iea§’(;2;1 other nodes havez,, > 1/2.
SinceB,, consists of these nodes aadtself, then|B,,| > %

After iterationj = 1, we then havéV;| < n//2 sinceB} U {v/} is removed fron¥/;. Repeating
this argument shows thit;| < n//4 after iterationj = 2 because the size &f is again cut in half.

O

Finally, we can prove our main result.
Theorem 4.3.8 The total latency of patly returned by Algorithm 8 i®)(logn) - L*.

Proof. From Claim 4.3.7, it follows that at mostig/4 fraction of then) nodes that are if¥; at
the beginning of iteration are moved to the séf;,; at the end of this iteration. Thus, for any
1 <i<g, n} <n;+n,_,/4 Inductively, this implies that] < 3% _ n, /4.
Now we claim that the total latency of the solutiShis at most)_?_, n} - d,log, n - 2. This
is because at most; nodes are added 1§ in iteration:, and each such node has latency at most

82 logy m - 2¢ (using Lemma 4.3.6). Therefore, the total latency of thetsah is at most:

%
Ty

Ji—h
1

g g
Zn;-égloan-T < 26210g2n-2i~
=1 h

i=1

= 52 10g2 n i i 2h7i : 2h Ty

1=1 h=1

g 4
h
02 logon hil 2" ny, ,LE,O 5

O(logn) - L™,

IN

IN

113

using the bound om!, re-ordering the summation, and using inequality (4.15pm@ined with

Corollary 4.3.2, this proves the theorem. O

One might wonder if the integrality gap of the LP relaxatiod f&r ATSPP i< (log n/ loglogn)
since the integrality gap for its ATSP counterpart is bougpidhe same ratio [9]. While bounding
the integrality gap of LP 3.3 by(logn) is still an open problem, it is natural to ask if this (and
a similar improvement to th&-ATSPP relaxation 3.5) would imply a similar improvementhe
approximability of the Minimum Latency problem in asymnietnetrics? This is not immediately
true from our algorithm. As noted earlier, we lost @flog n)-factor for essentially two reasons.
One is that the integrality gap for LP 3.3 (and for LP 3.5 witk 2) was shown to be onl@(log n).
The other is that we grouped the nodes iftdog n) groups which affected the cost of the solution
by O(log n) in Lemma 4.3.5.

If we wanted to scale the latencies in Lemma 4.3.1 so that #pebgtween the smallest and
largest latencies wag(n) with log, f(n) = o(log V), this would require we increase eaéfv)
to be at least(t)/f(n) and the bound on the cost increase would(he+ %) But any f(n)
with log, f(n) = o(logn) hasf(n) = o(n*) for all constants > 0 so the cost increase would be
at leastQ(n!~¢) for all constants > 0. In other words, the cost would increase by far too much
to guarantee a(logn)-approximation ratio. So, if one wanted to improve the agpnability of
Minimum Latency in asymmetric metrics given improved bosind integrality gaps for ATSPP and

k-ATSPP LP relaxations, then revisions to this approachmvaapproach altogether, are required.

114

Chapter 5

Conclusion

We conclude by discussing some directions for future worthhe problems considered in this
thesis and some of their variants. We first discuss direstfon the Unsplittable Flow problem
on Paths and then discuss directions for the Traveling Baess/ariants discussed in this thesis.
Directions for Minimum Latency problems will be discussddng with the Traveling Salesman

variants.

5.1 Future Directions - Unsplittable Flow Problems on Paths
and Trees

There are two open problems regarding UFP that, in the datimind, seem most interesting. First
is the question of a PTAS. While a constant factor approxiongtias recently been demonstrated for
UFP [19], there is still a gap between the strong NP-hardioegs bound (also from [19]) and this
constant upper bound. If the input demands are constrainiee integers at most quasi-polynomial
in n, then the problem does indeed admit a quasi-PTAS$ Hae)-approximation runnining in quasi-
polynomial time for any constant > 0 [12]. Can ideas from these two algorithms be combined
to achieve a PTAS for the general problem? The constam#faqiproximation deals with slack
and tight tasks separately, but there are ideas in [12] thiatbine LP approaches and dynamic
programming approaches to obtain the quasi-PTAS in thetricted setting. The LP based parts
of the algorithm in [19] also only use the weaker LP relaxat®l and do not utilize the stronger
constraints in LP relaxation 2.2 or the strong LP relaxationsidered in [26].

The second main problem is whether the integrality gap of élBxation 2.2 or, equivalently,
the LP relaxation for UFP considered in [26] is bounded by mstant. As mentioned before, the
integrality gap of this LP was shown to B&log? n) which was subsequently improved@glog n),
but no super constant lower bounds are known. Furthermorthis thesis we showed that the
integrality gap was constant in certain sparse instanasgly g-conflicting instances wheaq is
a fixed constant. Thé&(logn) bound on the integrality gap is shown by performing the same

decomposition into intersecting instances as we congider&ection 2.2 and then demonstrating

115

that the integrality gap of the LP relaxation is bounded byastant in intersecting cases. So, if
the integrality gap is super constant then such an instancédvhave to resist decomposition onto
collections of disjoint intersecting instances, much like example presented at the beginning of
Section 2.3.

An interesting place to start bounding the integrality gdp® 2.2 would be the case with unit
profits. Chuzhoy and Chalermsook [34] show that the Maximndependent Set of Rectangles has
an integrality gap that is bounded B)(log log n) for the case when all rectangles have unit profit.
Their algorithm also uses the constant-factor approxmndtr instances of Maximum Independent
Set of Rectangles where each point in the plane is coveretilpst a constant number of rectan-
gles. Our algorithm fog-conflicting instances may prove useful here in a similar theyalgorithm
of Lewin-Eytanet al. [64] was used in [34].

There are also interesting open questions for the more glecase of Unsplittable Flow in trees.
The current best approximation algorithm hasiog? n)-approximation ratio, but the best lower
bound is only constant. Determining the best polynomialetapproximation ratio (assuming some
complexity theory barrier) is an interesting question.hisré a constant approximation for Unsplit-
table Flow in trees or can we prove a super-constant lowemds®in either case, the author believes
that anO(log n)-approximation should be obtainable. The results in thésighcritically rely on
“left tight”, “right tight” and “both tight” properties whih does not generalize well to Unsplittable
Flow with unbounded degree trees. However, a good starttrbiglto generalize these algorithms
(or the algorithm in [19]) to the case of bounded-degreestree

The LP relaxation for UFP developed in [26] also does not gize well to a polynomial-
time solvable LP relaxation for Unsplittable Flow in treésother interesting problem is to devise
an efficiently solvable/approximable LP relaxation for Plitsable Flow in trees that has at most
a polylogarithmic integrality gap. Perhaps it is even passto produce an LP relaxation with a

constant integrality gap in trees.

5.2 Future Directions - Asymmetric Traveling Salesman Path
and Minimum Latency Problems

There are numerous interesting problems that should bessiell concerning the Traveling Sales-
man variants discussed in this thesis. Starting with ATS8RHnow from [38] that the approxima-
bility of ATSP and ATSPP differs by a multiplicative fact®dr- e for any constant¢ > 0. However,
their result does not extend to integrality gaps. In paldiciuhe author is interested in knowing if
the integrality gaps for the Held-Karp relaxations for b&ffSP and ATSPP differ by a constant
factor.

A possible starting point would be to see if the recent atbariin [9] that proves the integrality
gap of the HK LP relaxation for ATSP i©(logn/loglogn) can be adapted to prove the same
asymptotic bound for the integrality gap of the HK LP relagatfor ATSPP. The first technical

116

challenge is that the assignmegt:= ., + x,, for the undirected graph obtained from a paint
in the ATSP polytope already fits in the base polytope for ttaplic matroid without scaling by
"T‘l. The result in [9] relies on this scaling so that the resglfieint in the spanning tree polytope
is in therelative interior of this base polytope. This is not too serious as we could seg, the
randomized swap roundingchnique by Chekumt al. [31] to sample a random spanning tr€e
with the required negative correlation properties suchfhge € T] = z.. This works foranypoint

in the polytope, not just one in the relative interior. A meegious obstacle to a straight-forward
adaptation of the ATSP algorithm in [9] to ATSPP occurs inldst step. There is a technical hurdle
in applying Hoffman'’s circulation theorem because the flomeeng s and the flow exiting: are
both zero.

For k-ATSPP, the obvious problem is to improve upon thg: log n)-approximation and inte-
grality gap. Improving th& (log n) part of this guarantee is at least as challenging as impgdbie
approximation ratio/integrality gap for ATSPP (for= 1). The main question, in the author’s mind,
is whether the bound can be improvedi@log » - polylog k) or evenO(log n). However, it could
also be that the integrality gap of the relaxation considénehis thesis i€)(k) even if ATSPP has
a constant integrality gap.

Though Generak-ATSPP seems very difficult, there are still some intergstjnestions. We
demonstrated complexity barriers to approximating Gdnes&l SPP within any ratio for values
of k¥ being as small as polylogarithmic in the number of nodes. Wéagetter approximations
are possible for a constant number(ef, ¢;) pairs. In particular, what if there are only two pairs
(s1,t1), (s2,t2)? There is potential for this case to be difficult because tineesvhat-related prob-
lem of finding edge-disjoint paths between two such pairsfsddmplete [39], but there could be a
good approximation algorithm. Also, there might also be adgbicriteria approximation algorithm
that may use each of te,, t;) salesman more than once.

Another question relates to bicriteria approximationsnfatiple traveling salesmen with mul-
tiple sources and/or multiple sinks (and even, perhapseféh-ATSPP). Consider, for example,
the single source, multiple sink case. A bicriteria appmation simply says that each sink is the
end of 5 pathson average It may be that all but one sink is used only once while the $a# is
usedk + 1 times for a total oRk paths. What about harder bounds on the number of times a sink
may be used as an endpoint? Rather than saying a sink is useg@ges3 times, what if we said
each sink can be used mosts times. So, for the caseé = 2 as was explored in Sections 3.3 and
3.4 this means each sink can be used at most twice in singteesauultiple sink instances. Is there
still such a bicriteria approximation algorithm with a legamic (or even polylogarithmic) bound
on the approximation ratia?

The approximation algorithm for Minimum Latency in asymnemetrics lost anO(logn)
factor essentially for two reasons, one is the rounding eiLth for ATSPP and the other is because

O(logn) buckets were used when grouping the nodes by their latersog @as taken to ensure the

117

total loss was only additive in these two ratios. As we margibat the end of Chapter 4, it might
seem natural to assume that an improved bound on the intgggaps of ATSPP and-ATSPP
would imply a similar improvement for the approximabilitfMinimum latency. However, the fact
that we use@)(log n) buckets prevents such an improvement to ATSPP from imnedgiahplying
the same improvement for Minimum Latency.

Two of the problems related to ATSPP covered on in this thasssMinimum Latency and
k-ATSPP. A natural combination of these variants is th€&aveling Repairmen problem in asym-
metric metrics, the problem of finding paths starting at a fixed nodewhose union covers all
other nodes exactly once while minimizing the average dégdroms to a node inV” along these
paths. As mentioned before, this has already been studggrimetric metrics and constant factor
approximations are known. It is easy to construct asymmeatdtrics where the cost with= 1 is
exponentially larger than the cost with= 2 so it may be of practical importance to consider using
more than one repairman. The first question is whether thiantaadmits a good approximation
algorithm/integrality gap. If so, what can be said if theepairmen all start at different locations
(with endpoints still not fixed). One would hope that our bdsifor k-ATSPP can be applied to the
k-Traveling Repairmen problem in a way that is similar to gpp ATSPP to Directed Latency, but
there are some technical issues. For example Lemma 4.2sIndbéranslate directly to the setting
with multiple salesmen and it seems difficult to develop niegfinl ordering constraints fak > 2
paths.

Finally, we remark on the GeneratTSPP problem in symmetric metrics. We exhibited a 3-
approximation that used simple lower bounds, one beingairto the spanning tree lower bound
for classic TSP and the other being the simple fact that eweryt; path has cost at least the cost
of the edges;t;. A glaring omission is the application of any lower-boundsd&d on minimum cost
matchings as in Christofide’s algorithm for TSP or Hoogetgalyorithm for TSP Path. For exam-
ple, after finding theS-rooted spanning forest and adding theé; paths, perhaps we can augment
the graph to have an Euleriant; path for every component using matchings rather than dogibli
the edges in the forest. The problem with this approach tsiparticular component we are trying
to augment may contain an odd number of wrong-degree nodesdifferent paths in some opti-
mum solution, making it difficult to bound the cost of the niaigs using edges from the optimum
solution. Still, it might be possible to find @approximation for some constant< 3 for General

k-TSPP in symmetric metrics.

118

Bibliography

[1] N. Aggarwal, N. Garg, and S. Gupta,4/3-approximation for TSP on cubic 3-edge-connected
graphs arXiv:1101.5586, available online http://arxiv.org/pdf/1101.5586

[2] N. Alon, Ranking tournamentSIAM J. Discrete Math, 20(1):137-142, 2006.

[3] H. An and D. B. Shmoysl|.P-based approximation algorithms for traveling salesnpaath
problems arXiv:1105.2391, available online http://arxiv.org/pdf/1105.2391

[4] M. Andrews, J. Chuzhoy, S. Khanna, and L. ZhaHgydness of the undirected edge-disjoint
paths problem with congestipm Proceedings of FOCS, 2005

[5] A. Archer, A. Levin, and D. P. WilliamsonA faster, better approximation algorithm for the
minimum latency problenSIAM J. Comput., 37(5):1472-1498, 2008.

[6] S. Arora,Polynomial time approximation schemes for Euclidean tiagesalesman and other
geometric problemslournal of the ACM, 45:753—-782, 1998.

[7] S.Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegdlgof verification and the hardness
of approximation problemslournal of the ACM, 45(3):501-555, 1998.

[8] S. Arora and S. Safr&robabilistic checking of proofs: A new characterizatidriNg®, Journal
of the ACM, 45(1):70-122, 1998

[9] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, afd Saberi, An
O(log n/loglog n)-approximation algorithm for the asymmetric travelingesthan problem
In Proceedings of SODA, 2010.

[10] G. Ausiello, P. Crescenzi, V. Kann, Marchetti-Spacetan Giorgio Gambosi, and Alberto
M. Spaccamela, Complexity and Approximation: Combinatio®ptimization Problems and
Their Approximability Properties, Springer, 2003.

[11] Y. Azar and O. Regevstrongly polynomial algorithms for the unsplittable flowoplem In
Proceedings of IPCO, 2001.

[12] N. Bansal, A. Chakrabarti, A. Epstein, and B. SchieBeguasi-PTAS for unsplittable flow on
line graphs In Proceedings of STOC, 2006.

[13] N. Bansal, Z. Friggstad, R. Khandekar, and M. R. Salpeat, A logarithmic approximation
for unsplittable flow on line graphs$n Proceedings of SODA, 2009.

[14] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, B. Scleiel unified approach to approxi-
mating resource allocation and scheduljrilg ACM 48(5):1069-1090, 2001.

[15] M. Bellare, O. Goldreich, and M. SudaRree bits, PCPs, and nonapproximability - towards
tight results SIAM J. on Computing, 27:804-915, 1998.

[16] P. Berman and M. KarpinskB/7-approximation algorithm for (1,2)-TSh Proceedings of
SODA, 2006.

119

[17] M. BlaserA new approximation algorithm for the asymmetric TSP wiidrntgle inequality In
Proceedings SODA, 2002.

[18] A. Blum, P. Chalasani, D. Coppersmith, B. PulleyblaRk,Raghavan, and M. Sudanhe
minimum latency problepin Proceedings of STOC, 1994.

[19] P.Bonsma, J. Schulz, and A. Wiegegonstant factor approximation algorithm for unsplittabl
flow on paths arXiv:1102.3643, available online &ttp://arxiv.org/abs/1102.
3643.

[20] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rahdmproved approximation algorithms
for resource allocationln Proceedings of IPCO, 2001.

[21] G. Carpaneto, S. Martello and P. Tothn algorithm for the bottleneck travelling salesman
problem Operations Research, 32(2):380389, 1984.

[22] J. O. CerdeiraMatroids and a forest cover problemlathematical Programming, 66:403—405,
1994,

[23] A. Chakrabarti, C. Chekuri, A. Kumar, and A. Guptspproximation algorithms for the un-
splittable flow problemAlgorithmica, 47(1):53-78, 2007. Preliminary versionARPROX,
September 2002.

[24] M. Charikar, M. X. Goemans, and H. Karlofn the integrality ratio for asymmetric TSH
Proceedings of FOCS, 2004.

[25] K. Chaudhuri, B. Godfrey, S. Rao and K. TalwBaths, trees, and minimum latency tours
Proceedings FOCS, 2003.

[26] C. Chekuri, A. Ene, and N. KoruldJFP in paths and trees and column-restricted packing
integer programsin Proceedings of APPROX, 2009.

[27] C. Chekuri and A. KumarMaximum coverage problem with group budget constraiftis
Proceedings of APPROX, 2004.

[28] C. Chekuri, S. Khanna, and B. Shephefah O(/n) approximation and integrality gap for
disjoint paths and UFPTheory of Computing, 2:137-146, 2006.

[29] C. Chekuri, M. Mydlarz, and F. B. Shepherliulticommodity demand flow in a tree and
packing integer programsACM Transactions on Algorithms, 3(3), 2007

[30] C. Chekuri and M. BI, An O(logn) approximation ratio for the asymmetric travelling sales-
man path problemin Proceedings of APPROX, 2006.

[31] C.Chekuri, J. Vondak, and R. Zenklusemependent randomized rounding via exchange prop-
erties of combinatorial structure$n Proceedings of FOCS, 2010.

[32] N. Christofides Worst-case analysis of a new heuristic for the travelingesalan problem
Technical report, Graduate School of Industrial Admiristm, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[33] M. Chudnovsky, N. Robertson, P. Seymour, R. ThonTds strong perfect graph theorem
Annals of Mathematics 164(1):51-229, 2006.

[34] J. Chuzhoy and P. Chalermsodihe maximum independent set of rectangles probleiro-
ceedings of SODA, 2009.

[35] V. Chvatal, A greedy heuristic for the set-covering probleliathematics of Operations Re-
search, 4:233-235, 1979.

120

[36] J. Fakcharoenphol, C. Harrelson, and S. Rao, AHtraveling repairman problem, In Proceed-
ings of SODA, 2003.

[37] U. Feige,A threshold ofin n for approximating set covedournal of the ACM, 45:634-652,
1998.

[38] U. Feige and M. SingHmproved approximation ratios for traveling salesman wand paths
in directed graphsin Proceedings of APPROX, 2007.

[39] S. Fortune, J. E. Hopcroft, and J. Wyli€he directed subgraph homeomorphism prohlem
Theor. Comput. Sci., 10:111-121, 1980.

[40] A. Frank,On connectivity properties of Eulerian digraphsnnals of Discrete Mathematics,
41:179-194, 1989.

[41] A. Frieze,Edge disjoint paths in expander graptSIAM Journal on Computing, 30:1790—
1801, 2001.

[42] A. Frieze, G. Galbiati and F. MaffiolDn the worst-case performance of some algorithms for
the asymmetric traveling salesman probjétetworks, 12:23-39, 1982.

[43] Z. Friggstad, M. R. Salavatipour, and Z. Svitkilssymmetric traveling salesman path and
directed latency problem#$n Proceedings of SODA, 2010.

[44] 1. Gamzu and D. Sege® sublogarithmic approximation for highway and tollbootiicing, In
Proceedings of ICALP, 2010.

[45] M. R. Garey and D.S. Johnson, Computers and IntradgbA Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[46] N. Garg, V. V. Vazirani, and M. YannakakiBrimal-dual approximation algorithms for inte-
gral ow and multicut in tregsAlgorithmica, 18(1):3-20, 1997.

[47] M. X. Goemans and J. Kleinbergn improved approximation ratio for the minimum latency
problem Math. Program., 82:111-124, 1998.

[48] M. C. Golumbic, Algorithmic Graph Theory and Perfectaphs (Annals of Discrete Mathe-
matics, Vol 57), North-Holland Publishing Co., Amsterdarhe Netherlands, second edition,
2004.

[49] M. Grotschel, L. Loasz, and A. SchrijveiThe ellipsoid method and its consequences in com-
binatorics and optimizaitonCombinatorica, 1:169-197, 1981.

[50] M. Grotschel, L. Lowasz, and A. Schrijver, Geometric Algorithms and CombinatdDpti-
mization, Springer-Verlag, 1988.

[51] V. Guruswami, S. Khanna, B. Shepherd, R. Rajaraman,Mnifannakakis,Near optimal
hardness results and approximation algorithms for edggedfit paths and related problems
J. of Computer and System Sciences, 67(3):4730496, 2003.

[52] M. Held and R. Karp;The traveling salesman problem and minimum spanning ,t@@psra-
tions Research, 18:1138-1162, 1970.

[53] D. S. HochbaumApproximation algorithms for the set covering and vertexezgroblems
SIAM Journal on Computing, 11:555-556, 1982.

[54] J. A. HoogeveenAnalysis of Christodes heuristic: some paths are more Hitban cycles
Operations Research Letters, 10(5):291-295, 1991.

[55] O.H. Ibarra and C. E. Kinfast approximation algorithms for the knapsack and sum bésti
problems Journal of the ACM, 22:463-468, 1975.

121

[56] B. JacksonSome remarks on arc-connectivity, vertex splitting, andraation in digraphs
Journal of Graph Theory, 12(3):429-436, 1988.

[57] R. Jothi and B. Raghavachafipproximating thée:-traveling repairman problem with repair-
times Journal of Discrete Algorithms, 5(2):293-303, 2004.

[58] H.Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenkgproximation algorithms for asym-
metric TSP by decomposing directed regular multigraph&CM, 52(4):602-626, 2005.

[59] N. Karmarkar,A new polynomial time algorithm for linear programminG@ombinatorica,
4(4):373-395, 1984.

[60] R. Karp, Reducibility among combinatorial problemis Raymond E. Miller and James W.
Thatcher, editor€omplexity of Computer ComputatiQi@s—103, Plenum Press, 1972.

[61] J. M. Kleinberg, Approximation Algorithms for DisjoirPaths Problems, PhD thesis, MIT,
1996.

[62] F. Lam and A. NewmanJraveling salesman path problemslathematical Programming,
113(1):39-59, 2008.

[63] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D.&moys.The traveling salesman
problem John Wiley, 1985.

[64] L. Lewin-Eytan, J. Naor, and A. OrdRouting and admission control in networks with advance
reservationsin Proceedings of APPROX, 2002.

[65] W. Malik, S. Rathinam, S. Darbh&n approximation algorithm for a symmetric generalized
multiple depot, multiple travelling salesman probledperations Research Letters 35(6):747-
753, 2007.

[66] C. Mathieu and W. Schudyfow to rank with few errors: a PTAS for weighted feedback arc
set on tournaments$n Proceedings of STOC, 2007.

[67] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdmis: a simple
polynomial-time approximation scheme for geometric TBSRIST, and related problems
SIAM J. on Comput., 28:1298-1309, 1999.

[68] M. Mitzenmacher and E. Upfal, Probability and CompgtirRandomized Algorithms and
Probabilistic Analysis, Cambridge University Press, Cedde, UK, 2005.

[69] T. Momke and O. SvenssoApproximate graphic TSP by matchingsXiv:1104.3090, avail-
able online ahttp://arxiv.org/pdf/1104.3090 .

[70] V. Nagarajan and R. Ravihe directed minimum latency probleim Proceedings of APPROX,
2008.

[71] S. Oveis Gharan, A. SabeAsymmetric traveling salesman problem on graphs with bednd
genus In Proceedings of SODA, 2011

[72] S. Oveis Gharan, A. Saberi, and M. Singhyrandomized rounding approach to the travel-
ing salesman problemManuscript, Available online dbttp://www.cs.mcgill.ca/
~ mohit/publications.html

[73] C. H. Papadimitriou and S. Vempalan the approximability of the traveling salesman prob-
lem, Combinatorica, 26(1):101-120, 2006.

[74] C. H. Papadimitriou and M. YannakakiEhe traveling salesman problem with distances one
and twq Math. Oper. Res., 18:1-11, 1993.

122

[75] A. Phillips, R. N. Uma and J. WeitQnline admission control for general scheduling problems
Journal of Scheduling, 3(6):365-381, 2000.

[76] S. Rathinam and R. Senguptdatroid intersection and its application to a multiple depo
multiple TSR Technical report, University of California, Berkely, 200

[77] S. Rathinam and R. Sengup82-approximation algorithm for a generalized, multiplkepdbt,
Hamiltonina path problenTechnical report, University of California, Berkeley, 200

[78] S. Rathinam, R. Sengupta/3-approximation algorithm for a multiple depot, termitamil-
tonian path problenTechnical report, University of California, Berkeley, 200

[79] S. Rathinam, R. Sengupta/2-approximation algorithm for two variants of a 2-depaaril-
tonian path problemOperations Research Letters 38(1):63-68, 2010.

[80] S. Rathinam, R. Sengupta, and S. Darbhaesource allocation algorithm for multi-vehicle
systems with non holonomic constrajitSEE Transactions on Automation Sciences and En-
gineering, 4(1):98-104, 2006.

[81] N. Robertson, D. P. Sanders, P. Seymour, and R. ThoEiéisjently four-coloring planar
graphs In Proceedings of STOC, 1996.

[82] N. Robertson N, P. D. Seymou@raph minors XlII: the disjoint paths problendournal of
Combinatorial Theory, Series B, 63(1):65-110, 1995.

[83] B. Rodrigues and Z. XuA 3/2-approximation for multiple depot multiple travelisglesman
problem In Proceedings of SWAT, 2010.

[84] A. Schrijver, Combinatorial Optimization - Polyhedaad Efficiency, Springer-Verlag, New
York, 2005.

[85] D. B. Shmoys and D. P. Williamsomnalyzing the Held-Karp TSP bound: a monotonicity
property with applicationinformation Processing Letters, 35(6):281-285, 1990.

[86] J. M. S. Simes-Pereir®n subgraphs as matroid cellMathematische Zeitschrift, 127:315—
322, 1972.

[87] A. Srinivasan/mproved approximations for edge-disjoint paths, untgite ow, and related
routing problemsin Proceedings of FOCS, 1997.

[88] V. Vazirani, Approximation Algorithms, Springer, 280

[89] D. P. Williamson,Analysis of the Held-Karp heuristic for the traveling satem problem
M.Sc. Thesis, Masachusetts Institute of Technology, 1990.

[90] L. A. Wolsey,Heuristic analysis, linear programming and branch and bdun Combinatorial
Optimization II, volume 13 of Mathematical Programming @as, pages 121134. Springer
Berlin Heidelberg, 1980.

[91] D. ZuckermanlLinear degree extractors and the inapproximability of méigue and chro-
matic numberTheory of Computing, Volume 3 (2007), pp. 103128

123

